WorldWideScience

Sample records for schottky power diodes

  1. Power Conversion Efficiency of AlGaAs/GaAs Schottky Diode for Low-Power On-Chip Rectenna Device Application

    International Nuclear Information System (INIS)

    Mustafa, Farahiyah; Hashim, Abdul Manaf; Rahman, Shaharin Fadzli Abd; Osman, Mohd Nizam

    2011-01-01

    A Schottky diode has been designed and fabricated on n-AlGaAs/GaAs high-electron-mobility-transistor (HEMT) structure. Current-voltage (I-V) measurements show good device rectification with a Schottky barrier height of 0.4349 eV for Ni/Au metallization. The differences of Schottky barrier height from theoretical value are due to the fabrication process and smaller contact area. The RF signals up to 1 GHz are well rectified by the fabricated Schottky diodes and stable DC output voltage is obtained. Power conversion efficiency up to 50% is obtained at 1 GHz with series connection between diode and load. The fabricated the n-AlGaAs/GaAs Schottky diode provide conduit for breakthrough designs for ultra-low power on-chip rectenna device technology to be integrated in nanosystems.

  2. Fabrication and Characterization of Vertical Gallium Nitride Power Schottky Diodes on Bulk GaN Substrates FY2016

    Science.gov (United States)

    2016-12-01

    ARL-TR-7913 ● DEC 2016 US Army Research Laboratory Fabrication and Characterization of Vertical Gallium Nitride Power Schottky...TR-7913 ● DEC 2016 US Army Research Laboratory Fabrication and Characterization of Vertical Gallium Nitride Power Schottky Diodes on Bulk...Fabrication and Characterization of Vertical Gallium Nitride Power Schottky Diodes on Bulk GaN Substrates FY2016 5a. CONTRACT NUMBER 5b. GRANT NUMBER

  3. Dual-functional on-chip AlGaAs/GaAs Schottky diode for RF power detection and low-power rectenna applications.

    Science.gov (United States)

    Hashim, Abdul Manaf; Mustafa, Farahiyah; Rahman, Shaharin Fadzli Abd; Rahman, Abdul Rahim Abdul

    2011-01-01

    A Schottky diode has been designed and fabricated on an n-AlGaAs/GaAs high-electron-mobility-transistor (HEMT) structure. Current-voltage (I-V) measurements show good device rectification, with a Schottky barrier height of 0.4349 eV for Ni/Au metallization. The differences between the Schottky barrier height and the theoretical value (1.443 eV) are due to the fabrication process and smaller contact area. The RF signals up to 1 GHz are rectified well by the fabricated Schottky diode and a stable DC output voltage is obtained. The increment ratio of output voltage vs input power is 0.2 V/dBm for all tested frequencies, which is considered good enough for RF power detection. Power conversion efficiency up to 50% is obtained at frequency of 1 GHz and input power of 20 dBm with series connection between diode and load, which also shows the device's good potential as a rectenna device with further improvement. The fabricated n-AlGaAs/GaAs Schottky diode thus provides a conduit for breakthrough designs for RF power detectors, as well as ultra-low power on-chip rectenna device technology to be integrated in nanosystems.

  4. Dual-Functional On-Chip AlGaAs/GaAs Schottky Diode for RF Power Detection and Low-Power Rectenna Applications

    Directory of Open Access Journals (Sweden)

    Abdul Manaf Hashim

    2011-08-01

    Full Text Available A Schottky diode has been designed and fabricated on an n-AlGaAs/GaAs high-electron-mobility-transistor (HEMT structure. Current-voltage (I-V measurements show good device rectification, with a Schottky barrier height of 0.4349 eV for Ni/Au metallization. The differences between the Schottky barrier height and the theoretical value (1.443 eV are due to the fabrication process and smaller contact area. The RF signals up to 1 GHz are rectified well by the fabricated Schottky diode and a stable DC output voltage is obtained. The increment ratio of output voltage vs input power is 0.2 V/dBm for all tested frequencies, which is considered good enough for RF power detection. Power conversion efficiency up to 50% is obtained at frequency of 1 GHz and input power of 20 dBm with series connection between diode and load, which also shows the device’s good potential as a rectenna device with further improvement. The fabricated n-AlGaAs/GaAs Schottky diode thus provides a conduit for breakthrough designs for RF power detectors, as well as ultra-low power on-chip rectenna device technology to be integrated in nanosystems.

  5. High Power Ga2O3-based Schottky Diode, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Program will develop a new generation of radiation hard high-power high-voltage Ga2O3-based Schottky diode, which is suitable for applications in the space...

  6. Si and SiC Schottky diodes in smart power circuits: a comparative study by I-V-T and C-V measurements

    Energy Technology Data Exchange (ETDEWEB)

    Hadzi-Vukovic, J [Infineon Technologies, Siemensstrasse 2, 9500 Villach (Austria); Jevtic, M [Institute for Physics, Pregrevica 118, 11080 Zemun (Serbia and Montenegro); Rothleitner, H [Infineon Technologies, Siemensstrasse 2, 9500 Villach (Austria); Croce, P Del [Infineon Technologies, Siemensstrasse 2, 9500 Villach (Austria)

    2005-01-01

    In this paper we analyze a possibility of manufacturing and implementation of Schottky diodes in the smart power circuits. Three different Schottky diodes, in three different technologies, are realized in Si and SiC processes. The electrical characterizations with I-V-T and C-V measurements are done for all structures. It is shown that Si based Schottky diodes also are suitable to be integrated in the typical smart power circuits.

  7. Si and SiC Schottky diodes in smart power circuits: a comparative study by I-V-T and C-V measurements

    International Nuclear Information System (INIS)

    Hadzi-Vukovic, J; Jevtic, M; Rothleitner, H; Croce, P Del

    2005-01-01

    In this paper we analyze a possibility of manufacturing and implementation of Schottky diodes in the smart power circuits. Three different Schottky diodes, in three different technologies, are realized in Si and SiC processes. The electrical characterizations with I-V-T and C-V measurements are done for all structures. It is shown that Si based Schottky diodes also are suitable to be integrated in the typical smart power circuits

  8. High-temperature current conduction through three kinds of Schottky diodes

    International Nuclear Information System (INIS)

    Fei, Li; Xiao-Ling, Zhang; Yi, Duan; Xue-Song, Xie; Chang-Zhi, Lü

    2009-01-01

    Fundamentals of the Schottky contacts and the high-temperature current conduction through three kinds of Schottky diodes are studied. N-Si Schottky diodes, GaN Schottky diodes and AlGaN/GaN Schottky diodes are investigated by I–V–T measurements ranging from 300 to 523 K. For these Schottky diodes, a rise in temperature is accompanied with an increase in barrier height and a reduction in ideality factor. Mechanisms are suggested, including thermionic emission, field emission, trap-assisted tunnelling and so on. The most remarkable finding in the present paper is that these three kinds of Schottky diodes are revealed to have different behaviours of high-temperature reverse currents. For the n-Si Schottky diode, a rise in temperature is accompanied by an increase in reverse current. The reverse current of the GaN Schottky diode decreases first and then increases with rising temperature. The AlGaN/GaN Schottky diode has a trend opposite to that of the GaN Schottky diode, and the dominant mechanisms are the effects of the piezoelectric polarization field and variation of two-dimensional electron gas charge density. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  9. Carbon nanotube Schottky diode: an atomic perspective

    International Nuclear Information System (INIS)

    Bai, P; Li, E; Kurniawan, O; Koh, W S; Lam, K T

    2008-01-01

    The electron transport properties of semiconducting carbon nanotube (SCNT) Schottky diodes are investigated with atomic models using density functional theory and the non-equilibrium Green's function method. We model the SCNT Schottky diode as a SCNT embedded in the metal electrode, which resembles the experimental set-up. Our study reveals that the rectification behaviour of the diode is mainly due to the asymmetric electron transmission function distribution in the conduction and valence bands and can be improved by changing metal-SCNT contact geometries. The threshold voltage of the diode depends on the electron Schottky barrier height which can be tuned by altering the diameter of the SCNT. Contrary to the traditional perception, the metal-SCNT contact region exhibits better conductivity than the other parts of the diode

  10. Durability of PEDOT: PSS-pentacene Schottky diode

    International Nuclear Information System (INIS)

    Kang, K S; Lim, H K; Cho, K Y; Han, K J; Kim, Jaehwan

    2008-01-01

    The durability and failure cause of a polymer Schottky diode made with PEDOT : PSS-pentacene were investigated. A polymer Schottky diode was fabricated by dissolving pentacene in N-methylpyrrolidone (NMP) and mixing with PEDOT : PSS. Pentacene solution having a maximum concentration of approximately 9.7 mmoles was prepared by simply stirring the solution at room temperature for 36 h. As the pentacene concentration increased, the absorption of the broad UV regime increased dramatically. However, absorption peaks of pentacene at 301 and 260 nm were not observed for the PEDOT : PSS-pentacene. A three-layered polymer Schottky diode was fabricated and its current-voltage (I-V) characteristic was evaluated. The current was reduced by 7% in the first 50 min and then stabilized during biased electrical field sweeps. After 500 and 800 min, catastrophic failure occurred. FESEM images revealed that the electrode damage caused catastrophic failure of the Schottky diode. (fast track communication)

  11. Polycrystalline Diamond Schottky Diodes and Their Applications.

    Science.gov (United States)

    Zhao, Ganming

    In this work, four-hot-filament CVD techniques for in situ boron doped diamond synthesis on silicon substrates were extensively studied. A novel tungsten filament shape and arrangement used to obtain large-area, uniform, boron doped polycrystalline diamond thin films. Both the experimental results and radiative heat transfer analysis showed that this technique improved the uniformity of the substrate temperature. XRD, Raman and SEM studies indicate that large area, uniform, high quality polycrystalline diamond films were obtained. Schottky diodes were fabricated by either sputter deposition of silver or thermal evaporation of aluminum or gold, on boron doped diamond thin films. High forward current density and a high forward-to-reverse current ratio were exhibited by silver on diamond Schottky diodes. Schottky barrier heights and the majority carrier concentrations of both aluminum and gold contacted diodes were determined from the C-V measurements. Furthermore, a novel theoretical C-V-f analysis of deep level boron doped diamond Schottky diodes was performed. The analytical results agree well with the experimental results. Compressive stress was found to have a large effect on the forward biased I-V characteristics of the diamond Schottky diodes, whereas the effect on the reverse biased characteristics was relatively small. The stress effect on the forward biased diamond Schottky diode was attributed to piezojunction and piezoresistance effects. The measured force sensitivity of the diode was as high as 0.75 V/N at 1 mA forward bias. This result shows that CVD diamond device has potential for mechanical transducer applications. The quantitative photoresponse characteristics of the diodes were studied in the spectral range of 300 -1050 nm. Semi-transparent gold contacts were used for better photoresponse. Quantum efficiency as high as 50% was obtained at 500 nm, when a reverse bias of over 1 volt was applied. The Schottky barrier heights between either gold or

  12. Gate Modulation of Graphene-ZnO Nanowire Schottky Diode.

    Science.gov (United States)

    Liu, Ren; You, Xu-Chen; Fu, Xue-Wen; Lin, Fang; Meng, Jie; Yu, Da-Peng; Liao, Zhi-Min

    2015-05-06

    Graphene-semiconductor interface is important for the applications in electronic and optoelectronic devices. Here we report the modulation of the electric transport properties of graphene/ZnO nanowire Schottky diode by gate voltage (Vg). The ideality factor of the graphene/ZnO nanowire Schottky diode is ~1.7, and the Schottky barrier height is ~0.28 eV without external Vg. The Schottky barrier height is sensitive to Vg due to the variation of Fermi level of graphene. The barrier height increases quickly with sweeping Vg towards the negative value, while decreases slowly towards the positive Vg. Our results are helpful to understand the fundamental mechanism of the electric transport in graphene-semiconductor Schottky diode.

  13. InGaAs/InP heteroepitaxial Schottky barrier diodes for terahertz applications

    Science.gov (United States)

    Bhapkar, Udayan V.; Li, Yongjun; Mattauch, Robert J.

    1992-01-01

    This paper explores the feasibility of planar, sub-harmonically pumped, anti-parallel InGaAs/InP heteroepitaxial Schottky diodes for terahertz applications. We present calculations of the (I-V) characteristics of such diodes using a numerical model that considers tunneling. We also present noise and conversion loss predictions of diode mixers operated at 500 GHz, and obtained from a multi-port mixer analysis, using the I-V characteristics predicted by our model. Our calculations indicate that InGaAs/InP heteroepitaxial Schottky barrier diodes are expected to have an I-V characteristic with an ideality factor comparable to that of GaAs Schottky diodes. However, the reverse saturation current of InGaAs/InP diodes is expected to be much greater than that of GaAs diodes. These predictions are confirmed by experiment. The mixer analyses predict that sub-harmonically pumped anti-parallel InGaAs/InP diode mixers are expected to offer a 2 dB greater conversion loss and a somewhat higher single sideband noise temperature than their GaAs counterparts. More importantly, the InGaAs/InP devices are predicted to require only one-tenth of the local oscillator power required by similar GaAs diodes.

  14. Bulk GaN Schottky Diodes for Millimeter Wave Frequency Multipliers, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Within the context of this project, White Light Power Inc. (WLPI) will demonstrate the feasibility of using vertical GaN Schottky diodes for high-power rectification...

  15. Gate Modulation of Graphene-ZnO Nanowire Schottky Diode

    OpenAIRE

    Liu, Ren; You, Xu-Chen; Fu, Xue-Wen; Lin, Fang; Meng, Jie; Yu, Da-Peng; Liao, Zhi-Min

    2015-01-01

    Graphene-semiconductor interface is important for the applications in electronic and optoelectronic devices. Here we report the modulation of the electric transport properties of graphene/ZnO nanowire Schottky diode by gate voltage (Vg). The ideality factor of the graphene/ZnO nanowire Schottky diode is ~1.7, and the Schottky barrier height is ~0.28?eV without external Vg. The Schottky barrier height is sensitive to Vg due to the variation of Fermi level of graphene. The barrier height increa...

  16. A High Frequency (HF) Inductive Power Transfer Circuit for High Temperature Applications Using SiC Schottky Diodes

    Science.gov (United States)

    Jordan, Jennifer L.; Ponchak, George E.; Spry, David J.; Neudeck, Philip G.

    2018-01-01

    Wireless sensors placed in high temperature environments, such as aircraft engines, are desirable to reduce the mass and complexity of routing wires. While communication with the sensors is straight forward, providing power wirelessly is still a challenge. This paper introduces an inductive wireless power transfer circuit incorporating SiC Schottky diodes and its operation from room temperature (25 C) to 500 C.

  17. Bulk GaN Schottky Diodes for Millimeter Wave Frequency Multipliers, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Within the context of this project, White Light Power Inc. (WLPI) will demonstrate prototype vertical GaN Schottky diodes for high-power rectification at W-band. To...

  18. Investigation on a radiation tolerant betavoltaic battery based on Schottky barrier diode

    International Nuclear Information System (INIS)

    Liu Yebing; Hu Rui; Yang Yuqing; Wang Guanquan; Luo Shunzhong; Liu Ning

    2012-01-01

    An Au–Si Schottky barrier diode was studied as the energy conversion device of betavoltaic batteries. Its electrical performance under radiation of Ni-63 and H-3 sources and radiation degradation under Am-241 were investigated and compared with those of the p–n junction. The results show that the Schottky diode had a higher I sc and harder radiation tolerance but lower V oc than the p–n junction. The results indicated that the Schottky diode can be a promising candidate for energy conversion of betavoltaic batteries. - Highlights: ► The Schottky diode was used as the converter of the betavoltaic battery. ► The radiation damage of converter was accelerated by using alpha particles. ► The Schottky diode has higher radiation resistance than that of the p–n junction. ► The Schottky diode could still be a promising converter of the betavoltaic battery.

  19. Examinations of Selected Thermal Properties of Packages of SiC Schottky Diodes

    Directory of Open Access Journals (Sweden)

    Bisewski Damian

    2016-09-01

    Full Text Available This paper describes the study of thermal properties of packages of silicon carbide Schottky diodes. In the paper the packaging process of Schottky diodes, the measuring method of thermal parameters, as well as the results of measurements are presented. The measured waveforms of transient thermal impedance of the examined diodes are compared with the waveforms of this parameter measured for commercially available Schottky diodes.

  20. Performance enhancement of polymer Schottky diode by doping pentacene

    International Nuclear Information System (INIS)

    Kang, K.S.; Chen, Y.; Lim, H.K.; Cho, K.Y.; Han, K.J.; Kim, Jaehwan

    2009-01-01

    Schottky diodes have been fabricated using pentacene-doped poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) as a semiconducting material. To understand the fundamental properties of the pentacene-doped PEDOT:PSS, ultraviolet visible (UV) absorption spectroscopy was employed. It was found that a significant amount of pentacene can dissolve in n-methylpyrrolidone solvent. No characteristic absorption peak of pentacene was observed in the UV-visible spectra of PEDOT:PSS films doped with pentacene,. However, the absorption intensity of the doped PEDOT:PSS films increased as the pentacene concentration increased in particular in the UV region. The atomic force microscope images show that the surface roughnesses of PEDOT:PSS films increased as the pentacene concentration increased. Three-layer Schottky diodes comprising Al/PEDOT:PSS/Au or Al/PEDOT:PSS-pentacene/Au were fabricated. The maximum forward currents of non-doped and doped Schottky diodes were 4.8 and 440 μA/cm 2 at 3.3 MV/m, respectively. The forward current increased nearly two orders of magnitude for Schottky diode doped with 11.0 wt.% of pentacene.

  1. Development of Schottky diode detectors at Research Institute of Electrical Communication, Tohoku University

    International Nuclear Information System (INIS)

    Mizuno, K.; Ono, S.; Suzuki, T.; Daiku, Y.

    1982-01-01

    Schottky diode detectors are widely used as fast, sensitive submillimeter detectors in plasma physics, radio astronomy, frequency standards and so on. In this paper, the research on submillimeter Schottky diodes at Tohoku University is described. A brief description is given on the theoretical examination of diode parameters for video detection in design and on the fabrication of n/n + GaAs Schottky diode chips. Antennas for Schottky barrier diodes are discussed. Three types of antenna structures have been proposed, and used for whisker-contacted Schottky diodes so far. These are compared with each other for their frequency response and gain. The bicone type antenna is promising because of its larger frequency response, but the optimum design for this type of antenna has not yet sufficiently been obtained. As the application of Schottky barrier diodes, the intensity modulation of submillimeter laser and a quasi-optically coupled harmonic mixer have been studied. The modulation degree of about 4 % for HCN laser output has been so far obtained at the maximum modulation frequency of 2 GHz. Since 1976, a quasi-optically coupled harmonic mixer has been used with a Schottky diode in harmonic mixing between microwaves, millimeter waves, and submillimeter waves. (Wakatsuki, Y.)

  2. Fabrication of polymer Schottky diode with Al-PANI/MWCNT-Au structure

    Directory of Open Access Journals (Sweden)

    A Hajibadali

    2014-11-01

    Full Text Available In this research, Schottky diode with Al-PANI/MWCNT-Au structure was fabricated using spin coating of composite polymer and physical vapor deposition of metals. For this purpose, a thin layer of gold was coated on glass and then composite of polyaniline/multi-walled carbon nanotube was synthesized and spin-coated on gold layer. Finally, a thin layer of aluminum was coated on polymer layer. The current-voltage characteristics of diode were studied and found that I-V curve is nonlinear and nonsymmetrical, showing rectifying behavior. I-V characteristics plotted on a logarithmic scale for Schottky diode showed two distinct power law regions. At lower voltages, the mechanism follows Ohm’s Law and at higher voltages, the mechanism is consistent with space charge limited conduction (SCLC emission. The parameters extracted from I-V characteristics were also calculated.

  3. High performance Schottky diodes based on indium-gallium-zinc-oxide

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jiawei; Song, Aimin, E-mail: A.Song@manchester.ac.uk [School of Electrical and Electronic Engineering, University of Manchester, Manchester M13 9PL (United Kingdom); Xin, Qian [School of Physics, Shandong University, Jinan 250100 (China)

    2016-07-15

    Indium-gallium-zinc-oxide (IGZO) Schottky diodes exhibit excellent performance in comparison with conventional devices used in future flexible high frequency electronics. In this work, a high performance Pt IGZO Schottky diode was presented by using a new fabrication process. An argon/oxygen mixture gas was introduced during the deposition of the Pt layer to reduce the oxygen deficiency at the Schottky interface. The diode showed a high barrier height of 0.92 eV and a low ideality factor of 1.36 from the current–voltage characteristics. Even the radius of the active area was 0.1 mm, and the diode showed a cut-off frequency of 6 MHz in the rectifier circuit. Using the diode as a demodulator, a potential application was also demonstrated in this work.

  4. Compact modeling of SiC Schottky barrier diode and its extension to junction barrier Schottky diode

    Science.gov (United States)

    Navarro, Dondee; Herrera, Fernando; Zenitani, Hiroshi; Miura-Mattausch, Mitiko; Yorino, Naoto; Jürgen Mattausch, Hans; Takusagawa, Mamoru; Kobayashi, Jun; Hara, Masafumi

    2018-04-01

    A compact model applicable for both Schottky barrier diode (SBD) and junction barrier Schottky diode (JBS) structures is developed. The SBD model considers the current due to thermionic emission in the metal/semiconductor junction together with the resistance of the lightly doped drift layer. Extension of the SBD model to JBS is accomplished by modeling the distributed resistance induced by the p+ implant developed for minimizing the leakage current at reverse bias. Only the geometrical features of the p+ implant are necessary to model the distributed resistance. Reproduction of 4H-SiC SBD and JBS current-voltage characteristics with the developed compact model are validated against two-dimensional (2D) device-simulation results as well as measurements at different temperatures.

  5. Study of 4H-SiC junction barrier Schottky diode using field guard ring termination

    International Nuclear Information System (INIS)

    Feng-Ping, Chen; Yu-Ming, Zhang; Hong-Liang, Lü; Yi-Men, Zhang; Jian-Hua, Huang

    2010-01-01

    This paper reports that the 4H-SiC Schottky barrier diode, PiN diode and junction barrier Schottky diode terminated by field guard rings are designed, fabricated and characterised. The measurements for forward and reverse characteristics have been done, and by comparison with each other, it shows that junction barrier Schottky diode has a lower reverse current density than that of the Schottky barrier diode and a higher forward drop than that of the PiN diode. High-temperature annealing is presented in this paper as well to figure out an optimised processing. The barrier height of 0.79 eV is formed with Ti in this work, the forward drop for the Schottky diode is 2.1 V, with an ideality factor of 3.2, and junction barrier Schottky diode with blocking voltage higher than 400 V was achieved by using field guard ring termination. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  6. Monte Carlo modelling of Schottky diode for rectenna simulation

    Science.gov (United States)

    Bernuchon, E.; Aniel, F.; Zerounian, N.; Grimault-Jacquin, A. S.

    2017-09-01

    Before designing a detector circuit, the electrical parameters extraction of the Schottky diode is a critical step. This article is based on a Monte-Carlo (MC) solver of the Boltzmann Transport Equation (BTE) including different transport mechanisms at the metal-semiconductor contact such as image force effect or tunneling. The weight of tunneling and thermionic current is quantified according to different degrees of tunneling modelling. The I-V characteristic highlights the dependence of the ideality factor and the current saturation with bias. Harmonic Balance (HB) simulation on a rectifier circuit within Advanced Design System (ADS) software shows that considering non-linear ideality factor and saturation current for the electrical model of the Schottky diode does not seem essential. Indeed, bias independent values extracted in forward regime on I-V curve are sufficient. However, the non-linear series resistance extracted from a small signal analysis (SSA) strongly influences the conversion efficiency at low input powers.

  7. Current Transport Properties of Monolayer Graphene/n-Si Schottky Diodes

    Science.gov (United States)

    Pathak, C. S.; Garg, Manjari; Singh, J. P.; Singh, R.

    2018-05-01

    The present work reports on the fabrication and the detailed macroscopic and nanoscale electrical characteristics of monolayer graphene/n-Si Schottky diodes. The temperature dependent electrical transport properties of monolayer graphene/n-Si Schottky diodes were investigated. Nanoscale electrical characterizations were carried out using Kelvin probe force microscopy and conducting atomic force microscopy. Most the values of ideality factor and barrier height are found to be in the range of 2.0–4.4 and 0.50–0.70 eV for monolayer graphene/n-Si nanoscale Schottky contacts. The tunneling of electrons is found to be responsible for the high value of ideality factor for nanoscale Schottky contacts.

  8. Annealing effect on Schottky barrier inhomogeneity of graphene/n-type Si Schottky diodes

    International Nuclear Information System (INIS)

    Lin, Yow-Jon; Lin, Jian-Huang

    2014-01-01

    Highlights: • The current–voltage characteristics of graphene/n-type Si devices were measured. • The ideality factor increases with the decrease measurement temperatures. • Such behavior is attributed to Schottky barrier inhomogeneities. • Both Schottky barrier inhomogeneity and the T 0 effect are affected by annealing. • Stoichiometry of SiO x has a noticeable effect on the inhomogeneous barriers. - Abstract: The current–voltage characteristics of graphene/n-type Si (n-Si) Schottky diodes with and without annealing were measured in the temperature range of −120 to 30 °C and analyzed on the basis of thermionic emission theory. It is found that the barrier height decreases and the ideality factor increases with the decrease measurement temperatures. Such behavior is attributed to Schottky barrier inhomogeneities. It is shown that both the barrier height and the ideality factor can be tuned by changing the annealing temperature. Through the analysis, it can be suspected that a SiO x layer at the graphene/n-Si interfaces influences the electronic conduction through the device and stoichiometry of SiO x is affected by annealing treatment. In addition, both Schottky barrier inhomogeneity and the T 0 effect are affected by annealing treatment, implying that stoichiometry of SiO x has a noticeable effect on the inhomogeneous barriers of graphene/n-Si Schottky diodes

  9. Fabrication and characterization of n-AlGaAs/ GaAs Schottky diode for rectennas device application

    International Nuclear Information System (INIS)

    Norfarariyanti Parimon; Abdul Manaf Hashim; Farahiyah Mustafa

    2009-01-01

    Full text: Schottky diode was designed and fabricated on n-AlGaAs/GaAs high electron mobility transistor (HEMT) structure for rectennas device application. Rectennas is one of the most potential devices to form the wireless power supply which is really good at converting microwaves to DC. The processing steps used in the fabrication of Schottky diode were the conventional steps used in standard GaAs processing. Current?voltage (I-V) measurements showed that the device had rectifying properties with a barrier height of 0.5468 eV for Ni/Au metallization. The fabricated Schottky diode detected RF signals and the cut-off frequency up to 20 GHz was estimated in direct injection experiments. These preliminary results will provide a breakthrough for the direct integration with antenna towards realization of rectennas device application. (author)

  10. Fabrication and Characterization of n-AlGaAs/GaAs Schottky Diode for Rectenna Device Application

    Energy Technology Data Exchange (ETDEWEB)

    Parimon, Norfarariyanti; Mustafa, Farahiyah; Hashim, Abdul Manaf; Rahman, Shaharin Fadzli Abd; Rahman, Abdul Rahim Abdul [Material Innovations and Nanoelectronics Research Group, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Osman, Mohd Nizam, E-mail: manaf@fke.utm.my [Telekom Research and Development, TM Innovation Centre, 63000 Cyberjaya (Malaysia)

    2011-02-15

    Schottky diode was designed and fabricated on n-AlGaAs/GaAs high electron mobility transistor (HEMT) structure for rectenna device application. Rectenna is one of the most potential devices to form the wireless power supply which is really good at converting microwaves to DC. The processing steps used in the fabrication of Schottky diode were the conventional steps used in standard GaAs processing. Current-voltage (I-V) measurements showed that the device had rectifying properties with a barrier height of 0.5468 eV for Ni/Au metallization. The fabricated Schottky diode detected RF signals and the cut-off frequency up to 20 GHz was estimated in direct injection experiments. These preliminary results will provide a breakthrough for the direct integration with antenna towards realization of rectenna device application.

  11. Fabrication and Characterization of n-AlGaAs/GaAs Schottky Diode for Rectenna Device Application

    International Nuclear Information System (INIS)

    Parimon, Norfarariyanti; Mustafa, Farahiyah; Hashim, Abdul Manaf; Rahman, Shaharin Fadzli Abd; Rahman, Abdul Rahim Abdul; Osman, Mohd Nizam

    2011-01-01

    Schottky diode was designed and fabricated on n-AlGaAs/GaAs high electron mobility transistor (HEMT) structure for rectenna device application. Rectenna is one of the most potential devices to form the wireless power supply which is really good at converting microwaves to DC. The processing steps used in the fabrication of Schottky diode were the conventional steps used in standard GaAs processing. Current-voltage (I-V) measurements showed that the device had rectifying properties with a barrier height of 0.5468 eV for Ni/Au metallization. The fabricated Schottky diode detected RF signals and the cut-off frequency up to 20 GHz was estimated in direct injection experiments. These preliminary results will provide a breakthrough for the direct integration with antenna towards realization of rectenna device application.

  12. Simulation studies of current transport in metal-insulator-semiconductor Schottky barrier diodes

    International Nuclear Information System (INIS)

    Chand, Subhash; Bala, Saroj

    2007-01-01

    The current-voltage characteristics of Schottky diodes with an interfacial insulator layer are analysed by numerical simulation. The current-voltage data of the metal-insulator-semiconductor Schottky diode are simulated using thermionic emission diffusion (TED) equation taking into account an interfacial layer parameter. The calculated current-voltage data are fitted into ideal TED equation to see the apparent effect of interfacial layer parameters on current transport. Results obtained from the simulation studies shows that with mere presence of an interfacial layer at the metal-semiconductor interface the Schottky contact behave as an ideal diode of apparently high barrier height (BH), but with same ideality factor and series resistance as considered for a pure Schottky contact without an interfacial layer. This apparent BH decreases linearly with decreasing temperature. The effects giving rise to high ideality factor in metal-insulator-semiconductor diode are analysed. Reasons for observed temperature dependence of ideality factor in experimentally fabricated metal-insulator-semiconductor diodes are analysed and possible mechanisms are discussed

  13. Experimental and computational investigation of graphene/SAMs/n-Si Schottky diodes

    Science.gov (United States)

    Aydin, H.; Bacaksiz, C.; Yagmurcukardes, N.; Karakaya, C.; Mermer, O.; Can, M.; Senger, R. T.; Sahin, H.; Selamet, Y.

    2018-01-01

    We have investigated the effect of two different self-assembled monolayers (SAMs) on electrical characteristics of bilayer graphene (BLG)/n-Si Schottky diodes. Novel 4″bis(diphenylamino)-1, 1‧:3″-terphenyl-5‧ carboxylic acids (TPA) and 4,4-di-9H-carbazol-9-yl-1,1‧:3‧1‧-terphenyl-5‧ carboxylic acid (CAR) aromatic SAMs have been used to modify n-Si surfaces. Cyclic voltammetry (CV) and Kelvin probe force microscopy (KPFM) results have been evaluated to verify the modification of n-Si surface. The current-voltage (I-V) characteristics of bare and SAMs modified devices show rectification behaviour verifying a Schottky junction at the interface. The ideality factors (n) from ln(I)-V dependences were determined as 2.13, 1.96 and 2.07 for BLG/n-Si, BLG/TPA/n-Si and BLG/CAR/n-Si Schottky diodes, respectively. In addition, Schottky barrier height (SBH) and series resistance (Rs) of SAMs modified diodes were decreased compared to bare diode due to the formation of a compatible interface between graphene and Si as well as π-π interaction between aromatic SAMs and graphene. The CAR-based device exhibits better diode characteristic compared to the TPA-based device. Computational simulations show that the BLG/CAR system exhibits smaller energy-level-differences than the BLG/TPA, which supports the experimental findings of a lower Schottky barrier and series resistance in BLG/CAR diode.

  14. Electrical transport measurements and degradation of graphene/n-Si Schottky junction diodes

    International Nuclear Information System (INIS)

    Park, No-Won; Lee, Won-Yong; Lee, Sang-Kwon; Koh, Jung-Hyuk; Kim, Dong-Joo; Kim, Gil-Sung; Hyung, Jung-Hwan; Hong, Chang-Hee; Kim, Keun-Soo

    2015-01-01

    We report on the electrical properties, such as the ideality factors and Schottky barrier heights, that were obtained by using current density - voltage (J - V ) and capacitance - voltage (C - V ) characteristics. To fabricate circularly- and locally-contacted Au/Gr/n-Si Schottky diode, we deposited graphene through the chemical vapor deposition (CVD) growth technique, and we employed reactive ion etching to reduce the leakage current of the Schottky diodes. The average values of the barrier heights and the ideality factors from the J .V characteristics were determined to be ∼0.79 ± 0.01 eV and ∼1.80 ± 0.01, respectively. The Schottky barrier height and the doping concentration from the C - V measurements were ∼0.85 eV and ∼1.76 x 10 15 cm -3 , respectively. From the J - V characteristics, we obtained a relatively low reverse leakage current of ∼2.56 x 10 -6 mA/cm -2 at -2 V, which implies a well-defined rectifying behavior. Finally, we found that the Gr/n-Si Schottky diodes that were exposed to ambient conditions for 7 days exhibited a ∼3.2-fold higher sheet resistance compared with the as-fabricated Gr/n-Si diodes, implying a considerable electrical degradation of the Gr/n-Si Schottky diodes.

  15. Conduction mechanism in electron beam irradiated Al/n-Si Schottky diode

    International Nuclear Information System (INIS)

    Vali, Indudhar Panduranga; Shetty, Pramoda Kumara; Mahesha, M.G.; Petwal, V.C.

    2016-01-01

    In the high energy physics experiments, silicon based diodes are used to fabricate radiation detector to detect the charged particles. The Schottky barrier diodes have been studied extensively to understand the behavior of metal semiconductor interface, since such interfaces have been utilized as typical contacts in silicon devices. Because of surface states, interfacial layer, microscopic clusters of metal-semiconductor phases and other effects, it is difficult to fabricate junctions with barriers near the ideal values predicted from the work functions of the two isolated materials, therefore measured barrier heights are used in the device design. In this work, the Al/n-Si Schottky contacts are employed to study the diode parameters (Schottky barrier height and ideality factor), where the Schottky contacts were fabricated on electron beam irradiated silicon wafers. The interface behavior between electron irradiated Si wafer and post metal deposition is so far not reported. This method could be an alternative way to tailor the Schottky barrier height (SBH) without subjecting semiconductor sample to pre chemical and/or post heat treatments during fabrication

  16. Electrical properties of Au/perylene-monoimide/p-Si Schottky diode

    International Nuclear Information System (INIS)

    Yüksel, Ö.F.; Tuğluoğlu, N.; Gülveren, B.; Şafak, H.; Kuş, M.

    2013-01-01

    Graphical abstract: In this work, we have fabricated an Au/perylene-monoimide (PMI)/p-Si Schottky barrier diode. An emphasis is placed on how electrical and interface characteristics like current–voltage (I–V) variation, ideality factor (n), barrier height (Φ B ) and series resistance (R s ) of Au/PMI/p-Si diode structure change with the temperatures between 100 and 300 K. The temperature dependence of barrier height shows that the Schottky barrier height is inhomogeneous in nature at the interface. Such inhomogeneous behavior was explained on the basis of thermionic emission mechanism by assuming the existence of a Gaussian distribution of barrier heights. -- Highlights: •An Au/perylene-monoimide (PMI)/p-Si Schottky diode having an organic interlayer has been fabricated. •I–V characteristics have been investigated over a wide temperature range 100–300 K. •C–V measurements have been analyzed at room temperature. -- Abstract: In this work, we have fabricated an Au/perylene-monoimide (PMI)/p-Si Schottky barrier diode. We have investigated how electrical and interface characteristics like current–voltage characteristics (I–V), ideality factor (n), barrier height (Φ B ) and series resistance (R s ) of diode change with temperature over a wide range of 100–300 K. Detailed analysis on the electrical properties of structure is performed by assuming the standard thermionic emission (TE) model. Possible mechanisms such as image force lowering, generation–recombination processes and interface states which cause deviations of n values from the unity have been discussed. Cheung–Cheung method is also employed to analysis the current–voltage characteristics and a good agreement is observed between the results. It is shown that the electronic properties of Schottky diode are very sensitive to the modification of perylene-monoimide (PMI) interlayer organic material and also to the temperature. The ideality factor was found to decrease and the barrier

  17. Flexible IGZO Schottky diodes on paper

    Science.gov (United States)

    Kaczmarski, Jakub; Borysiewicz, Michał A.; Piskorski, Krzysztof; Wzorek, Marek; Kozubal, Maciej; Kamińska, Eliana

    2018-01-01

    With the development of novel device applications, e.g. in the field of robust and recyclable paper electronics, came an increased demand for the understanding and control of IGZO Schottky contact properties. In this work, a fabrication and characterization of flexible Ru-Si-O/IGZO Schottky barriers on paper is presented. It is found that an oxygen-rich atomic composition and microstructure of Ru-Si-O containing randomly oriented Ru inclusions with diameter of 3-5 nm embedded in an amorphous SiO2 matrix are effective in preventing interfacial reactions in the contact region, allowing to avoid pre-treatment of the semiconductor surface and fabricate reliable diodes at room temperature characterized by Schottky barrier height and ideality factor equal 0.79 eV and 2.13, respectively.

  18. Fabrication and characterization of 8.87 THz schottky barrier mixer diodes for mixer

    Science.gov (United States)

    Wang, Wenjie; Li, Qian; An, Ning; Tong, Xiaodong; Zeng, Jianping

    2018-04-01

    In this paper we report on the fabrication and characterization of GaAs-based THz schottky barrier mixer diodes. Considering the analyzed results as well as fabrication cost and complexity, a group of trade-off parameters was determined. Electron-beam lithography and air-bridge technique have been used to obtain schottky diodes with a cut off frequency of 8.87 THz. Equivalent values of series resistance, ideal factor and junction capacitance of 10.2 (1) Ω, 1.14 (0.03) and 1.76(0.03) respectively have been measured for 0.7um diameter anode devices by DC and RF measurements. The schottky barrier diodes fabrication process is fully planar and very suitable for integration in THz frequency multiplier and mixer circuits. THz Schottky barrier diodes based on such technology with 2 μm diameter anodes have been tested at 1.6 THz in a sub-harmonic mixer.

  19. New GaN Schottky barrier diode employing a trench on AlGaN/GaN heterostructure

    Science.gov (United States)

    Ha, Min-Woo; Lee, Seung-Chul; Choi, Young-Hwan; Kim, Soo-Seong; Yun, Chong-Man; Han, Min-Koo

    2006-10-01

    A new GaN Schottky barrier diode employing a trench structure, which is proposed and fabricated, successfully decreases a forward voltage drop without sacrificing any other electric characteristics. The trench is located in the middle of Schottky contact during a mesa etch. The Schottky metal of Pt/Mo/Ti/Au is e-gun evaporated on the 300 nm-deep trench as well as the surface of the proposed GaN Schottky barrier diode. The trench forms the vertical Au Schottky contact and lateral Pt Schottky contact due to the evaporation sequence of Schottky metal. The forward voltage drops of the proposed diode and conventional one are 0.73 V and 1.25 V respectively because the metal work function (5.15 eV) of the vertical Au Schottky contact is considerably less than that of the lateral Pt Schottky contact (5.65 eV). The proposed diode exhibits the low on-resistance of 1.58 mΩ cm 2 while the conventional one exhibits 8.20 mΩ cm 2 due to the decrease of a forward voltage drop.

  20. Heavy Ion Induced Degradation in SiC Schottky Diodes: Bias and Energy Deposition Dependence

    Science.gov (United States)

    Javanainen, Arto; Galloway, Kenneth F.; Nicklaw, Christopher; Bosser, Alexandre L.; Ferlet-Cavrois, Veronique; Lauenstein, Jean-Marie; Pintacuda, Francesco; Reed, Robert A.; Schrimpf, Ronald D.; Weller, Robert A.; hide

    2016-01-01

    Experimental results on ion-induced leakage current increase in 4H-SiC Schottky power diodes are presented. Monte Carlo and TCAD simulations show that degradation is due to the synergy between applied bias and ion energy deposition. This degradation is possibly related to thermal spot annealing at the metal semiconductor interface. This thermal annealing leads to an inhomogeneity of the Schottky barrier that could be responsible for the increase leakage current as a function of fluence.

  1. Investigation of significantly high barrier height in Cu/GaN Schottky diode

    Directory of Open Access Journals (Sweden)

    Manjari Garg

    2016-01-01

    Full Text Available Current-voltage (I-V measurements combined with analytical calculations have been used to explain mechanisms for forward-bias current flow in Copper (Cu Schottky diodes fabricated on Gallium Nitride (GaN epitaxial films. An ideality factor of 1.7 was found at room temperature (RT, which indicated deviation from thermionic emission (TE mechanism for current flow in the Schottky diode. Instead the current transport was better explained using the thermionic field-emission (TFE mechanism. A high barrier height of 1.19 eV was obtained at room temperature. X-ray photoelectron spectroscopy (XPS was used to investigate the plausible reason for observing Schottky barrier height (SBH that is significantly higher than as predicted by the Schottky-Mott model for Cu/GaN diodes. XPS measurements revealed the presence of an ultrathin cuprous oxide (Cu2O layer at the interface between Cu and GaN. With Cu2O acting as a degenerate p-type semiconductor with high work function of 5.36 eV, a high barrier height of 1.19 eV is obtained for the Cu/Cu2O/GaN Schottky diode. Moreover, the ideality factor and barrier height were found to be temperature dependent, implying spatial inhomogeneity of barrier height at the metal semiconductor interface.

  2. Enhanced Thermionic Emission and Low 1/f Noise in Exfoliated Graphene/GaN Schottky Barrier Diode.

    Science.gov (United States)

    Kumar, Ashutosh; Kashid, Ranjit; Ghosh, Arindam; Kumar, Vikram; Singh, Rajendra

    2016-03-01

    Temperature-dependent electrical transport characteristics of exfoliated graphene/GaN Schottky diodes are investigated and compared with conventional Ni/GaN Schottky diodes. The ideality factor of graphene/GaN and Ni/GaN diodes are measured to be 1.33 and 1.51, respectively, which is suggestive of comparatively higher thermionic emission current in graphene/GaN diode. The barrier height values for graphene/GaN diode obtained using thermionic emission model and Richardson plots are found to be 0.60 and 0.72 eV, respectively, which are higher than predicted barrier height ∼0.40 eV as per the Schottky-Mott model. The higher barrier height is attributed to hole doping of graphene due to graphene-Au interaction which shifts the Fermi level in graphene by ∼0.3 eV. The magnitude of flicker noise of graphene/GaN Schottky diode increases up to 175 K followed by its decrease at higher temperatures. This indicates that diffusion currents and barrier inhomogeneities dominate the electronic transport at lower and higher temperatures, respectively. The exfoliated graphene/GaN diode is found to have lower level of barrier inhomogeneities than conventional Ni/GaN diode, as well as earlier reported graphene/GaN diode fabricated using chemical vapor deposited graphene. The lesser barrier inhomogeneities in graphene/GaN diode results in lower flicker noise by 2 orders of magnitude as compared to Ni/GaN diode. Enhanced thermionic emission current, lower level of inhomogeneities, and reduced flicker noise suggests that graphene-GaN Schottky diodes may have the underlying trend for replacing metal-GaN Schottky diodes.

  3. Failure Analysis of Heavy-Ion-Irradiated Schottky Diodes

    Science.gov (United States)

    Casey, Megan C.; Lauenstein, Jean-Marie; Wilcox, Edward P.; Topper, Alyson D.; Campola, Michael J.; Label, Kenneth A.

    2017-01-01

    In this work, we use high- and low-magnitude optical microscope images, infrared camera images, and scanning electron microscope images to identify and describe the failure locations in heavy-ion-irradiated Schottky diodes.

  4. Effects of electron-irradiation on electrical properties of AgCa/Si Schottky diodes

    International Nuclear Information System (INIS)

    Harmatha, L.; Zizka, M.; Sagatova, A.; Nemec, M.; Hybler, P.

    2013-01-01

    This contribution presents the results of the current-voltage I-V and the capacitance-voltage C-V measurement on the Schottky diodes with the AgCa gate on the silicon n-type substrate. The Si substrate was irradiated by 5 MeV electrons with a different dose value before the Schottky diode preparation. (authors)

  5. Temperature dependent simulation of diamond depleted Schottky PIN diodes

    International Nuclear Information System (INIS)

    Hathwar, Raghuraj; Dutta, Maitreya; Chowdhury, Srabanti; Goodnick, Stephen M.; Koeck, Franz A. M.; Nemanich, Robert J.

    2016-01-01

    Diamond is considered as an ideal material for high field and high power devices due to its high breakdown field, high lightly doped carrier mobility, and high thermal conductivity. The modeling and simulation of diamond devices are therefore important to predict the performances of diamond based devices. In this context, we use Silvaco ® Atlas, a drift-diffusion based commercial software, to model diamond based power devices. The models used in Atlas were modified to account for both variable range and nearest neighbor hopping transport in the impurity bands associated with high activation energies for boron doped and phosphorus doped diamond. The models were fit to experimentally reported resistivity data over a wide range of doping concentrations and temperatures. We compare to recent data on depleted diamond Schottky PIN diodes demonstrating low turn-on voltages and high reverse breakdown voltages, which could be useful for high power rectifying applications due to the low turn-on voltage enabling high forward current densities. Three dimensional simulations of the depleted Schottky PIN diamond devices were performed and the results are verified with experimental data at different operating temperatures

  6. Temperature dependent simulation of diamond depleted Schottky PIN diodes

    Science.gov (United States)

    Hathwar, Raghuraj; Dutta, Maitreya; Koeck, Franz A. M.; Nemanich, Robert J.; Chowdhury, Srabanti; Goodnick, Stephen M.

    2016-06-01

    Diamond is considered as an ideal material for high field and high power devices due to its high breakdown field, high lightly doped carrier mobility, and high thermal conductivity. The modeling and simulation of diamond devices are therefore important to predict the performances of diamond based devices. In this context, we use Silvaco® Atlas, a drift-diffusion based commercial software, to model diamond based power devices. The models used in Atlas were modified to account for both variable range and nearest neighbor hopping transport in the impurity bands associated with high activation energies for boron doped and phosphorus doped diamond. The models were fit to experimentally reported resistivity data over a wide range of doping concentrations and temperatures. We compare to recent data on depleted diamond Schottky PIN diodes demonstrating low turn-on voltages and high reverse breakdown voltages, which could be useful for high power rectifying applications due to the low turn-on voltage enabling high forward current densities. Three dimensional simulations of the depleted Schottky PIN diamond devices were performed and the results are verified with experimental data at different operating temperatures

  7. Temperature dependent simulation of diamond depleted Schottky PIN diodes

    Energy Technology Data Exchange (ETDEWEB)

    Hathwar, Raghuraj; Dutta, Maitreya; Chowdhury, Srabanti; Goodnick, Stephen M. [Department of Electrical Engineering, Arizona State University, Tempe, Arizona 85287-8806 (United States); Koeck, Franz A. M.; Nemanich, Robert J. [Department of Physics, Arizona State University, Tempe, Arizona 85287-8806 (United States)

    2016-06-14

    Diamond is considered as an ideal material for high field and high power devices due to its high breakdown field, high lightly doped carrier mobility, and high thermal conductivity. The modeling and simulation of diamond devices are therefore important to predict the performances of diamond based devices. In this context, we use Silvaco{sup ®} Atlas, a drift-diffusion based commercial software, to model diamond based power devices. The models used in Atlas were modified to account for both variable range and nearest neighbor hopping transport in the impurity bands associated with high activation energies for boron doped and phosphorus doped diamond. The models were fit to experimentally reported resistivity data over a wide range of doping concentrations and temperatures. We compare to recent data on depleted diamond Schottky PIN diodes demonstrating low turn-on voltages and high reverse breakdown voltages, which could be useful for high power rectifying applications due to the low turn-on voltage enabling high forward current densities. Three dimensional simulations of the depleted Schottky PIN diamond devices were performed and the results are verified with experimental data at different operating temperatures.

  8. Characterization of plasma etching damage on p-type GaN using Schottky diodes

    International Nuclear Information System (INIS)

    Kato, M.; Mikamo, K.; Ichimura, M.; Kanechika, M.; Ishiguro, O.; Kachi, T.

    2008-01-01

    The plasma etching damage in p-type GaN has been characterized. From current-voltage and capacitance-voltage characteristics of Schottky diodes, it was revealed that inductively coupled plasma (ICP) etching causes an increase in series resistance of the Schottky diodes and compensation of acceptors in p-type GaN. We investigated deep levels near the valence band of p-type GaN using current deep level transient spectroscopy (DLTS), and no deep level originating from the ICP etching damage was observed. On the other hand, by capacitance DLTS measurements for n-type GaN, we observed an increase in concentration of a donor-type defect with an activation energy of 0.25 eV after the ICP etching. The origin of this defect would be due to nitrogen vacancies. We also observed this defect by photocapacitance measurements for ICP-etched p-type GaN. For both n- and p-type GaN, we found that the low bias power ICP etching is effective to reduce the concentration of this defect introduced by the high bias power ICP etching

  9. Enhancement in performance of polycarbazole-graphene nanocomposite Schottky diode

    International Nuclear Information System (INIS)

    Pandey, Rajiv K.; Singh, Arun Kumar; Prakash, Rajiv

    2013-01-01

    We report formation of polycarbazole (PCz)–graphene nanocomposite over indium tin oxide (ITO) coated glass substrate using electrochemical technique for fabrication of high performance Schottky diodes. The synthesized nanocomposite is characterized before fabrication of devices for confirmation of uniform distribution of graphene nanosheets in the polymer matrix. Pure PCz and PCz-graphene nanocomposites based Schottky diodes are fabricated of configuration Al/PCz/ITO and Al/PCz-graphene nanocomposite/ITO, respectively. The current density–voltage (J-V) characteristics and diode performance parameters (such as the ideality factor, barrier height, and reverse saturation current density) are compared under ambient condition. Al/PCz-graphene nanocomposite/ITO device exhibits better ideality factor in comparison to the device formed using pure PCz. It is also observed that the Al/PCz-graphene nanocomposite/ITO device shows large forward current density and low turn on voltage in comparison to Al/PCz/ITO device

  10. Effects of sulfide treatment on electronic transport of graphene/n-type Si Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Jian-Jhou; Lin, Yow-Jon, E-mail: rzr2390@yahoo.com.tw

    2014-05-01

    The present work reports the fabrication and detailed electrical properties of graphene/n-type Si Schottky diodes with and without sulfide treatment. The graphene/n-type Si Schottky diode without sulfide treatment shows a poor rectifying behavior with an ideality factor (η) of 4.2 and high leakage. η > 2 implies that the interfacial defects influence the electronic conduction through the device. However, the graphene/n-type Si Schottky diode with sulfide treatment for 5 min shows a good rectifying behavior with η of 1.8 and low leakage. Such an improvement indicates that a good passivation is formed at the interface as a result of the reduction of the defect density. These experimental demonstrations suggest that it may be possible to minimize the adverse effects of the interface states to obtain functional devices using sulfide treatment. In addition, the graphene/n-type Si Schottky diode with sulfide treatment for 10 min shows a poor rectifying behavior with η of 2.5 and high leakage. Note, a suitable sulfide treatment time is an important issue for improving the device performance. - Highlights: • Graphene/Si diodes with sulfide treatment for 5 min show a good rectifying behavior. • Graphene/Si diodes without sulfide treatment show a poor rectifying behavior. • The interfacial defects of Schottky diodes were controlled by sulfide treatment. • Such an improvement indicates that a good passivation is formed at the interface. • A suitable sulfide treatment time is an important issue for improving performances.

  11. Effects of sulfide treatment on electronic transport of graphene/n-type Si Schottky diodes

    International Nuclear Information System (INIS)

    Zeng, Jian-Jhou; Lin, Yow-Jon

    2014-01-01

    The present work reports the fabrication and detailed electrical properties of graphene/n-type Si Schottky diodes with and without sulfide treatment. The graphene/n-type Si Schottky diode without sulfide treatment shows a poor rectifying behavior with an ideality factor (η) of 4.2 and high leakage. η > 2 implies that the interfacial defects influence the electronic conduction through the device. However, the graphene/n-type Si Schottky diode with sulfide treatment for 5 min shows a good rectifying behavior with η of 1.8 and low leakage. Such an improvement indicates that a good passivation is formed at the interface as a result of the reduction of the defect density. These experimental demonstrations suggest that it may be possible to minimize the adverse effects of the interface states to obtain functional devices using sulfide treatment. In addition, the graphene/n-type Si Schottky diode with sulfide treatment for 10 min shows a poor rectifying behavior with η of 2.5 and high leakage. Note, a suitable sulfide treatment time is an important issue for improving the device performance. - Highlights: • Graphene/Si diodes with sulfide treatment for 5 min show a good rectifying behavior. • Graphene/Si diodes without sulfide treatment show a poor rectifying behavior. • The interfacial defects of Schottky diodes were controlled by sulfide treatment. • Such an improvement indicates that a good passivation is formed at the interface. • A suitable sulfide treatment time is an important issue for improving performances

  12. Barrier inhomogeneities limited current and 1/f noise transport in GaN based nanoscale Schottky barrier diodes

    Science.gov (United States)

    Kumar, Ashutosh; Heilmann, M.; Latzel, Michael; Kapoor, Raman; Sharma, Intu; Göbelt, M.; Christiansen, Silke H.; Kumar, Vikram; Singh, Rajendra

    2016-01-01

    The electrical behaviour of Schottky barrier diodes realized on vertically standing individual GaN nanorods and array of nanorods is investigated. The Schottky diodes on individual nanorod show highest barrier height in comparison with large area diodes on nanorods array and epitaxial film which is in contrast with previously published work. The discrepancy between the electrical behaviour of nanoscale Schottky diodes and large area diodes is explained using cathodoluminescence measurements, surface potential analysis using Kelvin probe force microscopy and 1ow frequency noise measurements. The noise measurements on large area diodes on nanorods array and epitaxial film suggest the presence of barrier inhomogeneities at the metal/semiconductor interface which deviate the noise spectra from Lorentzian to 1/f type. These barrier inhomogeneities in large area diodes resulted in reduced barrier height whereas due to the limited role of barrier inhomogeneities in individual nanorod based Schottky diode, a higher barrier height is obtained. PMID:27282258

  13. Prediction of barrier inhomogeneities and carrier transport in Ni-silicided Schottky diode

    International Nuclear Information System (INIS)

    Saha, A.R.; Dimitriu, C.B.; Horsfall, A.B.; Chattopadhyay, S.; Wright, N.G.; O'Neill, A.G.; Maiti, C.K.

    2006-01-01

    Based on Quantum Mechanical (QM) carrier transport and the effects of interface states, a theoretical model has been developed to predict the anomalous current-voltage (I-V) characteristics of a non-ideal Ni-silicided Schottky diode at low temperatures. Physical parameters such as barrier height, ideality factor, series resistance and effective Richardson constant of a silicided Schottky diode were extracted from forward I-V characteristics and are subsequently used for the simulation of both forward and reverse I-V characteristics using a QM transport model in which the effects of interface state and bias dependent barrier reduction are incorporated. The present analysis indicates that the effects of barrier inhomogeneity caused by incomplete silicide formation at the junction and the interface states may change the conventional current transport process, leading to anomalous forward and reverse I-V characteristics for the Ni-silicided Schottky diode

  14. Simulation of a perfect CVD diamond Schottky diode steep forward current–voltage characteristic

    Energy Technology Data Exchange (ETDEWEB)

    Kukushkin, V.A., E-mail: vakuk@appl.sci-nnov.ru [Institute of Applied Physics of the Russian Academy of Science, 46 Ulyanov St., 603950 Nizhny Novgorod (Russian Federation); Nizhny Novgorod State University named after N.I. Lobachevsky, 23 Gagarin pr., 603950 Nizhny Novgorod (Russian Federation)

    2016-10-01

    The kinetic equation approach to the simulation of the perfect CVD diamond Schottky diode current–voltage characteristic is considered. In result it is shown that the latter has a significantly steeper forward branch than that of perfect devices of such a type on usual semiconductors. It means that CVD diamond-based Schottky diodes have an important potential advantage over analogous devices on conventional materials.

  15. First results from the LHC Schottky Monitor operated with Direct Diode Detection

    CERN Document Server

    Gasior, M

    2012-01-01

    The LHC is equipped with a Schottky diagnostic system based on 4.8 GHz resonant pick-ups. Their signals are processed according to a three-stage down-mixing scheme, working well in most beam conditions. An important exception is the period of energy ramp of proton beams, when the noise floor of the observed beam spectrum increases dramatically and the Schottky sidebands disappear. To study beam spectra in such conditions the signals from the Schottky pick-ups were split and the second half of their power was processed with a copy of the LHC tune measurement electronics, modified for this application. The experimental set-up is based on simple diode detectors followed by signal processing in the kHz range and 24-bit audio ADCs. With such a test system LHC beam spectra were successfully observed. This contribution presents the used hardware and obtained results.

  16. Graphite based Schottky diodes formed semiconducting substrates

    Science.gov (United States)

    Schumann, Todd; Tongay, Sefaattin; Hebard, Arthur

    2010-03-01

    We demonstrate the formation of semimetal graphite/semiconductor Schottky barriers where the semiconductor is either silicon (Si), gallium arsenide (GaAs) or 4H-silicon carbide (4H-SiC). The fabrication can be as easy as allowing a dab of graphite paint to air dry on any one of the investigated semiconductors. Near room temperature, the forward-bias diode characteristics are well described by thermionic emission, and the extracted barrier heights, which are confirmed by capacitance voltage measurements, roughly follow the Schottky-Mott relation. Since the outermost layer of the graphite electrode is a single graphene sheet, we expect that graphene/semiconductor barriers will manifest similar behavior.

  17. Schottky barrier parameters and low frequency noise characteristics of graphene-germanium Schottky barrier diode

    Science.gov (United States)

    Khurelbaatar, Zagarzusem; Kil, Yeon-Ho; Shim, Kyu-Hwan; Cho, Hyunjin; Kim, Myung-Jong; Lee, Sung-Nam; Jeong, Jae-chan; Hong, Hyobong; Choi, Chel-Jong

    2016-03-01

    We investigated the electrical properties of chemical vapor deposition-grown monolayer graphene/n-type germanium (Ge) Schottky barrier diodes (SBD) using current-voltage (I-V) characteristics and low frequency noise measurements. The Schottky barrier parameters of graphene/n-type Ge SBDs, such as Schottky barrier height (VB), ideality factor (n), and series resistance (Rs), were extracted using the forward I-V and Cheung's methods. The VB and n extracted from the forward ln(I)-V plot were found to be 0.63 eV and 1.78, respectively. In contrast, from Cheung method, the VB and n were calculated to be 0.53 eV and 1.76, respectively. Such a discrepancy between the values of VB calculated from the forward I-V and Cheung's methods indicated a deviation from the ideal thermionic emission of graphene/n-type Ge SBD associated with the voltage drop across graphene. The low frequency noise measurements performed at the frequencies in the range of 10 Hz-1 kHz showed that the graphene/n-type Ge SBD had 1/f γ frequency dependence, with γ ranging from 1.09 to 1.12, regardless of applied forward biases. Similar to forward-biased SBDs operating in the thermionic emission mode, the current noise power spectral density of graphene/n-type Ge SBD was linearly proportional to the forward current.

  18. Comparison of electrical characteristic between AlN/GaN and AlGaN/GaN heterostructure Schottky diodes

    International Nuclear Information System (INIS)

    Lü Yuan-Jie; Feng Zhi-Hong; Gu Guo-Dong; Dun Shao-Bo; Yin Jia-Yun; Han Ting-Ting; Cai Shu-Jun; Lin Zhao-Jun

    2014-01-01

    Ni/Au Schottky contacts on AlN/GaN and AlGaN/GaN heterostructures are fabricated. Based on the measured current—voltage and capacitance—voltage curves, the electrical characteristics of AlN/GaN Schottky diode, such as Schottky barrier height, turn-on voltage, reverse breakdown voltage, ideal factor, and the current-transport mechanism, are analyzed and then compared with those of an AlGaN/GaN diode by self-consistently solving Schrödinger's and Poisson's equations. It is found that the dislocation-governed tunneling is dominant for both AlN/GaN and AlGaN/GaN Schottky diodes. However, more dislocation defects and a thinner barrier layer for AlN/GaN heterostructure results in a larger tunneling probability, and causes a larger leakage current and lower reverse breakdown voltage, even though the Schottky barrier height of AlN/GaN Schottky diode is calculated to be higher that of an AlGaN/GaN diode. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  19. Tunable reverse-biased graphene/silicon heterojunction Schottky diode sensor.

    Science.gov (United States)

    Singh, Amol; Uddin, Ahsan; Sudarshan, Tangali; Koley, Goutam

    2014-04-24

    A new chemical sensor based on reverse-biased graphene/Si heterojunction diode has been developed that exhibits extremely high bias-dependent molecular detection sensitivity and low operating power. The device takes advantage of graphene's atomically thin nature, which enables molecular adsorption on its surface to directly alter graphene/Si interface barrier height, thus affecting the junction current exponentially when operated in reverse bias and resulting in ultrahigh sensitivity. By operating the device in reverse bias, the work function of graphene, and hence the barrier height at the graphene/Si heterointerface, can be controlled by the bias magnitude, leading to a wide tunability of the molecular detection sensitivity. Such sensitivity control is also possible by carefully selecting the graphene/Si heterojunction Schottky barrier height. Compared to a conventional graphene amperometric sensor fabricated on the same chip, the proposed sensor demonstrated 13 times higher sensitivity for NO₂ and 3 times higher for NH₃ in ambient conditions, while consuming ∼500 times less power for same magnitude of applied voltage bias. The sensing mechanism based on heterojunction Schottky barrier height change has been confirmed using capacitance-voltage measurements. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Improvements in DC Current-Ioltage (I-V) Characteristics of n-GaN Schottky Diode using Metal Overlap Edge Termination

    International Nuclear Information System (INIS)

    Munir, T.; Aziz, A. A.; Abdullah, M. J.; Ain, M. F.

    2010-01-01

    Practical design of GaN Schottky diodes incorporating a field plate necessitates an understanding of how the addition of such plate affects the diode performance. In this paper, we investigated the effects on DC current-voltage (I-V) characteristics of n-GaN schottky diode by incorporating metal overlap edge termination. The thickness of the oxide film varies from 0.001 to 1 micron. Two-dimensional Atlas/Blaze simulations revealed that severe electric field crowding across the metal semiconductor contact will cause reliability concern and limit device breakdown voltage. DC current-voltage (I-V) measurements indicate that the forward currents are higher for thinner oxide film schottky diodes with metal overlap edge termination than those of unterminated schottky diodes. The forward current increased due to formation of an accumulation layer underneath the oxide layer. Extending the field plate to beyond periphery regions of schottky contact does not result in any significant increase in forward current. The new techniques of ramp oxide metal overlap edge termination have been implemented to increase the forward current of n-GaN schottky diode. In reverse bias, breakdown voltage increased with edge termination oxide up to a certain limit of oxide thickness.

  1. Improved designs of Si-based quantum wells and Schottky diodes for IR detection

    Energy Technology Data Exchange (ETDEWEB)

    Moeen, M., E-mail: moeen@kth.se [School of Information and Communication Technology, KTH Royal Institute of Technology, Stockholm, 16640, Kista (Sweden); Kolahdouz, M. [School of Electrical and Computer Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Salemi, A.; Abedin, A.; Östling, M. [School of Information and Communication Technology, KTH Royal Institute of Technology, Stockholm, 16640, Kista (Sweden); Radamson, H.H., E-mail: rad@kth.se [School of Information and Communication Technology, KTH Royal Institute of Technology, Stockholm, 16640, Kista (Sweden)

    2016-08-31

    Novel structures of intrinsic or carbon-doped multi quantum wells (MQWs) and intrinsic or carbon-doped Si Schottky diodes (SD), individually or in combination, have been manufactured to detect the infrared (IR) radiation. The carbon concentration in the structures was 5 × 10{sup 20} cm{sup −3} and the MQWs are located in the active part of the IR detector. A Schottky diode was designed and formed as one of the contacts (based on NiSi(C)/TiW) to MQWs where on the other side the structure had an Ohmic contact. The thermal response of the detectors is expressed in terms of temperature coefficient of resistance (TCR) and the quality of the electrical signal is quantified by the signal-to-noise ratio. The noise measurements provide the K{sub 1/f} parameter which is obtained from the power spectrum density. An excellent value of TCR = − 6%/K and K{sub 1/f} = 4.7 × 10{sup −14} was measured for the detectors which consist of the MQWs in series with the SD. These outstanding electrical results indicate a good opportunity to manufacture low cost Si-based IR detectors in the near future. - Highlights: • SiGe (C)/Si(C) multi quantum wells (MQWs) are evaluated to detect IR radiation. • Schottky diodes (SDs), individually or in series with MQWs are also fabricated. • Detectors consisted of MQWs in series with SD show excellent thermal sensing. • The noise values are also extremely low for MQWs in series with SD.

  2. Improved designs of Si-based quantum wells and Schottky diodes for IR detection

    International Nuclear Information System (INIS)

    Moeen, M.; Kolahdouz, M.; Salemi, A.; Abedin, A.; Östling, M.; Radamson, H.H.

    2016-01-01

    Novel structures of intrinsic or carbon-doped multi quantum wells (MQWs) and intrinsic or carbon-doped Si Schottky diodes (SD), individually or in combination, have been manufactured to detect the infrared (IR) radiation. The carbon concentration in the structures was 5 × 10 20 cm −3 and the MQWs are located in the active part of the IR detector. A Schottky diode was designed and formed as one of the contacts (based on NiSi(C)/TiW) to MQWs where on the other side the structure had an Ohmic contact. The thermal response of the detectors is expressed in terms of temperature coefficient of resistance (TCR) and the quality of the electrical signal is quantified by the signal-to-noise ratio. The noise measurements provide the K 1/f parameter which is obtained from the power spectrum density. An excellent value of TCR = − 6%/K and K 1/f = 4.7 × 10 −14 was measured for the detectors which consist of the MQWs in series with the SD. These outstanding electrical results indicate a good opportunity to manufacture low cost Si-based IR detectors in the near future. - Highlights: • SiGe (C)/Si(C) multi quantum wells (MQWs) are evaluated to detect IR radiation. • Schottky diodes (SDs), individually or in series with MQWs are also fabricated. • Detectors consisted of MQWs in series with SD show excellent thermal sensing. • The noise values are also extremely low for MQWs in series with SD.

  3. Impact of substrate off-angle on the m-plane GaN Schottky diodes

    Science.gov (United States)

    Yamada, Hisashi; Chonan, Hiroshi; Takahashi, Tokio; Shimizu, Mitsuaki

    2018-04-01

    We investigated the effects of the substrate off-angle on the m-plane GaN Schottky diodes. GaN epitaxial layers were grown by metal-organic chemical vapor deposition on m-plane GaN substrates having an off-angle of 0.1, 1.1, 1.7, or 5.1° toward [000\\bar{1}]. The surface of the GaN epitaxial layers on the 0.1°-off substrate consisted of pyramidal hillocks and contained oxygen (>1017 cm-3) and carbon (>1016 cm-3) impurities. The residual carbon and oxygen impurities decreased to current of the 0.1°-off m-plane GaN Schottky diodes originated from the +c facet of the pyramidal hillocks. The leakage current was efficiently suppressed through the use of an off-angle that was observed to be greater than 1.1°. The off-angle of the m-plane GaN substrate is critical in obtaining high-performance Schottky diodes.

  4. Process for preparing schottky diode contacts with predetermined barrier heights

    Science.gov (United States)

    Chang, Y. Austin; Jan, Chia-Hong; Chen, Chia-Ping

    1996-01-01

    A process is provided for producing a Schottky diode having a preselected barrier height .phi..sub.Bn. The substrate is preferably n-GaAs, the metallic contact is derived from a starting alloy of the Formula [.SIGMA.M.sub..delta. ](Al.sub.x Ga.sub.1-x) wherein: .SIGMA.M is a moiety which consists of at least one M, and when more than one M is present, each M is different, M is a Group VIII metal selected from the group consisting of nickel, cobalt, ruthenium, rhodium, indium and platinum, .delta. is a stoichiometric coefficient whose total value in any given .SIGMA.M moiety is 1, and x is a positive number between 0 and 1 (that is, x ranges from greater than 0 to less than 1). Also, the starting alloy is capable of forming with the substrate a two phase equilibrium reciprocal system of the binary alloy mixture [.SIGMA.M.sub..delta. ]Ga-[.SIGMA.M.sub..delta. ]Al-AlAs-GaAs. When members of an alloy subclass within this Formula are each preliminarily correlated with the barrier height .phi..sub.Bn of a contact producable therewith, then Schottky diodes of predetermined barrier heights are producable by sputtering and annealing. Further provided are the product Schottky diodes that are produced according to this process.

  5. Study of breakdown voltage of indium-gallium-zinc-oxide-based Schottky diode

    Energy Technology Data Exchange (ETDEWEB)

    Xin, Qian; Yan, Linlong; Luo, Yi [School of Physics, Shandong University, Jinan 250100 (China); Song, Aimin, E-mail: A.Song@manchester.ac.uk [School of Physics, Shandong University, Jinan 250100 (China); School of Electrical and Electronic Engineering, University of Manchester, Manchester M13 9PL (United Kingdom)

    2015-03-16

    In contrast to the intensive studies on thin-film transistors based on indium gallium zinc oxide (IGZO), the research on IGZO-based diodes is still very limited, particularly on their behavior and stability under high bias voltages. Our experiments reveal a sensitive dependence of the breakdown voltage of IGZO Schottky diodes on the anode metal and the IGZO film thickness. Devices with an Au anode are found to breakdown easily at a reverse bias as low as −2.5 V, while the devices with a Pd anode and a 200-nm, fully depleted IGZO layer have survived up to −15 V. All diodes are fabricated by radio-frequency magnetron sputtering at room temperature without any thermal treatment, yet showing an ideality factor as low as 1.14, showing the possibility of achieving high-performance Schottky diodes on flexible plastic substrate.

