WorldWideScience

Sample records for schizosaccharomyces

  1. Selecting Schizosaccharomyces pombe diploids

    DEFF Research Database (Denmark)

    Ekwall, Karl; Thon, Genevieve

    2017-01-01

    Here we describe procedures for the selection of diploid Schizosaccharomyces pombe. ade6-M210/ade6-M216 heteroallelic complementation is widely used to select for Ade+ diploids. Such diploids will readily sporulate when starved of nitrogen. For some investigations, stable diploids are preferable (e...

  2. Ethyl methanesulfonate mutagenesis in Schizosaccharomyces pombe

    DEFF Research Database (Denmark)

    Ekwall, Karl; Thon, Genevieve

    2017-01-01

    Here we provide an ethyl methanesulfonate (EMS) mutagenesis protocol for Schizosaccharomyces pombe cells.......Here we provide an ethyl methanesulfonate (EMS) mutagenesis protocol for Schizosaccharomyces pombe cells....

  3. Schizosaccharomyces isolation method

    Directory of Open Access Journals (Sweden)

    Benito Santiago

    2014-01-01

    Full Text Available This study discusses the optimization of a selective and differential medium which would facilitate the isolation of Schizosaccharomyces (a genus with a low incidence compared to other microorganisms to select individuals from this genus for industrial purposes, especially in light of the recent recommendation of the use of yeasts from this genus in the wine industry by the International Organisation of Vine and Wine, or to detect the presence of such yeasts, for those many authors who consider them food spoilers. To this end, we studied various selective differential agents based on the main physiological characteristics of these species, such as their high resistances to high concentrations of sugar, sulfur dioxide, sorbic acid, benzoic acid, acetic acid or malo ethanolic fermentation. This selective medium is based on the genus resistance to the antibiotic actidione and its high resistance to inhibitory agents such as benzoic acid. Malic acid was used as a differential factor due to the ability of this genus to metabolise it to ethanol, which allows detecting of the degradation of this compound. Lastly, the medium was successfully used to isolate strains of Schizosaccharomyces pombe from honey and honeycombs.

  4. Genetic analysis of Schizosaccharomyces pombe

    DEFF Research Database (Denmark)

    Ekwall, Karl; Thon, Genevieve

    2017-01-01

    In this introduction we discuss some basic genetic tools and techniques that are used with the fission yeast Schizosaccharomyces pombe. Genes commonly used for selection or as reporters are discussed, with an emphasis on genes that permit counterselection, intragenic complementation, or colony......-color assays. S. pombe is most stable as a haploid organism. We describe its mating-type system, how to perform genetic crosses and methods for selecting and propagating diploids. We discuss the relative merits of tetrad dissection and random spore preparation in strain construction and genetic analyses...

  5. Mating-type determination in Schizosaccharomyces pombe

    DEFF Research Database (Denmark)

    Ekwall, Karl; Thon, Genevieve

    2017-01-01

    Here we describe how mating-type tests are conducted in Schizosaccharomyces pombe. Two methods can be employed: matings with h− and h+ tester strains and polymerase chain reaction (PCR) for mat1 content.......Here we describe how mating-type tests are conducted in Schizosaccharomyces pombe. Two methods can be employed: matings with h− and h+ tester strains and polymerase chain reaction (PCR) for mat1 content....

  6. The genome sequence of Schizosaccharomyces pombe

    NARCIS (Netherlands)

    Wood, [No Value; Gwilliam, R; Rajandream, MA; Lyne, M; Lyne, R; Stewart, A; Sgouros, J; Peat, N; Hayles, J; Baker, S; Basham, D; Bowman, S; Brooks, K; Brown, D; Brown, S; Chillingworth, T; Churcher, C; Collins, M; Connor, R; Cronin, A; Davis, P; Feltwell, T; Fraser, A; Gentles, S; Goble, A; Hamlin, N; Harris, D; Hidalgo, J; Hodgson, G; Holroyd, S; Hornsby, T; Howarth, S; Huckle, EJ; Hunt, S; Jagels, K; James, K; Jones, L; Jones, M; Leather, S; McDonald, S; McLean, J; Mooney, P; Moule, S; Mungall, K; Murphy, L; Niblett, D; Odell, C; Oliver, K; O'Neil, S; Pearson, D; Quail, MA; Rabbinowitsch, E; Rutherford, K; Rutter, S; Saunders, D; Seeger, K; Sharp, S; Skelton, J; Simmonds, M; Squares, R; Squares, S; Stevens, K; Taylor, K; Taylor, RG; Tivey, A; Walsh, S; Warren, T; Whitehead, S; Woodward, J; Volckaert, G; Aert, R; Robben, J; Grymonprez, B; Weltjens, [No Value; Vanstreels, E; Rieger, M; Schafer, M; Muller-Auer, S; Gabel, C; Fuchs, M; Fritzc, C; Holzer, E; Moestl, D; Hilbert, H; Borzym, K; Langer, [No Value; Beck, A; Lehrach, H; Reinhardt, R; Pohl, TM; Eger, P; Zimmermann, W; Wedler, H; Wambutt, R; Purnelle, B; Goffeau, A; Cadieu, E; Dreano, S; Gloux, S; Lelaure, [No Value; Mottier, S; Galibert, F; Aves, SJ; Xiang, Z; Hunt, C; Moore, K; Hurst, SM; Lucas, M; Rochet, M; Gaillardin, C; Tallada, VA; Garzon, A; Thode, G; Daga, RR; Cruzado, L; Jimenez, J; Sanchez, M; del Rey, F; Benito, J; Dominguez, A; Revuelta, JL; Moreno, S; Armstrong, J; Forsburg, SL; Cerrutti, L; Lowe, T; McCombie, WR; Paulsen, [No Value; Potashkin, J; Shpakovski, GV; Ussery, D; Barrell, BG; Nurse, P

    2002-01-01

    We have sequenced and annotated the genome of fission yeast (Schizosaccharomyces pombe), which contains the smallest number of protein-coding genes yet recorded for a eukaryote: 4,824. The centromeres are between 35 and 110 kilobases (kb) and contain related repeats including a highly conserved

  7. Conflicting phylogenetic position of Schizosaccharomyces pombe.

    NARCIS (Netherlands)

    Kuramae, E.E.; Robert, V.; Snel, B.; Boekhout, T.

    2006-01-01

    The phylogenetic position of the fission yeast Schizosaccharomyces pombe in the fungal Tree of Life is still controversial. Three alternative phylogenetic positions have been proposed in the literature, namely (1) a position basal to the Hemiascomycetes and Euascomycetes, (2) a position as a sister

  8. Conflicting phylogenetic position of Schizosaccharomyces pombe

    NARCIS (Netherlands)

    Kuramae, Eiko E.; Robert, Vincent; Snel, Berend; Boekhout, Teun

    2006-01-01

    The phylogenetic position of the fission yeast Schizosaccharomyces pombe in the fungal Tree of Life is still controversial. Three alternative phylogenetic positions have been proposed in the literature, namely (1) a position basal to the Hemiascomycetes and Euascomycetes, (2) a position as a sister

  9. Produksi Etanol Proses Sinambung dengan Schizosaccharomyces Pombe

    Directory of Open Access Journals (Sweden)

    Panca Nugrahini Febriningrum

    2009-12-01

    Full Text Available Ethanol is one of fermentation products which are mostly used as solvent in pharmaceutical and chemical industries. Ethanol production by fermentation generally uses yeast from Saccharomyces and Schizosaccharomyces. The fermentation of ethanol by both processes yields great quantities of ethanol. Optimum productivity in ethanol fermentation by continuous process using Schizosaccharomyces pombe was obtained at initial substrate concentration of 200g/L, with value as much of 7.342g/L·hour at dilution rate of 0.1/hour, 4.643 g/L·hour at dilution rate of 0,06/hour and 3.213g/L·hour at dilution rate of 0.04/hour. The highest value of ethanol coefficient YP/S obtained at initial substrate concentration of 100g/L was as much of 0.461 at batch process, while values of ethanol coefficient YP/S obtained were in the range of 0,477-0,511 in continuous process, which were higher than those of batch process. Keywords: continuous process, ethanol, schizosaccharomyces pombe

  10. Interplanetary Migration of Eucaryotic Cell, Spore of Schizosaccharomyces Pombe

    Science.gov (United States)

    Hayashi, N.; Nosaka, J.; Ando, R.; Hashimoto, H.; Yokobori, S.; Narumi, I.; Nakagawa, K.; Yamagishi, A.; Tohda, H.

    2013-11-01

    The Tanpopo mission to examine possible interplanetary migration of microbes is progressing. Spore of Schizosaccharomyces pombe are considered as the exposed samples. In this paper, results of preliminary experiments for the exposure are shown.

  11. Asymmetric inheritance of cytoophidia in Schizosaccharomyces pombe

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2014-10-01

    Full Text Available A general view is that Schizosaccharomyces pombe undergoes symmetric cell division with two daughter cells inheriting equal shares of the content from the mother cell. Here we show that CTP synthase, a metabolic enzyme responsible for the de novo synthesis of the nucleotide CTP, can form filamentous cytoophidia in the cytoplasm and nucleus of S. pombe cells. Surprisingly, we observe that both cytoplasmic and nuclear cytoophidia are asymmetrically inherited during cell division. Our time-lapse studies suggest that cytoophidia are dynamic. Once the mother cell divides, the cytoplasmic and nuclear cytoophidia independently partition into one of the two daughter cells. Although the two daughter cells differ from one another morphologically, they possess similar chances of inheriting the cytoplasmic cytoophidium from the mother cell, suggesting that the partition of cytoophidium is a stochastic process. Our findings on asymmetric inheritance of cytoophidia in S. pombe offer an exciting opportunity to study the inheritance of metabolic enzymes in a well-studied model system.

  12. Genetic Analysis of Meiotic Recombination in Schizosaccharomyces pombe

    OpenAIRE

    Smith, Gerald R.

    2009-01-01

    The fission yeast Schizosaccharomyces pombe is well-suited for studying meiotic recombination. Methods are described here for culturing S. pombe and for genetic assays of intragenic recombination (gene conversion), intergenic recombination (crossing-over), and spore viability. Both random spore and tetrad analyses are described.

  13. Schizosaccharomyces pombe, the Principal Subject of Fission Yeast Genetics

    DEFF Research Database (Denmark)

    Egel, Richard

    2013-01-01

    Schizosaccharomyces pombe is a primitive ascomycetous fungus, also known as fission yeast. It has been extensively used in general and molecular genetics, and its genome is fully sequenced. It is considered a very useful model organism for experimental research on fundamental properties...

  14. A Geographically Diverse Collection of Schizosaccharomyces pombe Isolates Shows Limited Phenotypic Variation but Extensive Karyotypic Diversity

    NARCIS (Netherlands)

    Brown, William R A; Liti, Gianni; Rosa, Carlos; James, Steve; Roberts, Ian; Robert, Vincent; Jolly, Neil; Tang, Wen; Baumann, Peter; Green, Carter; Schlegel, Kristina; Young, Jonathan; Hirchaud, Fabienne; Leek, Spencer; Thomas, Geraint; Blomberg, Anders; Warringer, Jonas

    2011-01-01

    The fission yeast Schizosaccharomyces pombe has been widely used to study eukaryotic cell biology, but almost all of this work has used derivatives of a single strain. We have studied 81 independent natural isolates and 3 designated laboratory strains of Schizosaccharomyces pombe.

  15. Regulation of contractile ring formation and septation in Schizosaccharomyces pombe.

    Science.gov (United States)

    Willet, Alaina H; McDonald, Nathan A; Gould, Kathleen L

    2015-12-01

    The fission yeast Schizosaccharomyces pombe has become a powerful model organism for cytokinesis studies, propelled by pioneering genetic screens in the 1980s and 1990s. S. pombe cells are rod-shaped and divide similarly to mammalian cells, utilizing a medially-placed actin-and myosin-based contractile ring. A cell wall division septum is deposited behind the constricting ring, forming the new ends of each daughter cell. Here we discuss recent advances in our understanding of the regulation of contractile ring formation through formin proteins and the role of the division septum in S. pombe cell division. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Live Cell Imaging of the Schizosaccharomyces pombe Sexual Life Cycle.

    Science.gov (United States)

    Merlini, Laura; Vjestica, Aleksandar; Dudin, Omaya; Bendezú, Felipe; Martin, Sophie G

    2017-10-03

    The fission yeast Schizosaccharomyces pombe is an invaluable model system for studying the principles that drive sexual differentiation and the meiotic cell division cycle. We describe a simple protocol for microscopic observation of the entire sexual life cycle that can be adapted to focus on specific stages of sexual differentiation. After growth to exponential phase in a nitrogen-rich medium, cell cultures are switched to a nitrogen-deprived medium until the population is enriched for the specific stage of the sexual lifecycle to be studied. Cells are then mounted in easily constructed customized agarose pad chambers for imaging. © 2017 Cold Spring Harbor Laboratory Press.

  17. Spore analysis and tetrad dissection of Schizosaccharomyces pombe

    DEFF Research Database (Denmark)

    Ekwall, Karl; Thon, Genevieve

    2017-01-01

    Here we describe the processing of Schizosaccharomyces pombe spores in batches (random spore analysis) or through tetrad dissections. Spores are usually prepared from matings between haploid strains (producing zygotic asci) or from sporulating diploids (producing azygotic asci). In random spore...

  18. HIV-1 Protease in the Fission Yeast Schizosaccharomyces pombe: e0151286

    National Research Council Canada - National Science Library

    Zsigmond Benko; Robert T Elder; Ge Li; Dong Liang; Richard Y Zhao

    2016-01-01

    .... This study aimed to develop a fission yeast (Schizosaccharomyces pombe) model system and to examine the possible interaction of HIV-1 PR with cellular proteins and its potential impact on cell proliferation and viability...

  19. The genomic and phenotypic diversity of Schizosaccharomyces pombe.

    Science.gov (United States)

    Jeffares, Daniel C; Rallis, Charalampos; Rieux, Adrien; Speed, Doug; Převorovský, Martin; Mourier, Tobias; Marsellach, Francesc X; Iqbal, Zamin; Lau, Winston; Cheng, Tammy M K; Pracana, Rodrigo; Mülleder, Michael; Lawson, Jonathan L D; Chessel, Anatole; Bala, Sendu; Hellenthal, Garrett; O'Fallon, Brendan; Keane, Thomas; Simpson, Jared T; Bischof, Leanne; Tomiczek, Bartlomiej; Bitton, Danny A; Sideri, Theodora; Codlin, Sandra; Hellberg, Josephine E E U; van Trigt, Laurent; Jeffery, Linda; Li, Juan-Juan; Atkinson, Sophie; Thodberg, Malte; Febrer, Melanie; McLay, Kirsten; Drou, Nizar; Brown, William; Hayles, Jacqueline; Carazo Salas, Rafael E; Ralser, Markus; Maniatis, Nikolas; Balding, David J; Balloux, Francois; Durbin, Richard; Bähler, Jürg

    2015-03-01

    Natural variation within species reveals aspects of genome evolution and function. The fission yeast Schizosaccharomyces pombe is an important model for eukaryotic biology, but researchers typically use one standard laboratory strain. To extend the usefulness of this model, we surveyed the genomic and phenotypic variation in 161 natural isolates. We sequenced the genomes of all strains, finding moderate genetic diversity (π = 3 × 10(-3) substitutions/site) and weak global population structure. We estimate that dispersal of S. pombe began during human antiquity (∼340 BCE), and ancestors of these strains reached the Americas at ∼1623 CE. We quantified 74 traits, finding substantial heritable phenotypic diversity. We conducted 223 genome-wide association studies, with 89 traits showing at least one association. The most significant variant for each trait explained 22% of the phenotypic variance on average, with indels having larger effects than SNPs. This analysis represents a rich resource to examine genotype-phenotype relationships in a tractable model.

  20. TERRA promotes telomerase-mediated telomere elongation in Schizosaccharomyces pombe.

    Science.gov (United States)

    Moravec, Martin; Wischnewski, Harry; Bah, Amadou; Hu, Yan; Liu, Na; Lafranchi, Lorenzo; King, Megan C; Azzalin, Claus M

    2016-07-01

    Telomerase-mediated telomere elongation provides cell populations with the ability to proliferate indefinitely. Telomerase is capable of recognizing and extending the shortest telomeres in cells; nevertheless, how this mechanism is executed remains unclear. Here, we show that, in the fission yeast Schizosaccharomyces pombe, shortened telomeres are highly transcribed into the evolutionarily conserved long noncoding RNA TERRA A fraction of TERRA produced upon telomere shortening is polyadenylated and largely devoid of telomeric repeats, and furthermore, telomerase physically interacts with this polyadenylated TERRA in vivo We also show that experimentally enhanced transcription of a manipulated telomere promotes its association with telomerase and concomitant elongation. Our data represent the first direct evidence that TERRA stimulates telomerase recruitment and activity at chromosome ends in an organism with human-like telomeres. © 2016 The Authors.

  1. Rethinking cell-cycle-dependent gene expression in Schizosaccharomyces pombe.

    Science.gov (United States)

    Cooper, Stephen

    2017-11-01

    Three studies of gene expression during the division cycle of Schizosaccharomyces pombe led to the proposal that a large number of genes are expressed at particular times during the S. pombe cell cycle. Yet only a small fraction of genes proposed to be expressed in a cell-cycle-dependent manner are reproducible in all three published studies. In addition to reproducibility problems, questions about expression amplitudes, cell-cycle timing of expression, synchronization artifacts, and the problem with methods for synchronizing cells must be considered. These problems and complications prompt the idea that caution should be used before accepting the conclusion that there are a large number of genes expressed in a cell-cycle-dependent manner in S. pombe.

  2. The Spontaneous Mutation Rate in the Fission Yeast Schizosaccharomyces pombe.

    Science.gov (United States)

    Farlow, Ashley; Long, Hongan; Arnoux, Stéphanie; Sung, Way; Doak, Thomas G; Nordborg, Magnus; Lynch, Michael

    2015-10-01

    The rate at which new mutations arise in the genome is a key factor in the evolution and adaptation of species. Here we describe the rate and spectrum of spontaneous mutations for the fission yeast Schizosaccharomyces pombe, a key model organism with many similarities to higher eukaryotes. We undertook an ∼1700-generation mutation accumulation (MA) experiment with a haploid S. pombe, generating 422 single-base substitutions and 119 insertion-deletion mutations (indels) across the 96 replicates. This equates to a base-substitution mutation rate of 2.00 × 10(-10) mutations per site per generation, similar to that reported for the distantly related budding yeast Saccharomyces cerevisiae. However, these two yeast species differ dramatically in their spectrum of base substitutions, the types of indels (S. pombe is more prone to insertions), and the pattern of selection required to counteract a strong AT-biased mutation rate. Overall, our results indicate that GC-biased gene conversion does not play a major role in shaping the nucleotide composition of the S. pombe genome and suggest that the mechanisms of DNA maintenance may have diverged significantly between fission and budding yeasts. Unexpectedly, CpG sites appear to be excessively liable to mutation in both species despite the likely absence of DNA methylation. Copyright © 2015 by the Genetics Society of America.

  3. AP endonuclease independent repair of abasic sites in Schizosaccharomyces pombe

    Science.gov (United States)

    Nilsen, Line; Forstrøm, Rune J.; Bjørås, Magnar; Alseth, Ingrun

    2012-01-01

    Abasic (AP) sites are formed spontaneously and are inevitably intermediates during base excision repair of DNA base damages. AP sites are both mutagenic and cytotoxic and key enzymes for their removal are AP endonucleases. However, AP endonuclease independent repair initiated by DNA glycosylases performing β,δ-elimination cleavage of the AP sites has been described in mammalian cells. Here, we describe another AP endonuclease independent repair pathway for removal of AP sites in Schizosaccharomyces pombe that is initiated by a bifunctional DNA glycosylase, Nth1 and followed by cleavage of the baseless sugar residue by tyrosyl phosphodiesterase Tdp1. We propose that repair is completed by the action of a polynucleotide kinase, a DNA polymerase and finally a DNA ligase to seal the gap. A fission yeast double mutant of the major AP endonuclease Apn2 and Tdp1 shows synergistic increase in MMS sensitivity, substantiating that Apn2 and Tdp1 process the same substrate. These results add new knowledge to the complex cellular response to AP sites, which could be exploited in chemotherapy where synthetic lethality is a key strategy of treatment. PMID:22084197

  4. The architecture of the Schizosaccharomyces pombe CCR4-NOT complex.

    Science.gov (United States)

    Ukleja, Marta; Cuellar, Jorge; Siwaszek, Aleksandra; Kasprzak, Joanna M; Czarnocki-Cieciura, Mariusz; Bujnicki, Janusz M; Dziembowski, Andrzej; Valpuesta, Jose M

    2016-01-25

    CCR4-NOT is a large protein complex present both in cytoplasm and the nucleus of eukaryotic cells. Although it is involved in a variety of distinct processes related to expression of genetic information such as poly(A) tail shortening, transcription regulation, nuclear export and protein degradation, there is only fragmentary information available on some of its nine subunits. Here we show a comprehensive structural characterization of the native CCR4-NOT complex from Schizosaccharomyces pombe. Our cryo-EM 3D reconstruction of the complex, combined with techniques such as immunomicroscopy, RNA-nanogold labelling, docking of the available high-resolution structures and models of different subunits and domains, allow us to propose its full molecular architecture. We locate all functionally defined domains endowed with deadenylating and ubiquitinating activities, the nucleus-specific RNA-interacting subunit Mmi1, as well as surfaces responsible for protein-protein interactions. This information provides insight into cooperation of the different CCR4-NOT complex functions.

  5. Epigenetic Regulation of Chromatin States in Schizosaccharomyces pombe

    Science.gov (United States)

    Allshire, Robin C.; Ekwall, Karl

    2015-01-01

    This article discusses the advances made in epigenetic research using the model organism fission yeast Schizosaccharomyces pombe. S. pombe has been used for epigenetic research since the discovery of position effect variegation (PEV). This is a phenomenon in which a transgene inserted within heterochromatin is variably expressed, but can be stably inherited in subsequent cell generations. PEV occurs at centromeres, telomeres, ribosomal DNA (rDNA) loci, and mating-type regions of S. pombe chromosomes. Heterochromatin assembly in these regions requires enzymes that modify histones and the RNA interference (RNAi) machinery. One of the key histone-modifying enzymes is the lysine methyltransferase Clr4, which methylates histone H3 on lysine 9 (H3K9), a classic hallmark of heterochromatin. The kinetochore is assembled on specialized chromatin in which histone H3 is replaced by the variant CENP-A. Studies in fission yeast have contributed to our understanding of the establishment and maintenance of CENP-A chromatin and the epigenetic activation and inactivation of centromeres. PMID:26134317

  6. Population genomics of the fission yeast Schizosaccharomyces pombe.

    Directory of Open Access Journals (Sweden)

    Jeffrey A Fawcett

    Full Text Available The fission yeast Schizosaccharomyces pombe has been widely used as a model eukaryote to study a diverse range of biological processes. However, population genetic studies of this species have been limited to date, and we know very little about the evolutionary processes and selective pressures that are shaping its genome. Here, we sequenced the genomes of 32 worldwide S. pombe strains and examined the pattern of polymorphisms across their genomes. In addition to introns and untranslated regions (UTRs, intergenic regions also exhibited lower levels of nucleotide diversity than synonymous sites, suggesting that a considerable amount of noncoding DNA is under selective constraint and thus likely to be functional. A number of genomic regions showed a reduction of nucleotide diversity probably caused by selective sweeps. We also identified a region close to the end of chromosome 3 where an extremely high level of divergence was observed between 5 of the 32 strains and the remain 27, possibly due to introgression, strong positive selection, or that region being responsible for reproductive isolation. Our study should serve as an important starting point in using a population genomics approach to further elucidate the biology of this important model organism.

  7. Epigenetic Regulation of Chromatin States in Schizosaccharomyces pombe.

    Science.gov (United States)

    Allshire, Robin C; Ekwall, Karl

    2015-07-01

    This article discusses the advances made in epigenetic research using the model organism fission yeast Schizosaccharomyces pombe. S. pombe has been used for epigenetic research since the discovery of position effect variegation (PEV). This is a phenomenon in which a transgene inserted within heterochromatin is variably expressed, but can be stably inherited in subsequent cell generations. PEV occurs at centromeres, telomeres, ribosomal DNA (rDNA) loci, and mating-type regions of S. pombe chromosomes. Heterochromatin assembly in these regions requires enzymes that modify histones and the RNA interference (RNAi) machinery. One of the key histone-modifying enzymes is the lysine methyltransferase Clr4, which methylates histone H3 on lysine 9 (H3K9), a classic hallmark of heterochromatin. The kinetochore is assembled on specialized chromatin in which histone H3 is replaced by the variant CENP-A. Studies in fission yeast have contributed to our understanding of the establishment and maintenance of CENP-A chromatin and the epigenetic activation and inactivation of centromeres. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.

  8. Characterization of triglyceride lipase genes of fission yeast Schizosaccharomyces pombe.

    Science.gov (United States)

    Yazawa, Hisashi; Kumagai, Hiromichi; Uemura, Hiroshi

    2012-11-01

    Triglycerides (TG) are major storage lipids for eukaryotic cells. In this study, we characterized three genes of fission yeast Schizosaccharomyces pombe, SPCC1450.16c, SPAC1786.01c, and SPAC1A6.05c, that show high homology to Saccharomyces cerevisiae TG lipase genes, TGL3, TGL4, and TGL5. Deletion of each gene increased TG content by approximately 1.7-fold compared to the parental wild-type strain, and their triple deletion mutant further increased TG content to 2.7-fold of the wild-type strain, suggesting that all three genes encode TG lipase and are functioning in S. pombe. The triple deletion mutant showed no growth defect in rich and synthetic medium, but its growth was sensitive to cerulenin, an inhibitor of fatty acid synthesis. This growth defect by cerulenin was restored by adding oleic acid in media, suggesting that these genes were involved in the mobilization of TG in S. pombe. When ricinoleic acid was produced in the triple mutant by introducing CpFAH12 fatty acid hydroxylase gene from Claviceps purpurea, percent composition of ricinoleic acid increased by 1.1-fold compared to the wild-type strain, in addition to a 1.6-fold increase in total fatty acid content per dry cell weight (DCW). In total, the ricinoleic acid production per DCW increased by 1.8-fold in the triple deletion mutant.

  9. Site Specific Genetic Incorporation of Azidophenylalanine in Schizosaccharomyces pombe.

    Science.gov (United States)

    Shao, Nan; Singh, N Sadananda; Slade, Susan E; Jones, Alexandra M E; Balasubramanian, Mohan K

    2015-11-24

    The diversity of protein functions is impacted in significant part by the chemical properties of the twenty amino acids, which are used as building blocks for nearly all proteins. The ability to incorporate unnatural amino acids (UAA) into proteins in a site specific manner can vastly expand the repertoire of protein functions and also allows detailed analysis of protein function. In recent years UAAs have been incorporated in a site-specific manner into proteins in a number of organisms. In nearly all cases, the amber codon is used as a sense codon, and an orthogonal tRNA/aminoacyl-tRNA synthetase (RS) pair is used to generate amber suppressing tRNAs charged with the UAA. In this work, we have developed tools to incorporate the cross-linking amino acid azido-phenylalanine (AzF) through the use of bacterial tRNA(Tyr) and a modified version of TyrRS, AzFRS, in Schizosaccharomyces pombe, which is an attractive model organism for the study of cell behavior and function. We have incorporated AzF into three different proteins. We show that the majority of AzF is modified to amino-phenyl alanine, but protein cross-linking was still observed. These studies set the stage for exploitation of this new technology for the analysis of S. pombe proteins.

  10. DSC1-MCB regulation of meiotic transcription in Schizosaccharomyces pombe.

    Science.gov (United States)

    Cunliffe, L; White, S; McInerny, C J

    2004-02-01

    Meiosis is initiated from the G1 phase of the mitotic cell cycle, and consists of pre-meiotic S-phase followed by two successive nuclear divisions. Here we show that control of gene expression during pre-meiotic S-phase in the fission yeast Schizosaccharomyces pombe is mediated by a DNA synthesis control-like transcription factor complex (DSC1), which acts upon M lu1 cell cycle box (MCB) promoter motifs. Several genes, including rec8+, rec11+, cdc18+, and cdc22+, which contain MCB motifs in their promoter regions, are found to be co-ordinately regulated during pre-meiotic S-phase. Both synthetic and native MCB motifs are shown to confer meiotic-specific transcription on a heterologous reporter gene. A DSC1-like transcription factor complex that binds to MCB motifs was also identified in meiotic cells. The effect of mutating and over-expressing individual components of DSC1 (cdc10+, res1+, res2+, rep1+ and rep2+) on the transcription of cdc22+, rec8+ and rec11+ during meiosis was examined. We found that cdc10+, res2+, rep1+ and rep2+ are required for correct meiotic transcription, while res1+ is not required for this process. This work demonstrates a role for MCB motifs and a DSC1-like transcription factor complex in controlling transcription during meiosis in fission yeast, and suggests a mechanism for how this specific expression occurs.

  11. The architecture of the Schizosaccharomyces pombe CCR4-NOT complex

    Science.gov (United States)

    Ukleja, Marta; Cuellar, Jorge; Siwaszek, Aleksandra; Kasprzak, Joanna M.; Czarnocki-Cieciura, Mariusz; Bujnicki, Janusz M.; Dziembowski, Andrzej; M. Valpuesta, Jose

    2016-01-01

    CCR4-NOT is a large protein complex present both in cytoplasm and the nucleus of eukaryotic cells. Although it is involved in a variety of distinct processes related to expression of genetic information such as poly(A) tail shortening, transcription regulation, nuclear export and protein degradation, there is only fragmentary information available on some of its nine subunits. Here we show a comprehensive structural characterization of the native CCR4-NOT complex from Schizosaccharomyces pombe. Our cryo-EM 3D reconstruction of the complex, combined with techniques such as immunomicroscopy, RNA-nanogold labelling, docking of the available high-resolution structures and models of different subunits and domains, allow us to propose its full molecular architecture. We locate all functionally defined domains endowed with deadenylating and ubiquitinating activities, the nucleus-specific RNA-interacting subunit Mmi1, as well as surfaces responsible for protein–protein interactions. This information provides insight into cooperation of the different CCR4-NOT complex functions. PMID:26804377

  12. Urea enhances cell lysis of Schizosaccharomyces pombe ura4 mutants.

    Science.gov (United States)

    Nishino, Kohei; Kushima, Misaki; Kaino, Tomohiro; Matsuo, Yasuhiro; Kawamukai, Makoto

    2017-07-01

    Cell lysis is induced in Schizosaccharomyces pombe ∆ura4 cells grown in YPD medium, which contains yeast extract, polypeptone, and glucose. To identify the medium components that induce cell lysis, we first tested various kinds of yeast extracts from different suppliers. Cell lysis of ∆ura4 cells on YE medium was observed when yeast extracts from OXOID, BD, Oriental, and Difco were used, but not when using yeast extract from Kyokuto. To determine which compounds induced cell lysis, we subjected yeast extract and polypeptone to GC-MS analysis. Ten kinds of compounds were detected in OXOID and BD yeast extracts, but not in Kyokuto yeast extract. Among them was urea, which was also present in polypeptone, and it clearly induced cell lysis. Deletion of the ure2 gene, which is responsible for utilizing urea, abolished the lytic effect of urea. The effect of urea was suppressed by deletion of pub1, and a similar phenotype was observed in the presence of polypeptone. Thus, urea is an inducer of cell lysis in S. pombe ∆ura4 cells.

  13. Effect of sulfur dioxide on the activity of schizosaccharomyces pombe

    Energy Technology Data Exchange (ETDEWEB)

    Yang, H.Y.

    1975-01-01

    Since sulfur dioxide is used in winemaking to inhibit the growth of microorganisms, its effect on the activity of Sch. pombe during fermentation was studied to determine the effect of various concentrations of SO/sub 2/ on the activity of this yeast, in comparison with that of the Saccharomyces cerevisiae. Schizosaccharomyces pombe was more resistant to sulfur dioxide than Saccharomyces cerevisiae in wine fermentation. Sch. pombe was as active in the presence of 300 ppm added SO/sub 2/ as Sac. cerevisiae was in 100 ppm added SO/sub 2/. Utilization of malic acid by Sch. pombe was rapid and complete, and was not affected by 300 ppm added SO/sub 2/. The only effect noted was the slower starts with the higher SO/sub 2/ concentrations. In a mixed culture of Sch. pombe and Sac. cerevisiae, the Sch. yeast was not overgrown by the Sac. yeast when 150 ppm or more of SO2 was added. 12 references, 5 tables.

  14. AP endonuclease independent repair of abasic sites in Schizosaccharomyces pombe.

    Science.gov (United States)

    Nilsen, Line; Forstrøm, Rune J; Bjørås, Magnar; Alseth, Ingrun

    2012-03-01

    Abasic (AP) sites are formed spontaneously and are inevitably intermediates during base excision repair of DNA base damages. AP sites are both mutagenic and cytotoxic and key enzymes for their removal are AP endonucleases. However, AP endonuclease independent repair initiated by DNA glycosylases performing β,δ-elimination cleavage of the AP sites has been described in mammalian cells. Here, we describe another AP endonuclease independent repair pathway for removal of AP sites in Schizosaccharomyces pombe that is initiated by a bifunctional DNA glycosylase, Nth1 and followed by cleavage of the baseless sugar residue by tyrosyl phosphodiesterase Tdp1. We propose that repair is completed by the action of a polynucleotide kinase, a DNA polymerase and finally a DNA ligase to seal the gap. A fission yeast double mutant of the major AP endonuclease Apn2 and Tdp1 shows synergistic increase in MMS sensitivity, substantiating that Apn2 and Tdp1 process the same substrate. These results add new knowledge to the complex cellular response to AP sites, which could be exploited in chemotherapy where synthetic lethality is a key strategy of treatment.

  15. Schizosaccharomyces pombe encodes a mutated AP endonuclease 1.

    Science.gov (United States)

    Laerdahl, Jon K; Korvald, Hanne; Nilsen, Line; Dahl-Michelsen, Kristin; Rognes, Torbjørn; Bjørås, Magnar; Alseth, Ingrun

    2011-03-07

    Mutagenic and cytotoxic apurinic/apyrimidinic (AP) sites are among the most frequent lesions in DNA. Repair of AP sites is initiated by AP endonucleases and most organisms possess two or more of these enzymes. Saccharomyces cerevisiae has AP endonuclease 1 (Apn1) as the major enzymatic activity with AP endonuclease 2 (Apn2) being an important backup. Schizosaccharomyces pombe also encodes two potential AP endonucleases, and Apn2 has been found to be the main repair activity, while Apn1 has no, or only a limited role in AP site repair. Here we have identified a new 5' exon (exon 1) in the apn1 gene and show that the inactivity of S. pombe Apn1 is due to a nonsense mutation in the fifth codon of this new exon. Reversion of this mutation restored the AP endonuclease activity of S. pombe Apn1. Interestingly, the apn1 nonsense mutation was only found in laboratory strains derived from L972 h(-) and not in unrelated isolates of S. pombe. Since all S. pombe laboratory strains originate from L972 h(-), it appears that all experiments involving S. pombe have been conducted in an apn1(-) mutant strain with a corresponding DNA repair deficiency. These observations have implications both for future research in S. pombe and for the interpretation of previously conducted epistatis analysis. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Crystal structure of homoisocitrate dehydrogenase from Schizosaccharomyces pombe

    Energy Technology Data Exchange (ETDEWEB)

    Bulfer, Stacie L.; Hendershot, Jenna M.; Trievel, Raymond C. (Michigan); (UCSF)

    2013-09-18

    Lysine biosynthesis in fungi, euglena, and certain archaebacteria occurs through the {alpha}-aminoadipate pathway. Enzymes in the first steps of this pathway have been proposed as potential targets for the development of antifungal therapies, as they are absent in animals but are conserved in several pathogenic fungi species, including Candida, Cryptococcus, and Aspergillus. One potential antifungal target in the {alpha}-aminoadipate pathway is the third enzyme in the pathway, homoisocitrate dehydrogenase (HICDH), which catalyzes the divalent metal-dependent conversion of homoisocitrate to 2-oxoadipate (2-OA) using nicotinamide adenine dinucleotide (NAD{sup +}) as a cofactor. HICDH belogns to a family of {beta}-hydroxyacid oxidative decarboxylases that includes malate dehydrogenase, tartrate dehydrogenase, 6-phosphogluconate dehydrogenase, isocitrate dehydrogenase (ICDH), and 3-isopropylmalte dehydrogenase (IPMDH). ICDH and IPMDH are well-characterized enzymes that catalyze the decarboxylation of isocitrate to yield 2-oxoglutarate (2-OG) in the citric acid cycle and the conversion of 3-isopropylmalate to 2-oxoisovalerate in the leucine biosynthetic pathway, respectively. Recent structural and biochemical studies of HICDH reveal that this enzyme shares sequence, structural, and mechanistic homology with ICDH and IPMDH. To date, the only published structures of HICDH are from the archaebacteria Thermus thermophilus (TtHICDH). Fungal HICDHs diverge from TtHICDH in several aspects, including their thermal stability, oligomerization state, and substrate specificity, thus warranting further characterization. To gain insights into these differences, they determined crystal structures of a fungal Schizosaccharomyces pombe HICDH (SpHICDH) as an apoenzyme and as a binary complex with additive tripeptide glycyl-glycyl-glycine (GGG) to 1.55 {angstrom} and 1.85 {angstrom} resolution, respectively. Finally, a comparison of the SpHICDH and TtHICDH structures reveal differences in

  17. Phytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomyces pombe.

    Science.gov (United States)

    Ha, S B; Smith, A P; Howden, R; Dietrich, W M; Bugg, S; O'Connell, M J; Goldsbrough, P B; Cobbett, C S

    1999-06-01

    Phytochelatins (PCs), a family of heavy metal-inducible peptides important in the detoxification of heavy metals, have been identified in plants and some microorganisms, including Schizosaccharomyces pombe, but not in animals. PCs are synthesized enzymatically from glutathione (GSH) by PC synthase in the presence of heavy metal ions. In Arabidopsis, the CAD1 gene, identified by using Cd-sensitive, PC-deficient cad1 mutants, has been proposed to encode PC synthase. Using a positional cloning strategy, we have isolated the CAD1 gene. Database searches identified a homologous gene in S. pombe, and a mutant with a targeted deletion of this gene was also Cd sensitive and PC deficient. Extracts of Escherichia coli cells expressing a CAD1 cDNA or the S. pombe gene catalyzing GSH-dependent, heavy metal-activated synthesis of PCs in vitro demonstrated that both genes encode PC synthase activity. Both enzymes were activated by a range of metal ions. In contrast, reverse transcription-polymerase chain reaction experiments showed that expression of the CAD1 mRNA is not influenced by the presence of Cd. A comparison of the two predicted amino acid sequences revealed a highly conserved N-terminal region, which is presumed to be the catalytic domain, and a variable C-terminal region containing multiple Cys residues, which is proposed to be involved in activation of the enzyme by metal ions. Interestingly, a similar gene was identified in the nematode, Caenorhabditis elegans, suggesting that PCs may also be expressed in some animal species.

  18. The cell cycle-regulated genes of Schizosaccharomyces pombe.

    Directory of Open Access Journals (Sweden)

    Anna Oliva

    2005-07-01

    Full Text Available Many genes are regulated as an innate part of the eukaryotic cell cycle, and a complex transcriptional network helps enable the cyclic behavior of dividing cells. This transcriptional network has been studied in Saccharomyces cerevisiae (budding yeast and elsewhere. To provide more perspective on these regulatory mechanisms, we have used microarrays to measure gene expression through the cell cycle of Schizosaccharomyces pombe (fission yeast. The 750 genes with the most significant oscillations were identified and analyzed. There were two broad waves of cell cycle transcription, one in early/mid G2 phase, and the other near the G2/M transition. The early/mid G2 wave included many genes involved in ribosome biogenesis, possibly explaining the cell cycle oscillation in protein synthesis in S. pombe. The G2/M wave included at least three distinctly regulated clusters of genes: one large cluster including mitosis, mitotic exit, and cell separation functions, one small cluster dedicated to DNA replication, and another small cluster dedicated to cytokinesis and division. S. pombe cell cycle genes have relatively long, complex promoters containing groups of multiple DNA sequence motifs, often of two, three, or more different kinds. Many of the genes, transcription factors, and regulatory mechanisms are conserved between S. pombe and S. cerevisiae. Finally, we found preliminary evidence for a nearly genome-wide oscillation in gene expression: 2,000 or more genes undergo slight oscillations in expression as a function of the cell cycle, although whether this is adaptive, or incidental to other events in the cell, such as chromatin condensation, we do not know.

  19. Setting up Schizosaccharomyces pombe crosses/matings

    DEFF Research Database (Denmark)

    Ekwall, Karl; Thon, Genevieve

    2017-01-01

    Here we provide methods for setting up standard crosses with Schizosaccharomyces pombe strains. All strain genotypes and pedigrees should be recorded in a laboratory strain book. Matings between two haploid strains of interest are induced on solid medium poor in nitrogen. Usually, sporulation agar...

  20. Functional expression of the plant alternative oxidase affects growth of the yeast Schizosaccharomyces pombe.

    NARCIS (Netherlands)

    Affourtit, C.; Albury, M.S.; Krab, K.; Moore, A.L.

    1999-01-01

    We have investigated the extent to which functional expression of the plant alternative oxidase (from Sauromatum guttatum) in Schizosaccharomyces pombe affects yeast growth. When cells are cultured on glycerol, the maximum specific growth rate is decreased from 0.13 to 0.11 h

  1. Transactivation of Schizosaccharomyces pombe cdt2+ stimulates a Pcu4-Ddb1-CSN ubiquitin ligase

    DEFF Research Database (Denmark)

    Liu, C.; Poitelea, M.; Watson, A.

    2005-01-01

    Cullin-4 forms a scaffold for multiple ubiquitin ligases. In Schizosaccharomyces pombe, the Cullin-4 homologue (Pcu4) physically associates with Ddb1 and the COP9 signalosome (CSN). One target of this complex is Spd1. Spd1 regulates ribonucleotide reductase (RNR) activity. Spd1 degradation during S...

  2. Assignment of ten DNA repair genes from Schizosaccharomyces pombe to chromosomal NotI restriction fragments

    NARCIS (Netherlands)

    B.C. Broughton; N.C. Barbet; J. Murray (Johanne); F.Z. Watts (Felicity); M.H.M. Koken (Marcel); A.R. Lehmann (Alan); A.M. Carr (Anthony)

    1991-01-01

    textabstractTen DNA repair (rad) genes from the fission yeast, Schizosaccharomyces pombe were mapped to the 17 NotI fragments of the three chromosomes. Nine of the genes map to chromosome I, but there is no evidence for significant clustering.

  3. Use of Schizosaccharomyces strains for wine fermentation-Effect on the wine composition and food safety.

    Science.gov (United States)

    Mylona, A E; Del Fresno, J M; Palomero, F; Loira, I; Bañuelos, M A; Morata, A; Calderón, F; Benito, S; Suárez-Lepe, J A

    2016-09-02

    Schizosaccharomyces was initially considered as a spoilage yeast because of the production of undesirable metabolites such as acetic acid, hydrogen sulfide, or acetaldehyde, but it currently seems to be of great value in enology.o ced Nevertheless, Schizosaccharomyces can reduce all of the malic acid in must, leading to malolactic fermentation. Malolactic fermentation is a highly complicated process in enology and leads to a higher concentration of biogenic amines, so the use of Schizosaccharomyces pombe can be an excellent tool for assuring wine safety. Schizosaccharomyces also has much more potential than only reducing the malic acid content, such as increasing the level of pyruvic acid and thus the vinylphenolic pyranoanthocyanin content. Until now, few commercial strains have been available and little research on the selection of appropriate yeast strains with such potential has been conducted. In this study, selected and wild Sc. pombe strains were used along with a Saccharomyces cerevisiae strain to ferment red grape must. The results showed significant differences in several parameters including non-volatile and volatile compounds, anthocyanins, biogenic amines and sensory parameters. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. F-actin distribution and function during sexual differentiation in Schizosaccharomyces pombe

    DEFF Research Database (Denmark)

    Petersen, J; Nielsen, O; Egel, R

    1998-01-01

    Sexual differentiation in Schizosaccharomyces pombe is induced from the G1 phase of the cell cycle by nitrogen starvation and the presence of mating pheromones. We describe the distribution of F-actin during sexual differentiation. Cortical F-actin dots have previously been shown to be restricted...

  5. New vectors for epitope tagging and gene disruption in Schizosaccharomyces pombe

    OpenAIRE

    Gadaleta, Mariana C.; Iwasaki, Osamu; Noguchi, Chiaki; Noma, Ken-ichi; Noguchi, Eishi

    2013-01-01

    We describe a series of new vectors for PCR-based epitope tagging and gene disruption in the fission yeast Schizosaccharomyces pombe, an exceptional model organism for the study of cellular processes. The vectors are designed for amplification of gene-targeting DNA cassettes and integration into specific genetic loci, allowing expression of proteins fused to 12 tandem copies of the Pk (V5) epitope or 5 tandem copies of the FLAG epitope with a glycine linker. These vectors are available with v...

  6. Radiation-Induced Mutation Rate and DNA Content in ’Schizosaccharomyces pombe’,

    Science.gov (United States)

    Data from experiments using a forward mutation system in Schizosaccharomyces pombe following exposure to gamma-rays are reported. When these data...were analyzed for mutation rates per locus per rad and normalized for the DNA content of S. pombe , the values obtained were very similar to those...predicted by the correlations suggested by Abrahamson et al. This forward mutation system in S. pombe has been extensively used and well characterized.

  7. An improved strategy for tandem affinity purification-tagging of Schizosaccharomyces pombe genes

    OpenAIRE

    Cipak, Lubos; Spirek, Mario; Novatchkova, Maria; Chen, Zhiming; Rumpf, Cornelia; Lugmayr, Wolfgang; Mechtler, Karl; Ammerer, Gustav; Csaszar, Edina; Gregan, Juraj

    2009-01-01

    Tandem affinity purification (TAP) is a method that allows rapid purification of native protein complexes. We developed an improved technique to fuse the fission yeast genes with a TAP tag. Our technique is based on tagging constructs that contain regions homologous to the target gene cloned into vectors carrying a TAP tag. We used this technique to design strategies for TAP-tagging of predicted Schizosaccharomyces pombe genes (http://mendel.imp.ac.at/Pombe_tagging/). To validate the approach...

  8. A Brief History of Schizosaccharomyces pombe Research: A Perspective Over the Past 70 Years

    Science.gov (United States)

    Fantes, Peter A.; Hoffman, Charles S.

    2016-01-01

    Since its humble start as a model organism in two European laboratories in the 1940s and 1950s, the fission yeast Schizosaccharomyces pombe has grown to become one of the best-studied eukaryotes today. This article outlines the way in which interest in S. pombe developed and spread from Europe to Japan, North America, and elsewhere from its beginnings up to the first International Meeting devoted to this yeast in 1999. We describe the expansion of S. pombe research during this period with an emphasis on many of the individual researchers involved and their interactions that resulted in the development of today’s vibrant community. PMID:27270696

  9. Two conserved modules of Schizosaccharomyces pombe Mediator regulate distinct cellular pathways

    DEFF Research Database (Denmark)

    Linder, Tomas; Rasmussen, Nina; Samuelsen, Camilla O

    2008-01-01

    Mediator is an evolutionary conserved coregulator complex required for transcription of almost all RNA polymerase II-dependent genes. The Schizosaccharomyces pombe Mediator consists of two dissociable components-a core complex organized into a head and middle domain as well as the Cdk8 regulatory...... subcomplex. In this work we describe a functional characterization of the S. pombe Mediator. We report the identification of the S. pombe Med20 head subunit and the isolation of ts alleles of the core head subunit encoding med17+. Biochemical analysis of med8(ts), med17(ts), Deltamed18, Deltamed20...... are conserved between S. pombe and S. cerevisiae....

  10. Cloning, expression, purification and crystallization of Schizosaccharomyces pombe Set7, a putative histone methyltransferase.

    Science.gov (United States)

    Mevius, Damiaan E H F; Shen, Yunpeng; Morishita, Masayo; di Luccio, Eric

    2016-04-01

    Dysfunction of histone-modifying enzymes affects chromatin regulation and is involved in carcinogenesis, tumour progression and other diseases. Histone methyltransferases are a family of key histone-modifying enzymes, but their structures, functions and mechanisms are incompletely understood, thus constraining drug-design efforts. Here, preliminary steps towards structure-function studies of Schizosaccharomyces pombe Set7, a putative histone methyltransferase and the first yeast full-length SET-domain-containing protein to be studied using X-ray crystallography, are reported. The methods from cloning to X-ray diffraction and phasing are discussed and the results will aid in prospective studies of histone-modifying enzymes.

  11. Use of PKA-mediated phenotypes for genetic and small-molecule screens in Schizosaccharomyces pombe.

    Science.gov (United States)

    de Medeiros, Ana Santos; Magee, Alexander; Nelson, Kyle; Friedberg, Liora; Trocka, Karolina; Hoffman, Charles S

    2013-12-01

    PKA (protein kinase A) in the fission yeast Schizosaccharomyces pombe controls transcription of genes involved in metabolism, cell growth and sexual development. In the present review, we discuss phenotypes associated with either high or low PKA activity in the context of how they can be used to carry out genetic or small-molecule screens that affect components of the PKA pathway. Although our recent research has focused on the study of heterologously expressed cyclic nucleotide PDEs (phosphodiesterases), these same methods can be used to target other S. pombe proteins or their functionally equivalent orthologues that act in the PKA pathway.

  12. Abc1: a new ABC transporter from the fission yeast Schizosaccharomyces pombe

    DEFF Research Database (Denmark)

    Christensen, P U; Davis, K; Nielsen, O

    1997-01-01

    We have isolated the abc1 gene from the fission yeast Schizosaccharomyces pombe. Sequence analysis suggests that the Abc1 protein is a member of the ABC superfamily of transporters and is composed of two structurally homologous halves, each consisting of a hydrophobic region of six transmembrane...... domains and a hydrophilic region containing one ATP-binding site. The abc1 gene appears to be expressed under all growth conditions but gene disruption experiments indicate that it is not essential for growth. The sequence of the abc1 gene has been deposited in the EMBL data library under the Accession...

  13. The Combined Use of Schizosaccharomyces pombe and Lachancea thermotolerans—Effect on the Anthocyanin Wine Composition

    Directory of Open Access Journals (Sweden)

    Ángel Benito

    2017-05-01

    Full Text Available The most popular methodology to make red wine is through the combined use of Saccharomyces cerevisiae yeast and lactic acid bacteria, for alcoholic fermentation and malolactic fermentation respectively. This classic winemaking practice produces stable red wines from a microbiological point of view. This study aims to investigate a recent red winemaking biotechnology, which through the combined use of Lachancea thermotolerans and Schizosaccharomyces pombe is used as an alternative to the classic malolactic fermentation. In this new methodology, Schizosaccharomyces pombe totally consumes malic acid, while Lachancea thermotolerans produces lactic acid, avoiding excessive deacidification of musts with low acidity in warm viticulture areas such as Spain. This new methodology has been reported to be a positive alternative to malolactic fermentation in low acidity wines, since it has the advantage to produce wines with a more fruity flavor, less acetic acid, less ethyl carbamate originators and less biogenic amines than the traditional wines produced via conventional fermentation techniques. The study focuses on unexplored facts related to this novel biotechnology such as color and anthocyanin profile.

  14. The sxa2-dependent inactivation of the P-factor mating pheromone in the fission yeast Schizosaccharomyces pombe

    DEFF Research Database (Denmark)

    Ladds, G; Rasmussen, E M; Young, T

    1996-01-01

    Haploid cells of the fission yeast Schizosaccharomyces pombe exist in one of two mating types, referred to as M and P. Conjugation occurs between cells of opposite mating type and is controlled by the reciprocal action of diffusible pheromones. Loss of function of the sxa2 gene in M cells causes...

  15. Sequence conservation of the rad21 Schizosaccharomyces pombe DNA double-strand break repair gene in human and mouse.

    NARCIS (Netherlands)

    M.J. McKay (Michael); C. Troelstra (Christine); P.J. van der Spek (Peter); R. Kanaar (Roland); B. Smit (Bep); A. Hagemeijer (Anne); D. Bootsma (Dirk); J.H.J. Hoeijmakers (Jan)

    1996-01-01

    textabstractThe rad21 gene of Schizosaccharomyces pombe is involved in the repair of ionizing radiation-induced DNA double-strand breaks. The isolation of mouse and human putative homologs of rad21 is reported here. Alignment of the predicted amino acid sequence of Rad21 with the mammalian proteins

  16. Addition of citral controls ROS and reduces toxicity in 5-fluorouracil treated Schizosaccharomyces pombe cells.

    Science.gov (United States)

    Patel, Pinaki B; Thakkar, Vasudev R

    2015-03-01

    In systemic therapy, chemotherapeutic drugs, often, cause considerable side effects; and combination of natural compounds lessen the extent of such effects. In the present study, combined effect of citral and 5-fluorouracil was studied in Schizosaccharomyces pombe cells. The antagonistic combination index found was at 0.01 and 0.025 mM of citral with 40 μg or higher concentration of 5-fluorouracil. The combined treatment was so effective that higher number of cells underwent apoptosis compared to individual treatment of 5-fluorouracil. Citral controlled ROS levels and increased survival of normal cells. Several differentially expressed proteins observed in the citral treatment could further help understanding its mechanism of action.

  17. Response to arsenate treatment in Schizosaccharomyces pombe and the role of its arsenate reductase activity.

    Directory of Open Access Journals (Sweden)

    Alejandro Salgado

    Full Text Available Arsenic toxicity has been studied for a long time due to its effects in humans. Although epidemiological studies have demonstrated multiple effects in human physiology, there are many open questions about the cellular targets and the mechanisms of response to arsenic. Using the fission yeast Schizosaccharomyces pombe as model system, we have been able to demonstrate a strong activation of the MAPK Spc1/Sty1 in response to arsenate. This activation is dependent on Wis1 activation and Pyp2 phosphatase inactivation. Using arsenic speciation analysis we have also demonstrated the previously unknown capacity of S. pombe cells to reduce As (V to As (III. Genetic analysis of several fission yeast mutants point towards the cell cycle phosphatase Cdc25 as a possible candidate to carry out this arsenate reductase activity. We propose that arsenate reduction and intracellular accumulation of arsenite are the key mechanisms of arsenate tolerance in fission yeast.

  18. Purification of Actin from Fission Yeast Schizosaccharomyces pombe and Characterization of Functional Differences from Muscle Actin*

    Science.gov (United States)

    Ti, Shih-Chieh; Pollard, Thomas D.

    2011-01-01

    Fission yeast Schizosaccharomyces pombe is an important genetic model organism for studying the mechanisms of endocytosis and cytokinesis. However, most work on the biochemical properties of fission yeast actin-binding proteins has been done with skeletal muscle actin for matters of convenience. When simulations of mathematical models of the mechanism of endocytosis were compared with events in live cells, some of the reactions appeared to be much faster than observed in biochemical experiments with muscle actin. Here, we used gelsolin affinity chromatography to purify actin from fission yeast. S. pombe actin shares many properties with skeletal muscle actin but has higher intrinsic nucleotide exchange rate, faster trimer nucleus formation, faster phosphate dissociation rate from polymerized actin, and faster nucleation of actin filaments with Arp2/3 complex. These properties close the gap between the biochemistry and predictions made by mathematical models of endocytosis in S. pombe cells. PMID:21148484

  19. A diffusion model for the coordination of DNA replication in Schizosaccharomyces pombe.

    Science.gov (United States)

    Pichugina, T; Sugawara, T; Kaykov, A; Schierding, W; Masuda, K; Uewaki, J; Grand, R S; Allison, J R; Martienssen, R A; Nurse, P; Ueno, M; O'Sullivan, J M

    2016-01-05

    The locations of proteins and epigenetic marks on the chromosomal DNA sequence are believed to demarcate the eukaryotic genome into distinct structural and functional domains that contribute to gene regulation and genome organization. However, how these proteins and epigenetic marks are organized in three dimensions remains unknown. Recent advances in proximity-ligation methodologies and high resolution microscopy have begun to expand our understanding of these spatial relationships. Here we use polymer models to examine the spatial organization of epigenetic marks, euchromatin and heterochromatin, and origins of replication within the Schizosaccharomyces pombe genome. These models incorporate data from microscopy and proximity-ligation experiments that inform on the positions of certain elements and contacts within and between chromosomes. Our results show a striking degree of compartmentalization of epigenetic and genomic features and lead to the proposal of a diffusion based mechanism, centred on the spindle pole body, for the coordination of DNA replication in S. pombe.

  20. Metabolic crosstalk between membrane and storage lipids facilitates heat stress management in Schizosaccharomyces pombe.

    Science.gov (United States)

    Péter, Mária; Glatz, Attila; Gudmann, Péter; Gombos, Imre; Török, Zsolt; Horváth, Ibolya; Vígh, László; Balogh, Gábor

    2017-01-01

    Cell membranes actively participate in stress sensing and signalling. Here we present the first in-depth lipidomic analysis to characterize alterations in the fission yeast Schizosaccharomyces pombe in response to mild heat stress (HS). The lipidome was assessed by a simple one-step methanolic extraction. Genetic manipulations that altered triglyceride (TG) content in the absence or presence of HS gave rise to distinct lipidomic fingerprints for S. pombe. Cells unable to produce TG demonstrated long-lasting growth arrest and enhanced signalling lipid generation. Our results reveal that metabolic crosstalk between membrane and storage lipids facilitates homeostatic maintenance of the membrane physical/chemical state that resists negative effects on cell growth and viability in response to HS. We propose a novel stress adaptation mechanism in which heat-induced TG synthesis contributes to membrane rigidization by accommodating unsaturated fatty acids of structural lipids, enabling their replacement by newly synthesized saturated fatty acids.

  1. Biochemical characterization and cooperation with co-chaperones of heat shock protein 90 from Schizosaccharomyces pombe.

    Science.gov (United States)

    Ishida, Mari; Tomomari, Taichi; Kanzaki, Taro; Abe, Tetsuya; Oka, Toshihiko; Yohda, Masafumi

    2013-10-01

    The characterization of Hsp90 from the fission yeast Schizosaccharomyces pombe was performed. Hsp90 of S. pombe existed as a dimer and exhibited ATP-dependent conformational changes. It captured unfolded proteins in the ATP-free open conformation and protected them from thermal aggregation. Hsp90 of S. pombe was also able to refold thermally denatured firefly luciferase. The co-chaperones Sti1 and Aha1 bound Hsp90 and modulated its activity. Because the affinity of Sti1 was higher than that of Aha1, the effect of Sti1 appeared to dominate when both co-chaperones existed simultaneously. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. A protective role of methionine-R-sulfoxide reductase against cadmium in Schizosaccharomyces pombe.

    Science.gov (United States)

    Lim, Chang-Jin; Jo, Hannah; Kim, Kyunghoon

    2014-11-01

    The Schizosaccharomyces pombe cells harboring the methionine- R-sulfoxide reductase (MsrB)-overexpressing recombinant plasmid pFMetSO exhibited better growth than vector control cells, when shifted into fresh medium containing cadmium chloride (abbreviated as Cd). Although both groups of cells contained enhanced reactive oxygen species (ROS) and nitric oxide (NO) levels in the presence of Cd, ROS and NO levels were significantly lower in the S. pombe cells harboring pFMetSO than in vector control cells. Conversely, the S. pombe cells harboring pFMetSO possessed higher total glutathione (GSH) levels and a greater reduced/oxidized GSH ratio than vector control cells under the same conditions.

  3. Characterization of a Novel MMS-Sensitive Allele of Schizosaccharomyces pombe mcm4.

    Science.gov (United States)

    Ranatunga, Nimna S; Forsburg, Susan L

    2016-10-13

    The minichromosome maintenance (MCM) complex is the conserved helicase motor of the eukaryotic replication fork. Mutations in the Mcm4 subunit are associated with replication stress and double strand breaks in multiple systems. In this work, we characterize a new temperature-sensitive allele of Schizosaccharomyces pombe mcm4+ Uniquely among known mcm4 alleles, this mutation causes sensitivity to the alkylation damaging agent methyl methanesulfonate (MMS). Even in the absence of treatment or temperature shift, mcm4-c106 cells show increased repair foci of RPA and Rad52, and require the damage checkpoint for viability, indicating genome stress. The mcm4-c106 mutant is synthetically lethal with mutations disrupting fork protection complex (FPC) proteins Swi1 and Swi3. Surprisingly, we found that the deletion of rif1+ suppressed the MMS-sensitive phenotype without affecting temperature sensitivity. Together, these data suggest that mcm4-c106 destabilizes replisome structure. Copyright © 2016 Ranatunga and Forsburg.