  6. Study of breakdown voltage of indium-gallium-zinc-oxide-based Schottky diode

    International Nuclear Information System (INIS)

    Xin, Qian; Yan, Linlong; Luo, Yi; Song, Aimin

    2015-01-01

    In contrast to the intensive studies on thin-film transistors based on indium gallium zinc oxide (IGZO), the research on IGZO-based diodes is still very limited, particularly on their behavior and stability under high bias voltages. Our experiments reveal a sensitive dependence of the breakdown voltage of IGZO Schottky diodes on the anode metal and the IGZO film thickness. Devices with an Au anode are found to breakdown easily at a reverse bias as low as −2.5 V, while the devices with a Pd anode and a 200-nm, fully depleted IGZO layer have survived up to −15 V. All diodes are fabricated by radio-frequency magnetron sputtering at room temperature without any thermal treatment, yet showing an ideality factor as low as 1.14, showing the possibility of achieving high-performance Schottky diodes on flexible plastic substrate

  7. Schottky barrier diode based on β-Ga2O3 (100) single crystal substrate and its temperature-dependent electrical characteristics

    Science.gov (United States)

    He, Qiming; Mu, Wenxiang; Dong, Hang; Long, Shibing; Jia, Zhitai; Lv, Hangbing; Liu, Qi; Tang, Minghua; Tao, Xutang; Liu, Ming

    2017-02-01

    The Pt/β-Ga2O3 Schottky barrier diode and its temperature-dependent current-voltage characteristics were investigated for power device application. The edge-defined film-fed growth (EFG) technique was utilized to grow the (100)-oriented β-Ga2O3 single crystal substrate that shows good crystal quality characterized by X-ray diffraction and high resolution transmission electron microscope. Ohmic and Schottky electrodes were fabricated by depositing Ti and Pt metals on the two surfaces, respectively. Through the current-voltage (I-V) measurement under different temperature and the thermionic emission modeling, the fabricated Pt/β-Ga2O3 Schottky diode was found to show good performances at room temperature, including rectification ratio of 1010, ideality factor (n) of 1.1, Schottky barrier height (ΦB) of 1.39 eV, threshold voltage (Vbi) of 1.07 V, ON-resistance (RON) of 12.5 mΩ.cm2, forward current density at 2 V (J@2V) of 56 A/cm2, and saturation current density (J0) of 2 × 10-16 A/cm2. The effective donor concentration Nd - Na was calculated to be about 2.3 × 1014 cm3. Good temperature dependent performance was also found in the device. The Schottky barrier height was estimated to be about 1.3 eV-1.39 eV at temperatures ranging from room temperature to 150 °C. With increasing temperature, parameters such as RON and J@2V become better, proving that the diode can work well at high temperature. The EFG grown β-Ga2O3 single crystal is a promising material to be used in the power devices.

  8. Particle detectors based on InP Schottky diodes

    Czech Academy of Sciences Publication Activity Database

    Yatskiv, Roman; Grym, Jan

    2012-01-01

    Roč. 10, č. 7 (2012), C100051-C100055 ISSN 1748-0221 R&D Projects: GA MŠk(CZ) OC10021; GA MŠk LD12014 Institutional support: RVO:67985882 Keywords : Particle detector * High purity InP layer * Schottky diode Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.869, year: 2011

  9. Forward Current Transport Mechanisms of Ni/Au—InAlN/AlN/GaN Schottky Diodes

    Science.gov (United States)

    Wang, Xiao-Feng; Shao, Zhen-Guang; Chen, Dun-Jun; Lu, Hai; Zhang, Rong; Zheng, You-Dou

    2014-05-01

    We fabricate two Ni/Au-In0.17Al0.83N/AlN/GaN Schottky diodes on substrates of sapphire and Si, respectively, and investigate their forward-bias current transport mechanisms by temperature-dependent current-voltage measurements. In the temperature range of 300-485 K, the Schottky barrier heights (SBHs) calculated by using the conventional thermionic-emission (TE) model are strongly positively dependent on temperature, which is in contrast to the negative-temperature-dependent characteristic of traditional semiconductor Schottky diodes. By fitting the forward-bias I-V characteristics using different current transport models, we find that the tunneling current model can describe generally the I-V behaviors in the entire measured range of temperature. Under the high forward bias, the traditional TE mechanism also gives a good fit to the measured I-V data, and the actual barrier heights calculated according to the fitting TE curve are 1.434 and 1.413 eV at 300K for InAlN/AlN/GaN Schottky diodes on Si and the sapphire substrate, respectively, and the barrier height shows a slightly negative temperature coefficient. In addition, a formula is given to estimate SBHs of Ni/Au—InAlN/AlN/GaN Schottky diodes taking the Fermi-level pinning effect into account.

  10. Low Temperature Hydrothermal Growth of ZnO Nanorod Films for Schottky Diode Application

    International Nuclear Information System (INIS)

    Singh, Shaivalini; Park, Si-Hyun

    2016-01-01

    The purpose of this research is to report on the fabrication and characterizations of Pd/ZnO nanorod-based Schottky diodes for optoelectronic applications. ZnO nanorods (NRs) were grown on silicon (Si) substrates by a two step hydrothermal method. In the first step, a seed layer of pure ZnO was deposited from a solution of zinc acetate and ethyl alcohol, and then in the second step, the main growth of the ZnO NRs was done over the seed layer. The structural morphology and optical properties of the ZnO NR films were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM) and UV-vis spectroscopy. The electrical characterization of the Pd/ZnO NR contacts was studied using a current-voltage (I-V) tool. The ZnO NR films exhibited a wurtzite ZnO structure,and the average length of the ZnO NRs were in the range of 750 nm to 800 nm. The values of ideality factor, turn-on voltage and reverse saturation current were calculated from the I-V characteristics of Pd/ZnO NR-based Schottky diodes. The study demonstrates that Pd/ZnO NR Schottky contacts fabricated by a simple and inexpensive method can be used as a substitute for conventional Schottky diodes for optoelectronic applications.

  11. Effect of defects on electrical properties of 4H-SiC Schottky diodes

    International Nuclear Information System (INIS)

    Ben Karoui, M.; Gharbi, R.; Alzaied, N.; Fathallah, M.; Tresso, E.; Scaltrito, L.; Ferrero, S.

    2008-01-01

    Most of power electronic circuits use power semiconductor switching devices which ideally present infinite resistance when off, zero resistance when on, and switch instantaneously between those two states. Switches and rectifiers are key components in power electronic systems, which cover a wide range of applications, from power transmission to control electronics and power supplies. Typical power switching devices such as diodes, thyristors, and transistors are based on a monocrystalline silicon semiconductor or silicon carbide. Silicon is less expensive, more widely used, and a more versatile processing material than silicon carbide. The silicon carbide (SiC) has properties that allow devices with high power voltage rating and high operating temperatures. The technology overcomes some crystal growth obstacles, by using the hydrogen in the fabrication of 4H-SiC wafers. The presence of structural defects on 4H-SiC wafers was shown by different techniques such as optical microscopy and scanning electron microscopy. The presence of different SiC polytypes inclusions was found by Raman spectroscopy. Schottky diodes were realized on investigated wafers in order to obtain information about the correlation between those defects and electrical properties of the devices. The diodes with voltage breakdown as 600 V and ideality factor as 1.05 were obtained and characterized after packaging

  12. Demonstration of a 4H SiC betavoltaic nuclear battery based on Schottky barrier diode

    International Nuclear Information System (INIS)

    Qiao Dayong; Yuan Weizheng; Gao Peng; Yao Xianwang; Zang Bo; Zhang Lin; Guo Hui; Zhang Hongjian

    2008-01-01

    A 4H SiC betavoltaic nuclear battery is demonstrated. A Schottky barrier diode is utilized for carrier separation. Under illumination of Ni-63 source with an apparent activity of 4 mCi/cm 2 an open circuit voltage of 0.49 V and a short circuit current density of 29.44 nA/cm 2 are measured. A power conversion efficiency of 1.2% is obtained. The performance of the device is limited by low shunt resistance, backscattering and attenuation of electron energy in air and Schottky electrode. It is expected to be significantly improved by optimizing the design and processing technology of the device. (authors)

  13. Demonstration of a 4H SiC Betavoltaic Nuclear Battery Based on Schottky Barrier Diode

    International Nuclear Information System (INIS)

    Da-Yong, Qiao; Wei-Zheng, Yuan; Peng, Gao; Xian-Wang, Yao; Bo, Zang; Lin, Zhang; Hui, Guo; Hong-Jian, Zhang

    2008-01-01

    A 4H SiC betavoltaic nuclear battery is demonstrated. A Schottky barrier diode is utilized for carrier separation. Under illumination of Ni-63 source with an apparent activity of 4 mCi/cm 2 an open circuit voltage of 0.49 V and a short circuit current density of 29.44 nA/cm 2 are measured. A power conversion efficiency of 1.2% is obtained. The performance of the device is limited by low shunt resistance, backscattering and attenuation of electron energy in air and Schottky electrode. It is expected to be significantly improved by optimizing the design and processing technology of the device

  14. Influence of interface inhomogeneities in thin-film Schottky diodes

    Science.gov (United States)

    Wilson, Joshua; Zhang, Jiawei; Li, Yunpeng; Wang, Yiming; Xin, Qian; Song, Aimin

    2017-11-01

    The scalability of thin-film transistors has been well documented, but there have been very few investigations into the effects of device scalability in Schottky diodes. Indium-gallium-zinc-oxide (IGZO) Schottky diodes were fabricated with IGZO thicknesses of 50, 150, and 250 nm. Despite the same IGZO-Pt interface and Schottky barrier being formed in all devices, reducing the IGZO thickness caused a dramatic deterioration of the current-voltage characteristics, most notably increasing the reverse current by nearly five orders of magnitude. Furthermore, the forward characteristics display an increase in the ideality factor and a reduction in the barrier height. The origins of this phenomenon have been elucidated using device simulations. First, when the semiconductor layer is fully depleted, the electric field increases with the reducing thickness, leading to an increased diffusion current. However, the effects of diffusion only offer a small contribution to the huge variations in reverse current seen in the experiments. To fully explain this effect, the role of inhomogeneities in the Schottky barrier height has been considered. Contributions from lower barrier regions (LBRs) are found to dominate the reverse current. The conduction band minimum below these LBRs is strongly dependent upon thickness and bias, leading to reverse current variations as large as several orders of magnitude. Finally, it is demonstrated that the thickness dependence of the reverse current is exacerbated as the magnitude of the inhomogeneities is increased and alleviated in the limit where the LBRs are large enough not to be influenced by the adjacent higher barrier regions.

  15. Tunable Schottky diodes fabricated from crossed electrospun SnO{sub 2}/PEDOT-PSSA nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Carrasquillo, Katherine V. [Department of Physics and Electronics, University of Puerto Rico-Humacao, Humacao, PR 00792 (Puerto Rico); Pinto, Nicholas J., E-mail: nicholas.pinto@upr.edu [Department of Physics and Electronics, University of Puerto Rico-Humacao, Humacao, PR 00792 (Puerto Rico)

    2012-06-25

    Graphical abstract: Crossed SnO{sub 2}/PEDOT-PSSA nanoribbon Schottky diodes. Highlight: Black-Right-Pointing-Pointer An inexpensive electrospinning technique is used to fabricate crossed nanoribbons of n-doped tin oxide and p-PEDOT. Black-Right-Pointing-Pointer Each intersection is a localized Schottky diode that is completely exposed to the environment after electrodes deposition. Black-Right-Pointing-Pointer This makes it useful as a gas and light sensor. Black-Right-Pointing-Pointer In addition, the ability to tune the diode parameters via a back gate truly makes this device multifunctional. Black-Right-Pointing-Pointer A half wave rectifier has been demonstrated with this device under UV illumination. - Abstract: Schottky diodes have been fabricated on doped Si/SiO{sub 2} substrates in air, by simply crossing individual electrospun tin oxide (SnO{sub 2}) and poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) (PEDOT-PSSA) nanoribbons. The conductivity of PEDOT-PSSA was {approx}6 S/cm with no observable field effect, while SnO{sub 2} exhibited n-doped field effect behavior with a charge mobility of {approx}3.1 cm{sup 2}/V-s. The diodes operate in air or in vacuum, under ambient illumination or in the dark, with low turn-on voltages and device parameters that are tunable via a back gate bias or a UV light source. Their unique design involves a highly localized active region that is completely exposed to the surrounding environment, making them potentially attractive for use as sensors. The standard thermionic emission model of a Schottky junction was applied to analyze the forward bias diode characteristics and was successfully tested as a half wave rectifier.

  16. Features of current-voltage characteristic of nonequilibrium trench MOS barrier Schottky diode

    Science.gov (United States)

    Mamedov, R. K.; Aslanova, A. R.

    2018-06-01

    The trench MOS barrier Schottky diodes (TMBS diode) under the influence of the voltage drop of the additional electric field (AEF) appearing in the near-contact region of the semiconductor are in a nonequilibrium state and their closed external circuit flows currents in the absence of an external voltage. When an external voltage is applied to the TMBS diode, the current transmission is described by the thermionic emission theory with a specific feature. Both forward and reverse I-V characteristics of the TMBS diode consist of two parts. In the initial first part of the forward I-V characteristic there are no forward currents, but reverse saturation currents flow, in its subsequent second part the currents increase exponentially with the voltage. In the initial first part of the reverse I-V characteristic, the currents increase in an abrupt way and in the subsequent second part the saturation currents flow under the action of the image force. The mathematical expressions for forward and reverse I-V characteristic of the TMBS diode and also narrow or nanostructure Schottky diode are proposed, which are in good agreement with the results of experimental and calculated I-V characteristics.

  17. Low-pressure CVD-grown β-Ga2O3 bevel-field-plated Schottky barrier diodes

    Science.gov (United States)

    Joishi, Chandan; Rafique, Subrina; Xia, Zhanbo; Han, Lu; Krishnamoorthy, Sriram; Zhang, Yuewei; Lodha, Saurabh; Zhao, Hongping; Rajan, Siddharth

    2018-03-01

    We report (010)-oriented β-Ga2O3 bevel-field-plated mesa Schottky barrier diodes grown by low-pressure chemical vapor deposition (LPCVD) using a solid Ga precursor and O2 and SiCl4 sources. Schottky diodes with good ideality and low reverse leakage were realized on the epitaxial material. Edge termination using beveled field plates yielded a breakdown voltage of -190 V, and maximum vertical electric fields of 4.2 MV/cm in the center and 5.9 MV/cm at the edge were estimated, with extrinsic R ON of 3.9 mΩ·cm2 and extracted intrinsic R ON of 0.023 mΩ·cm2. The reported results demonstrate the high quality of homoepitaxial LPCVD-grown β-Ga2O3 thin films for vertical power electronics applications, and show that this growth method is promising for future β-Ga2O3 technology.

  18. Fabrication and characteristics of a 4H-SiC junction barrier Schottky diode

    International Nuclear Information System (INIS)

    Chen Fengping; Zhang Yuming; Lue Hongliang; Zhang Yimen; Guo Hui; Guo Xin

    2011-01-01

    4H-SiC junction barrier Schottky (JBS) diodes with four kinds of design have been fabricated and characterized using two different processes in which one is fabricated by making the P-type ohmic contact of the anode independently, and the other is processed by depositing a Schottky metal multi-layer on the whole anode. The reverse performances are compared to find the influences of these factors. The results show that JBS diodes with field guard rings have a lower reverse current density and a higher breakdown voltage, and with independent P-type ohmic contact manufacturing, the reverse performance of 4H-SiC JBS diodes can be improved effectively. Furthermore, the P-type ohmic contact is studied in this work. (semiconductor devices)

  19. Schottky diode model for non-parabolic dispersion in narrow-gap semiconductor and few-layer graphene

    Science.gov (United States)

    Ang, Yee Sin; Ang, L. K.; Zubair, M.

    Despite the fact that the energy dispersions are highly non-parabolic in many Schottky interfaces made up of 2D material, experimental results are often interpreted using the conventional Schottky diode equation which, contradictorily, assumes a parabolic energy dispersion. In this work, the Schottky diode equation is derived for narrow-gap semiconductor and few-layer graphene where the energy dispersions are highly non-parabolic. Based on Kane's non-parabolic band model, we obtained a more general Kane-Schottky scaling relation of J (T2 + γkBT3) which connects the contrasting J T2 in the conventional Schottky interface and the J T3 scaling in graphene-based Schottky interface via a non-parabolicity parameter, γ. For N-layer graphene of ABC -stacking and of ABA -stacking, the scaling relation follows J T 2 / N + 1 and J T3 respectively. Intriguingly, the Richardson constant extracted from the experimental data using an incorrect scaling can differ with the actual value by more than two orders of magnitude. Our results highlights the importance of using the correct scaling relation in order to accurately extract important physical properties, such as the Richardson constant and the Schottky barrier's height.

  20. Leakage current reduction of vertical GaN junction barrier Schottky diodes using dual-anode process

    Science.gov (United States)

    Hayashida, Tetsuro; Nanjo, Takuma; Furukawa, Akihiko; Watahiki, Tatsuro; Yamamuka, Mikio

    2018-04-01

    The origin of the leakage current of a trench-type vertical GaN diode was discussed. We found that the edge of p-GaN is the main leakage spot. To reduce the reverse leakage current at the edge of p-GaN, a dual-anode process was proposed. As a result, the reverse blocking voltage defined at the leakage current density of 1 mA/cm2 of a vertical GaN junction barrier Schottky (JBS) diode was improved from 780 to 1,190 V, which is the highest value ever reported for vertical GaN Schottky barrier diodes (SBDs).

  1. Metal-oxide-semiconductor capacitors and Schottky diodes studied with scanning microwave microscopy at 18 GHz

    Energy Technology Data Exchange (ETDEWEB)

    Kasper, M. [Christian Doppler Laboratory for Nanoscale Methods in Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz (Austria); Gramse, G. [Biophysics Institute, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz (Austria); Hoffmann, J. [METAS, National Metrology Institute of Switzerland, Lindenweg 50, 3003 Bern-Wabern (Switzerland); Gaquiere, C. [MC2 technologies, 5 rue du Colibri, 59650 Villeneuve D' ascq (France); Feger, R.; Stelzer, A. [Institute for Communications Engineering and RF-Systems, Johannes Kepler University, Altenberger Str. 69, 4040 Linz (Austria); Smoliner, J. [Vienna University of Technology, Institute for Solid State Electronics, Floragasse 7, 1040 Vienna (Austria); Kienberger, F., E-mail: ferry-kienberger@keysight.com [Keysight Technologies Austria, Measurement Research Lab, Gruberstrasse 40, 4020 Linz (Austria)

    2014-11-14

    We measured the DC and RF impedance characteristics of micrometric metal-oxide-semiconductor (MOS) capacitors and Schottky diodes using scanning microwave microscopy (SMM). The SMM consisting of an atomic force microscopy (AFM) interfaced with a vector network analyser (VNA) was used to measure the reflection S11 coefficient of the metallic MOS and Schottky contact pads at 18 GHz as a function of the tip bias voltage. By controlling the SMM biasing conditions, the AFM tip was used to bias the Schottky contacts between reverse and forward mode. In reverse bias direction, the Schottky contacts showed mostly a change in the imaginary part of the admittance while in forward bias direction the change was mostly in the real part of the admittance. Reference MOS capacitors which are next to the Schottky diodes on the same sample were used to calibrate the SMM S11 data and convert it into capacitance values. Calibrated capacitance between 1–10 fF and 1/C{sup 2} spectroscopy curves were acquired on the different Schottky diodes as a function of the DC bias voltage following a linear behavior. Additionally, measurements were done directly with the AFM-tip in contact with the silicon substrate forming a nanoscale Schottky contact. Similar capacitance-voltage curves were obtained but with smaller values (30–300 aF) due to the corresponding smaller AFM-tip diameter. Calibrated capacitance images of both the MOS and Schottky contacts were acquired with nanoscale resolution at different tip-bias voltages.

  2. Deep-level transient spectroscopy on an amorphous InGaZnO4 Schottky diode

    NARCIS (Netherlands)

    Chasin, A.; Simoen, E.; Bhoolokam, A.; Nag, M.; Genoe, J.; Gielen, G.; Heremans, P.

    2014-01-01

    The first direct measurement is reported of the bulk density of deep states in amorphous IGZO (indium-gallium-zinc oxide) semiconductor by means of deep-level transient spectroscopy (DLTS). The device under test is a Schottky diode of amorphous IGZO semiconductor on a palladium (Pd) Schottky-barrier

  3. Barrier Height Variation in Ni-Based AlGaN/GaN Schottky Diodes

    NARCIS (Netherlands)

    Hajlasz, Marcin; Donkers, Johan J.T.M.; Pandey, Saurabh; Hurkx, Fred; Hueting, Raymond J.E.; Gravesteijn, Dirk J.

    2017-01-01

    In this paper, we have investigated Ni-based AlGaN/GaN Schottky diodes comprising capping layers with silicon-Technology-compatible metals such as TiN, TiW, TiWN, and combinations thereof. The observed change in Schottky barrier height of a Ni and Ni/TiW/TiWN/TiW contact can be explained by stress

  4. Estimation of power dissipation of a 4H-SiC Schottky barrier diode with a linearly graded doping profile in the drift region

    Directory of Open Access Journals (Sweden)

    Rajneesh Talwar

    2009-09-01

    Full Text Available The aim of this paper is to establish the importance of a linearly graded profile in the drift region of a 4H-SiC Schottky barrier diode (SBD. The power dissipation of the device is found to be considerably lower at any given current density as compared to its value obtained for a uniformly doped drift region. The corresponding values of breakdown voltages obtained are similar to those obtained with uniformly doped wafers of 4H-SiC.

  5. Physical Mechanisms Responsible for Electrical Conduction in Pt/GaN Schottky Diodes

    OpenAIRE

    H. MAZARI; K. AMEUR; N. BENSEDDIK; Z. BENAMARA; R. KHELIFI; M. MOSTEFAOUI; N. ZOUGAGH; N. BENYAHYA; R. BECHAREF; G. BASSOU; B. GRUZZA; J. M. BLUET; C. BRU-CHEVALLIER

    2014-01-01

    The current-voltage (I-V) characteristics of Pt/(n.u.d)-GaN and Pt/Si-doped-GaN diodes Schottky are investigated. Based on these measurements, physical mechanisms responsible for electrical conduction have been suggested. The contribution of thermionic-emission current and various other current transport mechanisms were assumed when evaluating the Schottky barrier height. Thus the generation-recombination, tunneling and leakage currents caused by inhomogeneities and defects at metal-semicondu...

  6. Electrical characteristics of {sup 60}Co {gamma}-ray irradiated MIS Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Tataroglu, A. [Department of Physics, Faculty of Arts and Sciences, Gazi University, 06500 Ankara (Turkey)]. E-mail: ademt@gazi.edu.tr; Altindal, S. [Department of Physics, Faculty of Arts and Sciences, Gazi University, 06500 Ankara (Turkey)

    2006-11-15

    In order to interpret the effect of {sup 60}Co {gamma}-ray irradiation dose on the electrical characteristics of MIS Schottky diodes, they were stressed with a zero bias at 1 MHz in dark and room temperature during {gamma}-ray irradiation and the total dose range was 0-450 kGy. The effect of {gamma}-ray exposure on the electrical characteristics of MIS Schottky diodes has been investigated using C-V and G/{omega}-V measurements at room temperature. Experimental results show that {gamma}-ray irradiation induces a decrease in the barrier height {phi} {sub B} and series resistance R {sub s}, decreasing with increasing dose rate. Also, the acceptor concentration N {sub A} increases with increasing radiation dose. The C-V characteristics prove that there is a reaction for extra recombination centers in case of MIS Schottky diodes exposed to {gamma}-ray radiation. Furthermore, the density of interface states N {sub ss} by Hill-Coleman method increases with increasing radiation dose. Experimental results indicate that the interface-trap formation at high irradiation dose is reduced due to positive charge build-up in the Si/SiO{sub 2} interface (due to the trapping of holes) that reduces the flow rate of subsequent holes and protons from the bulk of the insulator to the Si/SiO{sub 2} interface.

  7. Study of polarization phenomena in Schottky CdTe diodes using infrared light illumination

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Goro, E-mail: gsato@astro.isas.jaxa.jp [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Fukuyama, Taro [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-0033 (Japan); Watanabe, Shin; Ikeda, Hirokazu; Ohta, Masayuki; Ishikawa, Shin' nosuke [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Takahashi, Tadayuki [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-0033 (Japan); Shiraki, Hiroyuki; Ohno, Ryoichi [ACRORAD Co., Ltd., 13-23 Suzaki, Uruma, Okinawa 904-2234 (Japan)

    2011-10-01

    Schottky CdTe diode detectors suffer from a polarization phenomenon, which is characterized by degradation of the spectral properties over time following exposure to high bias voltage. This is considered attributable to charge accumulation at deep acceptor levels. A Schottky CdTe diode was illuminated with an infrared light for a certain period during a bias operation, and two opposite behaviors emerged. The detector showed a recovery when illuminated after the bias-induced polarization had completely progressed. Conversely, when the detector was illuminated before the emergence of bias-induced polarization, the degradation of the spectral properties was accelerated. Interpretation of these effects and discussion on the energy level of deep acceptors are presented.

  8. A GaAs planar Schottky varactor diode for left-handed nonlinear transmission line applications

    International Nuclear Information System (INIS)

    Dong Jun-Rong; Yang Hao; Tian Chao; Huang Jie; Zhang Hai-Ying

    2012-01-01

    The left-handed nonlinear transmission line (LH-NLTL) based on monolithic microwave integrated circuit (MMIC) technology possesses significant advantages such as wide frequency band, high operating frequency, high conversion efficiency, and applications in millimeter and submillimeter wave frequency multiplier. The planar Schottky varactor diode (PSVD) is a major limitation to the performance of the LH-NLTL frequency multiplier as a nonlinear component. The design and the fabrication of the diode for such an application are presented. An accurate large-signal model of the diode is proposed. A 16 GHz-39.6 GHz LH-NLTL frequency doubler using our large-signal model is reported for the first time. The measured maximum output powers of the 2nd harmonic are up to 8 dBm at 26.4 GHz, and above 0 dBm from 16 GHz to 39.6 GHz when the input power is 20 dBm. The application of the LH-NLTL frequency doubler furthermore validates the accuracy of the large-signal model of the PSVD. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  9. Simulations about self-absorption of tritium in titanium tritide and the energy deposition in a silicon Schottky barrier diode

    International Nuclear Information System (INIS)

    Li, Hao; Liu, Yebing; Hu, Rui; Yang, Yuqing; Wang, Guanquan; Zhong, Zhengkun; Luo, Shunzhong

    2012-01-01

    Simulations on the self-absorption of tritium electrons in titanium tritide films and the energy deposition in a silicon Schottky barrier diode are carried out using the Geant4 radiation transport toolkit. Energy consumed in each part of the Schottky radiovoltaic battery is simulated to give a clue about how to make the battery work better. The power and energy-conversion efficiency of the tritium silicon Schottky radiovoltaic battery in an optimized design are simulated. Good consistency with experiments is obtained. - Highlights: ► Simulation of the energy conversion inside the radiovoltaic battery is carried out. ► Energy-conversion efficiency in the simulation shows good consistency with experimental result. ► Inadequacy of the present configuration is studied in this work and improvements are proposed.

  10. Temperature dependent current transport of Pd/ZnO nanowire Schottky diodes

    Science.gov (United States)

    Gayen, R. N.; Bhattacharyya, S. R.; Jana, P.

    2014-09-01

    Zinc oxide (ZnO) nanowire based Schottky barrier diodes are fabricated by depositing Pd metal contact on top of vertically well-aligned ZnO nanowire arrays. A vertical array of ZnO nanowires on indium tin oxide (ITO) coated glass substrates is synthesized by hybrid wet chemical route. Scanning electron microscopy (SEM), x-ray diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) measurement confirm the formation of stoichiometric well-aligned hexagonal (h-ZnO) nanowire arrays with wurtzite structure. Temperature dependent current-voltage (I-V) measurements on palladium-ZnO (Pd/ZnO) nanowire Schottky junctions in the temperature range 303-383 K exhibit excellent rectifying character. From these nonlinear I-V plots, different electrical parameters of diode-like reverse saturation current, barrier height and ideality factor are determined as a function of temperature assuming pure thermionic emission model. The ideality factor is found to decrease while the barrier height increases with the increase in temperature. The series resistance values calculated from Cheung’s functions also show temperature dependency. Such behavior can be attributed to the presence of defects that traps carriers, and barrier height inhomogeneity at the interface of the barrier junction. After barrier height inhomogeneity correction, considering a Gaussian distributed barrier height fluctuation across the Pd/ZnO interface, the estimated values of mean barrier height and modified Richardson constant are more closely matched to the theoretically predicted value for Pd/ZnO Schottky barrier diodes. The variation of density of interface states as a function of interface state energy is also calculated.

  11. Non-classical logic inverter coupling a ZnO nanowire-based Schottky barrier transistor and adjacent Schottky diode.

    Science.gov (United States)

    Hosseini Shokouh, Seyed Hossein; Raza, Syed Raza Ali; Lee, Hee Sung; Im, Seongil

    2014-08-21

    On a single ZnO nanowire (NW), we fabricated an inverter-type device comprising a Schottky diode (SD) and field-effect transistor (FET), aiming at 1-dimensional (1D) electronic circuits with low power consumption. The SD and adjacent FET worked respectively as the load and driver, so that voltage signals could be easily extracted as the output. In addition, NW FET with a transparent conducting oxide as top gate turned out to be very photosensitive, although ZnO NW SD was blind to visible light. Based on this, we could achieve an array of photo-inverter cells on one NW. Our non-classical inverter is regarded as quite practical for both logic and photo-sensing due to its performance as well as simple device configuration.

  12. Electronic parameters of high barrier Au/Rhodamine-101/n-Inp Schottky diode with organic ınterlayer

    International Nuclear Information System (INIS)

    Güllü, Ö.; Aydoğan, S.; Türüt, A.

    2012-01-01

    In this work, we present that Rhodamine-101 (Rh-101) organic molecules can control the electrical characteristics of conventional Au/n-InP metal–semiconductor contacts. An Au/n-InP Schottky junction with Rh-101 interlayer has been formed by using a simple cast process. A potential barrier height as high as 0.88 eV has been achieved for Au/Rh-101/n-InP Schottky diodes, which have good current–voltage (I–V) characteristics. This good performance is attributed to the effect of formation of interfacial organic thin layer between Au and n-InP. By using capacitance-voltage measurement of the Au/Rh-101/n-InP Schottky diode the diffusion potential and the barrier height have been calculated as 0.78 V and 0.88 eV, respectively. From the I–V measurement of the diode under illumination, short circuit current and open circuit voltage have been extracted as 1.70 μA and 240 mV, respectively.

  13. Improvements on high voltage capacity and high temperature performances of Si-based Schottky potential barrier diode

    International Nuclear Information System (INIS)

    Wang Yongshun; Rui Li; Adnan Ghaffar; Wang Zaixing; Liu Chunjuan

    2015-01-01

    In order to improve the reverse voltage capacity and low junction temperature characteristics of the traditional silicon-based Schottky diode, a Schottky diode with high reverse voltage capacity and high junction temperature was fabricated using ion implantation, NiPt60 sputtering, silicide-forming and other major technologies on an N-type silicon epitaxial layer of 10.6–11.4 μm and (2.2–2.4) × 10 15 cm −3 doping concentration. The measurement results show that the junction temperature of the Schottky diode fabricated can reach 175 °C, that is 50 °C higher than that of the traditional one; the reverse voltage capacity V R can reach 112 V, that is 80 V higher than that of the traditional one; the leakage current is only 2 μA and the forward conduction voltage drop is V F = 0.71 V at forward current I F = 3 A. (semiconductor devices)

  14. Physical Mechanisms Responsible for Electrical Conduction in Pt/GaN Schottky Diodes

    Directory of Open Access Journals (Sweden)

    H. MAZARI

    2014-05-01

    Full Text Available The current-voltage (I-V characteristics of Pt/(n.u.d-GaN and Pt/Si-doped-GaN diodes Schottky are investigated. Based on these measurements, physical mechanisms responsible for electrical conduction have been suggested. The contribution of thermionic-emission current and various other current transport mechanisms were assumed when evaluating the Schottky barrier height. Thus the generation-recombination, tunneling and leakage currents caused by inhomogeneities and defects at metal-semiconductor interface were taken into account.

  15. Fabrication and characterization of magnetically tunable metal-semiconductor schottky diode using barium hexaferrite thin film on gold

    Science.gov (United States)

    Kaur, Jotinder; Sharma, Vinay; Sharma, Vipul; Veerakumar, V.; Kuanr, Bijoy K.

    2016-05-01

    Barium Hexaferrite (BaM) is an extensively studied magnetic material due to its potential device application. In this paper, we study Schottky junction diodes fabricated using gold and BaM and demonstrate the function of a spintronic device. Gold (50 nm)/silicon substrate was used to grow the BaM thin films (100-150 nm) using pulsed laser deposition. I-V characteristics were measured on the Au/BaM structure sweeping the voltage from ±5 volts. The forward and reverse bias current-voltage curves show diode like rectifying characteristics. The threshold voltage decreases while the output current increases with increase in the applied external magnetic field showing that the I-V characteristics of the BaM based Schottky junction diodes can be tuned by external magnetic field. It is also demonstrated that, the fabricated Schottky diode can be used as a half-wave rectifier, which could operate at high frequencies in the range of 1 MHz compared to the regular p-n junction diodes, which rectify below 10 kHz. In addition, it is found that above 1 MHz, Au/BaM diode can work as a rectifier as well as a capacitor filter, making the average (dc) voltage much larger.

  16. Evaluation of Schottky and MgO-based tunnelling diodes with different ferromagnets for spin injection in n-Si

    International Nuclear Information System (INIS)

    Uhrmann, T; Dimopoulos, T; Brueckl, H; Kovacs, A; Kohn, A; Weyers, S; Paschen, U; Smoliner, J

    2009-01-01

    In this work we present the electrical properties of sputter-deposited ferromagnetic (FM) Schottky diodes and MgO-based tunnelling diodes to n-doped (0 0 1) silicon. The effective Schottky barrier height (SBH) has been evaluated as a function of the FM electrode (Co 70 Fe 30 , Co 40 Fe 40 B 20 and Ni 80 Fe 20 ), the silicon doping density (10 15 to 10 18 cm -3 ), the MgO tunnelling barrier thickness (0, 1.5 and 2.5 nm) and post-deposition annealing up to 400 0 C. The ideality factors of the Schottky diodes are close to unity, indicating transport by thermionic emission and the absence of an interfacial oxide layer, which is confirmed by transmission electron microscopy. The effective SBH is found to be approximately 0.65 eV, independent of the FM material and decreasing with increasing doping density. The changes induced by high temperature annealing at the current-voltage characteristic of the Schottky diodes depend strongly on the FM electrode. The effective SBH for the tunnelling diodes is as low as 0.3 eV, which suggests a high density of oxide and interface traps. It is again independent of the FM electrode, decreasing with increasing doping density and annealing temperature. The inclusion of MgO leads to higher thermal stability of the tunnelling diodes. The measured contact resistance values are discussed with respect to the conductivity mismatch for spin injection and detection.

  17. Simulation of electrical characteristics of GaN vertical Schottky diodes

    Science.gov (United States)

    Łukasiak, Lidia; Jasiński, Jakub; Jakubowski, Andrzej

    2016-12-01

    Reverse current of GaN vertical Schottky diodes is simulated using Silvaco ATLAS to optimize the geometry for the best performance. Several physical quantities and phenomena, such as carrier mobility and tunneling mechanism are studied to select the most realistic models. Breakdown voltage is qualitatively estimated based on the maximum electric field in the structure.

  18. Low-frequency noise properties in Pt-indium gallium zinc oxide Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jiawei; Zhang, Linqing; Ma, Xiaochen; Wilson, Joshua [School of Electrical and Electronic Engineering, University of Manchester, Manchester M13 9PL (United Kingdom); Jin, Jidong [Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ (United Kingdom); Du, Lulu; Xin, Qian [School of Physics, Shandong University, Jinan 250100 (China); Song, Aimin, E-mail: A.Song@manchester.ac.uk [School of Electrical and Electronic Engineering, University of Manchester, Manchester M13 9PL (United Kingdom); School of Physics, Shandong University, Jinan 250100 (China)

    2015-08-31

    The low-frequency noise properties of Pt-indium gallium zinc oxide (IGZO) Schottky diodes at different forward biases are investigated. The IGZO layer and Pt contact were deposited by RF sputtering at room temperature. The diode showed an ideality factor of 1.2 and a barrier height of 0.94 eV. The current noise spectral density exhibited 1/f behavior at low frequencies. The analysis of the current dependency of the noise spectral density revealed that for the as-deposited diode, the noise followed Luo's mobility and diffusivity fluctuation model in the thermionic-emission-limited region and Hooge's empirical theory in the series-resistance-limited region. A low Hooge's constant of 1.4 × 10{sup −9} was found in the space-charge region. In the series-resistance-limited region, the Hooge's constant was 2.2 × 10{sup −5}. After annealing, the diode showed degradation in the electrical performance. The interface-trap-induced noise dominated the noise spectrum. By using the random walk model, the interface-trap density was obtained to be 3.6 × 10{sup 15 }eV{sup −1 }cm{sup −2}. This work provides a quantitative approach to analyze the properties of Pt-IGZO interfacial layers. These low noise properties are a prerequisite to the use of IGZO Schottky diodes in switch elements in memory devices, photosensors, and mixer diodes.

  19. Ultra-low leakage and high breakdown Schottky diodes fabricated on free-standing GaN substrate

    International Nuclear Information System (INIS)

    Wang, Yaqi; Alur, Siddharth; Sharma, Yogesh; Tong, Fei; Thapa, Resham; Gartland, Patrick; Issacs-Smith, Tamara; Ahyi, Claude; Williams, John; Park, Minseo; Johnson, Mark; Paskova, Tanya; Preble, Edward A; Evans, Keith R

    2011-01-01

    Vertical Schottky diodes were fabricated on the bulk GaN substrate with decreasing impurity concentration from N-face to Ga-face. An array of circular Pt Schottky contacts and a full backside Ti/Al/Ni/Au ohmic contact were prepared on the Ga-face and the N-face of the n-GaN substrate, respectively. The Schottky diode exhibits a minimum specific on-state resistance of 1.3 mΩ cm 2 and a maximum breakdown voltage of 600 V, resulting in a figure-of- merit of 275 MW cm −2 . An ultra-low reverse leakage current density of 3.7 × 10 −4 A cm −2 at reverse bias of 400 V was observed. Temperature-dependent I–V measurements were also carried out to study the forward and reverse transportation mechanisms. (fast track communication)

  20. Development of high performance Schottky barrier diode and its application to plasma diagnostics

    International Nuclear Information System (INIS)

    Fujita, Junji; Kawahata, Kazuo; Okajima, Shigeki

    1993-10-01

    At the conclusion of the Supporting Collaboration Research on 'Development of High Performance Detectors in the Far Infrared Range' carried out from FY1990 to FY1992, the results of developing Schottky barrier diode and its application to plasma diagnostics are summarized. Some remarks as well as technical know-how for the correct use of diodes are also described. (author)

  1. Analysis and modelling of GaN Schottky-based circuits at millimeter wavelengths

    International Nuclear Information System (INIS)

    Pardo, D; Grajal, J

    2015-01-01

    This work presents an analysis of the capabilities of GaN Schottky diodes for frequency multipliers and mixers at millimeter wavelengths. By using a Monte Carlo (MC) model of the diode coupled to a harmonic balance technique, the electrical and noise performances of these circuits are investigated. Despite the lower electron mobility of GaN compared to GaAs, multipliers based on GaN Schottky diodes can be competitive in the first stages of multiplier chains, due to the excellent power handling capabilities of this material. The performance of these circuits can be improved by taking advantage of the lateral Schottky diode structures based on AlGaN/GaN HEMT technology. (paper)

  2. Schottky diodes between Bi2S3 nanorods and metal nanoparticles in a polymer matrix as hybrid bulk-heterojunction solar cells

    International Nuclear Information System (INIS)

    Saha, Sudip K.; Pal, Amlan J.

    2015-01-01

    We report the use of metal-semiconductor Schottky junctions in a conjugated polymer matrix as solar cells. The Schottky diodes, which were formed between Bi 2 S 3 nanorods and gold nanoparticles, efficiently dissociated photogenerated excitons. The bulk-heterojunction (BHJ) devices based on such metal-semiconductor Schottky diodes in a polymer matrix therefore acted as an efficient solar cell as compared to the devices based on only the semiconductor nanorods in the polymer matrix or when gold nanoparticles were added separately to the BHJs. In the latter device, gold nanoparticles offered plasmonic enhancement due to an increased cross-section of optical absorption. We report growth and characteristics of the Schottky junctions formed through an intimate contact between Bi 2 S 3 nanorods and gold nanoparticles. We also report fabrication and characterization of BHJ solar cells based on such heterojunctions. We highlight the benefit of using metal-semiconductor Schottky diodes over only inorganic semiconductor nanorods or quantum dots in a polymer matrix in forming hybrid BHJ solar cells

  3. 670-GHz Schottky Diode-Based Subharmonic Mixer with CPW Circuits and 70-GHz IF

    Science.gov (United States)

    Chattopadhyay, Goutam; Schlecht, Erich T.; Lee, Choonsup; Lin, Robert H.; Gill, John J.; Mehdi, Imran; Sin, Seth; Deal, William; Loi, Kwok K.; Nam, Peta; hide

    2012-01-01

    GaAs-based, sub-harmonically pumped Schottky diode mixers offer a number of advantages for array implementation in a heterodyne receiver system. Since the radio frequency (RF) and local oscillator (LO) signals are far apart, system design becomes much simpler. A proprietary planar GaAs Schottky diode process was developed that results in very low parasitic anodes that have cutoff frequencies in the tens of terahertz. This technology enables robust implementation of monolithic mixer and frequency multiplier circuits well into the terahertz frequency range. Using optical and e-beam lithography, and conventional epitaxial layer design with innovative usage of GaAs membranes and metal beam leads, high-performance terahertz circuits can be designed with high fidelity. All of these mixers use metal waveguide structures for housing. Metal machined structures for RF and LO coupling hamper these mixers to be integrated in multi-pixel heterodyne array receivers for spectroscopic and imaging applications. Moreover, the recent developments of terahertz transistors on InP substrate provide an opportunity, for the first time, to have integrated amplifiers followed by Schottky diode mixers in a heterodyne receiver at these frequencies. Since the amplifiers are developed on a planar architecture to facilitate multi-pixel array implementation, it is quite important to find alternative architecture to waveguide-based mixers.

  4. Temperature dependent electrical characterization of organic Schottky diode based on thick MgPc films

    Science.gov (United States)

    Singh, J.; Sharma, R. K.; Sule, U. S.; Goutam, U. K.; Gupta, Jagannath; Gadkari, S. C.

    2017-07-01

    Magnesium phthalocyanine (MgPc) based Schottky diode on indium tin oxide (ITO) substrate was fabricated by thermal evaporation method. The dark current voltage characteristics of the prepared ITO-MgPc-Al heterojunction Schottky diode were measured at different temperatures. The diode showed the non-ideal rectification behavior under forward and reverse bias conditions with a rectification ratio (RR) of 56 at  ±1 V at room temperature. Under forward bias, thermionic emission and space charge limited conduction (SCLC) were found to be the dominant conduction mechanisms at low (below 0.6 V) and high voltages (above 0.6 V) respectively. Under reverse bias conditions, Poole-Frenkel (field assisted thermal detrapping of carriers) was the dominant conduction mechanism. Three different approaches namely, I-V plots, Norde and Cheung methods were used to determine the diode parameters including ideality factor (n), barrier height (Φb), series resistance (R s) and were compared. SCLC mechanism showed that the trap concentration is 5.52  ×  1022 m-3 and it lies at 0.46 eV above the valence band edge.

  5. Local irradiation effects of one-dimensional ZnO based self-powered asymmetric Schottky barrier UV photodetector

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yaxue [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Qi, Junjie, E-mail: junjieqi@ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Biswas, Chandan [Department of Electrical Engineering, University of California Los Angeles, California 90095 (United States); Li, Feng; Zhang, Kui; Li, Xin [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Zhang, Yue, E-mail: yuezhang@ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Key Laboratory of New Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083 (China)

    2015-09-15

    A self-powered metal-semiconductor-metal (MSM) UV photodetector was successfully fabricated based on Ag/ZnO/Au structure with asymmetric Schottky barriers. This exhibits excellent performance compared to many previous studies. Very high photo-to-dark current ratio (approximately 10{sup 5}–10{sup 6}) was demonstrated without applying any external bias, and very fast switching time of less than 30 ms was observed during the investigation. Opposite photocurrent direction was generated by irradiating different Schottky diodes in the fabricated photodetector. Furthermore, the device performance was optimized by largely irradiating both the ZnO microwire (MW) junctions. Schottky barrier effect theory and O{sub 2} adsorption–desorption theories were used to investigate the phenomenon. The device has potential applications in self-powered UV detection field and can be used as electrical power source for electronic, optoelectronic and mechanical devices. - Highlights: • A self-powered Schottky barrier UV photodetector based on 1-D ZnO is fabricated. • For the first time we investigate the local irradiation effects of UV detector. • Irradiating both the junctions and ZnO can optimize the performance of the device.

  6. Characteristics of Al/p-AgGaTe2 polycrystalline thin film Schottky barrier diode

    International Nuclear Information System (INIS)

    Patel, S.S.; Patel, B.H.; Patel, T.S.

    2008-01-01

    An Al/p-AgGaTe 2 polycrystalline thin film schottky barrier diode have been prepared by flash-evaporation of p-AgGaTe 2 onto a pre-deposited film of aluminium. The current-voltage, capacitance-voltage and photoresponse of the diode have been investigated. The important physical parameter such as barrier height of the fabricated diode was derived from these measurements. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. TCAD simulation for alpha-particle spectroscopy using SIC Schottky diode.

    Science.gov (United States)

    Das, Achintya; Duttagupta, Siddhartha P

    2015-12-01

    There is a growing requirement of alpha spectroscopy in the fields context of environmental radioactive contamination, nuclear waste management, site decommissioning and decontamination. Although silicon-based alpha-particle detection technology is mature, high leakage current, low displacement threshold and radiation hardness limits the operation of the detector in harsh environments. Silicon carbide (SiC) is considered to be excellent material for radiation detection application due to its high band gap, high displacement threshold and high thermal conductivity. In this report, an alpha-particle-induced electron-hole pair generation model for a reverse-biased n-type SiC Schottky diode has been proposed and verified using technology computer aided design (TCAD) simulations. First, the forward-biased I-V characteristics were studied to determine the diode ideality factor and compared with published experimental data. The ideality factor was found to be in the range of 1.4-1.7 for a corresponding temperature range of 300-500 K. Next, the energy-dependent, alpha-particle-induced EHP generation model parameters were optimised using transport of ions in matter (TRIM) simulation. Finally, the transient pulses generated due to alpha-particle bombardment were analysed for (1) different diode temperatures (300-500 K), (2) different incident alpha-particle energies (1-5 MeV), (3) different reverse bias voltages of the 4H-SiC-based Schottky diode (-50 to -250 V) and (4) different angles of incidence of the alpha particle (0°-70°).The above model can be extended to other (wide band-gap semiconductor) device technologies useful for radiation-sensing application. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Thermodynamic analysis of acetone sensing in Pd/AlGaN/GaN heterostructure Schottky diodes at low temperatures

    International Nuclear Information System (INIS)

    Das, Subhashis; Majumdar, Shubhankar; Kumar, Rahul; Ghosh, Saptarsi; Biswas, Dhrubes

    2016-01-01

    An AlGaN/GaN heterostructure based metal–semiconductor–metal symmetrically bi-directional Schottky diode sensor structure has been employed to investigate acetone sensing and to analyze thermodynamics of acetone adsorption at low temperatures. The AlGaN/GaN heterostructure has been grown by plasma-assisted molecular beam epitaxy on Si (111). Schottky diode parameters at different temperatures and acetone concentrations have been extracted from I–V characteristics. Sensitivity and change in Schottky barrier height have been studied. Optimum operating temperature has been established. Coverage of acetone adsorption sites at the AlGaN surface and the effective equilibrium rate constant of acetone adsorption have been explored to determine the endothermic nature of acetone adsorption enthalpy.

  9. Cumulative dose 60Co gamma irradiation effects on AlGaN/GaN Schottky diodes and its area dependence

    Science.gov (United States)

    Sharma, Chandan; Laishram, Robert; Rawal, Dipendra Singh; Vinayak, Seema; Singh, Rajendra

    2018-04-01

    Cumulative dose gamma radiation effects on current-voltage characteristics of GaN Schottky diodes have been investigated. The different area diodes have been fabricated on AlGaN/GaN high electron mobility transistor (HEMT) epi-layer structure grown over SiC substrate and irradiated with a dose up to the order of 104 Gray (Gy). Post irradiation characterization shows a shift in the turn-on voltage and improvement in reverse leakage current. Other calculated parameters include Schottky barrier height, ideality factor and reverse saturation current. Schottky barrier height has been decreased whereas reverse saturation current shows an increase in the value post irradiation with improvement in the ideality factor. Transfer length measurement (TLM) characterization shows an improvement in the contact resistance. Finally, diodes with larger area have more variation in the calculated parameters due to the induced local heating effect.

  10. Electronic Properties of DNA-Based Schottky Barrier Diodes in Response to Alpha Particles.

    Science.gov (United States)

    Al-Ta'ii, Hassan Maktuff Jaber; Periasamy, Vengadesh; Amin, Yusoff Mohd

    2015-05-21

    Detection of nuclear radiation such as alpha particles has become an important field of research in recent history due to nuclear threats and accidents. In this context; deoxyribonucleic acid (DNA) acting as an organic semiconducting material could be utilized in a metal/semiconductor Schottky junction for detecting alpha particles. In this work we demonstrate for the first time the effect of alpha irradiation on an Al/DNA/p-Si/Al Schottky diode by investigating its current-voltage characteristics. The diodes were exposed for different periods (0-20 min) of irradiation. Various diode parameters such as ideality factor, barrier height, series resistance, Richardson constant and saturation current were then determined using conventional, Cheung and Cheung's and Norde methods. Generally, ideality factor or n values were observed to be greater than unity, which indicates the influence of some other current transport mechanism besides thermionic processes. Results indicated ideality factor variation between 9.97 and 9.57 for irradiation times between the ranges 0 to 20 min. Increase in the series resistance with increase in irradiation time was also observed when calculated using conventional and Cheung and Cheung's methods. These responses demonstrate that changes in the electrical characteristics of the metal-semiconductor-metal diode could be further utilized as sensing elements to detect alpha particles.

  11. Room temperature current-voltage (I-V) characteristics of Ag/InGaN/n-Si Schottky barrier diode

    Energy Technology Data Exchange (ETDEWEB)

    Erdoğan, Erman, E-mail: e.erdogan@alparslan.edu.tr [Department of Physics, Faculty of Art and Science, Muş Alparslan University, Muş 49250 (Turkey); Kundakçı, Mutlu [Department of Physics, Faculty of Science, Atatürk University, Erzurum 25240 (Turkey)

    2017-02-01

    Metal-semiconductors (MSs) or Schottky barrier diodes (SBDs) have a significant potential in the integrated device technology. In the present paper, electrical characterization of Ag/InGaN/n-Si Schottky diode have been systematically carried out by simple Thermionic method (TE) and Norde function based on the I-V characteristics. Ag ohmic and schottky contacts are deposited on InGaN/n-Si film by thermal evaporation technique under a vacuum pressure of 1×10{sup −5} mbar. Ideality factor, barrier height and series resistance values of this diode are determined from I-V curve. These parameters are calculated by TE and Norde methods and findings are given in a comparetive manner. The results show the consistency for both method and also good agreement with other results obtained in the literature. The value of ideality factor and barrier height have been determined to be 2.84 and 0.78 eV at room temperature using simple TE method. The value of barrier height obtained with Norde method is calculated as 0.79 eV.

  12. Room temperature current-voltage (I-V) characteristics of Ag/InGaN/n-Si Schottky barrier diode

    Science.gov (United States)

    Erdoğan, Erman; Kundakçı, Mutlu

    2017-02-01

    Metal-semiconductors (MSs) or Schottky barrier diodes (SBDs) have a significant potential in the integrated device technology. In the present paper, electrical characterization of Ag/InGaN/n-Si Schottky diode have been systematically carried out by simple Thermionic method (TE) and Norde function based on the I-V characteristics. Ag ohmic and schottky contacts are deposited on InGaN/n-Si film by thermal evaporation technique under a vacuum pressure of 1×10-5 mbar. Ideality factor, barrier height and series resistance values of this diode are determined from I-V curve. These parameters are calculated by TE and Norde methods and findings are given in a comparetive manner. The results show the consistency for both method and also good agreement with other results obtained in the literature. The value of ideality factor and barrier height have been determined to be 2.84 and 0.78 eV at room temperature using simple TE method. The value of barrier height obtained with Norde method is calculated as 0.79 eV.

  13. The Schottky energy barrier dependence of charge injection in organic light-emitting diodes

    Science.gov (United States)

    Campbell, I. H.; Davids, P. S.; Smith, D. L.; Barashkov, N. N.; Ferraris, J. P.

    1998-04-01

    We present device model calculations of the current-voltage (I-V) characteristics of organic diodes and compare them with measurements of structures fabricated using MEH-PPV. The structures are designed so that all of the current is injected from one contact. The I-V characteristics are considered as a function of the Schottky energy barrier to charge injection from the contact. Experimentally, the Schottky barrier is varied from essentially zero to more than 1 eV by using different metal contacts. A consistent description of the device I-V characteristics is obtained as the Schottky barrier is varied from small values, less than about 0.4 eV, where the current flow is space-charge limited to larger values where it is contact limited.

  14. Temperature dependent electrical characterisation of Pt/HfO{sub 2}/n-GaN metal-insulator-semiconductor (MIS) Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Shetty, Arjun, E-mail: arjun@ece.iisc.ernet.in; Vinoy, K. J. [Electrical Communication Engineering, Indian Institute of Science, Bangalore, India 560012 (India); Roul, Basanta; Mukundan, Shruti; Mohan, Lokesh; Chandan, Greeshma; Krupanidhi, S. B. [Materials Research Centre, Indian Institute of Science, Bangalore, India 560012 (India)

    2015-09-15

    This paper reports an improvement in Pt/n-GaN metal-semiconductor (MS) Schottky diode characteristics by the introduction of a layer of HfO{sub 2} (5 nm) between the metal and semiconductor interface. The resulting Pt/HfO{sub 2}/n-GaN metal-insulator-semiconductor (MIS) Schottky diode showed an increase in rectification ratio from 35.9 to 98.9(@ 2V), increase in barrier height (0.52 eV to 0.63eV) and a reduction in ideality factor (2.1 to 1.3) as compared to the MS Schottky. Epitaxial n-type GaN films of thickness 300nm were grown using plasma assisted molecular beam epitaxy (PAMBE). The crystalline and optical qualities of the films were confirmed using high resolution X-ray diffraction and photoluminescence measurements. Metal-semiconductor (Pt/n-GaN) and metal-insulator-semiconductor (Pt/HfO{sub 2}/n-GaN) Schottky diodes were fabricated. To gain further understanding of the Pt/HfO{sub 2}/GaN interface, I-V characterisation was carried out on the MIS Schottky diode over a temperature range of 150 K to 370 K. The barrier height was found to increase (0.3 eV to 0.79 eV) and the ideality factor decreased (3.6 to 1.2) with increase in temperature from 150 K to 370 K. This temperature dependence was attributed to the inhomogeneous nature of the contact and the explanation was validated by fitting the experimental data into a Gaussian distribution of barrier heights.

  15. Electronic Transport Mechanism for Schottky Diodes Formed by Au/HVPE a-Plane GaN Templates Grown via In Situ GaN Nanodot Formation

    Directory of Open Access Journals (Sweden)

    Moonsang Lee

    2018-06-01

    Full Text Available We investigate the electrical characteristics of Schottky contacts for an Au/hydride vapor phase epitaxy (HVPE a-plane GaN template grown via in situ GaN nanodot formation. Although the Schottky diodes present excellent rectifying characteristics, their Schottky barrier height and ideality factor are highly dependent upon temperature variation. The relationship between the barrier height, ideality factor, and conventional Richardson plot reveals that the Schottky diodes exhibit an inhomogeneous barrier height, attributed to the interface states between the metal and a-plane GaN film and to point defects within the a-plane GaN layers grown via in situ nanodot formation. Also, we confirm that the current transport mechanism of HVPE a-plane GaN Schottky diodes grown via in situ nanodot formation prefers a thermionic field emission model rather than a thermionic emission (TE one, implying that Poole–Frenkel emission dominates the conduction mechanism over the entire range of measured temperatures. The deep-level transient spectroscopy (DLTS results prove the presence of noninteracting point-defect-assisted tunneling, which plays an important role in the transport mechanism. These electrical characteristics indicate that this method possesses a great throughput advantage for various applications, compared with Schottky contact to a-plane GaN grown using other methods. We expect that HVPE a-plane GaN Schottky diodes supported by in situ nanodot formation will open further opportunities for the development of nonpolar GaN-based high-performance devices.

  16. Fabrication of a Schottky junction diode with direct growth graphene on silicon by a solid phase reaction

    International Nuclear Information System (INIS)

    Kalita, Golap; Hirano, Ryo; Ayhan, Muhammed E; Tanemura, Masaki

    2013-01-01

    We demonstrate fabrication of a Schottky junction diode with direct growth graphene on n-Si by the solid phase reaction approach. Metal-assisted crystallization of a-C thin film was performed to synthesize transfer-free graphene directly on a SiO 2 patterned n-Si substrate. Graphene formation at the substrate and catalyst layer interface is achieved in presence of a Co catalytic and CoO carbon diffusion barrier layer. The as-synthesized material shows a linear current–voltage characteristic confirming the metallic behaviour of the graphene structure. The direct grown graphene on n-Si substrate creates a Schottky junction with a potential barrier of 0.44 eV and rectification diode characteristic. Our finding shows that the directly synthesized graphene on Si substrate by a solid phase reaction process can be a promising technique to fabricate an efficient Schottky junction device. (paper)

  17. Characterization of Schottky barrier diodes fabricated from electrochemical oxidation of {alpha} phase brass

    Energy Technology Data Exchange (ETDEWEB)

    Bond, John W., E-mail: jwb13@le.ac.u [Forensic Research Centre, University of Leicester, Leicester LE1 7 EA (United Kingdom)

    2011-04-01

    By careful selection of chloride ion concentration in aqueous sodium chloride, electrochemical oxidation of {alpha} phase brass is shown to permit fabrication of either p-type copper (I) oxide/metal or n-type zinc oxide/metal Schottky barrier diodes. X-ray photoelectron and Auger electron spectroscopies provide evidence that barrier formation and rectifying qualities depend on the relative surface abundance of copper (I) oxide and zinc oxide. X-ray diffraction of the resulting diodes shows polycrystalline oxides embedded in amorphous oxidation products that have a lower relative abundance than the diode forming oxide. Conventional I/V characteristics of these diodes show good rectifying qualities. When neither of the oxides dominate, the semiconductor/metal junction displays an absence of rectification.

  18. The Schottky energy barrier dependence of charge injection in organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, I.H.; Davids, P.S.; Smith, D.L. [Los Alamos National Laboratory, Los Alamos, New Mexico87545 (United States); Barashkov, N.N.; Ferraris, J.P. [The University of Texas at Dallas, Richardson, Texas75083 (United States)

    1998-04-01

    We present device model calculations of the current{endash}voltage (I{endash}V) characteristics of organic diodes and compare them with measurements of structures fabricated using MEH-PPV. The structures are designed so that all of the current is injected from one contact. The I{endash}V characteristics are considered as a function of the Schottky energy barrier to charge injection from the contact. Experimentally, the Schottky barrier is varied from essentially zero to more than 1 eV by using different metal contacts. A consistent description of the device I{endash}V characteristics is obtained as the Schottky barrier is varied from small values, less than about 0.4 eV, where the current flow is space-charge limited to larger values where it is contact limited. {copyright} {ital 1998 American Institute of Physics.}

  19. Electronic Properties of DNA-Based Schottky Barrier Diodes in Response to Alpha Particles

    Directory of Open Access Journals (Sweden)

    Hassan Maktuff Jaber Al-Ta'ii

    2015-05-01

    Full Text Available Detection of nuclear radiation such as alpha particles has become an important field of research in recent history due to nuclear threats and accidents. In this context; deoxyribonucleic acid (DNA acting as an organic semiconducting material could be utilized in a metal/semiconductor Schottky junction for detecting alpha particles. In this work we demonstrate for the first time the effect of alpha irradiation on an Al/DNA/p-Si/Al Schottky diode by investigating its current-voltage characteristics. The diodes were exposed for different periods (0–20 min of irradiation. Various diode parameters such as ideality factor, barrier height, series resistance, Richardson constant and saturation current were then determined using conventional, Cheung and Cheung’s and Norde methods. Generally, ideality factor or n values were observed to be greater than unity, which indicates the influence of some other current transport mechanism besides thermionic processes. Results indicated ideality factor variation between 9.97 and 9.57 for irradiation times between the ranges 0 to 20 min. Increase in the series resistance with increase in irradiation time was also observed when calculated using conventional and Cheung and Cheung’s methods. These responses demonstrate that changes in the electrical characteristics of the metal-semiconductor-metal diode could be further utilized as sensing elements to detect alpha particles.

  20. High-performance 4H-SiC junction barrier Schottky diodes with double resistive termination extensions

    International Nuclear Information System (INIS)

    Zheng Liu; Zhang Feng; Liu Sheng-Bei; Dong Lin; Liu Xing-Fang; Liu Bin; Yan Guo-Guo; Wang Lei; Zhao Wan-Shun; Sun Guo-Sheng; He Zhi; Fan Zhong-Chao; Yang Fu-Hua

    2013-01-01

    4H-SiC junction barrier Schottky (JBS) diodes with a high-temperature annealed resistive termination extension (HARTE) are designed, fabricated and characterized in this work. The differential specific on-state resistance of the device is as low as 3.64 mΩ·cm 2 with a total active area of 2.46 × 10 −3 cm 2 . Ti is the Schottky contact metal with a Schottky barrier height of 1.08 V and a low onset voltage of 0.7 V. The ideality factor is calculated to be 1.06. Al implantation annealing is performed at 1250°C in Ar, while good reverse characteristics are achieved. The maximum breakdown voltage is 1000 V with a leakage current of 9 × 10 −5 A on chip level. These experimental results show good consistence with the simulation results and demonstrate that high-performance 4H-SiC JBS diodes can be obtained based on the double HARTE structure. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  1. Low-temperature current-voltage characteristics of MIS Cu/n-GaAs and inhomogeneous Cu/n-GaAs Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Biber, M

    2003-01-01

    The current-voltage (I-V) characteristics of metal-insulating layer-semiconductor Cu/n-GaAs and inhomogeneous Cu/n-GaAs Schottky barrier diodes were determined in the temperature range 80-300 K. The evaluation of the experimental I-V data reveals a nonlinear increase of the zero-bias barrier height (qPHI{sub 0}) for the inhomogeneous Cu/n-GaAs Schottky barrier diodes and a linear increase of the zero-bias barrier height (qPHI{sub 0}) for Cu/n-GaAs Schottky barrier diodes with an interfacial layer. The ideality factor n decreases with increasing temperature for all diodes. Furthermore, the changes in PHI{sub 0} and n become quite significant below 150 K and the plot of ln(I{sub 0}/T{sup 2}) versus 1/T exhibits a non-linearity below 180 K for the inhomogeneous barrier diodes. Such behavior is attributed to barrier inhomogeneities by assuming a Gaussian distribution of barrier heights at the interface. The value of the Richardson constant was found to be 5.033 A/cm{sup 2} K{sup 2}, which is close to the theoretical value of 8.16 A/cm{sup 2} K{sup 2} used for the determination of the zero-bias barrier height.

  2. ALD TiO2 thin film as dielectric for Al/p-Si Schottky diode

    Indian Academy of Sciences (India)

    Abstract. Electrical analysis of Al/p-Si Schottky diode with titanium dioxide (TiO2) thin film was performed at ..... This work was partially supported by The Management Unit of Scientific Research Project of Bozok University and Hitit. University.

  3. Ellipsometric study and application of rubrene thin film in organic Schottky diode

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Liang; Deng, Jinxiang, E-mail: jdeng@bjut.edu.cn; Gao, Hongli; Yang, Qianqian; Kong, Le; Cui, Min; Zhang, Zijia

    2016-12-01

    Highlights: • The optical constants of rubrene were studied by ellipsometry spectroscopic. • The α reveals direct allowed transition with corresponding energy 2.21 eV. • A Schottky diodes based on rubrene were fabricated. • The basic device parameters were determined by the I–V measurement. - Abstract: Rubrene thin film was deposited by thermal evaporation technique under high vacuum (∼10{sup −4} Pa). The film surface morphology was characterized by atomic force microscopy (AFM). Ellipsometric studies on rubrene thin film were presented for understanding its growth and optical characteristics by the Classical-Oscillator model. The analysis of the absorption coefficient (α) revealed the direct allowed transition with corresponding energy 2.21 eV of the rubrene film. In order to exploring the rubrene applications, Al/rubrene/ITO Schottky diode was fabricated. The basic device parameters, barrier height and ideality factor were determined by the I–V measurement. The log(I)–log(V) characteristic indicated three distinct regions. These regions followed ohmic conduction, TCL conduction and SCLC conduction mechanisms.

  4. Modeling of 4H—SiC multi-floating-junction Schottky barrier diode

    International Nuclear Information System (INIS)

    Hong-Bin, Pu; Lin, Cao; Zhi-Ming, Chen; Jie, Ren; Ya-Gong, Nan

    2010-01-01

    This paper develops a new and easy to implement analytical model for the specific on-resistance and electric field distribution along the critical path for 4H—SiC multi-floating junction Schottky barrier diode. Considering the charge compensation effects by the multilayer of buried opposite doped regions, it improves the breakdown voltage a lot in comparison with conventional one with the same on-resistance. The forward resistance of the floating junction Schottky barrier diode consists of several components and the electric field can be understood with superposition concept, both are consistent with MEDICI simulation results. Moreover, device parameters are optimized and the analyses show that in comparison with one layer floating junction, multilayer of floating junction layer is an effective way to increase the device performance when specific resistance and the breakdown voltage are traded off. The results show that the specific resistance increases 3.2 mΩ·cm 2 and breakdown voltage increases 422 V with an additional floating junction for the given structure. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  5. Investigation of temperature dependent barrier height of Au/ZnO/Si schottky diodes

    International Nuclear Information System (INIS)

    Asghar, M.; Mahmood, K.; Rabia, S.; BM, S.; Shahid, M. Y.; Hasan, M. A.

    2013-01-01

    In this study, temperature dependent current-voltage (I-V) measurements have been performed to investigate the inhomogeneity in the temperature dependent barrier heights of Au/ZnO/Si Schottky barrier diode in the temperature range 150 - 400K. The room temperature values for ideality factor and barrier height were found to be 2.9 and 0.60 eV respectively indicating the inhomogenity in the barrier heights of grown samples. The Richardson plot and ideality factor verses barrier height graph were also drawn to verified the discontinuity between Au and ZnO. This barrier height inhomogenity was explained by applying Gaussian distribution model. The extrapolation of the linear Fap (n) plot to n= 1 has given a homogeneous barrier height of approximately 1.1 eV. Fap versus 1/T plot was drawn to obtain the values of mean barrier height for Au/ZnO/Si Schottky diode (1.1 eV) and standard deviation(ds) (0.02 V) at zero bais. (author)

  6. Investigation of temperature dependent barrier height of Au/ZnO/Si schottky diodes

    International Nuclear Information System (INIS)

    Asghar, M; Mahmood, K; Rabia, S; M, Samaa B; Shahid, M Y; Hasan, M A

    2014-01-01

    In this study, temperature dependent current-voltage (I-V) measurements have been performed to investigate the inhomogeneity in the temperature dependent barrier heights of Au/ZnO/Si Schottky barrier diode in the temperature range 150 – 400K. The room temperature values for ideality factor and barrier height were found to be 2.9 and 0.60 eV respectively indicating the inhomogenity in the barrier heights of grown samples. The Richardson plot and ideality factor verses barrier height graph were also drawn to verified the discontinuity between Au and ZnO. This barrier height inhomogenity was explained by applying Gaussian distribution model. The extrapolation of the linear Φ ap (n) plot to n= 1 has given a homogeneous barrier height of approximately 1.1 eV. Φ ap versus 1/T plot was drawn to obtain the values of mean barrier height for Au/ZnO/Si Schottky diode (1.1 eV) and standard deviation(δ s ) (0.02 V) at zero bais

  7. Wireless Power Transmission to Organic Light Emitting Diode Lighting Panel with Magnetically Coupled Resonator

    Science.gov (United States)

    Kim, Yong-Hae; Han, Jun-Han; Kang, Seung-Youl; Cheon, Sanghoon; Lee, Myung-Lae; Ahn, Seong-Deok; Zyung, Taehyoung; Lee, Jeong-Ik; Moon, Jaehyun; Chu, Hye Yong

    2012-09-01

    We are successful to lit the organic light emitting diode (OLED) lighting panel through the magnetically coupled wireless power transmission technology. For the wireless power transmission, we used the operation frequency 932 kHz, specially designed double spiral type transmitter, small and thin receiver on the four layered printed circuit board, and schottky diodes for the full bridge rectifier. Our white OLED is a hybrid type, in which phosphorescent and fluorescent organics are used together to generate stable white color. The total efficiency of power transmission is around 72%.

  8. Field plate engineering for GaN-based Schottky barrier diodes

    International Nuclear Information System (INIS)

    Lei Yong; Shi Hongbiao; Lu Hai; Chen Dunjun; Zhang Rong; Zheng Youdou

    2013-01-01

    The practical design of GaN-based Schottky barrier diodes (SBDs) incorporating a field plate (FP) structure necessitates an understanding of their working mechanism and optimization criteria. In this work, the influences of the parameters of FPs upon breakdown of the diode are investigated in detail and the design rules of FP structures for GaN-based SBDs are presented for a wide scale of material and device parameters. By comparing three representative dielectric materials (SiO 2 , Si 3 N 4 and Al 2 O 3 ) selected for fabricating FPs, it is found that the product of dielectric permittivity and critical field strength of a dielectric material could be used as an index to predict its potential performance for FP applications. (semiconductor devices)

  9. High-Sensitivity and Low-Power Flexible Schottky Hydrogen Sensor Based on Silicon Nanomembrane.

    Science.gov (United States)

    Cho, Minkyu; Yun, Jeonghoon; Kwon, Donguk; Kim, Kyuyoung; Park, Inkyu

    2018-04-18

    High-performance and low-power flexible Schottky diode-based hydrogen sensor was developed. The sensor was fabricated by releasing Si nanomembrane (SiNM) and transferring onto a plastic substrate. After the transfer, palladium (Pd) and aluminum (Al) were selectively deposited as a sensing material and an electrode, respectively. The top-down fabrication process of flexible Pd/SiNM diode H 2 sensor is facile compared to other existing bottom-up fabricated flexible gas sensors while showing excellent H 2 sensitivity (Δ I/ I 0 > 700-0.5% H 2 concentrations) and fast response time (τ 10-90 = 22 s) at room temperature. In addition, selectivity, humidity, and mechanical tests verify that the sensor has excellent reliability and robustness under various environments. The operating power consumption of the sensor is only in the nanowatt range, which indicates its potential applications in low-power portable and wearable electronics.

  10. Far-ir heterodyne radiometric measurements with quasioptical Schottky diode mixers

    International Nuclear Information System (INIS)

    Fetterman, H.R.; Tannenwald, P.E.; Clifton, B.J.; Parker, C.D.; Fitzgerald, W.D.; Erickson, N.R.

    1978-01-01

    We have made heterodyne radiometric measurements with GaAs Schottky diode mixers, mounted in a corner-reflector configuration, over the spectral range 170 μm to 1 mm. At 400 μm, system noise temperatures of 9700 K DSB (NEP=1.4 x 10 - 19 W/Hz) and mixer noise temperatures of 5900 K have been achieved. This same quasioptical mixer has also been used to generate 10 - 7 W of tunable radiation suitable for spectroscopic applications

  11. Schottky barrier diode embedded AlGaN/GaN switching transistor

    International Nuclear Information System (INIS)

    Park, Bong-Ryeol; Lee, Jung-Yeon; Lee, Jae-Gil; Lee, Dong-Myung; Cha, Ho-Young; Kim, Moon-Kyung

    2013-01-01

    We developed a Schottky barrier diode (SBD) embedded AlGaN/GaN switching transistor to allow negative current flow during off-state condition. An SBD was embedded in a recessed normally-off AlGaN/GaN-on-Si metal-oxide-semiconductor heterostructure field-effect transistor (MOSHFET). The fabricated device exhibited normally-off characteristics with a gate threshold voltage of 2.8 V, a diode turn-on voltage of 1.2 V, and a breakdown voltage of 849 V for the anode-to-drain distance of 8 µm. An on-resistance of 2.66 mΩcm 2 was achieved at a gate voltage of 16 V in the forward transistor mode. Eliminating the need for an external diode, the SBD embedded switching transistor has advantages of significant reduction in parasitic inductance and chip area. (paper)

  12. Barrier height and interface effect of Pt-n-GaN and Pd-n-GaN Schottky diodes

    International Nuclear Information System (INIS)

    Khan, M.R.H.; Saha, S.L.; Sawaki, N.

    1999-01-01

    Schottky barriers on n-type GaN films by Pt and Pd are fabricated and characterized. A thin Pt or Pd layer is deposited on n-GaN layers to form Schottky contacts in a vacuum below 1x10/sup -6/ Torr. The area of all diodes is 3.46 x 10-4 cm/sup 2/. Several samples of Pt-n GaN and Pd-n GaN were studied. The ideality factor of Pt-n-GaN diode is 1.26 and of Pd-n-GaN is 1.17. The breakdown voltage of Pt-n-GaN and Pd-n-GaN diodes is 21 V and 26 V respectively. In both the cases the leakage current varies between 1x10-9 A and 5x 10-9 A. The Schottky barrier heights (phi/sub B/ ) of Pt-GaN diode is been determined to be 1.02 eV by current voltage (I-V) and 1.07 eV by capacitance (C-V) measurements Also, phi/sub B/ of Pd-GaN diode is determined to be 0.91 eV by I-V and 0.98 eV, by C-V measurements. The departure of the values of the ideality factor is considered to be due to spatial inhomogeneities at the meal semiconductor interface. The difference in the values of phi/sub B/ determined by I-V and C-V measurements is attributed to the deformation of the spatial barrier distribution. (author)

  13. Effect of aromatic SAMs molecules on graphene/silicon schottky diode performance

    OpenAIRE

    Yağmurcukardeş, Nesli; Aydın, Hasan; Can, Mustafa; Yanılmaz, Alper; Mermer, Ömer; Okur, Salih; Selamet, Yusuf

    2016-01-01

    Au/n-Si/Graphene/Au Schottky diodes were fabricated by transferring atmospheric pressure chemical vapor deposited (APCVD) graphene on silicon substrates. Graphene/n-Si interface properties were improved by using 5-[(3-methylphenyl)(phenyl) amino]isophthalic acid (MePIFA) and 5-(diphenyl)amino]isophthalic acid (DPIFA) aromatic self-assembled monolayer (SAM) molecules. The surface morphologies of modified and non-modified films were investigated by atomic force microscopy and scanning electron ...

  14. 63Ni schottky barrier nuclear battery of 4H-SiC

    International Nuclear Information System (INIS)

    Xiao-Ying Li; Yong Ren; Xue-Jiao Chen; Da-Yong Qiao; Wei-Zheng Yuan

    2011-01-01

    The design, fabrication, and testing of a 4H-SiC Schottky betavoltaic nuclear battery based on MEMS fabrication technology are presented in this paper. It uses a Schottky diode with an active area of 3.14 mm 2 to collect the charge from a 4 mCi/cm 2 63 Ni source. Some of the critical steps in process integration for fabricating silicon carbide-based Schottky diode were addressed. A prototype of this battery was fabricated and tested under the illumination of the 63 Ni source with an activity of 0.12 mCi. An open circuit voltage (V OC ) of 0.27 V and a short circuit current density (J SC ) of 25.57 nA/cm 2 are measured. The maximum output power density (P max ) of 4.08 nW/cm 2 and power conversion efficiency (η) of 1.01% is obtained. The performance of this battery is expected to be significantly improved by using larger activity and optimizing the design and processing technology of the battery. By achieving comparable performance with previously constructed p-n or p-i-n junction energy conversion structures, the Schottky barrier diode proves to be a feasible approach to achieve practical betavoltaics. (author)

  15. Gamma-Ray Irradiation Effects on the Characteristics of New Material P Type 6H-SiC Ni-Schottky Diodes (Application For Nuclear Fuel Facilities)

    International Nuclear Information System (INIS)

    U-Sudjadi; T-Ohshima, N. Iwamoto; S-Hishiki; N-Iwamoto, K. Kawano

    2007-01-01

    Effects of gamma-ray irradiation on electrical characteristics of new material p type 6H-SiC Ni-Schottky diodes were investigated. Ni Schottky diodes fabricated on p type 6H-SiC epi-layer were irradiated with gamma-rays at RT. The electrical characteristics of the diodes were evaluated before and after irradiation. The value of the on-resistance does not change up to 1 MGy, and the value increases with increasing absorbed dose above 1 MGy. For n factor, no significant increase is observed below 500 kGy, however, the value increases above 500 kGy. Schottky Barrier Height (SBH) decreases with increasing absorbed dose. Leakage current tends to increase due to irradiation. (author)

  16. Inhomogeneous barrier height effect on the current–voltage characteristics of an Au/n-InP Schottky diode

    International Nuclear Information System (INIS)

    Zeghdar, Kamal; Dehimi, Lakhdar; Saadoune, Achour; Sengouga, Nouredine

    2015-01-01

    We report the current–voltage (I–V) characteristics of the Schottky diode (Au/n-InP) as a function of temperature. The SILVACO-TCAD numerical simulator is used to calculate the I–V characteristic in the temperature range of 280–400 K. This is to study the effect of temperature on the I–V curves and assess the main parameters that characterize the Schottky diode such as the ideality factor, the height of the barrier and the series resistance. The I–V characteristics are analyzed on the basis of standard thermionic emission (TE) theory and the inhomogeneous barrier heights (BHs) assuming a Gaussian distribution. It is shown that the ideality factor decreases while the barrier height increases with increasing temperature, on the basis of TE theory. Furthermore, the homogeneous BH value of approximately 0.524 eV for the device has been obtained from the linear relationship between the temperature-dependent experimentally effective BHs and ideality factors. The modified Richardson plot, according to the inhomogeneity of the BHs, has a good linearity over the temperature range. The evaluated Richardson constant A * was 10.32 A·cm −2 ·K −2 , which is close to the theoretical value of 9.4 A·cm −2 ·K −2 for n-InP. The temperature dependence of the I–V characteristics of the Au/n-InP Schottky diode have been successfully explained on the basis of the thermionic emission (TE) mechanism with a Gaussian distribution of the Schottky barrier heights (SBHs). Simulated I–V characteristics are in good agreement with the measurements [Korucu D, Mammadov T S. J Optoelectronics Advanced Materials, 2012, 14: 41]. The barrier height obtained using Gaussian Schottky barrier distribution is 0.52 eV, which is about half the band gap of InP. (paper)

  17. Inhomogeneous barrier height effect on the current-voltage characteristics of an Au/n-InP Schottky diode

    Science.gov (United States)

    Zeghdar, Kamal; Dehimi, Lakhdar; Saadoune, Achour; Sengouga, Nouredine

    2015-12-01

    We report the current-voltage (I-V) characteristics of the Schottky diode (Au/n-InP) as a function of temperature. The SILVACO-TCAD numerical simulator is used to calculate the I-V characteristic in the temperature range of 280-400 K. This is to study the effect of temperature on the I-V curves and assess the main parameters that characterize the Schottky diode such as the ideality factor, the height of the barrier and the series resistance. The I-V characteristics are analyzed on the basis of standard thermionic emission (TE) theory and the inhomogeneous barrier heights (BHs) assuming a Gaussian distribution. It is shown that the ideality factor decreases while the barrier height increases with increasing temperature, on the basis of TE theory. Furthermore, the homogeneous BH value of approximately 0.524 eV for the device has been obtained from the linear relationship between the temperature-dependent experimentally effective BHs and ideality factors. The modified Richardson plot, according to the inhomogeneity of the BHs, has a good linearity over the temperature range. The evaluated Richardson constant A* was 10.32 A·cm-2·K-2, which is close to the theoretical value of 9.4 A·cm-2·K-2 for n-InP. The temperature dependence of the I-V characteristics of the Au/n-InP Schottky diode have been successfully explained on the basis of the thermionic emission (TE) mechanism with a Gaussian distribution of the Schottky barrier heights (SBHs). Simulated I-V characteristics are in good agreement with the measurements [Korucu D, Mammadov T S. J Optoelectronics Advanced Materials, 2012, 14: 41]. The barrier height obtained using Gaussian Schottky barrier distribution is 0.52 eV, which is about half the band gap of InP.

  18. Effect of thermal treatment on the characteristics of iridium Schottky barrier diodes on n-Ge (1 0 0)

    International Nuclear Information System (INIS)

    Chawanda, A.; Coelho, S.M.M.; Auret, F.D.; Mtangi, W.; Nyamhere, C.; Nel, J.M.; Diale, M.

    2012-01-01

    Highlights: ► Ir/n-Ge (1 0 0) Schottky diodes were characterized using I–V, C–V and SEM techniques under various annealing conditions. ► The variation of the electrical and structural properties can be due to effects phase transformation during annealing. ► Thermal stability of these diodes is maintained up to 500 °C anneal. ► SEM results depicts that the onset temperature for agglomeration in 20 nm Ir/n-Ge (1 0 0) system occurs between 600 and 700 °C. - Abstract: Iridium (Ir) Schottky barrier diodes were deposited on bulk grown (1 0 0) Sb-doped n-type germanium by using the electron beam deposition system. Electrical characterization of these contacts using current–voltage (I–V) and capacitance–voltage (C–V) measurements was performed under various annealing conditions. The variation of the electrical properties of these Schottky diodes can be attributed to combined effects of interfacial reaction and phase transformation during the annealing process. Thermal stability of the Ir/n-Ge (1 0 0) was observed up to annealing temperature of 500 °C. Furthermore, structural characterization of these samples was performed by using a scanning electron microscopy (SEM) at different annealing temperatures. Results have also revealed that the onset temperature for agglomeration in a 20 nm Ir/n-Ge (1 0 0) system occurs between 600 and 700 °C.

  19. Effects of the TiO2 high-k insulator material on the electrical characteristics of GaAs based Schottky barrier diodes

    Science.gov (United States)

    Zellag, S.; Dehimi, L.; Asar, T.; Saadoune, A.; Fritah, A.; Özçelik, S.

    2018-01-01

    The effects of the TiO2 high-k insulator material on Au/n-GaAs/Ti/Au Schottky barrier diodes have been studied by means of the numerical simulation and experimental results at room temperature. The Atlas-Silvaco-TCAD numerical simulator has been used to explain the behavior of different physical phenomena of Schottky diode. The experimental values of ideality factor, barrier height, and series resistance have been determined by using the various techniques such as Cheung's method, forward bias ln I- V and reverse capacitance-voltage behaviors. The experimental ideality factor and barrier height values have been found to be 4.14 and 0.585 eV for Au/n-GaAs/Ti/Au Schottky barrier diode and 4.00 and 0.548 eV for that structure with 16 nm thick TiO2 film and 3.92, 0.556 eV with 100 nm thick TiO2 film. The diodes show a non-ideal current-voltage behavior that of the ideality factor so far from unity. The extraction of N ss interface distribution profile as a function of E c -E ss is made using forward-bias I- V measurement by considering the bias dependence of ideality factor, the effective barrier height, and series resistance for Schottky barrier diodes. The N ss calculated values with consideration of the series resistance are lower than the calculated ones without series resistance. The current-voltage results of diodes reveal an abnormal increase in leakage current with an increase in thickness of high-k interfacial insulator layer. However, the simulation agrees in general with the experimental results.

  20. Thermal stability study of semimetal graphite n-InP and n-GaN Schottky diodes

    Czech Academy of Sciences Publication Activity Database

    Yatskiv, Roman; Grym, Jan

    2013-01-01

    Roč. 28, č. 5 (2013) ISSN 0268-1242 R&D Projects: GA MŠk LD12014 Institutional support: RVO:67985882 Keywords : Gallium nitride * Schottky barrier diodes * Graphite Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.206, year: 2013

  1. Gallium Nitride Schottky betavoltaic nuclear batteries

    International Nuclear Information System (INIS)

    Lu Min; Zhang Guoguang; Fu Kai; Yu Guohao; Su Dan; Hu Jifeng

    2011-01-01

    Research highlights: → Gallium Nitride nuclear batteries with Ni-63 are demonstrated for the first time. → Open circuit voltage of 0.1 V and conversion efficiency of 0.32% have been obtained. → The limited performance is due to thin effective energy deposition layer. → The output power is expected to greatly increase with growing thick GaN films. -- Abstract: Gallium Nitride (GaN) Schottky betavoltaic nuclear batteries (GNBB) are demonstrated in our work for the first time. GaN films are grown on sapphire substrates by metalorganic chemical vapor deposition (MOCVD), and then GaN Schottky diodes are fabricated by normal micro-fabrication process. Nickel with mass number of 63 ( 63 Ni), which emits β particles, is loaded on the GaN Schottky diodes to achieve GNBB. X-ray diffraction (XRD) and photoluminescence (PL) are carried out to investigate the crystal quality for the GaN films as grown. Current-voltage (I-V) characteristics shows that the GaN Schottky diodes are not jet broken down at -200 V due to consummate fabrication processes, and the open circuit voltage of the GNBB is 0.1 V and the short circuit current density is 1.2 nA cm -2 . The limited performance of the GNBB is due to thin effective energy deposition layer, which is only 206 nm to absorb very small partial energy of the β particles because of the relatively high dislocation density and carrier concentration. However, the conversion efficiency of 0.32% and charge collection efficiency (CCE) of 29% for the GNBB have been obtained. Therefore, the output power of the GNBB are expected to greatly increase with growing high quality thick GaN films.

  2. Graphene-Based Reversible Nano-Switch/Sensor Schottky Diode

    Science.gov (United States)

    Miranda, Felix A.; Meador, Michael A.; Theofylaktos, Onoufrios; Pinto, Nicholas J.; Mueller, Carl H.; Santos-Perez, Javier

    2010-01-01

    This proof-of-concept device consists of a thin film of graphene deposited on an electrodized doped silicon wafer. The graphene film acts as a conductive path between a gold electrode deposited on top of a silicon dioxide layer and the reversible side of the silicon wafer, so as to form a Schottky diode. By virtue of the two-dimensional nature of graphene, this device has extreme sensitivity to different gaseous species, thereby serving as a building block for a volatile species sensor, with the attribute of having reversibility properties. That is, the sensor cycles between active and passive sensing states in response to the presence or absence of the gaseous species.

  3. Research on the electrical characteristics of the Pt/CdS Schottky diode

    Science.gov (United States)

    Ding, Jia-xin; Zhang, Xiang-feng; Yao, Guansheng

    2013-08-01

    With the development of technology, the demand for semiconductor ultraviolet detector is increasing day by day. Compared with the traditional infrared detector in missile guidance, ultraviolet/infrared dual-color detection can significantly improve the anti-interference ability of the missile. According to the need of missile guidance and other areas of the application of ultraviolet detector, the paper introduces a manufacture of the CdS Schottky barrier ultraviolet detector. By using the radio frequency magnetron sputtering technology, a Pt thin film layer is sputtered on CdS basement to form a Schottky contact firstly. Then the indium ohmic contact electrode is fabricated by thermal evaporation method, and eventually a Pt/CdS/In Schottky diode is formed. The I-V characteristic of the device was tested at room temperature, its zero bias current and open circuit voltage is -0.578nA and 130mV, respectively. Test results show that the the Schottky contact has been formed between Pt and CdS. The device has good rectifying characteristics. According to the thermionic emission theory, the I-V curve fitting analysis of the device was studied under the condition of small voltage. The ideality factor and Schottky barrier height is 1.89 and 0.61eV, respectively. The normalized spectral responsivity at zero bias has been tested. The device has peak responsivity at 500nm, and it cutoff at 510nm.

  4. The electrical characterization and response to hydrogen of Schottky diodes with a resistive metal electrode-rectifying an oversight in Schottky diode investigation

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, P; Feng, L; Penate-Quesada, L [Centre for Nanostructured Media, School of Maths and Physics, Queen' s University of Belfast, Belfast BT7 1NN (United Kingdom); Hill, G [EPSRC National Centre for III-V Technologies, Mappin Street, University ofSheffield, Sheffield S1 3JD (United Kingdom); Mitra, J, E-mail: P.dawson@qub.ac.uk

    2011-03-30

    Schottky-barrier structures with a resistive metal electrode are examined using the 4-point probe method where the probes are connected to the metal electrode only. The observation of a significant decrease in resistance with increasing temperature (over a range of {approx}100 K) in the diode resistance-temperature (R{sub D}-T) characteristic is considered due to charge carrier confinement to the metal electrode at low temperature (high resistance), with the semiconductor progressively opening up as a parallel current carrying channel (low resistance) with increasing temperature due to increasing thermionic emission across the barrier. A simple model is constructed, based on thermionic emission at quasi-zero bias, that generates good fits to the experimental data. The negative differential resistance (NDR) region in the R{sub D}-T characteristic is a general effect and is demonstrated across a broad temperature range for a variety of Schottky structures grown on Si-, GaAs- and InP-substrates. In addition the NDR effect is harnessed in micro-scaled Pd/n-InP devices for the detection of low levels of hydrogen in an ambient atmosphere of nitrogen.

  5. An X-band Schottky diode mixer in SiGe technology with tunable Marchand balun

    DEFF Research Database (Denmark)

    Michaelsen, Rasmus Schandorph; Johansen, Tom Keinicke; Tamborg, Kjeld M.

    2017-01-01

    In this paper, we propose a double balanced mixer with a tunable Marchand balun. The circuit is designed in a SiGe BiCMOS process using Schottky diodes. The tunability of the Marchand balun is used to enhance critical parameters for double balanced mixers. The local oscillator-IF isolation can...

  6. 4H-SiC Schottky diode arrays for X-ray detection

    Energy Technology Data Exchange (ETDEWEB)

    Lioliou, G. [Semiconductor Materials and Devices Laboratory, School of Engineering and Informatics, University of Sussex, Falmer, Brighton BN1 9QT (United Kingdom); Chan, H.K. [School of Electrical and Electronic Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom); Gohil, T. [Semiconductor Materials and Devices Laboratory, School of Engineering and Informatics, University of Sussex, Falmer, Brighton BN1 9QT (United Kingdom); Vassilevski, K.V.; Wright, N.G.; Horsfall, A.B. [School of Electrical and Electronic Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom); Barnett, A.M. [Semiconductor Materials and Devices Laboratory, School of Engineering and Informatics, University of Sussex, Falmer, Brighton BN1 9QT (United Kingdom)

    2016-12-21

    Five SiC Schottky photodiodes for X-ray detection have been electrically characterized at room temperature. One representative diode was also electrically characterized over the temperature range 20°C to 140 °C. The performance at 30 °C of all five X-ray detectors, in both current mode and for photon counting X-ray spectroscopy was investigated. The diodes were fabricated in an array form such that they could be operated as either a 2×2 or 1×3 pixel array. Although the devices showed double barrier heights, high ideality factors and higher than expected leakage current at room temperature (12 nA/cm{sup 2} at an internal electric field of 105 kV/cm), they operated as spectroscopic photon counting soft X-ray detectors uncooled at 30 °C. The measured energy resolution (FWHM at 17.4 keV, Mo Kα) varied from 1.36 to 1.68 keV among different diodes.

  7. Pt silicide/poly-Si Schottky diodes as temperature sensors for bolometers

    Energy Technology Data Exchange (ETDEWEB)

    Yuryev, V. A., E-mail: vyuryev@kapella.gpi.ru; Chizh, K. V.; Chapnin, V. A.; Mironov, S. A.; Dubkov, V. P.; Uvarov, O. V.; Kalinushkin, V. P. [A. M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Street, Moscow 119991 (Russian Federation); Senkov, V. M. [P. N. Lebedev Physical Institute of the Russian Academy of Sciences, 53 Leninskiy Avenue, Moscow 119991 (Russian Federation); Nalivaiko, O. Y. [JSC “Integral” – “Integral” Holding Management Company, 121A, Kazintsa I. P. Street, Minsk 220108 (Belarus); Novikau, A. G.; Gaiduk, P. I. [Belarusian State University, 4 Nezavisimosti Avenue, 220030 Minsk (Belarus)

    2015-05-28

    Platinum silicide Schottky diodes formed on films of polycrystalline Si doped by phosphorus are demonstrated to be efficient and manufacturable CMOS-compatible temperature sensors for microbolometer detectors of radiation. Thin-film platinum silicide/poly-Si diodes have been produced by a CMOS-compatible process on artificial Si{sub 3}N{sub 4}/SiO{sub 2}/Si(001) substrates simulating the bolometer cells. Layer structure and phase composition of the original Pt/poly-Si films and the Pt silicide/poly-Si films synthesized by a low-temperature process have been studied by means of the scanning transmission electron microscopy; they have also been explored by means of the two-wavelength X-ray structural phase analysis and the X-ray photoelectron spectroscopy. Temperature coefficient of voltage for the forward current of a single diode is shown to reach the value of about −2%/ °C in the temperature interval from 25 to 50 °C.

  8. Effect of thermal treatment on the characteristics of iridium Schottky barrier diodes on n-Ge (1 0 0)

    Energy Technology Data Exchange (ETDEWEB)

    Chawanda, A., E-mail: albert.chawanda@up.ac.za [Department of Physics, University of Pretoria, 0002 (South Africa); Department of Physics, Midlands State University, Bag 9055, Gweru (Zimbabwe); Coelho, S.M.M.; Auret, F.D.; Mtangi, W. [Department of Physics, University of Pretoria, 0002 (South Africa); Nyamhere, C. [Department of Physics, Nelson Mandela Metropolitan University, Box 77000, Port Elizabeth 6031 (South Africa); Nel, J.M.; Diale, M. [Department of Physics, University of Pretoria, 0002 (South Africa)

    2012-02-05

    Highlights: Black-Right-Pointing-Pointer Ir/n-Ge (1 0 0) Schottky diodes were characterized using I-V, C-V and SEM techniques under various annealing conditions. Black-Right-Pointing-Pointer The variation of the electrical and structural properties can be due to effects phase transformation during annealing. Black-Right-Pointing-Pointer Thermal stability of these diodes is maintained up to 500 Degree-Sign C anneal. Black-Right-Pointing-Pointer SEM results depicts that the onset temperature for agglomeration in 20 nm Ir/n-Ge (1 0 0) system occurs between 600 and 700 Degree-Sign C. - Abstract: Iridium (Ir) Schottky barrier diodes were deposited on bulk grown (1 0 0) Sb-doped n-type germanium by using the electron beam deposition system. Electrical characterization of these contacts using current-voltage (I-V) and capacitance-voltage (C-V) measurements was performed under various annealing conditions. The variation of the electrical properties of these Schottky diodes can be attributed to combined effects of interfacial reaction and phase transformation during the annealing process. Thermal stability of the Ir/n-Ge (1 0 0) was observed up to annealing temperature of 500 Degree-Sign C. Furthermore, structural characterization of these samples was performed by using a scanning electron microscopy (SEM) at different annealing temperatures. Results have also revealed that the onset temperature for agglomeration in a 20 nm Ir/n-Ge (1 0 0) system occurs between 600 and 700 Degree-Sign C.

  9. The effects of temperature on Schottky diode barrier height and evidence of multiple barrier

    International Nuclear Information System (INIS)

    Rabah, K.V.O.

    1994-07-01

    Experimental study of Capacitance-Voltage-Temperature (C-V-T) plots, Current-Voltage-Temperature (I-V-T) characteristics have been undertaken in order to determine the height of the Schottky barrier. The results of the barrier height obtained by the above two methods were found to differ as well as vary with temperature change. In view of this discrepancy in barrier height values, two further experiments were performed: one on activation energy (I-T) plots and the other on pulsed (I-V-T) characteristics, and the results were found to show a similar trend. The Schottky diode studied was a 30CP040. (author). 23 refs, 9 figs, 3 tabs

  10. Mo1-xWxSe2-Based Schottky Junction Photovoltaic Cells.

    Science.gov (United States)

    Yi, Sum-Gyun; Kim, Sung Hyun; Park, Sungjin; Oh, Donggun; Choi, Hwan Young; Lee, Nara; Choi, Young Jai; Yoo, Kyung-Hwa

    2016-12-14

    We developed Schottky junction photovoltaic cells based on multilayer Mo 1-x W x Se 2 with x = 0, 0.5, and 1. To generate built-in potentials, Pd and Al were used as the source and drain electrodes in a lateral structure, and Pd and graphene were used as the bottom and top electrodes in a vertical structure. These devices exhibited gate-tunable diode-like current rectification and photovoltaic responses. Mo 0.5 W 0.5 Se 2 Schottky diodes with Pd and Al electrodes exhibited higher photovoltaic efficiency than MoSe 2 and WSe 2 devices with Pd and Al electrodes, likely because of the greater adjusted band alignment in Mo 0.5 W 0.5 Se 2 devices. Furthermore, we showed that Mo 0.5 W 0.5 Se 2 -based vertical Schottky diodes yield a power conversion efficiency of ∼16% under 532 nm light and ∼13% under a standard air mass 1.5 spectrum, demonstrating their remarkable potential for photovoltaic applications.

  11. Monolayer WS{sub 2} crossed with an electro-spun PEDOT-PSS nano-ribbon: Fabricating a Schottky diode

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, Deliris N.; Vedrine, Josee [Department of Physics and Electronics, University of Puerto Rico-Humacao, Humacao, PR 00791 (United States); Pinto, Nicholas J., E-mail: nicholas.pinto@upr.edu [Department of Physics and Electronics, University of Puerto Rico-Humacao, Humacao, PR 00791 (United States); Naylor, Carl H.; Charlie Johnson, A.T. [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 (United States)

    2016-12-15

    Highlights: • First report on a Schottky diode formed from monolayer WS{sub 2} and PEDOT-PSSA nano-ribbon. • Straightforward and unique fabrication technique. • Diode operation is stable in air. - Abstract: WS{sub 2} and PEDOT-PSS were individually characterized with the goal of analyzing charge transport across a hetero-junction formed by these two materials. In thermal equilibrium electron flow from the WS{sub 2} conduction band into the polymer LUMO level leads to band bending that creates a potential barrier preventing further current. The measured current-voltage (I{sub DS}-V{sub DS}) curve across the hetero-junction was non-linear and asymmetric similar to a diode, with a turn-on voltage of 1.4 V and a rectification ratio of 12. The device I–V data were analyzed using the standard thermionic emission model of a Schottky junction and yielded an ideality parameter of 1.9 and a barrier height of 0.58 eV. This facile technique is the first report on a nano-diode fabricated using WS{sub 2} and PEDOT-PSS, opening up the possibility of extending this work to include other layered transition metal dichalcogenides and conducting polymers.

  12. Transparent indium-tin oxide/indium-gallium-zinc oxide Schottky diodes formed by gradient oxygen doping

    Science.gov (United States)

    Ho, Szuheng; Yu, Hyeonggeun; So, Franky

    2017-11-01

    Amorphous InGaZnO (a-IGZO) is promising for transparent electronics due to its high carrier mobility and optical transparency. However, most metal/a-IGZO junctions are ohmic due to the Fermi-level pinning at the interface, restricting their device applications. Here, we report that indium-tin oxide/a-IGZO Schottky diodes can be formed by gradient oxygen doping in the a-IGZO layer that would otherwise form an ohmic contact. Making use of back-to-back a-IGZO Schottky junctions, a transparent IGZO permeable metal-base transistor is also demonstrated with a high common-base gain.

  13. Measuring size dependent electrical properties from nanoneedle structures: Pt/ZnO Schottky diodes

    International Nuclear Information System (INIS)

    Mao, Shimin; Anderson, Daniel D.; Shang, Tao; Park, Byoungnam; Dillon, Shen J.

    2014-01-01

    This work reports the fabrication and testing of nanoneedle devices with well-defined interfaces that are amenable to a variety of structural and electrical characterization, including transmission electron microscopy. Single Pt/ZnO nanoneedle Schottky diodes were fabricated by a top down method using a combination of electro-polishing, sputtering, and focused ion beam milling. The resulting structures contained nanoscale planar heterojunctions with low ideality factors, the dimensions of which were tuned to study size-dependent electrical properties. The diameter dependence of the Pt/ZnO diode barrier height is explained by a joule heating effect and/or electronic inhomogeneity in the Pt/ZnO contact area

  14. Study of transport properties of copper/zinc-oxide-nanorods-based Schottky diode fabricated on textile fabric

    International Nuclear Information System (INIS)

    Khan, Azam; Hussain, Mushtaque; Abbasi, Mazhar Ali; Ibupoto, Zafar Hussain; Nur, Omer; Willander, Magnus

    2013-01-01

    In this work, a copper/zinc-oxide (ZnO)-nanorods-based Schottky diode was fabricated on the textile fabric substrate. ZnO nanorods were grown on a silver-coated textile fabric substrate by using the hydrothermal route. Scanning electron microscopy and x-ray diffraction techniques were used for the structural study. The electrical characterization of copper/ZnO-nanorods-based Schottky diodes was investigated by using a semiconductor parameter analyzer and an impedance spectrometer. The current density–voltage (J–V) and capacitance–voltage (C–V) measurements were used to estimate the electrical parameters. The threshold voltage (V th ), ideality factor (η), barrier height (ϕ b ), reverse saturation current density (J s ), carrier concentration (N D ) and built-in potential (V bi ) were determined by using experimental data and (simulated) curve fitting. This study describes the possible fabrication of electronic and optoelectronic devices on textile fabric substrate with an acceptable performance. (paper)

  15. Vertically grown Ge nanowire Schottky diodes on Si and Ge substrates

    Science.gov (United States)

    Chandra, Nishant; Tracy, Clarence J.; Cho, Jeong-Hyun; Picraux, S. T.; Hathwar, Raghuraj; Goodnick, Stephen M.

    2015-07-01

    The processing and performance of Schottky diodes formed from arrays of vertical Ge nanowires (NWs) grown on Ge and Si substrates are reported. The goal of this work is to investigate CMOS compatible processes for integrating NWs as components of vertically scaled integrated circuits, and elucidate transport in vertical Schottky NWs. Vertical phosphorus (P) doped Ge NWs were grown using vapor-liquid-solid epitaxy, and nickel (Ni)-Ge Schottky contacts were made to the tops of the NWs. Current-voltage (I-V) characteristics were measured for variable ranges of NW diameters and numbers of nanowires in the arrays, and the I-V characteristics were fit using modified thermionic emission theory to extract the barrier height and ideality factor. As grown NWs did not show rectifying behavior due to the presence of heavy P side-wall doping during growth, resulting in a tunnel contact. After sidewall etching using a dilute peroxide solution, rectifying behavior was obtained. Schottky barrier heights of 0.3-0.4 V and ideality factors close to 2 were extracted using thermionic emission theory, although the model does not give an accurate fit across the whole bias range. Attempts to account for enhanced side-wall conduction due to non-uniform P doping profile during growth through a simple shunt resistance improve the fit, but are still insufficient to provide a good fit. Full three-dimensional numerical modeling using Silvaco Atlas indicates that at least part of this effect is due to the presence of fixed charge and acceptor like traps on the NW surface, which leads to effectively high ideality factors.

  16. Characterization of a SiC MIS Schottky diode as RBS particle detector

    Science.gov (United States)

    Kaufmann, I. R.; Pick, A. C.; Pereira, M. B.; Boudinov, H. I.

    2018-02-01

    A 4H-SiC Schottky diode was investigated as a particle detector for Rutherford Backscattering Spectroscopy (RBS) experiment. The device was fabricated on a commercial 4H-SiC epitaxial n-type layer grown onto a 4H-SiC n+ type substrate wafer doped with nitrogen. Hafnium oxide with thickness of 1 nm was deposited by Atomic Layer Deposition and 10 nm of Ni were deposited by sputtering to form the Ni/HfO2/4H-SiC MIS Schottky structure. Current-Voltage curves with variable temperature were measured to extract the real Schottky Barrier Height (0.32 V) and ideality factor values (1.15). Reverse current and Capacitance-Voltage measurements were performed on the 4H-SiC detector and compared to a commercial Si barrier detector acquired from ORTEC. RBS data for four alpha energies (1, 1.5, 2 and 2.5 MeV) were collected from an Au/Si sample using the fabricated SiC and the commercial Si detectors simultaneously. The energy resolution for the fabricated detector was estimated to be between 75 and 80 keV.

  17. Flexible indium-gallium-zinc-oxide Schottky diode operating beyond 2.45 GHz.

    Science.gov (United States)

    Zhang, Jiawei; Li, Yunpeng; Zhang, Binglei; Wang, Hanbin; Xin, Qian; Song, Aimin

    2015-07-03

    Mechanically flexible mobile phones have been long anticipated due to the rapid development of thin-film electronics in the last couple of decades. However, to date, no such phone has been developed, largely due to a lack of flexible electronic components that are fast enough for the required wireless communications, in particular the speed-demanding front-end rectifiers. Here Schottky diodes based on amorphous indium-gallium-zinc-oxide (IGZO) are fabricated on flexible plastic substrates. Using suitable radio-frequency mesa structures, a range of IGZO thicknesses and diode sizes have been studied. The results have revealed an unexpected dependence of the diode speed on the IGZO thickness. The findings enable the best optimized flexible diodes to reach 6.3 GHz at zero bias, which is beyond the critical benchmark speed of 2.45 GHz to satisfy the principal frequency bands of smart phones such as those for cellular communication, Bluetooth, Wi-Fi and global satellite positioning.

  18. Thermal activation of current in an inhomogeneous Schottky diode with a Gaussian distribution of barrier height

    International Nuclear Information System (INIS)

    Guo-Ping, Ru; Rong, Yu; Yu-Long, Jiang; Gang, Ruan

    2010-01-01

    This paper investigates the thermal activation behaviour of current in an inhomogeneous Schottky diode with a Gaussian distribution of barrier height by numerical simulation. The analytical Gaussian distribution model predicted that the I-V-T curves may intersect with the possibility of the negative thermal activation of current, but may be contradictory to the thermionic emission mechanism in a Schottky diode. It shows that the cause of the unphysical phenomenon is related to the incorrect calculation of current across very low barriers. It proposes that junction voltage V j , excluding the voltage drop across series resistance from the external bias, is a crucial parameter for correct calculation of the current across very low barriers. For correctly employing the thermionic emission model, V j needs to be smaller than the barrier height ø. With proper scheme of series resistance connection where the condition of V j > ø is guaranteed, I-V-T curves of an inhomogeneous Schottky diode with a Gaussian distribution of barrier height have been simulated, which demonstrate normal thermal activation. Although the calculated results exclude the intersecting possibility of I-V-T curves with an assumption of temperature-independent series resistance, it shows that the intersecting is possible when the series resistance has a positive temperature coefficient. Finally, the comparison of our numerical and analytical results indicates that the analytical Gaussian distribution model is valid and accurate in analysing I-V-T curves only for small barrier height inhomogeneity. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  19. The effects of frequency and {gamma}-irradiation on the dielectric properties of MIS type Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Tataroglu, A. [Department of Physics, Faculty of Arts and Sciences, Teknikokullar, Gazi University, 06500 Ankara (Turkey)]. E-mail: ademt@gazi.edu.tr; Altindal, S. [Department of Physics, Faculty of Arts and Sciences, Teknikokullar, Gazi University, 06500 Ankara (Turkey)

    2007-01-15

    The effects of {gamma}-irradiation on the dielectric properties of Al/SiO{sub 2}/p-Si (MIS) Schottky diodes were investigated using capacitance-voltage (C-V) and conductance-voltage (G/{omega}-V) characteristics. Before irradiation, the C-V and G/{omega}-V characteristics were measured by applying a small ac signal of 50 mV amplitude and 100 Hz-1 MHz frequencies, while the dc voltage was swept from positive bias to negative bias for MIS Schottky diodes. Afterwards, the C-V and G/{omega}-V measurements carried out at various radiation doses and 1 MHz. The MIS Schottky diodes were exposed to a {sup 60}Co {gamma}-radiation source at a dose of 2.12 kGy/h and the total dose range was from zero to 450 kGy. The dielectric constant ({epsilon}'), dielectric loss ({epsilon}''), loss tangent (tan {delta}) and ac electrical conductivity ({sigma} {sub ac}) were calculated from the C-V and G/{omega}-V measurements and plotted as a function of frequency and radiation dose. Experimental results show that the {epsilon}' and {epsilon}'' were found to decrease with increasing frequency while increase with increasing radiation dose. In addition, tan {delta} versus log f show a peak, which was not present in the tan {delta} versus radiation dose. Also, the {sigma} {sub ac} is found to increase with increasing radiation dose. These changes were attributed to mobile charge carriers or dipolar molecules generated by structural changes in the irradiated samples.

  20. Fabrication and characterization of Pd/Cu doped ZnO/Si and Ni/Cu doped ZnO/Si Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Lucky; Singh, Brijesh Kumar; Tripathi, Shweta [Department of Electronics & Communication Engineering, Motilal Nehru National Institute of Technology, Allahabad 211004 (India); Chakrabarti, P., E-mail: pchakrabarti.ece@iitbhu.ac.in [Department of Electronics & Communication Engineering, Motilal Nehru National Institute of Technology, Allahabad 211004 (India); Department of Electronics Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India)

    2016-08-01

    In this paper, fabrication and characterization of copper doped ZnO (Cu doped ZnO) based Schottky devices have been reported. Cu doped ZnO thin films have been deposited on p-Si (100) samples by the sol-gel spin coating method. X-Ray diffraction (XRD) and atomic force microscopy (AFM) studies have been done in order to evaluate the structural and morphological properties of the film. The optical properties of the film have been determined by using variable angle ellipsometry. Further, Seebeck measurement of the deposited Cu doped ZnO film leads to positive Seebeck coefficient confirming the p-type conductivity of the sample. The resistivity and acceptor concentration of the film has also been evaluated using four probe measurement system. Pd and Ni metals have been deposited on separate Cu doped ZnO thin film samples using low cost thermal evaporation method to form Schottky contacts. The electrical characterization of the Schottky diode has been performed by semiconductor device analyzer (SDA). Electrical parameters such as barrier height, ideality factor, reverse saturation current and rectification ratio have also been determined for the as-prepared Schottky diode using conventional thermionic emission model and Cheung's method. - Highlights: • Fabrication of sol-gel derived Cu doped ZnO (p-type) Schottky contact proposed. • The p-type Conductivity of the sample confirmed by Seebeck Measurement. • Pd and Ni deposited on Cu doped ZnO film to form Schottky contacts. • Cu doped ZnO expected to emerge as a potential material for thin film solar cells.

  1. Fabrication and characterization of Pd/Cu doped ZnO/Si and Ni/Cu doped ZnO/Si Schottky diodes

    International Nuclear Information System (INIS)

    Agarwal, Lucky; Singh, Brijesh Kumar; Tripathi, Shweta; Chakrabarti, P.

    2016-01-01

    In this paper, fabrication and characterization of copper doped ZnO (Cu doped ZnO) based Schottky devices have been reported. Cu doped ZnO thin films have been deposited on p-Si (100) samples by the sol-gel spin coating method. X-Ray diffraction (XRD) and atomic force microscopy (AFM) studies have been done in order to evaluate the structural and morphological properties of the film. The optical properties of the film have been determined by using variable angle ellipsometry. Further, Seebeck measurement of the deposited Cu doped ZnO film leads to positive Seebeck coefficient confirming the p-type conductivity of the sample. The resistivity and acceptor concentration of the film has also been evaluated using four probe measurement system. Pd and Ni metals have been deposited on separate Cu doped ZnO thin film samples using low cost thermal evaporation method to form Schottky contacts. The electrical characterization of the Schottky diode has been performed by semiconductor device analyzer (SDA). Electrical parameters such as barrier height, ideality factor, reverse saturation current and rectification ratio have also been determined for the as-prepared Schottky diode using conventional thermionic emission model and Cheung's method. - Highlights: • Fabrication of sol-gel derived Cu doped ZnO (p-type) Schottky contact proposed. • The p-type Conductivity of the sample confirmed by Seebeck Measurement. • Pd and Ni deposited on Cu doped ZnO film to form Schottky contacts. • Cu doped ZnO expected to emerge as a potential material for thin film solar cells.

  2. Planar InP-based Schottky barrier diodes for terahertz applications

    International Nuclear Information System (INIS)

    Zhou Jingtao; Yang Chengyue; Ge Ji; Jin Zhi

    2013-01-01

    Based on characteristics such as low barrier and high electron mobility of lattice matched In 0.53 Ga 0.47 As layer, InP-based Schottky barrier diodes (SBDs) exhibit the superiorities in achieving a lower turn-on voltage and series resistance in comparison with GaAs ones. Planar InP-based SBDs have been developed in this paper. Measurements show that a low forward turn-on voltage of less than 0.2 V and a cutoff frequency of up to 3.4 THz have been achieved. The key factors of the diode such as series resistance and the zero-biased junction capacitance are measured to be 3.32 Ω; and 9.1 fF, respectively. They are highly consistent with the calculated values. The performances of the InP-based SBDs in this work, such as low noise and low loss, are promising for applications in the terahertz mixer, multiplier and detector circuits. (semiconductor devices)

  3. Effect of hydrogen on the diode properties of reactively sputtered amorphous silicon Schottky barrier structures

    International Nuclear Information System (INIS)

    Morel, D.L.; Moustakas, T.D.

    1981-01-01

    The diode properties of reactively sputtered hydrogenated amorphous silicon Schottky barrier structures (a-SiH/sub x/ /Pt) have been investigated. We find a systematic relation between the changes in the open circuit voltage, the barrier height, and the diode quality factor. These results are accounted for by assuming that hydrogen incorporation into the amorphous silicon network removes states from the top of the valence band and sharpens the valence-band tail. Interfacial oxide layers play a significant role in the low hydrogen content, and low band-gap regime

  4. Inductively coupled plasma-induced defects in n-type GaN studied from Schottky diode characteristics

    International Nuclear Information System (INIS)

    Nakamura, W.; Tokuda, Y.; Ueda, H.; Kachi, T.

    2006-01-01

    Inductively coupled plasma-(ICP-)induced defects in n-type GaN have been studied from current-voltage (I-V) characteristics and deep-level transient spectroscopy (DLTS) for Schottky diodes fabricated on etched surfaces. The samples after ICP etching show the ohmic I-V characteristics. Schottky characteristics are obtained after annealing at 600 and 800 deg. C in N 2 , but are not restored to that of the control samples. DLTS shows that the effect of ICP etching is small on the region beyond 80 nm from the surface. These results suggest that there remain ICP-induced damage in the near-surface region after thermal annealing

  5. Real-time 2.5 Gbit/s ultra-wideband transmission using a Schottky diode-based envelope detector

    DEFF Research Database (Denmark)

    Rommel, Simon; Cimoli, Bruno; Valdecasa, Guillermo Silva

    2017-01-01

    An experimental demonstration of 2.5 Gbit/s real-time ultra-wideband transmission is presented, using a Schottky diode-based envelope detector fabricated ad-hoc using microstrip technology on a Rogers6002 substrate and surface-mount components. Real-time transmission with a BER below FEC threshold...

  6. The Influence of High-Energy Electrons Irradiation on Surface of n-GaP and on Au/n-GaP/Al Schottky Barrier Diode

    Science.gov (United States)

    Demir, K. Çinar; Kurudirek, S. V.; Oz, S.; Biber, M.; Aydoğan, Ş.; Şahin, Y.; Coşkun, C.

    We fabricated 25 Au/n-GaP/Al Schottky devices and investigated the influence of high electron irradiation, which has 12MeV on the devices, at room temperature. The X-ray diffraction patterns, scanning electron microscopic images and Raman spectra of a gallium phosphide (GaP) semiconductor before and after electron irradiation have been analyzed. Furthermore, some electrical measurements of the devices were carried out through the current-voltage (I-V) and capacitance-voltage (C-V) measurements. From the I-V characteristics, experimental ideality factor n and barrier height Φ values of these Schottky diodes have been determined before and after irradiation, respectively. The results have also been analyzed statically, and a gauss distribution has been obtained. The built-in potential Vbi, barrier height Φ, Fermi level EF and donor concentration Nd values have been determined from the reverse bias C-V and C-2-V curves of Au/n-GaP/Al Schottky barrier diodes at 100kHz before and after 12MeV electron irradiation. Furthermore, we obtained the series resistance values of Au/n-GaP/Al Schottky barrier diodes with the help of different methods. Experimental results confirmed that the electrical characterization of the device changed with the electron irradiation.

  7. Enhanced mixing characteristics of GaAs/3,4,9,10-perylenetetracarboxylic dianhydride Schottky diodes

    International Nuclear Information System (INIS)

    Ginev, G; Riedl, T; Parashkov, R; Johannes, H-H; Kowalsky, W

    2003-01-01

    The influences on the mixing properties of GaAs Schottky diodes containing an organic 3,4,9,10-perylenetetracarboxylic dianhydride layer were investigated. The frequency conversion ability of the devices was determined by considering the I-V characteristics and high frequency reflection parameters by using a mixing technique operated in the microwave range. The results show that an organic layer with 20 nm thickness enhances the diode conversion gain for mixing applications by 3 dB and lowers the device operating bias voltage by 0.1 V. This process is related to the specific properties of the organic semiconductor and resulting organic-inorganic interface

  8. A gas sensor comprising two back-to-back connected Au/TiO2 Schottky diodes

    Science.gov (United States)

    Dehghani, Niloofar; Yousefiazari, Ehsan

    2018-04-01

    A miniature, but sturdy, gas sensor capable of operation at temperatures as high as 600 °C is presented. The device comprises two back-to-back connected gold/rutile Schottky diodes, which are fabricated on the opposite bases of a self-standing 100 μm-thick pellet of polycrystalline rutile. The rutile layer is formed by the direct oxidation of titanium metal in air at 900 °C, and the Au/rutile diodes are formed by the diffusion bonding of the gold wire segments to the pellet bases. The current versus voltage diagrams and gas sensing properties of the Au/rutile/Au structured device are recorded at different voltage sweeping frequencies and operating temperatures. The interesting features of these diagrams are explained based on an equivalent circuit of the device, which considers Schottky-type contacts at both bases and memristive conduction for the rutile in between. The device current is controlled by the leakage current of the reverse biased diode, which depends on the concentration of the oxygen vacancy at the Au/rutile interface and, hence, on the composition of the surrounding atmosphere. The device current increases 15 times in response to the presence of 1000 ppm of ethanol vapor in air. Consisting only of bulk gold and bulk rutile, the device is resilient to harsh environments and elevated temperatures; a suitable gas sensor for in-exhaust installation.

  9. Frequency and voltage dependent electrical responses of poly(triarylamine) thin film-based organic Schottky diode

    Science.gov (United States)

    Anuar Mohamad, Khairul; Tak Hoh, Hang; Alias, Afishah; Ghosh, Bablu Kumar; Fukuda, Hisashi

    2017-11-01

    A metal-organic-metal (MOM) type Schottky diode based on poly (triarylamine) (PTAA) thin films has been fabricated by using the spin coating method. Investigation of the frequency dependent conductance-voltage (G-V-f) and capacitance-voltage (C-V-f) characteristics of the ITO/PTAA/Al MOM type diode were carried out in the frequency range from 12 Hz to 100 kHz using an LCR meter at room temperature. The frequency and bias voltage dependent electrical response were determined by admittance-based measured method in terms of an equivalent circuit model of the parallel combination of resistance and capacitance (RC circuit). Investigation revealed that the conductance is frequency and a bias voltage dependent in which conductance continuous increase as the increasing frequency, respectively. Meanwhile, the capacitance is dependent on frequency up to a certain value of frequency (100 Hz) but decreases at high frequency (1 - 10 kHz). The interface state density in the Schottky diode was determined from G-V and C-V characteristics. The interface state density has values almost constant of 2.8 x 1012 eV-1cm-2 with slightly decrease by increasing frequencies. Consequently, both series resistance and interface trap density were found to decrease with increasing frequency. The frequency dependence of the electrical responses is attributed the distribution density of interface states that could follow the alternating current (AC) signal.

  10. High-Performance Schottky Diode Gas Sensor Based on the Heterojunction of Three-Dimensional Nanohybrids of Reduced Graphene Oxide-Vertical ZnO Nanorods on an AlGaN/GaN Layer.

    Science.gov (United States)

    Minh Triet, Nguyen; Thai Duy, Le; Hwang, Byeong-Ung; Hanif, Adeela; Siddiqui, Saqib; Park, Kyung-Ho; Cho, Chu-Young; Lee, Nae-Eung

    2017-09-13

    A Schottky diode based on a heterojunction of three-dimensional (3D) nanohybrid materials, formed by hybridizing reduced graphene oxide (RGO) with epitaxial vertical zinc oxide nanorods (ZnO NRs) and Al 0.27 GaN 0.73 (∼25 nm)/GaN is presented as a new class of high-performance chemical sensors. The RGO nanosheet layer coated on the ZnO NRs enables the formation of a direct Schottky contact with the AlGaN layer. The sensing results of the Schottky diode with respect to NO 2 , SO 2 , and HCHO gases exhibit high sensitivity (0.88-1.88 ppm -1 ), fast response (∼2 min), and good reproducibility down to 120 ppb concentration levels at room temperature. The sensing mechanism of the Schottky diode can be explained by the effective modulation of the reverse saturation current due to the change in thermionic emission carrier transport caused by ultrasensitive changes in the Schottky barrier of a van der Waals heterostructure between RGO and AlGaN layers upon interaction with gas molecules. Advances in the design of a Schottky diode gas sensor based on the heterojunction of high-mobility two-dimensional electron gas channel and highly responsive 3D-engineered sensing nanomaterials have potential not only for the enhancement of sensitivity and selectivity but also for improving operation capability at room temperature.

  11. Calculation of the intrinsic spectral density of current fluctuations in nanometric Schottky-barrier diodes at terahertz frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Mahi, F.Z. [Science and Technology Institute, University of Bechar, 08000 Bechar (Algeria)], E-mail: fati_zo_mahi2002@yahoo.fr; Helmaoui, A. [Science and Technology Institute, University of Bechar, 08000 Bechar (Algeria); Varani, L. [Institut d' Electronique du Sud (CNRS UMR 5214), Universite Montpellier II, 34095 Montpellier (France); Shiktorov, P.; Starikov, E.; Gruzhinskis, V. [Semiconductor Physics Institute, 01108 Vilnius (Lithuania)

    2008-10-01

    An analytical model for the noise spectrum of nanometric Schottky-barrier diodes (SBD) is developed. The calculated frequency dependence of the spectral density of current fluctuations exhibits resonances in the terahertz domain which are discussed and analyzed as functions of the length of the diode, free carrier concentration, length of the depletion region and applied voltage. A good agreement obtained with direct Monte Carlo simulations of GaAs SBDs operating from barrier-limited to flat-band conditions fully validates the proposed approach.

  12. Effect of cooling on the efficiency of Schottky varactor frequency multipliers at millimeter waves

    Science.gov (United States)

    Louhi, Jyrki; Raiesanen, Antti; Erickson, Neal

    1992-01-01

    The efficiency of the Schottky diode multiplier can be increased by cooling the diode to 77 K. The main reason for better efficiency is the increased mobility of the free carriers. Because of that the series resistance decreases and a few dB higher efficiency can be expected at low input power levels. At high output frequencies and at high power levels, the current saturation decreases the efficiency of the multiplication. When the diode is cooled the maximum current of the diode increases and much more output power can be expected. There are also slight changes in the I-V characteristic and in the diode junction capacitance, but they have a negligible effect on the efficiency of the multiplier.

  13. Monolayer graphene/SiC Schottky barrier diodes with improved barrier height uniformity as a sensing platform for the detection of heavy metals.

    Science.gov (United States)

    Shtepliuk, Ivan; Eriksson, Jens; Khranovskyy, Volodymyr; Iakimov, Tihomir; Lloyd Spetz, Anita; Yakimova, Rositsa

    2016-01-01

    A vertical diode structure comprising homogeneous monolayer epitaxial graphene on silicon carbide is fabricated by thermal decomposition of a Si-face 4H-SiC wafer in argon atmosphere. Current-voltage characteristics of the graphene/SiC Schottky junction were analyzed by applying the thermionic-emission theory. Extracted values of the Schottky barrier height and the ideality factor are found to be 0.4879 ± 0.013 eV and 1.01803 ± 0.0049, respectively. Deviations of these parameters from average values are smaller than those of previously observed literature data, thereby implying uniformity of the Schottky barrier height over the whole diode area, a stable rectifying behaviour and a good quality of ohmic palladium-graphene contacts. Keeping in mind the strong sensitivity of graphene to analytes we propose the possibility to use the graphene/SiC Schottky diode as a sensing platform for the recognition of toxic heavy metals. Using density functional theory (DFT) calculations we gain insight into the nature of the interaction of cadmium, mercury and lead with graphene as well as estimate the work function and the Schottky barrier height of the graphene/SiC structure before and after applying heavy metals to the sensing material. A shift of the I - V characteristics of the graphene/SiC-based sensor has been proposed as an indicator of presence of the heavy metals. Since the calculations suggested the strongest charge transfer between Pb and graphene, the proposed sensing platform was characterized by good selectivity towards lead atoms and slight interferences from cadmium and mercury. The dependence of the sensitivity parameters on the concentration of Cd, Hg and Pb is studied and discussed.

  14. Monolayer graphene/SiC Schottky barrier diodes with improved barrier height uniformity as a sensing platform for the detection of heavy metals

    Directory of Open Access Journals (Sweden)

    Ivan Shtepliuk

    2016-11-01

    Full Text Available A vertical diode structure comprising homogeneous monolayer epitaxial graphene on silicon carbide is fabricated by thermal decomposition of a Si-face 4H-SiC wafer in argon atmosphere. Current–voltage characteristics of the graphene/SiC Schottky junction were analyzed by applying the thermionic-emission theory. Extracted values of the Schottky barrier height and the ideality factor are found to be 0.4879 ± 0.013 eV and 1.01803 ± 0.0049, respectively. Deviations of these parameters from average values are smaller than those of previously observed literature data, thereby implying uniformity of the Schottky barrier height over the whole diode area, a stable rectifying behaviour and a good quality of ohmic palladium–graphene contacts. Keeping in mind the strong sensitivity of graphene to analytes we propose the possibility to use the graphene/SiC Schottky diode as a sensing platform for the recognition of toxic heavy metals. Using density functional theory (DFT calculations we gain insight into the nature of the interaction of cadmium, mercury and lead with graphene as well as estimate the work function and the Schottky barrier height of the graphene/SiC structure before and after applying heavy metals to the sensing material. A shift of the I–V characteristics of the graphene/SiC-based sensor has been proposed as an indicator of presence of the heavy metals. Since the calculations suggested the strongest charge transfer between Pb and graphene, the proposed sensing platform was characterized by good selectivity towards lead atoms and slight interferences from cadmium and mercury. The dependence of the sensitivity parameters on the concentration of Cd, Hg and Pb is studied and discussed.

  15. Electrical characterization of MEH-PPV based Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Nimith, K. M., E-mail: nimithkm@gmail.com; Satyanarayan, M. N., E-mail: satya-mn@nitk.edu.in; Umesh, G., E-mail: umesh52@gmail.com [Optoelectronics Laboratory (OEL), Department of Physics, National Institute of Technology Karnataka (NITK),Surathkal, PO Srinivasnagar, Mangalore, DK-575025 (India)

    2016-05-06

    MEH-PPV Schottky diodes with and without Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) have been fabricated and characterized. The highlight of this work is that all the fabrication and characterization steps had been carried out in the ambient conditions and the device fabrication was done without any UV-Ozone surface treatment of ITO anodes. Current Density-Voltage characteristics shows that the addition of hole injection layer (HIL) enhances the charge injection into the polymer layer by reducing the energy barrier across the Indium Tin Oxide (ITO)-Organic interface. The rectification ratio increases to 2.21 from 0.76 at 5V for multilayer devices compared to single layer devices. Further we investigated the effect of an alkali metal fluoride (LiF) by inserting a thin layer in between the organic layer and Aluminum (Al) cathode. The results of these investigations will be discussed in detail.

  16. 60Co gamma irradiation effects on the the capacitance and conductance characteristics of Au/PMI/n-Si Schottky diodes

    Science.gov (United States)

    Tuğluoğlu, N.; Karadeniz, S.; Yüksel, Ö. F.; Şafak, H.; Kuş, M.

    2015-08-01

    In this work, the perylene-monoimide/n-Si (100) Schottky structures have been fabricated by spin coating process. We have studied the capacitance-voltage ( C- V) and conductance-voltage ( G- V) characteristics of the Au/perylene-monoimide/n-Si diodes at 500 kHz before and after 60Co γ-ray irradiation. The effects of 60Co γ -ray irradiation on the electrical characteristics of a perylene-monoimide/n-Si Schottky diode have been investigated. A decrease both in the capacitance and conductance has been observed after 60Co γ -ray irradiation. This has been attributed to a decrease in the net ionized dopant concentration that occurred as a result of 60Co γ-ray irradiation. Some contact parameters such as barrier height (Φ B ) interface state density ( N ss ) and series resistance ( R s ) have been calculated from the C- V and G- V characteristics of the diode before and after irradiation. It has been observed that the Φ B and N ss values are decreased after the applied radiation, while the R s value is increased.

  17. Fabrication of 4H-SiC Schottky barrier diodes with high breakdown voltages

    CERN Document Server

    Kum, B H; Shin, M W; Park, J D

    1999-01-01

    This paper discusses the fabrication and the breakdown characteristics of 4H-SiC Schottky barrier diodes (SBDs). Optimal processing conditions for the ohmic contacts were extracted using the transmission-line method (TLM) and were applied to the device fabrication. The Ti/4H-SiC SBDs with Si sub x B sub y passivation showed a maximum reverse breakdown voltage of 268 V with a forward current density as high as 70 mA/cm sup 2 at a forward voltage of 2 V. The breakdown of the Pt. 4H-SiC SBDs without any passivation occurred at near 110 V. It is concluded that the breakdown enhancement in the Ti/4H-SiC SBDs can be attributed to the passivation; otherwise, excess surface charge near the edge of the Schottky contact would lead to electric fields of sufficient magnitude to cause field emission.

  18. Atomic composition of WC/ and Zr/O-terminated diamond Schottky interfaces close to ideality

    Energy Technology Data Exchange (ETDEWEB)

    Piñero, J.C., E-mail: josecarlos.pinero@uca.es [Dpto. Ciencias de los Materiales, Universidad de Cádiz, Puerto Real, Cádiz,11510 (Spain); Araújo, D. [Dpto. Ciencias de los Materiales, Universidad de Cádiz, Puerto Real, Cádiz,11510 (Spain); Fiori, A. [National Institute for Materials Science, Tsukuba, Ibaraki (Japan); Traoré, A. [Institut Néel, CNRS-UJF, av. des Martyrs, Grenoble,38042 France (France); Villar, M.P. [Dpto. Ciencias de los Materiales, Universidad de Cádiz, Puerto Real, Cádiz,11510 (Spain); Eon, D.; Muret, P.; Pernot, J. [Institut Néel, CNRS-UJF, av. des Martyrs, Grenoble,38042 France (France); Teraji, T. [National Institute for Materials Science, Tsukuba, Ibaraki (Japan)

    2017-02-15

    Highlights: • Metal/O-terminated diamond interfaces are analyzed by a variety of TEM techniques. • Thermal treatment is shown to modify structural and chemical interface properties. • Electrical behavior vs annealing is shown to be related with interface modification. • Interfaces are characterized with atomic resolution to probe inhomogeneities. • Oxide formation and modification is demonstrated in both Schottky diodes. - Abstract: Electrical and nano-structural properties of Zr and WC-based Schottky power diodes are compared and used for investigating oxide-related effects at the diamond/metal interface. Differences in Schottky barrier heights and ideality factors of both structures are shown to be related with the modification of the oxygen-terminated diamond/metal interface configuration. Oxide formation, oxide thickness variations and interfacial oxygen redistribution, associated with thermal treatment are demonstrated. Ideality factors close to ideality (n{sub WC} = 1.02 and n{sub Zr} = 1.16) are obtained after thermal treatment and are shown to be related with the relative oxygen content at the surface (OCR{sub WC} = 3.03 and OCR{sub Zr} = 1.5). Indeed, thermal treatment at higher temperatures is shown to promote an escape of oxygen for the case of the WC diode, while it generates a sharper accumulation of oxygen at the metal/diamond interface for the case of Zr diode. Therefore, the metal-oxygen affinity is shown to be a key parameter to improve diamond-based Schottky diodes.

  19. Frequency and voltage dependent electrical responses of poly(triarylamine thin film-based organic Schottky diode

    Directory of Open Access Journals (Sweden)

    Mohamad Khairul Anuar

    2017-01-01

    Full Text Available A metal-organic-metal (MOM type Schottky diode based on poly (triarylamine (PTAA thin films has been fabricated by using the spin coating method. Investigation of the frequency dependent conductance-voltage (G-V-f and capacitance-voltage (C-V-f characteristics of the ITO/PTAA/Al MOM type diode were carried out in the frequency range from 12 Hz to 100 kHz using an LCR meter at room temperature. The frequency and bias voltage dependent electrical response were determined by admittance-based measured method in terms of an equivalent circuit model of the parallel combination of resistance and capacitance (RC circuit. Investigation revealed that the conductance is frequency and a bias voltage dependent in which conductance continuous increase as the increasing frequency, respectively. Meanwhile, the capacitance is dependent on frequency up to a certain value of frequency (100 Hz but decreases at high frequency (1 – 10 kHz. The interface state density in the Schottky diode was determined from G-V and C-V characteristics. The interface state density has values almost constant of 2.8 x 1012 eV−1cm−2 with slightly decrease by increasing frequencies. Consequently, both series resistance and interface trap density were found to decrease with increasing frequency. The frequency dependence of the electrical responses is attributed the distribution density of interface states that could follow the alternating current (AC signal.

  20. Influence of Asymmetric Contact Form on Contact Resistance and Schottky Barrier, and Corresponding Applications of Diode.

    Science.gov (United States)

    Zhao, Yudan; Xiao, Xiaoyang; Huo, Yujia; Wang, Yingcheng; Zhang, Tianfu; Jiang, Kaili; Wang, Jiaping; Fan, Shoushan; Li, Qunqing

    2017-06-07

    We have fabricated carbon nanotube and MoS 2 field-effect transistors with asymmetric contact forms of source-drain electrodes, from which we found the current directionality of the devices and different contact resistances under the two current directions. By designing various structures, we can conclude that the asymmetric electrical performance was caused by the difference in the effective Schottky barrier height (Φ SB ) caused by the different contact forms. A detailed temperature-dependent study was used to extract and compare the Φ SB for both contact forms of CNT and MoS 2 devices; we found that the Φ SB for the metal-on-semiconductor form was much lower than that of the semiconductor-on-metal form and is suitable for all p-type, n-type, or ambipolar semiconductors. This conclusion is meaningful with respect to the design and application of nanomaterial electronic devices. Additionally, using the difference in barrier height caused by the contact forms, we have also proposed and fabricated Schottky barrier diodes with a current ratio up to 10 4 ; rectifying circuits consisting of these diodes were able to work in a wide frequency range. This design avoided the use of complex chemical doping or heterojunction methods to achieve fundamental diodes that are relatively simple and use only a single material; these may be suitable for future application in nanoelectronic radio frequency or integrated circuits.

  1. Tuning the Schottky rectification in graphene-hexagonal boron nitride-molybdenum disulfide heterostructure.

    Science.gov (United States)

    Liu, Biao; Zhao, Yu-Qing; Yu, Zhuo-Liang; Wang, Lin-Zhi; Cai, Meng-Qiu

    2018-03-01

    It was still a great challenge to design high performance of rectification characteristic for the rectifier diode. Lately, a new approach was proposed experimentally to tune the Schottky barrier height (SBH) by inserting an ultrathin insulated tunneling layer to form metal-insulator-semiconductor (MIS) heterostructures. However, the electronic properties touching off the high performance of these heterostructures and the possibility of designing more efficient applications for the rectifier diode were not presently clear. In this paper, the structural, electronic and interfacial properties of the novel MIS diode with the graphene/hexagonal boron nitride/monolayer molybdenum disulfide (GBM) heterostructure had been investigated by first-principle calculations. The calculated results showed that the intrinsic properties of graphene and MoS 2 were preserved due to the weak van der Waals contact. The height of interfacial Schottky barrier can be tuned by the different thickness of hBN layers. In addition, the GBM Schottky diode showed more excellent rectification characteristic than that of GM Schottky diode due to the interfacial band bending caused by the epitaxial electric field. Based on the electronic band structure, we analyzed the relationship between the electronic structure and the nature of the Schottky rectifier, and revealed the potential of utilizing GBM Schottky diode for the higher rectification characteristic devices. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. High-temperature Schottky diode characteristics of bulk ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Guer, Emre; Tuezemen, S; Kilic, Bayram; Coskun, C [Department of Physics, Faculty of Arts and Sciences, Atatuerk University, 25240 Erzurum (Turkey)

    2007-05-16

    Current-voltage (I-V) measurements of Ag/n-ZnO have been carried out at temperatures of 200-500 K in order to understand the temperature dependence of the diode characteristics. Forward-bias I-V analysis results in a Schottky barrier height of 0.82 eV and an ideality factor of 1.55 at room temperature. The barrier height of 0.74 eV and Richardson constant of 0.248 A K{sup -2} cm{sup -2} were also calculated from the Richardson plot, which shows nearly linear characteristics in the temperature range 240-440 K. From the nk{sub b}T/q versus k{sub b}T/q graph, where n is ideality factor, k{sub b} the Boltzmann constant, T the temperature and q the electronic charge we deduce that thermionic field emission (TFE) is dominant in the charge transport mechanism. At higher sample temperatures (>440 K), a trap-assisted tunnelling mechanism is proposed due to the existence of a deep donor situated at E{sub c}-0.62 eV with 3.3 x 10{sup -15} cm{sup 2} capture cross section observed by both deep-level transient spectroscopy (DLTS) and lnI{sub 0} versus 1/k{sub b}T plots. The ideality factor almost remains constant in the temperature range 240-400 K, which shows the stability of the Schottky contact in this temperature range.

  3. In-situ transport and microstructural evolution in GaN Schottky diodes and epilayers exposed to swift heavy ion irradiation

    Science.gov (United States)

    Kumar, Ashish; Singh, R.; Kumar, Parmod; Singh, Udai B.; Asokan, K.; Karaseov, Platon A.; Titov, Andrei I.; Kanjilal, D.