  4. Substrate recognition of the catalytic α-subunit of glucosidase II from Schizosaccharomyces pombe.

    Science.gov (United States)

    Okuyama, Masayuki; Miyamoto, Masashi; Matsuo, Ichiro; Iwamoto, Shogo; Serizawa, Ryo; Tanuma, Masanari; Ma, Min; Klahan, Patcharapa; Kumagai, Yuya; Tagami, Takayoshi; Kimura, Atsuo

    2017-08-01

    The recombinant catalytic α-subunit of N-glycan processing glucosidase II from Schizosaccharomyces pombe (SpGIIα) was produced in Escherichia coli. The recombinant SpGIIα exhibited quite low stability, with a reduction in activity to glucosidases. The enzyme hydrolyzed not only α-(1→3)- but also α-(1→2)-, α-(1→4)-, and α-(1→6)-glucosidic linkages, and p-nitrophenyl α-glucoside. SpGIIα displayed most catalytic properties of glucosidase II. Hydrolytic activity of the terminal α-glucosidic residue of Glc2Man3-Dansyl was faster than that of Glc1Man3-Dansyl. This catalytic α-subunit also removed terminal glucose residues from native N-glycans (Glc2Man9GlcNAc2 and Glc1Man9GlcNAc2) although the activity was low.

  5. Genes Important for Schizosaccharomyces pombe Meiosis Identified Through a Functional Genomics Screen

    Science.gov (United States)

    Blyth, Julie; Makrantoni, Vasso; Barton, Rachael E.; Spanos, Christos; Rappsilber, Juri; Marston, Adele L.

    2018-01-01

    Meiosis is a specialized cell division that generates gametes, such as eggs and sperm. Errors in meiosis result in miscarriages and are the leading cause of birth defects; however, the molecular origins of these defects remain unknown. Studies in model organisms are beginning to identify the genes and pathways important for meiosis, but the parts list is still poorly defined. Here we present a comprehensive catalog of genes important for meiosis in the fission yeast, Schizosaccharomyces pombe. Our genome-wide functional screen surveyed all nonessential genes for roles in chromosome segregation and spore formation. Novel genes important at distinct stages of the meiotic chromosome segregation and differentiation program were identified. Preliminary characterization implicated three of these genes in centrosome/spindle pole body, centromere, and cohesion function. Our findings represent a near-complete parts list of genes important for meiosis in fission yeast, providing a valuable resource to advance our molecular understanding of meiosis. PMID:29259000

  6. The Schizosaccharomyces pombe mam1 gene encodes an ABC transporter mediating secretion of M-factor

    DEFF Research Database (Denmark)

    Christensen, P U; Davey, William John; Nielsen, O

    1997-01-01

    In the fission yeast Schizosaccharomyces pombe, cells of opposite mating type communicate via diffusible peptide pheromones prior to mating. We have cloned the S. pombe mam1 gene, which encodes a 1336-amino acid protein belonging to the ATP-binding cassette (ABC) superfamily. The mam1 gene is only...... expressed in M cells and the gene product is responsible for the secretion of the mating pheromone. M-factor, a nonapeptide that is S-farnesylated and carboxy-methylated on its C-terminal cysteine residue. The predicted Mam1 protein is highly homologous to mammalian multiple drug-resistance proteins...... and to the Saccharomyces cerevisiae STE6 gene product, which mediates export of a-factor mating pheromone. We show that STE6 can also mediate secretion of M-factor in S. pombe....

  7. Functional analysis of putative phosphoenolpyruvate transporters localized to the Golgi apparatus in Schizosaccharomyces pombe.

    Science.gov (United States)

    Yoritsune, Ken-ichi; Higuchi, Yujiro; Matsuzawa, Tomohiko; Takegawa, Kaoru

    2014-11-01

    The cell surface of Schizosaccharomyces pombe is negatively charged due to the presence of pyruvylated oligosaccharides, which is important for cell-cell recognition. However, the mechanism of pyruvate supply to oligosaccharides is not clearly understood. Here, we analyzed three putative phosphoenolpyruvate (PEP) transporter genes (pet1(+) , pet2(+) , and pet3(+) ) in S. pombe, identified by sequence homology search against the Arabidopsis thaliana PEP transporter AtPPT1. Schizosaccharomyces pombe strain carrying a disruption in pet1(+) (pet1Δ) or in pet2(+) (pet2Δ), but not the strain carrying a disruption in pet3(+) (pet3Δ), showed reduced pyruvate level on the cell surface. This reduction in pyruvate level was restored to the control level by expressing green fluorescent protein (GFP)-tagged Pet1p and Pet2p in respective disruptants. Fluorescence microscope studies revealed that GFP-tagged Pet1p and Pet2p were localized to the Golgi apparatus. Although expression of neither AtPPT1 nor AtPPT2 suppressed the pet1Δ phenotype, that of chimeric constructs, where the N-terminal regions of AtPPT1 and AtPPT2 were replaced by the N-terminal region of Pet1p, partially suppressed the pet1Δ phenotype. Furthermore, the reduction in cell surface negative charge in pet1Δ cells was restored by incubating these cells with recombinant Pvg1p and PEP. Thus, Pet1p and Pet2p are likely involved in transporting PEP from the cytoplasm into the Golgi. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  8. Cell wall polysaccharides released during the alcoholic fermentation by Schizosaccharomyces pombe and S. japonicus: quantification and characterization

    Science.gov (United States)

    Domizio, P.; Liu, Y.; Bisson, L.F.; Barile, D.

    2016-01-01

    The present work demonstrates that yeasts belonging to the Schizosaccharomyces genus release a high quantity of polysaccharides of cell wall origin starting from the onset of the alcoholic fermentation. By the end of the alcoholic fermentation, all of the Schizosaccharomyces yeast strains released a quantity of polysaccharides approximately 3-7 times higher than that released by a commercial Saccharomyces cerevisiae yeast strain under the same fermentative conditions of synthetic juice. A higher content of polysaccharide was found in media fermented by Schizosaccharomyces japonicus with respect to that of Schizosaccharomyces pombe. Some of the strains evaluated were also able to produce high levels of pyruvic acid, which has been shown to be an important compound for color stability of wine. The presence of strains with different malic acid consumption patterns along with high polysaccharide release would enable production of naturally modified wines with enhanced mouth feel and reduced acidity. The chemical analysis of the released polysaccharides demonstrated divergence between the two yeast species S. pombe and S. japonicus. A different mannose/galactose ratio and a different percentage of proteins was observed on the polysaccharides released by S. pombe as compared to S. japonicus. Analysis of the proteins released in the media revealed the presence of a glycoprotein with a molecular size around 32-33 kDa only for the species S. japonicus. Mass spectrometry analysis of carbohydrate moieties showed similar proportions among the N-glycan chains released in the media by both yeast species but differences between the two species were also observed. These observations suggest a possible role of rapid MALDI-TOF screening of N-glycans compositional fingerprint as a taxonomic tool for this genus. Polysaccharides release in the media, in particular galactomannoproteins in significant amounts, could make these yeasts particularly interesting also for the industrial

  9. Cell wall polysaccharides released during the alcoholic fermentation by Schizosaccharomyces pombe and S. japonicus: quantification and characterization.

    Science.gov (United States)

    Domizio, P; Liu, Y; Bisson, L F; Barile, D

    2017-02-01

    The present work demonstrates that yeasts belonging to the Schizosaccharomyces genus release a high quantity of polysaccharides of cell wall origin starting from the onset of the alcoholic fermentation. By the end of the alcoholic fermentation, all of the Schizosaccharomyces yeast strains released a quantity of polysaccharides approximately 3-7 times higher than that released by a commercial Saccharomyces cerevisiae yeast strain under the same fermentative conditions of synthetic juice. A higher content of polysaccharide was found in media fermented by Schizosaccharomyces japonicus with respect to that of Schizosaccharomyces pombe. Some of the strains evaluated were also able to produce high levels of pyruvic acid, which has been shown to be an important compound for color stability of wine. The presence of strains with different malic acid consumption patterns along with high polysaccharide release would enable production of naturally modified wines with enhanced mouth feel and reduced acidity. The chemical analysis of the released polysaccharides demonstrated divergence between the two yeast species S. pombe and S. japonicus. A different mannose/galactose ratio and a different percentage of proteins was observed on the polysaccharides released by S. pombe as compared to S. japonicus. Analysis of the proteins released in the media revealed the presence of a glycoprotein with a molecular size around 32-33 kDa only for the species S. japonicus. Mass spectrometry analysis of carbohydrate moieties showed similar proportions among the N-glycan chains released in the media by both yeast species but differences between the two species were also observed. These observations suggest a possible role of rapid MALDI-TOF screening of N-glycans compositional fingerprint as a taxonomic tool for this genus. Polysaccharides release in the media, in particular galactomannoproteins in significant amounts, could make these yeasts particularly interesting also for the industrial

  10. Riboflavin synthase of Schizosaccharomyces pombe. Protein dynamics revealed by 19F NMR protein perturbation experiments

    Directory of Open Access Journals (Sweden)

    Cushman Mark

    2003-12-01

    Full Text Available Abstract Background Riboflavin synthase catalyzes the transformation of 6,7-dimethyl-8-ribityllumazine into riboflavin in the last step of the riboflavin biosynthetic pathway. Gram-negative bacteria and certain yeasts are unable to incorporate riboflavin from the environment and are therefore absolutely dependent on endogenous synthesis of the vitamin. Riboflavin synthase is therefore a potential target for the development of antiinfective drugs. Results A cDNA sequence from Schizosaccharomyces pombe comprising a hypothetical open reading frame with similarity to riboflavin synthase of Escherichia coli was expressed in a recombinant E. coli strain. The recombinant protein is a homotrimer of 23 kDa subunits as shown by sedimentation equilibrium centrifugation. The protein sediments at an apparent velocity of 4.1 S at 20°C. The amino acid sequence is characterized by internal sequence similarity indicating two similar folding domains per subunit. The enzyme catalyzes the formation of riboflavin from 6,7-dimethyl-8-ribityllumazine at a rate of 158 nmol mg-1 min-1 with an apparent KM of 5.7 microM. 19F NMR protein perturbation experiments using fluorine-substituted intermediate analogs show multiple signals indicating that a given ligand can be bound in at least 4 different states. 19F NMR signals of enzyme-bound intermediate analogs were assigned to ligands bound by the N-terminal respectively C-terminal folding domain on basis of NMR studies with mutant proteins. Conclusion Riboflavin synthase of Schizosaccharomyces pombe is a trimer of identical 23-kDa subunits. The primary structure is characterized by considerable similarity of the C-terminal and N-terminal parts. Riboflavin synthase catalyzes a mechanistically complex dismutation of 6,7-dimethyl-8-ribityllumazine affording riboflavin and 5-amino-6-ribitylamino-2,4(1H,3H-pyrimidinedione. The 19F NMR data suggest large scale dynamic mobility in the trimeric protein which may play an important

  11. Restriction of Retrotransposon Mobilization in Schizosaccharomyces pombe by Transcriptional Silencing and Higher-Order Chromatin Organization

    Science.gov (United States)

    Murton, Heather E.; Grady, Patrick J. R.; Chan, Tsun Ho; Cam, Hugh P.; Whitehall, Simon K.

    2016-01-01

    Uncontrolled propagation of retrotransposons is potentially detrimental to host genome integrity. Therefore, cells have evolved surveillance mechanisms to restrict the mobility of these elements. In Schizosaccharomyces pombe the Tf2 LTR retrotransposons are transcriptionally silenced and are also clustered in the nucleus into structures termed Tf bodies. Here we describe the impact of silencing and clustering on the mobility of an endogenous Tf2 element. Deletion of genes such as set1+ (histone H3 lysine 4 methyltransferase) or abp1+ (CENP-B homolog) that both alleviate silencing and clustering, result in a corresponding increase in mobilization. Furthermore, expression of constitutively active Sre1, a transcriptional activator of Tf2 elements, also alleviates clustering and induces mobilization. In contrast, clustering is not disrupted by loss of the HIRA histone chaperone, despite high levels of expression, and in this background, mobilization frequency is only marginally increased. Thus, mutations that compromise transcriptional silencing but not Tf bodies are insufficient to drive mobilization. Furthermore, analyses of mutant alleles that separate the transcriptional repression and clustering functions of Set1 are consistent with control of Tf2 propagation via a combination of silencing and spatial organization. Our results indicate that host surveillance mechanisms operate at multiple levels to restrict Tf2 retrotransposon mobilization. PMID:27343236

  12. New drug-resistant cassettes for gene disruption and epitope tagging in Schizosaccharomyces pombe.

    Science.gov (United States)

    Sato, Masamitsu; Dhut, Susheela; Toda, Takashi

    2005-05-01

    We describe new heterologous modules for PCR-based gene targeting in the fission yeast Schizosaccharomyces pombe. Two bacterial genes, hph and nat, which display dominant drug-resistance phenotypes, are used as new selectable markers in these modules. Both genes have been used successfully in the budding yeast Saccharomyces cerevisiae, in which hph confers resistance to hygromycin B, while nat confers nourseothricin resistance (Goldstein and McCusker, 1999). Vector modules for gene disruption and C-terminal tagging with 3HA, 13Myc and GFP(S65T) are constructed using previously constructed pFA6a-MX6-derived plasmids (Bähler et al., 1998; Wach et al., 1997). In combination with the existing systems that are based upon the G418-resistance gene (kan), triple gene deletions or tags could be constructed. In addition a vector for one-step integration of a monomeric RFP (mRFP) to the C-terminus of proteins of interest is developed. Finally, oligonucleotides that allow a simple marker switch from kan to hph or nat, and vice versa, are described. The new constructs developed here should facilitate post-genomic molecular analysis of protein functions in fission yeast.

  13. A vector system for genomic FLAG epitope-tagging in Schizosaccharomyces pombe.

    Science.gov (United States)

    Noguchi, Chiaki; Garabedian, Mikael V; Malik, Marriam; Noguchi, Eishi

    2008-10-01

    The fission yeast Schizosaccharomyces pombe is a popular model organism to study various cellular processes, although research tools available for S. pombe are relatively inadequate. To facilitate genetic and biochemical investigation in S. pombe, we report here a system of vectors for genomic FLAG epitope-tagging. These vectors enable us to amplify gene-targeting fragments for integration into specific loci of the S. pombe genome. All vectors in this report were designed to express FLAG epitope-tagged proteins from their endogenous genomic loci. Vectors for N-terminal FLAG epitope-tagging allow us to control protein expression levels using the wild-type nmt1 promoter, its weaker derivatives, and the urg1 promoter. These vectors are available with various antibiotic markers including kanMX6, hphMX6, natMX6 and bleMX6, and the his3(+) marker. Vectors for C-terminal FLAG epitope-tagging were designed to express FLAG-fusion proteins under the control of their native promoters at their own genomic loci, allowing us to characterize protein functions under physiological conditions. These vectors are available with kanMX6, hphMX6, nat-MX6 and bleMX6 markers. The series of vectors described in this report should prove useful for protein studies in fission yeast.

  14. New vectors for epitope tagging and gene disruption in Schizosaccharomyces pombe.

    Science.gov (United States)

    Gadaleta, Mariana C; Iwasaki, Osamu; Noguchi, Chiaki; Noma, Ken-ichi; Noguchi, Eishi

    2013-11-01

    We describe a series of new vectors for PCR-based epitope tagging and gene disruption in the fission yeast Schizosaccharomyces pombe, an exceptional model organism for the study of cellular processes. The vectors are designed for amplification of gene-targeting DNA cassettes and integration into specific genetic loci, allowing expression of proteins fused to 12 tandem copies of the Pk (V5) epitope or 5 tandem copies of the FLAG epitope with a glycine linker. These vectors are available with various antibiotic or nutritional markers and are useful for protein studies using biochemical and cell biological methods. We also describe new vectors for fluorescent protein-tagging and gene disruption using ura4MX6, LEU2MX6, and his3MX6 selection markers, allowing researchers in the S. pombe community to disrupt genes and manipulate genomic loci using primer sets already available for the widely used pFA6a-MX6 system. Our new vectors may also be useful for gene manipulation in Saccharomyces cerevisiae.

  15. Essential roles of class E Vps proteins for sorting into multivesicular bodies in Schizosaccharomyces pombe.

    Science.gov (United States)

    Iwaki, Tomoko; Onishi, Masayuki; Ikeuchi, Masaru; Kita, Ayako; Sugiura, Reiko; Giga-Hama, Yuko; Fukui, Yasuhisa; Takegawa, Kaoru

    2007-08-01

    The multivesicular body (MVB) sorting pathway is required for a number of biological processes, including downregulation of cell-surface proteins and protein sorting into the vacuolar lumen. The function of this pathway requires endosomal sorting complexes required for transport (ESCRT) composed of class E vacuolar protein sorting (Vps) proteins in Saccharomyces cerevisiae, many of which are conserved in Schizosaccharomyces pombe. Of these, sst4/vps27 (homologous to VPS27) and sst6 (similar to VPS23) have been identified as suppressors of sterility in ste12Delta (sst), although their functions have not been uncovered to date. In this report, these two sst genes are shown to be required for vacuolar sorting of carboxypeptidase Y (CPY) and an MVB marker, the ubiquitin-GFP-carboxypeptidase S (Ub-GFP-CPS) fusion protein, despite the lack of the ubiquitin E2 variant domain in Sst6p. Disruption mutants of a variety of other class E vps homologues also had defects in sorting of CPY and Ub-GFP-CPS. Sch. pombe has a mammalian AMSH homologue, sst2. Phenotypic analyses suggested that Sst2p is a class E Vps protein. Taken together, these results suggest that sorting into multivesicular bodies is dependent on class E Vps proteins, including Sst2p, in Sch. pombe.

  16. Genome-wide analysis of poly(A) site selection in Schizosaccharomyces pombe

    KAUST Repository

    Schlackow, M.

    2013-10-23

    Polyadenylation of pre-mRNAs, a critical step in eukaryotic gene expression, is mediated by cis elements collectively called the polyadenylation signal. Genome-wide analysis of such polyadenylation signals was missing in fission yeast, even though it is an important model organism. We demonstrate that the canonical AATAAA motif is the most frequent and functional polyadenylation signal in Schizosaccharomyces pombe. Using analysis of RNA-Seq data sets from cells grown under various physiological conditions, we identify 3\\' UTRs for nearly 90% of the yeast genes. Heterogeneity of cleavage sites is common, as is alternative polyadenylation within and between conditions. We validated the computationally identified sequence elements likely to promote polyadenylation by functional assays, including qRT-PCR and 3\\'RACE analysis. The biological importance of the AATAAA motif is underlined by functional analysis of the genes containing it. Furthermore, it has been shown that convergent genes require trans elements, like cohesin for efficient transcription termination. Here we show that convergent genes lacking cohesin (on chromosome 2) are generally associated with longer overlapping mRNA transcripts. Our bioinformatic and experimental genome-wide results are summarized and can be accessed and customized in a user-friendly database Pomb(A).

  17. The effect of magnesium on mitotic spindle formation in Schizosaccharomyces pombe

    Science.gov (United States)

    Uz, Gulsen; Sarikaya, Aysegul Topal

    2016-01-01

    Abstract Magnesium (Mg2+), an essential ion for cells and biological systems, is involved in a variety of cellular processes, including the formation and breakdown of microtubules. The results of a previous investigation suggested that as cells grow the intracellular Mg2+ concentration falls, thereby stimulating formation of the mitotic spindle. In the present work, we used a Mg2+-deficient Schizosaccharomyces pombe strain GA2, in which two essential membrane Mg2+ transporter genes (homologs of ALR1 and ALR2 in Saccharomyces cerevisae) were deleted, and its parental strain Sp292, to examine the extent to which low Mg2+ concentrations can affect mitotic spindle formation. The two S. pombe strains were transformed with a plasmid carrying a GFP-α2-tubulin construct to fluorescently label microtubules. Using the free Mg2+-specific fluorescent probe mag-fura-2, we confirmed that intracellular free Mg2+ levels were lower in GA2 than in the parental strain. Defects in interphase microtubule organization, a lower percentage of mitotic spindle formation and a reduced mitotic index were also observed in the GA2 strain. Although there was interphase microtubule polymerization, the lower level of mitotic spindle formation in the Mg2+-deficient strain suggested a greater requirement for Mg2+ in this phenomenon than previously thought. PMID:27560651

  18. Metabolic engineering of Schizosaccharomyces pombe to produce punicic acid, a conjugated fatty acid with nutraceutic properties.

    Science.gov (United States)

    Garaiova, Martina; Mietkiewska, Elzbieta; Weselake, Randall J; Holic, Roman

    2017-09-16

    Punicic acid (PuA) is a conjugated linolenic acid (C18:3Δ(9c,11t,13c)) with a wide range of nutraceutic effects with the potential to reduce the incidence of a number of health disorders including diabetes, obesity, and cancer. It is the main component of seed oil from Punica granatum and Trichosanthes kirilowii. Previously, production of relatively high levels of this unusual fatty acid in the seed oil of transgenic Arabidopsis thaliana plant was accomplished by the use of A. thaliana fad3/fae1 mutant high in linoleic acid (18:2∆(9c,12c)) and by co-expression of P. granatum FATTY ACID CONJUGASE (PgFADX) with Δ12-DESATURASE (FAD2). In the current study, P. granatum cDNAs governing PuA production were introduced into the yeast Schizosaccharomyces pombe. Expression of PgFADX alone resulted in production of PuA at the level of 19.6% of total fatty acids. Co-expression PgFADX with PgFAD2, however, further enhanced PuA content to 25.1% of total fatty acids, the highest level reported to date for heterologous expression. Therefore, microbial systems can be considered as a potential alternative to plant sources for a source of PuA for nutraceutic applications.

  19. Two conserved modules of Schizosaccharomyces pombe Mediator regulate distinct cellular pathways

    Science.gov (United States)

    Linder, Tomas; Rasmussen, Nina N.; Samuelsen, Camilla O.; Chatzidaki, Emmanouella; Baraznenok, Vera; Beve, Jenny; Henriksen, Peter; Gustafsson, Claes M.; Holmberg, Steen

    2008-01-01

    Mediator is an evolutionary conserved coregulator complex required for transcription of almost all RNA polymerase II-dependent genes. The Schizosaccharomyces pombe Mediator consists of two dissociable components—a core complex organized into a head and middle domain as well as the Cdk8 regulatory subcomplex. In this work we describe a functional characterization of the S. pombe Mediator. We report the identification of the S. pombe Med20 head subunit and the isolation of ts alleles of the core head subunit encoding med17+. Biochemical analysis of med8ts, med17ts, Δmed18, Δmed20 and Δmed27 alleles revealed a stepwise head domain molecular architecture. Phenotypical analysis of Cdk8 and head module alleles including expression profiling classified the Mediator mutant alleles into one of two groups. Cdk8 module mutants flocculate due to overexpression of adhesive cell-surface proteins. Head domain-associated mutants display a hyphal growth phenotype due to defective expression of factors required for cell separation regulated by transcription factor Ace2. Comparison with Saccharomyces cerevisiae Mediator expression data reveals that these functionally distinct modules are conserved between S. pombe and S. cerevisiae. PMID:18310102

  20. Deubiquitinating activity of Sdu1, a putative member of the PPPDE peptidase family, in Schizosaccharomyces pombe.

    Science.gov (United States)

    Kim, Yunsik; Jo, Hannah; Lim, Chang-Jin

    2013-12-01

    The Schizosaccharomyces pombe sdu⁺ gene encoding a putative member of the PPPDE (Permuted Papain fold Peptidases of DsRNA viruses and Eukaryotes) superfamily was cloned into an Escherichia coli - yeast shuttle vector pRS316, resulting in the recombinant plasmid pYSTP. The determined nucleotide sequence carries 1207 bp, which would encode a protein of 201 amino acid residues. The S. pombe cells harboring pYSTP contained higher sdu1⁺ mRNA and deubiquitinating activity levels than the vector control cells, indicating that the sdu1⁺ gene is functioning. They exhibited a better growth in normal rich medium than the vector control cells. When shifted into the fresh medium containing hydrogen peroxide, menadione, or sodium nitroprusside, the S. pombe cells harboring pYSTP were able to grow reasonably well, while the growth of the vector control cells was arrested. The reactive oxygen species and total glutathione levels of the S. pombe cells harboring pYSTP were lower and higher than those of the vector control cells under the same stressful conditions, respectively. They exhibited a lower nitric oxide level than the vector control cells when subjected to sodium nitroprusside. Taken together, the sdu1⁺ gene encodes an actual protein having deubiquitinating activity and is involved in the response against oxidative and nitrosative stresses in S. pombe.

  1. RNAi mediates post-transcriptional repression of gene expression in fission yeast Schizosaccharomyces pombe

    Energy Technology Data Exchange (ETDEWEB)

    Smialowska, Agata, E-mail: smialowskaa@gmail.com [Center for Biosciences, Department of Biosciences and Nutrition, Karolinska Institute, Huddinge 141-83 (Sweden); School of Life Sciences, Södertörn Högskola, Huddinge 141-89 (Sweden); Djupedal, Ingela; Wang, Jingwen [Center for Biosciences, Department of Biosciences and Nutrition, Karolinska Institute, Huddinge 141-83 (Sweden); Kylsten, Per [School of Life Sciences, Södertörn Högskola, Huddinge 141-89 (Sweden); Swoboda, Peter [Center for Biosciences, Department of Biosciences and Nutrition, Karolinska Institute, Huddinge 141-83 (Sweden); Ekwall, Karl, E-mail: Karl.Ekwall@ki.se [Center for Biosciences, Department of Biosciences and Nutrition, Karolinska Institute, Huddinge 141-83 (Sweden); School of Life Sciences, Södertörn Högskola, Huddinge 141-89 (Sweden)

    2014-02-07

    Highlights: • Protein coding genes accumulate anti-sense sRNAs in fission yeast S. pombe. • RNAi represses protein-coding genes in S. pombe. • RNAi-mediated gene repression is post-transcriptional. - Abstract: RNA interference (RNAi) is a gene silencing mechanism conserved from fungi to mammals. Small interfering RNAs are products and mediators of the RNAi pathway and act as specificity factors in recruiting effector complexes. The Schizosaccharomyces pombe genome encodes one of each of the core RNAi proteins, Dicer, Argonaute and RNA-dependent RNA polymerase (dcr1, ago1, rdp1). Even though the function of RNAi in heterochromatin assembly in S. pombe is established, its role in controlling gene expression is elusive. Here, we report the identification of small RNAs mapped anti-sense to protein coding genes in fission yeast. We demonstrate that these genes are up-regulated at the protein level in RNAi mutants, while their mRNA levels are not significantly changed. We show that the repression by RNAi is not a result of heterochromatin formation. Thus, we conclude that RNAi is involved in post-transcriptional gene silencing in S. pombe.

  2. The protein and neutral lipid composition of lipid droplets isolated from the fission yeast, Schizosaccharomyces pombe.

    Science.gov (United States)

    Meyers, Alex; Chourey, Karuna; Weiskittel, Taylor M; Pfiffner, Susan; Dunlap, John R; Hettich, Robert L; Dalhaimer, Paul

    2017-02-01

    Lipid droplets consist of a core of neutral lipids surrounded by a phospholipid monolayer with bound proteins. Much of the information on lipid droplet function comes from proteomic and lipodomic studies that identify the components of droplets isolated from organisms throughout the phylogenetic tree. Here, we add to that important inventory by reporting lipid droplet factors from the fission yeast, Schizosaccharomyces pombe. Unique to this study was the fact that cells were cultured in three different environments: 1) late log growth phase in glucose-based media, 2) stationary phase in glucosebased media, and 3) late log growth phase in media containing oleic acid. We confirmed colocalization of major factors with lipid droplets using live-cell fluorescent microscopy. We also analyzed droplets from each of the three conditions for sterol ester (SE) and triacylglycerol (TAG) content, along with their respective fatty acid compositions. We identified a previously undiscovered lipid droplet protein, Vip1p, which affects droplet size distribution. The results provide further insight into the workings of these ubiquitous organelles.

  3. Global transcriptomic profiling of Schizosaccharomyces pombe in response to nitrosative stress.

    Science.gov (United States)

    Biswas, Pranjal; Ghosh, Sanjay

    2015-03-10

    Excess production of nitric oxide (NO) and reactive nitrogen intermediates (RNIs) cause nitrosative stress on cells. Schizosaccharomyces pombe was used as a model to study nitrosative stress response. This is the first report on the global gene expression profile in response to NO in S. pombe using microarray. Among the 4824 genes reported for S. pombe, 818 were differentially expressed by at least 2-fold upon NO donor treatment. We previously showed that Pap1, the Activator Protein 1 transcription factor is required to combat nitrosative stress. In this study, the transcriptional response to NO in a null mutant for pap1 identified 45 genes that seem to be controlled by Pap1. Surprisingly, Pap1 regulated genes in S. pombe were distinctly different under nitrosative stress than those reported under oxidative stress. Genes of the pathway meiosis, cell cycle, spliceosome and oxidative phosphorylation were mostly affected under nitrosative stress in the fission yeast. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Selected Schizosaccharomyces pombe Strains Have Characteristics That Are Beneficial for Winemaking

    Science.gov (United States)

    Benito, Ángel; Jeffares, Daniel; Palomero, Felipe; Calderón, Fernando; Bai, Feng-Yan; Bähler, Jürg; Benito, Santiago

    2016-01-01

    At present, wine is generally produced using Saccharomyces yeast followed by Oenococus bacteria to complete malolactic fermentation. This method has some unsolved problems, such as the management of highly acidic musts and the production of potentially toxic products including biogenic amines and ethyl carbamate. Here we explore the potential of the fission yeast Schizosaccharomyces pombe to solve these problems. We characterise an extensive worldwide collection of S. pombe strains according to classic biochemical parameters of oenological interest. We identify three genetically different S. pombe strains that appear suitable for winemaking. These strains compare favourably to standard Saccharomyces cerevisiae winemaking strains, in that they perform effective malic acid deacidification and significantly reduce levels of biogenic amines and ethyl carbamate precursors without the need for any secondary bacterial malolactic fermentation. These findings indicate that the use of certain S. pombe strains could be advantageous for winemaking in regions where malic acid is problematic, and these strains also show superior performance with respect to food safety. PMID:27007548

  5. Inositol Pyrophosphate Kinase Asp1 Modulates Chromosome Segregation Fidelity and Spindle Function in Schizosaccharomyces pombe.

    Science.gov (United States)

    Topolski, Boris; Jakopec, Visnja; Künzel, Natascha A; Fleig, Ursula

    2016-12-15

    Chromosome transmission fidelity during mitosis is of critical importance for the fitness of an organism, as mistakes will lead to aneuploidy, which has a causative role in numerous severe diseases. Proper segregation of chromosomes depends on interdependent processes at the microtubule-kinetochore interface and the spindle assembly checkpoint. Here we report the discovery of a new element essential for chromosome transmission fidelity that implicates inositol pyrophosphates (IPPs) as playing a key role in this process. The protein is Asp1, the Schizosaccharomyces pombe member of the highly conserved Vip1 family. Vip1 enzymes are bifunctional: they consist of an IPP-generating kinase domain and a pyrophosphatase domain that uses such IPPs as substrates. We show that Asp1 kinase function is required for bipolar spindle formation. The absence of Asp1-generated IPPs resulted in errors in sister chromatid biorientation, a prolonged checkpoint-controlled delay of anaphase onset, and chromosome missegregation. Remarkably, expression of Asp1 variants that generated higher-than-wild-type levels of IPPs led to a faster-than-wild-type entry into anaphase A without an increase in chromosome missegregation. In fact, the chromosome transmission fidelity of a nonessential chromosome was enhanced with increased cellular IPPs. Thus, we identified an element that optimized the wild-type chromosome transmission process. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  6. A Pap1-Oxs1 signaling pathway for disulfide stress in Schizosaccharomyces pombe.

    Science.gov (United States)

    He, Yumei; Chen, Yan; Song, Wen; Zhu, Lei; Dong, Zhicheng; Ow, David W

    2017-01-09

    We describe a Pap1-Oxs1 pathway for diamide-induced disulfide stress in Schizosaccharomyces pombe, where the nucleocytoplasmic HMG protein Oxs1 acts cooperatively with Pap1 to regulate transcription. Oxs1 and Pap1 form a complex when cells are exposed to diamide or Cd that causes disulfide stress. When examined for promoters up-regulated by diamide, effective Pap1 binding to these targets requires Oxs1, and vice versa. With some genes, each protein alone enhances transcription, but the presence of both exerts an additive positive effect. In other genes, although transcription is induced by diamide, Oxs1 or Pap1 plays a negative role with full de-repression requiring loss of both proteins. In a third class of genes, Oxs1 positively regulates expression, but in its absence, Pap1 plays a negative role. The Oxs1-Pap1 regulatory interaction appears evolutionarily conserved, as heterologous (human, mouse and Arabidopsis) Oxs1 and Pap1-homologues can bind interchangeably with each other in vitro, and at least in the fission yeast, heterologous Oxs1 and Pap1-homologues can substitute for S. pombe Oxs1 and Pap1 to enhance stress tolerance. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. In vitro reconstitution and biochemical analyses of the Schizosaccharomyces pombe nucleosome.

    Science.gov (United States)

    Koyama, Masako; Nagakura, Wataru; Tanaka, Hiroki; Kujirai, Tomoya; Chikashige, Yuji; Haraguchi, Tokuko; Hiraoka, Yasushi; Kurumizaka, Hitoshi

    2017-01-22

    Schizosaccharomyces pombe, which has a small genome but shares many physiological functions with higher eukaryotes, is a useful single-cell, model eukaryotic organism. In particular, many features concerning chromatin structure and dynamics, including heterochromatin, centromeres, telomeres, and DNA replication origins, are well conserved between S. pombe and higher eukaryotes. However, the S. pombe nucleosome, the fundamental structural unit of chromatin, has not been reconstituted in vitro. In the present study, we established the method to purify S. pombe histones H2A, H2B, H3, and H4, and successfully reconstituted the S. pombe nucleosome in vitro. Our thermal stability assay and micrococcal nuclease treatment assay revealed that the S. pombe nucleosome is markedly unstable and its DNA ends are quite accessible, as compared to the canonical human nucleosome. These findings are important to understand the mechanisms of epigenetic genomic DNA regulation in fission yeast. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Meiotic cohesin-based chromosome structure is essential for homologous chromosome pairing in Schizosaccharomyces pombe.

    Science.gov (United States)

    Ding, Da-Qiao; Matsuda, Atsushi; Okamasa, Kasumi; Nagahama, Yuki; Haraguchi, Tokuko; Hiraoka, Yasushi

    2016-06-01

    Chromosome structure is dramatically altered upon entering meiosis to establish chromosomal architectures necessary for the successful progression of meiosis-specific events. An early meiotic event involves the replacement of the non-SMC mitotic cohesins with their meiotic equivalents in most part of the chromosome, forming an axis on meiotic chromosomes. We previously demonstrated that the meiotic cohesin complex is required for chromosome compaction during meiotic prophase in the fission yeast Schizosaccharomyces pombe. These studies revealed that chromosomes are elongated in the absence of the meiotic cohesin subunit Rec8 and shortened in the absence of the cohesin-associated protein Pds5. In this study, using super-resolution structured illumination microscopy, we found that Rec8 forms a linear axis on chromosomes, which is required for the organized axial structure of chromatin during meiotic prophase. In the absence of Pds5, the Rec8 axis is shortened whereas chromosomes are widened. In rec8 or pds5 mutants, the frequency of homologous chromosome pairing is reduced. Thus, Rec8 and Pds5 play an essential role in building a platform to support the chromosome architecture necessary for the spatial alignment of homologous chromosomes.

  9. Restriction of Retrotransposon Mobilization in Schizosaccharomyces pombe by Transcriptional Silencing and Higher-Order Chromatin Organization.

    Science.gov (United States)

    Murton, Heather E; Grady, Patrick J R; Chan, Tsun Ho; Cam, Hugh P; Whitehall, Simon K

    2016-08-01

    Uncontrolled propagation of retrotransposons is potentially detrimental to host genome integrity. Therefore, cells have evolved surveillance mechanisms to restrict the mobility of these elements. In Schizosaccharomyces pombe the Tf2 LTR retrotransposons are transcriptionally silenced and are also clustered in the nucleus into structures termed Tf bodies. Here we describe the impact of silencing and clustering on the mobility of an endogenous Tf2 element. Deletion of genes such as set1(+) (histone H3 lysine 4 methyltransferase) or abp1(+) (CENP-B homolog) that both alleviate silencing and clustering, result in a corresponding increase in mobilization. Furthermore, expression of constitutively active Sre1, a transcriptional activator of Tf2 elements, also alleviates clustering and induces mobilization. In contrast, clustering is not disrupted by loss of the HIRA histone chaperone, despite high levels of expression, and in this background, mobilization frequency is only marginally increased. Thus, mutations that compromise transcriptional silencing but not Tf bodies are insufficient to drive mobilization. Furthermore, analyses of mutant alleles that separate the transcriptional repression and clustering functions of Set1 are consistent with control of Tf2 propagation via a combination of silencing and spatial organization. Our results indicate that host surveillance mechanisms operate at multiple levels to restrict Tf2 retrotransposon mobilization. Copyright © 2016 Murton et al.

  10. An Ancient Yeast for Young Geneticists: A Primer on the Schizosaccharomyces pombe Model System

    Science.gov (United States)

    Hoffman, Charles S.; Wood, Valerie; Fantes, Peter A.

    2015-01-01

    The fission yeast Schizosaccharomyces pombe is an important model organism for the study of eukaryotic molecular and cellular biology. Studies of S. pombe, together with studies of its distant cousin, Saccharomyces cerevisiae, have led to the discovery of genes involved in fundamental mechanisms of transcription, translation, DNA replication, cell cycle control, and signal transduction, to name but a few processes. However, since the divergence of the two species approximately 350 million years ago, S. pombe appears to have evolved less rapidly than S. cerevisiae so that it retains more characteristics of the common ancient yeast ancestor, causing it to share more features with metazoan cells. This Primer introduces S. pombe by describing the yeast itself, providing a brief description of the origins of fission yeast research, and illustrating some genetic and bioinformatics tools used to study protein function in fission yeast. In addition, a section on some key differences between S. pombe and S. cerevisiae is included for readers with some familiarity with budding yeast research but who may have an interest in developing research projects using S. pombe. PMID:26447128

  11. Multimodal control of transcription factor Pap1 in Schizosaccharomyces pombe under nitrosative stress.

    Science.gov (United States)

    Kar, Puranjoy; Biswas, Pranjal; Ghosh, Sanjay

    2017-07-15

    Schizosaccharomyces pombe Pap1, a bZIP transcription factor, is highly homologous to the mammalian c-Jun protein that belongs to the AP1 family of transcriptional regulators. The role of transcription factor Pap1 has been extensively studied under oxidative stress. Two cysteine residues in Pap1p namely, C278 and C501 form disulfide linkage under oxidative stress resulting in nuclear accumulation. We first time showed the involvement of Pap1 in the protection against nitrosative stress. In the present study we show that pap1 deletion makes growth of S. pombe sensitive to nitrosative stress. pap1 deletion also causes delayed recovery in terms of mitotic index under nitrosative stress. Our flow cytometry data shows that pap1 deletion causes slower recovery from the slowdown of DNA replication under nitrosative stress. This is the first report where we show that Pap1 transcription factor is localized in the nucleus under nitrosative stress. From our study it is evident that nuclear localization of Pap1 under nitrosative stress was not due to reactive oxygen species formation. Copyright © 2017. Published by Elsevier Inc.

  12. Mitochondrial superoxide dismutase deficiency accelerates chronological aging in the fission yeast Schizosaccharomyces pombe.

    Science.gov (United States)

    Ogata, Toshiya; Senoo, Takanori; Kawano, Shinji; Ikeda, Shogo

    2016-01-01

    A mitochondrial superoxide dismutase (SOD2) is the first line of antioxidant defense against mitochondrial superoxide. Even though the involvement of SOD2 in lifespan has been studied extensively in several organisms, characterization of the aging process has not been performed for the sod2 mutant (sod2Δ) of a prominent model Schizosaccharomyces pombe. In this study, we measured the chronological lifespan of sod2Δ cells by their ability to survive in long-term culture. SOD2 deficiency drastically decreased cell viability in the stationary phase. The mutation frequency of nuclear DNA in sod2Δ was elevated in the stationary phase, and cellular proteins and nuclear DNA were extensively degraded, concurrent with cell death. The sod2 gene in wild-type cells could be induced by an increase in endogenous oxidative stresses, after which, SOD2 activity was substantially elevated during the stationary phase. Culture in a lower glucose concentration (calorie restriction) prominently extended the sod2Δ lifespan. Therefore, S. pombe SOD2 plays a critical role in longevity through its upregulation in the non-dividing phase. © 2015 International Federation for Cell Biology.

  13. Expression, purification and biochemical characterization of Schizosaccharomyces pombe Mcm4, 6 and 7.

    Science.gov (United States)

    Xu, Meng; Chang, Y Paul; Chen, Xiaojiang S

    2013-02-27

    The hetero-hexamer of the eukaryotic minichromosome maintenance (MCM) proteins plays an essential role in replication of genomic DNA. The ring-shaped Mcm2-7 hexamers comprising one of each subunit show helicase activity in vitro, and form double-hexamers on DNA. The Mcm4/6/7 also forms a hexameric complex with helicase activity in vitro. We used an Escherichiai coli expression system to express various domains of Schizosaccharomyces pombe Mcm4, 6 and 7 in order to characterize their domain structure, oligomeric states, and possible inter-/intra-subunit interactions. We also successfully employed a co-expression system to express Mcm4/6/7 at the same time in Escherichiai coli, and have purified functional Mcm4/6/7 complex in a hexameric state in high yield and purity, providing a means for generating large quantity of proteins for future structural and biochemical studies. Based on our results and those of others, models were proposed for the subunit arrangement and architecture of both the Mcm4/6/7 hexamer and the Mcm2-7 double-hexamer.

  14. Caffeine stabilizes Cdc25 independently of Rad3 in Schizosaccharomyces pombe contributing to checkpoint override.

    Science.gov (United States)

    Alao, John P; Sjölander, Johanna J; Baar, Juliane; Özbaki-Yagan, Nejla; Kakoschky, Bianca; Sunnerhagen, Per

    2014-05-01

    Cdc25 is required for Cdc2 dephosphorylation and is thus essential for cell cycle progression. Checkpoint activation requires dual inhibition of Cdc25 and Cdc2 in a Rad3-dependent manner. Caffeine is believed to override activation of the replication and DNA damage checkpoints by inhibiting Rad3-related proteins in both Schizosaccharomyces pombe and mammalian cells. In this study, we have investigated the impact of caffeine on Cdc25 stability, cell cycle progression and checkpoint override. Caffeine induced Cdc25 accumulation in S. pombe independently of Rad3. Caffeine delayed cell cycle progression under normal conditions but advanced mitosis in cells treated with replication inhibitors and DNA-damaging agents. In the absence of Cdc25, caffeine inhibited cell cycle progression even in the presence of hydroxyurea or phleomycin. Caffeine induces Cdc25 accumulation in S. pombe by suppressing its degradation independently of Rad3. The induction of Cdc25 accumulation was not associated with accelerated progression through mitosis, but rather with delayed progression through cytokinesis. Caffeine-induced Cdc25 accumulation appears to underlie its ability to override cell cycle checkpoints. The impact of Cdc25 accumulation on cell cycle progression is attenuated by Srk1 and Mad2. Together our findings suggest that caffeine overrides checkpoint enforcement by inducing the inappropriate nuclear localization of Cdc25. © 2014 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.

  15. Protective roles of methionine-R-sulfoxide reductase against stresses in Schizosaccharomyces pombe.

    Science.gov (United States)

    Jo, Hannah; Cho, Young-Wook; Ji, Sun-Young; Kang, Ga-Young; Lim, Chang-Jin

    2014-01-01

    The Schizosaccharomyces pombe msrB(+) gene encoding methionine-R-sulfoxide reductase (MsrB) was cloned into the shuttle vector pRS316 to generate the recombinant plasmid pFMetSO. The msrB(+) mRNA level was significantly increased in the S. pombe cells harboring pFMetSO, indicating that the cloned msrB(+) gene is functioning. In the presence of 0.1 mM L-methionine-(R,S)-sulfoxide, the S. pombe cells harboring pFMetSO could grow normally but the growth of the vector control cells was almost arrested. The S. pombe cells harboring pFMetSO exhibited the enhanced growth on the minimal medium plates with stress-inducing agents, such as hydrogen peroxide, superoxide radical-generating menadione (MD), nitric oxide (NO)-generating sodium nitroprusside (SNP), and cadmium (Cd), when compared with the vector control cells. They also gave rise to the enhanced growth at the high incubation temperature of 37 °C than the vector control cells. The S. pombe cells harboring pFMetSO contained lower reactive oxygen species (ROS) and higher total glutathione (GSH) levels than the vector control cells. In brief, the S. pombe MsrB plays a protective role against oxidative, nitrosative, and thermal stresses, and is involved in diminishing intracellular ROS level. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Nitric oxide signaling and its role in oxidative stress response in Schizosaccharomyces pombe.

    Science.gov (United States)

    Astuti, Rika Indri; Watanabe, Daisuke; Takagi, Hiroshi

    2016-01-30

    In the fission yeast Schizosaccharomyces pombe, we found that the putative NO dioxygenase SPAC869.02c (named Yhb1) and the S-nitrosoglutathione reductase Fmd2 cooperatively reduced intracellular NO levels as NO-detoxification enzymes. Although both mRNA and protein levels were increased with exogenous NO, their expression patterns were different during growth phases. While treatment with an NO synthase inhibitor in the log phase abrogated both NO production and Yhb1 expression, induction of Fmd2 in the stationary phase was correlated with elevated mitochondrial respiratory chain (MRC) activity, confirmed by the fact that inhibition of MRC complex III led to a decrease in Fmd2 and NO levels. Moreover, NO was localized in the mitochondria in the stationary phase, suggesting that there are two distinctive types of NO signaling in S. pombe. For mitochondria, pretreatment with an NO donor rescued cell growth by repressing generation of reactive oxygen species (ROS) under oxidative stress. DNA microarray analysis revealed that exogenous NO contributes to tolerance to hydrogen peroxide (H2O2) by (i) inhibition of Fe(3+) to Fe(2+) conversion, (ii) upregulation of the H2O2-detoxifying enzymes, and (iii) downregulation of the MRC genes, suggesting that NO plays a pivotal role in the negative feedback system to regulate ROS levels in S. pombe. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Functional architecture of the Reb1-Ter complex of Schizosaccharomyces pombe.

    Science.gov (United States)

    Jaiswal, Rahul; Choudhury, Malay; Zaman, Shamsu; Singh, Samarendra; Santosh, Vishaka; Bastia, Deepak; Escalante, Carlos R

    2016-04-19

    Reb1 ofSchizosaccharomyces pomberepresents a family of multifunctional proteins that bind to specific terminator sites (Ter) and cause polar termination of transcription catalyzed by RNA polymerase I (pol I) and arrest of replication forks approaching the Ter sites from the opposite direction. However, it remains to be investigated whether the same mechanism causes arrest of both DNA transactions. Here, we present the structure of Reb1 as a complex with a Ter site at a resolution of 2.7 Å. Structure-guided molecular genetic analyses revealed that it has distinct and well-defined DNA binding and transcription termination (TTD) domains. The region of the protein involved in replication termination is distinct from the TTD. Mechanistically, the data support the conclusion that transcription termination is not caused by just high affinity Reb1-Ter protein-DNA interactions. Rather, protein-protein interactions between the TTD with the Rpa12 subunit of RNA pol I seem to be an integral part of the mechanism. This conclusion is further supported by the observation that double mutations in TTD that abolished its interaction with Rpa12 also greatly reduced transcription termination thereby revealing a conduit for functional communications between RNA pol I and the terminator protein.

  18. A simplified vector system for visualization of localized RNAs in Schizosaccharomyces pombe.

    Science.gov (United States)

    Takeuchi-Andoh, Tomoko; Ohba, Sayaka; Shinoda, Yu; Fuchita, Ayako; Hayashi, Sachiko; Nishiyoshi, Emi; Terouchi, Nobuyuki; Tani, Tokio

    2016-07-01

    RNA localization is an important event that is essential for the polarization and differentiation of a cell. Although several methods are currently used to detect localized RNAs, a simplified detection system has not yet been developed for Schizosaccharomyces pombe. In the present study, we describe a new vector system for the visualization of localized RNAs in S. pombe using a U1A-tag-GFP system. A pREP1-U1A-tag vector plasmid to express U1A-tagged RNA and a pREP2-U1AGFP plasmid to produce a U1A-GFP fusion protein were constructed for this system. Since the U1A-GFP protein binds U1A-tagged RNA, fluorescence is observed at the location of U1A-tagged RNA in cells expressing both of these. The nucleolar localization of U3 snoRNA was successfully detected using this system, and a novel RNA localized at the DNA region of the nucleus was found by screening localized RNAs. This system will accelerate the study of localized RNAs in S. pombe.

  19. RNAi mediates post-transcriptional repression of gene expression in fission yeast Schizosaccharomyces pombe.

    Science.gov (United States)

    Smialowska, Agata; Djupedal, Ingela; Wang, Jingwen; Kylsten, Per; Swoboda, Peter; Ekwall, Karl

    2014-02-07

    RNA interference (RNAi) is a gene silencing mechanism conserved from fungi to mammals. Small interfering RNAs are products and mediators of the RNAi pathway and act as specificity factors in recruiting effector complexes. The Schizosaccharomyces pombe genome encodes one of each of the core RNAi proteins, Dicer, Argonaute and RNA-dependent RNA polymerase (dcr1, ago1, rdp1). Even though the function of RNAi in heterochromatin assembly in S. pombe is established, its role in controlling gene expression is elusive. Here, we report the identification of small RNAs mapped anti-sense to protein coding genes in fission yeast. We demonstrate that these genes are up-regulated at the protein level in RNAi mutants, while their mRNA levels are not significantly changed. We show that the repression by RNAi is not a result of heterochromatin formation. Thus, we conclude that RNAi is involved in post-transcriptional gene silencing in S. pombe. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Increased meiotic crossovers and reduced genome stability in absence of Schizosaccharomyces pombe Rad16 (XPF).

    Science.gov (United States)

    Mastro, Tara L; Forsburg, Susan L

    2014-12-01

    Schizosaccharomyces pombe Rad16 is the ortholog of the XPF structure-specific endonuclease, which is required for nucleotide excision repair and implicated in the single strand annealing mechanism of recombination. We show that Rad16 is important for proper completion of meiosis. In its absence, cells suffer reduced spore viability and abnormal chromosome segregation with evidence for fragmentation. Recombination between homologous chromosomes is increased, while recombination within sister chromatids is reduced, suggesting that Rad16 is not required for typical homolog crossovers but influences the balance of recombination between the homolog and the sister. In vegetative cells, rad16 mutants show evidence for genome instability. Similar phenotypes are associated with mutants affecting Rhp14(XPA) but are independent of other nucleotide excision repair proteins such as Rad13(XPG). Thus, the XPF/XPA module of the nucleotide excision repair pathway is incorporated into multiple aspects of genome maintenance even in the absence of external DNA damage. Copyright © 2014 by the Genetics Society of America.

  1. Casein kinase 2 inhibits HomolD-directed transcription by Rrn7 in Schizosaccharomyces pombe.

    Science.gov (United States)

    Moreira-Ramos, Sandra; Rojas, Diego A; Montes, Matías; Urbina, Fabiola; Miralles, Vicente J; Maldonado, Edio

    2015-02-01

    In Schizosaccharomyces pombe, ribosomal protein gene (RPG) promoters contain a TATA analogue element called the HomolD box. The HomolD-binding protein Rrn7 forms a complex with the RNA polymerase II machinery. Despite the importance of ribosome biogenesis to cell survival, the mechanisms involved in the regulation of transcription of eukaryotic RPGs are unknown. In this study, we identified Rrn7 as a new substrate of the pleiotropic casein kinase 2 (CK2), which is a regulator of basal transcription. Recombinant Rrn7 from S. pombe, which is often used as a model organism for studying eukaryotic transcription, interacted with CK2 in vitro and in vivo. Furthermore, CK2-mediated phosphorylation of Rrn7 inhibited its HomolD-directed transcriptional activity and ability to bind to an oligonucleotide containing a HomolD box in vitro. Mutation of Rrn7 at Thr67 abolished these effects, indicating that this residue is a critical CK2 phosphorylation site. Finally, Rrn7 interacted with the regulatory subunit of CK2 in vivo, inhibition of CK2 in vivo potentiated ribosomal protein gene transcription, and chromatin immunoprecipitation analyses identified that the catalytic subunit of CK2 was associated with the rpk5 gene promoter in S. pombe. Taken together, these data suggest that CK2 inhibits ribosomal protein gene transcription in S. pombe via phosphorylation of Rrn7 at Thr67. © 2014 FEBS.

  2. An Ancient Yeast for Young Geneticists: A Primer on the Schizosaccharomyces pombe Model System.

    Science.gov (United States)

    Hoffman, Charles S; Wood, Valerie; Fantes, Peter A

    2015-10-01

    The fission yeast Schizosaccharomyces pombe is an important model organism for the study of eukaryotic molecular and cellular biology. Studies of S. pombe, together with studies of its distant cousin, Saccharomyces cerevisiae, have led to the discovery of genes involved in fundamental mechanisms of transcription, translation, DNA replication, cell cycle control, and signal transduction, to name but a few processes. However, since the divergence of the two species approximately 350 million years ago, S. pombe appears to have evolved less rapidly than S. cerevisiae so that it retains more characteristics of the common ancient yeast ancestor, causing it to share more features with metazoan cells. This Primer introduces S. pombe by describing the yeast itself, providing a brief description of the origins of fission yeast research, and illustrating some genetic and bioinformatics tools used to study protein function in fission yeast. In addition, a section on some key differences between S. pombe and S. cerevisiae is included for readers with some familiarity with budding yeast research but who may have an interest in developing research projects using S. pombe. Copyright © 2015 by the Genetics Society of America.

  3. Identification of two forms of the Eso1 protein in Schizosaccharomyces pombe.

    Science.gov (United States)

    Chen, Zhiming; Cao, Hongshi; Guo, Weichao; Lu, Yingqiang

    2014-05-01

    In Schizosaccharomyces pombe, Eso1p is a protein fusion. Two-thirds of its N-terminus is conserved to budding yeast Rad30, which functions in error-free replication of UV-damaged DNA. A third of the C-terminus is highly conserved to budding yeast Eco1, a lysine acetyltransferase, which is essential for the establishment of cohesion. Both Rad30p and Eco1p need to be finely tuned in budding yeast. Given the distinct function existed in Rad30p and Eco1p, it is enigmatic how the Eso1p, the protein fusion regulated in S. pombe, works. We have identified two forms of the Eso1 protein by Western blot, and detected the Eco1-homology fragment by M/S analysis following TAP purification of Eso1 protein. The result raises the possibility that Eso1 might be processed in vivo to release the Eco1-homology fragment, which allows the independent regulation of Rad30-homology and Eco1-homology fragments. © 2013 International Federation for Cell Biology.

  4. Quantitative PCR for detection of DNA damage in mitochondrial DNA of the fission yeast Schizosaccharomyces pombe.

    Science.gov (United States)

    Senoo, Takanori; Yamanaka, Mayumi; Nakamura, Atori; Terashita, Tomoki; Kawano, Shinji; Ikeda, Shogo

    2016-08-01

    Quantitative polymerase chain reaction (QPCR) has been employed to detect DNA damage and repair in mitochondrial DNA (mtDNA) of human and several model organisms. The assay also permits the quantitation of relative mtDNA copy number in cells. Here, we developed the QPCR assay primers and reaction conditions for the fission yeast Schizosaccharomyces pombe, an important model of eukaryote biology, not previously described. Under these conditions, long targets (approximately 10kb) in mtDNA were quantitatively amplified using 0.1ng of crude DNA templates without isolation of mitochondria and mtDNA. Quantitative detection of oxidative DNA damage in mtDNA was illustrated by using a DNA template irradiated with UVA in the presence of riboflavin. The damage to mtDNA in S. pombe cells treated with hydrogen peroxide and paraquat was also quantitatively measured. Finally, we found that mtDNA copy number in S. pombe cells increased after transition into a stationary phase and that the damage to mtDNA due to endogenous cellular processes accumulated during chronological aging. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Functional Analysis of the Chloroplast Division Complex Using Schizosaccharomyces pombe as a Heterologous Expression System.

    Science.gov (United States)

    TerBush, Allan D; Porzondek, Chris A; Osteryoung, Katherine W

    2016-04-01

    Chloroplast division is driven by a macromolecular complex that assembles at the midplastid. The FtsZ ring (Z ring) is the central structure in this complex, and is composed of the functionally distinct cytoskeletal proteins FtsZ1 and FtsZ2. Recent studies in the heterologous Schizosaccharomyces pombe system showed that Arabidopsis FtsZ1 and FtsZ2 filaments have distinct assembly and turnover characteristics. To further analyze these FtsZs, we employed this system to compare the assembly and dynamic properties of FtsZ1 and FtsZ2 lacking their N- and/or C-termini with those of their full-length counterparts. Our data provide evidence that the N-terminus of FtsZ2 is critical for its structural dominance over FtsZ1, and that the N- and C-termini promote polymer bundling and turnover of both FtsZs and contribute to their distinct behaviors. We also assessed how ARC6 affects FtsZ2 filament dynamics, and found that it interacts with and stabilizes FtsZ2 filaments in S. pombe independent of its presumed Z-ring tethering function in planta. Finally, we generated FtsZ1-FtsZ2 coexpression constructs to facilitate reconstitution of more complex interaction networks. Our experiments yield new insight into factors influencing FtsZ behavior and highlight the utility of S. pombe for analyzing chloroplast FtsZs and their assembly regulators.

  6. Two-step activation of meiosis by the mat1 locus in Schizosaccharomyces pombe

    DEFF Research Database (Denmark)

    Willer, M; Hoffmann, Ulla-Lisbeth; Styrkársdóttir, U

    1995-01-01

    The mat1 locus is a key regulator of both conjugation and meiosis in the fission yeast Schizosaccharomyces pombe. Two alternative DNA segments of this locus, mat1-P and mat1-M, specify the haploid cell types (Plus and Minus). Each segment includes two genes: mat1-P includes mat1-Pc and mat1-Pm...... in which the mat1 locus plays two roles in controlling meiosis. In the first instance, the mat1-Pc and mat1-Mc functions are required to produce the mating pheromones and receptors that allow the generation of a pheromone signal. This signal is required to induce the expression of mat1-Pm and mat1-Mm....... This appears to be the major pheromone-dependent step in controlling meiosis since ectopic expression of these genes allows meiosis in the absence of mat1-Pc and mat1-Mc. The mat1-Pm and mat1-Mm products complete the initiation of meiosis by activating transcription of the mei3 gene....

  7. Dma1-dependent degradation of SIN proteins during meiosis in Schizosaccharomyces pombe.

    Science.gov (United States)

    Krapp, Andrea; Simanis, Viesturs

    2014-07-15

    The Schizosaccharomyces pombe septation initiation network (SIN) is required for cytokinesis during vegetative growth and for spore formation during meiosis. Regulation of the SIN during mitosis has been studied extensively, but less is known about its meiotic regulation. Here, we show that several aspects of SIN regulation differ between mitosis and meiosis. First, the presence of GTP-bound Spg1p is not the main determinant of the timing of Cdc7p and Sid1p association with the spindle pole body (SPB) during meiosis. Second, the localisation dependencies of SIN proteins differ from those in mitotic cells, suggesting a modified functional organisation of the SIN during meiosis. Third, there is stage-specific degradation of SIN components in meiosis; Byr4p is degraded after meiosis I, whereas the degradation of Cdc7p, Cdc11p and Sid4p occurs after the second meiotic division and depends upon the ubiquitin ligase Dma1p. Finally, Dma1p-dependent degradation is not restricted to the SIN, as we show that Dma1p is needed for the degradation of Mcp6p (also known as Hrs1p) during meiosis I. Taken together, these data suggest that stage-specific targeted proteolysis plays an important role in regulating meiotic progression. © 2014. Published by The Company of Biologists Ltd.