    2018-04-01

    A systematic investigation of radiation hardness of Schottky barrier diodes and GaN epitaxial layers is carried out by employing in-situ electrical resistivity and cross sectional transmission electron microscopy (XTEM) microstructure measurements. The change in the current transport mechanism of Au/n-GaN Schottky barrier diodes due to irradiation is reported. The role of irradiation temperature and ion type was also investigated. Creation of damage is studied in low and medium electron energy loss regimes by selecting different ions, Ag (200 MeV) and O (100 MeV) at various fluences at two irradiation temperatures (80 K and 300 K). GaN resistivity increases up to 6 orders of magnitude under heavy Ag ions. Light O ion irradiation has a much lower influence on sheet resistance. The presence of isolated defect clusters in irradiated GaN epilayers is evident in XTEM investigation which is explained on the basis of the thermal spike model.

  4. Effects of surface morphology on the optical and electrical properties of Schottky diodes of CBD deposited ZnO nanostructures

    Science.gov (United States)

    Mwankemwa, Benard S.; Akinkuade, Shadrach; Maabong, Kelebogile; Nel, Jackie M.; Diale, Mmantsae

    2018-04-01

    We report on effect of surface morphology on the optical and electrical properties of chemical bath deposited Zinc oxide (ZnO) nanostructures. ZnO nanostructures were deposited on the seeded conducting indium doped tin oxide substrate positioned in three different directions in the growth solution. Field emission scanning electron microscopy was used to evaluate the morphological properties of the synthesized nanostructures and revealed that the positioning of the substrate in the growth solution affects the surface morphology of the nanostructures. The optical absorbance, photoluminescence and Raman spectroscopy of the resulting nanostructures are discussed. The electrical characterization of the Schottky diode such as barrier height, ideality factor, rectification ratios, reverse saturation current and series resistance were found to depend on the nanostructures morphology. In addition, current transport mechanism in the higher forward bias of the Schottky diode was studied and space charge limited current was found to be the dominant transport mechanism in all samples.

  5. Functionalized graphene/silicon chemi-diode H₂ sensor with tunable sensitivity.

    Science.gov (United States)

    Uddin, Md Ahsan; Singh, Amol Kumar; Sudarshan, Tangali S; Koley, Goutam

    2014-03-28

    A reverse bias tunable Pd- and Pt-functionalized graphene/Si heterostructure Schottky diode H2 sensor has been demonstrated. Compared to the graphene chemiresistor sensor, the chemi-diode sensor offers more than one order of magnitude higher sensitivity as the molecular adsorption induced Schottky barrier height change causes the heterojunction current to vary exponentially in reverse bias. The reverse bias operation also enables low power consumption, as well as modulation of the atomically thin graphene's Fermi level, leading to tunable sensitivity and detection of H₂ down to the sub-ppm range.

  6. The influence of in situ argon cleaning of GaAs on Schottky diodes and metal-semiconductor field-effect transistors

    NARCIS (Netherlands)

    Hassel, van J.G.; Heyker, H.C.; Kwaspen, J.J.M.

    1995-01-01

    The influence of in situ argon cleaning of GaAs on the electrical characteristics of Schottky diodes and metal–semiconductor field-effect transistors (MESFETs) is investigated. The beam energy was varied from 50 to 500 eV and the characteristics were compared to wet chemically cleaned devices. The

  7. Phase locking of 2.324 and 2.959 terahertz quantum cascade lasers using a Schottky diode harmonic mixer.

    Science.gov (United States)

    Danylov, Andriy; Erickson, Neal; Light, Alexander; Waldman, Jerry

    2015-11-01

    The 23rd and 31st harmonics of a microwave signal generated in a novel THz balanced Schottky diode mixer were used as a frequency stable reference source to phase lock solid-nitrogen-cooled 2.324 and 2.959 THz quantum cascade lasers. Hertz-level frequency stability was achieved, which was maintained for several hours.

  8. Significant improvement in the electrical characteristics of Schottky barrier diodes on molecularly modified Gallium Nitride surfaces

    Science.gov (United States)

    Garg, Manjari; Naik, Tejas R.; Pathak, C. S.; Nagarajan, S.; Rao, V. Ramgopal; Singh, R.

    2018-04-01

    III-Nitride semiconductors face the issue of localized surface states, which causes fermi level pinning and large leakage current at the metal semiconductor interface, thereby degrading the device performance. In this work, we have demonstrated the use of a Self-Assembled Monolayer (SAM) of organic molecules to improve the electrical characteristics of Schottky barrier diodes (SBDs) on n-type Gallium Nitride (n-GaN) epitaxial films. The electrical characteristics of diodes were improved by adsorption of SAM of hydroxyl-phenyl metallated porphyrin organic molecules (Zn-TPPOH) onto the surface of n-GaN. SAM-semiconductor bonding via native oxide on the n-GaN surface was confirmed using X-ray photoelectron spectroscopy measurements. Surface morphology and surface electronic properties were characterized using atomic force microscopy and Kelvin probe force microscopy. Current-voltage characteristics of different metal (Cu, Ni) SBDs on bare n-GaN were compared with those of Cu/Zn-TPPOH/n-GaN and Ni/Zn-TPPOH/n-GaN SBDs. It was found that due to the molecular monolayer, the surface potential of n-GaN was decreased by ˜350 mV. This caused an increase in the Schottky barrier height of Cu and Ni SBDs from 1.13 eV to 1.38 eV and 1.07 eV to 1.22 eV, respectively. In addition to this, the reverse bias leakage current was reduced by 3-4 orders of magnitude for both Cu and Ni SBDs. Such a significant improvement in the electrical performance of the diodes can be very useful for better device functioning.

  9. Barrier height of Pt–In[sub x]Ga[sub 1−x]N (0≤x≤0.5) nanowire Schottky diodes

    KAUST Repository

    Guo, Wei; Banerjee, Animesh; Zhang, Meng; Bhattacharya, Pallab

    2011-01-01

    The barrier height of Schottky diodes made on Inx Ga 1-x N nanowires have been determined from capacitance-voltage measurements. The nanowires were grown undoped on n-type (001) silicon substrates by plasma-assisted molecular beam epitaxy. The length, diameter and density of the nanowires are ∼1 μm, 20 nm, and 1× 1011 cm-2. The Schottky contact was made on the top surface of the nanowires with Pt after planarizing with parylene. The measured barrier height B varies from 1.4 eV (GaN) to 0.44 eV (In0.5 Ga0.5 N) and agrees well with the ideal barrier heights in the Schottky limit. © 2011 American Institute of Physics.

  10. A Pt/TiO(2)/Ti Schottky-type selection diode for alleviating the sneak current in resistance switching memory arrays.

    Science.gov (United States)

    Park, Woo Young; Kim, Gun Hwan; Seok, Jun Yeong; Kim, Kyung Min; Song, Seul Ji; Lee, Min Hwan; Hwang, Cheol Seong

    2010-05-14

    This study examined the properties of Schottky-type diodes composed of Pt/TiO(2)/Ti, where the Pt/TiO(2) and TiO(2)/Ti junctions correspond to the blocking and ohmic contacts, respectively, as the selection device for a resistive switching cross-bar array. An extremely high forward-to-reverse current ratio of approximately 10(9) was achieved at 1 V when the TiO(2) film thickness was 19 nm. TiO(2) film was grown by atomic layer deposition at a substrate temperature of 250 degrees C. Conductive atomic force microscopy revealed that the forward current flew locally, which limits the maximum forward current density to current measurement showed a local forward current density as high as approximately 10(5) A cm(-2). Therefore, it is expected that this type of Schottky diode effectively suppresses the sneak current without adverse interference effects in a nano-scale resistive switching cross-bar array with high block density.

  11. Functionalized graphene/silicon chemi-diode H2 sensor with tunable sensitivity

    International Nuclear Information System (INIS)

    Uddin, Md Ahsan; Singh, Amol Kumar; Sudarshan, Tangali S; Koley, Goutam

    2014-01-01

    A reverse bias tunable Pd- and Pt-functionalized graphene/Si heterostructure Schottky diode H 2 sensor has been demonstrated. Compared to the graphene chemiresistor sensor, the chemi-diode sensor offers more than one order of magnitude higher sensitivity as the molecular adsorption induced Schottky barrier height change causes the heterojunction current to vary exponentially in reverse bias. The reverse bias operation also enables low power consumption, as well as modulation of the atomically thin graphene’s Fermi level, leading to tunable sensitivity and detection of H 2 down to the sub-ppm range. (paper)

  12. Temperature dependent current-voltage characteristics of Au/n-Si Schottky barrier diodes and the effect of transition metal oxides as an interface layer

    Science.gov (United States)

    Mahato, Somnath; Puigdollers, Joaquim

    2018-02-01

    Temperature dependent current-voltage (I‒V) characteristics of Au/n-type silicon (n-Si) Schottky barrier diodes have been investigated. Three transition metal oxides (TMO) are used as an interface layer between gold and silicon. The basic Schottky diode parameters such as ideality factor (n), barrier height (ϕb 0) and series resistance (Rs) are calculated and successfully explained by the thermionic emission (TE) theory. It has been found that ideality factor decreased and barrier height increased with increased of temperature. The conventional Richardson plot of ln(I0/T2) vs. 1000/T is determined the activation energy (Ea) and Richardson constant (A*). Whereas value of 'A*' is much smaller than the known theoretical value of n-type Si. The temperature dependent I-V characteristics obtained the mean value of barrier height (ϕb 0 bar) and standard deviation (σs) from the linear plot of ϕap vs. 1000/T. From the modified Richardson plot of ln(I0/T2) ˗ (qσ)2/2(kT)2 vs. 1000/T gives Richardson constant and homogeneous barrier height of Schottky diodes. Main observation in this present work is the barrier height and ideality factor shows a considerable change but the series resistance value exhibits negligible change due to TMO as an interface layer.

  13. A high speed PE-ALD ZnO Schottky diode rectifier with low interface-state density

    Science.gov (United States)

    Jin, Jidong; Zhang, Jiawei; Shaw, Andrew; Kudina, Valeriya N.; Mitrovic, Ivona Z.; Wrench, Jacqueline S.; Chalker, Paul R.; Balocco, Claudio; Song, Aimin; Hall, Steve

    2018-02-01

    Zinc oxide (ZnO) has recently attracted attention for its potential application to high speed electronics. In this work, a high speed Schottky diode rectifier was fabricated based on a ZnO thin film deposited by plasma-enhanced atomic layer deposition and a PtOx Schottky contact deposited by reactive radio-frequency sputtering. The rectifier shows an ideality factor of 1.31, an effective barrier height of 0.79 eV, a rectification ratio of 1.17  ×  107, and cut-off frequency as high as 550 MHz. Low frequency noise measurements reveal that the rectifier has a low interface-state density of 5.13  ×  1012 cm-2 eV-1, and the noise is dominated by the mechanism of a random walk of electrons at the PtO x /ZnO interface. The work shows that the rectifier can be used for both noise sensitive and high frequency electronics applications.

  14. Modeling and fabrication of 4H-SiC Schottky junction

    Science.gov (United States)

    Martychowiec, A.; Pedryc, A.; Kociubiński, A.

    2017-08-01

    The rapidly growing demand for electronic devices requires using of alternative semiconductor materials, which could replace conventional silicon. Silicon carbide has been proposed for these harsh environment applications (high temperature, high voltage, high power conditions) because of its wide bandgap, its high temperature operation ability, its excellent thermal and chemical stability, and its high breakdown electric field strength. The Schottky barrier diode (SBD) is known as one of the best refined SiC devices. This paper presents prepared model, simulations and description of technology of 4H-SiC Schottky junction as well as characterization of fabricated structures. The future aim of the application of the structures is an optical detection of an ultraviolet radiation. The model section contains a comparison of two different solutions of SBD's construction. Simulations - as a crucial process of designing electronic devices - have been performed using the ATLAS device of Silvaco TCAD software. As a final result the paper shows I-V characteristics of fabricated diodes.

  15. Poly (3,4-ethylenedioxythiophene) (PEDOT) and poly (3,4-ethylenedioxythiophene)-few walled carbon nanotube (PEDOT-FWCNT) nanocomposite based thin films for Schottky diode application

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Bhavana, E-mail: bgupta1206@gmail.com [Surface and Nanoscience Division, Materials Science Group, Indira Gandhi Centre of Atomic Research, Kalpakkam, Tamil Nadu 603102 (India); Mehta, Minisha, E-mail: mehta.mini@gmail.com [Surface and Nanoscience Division, Materials Science Group, Indira Gandhi Centre of Atomic Research, Kalpakkam, Tamil Nadu 603102 (India); Melvin, Ambrose [Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha, Pune 411008 (India); Kamalakannan, R.; Dash, S.; Kamruddin, M.; Tyagi, A.K. [Surface and Nanoscience Division, Materials Science Group, Indira Gandhi Centre of Atomic Research, Kalpakkam, Tamil Nadu 603102 (India)

    2014-10-15

    Transparent, conductive films of poly (3,4-ethylenedioxythiophene) (PEDOT) and poly (3,4-ethylenedioxythiophene)-few walled carbon nanotube (PEDOT-FWCNT) nanocomposite were synthesized by in-situ oxidative polymerization and investigated for their Schottky diode property. The prepared films were characterized by UV–Vis spectroscopy, thermal gravimetric analysis (TGA), surface resistivity, cyclic voltametery, scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). SEM reveals the formation of homogeneous and adhesive polymer films while HRTEM confirms the uniform wrapping of polymer chains around the nanotube walls for PEDOT-FWCNT film. Improved thermal stability, conductivity and charge storage property of PEDOT in the presence of FWCNT is observed. Among different compositions, 5 wt. % of FWCNT is found to be optimum with sheet resistance and transmittance of 500 Ω sq{sup −1} and 77%, respectively. Moreover, the electronic and junction properties of polymer films were studied and compared by fabricating sandwich type devices with a configuration of Al/PEDOT or PEDOT-FWCNT nanocomposite/indium tin oxide (ITO) coated glass. The measured current density-voltage characteristics show typical rectifying behavior for both configurations. However, enhanced rectification ratio and higher forward current density is observed in case of PEDOT-FWCNT based Schottky diode. Furthermore, reliability test depicts smaller hysteresis effect and better performance of PEDOT-FWCNT based diodes. - Highlights: • Single step synthesis of PEDOT and PEDOT-FWCNT nanocomposites films via in-situ oxidative polymerization. • Thermal, electrical and electrochemical properties of films show positive effect of FWCNT on PEDOT films. • Schottky diodes based on metal Al/PEDOT or PEDOT-FWCNT composites/ITO glass are fabricated. • Improved electrical characteristics with better reliability is achieved for PEDOT-FWCNT based diodes.

  16. Poly (3,4-ethylenedioxythiophene) (PEDOT) and poly (3,4-ethylenedioxythiophene)-few walled carbon nanotube (PEDOT-FWCNT) nanocomposite based thin films for Schottky diode application

    International Nuclear Information System (INIS)

    Gupta, Bhavana; Mehta, Minisha; Melvin, Ambrose; Kamalakannan, R.; Dash, S.; Kamruddin, M.; Tyagi, A.K.

    2014-01-01

    Transparent, conductive films of poly (3,4-ethylenedioxythiophene) (PEDOT) and poly (3,4-ethylenedioxythiophene)-few walled carbon nanotube (PEDOT-FWCNT) nanocomposite were synthesized by in-situ oxidative polymerization and investigated for their Schottky diode property. The prepared films were characterized by UV–Vis spectroscopy, thermal gravimetric analysis (TGA), surface resistivity, cyclic voltametery, scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). SEM reveals the formation of homogeneous and adhesive polymer films while HRTEM confirms the uniform wrapping of polymer chains around the nanotube walls for PEDOT-FWCNT film. Improved thermal stability, conductivity and charge storage property of PEDOT in the presence of FWCNT is observed. Among different compositions, 5 wt. % of FWCNT is found to be optimum with sheet resistance and transmittance of 500 Ω sq −1 and 77%, respectively. Moreover, the electronic and junction properties of polymer films were studied and compared by fabricating sandwich type devices with a configuration of Al/PEDOT or PEDOT-FWCNT nanocomposite/indium tin oxide (ITO) coated glass. The measured current density-voltage characteristics show typical rectifying behavior for both configurations. However, enhanced rectification ratio and higher forward current density is observed in case of PEDOT-FWCNT based Schottky diode. Furthermore, reliability test depicts smaller hysteresis effect and better performance of PEDOT-FWCNT based diodes. - Highlights: • Single step synthesis of PEDOT and PEDOT-FWCNT nanocomposites films via in-situ oxidative polymerization. • Thermal, electrical and electrochemical properties of films show positive effect of FWCNT on PEDOT films. • Schottky diodes based on metal Al/PEDOT or PEDOT-FWCNT composites/ITO glass are fabricated. • Improved electrical characteristics with better reliability is achieved for PEDOT-FWCNT based diodes

  17. Lateral polarity control of III-nitride thin film and application in GaN Schottky barrier diode

    Science.gov (United States)

    Li, Junmei; Guo, Wei; Sheikhi, Moheb; Li, Hongwei; Bo, Baoxue; Ye, Jichun

    2018-05-01

    N-polar and III-polar GaN and AlN epitaxial thin films grown side by side on single sapphire substrate was reported. Surface morphology, wet etching susceptibility and bi-axial strain conditions were investigated and the polarity control scheme was utilized in the fabrication of Schottky barrier diode where ohmic contact and Schottky contact were deposited on N-polar domains and Ga-polar domains, respectively. The influence of N-polarity on on-state resistivity and I–V characteristic was discussed, demonstrating that lateral polarity structure of GaN and AlN can be widely used in new designs of optoelectronic and electronic devices. Project partially supported by the National Key Research and Development Program of China (No. 2016YFB0400802), the National Natural Science Foundation of China (No. 61704176), and the Open project of Zhejiang Key Laboratory for Advanced Microelectronic Intelligent Systems and Applications (No. ZJUAMIS1704).

  18. Accurate surface potential determination in Schottky diodes by the use of a correlated current and capacitance voltage measurements. Application to n-InP

    International Nuclear Information System (INIS)

    Ahaitouf, Ali; Ahaitouf, Abdelaziz; Salvestrini, Jean Paul; Srour, Hussein

    2011-01-01

    Based on current voltage (I—V g ) and capacitance voltage (C—V g ) measurements, a reliable procedure is proposed to determine the effective surface potential V d (V g ) in Schottky diodes. In the framework of thermionic emission, our analysis includes both the effect of the series resistance and the ideality factor, even voltage dependent. This technique is applied to n-type indium phosphide (n-InP) Schottky diodes with and without an interfacial layer and allows us to provide an interpretation of the observed peak on the C—V g measurements. The study clearly shows that the depletion width and the flat band barrier height deduced from C—V g , which are important parameters directly related to the surface potential in the semiconductor, should be estimated within our approach to obtain more reliable information. (semiconductor devices)

  19. Electrical properties of Schottky barrier diodes fabricated on (001) β-Ga2O3 substrates with crystal defects

    Science.gov (United States)

    Oshima, Takayoshi; Hashiguchi, Akihiro; Moribayashi, Tomoya; Koshi, Kimiyoshi; Sasaki, Kohei; Kuramata, Akito; Ueda, Osamu; Oishi, Toshiyuki; Kasu, Makoto

    2017-08-01

    The electrical properties of Schottky barrier diodes (SBDs) on a (001) β-Ga2O3 substrate were characterized and correlated with wet etching-revealed crystal defects below the corresponding Schottky contacts. The etching process revealed etched grooves and etched pits, indicating the presence of line-shaped voids and small defects near the surface, respectively. The electrical properties (i.e., leakage currents, ideality factor, and barrier height) exhibited almost no correlation with the density of the line-shaped voids. This very weak correlation was reasonable considering the parallel positional relation between the line-shaped voids extending along the [010] direction and the (001) basal plane in which the voids are rarely exposed on the initial surface in contact with the Schottky metals. The distribution of small defects and SBDs with unusually large leakage currents showed similar patterns on the substrate, suggesting that these defects were responsible for the onset of fatal leak paths. These results will encourage studies on crystal defect management of (001) β-Ga2O3 substrates for the fabrication of devices with enhanced performance using these substrates.

  20. Effects of swift heavy ion irradiation on the electrical characteristics of Au/n-GaAs Schottky diodes

    International Nuclear Information System (INIS)

    Sharma, A. Tarun; Shahnawaz; Kumar, Sandeep; Katharria, Yashpal S.; Kanjilal, Dinakar

    2007-01-01

    Metal-semiconductor diode of Au/n-GaAs is studied under the irradiation of swift heavy ion (SHI) beam (80 MeV 16 O 6+ ), using in situ current-voltage characterization technique. The diode parameters like ideality factor, barrier height, and leakage current are observed to vary with irradiation fluence. Significantly, the diode performance improves at a high fluence of 2 x 10 13 ions cm -2 with a large decrease of reverse leakage current in comparison to the original as deposited sample. The Schottky barrier height (SBH) also increases with fluence. At a high irradiation fluence of 5 x 10 13 ions cm -2 the SBH (0.62 ± 0.01 eV) is much larger than that of the as deposited sample (0.55 ± 0.01 eV). The diode parameters remain stable over a large range of irradiation up to fluence of 8 x 10 13 ions cm -2 . A prominent annealing effect of the swift ion beam owing to moderate electronic excitation and high ratio of electronic energy loss to the nuclear loss is found to be responsible for the improvement in diode characteristics

  1. Single-Event Effect Testing of the Cree C4D40120D Commercial 1200V Silicon Carbide Schottky Diode

    Science.gov (United States)

    Lauenstein, J.-M.; Casey, M. C.; Wilcox, E. P.; Kim, Hak; Topper, A. D.

    2014-01-01

    This study was undertaken to determine the single event effect (SEE) susceptibility of the commercial silicon carbide 1200V Schottky diode manufactured by Cree, Inc. Heavy-ion testing was conducted at the Texas A&M University Cyclotron Single Event Effects Test Facility (TAMU). Its purpose was to evaluate this device as a candidate for use in the Solar-Electric Propulsion flight project.

  2. 1-kV vertical Ga2O3 field-plated Schottky barrier diodes

    Science.gov (United States)

    Konishi, Keita; Goto, Ken; Murakami, Hisashi; Kumagai, Yoshinao; Kuramata, Akito; Yamakoshi, Shigenobu; Higashiwaki, Masataka

    2017-03-01

    Ga2O3 field-plated Schottky barrier diodes (FP-SBDs) were fabricated on a Si-doped n--Ga2O3 drift layer grown by halide vapor phase epitaxy on a Sn-doped n+-Ga2O3 (001) substrate. The specific on-resistance of the Ga2O3 FP-SBD was estimated to be 5.1 mΩ.cm2. Successful field-plate engineering resulted in a high breakdown voltage of 1076 V. A larger-than-expected effective barrier height of 1.46 eV, which was extracted from the temperature-dependent current-voltage characteristics, could be caused by the effect of fluorine atoms delivered in a hydrofluoric acid solution process.

  3. Analysis of temperature-dependant current–voltage characteristics and extraction of series resistance in Pd/ZnO Schottky barrier diodes

    Energy Technology Data Exchange (ETDEWEB)

    Mayimele, M A, E-mail: meehleketo@gmail.com; Rensburg, J P van. Janse; Auret, F D; Diale, M

    2016-01-01

    We report on the analysis of current voltage (I–V) measurements performed on Pd/ZnO Schottky barrier diodes (SBDs) in the 80–320 K temperature range. Assuming thermionic emission (TE) theory, the forward bias I–V characteristics were analysed to extract Pd/ZnO Schottky diode parameters. Comparing Cheung’s method in the extraction of the series resistance with Ohm’s law, it was observed that at lower temperatures (T<180 K) the series resistance decreased with increasing temperature, the absolute minimum was reached near 180 K and increases linearly with temperature at high temperatures (T>200 K). The barrier height and the ideality factor decreased and increased, respectively, with decrease in temperature, attributed to the existence of barrier height inhomogeneity. Such inhomogeneity was explained based on TE with the assumption of Gaussian distribution of barrier heights with a mean barrier height of 0.99 eV and a standard deviation of 0.02 eV. A mean barrier height of 0.11 eV and Richardson constant value of 37 A cm{sup −2} K{sup −2} were determined from the modified Richardson plot that considers the Gaussian distribution of barrier heights.

  4. Dislocation reduction in nitride-based Schottky diodes by using multiple MgxNy/GaN nucleation layers

    International Nuclear Information System (INIS)

    Lee, K.H.; Chang, P.C.; Chang, S.J.; Su, Y.K.; Wang, Y.C.; Yu, C.L.; Kuo, C.H.

    2010-01-01

    We present the characteristics of nitride-based Schottky diodes with a single low-temperature (LT) GaN nucleation layer and multiple Mg x N y /GaN nucleation layers. With multiple Mg x N y /GaN nucleation layers, it was found that reverse leakage current became smaller by six orders of magnitude than that with a conventional LT GaN nucleation layer. This result might be attributed to the significant reduction of threading dislocations (TDs) and TD-related surface states. From the double crystal X-ray diffraction and photoluminescence analyses, it was found that the introduction of multiple Mg x N y /GaN nucleation layers could be able to effectively reduce the edge-type TDs. Furthermore, it was also found that effective Schottky barrier height (Φ B ) increased from 1.07 to 1.15 eV with the insertion of the multiple Mg x N y /GaN nucleation layers.

  5. Schottky barrier parameters and structural properties of rapidly annealed Zr Schottky electrode on p-type GaN

    Science.gov (United States)

    Rajagopal Reddy, V.; Asha, B.; Choi, Chel-Jong

    2017-06-01

    The Schottky barrier junction parameters and structural properties of Zr/p-GaN Schottky diode are explored at various annealing temperatures. Experimental analysis showed that the barrier height (BH) of the Zr/p-GaN Schottky diode increases with annealing at 400 °C (0.92 eV (I-V)/1.09 eV (C-V)) compared to the as-deposited one (0.83 eV (I-V)/0.93 eV (C-V)). However, the BH decreases after annealing at 500 °C. Also, at different annealing temperatures, the series resistance and BH are assessed by Cheung's functions and their values compared. Further, the interface state density (N SS) of the diode decreases after annealing at 400 °C and then somewhat rises upon annealing at 500 °C. Analysis reveals that the maximum BH is obtained at 400 °C, and thus the optimum annealing temperature is 400 °C for the diode. The XPS and XRD analysis revealed that the increase in BH may be attributed to the creation of Zr-N phases with increasing annealing up to 400 °C. The BH reduces for the diode annealed at 500 °C, which may be due to the formation of Ga-Zr phases at the junction. The AFM measurements reveal that the overall surface roughness of the Zr film is quite smooth during rapid annealing process. Project supported by the R&D Program for Industrial Core Technology (No. 10045216) and the Transfer Machine Specialized Lighting Core Technology Development Professional Manpower Training Project (No. N0001363) Funded by the Ministry of Trade, Industry and Energy (MOTIE), Republic of Korea.

  6. Forward-bias diode parameters, electronic noise, and photoresponse of graphene/silicon Schottky junctions with an interfacial native oxide layer

    Science.gov (United States)

    An, Yanbin; Behnam, Ashkan; Pop, Eric; Bosman, Gijs; Ural, Ant

    2015-09-01

    Metal-semiconductor Schottky junction devices composed of chemical vapor deposition grown monolayer graphene on p-type silicon substrates are fabricated and characterized. Important diode parameters, such as the Schottky barrier height, ideality factor, and series resistance, are extracted from forward bias current-voltage characteristics using a previously established method modified to take into account the interfacial native oxide layer present at the graphene/silicon junction. It is found that the ideality factor can be substantially increased by the presence of the interfacial oxide layer. Furthermore, low frequency noise of graphene/silicon Schottky junctions under both forward and reverse bias is characterized. The noise is found to be 1/f dominated and the shot noise contribution is found to be negligible. The dependence of the 1/f noise on the forward and reverse current is also investigated. Finally, the photoresponse of graphene/silicon Schottky junctions is studied. The devices exhibit a peak responsivity of around 0.13 A/W and an external quantum efficiency higher than 25%. From the photoresponse and noise measurements, the bandwidth is extracted to be ˜1 kHz and the normalized detectivity is calculated to be 1.2 ×109 cm Hz1/2 W-1. These results provide important insights for the future integration of graphene with silicon device technology.

  7. Frequency dependent capacitance and conductance properties of Schottky diode based on rubrene organic semiconductor

    International Nuclear Information System (INIS)

    Barış, Behzad

    2013-01-01

    Al/rubrene/p-Si Schottky diode has been fabricated by forming a rubrene layer on p type Si by using the spin coating method. The frequency dependent capacitance–voltage (C–V–f) and conductance–voltage (G–V–f) characteristics of Al/rubrene/p-Si Schottky diyotes has been investigated in the frequency range of 5 kHz–500 kHz at room temperature. The C–V plots show a peak for each frequency. The capacitance of the device decreased with increasing frequency. The decrease in capacitance results from the presence of interface states. The plots of series resistance–voltage (R s −V) gave a peak in the depletion region at all frequencies. The density of interface states (N ss ) and relaxation time (τ) distribution profiles as a function of applied voltage bias have been determined from the C–V and G–V measurements. The values of the N ss and τ have been calculated in the ranges of 8.37×10 11 –4.85×10 11 eV −1 cm −2 and 5.17×10 −6 –1.02×10 −5 s, respectively

  8. Electric Characteristic Enhancement of an AZO/Si Schottky Barrier Diode with Hydrogen Plasma Surface Treatment and AlxOx Guard Ring Structure

    Directory of Open Access Journals (Sweden)

    Chien-Yu Li

    2018-01-01

    Full Text Available In this study, the design and fabrication of AZO/n-Si Schottky barrier diodes (SBDs with hydrogen plasma treatment on silicon surface and AlxOx guard ring were presented. The Si surface exhibited less interface defects after the cleaning process following with 30 w of H2 plasma treatment that improved the switching properties of the following formed SBDs. The rapid thermal annealing experiment also held at 400 °C to enhance the breakdown voltage of SBDs. The edge effect of the SBDs was also suppressed with the AlxOx guard ring structure deposited by the atomic layer deposition (ALD at the side of the SBDs. Experimental results show that the reverse leakage current was reduced and the breakdown voltage increased with an addition of the AlxOx guard ring. The diode and fabrication technology developed in the study were applicable to the realization of SBDs with a high breakdown voltage (>200 V, a low reverse leakage current density (≤72 μA/mm2@100 V, and a Schottky barrier height of 1.074 eV.

  9. Electric Characteristic Enhancement of an AZO/Si Schottky Barrier Diode with Hydrogen Plasma Surface Treatment and AlxOx Guard Ring Structure

    Science.gov (United States)

    Li, Chien-Yu; Cheng, Min-Yu; Houng, Mau-Phon; Yang, Cheng-Fu; Liu, Jing

    2018-01-01

    In this study, the design and fabrication of AZO/n-Si Schottky barrier diodes (SBDs) with hydrogen plasma treatment on silicon surface and AlxOx guard ring were presented. The Si surface exhibited less interface defects after the cleaning process following with 30 w of H2 plasma treatment that improved the switching properties of the following formed SBDs. The rapid thermal annealing experiment also held at 400 °C to enhance the breakdown voltage of SBDs. The edge effect of the SBDs was also suppressed with the AlxOx guard ring structure deposited by the atomic layer deposition (ALD) at the side of the SBDs. Experimental results show that the reverse leakage current was reduced and the breakdown voltage increased with an addition of the AlxOx guard ring. The diode and fabrication technology developed in the study were applicable to the realization of SBDs with a high breakdown voltage (>200 V), a low reverse leakage current density (≤72 μA/mm2@100 V), and a Schottky barrier height of 1.074 eV. PMID:29316726

  10. Characteristics of surface mount low barrier silicon Schottky diodes with boron contamination in the substrate–epitaxial layer interface

    International Nuclear Information System (INIS)

    Pal, Debdas; Hoag, David; Barter, Margaret

    2012-01-01

    Unusual negative resistance characteristics were observed in low barrier HMIC (Heterolithic Microwave Integrated Circuit) silicon Schottky diodes with HF (hydrofluoric acid)/IPA (isopropyl alcohol) vapor clean prior to epitaxial growth of silicon. SIMS (secondary ion mass spectroscopy) analysis and the results of the buried layer structure confirmed boron contamination in the substrate/epitaxial layer interface. Consequently the structure turned into a thyristor like p-n-p-n device. A dramatic reduction of boron contamination was found in the wafers with H 2 0/HCl/HF dry only clean prior to growth, which provided positive resistance characteristics. Consequently the mean differential resistance at 10 mA was reduced to about 8.1 Ω. The lower series resistance (5.6–5.9 Ω) and near 1 ideality factor (1.03–1.06) of the Schottky devices indicated the good quality of the epitaxial layer. (paper)

  11. Current-voltage temperature characteristics of Au/n-Ge (1 0 0) Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Chawanda, Albert, E-mail: albert.chawanda@up.ac.za [Midlands State University, Bag 9055 Gweru (Zimbabwe); University of Pretoria, 0002 Pretoria (South Africa); Mtangi, Wilbert; Auret, Francois D; Nel, Jacqueline [University of Pretoria, 0002 Pretoria (South Africa); Nyamhere, Cloud [Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Diale, Mmantsae [University of Pretoria, 0002 Pretoria (South Africa)

    2012-05-15

    The variation in electrical characteristics of Au/n-Ge (1 0 0) Schottky contacts have been systematically investigated as a function of temperature using current-voltage (I-V) measurements in the temperature range 140-300 K. The I-V characteristics of the diodes indicate very strong temperature dependence. While the ideality factor n decreases, the zero-bias Schottky barrier height (SBH) ({Phi}{sub B}) increases with the increasing temperature. The I-V characteristics are analyzed using the thermionic emission (TE) model and the assumption of a Gaussian distribution of the barrier heights due to barrier inhomogeneities at the metal-semiconductor interface. The zero-bias barrier height {Phi}{sub B} vs. 1/2 kT plot has been used to show the evidence of a Gaussian distribution of barrier heights and values of {Phi}{sub B}=0.615 eV and standard deviation {sigma}{sub s0}=0.0858 eV for the mean barrier height and zero-bias standard deviation have been obtained from this plot, respectively. The Richardson constant and the mean barrier height from the modified Richardson plot were obtained as 1.37 A cm{sup -2} K{sup -2} and 0.639 eV, respectively. This Richardson constant is much smaller than the reported of 50 A cm{sup -2} K{sup -2}. This may be due to greater inhomogeneities at the interface.

  12. Understanding Pt-ZnO:In Schottky nanocontacts by conductive atomic force microscopy

    Science.gov (United States)

    Chirakkara, Saraswathi; Choudhury, Palash Roy; Nanda, K. K.; Krupanidhi, S. B.

    2016-04-01

    Undoped and In doped ZnO (IZO) thin films are grown on Pt coated silicon substrates Pt/Si by pulsed laser deposition to fabricate Pt/ZnO:In Schottky diodes. The Schottky diodes were investigated by conventional two-probe current-voltage (I-V) measurements and by the I-V spectroscopy tool of conductive atomic force microscopy (C-AFM). The large deviation of the ideality factor from unity and the temperature dependent Schottky barrier heights (SBHs) obtained from the conventional method imply the presence of inhomogeneous interfaces. The inhomogeneity of SBHs is confirmed by C-AFM. Interestingly, the I-V curves at different points are found to be different, and the SBHs deduced from the point diodes reveal inhomogeneity at the nanoscale at the metal-semiconductor interface. A reduction in SBH and turn-on voltage along with enhancement in forward current are observed with increasing indium concentration.

  13. Deep-level transient spectroscopy on an amorphous InGaZnO{sub 4} Schottky diode

    Energy Technology Data Exchange (ETDEWEB)

    Chasin, Adrian, E-mail: adrian.chasin@imec.be; Bhoolokam, Ajay; Nag, Manoj; Genoe, Jan; Heremans, Paul [imec, Kapeldreef 75, 3001 Leuven (Belgium); ESAT, KU Leuven, Kasteelpark Arenberg 10, 3001 Leuven (Belgium); Simoen, Eddy [imec, Kapeldreef 75, 3001 Leuven (Belgium); Department of Solid State Sciences, Ghent University, Krijgslaan 281-S1, 9000 Gent (Belgium); Gielen, Georges [ESAT, KU Leuven, Kasteelpark Arenberg 10, 3001 Leuven (Belgium)

    2014-02-24

    The first direct measurement is reported of the bulk density of deep states in amorphous IGZO (indium-gallium-zinc oxide) semiconductor by means of deep-level transient spectroscopy (DLTS). The device under test is a Schottky diode of amorphous IGZO semiconductor on a palladium (Pd) Schottky-barrier electrode and with a molybdenum (Mo) Ohmic contact at the top. The DLTS technique allows to independently measure the energy and spatial distribution of subgap states in the IGZO thin film. The subgap trap concentration has a double exponential distribution as a function energy, with a value of ∼10{sup 19} cm{sup −3} eV{sup −1} at the conduction band edge and a value of ∼10{sup 17} cm{sup −3} eV{sup −1} at an energy of 0.55 eV below the conduction band. Such spectral distribution, however, is not uniform through the semiconductor film. The spatial distribution of subgap states correlates well with the background doping density distribution in the semiconductor, which increases towards the Ohmic Mo contact, suggesting that these two properties share the same physical origin.

  14. Frequency dependent capacitance and conductance properties of Schottky diode based on rubrene organic semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Barış, Behzad, E-mail: behzadbaris@gmail.com

    2013-10-01

    Al/rubrene/p-Si Schottky diode has been fabricated by forming a rubrene layer on p type Si by using the spin coating method. The frequency dependent capacitance–voltage (C–V–f) and conductance–voltage (G–V–f) characteristics of Al/rubrene/p-Si Schottky diyotes has been investigated in the frequency range of 5 kHz–500 kHz at room temperature. The C–V plots show a peak for each frequency. The capacitance of the device decreased with increasing frequency. The decrease in capacitance results from the presence of interface states. The plots of series resistance–voltage (R{sub s}−V) gave a peak in the depletion region at all frequencies. The density of interface states (N{sub ss}) and relaxation time (τ) distribution profiles as a function of applied voltage bias have been determined from the C–V and G–V measurements. The values of the N{sub ss} and τ have been calculated in the ranges of 8.37×10{sup 11}–4.85×10{sup 11} eV{sup −1} cm{sup −2} and 5.17×10{sup −6}–1.02×10{sup −5} s, respectively.

  15. Analysis of Reverse-Bias Leakage Current Mechanisms in Metal/GaN Schottky Diodes

    Directory of Open Access Journals (Sweden)

    P. Pipinys

    2010-01-01

    Full Text Available Temperature-dependent reverse-bias current-voltage characteristics obtained by other researchers for Schottky diodes fabricated on GaN are reinterpreted in terms of phonon-assisted tunneling (PhAT model. Temperature dependence of reverse-bias leakage current is shown could be caused by the temperature dependence of electron tunneling rate from traps in the metal-semiconductor interface to the conduction band of semiconductor. A good fit of experimental data with the theory is received in a wide temperature range (from 80 K to 500 K using for calculation the effective mass of 0.222 me. and for the phonon energy the value of 70 meV. The temperature and bias voltages dependences of an apparent barrier height (activation energy are also explicable in the framework of the PhAT model.

  16. Tuning of Schottky barrier height of Al/n-Si by electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Vali, Indudhar Panduranga [Manipal Institute of Technology, Manipal University, Manipal 576104 (India); Shetty, Pramoda Kumara, E-mail: pramod.shetty@manipal.edu [Manipal Institute of Technology, Manipal University, Manipal 576104 (India); Mahesha, M.G. [Manipal Institute of Technology, Manipal University, Manipal 576104 (India); Petwal, V.C.; Dwivedi, Jishnu [Raja Ramanna Centre for Advanced Technology, Department of Atomic Energy, Government of India, Indore 452012 (India); Choudhary, R.J. [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452017 (India)

    2017-06-15

    Highlights: • Tuning of Schottky barrier height has been achieved by electron beam irradiation at different doses on n-Si wafer prior to the fabrication of Schottky contact. • The XPS analyses have shown irradiation induced defects and the formation of several localized chemical states in Si/SiOx interface that influences the Schottky barrier height. • High ideality factor indicates metal-insulator-semiconductor configuration of the Schottky diode and the inhomogeneous nature of the Schottky barrier height. • The modifications in I–V characteristics have been observed as a function of electron dose. This is caused due to changes in the Schottky diode parameters and different transport mechanisms. - Abstract: The effect of electron beam irradiation (EBI) on Al/n-Si Schottky diode has been studied by I–V characterization at room temperature. The behavior of the metal-semiconductor (MS) interface is analyzed by means of variations in the MS contact parameters such as, Schottky barrier height (Φ{sub B}), ideality factor (n) and series resistance (R{sub s}). These parameters were found to depend on the EBI dose having a fixed incident beam of energy 7.5 MeV. At different doses (500, 1000, 1500 kGy) of EBI, the Schottky contacts were prepared and extracted their contact parameters by applying thermionic emission and Cheung models. Remarkably, the tuning of Φ{sub B} was observed as a function of EBI dose. The improved n with increased Φ{sub B} is seen for all the EBI doses. As a consequence of which the thermionic emission is more favored. However, the competing transport mechanisms such as space charge limited emission, tunneling and tunneling through the trap states were ascribed due to n > 1. The analysis of XPS spectra have shown the presence of native oxide and increased radiation induced defect states. The thickness variation in the MS interface contributing to Schottky contact behavior is discussed. This study explains a new technique to tune

  17. Dynamics of modification of Ni/n-GaN Schottky barrier diodes irradiated at low temperature by 200 MeV Ag14+ ions

    International Nuclear Information System (INIS)

    Kumar, Ashish; Kumar, Tanuj; Kanjilal, D.; Hähnel, A.; Singh, R.

    2014-01-01

    Ni/GaN Schottky barrier diodes were irradiated with 200 MeV Ag ions up to fluence of 1 × 10 11 ions/cm 2 at the substrate temperature of 80 K. Post-irradiation current-voltage measurements showed that the ideality factor, n increased and the reverse leakage current, I R decreased with increase in fluence. But Schottky barrier height, ϕ b increased only marginally with increase in ion fluence. In situ resistivity measurements showed orders of magnitude increase in resistivity of GaN epitaxial film with irradiation fluence. Cross-sectional transmission electron microscopy images revealed the presence of defect clusters in bulk GaN after irradiation

  18. Magnetic field induced suppression of the forward bias current in Bi2Se3/Si Schottky barrier diodes

    Science.gov (United States)

    Jin, Haoming; Hebard, Arthur

    Schottky diodes formed by van der Waals bonding between freshly cleaved flakes of the topological insulator Bi2Se3 and doped silicon substrates show electrical characteristics in good agreement with thermionic emission theory. The motivation is to use magnetic fields to modulate the conductance of the topologically protected conducting surface state. This surface state in close proximity to the semiconductor surface may play an important role in determining the nature of the Schottky barrier. Current-voltage (I-V) and capacitance-voltage (C-V) characteristics were obtained for temperatures in the range 50-300 K and magnetic fields, both perpendicular and parallel to the interface, as high as 7 T. The I-V curve shows more than 6 decades linearity on semi-logarithmic plots, allowing extraction of parameters such as ideality (η), zero-voltage Schottky barrier height (SBH), and series resistance (Rs). In forward bias we observe a field-induced decrease in current which becomes increasingly more pronounced at higher voltages and lower temperature, and is found to be correlated with changes in Rs rather than other barrier parameters. A comparison of changes in Rs in both field direction will be made with magnetoresistance in Bi2Se3 transport measurement. The work is supported by NSF through DMR 1305783.

  19. Graphene Schottky diodes: An experimental review of the rectifying graphene/semiconductor heterojunction

    International Nuclear Information System (INIS)

    Di Bartolomeo, Antonio

    2016-01-01

    In the past decade graphene has been one of the most studied materials for several unique and excellent properties. Due to its two dimensional nature, physical and chemical properties and ease of manipulation, graphene offers the possibility of integration with the existing semiconductor technology for next-generation electronic and sensing devices. In this context, the understanding of the graphene/semiconductor interface is of great importance since it can constitute a versatile standalone device as well as the building-block of more advanced electronic systems. Since graphene was brought to the attention of the scientific community in 2004, the device research has been focused on the more complex graphene transistors, while the graphene/semiconductor junction, despite its importance, has started to be the subject of systematic investigation only recently. As a result, a thorough understanding of the physics and the potentialities of this device is still missing. The studies of the past few years have demonstrated that graphene can form junctions with 3D or 2D semiconducting materials which have rectifying characteristics and behave as excellent Schottky diodes. The main novelty of these devices is the tunable Schottky barrier height, a feature which makes the graphene/semiconductor junction a great platform for the study of interface transport mechanisms as well as for applications in photo-detection, high-speed communications, solar cells, chemical and biological sensing, etc. In this paper, we review the state-of-the art of the research on graphene/semiconductor junctions, the attempts towards a modeling and the most promising applications.

  20. A gate enhanced power U-shaped MOSFET integrated with a Schottky rectifier

    International Nuclear Information System (INIS)

    Wang Ying; Jiao Wen-Li; Hu Hai-Fan; Liu Yun-Tao; Cao Fei

    2012-01-01

    An accumulation gate enhanced power U-shaped metal-oxide-semiconductor field-effect-transistor (UMOSFET) integrated with a Schottky rectifier is proposed. In this device, a Schottky rectifier is integrated into each cell of the accumulation gate enhanced power UMOSFET. Specific on-resistances of 7.7 mΩ·mm 2 and 6.5 mΩ·mm 2 for the gate bias voltages of 5 V and 10 V are achieved, respectively, and the breakdown voltage is 61 V. The numerical simulation shows a 25% reduction in the reverse recovery time and about three orders of magnitude reduction in the leakage current as compared with the accumulation gate enhanced power UMOSFET. (condensed matter: structural, mechanical, and thermal properties)

  1. A new type photodiode: p-Si/GaN pn junction in series with GaN/Ag Schottky diode

    Energy Technology Data Exchange (ETDEWEB)

    Yakuphanoglu, F., E-mail: fyhanoglu@firat.edu.tr [Department of Physics, Faculty of Science, Firat University, Elazig (Turkey); Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia); Shokr, F.S. [Physics Department, Faculty of Science & Arts, King Abdulaziz University, Rabigh (Saudi Arabia); Gupta, R.K., E-mail: ramguptamsu@gmail.com [Department of Chemistry and Kansas Polymer Research Center, Pittsburg State University, Pittsburg (United States); Al-Ghamdi, Ahmed A. [Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia); Bin-Omran, S. [Department of Physics and Astronomy, College of Science, King Saud University, Riyadh (Saudi Arabia); Al-Turki, Yusuf [Department of Electrical and Computer Engineering, King Abdulaziz University, Jeddah (Saudi Arabia); El-Tantawy, Farid [Department of Physics, Faculty of Science, Suez Canal University, Ismailia (Egypt)

    2015-11-25

    Large quantities of gallium nitride (GaN) nanoparticles were successfully synthesized via a facile sol-gel approach. X-ray diffraction analysis confirms the polycrystalline nature of the GaN with hexagonal wurtzite structure and lattice constants a = 0.3189 nm and c = 0.5185 nm. The morphology of the GaN film was investigated by field emission scanning electron microscopy. The obtained results indicate that the synthesized GaN nanorods have an average length of around 60 nm and an average diameter of 23 nm. The optical band gap of the GaN film was obtained to be 3.4 eV. The gallium nitride/p-Si Schottky diode was fabricated by thermal evaporation technique on p-silicon. The current–voltage (I–V) characteristics of the fabricated diode was tested under dark and various light intensities. T The diode ideality factor and barrier height were computed using forward bias I–V characteristics of the diode and are found to be 1.66 and 0.53 eV, respectively. The obtained results suggest that the film preparation by sol gel method is fast and simple to prepare GaN based photodiode by according to metal organic deposition methods. - Highlights: • Facile method was used to synthesize GaN powder. • The Al/p-Si/GaN/Ag diode was fabricated using thermal evaporator technique. • Al/p-Si/GaN/Ag diode can be used as a photosensor for optoelectronic applications.

  2. On electrical and interfacial properties of iron and platinum Schottky barrier diodes on (111) n-type Si0.65Ge0.35

    Science.gov (United States)

    Hamri, D.; Teffahi, A.; Djeghlouf, A.; Chalabi, D.; Saidane, A.

    2018-04-01

    Current-voltage (I-V), capacitance-voltage-frequency (C-V-f) and conductance-voltage-frequency (G/ω-V-f) characteristics of Molecular Beam Epitaxy (MBE)-deposited Fe/n-Si0.65Ge0.35 (FM1) and Pt/n-Si0.65Ge0.35(PM2) (111) orientated Schottky barrier diodes (SBDs) have been investigated at room-temperature. Barrier height (ΦB0), ideality factor (n) and series resistance (RS) were extracted. Dominant current conduction mechanisms were determined. They revealed that Poole-Frenkel-type conduction mechanism dominated reverse current. Differences in shunt resistance confirmed the difference found in leakage current. Under forward bias, quasi-ohmic conduction is found at low voltage regions and space charge-limited conduction (SCLC) at higher voltage regions for both SBDs. Density of interface states (NSS) indicated a difference in interface reactivity. Distribution profiles of series resistance (RS) with bias gives a peak in depletion region at low-frequencies that disappears with increasing frequencies. These results show that interface states density and series resistance of Schottky diodes are important parameters that strongly influence electrical properties of FM1 and PM2 structures.

  3. High-voltage vertical GaN Schottky diode enabled by low-carbon metal-organic chemical vapor deposition growth

    Science.gov (United States)

    Cao, Y.; Chu, R.; Li, R.; Chen, M.; Chang, R.; Hughes, B.

    2016-02-01

    Vertical GaN Schottky barrier diode (SBD) structures were grown by metal-organic chemical vapor deposition on free-standing GaN substrates. The carbon doping effect on SBD performance was studied by adjusting the growth conditions and spanning the carbon doping concentration between ≤3 × 1015 cm-3 and 3 × 1019 cm-3. Using the optimized growth conditions that resulted in the lowest carbon incorporation, a vertical GaN SBD with a 6-μm drift layer was fabricated. A low turn-on voltage of 0.77 V with a breakdown voltage over 800 V was obtained from the device.

  4. Synthesis of Peripherally Tetrasubstituted Phthalocyanines and Their Applications in Schottky Barrier Diodes

    Directory of Open Access Journals (Sweden)

    Semih Gorduk

    2017-01-01

    Full Text Available New metal-free and metallophthalocyanine compounds (Zn, Co, Ni, and Cu were synthesized using 2-hydroxymethyl-1,4-benzodioxan and 4-nitrophthalonitrile compounds. All newly synthesized compounds were characterized by elemental analysis, FT-IR, UV-Vis, 1H-NMR, MALDI-TOF MS, and GC-MS techniques. The applications of synthesized compounds in Schottky barrier diodes were investigated. Ag/Pc/p–Si structures were fabricated and charge transport mechanism in these devices was investigated using dc technique. It was observed from the analysis of the experimental results that the charge transport can be described by Ohmic conduction at low values of the reverse bias. On the other hand, the voltage dependence of the measured current for high values of the applied reverse bias indicated that space charge limited conduction is the dominant mechanism responsible for dc conduction. From the observed voltage dependence of the current density under forward bias conditions, it has been concluded that the charge transport is dominated by Poole-Frenkel emission.

  5. Powering laser diode systems

    CERN Document Server

    Trestman, Grigoriy A

    2017-01-01

    This Tutorial Text discusses the competent design and skilled use of laser diode drivers (LDDs) and power supplies (PSs) for the electrical components of laser diode systems. It is intended to help power-electronic design engineers during the initial design stages: the choice of the best PS topology, the calculation of parameters and components of the PS circuit, and the computer simulation of the circuit. Readers who use laser diode systems for research, production, and other purposes will also benefit. The book will help readers avoid errors when creating laser systems from ready-made blocks, as well as understand the nature of the "mystical failures" of laser diodes (and possibly prevent them).

  6. Design of 340 GHz 2× and 4× Sub-Harmonic Mixers Using Schottky Barrier Diodes in Silicon-Based Technology

    Directory of Open Access Journals (Sweden)

    Chao Liu

    2015-05-01

    Full Text Available This paper presents the design of terahertz 2× and 4× sub-harmonic down-mixers using Schottky Barrier Diodes fabricated in standard 0.13 μm SiGe BiCMOS technology. The 340 GHz sub-harmonic mixers (SHMs are designed based on anti-parallel-diode-pairs (APDPs. With the 2nd and 4th harmonic, local oscillator (LO frequencies of 170 GHz and 85 GHz are used to pump the two 340 GHz SHMs. With LO power of 7 dBm, the 2× SHM exhibits a conversion loss of 34.5–37 dB in the lower band (320–340 GHz and 35.5–41 dB in the upper band (340–360 GHz; with LO power of 9 dBm, the 4× SHM exhibits a conversion loss of 39–43 dB in the lower band (320–340 GHz and 40–48 dB in the upper band (340–360 GHz. The measured input 1-dB conversion gain compression point for the 2× and 4× SHMs are −8 dBm and −10 dBm at 325 GHz, respectively. The simulated LO-IF (intermediate frequency isolation of the 2× SHM is 21.5 dB, and the measured LO-IF isolation of the 4× SHM is 32 dB. The chip areas of the 2× and 4× SHMs are 330 μm × 580 μm and 550 μm × 610 μm, respectively, including the testing pads.

  7. Modeling and analysis of power extraction circuits for passive UHF RFID applications

    International Nuclear Information System (INIS)

    Fan Bo; Dai Yujie; Zhang Xiaoxing; Lue Yingjie

    2009-01-01

    Modeling and analysis of far field power extraction circuits for passive UHF RF identification (RFID) applications are presented. A mathematical model is derived to predict the complex nonlinear performance of UHF voltage multiplier using Schottky diodes. To reduce the complexity of the proposed model, a simple linear approximation for Schottky diode is introduced. Measurement results show considerable agreement with the values calculated by the proposed model. With the derived model, optimization on stage number for voltage multiplier to achieve maximum power conversion efficiency is discussed. Furthermore, according to the Bode-Fano criterion and the proposed model, a limitation on maximum power up range for passive UHF RFID power extraction circuits is also studied.

  8. Powerful infrared emitting diodes

    Directory of Open Access Journals (Sweden)

    Kogan L. M.

    2012-02-01

    Full Text Available Powerful infrared LEDs with emission wavelength 805 ± 10, 870 ± 20 and 940 ± 10 nm developed at SPC OED "OPTEL" are presented in the article. The radiant intensity of beam diode is under 4 W/sr in the continuous mode and under 100 W/sr in the pulse mode. The radiation power of wide-angle LEDs reaches 1 W in continuous mode. The external quantum efficiency of emission IR diodes runs up to 30%. There also has been created infrared diode modules with a block of flat Fresnel lenses with radiant intensity under 70 W/sr.

  9. Schottky contacts to In2O3

    Directory of Open Access Journals (Sweden)

    H. von Wenckstern

    2014-04-01

    Full Text Available n-type binary compound semiconductors such as InN, InAs, or In2O3 are especial because the branch-point energy or charge neutrality level lies within the conduction band. Their tendency to form a surface electron accumulation layer prevents the formation of rectifying Schottky contacts. Utilizing a reactive sputtering process in an oxygen-containing atmosphere, we demonstrate Schottky barrier diodes on indium oxide thin films with rectifying properties being sufficient for space charge layer spectroscopy. Conventional non-reactive sputtering resulted in ohmic contacts. We compare the rectification of Pt, Pd, and Au Schottky contacts on In2O3 and discuss temperature-dependent current-voltage characteristics of Pt/In2O3 in detail. The results substantiate the picture of oxygen vacancies being the source of electrons accumulating at the surface, however, the position of the charge neutrality level and/or the prediction of Schottky barrier heights from it are questioned.

  10. Silicon Carbide Power Device Performance Under Heavy-Ion Irradiation

    Science.gov (United States)

    Lauenstein, Jean-Marie; Casey, Megan; Topper, Alyson; Wilcox, Edward; Phan, Anthony; Ikpe, Stanley; LaBel, Ken

    2015-01-01

    Heavy-ion induced degradation and catastrophic failure data for SiC power MOSFETs and Schottky diodes are examined to provide insight into the challenge of single-event effect hardening of SiC power devices.

  11. Effect of annealing temperature on electrical properties of Au/polyvinyl alcohol/n-InP Schottky barrier structure

    International Nuclear Information System (INIS)

    Reddy, V. Rajagopal; Reddy, M. Siva Pratap; Kumar, A. Ashok; Choi, Chel-Jong

    2012-01-01

    In the present work, thin film of polyvinyl alcohol (PVA) is fabricated on n-type InP substrate as an interfacial layer for electronic modification of Au/n-InP Schottky contact. The electrical characteristics of Au/PVA/n-InP Schottky diode are determined at annealing temperature in the range of 100–300 °C by current–voltage (I-V) and capacitance–voltage (C-V) methods. The Schottky barrier height and ideality factor (n) values of the as-deposited Au/PVA/n-InP diode are obtained at room temperature as 0.66 eV (I-V), 0.82 eV (C-V) and 1.32, respectively. Upon annealing at 200 °C in nitrogen atmosphere for 1 min, the barrier height value increases to 0.81 eV (I-V), 0.99 eV (C-V) and ideality factor decreases to 1.18. When the contact is annealed at 300 °C, the barrier height value decreases to 0.77 eV (I-V), 0.96 eV (C-V) and ideality factor increases to 1.22. It is observed that the interfacial layer of PVA increases the barrier height by the influence of the space charge region of the Au/n-InP Schottky junction. The discrepancy between Schottky barrier heights calculated from I-V and C-V measurements is also explained. Further, Cheung's functions are used to extract the series resistance of Au/PVA/n-InP Schottky diode. The interface state density as determined by Terman's method is found to be 1.04 × 10 12 and 0.59 × 10 12 cm −2 eV −1 for the as-deposited and 200 °C annealed Au/PVA/n-InP Schottky diodes. Finally, it is seen that the Schottky diode parameters changed with increase in the annealing temperature. - Highlights: ► Electrical properties of Au/polyvinyl alcohol (PVA)/n-InP structure have been studied. ► The Au/PVA/n-InP Schottky structure showed a good rectifying behavior. ► A maximum barrier height is obtained when the contact is annealed at 200 °C. ► Interface state density found to be 0.59 × 10 12 cm −2 eV −1 for 200 °C annealed contact. ► Significant effect of interface state density and series resistance on electrical

  12. Nitride-based Schottky diodes and HFETs fabricated by photo-enhanced chemical wet etching

    International Nuclear Information System (INIS)

    Su, Y.K.; Chang, S.J.; Kuan, T.M.; Ko, C.H.; Webb, J.B.; Lan, W.H.; Cherng, Y.T.; Chen, S.C.

    2004-01-01

    Photo-enhanced chemical (PEC) wet etching technology was used to etch GaN and AlGaN epitaxial layers. It was found that the maximum etch rates were 510, 1960, 300, and 0 nm/mm for GaN, Al 0.175 Ga 0.825 N, Al 0.23 Ga 0.77 N, and Al 0.4 Ga 0.6 N, respectively. It was also found that we could achieve a high Al 0.175 Ga 0.825 N to GaN etch rate ratio of 12.6. Nitride-based Schottky diodes and heterostructure field effect transistors (HFETs) were also fabricated by PEC wet etching. It was found that we could achieve a saturated I D larger than 850 mA/mm and a maximum g m about 163 mS/mm from PEC wet etched HFET with a 0.5 μm gate length. Compared with dry etched devices, the leakage currents observed from the PEC wet etched devices were also found to be smaller

  13. Current transport mechanisms in lattice-matched Pt/Au-InAlN/GaN Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Jian; Yan, Dawei, E-mail: daweiyan@jiangnan.edu.cn; Yang, Guofeng; Wang, Fuxue; Xiao, Shaoqing; Gu, Xiaofeng [Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122 (China)

    2015-04-21

    Lattice-matched Pt/Au-In{sub 0.17}Al{sub 0.83}N/GaN hetreojunction Schottky diodes with circular planar structure have been fabricated and investigated by temperature dependent electrical measurements. The forward and reverse current transport mechanisms are analyzed by fitting the experimental current-voltage characteristics of the devices with various models. The results show that (1) the forward-low-bias current is mainly due to the multiple trap-assisted tunneling, while the forward-high-bias current is governed by the thermionic emission mechanism with a significant series resistance effect; (2) the reverse leakage current under low electric fields (<6 MV/cm) is mainly carried by the Frenkel-Poole emission electrons, while at higher fields the Fowler-Nordheim tunneling mechanism dominates due to the formation of a triangular barrier.

  14. GaN Schottky diodes with single-crystal aluminum barriers grown by plasma-assisted molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, H. Y.; Yang, W. C.; Lee, P. Y.; Lin, C. W.; Cheng, Kai-Yuan; Hsieh, K. C.; Cheng, K. Y., E-mail: kycheng@ee.nthu.edu.tw [Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Hsu, C.-H. [Division of Scientific Research, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan (China)

    2016-08-22

    GaN-based Schottky barrier diodes (SBDs) with single-crystal Al barriers grown by plasma-assisted molecular beam epitaxy are fabricated. Examined using in-situ reflection high-energy electron diffractions, ex-situ high-resolution x-ray diffractions, and high-resolution transmission electron microscopy, it is determined that epitaxial Al grows with its [111] axis coincident with the [0001] axis of the GaN substrate without rotation. In fabricated SBDs, a 0.2 V barrier height enhancement and 2 orders of magnitude reduction in leakage current are observed in single crystal Al/GaN SBDs compared to conventional thermal deposited Al/GaN SBDs. The strain induced piezoelectric field is determined to be the major source of the observed device performance enhancements.

  15. Design consideration of high voltage Ga2O3 vertical Schottky barrier diode with field plate

    Science.gov (United States)

    Choi, J.-H.; Cho, C.-H.; Cha, H.-Y.

    2018-06-01

    Gallium oxide (Ga2O3) based vertical Schottky barrier diodes (SBDs) were designed for high voltage switching applications. Since p-type Ga2O3 epitaxy growth or p-type ion implantation technique has not been developed yet, a field plate structure was employed in this study to maximize the breakdown voltage by suppressing the electric field at the anode edge. TCAD simulation was used for the physical analysis of Ga2O3 SBDs from which it was found that careful attention must be paid to the insulator under the field plate. Due to the extremely high breakdown field property of Ga2O3, an insulator with both high permittivity and high breakdown field must be used for the field plate formation.

  16. A new route for the synthesis of graphene oxide–Fe3O4 (GO–Fe3O4) nanocomposites and their Schottky diode applications

    International Nuclear Information System (INIS)

    Metin, Önder; Aydoğan, Şakir; Meral, Kadem

    2014-01-01

    Highlights: • Graphene Oxide (GO)–Fe 3 O 4 nanocomposites were prepared by a novel and facile method. • The successful assembly of Fe 3 O 4 NPs onto GO sheets was displayed by TEM. • The GO–Fe 3 O 4 nanocomposites/p-Si junction showed good rectifying property. -- Abstract: Addressed herein is a facile method for the preparation of magnetic graphene oxide–Fe 3 O 4 (GO–Fe 3 O 4 ) nanocomposites and the rectifying properties of (GO–Fe 3 O 4 )/p-Si junction in a Schottky diode. GO–Fe 3 O 4 nanocomposites were prepared by a novel method in which as-prepared GO sheets were decorated with the monodisperse Fe 3 O 4 nanoparticles (NPs) in dimethylformamide/chloroform mixture via a sonication process. The successful assembly of Fe 3 O 4 NPs onto GO sheets was displayed by transmission electron microscopy (TEM). Inductively couple plasma optical emission spectroscopy (ICP-OES) analysis of the GO–Fe 3 O 4 nanocomposite showed that the nanocomposite consists of 20.1 wt% Fe 3 O 4 NPs which provides a specific saturation magnetization (Ms) as 16 emu/g. The current–voltage (I–V) characteristics of the (GO–Fe 3 O 4 )/p-Si junction in a Schottky diode were studied in the temperature range of 50–350 K in the steps of 25 K. It was determined that the barrier height and ideality factor of the Au/GO–Fe 3 O 4 /p-Si/Al Schottky diode were depended on temperature as the barrier height increased while the ideality factor decreased with increasing temperature. The experimental values of barrier height and ideality factor were varied from 0.12 eV and 11.24 at 50 K to 0.76 eV and 2.49 at 350 K, respectively. The Richardson plot exhibited non-linearity at low temperatures that was attributed to the barrier inhomogeneities prevailing at the GO–Fe 3 O 4 /p-Si junction

  17. Microwave-signal generation in a planar Gunn diode with radiation exposure taken into account

    Energy Technology Data Exchange (ETDEWEB)

    Obolenskaya, E. S., E-mail: bess009@mail.ru, E-mail: obolensk@rf.unn.ru; Tarasova, E. A.; Churin, A. Yu.; Obolensky, S. V. [Lobachevsky State University of Nizhny Novgorod (NNSU) (Russian Federation); Kozlov, V. A. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation)

    2016-12-15

    Microwave-signal generation in planar Gunn diodes with a two-dimensional electron gas, in which we previously studied steady-state electron transport, is theoretically studied. The applicability of a control electrode similar to a field-effect transistor gate to control the parameters of the output diode microwave signal is considered. The results of physical-topological modeling of semiconductor structures with different diode active-region structures, i.e., without a quantum well, with one and two quantum wells separated by a potential barrier, are compared. The calculated results are compared with our previous experimental data on recording Gunn generation in a Schottky-gate field-effect transistor. It is theoretically and experimentally shown that the power of the signal generated by the planar Gunn diode with a quantum well and a control electrode is sufficient to implement monolithic integrated circuits of different functionalities. It is theoretically and experimentally shown that the use of a control electrode on account of the introduction of corrective feedback allows a significant increase in the radiation resistance of a microwave generator with Schottky-gate field-effect transistors.

  18. Microwave-signal generation in a planar Gunn diode with radiation exposure taken into account

    International Nuclear Information System (INIS)

    Obolenskaya, E. S.; Tarasova, E. A.; Churin, A. Yu.; Obolensky, S. V.; Kozlov, V. A.

    2016-01-01

    Microwave-signal generation in planar Gunn diodes with a two-dimensional electron gas, in which we previously studied steady-state electron transport, is theoretically studied. The applicability of a control electrode similar to a field-effect transistor gate to control the parameters of the output diode microwave signal is considered. The results of physical-topological modeling of semiconductor structures with different diode active-region structures, i.e., without a quantum well, with one and two quantum wells separated by a potential barrier, are compared. The calculated results are compared with our previous experimental data on recording Gunn generation in a Schottky-gate field-effect transistor. It is theoretically and experimentally shown that the power of the signal generated by the planar Gunn diode with a quantum well and a control electrode is sufficient to implement monolithic integrated circuits of different functionalities. It is theoretically and experimentally shown that the use of a control electrode on account of the introduction of corrective feedback allows a significant increase in the radiation resistance of a microwave generator with Schottky-gate field-effect transistors.

  19. Schottky barrier height measurements of Cu/Si(001), Ag/Si(001), and Au/Si(001) interfaces utilizing ballistic electron emission microscopy and ballistic hole emission microscopy

    International Nuclear Information System (INIS)

    Balsano, Robert; Matsubayashi, Akitomo; LaBella, Vincent P.

    2013-01-01

    The Schottky barrier heights of both n and p doped Cu/Si(001), Ag/Si(001), and Au/Si(001) diodes were measured using ballistic electron emission microscopy and ballistic hole emission microscopy (BHEM), respectively. Measurements using both forward and reverse ballistic electron emission microscopy (BEEM) and (BHEM) injection conditions were performed. The Schottky barrier heights were found by fitting to a linearization of the power law form of the Bell-Kaiser BEEM model. The sum of the n-type and p-type barrier heights are in good agreement with the band gap of silicon and independent of the metal utilized. The Schottky barrier heights are found to be below the region of best fit for the power law form of the BK model, demonstrating its region of validity

  20. Spectrally dependent photovoltages in Schottky photodiode based on (100) B-doped diamond

    Science.gov (United States)

    Čermák, Jan; Koide, Yasuo; Takeuchi, Daisuke; Rezek, Bohuslav

    2014-02-01

    Spectrally and spatially resolved photovoltages were measured by Kelvin probe force microscopy (KPFM) on a Schottky photo-diode made of a 4 nm thin tungsten-carbide (WC) layer on a 500 nm oxygen-terminated boron-doped diamond epitaxial layer (O-BDD) that was grown on a Ib (100) diamond substrate. The diode was grounded by the sideways ohmic contact (Ti/WC), and the semitransparent Schottky contact was let unconnected. The electrical potentials across the device were measured in dark (only 650 nm LED of KPFM being on), under broad-band white light (halogen lamp), UV (365 nm diode), and deep ultraviolet (deuterium lamp) illumination. Illumination induced shift of the electrical potential remains within 210 mV. We propose that the photovoltage actually corresponds to a shift of Fermi level inside the BDD channel and thereby explains orders of magnitude changes in photocurrent.

  1. High power diode pumped solid state lasers

    International Nuclear Information System (INIS)

    Solarz, R.; Albrecht, G.; Beach, R.; Comaskey, B.

    1992-01-01

    Although operational for over twenty years, diode pumped solid state lasers have, for most of their existence, been limited to individual diodes pumping a tiny volume of active medium in an end pumped configuration. More recent years have witnessed the appearance of diode bars, packing around 100 diodes in a 1 cm bar which have enabled end and side pumped small solid state lasers at the few Watt level of output. This paper describes the subsequent development of how proper cooling and stacking of bars enables the fabrication of multi kill average power diode pump arrays with irradiances of 1 kw/cm peak and 250 W/cm 2 average pump power. Since typical conversion efficiencies from the diode light to the pumped laser output light are of order 30% or more, kW average power diode pumped solid state lasers now are possible

  2. γ-rays irradiation effects on dielectric properties of Ti/Au/GaAsN Schottky diodes with 1.2%N

    Science.gov (United States)

    Teffahi, A.; Hamri, D.; Djeghlouf, A.; Abboun Abid, M.; Saidane, A.; Al Saqri, N.; Felix, J. F.; Henini, M.

    2018-06-01

    Dielectric properties of As grown and irradiated Ti /Au/GaAsN Schottky diodes with 1.2%N are investigated using capacitance/conductance-voltage measurements in 90-290 K temperature range and 50-2000 kHz frequency range. Extracted parameters are interface state density, series resistance, dielectric constant, dielectric loss, tangent loss and ac conductivity. It is shown that exposure to γ-rays irradiation leads to reduction in effective trap density believed to result from radiation-induced traps annulations. An increase in series resistance is attributed to a net doping reduction. Dielectric constant (ε') shows usual step-like transitions with corresponding relaxation peaks in dielectric loss. These peaks shift towards lower temperature as frequency decrease. Temperature dependant ac conductivity followed an Arrhenius relation with activation energy of 153 meV in the 200-290 K temperature range witch correspond to As vacancy. The results indicate that γ-rays irradiation improves the dielectric and electrical properties of the diode due to the defect annealing effect.

  3. Initial leakage current paths in the vertical-type GaN-on-GaN Schottky barrier diodes

    Science.gov (United States)

    Sang, Liwen; Ren, Bing; Sumiya, Masatomo; Liao, Meiyong; Koide, Yasuo; Tanaka, Atsushi; Cho, Yujin; Harada, Yoshitomo; Nabatame, Toshihide; Sekiguchi, Takashi; Usami, Shigeyoshi; Honda, Yoshio; Amano, Hiroshi

    2017-09-01

    Electrical characteristics of leakage current paths in vertical-type n-GaN Schottky barrier diodes (SBDs) on free-standing GaN substrates are investigated by using photon emission microscopy (PEM). The PEM mapping shows that the initial failure of the SBD devices at low voltages is due to the leakage current paths from polygonal pits in the GaN epilayers. It is observed that these polygonal pits originate from carbon impurity accumulation to the dislocations with a screw-type component by microstructure analysis. For the SBD without polygonal pits, no initial failure is observed and the first leakage appeals at the edge of electrodes as a result of electric field concentration. The mechanism of leakage at pits is explained in terms of trap assisted tunneling through fitting current-voltage characteristics.

  4. Spectrally dependent photovoltages in Schottky photodiode based on (100) B-doped diamond

    International Nuclear Information System (INIS)

    Čermák, Jan; Rezek, Bohuslav; Koide, Yasuo; Takeuchi, Daisuke

    2014-01-01

    Spectrally and spatially resolved photovoltages were measured by Kelvin probe force microscopy (KPFM) on a Schottky photo-diode made of a 4 nm thin tungsten-carbide (WC) layer on a 500 nm oxygen-terminated boron-doped diamond epitaxial layer (O-BDD) that was grown on a Ib (100) diamond substrate. The diode was grounded by the sideways ohmic contact (Ti/WC), and the semitransparent Schottky contact was let unconnected. The electrical potentials across the device were measured in dark (only 650 nm LED of KPFM being on), under broad-band white light (halogen lamp), UV (365 nm diode), and deep ultraviolet (deuterium lamp) illumination. Illumination induced shift of the electrical potential remains within 210 mV. We propose that the photovoltage actually corresponds to a shift of Fermi level inside the BDD channel and thereby explains orders of magnitude changes in photocurrent

  5. Spectrally dependent photovoltages in Schottky photodiode based on (100) B-doped diamond

    Energy Technology Data Exchange (ETDEWEB)

    Čermák, Jan, E-mail: cermakj@fzu.cz; Rezek, Bohuslav [Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnická 10, 16200 Prague 6 (Czech Republic); Koide, Yasuo [Sensor Materials Center, National Institute for Material Science (NIMS), 1-1 Namiki, Tsukuba 305-0044 (Japan); Takeuchi, Daisuke [Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba 305-8568 (Japan)

    2014-02-07

    Spectrally and spatially resolved photovoltages were measured by Kelvin probe force microscopy (KPFM) on a Schottky photo-diode made of a 4 nm thin tungsten-carbide (WC) layer on a 500 nm oxygen-terminated boron-doped diamond epitaxial layer (O-BDD) that was grown on a Ib (100) diamond substrate. The diode was grounded by the sideways ohmic contact (Ti/WC), and the semitransparent Schottky contact was let unconnected. The electrical potentials across the device were measured in dark (only 650 nm LED of KPFM being on), under broad-band white light (halogen lamp), UV (365 nm diode), and deep ultraviolet (deuterium lamp) illumination. Illumination induced shift of the electrical potential remains within 210 mV. We propose that the photovoltage actually corresponds to a shift of Fermi level inside the BDD channel and thereby explains orders of magnitude changes in photocurrent.

  6. Optimization of chemical structure of Schottky-type selection diode for crossbar resistive memory.

    Science.gov (United States)

    Kim, Gun Hwan; Lee, Jong Ho; Jeon, Woojin; Song, Seul Ji; Seok, Jun Yeong; Yoon, Jung Ho; Yoon, Kyung Jean; Park, Tae Joo; Hwang, Cheol Seong

    2012-10-24

    The electrical performances of Pt/TiO(2)/Ti/Pt stacked Schottky-type diode (SD) was systematically examined, and this performance is dependent on the chemical structures of the each layer and their interfaces. The Ti layers containing a tolerable amount of oxygen showed metallic electrical conduction characteristics, which was confirmed by sheet resistance measurement with elevating the temperature, transmission line measurement (TLM), and Auger electron spectroscopy (AES) analysis. However, the chemical structure of SD stack and resulting electrical properties were crucially affected by the dissolved oxygen concentration in the Ti layers. The lower oxidation potential of the Ti layer with initially higher oxygen concentration suppressed the oxygen deficiency of the overlying TiO(2) layer induced by consumption of the oxygen from TiO(2) layer. This structure results in the lower reverse current of SDs without significant degradation of forward-state current. Conductive atomic force microscopy (CAFM) analysis showed the current conduction through the local conduction paths in the presented SDs, which guarantees a sufficient forward-current density as a selection device for highly integrated crossbar array resistive memory.

  7. Photocurrent characteristics of metal–AlGaN/GaN Schottky-on-heterojunction diodes induced by GaN interband excitation

    Science.gov (United States)

    Tang, Xi; Li, Baikui; Chen, Kevin J.; Wang, Jiannong

    2018-05-01

    The photocurrent characteristics of metal–AlGaN/GaN Schottky-on-heterojunction diodes were investigated. When the photon energy of incident light was larger than the bandgap of GaN but smaller than that of AlGaN, the alternating-current (ac) photocurrent measured using lock-in techniques increased with the chopper frequency. Analyzing the generation and flow processes of photocarriers revealed that the photocurrent induced by GaN interband excitation featured a transient behavior, and its direction reversed when the light excitation was removed. The abnormal dependence of the measured ac photocurrent magnitude on the chopper frequency was explained considering the detection principles of a lock-in amplifier.

  8. Effects of post-growth annealing on InGaAs quantum posts embedded in Schottky diodes

    International Nuclear Information System (INIS)

    Schramm, A; Polojärvi, V; Hakkarainen, T V; Tukiainen, A; Guina, M

    2011-01-01

    We study effects of rapid thermal annealing on photoluminescence and electron confinement of InGaAs quantum posts by means of photoluminescence experiments and capacitance–voltage spectroscopy. The quantum posts are embedded in n-type Schottky diodes grown by molecular beam epitaxy on GaAs(1 0 0). The observed photoluminescence spectra arise from the quantum posts as well as from a contribution of a wetting-layer superlattice. With increasing annealing temperatures, the quantum-post photoluminescence blueshifts toward the wetting-layer superlattice, and upon the highest annealing step, the wetting-layer superlattice luminescence dominates. In capacitance–voltage experiments, we clearly observe a charge accumulation in the quantum-post layer as well as from the wetting-layer superlattice. Capacitance–voltage spectra and carrier-density profiles only experience slight changes upon annealing treatments. We suggest that the main electron accumulation takes place in the wetting-layer superlattice

  9. Silicon Schottky photovoltaic diodes for solar energy conversion

    Science.gov (United States)

    Anderson, W. A.

    1975-01-01

    Various factors in Schottky barrier solar cell fabrication are evaluated in order to improve understanding of the current flow mechanism and to isolate processing variables that improve efficiency. Results of finger design, substrate resistivity, surface finishing and activation energy studies are detailed. An increased fill factor was obtained by baking of the vacuum system to remove moisture.

  10. Investigation of the Electrical Characteristics of Al/p-Si/Al Schottky Diode

    International Nuclear Information System (INIS)

    Şenarslan, Elvan; Güzeldir, Betül; Sağlam, Mustafa

    2016-01-01

    In this study, p-type Si semiconductor wafer with (100) orientation, 400 μm thickness and 1-10 Ω cm resistivity was used. The Si wafer before making contacts were chemically cleaned with the Si cleaning procedure which for remove organic contaminations were ultrasonically cleaned at acetone and methanol for 10 min respectively and then rinsed in deionized water of 18 MΩ and dried with high purity N 2 . Then respectively RCA1(i.e., boiling in NH 3 +H 2 O 2 +6H 2 O for 10 min at 60°C ), RCA2 (i.e., boiling in HCl+H 2 O 2 +6H 2 O for 10 min at 60°C ) cleaning procedures were applied and rinsed in deionized water followed by drying with a stream of N 2 . After the cleaning process, the wafer is immediately inserted in to the coating unit. Ohmic contact was made by evaporating of Al on the non-polished side of the p-Si wafer pieces under ∼ 4,2 10 -6 Torr pressure. After process evaporation, p-Si with omic contac thermally annealed 580°C for 3 min in a quartz tube furnace in N 2 . Then, the rectifier contact is made by evaporation Al metal diameter of about 1.0 mm on the polished surface of p-Si in turbo molecular pump at about ∼ 1 10 -6 Torr. Consequently, Al/p-Si/Al Schottky diode was obtained. The I–V measurements of this diode performed by the use of a KEITLEY 487 Picoammeter/Voltage Source and the C–V measurements were performed with HP 4192A (50–13 MHz) LF Impedance Analyzer at room temperature and in dark. (paper)

  11. Investigation of the Electrical Characteristics of Al/p-Si/Al Schottky Diode

    Science.gov (United States)

    Şenarslan, Elvan; Güzeldir, Betül; Sağlam, Mustafa

    2016-04-01

    In this study, p-type Si semiconductor wafer with (100) orientation, 400 μm thickness and 1-10 Ω cm resistivity was used. The Si wafer before making contacts were chemically cleaned with the Si cleaning procedure which for remove organic contaminations were ultrasonically cleaned at acetone and methanol for 10 min respectively and then rinsed in deionized water of 18 MΩ and dried with high purity N2. Then respectively RCA1(i.e., boiling in NH3+H2O2+6H2O for 10 min at 60°C ), RCA2 (i.e., boiling in HCl+H2O2+6H2O for 10 min at 60°C ) cleaning procedures were applied and rinsed in deionized water followed by drying with a stream of N2. After the cleaning process, the wafer is immediately inserted in to the coating unit. Ohmic contact was made by evaporating of Al on the non-polished side of the p-Si wafer pieces under ~ 4,2 10-6 Torr pressure. After process evaporation, p-Si with omic contac thermally annealed 580°C for 3 min in a quartz tube furnace in N2. Then, the rectifier contact is made by evaporation Al metal diameter of about 1.0 mm on the polished surface of p-Si in turbo molecular pump at about ~ 1 10-6 Torr. Consequently, Al/p-Si/Al Schottky diode was obtained. The I-V measurements of this diode performed by the use of a KEITLEY 487 Picoammeter/Voltage Source and the C-V measurements were performed with HP 4192A (50-13 MHz) LF Impedance Analyzer at room temperature and in dark.

  12. The distribution of the barrier height in Al–TiW–Pd2Si/n-Si Schottky diodes from I–V–T measurements

    International Nuclear Information System (INIS)

    Dökme, Ilbilge; Altındal, Şemsettin; Afandiyeva, Izzet M

    2008-01-01

    The forward and reverse bias current–voltage (I–V) characteristics of Al–TiW–Pd 2 Si/n-Si Schottky barrier diodes (SBDs) were measured in the temperature range of 300–400 K. The estimated zero-bias barrier height Φ B0 and the ideality factor n assuming thermionic emission (TE) theory show a strong temperature dependence. While n decreases, Φ B0 increases with increasing temperature. The Richardson plot is found to be linear in the temperature range measured, but the activation energy value of 0.378 eV and the Richardson constant (A*) value of 15.51 A cm −2 K −2 obtained in this plot are much lower than the known values. Such behavior is attributed to Schottky barrier inhomogeneities by assuming a Gaussian distribution of barrier heights (BHs) due to BH inhomogeneities that prevail at the interface. Also, the Φ B0 versus q/2kT plot was drawn to obtain evidence of a Gaussian distribution of the BHs, and Φ B0 = 0.535 eV and σ 0 = 0.069 V for the mean BH and zero-bias standard deviation, respectively, have been obtained from this plot. Thus, the modified ln(I 0 /T 2 ) − q 2 σ 2 0 /2k 2 T 2 versus q/kT plot gives Φ B0 and A* as 0.510 eV and 121.96 A cm −2 K −2 , respectively. This value of the Richardson constant 121.96 A cm −2 K −2 is very close to the theoretical value of 120 A K −2 cm −2 for n-type Si. Hence, it has been concluded that the temperature dependence of the forward I–V characteristics of the Al–TiW–Pd 2 Si/n-Si Schottky barrier diodes can be successfully explained on the basis of a thermionic emission mechanism with a Gaussian distribution of the BHs

  13. Schottky contact analysis of photovoltaic chalcopyrite thin film absorbers

    International Nuclear Information System (INIS)

    Schlenker, E.; Mertens, V.; Parisi, J.; Reineke-Koch, R.; Koentges, M.

    2007-01-01

    Current-voltage and capacitance-voltage measurements serve to analyze thermally evaporated Al Schottky contacts on Cu(In, Ga)Se 2 based photovoltaic thin film devices, either taken as grown or etched in a bromine-methanol solution. The characteristics of the Schottky contacts on the as-grown films give evidence for some dielectric layer developing between the metal and the semiconductor. Etching the semiconductor surface prior to evaporation of the Al front contact yields a pure metal-semiconductor behavior, including effects that can be attributed to an additional diode at the Mo contact. Simulations confirm the experimental results

  14. Effects of 5.4 MeV alpha-particle irradiation on the electrical properties of nickel Schottky diodes on 4H–SiC

    Energy Technology Data Exchange (ETDEWEB)

    Omotoso, E. [Department of Physics, University of Pretoria, Private Bag X20, Hatfield 0028 (South Africa); Department of Physics, Obafemi Awolowo University, Ile-Ife 220005 (Nigeria); Meyer, W.E.; Auret, F.D.; Paradzah, A.T.; Diale, M.; Coelho, S.M.M.; Janse van Rensburg, P.J.; Ngoepe, P.N.M. [Department of Physics, University of Pretoria, Private Bag X20, Hatfield 0028 (South Africa)

    2015-12-15

    Current–voltage, capacitance–voltage and conventional deep level transient spectroscopy at temperature ranges from 40 to 300 K have been employed to study the influence of alpha-particle irradiation from an {sup 241}Am source on Ni/4H–SiC Schottky contacts. The nickel Schottky barrier diodes were resistively evaporated on n-type 4H–SiC samples of doping density of 7.1 × 10{sup 15} cm{sup −3}. It was observed that radiation damage caused an increase in ideality factors of the samples from 1.04 to 1.07, an increase in Schottky barrier height from 1.25 to 1.31 eV, an increase in series resistance from 48 to 270 Ω but a decrease in saturation current density from 55 to 9 × 10{sup −12} A m{sup −2} from I–V plots at 300 K. The free carrier concentration of the sample decreased slightly after irradiation. Conventional DLTS showed peaks due to four deep levels for as-grown and five deep levels after irradiation. The Richardson constant, as determined from a modified Richardson plot assuming a Gaussian distribution of barrier heights for the as-grown and irradiated samples were 133 and 151 A cm{sup −2} K{sup −2}, respectively. These values are similar to literature values.

  15. High power diode lasers converted to the visible

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Hansen, Anders Kragh; Andersen, Peter E.

    2017-01-01

    High power diode lasers have in recent years become available in many wavelength regions. However, some spectral regions are not well covered. In particular, the visible spectral range is lacking high power diode lasers with good spatial quality. In this paper, we highlight some of our recent...... results in nonlinear frequency conversion of high power near infrared diode lasers to the visible spectral region....

  16. Contribution to the study of rectification at the metal-semiconductor contact: analysis of aging in silicon Schottky diodes

    International Nuclear Information System (INIS)

    Ponpon, J.-P.

    1979-01-01

    The formation of the barrier height and the aging of metal-semiconductor contacts during exposure to air have been studied. The evolution of the electrical characteristics, especially the barrier height, of silicon Schottky diodes results from the diffusion of oxygen through the electrode and its accumulation at the interface. The diffusion coefficient of oxygen has been deduced for each metal used. In a first step the oxygen neutralize a fixed positive charge which remains at the semiconductor surface after etching; then, as silicon is oxidized, a MIS device is formed. Similar results have been obtained in the case of germanium, while no aging appears with cadmium telluride. In this case the barrier height seems to be determined by chemical reactions at the interface [fr

  17. Schottky spectra and crystalline beams

    International Nuclear Information System (INIS)

    Pestrikov, D.V.

    1996-01-01

    In this paper we revise the current dependence of the Schottky noise power of a cooled proton beam previously measured at NAP-M. More careful study of experimental data indicates a linear decrease in the inverse Schottky noise power with an increase in the beam intensity (N). The root of this function determines a threshold current which occurs at N = N th ≅1.2 x 10 8 particles. The inspection of measured Schottky spectra shows that this threshold does not correspond to some collective instability of the measured harmonic of the linear beam density. The found value of N th does not depend on the longitudinal beam temperature. For the case of NAP-M lattice, the study of the spectral properties of the Schottky noise in the crystalline string predicts the current dependence of the equilibrium momentum spread of the beam, which qualitatively agrees with that, recalculated from the NAP-M data. (orig.)

  18. Optical pumping of deep traps in AlGaN/GaN-on-Si HEMTs using an on-chip Schottky-on-heterojunction light-emitting diode

    International Nuclear Information System (INIS)

    Li, Baikui; Tang, Xi; Chen, Kevin J.

    2015-01-01

    In this work, by using an on-chip integrated Schottky-on-heterojunction light-emitting diode (SoH-LED) which is seamlessly integrated with the AlGaN/GaN high electron mobility transistor (HEMT), we studied the effect of on-chip light illumination on the de-trapping processes of electrons from both surface and bulk traps. Surface trapping was generated by applying OFF-state drain bias stress, while bulk trapping was generated by applying positive substrate bias stress. The de-trapping processes of surface and/or bulk traps were monitored by measuring the recovery of dynamic on-resistance R on and/or threshold voltage V th of the HEMT. The results show that the recovery processes of both dynamic R on and threshold voltage V th of the HEMT can be accelerated by the on-chip SoH-LED light illumination, demonstrating the potentiality of on-chip hybrid opto-HEMTs to minimize the influences of traps during dynamic operation of AlGaN/GaN power HEMTs

  19. Self-assembled H-aggregation induced high performance poly (3-hexylthiophene) Schottky diode

    Science.gov (United States)

    Chaudhary, Vivek; Pandey, Rajiv K.; Prakash, Rajiv; Singh, Arun Kumar

    2017-12-01

    The investigation of size confinement and chain orientation within the microstructure of a polymer thin film is very important for electronic device applications and fundamental research. Here, we present single step methodology for the synthesis of solution-processable poly (3-hexylthiophene) (P3HT) nanofibers via a self-assembly process. The formation of P3HT nanofibers is confirmed by atomic force microscopy. The synthesized nanofibers are characterized by UV-visible absorption, photoluminescence, and Raman spectroscopy. The aggregation type of self-assembled P3HT is studied by both UV-visible absorbance and photoluminescence spectroscopy. The exciton bandwidth in polymer films is calculated by following the Spano's H-aggregate model and found to be 28 meV. Raman spectroscopy is used to identify the various stretching modes present in nanofibers. The structural investigation using grazing angle X-ray diffraction of nanofibers reveals the presence of alkyl chain ordering. We have fabricated organic Schottky diodes with P3HT nanofibers on indium tin oxide (ITO) coated glass with configuration Al/P3HT/ITO, and current density-voltage characteristics are subsequently used for extracting the electronic parameters of the device. We have also discussed the charge transport mechanism at the metal/polymer interface.

  20. High Power High Efficiency Diode Laser Stack for Processing

    Science.gov (United States)

    Gu, Yuanyuan; Lu, Hui; Fu, Yueming; Cui, Yan

    2018-03-01

    High-power diode lasers based on GaAs semiconductor bars are well established as reliable and highly efficient laser sources. As diode laser is simple in structure, small size, longer life expectancy with the advantages of low prices, it is widely used in the industry processing, such as heat treating, welding, hardening, cladding and so on. Respectively, diode laser could make it possible to establish the practical application because of rectangular beam patterns which are suitable to make fine bead with less power. At this power level, it can have many important applications, such as surgery, welding of polymers, soldering, coatings and surface treatment of metals. But there are some applications, which require much higher power and brightness, e.g. hardening, key hole welding, cutting and metal welding. In addition, High power diode lasers in the military field also have important applications. So all developed countries have attached great importance to high-power diode laser system and its applications. This is mainly due their low performance. In this paper we will introduce the structure and the principle of the high power diode stack.

  1. SCHOTTKY MEASUREMENTS DURING RHIC 2000

    International Nuclear Information System (INIS)

    CAMERON, P.; CUPOLO, J.; DEGEN, C.; HAMMONS, L.; KESSELMAN, M.; LEE, R.; MEYER, A.; SIKORA, R.

    2001-01-01

    The 2GHz Schottky system was a powerful diagnostic during RHIC 2000 commissioning. A continuous monitor without beam excitation, it provided betatron tune, chromaticity, momentum spread relative emittance, and synchrotron tune. It was particularly useful during transition studies. In addition, a BPM was resonated at 230MHz for Schottky measurements

  2. Destructive Single-Event Effects in Diodes

    Science.gov (United States)

    Casey, Megan C.; Lauenstein, Jean-Marie; Campola, Michael J.; Wilcox, Edward P.; Phan, Anthony M.; Label, Kenneth A.

    2017-01-01

    In this work, we discuss the observed single-event effects in a variety of types of diodes. In addition, we conduct failure analysis on several Schottky diodes that were heavy-ion irradiated. High- and low-magnitude optical microscope images, infrared camera images, and scanning electron microscope images are used to identify and describe the failure locations.

  3. Semiconductor laser diodes and the design of a D.C. powered laser diode drive unit

    OpenAIRE

    Cappuccio, Joseph C., Jr.

    1988-01-01

    Approved for public release; distribution is unlimited This thesis addresses the design, development and operational analysis of a D.C. powered semiconductor laser diode drive unit. A laser diode requires an extremely stable power supply since a picosecond spike of current or power supply switching transient could result in permanent damage. The design offers stability and various features for operational protection of the laser diode. The ability to intensity modulate (analog) and pulse m...

  4. Fabrication, characterization and simulation of 4H-SiC Schottky diode alpha particle detectors for pyroprocessing actinide monitoring

    Science.gov (United States)

    Garcia, Timothy Richard

    Pyroprocessing is a method of using high-temperature molten salts and electric fields to separate and collect fuel isotopes of used nuclear fuel. It has been has been tested in the U.S. at Idaho National Laboratory as a key step in closing the nuclear fuel cycle. One technical problem with the pyroprocessing method is a lack of knowledge regarding the actinide concentrations in the salt bath during operation, since on-line techniques for measuring these concentrations are not presently available. 4H-SiC Schottky diode detectors can potentially fulfill this need. Such detectors would operate in contact with the molten salt, and measure concentrations via alpha-particle spectroscopy. This work seeks to fabricate and characterize 4H-SiC Schottky diode detectors at high temperature, model the alpha particle spectrum expected in a molten salt, and model the operation of the detectors to confirm the physics of operation is as expected. In this work, 4H-SiC Schottky diode detectors were fabricated at OSU Nanotech West. After fabrication, these detectors were characterized using both I-V curves and Am-241 alpha-particle energy spectra. All measurements were made as a function of temperature, from room temperature up to 500°C. The average energy required to create an electron-hole pair was observed to decrease with an increase of temperature, due to a decrease of both the 4H-SiC bandgap and non-linear energy loss terms. Furthermore, the FWHM of the spectra was observed to be dependent on the leakage current at a certain temperature, and not dependent on the temperature itself. Secondly, the alpha particle energy spectrum in the pyroprocessing environment was modeled using SRIM. The molten salt was modeled in 3 different geometries, with or without a protective cover material on top of the detector. Due to the loss of alpha-particle energy in the molten salt itself, a high-energy alpha emitter may completely cover the spectrum from a lower-energy alpha emitter. Each of the

  5. Tunable Schottky barrier and high responsivity in graphene/Si-nanotip optoelectronic device

    Science.gov (United States)

    Di Bartolomeo, Antonio; Giubileo, Filippo; Luongo, Giuseppe; Iemmo, Laura; Martucciello, Nadia; Niu, Gang; Fraschke, Mirko; Skibitzki, Oliver; Schroeder, Thomas; Lupina, Grzegorz

    2017-03-01

    We demonstrate tunable Schottky barrier height and record photo-responsivity in a new-concept device made of a single-layer CVD graphene transferred onto a matrix of nanotips patterned on n-type Si wafer. The original layout, where nano-sized graphene/Si heterojunctions alternate to graphene areas exposed to the electric field of the Si substrate, which acts both as diode cathode and transistor gate, results in a two-terminal barristor with single-bias control of the Schottky barrier. The nanotip patterning favors light absorption, and the enhancement of the electric field at the tip apex improves photo-charge separation and enables internal gain by impact ionization. These features render the device a photodetector with responsivity (3 {{A}} {{{W}}}-1 for white LED light at 3 {{mW}} {{{cm}}}-2 intensity) almost an order of magnitude higher than commercial photodiodes. We extensively characterize the voltage and the temperature dependence of the device parameters, and prove that the multi-junction approach does not add extra-inhomogeneity to the Schottky barrier height distribution. We also introduce a new phenomenological graphene/semiconductor diode equation, which well describes the experimental I-V characteristics both in forward and reverse bias.

  6. Characterization of the inhomogeneous barrier distribution in a Pt/(100)β-Ga2O3 Schottky diode via its temperature-dependent electrical properties

    Science.gov (United States)

    Jian, Guangzhong; He, Qiming; Mu, Wenxiang; Fu, Bo; Dong, Hang; Qin, Yuan; Zhang, Ying; Xue, Huiwen; Long, Shibing; Jia, Zhitai; Lv, Hangbing; Liu, Qi; Tao, Xutang; Liu, Ming

    2018-01-01

    β-Ga2O3 is an ultra-wide bandgap semiconductor with applications in power electronic devices. Revealing the transport characteristics of β-Ga2O3 devices at various temperatures is important for improving device performance and reliability. In this study, we fabricated a Pt/β-Ga2O3 Schottky barrier diode with good performance characteristics, such as a low ON-resistance, high forward current, and a large rectification ratio. Its temperature-dependent current-voltage and capacitance-voltage characteristics were measured at various temperatures. The characteristic diode parameters were derived using thermionic emission theory. The ideality factor n was found to decrease from 2.57 to 1.16 while the zero-bias barrier height Φb0 increased from 0.47 V to 1.00 V when the temperature was increased from 125 K to 350 K. This was explained by the Gaussian distribution of barrier height inhomogeneity. The mean barrier height Φ ¯ b0 = 1.27 V and zero-bias standard deviation σ0 = 0.13 V were obtained. A modified Richardson plot gave a Richardson constant A* of 36.02 A.cm-2.K-2, which is close to the theoretical value of 41.11 A.cm-2.K-2. The differences between the barrier heights determined using the capacitance-voltage and current-voltage curves were also in line with the Gaussian distribution of barrier height inhomogeneity.

  7. Characterization of the inhomogeneous barrier distribution in a Pt/(100β-Ga2O3 Schottky diode via its temperature-dependent electrical properties

    Directory of Open Access Journals (Sweden)

    Guangzhong Jian

    2018-01-01

    Full Text Available β-Ga2O3 is an ultra-wide bandgap semiconductor with applications in power electronic devices. Revealing the transport characteristics of β-Ga2O3 devices at various temperatures is important for improving device performance and reliability. In this study, we fabricated a Pt/β-Ga2O3 Schottky barrier diode with good performance characteristics, such as a low ON-resistance, high forward current, and a large rectification ratio. Its temperature-dependent current–voltage and capacitance–voltage characteristics were measured at various temperatures. The characteristic diode parameters were derived using thermionic emission theory. The ideality factor n was found to decrease from 2.57 to 1.16 while the zero-bias barrier height Φb0 increased from 0.47 V to 1.00 V when the temperature was increased from 125 K to 350 K. This was explained by the Gaussian distribution of barrier height inhomogeneity. The mean barrier height Φ ¯ b0 = 1.27 V and zero-bias standard deviation σ0 = 0.13 V were obtained. A modified Richardson plot gave a Richardson constant A* of 36.02 A·cm−2·K−2, which is close to the theoretical value of 41.11 A·cm−2·K−2. The differences between the barrier heights determined using the capacitance–voltage and current–voltage curves were also in line with the Gaussian distribution of barrier height inhomogeneity.

  8. Current-transport studies and trap extraction of hydrothermally grown ZnO nanotubes using gold Schottky diode

    Energy Technology Data Exchange (ETDEWEB)

    Amin, G.; Hussain, I.; Zaman, S.; Bano, N.; Nur, O.; Willander, M. [Department of Science and Technology, Campus Norrkoeping, Linkoeping University, 60174 Norrkoeping (Sweden)

    2010-03-15

    High-quality zinc oxide (ZnO) nanotubes (NTs) were grown by the hydrothermal technique on n-Si substrate. The room temperature (RT) current-transport mechanisms of Au Schottky diodes fabricated from ZnO NTs and nanorods (NRs) reference samples have been studied and compared. The tunneling mechanisms via deep-level states was found to be the main conduction process at low applied voltage but at the trap-filled limit voltage (V{sub TFL}) all traps were filled and the space-charge-limited current conduction was the dominating current-transport mechanism. The deep-level trap energy and the trap concentration for the NTs were obtained as {proportional_to}0.27 eV and 2.1 x 10{sup 16} cm{sup -3}, respectively. The same parameters were also extracted for the ZnO NRs. The deep-level states observed crossponds to zinc interstitials (Zn{sub i}), which are responsible for the violet emission. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  9. Longitudinal Schottky noise of intense beam

    International Nuclear Information System (INIS)

    Pestrikov, D.V.

    1990-01-01

    Some phenomena, which can be observed in the longitudinal Schottky spectra in storage ring with electron cooling as well as some technical details, which can be useful for the models of fitting are reviewed. Results shows that both the spectra and the power of the Schottky noise of the coasting beam are very sensitive to collective behaviour of the beam. This can be used for fitting of Schottky noise measurements and recalculation of beam parameters, parameters of cooling device. 9 refs.; 4 figs

  10. Schottky barriers based on metal nanoparticles deposited on InP epitaxial layers

    Czech Academy of Sciences Publication Activity Database

    Grym, Jan; Yatskiv, Roman

    2013-01-01

    Roč. 28, č. 4 (2013) ISSN 0268-1242 R&D Projects: GA MŠk LD12014 Institutional support: RVO:67985882 Keywords : Colloidal graphite * Epitaxial growth * Schottky barrier diodes Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.206, year: 2013

  11. Wireless power transmission for biomedical implants: The role of near-zero threshold CMOS rectifiers.

    Science.gov (United States)

    Mohammadi, Ali; Redoute, Jean-Michel; Yuce, Mehmet R

    2015-01-01

    Biomedical implants require an electronic power conditioning circuitry to provide a stable electrical power supply. The efficiency of wireless power transmission is strongly dependent on the power conditioning circuitry specifically the rectifier. A cross-connected CMOS bridge rectifier is implemented to demonstrate the impact of thresholds of rectifiers on wireless power transfer. The performance of the proposed rectifier is experimentally compared with a conventional Schottky diode full wave rectifier over 9 cm distance of air and tissue medium between the transmitter and receiver. The output voltage generated by the CMOS rectifier across a 1 KΩ resistive load is around twice as much as the Schottky rectifier.

  12. Optical pumping of deep traps in AlGaN/GaN-on-Si HEMTs using an on-chip Schottky-on-heterojunction light-emitting diode

    Energy Technology Data Exchange (ETDEWEB)

    Li, Baikui; Tang, Xi; Chen, Kevin J., E-mail: eekjchen@ust.hk [Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2015-03-02

    In this work, by using an on-chip integrated Schottky-on-heterojunction light-emitting diode (SoH-LED) which is seamlessly integrated with the AlGaN/GaN high electron mobility transistor (HEMT), we studied the effect of on-chip light illumination on the de-trapping processes of electrons from both surface and bulk traps. Surface trapping was generated by applying OFF-state drain bias stress, while bulk trapping was generated by applying positive substrate bias stress. The de-trapping processes of surface and/or bulk traps were monitored by measuring the recovery of dynamic on-resistance R{sub on} and/or threshold voltage V{sub th} of the HEMT. The results show that the recovery processes of both dynamic R{sub on} and threshold voltage V{sub th} of the HEMT can be accelerated by the on-chip SoH-LED light illumination, demonstrating the potentiality of on-chip hybrid opto-HEMTs to minimize the influences of traps during dynamic operation of AlGaN/GaN power HEMTs.

  13. Irradiation effects on electrical properties of DNA solution/Al Schottky diodes

    Science.gov (United States)

    Al-Ta'ii, Hassan Maktuff Jaber; Periasamy, Vengadesh; Iwamoto, Mitsumasa

    2018-04-01

    Deoxyribonucleic acid (DNA) has emerged as one of the most exciting organic material and as such extensively studied as a smart electronic material since the last few decades. DNA molecules have been reported to be utilized in the fabrication of small-scaled sensors and devices. In this current work, the effect of alpha radiation on the electrical properties of an Al/DNA/Al device using DNA solution was studied. It was observed that the carrier transport was governed by electrical interface properties at the Al-DNA interface. Current ( I)-voltage ( V) curves were analyzed by employing the interface limited Schottky current equations, i.e., conventional and Cheung and Cheung's models. Schottky parameters such as ideality factor, barrier height and series resistance were also determined. The extracted barrier height of the Schottky contact before and after radiation was calculated as 0.7845, 0.7877, 0.7948 and 0.7874 eV for the non-radiated, 12, 24 and 36 mGy, respectively. Series resistance of the structure was found to decline with the increase in the irradiation, which was due to the increase in the free radical root effects in charge carriers in the DNA solution. Results pertaining to the electronic profiles obtained in this work may provide a better understanding for the development of precise and rapid radiation sensors using DNA solution.

  14. Electronic properties of Al/DNA/p-Si MIS diode: Application as temperature sensor

    International Nuclear Information System (INIS)

    Guellue, O.; Tueruet, A.

    2011-01-01

    Research highlights: → This work proposes that DNA molecules should be considered, among other candidates, as a potential organic thin film for metal-interface layer-semiconductor devices. → We successfully fabricated Al/DNA/p-Si device with interlayer by a simple cast method. → The temperature is found to significantly effect the electrical properties of the Al/DNA/p-Si device. → The facts: (i) that the technology of the fabrication of a Al/DNA/p-Si Schottky diode much simpler and economical than that for the Si p-n junction and (ii) the sensibility of the Al/DNA/p-Si Schottky diode as temperature sensor is 42% higher than that of a Si p-n junction, indicate that the Al/DNA/p-Si Schottky diode is a good alternative as temperature sensor. - Abstract: The current-voltage (I-V) measurements were performed in the temperature range (200-300 K) on Al/DNA/p-Si Schottky barrier type diodes. The Schottky diode shows non-ideal I-V behaviour with ideality factors n equal to 1.34 ± 0.02 and 1.70 ± 0.02 at 300 K and 200 K, respectively, and is thought to have a metal-interface layer-semiconductor (MIS) configuration. The zero-bias barrier height Φ b determined from the I-V measurements was 0.75 ± 0.01 eV at 300 K and decreases to 0.61 ± 0.01 eV at 200 K. The forward voltage-temperature (V F -T) characteristics were obtained from the I-V measurements in the temperature range 200-300 K at different activation currents (I F ) in the range 20 nA-6 μA. The V F -T characteristics were linear for three activation currents in the diode. From the V F -T characteristics at 20 nA, 100 nA and 6 μA, the values of the temperature coefficients of the forward bias voltage (dV F /dT) for the diode were determined as -2.30 mV K -1 , -2.60 mV K -1 and -3.26 mV K -1 with a standard error of 0.05 mV K -1 , respectively.

  15. Electronic properties of Al/DNA/p-Si MIS diode: Application as temperature sensor

    Energy Technology Data Exchange (ETDEWEB)

    Guellue, O., E-mail: omergullu@gmail.com [Batman University, Science and Art Faculty, Department of Physics, 72060 Batman (Turkey); Osmaniye Korkut Ata University, Science and Art Faculty, Department of Physics, 80000 Osmaniye (Turkey); Tueruet, A. [Atatuerk University, Science Faculty, Department of Physics, 25240 Erzurum (Turkey)

    2011-01-21

    Research highlights: > This work proposes that DNA molecules should be considered, among other candidates, as a potential organic thin film for metal-interface layer-semiconductor devices. > We successfully fabricated Al/DNA/p-Si device with interlayer by a simple cast method. > The temperature is found to significantly effect the electrical properties of the Al/DNA/p-Si device. > The facts: (i) that the technology of the fabrication of a Al/DNA/p-Si Schottky diode much simpler and economical than that for the Si p-n junction and (ii) the sensibility of the Al/DNA/p-Si Schottky diode as temperature sensor is 42% higher than that of a Si p-n junction, indicate that the Al/DNA/p-Si Schottky diode is a good alternative as temperature sensor. - Abstract: The current-voltage (I-V) measurements were performed in the temperature range (200-300 K) on Al/DNA/p-Si Schottky barrier type diodes. The Schottky diode shows non-ideal I-V behaviour with ideality factors n equal to 1.34 {+-} 0.02 and 1.70 {+-} 0.02 at 300 K and 200 K, respectively, and is thought to have a metal-interface layer-semiconductor (MIS) configuration. The zero-bias barrier height {Phi}{sub b} determined from the I-V measurements was 0.75 {+-} 0.01 eV at 300 K and decreases to 0.61 {+-} 0.01 eV at 200 K. The forward voltage-temperature (V{sub F}-T) characteristics were obtained from the I-V measurements in the temperature range 200-300 K at different activation currents (I{sub F}) in the range 20 nA-6 {mu}A. The V{sub F}-T characteristics were linear for three activation currents in the diode. From the V{sub F}-T characteristics at 20 nA, 100 nA and 6 {mu}A, the values of the temperature coefficients of the forward bias voltage (dV{sub F}/dT) for the diode were determined as -2.30 mV K{sup -1}, -2.60 mV K{sup -1} and -3.26 mV K{sup -1} with a standard error of 0.05 mV K{sup -1}, respectively.

  16. Performance evaluation of a lossy transmission lines based diode detector at cryogenic temperature.

    Science.gov (United States)

    Villa, E; Aja, B; de la Fuente, L; Artal, E

    2016-01-01

    This work is focused on the design, fabrication, and performance analysis of a square-law Schottky diode detector based on lossy transmission lines working under cryogenic temperature (15 K). The design analysis of a microwave detector, based on a planar gallium-arsenide low effective Schottky barrier height diode, is reported, which is aimed for achieving large input return loss as well as flat sensitivity versus frequency. The designed circuit demonstrates good sensitivity, as well as a good return loss in a wide bandwidth at Ka-band, at both room (300 K) and cryogenic (15 K) temperatures. A good sensitivity of 1000 mV/mW and input return loss better than 12 dB have been achieved when it works as a zero-bias Schottky diode detector at room temperature, increasing the sensitivity up to a minimum of 2200 mV/mW, with the need of a DC bias current, at cryogenic temperature.

  17. A new route for the synthesis of graphene oxide–Fe{sub 3}O{sub 4} (GO–Fe{sub 3}O{sub 4}) nanocomposites and their Schottky diode applications

    Energy Technology Data Exchange (ETDEWEB)

    Metin, Önder [Department of Chemistry, Faculty of Science, Atatürk University, 25240 Erzurum (Turkey); Aydoğan, Şakir [Department of Physics, Faculty of Science, Atatürk University, 25240 Erzurum (Turkey); Meral, Kadem, E-mail: kademm@atauni.edu.tr [Department of Chemistry, Faculty of Science, Atatürk University, 25240 Erzurum (Turkey)

    2014-02-05

    Highlights: • Graphene Oxide (GO)–Fe{sub 3}O{sub 4} nanocomposites were prepared by a novel and facile method. • The successful assembly of Fe{sub 3}O{sub 4} NPs onto GO sheets was displayed by TEM. • The GO–Fe{sub 3}O{sub 4} nanocomposites/p-Si junction showed good rectifying property. -- Abstract: Addressed herein is a facile method for the preparation of magnetic graphene oxide–Fe{sub 3}O{sub 4} (GO–Fe{sub 3}O{sub 4}) nanocomposites and the rectifying properties of (GO–Fe{sub 3}O{sub 4})/p-Si junction in a Schottky diode. GO–Fe{sub 3}O{sub 4} nanocomposites were prepared by a novel method in which as-prepared GO sheets were decorated with the monodisperse Fe{sub 3}O{sub 4} nanoparticles (NPs) in dimethylformamide/chloroform mixture via a sonication process. The successful assembly of Fe{sub 3}O{sub 4} NPs onto GO sheets was displayed by transmission electron microscopy (TEM). Inductively couple plasma optical emission spectroscopy (ICP-OES) analysis of the GO–Fe{sub 3}O{sub 4} nanocomposite showed that the nanocomposite consists of 20.1 wt% Fe{sub 3}O{sub 4} NPs which provides a specific saturation magnetization (Ms) as 16 emu/g. The current–voltage (I–V) characteristics of the (GO–Fe{sub 3}O{sub 4})/p-Si junction in a Schottky diode were studied in the temperature range of 50–350 K in the steps of 25 K. It was determined that the barrier height and ideality factor of the Au/GO–Fe{sub 3}O{sub 4}/p-Si/Al Schottky diode were depended on temperature as the barrier height increased while the ideality factor decreased with increasing temperature. The experimental values of barrier height and ideality factor were varied from 0.12 eV and 11.24 at 50 K to 0.76 eV and 2.49 at 350 K, respectively. The Richardson plot exhibited non-linearity at low temperatures that was attributed to the barrier inhomogeneities prevailing at the GO–Fe{sub 3}O{sub 4}/p-Si junction.

  18. Characterization of a synthetic single crystal diamond Schottky diode for radiotherapy electron beam dosimetry.

    Science.gov (United States)

    Di Venanzio, C; Marinelli, Marco; Milani, E; Prestopino, G; Verona, C; Verona-Rinati, G; Falco, M D; Bagalà, P; Santoni, R; Pimpinella, M

    2013-02-01

    To investigate the dosimetric properties of synthetic single crystal diamond based Schottky diodes under irradiation with therapeutic electron beams from linear accelerators. A single crystal diamond detector was fabricated and tested under 6, 8, 10, 12, and 15 MeV electron beams. The detector performances were evaluated using three types of commercial detectors as reference dosimeters: an Advanced Markus plane parallel ionization chamber, a Semiflex cylindrical ionization chamber, and a p-type silicon detector. Preirradiation, linearity with dose, dose rate dependence, output factors, lateral field profiles, and percentage depth dose profiles were investigated and discussed. During preirradiation the diamond detector signal shows a weak decrease within 0.7% with respect to the plateau value and a final signal stability of 0.1% (1σ) is observed after about 5 Gy. A good linear behavior of the detector response as a function of the delivered dose is observed with deviations below ±0.3% in the dose range from 0.02 to 10 Gy. In addition, the detector response is dose rate independent, with deviations below 0.3% in the investigated dose rate range from 0.17 to 5.45 Gy∕min. Percentage depth dose curves obtained from the diamond detector are in good agreement with the ones from the reference dosimeters. Lateral beam profile measurements show an overall good agreement among detectors, taking into account their respective geometrical features. The spatial resolution of solid state detectors is confirmed to be better than that of ionization chambers, being the one from the diamond detector comparable to that of the silicon diode. A good agreement within experimental uncertainties was also found in terms of output factor measurements between the diamond detector and reference dosimeters. The observed dosimetric properties indicate that the tested diamond detector is a suitable candidate for clinical electron beam dosimetry.

  19. Optimization of Passive Low Power Wireless Electromagnetic Energy Harvesters

    Directory of Open Access Journals (Sweden)

    Dario Grgić

    2012-10-01

    Full Text Available This work presents the optimization of antenna captured low power radio frequency (RF to direct current (DC power converters using Schottky diodes for powering remote wireless sensors. Linearized models using scattering parameters show that an antenna and a matched diode rectifier can be described as a form of coupled resonator with different individual resonator properties. The analytical models show that the maximum voltage gain of the coupled resonators is mainly related to the antenna, diode and load (remote sensor resistances at matched conditions or resonance. The analytical models were verified with experimental results. Different passive wireless RF power harvesters offering high selectivity, broadband response and high voltage sensitivity are presented. Measured results show that with an optimal resistance of antenna and diode, it is possible to achieve high RF to DC voltage sensitivity of 0.5 V and efficiency of 20% at −30 dBm antenna input power. Additionally, a wireless harvester (rectenna is built and tested for receiving range performance.

  20. Optimization of passive low power wireless electromagnetic energy harvesters.

    Science.gov (United States)

    Nimo, Antwi; Grgić, Dario; Reindl, Leonhard M

    2012-10-11

    This work presents the optimization of antenna captured low power radio frequency (RF) to direct current (DC) power converters using Schottky diodes for powering remote wireless sensors. Linearized models using scattering parameters show that an antenna and a matched diode rectifier can be described as a form of coupled resonator with different individual resonator properties. The analytical models show that the maximum voltage gain of the coupled resonators is mainly related to the antenna, diode and load (remote sensor) resistances at matched conditions or resonance. The analytical models were verified with experimental results. Different passive wireless RF power harvesters offering high selectivity, broadband response and high voltage sensitivity are presented. Measured results show that with an optimal resistance of antenna and diode, it is possible to achieve high RF to DC voltage sensitivity of 0.5 V and efficiency of 20% at -30 dBm antenna input power. Additionally, a wireless harvester (rectenna) is built and tested for receiving range performance.

  1. Optimization of Passive Low Power Wireless Electromagnetic Energy Harvesters

    Science.gov (United States)

    Nimo, Antwi; Grgić, Dario; Reindl, Leonhard M.

    2012-01-01

    This work presents the optimization of antenna captured low power radio frequency (RF) to direct current (DC) power converters using Schottky diodes for powering remote wireless sensors. Linearized models using scattering parameters show that an antenna and a matched diode rectifier can be described as a form of coupled resonator with different individual resonator properties. The analytical models show that the maximum voltage gain of the coupled resonators is mainly related to the antenna, diode and load (remote sensor) resistances at matched conditions or resonance. The analytical models were verified with experimental results. Different passive wireless RF power harvesters offering high selectivity, broadband response and high voltage sensitivity are presented. Measured results show that with an optimal resistance of antenna and diode, it is possible to achieve high RF to DC voltage sensitivity of 0.5 V and efficiency of 20% at −30 dBm antenna input power. Additionally, a wireless harvester (rectenna) is built and tested for receiving range performance. PMID:23202014

  2. Electrical characterization of organic-on-inorganic semiconductor Schottky structures

    International Nuclear Information System (INIS)

    Guellue, Oe; Tueruet, A; Asubay, S

    2008-01-01

    We prepared a methyl red/p-InP organic-inorganic (OI) Schottky device formed by evaporation of an organic compound solution directly to a p-InP semiconductor wafer. The value of the optical band gap energy of the methyl red organic film on a glass substrate was obtained as 2.0 eV. It was seen that the Al/methyl red/p-InP contacts showed a good rectifying behavior. An ideality factor of 2.02 and a barrier height (Φ b ) of 1.11 eV for the Al/methyl red/p-InP contact were determined from the forward bias I-V characteristics. It was seen that the value of 1.11 eV obtained for Φ b for the Al/methyl red/p-InP contact was significantly larger than the value of 0.83 eV for conventional Al/p-InP Schottky diodes. Modification of the interfacial potential barrier for the Al/p-InP diode was achieved using a thin interlayer of the methyl red organic semiconductor. This ascribed to the fact that the methyl red interlayer increases the effective Φ b by influencing the space charge region of InP

  3. Investigation of diode parameters using I-V and C-V characteristics of In/SiO{sub 2}/p-Si (MIS) Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Yueksel, O.F. [Department of Physics, Faculty of Arts and Science, Selcuk University, Kampus, Konya 42075 (Turkey)], E-mail: fyuksel@selcuk.edu.tr; Selcuk, A.B.; Ocak, S.B. [PK, 14 Etlik, Ankara (Turkey)

    2008-08-01

    A study on interface states density distribution and characteristic parameters of the In/SiO{sub 2}/p-Si (MIS) capacitor has been made. The thickness of the SiO{sub 2} film obtained from the measurement of the corrected capacitance in the strong accumulation region for MIS Schottky diodes was 220 A. The diode parameters from the forward bias I-V characteristics such as ideality factor, series resistance and barrier heights were found to be 1.75, 106-112 {omega} and 0.592 eV, respectively. The energy distribution of the interface state density D{sub it} was determined from the forward bias I-V characteristics by taking into account the bias dependence of the effective barrier height. The interface state density obtained using the I-V characteristics had an exponential growth, with bias towards the top of the valance band, from 9.44x10{sup 13} eV{sup -1} cm{sup -2} in 0.329-E{sub v} eV to 1.11x10{sup 13} eV{sup -1} cm{sup -2} in 0.527-E{sub v} eV at room temperature. Furthermore, the values of interface state density D{sub it} obtained by the Hill-Coleman method from the C-V characteristics range from 52.9x10{sup 13} to 1.11x10{sup 13} eV{sup -1} cm{sup -2} at a frequency range of 30kHz-1 MHz. These values of D{sub it} and R{sub s} were responsible for the non-ideal behaviour of I-V and C-V characteristics.

  4. Tunable high-power narrow-linewidth green external-cavity GaN diode laser

    DEFF Research Database (Denmark)

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2016-01-01

    A tunable high-power green external-cavity diode laser is demonstrated. Up to 290 mW output power and a 9.2 nm tuning is achieve. This constitutes the highest output power from a tunable green diode laser system.......A tunable high-power green external-cavity diode laser is demonstrated. Up to 290 mW output power and a 9.2 nm tuning is achieve. This constitutes the highest output power from a tunable green diode laser system....

  5. All-carbon nanotube diode and solar cell statistically formed from macroscopic network

    Institute of Scientific and Technical Information of China (English)

    Albert G. Nasibulin[1,2,3; Adinath M. Funde[3,4; Ilya V. Anoshkin[3; Igor A. Levitskyt[5,6

    2015-01-01

    Schottky diodes and solar cells are statistically created in the contact area between two macroscopic films of single-walled carbon nanotubes (SWNTs) at the junction of semiconducting and quasi-metallic bundles consisting of several high quality tubes. The n-doping of one of the films allows for photovoltaic action, owing to an increase in the built-in potential at the bundle-to-bundle interface. Statistical analysis demonstrates that the Schottky barrier device contributes significantly to the I-V characteristics, compared to the p-n diode. The upper limit of photovoltaic conversion efficiency has been estimated at N20%, demonstrating that the light energy conversion is very efficient for such a unique solar cell. While there have been multiple studies on rectifying SWNT diodes in the nanoscale environment, this is the first report of a macroscopic all-carbon nanotube diode and solar cell.

  6. Power MOSFET-diode-based limiter for high-frequency ultrasound systems.

    Science.gov (United States)

    Choi, Hojong; Kim, Min Gon; Cummins, Thomas M; Hwang, Jae Youn; Shung, K Kirk

    2014-10-01

    The purpose of the limiter circuits used in the ultrasound imaging systems is to pass low-voltage echo signals generated by ultrasonic transducers while preventing high-voltage short pulses transmitted by pulsers from damaging front-end circuits. Resistor-diode-based limiters (a 50 Ω resistor with a single cross-coupled diode pair) have been widely used in pulse-echo measurement and imaging system applications due to their low cost and simple architecture. However, resistor-diode-based limiters may not be suited for high-frequency ultrasound transducer applications since they produce large signal conduction losses at higher frequencies. Therefore, we propose a new limiter architecture utilizing power MOSFETs, which we call a power MOSFET-diode-based limiter. The performance of a power MOSFET-diode-based limiter was evaluated with respect to insertion loss (IL), total harmonic distortion (THD), and response time (RT). We compared these results with those of three other conventional limiter designs and showed that the power MOSFET-diode-based limiter offers the lowest IL (-1.33 dB) and fastest RT (0.10 µs) with the lowest suppressed output voltage (3.47 Vp-p) among all the limiters at 70 MHz. A pulse-echo test was performed to determine how the new limiter affected the sensitivity and bandwidth of the transducer. We found that the sensitivity and bandwidth of the transducer were 130% and 129% greater, respectively, when combined with the new power MOSFET-diode-based limiter versus the resistor-diode-based limiter. Therefore, these results demonstrate that the power MOSFET-diode-based limiter is capable of producing lower signal attenuation than the three conventional limiter designs at higher frequency operation. © The Author(s) 2014.

  7. Schottky barrier height of Ni to β-(AlxGa1-x)2O3 with different compositions grown by plasma-assisted molecular beam epitaxy

    Science.gov (United States)

    Ahmadi, Elaheh; Oshima, Yuichi; Wu, Feng; Speck, James S.

    2017-03-01

    Coherent β-(AlxGa1-x)2O3 films (x = 0, 0.038, 0.084, 0.164) were grown successfully on a Sn-doped β-Ga2O3 (010) substrate using plasma-assisted molecular beam epitaxy. Atom probe tomography, transmission electron microscopy, and high resolution x-ray diffraction were used to verify the alloy composition and high quality of the films. Schottky diodes were then fabricated using Ni as the Schottky metal. Capacitance-voltage measurements revealed a very low (current-voltage (I-V) measurements performed at temperatures varying from 300 K to 500 K on the Schottky diodes. These measurements revealed that the apparent Schottky barrier height could have similar values for different compositions of β-(AlxGa1-x)2O3. We believe this is attributed to the lateral fluctuation in the alloy’s composition. This results in a lateral variation in the barrier height. Therefore, the average Schottky barrier height extracted from I-V measurements could be similar for β-(AlxGa1-x)2O3 films with different compositions.

  8. GaAs Schottky versus p/i/n diodes for pixellated X-ray detectors

    CERN Document Server

    Bourgoin, J C

    2002-01-01

    We discuss the performances of GaAs p/i/n structures and Schottky barriers for application as photodetectors for high-energy photons. We compare the magnitude of the leakage current and the width of the depleted region for a given reverse bias. We mention the effect of states present at the metal-semiconductor interface on the extension of the space charge region in Schottky barriers. We illustrate this effect by a description of the capacitance behaviour of a Au-GaAs barrier under gamma irradiation.

  9. The electrical characterization of Ag/PTCDA/PEDOT:PSS/p-Si Schottky diode by current–voltage characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Tahir, Muhammad [Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi 23640 (Pakistan); Department of Physics, Abdul Wali Khan University Mardan, 23200 (Pakistan); Sayyad, Muhammad Hassan; Wahab, Fazal; Khan, Dil Nawaz [Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi 23640 (Pakistan); Aziz, Fakhra, E-mail: fakhra69@yahoo.com [Department of Electronics, Jinnah College for Women, University of Peshawar, Peshawar 25120 (Pakistan)

    2013-04-15

    The Ag/PTCDA/PEDOT:PSS/p-Si Schottky diode has been fabricated by adding a layer of organic compound 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) on top of the p-Si for which the junction characteristics have been investigated. The electronic properties of the device have been studied by the conventional I–V and the Norde's methods. For conventional I–V measurements the rectifying behavior has been observed with a rectification ratio of 236. The barrier height and ideality factor values of 0.81 eV and 3.5, respectively, for the structure have been obtained from the forward bias I–V characteristics. Various electrical parameters such as reverse saturation current, series resistance and shunt resistance have been calculated from the analysis of experimental I–V results and discussed in detail. The barrier height and the series resistance determined by the Norde's function are found in good agreement with the values calculated from conventional I–V measurements. The charge conduction mechanism has also been discussed.

  10. High Voltage GaN Schottky Rectifiers

    Energy Technology Data Exchange (ETDEWEB)

    CAO,X.A.; CHO,H.; CHU,S.N.G.; CHUO,C.-C.; CHYI,J.-I.; DANG,G.T.; HAN,JUNG; LEE,C.-M.; PEARTON,S.J.; REN,F.; WILSON,R.G.; ZHANG,A.P.

    1999-10-25

    Mesa and planar GaN Schottky diode rectifiers with reverse breakdown voltages (V{sub RB}) up to 550V and >2000V, respectively, have been fabricated. The on-state resistance, R{sub ON}, was 6m{Omega}{center_dot} cm{sup 2} and 0.8{Omega}cm{sup 2}, respectively, producing figure-of-merit values for (V{sub RB}){sup 2}/R{sub ON} in the range 5-48 MW{center_dot}cm{sup -2}. At low biases the reverse leakage current was proportional to the size of the rectifying contact perimeter, while at high biases the current was proportional to the area of this contact. These results suggest that at low reverse biases, the leakage is dominated by the surface component, while at higher biases the bulk component dominates. On-state voltages were 3.5V for the 550V diodes and {ge}15 for the 2kV diodes. Reverse recovery times were <0.2{micro}sec for devices switched from a forward current density of {approx}500A{center_dot}cm{sup -2} to a reverse bias of 100V.

  11. Effect of hydrogen on ZnO films and Au/ZnO Schottky contacts

    International Nuclear Information System (INIS)

    Tsiarapas, C; Girginoudi, D; Georgoulas, N

    2014-01-01

    The structural, optical and electrical properties of ZnO films for different amounts of incorporated hydrogen (H), as well as the electrical characteristics of Au Schottky contacts based on these ZnO layers have been investigated. The films were deposited with the dc-magnetron sputtering technique, varying the H flow rate in the Ar/H sputtering gas. We found a significant improvement of the crystallinity (as obtained from x-ray diffraction spectra), Hall mobility and resistivity as the H concentration per vol. [H 2 ] (during deposition) increases from 0% to 33.3%, which is followed by degradation for further [H 2 ] increase. A high dependence of the carrier mobility on the grain size is also noted. The Schottky diodes were characterized through current–voltage (I–V) and capacitance–voltage (C–V) measurements at room temperature. In correlation with the basic film properties, we obtained the best results for the Schottky diodes with [H 2 ] = 33.3%, in terms of higher rectification ratio, lower ideality factor (η) and series resistance (R s ). Both the electron concentration n and the ionized donors' concentration N D (obtained from C–V curves) increase constantly with [H 2 ] increase, and that seems to be consistent with our suggestion that H acts as a donor in ZnO. (paper)

  12. Highly sensitive hydrogen sensor based on graphite-InP or graphite-GaN Schottky barrier with electrophoretically deposited Pd nanoparticles

    Directory of Open Access Journals (Sweden)

    Zdansky Karel

    2011-01-01

    Full Text Available Abstract Depositions on surfaces of semiconductor wafers of InP and GaN were performed from isooctane colloid solutions of palladium (Pd nanoparticles (NPs in AOT reverse micelles. Pd NPs in evaporated colloid and in layers deposited electrophoretically were monitored by SEM. Diodes were prepared by making Schottky contacts with colloidal graphite on semiconductor surfaces previously deposited with Pd NPs and ohmic contacts on blank surfaces. Forward and reverse current-voltage characteristics of the diodes showed high rectification ratio and high Schottky barrier heights, giving evidence of very small Fermi level pinning. A large increase of current was observed after exposing diodes to flow of gas blend hydrogen in nitrogen. Current change ratio about 700,000 with 0.1% hydrogen blend was achieved, which is more than two orders-of-magnitude improvement over the best result reported previously. Hydrogen detection limit of the diodes was estimated at 1 ppm H2/N2. The diodes, besides this extremely high sensitivity, have been temporally stable and of inexpensive production. Relatively more expensive GaN diodes have potential for functionality at high temperatures.

  13. Schottky junction photovoltaic devices based on CdS single nanobelts.

    Science.gov (United States)

    Ye, Y; Dai, L; Wu, P C; Liu, C; Sun, T; Ma, R M; Qin, G G

    2009-09-16

    Schottky junction photovoltaic (PV) devices were fabricated on single CdS nanobelts (NBs). Au was used as the Schottky contact, and In/Au was used as the ohmic contact to CdS NB. Typically, the Schottky junction exhibits a well-defined rectifying behavior in the dark with a rectification ratio greater than 10(3) at +/- 0.3 V; and the PV device exhibits a clear PV behavior with an open circuit photovoltage of about 0.16 V, a short circuit current of about 23.8 pA, a maximum output power of about 1.6 pW, and a fill factor of 42%. Moreover, the output power can be multiplied by connecting two or more of the Schottky junction PV devices, made on a single CdS NB, in parallel or in series. This study demonstrates that the 1D Schottky junction PV devices, which have the merits of low cost, easy fabrication and material universality, can be an important candidate for power sources in nano-optoelectronic systems.

  14. Subthreshold Schottky-barrier thin-film transistors with ultralow power and high intrinsic gain

    Science.gov (United States)

    Lee, Sungsik; Nathan, Arokia

    2016-10-01

    The quest for low power becomes highly compelling in newly emerging application areas related to wearable devices in the Internet of Things. Here, we report on a Schottky-barrier indium-gallium-zinc-oxide thin-film transistor operating in the deep subthreshold regime (i.e., near the OFF state) at low supply voltages (400) that was both bias and geometry independent. The transistor reported here is useful for sensor interface circuits in wearable devices where high current sensitivity and ultralow power are vital for battery-less operation.

  15. Design and Characterization of 1.8-3.2 THz Schottky-based Harmonic Mixers

    OpenAIRE

    Bulcha, BT; Hesler, JL; Drakinskiy, V; Stake, J; Valavanis, A; Dean, P; Li, LH; Barker, NS

    2016-01-01

    A room-temperature Schottky diode-based WM-86 (WR-0.34) harmonic mixer was developed to build high-resolution spectrometers, and multi-pixel receivers in the THz region for applications such as radio astronomy, plasma diagnostics, and remote sensing. The mixer consists of a quartz-based Local Oscillator (LO), Intermediate-Frequency (IF) circuits, and a GaAs-based beam-lead THz circuit with an integrated diode. Measurements of the harmonic mixer were performed using a 2 THz solid-state source ...

  16. Experimental study on an S-band near-field microwave magnetron power transmission system on hundred-watt level

    Science.gov (United States)

    Zhang, Biao; Jiang, Wan; Yang, Yang; Yu, Chengyang; Huang, Kama; Liu, Changjun

    2015-11-01

    A multi-magnetron microwave source, a metamaterial transmitting antenna, and a large power rectenna array are presented to build a near-field 2.45 GHz microwave power transmission system. The square 1 m2 rectenna array consists of sixteen rectennas with 2048 Schottky diodes for large power microwave rectifying. It receives microwave power and converts them into DC power. The design, structure, and measured performance of a unit rectenna as well as the entail rectenna array are presented in detail. The multi-magnetron microwave power source switches between half and full output power levels, i.e. the half-wave and full-wave modes. The transmission antenna is formed by a double-layer metallic hole array, which is applied to combine the output power of each magnetron. The rectenna array DC output power reaches 67.3 W on a 1.2 Ω DC load at a distance of 5.5 m from the transmission antenna. DC output power is affected by the distance, DC load, and the mode of microwave power source. It shows that conventional low power Schottky diodes can be applied to a microwave power transmission system with simple magnetrons to realise large power microwave rectifying.

  17. The Fabrication and Characterization of Ni/4H-SiC Schottky Diode Radiation Detectors with a Sensitive Area of up to 4 cm².

    Science.gov (United States)

    Liu, Lin-Yue; Wang, Ling; Jin, Peng; Liu, Jin-Liang; Zhang, Xian-Peng; Chen, Liang; Zhang, Jiang-Fu; Ouyang, Xiao-Ping; Liu, Ao; Huang, Run-Hua; Bai, Song

    2017-10-13

    Silicon carbide (SiC) detectors of an Ni/4H-SiC Schottky diode structure and with sensitive areas of 1-4 cm² were fabricated using high-quality lightly doped epitaxial 4H-SiC material, and were tested in the detection of alpha particles and pulsed X-rays/UV-light. A linear energy response to alpha particles ranging from 5.157 to 5.805 MeV was obtained. The detectors were proved to have a low dark current, a good energy resolution, and a high neutron/gamma discrimination for pulsed radiation, showing the advantages in charged particle detection and neutron detection in high-temperature and high-radiation environments.

  18. Influence of the Interaction Between Graphite and Polar Surfaces of ZnO on the Formation of Schottky Contact

    Science.gov (United States)

    Yatskiv, R.; Grym, J.

    2018-03-01

    We show that the interaction between graphite and polar surfaces of ZnO affects electrical properties of graphite/ZnO Schottky junctions. A strong interaction of the Zn-face with the graphite contact causes interface imperfections and results in the formation of laterally inhomogeneous Schottky contacts. On the contrary, high quality Schottky junctions form on the O-face, where the interaction is significantly weaker. Charge transport through the O-face ZnO/graphite junctions is well described by the thermionic emission model in both forward and reverse directions. We further demonstrate that the parameters of the graphite/ZnO Schottky diodes can be significantly improved when a thin layer of ZnO2 forms at the interface between graphite and ZnO after hydrogen peroxide surface treatment.

  19. High-power green diode laser systems for biomedical applications

    DEFF Research Database (Denmark)

    Müller, André

    propagation parameters and therefore efficiently increases the brightness of compact and cost-effective diode laser systems. The condition of overlapping beams is an ideal scenario for subsequent frequency conversion. Based on sum-frequency generation of two beam combined diode lasers a 3.2 fold increase...... output power of frequency doubled single emitters is limited by thermal effects potentially resulting in laser degradation and failure. In this work new concepts for power scaling of visible diode laser systems are introduced that help to overcome current limitations and enhance the application potential....... Implementing the developed concept of frequency converted, beam combined diode laser systems will help to overcome the high pump thresholds for ultrabroad bandwidth titanium sapphire lasers, leading towards diode based high-resolution optical coherence tomography with enhanced image quality. In their entirety...

  20. Temperature dependent I-V characteristics of an Au/n-GaAs Schottky diode analyzed using Tung’s model

    Science.gov (United States)

    Korucu, Demet; Turut, Abdulmecit; Efeoglu, Hasan

    2013-04-01

    The current-voltage (I-V) characteristics of Au/n-GaAs contacts prepared with photolithography technique have been measured in the temperature range of 80-320 K. The ideality factor and barrier height (BH) values have remained almost unchanged between 1.04 and 1.10 and at a value of about 0.79 eV at temperatures above 200 K, respectively. Therefore, the ideality factor values near unity say that the experimental I-V data are almost independent of the sample temperature, that is, contacts have shown excellent Schottky diode behavior above 200 K. An abnormal decrease in the experimental BH Φb and an increase in the ideality factor with a decrease in temperature have been observed below 200 K. This behavior has been attributed to the barrier inhomogeneity by assuming a Gaussian distribution of nanometer-sized patches with low BH at the metal-semiconductor interface. The barrier inhomogeneity assumption is also confirmed by the linear relationship between the BH and the ideality factor. According to Tung’s barrier inhomogeneity model, it has been seen that the value of σT=7.41×10-5 cm2/3 V1/3from ideality factor versus (kT)-1 curve is in close agreement with σT=7.95×10-5 cm2/3 V1/3 value from the Φeff versus (2kT)-1 curve in the range of 80-200 K. The modified Richardson ln(J0/T2)-(qσT)2(Vb/η)2/3/[2(kT)2] versus (kT)-1 plot, from Tung’s Model, has given a Richardson constant value of 8.47 A cm-2 K-2which is in very close agreement with the known value of 8.16 A cm-2 K-2 for n-type GaAs; considering the effective patch area which is significantly lower than the entire geometric area of the Schottky contact, in temperature range of 80-200 K. Thus, it has been concluded that the use of Tung’s lateral inhomogeneity model is more appropriate to interpret the temperature-dependent I-V characteristics in the Schottky contacts.

  1. The controlled growth of graphene nanowalls on Si for Schottky photodetector

    Directory of Open Access Journals (Sweden)

    Quan Zhou

    2017-12-01

    Full Text Available Schottky diode with directly-grown graphene on silicon substrate has advantage of clean junction interface, promising for photodetectors with high-speed and low noise. In this report, we carefully studied the influence of growth parameters on the junction quality and photoresponse of graphene nanowalls (GNWs-based Schottky photodetectors. We found that shorter growth time is critical for lower dark current, but at the same time higher photocurrent. The influence of growth parameters was attributed to the defect density of various growth time, which results in different degrees of surface absorption for H2O/O2 molecules and P-type doping level. Raman characterization and vacuum annealing treatment were carried out to confirm the regulation mechanism. Meanwhile, the release of thermal stress also makes the ideality factor η of thinner sample better than the thicker. Our results are important for the response improvement of photodetectors with graphene-Si schottky junction.