  8. Schizosaccharomyces pombe disaggregation machinery chaperones support Saccharomyces cerevisiae growth and prion propagation.

    Science.gov (United States)

    Reidy, Michael; Sharma, Ruchika; Masison, Daniel C

    2013-05-01

    Hsp100 chaperones protect microorganisms and plants from environmental stress by cooperating with Hsp70 and its nucleotide exchange factor (NEF) and Hsp40 cochaperones to resolubilize proteins from aggregates. The Saccharomyces cerevisiae Hsp104 (Sc-Hsp104)-based disaggregation machinery also is essential for replication of amyloid-based prions. Escherichia coli ClpB can substitute for Hsp104 to propagate [PSI(+)] prions in yeast, but only if E. coli DnaK and GrpE (Hsp70 and NEF) are coexpressed. Here, we tested if the reported inability of Schizosaccharomyces pombe Hsp104 (Sp-Hsp104) to support [PSI(+)] propagation was due to similar species-specific chaperone requirements and find that Sp-Hsp104 alone supported propagation of three different yeast prions. Sp-Hsp70 and Sp-Fes1p (NEF) likewise functioned in place of their Sa. cerevisiae counterparts. Thus, chaperones of these long-diverged species possess conserved activities that function in processes essential for both cell growth and prion propagation, suggesting Sc. pombe can propagate its own prions. We show that curing by Hsp104 overexpression and inactivation can be distinguished and confirm the observation that, unlike Sc-Hsp104, Sp-Hsp104 cannot cure yeast of [PSI(+)] when it is overexpressed. These results are consistent with a view that mechanisms underlying prion replication and elimination are distinct.

  9. De novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and baker's yeast (Saccharomyces cerevisiae).

    Science.gov (United States)

    Hansen, Esben H; Møller, Birger Lindberg; Kock, Gertrud R; Bünner, Camilla M; Kristensen, Charlotte; Jensen, Ole R; Okkels, Finn T; Olsen, Carl E; Motawia, Mohammed S; Hansen, Jørgen

    2009-05-01

    Vanillin is one of the world's most important flavor compounds, with a global market of 180 million dollars. Natural vanillin is derived from the cured seed pods of the vanilla orchid (Vanilla planifolia), but most of the world's vanillin is synthesized from petrochemicals or wood pulp lignins. We have established a true de novo biosynthetic pathway for vanillin production from glucose in Schizosaccharomyces pombe, also known as fission yeast or African beer yeast, as well as in baker's yeast, Saccharomyces cerevisiae. Productivities were 65 and 45 mg/liter, after introduction of three and four heterologous genes, respectively. The engineered pathways involve incorporation of 3-dehydroshikimate dehydratase from the dung mold Podospora pauciseta, an aromatic carboxylic acid reductase (ACAR) from a bacterium of the Nocardia genus, and an O-methyltransferase from Homo sapiens. In S. cerevisiae, the ACAR enzyme required activation by phosphopantetheinylation, and this was achieved by coexpression of a Corynebacterium glutamicum phosphopantetheinyl transferase. Prevention of reduction of vanillin to vanillyl alcohol was achieved by knockout of the host alcohol dehydrogenase ADH6. In S. pombe, the biosynthesis was further improved by introduction of an Arabidopsis thaliana family 1 UDP-glycosyltransferase, converting vanillin into vanillin beta-D-glucoside, which is not toxic to the yeast cells and thus may be accumulated in larger amounts. These de novo pathways represent the first examples of one-cell microbial generation of these valuable compounds from glucose. S. pombe yeast has not previously been metabolically engineered to produce any valuable, industrially scalable, white biotech commodity.

  10. Analysis of substrate specificity of Schizosaccharomyces pombe Mag1 alkylpurine DNA glycosylase

    Energy Technology Data Exchange (ETDEWEB)

    Adhikary, Suraj; Eichman, Brandt F. (Vanderbilt)

    2014-10-02

    DNA glycosylases specialized for the repair of alkylation damage must identify, with fine specificity, a diverse array of subtle modifications within DNA. The current mechanism involves damage sensing through interrogation of the DNA duplex, followed by more specific recognition of the target base inside the active site pocket. To better understand the physical basis for alkylpurine detection, we determined the crystal structure of Schizosaccharomyces pombe Mag1 (spMag1) in complex with DNA and performed a mutational analysis of spMag1 and the close homologue from Saccharomyces cerevisiae (scMag). Despite strong homology, spMag1 and scMag differ in substrate specificity and cellular alkylation sensitivity, although the enzymological basis for their functional differences is unknown. We show that Mag preference for 1,N{sup 6}-ethenoadenine ({var_epsilon}A) is influenced by a minor groove-interrogating residue more than the composition of the nucleobase-binding pocket. Exchanging this residue between Mag proteins swapped their {var_epsilon}A activities, providing evidence that residues outside the extrahelical base-binding pocket have a role in identification of a particular modification in addition to sensing damage.

  11. Isolation and characterization of ethanol-producing Schizosaccharomyces pombe CHFY0201.

    Science.gov (United States)

    Choi, Gi-Wook; Um, Hyun-Ju; Kim, Mina; Kim, Yule; Kang, Hyun-Woo; Chung, Bong-Woo; Kim, Yang-Hoon

    2010-04-01

    Ethanol-producing yeast strain, CHFY0201 was isolated from soil in South Korea using an enrichment technique in a yeast peptone dextrose medium supplemented with 5% (w/v) ethanol at 30 degrees C. The phenotypic and physiological characteristics, as well as molecular phylogenetic analysis based on the D1/D2 domains of the large subunit (26S) rDNA gene and the internally transcribed spacer (ITS) 1+2 regions suggested that the CHFY0201 was novel strain of Schizosaccharomyces pombe. During shaking flask cultivation, the highest ethanol productivity and theoretical yield of S. pombe CHFY0201 in YPD media containing 9.5% total sugars was 0.59 +/- 0.01 g/l/h and 88.4 +/- 0.91%, respectively. Simultaneous saccharification and fermentation for ethanol production was carried out using liquefied cassava (Manihot esculenta) powder in a 5 l lab-scale jar fermenter at 32 degrees C for 66 h with an agitation speed of 120 rpm. Under these conditions, S. pombe CHFY0201 yielded a final ethanol concentration of 72.1 +/- 0.27 g/l and a theoretical yield of 82.7 +/- 1.52% at a maximum ethanol productivity of 1.16 +/- 0.07 g/l/h. These results suggest that S. pombe CHFY0201 is a potential producer for industrial bioethanol production.

  12. Selected Schizosaccharomyces pombe Strains Have Characteristics That Are Beneficial for Winemaking.

    Directory of Open Access Journals (Sweden)

    Ángel Benito

    Full Text Available At present, wine is generally produced using Saccharomyces yeast followed by Oenococus bacteria to complete malolactic fermentation. This method has some unsolved problems, such as the management of highly acidic musts and the production of potentially toxic products including biogenic amines and ethyl carbamate. Here we explore the potential of the fission yeast Schizosaccharomyces pombe to solve these problems. We characterise an extensive worldwide collection of S. pombe strains according to classic biochemical parameters of oenological interest. We identify three genetically different S. pombe strains that appear suitable for winemaking. These strains compare favourably to standard Saccharomyces cerevisiae winemaking strains, in that they perform effective malic acid deacidification and significantly reduce levels of biogenic amines and ethyl carbamate precursors without the need for any secondary bacterial malolactic fermentation. These findings indicate that the use of certain S. pombe strains could be advantageous for winemaking in regions where malic acid is problematic, and these strains also show superior performance with respect to food safety.

  13. Analysis of the structural genes encoding M-factor in the fission yeast Schizosaccharomyces pombe: identification of a third gene, mfm3

    DEFF Research Database (Denmark)

    Kjaerulff, S; Davey, William John; Nielsen, O

    1994-01-01

    We previously identified two genes, mfm1 and mfm2, with the potential to encode the M-factor mating pheromone of the fission yeast Schizosaccharomyces pombe (J. Davey, EMBO J. 11:951-960, 1992), but further analysis revealed that a mutant strain lacking both genes still produced active M-factor. ......We previously identified two genes, mfm1 and mfm2, with the potential to encode the M-factor mating pheromone of the fission yeast Schizosaccharomyces pombe (J. Davey, EMBO J. 11:951-960, 1992), but further analysis revealed that a mutant strain lacking both genes still produced active M...

  14. The major role of human AP-endonuclease homolog Apn2 in repair of abasic sites in Schizosaccharomyces pombe

    OpenAIRE

    Ribar, Balazs; Izumi, Tadahide; Mitra, Sankar

    2004-01-01

    The abasic (AP) sites, the major mutagenic and cytotoxic genomic lesions, induced directly by oxidative stress and indirectly after excision of damaged bases by DNA glycosylases, are repaired by AP-endonucleases (APEs). Among two APEs in Saccharomyces cerevisiae, Apn1 provides the major APE activity, and Apn2, the ortholog of the mammalian APE, provides back-up activity. We have cloned apn1 and apn2 genes of Schizosaccharomyces pombe, and have shown that inactivation of Apn2 and not Apn1 sens...

  15. Functional conservation between Schizosaccharomyces pombe ste8 and Saccharomyces cerevisiae STE11 protein kinases in yeast signal transduction

    DEFF Research Database (Denmark)

    Styrkársdóttir, U; Egel, R; Nielsen, O

    1992-01-01

    In fission yeast (Schizosaccharomyces pombe), the mat1-Pm gene, which is required for entry into meiosis, is expressed in response to a pheromone signal. Cells carrying a mutation in the ste8 gene are unable to induce transcription of mat1-Pm in response to pheromone, suggesting that the ste8 gene...... in signal transduction in budding yeast. Expression of the S. cerevisiae STE11 gene in S. pombe ste8 mutants restores the ability to transcribe mat1-Pm in response to pheromone. Also, such cells become capable of conjugation and sporulation. When mat1-Pm is artifically expressed from a heterologous promoter...

  16. Identification of the functional domains of the telomere protein Rap1 in Schizosaccharomyces pombe.

    Directory of Open Access Journals (Sweden)

    Ikumi Fujita

    Full Text Available The telomere at the end of a linear chromosome plays crucial roles in genome stability. In the fission yeast Schizosaccharomyces pombe, the Rap1 protein, one of the central players at the telomeres, associates with multiple proteins to regulate various telomere functions, such as the maintenance of telomere DNA length, telomere end protection, maintenance of telomere heterochromatin, and telomere clustering in meiosis. The molecular bases of the interactions between Rap1 and its partners, however, remain largely unknown. Here, we describe the identification of the interaction domains of Rap1 with its partners. The Bqt1/Bqt2 complex, which is required for normal meiotic progression, Poz1, which is required for telomere length control, and Taz1, which is required for the recruitment of Rap1 to telomeres, bind to distinct domains in the C-terminal half of Rap1. Intriguingly, analyses of a series of deletion mutants for rap1(+ have revealed that the long N-terminal region (1-456 a.a. [amino acids] of Rap1 (full length: 693 a.a. is not required for telomere DNA length control, telomere end protection, and telomere gene silencing, whereas the C-terminal region (457-693 a.a. containing Poz1- and Taz1-binding domains plays important roles in those functions. Furthermore, the Bqt1/Bqt2- and Taz1-binding domains are essential for normal spore formation after meiosis. Our results suggest that the C-terminal half of Rap1 is critical for the primary telomere functions, whereas the N-terminal region containing the BRCT (BRCA1 C-terminus and Myb domains, which are evolutionally conserved among the Rap1 family proteins, does not play a major role at the telomeres.

  17. Plasmid construction using recombination activity in the fission yeast Schizosaccharomyces pombe.

    Science.gov (United States)

    Chino, Ayako; Watanabe, Kenji; Moriya, Hisao

    2010-03-11

    Construction of plasmids is crucial in modern genetic manipulation. As of now, the common method for constructing plasmids is to digest specific DNA sequences with restriction enzymes and to ligate the resulting DNA fragments with DNA ligase. Another potent method to construct plasmids, known as gap-repair cloning (GRC), is commonly used in the budding yeast Saccharomyces cerevisiae. GRC makes use of the homologous recombination activity that occurs within the yeast cells. Due to its flexible design and efficiency, GRC has been frequently used for constructing plasmids with complex structures as well as genome-wide plasmid collections. Although there have been reports indicating GRC feasibility in the fission yeast Schizosaccharomyces pombe, this species is not commonly used for GRC as systematic studies of reporting GRC efficiency in S. pombe have not been performed till date. We investigated GRC efficiency in S. pombe in this study. We first showed that GRC was feasible in S. pombe by constructing a plasmid that contained the LEU2 auxotrophic marker gene in vivo and showed sufficient efficiency with short homology sequences (>25 bp). No preference was shown for the sequence length from the cut site in the vector plasmid. We next showed that plasmids could be constructed in a proper way using 3 DNA fragments with 70% efficiency without any specific selections being made. The GRC efficiency with 3 DNA fragments was dramatically increased >95% in lig4Delta mutant cell, where non-homologous end joining is deficient. Following this approach, we successfully constructed plasmid vectors with leu1+, ade6+, his5+, and lys1+ markers with the low-copy stable plasmid pDblet as a backbone by applying GRC in S. pombe. We concluded that GRC was sufficiently feasible in S. pombe for genome-wide gene functional analysis as well as for regular plasmid construction. Plasmids with different markers constructed in this research are available from NBRP-yeast (http://yeast.lab.nig.ac.jp/).

  18. Genetic Interaction Landscape Reveals Critical Requirements for Schizosaccharomyces pombe Brc1 in DNA Damage Response Mutants.

    Science.gov (United States)

    Sánchez, Arancha; Roguev, Assen; Krogan, Nevan J; Russell, Paul

    2015-03-19

    Brc1, which was first identified as a high-copy, allele-specific suppressor of a mutation impairing the Smc5-Smc6 holocomplex in Schizosaccharomyces pombe, protects genome integrity during normal DNA replication and when cells are exposed to toxic compounds that stall or collapse replication forks. The C-terminal tandem BRCT (BRCA1 C-terminus) domain of fission yeast Brc1 docks with phosphorylated histone H2A (γH2A)-marked chromatin formed by ATR/Rad3 checkpoint kinase at arrested and damaged replication forks; however, how Brc1 functions in relation to other genome protection modules remains unclear. Here, an epistatic mini-array profile reveals critical requirements for Brc1 in mutants that are defective in multiple DNA damage response pathways, including checkpoint signaling by Rad3-Rad26/ATR-ATRIP kinase, DNA repair by Smc5-Smc6 holocomplex, replication fork stabilization by Mrc1/claspin and Swi1-Swi3/Timeless-Tipin, and control of ubiquitin-regulated proteolysis by the COP9 signalosome (CSN). Exogenous genotoxins enhance these negative genetic interactions. Rad52 and RPA foci are increased in CSN-defective cells, and loss of γH2A increases genotoxin sensitivity, indicating a critical role for the γH2A-Brc1 module in stabilizing replication forks in CSN-defective cells. A negative genetic interaction with the Nse6 subunit of Smc5-Smc6 holocomplex indicates that the DNA repair functions of Brc1 and Smc5-Smc6 holocomplex are at least partially independent. Rtt107, the Brc1 homolog in Saccharomyces cerevisiae, has a very different pattern of genetic interactions, indicating evolutionary divergence of functions and DNA damage responses. Copyright © 2015 Sánchez et al.

  19. Characterization of Tamoxifen as an Antifungal Agent Using the Yeast Schizosaccharomyces Pombe Model Organism.

    Science.gov (United States)

    Zhang, Xibo; Fang, Yue; Jaiseng, Wurentuya; Hu, Lingling; Lu, Yabin; Ma, Yan; Furuyashiki, Tomoyuki

    2015-10-09

    Tamoxifen, a selective estrogen receptor modulator used for managing breast cancer, is known to have antifungal activity. However, its molecular mechanism remains unknown. Using the fission yeast Schizosaccharomyces pombe as a model organism, we have explored the mechanism involved in antifungal action of tamoxifen. Since tamoxifen was shown to inhibit the binding of calmodulin to calcineurin in fungi, we first examined involvement of these molecules and found that overexpression of a catalytic subunit of calcineurin and its constitutively active mutant as well as calmodulin increases tamoxifen sensitivity. Since terbinafine and azoles inhibit enzymes for ergosterol biosynthesis, Erg1 and Erg11, for their antifungal actions, we also examined involvement of these molecules. Overexpression of Erg1 and Erg11 reduced the sensitivity to terbinafine and azoles, respectively, but increased tamoxifen sensitivity, suggesting that ergosterol biosynthesis is differently related to the action of tamoxifen and those of terbinafine and azoles. To elucidate molecules involved in tamoxifen action, we performed a genome-wide screen for altered sensitivity to tamoxifen using a fission yeast gene deletion library, and identified various hypersensitive and resistant mutants to this drug. Notably, these mutants are rarely overlapped with those identified in similar genetic screens with currently used antifungals, suggesting a novel mode of antifungal action. Furthermore, tamoxifen augmented antifungal actions of terbinafine and azoles, suggesting synergetic actions between these drugs. Therefore, our findings suggest that calmodulin-calcineurin pathway and ergosterol biosynthesis are related to antifungal action of tamoxifen, and propose novel targets for antifungal development as well as combined therapy with tamoxifen for fungal diseases.

  20. Characterization of nuclear pore complex components in fission yeast Schizosaccharomyces pombe

    Science.gov (United States)

    Asakawa, Haruhiko; Yang, Hui-Ju; Yamamoto, Takaharu G; Ohtsuki, Chizuru; Chikashige, Yuji; Sakata-Sogawa, Kumiko; Tokunaga, Makio; Iwamoto, Masaaki; Hiraoka, Yasushi; Haraguchi, Tokuko

    2014-01-01

    The nuclear pore complex (NPC) is an enormous proteinaceous complex composed of multiple copies of about 30 different proteins called nucleoporins. In this study, we analyzed the composition of the NPC in the model organism Schizosaccharomyces pombe using strains in which individual nucleoporins were tagged with GFP. We identified 31 proteins as nucleoporins by their localization to the nuclear periphery. Gene disruption analysis in previous studies coupled with gene disruption analysis in the present study indicates that 15 of these nucleoporins are essential for vegetative cell growth and the other 16 nucleoporins are non-essential. Among the 16 non-essential nucleoporins, 11 are required for normal progression through meiosis and their disruption caused abnormal spore formation or poor spore viability. Based on fluorescence measurements of GFP-fused nucleoporins, we estimated the composition of the NPC in S. pombe and found that the organization of the S. pombe NPC is largely similar to that of other organisms; a single NPC was estimated as being 45.8–47.8 MDa in size. We also used fluorescence measurements of single NPCs and quantitative western blotting to analyze the composition of the Nup107-Nup160 subcomplex, which plays an indispensable role in NPC organization and function. Our analysis revealed low amounts of Nup107 and Nup131 and high amounts of Nup132 in the Nup107-Nup160 subcomplex, suggesting that the composition of this complex in S. pombe may differ from that in S. cerevisiae and humans. Comparative analysis of NPCs in various organisms will lead to a comprehensive understanding of the functional architecture of the NPC. PMID:24637836

  1. Structure function characterization of the ELL Associated Factor (EAF) from Schizosaccharomyces pombe.

    Science.gov (United States)

    Dabas, Preeti; Sweta, Kumari; Ekka, Mary; Sharma, Nimisha

    2018-01-30

    EAF (ELL Associated Factor) proteins interact with the transcription elongation factor, ELL (Eleven nineteen Lysine rich Leukemia) and enhance its ability to stimulate RNA polymerase II-mediated transcriptional elongation in vitro. Schizosaccharomyces pombe contains a single homolog of EAF (SpEAF), which is not essential for survival of S. pombe in contrast to its essential higher eukaryotic homologs. The physiological role of SpEAF is not well understood. In this study, we show that S. pombe EAF is important in regulating growth of S. pombe cells during normal growth conditions. Moreover, SpEAF is also essential for survival under conditions of DNA damage, while its deletion does not affect growth under environmental stress conditions. Our in vivo structure-function studies further demonstrate that while both the amino and carboxyl terminal domains of SpEAF possess the potential to activate transcription, only the amino terminal domain of SpEAF is involved in interaction with the S. pombe ELL protein. The carboxyl-terminus of SpEAF is required for rescue of the growth defect under normal and DNA damaging conditions that is associated with the absence of SpEAF. Using bioinformatics and circular dichroism spectroscopy, we show that the carboxyl-terminus of SpEAF has a disordered conformation. Furthermore, addition of trifluoroethanol triggered its transition from a disordered to α-helical conformation. Taken together, the results presented here identify novel structural and functional features of SpEAF protein, providing insights into how EAF proteins may enforce transcriptional control of gene expression. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Expression, purification, and crystallization of Schizosaccharomyces pombe eIF2B.

    Science.gov (United States)

    Kashiwagi, Kazuhiro; Shigeta, Tomoaki; Imataka, Hiroaki; Ito, Takuhiro; Yokoyama, Shigeyuki

    2016-03-01

    Tight control of protein synthesis is necessary for cells to respond and adapt to environmental changes rapidly. Eukaryotic translation initiation factor (eIF) 2B, the guanine nucleotide exchange factor for eIF2, is a key target of translation control at the initiation step. The nucleotide exchange activity of eIF2B is inhibited by the stress-induced phosphorylation of eIF2. As a result, the level of active GTP-bound eIF2 is lowered, and protein synthesis is attenuated. eIF2B is a large multi-subunit complex composed of five different subunits, and all five of the subunits are the gene products responsible for the neurodegenerative disease, leukoencephalopathy with vanishing white matter. However, the overall structure of eIF2B has remained unresolved, due to the difficulty in preparing a sufficient amount of the eIF2B complex. To overcome this problem, we established the recombinant expression and purification method for eIF2B from the fission yeast Schizosaccharomyces pombe. All five of the eIF2B subunits were co-expressed and reconstructed into the complex in Escherichia coli cells. The complex was successfully purified with a high yield. This recombinant eIF2B complex contains each subunit in an equimolar ratio, and the size exclusion chromatography analysis suggests it forms a heterodecamer, consistent with recent reports. This eIF2B increased protein synthesis in the reconstituted in vitro human translation system. In addition, disease-linked mutations led to subunit dissociation. Furthermore, we crystallized this functional recombinant eIF2B, and the crystals diffracted to 3.0 Å resolution.

  3. Genome-wide analysis of core promoter structures in Schizosaccharomyces pombe with DeepCAGE

    Science.gov (United States)

    Li, Hua; Hou, Jingyi; Bai, Ling; Hu, Chuansheng; Tong, Pan; Kang, Yani; Zhao, Xiaodong; Shao, Zhifeng

    2015-01-01

    The core promoter, which immediately flanks the transcription start site (TSS), plays a critical role in transcriptional regulation of eukaryotes. Recent studies on higher eukaryotes have revealed an unprecedented complexity of core promoter structures that underscores diverse regulatory mechanisms of gene expression. For unicellular eukaryotes, however, the structures of core promoters have not been investigated in detail. As an important model organism, Schizosaccharomyces pombe still lacks the precise annotation for TSSs, thus hampering the analysis of core promoter structures and their relationship to higher eukaryotes. Here we used a deep sequencing-based approach (DeepCAGE) to generate 16 million uniquely mapped tags, corresponding to 93,736 positions in the S. pombe genome. The high-resolution TSS landscape enabled identification of over 8,000 core promoters, characterization of 4 promoter classes and observation of widespread alternative promoters. The landscape also allowed precise determination of the representative TSSs within core promoters, thus redefining the 5' UTR for 82.8% of S. pombe genes. We further identified the consensus initiator (Inr) sequence – PyPyPuN(A/C)(C/A), the TATA-enriched region (between position −25 and −37) and an Inr immediate downstream motif – CC(T/A)(T/C)(T/C/A)(A/G)CCA(A/T/C), all of which were associated with highly expressed promoters. In conclusion, the detailed analysis of core promoters not only significantly improves the genome annotation of S. pombe, but also reveals that this unicellular eukaryote shares a highly similar organization in the core promoters with higher eukaryotes. These findings lend additional evidence for the power of this model system in delineating complex regulatory processes in multicellular organisms, despite its perceived simplicity. PMID:25747261

  4. Comparative Proteome Analysis in Schizosaccharomyces pombe Identifies Metabolic Targets to Improve Protein Production and Secretion.

    Science.gov (United States)

    Hung, Chien-Wen; Klein, Tobias; Cassidy, Liam; Linke, Dennis; Lange, Sabrina; Anders, Uwe; Bureik, Matthias; Heinzle, Elmar; Schneider, Konstantin; Tholey, Andreas

    2016-10-01

    Protein secretion in yeast is a complex process and its efficiency depends on a variety of parameters. We performed a comparative proteome analysis of a set of Schizosaccharomyces pombe strains producing the α-glucosidase maltase in increasing amounts to investigate the overall proteomic response of the cell to the burden of protein production along the various steps of protein production and secretion. Proteome analysis of these strains, utilizing an isobaric labeling/two dimensional LC-MALDI MS approach, revealed complex changes, from chaperones and secretory transport machinery to proteins controlling transcription and translation. We also found an unexpectedly high amount of changes in enzyme levels of the central carbon metabolism and a significant up-regulation of several amino acid biosyntheses. These amino acids were partially underrepresented in the cellular protein compared with the composition of the model protein. Additional feeding of these amino acids resulted in a 1.5-fold increase in protein secretion. Membrane fluidity was identified as a second bottleneck for high-level protein secretion and addition of fluconazole to the culture caused a significant decrease in ergosterol levels, whereas protein secretion could be further increased by a factor of 2.1. In summary, we show that high level protein secretion causes global changes of protein expression levels in the cell and that precursor availability and membrane composition limit protein secretion in this yeast. In this respect, comparative proteome analysis is a powerful tool to identify targets for an efficient increase of protein production and secretion in S. pombe Data are available via ProteomeXchange with identifiers PXD002693 and PXD003016. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Identification of proteins that form specific complexes with the highly conserved protein Translin in Schizosaccharomyces pombe.

    Science.gov (United States)

    Eliahoo, Elad; Litovco, Phyana; Ben Yosef, Ron; Bendalak, Keren; Ziv, Tamar; Manor, Haim

    2014-04-01

    Translin is a single-stranded DNA and RNA binding protein that has a high affinity for G-rich sequences. TRAX is a Translin paralog that associates with Translin. Both Translin and TRAX were highly conserved in eukaryotes. The nucleic acid binding form of Translin is a barrel-shaped homo-octamer. A Translin-TRAX hetero-octamer having a similar structure also binds nucleic acids. Previous reports suggested that Translin may be involved in chromosomal translocations, telomere metabolism and the control of mRNA transport and translation. More recent studies have indicated that Translin-TRAX hetero-octamers are involved in RNA silencing. To gain a further insight into the functions of Translin, we have undertaken to systematically search for proteins with which it forms specific complexes in living cells. Here we report the results of such a search conducted in the fission yeast Schizosaccharomyces pombe, a suitable model system. This search was carried out by affinity purification and immuno-precipitation techniques, combined with differential labeling of the intracellular proteins with the stable isotopes ¹⁵N and ¹⁴N. We identified for the first time two proteins containing an RNA Recognition Motif (RRM), which are specifically associated with the yeast Translin: (1) the pre-mRNA-splicing factor srp1 that belongs to the highly conserved SR family of proteins and (2) vip1, a protein conserved in fungi. Our data also support the presence of RNA in these intracellular complexes. Our experimental approach should be generally applicable to studies of weak intracellular protein-protein interactions and provides a clear distinction between false positive vs. truly interacting proteins. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Silencing motifs in the Clr2 protein from fission yeast, Schizosaccharomyces pombe.

    Directory of Open Access Journals (Sweden)

    Daniel Steinhauf

    Full Text Available The fission yeast, Schizosaccharomyces pombe, is a well-established model for heterochromatin formation, but the exact sequence of events for initiation remains to be elucidated. The essential factors involved include RNA transcribed from repeated sequences together with the methyltransferase Clr4. In addition, histone deacetylases, like Clr3, found in the SHREC complex are also necessary for transcriptional silencing. Clr2 is another crucial factor required for heterochromatin formation found in the SHREC complex. The function of Clr2 has been difficult to establish due to the lack of conserved domains or homology to proteins of known molecular function. Using a bioinformatics approach, three conserved motifs in Clr2 were identified, which contained amino acids important for transcriptional repression. Analysis of clr2 mutant strains revealed a major role for Clr2 in mating-type and rDNA silencing, and weaker effects on centromeric silencing. The effect on mating-type silencing showed variegation in several of the strains with mutated versions of Clr2 indicating an establishment or maintenance defect. Moreover, the critical amino acids in Clr2 were also necessary for transcriptional repression in a minimal system, by the tethering of Clr4 upstream of a reporter gene, inserted into the euchromatic part of the genome. Finally, in silico modeling suggested that the mutations in Clr2 cause disruption of secondary structures in the Clr2 protein. Identification of these critical amino acids in the protein provides a useful tool to explore the molecular mechanism behind the role of Clr2 in heterochromatin formation.

  7. Structural and Functional Characterization of the N Terminus of Schizosaccharomyces pombe Cwf10

    Science.gov (United States)

    Livesay, S. Brent; Collier, Scott E.; Bitton, Danny A.; Bähler, Jürg

    2013-01-01

    The spliceosome is a dynamic macromolecular machine that catalyzes the removal of introns from pre-mRNA, yielding mature message. Schizosaccharomyces pombe Cwf10 (homolog of Saccharomyces cerevisiae Snu114 and human U5-116K), an integral member of the U5 snRNP, is a GTPase that has multiple roles within the splicing cycle. Cwf10/Snu114 family members are highly homologous to eukaryotic translation elongation factor EF2, and they contain a conserved N-terminal extension (NTE) to the EF2-like portion, predicted to be an intrinsically unfolded domain. Using S. pombe as a model system, we show that the NTE is not essential, but cells lacking this domain are defective in pre-mRNA splicing. Genetic interactions between cwf10-ΔNTE and other pre-mRNA splicing mutants are consistent with a role for the NTE in spliceosome activation and second-step catalysis. Characterization of Cwf10-NTE by various biophysical techniques shows that in solution the NTE contains regions of both structure and disorder. The first 23 highly conserved amino acids of the NTE are essential for its role in splicing but when overexpressed are not sufficient to restore pre-mRNA splicing to wild-type levels in cwf10-ΔNTE cells. When the entire NTE is overexpressed in the cwf10-ΔNTE background, it can complement the truncated Cwf10 protein in trans, and it immunoprecipitates a complex similar in composition to the late-stage U5.U2/U6 spliceosome. These data show that the structurally flexible NTE is capable of independently incorporating into the spliceosome and improving splicing function, possibly indicating a role for the NTE in stabilizing conformational rearrangements during a splice cycle. PMID:24014766

  8. Sde2: A novel nuclear protein essential for telomeric silencing and genomic stability in Schizosaccharomyces pombe

    Energy Technology Data Exchange (ETDEWEB)

    Sugioka-Sugiyama, Rie [Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Initiative for the Promotion of Young Scientists' Independent Research, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Sugiyama, Tomoyasu, E-mail: sugiyamt@biol.tsukuba.ac.jp [Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Initiative for the Promotion of Young Scientists' Independent Research, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012 (Japan)

    2011-03-18

    Research highlights: {yields} Sde2 is essential for telomere silencing. {yields} Sde2 is involved in the maintenance of genomic stability. {yields} Sde2 promotes the recruitment of SHREC, a histone deacetylase complex, to telomeres. -- Abstract: Telomeres, specialized domains assembled at the ends of linear chromosomes, are essential for genomic stability in eukaryotes. The formation and maintenance of telomeres are governed by numerous factors such as telomeric repeats, telomere-binding proteins, heterochromatin proteins, and telomerase. Here, we report Sde2, a novel nuclear protein essential for telomeric silencing and genomic stability in the fission yeast Schizosaccharomyces pombe. A deficiency in sde2 results in the derepression of the ura4{sup +} gene inserted near telomeric repeats, and the noncoding transcripts from telomeric regions accumulate in sde2{Delta} cells. The loss of Sde2 function compromises transcriptional silencing at telomeres, and this silencing defect is accompanied by increased levels of acetylated histone H3K14 and RNA polymerase II occupancy at telomeres as well as reduced recruitment of the SNF2 ATPase/histone deacetylase-containing complex SHREC to telomeres. Deletion of sde2 also leads to a higher frequency of mitotic minichromosome loss, and sde2{Delta} cells often form asci that contain spores in abnormal numbers, shapes, or both. In addition, sde2{Delta} cells are highly sensitive to several stresses, including high/low temperatures, bleomycin, which induces DNA damage, and thiabendazole, a microtubule-destabilizing agent. Furthermore, Sde2 genetically interacts with the telomere regulators Taz1, Pof3, and Ccq1. These findings demonstrate that Sde2 cooperates with other telomere regulators to maintain functional telomeres, thereby preventing genomic instability.

  9. Chemical map of Schizosaccharomyces pombe reveals species-specific features in nucleosome positioning

    Science.gov (United States)

    Moyle-Heyrman, Georgette; Zaichuk, Tetiana; Xi, Liqun; Zhang, Quanwei; Uhlenbeck, Olke C.; Holmgren, Robert; Widom, Jonathan; Wang, Ji-Ping

    2013-01-01

    Using a recently developed chemical approach, we have generated a genome-wide map of nucleosomes in vivo in Schizosaccharomyces pombe (S. pombe) at base pair resolution. The shorter linker length previously identified in S. pombe is due to a preponderance of nucleosomes separated by ∼4/5 bp, placing nucleosomes on opposite faces of the DNA. The periodic dinucleotide feature thought to position nucleosomes is equally strong in exons as in introns, demonstrating that nucleosome positioning information can be superimposed on coding information. Unlike the case in Saccharomyces cerevisiae, A/T-rich sequences are enriched in S. pombe nucleosomes, particularly at ±20 bp around the dyad. This difference in nucleosome binding preference gives rise to a major distinction downstream of the transcription start site, where nucleosome phasing is highly predictable by A/T frequency in S. pombe but not in S. cerevisiae, suggesting that the genomes and DNA binding preferences of nucleosomes have coevolved in different species. The poly (dA-dT) tracts affect but do not deplete nucleosomes in S. pombe, and they prefer special rotational positions within the nucleosome, with longer tracts enriched in the 10- to 30-bp region from the dyad. S. pombe does not have a well-defined nucleosome-depleted region immediately upstream of most transcription start sites; instead, the −1 nucleosome is positioned with the expected spacing relative to the +1 nucleosome, and its occupancy is negatively correlated with gene expression. Although there is generally very good agreement between nucleosome maps generated by chemical cleavage and micrococcal nuclease digestion, the chemical map shows consistently higher nucleosome occupancy on DNA with high A/T content. PMID:24277842

  10. Sck1 negatively regulates Gpa2-mediated glucose signaling in Schizosaccharomyces pombe.

    Science.gov (United States)

    Mudge, Dayna K; Yang, Fan; Currie, Brian M; Kim, James M; Yeda, Kelly; Bashyakarla, Varoon K; Ivey, F Douglas; Hoffman, Charles S

    2014-02-01

    Schizosaccharomyces pombe detects extracellular glucose via a G protein-mediated cyclic AMP (cAMP)-signaling pathway activating protein kinase A (PKA) and regulating transcription of genes involved in metabolism and sexual development. In this pathway, Gpa2 Gα binds to and activates adenylyl cyclase in response to glucose detection by the Git3 G protein-coupled receptor. Using a two-hybrid screen to identify extrinsic regulators of Gpa2, we isolated a clone that expresses codons 471 to 696 of the Sck1 kinase, which appears to display a higher affinity for Gpa2(K270E)-activated Gα relative to Gpa2(+) Gα. Deletion of sck1(+) or mutational inactivation of the Sck1 kinase produces phenotypes reflecting increased PKA activity in strains expressing Gpa2(+) or Gpa2(K270E), suggesting that Sck1 negatively regulates PKA activation through Gpa2. In contrast to the Gpa2(K270E) GDP-GTP exchange rate mutant, GTPase-defective Gpa2(R176H) weakly binds Sck1 in the two-hybrid screen and a deletion of sck1(+) in a Gpa2(R176H) strain confers phenotypes consistent with a slight reduction in PKA activity. Finally, deleting sck1(+) in a gpa2Δ strain results in phenotypes consistent with a second role for Sck1 acting in parallel with PKA. In addition to this parallel role with PKA, our data suggest that Sck1 negatively regulates Gpa2, possibly targeting the nucleotide-free form of the protein that may expose the one and only AKT/PKB consensus site in Gpa2 for Sck1 to bind. This dual role for Sck1 may allow S. pombe to produce distinct biological responses to glucose and nitrogen starvation signals that both activate the Wis1-Spc1/StyI stress-activated protein kinase (SAPK) pathway.

  11. Structural and functional characterization of the N terminus of Schizosaccharomyces pombe Cwf10.

    Science.gov (United States)

    Livesay, S Brent; Collier, Scott E; Bitton, Danny A; Bähler, Jürg; Ohi, Melanie D

    2013-11-01

    The spliceosome is a dynamic macromolecular machine that catalyzes the removal of introns from pre-mRNA, yielding mature message. Schizosaccharomyces pombe Cwf10 (homolog of Saccharomyces cerevisiae Snu114 and human U5-116K), an integral member of the U5 snRNP, is a GTPase that has multiple roles within the splicing cycle. Cwf10/Snu114 family members are highly homologous to eukaryotic translation elongation factor EF2, and they contain a conserved N-terminal extension (NTE) to the EF2-like portion, predicted to be an intrinsically unfolded domain. Using S. pombe as a model system, we show that the NTE is not essential, but cells lacking this domain are defective in pre-mRNA splicing. Genetic interactions between cwf10-ΔNTE and other pre-mRNA splicing mutants are consistent with a role for the NTE in spliceosome activation and second-step catalysis. Characterization of Cwf10-NTE by various biophysical techniques shows that in solution the NTE contains regions of both structure and disorder. The first 23 highly conserved amino acids of the NTE are essential for its role in splicing but when overexpressed are not sufficient to restore pre-mRNA splicing to wild-type levels in cwf10-ΔNTE cells. When the entire NTE is overexpressed in the cwf10-ΔNTE background, it can complement the truncated Cwf10 protein in trans, and it immunoprecipitates a complex similar in composition to the late-stage U5.U2/U6 spliceosome. These data show that the structurally flexible NTE is capable of independently incorporating into the spliceosome and improving splicing function, possibly indicating a role for the NTE in stabilizing conformational rearrangements during a splice cycle.

  12. Characterization of nuclear pore complex components in fission yeast Schizosaccharomyces pombe.

    Science.gov (United States)

    Asakawa, Haruhiko; Yang, Hui-Ju; Yamamoto, Takaharu G; Ohtsuki, Chizuru; Chikashige, Yuji; Sakata-Sogawa, Kumiko; Tokunaga, Makio; Iwamoto, Masaaki; Hiraoka, Yasushi; Haraguchi, Tokuko

    2014-01-01

    The nuclear pore complex (NPC) is an enormous proteinaceous complex composed of multiple copies of about 30 different proteins called nucleoporins. In this study, we analyzed the composition of the NPC in the model organism Schizosaccharomyces pombe using strains in which individual nucleoporins were tagged with GFP. We identified 31 proteins as nucleoporins by their localization to the nuclear periphery. Gene disruption analysis in previous studies coupled with gene disruption analysis in the present study indicates that 15 of these nucleoporins are essential for vegetative cell growth and the other 16 nucleoporins are non-essential. Among the 16 non-essential nucleoporins, 11 are required for normal progression through meiosis and their disruption caused abnormal spore formation or poor spore viability. Based on fluorescence measurements of GFP-fused nucleoporins, we estimated the composition of the NPC in S. pombe and found that the organization of the S. pombe NPC is largely similar to that of other organisms; a single NPC was estimated as being 45.8-47.8 MDa in size. We also used fluorescence measurements of single NPCs and quantitative western blotting to analyze the composition of the Nup107-Nup160 subcomplex, which plays an indispensable role in NPC organization and function. Our analysis revealed low amounts of Nup107 and Nup131 and high amounts of Nup132 in the Nup107-Nup160 subcomplex, suggesting that the composition of this complex in S. pombe may differ from that in S. cerevisiae and humans. Comparative analysis of NPCs in various organisms will lead to a comprehensive understanding of the functional architecture of the NPC.

  13. Dissection of the PHO pathway in Schizosaccharomyces pombe using epistasis and the alternate repressor adenine.

    Science.gov (United States)

    Estill, Molly; Kerwin-Iosue, Christine L; Wykoff, Dennis D

    2015-05-01

    In Saccharomyces cerevisiae, intracellular phosphate levels are maintained by the PHO pathway, activation of which is assayed by increased phosphatase activity. The PHO pathway of Schizosaccharomyces pombe upregulates phosphatase activity (encoded by pho1 (+)) during low extracellular phosphate levels, but the underlying mechanism is poorly understood. We utilized an alternate repressor of pho1 (+) expression (adenine supplementation) along with epistasis analysis to develop a model of how S. pombe PHO pathway components interact. Analyzing Pho1 activity in S. pombe PHO pathway deletion mutants during adenine starvation, we observed most mutants with a phosphatase defect in phosphate starvation also had a defect in adenine starvation. Pho7, a transcription factor in the PHO pathway, is necessary for an adenine starvation-mediated increase in Pho1 activity. Comparing adenine starvation to phosphate starvation, there are differences in the degree to which individual mutants regulate the two responses. Through epistasis studies, we identified two positive regulatory arms and one repressive arm of the PHO pathway. PKA activation is a positive regulator of Pho1 activity under both environmental conditions and is critical for transducing adenine concentrations in the cell. The synthesis of IP7 also appears critical for the induction of Pho1 activity during adenine starvation, but IP7 is not critical during phosphate starvation, which differs from S. cerevisiae. Finally, Csk1 is critical for repression of pho1 (+) expression during phosphate starvation. We believe all of these regulatory arms converge to increase transcription of pho1 (+) and some of the regulation acts through pho7 (+).

  14. Genome-wide characterization of the phosphate starvation response in Schizosaccharomyces pombe.

    Science.gov (United States)

    Carter-O'Connell, Ian; Peel, Michael T; Wykoff, Dennis D; O'Shea, Erin K

    2012-12-12

    Inorganic phosphate is an essential nutrient required by organisms for growth. During phosphate starvation, Saccharomyces cerevisiae activates the phosphate signal transduction (PHO) pathway, leading to expression of the secreted acid phosphatase, PHO5. The fission yeast, Schizosaccharomyces pombe, regulates expression of the ScPHO5 homolog (pho1+) via a non-orthologous PHO pathway involving genetically identified positive (pho7+) and negative (csk1+) regulators. The genes induced by phosphate limitation and the molecular mechanism by which pho7+ and csk1+ function are unknown. Here we use a combination of molecular biology, expression microarrays, and chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-Seq) to characterize the role of pho7+ and csk1+ in the PHO response. We define the set of genes that comprise the initial response to phosphate starvation in S. pombe. We identify a conserved PHO response that contains the ScPHO5 (pho1+), ScPHO84 (SPBC8E4.01c), and ScGIT1 (SPBC1271.09) orthologs. We identify members of the Pho7 regulon and characterize Pho7 binding in response to phosphate-limitation and Csk1 activity. We demonstrate that activation of pho1+ requires Pho7 binding to a UAS in the pho1+ promoter and that Csk1 repression does not regulate Pho7 enrichment. Further, we find that Pho7-dependent activation is not limited to phosphate-starvation, as additional environmental stress response pathways require pho7+ for maximal induction. We provide a global analysis of the transcriptional response to phosphate limitation in S. pombe. Our results elucidate the conserved core regulon induced in response to phosphate starvation in this ascomycete distantly related to S. cerevisiae and provide a better understanding of flexibility in environmental stress response networks.

  15. Suppression of Meiotic Recombination by CENP-B Homologs in Schizosaccharomyces pombe.

    Science.gov (United States)

    Johansen, Peter; Cam, Hugh P

    2015-11-01

    Meiotic homologous recombination (HR) is not uniform across eukaryotic genomes, creating regions of HR hot- and coldspots. Previous study reveals that the Spo11 homolog Rec12 responsible for initiation of meiotic double-strand breaks in the fission yeast Schizosaccharomyces pombe is not targeted to Tf2 retrotransposons. However, whether Tf2s are HR coldspots is not known. Here, we show that the rates of HR across Tf2s are similar to a genome average but substantially increase in mutants deficient for the CENP-B homologs. Abp1, which is the most prominent of the CENP-B family members and acts as the primary determinant of HR suppression at Tf2s, is required to prevent gene conversion and maintain proper recombination exchange of homologous alleles flanking Tf2s. In addition, Abp1-mediated suppression of HR at Tf2s requires all three of its domains with distinct functions in transcriptional repression and higher-order genome organization. We demonstrate that HR suppression of Tf2s can be robustly maintained despite disruption to chromatin factors essential for transcriptional repression and nuclear organization of Tf2s. Intriguingly, we uncover a surprising cooperation between the histone methyltransferase Set1 responsible for histone H3 lysine 4 methylation and the nonhomologous end joining pathway in ensuring the suppression of HR at Tf2s. Our study identifies a molecular pathway involving functional cooperation between a transcription factor with epigenetic regulators and a DNA repair pathway to regulate meiotic recombination at interspersed repeats. Copyright © 2015 by the Genetics Society of America.

  16. Characterization of Schizosaccharomyces pombe copper transporter proteins in meiotic and sporulating cells.

    Science.gov (United States)

    Plante, Samuel; Ioannoni, Raphaël; Beaudoin, Jude; Labbé, Simon

    2014-04-04

    Meiosis requires copper to undertake its program in which haploid gametes are produced from diploid precursor cells. In Schizosaccharomyces pombe, copper is transported by three members of the copper transporter (Ctr) family, namely Ctr4, Ctr5, and Ctr6. Although central for sexual differentiation, very little is known about the expression profile, cellular localization, and physiological contribution of the Ctr proteins during meiosis. Analysis of gene expression of ctr4(+) and ctr5(+) revealed that they are primarily expressed in early meiosis under low copper conditions. In the case of ctr6(+), its expression is broader, being detected throughout the entire meiotic process with an increase during middle- and late-phase meiosis. Whereas the expression of ctr4(+) and ctr5(+) is exclusively dependent on the presence of Cuf1, ctr6(+) gene expression relies on two distinct regulators, Cuf1 and Mei4. Ctr4 and Ctr5 proteins co-localize at the plasma membrane shortly after meiotic induction, whereas Ctr6 is located on the membrane of vacuoles. After meiotic divisions, Ctr4 and Ctr5 disappear from the cell surface, whereas Ctr6 undergoes an intracellular re-location to co-localize with the forespore membrane. Under copper-limiting conditions, disruption of ctr4(+) and ctr6(+) results in altered SOD1 activity, whereas these mutant cells exhibit substantially decreased levels of CAO activity mostly in early- and middle-phase meiosis. Collectively, these results emphasize the notion that Ctr proteins exhibit differential expression, localization, and contribution in delivering copper to SOD1 and Cao1 proteins during meiosis.

  17. Genome-wide analysis of core promoter structures in Schizosaccharomyces pombe with DeepCAGE.

    Science.gov (United States)

    Li, Hua; Hou, Jingyi; Bai, Ling; Hu, Chuansheng; Tong, Pan; Kang, Yani; Zhao, Xiaodong; Shao, Zhifeng

    2015-01-01

    The core promoter, which immediately flanks the transcription start site (TSS), plays a critical role in transcriptional regulation of eukaryotes. Recent studies on higher eukaryotes have revealed an unprecedented complexity of core promoter structures that underscores diverse regulatory mechanisms of gene expression. For unicellular eukaryotes, however, the structures of core promoters have not been investigated in detail. As an important model organism, Schizosaccharomyces pombe still lacks the precise annotation for TSSs, thus hampering the analysis of core promoter structures and their relationship to higher eukaryotes. Here we used a deep sequencing-based approach (DeepCAGE) to generate 16 million uniquely mapped tags, corresponding to 93,736 positions in the S. pombe genome. The high-resolution TSS landscape enabled identification of over 8,000 core promoters, characterization of 4 promoter classes and observation of widespread alternative promoters. The landscape also allowed precise determination of the representative TSSs within core promoters, thus redefining the 5' UTR for 82.8% of S. pombe genes. We further identified the consensus initiator (Inr) sequence--PyPyPuN(A/C)(C/A), the TATA-enriched region (between position -25 and -37) and an Inr immediate downstream motif--CC(T/A)(T/C)(T/C/A)(A/G)CCA(A/T/C), all of which were associated with highly expressed promoters. In conclusion, the detailed analysis of core promoters not only significantly improves the genome annotation of S. pombe, but also reveals that this unicellular eukaryote shares a highly similar organization in the core promoters with higher eukaryotes. These findings lend additional evidence for the power of this model system in delineating complex regulatory processes in multicellular organisms, despite its perceived simplicity.

  18. Effect of the fungal mycotoxin patulin on the chromatin structure of fission yeast Schizosaccharomyces pombe.

    Science.gov (United States)

    Horvath, Eszter; Nagy, Gabor; Turani, Melinda; Balogh, Eniko; Papp, Gabor; Pollak, Edit; Pocsi, Istvan; Pesti, Miklos; Banfalvi, Gaspar

    2012-12-01

    The fungal mycotoxin patulin is produced by several molds, especially by Aspergillus and Penicillium. The aim of this study was to clarify whether patulin causes alterations in plasma membrane permeability of Schizosaccharomyces pombe lead to cellular shrinkage charateristic to apoptosis or increases cell size indicating necrosis in cells. Transmission and scanning electronmicroscopy revealed that lower concentrations of patulin induced cellular shrinkage and blebbing, higher concentration caused expansion without cellular disruption. Large-scale morphological changes of individual cells were followed by time lapse video microscopy. Patulin caused the elongation and stickiness of cells or rounded up their shapes. To visualize chromatin structures of S. pombe nuclei upon patulin treatment, protoplasts were isolated from S. pombe and subjected to fluorescent microscopy. Chromatin changes in the presence of 50 μM patulin concentration were characterized by elongated nuclei containing sticky fibrillary chromatin and enlarged round shaped nuclei trapped at the fibrillary stage of chromatin condensation. Short (60 min) incubation of S. pombe cells in the presence of high (500 μM) patulin concentration generated patches of condensed chromatin bodies inside the nucleus and caused nuclear expansion, with the rest of chromatin remaining in fibrillary form. Longer (90 min, 500 μM) incubation resulted in fewer highly condensed chromatin patches and in nuclear fragmentation. Although, high patulin concentration increased the size of S. pombe size, it did not lead to necrotic explosion of cells, neither did the fragmented nuclei resemble apoptotic bodies that would have indicated programmed cell death. All these morphological changes and the high rate of cell survival point to rapid adaptation and mixed type of fungistatic effects. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. abc3+ encodes an iron-regulated vacuolar ABC-type transporter in Schizosaccharomyces pombe.

    Science.gov (United States)

    Pouliot, Benoît; Jbel, Mehdi; Mercier, Alexandre; Labbé, Simon

    2010-01-01

    Studies have shown the fundamental contribution of the yeast vacuole as a site for storage and detoxification of metals. Whereas the transmembrane proteins responsible for iron transport into and out of the vacuole have been identified in Saccharomyces cerevisiae, less information is available concerning the mobilization of vacuolar iron stores in Schizosaccharomyces pombe. In this study, we report the identification of a gene designated abc3(+) that encodes a protein which exhibits sequence homology with the ABCC subfamily of ATP-binding cassette transporters. The transcription of abc3(+) is induced by low concentrations of iron but repressed by high levels of iron. The iron-mediated repression of abc3(+) required a functional fep1(+) gene. Chromatin immunoprecipitation assays showed that Fep1 associates with the abc3(+) promoter in vivo, in an iron-dependent manner. Microscopic analyses revealed that a functional Abc3-green fluorescent protein localizes to the membrane vacuole when iron levels were low. Abc3 was required for growth in low-iron medium in the absence of the transport system mediated by Fio1 and Fip1. abc3Delta cells exhibited increased levels of expression of the frp1(+)-encoded ferric reductase, suggesting a loss of Fep1 repression and, consequently, the activation of Fep1-regulated genes. When abc3(+) was expressed using the nmt1(+) promoter system, its induction led to a reduced transcriptional activity of the frp1(+) gene. Because S. pombe does not possess vacuolar membrane-localized orthologs to S. cerevisiae Fth1, Fet5, and Smf3, our findings suggested that Abc3 may be responsible for mobilizing stored iron from the vacuole to the cytosol in response to iron deficiency.

  20. abc3+ Encodes an Iron-Regulated Vacuolar ABC-Type Transporter in Schizosaccharomyces pombe▿

    Science.gov (United States)

    Pouliot, Benoît; Jbel, Mehdi; Mercier, Alexandre; Labbé, Simon

    2010-01-01

    Studies have shown the fundamental contribution of the yeast vacuole as a site for storage and detoxification of metals. Whereas the transmembrane proteins responsible for iron transport into and out of the vacuole have been identified in Saccharomyces cerevisiae, less information is available concerning the mobilization of vacuolar iron stores in Schizosaccharomyces pombe. In this study, we report the identification of a gene designated abc3+ that encodes a protein which exhibits sequence homology with the ABCC subfamily of ATP-binding cassette transporters. The transcription of abc3+ is induced by low concentrations of iron but repressed by high levels of iron. The iron-mediated repression of abc3+ required a functional fep1+ gene. Chromatin immunoprecipitation assays showed that Fep1 associates with the abc3+ promoter in vivo, in an iron-dependent manner. Microscopic analyses revealed that a functional Abc3-green fluorescent protein localizes to the membrane vacuole when iron levels were low. Abc3 was required for growth in low-iron medium in the absence of the transport system mediated by Fio1 and Fip1. abc3Δ cells exhibited increased levels of expression of the frp1+-encoded ferric reductase, suggesting a loss of Fep1 repression and, consequently, the activation of Fep1-regulated genes. When abc3+ was expressed using the nmt1+ promoter system, its induction led to a reduced transcriptional activity of the frp1+ gene. Because S. pombe does not possess vacuolar membrane-localized orthologs to S. cerevisiae Fth1, Fet5, and Smf3, our findings suggested that Abc3 may be responsible for mobilizing stored iron from the vacuole to the cytosol in response to iron deficiency. PMID:19915076

  1. Polynucleotide kinase/phosphatase, Pnk1, is involved in base excision repair in Schizosaccharomyces pombe.

    Science.gov (United States)

    Kashkina, Ekaterina; Qi, Tao; Weinfeld, Michael; Young, Dallan

    2012-08-01

    We previously reported that Schizosaccharomyces pombe pnk1 cells are more sensitive than wild-type cells to γ-radiation and camptothecin, indicating that Pnk1 is required for DNA repair. Here, we report that pnk1pku70 and pnk1rhp51 double mutants are more sensitive to γ-radiation than single mutants, from which we infer that Pnk1's primary role is independent of either homologous recombination or non-homologous end joining mechanisms. We also report that pnk1 cells are more sensitive than wild-type cells to oxidizing and alkylating agents, suggesting that Pnk1 is involved in base excision repair. Mutational analysis of Pnk1 revealed that the DNA 3'-phosphatase activity is necessary for repair of DNA damage, whereas the 5'-kinase activity is dispensable. A role for Pnk1 in base excision repair is supported by genetic analyses which revealed that pnk1apn2 is synthetically lethal, suggesting that Pnk1 and Apn2 may function in parallel pathways essential for the repair of endogenous DNA damage. Furthermore, the nth1pnk1apn2 and tdp1pnk1apn2 triple mutants are viable, implying that single-strand breaks with 3'-blocked termini produced by Nth1 and Tdp1 contribute to synthetic lethality. We also examined the sensitivity to methyl methanesulfonate of all single and double mutant combinations of nth1, apn2, tdp1 and pnk1. Together, our results support a model where Tdp1 and Pnk1 act in concert in an Apn2-independent base excision repair pathway to repair 3'-blocked termini produced by Nth1; and they also provide evidence that Pnk1 has additional roles in base excision repair. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. The rhp6+ gene of Schizosaccharomyces pombe: a structural and functional homolog of the RAD6 gene from the distantly related yeast Saccharomyces cerevisiae.

    NARCIS (Netherlands)

    P. Reynolds (Paul); M.H.M. Koken (Marcel); J.H.J. Hoeijmakers (Jan); S. Prakash; L. Prakash

    1990-01-01

    textabstractThe RAD6 gene of Saccharomyces cerevisiae encodes a ubiquitin conjugating enzyme and is required for DNA repair, DNA-damage-induced mutagenesis and sporulation. Here, we show that RAD6 and the rhp6+ gene from the distantly related yeast Schizosaccharomyces pombe share a high degree of

  3. The Schizosaccharomyces pombe map1 gene encodes an SRF/MCM1-related protein required for P-cell specific gene expression

    DEFF Research Database (Denmark)

    Nielsen, O; Friis, T; Kjaerulff, S

    1996-01-01

    Cells of Schizosaccharomyces pombe undergo mating and meiosis when starved for a nitrogen source. In this process a P and and M cell first mate to generate a diploid zygote, which subsequently enters meiosis and sporulates. The P mating type is controlled by the mat1-Pc gene at the mating type...