  2. Integrated heterodyne terahertz transceiver

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Mark [Albuquerque, NM; Wanke, Michael C [Albuquerque, NM

    2009-06-23

    A heterodyne terahertz transceiver comprises a quantum cascade laser that is integrated on-chip with a Schottky diode mixer. An antenna connected to the Schottky diode receives a terahertz signal. The quantum cascade laser couples terahertz local oscillator power to the Schottky diode to mix with the received terahertz signal to provide an intermediate frequency output signal. The fully integrated transceiver optimizes power efficiency, sensitivity, compactness, and reliability. The transceiver can be used in compact, fieldable systems covering a wide variety of deployable applications not possible with existing technology.

  3. Fabrication and electrical properties of organic-on-inorganic Schottky devices

    International Nuclear Information System (INIS)

    Guellue, Oe; Biber, M; Tueruet, A; Cankaya, M

    2008-01-01

    In this paper, we fabricated an Al/new fuchsin/p-Si organic-inorganic (OI) Schottky diode structure by direct evaporation of an organic compound solution on a p-Si semiconductor wafer. A direct optical band gap energy value of the new fuchsin organic film on a glass substrate was obtained as 1.95 eV. Current-voltage (I-V) and capacitance-voltage (C-V) measurements of the OI device were carried out at room temperature. From the I-V characteristics, it was seen that the Al/new fuchsin/p-Si contacts showed good rectifying behavior. An ideality factor value of 1.47 and a barrier height (BH) value of 0.75 eV for the Al/new fuchsin/p-Si contact were determined from the forward bias I-V characteristics. A barrier height value of 0.78 eV was obtained from the capacitance-voltage (C-V) characteristics. It has been seen that the BH value of 0.75 eV obtained for the Al/new fuchsin/p-Si contact is significantly larger than that of conventional Al/p-Si Schottky metal-semiconductor (MS) diodes. Thus, modification of the interfacial potential barrier for Al/p-Si diodes has been achieved using a thin interlayer of the new fuchsin organic semiconductor; this has been ascribed to the fact that the new fuchsin interlayer increases the effective barrier height because of the interface dipole induced by passivation of the organic layer

  4. Advancements of ultra-high peak power laser diode arrays

    Science.gov (United States)

    Crawford, D.; Thiagarajan, P.; Goings, J.; Caliva, B.; Smith, S.; Walker, R.

    2018-02-01

    Enhancements of laser diode epitaxy in conjunction with process and packaging improvements have led to the availability of 1cm bars capable of over 500W peak power at near-infrared wavelengths (770nm to 1100nm). Advances in cooler design allow for multi-bar stacks with bar-to-bar pitches as low as 350μm and a scalable package architecture enabled a single diode assembly with total peak powers of over 1MegaWatt of peak power. With the addition of micro-optics, overall array brightness greater than 10kW/cm2 was achieved. Performance metrics of barbased diode lasers specifically engineered for high peak power and high brightness at wavelengths and pulse conditions commonly used to pump a variety of fiber and solid-state materials are presented.

  5. New Type Far IR and THz Schottky Barrier Detectors for Scientific and Civil Application

    Directory of Open Access Journals (Sweden)

    V. G. Ivanov

    2011-01-01

    Full Text Available The results of an experimental investigation into a new type of VLWIR detector based on hot electron gas emission and architecture of the detector are presented and discussed. The detectors (further referred to as HEGED take advantage of the thermionic emission current change effect in a semiconductor diode with a Schottky barrier (SB as a result of the direct transfer of the absorbed radiation energy to the system of electronic gas in the quasimetallic layer of the barrier. The possibility of detecting radiation having the energy of quantums less than the height of the Schottky diode potential barrier and of obtaining a substantial improvement of a cutoff wavelength to VLWIR of the PtSi/Si detector has been demonstrated. The complementary contribution of two physical mechanisms of emanation detection—“quantum” and hot electrons gas emission—has allowed the creation of a superwideband IR detector using standard silicon technology.

  6. Thermally stimulated capacitance in gamma irradiated epitaxial 4H-SiC Schottky barrier diodes

    Science.gov (United States)

    Vigneshwara Raja, P.; Narasimha Murty, N. V. L.

    2018-04-01

    Deep level defects in 4H-SiC Schottky barrier diodes (SBDs) fabricated on n-type epitaxial 4H-SiC have been identified by thermally stimulated capacitance (TSCAP) spectroscopy prior to and after 60Co-gamma irradiation. The TSCAP measurements on the non-irradiated SBDs reveal two electron traps at Ec-0.63 eV (˜250 K) and Ec-1.13 eV (˜525 K), whereas only one trap at Ec-0.63 eV is identified by conventional thermally stimulated current (TSC) measurements. Hence, TSCAP spectroscopy is more effective in identifying deep level defects in epitaxial 4 H-SiC SBDs as compared to the TSC spectroscopy. Upon exposure to 60Co-gamma rays up to a dose of 100 Mrad, significant changes in the concentration of the traps at Ec-0.63 eV, Ec-1.13 eV, and one new trap at Ec-0.89 eV (˜420 K) are observed. The electrical characteristics of the SBDs are considerably changed after gamma irradiation. The dominant mechanisms responsible for the irradiation induced changes in the SBD electrical characteristics are analyzed by incorporating the trap signatures in the commercial Silvaco® TCAD device simulator. The extracted trap parameters of the irradiated SBDs may be helpful in predicting the survival of 4H-SiC SBD detectors at higher irradiation levels.

  7. The Fabrication and Characterization of Ni/4H-SiC Schottky Diode Radiation Detectors with a Sensitive Area of up to 4 cm2

    Directory of Open Access Journals (Sweden)

    Lin-Yue Liu

    2017-10-01

    Full Text Available Silicon carbide (SiC detectors of an Ni/4H-SiC Schottky diode structure and with sensitive areas of 1–4 cm2 were fabricated using high-quality lightly doped epitaxial 4H-SiC material, and were tested in the detection of alpha particles and pulsed X-rays/UV-light. A linear energy response to alpha particles ranging from 5.157 to 5.805 MeV was obtained. The detectors were proved to have a low dark current, a good energy resolution, and a high neutron/gamma discrimination for pulsed radiation, showing the advantages in charged particle detection and neutron detection in high-temperature and high-radiation environments.

  8. Controlling Schottky energy barriers in organic electronic devices using self-assembled monolayers

    Science.gov (United States)

    Campbell, I. H.; Rubin, S.; Zawodzinski, T. A.; Kress, J. D.; Martin, R. L.; Smith, D. L.; Barashkov, N. N.; Ferraris, J. P.

    1996-11-01

    We demonstrate tuning of Schottky energy barriers in organic electronic devices by utilizing chemically tailored electrodes. The Schottky energy barrier of Ag on poly[2-methoxy, 5-(2'-ethyl-hexyloxy)- 1,4-phenylene was tuned over a range of more than 1 eV by using self-assembled monolayers (SAM's) to attach oriented dipole layers to the Ag prior to device fabrication. Kelvin probe measurements were used to determine the effect of the SAM's on the Ag surface potential. Ab initio Hartree-Fock calculations of the molecular dipole moments successfully describe the surface potential changes. The chemically tailored electrodes were then incorporated in organic diode structures and changes in the metal/organic Schottky energy barriers were measured using an electroabsorption technique. These results demonstrate the use of self-assembled monolayers to control metal/organic interfacial electronic properties. They establish a physical principle for manipulating the relative energy levels between two materials and demonstrate an approach to improve metal/organic contacts in organic electronic devices.

  9. Power blue and green laser diodes and their applications

    Science.gov (United States)

    Hager, Thomas; Strauß, Uwe; Eichler, Christoph; Vierheilig, Clemens; Tautz, Sönke; Brüderl, Georg; Stojetz, Bernhard; Wurm, Teresa; Avramescu, Adrian; Somers, André; Ristic, Jelena; Gerhard, Sven; Lell, Alfred; Morgott, Stefan; Mehl, Oliver

    2013-03-01

    InGaN based green laser diodes with output powers up to 50mW are now well established for variety of applications ranging from leveling to special lighting effects and mobile projection of 12lm brightness. In future the highest market potential for visible single mode profile lasers might be laser projection of 20lm. Therefore direct green single-mode laser diodes with higher power are required. We found that self heating was the limiting factor for higher current operation. We present power-current characteristics of improved R and D samples with up to 200mW in cw-operation. An optical output power of 100mW is reached at 215mA, a current level which is suitable for long term operation. Blue InGaN laser diodes are also the ideal source for phosphor based generation of green light sources of high luminance. We present a light engine based on LARP (Laser Activated Remote Phosphor) which can be used in business projectors of several thousand lumens on screen. We discuss the advantages of a laser based systems in comparison with LED light engines. LARP requires highly efficient blue power laser diodes with output power above 1W. Future market penetration of LARP will require lower costs. Therefore we studied new designs for higher powers levels. R and D chips with power-current characteristics up to 4W in continuous wave operation on C-mount at 25°C are presented.

  10. A comprehensive study of cryogenic cooled millimeter-wave frequency multipliers based on GaAs Schottky-barrier varactors

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Rybalko, Oleksandr; Zhurbenko, Vitaliy

    2018-01-01

    The benefit of cryogenic cooling on the performance of millimeter-wave GaAs Schottky-barrier varactor-based frequency multipliers has been studied. For this purpose, a dedicated compact model of a GaAs Schottky-barrier varactor using a triple-anode diode stack has been developed for use...... with a commercial RF and microwave CAD tool. The model implements critical physical phenomena such as thermionic-field emission current transport at cryogenic temperatures, temperature dependent mobility, reverse breakdown, self-heating, and high-field velocity saturation effects. A parallel conduction model...... is employed in order to include the effect of barrier inhomogeneities which is known to cause deviation from the expected I--V characteristics at cryogenic temperatures. The developed model is shown to accurately fit the I--V --T dataset from 25 to 295 K measured on the varactor diode stack. Harmonic balance...

  11. A Novel Current-Mode Full-Wave Rectifier Based on One CDTA and Two Diodes

    Directory of Open Access Journals (Sweden)

    F. Khateb

    2010-09-01

    Full Text Available Precision rectifiers are important building blocks for analog signal processing. The traditional approach based on diodes and operational amplifiers (OpAmps exhibits undesirable effects caused by limited OpAmp slew rate and diode commutations. In the paper, a full-wave rectifier based on one CDTA and two Schottky diodes is presented. The PSpice simulation results are included.

  12. High-power direct diode laser output by spectral beam combining

    Science.gov (United States)

    Tan, Hao; Meng, Huicheng; Ruan, Xu; Du, Weichuan; Wang, Zhao

    2018-03-01

    We demonstrate a spectral beam combining scheme based on multiple mini-bar stacks, which have more diode laser combining elements, to increase the combined diode laser power and realize equal beam quality in both the fast and slow axes. A spectral beam combining diode laser output of 1130 W is achieved with an operating current of 75 A. When a 9.6 X de-magnifying telescope is introduced between the output mirror and the diffraction grating, to restrain cross-talk among diode laser emitters, a 710 W spectral beam combining diode laser output is achieved at the operating current of 70 A, and the beam quality on the fast and slow axes of the combined beam is about 7.5 mm mrad and 7.3 mm mrad respectively. The power reduction is caused by the existence of a couple resonator between the rear facet of the diode laser and the fast axis collimation lens, and it should be eliminated by using diode laser chips with higher front facet transmission efficiency and a fast axis collimation lens with lower residual reflectivity.

  13. Flicker noise comparison of direct conversion mixers using Schottky and HBT dioderings in SiGe:C BiCMOS technology

    DEFF Research Database (Denmark)

    Michaelsen, Rasmus Schandorph; Johansen, Tom Keinicke; Tamborg, Kjeld

    2015-01-01

    In this paper, we present flicker noise measurements of two X-band direct conversion mixers implemented in a SiGe:C BiCMOS technology. Both mixers use a ring structure with either Schottky diodes or diode-connected HBTs for double balanced operation. The mixers are packaged in a metal casing on a...... circuit demonstrates a 1/f noise corner frequency around 10 kHz....

  14. A charge-based model of Junction Barrier Schottky rectifiers

    Science.gov (United States)

    Latorre-Rey, Alvaro D.; Mudholkar, Mihir; Quddus, Mohammed T.; Salih, Ali

    2018-06-01

    A new charge-based model of the electric field distribution for Junction Barrier Schottky (JBS) diodes is presented, based on the description of the charge-sharing effect between the vertical Schottky junction and the lateral pn-junctions that constitute the active cell of the device. In our model, the inherently 2-D problem is transformed into a simple but accurate 1-D problem which has a closed analytical solution that captures the reshaping and reduction of the electric field profile responsible for the improved electrical performance of these devices, while preserving physically meaningful expressions that depend on relevant device parameters. The validation of the model is performed by comparing calculated electric field profiles with drift-diffusion simulations of a JBS device showing good agreement. Even though other fully 2-D models already available provide higher accuracy, they lack physical insight making the proposed model an useful tool for device design.

  15. Development of an efficient DC-DC SEPIC converter using wide bandgap power devices for high step-up applications

    Science.gov (United States)

    Al-bayati, Ali M. S.; Alharbi, Salah S.; Alharbi, Saleh S.; Matin, Mohammad

    2017-08-01

    A highly efficient high step-up dc-dc converter is the major requirement in the integration of low voltage renewable energy sources, such as photovoltaic panel module and fuel cell stacks, with a load or utility. This paper presents the development of an efficient dc-dc single-ended primary-inductor converter (SEPIC) for high step-up applications. Three SEPIC converters are designed and studied using different combinations of power devices: a combination based on all Si power devices using a Si-MOSFET and a Si-diode and termed as Si/Si, a combination based on a hybrid of Si and SiC power devices using the Si-MOSFET and a SiC-Schottky diode and termed as Si/SiC, and a combination based on all SiC power devices using a SiC-MOSFET and the SiC-Schottky diode and termed as SiC/SiC. The switching behavior of the Si-MOSFET and SiC-MOSFET is characterized and analyzed within the different combinations at the converter level. The effect of the diode type on the converter's overall performance is also discussed. The switching energy losses, total power losses, and the overall performance effciency of the converters are measured and reported under different switching frequencies. Furthermore, the potential of the designed converters to operate efficiently at a wide range of input voltages and output powers is studied. The analysis and results show an outstanding performance efficiency of the designed SiC/SiC based converter under a wide range of operating conditions.

  16. An ultra-thin Schottky diode as a transmission particle detector for biological microbeams

    International Nuclear Information System (INIS)

    Grad, M; Harken, A; Randers-Pehrson, G; Brenner, D J; Attinger, D

    2012-01-01

    We fabricated ultrathin metal-semiconductor Schottky diodes for use as transmission particle detectors in the biological microbeam at Columbia University's Radiological Research Accelerator Facility (RARAF). The RARAF microbeam can deliver a precise dose of ionizing radiation in cell nuclei with sub-micron precision. To ensure an accurate delivery of charged particles, the facility currently uses a commercial charged-particle detector placed after the sample. We present here a transmission detector that will be placed between the particle accelerator and the biological specimen, allowing the irradiation of samples that would otherwise block radiation from reaching a detector behind the sample. Four detectors were fabricated with co-planar gold and aluminum electrodes thermally evaporated onto etched n-type crystalline silicon substrates, with device thicknesses ranging from 8.5 μm - 13.5 μm. We show coincident detections and pulse-height distributions of charged particles in both the transmission detector and the commercial detector above it. Detections are demonstrated at a range of operating conditions, including incoming particle type, count rate, and beam location on the detectors. The 13.5 μm detector is shown to work best to detect 2.7 MeV protons (H + ), and the 8.5 μm detector is shown to work best to detect 5.4 MeV alpha particles ( 4 He ++ ). The development of a transmission detector enables a range of new experiments to take place at RARAF on radiation-stopping samples such as thick tissues, targets that need immersion microscopy, and integrated microfluidic devices for handling larger quantities of cells and small organisms.

  17. An ultra-thin Schottky diode as a transmission particle detector for biological microbeams

    Science.gov (United States)

    Harken, Andrew; Randers-Pehrson, Gerhard; Attinger, Daniel; Brenner, David J.

    2013-01-01

    We fabricated ultrathin metal-semiconductor Schottky diodes for use as transmission particle detectors in the biological microbeam at Columbia University’s Radiological Research Accelerator Facility (RARAF). The RARAF microbeam can deliver a precise dose of ionizing radiation in cell nuclei with sub-micron precision. To ensure an accurate delivery of charged particles, the facility currently uses a commercial charged-particle detector placed after the sample. We present here a transmission detector that will be placed between the particle accelerator and the biological specimen, allowing the irradiation of samples that would otherwise block radiation from reaching a detector behind the sample. Four detectors were fabricated with co-planar gold and aluminum electrodes thermally evaporated onto etched n-type crystalline silicon substrates, with device thicknesses ranging from 8.5 μm – 13.5 μm. We show coincident detections and pulse-height distributions of charged particles in both the transmission detector and the commercial detector above it. Detections are demonstrated at a range of operating conditions, including incoming particle type, count rate, and beam location on the detectors. The 13.5 μm detector is shown to work best to detect 2.7 MeV protons (H+), and the 8.5 μm detector is shown to work best to detect 5.4 MeV alpha particles (4He++). The development of a transmission detector enables a range of new experiments to take place at RARAF on radiation-stopping samples such as thick tissues, targets that need immersion microscopy, and integrated microfluidic devices for handling larger quantities of cells and small organisms. PMID:24058378

  18. The Beam Characteristics of High Power Diode Laser Stack

    Science.gov (United States)

    Gu, Yuanyuan; Fu, Yueming; Lu, Hui; Cui, Yan

    2018-03-01

    Direct diode lasers have some of the most attractive features of any laser. They are very efficient, compact, wavelength versatile, low cost, and highly reliable. However, the full utilization of direct diode lasers has yet to be realized. However, the poor quality of diode laser beam itself, directly affect its application ranges, in order to better use of diode laser stack, need a proper correction of optical system, which requires accurate understanding of the diode laser beam characteristics. Diode laser could make it possible to establish the practical application because of rectangular beam patterns which are suitable to make fine bead with less power. Therefore diode laser cladding will open a new field of repairing for the damaged machinery parts which must contribute to recycling of the used machines and saving of cost.

  19. An All-Solid-State, Room-Temperature, Heterodyne Receiver for Atmospheric Spectroscopy at 1.2 THz

    Science.gov (United States)

    Siles, Jose V.; Mehdi, Imran; Schlecht, Erich T.; Gulkis, Samuel; Chattopadhyay, Goutam; Lin, Robert H.; Lee, Choonsup; Gill, John J.; Thomas, Bertrand; Maestrini, Alain E.

    2013-01-01

    Heterodyne receivers at submillimeter wavelengths have played a major role in astrophysics as well as Earth and planetary remote sensing. All-solid-state heterodyne receivers using both MMIC (monolithic microwave integrated circuit) Schottky-diode-based LO (local oscillator) sources and mixers are uniquely suited for long-term planetary missions or Earth climate monitoring missions as they can operate for decades without the need for any active cryogenic cooling. However, the main concern in using Schottky-diode-based mixers at frequencies beyond 1 THz has been the lack of enough LO power to drive the devices because 1 to 3 mW are required to properly pump Schottky diode mixers. Recent progress in HEMT- (high-electron-mobility- transistor) based power amplifier technology, with output power levels in excess of 1 W recently demonstrated at W-band, as well as advances in MMIC Schottky diode circuit technology, have led to measured output powers up to 1.4 mW at 0.9 THz. Here the first room-temperature tunable, all-planar, Schottky-diode-based receiver is reported that is operating at 1.2 THz over a wide (˜20%) bandwidth. The receiver front-end (see figure) consists of a Schottky-diode-based 540 to 640 GHz multiplied LO chain (featuring a cascade of W-band power amplifiers providing around 120 to 180 mW at W-band), a 200-GHz MMIC frequency doubler, and a 600-GHz MMIC frequency tripler, plus a biasable 1.2-THz MMIC sub-harmonic Schottky-diode mixer. The LO chain has been designed, fabricated, and tested at JPL and provides around 1 to 1.5 mW at 540 o 640 GHz. The sub-harmonic mixer consists of two Schottky diodes on a thin GaAs membrane in an anti-parallel configuration. An integrated metal insulator metal (MIM) capacitor has been included on-chip to allow dc bias for the Schottky diodes. A bias voltage of around 0.5 V/diode is necessary to reduce the LO power required down to the 1 to 1.5 mW available from the LO chain. The epilayer thickness and doping profiles have

  20. Experiments on high-power ion beam generation in self-insulated diodes

    International Nuclear Information System (INIS)

    Bystritskii, V.M.; Glyshko, Yu.A.; Sinerbrjukhov, A.A.; Kharlov, A.V.

    1991-01-01

    Experimental results are given on high-power ion beams (HPIB) generation in a vacuum spherical focusing diode with self-magnetic insulation, obtained from the nanosecond accelerator PARUS with 0.2-TW power and 60-ns pulse duration for a matched load. When the passive plasma source of the ions was used, the efficiency of the HPIB generation was measured to be as high as 20% for 700-kV diode voltage and 10-kA/cm 2 beam density in the focal plane. The application of a coaxial plasma opening switch (POS) prior to the diode resulted in a factor-of-1.8 increase in the diode power in comparison with a match operation in the absence of a POS. (author)

  1. SiC Schottky Diode Detectors for Measurement of Actinide Concentrations from Alpha Activities in Molten Salt Electrolyte

    International Nuclear Information System (INIS)

    Windl, Wolfgang; Blue, Thomas

    2013-01-01

    In this project, we have designed a 4H-SiC Schottky diode detector device in order to monitor actinide concentrations in extreme environments, such as present in pyroprocessing of spent fuel. For the first time, we have demonstrated high temperature operation of such a device up to 500 °C in successfully detecting alpha particles. We have used Am-241 as an alpha source for our laboratory experiments. Along with the experiments, we have developed a multiscale model to study the phenomena controlling the device behavior and to be able to predict the device performance. Our multiscale model consists of ab initio modeling to understand defect energetics and their effect on electronic structure and carrier mobility in the material. Further, we have developed the basis for a damage evolution model incorporating the outputs from ab initio model in order to predict respective defect concentrations in the device material. Finally, a fully equipped TCAD-based device model has been developed to study the phenomena controlling the device behavior. Using this model, we have proven our concept that the detector is capable of performing alpha detection in a salt bath with the mixtures of actinides present in a pyroprocessing environment.

  2. SiC Schottky Diode Detectors for Measurement of Actinide Concentrations from Alpha Activities in Molten Salt Electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Windl, Wolfgang [The Ohio State Univ., Columbus, OH (United States); Blue, Thomas [The Ohio State Univ., Columbus, OH (United States)

    2013-01-28

    In this project, we have designed a 4H-SiC Schottky diode detector device in order to monitor actinide concentrations in extreme environments, such as present in pyroprocessing of spent fuel. For the first time, we have demonstrated high temperature operation of such a device up to 500 °C in successfully detecting alpha particles. We have used Am-241 as an alpha source for our laboratory experiments. Along with the experiments, we have developed a multiscale model to study the phenomena controlling the device behavior and to be able to predict the device performance. Our multiscale model consists of ab initio modeling to understand defect energetics and their effect on electronic structure and carrier mobility in the material. Further, we have developed the basis for a damage evolution model incorporating the outputs from ab initio model in order to predict respective defect concentrations in the device material. Finally, a fully equipped TCAD-based device model has been developed to study the phenomena controlling the device behavior. Using this model, we have proven our concept that the detector is capable of performing alpha detection in a salt bath with the mixtures of actinides present in a pyroprocessing environment.

  3. Characterization of High-power Quasi-cw Laser Diode Arrays

    Science.gov (United States)

    Stephen, Mark A.; Vasilyev, Aleksey; Troupaki, Elisavet; Allan, Graham R.; Kashem, Nasir B.

    2005-01-01

    NASA s requirements for high reliability, high performance satellite laser instruments have driven the investigation of many critical components; specifically, 808 nm laser diode array (LDA) pump devices. Performance and comprehensive characterization data of Quasi-CW, High-power, laser diode arrays is presented.

  4. Measuring the Electronic Properties of DNA-Specific Schottky Diodes Towards Detecting and Identifying Basidiomycetes DNA

    Science.gov (United States)

    Periasamy, Vengadesh; Rizan, Nastaran; Al-Ta’ii, Hassan Maktuff Jaber; Tan, Yee Shin; Tajuddin, Hairul Annuar; Iwamoto, Mitsumasa

    2016-01-01

    The discovery of semiconducting behavior of deoxyribonucleic acid (DNA) has resulted in a large number of literatures in the study of DNA electronics. Sequence-specific electronic response provides a platform towards understanding charge transfer mechanism and therefore the electronic properties of DNA. It is possible to utilize these characteristic properties to identify/detect DNA. In this current work, we demonstrate a novel method of DNA-based identification of basidiomycetes using current-voltage (I-V) profiles obtained from DNA-specific Schottky barrier diodes. Electronic properties such as ideality factor, barrier height, shunt resistance, series resistance, turn-on voltage, knee-voltage, breakdown voltage and breakdown current were calculated and used to quantify the identification process as compared to morphological and molecular characterization techniques. The use of these techniques is necessary in order to study biodiversity, but sometimes it can be misleading and unreliable and is not sufficiently useful for the identification of fungi genera. Many of these methods have failed when it comes to identification of closely related species of certain genus like Pleurotus. Our electronics profiles, both in the negative and positive bias regions were however found to be highly characteristic according to the base-pair sequences. We believe that this simple, low-cost and practical method could be useful towards identifying and detecting DNA in biotechnology and pathology. PMID:27435636

  5. Fabrication and characterization of the charge-plasma diode

    NARCIS (Netherlands)

    Rajasekharan, B.; Hueting, Raymond Josephus Engelbart; Salm, Cora; van Hemert, T.; Wolters, Robertus A.M.; Schmitz, Jurriaan

    2010-01-01

    We present a new lateral Schottky-based rectifier called the charge-plasma diode realized on ultrathin silicon-oninsulator. The device utilizes the workfunction difference between two metal contacts, palladium and erbium, and the silicon body. We demonstrate that the proposed device provides a low

  6. High-Power 1180-nm GaInNAs DBR Laser Diodes

    DEFF Research Database (Denmark)

    Aho, Antti T.; Viheriala, Jukka; Korpijarvi, Ville-Markus

    2017-01-01

    We report high-power 1180-nm GaInNAs distributed Bragg reflector laser diodes with and without a tapered amplifying section. The untapered and tapered components reached room temperature output powers of 655 mW and 4.04 W, respectively. The diodes exhibited narrow linewidth emission with side...... and better carrier confinement compared with traditional GaInAs quantum wells. The development opens new opportunities for the power scaling of frequency-doubled lasers with emission at yellow-orange wavelengths....

  7. High Power Diode Lasers with External Feedback: Overview and Prospects

    DEFF Research Database (Denmark)

    Chi, Mingjun; Petersen, Paul Michael

    2012-01-01

    In summary, different external-cavity feedback techniques to improve the spatial beam quality and narrow the linewidth of the output beam from both BALs and TDLs are presented. Broad-area diode laser system with external-cavity feedback around 800 nm can produce several Watts of output power...... with a good beam quality. Tapered diode laser systems with external-cavity feedback around 800 and 1060 nm can deliver more than 2 W output power with diffraction-limited beam quality and can be operated in single-longitudinal mode. These high-brightness, narrow linewidth, and tunable external-cavity diode...... lasers emerge as the next generation of compact lasers that have the potential of replacing conventional high power laser systems in many existing applications....

  8. Controlling Schottky energy barriers in organic electronic devices using self-assembled monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, I.H.; Rubin, S.; Zawodzinski, T.A.; Kress, J.D.; Martin, R.L.; Smith, D.L. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Barashkov, N.N.; Ferraris, J.P. [The University of Texas at Dallas, Richardson, Texas 75083 (United States)

    1996-11-01

    We demonstrate tuning of Schottky energy barriers in organic electronic devices by utilizing chemically tailored electrodes. The Schottky energy barrier of Ag on poly[2-methoxy], 5-(2{prime}-ethyl-hexyloxy)- 1,4-phenylene was tuned over a range of more than 1 eV by using self-assembled monolayers (SAM{close_quote}s) to attach oriented dipole layers to the Ag prior to device fabrication. Kelvin probe measurements were used to determine the effect of the SAM{close_quote}s on the Ag surface potential. {ital Ab} {ital initio} Hartree-Fock calculations of the molecular dipole moments successfully describe the surface potential changes. The chemically tailored electrodes were then incorporated in organic diode structures and changes in the metal/organic Schottky energy barriers were measured using an electroabsorption technique. These results demonstrate the use of self-assembled monolayers to control metal/organic interfacial electronic properties. They establish a physical principle for manipulating the relative energy levels between two materials and demonstrate an approach to improve metal/organic contacts in organic electronic devices. {copyright} {ital 1996 The American Physical Society.}

  9. Controlling Schottky energy barriers in organic electronic devices using self-assembled monolayers

    International Nuclear Information System (INIS)

    Campbell, I.H.; Rubin, S.; Zawodzinski, T.A.; Kress, J.D.; Martin, R.L.; Smith, D.L.; Barashkov, N.N.; Ferraris, J.P.

    1996-01-01

    We demonstrate tuning of Schottky energy barriers in organic electronic devices by utilizing chemically tailored electrodes. The Schottky energy barrier of Ag on poly[2-methoxy], 5-(2'-ethyl-hexyloxy)- 1,4-phenylene was tuned over a range of more than 1 eV by using self-assembled monolayers (SAM close-quote s) to attach oriented dipole layers to the Ag prior to device fabrication. Kelvin probe measurements were used to determine the effect of the SAM close-quote s on the Ag surface potential. Ab initio Hartree-Fock calculations of the molecular dipole moments successfully describe the surface potential changes. The chemically tailored electrodes were then incorporated in organic diode structures and changes in the metal/organic Schottky energy barriers were measured using an electroabsorption technique. These results demonstrate the use of self-assembled monolayers to control metal/organic interfacial electronic properties. They establish a physical principle for manipulating the relative energy levels between two materials and demonstrate an approach to improve metal/organic contacts in organic electronic devices. copyright 1996 The American Physical Society

  10. Study of Schottky diodes made on Mn doped p-type InP

    Czech Academy of Sciences Publication Activity Database

    Žďánský, Karel; Kozak, Halina; Sopko, B.; Pekárek, Ladislav

    2008-01-01

    Roč. 19, č. 1 (2008), S333-S337 ISSN 0957-4522 R&D Projects: GA AV ČR KAN400670651 Institutional research plan: CEZ:AV0Z20670512; CEZ:AV0Z10100520 Keywords : Schottky effect * semiconductors * deep levels Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.054, year: 2008

  11. Film thickness degradation of Au/GaN Schottky contact characteristics

    International Nuclear Information System (INIS)

    Wang, K.; Wang, R.X.; Fung, S.; Beling, C.D.; Chen, X.D.; Huang, Y.; Li, S.; Xu, S.J.; Gong, M.

    2005-01-01

    Electrical characteristics of Au/n-GaN Schottky contacts with different Au film thicknesses up to 1300 A, have been investigated using current-voltage (I-V) and capacitance-voltage (C-V) techniques. Results show a steady decrease in the quality of the Schottky diodes for increasing Au film thickness. I-V measurements indicate that thin ( 500 A). Depth profiling Auger electron spectroscopy (AES) shows that the width of the Au/GaN junction interface increases with increasing Au thickness, suggesting considerable inter-mixing of Au, Ga and N. The results have been interpreted in terms of Ga out-diffusion from the GaN giving rise to gallium vacancies that in turn act as sites for electron-hole pair generation within the depletion region. The study supports the recent suggestion that gallium vacancies associated with threaded dislocations are playing an important role in junction breakdown

  12. Theoretical and experimental investigation of a rectenna element for microwave power transmission

    Science.gov (United States)

    Mcspadden, James O.; Yoo, Taewhan; Chang, Kai

    1992-01-01

    A microstrip measurement system has been designed to analyze packaged GaAs Schottky barrier diodes under small and large signal conditions. The nonlinear equivalent circuit parameters of the diode are determined using a small signal test method that analyzes the diode's scattering parameters at various bias levels. The experimental results of a 2.45 GHz diode are verified using a nonlinear circuit simulation program based on a multireflection algorithm. A 35 GHz rectenna has been built using a microstrip patch antenna and Ka-band mixer diode. The measured efficiency was 29 percent at 120 mW input power. A frequency selective surface is designed using an equivalent circuit model to reduce the second harmonic radiations for a 2.45 GHz rectenna. Theoretical results are found to be in fairly good agreement with experiments.

  13. Wideband 4-diode sampling circuit

    Science.gov (United States)

    Wojtulewicz, Andrzej; Radtke, Maciej

    2016-09-01

    The objective of this work was to develop a wide-band sampling circuit. The device should have the ability to collect samples of a very fast signal applied to its input, strengthen it and prepare for further processing. The study emphasizes the method of sampling pulse shaping. The use of ultrafast pulse generator allows sampling signals with a wide frequency spectrum, reaching several gigahertzes. The device uses a pulse transformer to prepare symmetrical pulses. Their final shape is formed with the help of the step recovery diode, two coplanar strips and Schottky diode. Made device can be used in the sampling oscilloscope, as well as other measurement system.

  14. Proposal of a broadband, polarization-insensitive and high-efficiency hot-carrier schottky photodetector integrated with a plasmonic silicon ridge waveguide

    International Nuclear Information System (INIS)

    Yang, Liu; Kou, Pengfei; Shen, Jianqi; Lee, El Hang; He, Sailing

    2015-01-01

    We propose a broadband, polarization-insensitive and high-efficiency plasmonic Schottky diode for detection of sub-bandgap photons in the optical communication wavelength range through internal photoemission (IPE). The distinctive features of this design are that it has a gold film covering both the top and the sidewalls of a dielectric silicon ridge waveguide with the Schottky contact formed at the gold–silicon interface and the sidewall coverage of gold can be easily tuned by an insulating layer. An extensive physical model on IPE of hot carriers is presented in detail and is applied to calculate and examine the performance of this detector. In comparison with a diode having only the top gold contact, the polarization sensitivity of the responsivity is greatly minimized in our photodetector with gold film covering both the top and the sidewall. Much higher responsivities for both polarizations are also achieved over a broad wavelength range of 1.2–1.6 μm. Moreover, the Schottky contact is only 4 μm long, leading to a very small dark current. Our design is very promising for practical applications in high-density silicon photonic integration. (paper)

  15. An investigation of characteristics parameters of Ag/p-Si Schottky diodes based on I-V-T and C-V-T measurements

    International Nuclear Information System (INIS)

    Selcuk, A.B.

    2004-01-01

    The current-voltage (I-V) measurements on Ag/p-Si Schottky barrier diodes in the temperature range 125-300 K were carried out. The experimental values of n and Φ b 0 were determined from intercepts and slopes of the forward bias In I-V plot at each temperature. The Φ b 0 and n determined from semilog-forwaid I- V plots were found to be a strong function of temperature. The ideality factor n was found to increase, while the Φ b 0 decrease with decreasing temperature. The flat-band barrier height Φ b f and series resistance R s are also determined from the I-V measurements. Furthermore, the diffusion potential V D , experimental carrier doping density N A , Fermi level E F and barrier height Φ C V are determined from the C- V measurements. It is shown that the values of R s estimated from Cheung's method were strongly temperature dependent decreased with increasing temperature

  16. Annealing effect on the electrical and optical properties of Au/n-ZnO NWs Schottky diodes white LEDs

    Science.gov (United States)

    Soomro, M. Y.; Hussain, I.; Bano, N.; Nur, O.; Willander, M.

    2013-10-01

    We report the post-growth heat treatment effect on the electrical and the optical properties of hydrothermally grown zinc oxide (ZnO) nanowires (NWs) Schottky white light emitting diodes (LEDs). It was found that there is a changed in the electroluminescence (EL) spectrum when post growth annealing process was performed at 600 °C under nitrogen, oxygen and argon ambients. The EL spectrum for LEDs based on the as grown NWs show three bands red, green and blue centered at 724, 518 and 450 nm respectively. All devices based on ZnO NWs annealed in oxygen (O2), nitrogen (N2) and argon (Ar) ambient show blue shift in the violet and the red emissions whereas a red shift is observed in the green emission compared to the as grown NWs based device. The color rendering index (CRI) and the correlated color temperature (CCT) of all LEDs were calculated to be in the range 78-91 and 2753-5122 K, respectively. These results indicate that light from the LEDs can be tuned from cold white light to warm white light by post growth annealing.

  17. High power diode lasers emitting from 639 nm to 690 nm

    Science.gov (United States)

    Bao, L.; Grimshaw, M.; DeVito, M.; Kanskar, M.; Dong, W.; Guan, X.; Zhang, S.; Patterson, J.; Dickerson, P.; Kennedy, K.; Li, S.; Haden, J.; Martinsen, R.

    2014-03-01

    There is increasing market demand for high power reliable red lasers for display and cinema applications. Due to the fundamental material system limit at this wavelength range, red diode lasers have lower efficiency and are more temperature sensitive, compared to 790-980 nm diode lasers. In terms of reliability, red lasers are also more sensitive to catastrophic optical mirror damage (COMD) due to the higher photon energy. Thus developing higher power-reliable red lasers is very challenging. This paper will present nLIGHT's released red products from 639 nm to 690nm, with established high performance and long-term reliability. These single emitter diode lasers can work as stand-alone singleemitter units or efficiently integrate into our compact, passively-cooled Pearl™ fiber-coupled module architectures for higher output power and improved reliability. In order to further improve power and reliability, new chip optimizations have been focused on improving epitaxial design/growth, chip configuration/processing and optical facet passivation. Initial optimization has demonstrated promising results for 639 nm diode lasers to be reliably rated at 1.5 W and 690nm diode lasers to be reliably rated at 4.0 W. Accelerated life-test has started and further design optimization are underway.

  18. Reverse Current Characteristics of InP Gunn Diodes for W-Band Waveguide Applications.

    Science.gov (United States)

    Kim, Hyun-Seok; Heo, Jun-Woo; Chol, Seok-Gyu; Ko, Dong-Sik; Rhee, Jin-Koo

    2015-07-01

    InP is considered as the most promising material for millimeter-wave laser-diode applications owing to its superior noise performance and wide operating frequency range of 75-110 GHz. In this study, we demonstrate the fabrication of InP Gunn diodes with a current-limiting structure using rapid thermal annealing to modulate the potential height formed between an n-type InP active layer and a cathode contact. We also explore the reverse current characteristics of the InP Gunn diodes. Experimental results indicate a maximum anode current and an oscillation frequency of 200 mA and 93.53 GHz, respectively. The current-voltage characteristics are modeled by considering the Schottky and ohmic contacts, work function variations, negative differential resistance (NDR), and tunneling effect. Although no direct indication of the NDR is observed, the simulation results match the measured data well. The modeling results show that the NDR effect is always present but is masked because of electron emission across the shallow Schottky barrier.

  19. Novel High Power Type-I Quantum Well Cascade Diode Lasers

    Science.gov (United States)

    2017-08-30

    Novel High Power Type-I Quantum Well Cascade Diode Lasers The views, opinions and/or findings contained in this report are those of the author(s...SECURITY CLASSIFICATION OF: 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6... High Power Type-I Quantum Well Cascade Diode Lasers Report Term: 0-Other Email: leon.shterengas@stonybrook.edu Distribution Statement: 1-Approved

  20. A Wideband and Compact Circularly-Polarized Rectenna for Low Power Application

    OpenAIRE

    Okba , Abderrahim; Takacs , Alexandru; Aubert , Hervé; Bellion , Anthony; Grenana , D

    2017-01-01

    International audience; This paper presents a wideband and compact circularly polarized rectenna composed by an Archimedean spiral antenna that covers the S and C frequency bands and a silicon Schottky diode. This rectenna (rectifier + antenna) is used for electromagnetic energy harvesting over a wide frequency band, in order to power autonomous wireless sensors used for satellite health monitoring. For low incident power densities (around 14 µW/cm²) the measured efficiency of at least 19% be...

  1. High average power diode pumped solid state lasers for CALIOPE

    International Nuclear Information System (INIS)

    Comaskey, B.; Halpin, J.; Moran, B.

    1994-07-01

    Diode pumping of solid state media offers the opportunity for very low maintenance, high efficiency, and compact laser systems. For remote sensing, such lasers may be used to pump tunable non-linear sources, or if tunable themselves, act directly or through harmonic crystals as the probe. The needs of long range remote sensing missions require laser performance in the several watts to kilowatts range. At these power performance levels, more advanced thermal management technologies are required for the diode pumps. The solid state laser design must now address a variety of issues arising from the thermal loads, including fracture limits, induced lensing and aberrations, induced birefringence, and laser cavity optical component performance degradation with average power loading. In order to highlight the design trade-offs involved in addressing the above issues, a variety of existing average power laser systems are briefly described. Included are two systems based on Spectra Diode Laboratory's water impingement cooled diode packages: a two times diffraction limited, 200 watt average power, 200 Hz multi-rod laser/amplifier by Fibertek, and TRW's 100 watt, 100 Hz, phase conjugated amplifier. The authors also present two laser systems built at Lawrence Livermore National Laboratory (LLNL) based on their more aggressive diode bar cooling package, which uses microchannel cooler technology capable of 100% duty factor operation. They then present the design of LLNL's first generation OPO pump laser for remote sensing. This system is specified to run at 100 Hz, 20 nsec pulses each with 300 mJ, less than two times diffraction limited, and with a stable single longitudinal mode. The performance of the first testbed version will be presented. The authors conclude with directions their group is pursuing to advance average power lasers. This includes average power electro-optics, low heat load lasing media, and heat capacity lasers

  2. Ultra-wideband balanced schottky envelope detector for data communication with high bitrate to carrier frequency ratio

    DEFF Research Database (Denmark)

    Granja, Angel Blanco; Cimoli, Bruno; Rodriguez, Sebastian

    2017-01-01

    This paper reports on an ultra-wideband (UWB) Schottky diode based balanced envelope detector for the L-, S-, C- and X- bands. The proposed circuit consists of a balun that splits the input signal into two 180° out of phase signals, a balanced detector, that demodulates the two signals, a low pass...

  3. XUV preionization effects in high power magnetically insulated diodes

    International Nuclear Information System (INIS)

    Maenchen, J.; Woodworth, J.R.; Foltz, B.W.

    1985-01-01

    Electrode surface desorption and photoionization by an intense XUV pulse has been shown to dramatically improve a vacuum diode impedance history. The 6-Terawatt Applied-B ion diode experiment on PBFA I is limited by a delay in both diode and ion current initiation. The insulation magnetic field impedes electron crossings which are believed to aid the ion source initiation. The diode is therefore initially a severe overmatch to the accelerator 40-nsec, 2.2-MV, 0.5-ohm pulse. The diode current increases during the pulse, leading to a rapidly falling impedance history. The application of an intense (30 to 50-kW/cm 2 ) XUV flux from an array of sixteen 60-kA spark sources is found to cause immediate diode current flow, resulting in both a greatly improved impedance history and the prompt initiation of an intense higher power ion beam

  4. High power multiple wavelength diode laser stack for DPSSL application without temperature control

    Science.gov (United States)

    Hou, Dong; Yin, Xia; Wang, Jingwei; Chen, Shi; Zhan, Yun; Li, Xiaoning; Fan, Yingmin; Liu, Xingsheng

    2018-02-01

    High power diode laser stack is widely used in pumping solid-state laser for years. Normally an integrated temperature control module is required for stabilizing the output power of solid-state laser, as the output power of the solid-state laser highly depends on the emission wavelength and the wavelength shift of diode lasers according to the temperature changes. However the temperature control module is inconvenient for this application, due to its large dimension, high electric power consumption and extra adding a complicated controlling system. Furthermore, it takes dozens of seconds to stabilize the output power when the laser system is turned on. In this work, a compact hard soldered high power conduction cooled diode laser stack with multiple wavelengths is developed for stabilizing the output power of solid-state laser in a certain temperature range. The stack consists of 5 laser bars with the pitch of 0.43mm. The peak output power of each bar in the diode laser stack reaches as much as 557W and the combined lasing wavelength spectrum profile spans 15nm. The solidstate laser, structured with multiple wavelength diode laser stacks, allows the ambient temperature change of 65°C without suddenly degrading the optical performance.

  5. Optical phase dynamics in mutually coupled diode laser systems exhibiting power synchronization

    International Nuclear Information System (INIS)

    Pal, Vishwa; Ghosh, R; Prasad, Awadhesh

    2011-01-01

    We probe the physical mechanism behind the known phenomenon of power synchronization of two diode lasers that are mutually coupled via their delayed optical fields. In a diode laser, the amplitude and the phase of the optical field are coupled by the so-called linewidth enhancement factor, α. In this work, we explore the role of optical phases of the electric fields in amplitude (and hence power) synchronization through α in such mutually delay-coupled diode laser systems. Our numerical results show that the synchronization of optical phases drives the powers of lasers to synchronized death regimes. We also find that as α varies for different diode lasers, the system goes through a sequence of in-phase amplitude-death states. Within the windows between successive amplitude-death regions, the cross-correlation between the field amplitudes exhibits a universal power-law behaviour with respect to α.

  6. Design Concepts for RF-DC Conversion in Particle Accelerator Systems

    CERN Document Server

    Caspers, F; Grudiev, A; Sapotta, H

    2010-01-01

    In many particle accelerators considerable amounts of RF power reaching the megawatt level are converted into heat in dummy loads. After an overview of RF power in the range 200 MHz to 1 GHz dissipated at CERN we discuss several developments that have come up in the past using vacuum tube technology for RF-DC conversion. Amongst those the developments of the cyclotron wave converter CWC appears most suitable. With the availability of powerful Schottky diodes the solid state converter aspect has to be addressed as well. One of the biggest problems of Schottky diode based structures is the junction capacity. GaAs and GaN Schottky diodes show a significant reduction of this junction capacity as compared to silicon. Small rectenna type converter units which have been already developed for microwave powered helicopters can be used in waveguides or with coaxial power dividers.

  7. In-volume heating using high-power laser diodes

    NARCIS (Netherlands)

    Denisenkov, V.S.; Kiyko, V.V.; Vdovin, G.V.

    2015-01-01

    High-power lasers are useful instruments suitable for applications in various fields; the most common industrial applications include cutting and welding. We propose a new application of high-power laser diodes as in-bulk heating source for food industry. Current heating processes use surface

  8. Comparison of nickel, cobalt, palladium, and tungsten Schottky contacts on n-4H-silicon carbide

    Science.gov (United States)

    Gora, V. E.; Chawanda, A.; Nyamhere, C.; Auret, F. D.; Mazunga, F.; Jaure, T.; Chibaya, B.; Omotoso, E.; Danga, H. T.; Tunhuma, S. M.

    2018-04-01

    We have investigated the current-voltage (I-V) characteristics of nickel (Ni), cobalt (Co), tungsten (W) and palladium (Pd) Schottky contacts on n-type 4H-SiC in the 300-800 K temperature range. Results extracted from I-V measurements of Schottky barrier diodes showed that barrier height (ФBo) and ideality factor (n) were strongly dependent on temperature. Schottky barrier heights for contacts of all the metals showed an increase with temperature between 300 K and 800 K. This was attributed to barrier inhomogeneities at the interface between the metal and the semiconductor, which resulted in a distribution of barrier heights at the interface. Ideality factors of Ni, Co and Pd decreased from 1.6 to 1.0 and for W the ideality factor decreased from 1.1 to 1.0 when the temperature was increased from 300 K to 800 K respectively. The device parameters were compared to assess advantages and disadvantages of the metals for envisaged applications.

  9. Fundamental studies of graphene/graphite and graphene-based Schottky photovoltaic devices

    Science.gov (United States)

    Miao, Xiaochang

    In the carbon allotropes family, graphene is one of the most versatile members and has been extensively studied since 2004. The goal of this dissertation is not only to investigate the novel fundamental science of graphene and its three-dimensional sibling, graphite, but also to explore graphene's promising potential in modern electronic and optoelectronic devices. The first two chapters provide a concise introduction to the fundamental solid state physics of graphene (as well as graphite) and the physics at the metal/semiconductor interfaces. In the third chapter, we demonstrate the formation of Schottky junctions at the interfaces of graphene (semimetal) and various inorganic semiconductors that play dominating roles in today's semiconductor technology, such as Si, SiC, GaAs and GaN. As shown from their current-voltage (I -V) and capacitance-voltage (C-V) characteristics, the interface physics can be well described within the framework of the Schottky-Mott model. The results are also well consist with that from our previous studies on graphite based Schottky diodes. In the fourth chapter, as an extension of graphene based Schottky work, we investigate the photovoltaic (PV) effect of graphene/Si junctions after chemically doped with an organic polymer (TFSA). The power conversion efficiency of the solar cell improves from 1.9% to 8.6% after TFSA doping, which is the record in all graphene based PVs. The I -V, C-V and external quantum efficiency measurements suggest 12 that such a significant enhancement in the device performance can be attributed to a doping-induced decrease in the series resistance and a simultaneous increase in the built-in potential. In the fifth chapter, we investigate for the first time the effect of uniaxial strains on magneto-transport properties of graphene. We find that low-temperature weak localization effect in monolayer graphene is gradually suppressed under increasing strains, which is due to a strain-induced decreased intervalley

  10. Transient analysis of power systems solution techniques, tools and applications

    CERN Document Server

    Martinez-Velasco, J

    2014-01-01

    A comprehensive introduction and up-to-date reference to SiC power semiconductor devices covering topics from material properties to applicationsBased on a number of breakthroughs in SiC material science and fabrication technology in the 1980s and 1990s, the first SiC Schottky barrier diodes (SBDs) were released as commercial products in 2001.  The SiC SBD market has grown significantly since that time, and SBDs are now used in a variety of power systems, particularly switch-mode power supplies and motor controls.  SiC power MOSFETs entered commercial production in 2011, providing rugged, hig

  11. Visible high power fiber coupled diode lasers

    Science.gov (United States)

    Köhler, Bernd; Drovs, Simon; Stoiber, Michael; Dürsch, Sascha; Kissel, Heiko; Könning, Tobias; Biesenbach, Jens; König, Harald; Lell, Alfred; Stojetz, Bernhard; Löffler, Andreas; Strauß, Uwe

    2018-02-01

    In this paper we report on further development of fiber coupled high-power diode lasers in the visible spectral range. New visible laser modules presented in this paper include the use of multi single emitter arrays @ 450 nm leading to a 120 W fiber coupled unit with a beam quality of 44 mm x mrad, as well as very compact modules with multi-W output power from 405 nm to 640 nm. However, as these lasers are based on single emitters, power scaling quickly leads to bulky laser units with a lot of optical components to be aligned. We also report on a new approach based on 450 nm diode laser bars, which dramatically reduces size and alignment effort. These activities were performed within the German government-funded project "BlauLas": a maximum output power of 80 W per bar has been demonstrated @ 450 nm. We show results of a 200 μm NA0.22 fiber coupled 35 W source @ 450 nm, which has been reduced in size by a factor of 25 compared to standard single emitter approach. In addition, we will present a 200 μm NA0.22 fiber coupled laser unit with an output power of 135 W.

  12. A battery-powered high-current power supply for superconductors

    CERN Document Server

    Wake, M; Suda, K

    2002-01-01

    Since superconductors do not require voltages, a high-current power supply could run with low power if the voltage is sufficiently reduced. Even a battery-powered power supply could give as much as 2,000A for a superconductor. To demonstrate this hypothesis, a battery-powered 2,000A power supply was constructed. It uses an IGBT chopper and Schottky diode together with a specially arranged transformer to produce a high current with low voltage. Testing of 2,000A operation was performed for about 1.5 hr using 10 car batteries. Charging time for this operation was 8 hr. Ramping control was smooth and caused no trouble. Although the IGBT frequency ripple of 16.6 kHz was easily removed using a passive filter, spike noise remained in the output voltage. This ripple did not cause any trouble in operating a pancake-type inductive superconducting load. (author)

  13. Hybrid simulation of electrode plasmas in high-power diodes

    International Nuclear Information System (INIS)

    Welch, Dale R.; Rose, David V.; Bruner, Nichelle; Clark, Robert E.; Oliver, Bryan V.; Hahn, Kelly D.; Johnston, Mark D.

    2009-01-01

    New numerical techniques for simulating the formation and evolution of cathode and anode plasmas have been successfully implemented in a hybrid code. The dynamics of expanding electrode plasmas has long been recognized as a limiting factor in the impedance lifetimes of high-power vacuum diodes and magnetically insulated transmission lines. Realistic modeling of such plasmas is being pursued to aid in understanding the operating characteristics of these devices as well as establishing scaling relations for reliable extrapolation to higher voltages. Here, in addition to kinetic and fluid modeling, a hybrid particle-in-cell technique is described that models high density, thermal plasmas as an inertial fluid which transitions to kinetic electron or ion macroparticles above a prescribed energy. The hybrid technique is computationally efficient and does not require resolution of the Debye length. These techniques are first tested on a simple planar diode then applied to the evolution of both cathode and anode plasmas in a high-power self-magnetic pinch diode. The impact of an intense electron flux on the anode surface leads to rapid heating of contaminant material and diode impedance loss.

  14. The study of the deep levels of In/CdTe Schottky diode

    International Nuclear Information System (INIS)

    Kim, Hey-kyeong; Jeen, Gwangsoo; Nam, S.H.

    2000-01-01

    p-type CdTe is an important component of II-VI compound based solar cells as well as a promising substance for X- and gamma-ray detector. Despite that a lot of researches has been performed on CdTe, the manufacture of large homogeneous ingots with high resistivity (ρ) and a high value of lifetime-mobility product (μτ) still difficult. Both ρ and μτ, which determine detection properties, are strongly dependent on the impurity and defect levels of crystals. As in general, deep defect levels act as recombination centers and influence strongly the efficiency of the detector material, so information about deep levels is an essential need. To estimate deep levels of semiconductor materials, the TSC (thermally stimulated current), TSCD (thermally stimulated capacitor discharges) and admittance spectroscopic method are used. In order to study the deep levels of CdTe, the samples were taken from a CdTe-crystal grown by the vertical Bridgman method. From this boule single crystalline samples of about 0.5 mm thickness were prepared. All samples were initially p-type which was determined by the hot-probe method. In-CdTe Schottky diodes were prepared by the process of evaporation of In in the vacuum of 10 -6 Torr on surface of CdTe. The area of the deposited contact was equal to 1.626 mm 2 . As ohmic contacts, dots of Au soldered for 30 min. in temperature 160 deg C. Measurements were carried out within a 100-250 K temperature and 1-10 kHz frequency range. Related Arrhenius plots, i.e. the experimentally determined emission rates corresponding to the signal maximum divided by the square of temperature as a function of reciprocal temperature are plotted. The experimental data were best fitted by the least-square method. The fitting yielded the defect level energies E T . In this study, by using admittance spectroscopy measurements, we presented the information about the energy and concentration of the defect levels inside the gap, in order to improve the quality of

  15. Active and fast charge-state switching of single NV centres in diamond by in-plane Al-Schottky junctions

    Directory of Open Access Journals (Sweden)

    Christoph Schreyvogel

    2016-11-01

    Full Text Available In this paper, we demonstrate an active and fast control of the charge state and hence of the optical and electronic properties of single and near-surface nitrogen-vacancy centres (NV centres in diamond. This active manipulation is achieved by using a two-dimensional Schottky-diode structure from diamond, i.e., by using aluminium as Schottky contact on a hydrogen terminated diamond surface. By changing the applied potential on the Schottky contact, we are able to actively switch single NV centres between all three charge states NV+, NV0 and NV− on a timescale of 10 to 100 ns, corresponding to a switching frequency of 10–100 MHz. This switching frequency is much higher than the hyperfine interaction frequency between an electron spin (of NV− and a nuclear spin (of 15N or 13C for example of 2.66 kHz. This high-frequency charge state switching with a planar diode structure would open the door for many quantum optical applications such as a quantum computer with single NVs for quantum information processing as well as single 13C atoms for long-lifetime storage of quantum information. Furthermore, a control of spectral emission properties of single NVs as a single photon emitters – embedded in photonic structures for example – can be realized which would be vital for quantum communication and cryptography.

  16. Analysis of the Electrical Properties of an Electron Injection Layer in Alq3-Based Organic Light Emitting Diodes.

    Science.gov (United States)

    Kim, Soonkon; Choi, Pyungho; Kim, Sangsub; Park, Hyoungsun; Baek, Dohyun; Kim, Sangsoo; Choi, Byoungdeog

    2016-05-01

    We investigated the carrier transfer and luminescence characteristics of organic light emitting diodes (OLEDs) with structure ITO/HAT-CN/NPB/Alq3/Al, ITO/HAT-CN/NPB/Alq3/Liq/Al, and ITO/HAT-CN/NPB/Alq3/LiF/A. The performance of the OLED device is improved by inserting an electron injection layer (EIL), which induces lowering of the electron injection barrier. We also investigated the electrical transport behaviors of p-Si/Alq3/Al, p-Si/Alq3/Liq/Al, and p-Si/Alq3/LiF/Al Schottky diodes, by using current-voltage (L-V) and capacitance-voltage (C-V) characterization methods. The parameters of diode quality factor n and barrier height φ(b) were dependent on the interlayer materials between Alq3 and Al. The barrier heights φ(b) were 0.59, 0.49, and 0.45 eV, respectively, and the diode quality factors n were 1.34, 1.31, and 1.30, respectively, obtained from the I-V characteristics. The built in potentials V(bi) were 0.41, 0.42, and 0.42 eV, respectively, obtained from the C-V characteristics. In this experiment, Liq and LiF thin film layers improved the carrier transport behaviors by increasing electron injection from Al to Alq3, and the LiF schottky diode showed better I-V performance than the Liq schottky diode. We confirmed that a Liq or LiF thin film inter-layer governs electron and hole transport at the Al/Alq3 interface, and has an important role in determining the electrical properties of OLED devices.

  17. The nature of electrical interaction of Schottky contacts

    International Nuclear Information System (INIS)

    Torkhov, N. A.

    2011-01-01

    Electrical interaction between metal-semiconductor contacts combined in a diode matrix with a Schottky barrier manifests itself in an appreciable variation in their surface potentials and static current-volt-characteristics. The necessary condition for appearance of electrical interaction between such contacts consists in the presence of a peripheral electric field (a halo) around them; this field propagates to a fairly large distances ( i,j ), concentration of doping impurities in the semiconductor N D , and physical nature of a metal-semiconductor system with a Schottky barrier (with the barrier height φ b ). It is established that bringing the contacts closer leads to a relative decrease in the threshold value of the “dead” zone in the forward current-voltage characteristics, an increase in the effective height of the barrier, and an insignificant increase in the nonideality factor. An increase in the total area of contacts (a total electric charge in the space charge region) in the matrix brings about an increase in the threshold value of the “dead” zone, a relative decrease in the effective barrier height, and an insignificant increase in the ideality factor.

  18. Improved performance of high average power semiconductor arrays for applications in diode pumped solid state lasers

    International Nuclear Information System (INIS)

    Beach, R.; Emanuel, M.; Benett, W.; Freitas, B.; Ciarlo, D.; Carlson, N.; Sutton, S.; Skidmore, J.; Solarz, R.

    1994-01-01

    The average power performance capability of semiconductor diode laser arrays has improved dramatically over the past several years. These performance improvements, combined with cost reductions pursued by LLNL and others in the fabrication and packaging of diode lasers, have continued to reduce the price per average watt of laser diode radiation. Presently, we are at the point where the manufacturers of commercial high average power solid state laser systems used in material processing applications can now seriously consider the replacement of their flashlamp pumps with laser diode pump sources. Additionally, a low cost technique developed and demonstrated at LLNL for optically conditioning the output radiation of diode laser arrays has enabled a new and scalable average power diode-end-pumping architecture that can be simply implemented in diode pumped solid state laser systems (DPSSL's). This development allows the high average power DPSSL designer to look beyond the Nd ion for the first time. Along with high average power DPSSL's which are appropriate for material processing applications, low and intermediate average power DPSSL's are now realizable at low enough costs to be attractive for use in many medical, electronic, and lithographic applications

  19. Measurement and simulation of the effects of ion-induced defects on ion beam-induced charge (IBIC) measurements in Si schottky diodes

    International Nuclear Information System (INIS)

    Hearne, S.M.; Lay, M.D.H.; Jamieson, D.N.

    2004-01-01

    Full text: The Ion Beam Induced Charge (IBIC) technique is a very sensitive tool for investigating the electronic properties of semiconductor materials and devices. However, obtaining quantitative information from IBIC experiments requires an accurate model of the materials properties. The interaction of high energy ions with crystalline materials is known to create point defects within the crystal. A significant proportion of defects introduced by the interaction of the ion with the crystal are electrically active and are therefore an important consideration when undertaking an IBIC experiment. The goal of this work is to investigate the possibility of including the relevant defect parameters in computer simulations of the IBIC experiment implemented using Technology Computer Aided Design (TCAD) software. We will present the results from an IBIC study on Si Schottky diodes using 1 MeV alphas. A reduction of greater than 50% in the detected IBIC signal was observed for fluences greater than 5x10 10 He + /cm 2 . The trap parameters following ion irradiation were determined experimentally using DLTS. Comparisons between the experimental IBIC results and TCAD simulations will be discussed

  20. Effects of fluorine-based plasma treatment and thermal annealing on high-Al content AlGaN Schottky contact

    International Nuclear Information System (INIS)

    Liu Fang; Qin Zhixin

    2016-01-01

    Fluorine plasma treatment was used prior to the Schottky metal deposition on the undoped Al 0.45 Ga 0.55 N, which aimed at the solar-blind wavelength. After fluorine plasma treatment and before depositing the Ni/Au Schottky, the samples were thermal annealed in the N 2 gas at 400 °C. The reverse leakage current density of Al 0.45 Ga 0.55 N Schottky diode was reduced by 2 orders of magnitude at −10 V. The reverse leakage current density was reduced by 3 orders of magnitude after thermal annealing. Further capacitance–frequency analysis revealed that the fluorine-based plasma treatment reduces the surface states of AlGaN by one order of magnitude at different surface state energies. The capacitance–frequency analysis also proved that the concentration of carriers in AlGaN top is reduced through fluorine plasma treatment. (paper)

  1. TCAD analysis of graphene silicon Schottky junction solar cell

    Science.gov (United States)

    Kuang, Yawei; Liu, Yushen; Ma, Yulong; Xu, Jing; Yang, Xifeng; Feng, Jinfu

    2015-08-01

    The performance of graphene based Schottky junction solar cell on silicon substrate is studied theoretically by TCAD Silvaco tools. We calculate the current-voltage curves and internal quantum efficiency of this device at different conditions using tow dimensional model. The results show that the power conversion efficiency of Schottky solar cell dependents on the work function of graphene and the physical properties of silicon such as thickness and doping concentration. At higher concentration of 1e17cm-3 for n-type silicon, the dark current got a sharp rise compared with lower doping concentration which implies a convert of electron emission mechanism. The biggest fill factor got at higher phos doping predicts a new direction for higher performance graphene Schottky solar cell design.

  2. X-ray photoelectron spectroscopy studies of aging effects on the surface of Au - a-Si:H - Sb-Cr Schottky diodes

    International Nuclear Information System (INIS)

    Paquin, L.; Wertheimer, M.R.; Sacher, E.; McIntyre, N.S.

    1989-01-01

    During investigations of Au - a-Si:H - Cr-Sb photovoltaic Schottky diodes, it was observed that photoconversion parameters (I sc ,, V oc , η), improved markedly with time for samples stored for several weeks in ambient air. This was always accompanied by apparent color changes in the area under the top (Au) electrode, from gold to deep purple, and by evolution of its surface conductivity σ from a highly conducting to an insulating state. Profilometry indicated that the colored area rose about 80 nm above the original surface during these changes. These diodes have been examined using depth-profiling surface analytical techniques, namely secondary-ion mass spectroscopy, Auger electron spectroscopy, and X-ray photoelectron spectroscopy (XPS), but primarily the latter. The XPS studies of the entire layer thickness on the gold electrode were carried out using erosion by Ar + ion bombardment. The XPS line positions were used to infer electrical properties of silicon and gold constituents. The results show that Si atoms first diffuse through the gold electrode, where they react with atmospheric constituents to form a thick layer composed mainly of SiO 2 . this layer is responsible for the observed changes in color, σ, and I sc . The latter change, which leads to a maximum rise in η of about 60%, is felt to result from the fact that the SiO 2 layer acts as an antireflection coating. Gold from the electrode layer also diffuses outward, mixed intimately with the silicon oxide. Further aging results in a degradation of the electrical continuity of the Au electrode, which is believed to be responsible for the observed slow drop in σ. (author). 14 refs., 9 figs

  3. Effects of thermal cycling on aluminum metallization of power diodes

    DEFF Research Database (Denmark)

    Brincker, Mads; Pedersen, Kristian Bonderup; Kristensen, Peter Kjær

    2015-01-01

    Reconstruction of aluminum metallization on top of power electronic chips is a well-known wear out phenomenon under power cycling conditions. However, the origins of reconstruction are still under discussion. In the current study, a method for carrying out passive thermal cycling of power diodes...

  4. Transport characteristics of Pd Schottky barrier diodes on epitaxial n-GaSb as determined from temperature dependent current–voltage measurements

    Energy Technology Data Exchange (ETDEWEB)

    Venter, A., E-mail: andre.venter@nmmu.ac.za [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa); Murape, D.M.; Botha, J.R. [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa); Auret, F.D. [Department of Physics, University of the Pretoria, Lynnwood Road, Pretoria 0002 (South Africa)

    2015-01-01

    The temperature dependent transport characteristics of Pd/n-GaSb:Te Schottky contacts with low and saturating reverse current are investigated by means of current–voltage measurements between 80 K and 320 K. The apparent barrier height and ideality factor increase with a decrease in temperature. Neither thermionic nor thermionic field emission can explain the low temperature characteristics of these diodes. Instead, evidence is presented for barrier inhomogeneity across the metal/semiconductor contact. A plot of the barrier height, ϕ{sub b} vs. 1/2kT revealed a double Gaussian distribution for the barrier height with ϕ{sub b,mean} assuming values of 0.59 eV ± 0.07 (80–140 K) and 0.25 eV ± 0.12 (140–320 K) respectively. - Highlights: • Transport characteristics of Pd/epitaxial n-GaSb:Te SBDs are studied by means of I-V-T measurements. • SBDs have remarkably low and saturating reverse current – of the lowest ever reported for GaSb. • Transport behaviour is explained by considering electronic states present on the GaSb surface. • Evidence is presented for barrier inhomogeneity across the metal-semiconductor contact.

  5. Transport characteristics of Pd Schottky barrier diodes on epitaxial n-GaSb as determined from temperature dependent current–voltage measurements

    International Nuclear Information System (INIS)

    Venter, A.; Murape, D.M.; Botha, J.R.; Auret, F.D.

    2015-01-01

    The temperature dependent transport characteristics of Pd/n-GaSb:Te Schottky contacts with low and saturating reverse current are investigated by means of current–voltage measurements between 80 K and 320 K. The apparent barrier height and ideality factor increase with a decrease in temperature. Neither thermionic nor thermionic field emission can explain the low temperature characteristics of these diodes. Instead, evidence is presented for barrier inhomogeneity across the metal/semiconductor contact. A plot of the barrier height, ϕ b vs. 1/2kT revealed a double Gaussian distribution for the barrier height with ϕ b,mean assuming values of 0.59 eV ± 0.07 (80–140 K) and 0.25 eV ± 0.12 (140–320 K) respectively. - Highlights: • Transport characteristics of Pd/epitaxial n-GaSb:Te SBDs are studied by means of I-V-T measurements. • SBDs have remarkably low and saturating reverse current – of the lowest ever reported for GaSb. • Transport behaviour is explained by considering electronic states present on the GaSb surface. • Evidence is presented for barrier inhomogeneity across the metal-semiconductor contact

  6. Thermal sensor based zinc oxide diode for low temperature applications

    Energy Technology Data Exchange (ETDEWEB)

    Ocaya, R.O. [Department of Physics, University of the Free State (South Africa); Al-Ghamdi, Ahmed [Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589 (Saudi Arabia); El-Tantawy, F. [Department of Physics, Faculty of Science, Suez Canal University, Ismailia (Egypt); Center of Nanotechnology, King Abdulaziz University, Jeddah (Saudi Arabia); Farooq, W.A. [Department of Physics and Astronomy, College of Science, King Saud University, Riyadh (Saudi Arabia); Yakuphanoglu, F., E-mail: fyhan@hotmail.com [Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589 (Saudi Arabia); Department of Physics, Faculty of Science, Firat University, Elazig, 23169 (Turkey)

    2016-07-25

    The device parameters of Al/p-Si/Zn{sub 1-x}Al{sub x}O-NiO/Al Schottky diode for x = 0.005 were investigated over the 50 K–400 K temperature range using direct current–voltage (I–V) and impedance spectroscopy. The films were prepared using the sol–gel method followed by spin-coating on p-Si substrate. The ideality factor, barrier height, resistance and capacitance of the diode were found to depend on temperature. The calculated barrier height has a mean. Capacitance–voltage (C–V) measurements show that the capacitance decreases with increasing frequency, suggesting a continuous distribution of interface states over the surveyed 100 kHz to 1 MHz frequency range. The interface state densities, N{sub ss}, of the diode were calculated and found to peak as functions of bias and temperature in two temperature regions of 50 K–300 K and 300 K–400 K. A peak value of approximately 10{sup 12}/eV cm{sup 2} was observed around 0.7 V bias for 350 K and at 3 × 10{sup 12}/eVcm{sup 2} around 2.2 V bias for 300 K. The relaxation time was found to average 4.7 μs over all the temperatures, but showing its lowest value of 1.58 μs at 300 K. It is seen that the interface states of the diode is controlled by the temperature. This suggests that Al/p-Si/Zn1-xAlxO-NiO/Al diode can be used as a thermal sensors for low temperature applications. - Highlights: • Al/pSi/Zn1-xAlxO-NiO/Al Schottky diode was fabricated by sol gel method. • The interface state density of the diode is controlled by the temperature. • Zinc oxide based diode can be used as a thermal sensor for low temperature applications.