  4. Plasmid construction using recombination activity in the fission yeast Schizosaccharomyces pombe.

    Directory of Open Access Journals (Sweden)

    Ayako Chino

    Full Text Available BACKGROUND: Construction of plasmids is crucial in modern genetic manipulation. As of now, the common method for constructing plasmids is to digest specific DNA sequences with restriction enzymes and to ligate the resulting DNA fragments with DNA ligase. Another potent method to construct plasmids, known as gap-repair cloning (GRC, is commonly used in the budding yeast Saccharomyces cerevisiae. GRC makes use of the homologous recombination activity that occurs within the yeast cells. Due to its flexible design and efficiency, GRC has been frequently used for constructing plasmids with complex structures as well as genome-wide plasmid collections. Although there have been reports indicating GRC feasibility in the fission yeast Schizosaccharomyces pombe, this species is not commonly used for GRC as systematic studies of reporting GRC efficiency in S. pombe have not been performed till date. METHODOLOGY/PRINCIPAL FINDINGS: We investigated GRC efficiency in S. pombe in this study. We first showed that GRC was feasible in S. pombe by constructing a plasmid that contained the LEU2 auxotrophic marker gene in vivo and showed sufficient efficiency with short homology sequences (>25 bp. No preference was shown for the sequence length from the cut site in the vector plasmid. We next showed that plasmids could be constructed in a proper way using 3 DNA fragments with 70% efficiency without any specific selections being made. The GRC efficiency with 3 DNA fragments was dramatically increased >95% in lig4Delta mutant cell, where non-homologous end joining is deficient. Following this approach, we successfully constructed plasmid vectors with leu1+, ade6+, his5+, and lys1+ markers with the low-copy stable plasmid pDblet as a backbone by applying GRC in S. pombe. CONCLUSIONS/SIGNIFICANCE: We concluded that GRC was sufficiently feasible in S. pombe for genome-wide gene functional analysis as well as for regular plasmid construction. Plasmids with different

  5. Aging, mortality, and the fast growth trade-off of Schizosaccharomyces pombe.

    Science.gov (United States)

    Nakaoka, Hidenori; Wakamoto, Yuichi

    2017-06-01

    Replicative aging has been demonstrated in asymmetrically dividing unicellular organisms, seemingly caused by unequal damage partitioning. Although asymmetric segregation and inheritance of potential aging factors also occur in symmetrically dividing species, it nevertheless remains controversial whether this results in aging. Based on large-scale single-cell lineage data obtained by time-lapse microscopy with a microfluidic device, in this report, we demonstrate the absence of replicative aging in old-pole cell lineages of Schizosaccharomyces pombe cultured under constant favorable conditions. By monitoring more than 1,500 cell lineages in 7 different culture conditions, we showed that both cell division and death rates are remarkably constant for at least 50-80 generations. Our measurements revealed that the death rate per cellular generation increases with the division rate, pointing to a physiological trade-off with fast growth under balanced growth conditions. We also observed the formation and inheritance of Hsp104-associated protein aggregates, which are a potential aging factor in old-pole cell lineages, and found that these aggregates exhibited a tendency to preferentially remain at the old poles for several generations. However, the aggregates were eventually segregated from old-pole cells upon cell division and probabilistically allocated to new-pole cells. We found that cell deaths were typically preceded by sudden acceleration of protein aggregation; thus, a relatively large amount of protein aggregates existed at the very ends of the dead cell lineages. Our lineage tracking analyses, however, revealed that the quantity and inheritance of protein aggregates increased neither cellular generation time nor cell death initiation rates. Furthermore, our results demonstrated that unusually large amounts of protein aggregates induced by oxidative stress exposure did not result in aging; old-pole cells resumed normal growth upon stress removal, despite the

  6. Calnexin is essential for survival under nitrogen starvation and stationary phase in Schizosaccharomyces pombe.

    Science.gov (United States)

    Núñez, Andrés; Dulude, Dominic; Jbel, Mehdi; Rokeach, Luis A

    2015-01-01

    Cell fate is determined by the balance of conserved molecular mechanisms regulating death (apoptosis) and survival (autophagy). Autophagy is a process by which cells recycle their organelles and macromolecules through degradation within the vacuole in yeast and plants, and lysosome in metazoa. In the yeast Schizosaccharomyces pombe, autophagy is strongly induced under nitrogen starvation and in aging cells. Previously, we demonstrated that calnexin (Cnx1p), a highly conserved transmembrane chaperone of the endoplasmic reticulum (ER), regulates apoptosis under ER stress or inositol starvation. Moreover, we showed that in stationary phase, Cnx1p is cleaved into two moieties, L_Cnx1p and S_Cnx1p. Here, we show that the processing of Cnx1p is regulated by autophagy, induced by nitrogen starvation or cell aging. The cleavage of Cnx1p involves two vacuolar proteases: Isp6, which is essential for autophagy, and its paralogue Psp3. Blocking autophagy through the knockout of autophagy-related genes (atg) results in inhibition of both, the cleavage and the trafficking of Cnx1p from the ER to the vacuole. We demonstrate that Cnx1p is required for cell survival under nitrogen-starvation and in chronological aging cultures. The death of the mini_cnx1 mutant (overlapping S_cnx1p) cells is accompanied by accumulation of high levels of reactive-oxygen species (ROS), a slowdown in endocytosis and severe cell-wall defects. Moreover, mutant cells expressing only S_Cnx1p showed cell wall defects. Co-expressing mutant overlapping the L_Cnx1p and S_Cnx1p cleavage products reverses the death, ROS phenotype and cell wall defect to wild-type levels. As it is involved in both apoptosis and autophagy, Cnx1p could be a nexus for the crosstalk between these pro-death and pro-survival mechanisms. Ours, and observations in mammalian systems, suggest that the multiple roles of calnexin depend on its sub-cellular localization and on its cleavage. The use of S. pombe should assist in further

  7. Combined enzyme mediated fermentation of cellulose and xylose to ethanol by Schizosaccharomyces pombe, cellulase, [beta]-glucosidase, and xylose isomerase

    Science.gov (United States)

    Lastick, S.M.; Mohagheghi, A.; Tucker, M.P.; Grohmann, K.

    1994-12-13

    A process for producing ethanol from mixed sugar streams from pretreated biomass comprising xylose and cellulose using enzymes to convert these substrates to fermentable sugars; selecting and isolating a yeast Schizosaccharomyces pombe ATCC No. 2476, having the ability to ferment these sugars as they are being formed to produce ethanol; loading the substrates with the fermentation mix composed of yeast, enzymes and substrates; fermenting the loaded substrates and enzymes under anaerobic conditions at a pH range of between about 5.0 to about 6.0 and at a temperature range of between about 35 C to about 40 C until the fermentation is completed, the xylose being isomerized to xylulose, the cellulose being converted to glucose, and these sugars being concurrently converted to ethanol by yeast through means of the anaerobic fermentation; and recovering the ethanol. 2 figures.

  8. Modulating the level of the Rpb7 subunit of RNA polymerase II affects cell separation in Schizosaccharomyces pombe.

    Science.gov (United States)

    Kumar, Deepak; Sharma, Nimisha

    2015-01-01

    The rpb7(+) gene encodes the seventh largest subunit of RNA polymerase II and is essential for survival of yeast cells. To gain insight into its functions, we expressed rpb7(+) under the control of the nmt1 promoter and investigated its role in regulating multiple phenotypes in Schizosaccharomyces pombe. We observed that low rpb7(+) levels resulted in slow growth of cells under optimum growth conditions. However, no growth defect was observed under different stress conditions tested in this study. Our results also showed that the most prominent phenotype of cells expressing reduced rpb7(+) is a defect in cell separation. Quantitative real-time PCR analysis further revealed that the transcription of specific cell septation genes was significantly reduced in these cells. Collectively, results presented in this study highlight the distinct role of Rpb7p in regulating cell separation in S. pombe. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  9. Analysis of Schizosaccharomyces pombe mediator reveals a set of essential subunits conserved between yeast and metazoan cells

    DEFF Research Database (Denmark)

    Spåhr, H; Samuelsen, C O; Baraznenok, V

    2001-01-01

    With the identification of eight new polypeptides, we here complete the subunit characterization of the Schizosaccharomyces pombe RNA polymerase II holoenzyme. The complex contains homologs to all 10 essential gene products present in the Saccharomyces cerevisiae Mediator, but lacks clear homologs...... to any of the 10 S. cerevisiae components encoded by nonessential genes. S. pombe Mediator instead contains three unique components (Pmc2, -3, and -6), which lack homologs in other cell types. Presently, pmc2(+) and pmc3(+) have been shown to be nonessential genes. The data suggest that S. pombe and S...... essential genes conserved between S. pombe and S. cerevisiae also have a metazoan homolog, indicating that an evolutionary conserved Mediator core is present in all eukaryotic cells. Our data suggest a closer functional relationship between yeast and metazoan Mediator than previously anticipated....

  10. Sexual development of Schizosaccharomyces pombe is induced by zinc or iron limitation through Ecl1 family genes.

    Science.gov (United States)

    Ohtsuka, Hokuto; Ishida, Maiko; Naito, Chikako; Murakami, Hiroshi; Aiba, Hirofumi

    2015-02-01

    Ecl1 family genes (ecl1 (+), ecl2 (+), and ecl3 (+)) have been identified as extenders of the chronological lifespan in Schizosaccharomyces pombe. Here, we found that the triple-deletion mutant (∆ecl1/2/3) had a defect in sexual development after entry into the stationary phase, although the mutant essentially showed normal mating and sporulation under nitrogen starvation or carbon limitation. In this study, we showed that limitation of zinc or iron can be a signal for sexual development of S. pombe cells grown in Edinburgh minimal medium until the stationary phase and that Ecl1 family genes are important for this process. Because the ∆ecl1/2/3 mutant diminishes the zinc depletion-dependent gene expression, Ecl1 family proteins may function as zinc sensors in the process of sexual development.

  11. Interaction between Pheromone and Its Receptor of the Fission Yeast Schizosaccharomyces pombe Examined by a Force Spectroscopy Study

    Directory of Open Access Journals (Sweden)

    Shintaro Sasuga

    2012-01-01

    Full Text Available Interaction between P-factor, a peptide pheromone composed of 23 amino acid residues, and its pheromone receptor, Mam2, on the cell surface of the fission yeast Schizosaccharomyces pombe was examined by an atomic force microscope (AFM. An AFM tip was modified with P-factor derivatives to perform force curve measurements. The specific interaction force between P-factor and Mam2 was calculated to be around 120 pN at a probe speed of 1.74 μm/s. When the AFM tip was modified with truncated P-factor derivative lacking C-terminal Leu, the specific interaction between the tip and the cell surface was not observed. These results were also confirmed with an assay system using a green fluorescent protein (GFP reporter gene to monitor the activation level of signal transduction following the interaction of Mam2 with P-factor.

  12. Thiamine-repressible genes in Schizosaccharomyces pombe are regulated by a Cys6 zinc-finger motif-containing protein.

    Science.gov (United States)

    Fankhauser, H; Schweingruber, M E

    1994-09-15

    Our previous genetic data indicate that the product of the Schizosaccharomyces pombe thi1 gene acts as an activator of several thiamine-repressible genes which are involved in the control of thiamine metabolism [Schweingruber et al., Genetics 130 (1992) 445-449; Zurlinden and Schweingruber, Gene 117 (1992) 141-143]. In this communication, we report the cloning and sequencing of thi1 and show that it carries an open reading frame which translates into a 775-amino-acid protein with the characteristics of a Cys6 zinc-finger-motif-containing transcription factor, as typified by Saccharomyces cerevisae GAL4. We, therefore, suggest that the thi1-encoded protein binds to upstream activator sequences of thiamine-repressible genes.

  13. Mutations in cyr1 and pat1 reveal pheromone-induced G1 arrest in the fission yeast Schizosaccharomyces pombe

    DEFF Research Database (Denmark)

    Davey, William John; Nielsen, O; Nielsen, Olaf

    1994-01-01

    Investigations into sexual differentiation and pheromone response in the fission yeast Schizosaccharomyces pombe are complicated by the need to first starve the cells of nitrogen. Most mating-related experiments are therefore performed on non-dividing cells. Here we overcome this problem by using...... two mutants that bypass the nutritional requirements and respond to the M-factor mating pheromone in rich medium. The first mutant lacks the cyr1 gene which encodes adenylate cyclase and these cells contain no measurable amounts of cAMP. When M-factor is added to a growing h+ cyr1- strain it causes...... derepressed for pheromone-controlled functions. We now report that an h+ pat1-114 strain growing mitotically at 23 degrees C responds to M-factor. This shows that the pat1 protein kinase can be tuned to derepress nutritional signalling while repressing the other stages in the differentiation process....

  14. Identification and Functional Analysis of the erh1+ Gene Encoding Enhancer of Rudimentary Homolog from the Fission Yeast Schizosaccharomyces pombe

    Science.gov (United States)

    Krzyzanowski, Marek K.; Kozlowska, Ewa; Kozlowski, Piotr

    2012-01-01

    The ERH gene encodes a highly conserved small nuclear protein with a unique amino acid sequence and three-dimensional structure but unknown function. The gene is present in animals, plants, and protists but to date has only been found in few fungi. Here we report that ERH homologs are also present in all four species from the genus Schizosaccharomyces, S. pombe, S. octosporus, S. cryophilus, and S. japonicus, which, however, are an exception in this respect among Ascomycota and Basidiomycota. The ERH protein sequence is moderately conserved within the genus (58% identity between S. pombe and S. japonicus), but the intron-rich genes have almost identical intron-exon organizations in all four species. In S. pombe, erh1+ is expressed at a roughly constant level during vegetative growth and adaptation to unfavorable conditions such as nutrient limitation and hyperosmotic stress caused by sorbitol. Erh1p localizes preferentially to the nucleus with the exception of the nucleolus, but is also present in the cytoplasm. Cells lacking erh1+ have an aberrant cell morphology and a comma-like shape when cultured to the stationary phase, and exhibit a delayed recovery from this phase followed by slower growth. Loss of erh1+ in an auxotrophic background results in enhanced arrest in the G1 phase following nutritional stress, and also leads to hypersensitivity to agents inducing hyperosmotic stress (sorbitol), inhibiting DNA replication (hydroxyurea), and destabilizing the plasma membrane (SDS); this hypersensitivity can be abolished by expression of S. pombe erh1+ and, to a lesser extent, S. japonicus erh1+ or human ERH. Erh1p fails to interact with the human Ciz1 and PDIP46/SKAR proteins, known molecular partners of human ERH. Our data suggest that in Schizosaccharomyces sp. erh1+ is non-essential for normal growth and Erh1p could play a role in response to adverse environmental conditions and in cell cycle regulation. PMID:23145069

  15. Identification and functional analysis of the erh1(+ gene encoding enhancer of rudimentary homolog from the fission yeast Schizosaccharomyces pombe.

    Directory of Open Access Journals (Sweden)

    Marek K Krzyzanowski

    Full Text Available The ERH gene encodes a highly conserved small nuclear protein with a unique amino acid sequence and three-dimensional structure but unknown function. The gene is present in animals, plants, and protists but to date has only been found in few fungi. Here we report that ERH homologs are also present in all four species from the genus Schizosaccharomyces, S. pombe, S. octosporus, S. cryophilus, and S. japonicus, which, however, are an exception in this respect among Ascomycota and Basidiomycota. The ERH protein sequence is moderately conserved within the genus (58% identity between S. pombe and S.japonicus, but the intron-rich genes have almost identical intron-exon organizations in all four species. In S. pombe, erh1(+ is expressed at a roughly constant level during vegetative growth and adaptation to unfavorable conditions such as nutrient limitation and hyperosmotic stress caused by sorbitol. Erh1p localizes preferentially to the nucleus with the exception of the nucleolus, but is also present in the cytoplasm. Cells lacking erh1(+ have an aberrant cell morphology and a comma-like shape when cultured to the stationary phase, and exhibit a delayed recovery from this phase followed by slower growth. Loss of erh1(+ in an auxotrophic background results in enhanced arrest in the G1 phase following nutritional stress, and also leads to hypersensitivity to agents inducing hyperosmotic stress (sorbitol, inhibiting DNA replication (hydroxyurea, and destabilizing the plasma membrane (SDS; this hypersensitivity can be abolished by expression of S. pombe erh1(+ and, to a lesser extent, S. japonicus erh1(+ or human ERH. Erh1p fails to interact with the human Ciz1 and PDIP46/SKAR proteins, known molecular partners of human ERH. Our data suggest that in Schizosaccharomyces sp. erh1(+ is non-essential for normal growth and Erh1p could play a role in response to adverse environmental conditions and in cell cycle regulation.

  16. A general role of the DNA glycosylase Nth1 in the abasic sites cleavage step of base excision repair in Schizosaccharomyces pombe

    OpenAIRE

    Alseth, Ingrun; Korvald, Hanne; Osman, Fekret; Seeberg, Erling; Bjørås, Magnar

    2004-01-01

    One of the most frequent lesions formed in cellular DNA are abasic (apurinic/apyrimidinic, AP) sites that are both cytotoxic and mutagenic, and must be removed efficiently to maintain genetic stability. It is generally believed that the repair of AP sites is initiated by the AP endonucleases; however, an alternative pathway seems to prevail in Schizosaccharomyces pombe. A mutant lacking the DNA glycosylase/AP lyase Nth1 is very sensitive to the alkylating agent methyl methanesulfonate (MMS), ...

  17. Use of Schizosaccharomyces pombe and Torulaspora delbrueckii strains in mixed and sequential fermentations to improve red wine sensory quality.

    Science.gov (United States)

    Loira, Iris; Morata, Antonio; Comuzzo, Piergiorgio; Callejo, María Jesús; González, Carmen; Calderón, Fernando; Suárez-Lepe, José Antonio

    2015-10-01

    One of the main opportunities in the use of non-Saccharomyces yeasts is its great intraspecific variability in relation to the synthesis of secondary products of fermentation. Thus, mixed or sequential fermentation with non-Saccharomyces can increase the synthesis of certain metabolites that are important for colour stability, such as acetaldehyde and pyruvic acid (vitisin precursors) or vinylphenols (vinylphenolic pyranoanthocyanin precursors). Furthermore, the selection and use of non-Saccharomyces yeast strains with good yields in the production of certain volatile compounds (ethyl lactate, 2,3-butanediol, 2-phenylethyl acetate), with limited formation of higher alcohols, is a way to improve the aromatic profile of red wine. The main aim of this work was to evaluate the influence of sequential and mixed fermentations with Schizosaccharomyces pombe and Torulaspora delbrueckii strains on red wine's sensory quality. Anthocyanins and aromatic profiles, as well as glycerol and organic acid content, were analysed in the red wines obtained. Results show that, in general, mixed fermentations can promote an increment in polyols synthesis, while sequential fermentations can enhance the herbaceous aroma. Moreover, the use of T. delbrueckii in mixed fermentations allowed an increase to the fruity character of red wine. The use of S. pombe in sequential fermentations increased the stability of the colouring matter by favouring vitisins and vinylphenolic pyranoanthocyanin formation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Shu1 is a cell-surface protein involved in iron acquisition from heme in Schizosaccharomyces pombe.

    Science.gov (United States)

    Mourer, Thierry; Jacques, Jean-François; Brault, Ariane; Bisaillon, Martin; Labbé, Simon

    2015-04-17

    Iron is an essential metal cofactor that is required for many biological processes. Eukaryotic cells have consequently developed different strategies for its acquisition. Until now, Schizosaccharomyces pombe was known to use reductive iron uptake and siderophore-bound iron transport to scavenge iron from the environment. Here, we report the identification of a gene designated shu1(+) that encodes a protein that enables S. pombe to take up extracellular heme for cell growth. When iron levels are low, the transcription of shu1(+) is induced, although its expression is repressed when iron levels rise. The iron-dependent down-regulation of shu1(+) requires the GATA-type transcriptional repressor Fep1, which strongly associates with a proximal promoter region of shu1(+) in vivo in response to iron repletion. HA4-tagged Shu1 localizes to the plasma membrane in cells expressing a functional shu1(+)-HA4 allele. When heme biosynthesis is selectively blocked in mutated S. pombe cells, their ability to acquire exogenous hemin or the fluorescent heme analog zinc mesoporphyrin IX is dependent on the expression of Shu1. Further analysis by absorbance spectroscopy and hemin-agarose pulldown assays showed that Shu1 interacts with hemin, with a KD of ∼2.2 μm. Taken together, results reported here revealed that S. pombe possesses an unexpected pathway for heme assimilation, which may also serve as a source of iron for cell growth. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Involvement of small heat shock proteins, trehalose, and lipids in the thermal stress management in Schizosaccharomyces pombe.

    Science.gov (United States)

    Glatz, Attila; Pilbat, Ana-Maria; Németh, Gergely L; Vince-Kontár, Katalin; Jósvay, Katalin; Hunya, Ákos; Udvardy, Andor; Gombos, Imre; Péter, Mária; Balogh, Gábor; Horváth, Ibolya; Vígh, László; Török, Zsolt

    2016-03-01

    Changes in the levels of three structurally and functionally different important thermoprotectant molecules, namely small heat shock proteins (sHsps), trehalose, and lipids, have been investigated upon heat shock in Schizosaccharomyces pombe. Both α-crystallin-type sHsps (Hsp15.8 and Hsp16) were induced after prolonged high-temperature treatment but with different kinetic profiles. The shsp null mutants display a weak, but significant, heat sensitivity indicating their importance in the thermal stress management. The heat induction of sHsps is different in wild type and in highly heat-sensitive trehalose-deficient (tps1Δ) cells; however, trehalose level did not show significant alteration in shsp mutants. The altered timing of trehalose accumulation and induction of sHsps suggest that the disaccharide might provide protection at the early stage of the heat stress while elevated amount of sHsps are required at the later phase. The cellular lipid compositions of two different temperature-adapted wild-type S. pombe cells are also altered according to the rule of homeoviscous adaptation, indicating their crucial role in adapting to the environmental temperature changes. Both Hsp15.8 and Hsp16 are able to bind to different lipids isolated from S. pombe, whose interaction might provide a powerful protection against heat-induced damages of the membranes. Our data suggest that all the three investigated thermoprotectant macromolecules play a pivotal role during the thermal stress management in the fission yeast.

  20. Spatial Organization and Molecular Interactions of the Schizosaccharomyces pombe Ccq1-Tpz1-Poz1 Shelterin Complex.

    Science.gov (United States)

    Scott, Harry; Kim, Jin-Kwang; Yu, Clinton; Huang, Lan; Qiao, Feng; Taylor, Derek J

    2017-09-15

    The shelterin complex is a macromolecular assembly of proteins that binds to and protects telomeric DNA, which composes the ends of all linear chromosomes. Shelterin proteins prevent chromosome ends from fusing together and from eliciting erroneous induction of DNA damage response pathways. In addition, shelterin proteins play key roles in regulating the recruitment and activation of telomerase, an enzyme that extends telomeric DNA. In fission yeast, Schizosaccharomyces pombe, interactions between the shelterin proteins Ccq1, Tpz1, and Poz1 are important for regulating telomerase-mediated telomere synthesis and thus telomere length homeostasis. Here, we used electron microscopy combined with genetic labeling to define the three-dimensional arrangement of the S. pombe Ccq1-Tpz1-Poz1 (CTP) complex. Crosslinking mass spectrometry was used to identify individual residues that are in proximity to the protein-protein interfaces of the assembled CTP complex. Together, our data provide a first glimpse into the architectural design of the CTP complex and reveals unique interactions that are important in maintaining the S. pombe telomere in a non-extendible state. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. cAMP-dependent protein kinase involves calcium tolerance through the regulation of Prz1 in Schizosaccharomyces pombe.

    Science.gov (United States)

    Matsuo, Yasuhiro; Kawamukai, Makoto

    2017-02-01

    The cAMP-dependent protein kinase Pka1 is known as a regulator of glycogenesis, meiosis, and stress responses in Schizosaccharomyces pombe. We demonstrated that Pka1 is responsible for calcium tolerance. Loss of functional components of the PKA pathway such as Git3, Gpa2, Cyr1, and Pka1 yields a CaCl2-sensitive phenotype, while loss of Cgs1, a regulatory subunit of PKA, results in CaCl2 tolerance. Cytoplasmic distribution of Cgs1 and Pka1 is increased by the addition of CaCl2, suggesting that CaCl2 induces dissociation of Cgs1 and Pka1. The expression of Prz1, a transcriptional regulator in calcium homeostasis, is elevated in a pka1∆ strain and in a wild type strain under glucose-limited conditions. Accordingly, higher expression of Prz1 in the wild type strain results in a CaCl2-sensitive phenotype. These findings suggest that Pka1 is essential for tolerance to exogenous CaCl2, probably because the expression level of Prz1 needs to be properly regulated by Pka1.

  2. Ssp1 CaMKK: A Sensor of Actin Polarization That Controls Mitotic Commitment through Srk1 in Schizosaccharomyces pombe.

    Science.gov (United States)

    Gómez-Hierro, Alba; Lambea, Eva; Giménez-Zaragoza, David; López-Avilés, Sandra; Yance-Chávez, Tula; Montserrat, Marta; Pujol, M Jesús; Bachs, Oriol; Aligue, Rosa

    2015-01-01

    Calcium/calmodulin-dependent protein kinase kinase (CaMKK) is required for diverse cellular functions. Mammalian CaMKK activates CaMKs and also the evolutionarily-conserved AMP-activated protein kinase (AMPK). The fission yeast Schizosaccharomyces pombe CaMKK, Ssp1, is required for tolerance to limited glucose through the AMPK, Ssp2, and for the integration of cell growth and division through the SAD kinase Cdr2. Here we report that Ssp1 controls the G2/M transition by regulating the activity of the CaMK Srk1. We show that inhibition of Cdc25 by Srk1 is regulated by Ssp1; and also that restoring growth polarity and actin localization of ssp1-deleted cells by removing the actin-monomer-binding protein, twinfilin, is sufficient to suppress the ssp1 phenotype. These findings demonstrate that entry into mitosis is mediated by a network of proteins, including the Ssp1 and Srk1 kinases. Ssp1 connects the network of components that ensures proper polarity and cell size with the network of proteins that regulates Cdk1-cyclin B activity, in which Srk1 plays an inhibitory role.

  3. The Evolution of Aerobic Fermentation in Schizosaccharomyces pombe Was Associated with Regulatory Reprogramming but not Nucleosome Reorganization

    Science.gov (United States)

    Li, Wen-Hsiung

    2011-01-01

    Aerobic fermentation has evolved independently in two yeast lineages, the Saccharomyces cerevisiae and the Schizosaccharomyces pombe lineages. In the S. cerevisiae lineage, the evolution of aerobic fermentation was shown to be associated with transcriptional reprogramming of the genes involved in respiration and was recently suggested to be linked to changes in nucleosome occupancy pattern in the promoter regions of respiration-related genes. In contrast, little is known about the genetic basis for the evolution of aerobic fermentation in the Sch. pombe lineage. In particular, it is not known whether respiration-related genes in Sch. pombe have undergone a transcriptional reprogramming or changes in nucleosome occupancy pattern in their promoter regions. In this study, we compared genome-wide gene expression profiles of Sch. pombe with those of S. cerevisiae and the aerobic respiration yeast Candida albicans. We found that the expression profile of respiration-related genes in Sch. pombe is similar to that of S. cerevisiae, but different from that of C. albicans, suggesting that their transcriptional regulation has been reprogrammed during the evolution of aerobic fermentation. However, we found no significant nucleosome organization change in the promoter of respiration-related gene in Sch. pombe. PMID:21127171

  4. Extensive mass spectrometry-based analysis of the fission yeast proteome: the Schizosaccharomyces pombe PeptideAtlas.

    Science.gov (United States)

    Gunaratne, Jayantha; Schmidt, Alexander; Quandt, Andreas; Neo, Suat Peng; Saraç, Omer Sinan; Gracia, Tannia; Loguercio, Salvatore; Ahrné, Erik; Xia, Rachel Li Hai; Tan, Keng Hwa; Lössner, Christopher; Bähler, Jürg; Beyer, Andreas; Blackstock, Walter; Aebersold, Ruedi

    2013-06-01

    We report a high quality and system-wide proteome catalogue covering 71% (3,542 proteins) of the predicted genes of fission yeast, Schizosaccharomyces pombe, presenting the largest protein dataset to date for this important model organism. We obtained this high proteome and peptide (11.4 peptides/protein) coverage by a combination of extensive sample fractionation, high resolution Orbitrap mass spectrometry, and combined database searching using the iProphet software as part of the Trans-Proteomics Pipeline. All raw and processed data are made accessible in the S. pombe PeptideAtlas. The identified proteins showed no biases in functional properties and allowed global estimation of protein abundances. The high coverage of the PeptideAtlas allowed correlation with transcriptomic data in a system-wide manner indicating that post-transcriptional processes control the levels of at least half of all identified proteins. Interestingly, the correlation was not equally tight for all functional categories ranging from r(s) >0.80 for proteins involved in translation to r(s) pombe PeptideAtlas together with the generated proteotypic peptide spectral library will be a useful resource for future targeted, in-depth, and quantitative proteomic studies on this microorganism.

  5. A knockout screen for protein kinases required for the proper meiotic segregation of chromosomes in the fission yeast Schizosaccharomyces pombe.

    Science.gov (United States)

    Kovacikova, Ines; Polakova, Silvia; Benko, Zsigmond; Cipak, Lubos; Zhang, Lijuan; Rumpf, Cornelia; Miadokova, Eva; Gregan, Juraj

    2013-02-15

    The reduction of chromosome number during meiosis is achieved by two successive rounds of chromosome segregation after just single round of DNA replication. To identify novel proteins required for the proper segregation of chromosomes during meiosis, we analyzed the consequences of deleting Schizosaccharomyces pombe genes predicted to encode protein kinases that are not essential for cell viability. We show that Mph1, a member of the Mps1 family of spindle assembly checkpoint kinases, is required to prevent meiosis I homolog non-disjunction. We also provide evidence for a novel function of Spo4, the fission yeast ortholog of Dbf4-dependent Cdc7 kinase, in regulating the length of anaphase II spindles. In the absence of Spo4, abnormally elongated anaphase II spindles frequently overlap and thus destroy the linear order of nuclei in the ascus. Our observation that the spo4Δ mutant phenotype can be partially suppressed by inhibiting Cdc2-as suggests that dysregulation of the activity of this cyclin-dependent kinase may cause abnormal elongation of anaphase II spindles in spo4Δ mutant cells.

  6. Genetic Interactions among AMPK Catalytic Subunit Ssp2 and Glycogen Synthase Kinases Gsk3 and Gsk31 in Schizosaccharomyces Pombe.

    Science.gov (United States)

    Qingyun; Ma, Yan; Kato, Toshiaki; Furuyashiki, Tomoyuki

    2016-08-03

    In Schizosaccharomyces pombe, Ssp2, an ortholog of AMP-activated protein kinase (AMPK), is critical for cell growth at restrictive temperatures and under glucose depletion as well as sexual differentiation under nitrogen depletion. To identify genes genetically related to Ssp2, we performed a genetic screening to search for the genes whose overexpression rescued the growth defects in Δssp2 cells at restrictive temperatures, and identified 35 cosmids as multicopy suppressor genes. In Southern blot analyses, 22 out of these cosmids were hybridized to an ssp2+ probe. Using nucleotide sequencing, we identified the gsk3+ gene in one of the cosmids, and the remaining 12 cosmids were hybridized to a gsk3+ probe. Overexpression of the gsk3+ gene or the gsk31+ gene, another GSK3 member, rescues defective growth of Δssp2 cells at restrictive temperatures and under glucose depletion as well as sexual differentiation under nitrogen depletion. Δgsk3Δgsk31 double knockout cells, but neither Δgsk3 nor Δgsk31 single knockout cells, phenocopy Δssp2 cells. The deletion of the gsk3+ or gsk31+ gene augments the phenotypes of Δssp2 cells. These findings suggest that Gsk3 and Gsk31 are critical and interact with Ssp2 in multiple cellular functions.

  7. Unique properties of multiple tandem copies of the M26 recombination hotspot in mitosis and meiosis in Schizosaccharomyces pombe.

    Science.gov (United States)

    Steiner, Walter W; Recor, Chelsea L; Zakrzewski, Bethany M

    2016-11-15

    The M26 hotspot of the fission yeast Schizosaccharomyces pombe is one of the best-characterized eukaryotic hotspots of recombination. The hotspot requires a seven bp sequence, ATGACGT, that serves as a binding site for the Atf1-Pcr1 transcription factor, which is also required for activity. The M26 hotspot is active in meiosis but not mitosis and is active in some but not all chromosomal contexts and not on a plasmid. A longer palindromic version of M26, ATGACGTCAT, shows significantly greater activity than the seven bp sequence. Here, we tested whether the properties of the seven bp sequence were also true of the longer sequence by placing one, two, or three copies of the sequence into the ade6 gene, where M26 was originally discovered. These constructs were tested for activity when located on a plasmid or on a chromosome in mitosis and meiosis. We found that two copies of the 10bp M26 motif on a chromosome were significantly more active for meiotic recombination than one, but no further increase was observed with three copies. However, three copies of M26 on a chromosome created an Atf1-dependent mitotic recombination hotspot. When located on a plasmid, M26 also appears to behave as a mitotic recombination hotspot; however, this behavior most likely results from Atf1-dependent inter-allelic complementation between the plasmid and chromosomal ade6 alleles. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Ssp1 CaMKK: A Sensor of Actin Polarization That Controls Mitotic Commitment through Srk1 in Schizosaccharomyces pombe.

    Directory of Open Access Journals (Sweden)

    Alba Gómez-Hierro

    Full Text Available Calcium/calmodulin-dependent protein kinase kinase (CaMKK is required for diverse cellular functions. Mammalian CaMKK activates CaMKs and also the evolutionarily-conserved AMP-activated protein kinase (AMPK. The fission yeast Schizosaccharomyces pombe CaMKK, Ssp1, is required for tolerance to limited glucose through the AMPK, Ssp2, and for the integration of cell growth and division through the SAD kinase Cdr2.Here we report that Ssp1 controls the G2/M transition by regulating the activity of the CaMK Srk1. We show that inhibition of Cdc25 by Srk1 is regulated by Ssp1; and also that restoring growth polarity and actin localization of ssp1-deleted cells by removing the actin-monomer-binding protein, twinfilin, is sufficient to suppress the ssp1 phenotype.These findings demonstrate that entry into mitosis is mediated by a network of proteins, including the Ssp1 and Srk1 kinases. Ssp1 connects the network of components that ensures proper polarity and cell size with the network of proteins that regulates Cdk1-cyclin B activity, in which Srk1 plays an inhibitory role.

  9. Transcription of the Schizosaccharomyces pombe gene cdc18+: roles of MCB elements and the DSC1 complex.

    Science.gov (United States)

    Jackson, William T; Martin, G Steven

    2006-03-15

    In Schizosaccharomyces pombe, commitment to a round of DNA synthesis and entry into the cell cycle are dependent on the function of genes that are transcribed periodically during the cell cycle. Activation of these genes prior to S phase is primarily controlled through cis-acting elements known as MluI Cell-cycle Boxes, or MCBs, and by a family of transcription factors, including Cdc10, Res1, Res2 and Rep2. These transcription factors are also known to be present in a complex, DSC1, that binds to the promoters of pre-S genes. We have demonstrated that within the promoter of cdc18+, a representative pre-S gene, the orientation and spacing of MCBs are crucial for activation and cell-cycle dependence. To our surprise, electrophoretic mobility shift assays showed a highly active mutant form of the promoter, which alters the spacing of the MCB elements, does not bind DSC1 but does bind a higher mobility complex. The binding of this second complex is not dependent on Cdc10 or the Res/Rep proteins. We conclude that, DSC1 binding does not correlate with cell-cycle dependent transcriptional activation, and the higher mobility species may represent a novel transcriptional activation complex that is also likely to function in pre-S transcription.

  10. Regulation of the antioxidant system in cells of the fission yeast Schizosaccharomyces pombe after combined treatment with patulin and citrinin.

    Science.gov (United States)

    Papp, Gábor; Máté, Gábor; Mike, Nóra; Gazdag, Zoltán; Pesti, Miklós

    2016-03-01

    The effects of combined treatment with patulin (PAT) and citrinin (CTN) on Schizosaccharomyces pombe cells were investigated in acute toxicity tests. In comparison with the controls the exposure of fission yeast cells (10(7) cells ml(-1)) to PAT + CTN (250 μM each) for 1 h at a survival rate of 66.6% significantly elevated the concentration of total reactive oxygen species (ROS) via increased levels of peroxides without affecting the concentrations of superoxides or the hydroxyl radical. This treatment induced a 3.08-fold increase in the specific concentration of glutathione and elevated specific activities of catalase and glutathione S-transferase, while at the same time the activity of glutathione reductase decreased. The pattern of the ROS was the same as that induced by CTN (Máté et al., 2014), while the presence of PAT in the PAT + CTN combination treatment modified the activities of the antioxidant system (Papp et al., 2012) in comparison with the individual PAT or CTN treatment, suggesting toxin-specific regulation of glutathione and the enzymes of the antioxidant system and the possibility that the transcription factor (pap1 and atf1) -regulated processes might be influenced directly by ROS. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Mdm31 protein mediates sensitivity to potassium ionophores but does not regulate mitochondrial morphology or phospholipid trafficking in Schizosaccharomyces pombe.

    Science.gov (United States)

    Ivan, Branislav; Lajdova, Dana; Abelovska, Lenka; Balazova, Maria; Nosek, Jozef; Tomaska, Lubomir

    2015-03-01

    Mdm31p is an inner mitochondrial membrane (IMM) protein with unknown function in Saccharomyces cerevisiae. Mutants lacking Mdm31p contain only a few giant spherical mitochondria with disorganized internal structure, altered phospholipid composition and disturbed ion homeostasis, accompanied by increased resistance to the electroneutral K+ /H+ ionophore nigericin. These phenotypes are interpreted as resulting from diverse roles of Mdm31p, presumably in linking mitochondrial DNA (mtDNA) to the machinery involved in segregation of mitochondria, in mediating cation transport across IMM and in phospholipid shuttling between mitochondrial membranes. To investigate which of the roles of Mdm31p are conserved in ascomycetous yeasts, we analysed the Mdm31p orthologue in Schizosaccharomyces pombe. Our results demonstrate that, similarly to its S. cerevisiae counterpart, SpMdm31 is a mitochondrial protein and its absence results in increased resistance to nigericin. However, in contrast to S. cerevisiae, Sz. pombe cells lacking SpMdm31 are also less sensitive to the electrogenic K+ ionophore valinomycin. Moreover, mitochondria of the fission yeast mdm31Δ mutant display no changes in morphology or phospholipid composition. Therefore, in terms of function, the two orthologous proteins appear to have considerably diverged between these two evolutionarily distant yeast species, possibly sharing only their participation in ion homeostasis. Copyright © 2015 John Wiley & Sons, Ltd.

  12. The major role of human AP-endonuclease homolog Apn2 in repair of abasic sites in Schizosaccharomyces pombe.

    Science.gov (United States)

    Ribar, Balazs; Izumi, Tadahide; Mitra, Sankar

    2004-01-01

    The abasic (AP) sites, the major mutagenic and cytotoxic genomic lesions, induced directly by oxidative stress and indirectly after excision of damaged bases by DNA glycosylases, are repaired by AP-endonucleases (APEs). Among two APEs in Saccharomyces cerevisiae, Apn1 provides the major APE activity, and Apn2, the ortholog of the mammalian APE, provides back-up activity. We have cloned apn1 and apn2 genes of Schizosaccharomyces pombe, and have shown that inactivation of Apn2 and not Apn1 sensitizes this fission yeast to alkylation and oxidative damage-inducing agents, which is further enhanced by Apn1 inactivation. We also show that Uve1, present in S.pombe but not in S.cerevisiae, provides the back-up APE activity together with Apn1. We confirmed the presence of APE activity in recombinant Apn2 and in crude cell extracts. Thus S.pombe is distinct from S.cerevisiae, and is similar to mammalian cells in having Apn2 as the major APE.

  13. Construction of the first compendium of chemical-genetic profiles in the fission yeast Schizosaccharomyces pombe and comparative compendium approach.

    Science.gov (United States)

    Han, Sangjo; Lee, Minho; Chang, Hyeshik; Nam, Miyoung; Park, Han-Oh; Kwak, Youn-Sig; Ha, Hye-Jeong; Kim, Dongsup; Hwang, Sung-Ook; Hoe, Kwang-Lae; Kim, Dong-Uk

    2013-07-12

    Genome-wide chemical genetic profiles in Saccharomyces cerevisiae since the budding yeast deletion library construction have been successfully used to reveal unknown mode-of-actions of drugs. Here, we introduce comparative approach to infer drug target proteins more accurately using two compendiums of chemical-genetic profiles from the budding yeast S. cerevisiae and the fission yeast Schizosaccharomyces pombe. For the first time, we established DNA-chip based growth defect measurement of genome-wide deletion strains of S. pombe, and then applied 47 drugs to the pooled heterozygous deletion strains to generate chemical-genetic profiles in S. pombe. In our approach, putative drug targets were inferred from strains hypersensitive to given drugs by analyzing S. pombe and S. cerevisiae compendiums. Notably, many evidences in the literature revealed that the inferred target genes of fungicide and bactericide identified by such comparative approach are in fact the direct targets. Furthermore, by filtering out the genes with no essentiality, the multi-drug sensitivity genes, and the genes with less eukaryotic conservation, we created a set of drug target gene candidates that are expected to be directly affected by a given drug in human cells. Our study demonstrated that it is highly beneficial to construct the multiple compendiums of chemical genetic profiles using many different species. The fission yeast chemical-genetic compendium is available at http://pombe.kaist.ac.kr/compendium. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Mutagenesis of the HMGB (high-mobility group B) protein Cmb1 (cytosine-mismatch binding 1) of Schizosaccharomyces pombe: effects on recognition of DNA mismatches and damage.

    OpenAIRE

    Kunz, Christophe; Zurbriggen, Karin; Fleck, Oliver

    2003-01-01

    Cmb1 (cytosine-mismatch binding 1) is a high-mobility group (HMG) protein of Schizosaccharomyces pombe, which consists of 223 amino acids and has a single HMG domain at the C-terminal end. We have created several mutant and deletion forms of the Cmb1 protein and studied the effects on general DNA binding and specific binding to DNA mismatches and damaged DNA. Cmb1Delta41 (i.e. Cmb1 from which the 41 N-terminal amino acids have been deleted) bound specifically to cytosine-containing mismatches...

  15. Rga6, una GAP de Cdc42, implicada en el control de la morfología celular de Schizosaccharomyces pombe

    OpenAIRE

    Revilla Guarinos, María Teresa

    2016-01-01

    [ES] La morfogénesis constituye junto con el crecimiento y la diferenciación celular, uno de los aspectos más importantes del desarrollo de un organismo. Muchas de las principales moléculas implicadas en el control del crecimiento polarizado y la morfogénesis, como las GTPasas Rho, están conservadas desde levaduras a mamíferos. En nuestro grupo estudiamos el papel de las GTPasas Rho en el crecimiento polarizado empleando como organismo modelo la levadura de fisión Schizosaccharomyces pombe. E...

  16. A microPIXE investigation of the interaction of cells of Schizosaccharomyces pombe with the culture medium

    Energy Technology Data Exchange (ETDEWEB)

    Rombouts, P.M.M. [Ion Beam Centre, Advanced Technology Institute, School of Electronics and Physical Sciences, University of Surrey, Guildford GU2 7XH (United Kingdom); Gomez-Morilla, I. [Ion Beam Centre, Advanced Technology Institute, School of Electronics and Physical Sciences, University of Surrey, Guildford GU2 7XH (United Kingdom); Grime, G.W. [Ion Beam Centre, Advanced Technology Institute, School of Electronics and Physical Sciences, University of Surrey, Guildford GU2 7XH (United Kingdom); Webb, R.P. [Ion Beam Centre, Advanced Technology Institute, School of Electronics and Physical Sciences, University of Surrey, Guildford GU2 7XH (United Kingdom); Cuenca, L. [Fluids and Systems Research Centre, School of Engineering, University of Surrey, Guildford GU2 7XH (United Kingdom); Rodriguez, R. [Fluids and Systems Research Centre, School of Engineering, University of Surrey, Guildford GU2 7XH (United Kingdom); Browton, M. [Ion Beam Centre, Advanced Technology Institute, School of Electronics and Physical Sciences, University of Surrey, Guildford GU2 7XH (United Kingdom); Wardell, N. [School of Biomedical and Molecular Sciences, University of Surrey, Guildford GU2 7XH (United Kingdom); Underwood, B. [Fluids and Systems Research Centre, School of Engineering, University of Surrey, Guildford GU2 7XH (United Kingdom); Kirkby, N.F. [Fluids and Systems Research Centre, School of Engineering, University of Surrey, Guildford GU2 7XH (United Kingdom); Kirkby, K.J. [Ion Beam Centre, Advanced Technology Institute, School of Electronics and Physical Sciences, University of Surrey, Guildford GU2 7XH (United Kingdom)]. E-mail: k.kirkby@surrey.ac.uk

    2007-07-15

    Schizosaccharomyces pombe (S. pombe) is a eucaryotic cell type similar to mammalian cells but much more simple. As it also executes its cell cycle rapidly it is very useful for investigating basic processes in cells. In this paper we report a feasibility study of the applicability of microPIXE to investigate the interaction between S. pombe cells and the surrounding culture medium. Cells were cultured in various growth medium prior to preparation for analysis. 1 {mu}l drops of medium and cells were spotted onto polypropylene foils held in contact with a polished copper block previously cooled in liquid nitrogen. The samples were dehydrated by freeze-drying. Micro PIXE analysis was carried out with the IBC microbeam facility using a beam of 2.5 MeV protons focused to 1-2 {mu}m diameter. Initially no elemental contrast was observed between the cells and the medium, but by modifying the dilution of the cell suspension, the cells could be distinguished from the surrounding medium through an increased concentration of P and reduced concentration of Cl. The distribution of Na in the medium around the cells showed evidence of the action of the Na pump. Sporulation appears to be induced in the cells by adding Cu to the growth medium and the uptake of Cu by the cells could be clearly observed. This study shows that it is possible to analyse the mass transport of elements in and out of cells In the future this will enable concentration gradients to be analysed and allow the rate of production or consumption of individual cells to be calculated. By observing these patterns for individual cells (not populations) at various known points in the cell cycle, fundamental data can be derived.

  17. A microPIXE investigation of the interaction of cells of Schizosaccharomyces pombe with the culture medium

    Science.gov (United States)

    Rombouts, P. M. M.; Gomez-Morilla, I.; Grime, G. W.; Webb, R. P.; Cuenca, L.; Rodriguez, R.; Browton, M.; Wardell, N.; Underwood, B.; Kirkby, N. F.; Kirkby, K. J.

    2007-07-01

    Schizosaccharomyces pombe ( S. pombe) is a eucaryotic cell type similar to mammalian cells but much more simple. As it also executes its cell cycle rapidly it is very useful for investigating basic processes in cells. In this paper we report a feasibility study of the applicability of microPIXE to investigate the interaction between S. pombe cells and the surrounding culture medium. Cells were cultured in various growth medium prior to preparation for analysis. 1 μl drops of medium and cells were spotted onto polypropylene foils held in contact with a polished copper block previously cooled in liquid nitrogen. The samples were dehydrated by freeze-drying. Micro PIXE analysis was carried out with the IBC microbeam facility using a beam of 2.5 MeV protons focused to 1-2 μm diameter. Initially no elemental contrast was observed between the cells and the medium, but by modifying the dilution of the cell suspension, the cells could be distinguished from the surrounding medium through an increased concentration of P and reduced concentration of Cl. The distribution of Na in the medium around the cells showed evidence of the action of the Na pump. Sporulation appears to be induced in the cells by adding Cu to the growth medium and the uptake of Cu by the cells could be clearly observed. This study shows that it is possible to analyse the mass transport of elements in and out of cells In the future this will enable concentration gradients to be analysed and allow the rate of production or consumption of individual cells to be calculated. By observing these patterns for individual cells (not populations) at various known points in the cell cycle, fundamental data can be derived.

  18. Filamentous invasive growth of mutants of the genes encoding ammonia-metabolizing enzymes in the fission yeast Schizosaccharomyces pombe.

    Directory of Open Access Journals (Sweden)

    Yoshie Sasaki

    Full Text Available The fission yeast Schizosaccharomyces pombe undergoes a switch from yeast to filamentous invasive growth in response to certain environmental stimuli. Among them is ammonium limitation. Amt1, one of the three ammonium transporters in this yeast, is required for the ammonium limitation-induced morphological transition; however, the underlying molecular mechanism remains to be understood. Cells lacking Amt1 became capable of invasive growth upon increasing concentrations of ammonium in the medium, suggesting that the ammonium taken up into the cell or a metabolic intermediate in ammonium assimilation might serve as a signal for the ammonium limitation-induced morphological transition. To investigate the possible role of ammonium-metabolizing enzymes in the signaling process, deletion mutants were constructed for the gdh1, gdh2, gln1, and glt1 genes, which were demonstrated by enzyme assays to encode NADP-specific glutamate dehydrogenase, NAD-specific glutamate dehydrogenase, glutamine synthetase, and glutamate synthase, respectively. Growth tests on various nitrogen sources revealed that a gln1Δ mutant was a glutamine auxotroph and that a gdh1Δ mutant had a defect in growth on ammonium, particularly at high concentrations. The latter observation indicates that the NADP-specific glutamate dehydrogenase of S. pombe plays a major role in ammonium assimilation under high ammonium concentrations. Invasive growth assays showed that gdh1Δ and glt1Δ mutants underwent invasive growth to a lesser extent than did wild-type strains. Increasing the ammonium concentration in the medium suppressed the invasive growth defect of the glt1Δ mutant, but not the gdh1Δ mutant. These results suggest that the nitrogen status of the cell is important in the induction of filamentous invasive growth in S. pombe.

  19. [Ash2, a subunit of histone H3K4 methyltransferase complex, is involved in the sporulation in Schizosaccharomyces pombe].

    Science.gov (United States)

    Wang, Wenchao; Zhou, Huan; Yu, Yao; Lv, Hong

    2014-09-01

    Schizosaccharomyces pombe undergoes meiosis instead of mitosis under conditions of nitrogen starvation and pheromone signalling, which results in conjugation and sporulation. During this progress, the pheromone-responsive MAPK(Mitogen-activated protein kinases) pathway plays an important role in regulating the conjuation and the transcriptional activation of genes required for meiosis. Spk1, a key component of MAPK pathway, activates Ste11 through protein phosphorylation and then induced the transcriptions of several genes requied for meiosis, including mei2(+), mam2(+) and map3(+). Methylation of histone H3K4 is involved in several important biological processes, including transcriptional activation and chromatin remodeling. However, its role in the sporualtion of fission yeast is poorly understood. Ash2 is a subunit of COMPASS, a conserved H3K4 methyltransferase complex. Sequence alignment analysis revealed that Ash2 in pombe shares two conserved domain with other homologues. Ash2 is localized in nucleus and contributes to methylation of H3K4. Deletion of ash2(+) resulted in a delay of sporulation and a substantial drop of sporulation efficiency. ChIP and qPCR analysis showed that deletion of ash2(+) caused a reduction of H3K4me2 level in the coding region of spk1(+), as well as a reduction of its mRNA level. Although the mRNA level of ste11(+) kept unchanged, the levels of Ste11-targetted genes, such as mei2(+), mam2(+) and map3(+), all reduced in ash2Δ cells. The results suggest that Ash2 regulates MAPK pathway and sporulation through H3K4 methylation. This might provide a new clue to elucidate the link between meiosis and epigenetic regulation.

  20. Evolution of Telomeres in Schizosaccharomyces pombe and Its Possible Relationship to the Diversification of Telomere Binding Proteins.

    Science.gov (United States)

    Sepsiova, Regina; Necasova, Ivona; Willcox, Smaranda; Prochazkova, Katarina; Gorilak, Peter; Nosek, Jozef; Hofr, Ctirad; Griffith, Jack D; Tomaska, Lubomir

    2016-01-01

    Telomeres of nuclear chromosomes are usually composed of an array of tandemly repeated sequences that are recognized by specific Myb domain containing DNA-binding proteins (telomere-binding proteins, TBPs). Whereas in many eukaryotes the length and sequence of the telomeric repeat is relatively conserved, telomeric sequences in various yeasts are highly variable. Schizosaccharomyces pombe provides an excellent model for investigation of co-evolution of telomeres and TBPs. First, telomeric repeats of S. pombe differ from the canonical mammalian type TTAGGG sequence. Second, S. pombe telomeres exhibit a high degree of intratelomeric heterogeneity. Third, S. pombe contains all types of known TBPs (Rap1p [a version unable to bind DNA], Tay1p/Teb1p, and Taz1p) that are employed by various yeast species to protect their telomeres. With the aim of reconstructing evolutionary paths leading to a separation of roles between Teb1p and Taz1p, we performed a comparative analysis of the DNA-binding properties of both proteins using combined qualitative and quantitative biochemical approaches. Visualization of DNA-protein complexes by electron microscopy revealed qualitative differences of binding of Teb1p and Taz1p to mammalian type and fission yeast telomeres. Fluorescence anisotropy analysis quantified the binding affinity of Teb1p and Taz1p to three different DNA substrates. Additionally, we carried out electrophoretic mobility shift assays using mammalian type telomeres and native substrates (telomeric repeats, histone-box sequences) as well as their mutated versions. We observed relative DNA sequence binding flexibility of Taz1p and higher binding stringency of Teb1p when both proteins were compared directly to each other. These properties may have driven replacement of Teb1p by Taz1p as the TBP in fission yeast.

  1. The MAP kinase Pmk1 and protein kinase A are required for rotenone resistance in the fission yeast, Schizosaccharomyces pombe

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yiwei; Gulis, Galina; Buckner, Scott; Johnson, P. Connor; Sullivan, Daniel [Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487 (United States); Busenlehner, Laura [Department of Chemistry, The University of Alabama, Tuscaloosa, AL 35487 (United States); Marcus, Stevan, E-mail: smarcus@bama.ua.edu [Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487 (United States)

    2010-08-20

    Research highlights: {yields} Rotenone induces generation of ROS and mitochondrial fragmentation in fission yeast. {yields} The MAPK Pmk1 and PKA are required for rotenone resistance in fission yeast. {yields} Pmk1 and PKA are required for ROS clearance in rotenone treated fission yeast cells. {yields} PKA plays a role in ROS clearance under normal growth conditions in fission yeast. -- Abstract: Rotenone is a widely used pesticide that induces Parkinson's disease-like symptoms in rats and death of dopaminergic neurons in culture. Although rotenone is a potent inhibitor of complex I of the mitochondrial electron transport chain, it can induce death of dopaminergic neurons independently of complex I inhibition. Here we describe effects of rotenone in the fission yeast, Schizosaccharomyces pombe, which lacks complex I and carries out rotenone-insensitive cellular respiration. We show that rotenone induces generation of reactive oxygen species (ROS) as well as fragmentation of mitochondrial networks in treated S. pombe cells. While rotenone is only modestly inhibitory to growth of wild type S. pombe cells, it is strongly inhibitory to growth of mutants lacking the ERK-type MAP kinase, Pmk1, or protein kinase A (PKA). In contrast, cells lacking the p38 MAP kinase, Spc1, exhibit modest resistance to rotenone. Consistent with these findings, we provide evidence that Pmk1 and PKA, but not Spc1, are required for clearance of ROS in rotenone treated S. pombe cells. Our results demonstrate the usefulness of S. pombe for elucidating complex I-independent molecular targets of rotenone as well as mechanisms conferring resistance to the toxin.

  2. Vsl1p cooperates with Fsv1p for vacuolar protein transport and homotypic fusion in Schizosaccharomyces pombe.

    Science.gov (United States)

    Hosomi, Akira; Higuchi, Yujiro; Yagi, Satoshi; Takegawa, Kaoru

    2015-01-01

    Members of the SNARE protein family participate in the docking-fusion step of several intracellular vesicular transport events. Saccharomyces cerevisiae Vam7p was identified as a SNARE protein that acts in vacuolar protein transport and membrane fusion. However, in Schizosaccharomyces pombe, there have been no reports regarding the counterpart of Vam7p. Here, we found that, although the SPCC594.06c gene has low similarity to Vam7p, the product of SPCC594.06c has a PX domain and SNARE motif like Vam7p, and thus we designated the gene Sch. pombe vsl1(+) (Vam7-like protein 1). The vsl1Δ cells showed no obvious defect in vacuolar protein transport. However, cells of the vsl1Δ mutant with a deletion of fsv1(+), which encodes another SNARE protein, displayed extreme defects in vacuolar protein transport and vacuolar morphology. Vsl1p was localized to the vacuolar membrane and prevacuolar compartment, and its PX domain was essential for proper localization. Expression of the fusion protein GFP-Vsl1p was able to suppress ZnCl2 sensitivity and the vacuolar protein sorting defect in the fsv1Δ cells. Moreover, GFP-Vsl1p was mislocalized in a pep12Δ mutant and in cells overexpressing fsv1(+). Importantly, overexpression of Sac. cerevisiae VAM7 could suppress the sensitivity to ZnCl2 of vsl1Δ cells and the vacuolar morphology defect of vsl1Δfsv1Δ cells in Sch. pombe. Taken together, these data suggest that Vsl1p and Fsv1p are required for vacuolar protein transport and membrane fusion, and they function cooperatively with Pep12p in the same membrane-trafficking step. © 2015 The Authors.

  3. Schizosaccharomyces pombe Rad22A and Rad22B have similar biochemical properties and form multimeric structures

    Energy Technology Data Exchange (ETDEWEB)

    Vries, Femke A.T. de [Department of Toxicogenetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden (Netherlands); Zonneveld, Jose B.M. [Department of Toxicogenetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden (Netherlands); Groot, Anton J. de [Department of Toxicogenetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden (Netherlands); Koning, Roman I. [Department of Molecular Cell Biology, Leiden University Medical Center, Leiden (Netherlands); Zeeland, Albert A. van [Department of Toxicogenetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden (Netherlands); Pastink, Albert [Department of Toxicogenetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden (Netherlands)]. E-mail: A.Pastink@lumc.nl

    2007-02-03

    The Saccharomyces cerevisiae Rad52 protein has a crucial role in the repair of DNA double-strand breaks by homologous recombination. In vitro, Rad52 displays DNA binding and strand annealing activities and promotes Rad51-mediated strand exchange. Schizosaccharomyces pombe has two Rad52 homologues, Rad22A and Rad22B. Whereas rad22A deficient strains exhibit severe defects in repair and recombination, rad22B mutants have a much less severe phenotype. To better understand the role of Rad22A and Rad22B in double-strand break repair, both proteins were purified to near homogeneity. Using gel retardation and filter binding assays, binding of Rad22A and Rad22B to short single-stranded DNAs was demonstrated. Binding of Rad22A to double-stranded oligonucleotides or linearized plasmid molecules containing blunt ends or short single-stranded overhangs could not be detected. Rad22B also does not bind efficiently to short duplex oligonucleotides but binds readily to DNA fragments containing 3'-overhangs. Rad22A as well as Rad22B efficiently promote annealing of complementary single-stranded DNAs. In the presence of Rad22A annealing of complementary DNAs is almost 90%. Whereas in reactions containing Rad22B the maximum level of annealing is 60%, most likely due to inhibition of the reaction by duplex DNA. Gel-filtration experiments and electron microscopic analyses indicate self-association of Rad22A and Rad22B and the formation of multimeric structures as has been observed for Rad52 in yeast and man.

  4. CK2 phospho-independent assembly of the Tel2-associated stress-signaling complexes in Schizosaccharomyces pombe.

    Science.gov (United States)

    Inoue, Haruna; Sugimoto, Shizuka; Takeshita, Yumiko; Takeuchi, Miho; Hatanaka, Mitsuko; Nagao, Koji; Hayashi, Takeshi; Kokubu, Aya; Yanagida, Mitsuhiro; Kanoh, Junko

    2017-01-01

    An evolutionarily conserved protein Tel2 regulates a variety of stress signals. In mammals, TEL2 associates with TTI1 and TTI2 to form the Triple T (TTT: TEL2-TTI1-TTI2) complex as well as with all the phosphatidylinositol 3-kinase-like kinases (PIKKs) and the R2TP (Ruvbl1-Ruvbl2-Tah1-Pih1 in budding yeast)/prefoldin-like complex that associates with HSP90. The phosphorylation of TEL2 by casein kinase 2 (CK2) enables direct binding of PIHD1 (mammalian Pih1) to TEL2 and is important for the stability and the functions of PIKKs. However, the regulatory mechanisms of Tel2 in fission yeast Schizosaccharomyces pombe remain largely unknown. Here, we report that S. pombe Tel2 is phosphorylated by CK2 at Ser490 and Thr493. Tel2 forms the TTT complex with Tti1 and Tti2 and also associates with PIKKs, Rvb2, and Hsp90 in vivo; however, the phosphorylation of Tel2 affects neither the stability of the Tel2-associated proteins nor their association with Tel2. Thus, Tel2 stably associates with its binding partners irrespective of its phosphorylation. Furthermore, the Tel2 phosphorylation by CK2 is not required for the various stress responses to which PIKKs are pivotal. Our results suggest that the Tel2-containing protein complexes are conserved among eukaryotes, but the molecular regulation of their formation has been altered during evolution. © 2016 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  5. Generation and analysis of a barcode-tagged insertion mutant library in the fission yeast Schizosaccharomyces pombe

    Science.gov (United States)

    2012-01-01

    Background Barcodes are unique DNA sequence tags that can be used to specifically label individual mutants. The barcode-tagged open reading frame (ORF) haploid deletion mutant collections in the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe allow for high-throughput mutant phenotyping because the relative growth of mutants in a population can be determined by monitoring the proportions of their associated barcodes. While these mutant collections have greatly facilitated genome-wide studies, mutations in essential genes are not present, and the roles of these genes are not as easily studied. To further support genome-scale research in S. pombe, we generated a barcode-tagged fission yeast insertion mutant library that has the potential of generating viable mutations in both essential and non-essential genes and can be easily analyzed using standard molecular biological techniques. Results An insertion vector containing a selectable ura4+ marker and a random barcode was used to generate a collection of 10,000 fission yeast insertion mutants stored individually in 384-well plates and as six pools of mixed mutants. Individual barcodes are flanked by Sfi I recognition sites and can be oligomerized in a unique orientation to facilitate barcode sequencing. Independent genetic screens on a subset of mutants suggest that this library contains a diverse collection of single insertion mutations. We present several approaches to determine insertion sites. Conclusions This collection of S. pombe barcode-tagged insertion mutants is well-suited for genome-wide studies. Because insertion mutations may eliminate, reduce or alter the function of essential and non-essential genes, this library will contain strains with a wide range of phenotypes that can be assayed by their associated barcodes. The design of the barcodes in this library allows for barcode sequencing using next generation or standard benchtop cloning approaches. PMID:22554201

  6. Functional Expression and Characterization of Schizosaccharomyces pombe Avt3p as a Vacuolar Amino Acid Exporter in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Soracom Chardwiriyapreecha

    Full Text Available In Saccharomyces cerevisiae, Avt3p and Avt4p mediate the extrusion of several amino acids from the vacuolar lumen into the cytosol. SpAvt3p of Schizosaccharomyces pombe, a homologue of these vacuolar amino acid transporters, has been indicated to be involved in spore formation. In this study, we confirmed that GFP-SpAvt3p localized to the vacuolar membrane in S. pombe. The amounts of various amino acids increased significantly in the vacuolar pool of avt3Δ cells, but decreased in that of avt3+-overexpressing avt3Δ cells. These results suggest that SpAvt3p participates in the vacuolar compartmentalization of amino acids in S. pombe. To examine the export activity of SpAvt3p, we expressed the avt3+ gene in S. cerevisiae cells. We found that the heterologously overproduced GFP-SpAvt3p localized to the vacuolar membrane in S. cerevisiae. Using the vacuolar membrane vesicles isolated from avt3+-overexpressing S. cerevisiae cells, we detected the export activities of alanine and tyrosine in an ATP-dependent manner. These activities were inhibited by the addition of a V-ATPase inhibitor, concanamycin A, thereby suggesting that the activity of SpAvt3p is dependent on a proton electrochemical gradient generated by the action of V-ATPase. In addition, the amounts of various amino acids in the vacuolar pools of S. cerevisiae cells were decreased by the overproduction of SpAvt3p, which indicated that SpAvt3p was functional in S. cerevisiae cells. Thus, SpAvt3p is a vacuolar transporter that is involved in the export of amino acids from S. pombe vacuoles.

  7. Identification of novel genes involved in DNA damage response by screening a genome-wide Schizosaccharomyces pombe deletion library

    Directory of Open Access Journals (Sweden)

    Pan Xian

    2012-11-01

    Full Text Available Abstract Background DNA damage response (DDR plays pivotal roles in maintaining genome integrity and stability. An effective DDR requires the involvement of hundreds of genes that compose a complicated network. Because DDR is highly conserved in evolution, studies in lower eukaryotes can provide valuable information to elucidate the mechanism in higher organisms. Fission yeast (Schizosaccharomyces pombe has emerged as an excellent model for DDR research in recent years. To identify novel genes involved in DDR, we screened a genome-wide S. pombe haploid deletion library against six different DNA damage reagents. The library covered 90.5% of the nonessential genes of S. pombe. Results We have identified 52 genes that were actively involved in DDR. Among the 52 genes, 20 genes were linked to DDR for the first time. Flow cytometry analysis of the repair defective mutants revealed that most of them exhibited a defect in cell cycle progression, and some caused genome instability. Microarray analysis and genetic complementation assays were carried out to characterize 6 of the novel DDR genes in more detail. Data suggested that SPBC2A9.02 and SPAC27D7.08c were required for efficient DNA replication initiation because they interacted genetically with DNA replication initiation proteins Abp1 and Abp2. In addition, deletion of sgf73+, meu29+, sec65+ or pab1+ caused improper cytokinesis and DNA re-replication, which contributed to the diploidization in the mutants. Conclusions A genome-wide screen of genes involved in DDR emphasized the key role of cell cycle control in the DDR network. Characterization of novel genes identified in the screen helps to elucidate the mechanism of the DDR network and provides valuable clues for understanding genome stability in higher eukaryotes.

  8. Scarless Gene Tagging with One-Step Transformation and Two-Step Selection in Saccharomyces cerevisiae and Schizosaccharomyces pombe.

    Science.gov (United States)

    Landgraf, Dirk; Huh, Dann; Hallacli, Erinc; Lindquist, Susan

    2016-01-01

    Gene tagging with fluorescent proteins is commonly applied to investigate the localization and dynamics of proteins in their cellular environment. Ideally, a fluorescent tag is genetically inserted at the endogenous locus at the N- or C- terminus of the gene of interest without disrupting regulatory sequences including the 5' and 3' untranslated region (UTR) and without introducing any extraneous unwanted "scar" sequences, which may create unpredictable transcriptional or translational effects. We present a reliable, low-cost, and highly efficient method for the construction of such scarless C-terminal and N-terminal fusions with fluorescent proteins in yeast. The method relies on sequential positive and negative selection and uses an integration cassette with long flanking regions, which is assembled by two-step PCR, to increase the homologous recombination frequency. The method also enables scarless tagging of essential genes with no need for a complementing plasmid. To further ease high-throughput strain construction, we have computationally automated design of the primers, applied the primer design code to all open reading frames (ORFs) of the budding yeast Saccharomyces cerevisiae (S. cerevisiae) and the fission yeast Schizosaccharomyces pombe (S. pombe), and provide here the computed sequences. To illustrate the scarless N- and C-terminal gene tagging methods in S. cerevisiae, we tagged various genes including the E3 ubiquitin ligase RSP5, the proteasome subunit PRE1, and the eleven Rab GTPases with yeast codon-optimized mNeonGreen or mCherry; several of these represent essential genes. We also implemented the scarless C-terminal gene tagging method in the distantly related organism S. pombe using kanMX6 and HSV1tk as positive and negative selection markers, respectively, as well as ura4. The scarless gene tagging methods presented here are widely applicable to visualize and investigate the functional roles of proteins in living cells.

  9. Heme Assimilation in Schizosaccharomyces pombe Requires Cell-surface-anchored Protein Shu1 and Vacuolar Transporter Abc3.

    Science.gov (United States)

    Mourer, Thierry; Normant, Vincent; Labbé, Simon

    2017-03-24

    The Schizosaccharomyces pombe shu1+ gene encodes a cell-surface protein required for assimilation of exogenous heme. In this study, shaving experiments showed that Shu1 is released from membrane preparations when spheroplast lysates are incubated with phosphoinositide-specific phospholipase C (PI-PLC). Shu1 cleavability by PI-PLC and its predicted hydropathy profile strongly suggested that Shu1 is a glycosylphosphatidylinositol-anchored protein. When heme biosynthesis is selectively blocked in hem1Δ mutant cells, the heme analog zinc mesoporphyrin IX (ZnMP) first accumulates into vacuoles and then subsequently, within the cytoplasm in a rapid and Shu1-dependent manner. An HA4-tagged shu1+ allele that retained wild-type function localizes to the cell surface in response to low hemin concentrations, but under high hemin concentrations, Shu1-HA4 re-localizes to the vacuolar membrane. Inactivation of abc3+, encoding a vacuolar membrane transporter, results in hem1Δ abc3Δ mutant cells being unable to grow in the presence of hemin as the sole iron source. In hem1Δ abc3Δ cells, ZnMP accumulates primarily in vacuoles and does not sequentially accumulate in the cytosol. Consistent with a role for Abc3 as vacuolar hemin exporter, results with hemin-agarose pulldown assays showed that Abc3 binds to hemin. In contrast, an Abc3 mutant in which an inverted Cys-Pro motif had been replaced with Ala residues fails to bind hemin with high affinity. Taken together, these results show that Shu1 undergoes rapid hemin-induced internalization from the cell surface to the vacuolar membrane and that the transporter Abc3 participates in the mobilization of stored heme from the vacuole to the cytosol. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Functional Expression and Characterization of Schizosaccharomyces pombe Avt3p as a Vacuolar Amino Acid Exporter in Saccharomyces cerevisiae.

    Science.gov (United States)

    Chardwiriyapreecha, Soracom; Manabe, Kunio; Iwaki, Tomoko; Kawano-Kawada, Miyuki; Sekito, Takayuki; Lunprom, Siriporn; Akiyama, Koichi; Takegawa, Kaoru; Kakinuma, Yoshimi

    2015-01-01

    In Saccharomyces cerevisiae, Avt3p and Avt4p mediate the extrusion of several amino acids from the vacuolar lumen into the cytosol. SpAvt3p of Schizosaccharomyces pombe, a homologue of these vacuolar amino acid transporters, has been indicated to be involved in spore formation. In this study, we confirmed that GFP-SpAvt3p localized to the vacuolar membrane in S. pombe. The amounts of various amino acids increased significantly in the vacuolar pool of avt3Δ cells, but decreased in that of avt3+-overexpressing avt3Δ cells. These results suggest that SpAvt3p participates in the vacuolar compartmentalization of amino acids in S. pombe. To examine the export activity of SpAvt3p, we expressed the avt3+ gene in S. cerevisiae cells. We found that the heterologously overproduced GFP-SpAvt3p localized to the vacuolar membrane in S. cerevisiae. Using the vacuolar membrane vesicles isolated from avt3+-overexpressing S. cerevisiae cells, we detected the export activities of alanine and tyrosine in an ATP-dependent manner. These activities were inhibited by the addition of a V-ATPase inhibitor, concanamycin A, thereby suggesting that the activity of SpAvt3p is dependent on a proton electrochemical gradient generated by the action of V-ATPase. In addition, the amounts of various amino acids in the vacuolar pools of S. cerevisiae cells were decreased by the overproduction of SpAvt3p, which indicated that SpAvt3p was functional in S. cerevisiae cells. Thus, SpAvt3p is a vacuolar transporter that is involved in the export of amino acids from S. pombe vacuoles.

  11. Escape from Mitotic Arrest: An Unexpected Connection Between Microtubule Dynamics and Epigenetic Regulation of Centromeric Chromatin in Schizosaccharomyces pombe.

    Science.gov (United States)

    George, Anuja A; Walworth, Nancy C

    2015-12-01

    Accurate chromosome segregation is necessary to ensure genomic integrity. Segregation depends on the proper functioning of the centromere, kinetochore, and mitotic spindle microtubules and is monitored by the spindle assembly checkpoint (SAC). In the fission yeast Schizosaccharomyces pombe, defects in Dis1, a microtubule-associated protein that influences microtubule dynamics, lead to mitotic arrest as a result of an active SAC and consequent failure to grow at low temperature. In a mutant dis1 background (dis1-288), loss of function of Msc1, a fission yeast homolog of the KDM5 family of proteins, suppresses the growth defect and promotes normal mitosis. Genetic analysis implicates a histone deacetylase (HDAC)-linked pathway in suppression because HDAC mutants clr6-1, clr3∆, and sir2∆, though not hos2∆, also promote normal mitosis in the dis1-288 mutant. Suppression of the dis phenotype through loss of msc1 function requires the spindle checkpoint protein Mad2 and is limited by the presence of the heterochromatin-associated HP1 protein homolog Swi6. We speculate that alterations in histone acetylation promote a centromeric chromatin environment that compensates for compromised dis1 function by allowing for successful kinetochore-microtubule interactions that can satisfy the SAC. In cells arrested in mitosis by mutation of dis1, loss of function of epigenetic determinants such as Msc1 or specific HDACs can promote cell survival. Because the KDM5 family of proteins has been implicated in human cancers, an appreciation of the potential role of this family of proteins in chromosome segregation is warranted. Copyright © 2015 by the Genetics Society of America.

  12. Generation and analysis of a barcode-tagged insertion mutant library in the fission yeast Schizosaccharomyces pombe

    Directory of Open Access Journals (Sweden)

    Chen Bo-Ruei

    2012-05-01

    Full Text Available Abstract Background Barcodes are unique DNA sequence tags that can be used to specifically label individual mutants. The barcode-tagged open reading frame (ORF haploid deletion mutant collections in the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe allow for high-throughput mutant phenotyping because the relative growth of mutants in a population can be determined by monitoring the proportions of their associated barcodes. While these mutant collections have greatly facilitated genome-wide studies, mutations in essential genes are not present, and the roles of these genes are not as easily studied. To further support genome-scale research in S. pombe, we generated a barcode-tagged fission yeast insertion mutant library that has the potential of generating viable mutations in both essential and non-essential genes and can be easily analyzed using standard molecular biological techniques. Results An insertion vector containing a selectable ura4+ marker and a random barcode was used to generate a collection of 10,000 fission yeast insertion mutants stored individually in 384-well plates and as six pools of mixed mutants. Individual barcodes are flanked by Sfi I recognition sites and can be oligomerized in a unique orientation to facilitate barcode sequencing. Independent genetic screens on a subset of mutants suggest that this library contains a diverse collection of single insertion mutations. We present several approaches to determine insertion sites. Conclusions This collection of S. pombe barcode-tagged insertion mutants is well-suited for genome-wide studies. Because insertion mutations may eliminate, reduce or alter the function of essential and non-essential genes, this library will contain strains with a wide range of phenotypes that can be assayed by their associated barcodes. The design of the barcodes in this library allows for barcode sequencing using next generation or standard benchtop cloning

  13. The copper transport-associated protein Ctr4 can form prion-like epigenetic determinants in Schizosaccharomyces pombe

    Directory of Open Access Journals (Sweden)

    Theodora Sideri

    2017-01-01

    Full Text Available Prions are protein-based infectious entities associated with fatal brain diseases in animals, but also modify a range of host-cell phenotypes in the budding yeast, Saccharomyces cerevisiae. Many questions remain about the evolution and biology of prions. Although several functionally distinct prion-forming proteins exist in S. cerevisiae, [HET-s] of Podospora anserina is the only other known fungal prion. Here we investigated prion-like, protein-based epigenetic transmission in the fission yeast Schizosaccharomyces pombe. We show that S. pombe cells can support the formation and maintenance of the prion form of the S. cerevisiae Sup35 translation factor [PSI+], and that the formation and propagation of these Sup35 aggregates is inhibited by guanidine hydrochloride, indicating commonalities in prion propagation machineries in these evolutionary diverged yeasts. A proteome-wide screen identified the Ctr4 copper transporter subunit as a putative prion with a predicted prion-like domain. Overexpression of the ctr4 gene resulted in large Ctr4 protein aggregates that were both detergent and proteinase-K resistant. Cells carrying such [CTR+] aggregates showed increased sensitivity to oxidative stress, and this phenotype could be transmitted to aggregate-free [ctr–] cells by transformation with [CTR+] cell extracts. Moreover, this [CTR+] phenotype was inherited in a non-Mendelian manner following mating with naïve [ctr–] cells, but intriguingly the [CTR+] phenotype was not eliminated by guanidine-hydrochloride treatment. Thus, Ctr4 exhibits multiple features diagnostic of other fungal prions and is the first example of a prion in fission yeast. These findings suggest that transmissible protein-based determinants of traits may be more widespread among fungi.

  14. The copper transport-associated protein Ctr4 can form prion-like epigenetic determinants in Schizosaccharomyces pombe

    Science.gov (United States)

    Sideri, Theodora; Yashiroda, Yoko; Ellis, David A.; Rodríguez-López, María; Yoshida, Minoru; Tuite, Mick F.; Bähler, Jürg

    2017-01-01

    Prions are protein-based infectious entities associated with fatal brain diseases in animals, but also modify a range of host-cell phenotypes in the budding yeast, Saccharomyces cerevisiae. Many questions remain about the evolution and biology of prions. Although several functionally distinct prion-forming proteins exist in S. cerevisiae, [HET-s] of Podospora anserina is the only other known fungal prion. Here we investigated prion-like, protein-based epigenetic transmission in the fission yeast Schizosaccharomyces pombe. We show that S. pombe cells can support the formation and maintenance of the prion form of the S. cerevisiae Sup35 translation factor [PSI+], and that the formation and propagation of these Sup35 aggregates is inhibited by guanidine hydrochloride, indicating commonalities in prion propagation machineries in these evolutionary diverged yeasts. A proteome-wide screen identified the Ctr4 copper transporter subunit as a putative prion with a predicted prion-like domain. Overexpression of the ctr4 gene resulted in large Ctr4 protein aggregates that were both detergent and proteinase-K resistant. Cells carrying such [CTR+] aggregates showed increased sensitivity to oxidative stress, and this phenotype could be transmitted to aggregate-free [ctr-] cells by transformation with [CTR+] cell extracts. Moreover, this [CTR+] phenotype was inherited in a non-Mendelian manner following mating with naïve [ctr-] cells, but intriguingly the [CTR+] phenotype was not eliminated by guanidine-hydrochloride treatment. Thus, Ctr4 exhibits multiple features diagnostic of other fungal prions and is the first example of a prion in fission yeast. These findings suggest that transmissible protein-based determinants of traits may be more widespread among fungi. PMID:28191457

  15. Silencing mediated by the Schizosaccharomyces pombe HIRA complex is dependent upon the Hpc2-like protein, Hip4.

    Directory of Open Access Journals (Sweden)

    Holly E Anderson

    Full Text Available BACKGROUND: HIRA (or Hir proteins are conserved histone chaperones that function in multi-subunit complexes to mediate replication-independent nucleosome assembly. We have previously demonstrated that the Schizosaccharomyces pombe HIRA proteins, Hip1 and Slm9, form a complex with a TPR repeat protein called Hip3. Here we have identified a new subunit of this complex. METHODOLOGY/PRINCIPAL FINDINGS: To identify proteins that interact with the HIRA complex, rapid affinity purifications of Slm9 were performed. Multiple components of the chaperonin containing TCP-1 complex (CCT and the 19S subunit of the proteasome reproducibly co-purified with Slm9, suggesting that HIRA interacts with these complexes. Slm9 was also found to interact with a previously uncharacterised protein (SPBC947.08c, that we called Hip4. Hip4 contains a HRD domain which is a characteristic of the budding yeast and human HIRA/Hir-binding proteins, Hpc2 and UBN1. Co-precipitation experiments revealed that Hip4 is stably associated with all of the other components of the HIRA complex and deletion of hip4(+ resulted in the characteristic phenotypes of cells lacking HIRA function, such as temperature sensitivity, an elongated cell morphology and hypersensitivity to the spindle poison, thiabendazole. Moreover, loss of Hip4 function alleviated the heterochromatic silencing of reporter genes located in the mating type locus and centromeres and was associated with increased levels of non-coding transcripts derived from centromeric repeat sequences. Hip4 was also found to be required for the distinct form of silencing that controls the expression of Tf2 LTR retrotransposons. CONCLUSIONS/SIGNIFICANCE: Overall, these results indicate that Hip4 is an integral component of the HIRA complex that is required for transcriptional silencing at multiple loci.

  16. Evolution of Telomeres in Schizosaccharomyces pombe and Its Possible Relationship to the Diversification of Telomere Binding Proteins.

    Directory of Open Access Journals (Sweden)

    Regina Sepsiova

    Full Text Available Telomeres of nuclear chromosomes are usually composed of an array of tandemly repeated sequences that are recognized by specific Myb domain containing DNA-binding proteins (telomere-binding proteins, TBPs. Whereas in many eukaryotes the length and sequence of the telomeric repeat is relatively conserved, telomeric sequences in various yeasts are highly variable. Schizosaccharomyces pombe provides an excellent model for investigation of co-evolution of telomeres and TBPs. First, telomeric repeats of S. pombe differ from the canonical mammalian type TTAGGG sequence. Second, S. pombe telomeres exhibit a high degree of intratelomeric heterogeneity. Third, S. pombe contains all types of known TBPs (Rap1p [a version unable to bind DNA], Tay1p/Teb1p, and Taz1p that are employed by various yeast species to protect their telomeres. With the aim of reconstructing evolutionary paths leading to a separation of roles between Teb1p and Taz1p, we performed a comparative analysis of the DNA-binding properties of both proteins using combined qualitative and quantitative biochemical approaches. Visualization of DNA-protein complexes by electron microscopy revealed qualitative differences of binding of Teb1p and Taz1p to mammalian type and fission yeast telomeres. Fluorescence anisotropy analysis quantified the binding affinity of Teb1p and Taz1p to three different DNA substrates. Additionally, we carried out electrophoretic mobility shift assays using mammalian type telomeres and native substrates (telomeric repeats, histone-box sequences as well as their mutated versions. We observed relative DNA sequence binding flexibility of Taz1p and higher binding stringency of Teb1p when both proteins were compared directly to each other. These properties may have driven replacement of Teb1p by Taz1p as the TBP in fission yeast.

  17. Construction of the first compendium of chemical-genetic profiles in the fission yeast Schizosaccharomyces pombe and comparative compendium approach

    Energy Technology Data Exchange (ETDEWEB)

    Han, Sangjo [Bioinformatics Lab, Healthcare Group, SK Telecom, 9-1, Sunae-dong, Pundang-gu, Sungnam-si, Kyunggi-do 463-784 (Korea, Republic of); Lee, Minho [Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Chang, Hyeshik [Department of Biological Science, Seoul National University, 599 Gwanakro, Gwanak-gu, Seoul 151-747 (Korea, Republic of); Nam, Miyoung [Department of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 305-764 (Korea, Republic of); Park, Han-Oh [Bioneer Corp., 8-11 Munpyeongseo-ro, Daedeok-gu, Daejeon 306-220 (Korea, Republic of); Kwak, Youn-Sig [Department of Applied Biology, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam 660-701 (Korea, Republic of); Ha, Hye-jeong [Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-Gu, Daejeon 305-806 (Korea, Republic of); Kim, Dongsup [Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Hwang, Sung-Ook [Department of Obstetrics and Gynecology, Inha University Hospital, 7-206 Sinheung-dong, Jung-gu, Incheon 400-711 (Korea, Republic of); Hoe, Kwang-Lae [Department of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 305-764 (Korea, Republic of); Kim, Dong-Uk [Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-Gu, Daejeon 305-806 (Korea, Republic of)

    2013-07-12

    Highlights: •The first compendium of chemical-genetic profiles form fission yeast was generated. •The first HTS of drug mode-of-action in fission yeast was performed. •The first comparative chemical genetic analysis between two yeasts was conducted. -- Abstract: Genome-wide chemical genetic profiles in Saccharomyces cerevisiae since the budding yeast deletion library construction have been successfully used to reveal unknown mode-of-actions of drugs. Here, we introduce comparative approach to infer drug target proteins more accurately using two compendiums of chemical-genetic profiles from the budding yeast S. cerevisiae and the fission yeast Schizosaccharomyces pombe. For the first time, we established DNA-chip based growth defect measurement of genome-wide deletion strains of S. pombe, and then applied 47 drugs to the pooled heterozygous deletion strains to generate chemical-genetic profiles in S. pombe. In our approach, putative drug targets were inferred from strains hypersensitive to given drugs by analyzing S. pombe and S. cerevisiae compendiums. Notably, many evidences in the literature revealed that the inferred target genes of fungicide and bactericide identified by such comparative approach are in fact the direct targets. Furthermore, by filtering out the genes with no essentiality, the multi-drug sensitivity genes, and the genes with less eukaryotic conservation, we created a set of drug target gene candidates that are expected to be directly affected by a given drug in human cells. Our study demonstrated that it is highly beneficial to construct the multiple compendiums of chemical genetic profiles using many different species. The fission yeast chemical-genetic compendium is available at (http://pombe.kaist.ac.kr/compendium)

  18. Asp1 from Schizosaccharomyces pombe binds a [2Fe-2S](2+) cluster which inhibits inositol pyrophosphate 1-phosphatase activity.

    Science.gov (United States)

    Wang, Huanchen; Nair, Vasudha S; Holland, Ashley A; Capolicchio, Samanta; Jessen, Henning J; Johnson, Michael K; Shears, Stephen B

    2015-10-27

    Iron-sulfur (Fe-S) clusters are widely distributed protein cofactors that are vital to cellular biochemistry and the maintenance of bioenergetic homeostasis, but to our knowledge, they have never been identified in any phosphatase. Here, we describe an iron-sulfur cluster in Asp1, a dual-function kinase/phosphatase that regulates cell morphogenesis in Schizosaccharomyces pombe. Full-length Asp1, and its phosphatase domain (Asp1(371-920)), were each heterologously expressed in Escherichia coli. The phosphatase activity is exquisitely specific: it hydrolyzes the 1-diphosphate from just two members of the inositol pyrophosphate (PP-InsP) signaling family, namely, 1-InsP7 and 1,5-InsP8. We demonstrate that Asp1 does not hydrolyze either InsP6, 2-InsP7, 3-InsP7, 4-InsP7, 5-InsP7, 6-InsP7, or 3,5-InsP8. We also recorded 1-phosphatase activity in a human homologue of Asp1, hPPIP5K1, which was heterologously expressed in Drosophila S3 cells with a biotinylated N-terminal tag, and then isolated from cell lysates with avidin beads. Purified, recombinant Asp1(371-920) contained iron and acid-labile sulfide, but the stoichiometry (0.8 atoms of each per protein molecule) indicates incomplete iron-sulfur cluster assembly. We reconstituted the Fe-S cluster in vitro under anaerobic conditions, which increased the stoichiometry to approximately 2 atoms of iron and acid-labile sulfide per Asp1 molecule. The presence of a [2Fe-2S](2+) cluster in Asp1(371-920) was demonstrated by UV-visible absorption, resonance Raman spectroscopy, and electron paramagnetic resonance spectroscopy. We determined that this [2Fe-2S](2+) cluster is unlikely to participate in redox chemistry, since it rapidly degraded upon reduction by dithionite. Biochemical and mutagenic studies demonstrated that the [2Fe-2S](2+) cluster substantially inhibits the phosphatase activity of Asp1, thereby increasing its net kinase activity.

  19. Influence of Selected Saccharomyces and Schizosaccharomyces Strains and Their Mixed Cultures on Chemical Composition of Apple Wines.

    Science.gov (United States)

    Satora, Paweł; Semik-Szczurak, Dorota; Tarko, Tomasz; Bułdys, Andrzej

    2018-01-25

    Currently in apple winemaking, pure cultures of Saccharomyces cerevisiae and S. bayanus strains are mainly used. The aim of this study was to determine the influence of Saccharomyces cerevisiae (Johannisberg Riesling - LOCK 105), S. bayanus (DSMZ 3774), S. paradoxus (CBS 7302), and Schizosaccharomyces pombe (DSMZ 70576) applied in pure and mixed cultures on the chemical composition and sensory profile of apple wines. Pasteurized Gloster apple musts with addition of sucrose (up to 22°Blg) were inoculated with specific volume (0.6 g dry weight per liter) of yeast pure or mixed cultures (in a ratio of 1:1, 1:1:1, or 1:1:1:1) and fermented for 28 d at 22 °C. The influence of pure/mixed culture on the chemical composition, volatile profile, and sensory properties of apple wines was determined using high-performance liquid chromatography (HPLC) and gas chromatography (GC) methods. All pure culture of yeasts used for the apple wines production are characterized by good enological profiles. S. bayanus and Sch. pombe are the most distinct to S. cerevisiae. S. bayanus strain increases the level of malic acid and carbonyl compounds in apple wines, whereas Sch. pombe highly deacidifies it and produces the most of glycerol, esters, and acetic acid. The wines obtained with these 2 species gained also, respectively, the best and the worse notes during sensory analysis. Mixed cultures (in most cases) produce greater amounts of ethanol, methanol, and volatile esters compared to pure cultures. The presence of S. bayanus in the mixed culture is beneficial for the quality of apple wines. Good understanding of the properties of yeasts and the procedures for their selection will make it easier to find strains that could improve the quality of wine. Since wine is formed by the action of a number of species and strains of yeasts, many authors have studied the effect of mixed cultures on the final quality of the product. Most of this research was focused on the effect of the inoculation

  20. Biochemical characterization and DNA repair pathway interactions of Mag1-mediated base excision repair in Schizosaccharomyces pombe.

    Science.gov (United States)

    Alseth, Ingrun; Osman, Fikret; Korvald, Hanne; Tsaneva, Irina; Whitby, Matthew C; Seeberg, Erling; Bjørås, Magnar

    2005-01-01

    The Schizosaccharomyces pombe mag1 gene encodes a DNA repair enzyme with sequence similarity to the AlkA family of DNA glycosylases, which are essential for the removal of cytotoxic alkylation products, the premutagenic deamination product hypoxanthine and certain cyclic ethenoadducts such as ethenoadenine. In this paper, we have purified the Mag1 protein and characterized its substrate specificity. It appears that the substrate range of Mag1 is limited to the major alkylation products, such as 3-mA, 3-mG and 7-mG, whereas no significant activity was found towards deamination products, ethenoadducts or oxidation products. The efficiency of 3-mA and 3-mG removal was 5-10 times slower for Mag1 than for Escherichia coli AlkA whereas the rate of 7-mG removal was similar to the two enzymes. The relatively low efficiency for the removal of cytotoxic 3-methylpurines is consistent with the moderate sensitivity of the mag1 mutant to methylating agents. Furthermore, we studied the initial steps of Mag1-dependent base excision repair (BER) and genetic interactions with other repair pathways by mutant analysis. The double mutants mag1 nth1, mag1 apn2 and mag1 rad2 displayed increased resistance to methyl methanesulfonate (MMS) compared with the single mutants nth1, apn2 and rad2, respectively, indicating that Mag1 initiates both short-patch (Nth1-dependent) and long-patch (Rad2-dependent) BER of MMS-induced damage. Spontaneous intrachromosomal recombination frequencies increased 3-fold in the mag1 mutant suggesting that Mag1 and recombinational repair (RR) are both involved in repair of alkylated bases. Finally, we show that the deletion of mag1 in the background of rad16, nth1 and rad2 single mutants reduced the total recombination frequencies of all three double mutants, indicating that abasic sites formed as a result of Mag1 removal of spontaneous base lesions are substrates for nucleotide excision repair, long- and short-patch BER and RR.

  1. The Schizosaccharomyces pombe Hikeshi/Opi10 protein has similar biochemical functions to its human homolog but acts in different physiological contexts.

    Science.gov (United States)

    Oda, Yuumi; Kimura, Makoto; Kose, Shingo; Fasken, Milo B; Corbett, Anita H; Imamoto, Naoko

    2014-05-21

    Human Hikeshi (HsHikeshi) is a nuclear import carrier for Hsp70s and is required for cell survival after heat shock. The Hikeshi homolog in Schizosaccharomyces pombe (SpHikeshi/Opi10) localizes to the nuclear rim, interacts with the Hsp70 homolog Ssa2, and mediates its nuclear import in a reconstituted mammalian nuclear transport system. However, SpHikeshi/Opi10 is not required for heat stress response and survival after heat stress. Instead, SpHikeshi/Opi10 is required for the normal expression of stress response genes under optimal conditions and for cell growth during glucose deprivation. Here, the functions of SpHikeshi/Opi10 are discussed and compared to the functions of HsHikeshi. Copyright © 2014 Federation of European Biochemical Societies. All rights reserved.

  2. A vector system for efficient and economical switching of a ura4(+) module to three commonly used antibiotic marker cassettes in Schizosaccharomyces pombe.

    Science.gov (United States)

    Chen, Yinghui; Chen, Lihua; An, Ke; Wang, Yamei; Jin, Quanwen

    2015-11-01

    We describe here the development of a set of plasmid vectors that allow simple, efficient and economical switching of a ura4(+) module in existing Schizosaccharomyces pombe strains to any of the three routinely used antibiotic marker cassettes, kanMX6, hphMX6 and natMX6. In principle, the applications of this system can also be extended to switching ura4(+) for additional MX6 module-based cassettes, such as bleMX6, as long as the antibiotic marker has been cloned into an ura4(+) module-switching vector. We illustrate the application of this set of vectors in exchange of the ura4(+) marker in existing strains with three antibiotic marker cassettes with high efficiency. Copyright © 2015 John Wiley & Sons, Ltd.

  3. El exómero de Schizosaccharomyces pombe colabora en el tráfico vesicular entre el aparato de Golgi y el sistema endosomal

    OpenAIRE

    Hoya Gallego, Marta

    2016-01-01

    [ES]A pesar de su importancia biológica, el paso del tráfico entre el aparato de Golgi y la membrana plasmática es uno de los menos entendidos del proceso de secreción. El exómero es un complejo de proteínas que participa en el tráfico entre la zona trans del aparato de Golgi (TGN) y la membrana plasmática en la levadura de gemación. En este trabajo hemos demostrado que en Schizosaccharomyces pombe las proteínas Cfr1 y Bch1 constituyen la forma más simple de exómero posible. En esta levadura ...

  4. A novel type of silencing factor, Clr2, is necessary for transcriptional silencing at various chromosomal locations in the fission yeast Schizosaccharomyces pombe

    DEFF Research Database (Denmark)

    Bjerling, Pernilla; Ekwall, Karl; Egel, Richard

    2004-01-01

    describe the cloning and characterization of clr2+. The clr2+ gene encodes a 62 kDa protein with no obvious sequence homologs. Deletion of clr2+ not only affects transcriptional repression in the mating-type region, but also centromeric silencing and silencing of a PolII-transcribed gene inserted in the rDNA......The mating-type region of the fission yeast Schizosaccharomyces pombe comprises three loci: mat1, mat2-P and mat3-M. mat1 is expressed and determines the mating type of the cell. mat2-P and mat3-M are two storage cassettes located in a 17 kb heterochromatic region with features identical to those...... repeats. Using chromatin immunoprecipitation, we show that Clr2 is necessary for histone hypoacetylation in the mating-type region, suggesting that Clr2 acts upstream of histone deacetylases to promote transcriptional silencing....

  5. Mal3, the Schizosaccharomyces pombe homolog of EB1, is required for karyogamy and for promoting oscillatory nuclear movement during meiosis.

    Science.gov (United States)

    Polakova, Silvia; Benko, Zsigmond; Zhang, Lijuan; Gregan, Juraj

    2014-01-01

    Two successive rounds of chromosome segregation following a single round of DNA replication enable the production of haploid gametes during meiosis. In the fission yeast Schizosaccharomyces pombe, karyogamy is the process where the nuclei from 2 haploid cells fuse to create a diploid nucleus, which then undergoes meiosis to produce 4 haploid spores. By screening a collection of S. pombe deletion strains, we found that the deletion of 2 genes, mal3 and mto1, leads to the production of asci containing up to 8 spores. Here, we show that Mal3, the fission yeast member of the EB1 family of conserved microtubule plus-end tracking proteins, is required for karyogamy, oscillatory nuclear movement, and proper segregation of chromosomes during meiosis. In the absence of Mal3, meiosis frequently initiates before the completion of karyogamy, thus producing up to 8 nuclei in a single ascus. Our results provide new evidence that fission yeast can initiate meiosis prior to completing karyogamy.

  6. The Schizosaccharomyces pombe Mediator

    DEFF Research Database (Denmark)

    Venturi, Michela

    the functionality of the centromeres. The same results were obtained by Thorsen et al. (Epigenetics.Chromatin., 5, 19, 2012) using a different strain background. Moreover, we also observed that Med18 and Med9 were involved in telomere length maintenance. In summary, our data have demonstrated and confirmed...

  7. Mutagenesis of the HMGB (high-mobility group B) protein Cmb1 (cytosine-mismatch binding 1) of Schizosaccharomyces pombe: effects on recognition of DNA mismatches and damage.

    Science.gov (United States)

    Kunz, Christophe; Zurbriggen, Karin; Fleck, Oliver

    2003-06-01

    Cmb1 (cytosine-mismatch binding 1) is a high-mobility group (HMG) protein of Schizosaccharomyces pombe, which consists of 223 amino acids and has a single HMG domain at the C-terminal end. We have created several mutant and deletion forms of the Cmb1 protein and studied the effects on general DNA binding and specific binding to DNA mismatches and damaged DNA. Cmb1Delta41 (i.e. Cmb1 from which the 41 N-terminal amino acids have been deleted) bound specifically to cytosine-containing mismatches, to the cisplatin-induced intrastrand cross-links cis -GG and cis -AG and to an O (6)-methylguanine lesion. DNA binding was not affected when the 45 N-terminal amino acids were deleted, but was abolished in the absence of the 50 N-terminal amino acids, and was reduced when Cmb1 was truncated by between five and eleven C-terminal amino acids. Cmb1, both with and without the C-terminal truncations, retained its DNA binding affinity after heating at 95 degrees C. The cmb1 gene was induced when S. pombe cells were treated with cisplatin. Mitotic mutation rates were increased in a S. pombe cmb1 null mutant and in a cmb1-(1-212) mutant, which encodes a Cmb1 protein lacking the 11 C-terminal amino acids. We conclude that mutation avoidance by Cmb1 is distinct from Msh2-dependent mismatch repair, but related to nucleotide excision repair.

  8. Intracellular scavenging activity of Trolox (6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid) in the fission yeast, Schizosaccharomyces pombe.

    Science.gov (United States)

    Hamad, Ismail; Arda, Nazlι; Pekmez, Murat; Karaer, Semian; Temizkan, Güler

    2010-07-01

    The ability of Trolox (6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid), a water-soluble vitamin E analogue, to prevent oxidative damages is well characterized, but the mechanisms underlying it remain unclear. The protective effect of Trolox pre-treatment on H(2)O(2)-induced toxicity might be attributed to the decreased cellular permeability to H(2)O(2) or in vitro scavenging activity of Trolox, induction of antioxidant enzymes or the direct scavenging activity of Trolox. The results obtained rule out the first and second possibilities and intracellular scavenging activity was found to be the mechanism whereby Trolox confers protection. This was confirmed by measuring protein oxidation (levels), and the observed decrease in proteasomal activity indicated that the decrease in protein carbonyls was due to Trolox scavenging activity rather than proteasome activation. In conclusion, the intracellular scavenging activity of Trolox is a key protective mechanism against H(2)O(2). These findings obtained in Schizosaccharomyces pombe, a good model organism for eukaryotic cells, can be used as standard protocols for investigating the antioxidant activity of pure or complex potential antioxidants.

  9. RNA polymerase II components and Rrn7 form a preinitiation complex on the HomolD box to promote ribosomal protein gene expression in Schizosaccharomyces pombe.

    Science.gov (United States)

    Montes, Matías; Moreira-Ramos, Sandra; Rojas, Diego A; Urbina, Fabiola; Käufer, Norbert F; Maldonado, Edio

    2017-02-01

    In Schizosaccharomyces pombe, ribosomal protein gene (RPG) promoters contain a TATA box analog, the HomolD box, which is bound by the Rrn7 protein. Despite the importance of ribosome biogenesis for cell survival, the mechanisms underlying RPG transcription remain unknown. In this study, we found that components of the RNA polymerase II (RNAPII) system, consisting of the initiation or general transcription factors (GTFs) TFIIA, IIB, IIE, TATA-binding protein (TBP) and the RNAPII holoenzyme, interacted directly with Rrn7 in vitro, and were able to form a preinitiation complex (PIC) on the HomolD box. PIC complex formation follows an ordered pathway on these promoters. The GTFs and RNAPII can also be cross-linked to HomolD-containing promoters in vivo. In an in vitro reconstituted transcription system, RNAPII components and Rrn7 were necessary for HomolD-directed transcription. The Mediator complex was required for basal transcription from those promoters in whole cell extract (WCE). The Med17 subunit of Mediator also can be cross-linked to the promoter region of HomolD-containing promoters in vivo, suggesting the presence of the Mediator complex on HomolD box-containing promoters. Together, these data show that components of the RNAPII machinery and Rrn7 participate in the PIC assembly on the HomolD box, thereby directing RPG transcription. © 2017 Federation of European Biochemical Societies.

  10. Combine Use of Selected Schizosaccharomyces pombe andLachancea thermotolerans Yeast Strains as an Alternative to theTraditional Malolactic Fermentation in Red Wine Production

    Directory of Open Access Journals (Sweden)

    Ángel Benito

    2015-05-01

    Full Text Available Most red wines commercialized in the market use the malolactic fermentationprocess in order to ensure stability from a microbiological point of view. In this secondfermentation, malic acid is converted into L-lactic acid under controlled setups. Howeverthis process is not free from possible collateral effects that on some occasions produceoff-flavors, wine quality loss and human health problems. In warm viticulture regions suchas the south of Spain, the risk of suffering a deviation during the malolactic fermentationprocess increases due to the high must pH. This contributes to produce wines with highvolatile acidity and biogenic amine values. This manuscript develops a new red winemakingmethodology that consists of combining the use of two non-Saccharomyces yeast strains asan alternative to the traditional malolactic fermentation. In this method, malic acid is totallyconsumed by Schizosaccharomyces pombe, thus achieving the microbiological stabilizationobjective, while Lachancea thermotolerans produces lactic acid in order not to reduce andeven increase the acidity of wines produced from low acidity musts. This technique reducesthe risks inherent to the malolactic fermentation process when performed in warm regions.The result is more fruity wines that contain less acetic acid and biogenic amines than thetraditional controls that have undergone the classical malolactic fermentation.

  11. Schizosaccharomyces pombe Homologs of Human DJ-1 Are Stationary Phase-Associated Proteins That Are Involved in Autophagy and Oxidative Stress Resistance

    Science.gov (United States)

    Yan, Jianhua; Huang, Ying

    2015-01-01

    The Parkinson′s disease protein DJ-1 is involved in various cellular functions including detoxification of dicarbonyl compounds, autophagy and oxidative stress response. DJ-1 homologs are widely found in both prokaryotes and eukaryotes, constituting a superfamily of proteins that appear to be involved in stress response. Schizosaccharomyces pombe contains six DJ-1 homologs, designated Hsp3101-Hsp3105 and Sdj1 (previously named SpDJ-1). Here we show that deletion of any one of these six genes somehow affects autophagy during prolonged stationary phase. Furthermore, deletions of each of these DJ-1 homologs result in reduced stationary phase survival. Deletion of sdj1 also increases the sensitivity of stationary-phase cells to oxidative stress induced by hydrogen peroxide (H2O2) whereas overexpression of sdj1 has the opposite effect. Consistent with their role in stationary phase, expression of hsp3101, hsp3102, hsp3105 and sdj1, and to a lesser extent hsp3103 and hsp3104, is increased in stationary phase. The induction of hsp3101, hsp3102, hsp3105 and sdj1 involves the Sty1-regulated transcription factor Atf1 but not the transcription factor Pap1. Our results firmly establish that S. pombe homologs of DJ-1 are stationary-phase associated proteins and are likely involved in autophagy and antioxidant defense in stationary phase of S. pombe cells. PMID:26624998

  12. The Schizosaccharomyces pombe PPR protein Ppr10 associates with a novel protein Mpa1 and acts as a mitochondrial translational activator.

    Science.gov (United States)

    Wang, Yirong; Yan, Jianhua; Zhang, Qingzhen; Ma, Xuting; Zhang, Juan; Su, Minghui; Wang, Xiaojun; Huang, Ying

    2017-04-07

    The pentatricopeptide repeat (PPR) proteins characterized by tandem repeats of a degenerate 35-amino-acid motif function in all aspects of organellar RNA metabolism, many of which are essential for organellar gene expression. In this study, we report the characterization of a fission yeast Schizosaccharomyces pombe PPR protein, Ppr10 and a novel Ppr10-associated protein, designated Mpa1. The ppr10 deletion mutant exhibits growth defects in respiratory media, and is dramatically impaired for viability during the late-stationary phase. Deletion of ppr10 affects the accumulation of specific mitochondrial mRNAs. Furthermore, deletion of ppr10 severely impairs mitochondrial protein synthesis, suggesting that Ppr10 plays a general role in mitochondrial protein synthesis. Ppr10 interacts with Mpa1 in vivo and in vitro and the two proteins colocalize in the mitochondrial matrix. The ppr10 and mpa1 deletion mutants exhibit very similar phenotypes. One of Mpa1's functions is to maintain the normal protein level of Ppr10 protein by protecting it from degradation by the mitochondrial matrix protease Lon1. Our findings suggest that Ppr10 functions as a general mitochondrial translational activator, likely through interaction with mitochondrial mRNAs and mitochondrial translation initiation factor Mti2, and that Ppr10 requires Mpa1 association for stability and function. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Nonhomologous End-Joining with Minimal Sequence Loss Is Promoted by the Mre11-Rad50-Nbs1-Ctp1 Complex in Schizosaccharomyces pombe.

    Science.gov (United States)

    Li, Yanhui; Wang, Jinyu; Zhou, Gang; Lajeunesse, Michael; Le, Nga; Stawicki, Brittany N; Corcino, Yalitza Lopez; Berkner, Kathleen L; Runge, Kurt W

    2017-05-01

    While the Mre11-Rad50-Nbs1 (MRN) complex has known roles in repair processes like homologous recombination and microhomology-mediated end-joining, its role in nonhomologous end-joining (NHEJ) is unclear as Saccharomyces cerevisiae, Schizosaccharomyces pombe, and mammals have different requirements for repairing cut DNA ends. Most double-strand breaks (DSBs) require nucleolytic processing prior to DNA ligation. Therefore, we studied repair using the Hermes transposon, whose excision leaves a DSB capped by hairpin ends similar to structures generated by palindromes and trinucleotide repeats. We generated single Hermes insertions using a novel S. pombe transient transfection system, and used Hermes excision to show a requirement for MRN in the NHEJ of nonligatable ends. NHEJ repair was indicated by the >1000-fold decrease in excision in cells lacking Ku or DNA ligase 4. Most repaired excision sites had pombe NHEJ was reduced >1000-fold in cells lacking each MRN subunit, and loss of MRN-associated Ctp1 caused a 30-fold reduction. An Mre11 dimer is thought to hold DNA ends together for repair, and Mre11 dimerization domain mutations reduced repair 300-fold. In contrast, a mre11 mutant defective in endonucleolytic activity, the same mutant lacking Ctp1, or the triple mutant also lacking the putative hairpin nuclease Pso2 showed wild-type levels of repair. Thus, MRN may act to recruit the hairpin opening activity that allows subsequent repair. Copyright © 2017 by the Genetics Society of America.

  14. DNA base excision repair and nucleotide excision repair synergistically contribute to survival of stationary-phase cells of the fission yeast Schizosaccharomyces pombe.

    Science.gov (United States)

    Senoo, Takanori; Kawano, Shinji; Ikeda, Shogo

    2017-03-01

    Defects of genome maintenance may causally contribute to aging. In general, base excision repair (BER) is involved in the repair of subtle base lesions and AP sites, and bulky helix-distorting lesions are restored by nucleotide excision repair (NER). Here, we measured the chronological lifespan (CLS) of BER- and NER-deficient mutants of the fission yeast Schizosaccharomyces pombe, and observed the aging process of cells. The CLS of the nth1 (gene for DNA glycosylase/AP lyase) mutant and the rad16 (a homolog of human XPF) mutant were slightly shorter than that of the wild-type (WT) strain. However, survival of the nth1Δ rad16Δ double mutant was significantly reduced after entry into the stationary phase. Deletion of rad16 in an AP endonuclease mutant apn2Δ also accelerated chronological aging. These results indicate that BER and NER synergistically contribute to genome maintenance in non-dividing cells. Reactive oxygen species (ROS) accumulated in cells during the stationary phase, and nth1Δ rad16Δ cells produced more ROS than WT cells. High mutation frequencies and nuclear DNA fragmentation were observed in nth1Δ rad16Δ stationary-phase cells concurrent with apoptotic-like cell death. Calorie restriction significantly reduced the level of ROS in the stationary phase and extended the CLS of nth1Δ rad16Δ cells. Therefore, ROS production critically affects the survival of the DNA repair mutant during chronological aging. © 2017 International Federation for Cell Biology.

  15. Nitrosative stress induces a novel intra-S checkpoint pathway in Schizosaccharomyces pombe involving phosphorylation of Cdc2 by Wee1.

    Science.gov (United States)

    Biswas, Pranjal; Kar, Puranjoy; Ghosh, Sanjay

    2015-09-01

    Excess production of nitric oxide and reactive nitrogen intermediates causes nitrosative stress on cells. Schizosaccharomyces pombe was used as a model to study the cell cycle regulation under nitrosative stress response. We discovered a novel intra-S-phase checkpoint that is activated in S. pombe under nitrosative stress. The mechanism for this intra-S-phase checkpoint activation is distinctly different than previously reported for genotoxic stress in S. pombe by methyl methane sulfonate. Our flow cytometry data established the fact that Wee1 phosphorylates Cdc2 Tyr15 which leads to replication slowdown in the fission yeast under nitrosative stress. We checked the roles of Rad3, Rad17, Rad26, Swi1, Swi3, Cds1, and Chk1 under nitrosative stress but those were not involved in the activation of the DNA replication checkpoint. Rad24 was found to be involved in intra-S-phase checkpoint activation in S. pombe under nitrosative stress but that was independent of Cdc25. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Loss of Msp1p in Schizosaccharomyces pombe induces a ROS-dependent nuclear mutator phenotype that affects mitochondrial fission genes.

    Science.gov (United States)

    Delerue, Thomas; Khosrobakhsh, Farnoosh; Daloyau, Marlène; Emorine, Laurent Jean; Dedieu, Adrien; Herbert, Christopher J; Bonnefoy, Nathalie; Arnauné-Pelloquin, Laetitia; Belenguer, Pascale

    2016-10-01

    Mitochondria continually fuse and divide to dynamically adapt to changes in metabolism and stress. Mitochondrial dynamics are also required for mitochondrial DNA (mtDNA) integrity; however, the underlying reason is not known. In this study, we examined the link between mitochondrial fusion and mtDNA maintenance in Schizosaccharomyces pombe, which cannot survive without mtDNA, by screening for suppressors of the lethality induced by loss of the dynamin-related large GTPase Msp1p. Our findings reveal that inactivation of Msp1p induces a ROS-dependent nuclear mutator phenotype that affects mitochondrial fission genes involved in suppressing mitochondrial fragmentation and mtDNA depletion. This indicates that mitochondrial fusion is crucial for maintaining the integrity of both mitochondrial and nuclear genetic information. Furthermore, our study suggests that the primary roles of Msp1p are to organize mitochondrial membranes, thus making them competent for fusion, and maintain the integrity of mtDNA. © 2016 Federation of European Biochemical Societies.

  17. Schizosaccharomyces pombe Homologs of Human DJ-1 Are Stationary Phase-Associated Proteins That Are Involved in Autophagy and Oxidative Stress Resistance.

    Directory of Open Access Journals (Sweden)

    Yang Su

    Full Text Available The Parkinson's disease protein DJ-1 is involved in various cellular functions including detoxification of dicarbonyl compounds, autophagy and oxidative stress response. DJ-1 homologs are widely found in both prokaryotes and eukaryotes, constituting a superfamily of proteins that appear to be involved in stress response. Schizosaccharomyces pombe contains six DJ-1 homologs, designated Hsp3101-Hsp3105 and Sdj1 (previously named SpDJ-1. Here we show that deletion of any one of these six genes somehow affects autophagy during prolonged stationary phase. Furthermore, deletions of each of these DJ-1 homologs result in reduced stationary phase survival. Deletion of sdj1 also increases the sensitivity of stationary-phase cells to oxidative stress induced by hydrogen peroxide (H2O2 whereas overexpression of sdj1 has the opposite effect. Consistent with their role in stationary phase, expression of hsp3101, hsp3102, hsp3105 and sdj1, and to a lesser extent hsp3103 and hsp3104, is increased in stationary phase. The induction of hsp3101, hsp3102, hsp3105 and sdj1 involves the Sty1-regulated transcription factor Atf1 but not the transcription factor Pap1. Our results firmly establish that S. pombe homologs of DJ-1 are stationary-phase associated proteins and are likely involved in autophagy and antioxidant defense in stationary phase of S. pombe cells.

  18. Identification of a Lifespan Extending Mutation in the Schizosaccharomyces pombe Cyclin Gene clg1+ by Direct Selection of Long-Lived Mutants

    Science.gov (United States)

    Chen, Bo-Ruei; Li, Yanhui; Eisenstatt, Jessica R.; Runge, Kurt W.

    2013-01-01

    Model organisms such as budding yeast, worms and flies have proven instrumental in the discovery of genetic determinants of aging, and the fission yeast Schizosaccharomyces pombe is a promising new system for these studies. We devised an approach to directly select for long-lived S. pombe mutants from a random DNA insertion library. Each insertion mutation bears a unique sequence tag called a bar code that allows one to determine the proportion of an individual mutant in a culture containing thousands of different mutants. Aging these mutants in culture allowed identification of a long-lived mutant bearing an insertion mutation in the cyclin gene clg1+. Clg1p, like Pas1p, physically associates with the cyclin-dependent kinase Pef1p. We identified a third Pef1p cyclin, Psl1p, and found that only loss of Clg1p or Pef1p extended lifespan. Genetic and co-immunoprecipitation results indicate that Pef1p controls lifespan through the downstream protein kinase Cek1p. While Pef1p is conserved as Pho85p in Saccharomyces cerevisiae, and as cdk5 in humans, genome-wide searches for lifespan regulators in S. cerevisiae have never identified Pho85p. Thus, the S. pombe system can be used to identify novel, evolutionarily conserved lifespan extending mutations, and our results suggest a potential role for mammalian cdk5 as a lifespan regulator. PMID:23874875

  19. The amino-terminal hydrophilic region of the vacuolar transporter Avt3p is dispensable for the vacuolar amino acid compartmentalization of Schizosaccharomyces pombe.

    Science.gov (United States)

    Kawano-Kawada, Miyuki; Chardwiriyapreecha, Soracom; Manabe, Kunio; Sekito, Takayuki; Akiyama, Koichi; Takegawa, Kaoru; Kakinuma, Yoshimi

    2016-12-01

    Avt3p, a vacuolar amino acid exporter (656 amino acid residues) that is important for vacuolar amino acid compartmentalization as well as spore formation in Schizosaccharomyces pombe, has an extremely long hydrophilic region (approximately 290 amino acid residues) at its N-terminus. Because known functional domains have not been found in this region, its functional role was examined with a deletion mutant avt3(∆1-270) expressed in S. pombe avt3∆ cells. The deletion of this region did not affect its intracellular localization or vacuolar contents of basic amino acids as well as neutral ones. The defect of avt3Δ cells in spore formation was rescued by the expression of avt3+ but was not completely rescued by the expression of avt3(∆1-270). The N-terminal region is thus dispensable for the function of Avt3p as an amino acid exporter, but it is likely to be involved in the role of Avt3p under nutritional starvation conditions.

  20. A novel protein, Rsf1/Pxd1, is critical for the single-strand annealing pathway of double-strand break repair in Schizosaccharomyces pombe.

    Science.gov (United States)

    Wang, Hanqian; Zhang, Zhanlu; Zhang, Lan; Zhang, Qiuxue; Zhang, Liang; Zhao, Yangmin; Wang, Weibu; Fan, Yunliu; Wang, Lei

    2015-06-01

    The process of single-strand annealing (SSA) repairs DNA double-strand breaks that are flanked by direct repeat sequences through the coordinated actions of a series of proteins implicated in recombination, mismatch repair and nucleotide excision repair (NER). Many of the molecular and mechanistic insights gained in SSA repair have principally come from studies in the budding yeast Saccharomyces cerevisiae. However, there is little molecular understanding of the SSA pathway in the fission yeast Schizosaccharomyces pombe. To further our understanding of this important process, we established a new chromosome-based SSA assay in fission yeast. Our genetic analyses showed that, although many homologous components participate in SSA repair in these species indicating that some evolutionary conservation, Saw1 and Slx4 are not principal agents in the SSA repair pathway in fission yeast. This is in marked contrast to the function of Saw1 and Slx4 in budding yeast. Additionally, a novel genus-specific protein, Rsf1/Pxd1, physically interacts with Rad16, Swi10 and Saw1 in vitro and in vivo. We find that Rsf1/Pxd1 is not required for NER and demonstrate that, in fission yeast, Rsf1/Pxd1, but not Saw1, plays a critical role in SSA recombination. © 2015 John Wiley & Sons Ltd.

  1. A Novel Epigenetic Silencing Pathway Involving the Highly Conserved 5'-3' Exoribonuclease Dhp1/Rat1/Xrn2 in Schizosaccharomyces pombe.

    Science.gov (United States)

    Tucker, James Franklin; Ohle, Corina; Schermann, Géza; Bendrin, Katja; Zhang, Wei; Fischer, Tamás; Zhang, Ke

    2016-02-01

    Epigenetic gene silencing plays a critical role in regulating gene expression and contributes to organismal development and cell fate acquisition in eukaryotes. In fission yeast, Schizosaccharomyces pombe, heterochromatin-associated gene silencing is known to be mediated by RNA processing pathways including RNA interference (RNAi) and a 3'-5' exoribonuclease complex, the exosome. Here, we report a new RNA-processing pathway that contributes to epigenetic gene silencing and assembly of heterochromatin mediated by 5'-3' exoribonuclease Dhp1/Rat1/Xrn2. Dhp1 mutation causes defective gene silencing both at peri-centromeric regions and at the silent mating type locus. Intriguingly, mutation in either of the two well-characterized Dhp1-interacting proteins, the Din1 pyrophosphohydrolase or the Rhn1 transcription termination factor, does not result in silencing defects at the main heterochromatic regions. We demonstrate that Dhp1 interacts with heterochromatic factors and is essential in the sequential steps of establishing silencing in a manner independent of both RNAi and the exosome. Genomic and genetic analyses suggest that Dhp1 is involved in post-transcriptional silencing of repetitive regions through its RNA processing activity. The results describe the unexpected role of Dhp1/Rat1/Xrn2 in chromatin-based silencing and elucidate how various RNA-processing pathways, acting together or independently, contribute to epigenetic regulation of the eukaryotic genome.

  2. A new transcription factor for mitosis: in Schizosaccharomyces pombe, the RFX transcription factor Sak1 works with forkhead factors to regulate mitotic expression.

    Science.gov (United States)

    Garg, Angad; Futcher, Bruce; Leatherwood, Janet

    2015-08-18

    Mitotic genes are one of the most strongly oscillating groups of genes in the eukaryotic cell cycle. Understanding the regulation of mitotic gene expression is a key issue in cell cycle control but is poorly understood in most organisms. Here, we find a new mitotic transcription factor, Sak1, in the fission yeast Schizosaccharomyces pombe. Sak1 belongs to the RFX family of transcription factors, which have not previously been connected to cell cycle control. Sak1 binds upstream of mitotic genes in close proximity to Fkh2, a forkhead transcription factor previously implicated in regulation of mitotic genes. We show that Sak1 is the major activator of mitotic gene expression and also confirm the role of Fkh2 as the opposing repressor. Sep1, another forkhead transcription factor, is an activator for a small subset of mitotic genes involved in septation. From yeasts to humans, forkhead transcription factors are involved in mitotic gene expression and it will be interesting to see whether RFX transcription factors may also be involved in other organisms. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Schizosaccharomyces pombe Homologs of Human DJ-1 Are Stationary Phase-Associated Proteins That Are Involved in Autophagy and Oxidative Stress Resistance.

    Science.gov (United States)

    Su, Yang; Chen, Caiping; Huang, Linting; Yan, Jianhua; Huang, Ying

    2015-01-01

    The Parkinson's disease protein DJ-1 is involved in various cellular functions including detoxification of dicarbonyl compounds, autophagy and oxidative stress response. DJ-1 homologs are widely found in both prokaryotes and eukaryotes, constituting a superfamily of proteins that appear to be involved in stress response. Schizosaccharomyces pombe contains six DJ-1 homologs, designated Hsp3101-Hsp3105 and Sdj1 (previously named SpDJ-1). Here we show that deletion of any one of these six genes somehow affects autophagy during prolonged stationary phase. Furthermore, deletions of each of these DJ-1 homologs result in reduced stationary phase survival. Deletion of sdj1 also increases the sensitivity of stationary-phase cells to oxidative stress induced by hydrogen peroxide (H2O2) whereas overexpression of sdj1 has the opposite effect. Consistent with their role in stationary phase, expression of hsp3101, hsp3102, hsp3105 and sdj1, and to a lesser extent hsp3103 and hsp3104, is increased in stationary phase. The induction of hsp3101, hsp3102, hsp3105 and sdj1 involves the Sty1-regulated transcription factor Atf1 but not the transcription factor Pap1. Our results firmly establish that S. pombe homologs of DJ-1 are stationary-phase associated proteins and are likely involved in autophagy and antioxidant defense in stationary phase of S. pombe cells.

  4. Regulation of nuclear envelope dynamics via APC/C is necessary for the progression of semi-open mitosis in Schizosaccharomyces japonicus.

    Science.gov (United States)

    Aoki, Keita; Shiwa, Yuh; Takada, Hiraku; Yoshikawa, Hirofumi; Niki, Hironori

    2013-09-01

    Three types of mitosis, which are open, closed or semi-open mitosis, function in eukaryotic cells, respectively. The open mitosis involves breakage of the nuclear envelope before nuclear division, whereas the closed mitosis proceeds with an intact nuclear envelope. To understand the mechanism and significance of three types of mitotic division in eukaryotes, we investigated the process of semi-open mitosis, in which the nuclear envelope is only partially broken, in the fission yeast Schizosaccharomyces japonicus. In anaphase-promoting complex/cyclosome (APC/C) mutants of Sz. japonicus, the nuclear envelope remained relatively intact during anaphase, resulting in impaired semi-open mitosis. As a suppressor of apc2 mutant, a mutation of Oar2, which was a 3-oxoacyl-[acyl carrier protein] reductase, was obtained. The level of the Oar2, which had two destruction-box motifs recognized by APC/C, was increased in APC/C mutants. Furthermore, the defective semi-open mitosis observed in an apc2 mutant was restored by mutated oar2+. Based on these findings, we propose that APC/C regulates the dynamics of the nuclear envelope through degradation of Oar2 dependent on APC/C during the metaphase-to-anaphase transition of semi-open mitosis in Sz. japonicus. © 2013 The Authors Genes to Cells © 2013 by the Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd.