  7. Complete indium-free CW 200W passively cooled high power diode laser array using double-side cooling technology

    Science.gov (United States)

    Wang, Jingwei; Zhu, Pengfei; Liu, Hui; Liang, Xuejie; Wu, Dihai; Liu, Yalong; Yu, Dongshan; Zah, Chung-en; Liu, Xingsheng

    2017-02-01

    High power diode lasers have been widely used in many fields. To meet the requirements of high power and high reliability, passively cooled single bar CS-packaged diode lasers must be robust to withstand thermal fatigue and operate long lifetime. In this work, a novel complete indium-free double-side cooling technology has been applied to package passively cooled high power diode lasers. Thermal behavior of hard solder CS-package diode lasers with different packaging structures was simulated and analyzed. Based on these results, the device structure and packaging process of double-side cooled CS-packaged diode lasers were optimized. A series of CW 200W 940nm high power diode lasers were developed and fabricated using hard solder bonding technology. The performance of the CW 200W 940nm high power diode lasers, such as output power, spectrum, thermal resistance, near field, far field, smile, lifetime, etc., is characterized and analyzed.

  8. Spatial inhomogeneity in Schottky barrier height at graphene/MoS2 Schottky junctions

    Science.gov (United States)

    Tomer, D.; Rajput, S.; Li, L.

    2017-04-01

    Transport properties of graphene semiconductor Schottky junctions strongly depend on interfacial inhomogeneities due to the inherent formation of ripples and ridges. Here, chemical vapor deposited graphene is transferred onto multilayer MoS2 to fabricate Schottky junctions. These junctions exhibit rectifying current-voltage behavior with the zero bias Schottky barrier height increases and ideality factor decreases with increasing temperature between 210 and 300 K. Such behavior is attributed to the inhomogeneous interface that arises from graphene ripples and ridges, as revealed by atomic force and scanning tunneling microscopy imaging. Assuming a Gaussian distribution of the barrier height, a mean value of 0.96  ±  0.14 eV is obtained. These findings indicate a direct correlation between temperature dependent Schottky barrier height and spatial inhomogeneity in graphene/2D semiconductor Schottky junctions.

  9. Spatial inhomogeneity in Schottky barrier height at graphene/MoS2 Schottky junctions

    International Nuclear Information System (INIS)

    Tomer, D; Rajput, S; Li, L

    2017-01-01

    Transport properties of graphene semiconductor Schottky junctions strongly depend on interfacial inhomogeneities due to the inherent formation of ripples and ridges. Here, chemical vapor deposited graphene is transferred onto multilayer MoS 2 to fabricate Schottky junctions. These junctions exhibit rectifying current–voltage behavior with the zero bias Schottky barrier height increases and ideality factor decreases with increasing temperature between 210 and 300 K. Such behavior is attributed to the inhomogeneous interface that arises from graphene ripples and ridges, as revealed by atomic force and scanning tunneling microscopy imaging. Assuming a Gaussian distribution of the barrier height, a mean value of 0.96  ±  0.14 eV is obtained. These findings indicate a direct correlation between temperature dependent Schottky barrier height and spatial inhomogeneity in graphene/2D semiconductor Schottky junctions. (paper)

  10. A new fabrication technique for back-to-back varactor diodes

    Science.gov (United States)

    Smith, R. Peter; Choudhury, Debabani; Martin, Suzanne; Frerking, Margaret A.; Liu, John K.; Grunthaner, Frank A.

    1992-01-01

    A new varactor diode process has been developed in which much of the processing is done from the back of an extremely thin semiconductor wafer laminated to a low-dielectric substrate. Back-to-back BNN diodes were fabricated with this technique; excellent DC and low-frequency capacitance measurements were obtained. Advantages of the new technique relative to other techniques include greatly reduced frontside wafer damage from exposure to process chemicals, improved capability to integrate devices (e.g. for antenna patterns, transmission lines, or wafer-scale grids), and higher line yield. BNN diodes fabricated with this technique exhibit approximately the expected capacitance-voltage characteristics while showing leakage currents under 10 mA at voltages three times that needed to deplete the varactor. This leakage is many orders of magnitude better than comparable Schottky diodes.

  11. Effect of Barrier Metal Based on Titanium or Molybdenum in Characteristics of 4H-SiC Schottky Diodes

    Directory of Open Access Journals (Sweden)

    M. Ben Karoui

    2014-05-01

    Full Text Available The electrical properties were extracted by I-V and C-V analysis, performed from 10 K to 450 K. When the annealing temperature varied to 400 °C, the Schottky barrier height (SBH increased from 0.85 Ev to 1.20 eV in Ti/4H-SiC whereas in the Mo/4H-SiC the SBH varied from 1.04 eV to 1.10 eV. Deformation of J-V-T characteristics was observed in two types of devices when the temperature decreases from 300 K to 10 K. The electrical properties and the stability of the devices have been correlated to the fabrication processes and to the metal/semiconductor interfaces. Mo-based contacts show better behaviour in forward polarization when compared to the Ti-based Schottky contacts, with ideality factors close to the unity even after the annealing process. However, Mo-based contacts show leakage currents higher than that measured on the more optimized Ti-based Schottky.

  12. Green high-power tunable external-cavity GaN diode laser at 515 nm

    DEFF Research Database (Denmark)

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2016-01-01

    A 480 mW green tunable diode laser system is demonstrated for the first time to our knowledge. The laser system is based on a GaN broad-area diode laser and Littrow external-cavity feedback. The green laser system is operated in two modes by switching the polarization direction of the laser beam...... incident on the grating. When the laser beam is p-polarized, an output power of 50 mW with a tunable range of 9.2 nm is achieved. When the laser beam is s-polarized, an output power of 480 mW with a tunable range of 2.1 nm is obtained. This constitutes the highest output power from a tunable green diode...... laser system....

  13. High power CW output from low confinement asymmetric structure diode laser

    NARCIS (Netherlands)

    Iordache, G.; Buda, M.; Acket, G.A.; Roer, van de T.G.; Kaufmann, L.M.F.; Karouta, F.; Jagadish, C.; Tan, H.H.

    1999-01-01

    High power continuous wave output from diode lasers using low loss, low confinement, asymmetric structures is demonstrated. An asymmetric structure with an optical trap layer was grown by metal organic vapour phase epitaxy. Gain guided 50 µm wide stripe 1-3 mm long diode lasers were studied. 1.8 W

  14. A graphene/single GaAs nanowire Schottky junction photovoltaic device.

    Science.gov (United States)

    Luo, Yanbin; Yan, Xin; Zhang, Jinnan; Li, Bang; Wu, Yao; Lu, Qichao; Jin, Chenxiaoshuai; Zhang, Xia; Ren, Xiaomin

    2018-05-04

    A graphene/nanowire Schottky junction is a promising structure for low-cost high-performance optoelectronic devices. Here we demonstrate a graphene/single GaAs nanowire Schottky junction photovoltaic device. The Schottky junction is fabricated by covering a single layer graphene onto an n-doped GaAs nanowire. Under 532 nm laser excitation, the device exhibits a high responsivity of 231 mA W-1 and a short response/recover time of 85/118 μs at zero bias. Under AM 1.5 G solar illumination, the device has an open-circuit voltage of 75.0 mV and a short-circuit current density of 425 mA cm-2, yielding a remarkable conversion efficiency of 8.8%. The excellent photovoltaic performance of the device is attributed to the strong built-in electric field in the Schottky junction as well as the transparent property of graphene. The device is promising for self-powered high-speed photodetectors and low-cost high-efficiency solar cells.

  15. {sup 60}Co {gamma} irradiation effects on the current-voltage (I-V) characteristics of Al/SiO{sub 2}/p-Si (MIS) Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Tataroglu, A. [Department of Physics, Faculty of Arts and Sciences, Gazi University 06500, Ankara (Turkey)]. E-mail: ademt@gazi.edu.tr; Altindal, S. [Department of Physics, Faculty of Arts and Sciences, Gazi University 06500, Ankara (Turkey); Buelbuel, M.M. [Department of Physics, Faculty of Arts and Sciences, Gazi University 06500, Ankara (Turkey)

    2006-12-01

    It is well known that the exposure of any semiconductor surfaces to the {sup 60}Co {gamma}-ray irradiation causes electrically active defects. To investigate the effect of {gamma}-ray irradiation dose on the electrical characteristics of metal-insulator-semiconductor (MIS) Schottky diodes, the fabricated devices were exposed to {gamma} radiation at a dose of 2.12 kGy/h. The total dose range was from 0 to 450 kGy at room temperature. The density of interface states N {sub ss} as a function of E {sub ss}-E {sub v}, the values of series resistance R {sub s} and the bias dependence of the effective barrier height {phi} {sub e} for each dose were obtained from the forward bias I-V characteristics. Experimental results show that the {gamma}-irradiation gives rise to an increase in the zero bias barrier height {phi} {sub BO}, as the ideality factor n, R {sub s} and N {sub ss} decreases with increasing radiation dose.

  16. Overview of catastrophic failures of freewheeling diodes in power electronic circuits

    DEFF Research Database (Denmark)

    Wu, Rui; Blaabjerg, Frede; Wang, Huai

    2013-01-01

    Emerging applications (e.g. electric vehicles, renewable energy systems, more electric aircrafts, etc.) have brought more stringent reliability constrains into power electronic products because of safety requirements and maintenance cost issues. To improve the reliability of power electronics......, better understanding of failure modes and failure mechanisms of reliability–critical components in power electronic circuits are needed. Many efforts have been devoted to the reduction of IGBT failures, while the study on the failures of freewheeling diodes is less impressive. It is of importance...... to investigate the catastrophic failures of freewheeling diodes as they could induce the malfunction of other components and eventually the whole power electronic circuits. This paper presents an overview of those catastrophic failures and gives examples of the corresponding consequences to the circuits....

  17. High-power non linear frequency converted laser diodes

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Andersen, Peter E.; Hansen, Anders Kragh

    2015-01-01

    We present different methods of generating light in the blue-green spectral range by nonlinear frequency conversion of tapered diode lasers achieving state-of-the-art power levels. In the blue spectral range, we show results using single-pass second harmonic generation (SHG) as well as cavity enh...... enhanced sum frequency generation (SFG) with watt-level output powers. SHG and SFG are also demonstrated in the green spectral range as a viable method to generate up to 4 W output power with high efficiency using different configurations....

  18. Diode pumped solid state laser by two diodes

    International Nuclear Information System (INIS)

    Li Mingzhong; Zhang Xiaomin; Liang Yue; Man Yongzai; Zhou Pizhang

    1995-01-01

    A Nd: YLF laser is pumped by home-made quantum well diode lasers. Datum of laser output energy 60 μJ and peak power 120 mw are observed at wavelength 1.047 μm. On the same pumping condition, the output power synchronously pumped by two diodes is higher than the total output power pumped by two diodes separately. The fluctuation is <3%. The results agree with theoretical analysis

  19. Limitations in THz Power Generation with Schottky Diode Varactor Frequency Multipliers

    DEFF Research Database (Denmark)

    Krozer, Viktor; Loata, G.; Grajal, J.

    2002-01-01

    , at increasing frequencies the power drops with f-3 instead of the f-2 predicted by theory. In this contribution we provide an overview of state-of-the-art results. A comparison with theoretically achievable multiplier performance reveals that the devices employed at higher frequencies are operating...... inefficiently and the design and fabrication capabilities have not reached the maturity encountered at lower THz frequencies....

  20. Comparison of SHG Power Modulation by Wavelength Detuning of DFB- and DBR-Tapered Laser Diodes

    DEFF Research Database (Denmark)

    Christensen, Mathias; Hansen, Anders Kragh; Noordegraaf, Danny

    2016-01-01

    of the response of the second harmonic light to perturbations of the infrared laser diode and compare how the response differs for DFB- and DBR-Tapered laser diodes. We show that the visible light can be modulated from CW to kHz with modulation depths above 90% by wavelength detuning the laser diode.......Pulsed visible lasers are used for a number of applications such as laser displays and medical treatments. Generating this visible light by direct frequency doubling of high power diode lasers opens new possibilities on how the power modulation can be performed. We present an investigation...

  1. Improving Reliability of High Power Quasi-CW Laser Diode Arrays for Pumping Solid State Lasers

    Science.gov (United States)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, Nathaniel R.; Barnes, Bruce W.; Baggott, Renee S.; Lockard, George E.; Singh, Upendra N.; Kavaya, Michael J.

    2005-01-01

    Most Lidar applications rely on moderate to high power solid state lasers to generate the required transmitted pulses. However, the reliability of solid state lasers, which can operate autonomously over long periods, is constrained by their laser diode pump arrays. Thermal cycling of the active regions is considered the primary reason for rapid degradation of the quasi-CW high power laser diode arrays, and the excessive temperature rise is the leading suspect in premature failure. The thermal issues of laser diode arrays are even more drastic for 2-micron solid state lasers which require considerably longer pump pulses compared to the more commonly used pump arrays for 1-micron lasers. This paper describes several advanced packaging techniques being employed for more efficient heat removal from the active regions of the laser diode bars. Experimental results for several high power laser diode array devices will be reported and their performance when operated at long pulsewidths of about 1msec will be described.

  2. Electrical characterization of Au/ZnO/Si Schottky contact

    International Nuclear Information System (INIS)

    Asghar, M; Mahmood, K; Faisal, M; Hasan, M A

    2013-01-01

    In this study, temperature dependent current-voltage (I-V) and capacitance-voltage (C-V) measurements have been performed on Au/ZnO/Si Schottky barrier diode in the range 150 – 400K. The room temperature values for ideality factor and barrier height found to be 2.68 and 0.68 eV respectively. From the temperature dependence of I–V, the ideality factor was observed to decrease with increasing temperature and barrier height increased with increasing temperature. The observed barrier height trend was disagreeing with the negative temperature coefficient for semiconductor. A deep defect with activation energy 0.57 eV below the conduction band was observed using the saturation current plot and deep level transient spectroscopy.

  3. On the Integration of Wide Band-gap Semiconductors in Single Phase Boost PFC Converters

    DEFF Research Database (Denmark)

    Hernandez Botella, Juan Carlos

    Power semiconductor technology has dominated the evolution of switched mode power supplies (SMPS). Advances in silicon (Si) technology, as the introduction of metal oxide field effect transistor (MOSFET), isolated gate bipolar transistors (IGBT), superjunction vertical structures and Schottky...... diodes, or the introduction of silicon carbide (SiC) diodes, provided large steps in miniaturization and efficiency improvement of switched mode power converters. Gallium nitride (GaN) and SiC semiconductor devices have already been around for some years. The first one proliferated due to the necessity...... of high frequency operation in optoelectronics applications. On the other hand, Schottky SiC power diodes were introduced in 2001 as an alternative to eliminate reverse recovery issues in Si rectifiers. Wide band-gap semiconductors offer an increased electrical field strength and electron mobility...

  4. Crystal defects observed by the etch-pit method and their effects on Schottky-barrier-diode characteristics on (\\bar{2}01) β-Ga2O3

    Science.gov (United States)

    Kasu, Makoto; Oshima, Takayoshi; Hanada, Kenji; Moribayashi, Tomoya; Hashiguchi, Akihiro; Oishi, Toshiyuki; Koshi, Kimiyoshi; Sasaki, Kohei; Kuramata, Akito; Ueda, Osamu

    2017-09-01

    A pixel array of vertical Schottky-barrier diodes (SBDs) was fabricated and measured on the surface of a (\\bar{2}01) β-Ga2O3 single crystal. Subsequently, etch pits and patterns were observed on the same surface. Three types of etch pits were discovered: (1) a line-shaped etch pattern originating from a void and extending toward the [010] direction, (2) an arrow-shaped etch pit whose arrow’s head faces toward the [102] direction and, (3) a gourd-shaped etch pit whose point head faces toward the [102] direction. Their average densities were estimated to be 5 × 102, 7 × 104, and 9 × 104 cm-2, respectively. We confirmed no clear relationship between the leakage current in SBDs and these crystalline defects. Such results are obtained because threading dislocations run mainly in the [010] growth direction and do not go through the (\\bar{2}01) sample plate.

  5. A high power picosecond Nd:YVO4 master oscillator power amplifier system pumped by 880 nm diodes

    International Nuclear Information System (INIS)

    Yan, S; Yan, X; Yu, H; Zhang, L; Guo, L; Sun, W; Hou, W; Lin, X

    2013-01-01

    We present a high power 880 nm diode-pumped passively mode-locked Nd:YVO 4 oscillator, followed by an 880 nm diode-pumped Nd:YVO 4 amplifier. In the oscillator, a maximum power of 8.7 W was obtained with a repetition rate of 63 MHz and pulse duration of 32 ps, corresponding to an optical efficiency of 36%. The beam quality factors M 2 were measured to be M x 2 =1.2 and M y 2 =1.1 9, respectively. The amplifier generated up to 19.1 W output power with the pulse width and repetition rate remaining unaltered after amplification. (paper)

  6. Simulation study of magnetically insulated power coupling to the applied-B ion diode

    International Nuclear Information System (INIS)

    Rosenthal, S.E.

    1992-01-01

    Power coupling to the applied-B ion diode from magnetically insulated transmission lines is simply described in terms of the voltage-current characteristics of both the diode and the transmission line. The accelerator load line intersects the composite characteristic at the operating voltage and current. Using 2-D PIC simulation, the authors have investigated how modification of either the ion diode or the magnetically insulated transmission line characteristic influences power coupling. Plasma prefill can modify the ion diode characteristic; a partially opened POS in the transmission line upstream of the ion diode is a possible cause of modification of the magnetically insulated transmission line characteristic. It can be useful to consider these two aspects of power coupling separately, but they are actually not independent. A good parameter to characterize the situation is the flow impedance, given by V/(I a 2 I c 2 ) 1/2 . V is the line voltage; I a and I c are the conduction currents flowing through the anode and cathode, respectively. The flow impedance covers a range from one half the vacuum impedance, for saturated magnetically insulated flow, to just below the vacuum impedance, for highly unsaturated flow. As the term ''flow impedance'' implies, low flow impedance coincides with greater electron flow while high flow impedance coincides with less electron flow. The flow impedance is sensitive to both the transmission line and the diode impedance. They show how the two are related, using the flow impedance as a parameter

  7. Influence of nanostructure Fe-doped ZnO interlayer on the electrical properties of Au/n-type InP Schottky structure

    Energy Technology Data Exchange (ETDEWEB)

    Padma, R.; Balaram, N.; Reddy, I. Neelakanta; Reddy, V. Rajagopal, E-mail: reddy_vrg@rediffmail.com

    2016-07-01

    The Au/Fe-doped ZnO/n-InP metal/interlayer/semiconductor (MIS) Schottky structure is fabricated with Fe-doped ZnO nanostructure (NS) as an interlayer. The field emission scanning electron microscopy and atomic force microscopy results demonstrated that the surface morphology of the Fe−ZnO NS on n-InP is fairly smooth. The x-ray diffraction results reveal that the average grain size of the Fe−ZnO film is 12.35 nm. The electrical properties of the Au/n-InP metal-semiconductor (MS) and Au/Fe−ZnO NS/n-InP MIS Schottky structures are investigated by current-voltage and capacitance-voltage measurements at room temperature. The Au/Fe−ZnO NS/n-InP MIS Schottky structure has good rectifying ratio with low-leakage current compared to the Au/n-InP MS structure. The barrier height obtained for the MIS structure is higher than those of MS Schottky structure because of the modification of the effective barrier height by the Fe−ZnO NS interlayer. Further, the barrier height, ideality factor and series resistance are determined for the MS and MIS Schottky structures using Norde and Cheung's functions and compared to each other. The estimated interface state density of MIS Schottky structure is lower than that of MS Schottky structure. Experimental results revealed that the Poole-Frenkel emission is the dominant conduction mechanism in the lower bias region whereas Schottky emission is the dominant in the higher bias region for both the Au/n-InP MS and Au/Fe−ZnO NS/n-InP MIS Schottky structures. - Highlights: • Barrier height of Au/n-InP Schottky diode was modified by Fe−ZnO nanostructure interlayer. • MIS structure has a good rectification ratio compared to the MS structure. • The interface state density of MIS structure is lower than that of MS structure. • Poole-Frenkel mechanism is found to dominate in both MS and MIS structure.

  8. Frequency Dependent Electrical and Dielectric Properties of Au/P3HT:PCBM:F4-TCNQ/n-Si Schottky Barrier Diode

    Science.gov (United States)

    Taşçıoğlu, İ.; Tüzün Özmen, Ö.; Şağban, H. M.; Yağlıoğlu, E.; Altındal, Ş.

    2017-04-01

    In this study, poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester: 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (P3HT:PCBM:F4-TCNQ) organic film was deposited on n-type silicon (n-Si) substrate by spin coating method. The electrical and dielectric analysis of Au/P3HT:PCBM:F4-TCNQ/n-Si Schottky barrier diode was conducted by means of capacitance-voltage ( C- V) and conductance-voltage ( G/ ω- V) measurements in the frequency range of 10 kHz-2 MHz. The C- V- f plots exhibit fairly large frequency dispersion due to excess capacitance caused by the presence of interface states ( N ss). The values of N ss located in semiconductor bandgap at the organic film/semiconductor interface were calculated by Hill-Coleman method. Experimental results show that dielectric constant ( ɛ') and dielectric loss ( ɛ″) decrease with increasing frequency, whereas loss tangent (tan δ) remains nearly the same. The decrease in ɛ' and ɛ″ was interpreted by the theory of dielectric relaxation due to interfacial polarization. It is also observed that ac electrical conductivity ( σ ac) and electric modulus ( M' and M″) increase with increasing frequency.

  9. Temperature evaluation of dental implant surface irradiated with high-power diode laser.

    Science.gov (United States)

    Rios, F G; Viana, E R; Ribeiro, G M; González, J C; Abelenda, A; Peruzzo, D C

    2016-09-01

    The prevalence of peri-implantitis and the absence of a standard approach for decontamination of the dental implant surface have led to searches for effective therapies. Since the source of diode lasers is portable, has reduced cost, and does not cause damage to the titanium surface of the implant, high-power diode lasers have been used for this purpose. The effect of laser irradiation on the implants is the elevation of the temperature surface. If this elevation exceeds 47 °C, the bone tissue is irreversibly damaged, so for a safety therapy, the laser parameters should be controlled. In this study, a diode laser of GaAsAl was used to irradiate titanium dental implants, for powers 1.32 to 2.64 W (real) or 2.00 to 4.00 W (nominal), in continuous/pulsed mode DC/AC, with exposure time of 5/10 s, with/without air flow for cooling. The elevation of the temperature was monitored in real time in two positions: cervical and apical. The best results for decontamination using a 968-nm diode laser were obtained for a power of 1.65 and 1.98 W (real) for 10 s, in DC or AC mode, with an air flow of 2.5 l/min. In our perspective in this article, we determine a suggested approach for decontamination of the dental implant surface using a 968-nm diode laser.

  10. Schottky barrier CdTe(Cl) detectors for planetary missions

    International Nuclear Information System (INIS)

    Eisen, Yosef; Floyd, Samuel

    2002-01-01

    Schottky barrier cadmium telluride (CdTe) radiation detectors of dimensions 2mm x 2mm x 1mm and segmented monolithic 3cm x 3 cm x 1mm are under study at GSFC for future NASA planetary instruments. These instruments will perform x-ray fluorescence spectrometry of the surface and monitor the solar x-ray flux spectrum, the excitation source for the characteristic x-rays emitted from the planetary body. The Near Earth Asteroid Rendezvous (NEAR) mission is the most recent example of such a remote sensing technique. Its x-ray fluorescence detectors were gas proportional counters with a back up Si PIN solar monitor. Analysis of NEAR data has shown the necessity to develop a solar x-ray detector with efficiency extending to 30keV. Proportional counters and Si diodes have low sensitivity above 9keV. Our 2mm x 2mm x 1mm CdTe operating at -30 degree sign C possesses an energy resolution of 250eV FWHM for 55Fe with unit efficiency to up to 30keV. This is an excellent candidate for a solar monitor. Another ramification of the NEAR data is a need to develop a large area detector system, 20-30 cm2, with cosmic ray charged particle rejection, for measuring the characteristic radiation. A 3cm x 3cm x 1mm Schottky CdTe segmented monolithic detector is under investigation for this purpose. A tiling of 2-3 such detectors will result in the desired area. The favorable characteristics of Schottky CdTe detectors, the system design complexities when using CdTe and its adaptation to future missions will be discussed

  11. Analysis of diodes used as precision power detectors above the square law region

    DEFF Research Database (Denmark)

    Guldbrandsen, Tom

    1990-01-01

    The deviation from square law found in diode power detectors at moderate power levels has been modeled for a general system consisting of a number of diode detectors connected to a common arbitrary linear passive network, containing an approximately sinusoidal source. This situation covers the case...... if an extra-set of measurements is made in situ. For precision measurements the maximum power level can be increased by about 10 dB. The dynamic range can thus be increased sufficiently to enable fast measurements to be made with an accuracy of 10-3 dB...

  12. Schottky and Ohmic Au contacts on GaAs: Microscopic and electrical investigation

    International Nuclear Information System (INIS)

    Liliental-Weber, Z.; Gronsky, R.; Washburn, J.; Newman, N.; Spicer, W.E.; Weber, E.R.

    1986-01-01

    We report here a systematic study which uses electrical device measurements and transmission electron microscopy (TEM) methods to investigate the electrical, morphological, and structural properties of Au/GaAs Schottky diodes. The electrical characteristics of Au diodes formed on atomically clean and air-exposed GaAs(110) surfaces are found to change from rectifying to Ohmic behavior after annealing above the Au--Ga eutectic temperature (360 0 C). This change is shown to be due to an Ohmic-like contact at the periphery of the device. TEM studies of these structures indicate that the Ohmic peripheral current pathway can be correlated with the formation of near surface Ga-rich Au crystallites at the diode circumference upon annealing. Further evidence of the correlation of the Ohmic electrical characteristics with the morphology of the periphery comes from data which indicate that the removal of these Au crystallites by mesa etching is also accompanied with the elimination of the Ohmic current. The morphology of the overlayer was found to depend strongly on annealing and surface treatment. TEM indicates that the interface is flat and abrupt for all unannealed diodes, as well as for annealed diodes formed on atomically clean surfaces. For annealed diodes formed on the air-exposed surfaces, the metal--semiconductor interface contains large metallic protrusions extending up to several hundred angstroms into the semiconductor. For comparison to practical structures, the morphology of annealed diodes formed using typical commercial processing technology [i.e., formed on chemically prepared (100) surfaces annealed in forming gas] was also investigated using TEM. The interface for these structures is more complex than interfaces formed on the atomically clean and air-exposed cleaved (110) surfaces

  13. Sub-100 fs high average power directly blue-diode-laser-pumped Ti:sapphire oscillator

    Science.gov (United States)

    Rohrbacher, Andreas; Markovic, Vesna; Pallmann, Wolfgang; Resan, Bojan

    2016-03-01

    Ti:sapphire oscillators are a proven technology to generate sub-100 fs (even sub-10 fs) pulses in the near infrared and are widely used in many high impact scientific fields. However, the need for a bulky, expensive and complex pump source, typically a frequency-doubled multi-watt neodymium or optically pumped semiconductor laser, represents the main obstacle to more widespread use. The recent development of blue diodes emitting over 1 W has opened up the possibility of directly diode-laser-pumped Ti:sapphire oscillators. Beside the lower cost and footprint, a direct diode pumping provides better reliability, higher efficiency and better pointing stability to name a few. The challenges that it poses are lower absorption of Ti:sapphire at available diode wavelengths and lower brightness compared to typical green pump lasers. For practical applications such as bio-medicine and nano-structuring, output powers in excess of 100 mW and sub-100 fs pulses are required. In this paper, we demonstrate a high average power directly blue-diode-laser-pumped Ti:sapphire oscillator without active cooling. The SESAM modelocking ensures reliable self-starting and robust operation. We will present two configurations emitting 460 mW in 82 fs pulses and 350 mW in 65 fs pulses, both operating at 92 MHz. The maximum obtained pulse energy reaches 5 nJ. A double-sided pumping scheme with two high power blue diode lasers was used for the output power scaling. The cavity design and the experimental results will be discussed in more details.

  14. Characterization technique for inhomogeneous 4H-SiC Schottky contacts: A practical model for high temperature behavior

    Science.gov (United States)

    Brezeanu, G.; Pristavu, G.; Draghici, F.; Badila, M.; Pascu, R.

    2017-08-01

    In this paper, a characterization technique for 4H-SiC Schottky diodes with varying levels of metal-semiconductor contact inhomogeneity is proposed. A macro-model, suitable for high-temperature evaluation of SiC Schottky contacts, with discrete barrier height non-uniformity, is introduced in order to determine the temperature interval and bias domain where electrical behavior of the devices can be described by the thermionic emission theory (has a quasi-ideal performance). A minimal set of parameters, the effective barrier height and peff, the non-uniformity factor, is associated. Model-extracted parameters are discussed in comparison with literature-reported results based on existing inhomogeneity approaches, in terms of complexity and physical relevance. Special consideration was given to models based on a Gaussian distribution of barrier heights on the contact surface. The proposed methodology is validated by electrical characterization of nickel silicide Schottky contacts on silicon carbide (4H-SiC), where a discrete barrier distribution can be considered. The same method is applied to inhomogeneous Pt/4H-SiC contacts. The forward characteristics measured at different temperatures are accurately reproduced using this inhomogeneous barrier model. A quasi-ideal behavior is identified for intervals spanning 200 °C for all measured Schottky samples, with Ni and Pt contact metals. A predictable exponential current-voltage variation over at least 2 orders of magnitude is also proven, with a stable barrier height and effective area for temperatures up to 400 °C. This application-oriented characterization technique is confirmed by using model parameters to fit a SiC-Schottky high temperature sensor's response.

  15. Fabrication and Characterization of Schottky Diodes using Single Wall Carbon Nanotubes

    National Research Council Canada - National Science Library

    Luquette, Brandon E; Nichols, Barbara M

    2008-01-01

    .... Multiple cleanroom processing steps were used to make the diodes which included the deposition of marker layers, oxygen plasma etch for selective nanotube removal, and electron beam evaporation...

  16. Modulation of electrical properties in Cu/n-type InP Schottky junctions using oxygen plasma treatment

    International Nuclear Information System (INIS)

    Kim, Hogyoung; Jung, Chan Yeong; Hyun Kim, Se; Cho, Yunae; Kim, Dong-Wook

    2015-01-01

    Using current–voltage (I–V) measurements, we investigated the effect of oxygen plasma treatment on the temperature-dependent electrical properties of Cu/n-type indium phosphide (InP) Schottky contacts at temperatures in the range 100–300 K. Changes in the electrical parameters were evident below 180 K for the low-plasma-power sample (100 W), which is indicative of the presence of a wider distribution of regions of low barrier height. Modified Richardson plots were used to obtain Richardson constants, which were similar to the theoretical value of 9.4 A cm −2 K −2 for n-type InP. This suggests that, for all the samples, a thermionic emission model including a spatially inhomogeneous Schottky barrier can be used to describe the charge transport phenomena at the metal/semiconductor interface. The voltage dependence of the reverse-bias current revealed that Schottky emission was dominant for the untreated and high-plasma-power (250 W) samples. For the low-plasma-power sample, Poole–Frenkel emission was dominant at low voltages, whereas Schottky emission dominated at higher voltages. Defect states and nonuniformity of the interfacial layer appear to be significant in the reverse-bias charge transport properties of the low-plasma-power sample. (paper)

  17. Advancement of High Power Quasi-CW Laser Diode Arrays For Space-based Laser Instruments

    Science.gov (United States)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, nathaniel R.; Baggott, Renee S.; Singh, Upendra N.; Kavaya, Michael J.

    2004-01-01

    Space-based laser and lidar instruments play an important role in NASA s plans for meeting its objectives in both Earth Science and Space Exploration areas. Almost all the lidar instrument concepts being considered by NASA scientist utilize moderate to high power diode-pumped solid state lasers as their transmitter source. Perhaps the most critical component of any solid state laser system is its pump laser diode array which essentially dictates instrument efficiency, reliability and lifetime. For this reason, premature failures and rapid degradation of high power laser diode arrays that have been experienced by laser system designers are of major concern to NASA. This work addresses these reliability and lifetime issues by attempting to eliminate the causes of failures and developing methods for screening laser diode arrays and qualifying them for operation in space.

  18. High power cascade diode lasers emitting near 2 μm

    Energy Technology Data Exchange (ETDEWEB)

    Hosoda, Takashi; Feng, Tao; Shterengas, Leon, E-mail: leon.shterengas@stonybrook.edu; Kipshidze, Gela; Belenky, Gregory [State University of New York at Stony Brook, Stony Brook, New York 11794 (United States)

    2016-03-28

    High-power two-stage cascade GaSb-based type-I quantum well diode lasers emitting near 2 μm were designed and fabricated. Coated devices with cavity length of 3 mm generated about 2 W of continuous wave power from 100-μm-wide aperture at the current of 6 A. The power conversion efficiency peaked at 20%. Carrier recycling between quantum well gain stages was realized using band-to-band tunneling in GaSb/AlSb/InAs heterostructure complemented with optimized electron and hole injector regions. Design optimization eliminated parasitic optical absorption and thermionic emission, and included modification of the InAs quantum wells of electron and composition and doping profile of hole injectors. Utilization of the cascade pumping scheme yielded 2 μm lasers with improved output power and efficiency compared to existing state-of-the-art diodes.

  19. Tuning range and output power optimization of an external-cavity GaN diode laser at 455 nm

    DEFF Research Database (Denmark)

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2016-01-01

    In this paper we discuss how different feedback gratings affect the tuning range and the output power of external feedback diode laser systems. A tunable high-power narrow-spectrum external-cavity diode laser system around 455 nm is investigated. The laser system is based on a high-power GaN diode...... laser in a Littrow external-cavity. Both a holographic diffraction grating and a ruled diffraction grating are used as feedback elements in the external cavity. The output power, spectral bandwidth, and tunable range of the external cavity diode laser system are measured and compared with the two...... gratings at different injected currents. When the holographic grating is used, the laser system can be tuned over a range of 1.4 nm with an output power around 530 mW. When the ruled grating is used, the laser system can be tuned over a range of 6.0 nm with an output power around 80 mW. The results can...

  20. Longitudinal schottky spectra of a bunched Ne10+ ion beam at the CSRe

    International Nuclear Information System (INIS)

    Wen Weiqiang; Ma Xinwen; Zhang Dacheng

    2013-01-01

    The longitudinal Schottky spectra of a radio-frequency (RF) bunched and electron cooled 22Ne 10+ ion beam at 70 MeV/u have been studied by a newly installed resonant Schottky pick-up at the experimental cooler storage ring (CSRe), at IMP. For an RF-bunched ion beam, a longitudinal momentum spread of Δp/p=1.6 × 10 -5 has been reached with less than 107 stored ions. The reduction of momentum spread compared with a coasting ion beam was observed from Schottky noise signal of the bunched ion beam. In order to prepare the future laser cooling experiment at the CSRe, the RF-bunching power was modulated at 25 th , 50 th and 75 th harmonic of the revolution frequency, effective bunching amplitudes were extracted from the Schottky spectrum analysis. Applications of Schottky noise for measuring beam lifetime with ultra-low intensity of ion beams are presented, and it is relevant to upcoming experiments on laser cooling of relativistic heavy ion beams and nuclear physics at the CSRe. (authors)

  1. Enhanced performance of GaN-based light-emitting diodes with graphene/Ag nanowires hybrid films

    Directory of Open Access Journals (Sweden)

    Zhi Li

    2013-04-01

    Full Text Available Incorporating Ag nanowires with graphene resulted in improved electrical conductivity and enhanced contact properties between graphene and p-GaN. The graphene/AgNWs hybrid films exhibited high transmittance and lower sheet resistance compared to bare graphene. The specific contact resistance between graphene and p-GaN reduced nearly an order of magnitude with the introduction of AgNWs. As a result, light emitting diodes based on the hybrid films showed 44% lower forward voltage and 2-fold higher light output power. The enhanced performance was attributed to the bridging by AgNWs of cracks, grain boundaries in graphene and the reduction of Schottky barrier height at graphene/ p-GaN interface.

  2. High-power fiber-coupled 100W visible spectrum diode lasers for display applications

    Science.gov (United States)

    Unger, Andreas; Küster, Matthias; Köhler, Bernd; Biesenbach, Jens

    2013-02-01

    Diode lasers in the blue and red spectral range are the most promising light sources for upcoming high-brightness digital projectors in cinemas and large venue displays. They combine improved efficiency, longer lifetime and a greatly improved color space compared to traditional xenon light sources. In this paper we report on high-power visible diode laser sources to serve the demands of this emerging market. A unique electro-optical platform enables scalable fiber coupled sources at 638 nm with an output power of up to 100 W from a 400 μm NA0.22 fiber. For the blue diode laser we demonstrate scalable sources from 5 W to 100 W from a 400 μm NA0.22 fiber.

  3. Recrystallization effects of swift heavy {sup 209}Bi ions irradiation on electrical degradation in 4H-SiC Schottky barrier diode

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhimei; Ma, Yao; Gong, Min [Key Laboratory for Microelectronics, College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Li, Yun [Key Laboratory for Microelectronics, College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Huang, Mingmin [Key Laboratory for Microelectronics, College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Gao, Bo [Key Laboratory for Microelectronics, College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Zhao, Xin, E-mail: zhaoxin1234@scu.edu.cn [Key Laboratory for Microelectronics, College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China)

    2017-06-15

    In this paper, the phenomenon that the recrystallization effects of swift heavy {sup 209}Bi ions irradiation can partially recovery damage with more than 1 × 10{sup 10} ions/cm{sup 2} is investigated by the degradation of the electrical characteristics of 4H-SiC Schottky barrier diode (SBD) with swift heavy ion irradiation. Deep level transient spectroscopy (DLTS) and Current-Voltage (I-V) measurements clearly indicated that E{sub 0.62} defect induced by swift heavy ion irradiation, which was a recombination center, could result in the increase of reverse leakage current (I{sub R}) at fluence less than 1 × 10{sup 9} ions/cm{sup 2} and the recovery of I{sub R} at fluence more than 1 × 10{sup 10} ions/cm{sup 2} in 4H-SiC SBD. The variation tendency of I{sub R} is consisted with the change of E{sub 0.62} defect. Furthermore, it is reasonable explanation that the damage or defect formed at low fluence in SiC may be recovered by further swift heavy ion irradiation with high fluence, which is due to the melting with the ion tracks of the amorphous zones through a thermal spike and subsequent epitaxial recrystallization initiated from the neighboring crystalline regions.

  4. Effect of graphene tunnel barrier on Schottky barrier height of Heusler alloy Co2MnSi/graphene/n-Ge junction

    International Nuclear Information System (INIS)

    Li Gui-fang; Hu Jing; Lv Hui; Cui Zhijun; Hou Xiaowei; Liu Shibin; Du Yongqian

    2016-01-01

    We demonstrate that the insertion of a graphene tunnel barrier between Heusler alloy Co 2 MnSi and the germanium (Ge) channel modulates the Schottky barrier height and the resistance–area product of the spin diode. We confirm that the Fermi level is depinned and a reduction in the electron Schottky barrier height (SBH) occurs following the insertion of the graphene layer between Co 2 MnSi and Ge. The electron SBH is modulated in the 0.34 eV–0.61 eV range. Furthermore, the transport mechanism changes from rectifying to symmetric tunneling following the insertion. This behavior provides a pathway for highly efficient spin injection from a Heusler alloy into a Ge channel with high electron and hole mobility. (paper)

  5. Mis-diode as a low-energy X- and γ-ray spectrometer

    International Nuclear Information System (INIS)

    Konova, A.

    1980-01-01

    Considered are main peculiarities of apparata called MIS-diods having metal-thin isolating semiconductor structure and used as detectors of low-energy gamma and X-ray radiation. Discussed are advantages of tunnel MIS-diods based on non-primitive carriers. Presented are results of experimental measurements carried out using system of metal-silion oxide-silicon with the oxide layer width of 10-25 A (silicon with acceptor concentration of 10 19 m -3 ). Data presented show that MIS-diods can be considered as diods with p-n - transition in which n + - region is an inversion layer near the semiconductor surface, and further a leant region is situated. When voltage is applied only the depth of the leant region changes. In case of high quality diods the leakage currents are very small. Results of the investigation performed show that MIS-diods with oxide film wiolth of 10-22 A (the film covering p-silicon with high specific resistance) can be used as spectrometers of low-energy photons having particularly high energetic solution at room temperature. An advantage of new diods is the reverse current significantly lower in comparison with that of usual detectors with the Schottky barrier

  6. Characteristics of Schottky-barrier source/drain metal-oxide-polycrystalline thin-film transistors on glass substrates

    International Nuclear Information System (INIS)

    Jung, Seung-Min; Cho, Won-Ju; Jung, Jong-Wan

    2012-01-01

    Polycrystalline-silicon (poly-Si) Schottky-barrier thin-film transistors (SB-TFTs) with Pt-silicided source /drain junctions were fabricated on glass substrates, and the electrical characteristics were examined. The amorphous silicon films on glass substrates were converted into high-quality poly-Si by using excimer laser annealing (ELA) and solid phase crystallization (SPC) methods. The crystallinity of poly-Si was analyzed by using scanning electron microscopy, transmission electron microscopy, and X-ray diffraction analysis. The silicidation process was optimized by measuring the electrical characteristics of the Pt-silicided Schottky diodes. The performances of Pt-silicided SB-TFTs using poly-Si films on glass substrates and crystallized by using ELA and SPC were demonstrated. The SB-TFTs using the ELA poly-Si film demonstrated better electrical performances such as higher mobility (22.4 cm 2 /Vs) and on/off current ratio (3 x 10 6 ) and lower subthreshold swing value (120 mV/dec) than the SPC poly-Si films.

  7. Power Scaling of Nonlinear Frequency Converted Tapered Diode Lasers for Biophotonics

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Hansen, Anders Kragh; Müller, A.

    2014-01-01

    Diode lasers have proven to be versatile light sources for a wide range of applications. Nonlinear frequency conversion of high brightness diode lasers has recently resulted in visible light power levels in the watts range enabling an increasing number of applications within biophotonics. This re...... and efficiency are included. Application examples within pumping of mode-locked Ti:sapphire lasers and implementation of such lasers in optical coherence tomography are presented showing the application potential of these lasers....

  8. Wavelength switchable high-power diode-side-pumped rod Tm:YAG Laser around 2µm.

    Science.gov (United States)

    Wang, Caili; Du, Shifeng; Niu, Yanxiong; Wang, Zhichao; Zhang, Chao; Bian, Qi; Guo, Chuan; Xu, Jialin; Bo, Yong; Peng, Qinjun; Cui, Dafu; Zhang, Jingyuan; Lei, Wenqiang; Xu, Zuyan

    2013-03-25

    We report a high-power diode-side-pumped rod Tm:YAG laser operated at either 2.07 or 2.02 µm depending on the transmission of pumped output coupler. The laser yields 115W of continuous-wave output power at 2.07 µm with 5% output coupling, which is the highest output power for all solid-state 2.07 μm cw rod Tm:YAG laser reported so far. With an output coupler of 10% transmission, the center wavelength of the laser is switched to 2.02 μm with an output power of 77.1 W. This is the first observation of high-power wavelength switchable diode-side-pumped rod Tm:YAG laser around 2 µm.

  9. Very low Schottky barrier height at carbon nanotube and silicon carbide interface

    Energy Technology Data Exchange (ETDEWEB)

    Inaba, Masafumi, E-mail: inaba-ma@ruri.waseda.jp; Suzuki, Kazuma; Shibuya, Megumi; Lee, Chih-Yu [Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); Masuda, Yoshiho; Tomatsu, Naoya; Norimatsu, Wataru; Kusunoki, Michiko [EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603 (Japan); Hiraiwa, Atsushi [Institute for Nanoscience and Nanotechnology, Waseda University, 513 Waseda-tsurumaki, Shinjuku, Tokyo 162-0041 (Japan); Kawarada, Hiroshi [Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); Institute for Nanoscience and Nanotechnology, Waseda University, 513 Waseda-tsurumaki, Shinjuku, Tokyo 162-0041 (Japan); The Kagami Memorial Laboratory for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku, Tokyo 169-0051 (Japan)

    2015-03-23

    Electrical contacts to silicon carbide with low contact resistivity and high current durability are crucial for future SiC power devices, especially miniaturized vertical-type devices. A carbon nanotube (CNT) forest formed by silicon carbide (SiC) decomposition is a densely packed forest, and is ideal for use as a heat-dissipative ohmic contact in SiC power transistors. The contact resistivity and Schottky barrier height in a Ti/CNT/SiC system with various SiC dopant concentrations were evaluated in this study. Contact resistivity was evaluated in relation to contact area. The Schottky barrier height was calculated from the contact resistivity. As a result, the Ti/CNT/SiC contact resistivity at a dopant concentration of 3 × 10{sup 18 }cm{sup −3} was estimated to be ∼1.3 × 10{sup −4} Ω cm{sup 2} and the Schottky barrier height of the CNT/SiC contact was in the range of 0.40–0.45 eV. The resistivity is relatively low for SiC contacts, showing that CNTs have the potential to be a good ohmic contact material for SiC power electronic devices.

  10. Electron diode oscillators for high-power RF generation

    International Nuclear Information System (INIS)

    Humphries, S.

    1989-01-01

    Feedback oscillators have been used since the invention of the vacuum tube. This paper describes the extension of these familiar circuits to the regime of relativistic electron beam diodes. Such devices have potential application for the generation of high power RF radiation in the range 50-250 MHz, 1-10 GW with 20-60% conversion efficiency. This paper reviews the theory of the oscillator and the results of a design study. Calculations for the four-electrode diode with EGUN and EBQ show that good modulations of 30 kA electron beam at 600 kV can be achieved with moderate field stress on the electrodes. Conditions for oscillation have been studied with an in-house transmission line code. A design for a 7.5 GW oscillator at 200 MHz with 25% conversion efficiency is presented

  11. Hybrid graphene/silicon Schottky photodiode with intrinsic gating effect

    Science.gov (United States)

    Di Bartolomeo, Antonio; Luongo, Giuseppe; Giubileo, Filippo; Funicello, Nicola; Niu, Gang; Schroeder, Thomas; Lisker, Marco; Lupina, Grzegorz

    2017-06-01

    We propose a hybrid device consisting of a graphene/silicon (Gr/Si) Schottky diode in parallel with a Gr/SiO2/Si capacitor for high-performance photodetection. The device, fabricated by transfer of commercial graphene on low-doped n-type Si substrate, achieves a photoresponse as high as 3 \\text{A} {{\\text{W}}-1} and a normalized detectivity higher than 3.5× {{10}12} \\text{cm} \\text{H}{{\\text{z}}1/2} {{\\text{W}}-1} in the visible range. It exhibits a photocurrent exceeding the forward current because photo-generated minority carriers, accumulated at Si/SiO2 interface of the Gr/SiO2/Si capacitor, diffuse to the Gr/Si junction. We show that the same mechanism, when due to thermally generated carriers, although usually neglected or disregarded, causes the increased leakage often measured in Gr/Si heterojunctions. We perform extensive I-V and C-V characterization at different temperatures and we measure a zero-bias Schottky barrier height of 0.52 eV at room temperature, as well as an effective Richardson constant A **  =  4× {{10}-5} \\text{A} \\text{c}{{\\text{m}}-2} {{\\text{K}}-2} and an ideality factor n≈ 3.6 , explained by a thin (<1 nm) oxide layer at the Gr/Si interface.

  12. Preliminary Demonstration of Power Beaming With Non-Coherent Laser Diode Arrays

    National Research Council Canada - National Science Library

    Kare, Jordin

    1999-01-01

    A preliminary demonstration of free-space electric power transmission has been conducted using non-coherent laser diode arrays as the transmitter and standard silicon photovoltaic cell arrays as the receiver...

  13. Simulation study on AlGaN/GaN diode with Γ-shaped anode for ultra-low turn-on voltage

    Science.gov (United States)

    Wang, Zeheng; Chen, Wanjun; Wang, Fangzhou; Cao, Jun; Sun, Ruize; Ren, Kailin; Luo, Yi; Guo, Songnan; Wang, Zirui; Jin, Xiaosheng; Yang, Lei; Zhang, Bo

    2018-05-01

    An ultra-low turn-on voltage (VT) Γ-shaped anode AlGaN/GaN Schottky barrier diode (GA-SBD) is proposed via modeling and simulation for the first time, in which a Γ-shaped anode consists of a metal-2DEG junction together with a metal-AlGaN junction beside a shallowly recessed MIS field plate (MFP). An analytic forward current-voltage model matching the simulation results well is presented where an ultra-low VT of 0.08 V is obtained. The turn-on and blocking mechanisms are investigated to reveal the GA-SBD's great potential for applications of highly efficient power ICs.

  14. Interfacial Chemistry-Induced Modulation of Schottky Barrier Heights: In Situ Measurements of the Pt-Amorphous Indium Gallium Zinc Oxide Interface Using X-ray Photoelectron Spectroscopy.

    Science.gov (United States)

    Flynn, Brendan T; Oleksak, Richard P; Thevuthasan, Suntharampillai; Herman, Gregory S

    2018-01-31

    A method to understand the role of interfacial chemistry on the modulation of Schottky barrier heights for platinum and amorphous indium gallium zinc oxide (a-IGZO) interfaces is demonstrated through thermal processing and background ambient pressure control. In situ X-ray photoelectron spectroscopy was used to characterize the interfacial chemistries that modulate barrier heights in this system. The primary changes were a significant chemical reduction of indium, from In 3+ to In 0 , that occurs during deposition of Pt on to the a-IGZO surface in ultrahigh vacuum. Postannealing and controlling the background ambient O 2 pressure allows further tuning of the reduction of indium and the corresponding Schottky barrier heights from 0.17 to 0.77 eV. Understanding the detailed interfacial chemistries at Pt/a-IGZO interfaces may allow for improved electronic device performance, including Schottky diodes, memristors, and metal-semiconductor field-effect transistors.

  15. Hybrid electroluminescent devices

    Science.gov (United States)

    Shiang, Joseph John; Duggal, Anil Raj; Michael, Joseph Darryl

    2010-08-03

    A hybrid electroluminescent (EL) device comprises at least one inorganic diode element and at least one organic EL element that are electrically connected in series. The absolute value of the breakdown voltage of the inorganic diode element is greater than the absolute value of the maximum reverse bias voltage across the series. The inorganic diode element can be a power diode, a Schottky barrier diode, or a light-emitting diode.

  16. High-performance single CdS nanowire (nanobelt) Schottky junction solar cells with Au/graphene Schottky electrodes.

    Science.gov (United States)

    Ye, Yu; Dai, Yu; Dai, Lun; Shi, Zujin; Liu, Nan; Wang, Fei; Fu, Lei; Peng, Ruomin; Wen, Xiaonan; Chen, Zhijian; Liu, Zhongfan; Qin, Guogang

    2010-12-01

    High-performance single CdS nanowire (NW) as well as nanobelt (NB) Schottky junction solar cells were fabricated. Au (5 nm)/graphene combined layers were used as the Schottky contact electrodes to the NWs (NBs). Typical as-fabricated NW solar cell shows excellent photovoltaic behavior with an open circuit voltage of ∼0.15 V, a short circuit current of ∼275.0 pA, and an energy conversion efficiency of up to ∼1.65%. The physical mechanism of the combined Schottky electrode was discussed. We attribute the prominent capability of the devices to the high-performance Schottky combined electrode, which has the merits of low series resistance, high transparency, and good Schottky contact to the CdS NW (NB). Besides, a promising site-controllable patterned graphene transfer method, which has the advantages of economizing graphene material and free from additional etching process, was demonstrated in this work. Our results suggest that semiconductor NWs (NBs) are promising materials for novel solar cells, which have potential application in integrated nano-optoelectronic systems.

  17. Current Transport Mechanisms and Capacitance Characteristic in the InN/InP Schottky Structures

    Directory of Open Access Journals (Sweden)

    K. AMEUR

    2014-05-01

    Full Text Available In this work, electrical characterization of the current-voltage and capacitance- voltage curves for the Metal/InN/InP Schottky structures are investigated. We have studied electrically thin InN films realized by the nitridation of InP (100 substrates using a Glow Discharge Source (GDS in ultra high vacuum. The I (V curves have exhibited anomalous two-step (kink forward bias behaviour; a suitable fit was only obtained by using a model of two discrete diodes in parallel. Thus, we have calculated, using I(V and C(V curves of Hg/InN/InP Schottky structures, the ideality factor n, the saturation current Is, the barrier height jB, the series resistance Rs, the doping concentration Nd and the diffusion voltage Vd. We have also presented the band diagram of this heterojunction which indicates the presence of a channel formed by holes at the interface InN/InP which explain by the presence of two-dimensional electron gas (2-DEG and this was noticed in the presentation of characteristics C(V.

  18. Numerical analysis of high-power broad-area laser diode with improved heat sinking structure using epitaxial liftoff technique

    Science.gov (United States)

    Kim, Younghyun; Sung, Yunsu; Yang, Jung-Tack; Choi, Woo-Young

    2018-02-01

    The characteristics of high-power broad-area laser diodes with the improved heat sinking structure are numerically analyzed by a technology computer-aided design based self-consistent electro-thermal-optical simulation. The high-power laser diodes consist of a separate confinement heterostructure of a compressively strained InGaAsP quantum well and GaInP optical cavity layers, and a 100-μm-wide rib and a 2000-μm long cavity. In order to overcome the performance deteriorations of high-power laser diodes caused by self-heating such as thermal rollover and thermal blooming, we propose the high-power broad-area laser diode with improved heat-sinking structure, which another effective heat-sinking path toward the substrate side is added by removing a bulk substrate. It is possible to obtain by removing a 400-μm-thick GaAs substrate with an AlAs sacrificial layer utilizing well-known epitaxial liftoff techniques. In this study, we present the performance improvement of the high-power laser diode with the heat-sinking structure by suppressing thermal effects. It is found that the lateral far-field angle as well as quantum well temperature is expected to be improved by the proposed heat-sinking structure which is required for high beam quality and optical output power, respectively.

  19. A High Power InGaN-Based Blue-Violet Laser Diode Array with a Broad-Area Stripe

    International Nuclear Information System (INIS)

    Chen Ping; Zhao De-Gang; Feng Mei-Xin; Jiang De-Sheng; Liu Zong-Shun; Yang Hui; Zhang Li-Qun; Li De-Yao; Liu Jian-Ping; Wang Hui; Zhu Jian-Jun; Zhang Shu-Ming; Zhang Bao-Shun

    2013-01-01

    An array of high power InGaN/GaN multi-quantum-well laser diodes with a broad waveguide is fabricated. The laser diode structure is grown on a GaN substrate by metal-organic chemical vapor deposition. The laser diode array consists of five emitter stripes which share common electrodes on one laser chip. The electrical and optical characteristics of the laser diode array are investigated under the pulse current injection with 10kHz frequency and 100 ns pulse width. The laser diode array emits at the wavelength of 409 nm, which is located in the blue-violet region, and the threshold current is 2.9 A. The maximum output light peak power is measured to be 7.5 W at the wavelength of 411.8 nm under the current of 25 A

  20. Model and observations of Schottky-noise suppression in a cold heavy-ion beam.

    Science.gov (United States)

    Danared, H; Källberg, A; Rensfelt, K-G; Simonsson, A

    2002-04-29

    Some years ago it was found at GSI in Darmstadt that the momentum spread of electron-cooled beams of highly charged ions dropped abruptly to very low values when the particle number decreased to 10 000 or less. This has been interpreted as an ordering of the ions, such that they line up after one another in the ring. We report observations of similar transitions at CRYRING, including an accompanying drop in Schottky-noise power. We also introduce a model of the ordered beam from which the Schottky-noise power can be calculated numerically. The good agreement between the model calculation and the experimental data is seen as evidence for a spatial ordering of the ions.

  1. 16 W output power by high-efficient spectral beam combining of DBR-tapered diode lasers

    DEFF Research Database (Denmark)

    Müller, André; Vijayakumar, Deepak; Jensen, Ole Bjarlin

    2011-01-01

    output power achieved by spectral beam combining of two single element tapered diode lasers. Since spectral beam combining does not affect beam propagation parameters, M2-values of 1.8 (fast axis) and 3.3 (slow axis) match the M2- values of the laser with lowest spatial coherence. The principle......Up to 16 W output power has been obtained using spectral beam combining of two 1063 nm DBR-tapered diode lasers. Using a reflecting volume Bragg grating, a combining efficiency as high as 93.7% is achieved, resulting in a single beam with high spatial coherence. The result represents the highest...... of spectral beam combining used in our experiments can be expanded to combine more than two tapered diode lasers and hence it is expected that the output power may be increased even further in the future....

  2. 16 W output power by high-efficient spectral beam combining of DBR-tapered diode lasers.

    Science.gov (United States)

    Müller, André; Vijayakumar, Deepak; Jensen, Ole Bjarlin; Hasler, Karl-Heinz; Sumpf, Bernd; Erbert, Götz; Andersen, Peter E; Petersen, Paul Michael

    2011-01-17

    Up to 16 W output power has been obtained using spectral beam combining of two 1063 nm DBR-tapered diode lasers. Using a reflecting volume Bragg grating, a combining efficiency as high as 93.7% is achieved, resulting in a single beam with high spatial coherence. The result represents the highest output power achieved by spectral beam combining of two single element tapered diode lasers. Since spectral beam combining does not affect beam propagation parameters, M2-values of 1.8 (fast axis) and 3.3 (slow axis) match the M2-values of the laser with lowest spatial coherence. The principle of spectral beam combining used in our experiments can be expanded to combine more than two tapered diode lasers and hence it is expected that the output power may be increased even further in the future.

  3. Integrated heterodyne terahertz transceiver

    Science.gov (United States)

    Wanke, Michael C [Albuquerque, NM; Lee, Mark [Albuquerque, NM; Nordquist, Christopher D [Albuquerque, NM; Cich, Michael J [Albuquerque, NM

    2012-09-25

    A heterodyne terahertz transceiver comprises a quantum cascade laser that is integrated on-chip with a Schottky diode mixer. A terahertz signal can be received by an antenna connected to the mixer, an end facet or sidewall of the laser, or through a separate active section that can amplify the incident signal. The quantum cascade laser couples terahertz local oscillator power to the Schottky diode to mix with the received terahertz signal to provide an intermediate frequency output signal. The fully integrated transceiver optimizes power efficiency, sensitivity, compactness, and reliability. The transceiver can be used in compact, fieldable systems covering a wide variety of deployable applications not possible with existing technology.

  4. Heat transfer and structure stress analysis of micro packaging component of high power light emitting diode

    Directory of Open Access Journals (Sweden)

    Hsu Chih-Neng

    2013-01-01

    Full Text Available This paper focuses on the heat transfer and structural stress analysis of the micro- scale packaging structure of a high-power light emitting diode. The thermal-effect and thermal-stress of light emitting diode are determined numerically. Light emitting diode is attached to the silicon substrate through the wire bonding process by using epoxy as die bond material. The silicon substrate is etched with holes at the bottom and filled with high conductivity copper material. The chip temperature and structure stress increase with input power consumption. The micro light emitting diode is mounted on the heat sink to increase the heat dissipation performance, to decrease chip temperature, to enhance the material structure reliability and safety, and to avoid structure failure as well. This paper has successfully used the finite element method to the micro-scale light emitting diode heat transfer and stress concentration at the edges through etched holes.

  5. Programmable diode/resistor-like behavior of nanostructured vanadium pentoxide xerogel thin film.

    Science.gov (United States)

    Wan, Zhenni; Darling, Robert B; Anantram, M P

    2015-11-11

    Electrical properties of a Cr/V2O5/Cr structure are investigated and switching of the device due to electrochemical reactions is observed at low bias (resistor (reverse sweep first). The switching is irreversible and persistent, lasting for more than one month. By performing environmental tests, we prove that water molecules in the atmosphere and intercalated in the xerogel film are involved in the electrochemical reactions. It is proposed that an interfacial layer with reduced oxidation state forms at the Cr/V2O5 interface, and creates a higher Schottky barrier due to rise of electron affinity. Different interfacial layer thicknesses in forward and reverse first sweeps are responsible for different I-V characteristics in subsequent sweeps. The results suggest future applications of these V2O5 thin films in low-power read-only memory devices and diode-resistor networks.

  6. Zinc Selenide-Based Schottky Barrier Detectors for Ultraviolet-A and Ultraviolet-B Detection

    Directory of Open Access Journals (Sweden)

    V. Naval

    2010-01-01

    Full Text Available Wide-bandgap semiconductors such as zinc selenide (ZnSe have become popular for ultraviolet (UV photodetectors due to their broad UV spectral response. Schottky barrier detectors made of ZnSe in particular have been shown to have both low dark current and high responsivity. This paper presents the results of electrical and optical characterization of UV sensors based on ZnSe/Ni Schottky diodes fabricated using single-crystal ZnSe substrate with integrated UV-A (320–400 nm and UV-B (280–320 nm filters. For comparison, characteristics characterization of an unfiltered detector is also included. The measured photoresponse showed good discrimination between the two spectral bands. The measured responsivities of the UV-A and UV-B detectors were 50 mA/W and 10 mA/W, respectively. A detector without a UV filter showed a maximum responsivity of about 110 mA/W at 375 nm wavelength. The speed of the unfiltered detector was found to be about 300 kHz primarily limited by the RC time constant determined largely by the detector area.

  7. High-power quantum-dot superluminescent diodes with p-doped active region

    NARCIS (Netherlands)

    Rossetti, M.; Li, L.; Fiore, A.; Occhi, L.; Velez, C.; Mikhrin, S.; Kovsh, A.

    2006-01-01

    We demonstrate the use of p-doping in the active region of quantum-dot superluminescent diodes. Modal gain measurements and light output-current characteristics prove that p-doping is beneficial for achieving higher gain, higher output power, and better temperature stability

  8. Schottky Noise and Beam Transfer Functions

    Energy Technology Data Exchange (ETDEWEB)

    Blaskiewicz M.; Blaskiewicz M.

    2016-12-01

    Beam transfer functions (BTF)s encapsulate the stability properties of charged particle beams. In general one excites the beam with a sinusoidal signal and measures the amplitude and phase of the beam response. Most systems are very nearly linear and one can use various Fourier techniques to reduce the number of measurements and/or simulations needed to fully characterize the response. Schottky noise is associated with the finite number of particles in the beam. This signal is always present. Since the Schottky current drives wakefields, the measured Schottky signal is influenced by parasitic impedances.

  9. Measuring Plasma Formation Field Strength and Current Loss in Pulsed Power Diodes

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Mark D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Radiographic Technologies Dept.; Patel, Sonal G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Radiographic Technologies Dept.; Falcon, Ross Edward [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Radiographic Technologies Dept.; Cartwright, Keith [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Radiographic Technologies Dept.; Kiefer, Mark L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Radiographic Technologies Dept.; Cuneo, Michael E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Radiographic Technologies Dept.; Maron, Yitzhak [Weizmann Inst. of Science, Rehovot (Israel)

    2017-11-01

    This LDRD investigated plasma formation, field strength, and current loss in pulsed power diodes. In particular the Self-Magnetic Pinch (SMP) e-beam diode was studied on the RITS-6 accelerator. Magnetic fields of a few Tesla and electric fields of several MV/cm were measured using visible spectroscopy techniques. The magnetic field measurements were then used to determine the current distribution in the diode. This distribution showed that significant beam current extends radially beyond the few millimeter x-ray focal spot diameter. Additionally, shielding of the magnetic field due to dense electrode surface plasmas was observed, quantified, and found to be consistent with the calculated Spitzer resistivity. In addition to the work on RITS, measurements were also made on the Z-machine looking to quantify plasmas within the power flow regions. Measurements were taken in the post-hole convolute and final feed gap regions on Z. Dopants were applied to power flow surfaces and measured spectroscopically. These measurements gave species and density/temperature estimates. Preliminary B-field measurements in the load region were attempted as well. Finally, simulation work using the EMPHASIS, electromagnetic particle in cell code, was conducted using the Z MITL conditions. The purpose of these simulations was to investigate several surface plasma generations models under Z conditions for comparison with experimental data.

  10. Polycrystalline silicon carbide dopant profiles obtained through a scanning nano-Schottky contact

    International Nuclear Information System (INIS)

    Golt, M. C.; Strawhecker, K. E.; Bratcher, M. S.; Shanholtz, E. R.

    2016-01-01

    The unique thermo-electro-mechanical properties of polycrystalline silicon carbide (poly-SiC) make it a desirable candidate for structural and electronic materials for operation in extreme environments. Necessitated by the need to understand how processing additives influence poly-SiC structure and electrical properties, the distribution of lattice defects and impurities across a specimen of hot-pressed 6H poly-SiC processed with p-type additives was visualized with high spatial resolution using a conductive atomic force microscopy approach in which a contact forming a nano-Schottky interface is scanned across the sample. The results reveal very intricate structures within poly-SiC, with each grain having a complex core-rim structure. This complexity results from the influence the additives have on the evolution of the microstructure during processing. It was found that the highest conductivities localized at rims as well as at the interface between the rim and the core. The conductivity of the cores is less than the conductivity of the rims due to a lower concentration of dopant. Analysis of the observed conductivities and current-voltage curves is presented in the context of nano-Schottky contact regimes where the conventional understanding of charge transport to diode operation is no longer valid.

  11. Polycrystalline silicon carbide dopant profiles obtained through a scanning nano-Schottky contact

    Energy Technology Data Exchange (ETDEWEB)

    Golt, M. C.; Strawhecker, K. E.; Bratcher, M. S. [U.S. Army Research Laboratory, WMRD, Aberdeen Proving Ground, Maryland 21005 (United States); Shanholtz, E. R. [ORISE, Belcamp, Maryland 21017 (United States)

    2016-07-14

    The unique thermo-electro-mechanical properties of polycrystalline silicon carbide (poly-SiC) make it a desirable candidate for structural and electronic materials for operation in extreme environments. Necessitated by the need to understand how processing additives influence poly-SiC structure and electrical properties, the distribution of lattice defects and impurities across a specimen of hot-pressed 6H poly-SiC processed with p-type additives was visualized with high spatial resolution using a conductive atomic force microscopy approach in which a contact forming a nano-Schottky interface is scanned across the sample. The results reveal very intricate structures within poly-SiC, with each grain having a complex core-rim structure. This complexity results from the influence the additives have on the evolution of the microstructure during processing. It was found that the highest conductivities localized at rims as well as at the interface between the rim and the core. The conductivity of the cores is less than the conductivity of the rims due to a lower concentration of dopant. Analysis of the observed conductivities and current-voltage curves is presented in the context of nano-Schottky contact regimes where the conventional understanding of charge transport to diode operation is no longer valid.

  12. Schottky signal analysis: tune and chromaticity computation

    CERN Document Server

    Chanon, Ondine

    2016-01-01

    Schottky monitors are used to determine important beam parameters in a non-destructive way. The Schottky signal is due to the internal statistical fluctuations of the particles inside the beam. In this report, after explaining the different components of a Schottky signal, an algorithm to compute the betatron tune is presented, followed by some ideas to compute machine chromaticity. The tests have been performed with offline and/or online LHC data.

  13. Crucial problems in the design of a terahertz tripler

    International Nuclear Information System (INIS)

    Meng Jin; Zhang Dehai; Jiang Changhong; Zhao Xin; Yan Dashuai; Huang Jian

    2015-01-01

    A frequency-multiplied source at the terahertz band using discrete planar Schottky diodes, which is a critical element in heterodyne instruments, has been studied by some domestic research institutions in recent years. Besides the design method, there are still many crucial problems that must be taken into consideration in the design. This article mainly discuss three aspects based on the measured data of a 225 GHz tripler that we designed. Firstly, the accuracy of the diode model concerns the reliability of the simulation results. According to the Spice parameters and the measured results, the physical size and the DC parameter of the Schottky diode can be corrected until there is a good consistency between the simulated and measured results. Secondly, the heat accumulation happens to the Schottky junction when the high input power is added. A steady-state thermal simulation is done and the results show that the hottest temperature is about 140 °C with 250 mW input power, which is safe to the diode. Lastly, some non-ideal factors are brought during the assembly process such as the uncertainty in the conductive adhesive shape and location deviation of the circuit. Furthermore, the effect on the performance of the frequency multiplier is calculated in this work. (paper)

  14. Crucial problems in the design of a terahertz tripler

    Science.gov (United States)

    Jin, Meng; Dehai, Zhang; Changhong, Jiang; Xin, Zhao; Jian, Huang; Dashuai, Yan

    2015-08-01

    A frequency-multiplied source at the terahertz band using discrete planar Schottky diodes, which is a critical element in heterodyne instruments, has been studied by some domestic research institutions in recent years. Besides the design method, there are still many crucial problems that must be taken into consideration in the design. This article mainly discuss three aspects based on the measured data of a 225 GHz tripler that we designed. Firstly, the accuracy of the diode model concerns the reliability of the simulation results. According to the Spice parameters and the measured results, the physical size and the DC parameter of the Schottky diode can be corrected until there is a good consistency between the simulated and measured results. Secondly, the heat accumulation happens to the Schottky junction when the high input power is added. A steady-state thermal simulation is done and the results show that the hottest temperature is about 140 °C with 250 mW input power, which is safe to the diode. Lastly, some non-ideal factors are brought during the assembly process such as the uncertainty in the conductive adhesive shape and location deviation of the circuit. Furthermore, the effect on the performance of the frequency multiplier is calculated in this work.