  5. Mammalian transcription activation domains of VP16, AP2 and CTF activate transcription in a whole cell extract from Schizosaccharomyces pombe through the SRB/mediator.

    Science.gov (United States)

    Tamayo, Evelyn; Bernal, Giuliano; Maldonado, Edio

    2005-05-01

    The acidic-rich activation domain of VP16 and the proline-rich activation domains of human AP2 and human CTF are able to activate transcription in a whole cell extract from Schizosaccharomyces pombe, whereas the glutamine-rich domains of Sp1 and Oct2 are unable to activate transcription in this system. Immunodepletion experiments of the whole cell extracts using specific antibodies against pombe TAF110, pombe TAF 72, pombe TBP and Srb4 shows that the activation of transcription by VP16, AP2 and CTF is through the mediator, since depletion of Srb4 inhibits activated transcription but does not inhibit basal transcription. Immunodepletion of TBP causes inhibition of both activated and basal transcription. On the other hand, immunodepletion of TAFs does not have an effect on either activated or basal transcription. Purified RNA polymerase holoenzyme is able to rescue the transcriptional activation activity of the anti-Srb4 immunodepleted extract. Moreover, we demonstrate that the mediator is needed for basal transcription of a TATA-less promoter.

  6. Combine Use of Selected Schizosaccharomyces pombe and Lachancea thermotolerans Yeast Strains as an Alternative to the Traditional Malolactic Fermentation in Red Wine Production.

    Science.gov (United States)

    Benito, Ángel; Calderón, Fernando; Palomero, Felipe; Benito, Santiago

    2015-05-26

    Most red wines commercialized in the market use the malolactic fermentation process in order to ensure stability from a microbiological point of view. In this second fermentation, malic acid is converted into L-lactic acid under controlled setups. However this process is not free from possible collateral effects that on some occasions produce off-flavors, wine quality loss and human health problems. In warm viticulture regions such as the south of Spain, the risk of suffering a deviation during the malolactic fermentation process increases due to the high must pH. This contributes to produce wines with high volatile acidity and biogenic amine values. This manuscript develops a new red wine making methodology that consists of combining the use of two non-Saccharomyces yeast strains as an alternative to the traditional malolactic fermentation. In this method, malic acid is totally consumed by Schizosaccharomyces pombe, thus achieving the microbiological stabilization objective, while Lachancea thermotolerans produces lactic acid in order not to reduce and even increase the acidity of wines produced from low acidity musts. This technique reduces the risks inherent to the malolactic fermentation process when performed in warm regions.The result is more fruity wines that contain less acetic acid and biogenic amines than the traditional controls that have undergone the classical malolactic fermentation.

  7. Quality and Composition of Red Wine Fermented with Schizosaccharomyces pombe as Sole Fermentative Yeast, and in Mixed and Sequential Fermentations with Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Felipe Palomero

    2014-01-01

    Full Text Available This work examines the physiology of Schizosaccharomyces pombe (represented by strain 938 in the production of red wine, as the sole fermentative yeast, and in mixed and sequential fermentations with Saccharomyces cerevisiae 796. For further comparison, fermentations in which Saccharomyces cerevisiae was the sole fermentative yeast were also performed; in these fermentations a commercial lactic acid bacterium was used to perform malolactic fermentation once alcoholic fermentation was complete (unlike S. cerevisiae, the Sc. pombe performs maloalcoholic fermentation and therefore removes malic acid without such help. Relative density, acetic, malic and pyruvic acid concentrations, primary amino nitrogen and urea concentrations, and pH of the musts were measured over the entire fermentation period. In all fermentations in which Sc. pombe 938 was involved, nearly all the malic acid was consumed from an initial concentration of 5.5 g/L, and moderate acetic acid concentrations below 0.4 g/L were formed. The urea content of these wines was notably lower, showing a tenfold reduction when compared with those that were made with S. cerevisiae 796 alone. The sensorial properties of the different final wines varied widely. The wines fermented with Sc. pombe 938 had maximum aroma intensity and quality, and they were preferred by the tasters.

  8. Función de la proteína ORC4P en la iniciación de la replicación y en el control transcripcional en Schizosaccharomyces pombe

    OpenAIRE

    Mojardín Menéndez, Laura

    2009-01-01

    [ES] El complejo de reconocimiento del origen (ORC) juega un importante papel en la iniciación de la replicación del DNA en eucariotas. En Schizosaccharomyces pombe, la unión de este complejo a los orígenes de replicación in vitro e in vivo viene mediado por el extremo N-terminal de la subunidad Orc4p. Este dominio contiene 9 motivos de unión al DNA denominados AT-hooks que son capaces de unirse a zonas ricas en adenina y timina sin requerimientos específicos de secuencia. Para analizar en de...

  9. The stress granule protein Vgl1 and poly(A)-binding protein Pab1 are required for doxorubicin resistance in the fission yeast Schizosaccharomyces pombe

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Takahiro [Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, Kowakae 3-4-1, Higashi-Osaka 577-8502 (Japan); Satoh, Ryosuke [Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, Kowakae 3-4-1, Higashi-Osaka 577-8502 (Japan); Japan Society for the Promotion of Science, 1-8 Chiyoda-ku, Tokyo 102-8472 (Japan); Umeda, Nanae; Kita, Ayako [Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, Kowakae 3-4-1, Higashi-Osaka 577-8502 (Japan); Sugiura, Reiko, E-mail: sugiurar@phar.kindai.ac.jp [Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, Kowakae 3-4-1, Higashi-Osaka 577-8502 (Japan)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Stress granules (SGs) as a mechanism of doxorubicin tolerance. Black-Right-Pointing-Pointer We characterize the role of stress granules in doxorubicin tolerance. Black-Right-Pointing-Pointer Deletion of components of SGs enhances doxorubicin sensitivity in fission yeast. Black-Right-Pointing-Pointer Doxorubicin promotes SG formation when combined with heat shock. Black-Right-Pointing-Pointer Doxorubicin regulates stress granule assembly independent of eIF2{alpha} phosphorylation. -- Abstract: Doxorubicin is an anthracycline antibiotic widely used for chemotherapy. Although doxorubicin is effective in the treatment of several cancers, including solid tumors and leukemias, the basis of its mechanism of action is not completely understood. Here, we describe the effects of doxorubicin and its relationship with stress granules formation in the fission yeast, Schizosaccharomyces pombe. We show that disruption of genes encoding the components of stress granules, including vgl1{sup +}, which encodes a multi-KH type RNA-binding protein, and pab1{sup +}, which encodes a poly(A)-binding protein, resulted in greater sensitivity to doxorubicin than seen in wild-type cells. Disruption of the vgl1{sup +} and pab1{sup +} genes did not confer sensitivity to other anti-cancer drugs such as cisplatin, 5-fluorouracil, and paclitaxel. We also showed that doxorubicin treatment promoted stress granule formation when combined with heat shock. Notably, doxorubicin treatment did not induce hyperphosphorylation of eIF2{alpha}, suggesting that doxorubicin is involved in stress granule assembly independent of eIF2{alpha} phosphorylation. Our results demonstrate the usefulness of fission yeast for elucidating the molecular targets of doxorubicin toxicity and suggest a novel drug-resistance mechanism involving stress granule assembly.

  10. Sap1 is a replication-initiation factor essential for the assembly of pre-replicative complex in the fission yeast Schizosaccharomyces pombe.

    Science.gov (United States)

    Guan, Ling; He, Peng; Yang, Fang; Zhang, Yuan; Hu, Yunfei; Ding, Jienv; Hua, Yu; Zhang, Yi; Ye, Qiong; Hu, Jiazhi; Wang, Tao; Jin, Changwen; Kong, Daochun

    2017-04-14

    A central step in the initiation of chromosomal DNA replication in eukaryotes is the assembly of pre-replicative complex (pre-RC) at late M and early G1 phase of the cell cycles. Since 1973, four proteins or protein complexes, including cell division control protein 6 (Cdc6)/Cdc18, minichromosome maintenance protein complex, origin recognition complex (ORC), and Cdt1, are known components of the pre-RC. Previously, we reported that a non-ORC protein binds to the essential element Δ9 of the Schizosaccharomyces pombe DNA-replication origin ARS3001. In this study, we identified that the non-ORC protein is Sap1. Like ORC, Sap1 binds to DNA origins during cell growth cycles. But unlike ORC, which binds to asymmetric AT-rich sequences through its nine AT-hook motifs, Sap1 preferentially binds to a DNA sequence of 5'-(A/T) n (C/G)(A/T)9-10(G/C)(A/T) n -3' (n ≥ 1). We also found that Sap1 and ORC physically interact. We further demonstrated that Sap1 is required for the assembly of the pre-RC because of its essential role in recruiting Cdc18 to DNA origins. Thus, we conclude that Sap1 is a replication-initiation factor that directly participates in the assembly of the pre-RC. DNA-replication origins in fission yeast are defined by possessing two essential elements with one bound by ORC and the other by Sap1. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Phosphorylation of the protein kinase A catalytic subunit is induced by cyclic AMP deficiency and physiological stresses in the fission yeast, Schizosaccharomyces pombe

    Energy Technology Data Exchange (ETDEWEB)

    McInnis, Brittney; Mitchell, Jessica [Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487 (United States); Marcus, Stevan, E-mail: smarcus@bama.ua.edu [Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487 (United States)

    2010-09-03

    Research highlights: {yields} cAMP deficiency induces phosphorylation of PKA catalytic subunit (Pka1) in S. pombe. {yields} Pka1 phosphorylation is further induced by physiological stresses. {yields} Pka1 phosphorylation is not induced in cells lacking the PKA regulatory subunit. {yields} Results suggest that cAMP-independent Pka1 phosphorylation is stimulatory in nature. -- Abstract: In the fission yeast, Schizosaccharomyces pombe, cyclic AMP (cAMP)-dependent protein kinase (PKA) is not essential for viability under normal culturing conditions, making this organism attractive for investigating mechanisms of PKA regulation. Here we show that S. pombe cells carrying a deletion in the adenylate cyclase gene, cyr1, express markedly higher levels of the PKA catalytic subunit, Pka1, than wild type cells. Significantly, in cyr1{Delta} cells, but not wild type cells, a substantial proportion of Pka1 protein is hyperphosphorylated. Pka1 hyperphosphorylation is strongly induced in cyr1{Delta} cells, and to varying degrees in wild type cells, by both glucose starvation and stationary phase stresses, which are associated with reduced cAMP-dependent PKA activity, and by KCl stress, the cellular adaptation to which is dependent on PKA activity. Interestingly, hyperphosphorylation of Pka1 was not detected in either cyr1{sup +} or cyr1{Delta} S. pombe strains carrying a deletion in the PKA regulatory subunit gene, cgs1, under any of the tested conditions. Our results demonstrate the existence of a cAMP-independent mechanism of PKA catalytic subunit phosphorylation, which we propose could serve as a mechanism for inducing or maintaining specific PKA functions under conditions in which its cAMP-dependent activity is downregulated.

  12. Genome-wide mapping of nuclear mitochondrial DNA sequences links DNA replication origins to chromosomal double-strand break formation in Schizosaccharomyces pombe

    Science.gov (United States)

    Lenglez, Sandrine; Hermand, Damien; Decottignies, Anabelle

    2010-01-01

    Chromosomal double-strand breaks (DSBs) threaten genome integrity and repair of these lesions is often mutagenic. How and where DSBs are formed is a major question conveniently addressed in simple model organisms like yeast. NUMTs, nuclear DNA sequences of mitochondrial origin, are present in most eukaryotic genomes and probably result from the capture of mitochondrial DNA (mtDNA) fragments into chromosomal breaks. NUMT formation is ongoing and was reported to cause de novo human genetic diseases. Study of NUMTs is likely to contribute to the understanding of naturally occurring chromosomal breaks. We show that Schizosaccharomyces pombe NUMTs are exclusively located in noncoding regions with no preference for gene promoters and, when located into promoters, do not affect gene transcription level. Strikingly, most noncoding regions comprising NUMTs are also associated with a DNA replication origin (ORI). Chromatin immunoprecipitation experiments revealed that chromosomal NUMTs are probably not acting as ORI on their own but that mtDNA insertions occurred directly next to ORIs, suggesting that these loci may be prone to DSB formation. Accordingly, induction of excessive DNA replication origin firing, a phenomenon often associated with human tumor formation, resulted in frequent nucleotide deletion events within ORI3001 subtelomeric chromosomal locus, illustrating a novel aspect of DNA replication-driven genomic instability. How mtDNA is fragmented is another important issue that we addressed by sequencing experimentally induced NUMTs. This highlighted regions of S. pombe mtDNA prone to breaking. Together with an analysis of human NUMTs, we propose that these fragile sites in mtDNA may correspond to replication pause sites. PMID:20688779

  13. The basic leucine zipper domain transcription factor Atf1 directly controls Cdc13 expression and regulates mitotic entry independently of Wee1 and Cdc25 in Schizosaccharomyces pombe.

    Science.gov (United States)

    Bandyopadhyay, Sushobhana; Dey, Isha; Suresh, Megalakshmi; Sundaram, Geetanjali

    2014-06-01

    Progression into mitosis is a major point of regulation in the Schizosaccharomyces pombe cell cycle, and its proper control is essential for maintenance of genomic stability. Investigation of the G(2)/M progression event in S. pombe has revealed the existence of a complex regulatory process that is responsible for making the decision to enter mitosis. Newer aspects of this regulation are still being revealed. In this paper, we report the discovery of a novel mode of regulation of G(2)/M progression in S. pombe. We show that the mitogen-activated protein kinase (MAPK)-regulated transcription factor Atf1 is a regulator of Cdc13 (mitotic cyclin) transcription and is therefore a prominent player in the regulation of mitosis in S. pombe. We have used genetic approaches to study the effect of overexpression or deletion of Atf1 on the cell length and G(2)/M progression of S. pombe cells. Our results clearly show that Atf1 overexpression accelerates mitosis, leading to an accumulation of cells with shorter lengths. The previously known major regulators of entry into mitosis are the Cdc25 phosphatase and the Wee1 kinase, which modulate cyclin-dependent kinase (CDK) activity. The significantly striking aspect of our discovery is that Atf1-mediated G(2)/M progression is independent of both Cdc25 and Wee1. We have shown that Atf1 binds to the Cdc13 promoter, leading to activation of Cdc13 expression. This leads to enhanced nuclear localization of CDK Cdc2, thereby promoting the G(2)/M transition. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  14. Schizosaccharomyces pombe centromere protein Mis19 links Mis16 and Mis18 to recruit CENP-A through interacting with NMD factors and the SWI/SNF complex.

    Science.gov (United States)

    Hayashi, Takeshi; Ebe, Masahiro; Nagao, Koji; Kokubu, Aya; Sajiki, Kenichi; Yanagida, Mitsuhiro

    2014-07-01

    CENP-A is a centromere-specific variant of histone H3 that is required for accurate chromosome segregation. The fission yeast Schizosaccharomyces pombe and mammalian Mis16 and Mis18 form a complex essential for CENP-A recruitment to centromeres. It is unclear, however, how the Mis16-Mis18 complex achieves this function. Here, we identified, by mass spectrometry, novel fission yeast centromere proteins Mis19 and Mis20 that directly interact with Mis16 and Mis18. Like Mis18, Mis19 and Mis20 are localized at the centromeres during interphase, but not in mitosis. Inactivation of Mis19 in a newly isolated temperature-sensitive mutant resulted in CENP-A delocalization and massive chromosome missegregation, whereas Mis20 was dispensable for proper chromosome segregation. Mis19 might be a bridge component for Mis16 and Mis18. We isolated extragenic suppressor mutants for temperature-sensitive mis18 and mis19 mutants and used whole-genome sequencing to determine the mutated sites. We identified two groups of loss-of-function suppressor mutations in non-sense-mediated mRNA decay factors (upf2 and ebs1), and in SWI/SNF chromatin-remodeling components (snf5, snf22 and sol1). Our results suggest that the Mis16-Mis18-Mis19-Mis20 CENP-A-recruiting complex, which is functional in the G1-S phase, may be counteracted by the SWI/SNF chromatin-remodeling complex and non-sense-mediated mRNA decay, which may prevent CENP-A deposition at the centromere. © 2014 The Authors Genes to Cells © 2014 by the Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd.

  15. Involvement of Schizosaccharomyces pombe rrp1+ and rrp2+ in the Srs2- and Swi5/Sfr1-dependent pathway in response to DNA damage and replication inhibition.

    Science.gov (United States)

    Dziadkowiec, Dorota; Kramarz, Karol; Kanik, Karolina; Wisniewski, Piotr; Carr, Antony M

    2013-09-01

    Previously we identified Rrp1 and Rrp2 as two proteins required for the Sfr1/Swi5-dependent branch of homologous recombination (HR) in Schizosaccharomyces pombe. Here we use a yeast two-hybrid approach to demonstrate that Rrp1 and Rrp2 can interact with each other and with Swi5, an HR mediator protein. Rrp1 and Rrp2 form co-localizing methyl methanesulphonate-induced foci in nuclei, further suggesting they function as a complex. To place the Rrp1/2 proteins more accurately within HR sub-pathways, we carried out extensive epistasis analysis between mutants defining Rrp1/2, Rad51 (recombinase), Swi5 and Rad57 (HR-mediators) plus the anti-recombinogenic helicases Srs2 and Rqh1. We confirm that Rrp1 and Rrp2 act together with Srs2 and Swi5 and independently of Rad57 and show that Rqh1 also acts independently of Rrp1/2. Mutants devoid of Srs2 are characterized by elevated recombination frequency with a concomitant increase in the percentage of conversion-type recombinants. Strains devoid of Rrp1 or Rrp2 did not show a change in HR frequency, but the number of conversion-type recombinants was increased, suggesting a possible function for Rrp1/2 with Srs2 in counteracting Rad51 activity. Our data allow us to propose a model placing Rrp1 and Rrp2 functioning together with Swi5 and Srs2 in a synthesis-dependent strand annealing HR repair pathway.

  16. Single-Nucleotide-Specific Targeting of the Tf1 Retrotransposon Promoted by the DNA-Binding Protein Sap1 of Schizosaccharomyces pombe.

    Science.gov (United States)

    Hickey, Anthony; Esnault, Caroline; Majumdar, Anasuya; Chatterjee, Atreyi Ghatak; Iben, James R; McQueen, Philip G; Yang, Andrew X; Mizuguchi, Takeshi; Grewal, Shiv I S; Levin, Henry L

    2015-11-01

    Transposable elements (TEs) constitute a substantial fraction of the eukaryotic genome and, as a result, have a complex relationship with their host that is both adversarial and dependent. To minimize damage to cellular genes, TEs possess mechanisms that target integration to sequences of low importance. However, the retrotransposon Tf1 of Schizosaccharomyces pombe integrates with a surprising bias for promoter sequences of stress-response genes. The clustering of integration in specific promoters suggests that Tf1 possesses a targeting mechanism that is important for evolutionary adaptation to changes in environment. We report here that Sap1, an essential DNA-binding protein, plays an important role in Tf1 integration. A mutation in Sap1 resulted in a 10-fold drop in Tf1 transposition, and measures of transposon intermediates support the argument that the defect occurred in the process of integration. Published ChIP-Seq data on Sap1 binding combined with high-density maps of Tf1 integration that measure independent insertions at single-nucleotide positions show that 73.4% of all integration occurs at genomic sequences bound by Sap1. This represents high selectivity because Sap1 binds just 6.8% of the genome. A genome-wide analysis of promoter sequences revealed that Sap1 binding and amounts of integration correlate strongly. More important, an alignment of the DNA-binding motif of Sap1 revealed integration clustered on both sides of the motif and showed high levels specifically at positions +19 and -9. These data indicate that Sap1 contributes to the efficiency and position of Tf1 integration. Copyright © 2015 by the Genetics Society of America.

  17. Analysis of stress-induced duplex destabilization (SIDD properties of replication origins, genes and intergenes in the fission yeast, Schizosaccharomyces pombe

    Directory of Open Access Journals (Sweden)

    Yadav Mukesh P

    2012-11-01

    Full Text Available Abstract Background Replication and transcription, the two key functions of DNA, require unwinding of the DNA double helix. It has been shown that replication origins in the budding yeast, Saccharomyces cerevisiae contain an easily unwound stretch of DNA. We have used a recently developed method for determining the locations and degrees of stress-induced duplex destabilization (SIDD for all the reported replication origins in the genome of the fission yeast, Schizosaccharomyces pombe. Results We have found that the origins are more susceptible to SIDD as compared to the non-origin intergenic regions (NOIRs and genes. SIDD analysis of many known origins in other eukaryotes suggests that SIDD is a common property of replication origins. Interestingly, the previously shown deletion-dependent changes in the activities of the origins of the ura4 origin region on chromosome 3 are paralleled by changes in SIDD properties, suggesting SIDD’s role in origin activity. SIDD profiling following in silico deletions of some origins suggests that many of the closely spaced S. pombe origins could be clusters of two or three weak origins, similar to the ura4 origin region. Conclusion SIDD appears to be a highly conserved, functionally important property of replication origins in S. pombe and other organisms. The distinctly low SIDD scores of origins and the long range effects of genetic alterations on SIDD properties provide a unique predictive potential to the SIDD analysis. This could be used in exploring different aspects of structural and functional organization of origins including interactions between closely spaced origins.

  18. Roles of base excision repair enzymes Nth1p and Apn2p from Schizosaccharomyces pombe in processing alkylation and oxidative DNA damage.

    Science.gov (United States)

    Sugimoto, Takanori; Igawa, Emi; Tanihigashi, Haruna; Matsubara, Mayumi; Ide, Hiroshi; Ikeda, Shogo

    2005-11-21

    Schizosaccharomyces pombe Nthpl, an ortholog of the endonuclease III family, is the sole bifunctional DNA glycosylase encoded in its genome. The enzyme removes oxidative pyrimidine and incises 3' to the apurinic/apyrimidinic (AP) site, leaving 3'-alpha,beta-unsaturated aldehyde. Analysis of nth1 cDNA revealed an intronless structure including 5'- and 3'-untranslated regions. An Nth1p-green fluorescent fusion protein was predominantly localized in the nuclei of yeast cells, indicating a nuclear function. Deletion of nth1 confirmed that Nth1p is responsible for the majority of activity for thymine glycol and AP site incision in the absence of metal ions, while nth1 mutants exhibit hypersensitivity to methylmethanesulfonate (MMS). Complementation of sensitivity by heterologous expression of various DNA glycosylases showed that the methyl-formamidopyrimidine (me-fapy) and/or AP sites are plausible substrates for Nth1p in repairing MMS damage. Apn2p, the major AP endonuclease in S. pombe, also greatly contributes to the repair of MMS damage. Deletion of nth1 from an apn2 mutant resulted in tolerance to MMS damage, indicating that Nth1p-induced 3'-blocks are responsible for MMS sensitivity in apn2 mutants. Overexpression of Apn2p in nth1 mutants failed to suppress MMS sensitivity. These results indicate that Nth1p, not Apn2p, primarily incises AP sites and that the resultant 3'-blocks are removed by the 3'-phosphodiesterase activity of Apn2p. Nth1p is dispensable for cell survival against low levels of oxidative stress, but wild-type yeast became more sensitive than the nth1 mutant at high levels. Overexpression of Nth1p in heavily damaged cells probably induced cell death via the formation of 3'-blocked single-strand breaks.

  19. The role of Schizosaccharomyces pombe DNA repair enzymes Apn1p and Uve1p in the base excision repair of apurinic/apyrimidinic sites.

    Science.gov (United States)

    Tanihigashi, Haruna; Yamada, Ayako; Igawa, Emi; Ikeda, Shogo

    2006-09-08

    In Schizosaccharomyces pombe the repair of apurinic/apyrimidinic (AP) sites is mainly initiated by AP lyase activity of DNA glycosylase Nth1p. In contrast, the major AP endonuclease Apn2p functions by removing 3'-alpha,beta-unsaturated aldehyde ends induced by Nth1p, rather than by incising the AP sites. S. pombe possesses other minor AP endonuclease activities derived from Apn1p and Uve1p. In this study, we investigated the function of these two enzymes in base excision repair (BER) for methyl methanesulfonate (MMS) damage using the nth1 and apn2 mutants. Deletion of apn1 or uve1 from nth1Delta cells did not affect sensitivity to MMS. Exogenous expression of Apn1p failed to suppress the MMS sensitivity of nth1Delta cells. Although Apn1p and Uve1p incised the oligonucleotide containing an AP site analogue, these enzymes could not initiate repair of the AP sites in vivo. Despite this, expression of Apn1p partially restored the MMS sensitivity of apn2Delta cells, indicating that the enzyme functions as a 3'-phosphodiesterase to remove 3'-blocked ends. Localization of Apn1p in the nucleus and cytoplasm hints at an additional function of the enzyme other than nuclear DNA repair. Heterologous expression of Saccharomyces cerevisiae homologue of Apn1p completely restored the MMS resistance of the nth1Delta and apn2Delta cells. This result confirms a difference in the major pathway for processing the AP site between S. pombe and S. cerevisiae cells.

  20. A general role of the DNA glycosylase Nth1 in the abasic sites cleavage step of base excision repair in Schizosaccharomyces pombe.

    Science.gov (United States)

    Alseth, Ingrun; Korvald, Hanne; Osman, Fekret; Seeberg, Erling; Bjørås, Magnar

    2004-01-01

    One of the most frequent lesions formed in cellular DNA are abasic (apurinic/apyrimidinic, AP) sites that are both cytotoxic and mutagenic, and must be removed efficiently to maintain genetic stability. It is generally believed that the repair of AP sites is initiated by the AP endonucleases; however, an alternative pathway seems to prevail in Schizosaccharomyces pombe. A mutant lacking the DNA glycosylase/AP lyase Nth1 is very sensitive to the alkylating agent methyl methanesulfonate (MMS), suggesting a role for Nth1 in base excision repair (BER) of alkylation damage. Here, we have further evaluated the role of Nth1 and the second putative S.pombe AP endonuclease Apn2, in abasic site repair. The deletion of the apn2 open reading frame dramatically increased the sensitivity of the yeast cells to MMS, also demonstrating that the Apn2 has an important function in the BER pathway. The deletion of nth1 in the apn2 mutant strain partially relieves the MMS sensitivity of the apn2 single mutant, indicating that the Apn2 and Nth1 act in the same pathway for the repair of abasic sites. Analysis of the AP site cleavage in whole cell extracts of wild-type and mutant strains showed that the AP lyase activity of Nth1 represents the major AP site incision activity in vitro. Assays with DNA substrates containing base lesions removed by monofunctional DNA glycosylases Udg and MutY showed that Nth1 will also cleave the abasic sites formed by these enzymes and thus act downstream of these enzymes in the BER pathway. We suggest that the main function of Apn2 in BER is to remove the resulting 3'-blocking termini following AP lyase cleavage by Nth1.

  1. The Schizosaccharomyces pombe JmjC-protein, Msc1, prevents H2A.Z localization in centromeric and subtelomeric chromatin domains.

    Directory of Open Access Journals (Sweden)

    Luke Buchanan

    2009-11-01

    Full Text Available Eukaryotic genomes are repetitively packaged into chromatin by nucleosomes, however they are regulated by the differences between nucleosomes, which establish various chromatin states. Local chromatin cues direct the inheritance and propagation of chromatin status via self-reinforcing epigenetic mechanisms. Replication-independent histone exchange could potentially perturb chromatin status if histone exchange chaperones, such as Swr1C, loaded histone variants into wrong sites. Here we show that in Schizosaccharomyces pombe, like Saccharomyces cerevisiae, Swr1C is required for loading H2A.Z into specific sites, including the promoters of lowly expressed genes. However S. pombe Swr1C has an extra subunit, Msc1, which is a JumonjiC-domain protein of the Lid/Jarid1 family. Deletion of Msc1 did not disrupt the S. pombe Swr1C or its ability to bind and load H2A.Z into euchromatin, however H2A.Z was ectopically found in the inner centromere and in subtelomeric chromatin. Normally this subtelomeric region not only lacks H2A.Z but also shows uniformly lower levels of H3K4me2, H4K5, and K12 acetylation than euchromatin and disproportionately contains the most lowly expressed genes during vegetative growth, including many meiotic-specific genes. Genes within and adjacent to subtelomeric chromatin become overexpressed in the absence of either Msc1, Swr1, or paradoxically H2A.Z itself. We also show that H2A.Z is N-terminally acetylated before, and lysine acetylated after, loading into chromatin and that it physically associates with the Nap1 histone chaperone. However, we find a negative correlation between the genomic distributions of H2A.Z and Nap1/Hrp1/Hrp3, suggesting that the Nap1 chaperones remove H2A.Z from chromatin. These data describe H2A.Z action in S. pombe and identify a new mode of chromatin surveillance and maintenance based on negative regulation of histone variant misincorporation.

  2. Loss of ppr3, ppr4, ppr6, or ppr10 perturbs iron homeostasis and leads to apoptotic cell death in Schizosaccharomyces pombe.

    Science.gov (United States)

    Su, Yang; Yang, Yanmei; Huang, Ying

    2017-01-01

    Pentatricopeptide repeat (PPR) proteins characterized by tandem arrays of a degenerate 35-amino-acid repeat belong to a large family of RNA-binding proteins that are involved in post-transcriptional control of organelle gene expression. PPR proteins are ubiquitous in eukaryotes, and particularly prevalent in higher plants. Schizosaccharomyces pombe has 10 PPR proteins. Among them, ppr3, ppr4, ppr6, and ppr10 participate in mitochondrial post-transcriptional processes and are required for mitochondrial electron transport chain (ETC) function. In the present work, we showed that deletion of ppr3, ppr4, ppr6, or ppr10 led to apoptotic cell death, as revealed by DAPI and Annexin V-FITC staining. These mutants also exhibited elevated levels of reactive oxygen species (ROS). RNA sequencing (RNA-seq) and quantitative RT-PCR analyses revealed that deletion of ppr10 affected critical biological processes. In particular, a core set of genes involved in iron uptake and/or iron homeostasis was elevated in the Δppr10 mutant, suggesting an elevated level of intracellular iron in the mutant. Consistent with this notion, Δppr3, Δppr4, Δppr6, and Δppr10 mutants exhibited increased sensitivity to iron. Furthermore, the iron chelator, bathophenanthroline disulfonic acid, but not the calcium chelator EGTA, nearly restored the viabilities of Δppr3, Δppr4, Δppr6, and Δppr10 mutants, and reduced ROS levels in the mutants. These results show for the first time that deletion of a ppr gene leads to perturbation of iron homeostasis. Our results also suggest that disrupted iron homeostasis in Δppr3, Δppr4, Δppr6, and Δppr10 mutants may lead to an increase in the level of ROS and induction of apoptotic cell death in S. pombe. The RNA-seq data have been deposited in the National Center for Biotechnology Information (NCBI) BioProject database (accession number SRP091623) and Gene Expression Omnibus (GEO) database (accession number GSE90144). © 2016 Federation of European

  3. Schizosaccharomyces pombe Git7p, a member of the Saccharomyces cerevisiae Sgtlp family, is required for glucose and cyclic AMP signaling, cell wall integrity, and septation.

    Science.gov (United States)

    Schadick, Kevin; Fourcade, H Matthew; Boumenot, Peter; Seitz, Jeffrey J; Morrell, Jennifer L; Chang, Louise; Gould, Kathleen L; Partridge, Janet F; Allshire, Robin C; Kitagawa, Katsumi; Hieter, Phil; Hoffman, Charles S

    2002-08-01

    The Schizosaccharomyces pombe fbp1 gene, encoding fructose-1,6-bisphosphatase, is transcriptionally repressed by glucose. Mutations that confer constitutive fbp1 transcription identify git (glucose-insensitive transcription) genes that encode components of a cyclic AMP (cAMP) signaling pathway required for adenylate cyclase activation. Four of these genes encode the three subunits of a heterotrimeric G protein (gpa2, git5, and git11) and a G protein-coupled receptor (git3). Three additional genes, git1, git7, and git10, act in parallel to or downstream from the G protein genes. Here, we describe the cloning and characterization of the git7 gene. The Git7p protein is a member of the Saccharomyces cerevisiae Sgtlp protein family. In budding yeast, Sgtlp associates with Skplp and plays an essential role in kinetochore assembly, while in Arabidopsis, a pair of SGT1 proteins have been found to be involved in plant disease resistance through an interaction with RAR1. Like S. cerevisiae Sgtlp, Git7p is essential, but this requirement appears to be due to roles in septation and cell wall integrity, which are unrelated to cAMP signaling, as S. pombe cells lacking either adenylate cyclase or protein kinase A are viable. In addition, git7 mutants are sensitive to the microtubule-destabilizing drug benomyl, although they do not display a chromosome stability defect. Two alleles of git7 that are functional for cell growth and septation but defective for glucose-triggered cAMP signaling encode proteins that are altered in the highly conserved carboxy terminus. The S. cerevisiae and human SGT1 genes both suppress git7-93 but not git7-235 for glucose repression of fbp1 transcription and benomyl sensitivity. This allele-specific suppression indicates that the Git7p/Sgtlp proteins may act as multimers, such that Git7-93p but not Git7-235p can deliver the orthologous proteins to species-specific targets. Our studies suggest that members of the Git7p/Sgt1p protein family may play a

  4. Toxicity of ricinoleic acid production in fission yeast Schizosaccharomyces pombe is suppressed by the overexpression of plg7, a phospholipase A2 of a platelet-activating factor (PAF) family homolog.

    Science.gov (United States)

    Yazawa, Hisashi; Holic, Roman; Kumagai, Hiromichi; Uemura, Hiroshi

    2013-09-01

    In an effort to produce ricinoleic acid (RA), an important natural raw material with great values as a petrochemical replacement, in Schizosaccharomyces pombe, we introduced Claviceps purpurea oleate Δ12-hydroxylase gene (CpFAH12) to S. pombe, putting it under the control of an inducible nmt1 promoter. However, RA was toxic to S. pombe and the cells expressing CpFAH12 grew poorly at the normal growth temperature 30 °C. To address its toxic mechanism in S. pombe, we screened for a S. pombe cDNA library and identified plg7, which encodes a phospholipase A2, as a suppressor that restored the growth defect without affecting the RA production. A lacZ fusion experiment showed that the expression of plg7 was inducible by RA. Thin layer chromatographic analysis confirmed a reduction in RA moiety in phospholipids and a concomitant increase in free RA in the plg7 overexpressed strain. Since RA is synthesized at the sn-2 position of phosphatidylcholine by Fah12p, and phospholipase A2 hydrolyzes the sn-2 acyl bond of phospholipids, we speculate that plg7 is a stress-responsive gene, and removal of RA moieties from phospholipids, major components of lipid bilayer membrane, by Plg7p would be its suppression mechanism.

  5. The ubiquitin-associated (UBA) 1 domain of Schizosaccharomyces pombe Rhp23 is essential for the recognition of ubiquitin-proteasome system substrates both in vitro and in vivo.

    Science.gov (United States)

    Medina, Bethan; Paraskevopoulos, Konstantinos; Boehringer, Jonas; Sznajder, Anna; Robertson, Morag; Endicott, Jane; Gordon, Colin

    2012-12-07

    The ubiquitin-proteasome system is essential for maintaining a functional cell. Not only does it remove incorrectly folded proteins, it also regulates protein levels to ensure their appropriate spatial and temporal distribution. Proteins marked for degradation by the addition of Lys(48)-linked ubiquitin (Ub) chains are recognized by shuttle factors and transported to the 26 S proteasome. One of these shuttle factors, Schizosaccharomyces pombe Rhp23, has an unusual domain architecture. It comprises an N-terminal ubiquitin-like domain that can recognize the proteasome followed by two ubiquitin-associated (UBA) domains, termed UBA1 and UBA2, which can bind Ub. This architecture is conserved up to humans, suggesting that both domains are important for Rhp23 function. Such an extent of conservation raises the question as to why, in contrast to all other shuttle proteins, does Rhp23 require two UBA domains? We performed in vitro Ub binding assays using domain swap chimeric proteins and mutated domains in isolation as well as in the context of the full-length protein to reveal that the Ub binding properties of the UBA domains are context-dependent. In vivo, the internal Rhp23 UBA1 domain provides sufficient Ub recognition for the protein to function without UBA2.

  6. Extending the Schizosaccharomyces pombe molecular genetic toolbox.

    Directory of Open Access Journals (Sweden)

    Dorota Fennessy

    Full Text Available Targeted alteration of the genome lies at the heart of the exploitation of S. pombe as a model system. The rate of analysis is often determined by the efficiency with which a target locus can be manipulated. For most loci this is not a problem, however for some loci, such as fin1+, rates of gene targeting below 5% can limit the scope and scale of manipulations that are feasible within a reasonable time frame. We now describe a simple modification of transformation procedure for directing integration of genomic sequences that leads to a 5-fold increase in the transformation efficiency when antibiotic based dominant selection markers are used. We also show that removal of the pku70+ and pku80+ genes, which encode DNA end binding proteins required for the non-homologous end joining DNA repair pathway, increases the efficiency of gene targeting at fin1+ to around 75-80% (a 16-fold increase. We describe how a natMX6/rpl42+ cassette can be used for positive and negative selection for integration at a targeted locus. To facilitate the evaluation of the impact of a series of mutations on the function of a gene of interest we have generated three vector series that rely upon different selectable markers to direct the expression of tagged/untagged molecules from distinct genomic integration sites. pINTL and pINTK vectors use ura4+ selection to direct disruptive integration of leu1+ and lys1+ respectively, while pINTH vectors exploit nourseothricin resistance to detect the targeted disruption of a hygromycin B resistance conferring hphMX6 cassette that has been integrated on chromosome III. Finally, we have generated a series of multi-copy expression vectors that use resistance to nourseothricin or kanamycin/G418 to select for propagation in prototrophic hosts. Collectively these protocol modifications and vectors extend the versatility of this key model system.

  7. Nedd8 processing enzymes in Schizosaccharomyces pombe

    DEFF Research Database (Denmark)

    O'Donoghue, Jean; Bech-Otschir, Dawadschargal; Larsen, Ida

    2013-01-01

    Conjugation of the ubiquitin-like modifier Nedd8 to cullins is critical for the function of SCF-type ubiquitin ligases and thus facilitates ubiquitin conjugation and ultimately degradation of SCF substrates, including several cell cycle regulators. Like ubiquitin, Nedd8 is produced as a precursor...... that must first be processed before it becomes active. In Saccharomyces cerevisiae this is carried out exclusively by the enzyme Yuh1....

  8. A simple and efficient procedure for transformation of Schizosaccharomyces pombe

    National Research Council Canada - National Science Library

    Morita, Tomotake; Takegawa, Kaoru

    2004-01-01

    ... µl reaction mixture containing 70 µl PLATE solution (50% polyethylene glycol‐4000, 100 m M lithium acetate, 10 m M Tris–HCl, pH 4.9, and 1 m M EDTA), 10 µl plasmid DNA (1 µg), 10 µl carrier DNA (100 µg) and 10...

  9. TSC1 and TSC2 Gene Homologs in Schizosaccharomyces Pombe

    National Research Council Canada - National Science Library

    Henske, Elizabeth

    2004-01-01

    ...). Tuberous sclerosis complex (TSC) is an autosomal dominantly inherited disease whose manifestations can include seizures, mental retardation, autism, and tumors of the brain, heart, kidney and skin...

  10. TSC1 and TSC2 Gene Homologs in Schizosaccharomyces Pombe

    National Research Council Canada - National Science Library

    Henske, Elizabeth P

    2005-01-01

    ...). Tuberous sclerosis complex (TSC) is an autosomal dominantly inherited disease whose manifestations can include seizures, mental retardation, autism, and tumors of the brain, heart, kidney and skin...

  11. Pheromone communication in the fission yeast Schizosaccharomyces pombe

    DEFF Research Database (Denmark)

    Nielsen, O; Davey, William John; Nielsen, Olaf

    1995-01-01

    Conjugation between two haploid yeast cells is generally controlled by the reciprocal action of diffusible mating pheromones, cells of each mating type releasing pheromones that induce mating-specific changes in cells of the opposite type. Recent studies into pheromone signalling in the fission...

  12. Computer Simulation of the Population Growth (Schizosaccharomyces Pombe) Experiment.

    Science.gov (United States)

    Daley, Michael; Hillier, Douglas

    1981-01-01

    Describes a computer program (available from authors) developed to simulate "Growth of a Population (Yeast) Experiment." Students actively revise the counting techniques with realistically simulated haemocytometer or eye-piece grid and are reminded of the necessary dilution technique. Program can be modified to introduce such variables…

  13. Structural analysis of sumoylated proteins in Schizosaccharomyces pombe

    DEFF Research Database (Denmark)

    Jørgensen, Maria Louise Mønster

    The small ubiquitin-related modifier, SUMO, post-translationally modifies a variety of proteins, affecting their interactions, localisation and stability. Sumoylation thereby influences numerous cellular functions, e.g. gene expression, chromosome segregation and the replication and repair of DNA...... or Sap1-DNA interactions. In addition, the Sap1 function relationship was investigated in vivo by repeating a search for suppressors of the slow growth phenotype of abp1Δ cbh1Δ mutants. Autonomously replicating sequence binding protein 1 (Abp1) and cenp-B homologue 1 (Cbh1) co-localise with Sap1 in some...... was present. One of the SUMO-conjugates identified by mass spectrometry was the essential DNA binding protein Sap1. Sap1 is responsible for mating-type switching and for some replication fork blocks in S. pombe. Sap1 was determined to be sumoylated at 6 out of 29 lysines, primarily located in its two...

  14. Optimisation of the Schizosaccharomyces pombe urg1 expression system.

    Directory of Open Access Journals (Sweden)

    Adam T Watson

    Full Text Available The ability to study protein function in vivo often relies on systems that regulate the presence and absence of the protein of interest. Two limitations for previously described transcriptional control systems that are used to regulate protein expression in fission yeast are: the time taken for inducing conditions to initiate transcription and the ability to achieve very low basal transcription in the "OFF-state". In previous work, we described a Cre recombination-mediated system that allows the rapid and efficient regulation of any gene of interest by the urg1 promoter, which has a dynamic range of approximately 75-fold and which is induced within 30-60 minutes of uracil addition. In this report we describe easy-to-use and versatile modules that can be exploited to significantly tune down Purg1 "OFF-levels" while maintaining an equivalent dynamic range. We also provide plasmids and tools for combining Purg1 transcriptional control with the auxin degron tag to help maintain a null-like phenotype. We demonstrate the utility of this system by improved regulation of HO-dependent site-specific DSB formation, by the regulation Rtf1-dependent replication fork arrest and by controlling Rhp18(Rad18-dependent post replication repair.

  15. The ras1 protein of S. pombe mediates pheromone-induced transcription. Abstract

    DEFF Research Database (Denmark)

    Nielsen, Olaf; Davey, John; Egel, Richard

    1991-01-01

    Differentiering, signaltransduktion, parringstype feromon, Schizosaccharomyces pombe, ras homolog, Transkription......Differentiering, signaltransduktion, parringstype feromon, Schizosaccharomyces pombe, ras homolog, Transkription...

  16. Schizosaccharomyces pombe Mms1 channels repair of perturbed replication into Rhp51 independent homologous recombination

    DEFF Research Database (Denmark)

    Vejrup-Hansen, Rasmus; Mizuno, Ken'Ichi; Miyabe, Izumi

    2011-01-01

    is particularly important when a single strand break is converted into a double strand break during replication. Genetic data connect Mms1 to a Mus81 and Rad22(Rad52) dependent, but Rhp51 independent, branch of homologous recombination. This is supported by results demonstrating that Mms1 is recruited to a site......-like protein, Rtt101/Cul8, a potential paralog of Cullin 4. We performed epistasis analysis between ¿mms1 and mutants of pathways with known functions in genome integrity, and measured the recruitment of homologous recombination proteins to blocked replication forks and recombination frequencies. We show that......-specific replication fork barrier and that, in a ¿mms1 strain, Rad22(Rad52) and RPA recruitment to blocked forks are reduced, whereas Rhp51 recruitment is unaffected. In addition, Mms1 appears to specifically promote chromosomal rearrangements in a recombination assay. These observations suggest that Mms1 acts...

  17. The Reporter System for GPCR Assay with the Fission Yeast Schizosaccharomyces pombe

    Directory of Open Access Journals (Sweden)

    Shintaro Sasuga

    2012-01-01

    Full Text Available G protein-coupled receptors (GPCRs are associated with a great variety of biological activities. Yeasts are often utilized as a host for heterologous GPCR assay. We engineered the intense reporter plasmids for fission yeast to produce green fluorescent protein (GFP through its endogenous GPCR pathway. As a control region of GFP expression on the reporter plasmid, we focused on seven endogenous genes specifically activated through the pathway. When upstream regions of these genes were used as an inducible promoter in combination with LPI terminator, the mam2 upstream region produced GFP most rapidly and intensely despite the high background. Subsequently, LPI terminator was replaced with the corresponding downstream regions. The SPBC4.01 downstream region enhanced the response with the low background. Furthermore, combining SPBC4.01 downstream region with the sxa2 upstream region, the signal to noise ratio was obviously better than those of other regions. We also evaluated the time- and dose-dependent GFP productions of the strains transformed with the reporter plasmids. Finally, we exhibited a model of simplified GPCR assay with the reporter plasmid by expressing endogenous GPCR under the control of the foreign promoter.

  18. The SET domain protein, Set3p, promotes the reliable execution of cytokinesis in Schizosaccharomyces pombe.

    Directory of Open Access Journals (Sweden)

    Stefan Rentas

    Full Text Available In response to perturbation of the cell division machinery fission yeast cells activate regulatory networks that ensure the faithful completion of cytokinesis. For instance, when cells are treated with drugs that impede constriction of the actomyosin ring (low doses of Latrunculin A, for example these networks ensure that cytokinesis is complete before progression into the subsequent mitosis. Here, we identify three previously uncharacterized genes, hif2, set3, and snt1, whose deletion results in hyper-sensitivity to LatA treatment and in increased rates of cytokinesis failure. Interestingly, these genes are orthologous to TBL1X, MLL5, and NCOR2, human genes that encode components of a histone deacetylase complex with a known role in cytokinesis. Through co-immunoprecipitation experiments, localization studies, and phenotypic analysis of gene deletion mutants, we provide evidence for an orthologous complex in fission yeast. Furthermore, in light of the putative role of the complex in chromatin modification, together with our results demonstrating an increase in Set3p levels upon Latrunculin A treatment, global gene expression profiles were generated. While this analysis demonstrated that the expression of cytokinesis genes was not significantly affected in set3Δ backgrounds, it did reveal defects in the ability of the mutant to regulate genes with roles in the cellular response to stress. Taken together, these findings support the existence of a conserved, multi-protein complex with a role in promoting the successful completion of cytokinesis.

  19. Long G2 accumulates recombination intermediates and disturbs chromosome segregation at dysfunction telomere in Schizosaccharomyces pombe.

    Science.gov (United States)

    Habib, Ahmed G K; Masuda, Kenta; Yukawa, Masashi; Tsuchiya, Eiko; Ueno, Masaru

    2015-08-14

    Protection of telomere (Pot1) is a single-stranded telomere binding protein which is essential for chromosome ends protection. Fission yeast Rqh1 is a member of RecQ helicases family which has essential roles in the maintenance of genomic stability and regulation of homologous recombination. Double mutant between fission yeast pot1Δ and rqh1 helicase dead (rqh1-hd) maintains telomere by homologous recombination. In pot1Δ rqh1-hd double mutant, recombination intermediates accumulate near telomere which disturb chromosome segregation and make cells sensitive to microtubule inhibitors thiabendazole (TBZ). Deletion of chk1(+) or mutation of its kinase domain shortens the G2 of pot1Δ rqh1-hd double mutant and suppresses both the accumulation of recombination intermediates and the TBZ sensitivity of that double mutant. In this study, we asked whether the long G2 is the reason for the TBZ sensitivity of pot1Δ rqh1-hd double mutant. We found that shortening the G2 of pot1Δ rqh1-hd double mutant by additional mutations of wee1 and mik1 or gain of function mutation of Cdc2 suppresses both the accumulation of recombination intermediates and the TBZ sensitivity of pot1Δ rqh1-hd double mutant. Our results suggest that long G2 of pot1Δ rqh1-hd double mutant may allow time for the accumulation of recombination intermediates which disturb chromosome segregation and make cells sensitive to TBZ. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Characterisation of the SUMO-like domains of Schizosaccharomyces pombe Rad60.

    Directory of Open Access Journals (Sweden)

    Lara K Boyd

    Full Text Available The S. pombe Rad60 protein is required for the repair of DNA double strand breaks, recovery from replication arrest, and is essential for cell viability. It has two SUMO-like domains (SLDs at its C-terminus, an SXS motif and three sequences that have been proposed to be SUMO-binding motifs (SBMs. SMB1 is located in the middle of the protein, SBM2 is in SLD1 and SBM3 is at the C-terminus of SLD2. We have probed the functions of the two SUMO-like domains, SLD1 and SLD2, and the putative SBMs. SLD1 is essential for viability, while SLD2 is not. rad60-SLD2Δ cells are sensitive to DNA damaging agents and hydroxyurea. Neither ubiquitin nor SUMO can replace SLD1 or SLD2. Cells in which either SBM1 or SBM2 has been mutated are viable and are wild type for response to MMS and HU. In contrast mutation of SBM3 results in significant sensitivity to MMS and HU. These results indicate that the lethality resulting from deletion of SLD1 is not due to loss of SBM2, but that mutation of SBM3 produces a more severe phenotype than does deletion of SLD2. Using chemical denaturation studies, FPLC and dynamic light scattering we show this is likely due to the destabilisation of SLD2. Thus we propose that the region corresponding to the putative SBM3 forms part of the hydrophobic core of SLD2 and is not a SUMO-interacting motif. Over-expression of Hus5, which is the SUMO conjugating enzyme and known to interact with Rad60, does not rescue rad60-SLD2Δ, implying that as well as having a role in the sumoylation process as previously described, Rad60 has a Hus5-independent function.

  1. Caffeine-mediated override of checkpoint controls. A requirement for rhp6 (Schizosaccharomyces pombe).

    OpenAIRE

    Rowley, R; Zhang, J

    1999-01-01

    Cells exposed to inhibitors of DNA synthesis or suffering DNA damage are arrested or delayed in interphase through the action of checkpoint controls. If the arrested cell is exposed to caffeine, relatively normal cell cycle progression is resumed and, as observed in checkpoint control mutants, loss of checkpoint control activity is associated with a reduction in cell viability. To address the mechanism of caffeine's action on cell progression, fission yeast mutants that take up caffeine but a...

  2. The Combined Use of Schizosaccharomyces pombe and Lachancea thermotolerans-Effect on the Anthocyanin Wine Composition

    National Research Council Canada - National Science Library

    angel Benito; Fernando Calderón; Santiago Benito

    2017-01-01

    The most popular methodology to make red wine is through the combined use of Saccharomyces cerevisiae yeast and lactic acid bacteria, for alcoholic fermentation and malolactic fermentation respectively...

  3. Sequence requirement of the ade6-4095 meiotic recombination hotspot in Schizosaccharomyces pombe.

    Science.gov (United States)

    Foulis, Steven J; Fowler, Kyle R; Steiner, Walter W

    2018-02-01

    Homologous recombination occurs at a greatly elevated frequency in meiosis compared to mitosis and is initiated by programmed double-strand DNA breaks (DSBs). DSBs do not occur at uniform frequency throughout the genome in most organisms, but occur preferentially at a limited number of sites referred to as hotspots. The location of hotspots have been determined at nucleotide-level resolution in both the budding and fission yeasts, and while several patterns have emerged regarding preferred locations for DSB hotspots, it remains unclear why particular sites experience DSBs at much higher frequency than other sites with seemingly similar properties. Short sequence motifs, which are often sites for binding of transcription factors, are known to be responsible for a number of hotspots. In this study we identified the minimum sequence required for activity of one of such motif identified in a screen of random sequences capable of producing recombination hotspots. The experimentally determined sequence, GGTCTRGACC, closely matches the previously inferred sequence. Full hotspot activity requires an effective sequence length of 9.5 bp, whereas moderate activity requires an effective sequence length of approximately 8.2 bp and shows significant association with DSB hotspots. In combination with our previous work, this result is consistent with a large number of different sequence motifs capable of producing recombination hotspots, and supports a model in which hotspots can be rapidly regenerated by mutation as they are lost through recombination.

  4. Long G2 accumulates recombination intermediates and disturbs chromosome segregation at dysfunction telomere in Schizosaccharomyces pombe

    Energy Technology Data Exchange (ETDEWEB)

    Habib, Ahmed G.K.; Masuda, Kenta; Yukawa, Masashi; Tsuchiya, Eiko [Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530 (Japan); Ueno, Masaru, E-mail: scmueno@hiroshima-u.ac.jp [Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530 (Japan); Research Center for the Mathematics on Chromatin Live Dynamics, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530 (Japan)

    2015-08-14

    Protection of telomere (Pot1) is a single-stranded telomere binding protein which is essential for chromosome ends protection. Fission yeast Rqh1 is a member of RecQ helicases family which has essential roles in the maintenance of genomic stability and regulation of homologous recombination. Double mutant between fission yeast pot1Δ and rqh1 helicase dead (rqh1-hd) maintains telomere by homologous recombination. In pot1Δ rqh1-hd double mutant, recombination intermediates accumulate near telomere which disturb chromosome segregation and make cells sensitive to microtubule inhibitors thiabendazole (TBZ). Deletion of chk1{sup +} or mutation of its kinase domain shortens the G2 of pot1Δ rqh1-hd double mutant and suppresses both the accumulation of recombination intermediates and the TBZ sensitivity of that double mutant. In this study, we asked whether the long G2 is the reason for the TBZ sensitivity of pot1Δ rqh1-hd double mutant. We found that shortening the G2 of pot1Δ rqh1-hd double mutant by additional mutations of wee1 and mik1 or gain of function mutation of Cdc2 suppresses both the accumulation of recombination intermediates and the TBZ sensitivity of pot1Δ rqh1-hd double mutant. Our results suggest that long G2 of pot1Δ rqh1-hd double mutant may allow time for the accumulation of recombination intermediates which disturb chromosome segregation and make cells sensitive to TBZ. - Ηighlights: • We show link between long G2 and accumulation of toxic recombination intermediates. • Accumulation of recombination intermediates at telomere results in TBZ sensitivity. • Activation of DNA damage checkpoint worsens cells' viability in presence of TBZ.

  5. The ras1 function of Schizosaccharomyces pombe mediates pheromone-induced transcription

    DEFF Research Database (Denmark)

    Nielsen, O; Davey, William John; Egel, R

    1992-01-01

    Loss of ras1+ function renders fission yeast cells unable to undergo morphological changes in response to mating pheromones, whereas cells carrying activated mutations in ras1 are hyper-responsive. This has led to the suggestion that the ras1 gene product plays a role in mating pheromone signal...... transduction. Using partially purified M factor we demonstrate that the mat1-Pm gene, which controls entry into meiosis, is transcribed in response to a pheromone signal. Strains mutated in the ras1 gene or in ste6, the fission yeast homologue of Ras protein GDP/GTP exchange factor, are unable to induce...... transcription of mat1-Pm in response to M factor. Furthermore, an activated ras1val17 mutant exhibits a stronger induction of the mat1-Pm transcript. However, transcription still depends on nitrogen deprivation as well as on the presence of pheromone, showing that activation of the Ras1 protein alone does...

  6. Synchronization of S phase in Schizosaccharomyces pombe cells by transient exposure to M-factor pheromone

    DEFF Research Database (Denmark)

    Nielsen, Olaf

    2016-01-01

    A well-characterized S phase, a unicellular lifestyle, and a plethora of mutations in key components of DNA metabolism make fission yeast a particularly attractive system in which to study DNA replication. However, synchronization of passage through a normal S phase has proved challenging. This p....... This protocol describes how combining nitrogen starvation with M-factor mating pheromone treatment presents a highly effective method for synchronizing passage through an ostensibly normal S phase....

  7. Characterization of fus1 of Schizosaccharomyces pombe: a developmentally controlled function needed for conjugation

    DEFF Research Database (Denmark)

    Petersen, J; Weilguny, D; Egel, R

    1995-01-01

    gene and found that it is capable of encoding a 1,372-amino-acid protein with no significant similarities to other known proteins. Expression of the fus1 gene is regulated by the developmental state of the cells. Transcription is induced by nitrogen starvation and requires a pheromone signal in both P...... and M cell types. Consequently, mutants defective in the pheromone response pathway fail to induce fus1 expression. The ste11 gene, which encodes a transcription factor controlling expression of many genes involved in sexual differentiation, is also required for transcription of fus1. Furthermore...

  8. Taxonomy Icon Data: fission yeast [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available fission yeast Schizosaccharomyces pombe Schizosaccharomyces_pombe_L.png Schizosaccharomy...ces_pombe_NL.png Schizosaccharomyces_pombe_S.png Schizosaccharomyces_pombe_NS.png http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Schizosaccharomyces+pombe&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Schizosaccharomy...ces+pombe&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Schizosaccharomy...ces+pombe&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Schizosaccharomyces+pombe&t=NS

  9. Determination of the efficient enzyme concentration for lytic digestion of vegetative cells but not spores in Schizosaccharomyces pombe

    Directory of Open Access Journals (Sweden)

    Miroslava

    2017-06-01

    Full Text Available The fact that lytic enzymes such as b-glucuronidase are capable of cell wall lysis, while the integrity of the spore is not affected, is used in the spore viability tests to investigate meiotic processes. Meiosis as a fundamental feature in all living organisms comprises of a complex tightly linked and mutually dependent processes most of which are scientific targets of many research institutions. The fission yeast Shizosaccharomyces pombe is a powerful tool for studies on eukaryotic meiosis. Mating of yeast strains of opposite mating types on nitrogen free medium results in spores production. Whereas not all cells undergo meiosis, some cells persist in vegetative stage even in the absence of nitrogen, this leads to generation of a mixed suspension of vegetative cells and spores. Thus, in order to separate spores from vegetative cells obtained mixture was exposed to lytic enzyme action. This treatment kills vegetative cells without affecting spores. To obtain the best and reproducible results of spore recovery and viability, different lytic conditions were analysed. Obtained results show, that use of b-glucuronidase as lytic enzyme for random spore analyses in the fission yeast is dose and time dependent.

  10. Determination of the efficient enzyme concentration for lytic digestion of vegetative cells but not spores in Schizosaccharomyces pombe

    National Research Council Canada - National Science Library

    Miroslava; Alica; Anna

    2017-01-01

    The fact that lytic enzymes such as b-glucuronidase are capable of cell wall lysis, while the integrity of the spore is not affected, is used in the spore viability tests to investigate meiotic processes...

  11. C-terminal region of Mad2 plays an important role during mitotic spindle checkpoint in fission yeast Schizosaccharomyces pombe.

    Science.gov (United States)

    Singh, Gaurav Kumar; Karade, Sharanbasappa Shrimant; Ranjan, Rajeev; Ahamad, Nafees; Ahmed, Shakil

    2017-02-01

    The mitotic arrest deficiency 2 (Mad2) protein is an essential component of the spindle assembly checkpoint that interacts with Cdc20/Slp1 and inhibit its ability to activate anaphase promoting complex/cyclosome (APC/C). In bladder cancer cell line the C-terminal residue of the mad2 gene has been found to be deleted. In this study we tried to understand the role of the C-terminal region of mad2 on the spindle checkpoint function. To envisage the role of C-terminal region of Mad2, we truncated 25 residues of Mad2 C-terminal region in fission yeast S.pombe and characterized its effect on spindle assembly checkpoint function. The cells containing C-terminal truncation of Mad2 exhibit sensitivity towards microtubule destabilizing agent suggesting perturbation of spindle assembly checkpoint. Further, the C-terminal truncation of Mad2 exhibit reduced viability in the nda3-KM311 mutant background at non-permissive temperature. Truncation in mad2 gene also affects its foci forming ability at unattached kinetochore suggesting that the mad2-∆CT mutant is unable to maintain spindle checkpoint activation. However, in response to the defective microtubule, only brief delay of mitotic progression was observed in Mad2 C-terminal truncation mutant. In addition we have shown that the deletion of two β strands of Mad2 protein abolishes its ability to interact with APC activator protein Slp1/Cdc20. We purpose that the truncation of two β strands (β7 and β8) of Mad2 destabilize the safety belt and affect the Cdc20-Mad2 interaction leading to defects in the spindle checkpoint activation.

  12. The essential Schizosaccharomyces pombe Pfh1 DNA helicase promotes fork movement past G-quadruplex motifs to prevent DNA damage.

    Science.gov (United States)

    Sabouri, Nasim; Capra, John A; Zakian, Virginia A

    2014-12-04

    G-quadruplexes (G4s) are stable non-canonical DNA secondary structures consisting of stacked arrays of four guanines, each held together by Hoogsteen hydrogen bonds. Sequences with the ability to form these structures in vitro, G4 motifs, are found throughout bacterial and eukaryotic genomes. The budding yeast Pif1 DNA helicase, as well as several bacterial Pif1 family helicases, unwind G4 structures robustly in vitro and suppress G4-induced DNA damage in S. cerevisiae in vivo. We determined the genomic distribution and evolutionary conservation of G4 motifs in four fission yeast species and investigated the relationship between G4 motifs and Pfh1, the sole S. pombe Pif1 family helicase. Using chromatin immunoprecipitation combined with deep sequencing, we found that many G4 motifs in the S. pombe genome were associated with Pfh1. Cells depleted of Pfh1 had increased fork pausing and DNA damage near G4 motifs, as indicated by high DNA polymerase occupancy and phosphorylated histone H2A, respectively. In general, G4 motifs were underrepresented in genes. However, Pfh1-associated G4 motifs were located on the transcribed strand of highly transcribed genes significantly more often than expected, suggesting that Pfh1 has a function in replication or transcription at these sites. In the absence of functional Pfh1, unresolved G4 structures cause fork pausing and DNA damage of the sort associated with human tumors.

  13. Proteasome nuclear import mediated by Arc3 can influence efficient DNA damage repair and mitosis in Schizosaccharomyces pombe

    DEFF Research Database (Denmark)

    Cabrera, Rodrigo; Sha, Zhe; Vadakkan, Tegy J.

    2010-01-01

    Proteasomes must remove regulatory molecules and abnormal proteins throughout the cell, but how proteasomes can do so efficiently remains unclear. We have isolated a subunit of the Arp2/3 complex, Arc3, which binds proteasomes. When overexpressed, Arc3 rescues phenotypes associated with proteasome....... Proteasome nuclear import is reduced when Arc3 is inactivated, leading to hypersensitivity to DNA damage and inefficient cyclin-B degradation, two events occurring in the nucleus. These data suggest that proteasomes display Arc3-dependent mobility in the cell, and mobile proteasomes can efficiently access...

  14. Organización genómica del inicio de la replicación y la recombinación en Schizosaccharomyces pombe

    OpenAIRE

    Castro Álvarez, Elisa de

    2010-01-01

    [ES] Esta tesis consiste en el análisis de la colocalización a nivel genómico y de la posible dependencia funcional entre la activación de los orígenes de replicación y la generación de roturas de DNA de doble cadena du-rante la meiosis en S. pombe.Además también trata de la identificación de los requerimientos necesarios para la generación de roturas de DNA de doble cadena previas a la recombinación meiótica en S. pombe. [EN] This thesis is the analysis of colocalization at the genomic le...

  15. Intracellular scavenging activity of Trolox (6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid) in the fission yeast, Schizosaccharomyces pombe

    OpenAIRE

    Hamad, Ismail; Arda, Nazl?; Pekmez, Murat; Karaer, Semian; Temizkan, G?ler

    2010-01-01

    The ability of Trolox (6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid), a water-soluble vitamin E analogue, to prevent oxidative damages is well characterized, but the mechanisms underlying it remain unclear. The protective effect of Trolox pre-treatment on H2O2-induced toxicity might be attributed to the decreased cellular permeability to H2O2 or in vitro scavenging activity of Trolox, induction of antioxidant enzymes or the direct scavenging activity of Trolox. The results obtained...

  16. Cleavage and polyadenylation factor, Rna14 is an essential protein required for the maintenance of genomic integrity in fission yeast Schizosaccharomyces pombe.

    Science.gov (United States)

    Sonkar, Amit; Yadav, Sudhanshu; Ahmed, Shakil

    2016-02-01

    Faithful segregation of chromosomes is essential for the maintenance of genome integrity. In a genetic screen to identify genes related to checkpoint function, we have characterized the role of rna14, an essential gene in the maintenance of chromosome dynamics. We demonstrate that Rna14 localizes in the nucleus and in the absence of functional Rna14, the cells exhibit chromosomal segregation defects. The mutant allele of rna14 exhibits genetic interaction with key kinetochore components and spindle checkpoint proteins. Inactivation of rna14 leads to accumulation of Bub1-GFP foci, a protein required for spindle checkpoint activation that could be due to the defects in the attachment of mitotic spindle to the chromosome. Consistently, the double mutant of rna14-11 and bub1 knockout exhibits high degree of chromosome mis-segregation. At restrictive condition, the rna14-11 mutant cells exhibit defects in cell cycle progression with high level of septation. The orthologs of Rna14 in Saccharomyces cerevisiae (sc Rna14) and human (CstF3) contain similar domain architecture and are required for 3'-end processing of pre-mRNA. We have also demonstrated that the fission yeast Rna14 is required to prevent transcriptional read-through. These findings reveal the importance of transcription termination in the maintenance of genomic stability through the regulation of kinetochore function. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. The Clr7 and Clr8 Directionality Factors and the Pcu4 Cullin Mediate Heterochromatin Formation in the Fission Yeast Schizosaccharomyces pombe

    DEFF Research Database (Denmark)

    Thon, G.; Hansen, Klavs R.; Altes, Susagna Padrissa

    2005-01-01

    transcriptional silencing in all previously characterized heterochromatic regions, chromosome segregation, and meiotic recombination in the mating-type region. We present evidence for physical interactions between Clr7 and the mating-type region and between Clr7 and the S. pombe cullin Pcu4, indicating...

  18. Ecl1 is activated by the transcription factor Atf1 in response to H2O2 stress in Schizosaccharomyces pombe.

    Science.gov (United States)

    Shimasaki, Takafumi; Ohtsuka, Hokuto; Naito, Chikako; Murakami, Hiroshi; Aiba, Hirofumi

    2014-08-01

    The Ecl1 family genes extend the lifespan of fission yeast when overexpressed. They also cause resistance against H(2)O(2) stress. In this study, we found that the bZip transcription factor Atf1 is a direct activator of the induction of extender of chronological lifespan (ecl1 (+)) by H(2)O(2) stress. Based on ChIP analysis, we identified that Atf1 binds to the upstream DNA region of ecl1(+). Previously, we reported that overexpression of ecl1(+) increased the expression of the catalase-encoding ctt1(+). This ecl1(+)-dependent increase of ctt1(+) expression occurred in ∆atf1 mutant. On the other hand, the activation of ctt1 (+) caused by the ∆pyp1 mutation, which enhances Sty1-Atf1 activity, could occur in ∆ecl1 mutant. Based on these results, we propose that Atf1 can regulate ctt1(+) in both an Ecl1-dependent and an Ecl1-independent manner.

  19. Latrunculin A-Induced Perturbation of the Actin Cytoskeleton Mediates Pap1p-Dependent Induction of the Caf5p Efflux Pump in Schizosaccharomyces pombe.

    Science.gov (United States)

    Asadi, Farzad; Chakraborty, Bidhan; Karagiannis, Jim

    2017-02-09

    As part of an earlier study aimed at uncovering gene products with roles in defending against latrunculin A (LatA)-induced cytoskeletal perturbations, we identified three members of the oxidative stress response pathway: the Pap1p AP-1-like transcription factor, the Imp1p α-importin, and the Caf5p efflux pump. In this report, we characterize the pathway further and show that Pap1p translocates from the cytoplasm to the nucleus in an Imp1p-dependent manner upon LatA treatment. Moreover, preventing this translocation, through the addition of a nuclear export signal (NES), confers the same characteristic LatA-sensitive phenotype exhibited by pap1Δ cells. Lastly, we show that the caf5 gene is induced upon exposure to LatA and that Pap1p is required for this transcriptional upregulation. Importantly, the expression of trr1, a Pap1p target specifically induced in response to oxidative stress, is not significantly altered by LatA treatment. Taken together, these results suggest a model in which LatA-mediated cytoskeletal perturbations are sensed, triggering the Imp1p-dependent translocation of Pap1p to the nucleus and the induction of the caf5 gene (independently of oxidative stress). Copyright © 2017 Asadi et al.

  20. Rad4 mainly functions in Chk1-mediated DNA damage checkpoint pathway as a scaffold protein in the fission yeast Schizosaccharomyces pombe.

    Science.gov (United States)

    Yue, Ming; Zeng, Li; Singh, Amanpreet; Xu, Yongjie

    2014-01-01

    Rad4/Cut5 is a scaffold protein in the Chk1-mediated DNA damage checkpoint in S. pombe. However, whether it contains a robust ATR-activation domain (AAD) required for checkpoint signaling like its orthologs TopBP1 in humans and Dpb11 in budding yeast has been incompletely clear. To identify the putative AAD in Rad4, we carried out an extensive genetic screen looking for novel mutants with an enhanced sensitivity to replication stress or DNA damage in which the function of the AAD can be eliminated by the mutations. Two new mutations near the N-terminus were identified that caused significantly higher sensitivities to DNA damage or chronic replication stress than all previously reported mutants, suggesting that most of the checkpoint function of the protein is eliminated. However, these mutations did not affect the activation of Rad3 (ATR in humans) yet eliminated the scaffolding function of the protein required for the activation of Chk1. Several mutations were also identified in or near the recently reported AAD in the C-terminus of Rad4. However, all mutations in the C-terminus only slightly sensitized the cells to DNA damage. Interestingly, a mutant lacking the whole C-terminus was found resistant to DNA damage and replication stress almost like the wild type cells. Consistent with the resistance, all known Rad3 dependent phosphorylations of checkpoint proteins remained intact in the C-terminal deletion mutant, indicating that unlike that in Dpb11, the C-terminus of Rad4 does not contain a robust AAD. These results, together with those from the biochemical studies, show that Rad4 mainly functions as a scaffold protein in the Chk1, not the Cds1(CHK2 in humans), checkpoint pathway. It plays a minor role or is functionally redundant with an unknown factor in Rad3 activation.

  1. Activation of Checkpoint Kinase Chk1 by Reactive Oxygen Species Resulting from Disruption of wat1/pop3 in Schizosaccharomyces pombe.

    Science.gov (United States)

    Ahamad, Nafees; Verma, Sumit Kumar; Ahmed, Shakil

    2016-12-01

    DNA double-strand breaks are critical lesions that can lead to chromosomal aberrations and genomic instability. In response to DNA damage, Chk1, a serine/threonine kinase, is responsible for cell cycle arrest to prevent damaged cells from progressing through the cell cycle. Here, we report that the disruption of wat1, a WD repeat-containing protein, leads to the phosphorylation of Chk1. The double-deletion of chk1 and wat1 had a grave effect on the survival of fission yeast cells, and the spontaneous recombination rate was also high upon double-deletion of wat1 and chk1, as compared to the single-mutant. In the absence of wat1, the cells exhibited a high level of nuclear fragmentation that resulted in the accumulation of Rad22 yellow fluorescent protein foci. Furthermore, we show that wat1 is required for the regulation of the oxidative stress response. We observed elevated levels of reactive oxygen species (ROS) generation in wat1-null mutant that led to a high degree of propidium iodide staining at nonpermissive temperature. Based on the results presented here, we hypothesize that ROS production in wat1-null mutant cells generates DNA fragmentation that could trigger a checkpoint response and that, in the absence of checkpoint kinase Chk1, the cells exhibit severe growth defects leading to a synthetic lethal phenotype. Copyright © 2016 by the Genetics Society of America.

  2. Rad4 mainly functions in Chk1-mediated DNA damage checkpoint pathway as a scaffold protein in the fission yeast Schizosaccharomyces pombe.

    Directory of Open Access Journals (Sweden)

    Ming Yue

    Full Text Available Rad4/Cut5 is a scaffold protein in the Chk1-mediated DNA damage checkpoint in S. pombe. However, whether it contains a robust ATR-activation domain (AAD required for checkpoint signaling like its orthologs TopBP1 in humans and Dpb11 in budding yeast has been incompletely clear. To identify the putative AAD in Rad4, we carried out an extensive genetic screen looking for novel mutants with an enhanced sensitivity to replication stress or DNA damage in which the function of the AAD can be eliminated by the mutations. Two new mutations near the N-terminus were identified that caused significantly higher sensitivities to DNA damage or chronic replication stress than all previously reported mutants, suggesting that most of the checkpoint function of the protein is eliminated. However, these mutations did not affect the activation of Rad3 (ATR in humans yet eliminated the scaffolding function of the protein required for the activation of Chk1. Several mutations were also identified in or near the recently reported AAD in the C-terminus of Rad4. However, all mutations in the C-terminus only slightly sensitized the cells to DNA damage. Interestingly, a mutant lacking the whole C-terminus was found resistant to DNA damage and replication stress almost like the wild type cells. Consistent with the resistance, all known Rad3 dependent phosphorylations of checkpoint proteins remained intact in the C-terminal deletion mutant, indicating that unlike that in Dpb11, the C-terminus of Rad4 does not contain a robust AAD. These results, together with those from the biochemical studies, show that Rad4 mainly functions as a scaffold protein in the Chk1, not the Cds1(CHK2 in humans, checkpoint pathway. It plays a minor role or is functionally redundant with an unknown factor in Rad3 activation.

  3. Novel Gbeta Mimic Kelch Proteins Gpb1 and Gpb2 Connect G-Protein Signaling to Ras via Yeast Neurofibromin Homologs Ira 1 and Ira 2: A Model for Human NF1

    Science.gov (United States)

    2006-03-01

    Gpa1 in the fission yeast Schizosaccharomyces pombe , which functions in pheromone-mediated signaling, also fails to form a heterotrimeric G protein with...and Yamamoto, M. (1989). Characterization of the Schizosaccharomyces pombe ral2 gene implicated in activation of the ras1 gene product. Mol. Cell. Biol...cerevisiae and Schizosaccharomyces pombe . Eukaryot. Cell 4, 495–503. Hou, Y., Chang, V., Capper, A. B., Taussig, R., and Gautam, N. (2001). G Protein

  4. A Search for New Therapeutic Targets: Using Yeast to Find the GEF for Rheb

    Science.gov (United States)

    2008-07-01

    Schizosaccharomyces pombe . 15. SUBJECT TERMS Rheb, GEF, Tor 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a...identified in any organism. Since the TSC1/2--Rheb--TOR pathway has been highly conserved in the fission yeast Schizosaccharomyces pombe , we will use this...References cited: 1. Carlson, C. R., B. Grallert, T. Stokke, and E. Boye. 1999. Regulation of the start of DNA replication in Schizosaccharomyces pombe . J

  5. Study of the Regulation of Telomere Replication by Characterizing the Cdc-13p Pathway in Yeast

    Science.gov (United States)

    2002-01-01

    8217 DNA helicase that is a member of PIF1 sub-family of DNA helicase. MCB. Submitted. *co-first authors. Schizosaccharomyces pombe pfhl+ encodes an...ribosomal, and mitochondrial DNA. Here we describe the isolation and characterization of pfhl÷, a Schizosaccharomyces pombe gene that encodes a Pif 1...like gene from the fission yeast Schizosaccharomyces . pombe , called pfhl÷ (PIF1 homologue). S. pombe and S. cerevisiae are distantly related, about as

  6. ATM Mutations and the Development of Severe Radiation-Induced Morbidity Following Radiotherapy for Breast Cancer

    Science.gov (United States)

    2006-07-01

    the rad21 Schizosaccharomyces pombe DNA double-strand break repair gene in human and mouse. Genomics 1996;36:305-315. 91. Birkenbihl RP, Subramani S...Cloning and characterization of rad21 an essential gene of Schizosaccharomyces pombe involved in DNA double-strand-break repair. Nucleic Acids Res

  7. DNA Damage and Genomic Instability Induced by Inappropriate DNA Re-replication

    Science.gov (United States)

    2007-04-01

    Chk2 in mammalian cells and Cds1 in Schizosaccharomyces pombe . To determine whether rereplica- tion might activate these pathways, we induced... Schizosaccharomyces pombe ortholog Cdc18) by promoting Cdc6/Cdc18 degradation (Drury et al., 1997, 2000; Jallepalli et al., 1997; Elsasser et al., 1999

  8. Repression of a mating type cassette in the fission yeast by four DNA elements

    DEFF Research Database (Denmark)

    Ekwall, K; Nielsen, O; Ruusala, T

    1991-01-01

    The fission yeast, Schizosaccharomyces pombe, expresses one of two alternative mating types. They are specified by one of two determinants (M or P) present at the mat1 locus. In addition, silent copies of M and P are present on the same chromosome. In the present work we demonstrate that the diff...... partitioning in mitosis to Schizosaccharomyces pombe ars plasmids....

  9. ORF Alignment: NC_003423 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available aromyces pombe] dbj|BAA21379.1| CELL DIVISION ... CONTROL PROTEIN 2 [Schizosaccharomyces pombe] pir||...f|NP_595629.1| cell ... division control protein 2 [Schizosaccharomyces po...mbe] ... sp|P04551|CDC2_SCHPO Cell division control protein 2 ... (p34 protein kinase) gb|AAA3

  10. NCBI nr-aa BLAST: CBRC-MLUC-01-0903 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-MLUC-01-0903 ref|XP_002171541.1| branchpoint-bridging protein [Schizosaccharom...yces japonicus yFS275] gb|EEB05248.1| branchpoint-bridging protein [Schizosaccharomyces japonicus yFS275] XP_002171541.1 0.002 32% ...

  11. Genetic engineering of to produce Bacterial Polyhydroxyalkanotes ...

    African Journals Online (AJOL)

    PHAs), in the sense of an environmental precaution appears meaningful and necessary. In order to more economically produce microbial products, this investigation was focused on suitable producers, like the yeast Schizosaccharomyces pombe ...

  12. An IPTG‐inducible derivative of the fission yeast nmt promoter

    National Research Council Canada - National Science Library

    Kjærulff, Søren; Nielsen, Olaf

    2015-01-01

    We here describe an IPTG‐inducible system that reveals that the lac repressor alone can function as a potent transmodulator to regulate gene expression in the fission yeast, Schizosaccharomyces pombe...

  13. Role of the alpha-glucanase Agn2p in ascus-wall endolysis following sporulation in fission yeast

    NARCIS (Netherlands)

    Dekker, Nick; van Rijssel, Jos; Distel, Ben; Hochstenbach, Frans

    2007-01-01

    During sporulation in the ascomyceteous fungus Schizosaccharomyces pombe, diploid cells undergo differentiation into asci containing four haploid ascospores, which are highly resistant to environmental stresses. Although the morphogenetic processes involved in ascospore formation have been studied

  14. Regulation of Nutrient Transport in Quiescent, Lactating, and Neoplastic Mammary Epithelia.

    Science.gov (United States)

    1996-10-01

    0.94 2 gbIL3488lIYSPPP2A Schizosaccharomyces pombe protein ph ... 100 0.94 1 embIXO5l8lIPFRESAR2 P.falciparum. NF7 Ag 13 RESA mRNA for ... 100 0.94 1...gbIU384721SPU38472 Schizosaccharomyces pombe essential .. . 92 0.997 1 gbIL3l7801WALHPRT Macropus robustus HPRT processed pse ... 92 0.997 1

  15. Caracteristicas fermentativas, formação de compostos volateis e qualidade da aguardente de cana obtida por linhagens de leveduras isoladas de destilarias artesanais

    OpenAIRE

    Evelyn de Souza Oliveira

    2001-01-01

    Resumo: Foram avaliadas 30 linhagens de leveduras quanto as suas caracteristicas fermentativas e formação dos principios compostos volateis, sendo 24 saccharomyces cerevisae e 6 pertencentes aos gêneros candida (3), kloeckera, pichia e schizosaccharomyces. Abstract:We evaluated 30 strains of yeast fermentation characteristics as their training and principles of volatile compounds, and 24 Saccharomyces cerevisiae and 6 belonging to the genus Candida (3), kloeckera, tar and Schizosaccharomyc...

  16. Ablation of RNA interference and retrotransposons accompany acquisition and evolution of transposases to heterochromatin protein CENPB

    Science.gov (United States)

    Upadhyay, Udita; Srivastava, Suchita; Khatri, Indu; Nanda, Jagpreet Singh; Subramanian, Srikrishna; Arora, Amit; Singh, Jagmohan

    2017-01-01

    Inactivation of retrotransposons is accompanied by the emergence of centromere-binding protein-B (CENPB) in Schizosaccharomyces, as well as in metazoans. The RNA interference (RNAi)-induced transcriptional silencing (RITS) complex, comprising chromodomain protein-1 (Chp1), Tas3 (protein with unknown function), and Argonaute (Ago1), plays an important role in RNAi-mediated heterochromatinization. We find that whereas the Ago1 subunit of the RITS complex is highly conserved, Tas3 is lost and Chp1 is truncated in Schizosaccharomyces cryophilus and Schizosaccharomyces octosporus. We show that truncated Chp1 loses the property of heterochromatin localization and silencing when transformed in Schizosaccharomyces pombe. Furthermore, multiple copies of CENPB, related to Tc1/mariner and Tc5 transposons, occur in all Schizosaccharomyces species, as well as in humans, but with loss of transposase function (except Schizosaccharomyces japonicus). We propose that acquisition of Tc1/mariner and Tc5 elements by horizontal transfer in S. pombe (and humans) is accompanied by alteration of their function from a transposase/endonuclease to a heterochromatin protein, designed to suppress transposon expression and recombination. The resulting redundancy of RITS may have eased the selection pressure, resulting in progressive loss or truncation of tas3 and chp1 genes in S. octosporus and S. cryophilus and triggered similar evolutionary dynamics in the metazoan orthologues. PMID:28228545

  17. Ablation of RNA interference and retrotransposons accompany acquisition and evolution of transposases to heterochromatin protein CENPB.

    Science.gov (United States)

    Upadhyay, Udita; Srivastava, Suchita; Khatri, Indu; Nanda, Jagpreet Singh; Subramanian, Srikrishna; Arora, Amit; Singh, Jagmohan

    2017-04-15

    Inactivation of retrotransposons is accompanied by the emergence of centromere-binding protein-B (CENPB) in Schizosaccharomyces, as well as in metazoans. The RNA interference (RNAi)-induced transcriptional silencing (RITS) complex, comprising chromodomain protein-1 (Chp1), Tas3 (protein with unknown function), and Argonaute (Ago1), plays an important role in RNAi-mediated heterochromatinization. We find that whereas the Ago1 subunit of the RITS complex is highly conserved, Tas3 is lost and Chp1 is truncated in Schizosaccharomyces cryophilus and Schizosaccharomyces octosporus We show that truncated Chp1 loses the property of heterochromatin localization and silencing when transformed in Schizosaccharomyces pombe Furthermore, multiple copies of CENPB, related to Tc1/mariner and Tc5 transposons, occur in all Schizosaccharomyces species, as well as in humans, but with loss of transposase function (except Schizosaccharomyces japonicus). We propose that acquisition of Tc1/mariner and Tc5 elements by horizontal transfer in S. pombe (and humans) is accompanied by alteration of their function from a transposase/endonuclease to a heterochromatin protein, designed to suppress transposon expression and recombination. The resulting redundancy of RITS may have eased the selection pressure, resulting in progressive loss or truncation of tas3 and chp1 genes in S. octosporus and S. cryophilus and triggered similar evolutionary dynamics in the metazoan orthologues. © 2017 Upadhyay et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  18. AcEST: BP911757 [AcEST

    Lifescience Database Archive (English)

    Full Text Available otein 4 OS=Schizosaccharomyces pombe Align length 26 Score (bit) 31.2 E-value 1.7 Report BLASTX 2.2.19 [Nov-...48,809,765 total letters Searching..................................................done Score E Sequences p...=Schizosaccharomyces pombe GN=utp4 PE=2 SV=1 Length = 710 Score = 31.2 bits (69), Expect = 1.7 Identities = ...atens subsp. patens Align length 23 Score (bit) 47.0 E-value 2.0e-10 Report BLAST...,751 sequences; 2,391,615,440 total letters Searching..................................................done Score

  19. AcEST: BP913892 [AcEST

    Lifescience Database Archive (English)

    Full Text Available I4|LPIN3_MOUSE Lipin-3 OS=Mus musculus GN=Lpin3 PE=1 SV=1 68 4e-11 sp|Q9UUJ6|NED1_SCHPO Nuclear elongation and deformation...660 >sp|Q9UUJ6|NED1_SCHPO Nuclear elongation and deformation protein 1 OS=Schizosaccharomyces pombe GN=ned1

  20. Neurospora crassa fmf-1 encodes the homologue of the ...

    Indian Academy of Sciences (India)

    Neurospora crassa fmf-1 encodes the homologue of the. Schizosaccharomyces pombe Ste11p regulator of sexual development. Srividhya V. Iyer, Mukund Ramakrishnan and Durgadas P. Kasbekar. J. Genet. 88, 33–39. Figure 1. Sequence at the junction of the proximal breakpoint of T(AR173) has homology with Cen-VII ...

  1. AcEST: DK952224 [AcEST

    Lifescience Database Archive (English)

    Full Text Available p|Q9UTC8|OS9_SCHPO Protein OS-9 homolog OS=Schizosaccharomyces ... 32 2.2 sp|Q8CGM2|RP1L1_MOUSE Retinitis pi...EVSSCAYSMTIHVPGLCSLPAF 253 Query: 392 QGTEEVESD 418 + E++ S+ Sbjct: 254 KIQEDIPSE 262 >sp|Q8CGM2|RP1L1_MOUSE Retinitis

  2. Cloning of human and mouse genes homologous to RAD52, a yeast gene involved in DNA repair and recombination.

    NARCIS (Netherlands)

    D.F.R. Muris; O.Y. Bezzubova (Olga); J-M. Buerstedde; K. Vreeken; A.S. Balajee; C.J. Osgood; C. Troelstra (Christine); J.H.J. Hoeijmakers (Jan); K. Ostermann; H. Schmidt (Henning); A.T. Natarajan; J.C.J. Eeken; P.H.M. Lohmann (Paul); A. Pastink (Albert)

    1994-01-01

    textabstractThe RAD52 gene of Saccharomyces cerevisiae is required for recombinational repair of double-strand breaks. Using degenerate oligonucleotides based on conserved amino acid sequences of RAD52 and rad22, its counterpart from Schizosaccharomyces pombe, RAD52 homologs from man and mouse were

  3. Oxidative stress response pathways: Fission yeast as archetype

    DEFF Research Database (Denmark)

    Papadakis, Manos A.; Workman, Christopher

    2015-01-01

    Schizosaccharomyces pombe is a popular model eukaryotic organism to study diverse aspects of mammalian biology, including responses to cellular stress triggered by redox imbalances within its compartments. The review considers the current knowledge on the signaling pathways that govern the transc...

  4. Dicty_cDB: SFI846 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available Schizosaccharomyces pombe cDNA, clone spc05821. 44 1e-05 2 CF923027 |CF923027.1 gmrhRww24-02-SP6_G05_1_035 S...oybean root hair subtracted cDNA library gmrhRww24 Glycine max cDNA, mRNA sequenc

  5. Discovery of a nucleocytoplasmic O-mannose glycoproteome in yeast

    DEFF Research Database (Denmark)

    Halim, Adnan; Larsen, Ida Signe Bohse; Neubert, Patrick

    2015-01-01

    Dynamic cycling of N-Acetylglucosamine (GlcNAc) on serine and threonine residues (O-GlcNAcylation) is an essential process in all eukaryotic cells except yeast, including Saccharomyces cerevisiae and Schizosaccharomyces pombe. O-GlcNAcylation modulates signaling and cellular processes in an intri...

  6. AcEST: BP919764 [AcEST

    Lifescience Database Archive (English)

    Full Text Available Abnormal spindle-like microcephaly-associat... 31 4.3 sp|O13798|CID16_SCHPO Caffeine-induced protein 16 OS=...VRVQARIHRQRA 181 +SL ++ +R + +++++ A Sbjct: 3225 AIRLSLQVVNREIREENKLYKRTA 3248 >sp|O13798|CID16_SCHPO Caff...eine-induced protein 16 OS=Schizosaccharomyces pombe GN=cid16 PE=2 SV=1 Length = 12

  7. Formal TCA cycle description based on elementary actions

    Indian Academy of Sciences (India)

    Prakash

    2006-12-20

    Dec 20, 2006 ... cycle from: Homo sapiens, Drosophila melanogaster,. Cænorhabditis elegans, Saccharomyces cerevisiæ,. Schizosaccharomyces pombe, Mus musculus and Rattus norvegicus. Figure 2 shows a comparative table of these metabolic pathways. For each column, the metabolite is the substrate of the enzyme ...

  8. Explaining lengths and shapes of yeast by scaling arguments.

    Directory of Open Access Journals (Sweden)

    Daniel Riveline

    Full Text Available Lengths and shapes are approached in different ways in different fields: they serve as a read-out for classifying genes or proteins in cell biology whereas they result from scaling arguments in condensed matter physics. Here, we propose a combined approach with examples illustrated for the fission yeast Schizosaccharomyces pombe.

  9. Rec8p, a meiotic recombination and sister chromatid cohesion phosphoprotein of the Rad21p family conserved from fision yeast to humans.

    NARCIS (Netherlands)

    S. Parisi; M.J. McKay (Michael); M. Molnar; M.A. Thompson (Anne); P.J. van der Spek (Peter); E. van Drunen-Schoenmaker; R. Kanaar (Roland); E. Lehmann; J.H.J. Hoeijmakers (Jan); J. Kohli

    1999-01-01

    textabstractOur work and that of others defined mitosis-specific (Rad21 subfamily) and meiosis-specific (Rec8 subfamily) proteins involved in sister chromatid cohesion in several eukaryotes, including humans. Mutation of the fission yeast Schizosaccharomyces pombe rec8 gene was previously shown to

  10. Role of the synthase domain of Ags1p in cell wall alfa-glucan biosynthesis in fission yeast

    NARCIS (Netherlands)

    Vos, A.; Dekker, N.; Distel, B.; Leunissen, J.A.M.; Hochstenbach, F.

    2007-01-01

    The cell wall is important for maintenance of the structural integrity and morphology of fungal cells. Besides -glucan and chitin, -glucan is a major polysaccharide in the cell wall of many fungi. In the fission yeast Schizosaccharomyces pombe, cell wall -glucan is an essential component, consisting

  11. Drosophila ABC Transporter DmHMT-1 Confers Tolerance to Cadmium.

    Science.gov (United States)

    Half molecule ATP-binding cassette transporters of the HMT1(heavy metal tolerance factor 1)subfamily are required for Cd2+ tolerance in Schizosaccharomyces pombe, Caenorhabditis elegans and Chlamydomonas reinhardtii, and have homologs in other species, including plants and humans. Based on studies i...

  12. The Key Involvement of Poly(ADP-Ribosylation) in Defense Against Toxic Agents in Molecular Biology Studies

    Science.gov (United States)

    1991-12-17

    PADPRP has been introduced into the yeast Schizosaccharomyces pombe under the transcriptional control of the SV40 early promoter. A number of haploid...cleave the Ub-PADPRP Junction. HUMAN POLY(ADP-RIBOSE) POLYMERASE IS FUNCTIONAL IN SC.=OSACCHAROMYCES POMBE (MS IN PREP.) The full length cDNA for human

  13. OXIDATIVE STRESS 3 Is a Chromatin-Associated Factor Involved in Tolerance to Heavy Metals and Oxidative Stress

    Science.gov (United States)

    A cDNA expression library from Brassica juncea was introduced into the fission yeast Schizosaccharomyces pombe to select for transformants tolerant to cadmium. Transformants expressing OXIDATIVE STRESS 3 (OXS3) or OXS3-Like cDNA exhibited enhanced tolerance to a range of metals and oxidizing chemica...

  14. UBA domain containing proteins in fission yeast

    DEFF Research Database (Denmark)

    Hartmann-Petersen, Rasmus; Semple, Colin A M; Ponting, Chris P

    2003-01-01

    characterised on both the functional and structural levels. One example of a widespread ubiquitin binding module is the ubiquitin associated (UBA) domain. Here, we discuss the approximately 15 UBA domain containing proteins encoded in the relatively small genome of the fission yeast Schizosaccharomyces pombe...

  15. A role for the fission yeast Rqh1 helicase in chromosome segregation

    DEFF Research Database (Denmark)

    Win, Thein Z; Mankouri, Hocine W; Hickson, Ian D

    2005-01-01

    Schizosaccharomyces pombe Rqh1 protein is a member of the RecQ DNA helicase family. Members of this protein family are mutated in several human genome instability syndromes, including Bloom, Werner and Rothmund-Thomson syndromes. RecQ helicases participate in recombination repair of stalled repli...

  16. Cell differentiation by interaction of two HMG-box proteins: Mat1-Mc activates M cell-specific genes in S.pombe by recruiting the ubiquitous transcription factor Ste11 to weak binding sites

    DEFF Research Database (Denmark)

    Kjaerulff, S; Dooijes, D; Clevers, H

    1997-01-01

    The Schizosaccharomyces pombe mfm1 gene is expressed in an M cell-specific fashion. This regulation requires two HMG-box proteins: the ubiquitous Ste11 transcription factor and the M cell-controlling protein Mat1-Mc. Here we report that the mfm1 promoter contains a single, weak Stell-binding site...

  17. AcEST: BP912497 [AcEST

    Lifescience Database Archive (English)

    Full Text Available OS=Schizosaccharomyces pombe GN=v... 30 6.4 sp|Q9S3V0|VIOB_CHRVO Violacein biosynthesis protein vioB OS=Chr...SE++ PT Sbjct: 100 ALGGLFAGGMPKLRHIGKSSASAAPPSA-------PAPPTPQSELRPPT 141 >sp|Q9S3V0|VIOB_CHRVO Viola

  18. AcEST: DK959517 [AcEST

    Lifescience Database Archive (English)

    Full Text Available e DCLK3 OS=H... 33 1.2 sp|O94321|MPR1_SCHPO Multistep phosphorelay regulator 1 OS=Schiz... 32 2.7 sp|Q4AAJ5|...321|MPR1_SCHPO Multistep phosphorelay regulator 1 OS=Schizosaccharomyces pombe GN=mpr1 PE=1 SV=1 Length = 29

  19. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    pp 83-90. Identification of four genes involved in suppression of the pre-mRNA splicing defect in the sng1-1/rhp6 mutant of fission yeast · Alpana Naresh Jagmohan Singh · More Details Abstract Fulltext PDF. Apart from the global regulators of silencing in the fission yeast Schizosaccharomyces pombe, namely swi6, clr1, clr2 ...

  20. Size control in development: lessons from Drosophila

    Indian Academy of Sciences (India)

    Early studies on the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe provided indi- cations that growth could continue in the absence of cell division. Therefore growth was not simply a mat- ter of increasing cell numbers; control of cell size was important too. Unfortunately, while much attention.

  1. An IPTG-inducible derivative of the fission yeast nmt promoter

    DEFF Research Database (Denmark)

    Kjærulff, Søren; Nielsen, Olaf

    2015-01-01

    We here describe an IPTG-inducible system that reveals that the lac repressor alone can function as a potent transmodulator to regulate gene expression in the fission yeast, Schizosaccharomyces pombe. This expression system is a derivative of the Sz. pombe nmt promoter, which normally is strongly...

  2. UniProt search blastx result: AK289185 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK289185 J100033P10 O14255|GCS1_SCHPO Probable mannosyl-oligosaccharide glucosidase (EC 3.2.1.106) (Processi...ng A-glucosidase I) - Schizosaccharomyces pombe (Fission yeast) 3.00E-96 ...

  3. Download this PDF file

    African Journals Online (AJOL)

    MICHAEL

    Genetic engineering of Schizosaccharomyces pombe to produce Bacterial. Polyhydroxyalkanotes. 1&3ASHRAF T. ABUELHAMD .... amino acids dropout supplements per litter) or in EMM thiamine agar plates obtained from ... was grown in YPOD broth medium containing 0.5% yeast extract, 0.5% Bactopeptone, 0.1% oleic ...

  4. Dicty_cDB: CFB729 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available . 44 7e-06 2 AU010407 |AU010407.1 Schizosaccharomyces pombe cDNA, clone spc05821. 44 7e-06 2 CF923027 |CF923027.1 gmrhRww2...4-02-SP6_G05_1_035 Soybean root hair subtracted cDNA library gmrhRww24 Glycine max cDNA, mRNA

  5. Structural basis for the initiation of eukaryotic transcription-coupled DNA repair

    OpenAIRE

    Xu, Jun; Lahiri, Indrajit; Wang, Wei; Wier, Adam; Cianfrocco, Michael A.; Chong, Jenny; Hare, Alissa A.; Dervan, Peter B.; DiMaio, Frank; Leschziner, Andres E.; Wang, Dong

    2017-01-01

    Eukaryotic transcription-coupled repair (TCR) is an important and well-conserved sub-pathway of nucleotide excision repair that preferentially removes DNA lesions from the template strand that block translocation of RNA polymerase II (Pol II). Cockayne syndrome group B (CSB, also known as ERCC6) protein in humans (or its yeast orthologues, Rad26 in Saccharomyces cerevisiae and Rhp26 in Schizosaccharomyces pombe) is among the first proteins to be recruited to the lesion-arrested Pol II during ...

  6. Roles of Fission Yeast Grc3 Protein in Ribosomal RNA Processing and Heterochromatic Gene Silencing*

    OpenAIRE

    Kitano, Erina; Hayashi, Aki; Kanai, Daigo; Shinmyozu, Kaori; Nakayama, Jun-ichi

    2011-01-01

    Grc3 is an evolutionarily conserved protein. Genome-wide budding yeast studies suggest that Grc3 is involved in rRNA processing. In the fission yeast Schizosaccharomyces pombe, Grc3 was identified as a factor exhibiting distinct nuclear dot localization, yet its exact physiological function remains unknown. Here, we show that S. pombe Grc3 is required for both rRNA processing and heterochromatic gene silencing. Cytological analysis revealed that Grc3 nuclear dots correspond to heterochromatic...

  7. STN1 protects chromosome ends in Arabidopsis thaliana

    OpenAIRE

    Song, Xiangyu; Leehy, Katherine; Warrington, Ross T.; Lamb, Jonathan C.; Surovtseva, Yulia V.; Shippen, Dorothy E.

    2008-01-01

    Telomeres shield the natural ends of chromosomes from nucleolytic attack, recognition as double-strand breaks, and inappropriate processing by DNA repair machinery. The trimeric Stn1/Ten1/Cdc13 complex is critical for chromosome end protection in Saccharomyces cerevisiae, while vertebrate telomeres are protected by shelterin, a complex of six proteins that does not include STN1 or TEN1. Recent studies demonstrate that Stn1 and Ten1 orthologs in Schizosaccharomyces pombe contribute to telomere...

  8. Chronological aging-induced apoptosis in yeast

    OpenAIRE

    Fabrizio, Paola; Longo, Valter D.

    2008-01-01

    Saccharomyces cerevisiae is the simplest among the major eukaryotic model organisms for aging and diseases. Longevity in the chronological life span paradigm is measured as the mean and maximum survival period of populations of non-dividing yeast. This paradigm has been used successfully to identify several life-regulatory genes and three evolutionary conserved pro-aging pathways. More recently, Schizosaccharomyces pombe has been shown to age chronologically in a manner that resembles that of...

  9. High-throughput knockout screen in fission yeast

    OpenAIRE

    Gregan, Juraj; Rabitsch, Peter K; Rumpf, Cornelia; Novatchkova, Maria; Schleiffer, Alexander; Nasmyth, Kim

    2006-01-01

    We have designed the most efficient strategy to knock out genes in fission yeast Schizosaccharomyces pombe on a large scale. Our technique is based on knockout constructs that contain regions homologous to the target gene cloned into vectors carrying dominant drug-resistance markers. Most of the steps are carried out in a 96-well format, allowing simultaneous deletion of 96 genes in one batch. Based on our knockout technique, we designed a strategy for cloning knockout constructs for all pred...

  10. AcEST: DK945124 [AcEST

    Lifescience Database Archive (English)

    Full Text Available 119 1e-26 sp|O94321|MPR1_SCHPO Multistep phosphorelay regulator 1 OS=Schiz... 55 2e-07 sp|Q07688|YPD1_YEAST Phosphorelay...STLRKKL 119 >sp|O94321|MPR1_SCHPO Multistep phosphorelay regulator 1 OS=Schizosaccharomyces pombe GN=mpr1 PE... >sp|Q07688|YPD1_YEAST Phosphorelay intermediate protein YPD1 OS=Saccharomyces cerevisiae GN=YPD1 PE=1 SV=1

  11. Recent advances in the genome-wide study of DNA replication origins in yeast

    OpenAIRE

    Peng, Chong; Luo, Hao; Zhang, Xi; Gao, Feng

    2015-01-01

    DNA replication, one of the central events in the cell cycle, is the basis of biological inheritance. In order to be duplicated, a DNA double helix must be opened at defined sites, which are called DNA replication origins (ORIs). Unlike in bacteria, where replication initiates from a single replication origin, multiple origins are utilized in the eukaryotic genomes. Among them, the ORIs in budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe have been best ch...

  12. AcEST: BP913664 [AcEST

    Lifescience Database Archive (English)

    Full Text Available et and immunoglobulin domain-containing... 31 2.7 sp|P78963|SKB1_SCHPO Protein arginine N-methyltransferase skb...SLSCLSALGTP-SPVYYWHKL--EGRDIVP-VKENFNPTTGIL 196 >sp|P78963|SKB1_SCHPO Protein arginine N-methyltransferase skb...1 OS=Schizosaccharomyces pombe GN=skb1 PE=2 SV=2 Length = 645 Score = 30.0 bits (66), Expect = 5.8 Identit

  13. Glycolysis and respiration in yeasts. The Pasteur effect studied by mass spectrometry.

    OpenAIRE

    Lloyd, D; Kristensen, B; Degn, H

    1983-01-01

    Simultaneous and continuous measurements of changes in CO2 and O2 concentrations in glucose-metabolizing yeast suspensions by mass spectrometry enabled a study of the Pasteur effect (aerobic inhibition of glycolysis) in Saccharomyces uvarum and Schizosaccharomyces pombe. A different control mechanism operates in Candida utilis to give a damped oscillation after the anaerobic-aerobic transition. The apparent Km values for respiration of the three yeasts were in the range 1.3-1.8 microM-O2. The...

  14. Anti-aging and anti-microbial effects of melleolide on various types of yeast.

    Science.gov (United States)

    Nakaya, Shigeru; Kobori, Hajime; Sekiya, Atsushi; Kawagishi, Hirokazu; Ushimaru, Takashi

    2014-01-01

    The chronological lifespan (CLS) of the budding yeast Saccharomyces cerevisiae is a model for the aging of post-mitotic cells in higher eukaryotes. In this study, we found that the sesquiterpene aryl ester melleolide expands the CLS of budding yeast. In contrast, melleolide compromised the CLS of the fission yeast Schizosaccharomyces pombe. This indicates that melleolide might have a potential anti-aging activity against some types of cell, and that it might be useful as a selective anti-fungal drug.

  15. Unraveling Core Functional Microbiota in Traditional Solid-State Fermentation by High-Throughput Amplicons and Metatranscriptomics Sequencing

    Science.gov (United States)

    Song, Zhewei; Du, Hai; Zhang, Yan; Xu, Yan

    2017-01-01

    Fermentation microbiota is specific microorganisms that generate different types of metabolites in many productions. In traditional solid-state fermentation, the structural composition and functional capacity of the core microbiota determine the quality and quantity of products. As a typical example of food fermentation, Chinese Maotai-flavor liquor production involves a complex of various microorganisms and a wide variety of metabolites. However, the microbial succession and functional shift of the core microbiota in this traditional food fermentation remain unclear. Here, high-throughput amplicons (16S rRNA gene amplicon sequencing and internal transcribed space amplicon sequencing) and metatranscriptomics sequencing technologies were combined to reveal the structure and function of the core microbiota in Chinese soy sauce aroma type liquor production. In addition, ultra-performance liquid chromatography and headspace-solid phase microextraction-gas chromatography-mass spectrometry were employed to provide qualitative and quantitative analysis of the major flavor metabolites. A total of 10 fungal and 11 bacterial genera were identified as the core microbiota. In addition, metatranscriptomic analysis revealed pyruvate metabolism in yeasts (genera Pichia, Schizosaccharomyces, Saccharomyces, and Zygosaccharomyces) and lactic acid bacteria (genus Lactobacillus) classified into two stages in the production of flavor components. Stage I involved high-level alcohol (ethanol) production, with the genus Schizosaccharomyces serving as the core functional microorganism. Stage II involved high-level acid (lactic acid and acetic acid) production, with the genus Lactobacillus serving as the core functional microorganism. The functional shift from the genus Schizosaccharomyces to the genus Lactobacillus drives flavor component conversion from alcohol (ethanol) to acid (lactic acid and acetic acid) in Chinese Maotai-flavor liquor production. Our findings provide insight into the

  16. Unraveling Core Functional Microbiota in Traditional Solid-State Fermentation by High-Throughput Amplicons and Metatranscriptomics Sequencing.

    Science.gov (United States)

    Song, Zhewei; Du, Hai; Zhang, Yan; Xu, Yan

    2017-01-01

    Fermentation microbiota is specific microorganisms that generate different types of metabolites in many productions. In traditional solid-state fermentation, the structural composition and functional capacity of the core microbiota determine the quality and quantity of products. As a typical example of food fermentation, Chinese Maotai-flavor liquor production involves a complex of various microorganisms and a wide variety of metabolites. However, the microbial succession and functional shift of the core microbiota in this traditional food fermentation remain unclear. Here, high-throughput amplicons (16S rRNA gene amplicon sequencing and internal transcribed space amplicon sequencing) and metatranscriptomics sequencing technologies were combined to reveal the structure and function of the core microbiota in Chinese soy sauce aroma type liquor production. In addition, ultra-performance liquid chromatography and headspace-solid phase microextraction-gas chromatography-mass spectrometry were employed to provide qualitative and quantitative analysis of the major flavor metabolites. A total of 10 fungal and 11 bacterial genera were identified as the core microbiota. In addition, metatranscriptomic analysis revealed pyruvate metabolism in yeasts (genera Pichia, Schizosaccharomyces, Saccharomyces, and Zygosaccharomyces) and lactic acid bacteria (genus Lactobacillus) classified into two stages in the production of flavor components. Stage I involved high-level alcohol (ethanol) production, with the genus Schizosaccharomyces serving as the core functional microorganism. Stage II involved high-level acid (lactic acid and acetic acid) production, with the genus Lactobacillus serving as the core functional microorganism. The functional shift from the genus Schizosaccharomyces to the genus Lactobacillus drives flavor component conversion from alcohol (ethanol) to acid (lactic acid and acetic acid) in Chinese Maotai-flavor liquor production. Our findings provide insight into the

  17. Unraveling Core Functional Microbiota in Traditional Solid-State Fermentation by High-Throughput Amplicons and Metatranscriptomics Sequencing

    Directory of Open Access Journals (Sweden)

    Zhewei Song

    2017-07-01

    Full Text Available Fermentation microbiota is specific microorganisms that generate different types of metabolites in many productions. In traditional solid-state fermentation, the structural composition and functional capacity of the core microbiota determine the quality and quantity of products. As a typical example of food fermentation, Chinese Maotai-flavor liquor production involves a complex of various microorganisms and a wide variety of metabolites. However, the microbial succession and functional shift of the core microbiota in this traditional food fermentation remain unclear. Here, high-throughput amplicons (16S rRNA gene amplicon sequencing and internal transcribed space amplicon sequencing and metatranscriptomics sequencing technologies were combined to reveal the structure and function of the core microbiota in Chinese soy sauce aroma type liquor production. In addition, ultra-performance liquid chromatography and headspace-solid phase microextraction-gas chromatography-mass spectrometry were employed to provide qualitative and quantitative analysis of the major flavor metabolites. A total of 10 fungal and 11 bacterial genera were identified as the core microbiota. In addition, metatranscriptomic analysis revealed pyruvate metabolism in yeasts (genera Pichia, Schizosaccharomyces, Saccharomyces, and Zygosaccharomyces and lactic acid bacteria (genus Lactobacillus classified into two stages in the production of flavor components. Stage I involved high-level alcohol (ethanol production, with the genus Schizosaccharomyces serving as the core functional microorganism. Stage II involved high-level acid (lactic acid and acetic acid production, with the genus Lactobacillus serving as the core functional microorganism. The functional shift from the genus Schizosaccharomyces to the genus Lactobacillus drives flavor component conversion from alcohol (ethanol to acid (lactic acid and acetic acid in Chinese Maotai-flavor liquor production. Our findings provide

  18. Data for chromosome contacts and matched transcription profiles at three cell cycle phases in the fission yeast

    OpenAIRE

    Grand, Ralph S.; O'Sullivan, Justin M.

    2015-01-01

    The data described in this article pertains to Grand et al. (2014), “Chromosome conformation maps in fission yeast reveal cell cycle dependent sub nuclear structure” [1]. Temperature sensitive Schizosaccharomyces pombe cell division cycle (cdc) mutants, which are induced by a shift in temperature to 36 °C, were chosen for the analysis of genome structure in the G1 phase, G2 phase and mitotic anaphase of the cell cycle. Chromatin and total RNA were isolated from the same cell culture following...

  19. Mecanismos de regulación de la replicación en respuesta a estrés replicativo en Saccharomyces Cerevisiae

    OpenAIRE

    Cabañas Morafraile, Esther

    2016-01-01

    [ES] El checkpoint de fase S es un mecanismo de vigilancia que asegura la correcta replicación del DNA durante la fase de síntesis contribuyendo, por tanto, a mantener la estabilidad del genoma. Consiste en una vía de transducción de señales muy conservada a lo largo de la evolución, y cuyas proteínas centrales son las kinasas Mec1 y Rad53 en Saccharomyces cerevisiae (ATR y Chk2 en células de mamíferos o Rad3 y Cds1 en Schizosaccharomyces pombe respectivamente). En condiciones que perturban ...

  20. Big data mining powers fungal research: recent advances in fission yeast systems biology approaches.

    Science.gov (United States)

    Wang, Zhe

    2017-06-01

    Biology research has entered into big data era. Systems biology approaches therefore become the powerful tools to obtain the whole landscape of how cell separate, grow, and resist the stresses. Fission yeast Schizosaccharomyces pombe is wonderful unicellular eukaryote model, especially studying its division and metabolism can facilitate to understanding the molecular mechanism of cancer and discovering anticancer agents. In this perspective, we discuss the recent advanced fission yeast systems biology tools, mainly focus on metabolomics profiling and metabolic modeling, protein-protein interactome and genetic interaction network, DNA sequencing and applications, and high-throughput phenotypic screening. We therefore hope this review can be useful for interested fungal researchers as well as bioformaticians.

  1. Oxidative stress response pathways: Fission yeast as archetype.

    Science.gov (United States)

    Papadakis, Manos A; Workman, Christopher T

    2015-01-01

    Schizosaccharomyces pombe is a popular model eukaryotic organism to study diverse aspects of mammalian biology, including responses to cellular stress triggered by redox imbalances within its compartments. The review considers the current knowledge on the signaling pathways that govern the transcriptional response of fission yeast cells to elevated levels of hydrogen peroxide. Particular attention is paid to the mechanisms that yeast cells employ to promote cell survival in conditions of intermediate and acute oxidative stress. The role of the Sty1/Spc1/Phh1 mitogen-activated protein kinase in regulating gene expression at multiple levels is discussed in detail.

  2. Global Effects on Gene Expression in Fission Yeast by Silencing and RNA Interference Machineries

    DEFF Research Database (Denmark)

    Hansen, Klavs R.; Burns, G.; Mata, J.

    2005-01-01

    sequences such as long terminal repeats (LTRs). We analyzed the global effects of the Clr3 and Clr6 histone deacetylases, the Clr4 methyltransferase, the zinc finger protein Clr1, and the RNAi proteins Dicer, RdRP, and Argonaute on the transcriptome of Schizosaccharomyces pombe (fission yeast). The clr...... by histone deacetylation independent of RNAi. Our data indicate that the RNAi and Clr proteins show only a limited functional overlap and that the Clr proteins play more global roles in gene silencing....

  3. Two different dihydroorotate dehydrogenases from yeast Saccharomyees kluyveri

    DEFF Research Database (Denmark)

    Zameitat, E.; Knecht, Wolfgang; Piskur, Jure

    2004-01-01

    Genes for two structurally and functionally different dihydroorotate dehydrogenases (DHODHs, EC 1.3.99.11), catalyzing the fourth step of pyrimidine biosynthesis, have been previously found in yeast Saccharomyces klujveri. One is closely related to the Schizosaccharomyces pombe mitochondrial family...... for their biochemical properties and interaction with inhibitors. Benzoates as pyrimidine ring analogs were shown to he selective inhibitors of cytosolic DHODs. This unique property of Saccharomyces DHODHs could appoint DHODH as a species-specific target for novel anti-fungal therapeutics....

  4. A flexible protein linker improves the function of epitope-tagged proteins in Saccharomyces cerevisiae.

    Science.gov (United States)

    Sabourin, Michelle; Tuzon, Creighton T; Fisher, Timothy S; Zakian, Virginia A

    2007-01-01

    Epitope tagging permits the detection of proteins when protein-specific antibodies are not available. However, the epitope tag can reduce the function of the tagged protein. Here we describe a cassette that can be used to introduce an eight amino acid flexible linker between multiple Myc epitopes and the open reading frame of a given gene. We show that inserting the linker improves the in vivo ability of the telomerase subunits Est2p and Est1p to maintain telomere length. The methods used here are generally applicable to improve the function of tagged proteins in both Saccharomyces cerevisiae and Schizosaccharomyces pombe. Copyright (c) 2007 John Wiley & Sons, Ltd.

  5. γ-Tubulin and the C-Terminal Motor Domain Kinesin-like Protein, KLPA, Function in the Establishment of Spindle Bipolarity in Aspergillus nidulans

    OpenAIRE

    Prigozhina, Natalie L.; Walker, Richard A.; Oakley, C. Elizabeth; Oakley, Berl R.

    2001-01-01

    Previous research has found that a γ-tubulin mutation in Schizosaccharomyces pombe is synthetically lethal with a deletion of the C-terminal motor domain kinesin-like protein gene pkl1, but the lethality of the double mutant prevents a phenotypic analysis of the synthetic interaction. We have investigated interactions between klpA1, a deletion of an Aspergillus nidulans homolog of pkl1, and mutations in the mipA, γ-tubulin gene. We find that klpA1 dramatically increases the cold sensitivity a...

  6. Conserved phosphoryl transfer mechanisms within kinase families and the role of the C8 proton of ATP in the activation of phosphoryl transfer

    CSIR Research Space (South Africa)

    Kenyon, CP

    2012-03-01

    Full Text Available , with the concomitant re-protonation of C8. Groups 8 There is only one member in each of Group 8, Group 9, Group 10 and Group 11 kinases. Group 8 consists of ribo- flavin kinase from Schizosaccharomyces pombe and Homo sapiens (flavokinase family) (Additional file 1... 3) in that the latter two are pyrophosphotrans- ferases transferring a pyrophosphate group from a nucleo- side triphosphate, such as ATP to the hydroxyl of thiamine. All enzymes in Group 7 are homo-dimeric, with the active site comprising amino...

  7. Genomic Instability and Breast Cancer

    Science.gov (United States)

    2011-06-01

    domains. The accession numbers of SWI5 orthologues are: NP_001035100.1 for Homo sapiens , XP_001144446.1 for Pan troglodytes, NP_780399.1 for Mus musculus...siRNA Control #6 Control #6 Control #6 RPA2 DAPI Vector Homo sapiens (1–954) Pan troglodytes (1–954) Canis familiaris (1–961) Bos taurus (1–941) Mus...Schizosaccharomyces pombe, and NP_011947.2 for Saccharomyces cerevisiae. The accession numbers of MEI5 orthologues are: NP_660290.3 for H. sapiens , XP_001135759.1 for P

  8. Observation of magnetic field-induced contraction of fission yeast cells using optical projection microscopy

    Science.gov (United States)

    Yang, Xi; Beckwith, A. W.

    2005-03-01

    The charges in live cells interact with or produce electric fields, which results in enormous dielectric responses, flexoelectricity, and related phenomena. Here we report on a contraction of Schizosaccharomyces pombe (fission yeast) cells induced by magnetic fields, as observed using a phase-sensitive projection imaging technique. Unlike electric fields, magnetic fields only act on moving charges. The observed behavior is therefore quite remarkable, and may result from a contractile Lorentz force acting on diamagnetic screening currents. This would indicate extremely high intracellular charge mobilities. Besides, we observed a large electro-optic response from fission yeast cells.

  9. Novel Gbeta Mimic Kelch Proteins (Gpb1 and Gpb2 Connect G-Protein Signaling to Ras via Yeast Neurofibromin Homologs Ira1 and Ira2. A Model for Human NF1

    Science.gov (United States)

    2007-03-01

    yeast Schizosaccharomyces pombe , a kelch-repeat protein, Joseph Heitman, MD, PhD. 4 Ral2 (Ras-like), is involved in cell morphology, conjugation and...half of Kel1 (Kelch-repeat protein 1) is homologous to S. pombe or C. neoformans Ral2. S. cerevisiae Kel1 is involved in cell morphology and mating...Therefore, Kem1 and Kem2 are homologuous to S. pombe Ral2 and the amino terminal half of S. cerevisiae Kel1. We disrupted all three genes (KEM1

  10. TRAP230/ARC240 and TRAP240/ARC250 Mediator subunits are functionally conserved through evolution

    OpenAIRE

    Samuelsen, Camilla O.; Baraznenok, Vera; Khorosjutina, Olga; Spåhr, Henrik; Kieselbach, Thomas; Holmberg, Steen; Gustafsson, Claes M.

    2003-01-01

    In Saccharomyces cerevisiae Mediator, a subgroup of proteins (Srb8, Srb9, Srb10, and Srb11) form a module, which is involved in negative regulation of transcription. Homologues of Srb10 and Srb11 are found in some mammalian Mediator preparations, whereas no clear homologues have been reported for Srb8 and Srb9. Here, we identify a TRAP240/ARC250 homologue in Schizosaccharomyces pombe and demonstrate that this protein, spTrap240, is stably associated with a larger form of Mediator, which...

  11. AcEST: DK954282 [AcEST

    Lifescience Database Archive (English)

    Full Text Available GGLVHPQTSV 167 >sp|O55135|IF6_MOUSE Eukaryotic translation initiation factor 6 OS=Mus musculus GN=Eif6 PE=2 ...ADQVLVGSYCVFSNQGGLVHPKTSI 167 >sp|O94476|IF6_SCHPO Eukaryotic translation initiation factor 6 OS=Schizosaccharomyces pombe GN=tif6...obable eukaryotic translation initiation factor 6 OS=Dictyostelium discoideum GN=eif6 PE=3 SV=1 Length = 244...9_XENLA P27BBP/eIF6 OS=Xenopus laevis GN=eif6 PE=... 265 1e-69 tr|Q6GR45|Q6GR45_XENLA LOC398731 protein OS=X

  12. Reference: 440 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available sms to be involved in DNA repair in mitotic and meiotic cells. Homologues of the MUS81 gene exist in the gen... biological role of MUS81 varies between different eukaryotes. For example, while loss of the gene results in strongly impaire...d fertility in Saccharomyces cerevisiae and nearly complete sterility in Schizosaccharomyc...gene. Analysing two independent T-DNA insertion lines of AtMUS81, we found that they are sensitive to the mu...tagens MMS and MMC. Both mutants have a deficiency in homologous recombination in

  13. Variation in yeast mitochondrial activity associated with asci.

    Science.gov (United States)

    Swart, Chantel W; van Wyk, Pieter W J; Pohl, Carolina H; Kock, Johan L F

    2008-07-01

    An increase in mitochondrial membrane potential (DeltaPsim) and mitochondrially produced 3-hydroxy (3-OH) oxylipins was experienced in asci of the nonfermentative yeasts Galactomyces reessii and Lipomyces starkeyi and the fermentative yeasts Pichia farinosa and Schizosaccharomyces octosporus. Strikingly, asci of Zygosaccharomyces bailii showed no increase in mitochondrial activity (DeltaPsim and oxylipin production). As expected, oxygen deprivation only inhibited ascus formation in those yeasts with increased ascus mitochondrial activity. We conclude that ascus formation in yeasts is not always dependent on mitochondrial activity. In this case, fermentation may provide enough energy for ascus formation in Z. bailii.