  15. Pulsed corona generation using a diode-based pulsed power generator

    Science.gov (United States)

    Pemen, A. J. M.; Grekhov, I. V.; van Heesch, E. J. M.; Yan, K.; Nair, S. A.; Korotkov, S. V.

    2003-10-01

    Pulsed plasma techniques serve a wide range of unconventional processes, such as gas and water processing, hydrogen production, and nanotechnology. Extending research on promising applications, such as pulsed corona processing, depends to a great extent on the availability of reliable, efficient and repetitive high-voltage pulsed power technology. Heavy-duty opening switches are the most critical components in high-voltage pulsed power systems with inductive energy storage. At the Ioffe Institute, an unconventional switching mechanism has been found, based on the fast recovery process in a diode. This article discusses the application of such a "drift-step-recovery-diode" for pulsed corona plasma generation. The principle of the diode-based nanosecond high-voltage generator will be discussed. The generator will be coupled to a corona reactor via a transmission-line transformer. The advantages of this concept, such as easy voltage transformation, load matching, switch protection and easy coupling with a dc bias voltage, will be discussed. The developed circuit is tested at both a resistive load and various corona reactors. Methods to optimize the energy transfer to a corona reactor have been evaluated. The impedance matching between the pulse generator and corona reactor can be significantly improved by using a dc bias voltage. At good matching, the corona energy increases and less energy reflects back to the generator. Matching can also be slightly improved by increasing the temperature in the corona reactor. More effective is to reduce the reactor pressure.

  16. Thermal imaging of high power diode lasers subject to back-irradiance

    Science.gov (United States)

    Li, C.; Pipe, K. P.; Cao, C.; Thiagarajan, P.; Deri, R. J.; Leisher, P. O.

    2018-03-01

    CCD-based thermoreflectance imaging and finite element modeling are used to study the two-dimensional (2D) temperature profile of a junction-down broad-area diode laser facet subject to back-irradiance. By determining the temperature rise in the active region (ΔΤAR) at different diode laser optical powers, back-irradiance reflectance levels, and back-irradiance spot locations, we find that ΔΤAR increases by nearly a factor of three when the back-irradiance spot is centered in the absorbing substrate approximately 5 μm away from the active region, a distance roughly equal to half of the back-irradiance spot FWHM (9 μm). This corroborates prior work studying the relationship between the back-irradiance spot location and catastrophic optical damage, suggesting a strong thermal basis for reduced laser lifetime in the presence of back-irradiance for diode lasers fabricated on absorbing substrates.

  17. Analytical modeling of trilayer graphene nanoribbon Schottky-barrier FET for high-speed switching applications.

    Science.gov (United States)

    Rahmani, Meisam; Ahmadi, Mohammad Taghi; Abadi, Hediyeh Karimi Feiz; Saeidmanesh, Mehdi; Akbari, Elnaz; Ismail, Razali

    2013-01-30

    Recent development of trilayer graphene nanoribbon Schottky-barrier field-effect transistors (FETs) will be governed by transistor electrostatics and quantum effects that impose scaling limits like those of Si metal-oxide-semiconductor field-effect transistors. The current-voltage characteristic of a Schottky-barrier FET has been studied as a function of physical parameters such as effective mass, graphene nanoribbon length, gate insulator thickness, and electrical parameters such as Schottky barrier height and applied bias voltage. In this paper, the scaling behaviors of a Schottky-barrier FET using trilayer graphene nanoribbon are studied and analytically modeled. A novel analytical method is also presented for describing a switch in a Schottky-contact double-gate trilayer graphene nanoribbon FET. In the proposed model, different stacking arrangements of trilayer graphene nanoribbon are assumed as metal and semiconductor contacts to form a Schottky transistor. Based on this assumption, an analytical model and numerical solution of the junction current-voltage are presented in which the applied bias voltage and channel length dependence characteristics are highlighted. The model is then compared with other types of transistors. The developed model can assist in comprehending experiments involving graphene nanoribbon Schottky-barrier FETs. It is demonstrated that the proposed structure exhibits negligible short-channel effects, an improved on-current, realistic threshold voltage, and opposite subthreshold slope and meets the International Technology Roadmap for Semiconductors near-term guidelines. Finally, the results showed that there is a fast transient between on-off states. In other words, the suggested model can be used as a high-speed switch where the value of subthreshold slope is small and thus leads to less power consumption.

  18. Defect engineering for 650 nm high-power AlGaInP laser diodes

    International Nuclear Information System (INIS)

    Kim, D.S.; Kim, K.C.; Shin, Y.C.; Kang, D.H.; Kim, B.J.; Kim, Y.M.; Park, Y.; Kim, T.G.

    2006-01-01

    To find the optimal growth and annealing conditions for high-power 650 nm band AlGaInP laser diodes, we carried out defect engineering, in which the distribution and density of deep level defects of the laser structure was analyzed. For this purpose, deep level transient spectroscopy (DLTS) measurements were carried out for each layer of the 650 nm band AlGaInP laser. By layer optimization at growth and annealing conditions, the laser diode was able operate stably and kink-free at high power over 220 mW at 70 deg. C. The characteristic temperatures (T ) were 212 K for 25-60 deg. C and 106 K over 60 deg. C

  19. The impact of external optical feedback on the degradation behavior of high-power diode lasers

    DEFF Research Database (Denmark)

    Hempel, Martin; Chi, Mingjun; Petersen, Paul Michael

    2013-01-01

    The impact of external feedback on high-power diode laser degradation is studied. For this purpose early stages of gradual degradation are prepared by accelerated aging of 808-nm-emitting AlGaAs-based devices. While the quantum well that actually experiences the highest total optical load remains...... unaffected, severe impact is observed to the cladding layers and the waveguide. Consequently hardening of diode lasers for operation under external optical feedback must necessarily involve claddings and waveguide, into which the quantum well is embedded.......The impact of external feedback on high-power diode laser degradation is studied. For this purpose early stages of gradual degradation are prepared by accelerated aging of 808-nm-emitting AlGaAs-based devices. While the quantum well that actually experiences the highest total optical load remains...

  20. Diode pumped 1kHz high power Nd:YAG laser with excellent beam quality

    NARCIS (Netherlands)

    Godfried, Herman; Godfried, H.P; Offerhaus, Herman L.

    1997-01-01

    The design and operation of a one kilohertz diode pumped all solid-state Nd:YAG master oscillator power amplifier system with a phase conjugate mirror is presented. The setup allows high power scaling without reduction in beam quality.

  1. Correlation between morphological defects, electron beam-induced current imaging, and the electrical properties of 4H-SiC Schottky diodes

    International Nuclear Information System (INIS)

    Wang, Y.; Ali, G.N.; Mikhov, M.K.; Vaidyanathan, V.; Skromme, B.J.; Raghothamachar, B.; Dudley, M.

    2005-01-01

    Defects in SiC degrade the electrical properties and yield of devices made from this material. This article examines morphological defects in 4H-SiC and defects visible in electron beam-induced current (EBIC) images and their effects on the electrical characteristics of Schottky diodes. Optical Nomarski microscopy and atomic force microscopy were used to observe the morphological defects, which are classified into 26 types based on appearance alone. Forward and reverse current-voltage characteristics were used to extract barrier heights, ideality factors, and breakdown voltages. Barrier heights decrease about linearly with increasing ideality factor, which is explained by discrete patches of low barrier height within the main contact. Barrier height, ideality, and breakdown voltage all degrade with increasing device diameter, suggesting that discrete defects are responsible. Electroluminescence was observed under reverse bias from microplasmas associated with defects containing micropipes. EBIC measurements reveal several types of features corresponding to recombination centers. The density of dark spots observed by EBIC correlates strongly with ideality factor and barrier height. Most morphological defects do not affect the reverse characteristics when no micropipes are present, but lower the barrier height and worsen the ideality factor. However, certain multiple-tailed defects, irregularly shaped defects and triangular defects with 3C inclusions substantially degrade both breakdown voltage and barrier height, and account for most of the bad devices that do not contain micropipes. Micropipes in these wafers are also frequently found to be of Type II, which do not run parallel to the c axis

  2. Degradation Processes in High-Power Diode Lasers under External Optical Feedback

    DEFF Research Database (Denmark)

    Tomm, Jens. W.; Hempel, Martin; Petersen, Paul Michael

    2013-01-01

    The effect of moderate external feedback on the gradual degradation of 808 nm emitting AlGaAs-based high-power broad-area diode lasers is analyzed. Eventually the quantum well that actually experiences the highest total optical load remains unaffected by the aging, while severe impact...

  3. Green-diode-pumped femtosecond Ti:Sapphire laser with up to 450 mW average power.

    Science.gov (United States)

    Gürel, K; Wittwer, V J; Hoffmann, M; Saraceno, C J; Hakobyan, S; Resan, B; Rohrbacher, A; Weingarten, K; Schilt, S; Südmeyer, T

    2015-11-16

    We investigate power-scaling of green-diode-pumped Ti:Sapphire lasers in continuous-wave (CW) and mode-locked operation. In a first configuration with a total pump power of up to 2 W incident onto the crystal, we achieved a CW power of up to 440 mW and self-starting mode-locking with up to 200 mW average power in 68-fs pulses using semiconductor saturable absorber mirror (SESAM) as saturable absorber. In a second configuration with up to 3 W of pump power incident onto the crystal, we achieved up to 650 mW in CW operation and up to 450 mW in 58-fs pulses using Kerr-lens mode-locking (KLM). The shortest pulse duration was 39 fs, which was achieved at 350 mW average power using KLM. The mode-locked laser generates a pulse train at repetition rates around 400 MHz. No complex cooling system is required: neither the SESAM nor the Ti:Sapphire crystal is actively cooled, only air cooling is applied to the pump diodes using a small fan. Because of mass production for laser displays, we expect that prices for green laser diodes will become very favorable in the near future, opening the door for low-cost Ti:Sapphire lasers. This will be highly attractive for potential mass applications such as biomedical imaging and sensing.

  4. Schottky barrier MOSFET systems and fabrication thereof

    Science.gov (United States)

    Welch, J.D.

    1997-09-02

    (MOS) device systems-utilizing Schottky barrier source and drain to channel region junctions are disclosed. Experimentally derived results which demonstrate operation of fabricated N-channel and P-channel Schottky barrier (MOSFET) devices, and of fabricated single devices with operational characteristics similar to (CMOS) and to a non-latching (SRC) are reported. Use of essentially non-rectifying Schottky barriers in (MOS) structures involving highly doped and the like and intrinsic semiconductor to allow non-rectifying interconnection of, and electrical accessing of device regions is also disclosed. Insulator effected low leakage current device geometries and fabrication procedures therefore are taught. Selective electrical interconnection of drain to drain, source to drain, or source to source, of N-channel and/or P-channel Schottky barrier (MOSFET) devices formed on P-type, N-type and Intrinsic semiconductor allows realization of Schottky Barrier (CMOS), (MOSFET) with (MOSFET) load, balanced differential (MOSFET) device systems and inverting and non-inverting single devices with operating characteristics similar to (CMOS), which devices can be utilized in modulation, as well as in voltage controlled switching and effecting a direction of rectification. 89 figs.

  5. Improving the reverse recovery of power MOSFET integral diodes by electron irradiation

    International Nuclear Information System (INIS)

    Baliga, B.J.; Walden, J.P.

    1983-01-01

    Using 3 MeV electron irradiation at room temperature it was found that the reverse recovery charge in the integral diode could be continuously reduced in a well controlled manner from over 500nC to less than 100nC without any significant increase in the forward voltage drop of the integral diode under typical operating peak currents. The reverse recovery time was also observed to decrease from 3 microseconds to less than 200 nsec when the radiation dose was increased from 0 to 16 Megarads. The damage produced in gate oxide of the MOSFET due to the electron radiation damage was found to cause an undesirable decrease in the gate threshold voltage. This resulted in excessive channel leakage current flow in the MOSFET at zero gate bias. It was found that this channel leakage current was substantially reduced by annealing the devices at 140 0 C without influencing the integral diode reverse recovery speed. Thus, the electron irradiation technique was found to be effective in controlling the integral diode reverse recovery characteristics without any degradation of the power MOSFET characteristics. (author)

  6. High Power Continuous-Wave Diode-End-Pumped 1.34-μm Nd:GdVO4 Laser

    International Nuclear Information System (INIS)

    Rui, Zhou; Shuang-Chen, Ruan; Chen-Lin, Du; Jian-Quan, Yao

    2008-01-01

    A high power cw all-solid-state 1.34-μm Nd:GdVO 4 laser is experimentally demonstrated. With a diode-double-end-pumped configuration and a simple plane-parallel cavity, a maximum output power of 27.9W is obtained at incident pump power of 96 W, introducing a slope efficiency of 35.4%. To the best of our knowledge, this is the highest output power of diode-end-pumped 1.3-μm laser. With the experimental data, the thermal-stress-resistance figure of merit of Nd:GdVO 4 crystal with 0.3 at% Nd 3+ doped level is calculated to be larger than 9.94 W/cm

  7. Developing a Methodology for Elaborating a Pulsed Optical Safety Area for High Power Laser Diodes

    National Research Council Canada - National Science Library

    Yankov, Plamen

    2006-01-01

    The laser diodes are efficient sources of optical radiation. The maximum optical peak power depends on the pulse duration of the driving current pulse - reducing the pulse duration the safety peak power is increased...

  8. Experimental studies for improvement of thermal effects in a high-power fiber-coupled diode laser module operating at 808 nm

    Science.gov (United States)

    El-Sherif, Ashraf F.; Hussein, Khalid; Hassan, Mahmoud F.; Talat, Mahmoud M.

    2012-03-01

    High power diode laser module operating at 808 nm is required for different applications, such as developing an efficient high power Nd3+-doped solid state laser and Tm3+ -doped silica fiber laser, industrial, medical and military applications. Optical and thermal images characterization for a fiber-coupled high power diode laser module is presented experimentally for 6.6 Watt output optical power .An external temperature controller system was designed, which stabilizes the central wavelength at 808 nm at 25°C over a wide range of diode laser driving current from 1A to 6 A. without this cooling system, the wavelength changes by 0.35nm/°C for temperature changes from 20°C to 40°C at the same range of the driving current. In this paper we have present a methodology for temperature reduction of a 808 nm high power diode laser module, based on dynamically thermal control, which is known as dynamic thermal management. Stabilization of the output wavelength has been done by using proportional speed control (PSC) of a CPU cooling fan with certain scheme of straight fins heat sink. Two electronic circuits based on pulse width modulation (PWM) in microcontroller and comparators IC have been used. This technique can be considered as an effective mechanism for reducing temperature and power dissipation to make stabilization of the diode laser output wavelength by preventing heat accumulation from the thermo electric cooling (TEC) inside the diode laser module confirmed by thermal images.

  9. Widely Tunable High-Power Tapered Diode Laser at 1060 nm

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Sumpf, Bernd; Erbert, Götz

    2011-01-01

    We report a large tuning range from 1018 to 1093 nm from a InGaAs single quantum-well 1060-nm external cavity tapered diode laser. More than 2.5-W output power has been achieved. The tuning range is to our knowledge the widest obtained from a high-power InGaAs single quantum-well tapered laser...... operating around 1060 nm. The light emitted by the laser has a nearly diffraction limited beam quality and a narrow linewidth of less than 6 pm everywhere in the tuning range....

  10. Numerical simulations of novel high-power high-brightness diode laser structures

    Science.gov (United States)

    Boucke, Konstantin; Rogg, Joseph; Kelemen, Marc T.; Poprawe, Reinhart; Weimann, Guenter

    2001-07-01

    One of the key topics in today's semiconductor laser development activities is to increase the brightness of high-power diode lasers. Although structures showing an increased brightness have been developed specific draw-backs of these structures lead to a still strong demand for investigation of alternative concepts. Especially for the investigation of basically novel structures easy-to-use and fast simulation tools are essential to avoid unnecessary, cost and time consuming experiments. A diode laser simulation tool based on finite difference representations of the Helmholtz equation in 'wide-angle' approximation and the carrier diffusion equation has been developed. An optimized numerical algorithm leads to short execution times of a few seconds per resonator round-trip on a standard PC. After each round-trip characteristics like optical output power, beam profile and beam parameters are calculated. A graphical user interface allows online monitoring of the simulation results. The simulation tool is used to investigate a novel high-power, high-brightness diode laser structure, the so-called 'Z-Structure'. In this structure an increased brightness is achieved by reducing the divergency angle of the beam by angular filtering: The round trip path of the beam is two times folded using internal total reflection at surfaces defined by a small index step in the semiconductor material, forming a stretched 'Z'. The sharp decrease of the reflectivity for angles of incidence above the angle of total reflection leads to a narrowing of the angular spectrum of the beam. The simulations of the 'Z-Structure' indicate an increase of the beam quality by a factor of five to ten compared to standard broad-area lasers.

  11. Mechanism of improving forward and reverse blocking voltages in AlGaN/GaN HEMTs by using Schottky drain

    International Nuclear Information System (INIS)

    Zhao Sheng-Lei; Mi Min-Han; Luo Jun; Wang Yi; Dai Yang; Zhang Jin-Cheng; Ma Xiao-Hua; Hao Yue; Hou Bin

    2014-01-01

    In this paper, we demonstrate that a Schottky drain can improve the forward and reverse blocking voltages (BVs) simultaneously in AlGaN/GaN high-electron mobility transistors (HEMTs). The mechanism of improving the two BVs is investigated by analysing the leakage current components and by software simulation. The forward BV increases from 72 V to 149 V due to the good Schottky contact morphology. During the reverse bias, the buffer leakage in the Ohmicdrain HEMT increases significantly with the increase of the negative drain bias. For the Schottky-drain HEMT, the buffer leakage is suppressed effectively by the formation of the depletion region at the drain terminal. As a result, the reverse BV is enhanced from −5 V to −49 V by using a Schottky drain. Experiments and the simulation indicate that a Schottky drain is desirable for power electronic applications. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  12. Large-signal modeling method for power FETs and diodes

    Energy Technology Data Exchange (ETDEWEB)

    Sun Lu; Wang Jiali; Wang Shan; Li Xuezheng; Shi Hui; Wang Na; Guo Shengping, E-mail: sunlu_1019@126.co [School of Electromechanical Engineering, Xidian University, Xi' an 710071 (China)

    2009-06-01

    Under a large signal drive level, a frequency domain black box model of the nonlinear scattering function is introduced into power FETs and diodes. A time domain measurement system and a calibration method based on a digital oscilloscope are designed to extract the nonlinear scattering function of semiconductor devices. The extracted models can reflect the real electrical performance of semiconductor devices and propose a new large-signal model to the design of microwave semiconductor circuits.

  13. Large-signal modeling method for power FETs and diodes

    International Nuclear Information System (INIS)

    Sun Lu; Wang Jiali; Wang Shan; Li Xuezheng; Shi Hui; Wang Na; Guo Shengping

    2009-01-01

    Under a large signal drive level, a frequency domain black box model of the nonlinear scattering function is introduced into power FETs and diodes. A time domain measurement system and a calibration method based on a digital oscilloscope are designed to extract the nonlinear scattering function of semiconductor devices. The extracted models can reflect the real electrical performance of semiconductor devices and propose a new large-signal model to the design of microwave semiconductor circuits.

  14. RF fields due to Schottky noise in a coasting particle beam

    CERN Document Server

    Faltin, L

    1977-01-01

    The RF fields inside a rectangular chamber excited by the Schottky noise current inherently present in a coasting particle beam are calculated, using a simple beam model. Vertical betatron oscillations are assumed. The power flow accompanying the beam is given as well as the resulting characteristic impedance. Numerical results are presented.

  15. A power device material of corundum-structured α-Ga2O3 fabricated by MIST EPITAXY® technique

    Science.gov (United States)

    Kaneko, Kentaro; Fujita, Shizuo; Hitora, Toshimi

    2018-02-01

    Corundum-structured oxides have been attracting much attention as next-generation power device materials. A corundum-structured α-Ga2O3 successfully demonstrated power device operations of Schottky barrier diodes (SBDs) with the lowest on-resistance of 0.1 mΩ cm2. The SBDs as a mounting device of TO220 also showed low switching-loss properties with a capacitance of 130 pF. Moreover, the thermal resistance was 13.9 °C/W, which is comparable to that of the SiC TO220 device (12.5 °C/W). On the other hand, corundum-structured α-(Rh,Ga)2O3 showed p-type conductivity, which was confirmed by Hall effect measurements. The Hall coefficient, carrier density, and mobility were 8.22 cm3/C, 7.6 × 1017/cm3, and 1.0 cm2 V-1 s-1, respectively. These values were acceptable for the p-type layer of pn diodes based on α-Ga2O3.

  16. Reduced Graphene Oxide/Single-Walled Carbon Nanotube Hybrid Films Using Various p-Type Dopants and Their Application to GaN-Based Light-Emitting Diodes.

    Science.gov (United States)

    Lee, Byeong Ryong; Kim, Tae Geun

    2017-01-01

    This article reports the electrical and optical properties of the reduced graphene oxide (RGO)/single-walled carbon nanotube (SWCNT) films using various p-type dopants and their application to GaN-based light-emitting diodes. To enhance the current injection and spreading of the RGO/SWCNT films on the light-emitting diodes (LEDs), we increased the work function (Φ) of the films using chemical doping with AuCl₃, poly(3,4-ethylenedioxythiophene) oxidized with poly(4-styrenesulfonate) (PEDOT:PSS) and MoO₃; thereby reduced the Schottky barrier height between the RGO/SWCNT films and p-GaN. By comparison, LEDs fabricated with work-function-tuned RGO/SWCNT film doped with MoO₃ exhibited the decrease of the forward voltage from 5.3 V to 5.02 V at 20 mA and the increase of the output power up to 1.26 times. We also analyzed the current injection mechanism using ultraviolet photoelectron spectroscopy and X-ray photoelectron spectroscopy.

  17. Reduced Graphene Oxide/Single-Walled Carbon Nanotube Hybrid Film Using Various p-Type Dopants and Its Application to GaN-Based Light-Emitting Diodes.

    Science.gov (United States)

    Lee, Byeong Ryong; Kim, Tae Geun

    2016-06-01

    This paper reports the electrical and optical properties of the reduced graphene oxide (RGO)/single-walled carbon nanotube (SWNT) films using various p-type dopants and its application to GaN-based light-emitting diodes. To enhance the current injection and spreading of the RGO/SWNT films on the light-emitting diodes (LEDs), we increased the work function (φ) of the films using chemical doping with AuCl3, poly(3,4-ethylenedioxythiophene) oxidized with poly(4-styrenesulfonate) ( PSS) and MoO3; thereby reduced the Schottky barrier height between the RGO/SWNT films and p-GaN. By comparison, LEDs fabricated with work-function-tuned RGO/SWNT film doped with MoO3 exhibited the decrease of the forward voltage from 5.3 V to 5.02 V at 20 mA and the increase of the output power up to 1.26 times. We also analyzed the current injection mechanism using ultraviolet photoelectron spectroscopy and X-ray photoelectron spectroscopy.

  18. Illumination dependence of I-V and C-V characterization of Au/InSb/InP(1 0 0) Schottky structure

    International Nuclear Information System (INIS)

    Akkal, B.; Benamara, Z.; Bouiadjra, N. Bachir; Tizi, S.; Gruzza, B.

    2006-01-01

    The effects of surface preparation and illumination on electric parameters of Au/InSb/InP(100) Schottky diode were investigated, in the later diode InSb forms a fine restructuration layer allowing to block In atoms migration to surface. In order to study the electric characteristics under illumination, we make use of an He-Ne laser of 1 mW power and 632.8 nm wavelength. The current-voltage I(V G ), the capacitance-voltage C(V G ) measurements were plotted and analysed. The saturation current I s , the serial resistance R s and the mean ideality factor n are, respectively, equal to 2.03 x 10 -5 A, 85 Ω, 1.7 under dark and to 3.97 x 10 -5 A, 67 Ω, 1.59 under illumination. The analysis of I(V G ) and C(V G ) characteristics allows us to determine the mean interfacial state density N ss and the transmission coefficient θ n equal, respectively, to 4.33 x 10 12 eV -1 cm -2 , 4.08 x 10 -3 under dark and 3.79 x 10 12 eV -1 cm -2 and 5.65 x 10 -3 under illumination. The deep discrete donor levels presence in the semiconductor bulk under dark and under illumination are responsible for the non-linearity of the C -2 (V G ) characteristic

  19. Next generation 9xx/10xx nm high power laser diode bars for multi-kilowatt industrial applications

    Science.gov (United States)

    Commin, Paul; Todt, René; Krejci, Martin; Bättig, Rainer; Brunner, Reinhard; Lichtenstein, Norbert

    2013-02-01

    We report on the development of high power, 9xx-10xx nm laser diode bars for use in direct diode systems and for solidstate and fibre laser pumping with applications in industrial markets. For 1 cm wide bars on micro channel cooler (MCC) we have achieved a reliable output power of 250 W across the 900 nm - 1060 nm range. At this output power level we have achieved power conversion efficiencies of 65-66 % and 90 % power content slow axis beam divergence of ~6.5°. Results of a 6400 h life test show an average power degradation of 0.6 % per 1000 h at this operating power level. We will also show results of high power bars assembled on the new OCLARO conductive cooler, the BLM. This new cooler has a small footprint of 12.6 mm × 24.8 mm and is designed for lateral or vertical stacking of diodes in multi kilowatt systems but with the benefits associated with a conductive cooler. The thermal properties are shown to be the same as for a standard CS mount. 1 cm wide high fill factor bars and 0.5 cm wide low fill factor half bars assembled on the BLM operate at 63-64 % power conversion efficiency (PCE) with output powers of up to 250 W and 150 W, respectively.

  20. Power ion beam production in a magnetic-insulated diode placed in a circuit with an inductive storage with a plasmoerosion circuit breaker

    International Nuclear Information System (INIS)

    Anan'in, P.S.; Karpov, V.B.; Krasik, Ya.E.; Paul', E.A.

    1991-01-01

    Consideration is given to results of experimental studies of modes of operation of plasma current breaker and magnetic insulated diode, placed parallel in a circuit with inductive storage and microsecond generator, as well as parameters of high-power ion beam, generated in gas-filled diode. Magnetic field of mirror configuration, which enabled to locate the gas-filled diode dose to breaking region was used for decrease of electrodynamic plasma transfer. It is shown that time delay (of the order of ten and more) of power maximum in gas-filled diode with respect to power maximum in plasma breaker is observed when using passive plasma source on anode

  1. Optimum lifetime structuring in silicon power diodes by means of various irradiation techniques

    International Nuclear Information System (INIS)

    Hazdra, P.; Vobecky, J.; Brand, K.

    2002-01-01

    Application of radiation defects for adjustment of power diode parameters is demonstrated. Local lifetime control (LLC) by proton and alpha-particle irradiation with energies 1.8-12.1 MeV is compared with uniform lifetime killing by 4.5 MeV electrons. The influence of both the techniques on static and dynamic parameters of modified diodes is experimentally established and explained by means of state-of-the-art simulation system. Optimization means and limits of lifetime control by irradiation techniques are discussed, as well

  2. Heterojunction p-Cu2O/n-Ga2O3 diode with high breakdown voltage

    Science.gov (United States)

    Watahiki, Tatsuro; Yuda, Yohei; Furukawa, Akihiko; Yamamuka, Mikio; Takiguchi, Yuki; Miyajima, Shinsuke

    2017-11-01

    Heterojunction p-Cu2O/n-β-Ga2O3 diodes were fabricated on an epitaxially grown β-Ga2O3(001) layer. The reverse breakdown voltage of these p-n diodes reached 1.49 kV with a specific on-resistance of 8.2 mΩ cm2. The leakage current of the p-n diodes was lower than that of the Schottky barrier diode due to the higher barrier height against the electron. The ideality factor of the p-n diode was 1.31. It indicated that some portion of the recombination current at the interface contributed to the forward current, but the diffusion current was the dominant. The forward current more than 100 A/cm2 indicated the lower conduction band offset at the hetero-interface between Cu2O and Ga2O3 layers than that predicted from the bulk properties, resulting in such a high forward current without limitation. These results open the possibility of advanced device structures for wide bandgap Ga2O3 to achieve higher breakdown voltage and lower on-resistance.

  3. Spectral, spatial and temporal control of high-power diode lasers through nonlinear optical feedback

    NARCIS (Netherlands)

    van Voorst, P.D.

    2008-01-01

    A high-power diode laser offers multi-Watt output power from a small and efficient device, which makes them an interesting source for numerous applications. The spatial and spectral output however, are of reduced quality which limits the applicability. This limited quality is connected to the design

  4. Schottky nanocontact of one-dimensional semiconductor nanostructures probed by using conductive atomic force microscopy

    Science.gov (United States)

    Lee, Jung Ah; Rok Lim, Young; Jung, Chan Su; Choi, Jun Hee; Im, Hyung Soon; Park, Kidong; Park, Jeunghee; Kim, Gyu Tae

    2016-10-01

    To develop the advanced electronic devices, the surface/interface of each component must be carefully considered. Here, we investigate the electrical properties of metal-semiconductor nanoscale junction using conductive atomic force microscopy (C-AFM). Single-crystalline CdS, CdSe, and ZnO one-dimensional nanostructures are synthesized via chemical vapor transport, and individual nanobelts (or nanowires) are used to fabricate nanojunction electrodes. The current-voltage (I -V) curves are obtained by placing a C-AFM metal (PtIr) tip as a movable contact on the nanobelt (or nanowire), and often exhibit a resistive switching behavior that is rationalized by the Schottky (high resistance state) and ohmic (low resistance state) contacts between the metal and semiconductor. We obtain the Schottky barrier height and the ideality factor through fitting analysis of the I-V curves. The present nanojunction devices exhibit a lower Schottky barrier height and a higher ideality factor than those of the bulk materials, which is consistent with the findings of previous works on nanostructures. It is shown that C-AFM is a powerful tool for characterization of the Schottky contact of conducting channels between semiconductor nanostructures and metal electrodes.

  5. High-power dual-wavelength external-Cavity diode laser based on tapered amplifier with tunable terahertz frequency difference

    DEFF Research Database (Denmark)

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2011-01-01

    Tunable dual-wavelength operation of a diode laser system based on a tapered diode amplifier with double-Littrow external-cavity feedback is demonstrated around 800nm. The two wavelengths can be tuned individually, and the frequency difference of the two wavelengths is tunable from 0.5 to 5:0 THz......, this is the highest output power from a dual-wavelength diode laser system operating with tunable terahertz frequency difference. © 2011 Optical Society of America....

  6. Effect of graphene tunnel barrier on Schottky barrier height of Heusler alloy Co2MnSi/graphene/n-Ge junction

    Science.gov (United States)

    Gui-fang, Li; Jing, Hu; Hui, Lv; Zhijun, Cui; Xiaowei, Hou; Shibin, Liu; Yongqian, Du

    2016-02-01

    We demonstrate that the insertion of a graphene tunnel barrier between Heusler alloy Co2MnSi and the germanium (Ge) channel modulates the Schottky barrier height and the resistance-area product of the spin diode. We confirm that the Fermi level is depinned and a reduction in the electron Schottky barrier height (SBH) occurs following the insertion of the graphene layer between Co2MnSi and Ge. The electron SBH is modulated in the 0.34 eV-0.61 eV range. Furthermore, the transport mechanism changes from rectifying to symmetric tunneling following the insertion. This behavior provides a pathway for highly efficient spin injection from a Heusler alloy into a Ge channel with high electron and hole mobility. Project supported by the National Natural Science Foundation of China (Grant No. 61504107) and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 3102014JCQ01059 and 3102015ZY043).

  7. Methods for slow axis beam quality improvement of high power broad area diode lasers

    Science.gov (United States)

    An, Haiyan; Xiong, Yihan; Jiang, Ching-Long J.; Schmidt, Berthold; Treusch, Georg

    2014-03-01

    For high brightness direct diode laser systems, it is of fundamental importance to improve the slow axis beam quality of the incorporated laser diodes regardless what beam combining technology is applied. To further advance our products in terms of increased brightness at a high power level, we must optimize the slow axis beam quality despite the far field blooming at high current levels. The later is caused predominantly by the built-in index step in combination with the thermal lens effect. Most of the methods for beam quality improvements reported in publications sacrifice the device efficiency and reliable output power. In order to improve the beam quality as well as maintain the efficiency and reliable output power, we investigated methods of influencing local heat generation to reduce the thermal gradient across the slow axis direction, optimizing the built-in index step and discriminating high order modes. Based on our findings, we have combined different methods in our new device design. Subsequently, the beam parameter product (BPP) of a 10% fill factor bar has improved by approximately 30% at 7 W/emitter without efficiency penalty. This technology has enabled fiber coupled high brightness multi-kilowatt direct diode laser systems. In this paper, we will elaborate on the methods used as well as the results achieved.

  8. High-power and highly efficient diode-cladding-pumped holmium-doped fluoride fiber laser operating at 2.94 microm.

    Science.gov (United States)

    Jackson, Stuart D

    2009-08-01

    A high-power diode-cladding-pumped Ho(3+), Pr(3+)-doped fluoride glass fiber laser is demonstrated. The laser produced a maximum output power of 2.5 W at a slope efficiency of 32% using diode lasers emitting at 1,150 nm. The long-emission wavelength of 2.94 microm measured at maximum pump power, which is particularly suited to medical applications, indicates that tailoring of the proportion of Pr(3+) ions can provide specific emission wavelengths while providing sufficient de-excitation of the lower laser level.

  9. Dual-wavelength high-power diode laser system based on an external-cavity tapered amplifier with tunable frequency difference

    DEFF Research Database (Denmark)

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2012-01-01

    knowledge, this is the broadest tuning range of the frequency difference from a dual-wavelength diode laser system. The spectrum, output power, and beam quality of the diode laser system are characterized. The power stability of each wavelength is measured, and the power fluctuations of the two wavelengths......A dual-wavelength high-power semiconductor laser system based on a tapered amplifier with double-Littrow external cavity is demonstrated around 800 nm. The two wavelengths can be tuned individually, and the frequency difference of the two wavelengths is tunable from 0.5 to 10.0 THz. To our...

  10. Water Vapour Propulsion Powered by a High-Power Laser-Diode

    Science.gov (United States)

    Minami, Y.; Uchida, S.

    Most of the laser propulsion schemes now being proposed and developed assume neither power supplies nor on-board laser devices and therefore are bound to remote laser stations like a kite via a laser beam “string”. This is a fatal disadvantage for a space vehicle that flies freely though it is often said that no need of installing an energy source is an advantage of a laser propulsion scheme. The possibility of an independent laser propulsion space vehicle that carries a laser source and a power supply on board is discussed. This is mainly due to the latest development of high power laser diode (LD) technology. Both high specific impulse-low thrust mode and high thrust-low specific impulse mode can be selected by controlling the laser output by using vapour or water as a propellant. This mode change can be performed by switching between a high power continuous wave (cw), LD engine for high thrust with a low specific impulse mode and high power LD pumping Q-switched Nd:YAG laser engine for low thrust with the high specific impulse mode. This paper describes an Orbital Transfer Vehicle equipped with the above-mentioned laser engine system and fuel cell that flies to the Moon from a space platform or space hotel in Earth orbit, with cargo shipment from lunar orbit to the surface of the Moon, including the possibility of a sightseeing trip.

  11. Systematic investigation of the effects of organic film structure on light emitting diode performance

    Science.gov (United States)

    Joswick, M. D.; Campbell, I. H.; Barashkov, N. N.; Ferraris, J. P.

    1996-09-01

    We present a systematic investigation of the effects of organic film structure on light emitting diode (LED) performance. Metal/organic film/metal LEDs were fabricated using a five ring, poly(phenylene vinylene) related oligomer as the active layer. The structure of the vacuum evaporated oligomer films was varied from amorphous to polycrystalline by changing the substrate temperature during deposition. The intrinsic properties of the oligomer films and the LED performance were measured. The measured intrinsic film properties include: optical absorption, photoluminescence (PL) spectra, PL lifetime, PL efficiency, and effective carrier mobility. The measured device characteristics include current-voltage, capacitance-voltage, electroluminescence (EL) efficiency, and the contact metal/organic film Schottky barrier heights. The optical absorption and PL properties of the films are weakly dependent on film structure but the effective carrier mobility decreases with increasing crystallinity. The EL quantum efficiency decreases by more than one order of magnitude, the drive voltage at a fixed current increases, and the electron Schottky barrier height increases as the crystallinity of the film is increased. The diode current-voltage characteristic is determined by the dominant hole current and the electroluminescence efficiency is controlled by the contact limited electron injection. These results demonstrate significant effects of organic film structure on the performance of organic LEDs.

  12. Flexible Lamination-Fabricated Ultra-High Frequency Diodes Based on Self-Supporting Semiconducting Composite Film of Silicon Micro-Particles and Nano-Fibrillated Cellulose

    Science.gov (United States)

    Sani, Negar; Wang, Xin; Granberg, Hjalmar; Andersson Ersman, Peter; Crispin, Xavier; Dyreklev, Peter; Engquist, Isak; Gustafsson, Göran; Berggren, Magnus

    2016-06-01

    Low cost and flexible devices such as wearable electronics, e-labels and distributed sensors will make the future “internet of things” viable. To power and communicate with such systems, high frequency rectifiers are crucial components. We present a simple method to manufacture flexible diodes, operating at GHz frequencies, based on self-adhesive composite films of silicon micro-particles (Si-μPs) and glycerol dispersed in nanofibrillated cellulose (NFC). NFC, Si-μPs and glycerol are mixed in a water suspension, forming a self-supporting nanocellulose-silicon composite film after drying. This film is cut and laminated between a flexible pre-patterned Al bottom electrode and a conductive Ni-coated carbon tape top contact. A Schottky junction is established between the Al electrode and the Si-μPs. The resulting flexible diodes show current levels on the order of mA for an area of 2 mm2, a current rectification ratio up to 4 × 103 between 1 and 2 V bias and a cut-off frequency of 1.8 GHz. Energy harvesting experiments have been demonstrated using resistors as the load at 900 MHz and 1.8 GHz. The diode stack can be delaminated away from the Al electrode and then later on be transferred and reconfigured to another substrate. This provides us with reconfigurable GHz-operating diode circuits.

  13. Advanced chip designs and novel cooling techniques for brightness scaling of industrial, high power diode laser bars

    Science.gov (United States)

    Heinemann, S.; McDougall, S. D.; Ryu, G.; Zhao, L.; Liu, X.; Holy, C.; Jiang, C.-L.; Modak, P.; Xiong, Y.; Vethake, T.; Strohmaier, S. G.; Schmidt, B.; Zimer, H.

    2018-02-01

    The advance of high power semiconductor diode laser technology is driven by the rapidly growing industrial laser market, with such high power solid state laser systems requiring ever more reliable diode sources with higher brightness and efficiency at lower cost. In this paper we report simulation and experimental data demonstrating most recent progress in high brightness semiconductor laser bars for industrial applications. The advancements are in three principle areas: vertical laser chip epitaxy design, lateral laser chip current injection control, and chip cooling technology. With such improvements, we demonstrate disk laser pump laser bars with output power over 250W with 60% efficiency at the operating current. Ion implantation was investigated for improved current confinement. Initial lifetime tests show excellent reliability. For direct diode applications 96% polarization are additional requirements. Double sided cooling deploying hard solder and optimized laser design enable single emitter performance also for high fill factor bars and allow further power scaling to more than 350W with 65% peak efficiency with less than 8 degrees slow axis divergence and high polarization.

  14. Analysis of High-Power Diode Laser Heating Effects on HY-80 Steel for Laser Assisted Friction Stir Welding Applications

    Energy Technology Data Exchange (ETDEWEB)

    Wiechec, Maxwell; Baker, Brad; McNelley, Terry; Matthews, Manyalibo; Rubenchik, Alexander; Rotter, Mark; Beach, Ray; Wu, Sheldon

    2017-01-01

    In this research, several conditions of high power diode laser heated HY-80 steel were characterized to determine the viability of using such lasers as a preheating source before friction stir welding in order to reduce frictional forces thereby reducing tool wear and increasing welding speeds. Differences in microstructures within heat affected zones were identified at specific laser powers and traverse speeds. Vickers hardness values were recorded and analyzed to validate the formation of additional martensite in diode laser heated regions of HY-80 steel. Conditions that produced little to no additional martensite were identified and relationships among high power diode laser power, traverse speed, and martensite formation were determined. The development of heat affected zones, change in grain structure, and creation of additional martensite in HY-80 can be prevented through the optimization of laser amperage and transverse speed.

  15. Graphene barristor, a triode device with a gate-controlled Schottky barrier.

    Science.gov (United States)

    Yang, Heejun; Heo, Jinseong; Park, Seongjun; Song, Hyun Jae; Seo, David H; Byun, Kyung-Eun; Kim, Philip; Yoo, InKyeong; Chung, Hyun-Jong; Kim, Kinam

    2012-06-01

    Despite several years of research into graphene electronics, sufficient on/off current ratio I(on)/I(off) in graphene transistors with conventional device structures has been impossible to obtain. We report on a three-terminal active device, a graphene variable-barrier "barristor" (GB), in which the key is an atomically sharp interface between graphene and hydrogenated silicon. Large modulation on the device current (on/off ratio of 10(5)) is achieved by adjusting the gate voltage to control the graphene-silicon Schottky barrier. The absence of Fermi-level pinning at the interface allows the barrier's height to be tuned to 0.2 electron volt by adjusting graphene's work function, which results in large shifts of diode threshold voltages. Fabricating GBs on respective 150-mm wafers and combining complementary p- and n-type GBs, we demonstrate inverter and half-adder logic circuits.

  16. Fabrication and characterization of well-aligned zinc oxide nanowire arrays and their realizations in Schottky-device applications

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Kin Mun; Grote, Fabian; Sun, Hui; Lei, Yong [Institute of Materials Physics, Center for Nanotechnology, University of Muenster (Germany); Wen, Liaoyong; Fang, Yaoguo [Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 201800 (China)

    2011-07-01

    Highly ordered arrays of vertical zinc oxide (ZnO) nanowires (NWs) or nanopores were fabricated in our group by first thermal evaporating a thin film of gold on the ultrathin alumina membrane (UTAM). The UTAM was then utilized as a substrate for the growth of the ordered arrays using a chemical vapour deposition (CVD) process. Alternatively, a modified CVD process was also used to fabricate ultra-long ZnO NWs with the length of the nanowire exceeding 100 micrometres. Subsequently, densely packed arrays of ZnO NWs Schottky diodes were synthesized by transferring the long NWs on a substrate using a dry contact printing method and the electrical contacts were made on the NWs with a photolithographic process. The interesting electrical properties of the ZnO NWs, diodes or other metal oxide NWs such as the field emission, electron transport and piezoelectric properties were characterized by current-voltage or by other appropriate measurements.

  17. A high power gain switched diode laser oscillator and amplifier for the CEBAF polarized electron injector

    International Nuclear Information System (INIS)

    Poelker, M.; Hansknecht, J.

    1996-01-01

    The photocathode in the polarized electron source at Jefferson Lab is illuminated with pulsed laser light from a gain switched diode laser and diode optical amplifier. Laser pulse repetition rates up to 2,000 MHz, optical pulsewidths between 31 and 123 ps, and average power > 100 mW are demonstrated. The laser system is highly reliable and completely remotely controlled

  18. Improvements of high-power diode laser line generators open up new application fields

    Science.gov (United States)

    Meinschien, J.; Bayer, A.; Bruns, P.; Aschke, L.; Lissotschenko, V. N.

    2009-02-01

    Beam shaping improvements of line generators based on high power diode lasers lead to new application fields as hardening, annealing or cutting of various materials. Of special interest is the laser treatment of silicon. An overview of the wide variety of applications is presented with special emphasis of the relevance of unique laser beam parameters like power density and beam uniformity. Complementary to vision application and plastic processing, these new application markets become more and more important and can now be addressed by high power diode laser line generators. Herewith, a family of high power diode laser line generators is presented that covers this wide spectrum of application fields with very different requirements, including new applications as cutting of silicon or glass, as well as the beam shaping concepts behind it. A laser that generates a 5m long and 4mm wide homogeneous laser line is shown with peak intensities of 0.2W/cm2 for inspection of railway catenaries as well as a laser that generates a homogeneous intensity distribution of 60mm x 2mm size with peak intensities of 225W/cm2 for plastic processing. For the annealing of silicon surfaces, a laser was designed that generates an extraordinary uniform intensity distribution with residual inhomogeneities (contrast ratio) of less than 3% over a line length of 11mm and peak intensities of up to 75kW/cm2. Ultimately, a laser line is shown with a peak intensity of 250kW/cm2 used for cutting applications. Results of various application tests performed with the above mentioned lasers are discussed, particularly the surface treatment of silicon and the cutting of glass.

  19. Amorphous structure evolution of high power diode laser cladded Fe–Co–B–Si–Nb coatings

    International Nuclear Information System (INIS)

    Zhu Yanyan; Li Zhuguo; Huang Jian; Li Min; Li Ruifeng; Wu Yixiong

    2012-01-01

    Highlights: ► Fabricated amorphous composited coating by high power diode laser cladding with single track. ► Lower dilution and higher scanning speed are desired to obtain higher amorphous phase fraction. ► White spots phase with high content of Nb embedded in the amorphous matrix. - Abstract: Fe–Co–B–Si–Nb coatings were fabricated on the surface of low carbon steel using high power diode laser cladding of [(Fe 0.5 Co 0.5 ) 0.75 B 0.2 Si 0.05 ] 95.7 Nb 4.3 amorphous powders at three different scanning speeds of 6, 17 and 50 m/s. At each scanning speed, laser power was optimized to obtain low dilution ratio. Scanning electron microscopy, X-ray diffraction, transmission electron microscopy with energy dispersive spectrometer and electron probe micro analysis were carried out to characterize the microstructure and chemical composition of the cladded coatings. Differential scanning calorimetry was also carried out to investigate the fraction of the amorphous phase. The results showed that dilution ratio and scanning speed were the two main factors for fabricating Fe–Co–B–Si–Nb amorphous coating by high power diode laser cladding. Low dilution ratio was crucial for the formation of amorphous phase. When the dilution ratio was low, the fraction of amorphous phase in the cladded coatings increased upon increasing the scanning speed.

  20. Efficient high power operation of erbium 3 µm fibre laser diode-pumped at 975 nm

    NARCIS (Netherlands)

    Jackson, S.D.; King, T.A.; Pollnau, Markus

    2000-01-01

    Efficient CW operation of a 2.71 um Er,Pr:ZBLAN double-clad fibre laser pumped with a single diode laser operating at a wavelength of 975 nm is described. A maximum output power of 0.5 W and a slope efficiency of 25% (with respect to the launched pump power) were obtained. Threshold pump powers of <

  1. Hydrogen Sensors Using Nitride-Based Semiconductor Diodes: The Role of Metal/Semiconductor Interfaces

    Directory of Open Access Journals (Sweden)

    Yoshihiro Irokawa

    2011-01-01

    Full Text Available In this paper, I review my recent results in investigating hydrogen sensors using nitride-based semiconductor diodes, focusing on the interaction mechanism of hydrogen with the devices. Firstly, effects of interfacial modification in the devices on hydrogen detection sensitivity are discussed. Surface defects of GaN under Schottky electrodes do not play a critical role in hydrogen sensing characteristics. However, dielectric layers inserted in metal/semiconductor interfaces are found to cause dramatic changes in hydrogen sensing performance, implying that chemical selectivity to hydrogen could be realized. The capacitance-voltage (C-V characteristics reveal that the work function change in the Schottky metal is not responsible mechanism for hydrogen sensitivity. The interface between the metal and the semiconductor plays a critical role in the interaction of hydrogen with semiconductor devises. Secondly, low-frequency C-V characterization is employed to investigate the interaction mechanism of hydrogen with diodes. As a result, it is suggested that the formation of a metal/semiconductor interfacial polarization could be attributed to hydrogen-related dipoles. In addition, using low-frequency C-V characterization leads to clear detection of 100 ppm hydrogen even at room temperature where it is hard to detect hydrogen by using conventional current-voltage (I-V characterization, suggesting that low-frequency C-V method would be effective in detecting very low hydrogen concentrations.

  2. Coupling of an applied field magnetically insulated ion diode to a high power magnetically insulated transmission line system

    International Nuclear Information System (INIS)

    Maenchen, J.E.

    1983-01-01

    The coupling of energy from a high power pulsed accelerator through a long triplate magnetically insulated transmission line (MITL) in vacuum to an annular applied magnetic field insulated extraction ion diode is examined. The narrow power transport window and the wave front erosion of the MITL set stringent impedance history conditions on the diode load. A new ion diode design developed to satisfy these criteria with marginal electron insulation is presented. The LION accelerator is used to provide a positive polarity 1.5 MV, 350 kA, 40 ns FWHM pulse with a 30 kA/ns current rate from a triplate MITL source. A transition converts the triplate into a cylindrical cross section which flares into the ion diode load. Extensive current and voltage measurements performed along this structure and on the extracted ion beam provide conclusive evidence that the self insulation condition of the MITL is maintained in the transition by current loss alone. The ion diode utilizes a radial magnetic field between a grounded cathode annular emission tip and a disk anode. A 50 cm 2 dielectric/metal anode area serves as the ion plasma source subject to direct electron bombardment from the opposing cathode tip under marginal magnetic insulation conditions. The ions extracted cross the radial magnetic field and exit the diode volume as an annular cross section beam of peak current about 100 kA. The diode current gradually converts from the initial electron flow to nearly 100% ion current after 30 ns, coupling 60% of the diode energy into ions

  3. Design and implementation of an ultra-low power passive UHF RFID tag

    International Nuclear Information System (INIS)

    Shen Jinpeng; Wang Xin'an; Liu Shan; Zong Hongqiang; Huang Jinfeng; Yang Xin; Feng Xiaoxing; Ge Binjie

    2012-01-01

    This paper presents a fully integrated passive UHF RFID tag chip complying with the ISO18000-6B protocol. The tag chip includes an RF/analog front-end, a baseband processor, and a 512-bit EEPROM memory. To improve power conversion efficiency, a Schottky barrier diode based rectifier is adopted. A novel voltage reference using the peaking current source is discussed in detail, which can meet the low-power, low-voltage requirement while retaining circuit simplicity. Most of the analog blocks are designed to work under sub-1 V to reduce power consumption, and several practical methods are used to further reduce the power consumption of the baseband processor. The whole tag chip is implemented in a TSMC 0.18 μm CMOS process with a die size of 800 × 800 μm 2 . Measurement results show that the total power consumption of the tag chip is only 7.4 μW with a sensitivity of −12 dBm. (semiconductor integrated circuits)

  4. SPICE analysis of the charge division in resistive semiconductor nanowire diodes

    International Nuclear Information System (INIS)

    Guardiola, C; Money, K; Carabe, A

    2014-01-01

    In this paper we present an analysis of the charge division method in semiconductor nanowire Schottky diodes using an electrical model based on the SPICE simulation code. A semiconductor nanowire prototype that is simulated as an RC network and two readout electronic systems are modelled in order to understand its behaviour and to assess its application as a possible ionizing particle detector in clinical high-LET particle beams. We study the use of resistive charge division along the semiconductor nanowire to calculate the position of deposited charge generated by an ionizing particle as it crosses the nanodevice and to determine the minimal viable spatial resolution. Our aim is to demonstrate the charge division concept in resistive semiconductor nanowire diodes, and to subsequently understand the performance of these nanodevices as radiation sensors and address the design limitations of such an application

  5. Wireless remote feeding for power supply of autarkic micro systems; Drahtlose Fernspeisung zur Energieversorgung autarker Mikrosysteme

    Energy Technology Data Exchange (ETDEWEB)

    Ungan, Tolgay

    2011-07-01

    shown experimentally. To maximise the efficiency of the system another main focus of this work is the investigation of the behaviour of the rectifier diode with input powers in muW to nW area. Then the Schottky diode is no longer in the linear, but in the square and hyper-square region. For the first time the frequency behaviour of Schottky diodes are examined at input powers in the nW range with an specially developed analytic model. Additionally, an electrically small loop antenna is optimised with respect to their effective area and finally built. A new developed DC-DC converter for input voltages in area of single figure mV is also part of this work. This converter has a high efficiency of up to 12 % at an input power of 490 nW. (orig.)

  6. Incomplete Ionization of a 110 meV Unintentional Donor in β-Ga2O3 and its Effect on Power Devices.

    Science.gov (United States)

    Neal, Adam T; Mou, Shin; Lopez, Roberto; Li, Jian V; Thomson, Darren B; Chabak, Kelson D; Jessen, Gregg H

    2017-10-16

    Understanding the origin of unintentional doping in Ga 2 O 3 is key to increasing breakdown voltages of Ga 2 O 3 based power devices. Therefore, transport and capacitance spectroscopy studies have been performed to better understand the origin of unintentional doping in Ga 2 O 3 . Previously unobserved unintentional donors in commercially available [Formula: see text] Ga 2 O 3 substrates have been electrically characterized via temperature dependent Hall effect measurements up to 1000 K and found to have a donor energy of 110 meV. The existence of the unintentional donor is confirmed by temperature dependent admittance spectroscopy, with an activation energy of 131 meV determined via that technique, in agreement with Hall effect measurements. With the concentration of this donor determined to be in the mid to high 10 16  cm -3 range, elimination of this donor from the drift layer of Ga 2 O 3 power electronics devices will be key to pushing the limits of device performance. Indeed, analytical assessment of the specific on-resistance (R onsp ) and breakdown voltage of Schottky diodes containing the 110 meV donor indicates that incomplete ionization increases R onsp and decreases breakdown voltage as compared to Ga 2 O 3 Schottky diodes containing only the shallow donor. The reduced performance due to incomplete ionization occurs in addition to the usual tradeoff between R onsp and breakdown voltage.

  7. Spatial inhomogeneous barrier heights at graphene/semiconductor Schottky junctions

    Science.gov (United States)

    Tomer, Dushyant

    Graphene, a semimetal with linear energy dispersion, forms Schottky junction when interfaced with a semiconductor. This dissertation presents temperature dependent current-voltage and scanning tunneling microscopy/spectroscopy (STM/S) measurements performed on graphene Schottky junctions formed with both three and two dimensional semiconductors. To fabricate Schottky junctions, we transfer chemical vapor deposited monolayer graphene onto Si- and C-face SiC, Si, GaAs and MoS2 semiconducting substrates using polymer assisted chemical method. We observe three main type of intrinsic spatial inhomogeneities, graphene ripples, ridges and semiconductor steps in STM imaging that can exist at graphene/semiconductor junctions. Tunneling spectroscopy measurements reveal fluctuations in graphene Dirac point position, which is directly related to the Schottky barrier height. We find a direct correlation of Dirac point variation with the topographic undulations of graphene ripples at the graphene/SiC junction. However, no such correlation is established at graphene/Si and Graphene/GaAs junctions and Dirac point variations are attributed to surface states and trapped charges at the interface. In addition to graphene ripples and ridges, we also observe atomic scale moire patterns at graphene/MoS2 junction due to van der Waals interaction at the interface. Periodic topographic modulations due to moire pattern do not lead to local variation in graphene Dirac point, indicating that moire pattern does not contribute to fluctuations in electronic properties of the heterojunction. We perform temperature dependent current-voltage measurements to investigate the impact of topographic inhomogeneities on electrical properties of the Schottky junctions. We observe temperature dependence in junction parameters, such as Schottky barrier height and ideality factor, for all types of Schottky junctions in forward bias measurements. Standard thermionic emission theory which assumes a perfect

  8. Schottky x-ray detectors based on a bulk β-Ga2O3 substrate

    Science.gov (United States)

    Lu, Xing; Zhou, Leidang; Chen, Liang; Ouyang, Xiaoping; Liu, Bo; Xu, Jun; Tang, Huili

    2018-03-01

    β-Ga2O3 Schottky barrier diodes (SBDs) have been fabricated on a bulk (100) β-Ga2O3 substrate and tested as X-ray detectors in this study. The devices exhibited good rectification properties, such as a high rectification ratio and a close-to-unity ideality factor. A high photo-to-dark current ratio exceeding 800 was achieved for X-ray detection, which was mainly attributed to the low reverse leakage current in the β-Ga2O3 SBDs. Furthermore, transient response of the β-Ga2O3 X-ray detectors was investigated, and two different detection mechanisms, photovoltaic and photoconductive, were identified. The results imply the great potential of β-Ga2O3 based devices for X-ray detection.

  9. High-power diode-side-pumped intracavity-frequency-doubled continuous wave 532 nm laser

    International Nuclear Information System (INIS)

    Zhang Yuping; Zhang Huiyun; Zhong Kai; Li Xifu; Wang Peng; Yao Jianquan

    2007-01-01

    An efficient and high-power diode-side-pumped cw 532 nm green laser based on a V-shaped cavity geometry, and capable of generating 22.7 W green radiation with optical conversion efficiency of 8.31%, has been demonstrated. The laser is operated with rms noise amplitude of less than 1% and with M 2 -parameter of about 6.45 at the top of the output power. This laser has the potential for scaling to much higher output power. (authors)

  10. Improved diode performance of Ag nanoparticle dispersed Er doped In2O3 film

    Science.gov (United States)

    Ghosh, Anupam; Dwivedi, Shyam Murli Manohar Dhar; Chakrabartty, Shubhro; Mondal, Aniruddha

    2018-04-01

    Ag nanoparticle(NP) dispersedEr doped In2O3 film was prepared by sol-gel method followed by thermal evaporation cum glancing angle deposition technique. The Schottky contact based devicecontaining Ag NPs shows ideality factor of ˜180 at 10 K and ˜5 at 300 K, which is lesser as compared to the device that does not contain Ag NPs. The lower ideality factor value all over the temperature range makes the diode more reliable.

  11. Characterization and device applications of ZnO films deposited by high power impulse magnetron sputtering (HiPIMS)

    Science.gov (United States)

    Partridge, J. G.; Mayes, E. L. H.; McDougall, N. L.; Bilek, M. M. M.; McCulloch, D. G.

    2013-04-01

    ZnO films have been reactively deposited on sapphire substrates at 300 °C using a high impulse power magnetron sputtering deposition system and characterized structurally, optically and electronically. The unintentionally doped n-type ZnO films exhibit high transparency, moderate carrier concentration (˜5 × 1018 cm-3) and a Hall mobility of 8.0 cm2 V-1 s-1, making them suitable for electronic device applications. Pt/ZnO Schottky diodes formed on the HiPIMS deposited ZnO exhibited rectification ratios up to 104 at ±2 V and sensitivity to UV light.

  12. First-principles study of the effects of Silicon doping on the Schottky barrier of TiSi2/Si interfaces

    Science.gov (United States)

    Wang, Han; Silva, Eduardo; West, Damien; Sun, Yiyang; Restrepo, Oscar; Zhang, Shengbai; Kota, Murali

    As scaling of semiconductor devices is pursued in order to improve power efficiency, quantum effects due to the reduced dimensions on devices have become dominant factors in power, performance, and area scaling. In particular, source/drain contact resistance has become a limiting factor in the overall device power efficiency and performance. As a consequence, techniques such as heavy doping of source and drain have been explored to reduce the contact resistance, thereby shrinking the width of depletion region and lowering the Schottky barrier height. In this work, we study the relation between doping in Silicon and the Schottky barrier of a TiSi2/Si interface with first-principles calculation. Virtual Crystal Approximation (VCA) is used to calculate the average potential of the interface with varying doping concentration, while the I-V curve for the corresponding interface is calculated with a generalized one-dimensional transfer matrix method. The relation between substitutional and interstitial Boron and Phosphorus dopant near the interface, and their effect on tuning the Schottky barrier is studied. These studies provide insight to the type of doping and the effect of dopant segregation to optimize metal-semiconductor interface resistance.

  13. Effect of surface states on electrical characteristic of metal - insulator - semiconductor (MIS) diodes

    International Nuclear Information System (INIS)

    Altindal, S.; Doekme, I.; Tataroglu, A.; Sahingoez, R.

    2002-01-01

    The current-voltage (I-V) characteristics of Metal-Insulator-Semiconductor (MIS) Schottky barrier diodes which is consider distribution of interface states in equilibrium with semiconductor were determined at two (low and high) temperature. The interface states were responsible for non-ideal behavior of the forward I-V characteristic of diodes. Both diodes (n and p type Si) showed non-ideal behavior with an ideality factor 1.6 and 1.85 respectively at room temperature. The higher values of n-type Si were attributed to an order of magnitude higher density of interface states in the both diodes. The effect of an interfacial insulator layer between the metal and semiconductor are also studied. The high density of interface states also caused a reduction in the barrier height of the MIS diode. It is shown that by using Norde function at low and high temperature, barrier height □ b , series resistance R s and ideality factor n can be determined even in the case 1 s obtained from Norde function strongly depend on temperature, and decrease with increasing temperature. In addition, the potential barrier height increases with increasing temperature. The mean density of interface states N ss decreases with increasing temperature. Particularly at low temperature the I-V characteristics are controlled by interface states density

  14. Performance of the cold powered diodes and diode leads in the main magnets of the LHC

    CERN Document Server

    Willering, G P; Bajko, M; Bednarek, M; Bottura, L; Charifoulline, Z; Dahlerup-Petersen, K; Dib, G; D'Angelo, G; Gharib, A; Grand-Clement, L; Izquierdo Bermudez, S; Prin, H; Roger, V; Rowan, S; Savary, F; Tock, J-Ph; Verweij, A

    2015-01-01

    During quench tests in 2011 variations in resistance of an order of magnitude were found in the diode by-pass circuit of the main LHC magnets. An investigation campaign was started to understand the source, the occurrence and the impact of the high resistances. Many tests were performed offline in the SM18 test facility with a focus on the contact resistance of the diode to heat sink contact and the diode wafer temperature. In 2014 the performance of the diodes and diode leads of the main dipole bypass systems in the LHC was assessed during a high current qualification test. In the test a current cycle similar to a magnet circuit discharge from 11 kA with a time constant of 100 s was performed. Resistances of up to 600 μΩ have been found in the diode leads at intermediate current, but in general the high resistances decrease at higher current levels and no sign of overheating of diodes has been seen and the bypass circuit passed the test. In this report the performance of the diodes and in particular the co...

  15. Study on the graphene/silicon Schottky diodes by transferring graphene transparent electrodes on silicon

    International Nuclear Information System (INIS)

    Wang, Xiaojuan; Li, Dong; Zhang, Qichong; Zou, Liping; Wang, Fengli; Zhou, Jun; Zhang, Zengxing

    2015-01-01

    Graphene/silicon heterostructures present a Schottky characteristic and have potential applications for solar cells and photodetectors. Here, we fabricated graphene/silicon heterostructures by using chemical vapor deposition derived graphene and n-type silicon, and studied the electronic and optoelectronic properties through varying their interface and silicon resistivity. The results exhibit that the properties of the fabricated configurations can be effectively modulated. The graphene/silicon heterostructures with a Si (111) interface and high resistivity show a better photovoltaic behavior and should be applied for high-performance photodetectors. With the combined atomic force microscopy and theoretical analysis, the possible origination is discussed. The work here should be helpful on exploring high-performance graphene/silicon photoelectronics. - Highlights: • Different graphene/silicon heterostructures were fabricated. • Electronic and optoelectronic properties of the heterostructures were studied. • Graphene/silicon heterostructures were further explored for photodetectors.

  16. Study on the graphene/silicon Schottky diodes by transferring graphene transparent electrodes on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaojuan [MOE Key Laboratory of Advanced Micro-structured Materials & Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); School of Physics and Electronics, Henan University, Kaifeng 475004 (China); Li, Dong; Zhang, Qichong; Zou, Liping; Wang, Fengli [MOE Key Laboratory of Advanced Micro-structured Materials & Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); Zhou, Jun, E-mail: zhoujunzhou@tongji.edu.cn [Center for Phononics and Thermal Energy Science, School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); Zhang, Zengxing, E-mail: zhangzx@tongji.edu.cn [MOE Key Laboratory of Advanced Micro-structured Materials & Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China)

    2015-10-01

    Graphene/silicon heterostructures present a Schottky characteristic and have potential applications for solar cells and photodetectors. Here, we fabricated graphene/silicon heterostructures by using chemical vapor deposition derived graphene and n-type silicon, and studied the electronic and optoelectronic properties through varying their interface and silicon resistivity. The results exhibit that the properties of the fabricated configurations can be effectively modulated. The graphene/silicon heterostructures with a Si (111) interface and high resistivity show a better photovoltaic behavior and should be applied for high-performance photodetectors. With the combined atomic force microscopy and theoretical analysis, the possible origination is discussed. The work here should be helpful on exploring high-performance graphene/silicon photoelectronics. - Highlights: • Different graphene/silicon heterostructures were fabricated. • Electronic and optoelectronic properties of the heterostructures were studied. • Graphene/silicon heterostructures were further explored for photodetectors.

  17. Radiation effects in semiconductor laser diode arrays

    International Nuclear Information System (INIS)

    Carson, R.F.

    1988-01-01

    The effects of radiation events are important for many of the present and future applications that involve optoelectronic components. Laser diodes show a strong resistance to degradation by gamma rays, prompt x-rays and (to a lesser extent), neutrons. This is due to the short carrier lifetime that is associated with stimulated emission and the high current injection conditions that are present in these devices. Radiation-resistant properties should carry over to many of the more recently developed devices such as multi-stripe array and broad area laser diodes. There are, however, additional considerations for radiation tolerance that are introduced by these devices. Arrays and other high power laser diodes have larger active region volumes than lower power single stripe devices. In addition, evanescent field coupling between stripes, the material quality available from newer MOCVD epitaxial growth techniques, and stripe definition methods may all influence the radiation tolerance of the high power laser diode devices. Radiation tests have been conducted on various GaAs-GaAlAs laser diode array and broad area devices. Tests involving total gamma dose have indicated that high power laser diodes and arrays have small degradations in light power output with current input after 4 MRad(Si) of radiation from a Co 60 source. Additional test results involving flash x-rays indicate that high power diode lasers and arrays are tolerant to 10 12 rads(Si)/sec, when observed on microsecond or millisecond time scales. High power diode laser devices were also irradiated with neutrons to a fluence of 10 14 neutrons/cm 2 with some degradation of threshold current level

  18. Systematic investigation of the effects of organic film structure on light emitting diode performance

    Energy Technology Data Exchange (ETDEWEB)

    Joswick, M.D.; Campbell, I.H. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Barashkov, N.N.; Ferraris, J.P. [The University of Texas at Dallas, Richardson, Texas 75080 (United States)

    1996-09-01

    We present a systematic investigation of the effects of organic film structure on light emitting diode (LED) performance. Metal/organic film/metal LEDs were fabricated using a five ring, poly(phenylene vinylene) related oligomer as the active layer. The structure of the vacuum evaporated oligomer films was varied from amorphous to polycrystalline by changing the substrate temperature during deposition. The intrinsic properties of the oligomer films and the LED performance were measured. The measured intrinsic film properties include: optical absorption, photoluminescence (PL) spectra, PL lifetime, PL efficiency, and effective carrier mobility. The measured device characteristics include current{endash}voltage, capacitance{endash}voltage, electroluminescence (EL) efficiency, and the contact metal/organic film Schottky barrier heights. The optical absorption and PL properties of the films are weakly dependent on film structure but the effective carrier mobility decreases with increasing crystallinity. The EL quantum efficiency decreases by more than one order of magnitude, the drive voltage at a fixed current increases, and the electron Schottky barrier height increases as the crystallinity of the film is increased. The diode current{endash}voltage characteristic is determined by the dominant hole current and the electroluminescence efficiency is controlled by the contact limited electron injection. These results demonstrate significant effects of organic film structure on the performance of organic LEDs. {copyright} {ital 1996 American Institute of Physics.}

  19. Coherent addition of high power broad-area laser diodes with a compact VBG V-shaped external Talbot cavity

    Science.gov (United States)

    Liu, Bo; Braiman, Yehuda

    2018-05-01

    We introduced a compact V-shaped external Talbot cavity for phase locking of high power broad-area laser diodes. The length of compact cavity is ∼25 mm. Near diffraction-limit coherent addition of 10 broad-area laser diodes indicated that high quality phase locking was achieved. We measured the near-field emission mode of each individual broad-area laser diode with different feedback, such as a volume Bragg grating and a high reflection mirror. We found out that the best result of phase locking broad-area laser diodes was achieved by the compact V-shaped external Talbot cavity with volume Bragg grating feedback.

  20. Use of high-power diode lasers for hardening and thermal conduction welding of metals

    Science.gov (United States)

    Klocke, Fritz; Demmer, Axel; Zaboklicki, A.

    1997-08-01

    CO2 and Nd:YAG high power lasers have become established as machining tools in industrial manufacturing over the last few years. The most important advantages compared to conventional processing techniques lie in the absence of forces introduced by the laser into the workpiece and in the simple arid highly accurate control in terms ofpositioning and timing making the laser a universally applicable, wear-free and extremely flexible tool /1,2/. The laser can be utilised costeffectively in numerous manufacturing processes but there are also further applications for the laser which produce excellent results from a technical point of view, but are not justified in terms of cost. The extensive use of lasers, particularly in small companies and workshops, is hindered by two main reasons: the complexity and size ofthe laser source and plant and the high investment costs /3/. A new generation of lasers, the high power diode lasers (HDL), combines high performance with a compact design, making the laser a cheap and easy to use tool with many applications /3,4,5,6/. In the diode laser, the laser beam is generated by a microelectronic diode which transforms electrical energy directly into laser energy. Diode lasers with low power outputs have, for some time, been making their mark in our everyday lives: they are used in CD players, laser printers and scanners at cash tills. Modern telecommunications would be impossible without these lasers which enable information to be transmitted in the form oflight impulses through optical fibres. They can also be found in compact precision measurement instrumentation - range fmders, interferometers and pollutant analysis devices /3,6/. In the field of material processing, the first applications ofthe laser, such as for soldering, inscribing, surface hardening and plastic or heat conduction welding, will exceed the limits ofthe relatively low performance output currently available. The diode laser has a shorter wavelength than the CO2 and