  14. Regulation of entry into gametogenesis.

    Science.gov (United States)

    van Werven, Folkert J; Amon, Angelika

    2011-12-27

    Gametogenesis is a fundamental aspect of sexual reproduction in eukaryotes. In the unicellular fungi Saccharomyces cerevisiae (budding yeast) and Schizosaccharomyces pombe (fission yeast), where this developmental programme has been extensively studied, entry into gametogenesis requires the convergence of multiple signals on the promoter of a master regulator. Starvation signals and cellular mating-type information promote the transcription of cell fate inducers, which in turn initiate a transcriptional cascade that propels a unique type of cell division, meiosis, and gamete morphogenesis. Here, we will provide an overview of how entry into gametogenesis is initiated in budding and fission yeast and discuss potential conserved features in the germ cell development of higher eukaryotes.

  15. Metabolic activation and mutagenicity of 4 vinylic monomers (vinyl chloride, styrene, acrylonitrile, butadiene).

    Science.gov (United States)

    Duverger, M; Lambotte, M; Malvoisin, E; de Meester, C; Poncelet, F; Mercier, M

    1981-05-01

    The mutagenic activity and the metabolism of four vinylic monomers; vinyl chloride, styrene, acrylonitrile and butadiene are reviewed. Those chemicals are converted by the mixed function oxidases system of the endoplasmic reticulum into reactive intermediates which can interact with macromolecules within the cell. In order to examine the mutagenic activity of these compounds and their metabolites, different mutagenicity testing systems have been used: tests with S. typhimurium, E. coli, Schizosaccharomyces pombe, Saccharomyces cerevisiae, V79 Chinese Hamster cells, CHO cells, Drosophila melanogaster as well as evaluations of chromosome aberrations.

  16. Negative regulation of mitosis in fission yeast by the Shk1interacting protein Skb1 and its human homolog, Skb1Hs

    OpenAIRE

    Gilbreth, Mary; Yang, Peirong; Bartholomeusz, Geoffrey; Pimental, Ruth A.; Kansra, Sanjay; Gadiraju, Ramesh; Marcus, Stevan

    1998-01-01

    We previously provided evidence that the protein encoded by the highly conserved skb1 gene is a putative regulator of Shk1, a p21Cdc42/Rac-activated kinase (PAK) homolog in the fission yeast Schizosaccharomyces pombe. skb1 null mutants are viable and competent for mating but less elongate than wild-type S. pombe cells, whereas cells that overexpress skb1 are hyperelongated. These phenotypes suggest a possible role for Skb1 as a mitotic inhibitor. Here we show genetic interactions of both skb1...

  17. Regulation of the Mts1-Mts2-Dependent ade6-M26 Meiotic Recombination Hot Spot and Developmental Decisions by the Spc1 Mitogen-Activated Protein Kinase of Fission Yeast

    OpenAIRE

    Kon, Ning; Schroeder, Stephanie C.; KRAWCHUK, MICHELLE D.; Wahls, Wayne P.

    1998-01-01

    The M26 meiotic recombination hot spot in the ade6 gene of Schizosaccharomyces pombe is activated by the heterodimeric M26 binding protein Mts1-Mts2. The individual Mts1 (Atf1, Gad7) and Mts2 (Pcr1) proteins are also transcription factors involved in developmental decisions. We report that the Mts proteins are key effectors of at least two distinct classes of developmental decisions regulated by the mitogen-activated protein (MAP) kinase cascade. The first class (osmoregulation, spore viabili...

  18. Excluded volume effect enhances the homology pairing of model chromosomes

    Science.gov (United States)

    Takamiya, Kazunori; Yamamoto, Keisuke; Isami, Shuhei; Nishimori, Hiraku; Awazu, Akinori

    To investigate the structural dynamics of the homology pairing of polymers, we mod- eled the scenario of homologous chromosome pairings during meiosis in Schizosaccharomyces pombe, one of the simplest model organisms of eukaryotes. We consider a simple model consist- ing of pairs of homologous polymers with the same structures that are confined in a cylindrical container, which represents the local parts of chromosomes contained in an elongated nucleus of S. pombe. Brownian dynamics simulations of this model showed that the excluded volume effects among non-homological chromosomes and the transitional dynamics of nuclear shape serve to enhance the pairing of homologous chromosomes.

  19. Functionally homologous DNA replication genes in fission and budding yeast

    OpenAIRE

    Sánchez, Mar; Calzada, Arturo; Bueno, Avelino

    1999-01-01

    The cdc18+ gene of the fission yeast Schizosaccharomyces pombe is involved in the initiation of DNA replication as well as in coupling the S phase to mitosis. In this work, we show that the Saccharomyces cerevisiae CDC6 gene complements cdc18-K46 ts and cdc18 deletion mutant S. pombe strains. The budding yeast gene suppresses both the initiation and the checkpoint defects associated with the lack of cdc18+. The Cdc6 protein interacts in vivo with Cdc2 kinase complexes. Interestingly, Cdc6 is ...

  20. Identification of Residues in Fission Yeast and Human P34(cdc2) Required for S-M Checkpoint Control

    OpenAIRE

    Basi, G.; Enoch, T

    1996-01-01

    In fission yeast, regulation of p34(cdc2) plays an important role in the checkpoint coupling mitosis to completion of DNA replication. The cdc2 mutations cdc2-3w (C67Y) and cdc2-4w (C67F) abolish checkpoint control without seriously affecting normal cell proliferation. However the molecular basis of this phenotype is not known. To better understand the role of p34(cdc2) in checkpoint control, we have screened for more mutations in Schizosaccharomyces pombe cdc2 with this phenotype. We have is...

  1. Dicty_cDB: VHK258 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available sucrase-isomaltase (SI) mRNA, comp... 39 0.057 ( P23739 ) RecName: Full=Sucrase-isomaltase, intestinal;... 39 0.057 ( O62653 ) RecName: Full=Sucrase-isomaltase, intestinal; Contains:... 39 0.074 (Q9C0Y4) RecName:...EU937530_1( EU937530 |pid:none) Mus musculus sucrase-isomaltase mR... 38 0.13 AB045751_1( AB045751 |pid:none) Schizosaccharomyces...sapiens sucrase-isomaltase (a... 37 0.28 ( P14410 ) RecName: Full=Sucrase-isomaltase, intestinal; Contains:

  2. An extensive circuitry for cell wall regulation in Candida albicans.

    Directory of Open Access Journals (Sweden)

    Jill R Blankenship

    2010-02-01

    Full Text Available Protein kinases play key roles in signaling and response to changes in the external environment. The ability of Candida albicans to quickly sense and respond to changes in its environment is key to its survival in the human host. Our guiding hypothesis was that creating and screening a set of protein kinase mutant strains would reveal signaling pathways that mediate stress response in C. albicans. A library of protein kinase mutant strains was created and screened for sensitivity to a variety of stresses. For the majority of stresses tested, stress response was largely conserved between C. albicans, Saccharomyces cerevisiae, and Schizosaccharomyces pombe. However, we identified eight protein kinases whose roles in cell wall regulation (CWR were not expected from functions of their orthologs in the model fungi Saccharomyces cerevisiae and Schizosaccharomyces pombe. Analysis of the conserved roles of these protein kinases indicates that establishment of cell polarity is critical for CWR. In addition, we found that septins, crucial to budding, are both important for surviving and are mislocalized by cell wall stress. Our study shows an expanded role for protein kinase signaling in C. albicans cell wall integrity. Our studies suggest that in some cases, this expansion represents a greater importance for certain pathways in cell wall biogenesis. In other cases, it appears that signaling pathways have been rewired for a cell wall integrity response.

  3. Combined Use of S. pombe and L. thermotolerans in Winemaking. Beneficial Effects Determined Through the Study of Wines’ Analytical Characteristics

    Directory of Open Access Journals (Sweden)

    Ángel Benito

    2016-12-01

    Full Text Available The most common way to produce red wine is through the use of Saccharomyces cerevisiae strains for alcoholic fermentation and lactic acid bacteria for malolactic fermentation. This traditional winemaking methodology produces microbiologically stable red wines. However, under specific conditions off-flavours can occur, wine quality can suffer and human health problems are possible, especially after the second fermentation by the lactic acid bacteria. In warm countries, problems during the malolactic fermentation arise because of the high pH of the must, which makes it very difficult to properly control the process. Under such conditions, wines with high acetic acid and histamine concentrations are commonly produced. This study investigates a recent red wine-making technology that uses a combination of Lachancea thermotolerans and Schizosaccharomyces pombe as an alternative to the conventional malolactic fermentation. This work studies new parameters such as aroma compounds, amino acids, ethanol index and sensory evaluation. Schizosaccharomyces pombe totally consumes malic acid while Lachancea thermotolerans produces lactic acid, avoiding excessive deacidification of musts with low acidity in warm viticulture areas. This methodology also reduces the malolactic fermentation hazards in wines with low acidity. The main products are wines that contain less acetic acid, less biogenic amines and precursors and less ethyl carbamate precursors than the traditional wines produced via conventional fermentation techniques.

  4. A checkpoint-independent mechanism delays entry into mitosis after UV irradiation.

    Science.gov (United States)

    Rothe, Christiane; Rødland, Gro Elise; Anda, Silje; Stonyte, Vilte; Boye, Erik; Lopez-Aviles, Sandra; Grallert, Beáta

    2017-12-01

    When cells are exposed to stress they delay entry into mitosis. The most extensively studied mechanism behind this delay is the DNA-damage-induced G2/M checkpoint. Here, we show the existence of an additional stress-response pathway in Schizosaccharomyces pombe that is independent of the classic ATR/Rad3-dependent checkpoint. This novel mechanism delays entry mitosis independently of the spindle assembly checkpoint and the mitotic kinases Fin1, Ark1 and Plo1. The pathway delays activation of the mitotic cyclin-dependent kinase (CDK) Cdc2 after UV irradiation. Furthermore, we demonstrate that translation of the mitotic cyclin Cdc13 is selectively downregulated after UV irradiation, and we propose that this downregulation of Cdc13 contributes to the delayed activation of Cdc2 and the delayed mitosis. © 2017. Published by The Company of Biologists Ltd.

  5. Ringing the changes: emerging roles for DASH at the kinetochore-microtubule Interface.

    Science.gov (United States)

    Buttrick, Graham J; Millar, Jonathan B A

    2011-04-01

    Regulated interaction between kinetochores and the mitotic spindle is essential for the fidelity of chromosome segregation. Potentially deleterious attachments are corrected during prometaphase and metaphase. Correct attachments must persist during anaphase, when spindle-generated forces separate chromosomes to opposite poles. In yeast, the heterodecameric DASH complex plays a vital pole in maintaining this link. In vitro DASH forms both oligomeric patches and rings that can form load-bearing attachments with the tips of polymerising and depolymerising microtubules. In vivo, DASH localises primarily at the kinetochore, and has a role maintaining correct attachment between spindles and chromosomes in both Saccharomyces cerevisiae and Schizosaccharomyces pombe. Recent work has begun to describe how DASH acts alongside other components of the outer kinetochore to create a dynamic, regulated kinetochore-microtubule interface. Here, we review some of the key experiments into DASH function and discuss their implications for the nature of kinetochore-microtubule attachments in yeast and other organisms.

  6. Influence of thermal hydrolysis and inorganic medium on the alcohol yield from tubers of Jerusalem artichoke

    Energy Technology Data Exchange (ETDEWEB)

    Wlodarczyk, Z.; Backman, B.

    1961-01-01

    The thermal hydrolysis of Helianthus tuberosus tubers was performed in a steamer within 30 minutes (the most suitable pressure was 2 atmosphere.). The addition of 225 to 280g (NH/sub 4/)/sub 2/SO/sub 4/ (48 to 60 g N)/100 kg of tubers accelerated the fermentation process of the resulting mash with reference to controls by 5 to 10% on the second day and by 3 to 8% on the third day. (Schizosaccharomyces pombe or Saccharomyces cerevisiae yeasts were used; the temperature was 34/sup 0/, yield of alcohol, 200 l/100 kg of tubers). Addition of 22 to 110 g. P/sub 2/O/sub 5/(as K/sub 2/HPO/sub 4/) did not influence the yield of ethanol.

  7. Variety in intracellular diffusion during the cell cycle

    DEFF Research Database (Denmark)

    Selhuber-Unkel, C.; Yde, P.; Berg-Sørensen, Kirstine

    2009-01-01

    During the cell cycle, the organization of the cytoskeletal network undergoes dramatic changes. In order to reveal possible changes of the viscoelastic properties in the intracellular space during the cell cycle we investigated the diffusion of endogenous lipid granules within the fission yeast...... Schizosaccharomyces Pombe using optical tweezers. The cell cycle was divided into interphase and mitotic cell division, and the mitotic cell division was further subdivided in its stages. During all stages of the cell cycle, the granules predominantly underwent subdiffusive motion, characterized by an exponent...... a that is also linked to the viscoelastic moduli of the cytoplasm. The exponent a was significantly smaller during interphase than during any stage of the mitotic cell division, signifying that the cytoplasm was more elastic during interphase than during division. We found no significant differences...

  8. S. pombe placed on the prion map

    Directory of Open Access Journals (Sweden)

    Jacqueline Hayles

    2017-02-01

    Full Text Available Schizosaccharomyces pombe has been used extensively as a model organism, however it is only recently that the first prion in this organism, a copper transporter protein encoded by ctr4, has been conclusively demonstrated. Prions are found in a wide range of organisms and have been implicated in a number of human neurodegenerative diseases. Research into the biology of prions has been carried out mainly in the budding yeast Saccharomyces cerevisiae, however there are many questions still to be addressed. Now, with the identification of the Ctr4 prion in S. pombe, further work in the two yeasts and comparisons of prion biology in these organisms should lead to a greater understanding of prions and their role in disease.

  9. Cell polarization in budding and fission yeasts.

    Science.gov (United States)

    Martin, Sophie G; Arkowitz, Robert A

    2014-03-01

    Polarization is a fundamental cellular property, which is essential for the function of numerous cell types. Over the past three to four decades, research using the best-established yeast systems in cell biological research, Saccharomyces cerevisiae (or budding yeast) and Schizosaccharomyces pombe (or fission yeast), has brought to light fundamental principles governing the establishment and maintenance of a polarized, asymmetric state. These two organisms, though both ascomycetes, are evolutionarily very distant and exhibit distinct shapes and modes of growth. In this review, we compare and contrast the two systems. We first highlight common cell polarization pathways, detailing the contribution of Rho GTPases, the cytoskeleton, membrane trafficking, lipids, and protein scaffolds. We then contrast the major differences between the two organisms, describing their distinct strategies in growth site selection and growth zone dimensions and compartmentalization, which may be the basis for their distinct shapes. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  10. AcEST: DK948418 [AcEST

    Lifescience Database Archive (English)

    Full Text Available 02 sp|Q2FDK5|SRAP_STAA3 Serine-rich adhesin for platelets OS=Staphy... 41 0.005 sp|Q9NZW4|DSPP_HUMAN Dentin ...1 SV=1 39 0.032 sp|P97399|DSPP_MOUSE Dentin sialophosphoprotein OS=Mus musculus ... 38 0.042 sp|P27476|NSR1_...91|GAR2_SCHPO Protein gar2 OS=Schizosaccharomyces pombe G... 35 0.47 sp|P98193|DMP1_RAT Dentin... matrix acidic phosphoprotein 1 OS=Ratt... 34 0.61 sp|O55188|DMP1_MOUSE Dentin matrix acidic ph...M1690... 43 0.020 tr|B7SEZ0|B7SEZ0_HUMAN Dentin sialophosphoprotein (Fragment) OS=... 43 0.020 tr|A6QKE3|A6Q

  11. The yeast Golgi apparatus.

    Science.gov (United States)

    Suda, Yasuyuki; Nakano, Akihiko

    2012-04-01

    The Golgi apparatus is an organelle that has been extensively studied in the model eukaryote, yeast. Its morphology varies among yeast species; the Golgi exists as a system of dispersed cisternae in the case of the budding yeast Saccharomyces cerevisiae, whereas the Golgi cisternae in Pichia pastoris and Schizosaccharomyces pombe are organized into stacks. In spite of the different organization, the mechanism of trafficking through the Golgi apparatus is believed to be similar, involving cisternal maturation, in which the resident Golgi proteins are transported backwards while secretory cargo proteins can stay in the cisternae. Questions remain regarding the organization of the yeast Golgi, the regulatory mechanisms that underlie cisternal maturation of the Golgi and transport machinery of cargo proteins through this organelle. Studies using different yeast species have provided hints to these mechanisms. © 2011 John Wiley & Sons A/S.

  12. AcEST: BP913331 [AcEST

    Lifescience Database Archive (English)

    Full Text Available YMU001_000029_A12 524 Adiantum capillus-veneris mRNA. clone: YMU001_000029_A12. BP9...13331 CL599Contig1 Show BP913331 Clone id YMU001_000029_A12 Library YMU01 Length 524 Definition Adiantum cap...illus-veneris mRNA. clone: YMU001_000029_A12. Accession BP913331 Tissue type prothallium Developmental stage...7 Definition sp|P41887|HSP90_SCHPO Heat shock protein 90 homolog OS=Schizosaccharomyces pombe Align length 4...eic Acids Res. 25:3389-3402. Query= BP913331|Adiantum capillus-veneris mRNA, clone: YMU001_000029_A12. (524

  13. AcEST: BP913402 [AcEST

    Lifescience Database Archive (English)

    Full Text Available YMU001_000029_H02 548 Adiantum capillus-veneris mRNA. clone: YMU001_000029_H02. BP913402 - Show BP9...is mRNA. clone: YMU001_000029_H02. Accession BP913402 Tissue type prothallium Developmental stage - Contig I...s Res. 25:3389-3402. Query= BP913402|Adiantum capillus-veneris mRNA, clone: YMU001_000029_H02. (526 letters)... 0.22 sp|Q09933|DIS1_SCHPO Phosphoprotein p93 OS=Schizosaccharomyces p... 35 0.28 sp|Q6BLJ9|CBK1_DEBHA Serin...Mus mu... 33 0.82 sp|P34562|YNP9_CAEEL GRIP and coiled-coil domain-containing pro

  14. Cell cycle-regulated expression of mammalian CDC6 is dependent on E2F

    DEFF Research Database (Denmark)

    Hateboer, G; Wobst, A; Petersen, B O

    1998-01-01

    The E2F transcription factors are essential regulators of cell growth in multicellular organisms, controlling the expression of a number of genes whose products are involved in DNA replication and cell proliferation. In Saccharomyces cerevisiae, the MBF and SBF transcription complexes have...... functions similar to those of E2F proteins in higher eukaryotes, by regulating the timed expression of genes implicated in cell cycle progression and DNA synthesis. The CDC6 gene is a target for MBF and SBF-regulated transcription. S. cerevisiae Cdc6p induces the formation of the prereplication complex...... and is essential for initiation of DNA replication. Interestingly, the Cdc6p homolog in Schizosaccharomyces pombe, Cdc18p, is regulated by DSC1, the S. pombe homolog of MBF. By cloning the promoter for the human homolog of Cdc6p and Cdc18p, we demonstrate here that the cell cycle-regulated transcription...

  15. Formation of polymeric pigments in red wines through sequential fermentation of flavanol-enriched musts with non-Saccharomyces yeasts.

    Science.gov (United States)

    Escott, Carlos; Del Fresno, Juan Manuel; Loira, Iris; Morata, Antonio; Tesfaye, Wendu; González, María Del Carmen; Suárez-Lepe, José Antonio

    2018-01-15

    Non-Saccharomyces yeasts may contribute to enrich wine aroma while promoting the formation of stable pigments. Yeast metabolites such as acetaldehyde and pyruvate participate in the formation of stable pigments during fermentation and wine aging. This work evaluated the formation of polymeric pigments in red musts added with (+)-Catechin, ProcyanidinB2 and ProcyanidinC1. The non-Saccharomyces yeasts used were Lachancea thermotolerans, Metschnikowia pulcherrima and Torulaspora delbrueckii in sequential fermentation with Saccharomyces cerevisiae and Schizosaccharomyces pombe. Use of Lachancea thermotolerans led to larger amounts of polymeric pigments in sequential fermentation. (+)-Catechin is the flavanol prone to forming such pigments. The species Metschnikowia pulcherrima produced higher concentration of esters and total volatile compounds. The sensory analysis pointed out differences in fruitiness and aroma quality. The results obtained strengthen the fact that metabolites from non-Saccharomyces yeasts may contribute to form stable polymeric pigments while also influencing wine complexity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Constitutive Activation of the Fission Yeast Pheromone-Responsive Pathway Induces Ectopic Meiosis and Reveals Ste11 as a Mitogen-Activated Protein Kinase Target

    DEFF Research Database (Denmark)

    Kjærulff, Søren; Lautrup-Larsen, I.; Truelsen, S.

    2005-01-01

    In the fission yeast Schizosaccharomyces pombe, meiosis normally takes place in diploid zygotes resulting from conjugation of haploid cells. In the present study, we report that the expression of a constitutively activated version of the pheromone-responsive mitogen-activated protein kinase kinase...... kinase (MAP3K) Byr2 can induce ectopic meiosis directly in haploid cells. We find that the Ste11 transcription factor becomes constitutively expressed in these cells and that the expression of pheromone-responsive genes no longer depends on nitrogen starvation. Epistasis analysis revealed...... found that haploid meiosis was dramatically reduced when Ste11 was mutated to mimic phosphorylation by Pat1. The mutation of two putative MAPK sites in Ste11 also dramatically reduced the level of haploid meiosis, suggesting that Ste11 is a direct target of Spk1. Supporting this, we show that Spk1 can...

  17. Combined enzyme mediated fermentation of cellulous and xylose to ethanol by Schizosaccharoyces pombe, cellulase, .beta.-glucosidase, and xylose isomerase

    Science.gov (United States)

    Lastick, Stanley M.; Mohagheghi, Ali; Tucker, Melvin P.; Grohmann, Karel

    1994-01-01

    A process for producing ethanol from mixed sugar streams from pretreated biomass comprising xylose and cellulose using enzymes to convert these substrates to fermentable sugars; selecting and isolating a yeast Schizosaccharomyces pombe ATCC No. 2476, having the ability to ferment these sugars as they are being formed to produce ethanol; loading the substrates with the fermentation mix composed of yeast, enzymes and substrates; fermenting the loaded substrates and enzymes under anaerobic conditions at a pH range of between about 5.0 to about 6.0 and at a temperature range of between about 35.degree. C. to about 40.degree. C. until the fermentation is completed, the xylose being isomerized to xylulose, the cellulose being converted to glucose, and these sugars being concurrently converted to ethanol by yeast through means of the anaerobic fermentation; and recovering the ethanol.

  18. Rmt1 catalyzes zinc-finger independent arginine methylation of ribosomal protein Rps2 in Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Lipson, Rebecca S.; Webb, Kristofor J. [Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569 (United States); Clarke, Steven G., E-mail: clarke@mbi.ucla.edu [Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569 (United States)

    2010-01-22

    Rps2/rpS2 is a well conserved protein of the eukaryotic ribosomal small subunit. Rps2 has previously been shown to contain asymmetric dimethylarginine residues, the addition of which is catalyzed by zinc-finger-containing arginine methyltransferase 3 (Rmt3) in the fission yeast Schizosaccharomyces pombe and protein arginine methyltransferase 3 (PRMT3) in mammalian cells. Here, we demonstrate that despite the lack of a zinc-finger-containing homolog of Rmt3/PRMT3 in the budding yeast Saccharomyces cerevisiae, Rps2 is partially modified to generate asymmetric dimethylarginine and monomethylarginine residues. We find that this modification of Rps2 is dependent upon the major arginine methyltransferase 1 (Rmt1) in S. cerevisiae. These results are suggestive of a role for Rmt1 in modifying the function of Rps2 in a manner distinct from that occurring in S. pombe and mammalian cells.

  19. Global Proteome Turnover Analyses of the Yeasts S. cerevisiae and S. pombe

    Directory of Open Access Journals (Sweden)

    Romain Christiano

    2014-12-01

    Full Text Available How cells maintain specific levels of each protein and whether that control is evolutionarily conserved are key questions. Here, we report proteome-wide steady-state protein turnover rate measurements for the evolutionarily distant but ecologically similar yeasts, Saccharomyces cerevisiae and Schizosaccharomyces pombe. We find that the half-life of most proteins is much longer than currently thought and determined to a large degree by protein synthesis and dilution due to cell division. However, we detect a significant subset of proteins (∼15% in both yeasts that are turned over rapidly. In addition, the relative abundances of orthologous proteins between the two yeasts are highly conserved across the 400 million years of evolution. In contrast, their respective turnover rates differ considerably. Our data provide a high-confidence resource for studying protein degradation in common yeast model systems.

  20. Cleavage-induced termination in U2 snRNA gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Nabavi, Sadeq [Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (Canada); Nazar, Ross N., E-mail: rnnazar@uoguelph.ca [Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (Canada)

    2010-03-12

    The maturation of many small nuclear RNAs is dependent on RNase III-like endonuclease mediated cleavage, which generates a loading site for the exosome complex that trims the precursor at its 3' end. Using a temperature sensitive Pac1 nuclease, here we show that the endonuclease cleavage is equally important in terminating the transcription of the U2 snRNA in Schizosaccharomyces pombe. Using a temperature sensitive Dhp1p 5' {yields} 3' exonuclease, we demonstrate that it also is an essential component of the termination pathway. Taken together the results support a 'reversed torpedoes' model for the termination and maturation of the U2 snRNA; the Pac1 endonuclease cleavage provides entry sites for the 3' and 5' exonuclease activities, leading to RNA maturation in one direction and transcript termination in the other.

  1. Monitoring of spectroscopic changes of a single trapped fission yeast cell by using a Raman tweezers set-up

    Science.gov (United States)

    Başar, G.; Kın, S.

    2008-10-01

    We demonstrate an improvement of the sensitivity of a Raman tweezers set-up, which combines optical tweezers with Raman spectroscopy. The system was tested by taking the Raman spectrum of a 4.6 μm diameter polystyrene sphere trapped in an aqueous solution. The improvement of sensitivity of the set-up was achieved by adjusting the trap depth for maximum signal to noise ratio (SNR). The maximum SNR was obtained by investigating the Raman peak of a trapped polystyrene sphere at 1001 cm -1 according to trap depth. With this system, a single trapped living Schizosaccharomyces Pombe yeast cell was sensitively monitored by taking the kinetic Raman spectra for more than 2 h. The relative intensity decrease in amide I and amide III bands, frequency increase in amide I band together with alterations in tyrosine marker band around 850 cm -1 was observed, which indicates alterations in the hydration state of protein by time progressing.

  2. Crystal Structure of Serine Racemase that Produces Neurotransmitter d-Serine for Stimulation of the NMDA Receptor

    Science.gov (United States)

    Goto, Masaru

    d-Serine is an endogenous coagonist for the N-methyl-d-aspartate receptor and is involved in excitatory neurotransmission in the brain. Mammalian pyridoxal 5’-phosphate-dependent serine racemase, which is localized in the mammalian brain, catalyzes the racemization of l-serine to yield d-serine and vice versa. We have determined the structures of three forms of the mammalian enzyme homolog from Schizosaccharomyces pombe. Lys57 and Ser82 located on the protein and solvent sides, respectively, with respect to the cofactor plane, are acid-base catalysts that shuttle protons to the substrate. The modified enzyme, which has a unique lysino-d-alanyl residue at the active site, also binds the substrate serine in the active site, suggesting that the lysino-d-alanyl residue acts as a catalytic base in the same manner as Lys57 of the wild type enzyme.

  3. Meiosis specific coiled-coil proteins in Shizosaccharomyces pombe

    Directory of Open Access Journals (Sweden)

    Okuzaki Daisuke

    2007-05-01

    Full Text Available Abstract Many meiosis-specific proteins in Schizosaccharomyces pombe contain coiled-coil motifs which play essential roles for meiotic progression. For example, the coiled-coil motifs present in Meu13 and Mcp7 are required for their function as a putative recombinase cofactor complex during meiotic recombination. Mcp6/Hrs1 and Mcp5/Num1 control horsetail chromosome movement by astral microtubule organization and anchoring dynein respectively. Dhc1 and Ssm4 are also required for horsetail chromosome movement. It is clear from these examples that the coiled-coil motif in these proteins plays an important role during the progression of cells through meiosis. However, there are still many unanswered questions on how these proteins operate. In this paper, we briefly review recent studies on the meiotic coiled-coil proteins in Sz. pombe.

  4. Telomere Capping Proteins are Structurally Related to RPA with an additional Telomere-Specific Domain

    Energy Technology Data Exchange (ETDEWEB)

    Gelinas, A.; Paschini, M; Reyes, F; Heroux, A; Batey, R; Lundblad, V; Wuttke, D

    2009-01-01

    Telomeres must be capped to preserve chromosomal stability. The conserved Stn1 and Ten1 proteins are required for proper capping of the telomere, although the mechanistic details of how they contribute to telomere maintenance are unclear. Here, we report the crystal structures of the C-terminal domain of the Saccharomyces cerevisiae Stn1 and the Schizosaccharomyces pombe Ten1 proteins. These structures reveal striking similarities to corresponding subunits in the replication protein A complex, further supporting an evolutionary link between telomere maintenance proteins and DNA repair complexes. Our structural and in vivo data of Stn1 identify a new domain that has evolved to support a telomere-specific role in chromosome maintenance. These findings endorse a model of an evolutionarily conserved mechanism of DNA maintenance that has developed as a result of increased chromosomal structural complexity.

  5. Dynamics of DNA Chains on Flat and Patterned Surfaces

    Science.gov (United States)

    Li, Bingquan; Xiaohua, Fang; Seo, Young-Soo; Samuilov, Vladimir; Rafailovich, Miriam; Sokolov, Jonathan

    2003-03-01

    The electrophoresis of DNA chains on flat silicon and patterned surfaces was studied by Confocal Fluorescence Microscopy and Atomic Force Microscopy. Solutions of lambda DNA of 48,502 bp and Schizosaccharomyces pombe (S. pombe) of 3 6 Mb were deposited on different surfaces. The surfaces were chemically modified to be hydrophilic or SAM-covered and the patterns were produced over length scales from nano to micro size in the form of gratings or square arrays. The interaction with the surface and mobility of DNA chains depended on the surface chemistry, topography and ion concentration of buffer. The motion of individual chains in the electric field was analyzed both in terms of the dimensions and orientation of the pattern structure. Supported by NSF-MRSEC program (DMR-9632525)

  6. Evolutionary-conserved telomere-linked helicase genes of fission yeast are repressed by silencing factors, RNAi components and the telomere-binding protein Taz1

    DEFF Research Database (Denmark)

    Hansen, K. R.; Ibarra, P. T.; Thon, G.

    2006-01-01

    In Schizosaccharomyces pombe the RNAi machinery and proteins mediating heterochromatin formation regulate the transcription of non-coding centromeric repeats. These repeats share a high sequence similarity with telomere-linked helicase (tlh) genes, implying an ancestral relationship between the two...... types of elements and suggesting that transcription of the tlh genes might be regulated by the same factors as centromeric repeats. Indeed, we found that mutants lacking the histone methyltransferase Clr4, the Pcu4 cullin, Clr7 or Clr8, accumulate high levels of tlh forward and reverse transcripts....... Mutations and conditions perturbing histone acetylation had similar effects further demonstrating that the tlh genes are normally repressed by heterochromatin. In contrast, mutations in the RNAi factors Dcr1, Ago1 or Rdp1 led only to a modest derepression of the tlh genes indicating an alternate pathway...

  7. Aging and immortality in unicellular species.

    Science.gov (United States)

    Florea, Michael

    2017-10-01

    It has been historically thought that in conditions that permit growth, most unicellular species do not to age. This was particularly thought to be the case for symmetrically dividing species, as such species lack a clear distinction between the soma and the germline. Despite this, studies of the symmetrically dividing species Escherichia coli and Schizosaccharomyces pombe have recently started to challenge this notion. They indicate that E. coli and S. pombe do age, but only when subjected to environmental stress. If true, this suggests that aging may be widespread among microbial species in general, and that studying aging in microbes may inform other long-standing questions in aging. This review examines the recent evidence for and against replicative aging in symmetrically dividing unicellular organisms, the mechanisms that underlie aging, why aging evolved in these species, and how microbial aging fits into the context of other questions in aging. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Nucleotide sequences of three tRNA(Ser) from Drosophila melanogaster reading the six serine codons.

    Science.gov (United States)

    Cribbs, D L; Gillam, I C; Tener, G M

    1987-10-05

    The nucleotide sequences of three serine tRNAs from Drosophila melanogaster, together capable of decoding the six serine codons, were determined. tRNA(Ser)2b has the anticodon GCU, tRNA(Ser)4 has CGA and tRNA(Ser)7 has IGA. tRNA(Ser)2b differs from the last two by about 25%. However, tRNA(Ser)4 and tRNA(Ser)7 are 96% homologous, differing only at the first position of the anticodon and two other sites. This unusual sequence relationship suggests, together with similar pairs in the yeasts Schizosaccharomyces pombe and Saccharomyces cerevisiae, that eukaryotic tRNA(Ser)UCN may be undergoing concerted evolution.

  9. Specific Staining of Wall Mannan in Yeast Cells with Fluorescein-Conjugated Concanavalin A

    Science.gov (United States)

    Tkacz, J. S.; Cybulska, E. Barbara; Lampen, J. O.

    1971-01-01

    A procedure is given for the coupling of fluorescein isothiocyanate to concanavalin A, a protein which specifically combines with a variety of polysaccharides, and for the subsequent isolation of the reactive conjugate. This fluorescent conjugate stains Saccharomyces cerevisiae but not Schizosaccharomyces pombe or Rhodotorula glutinis. The cell walls of the latter two organisms do not contain branched homopolymers of α-linked mannose. Furthermore, the staining of S. cerevisiae is competitively inhibited by either unlabeled concanavalin A or methyl-α-d-manno-pyranoside. On the basis of this evidence, it is concluded that the staining of S. cerevisiae results from the specific interaction of the fluorescein-concanavalin A conjugate with the α-mannan present in the cell wall of this yeast. Images PMID:5541005

  10. Microbial terroir and food innovation: The case of yeast biodiversity in wine.

    Science.gov (United States)

    Capozzi, Vittorio; Garofalo, Carmela; Chiriatti, Maria Assunta; Grieco, Francesco; Spano, Giuseppe

    2015-12-01

    Saccharomyces and non-Saccharomyces represents a heterogeneous class in the grape/must/wine environments including several yeast genera (e.g., Saccharomyces, Hanseniaspora, Pichia, Candida, Metschnikowia, Kluyveromyces, Zygosaccharomyces, Torulaspora, Dekkera and Schizosaccharomyces) and species. Since, each species may differently contribute to the improvement/depreciation of wine qualities, it appears clear the reason why species belong to non-Saccharomyces are also considered a biotechnological resource in wine fermentation. Here, we briefly review the oenological significance of this specific part of microbiota associated with grapes/musts/wine. Moreover, the diversity of cultivable non-Saccharomyces genera and their contribute to typical wines fermentations will be discussed. Copyright © 2015 Elsevier GmbH. All rights reserved.

  11. High-throughput knockout screen in fission yeast.

    Science.gov (United States)

    Gregan, Juraj; Rabitsch, Peter K; Rumpf, Cornelia; Novatchkova, Maria; Schleiffer, Alexander; Nasmyth, Kim

    2006-01-01

    We have designed the most efficient strategy to knock out genes in fission yeast Schizosaccharomyces pombe on a large scale. Our technique is based on knockout constructs that contain regions homologous to the target gene cloned into vectors carrying dominant drug-resistance markers. Most of the steps are carried out in a 96-well format, allowing simultaneous deletion of 96 genes in one batch. Based on our knockout technique, we designed a strategy for cloning knockout constructs for all predicted fission yeast genes, which is available in a form of a searchable database http://mendel.imp.ac.at/Pombe_deletion/. We validated this technique in a screen where we identified novel genes required for chromosome segregation during meiosis. Here, we present our protocol with detailed instructions. Using this protocol, one person can knock out 96 S. pombe genes in 8 days.

  12. Knowledge-based reasoning to annotate noncoding RNA using multi-agent system.

    Science.gov (United States)

    Arruda, Wosley C; Souza, Daniel S; Ralha, Célia G; Walter, Maria Emilia M T; Raiol, Tainá; Brigido, Marcelo M; Stadler, Peter F

    2015-12-01

    Noncoding RNAs (ncRNAs) have been focus of intense research over the last few years. Since characteristics and signals of ncRNAs are not entirely known, researchers use different computational tools together with their biological knowledge to predict putative ncRNAs. In this context, this work presents ncRNA-Agents, a multi-agent system to annotate ncRNAs based on the output of different tools, using inference rules to simulate biologists' reasoning. Experiments with data from the fungus Saccharomyces cerevisiae allowed to measure the performance of ncRNA-Agents, with better sensibility, when compared to Infernal, a widely used tool for annotating ncRNA. Besides, data of the Schizosaccharomyces pombe and Paracoccidioides brasiliensis fungi identified novel putative ncRNAs, which demonstrated the usefulness of our approach. NcRNA-Agents can be be found at: http://www.biomol.unb.br/ncrna-agents.

  13. Condensin-mediated remodeling of the mitotic chromatin landscape in fission yeast.

    Science.gov (United States)

    Kakui, Yasutaka; Rabinowitz, Adam; Barry, David J; Uhlmann, Frank

    2017-10-01

    The eukaryotic genome consists of DNA molecules far longer than the cells that contain them. They reach their greatest compaction during chromosome condensation in mitosis. This process is aided by condensin, a structural maintenance of chromosomes (SMC) family member. The spatial organization of mitotic chromosomes and how condensin shapes chromatin architecture are not yet fully understood. Here we use chromosome conformation capture (Hi-C) to study mitotic chromosome condensation in the fission yeast Schizosaccharomyces pombe. This showed that the interphase landscape characterized by small chromatin domains is replaced by fewer but larger domains in mitosis. Condensin achieves this by setting up longer-range, intrachromosomal DNA interactions, which compact and individualize chromosomes. At the same time, local chromatin contacts are constrained by condensin, with profound implications for local chromatin function during mitosis. Our results highlight condensin as a major determinant that changes the chromatin landscape as cells prepare their genomes for cell division.

  14. Ethyl Carbamate Formation Regulated by Lactic Acid Bacteria and Nonconventional Yeasts in Solid-State Fermentation of Chinese Moutai-Flavor Liquor.

    Science.gov (United States)

    Du, Hai; Song, Zhewei; Xu, Yan

    2018-01-10

    This study aimed to identify specific microorganisms related to the formation of precursors of EC (ethyl carbamate) in the solid-state fermentation of Chinese Moutai-flavor liquor. The EC content was significantly correlated with the urea content during the fermentation process (R2 = 0.772, P culture-dependent analysis. Lactobacillus spp. could competitively degrade arginine through the arginine deiminase pathway with yeasts, and most Lactobacillus species were capable of degrading urea. Some dominant nonconventional yeasts, such as Pichia, Schizosaccharomyces, and Zygosaccharomyces species, were shown to produce low amounts of urea relative to Saccharomyces cerevisiae. Moreover, unusual urea degradation pathways (urea carboxylase, allophanate hydrolase, and ATP-independent urease) were identified. Our results indicate that EC precursor levels in the solid-state fermentation can be controlled using lactic acid bacteria and nonconventional yeasts.

  15. Yeast ecology of Kombucha fermentation.

    Science.gov (United States)

    Teoh, Ai Leng; Heard, Gillian; Cox, Julian

    2004-09-01

    Kombucha is a traditional fermentation of sweetened tea, involving a symbiosis of yeast species and acetic acid bacteria. Despite reports of different yeast species being associated with the fermentation, little is known of the quantitative ecology of yeasts in Kombucha. Using oxytetracycline-supplemented malt extract agar, yeasts were isolated from four commercially available Kombucha products and identified using conventional biochemical and physiological tests. During the fermentation of each of the four products, yeasts were enumerated from both the cellulosic pellicle and liquor of the Kombucha. The number and diversity of species varied between products, but included Brettanomyces bruxellensis, Candida stellata, Schizosaccharomyces pombe, Torulaspora delbrueckii and Zygosaccharomyces bailii. While these yeast species are known to occur in Kombucha, the enumeration of each species present throughout fermentation of each of the four Kombucha cultures demonstrated for the first time the dynamic nature of the yeast ecology. Kombucha fermentation is, in general, initiated by osmotolerant species, succeeded and ultimately dominated by acid-tolerant species.

  16. Inhibition of Adenosine Triphosphatase Activity from a Plasma Membrane Fraction of Acer pseudoplatanus Cells by 2,2,2-Trichloroethyl 3,4-Dichlorocarbanilate 12

    Science.gov (United States)

    Blein, Jean-Pierre; de Cherade, Xavier; Bergon, Michel; Calmon, Jean-Pierre; Scalla, René

    1986-01-01

    2,2,2-Trichloroethyl 3,4-dichlorocarbanilate (SW26) is toxic for Acer pseudoplatanus cell cultures. It inhibited the cellular proton extrusion and depolarized the plasmalemma. In vitro, it inhibited the plasma membrane ATPase. SW 26 was also inhibitory to membrane ATPases of other origins—plant (maize shoot), fungus (Schizosaccharomyces pombe), and animal (dog kidney)—with about the same efficiency (7.5 micromolar < I50 < 22 micromolar). It did not inhibit the oligomycin-sensitive ATPase from purified plant mitochondria, nor molybdate-sensitive soluble phosphatases. SW26 was more specific for plasma membrane ATPases than diethylstilbestrol or vanadate. A Lineweaver-Burk plot analysis showed that inhibition kinetics were purely noncompetitive (Ki = 14.7 micromolar) below 20 micromolar. Above this concentration, the inhibition pattern was not consistent with Michaelis-Menten kinetics, and a Hill plot representation revealed a positive cooperativity. PMID:16664702

  17. Modeling the Control of DNA Replication in Fission Yeast

    Science.gov (United States)

    Novak, Bela; Tyson, John J.

    1997-08-01

    A central event in the eukaryotic cell cycle is the decision to commence DNA replication (S phase). Strict controls normally operate to prevent repeated rounds of DNA replication without intervening mitoses (``endoreplication'') or initiation of mitosis before DNA is fully replicated (``mitotic catastrophe''). Some of the genetic interactions involved in these controls have recently been identified in yeast. From this evidence we propose a molecular mechanism of ``Start'' control in Schizosaccharomyces pombe. Using established principles of biochemical kinetics, we compare the properties of this model in detail with the observed behavior of various mutant strains of fission yeast: wee1- (size control at Start), cdc13Δ and rum1OP (endoreplication), and wee1- rum1Δ (rapid division cycles of diminishing cell size). We discuss essential features of the mechanism that are responsible for characteristic properties of Start control in fission yeast, to expose our proposal to crucial experimental tests.

  18. Effectiveness of Cymbopogon citratus L. essential oil to inhibit the growth of some filamentous fungi and yeasts.

    Science.gov (United States)

    Irkin, Reyhan; Korukluoglu, Mihriban

    2009-02-01

    Lemon grass (Cymbopogon citratus L.) oil has been known as having therapeutic and antibacterial properties, and its antifungal activity is currently the subject of renewed interest. This study aimed to verify the effectivenesses of C. citratus essential oil to inhibit the growth/survival of some fungi (Alternaria alternata, Aspergillus niger, Fusarium oxysporum, and Penicillium roquefortii) and yeasts (Candida albicans, Candida oleophila, Hansenula anomala, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Saccharomyces uvarum, and Metschnikowia fructicola). C. citratus essential oil showed effectiveness in inhibiting the growth of all fungi by disc diffusion and broth dilution bioassay. Minimum inhibitory and minimum fungicidal concentrations between 0.062 and 20 microL/mL were determined. The Clinical and Laboratory Standards Institute agar-based method was also applied for A. niger and C. albicans. Data show the strong antifungal properties of lemon grass oil (C. citratus) in vitro.

  19. Adaptation of the Black Yeast Wangiella dermatitidis to Ionizing Radiation: Molecular and Cellular Mechanisms

    Science.gov (United States)

    2012-11-01

    organisms, the budding yeast Saccharomyces cerevisiae and fission yeast Schizosaccharomyces pombe [7–10]. Those studies suggest that complicated networks...defined minimal medium (3 g/ L NaNO3, 1 g/L K2PHO4, 1 g/L MgSO4.7H2O, 0.5 g/L KCl, 0.003 g/L thiamine, 5.3 g/L NH4Cl, 120 mg/L sucrose, pH6.5) to 107...cells/ml and cultured with shaking at 37uC for 24 hours. Then cells were collected, washed and diluted to 5x105 cells/ml in the defined minimal medium

  20. Lsd1 and Lsd2 Control Programmed Replication Fork Pauses and Imprinting in Fission Yeast

    Directory of Open Access Journals (Sweden)

    Allyson Holmes

    2012-12-01

    Full Text Available In the fission yeast Schizosaccharomyces pombe, a chromosomal imprinting event controls the asymmetric pattern of mating-type switching. The orientation of DNA replication at the mating-type locus is instrumental in this process. However, the factors leading to imprinting are not fully identified and the mechanism is poorly understood. Here, we show that the replication fork pause at the mat1 locus (MPS1, essential for imprint formation, depends on the lysine-specific demethylase Lsd1. We demonstrate that either Lsd1 or Lsd2 amine oxidase activity is required for these processes, working upstream of the imprinting factors Swi1 and Swi3 (homologs of mammalian Timeless and Tipin, respectively. We also show that the Lsd1/2 complex controls the replication fork terminators, within the rDNA repeats. These findings reveal a role for the Lsd1/2 demethylases in controlling polar replication fork progression, imprint formation, and subsequent asymmetric cell divisions.

  1. AcEST: DK954549 [AcEST

    Lifescience Database Archive (English)

    Full Text Available TST39A01NGRL0020_L18 627 Adiantum capillus-veneris mRNA. clone: TST39A01NGRL0020_L1...8. 5' end sequence. DK954549 - Show DK954549 Clone id TST39A01NGRL0020_L18 Library TST39 Length 627 Definiti...on Adiantum capillus-veneris mRNA. clone: TST39A01NGRL0020_L18. 5' end sequence. Accession DK954549 Tissue t...onine-protein kinase atg1 OS=Schizosaccharomyces pombe Align length 201 Score (bit) 154.0 E-value 3.0e-37 Re...and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res. 25:3389-3402. Query= DK95454

  2. Yeast buddies helping to unravel the complexity of neurodegenerative disorders.

    Science.gov (United States)

    Fruhmann, Gernot; Seynnaeve, David; Zheng, Ju; Ven, Karen; Molenberghs, Sofie; Wilms, Tobias; Liu, Beidong; Winderickx, Joris; Franssens, Vanessa

    2017-01-01

    Neurodegenerative disorders have a profound effect on the quality of life of patients and their environment. However, the development of adequate therapies requires accurate understanding of the underlying disease pathogenesis. On that account, yeast models can play an important role, as they enable the elucidation of the mechanisms leading to neurodegenerative disorders. Furthermore, by using so-called humanized yeast systems, the findings in yeast can be interpolated to humans. In this review, we will give an overview of the current body of knowledge on the use of yeast models with regard to Huntington's, Parkinson's and Alzheimer's disease. In addition to the results, obtained with the baker's yeast Saccharomyces cerevisiae, we also consider the existing literature on the less common but promising fission yeast Schizosaccharomyces pombe. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. A versatile selection system for folding competent proteins using genetic complementation in a eukaryotic host

    DEFF Research Database (Denmark)

    Lyngsø, C.; Kjaerulff, S.; Muller, S.

    2010-01-01

    -control systems to retain misfolded proteins in the ER and redirect them for cytosolic degradation, thereby only allowing folded proteins to reach the cell surface. Accordingly, the folding potential of the tested protein determines the ability of autotrophic colony growth. This system was successfully......Recombinant expression of native or modified eukaryotic proteins is pivotal for structural and functional studies and for industrial and pharmaceutical production of proteins. However, it is often impeded by the lack of proper folding. Here, we present a stringent and broadly applicable eukaryotic...... in vivo selection system for folded proteins. It is based on genetic complementation of the Schizosaccharomyces pombe growth marker gene invertase fused C-terminally to a protein library. The fusion proteins are directed to the secretion system, utilizing the ability of the eukaryotic protein quality...

  4. Signal transduction during mating and meiosis in S. pombe

    DEFF Research Database (Denmark)

    Nielsen, O; Nielsen, Olaf

    1993-01-01

    When starved, the fission yeast Schizosaccharomyces pombe responds by producing mating factors or pheromones that signal to cells of the opposite sex to initiate mating. Like its distant relative Saccharomyces cerevisiae, cells of the two mating types of S. pombe each produce a distinct pheromone...... that binds to receptors on the opposite cell type to induce the morphological changes required for mating. While the pathways are basically very similar in the two yeasts, pheromone signalling in S. pombe differs in several important ways from that of the more familiar budding yeast. In this article, Olaf...... Nielsen describes the pheromones and their effects in S. pombe, and compares the signalling pathways of the two yeasts....

  5. Assessment of pheromone production and response in fission yeast by a halo test of induced sporulation

    DEFF Research Database (Denmark)

    Egel, R; Willer, M; Kjaerulff, S

    1994-01-01

    We describe a rapid, sensitive and semi-quantitative plate assay for monitoring pheromone activity in the fission yeast Schizosaccharomyces pombe. It is based on the observation that meiosis requires stimulation by pheromone and exploits diploid strains that will only sporulate after addition...... of exogenous pheromone. The tester strains are heterozygous for mating type, are non-switching, and are mutated in one of the early subfunctions (either mat1-Mc or mat1-Pc), so that meiosis is only induced after exposure to exogenous pheromone (M-factor or P-factor, respectively). Pheromone activity...... is assessed as an iodine-positive halo of sporulation surrounding the pheromone source, and the width of the halo is related to the amount of pheromone being produced. The assay is sufficiently sensitive to monitor the low amount of M-factor produced by an M mam1 strain, and its sensitivity towards P...

  6. Transcription and RNA-processing in fission yeast mitochondria.

    Science.gov (United States)

    Schäfer, Bernd; Hansen, Monika; Lang, B Franz

    2005-05-01

    We systematically examined transcription and RNA-processing in mitochondria of the petite-negative fission yeast Schizosaccharomyces pombe. Two presumptive transcription initiation sites at opposite positions on the circular-mapping mtDNA were confirmed by in vitro capping of primary transcripts with guanylyl-transferase. The major promoter (Pma) is located adjacent to the 5'-end of the rnl gene, and a second, minor promoter (Pmi) upstream from cox3. The primary 5'-termini of the mature rnl and cox3 transcripts remain unmodified. A third predicted accessory transcription initiation site is within the group IIA1 intron of the cob gene (cobI1). The consensus promoter motif of S. pombe closely resembles the nonanucleotide promoter motifs of various yeast mtDNAs. We further characterized all mRNAs and the two ribosomal RNAs by Northern hybridization, and precisely mapped their 5'- and 3'-ends. The mRNAs have leader sequences with a length of 38 up to 220 nt and, in most instances, are created by removal of tRNAs from large precursor RNAs. Like cox2 and rnl, cox1 and cox3 are not separated by tRNA genes; instead, transcription initiation from the promoters upstream from rnl and cox3 compensates for the lack of tRNA-mediated 5'-processing. The 3'-termini of mRNAs and of SSU rRNA are processed at distinct, C-rich motifs that are located at a variable distance (1-15 nt) downstream from mRNA and SSU-rRNA coding regions. The accuracy of RNA-processing at these sites is sequence-dependent. Similar 3'-RNA-processing motifs are present in species of the genus Schizosaccharomyces, but not in budding yeasts that have functionally analogous A+T-rich dodecamer processing signals.

  7. The iron uptake repressor Fep1 in the fission yeast binds Fe-S cluster through conserved cysteines

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyo-Jin; Lee, Kang-Lok; Kim, Kyoung-Dong; Roe, Jung-Hye, E-mail: jhroe@snu.ac.kr

    2016-09-09

    Iron homeostasis is tightly regulated since iron is an essential but toxic element in the cell. The GATA-type transcription factor Fep1 and its orthologs contribute to iron homeostasis in many fungi by repressing genes for iron uptake when intracellular iron is high. Even though the function and interaction partners of Fep1 have been elucidated extensively In Schizosaccharomyces pombe, the mechanism behind iron-sensing by Fep1 remains elusive. It has been reported that Fep1 interacts with Fe-S-containing monothiol glutaredoxin Grx4 and Grx4-Fra2 complex. In this study, we demonstrate that Fep1 also binds iron, in the form of Fe-S cluster. Spectroscopic and biochemical analyses of as isolated and reconstituted Fep1 suggest that the dimeric Fep1 binds Fe-S clusters. The mutation study revealed that the cluster-binding depended on the conserved cysteines located between the two zinc fingers in the DNA binding domain. EPR analyses revealed [Fe-S]-specific peaks indicative of mixed presence of [2Fe-2S], [3Fe-4S], or [4Fe-4S]. The finding that Fep1 is an Fe-S protein fits nicely with the model that the Fe-S-trafficking Grx4 senses intracellular iron environment and modulates the activity of Fep1. - Highlights: • Fep1, a prototype fungal iron uptake regulator, was isolated stably from Schizosaccharomyces pombe. • Fep1 exhibits UV–visible absorption spectrum, characteristic of [Fe-S] proteins. • The iron and sulfide contents in purified or reconstituted Fep1 also support [Fe-S]. • The conserved cysteines are critical for [Fe-S]-binding. • EPR spectra at 5 K and 123 K suggest a mixed population of [Fe-S].

  8. Roles of the DYRK kinase Pom2 in cytokinesis, mitochondrial morphology, and sporulation in fission yeast.

    Directory of Open Access Journals (Sweden)

    Pengcheng Wu

    Full Text Available Pom2 is predicted to be a dual-specificity tyrosine-phosphorylation regulated kinase (DYRK related to Pom1 in Schizosaccharomyces pombe. DYRKs share a kinase domain capable of catalyzing autophosphorylation on tyrosine and exogenous phosphorylation on serine/threonine residues. Here we show that Pom2 is functionally different from the well-characterized Pom1, although they share 55% identity in the kinase domain and the Pom2 kinase domain functionally complements that of Pom1. Pom2 localizes to mitochondria throughout the cell cycle and to the contractile ring during late stages of cytokinesis. Overexpression but not deletion of pom2 results in severe defects in cytokinesis, indicating that Pom2 might share an overlapping function with other proteins in regulating cytokinesis. Gain and loss of function analyses reveal that Pom2 is required for maintaining mitochondrial morphology independently of microtubules. Intriguingly, most meiotic pom2Δ cells form aberrant asci with meiotic and/or forespore membrane formation defects. Taken together, Pom2 is a novel DYRK kinase involved in regulating cytokinesis, mitochondrial morphology, meiosis, and sporulation in fission yeast.

  9. Quantitative analysis of chromosome condensation in fission yeast.

    Science.gov (United States)

    Petrova, Boryana; Dehler, Sascha; Kruitwagen, Tom; Hériché, Jean-Karim; Miura, Kota; Haering, Christian H

    2013-03-01

    Chromosomes undergo extensive conformational rearrangements in preparation for their segregation during cell divisions. Insights into the molecular mechanisms behind this still poorly understood condensation process require the development of new approaches to quantitatively assess chromosome formation in vivo. In this study, we present a live-cell microscopy-based chromosome condensation assay in the fission yeast Schizosaccharomyces pombe. By automatically tracking the three-dimensional distance changes between fluorescently marked chromosome loci at high temporal and spatial resolution, we analyze chromosome condensation during mitosis and meiosis and deduct defined parameters to describe condensation dynamics. We demonstrate that this method can determine the contributions of condensin, topoisomerase II, and Aurora kinase to mitotic chromosome condensation. We furthermore show that the assay can identify proteins required for mitotic chromosome formation de novo by isolating mutants in condensin, DNA polymerase ε, and F-box DNA helicase I that are specifically defective in pro-/metaphase condensation. Thus, the chromosome condensation assay provides a direct and sensitive system for the discovery and characterization of components of the chromosome condensation machinery in a genetically tractable eukaryote.

  10. Fission yeast Sec3 and Exo70 are transported on actin cables and localize the exocyst complex to cell poles.

    Directory of Open Access Journals (Sweden)

    Felipe O Bendezú

    Full Text Available The exocyst complex is essential for many exocytic events, by tethering vesicles at the plasma membrane for fusion. In fission yeast, polarized exocytosis for growth relies on the combined action of the exocyst at cell poles and myosin-driven transport along actin cables. We report here the identification of fission yeast Schizosaccharomyces pombe Sec3 protein, which we identified through sequence homology of its PH-like domain. Like other exocyst subunits, sec3 is required for secretion and cell division. Cells deleted for sec3 are only conditionally lethal and can proliferate when osmotically stabilized. Sec3 is redundant with Exo70 for viability and for the localization of other exocyst subunits, suggesting these components act as exocyst tethers at the plasma membrane. Consistently, Sec3 localizes to zones of growth independently of other exocyst subunits but depends on PIP(2 and functional Cdc42. FRAP analysis shows that Sec3, like all other exocyst subunits, localizes to cell poles largely independently of the actin cytoskeleton. However, we show that Sec3, Exo70 and Sec5 are transported by the myosin V Myo52 along actin cables. These data suggest that the exocyst holocomplex, including Sec3 and Exo70, is present on exocytic vesicles, which can reach cell poles by either myosin-driven transport or random walk.

  11. A novel cold-regulated gene, COR25, of Brassica napus is involved in plant response and tolerance to cold stress.

    Science.gov (United States)

    Chen, Liang; Zhong, Hui; Ren, Feng; Guo, Qian-Qian; Hu, Xu-Peng; Li, Xue-Bao

    2011-04-01

    Cold stress, which causes dehydration damage to the plant cell, is one of the most common abiotic stresses that adversely affect plant growth and crop productivity. To improve its cold-tolerance, plants often enhance expression of some cold-related genes. In this study, a cold-regulated gene encoding 25 KDa of protein was isolated from Brassica napus cDNA library using a macroarray analysis, and is consequently designated as BnCOR25. RT-PCR analysis demonstrated that BnCOR25 was expressed at high levels in hypocotyls, cotyledons, stems, and flowers, but its mRNA was found at low levels in roots and leaves. Northern blot analysis revealed that BnCOR25 transcripts were significantly induced by cold and osmotic stress treatment. The data also showed that BnCOR25 gene expression is mediated by ABA-dependent pathway. Overexpression of BnCOR25 in yeast (Schizosaccharomyces pombe) significantly enhanced the cell survival probability under cold stress, and overexpression of BnCOR25 in Arabidopsis enhances plant tolerance to cold stress. These results suggested that the BnCOR25 gene may play an important role in conferring freezing/cold tolerance in plants.

  12. Swi1 associates with chromatin through the DDT domain and recruits Swi3 to preserve genomic integrity.

    Science.gov (United States)

    Noguchi, Chiaki; Rapp, Jordan B; Skorobogatko, Yuliya V; Bailey, Lauren D; Noguchi, Eishi

    2012-01-01

    Swi1 and Swi3 form the replication fork protection complex and play critical roles in proper activation of the replication checkpoint and stabilization of replication forks in the fission yeast Schizosaccharomyces pombe. However, the mechanisms by which the Swi1-Swi3 complex regulates these processes are not well understood. Here, we report functional analyses of the Swi1-Swi3 complex in fission yeast. Swi1 possesses the DDT domain, a putative DNA binding domain found in a variety of chromatin remodeling factors. Consistently, the DDT domain-containing region of Swi1 interacts with DNA in vitro, and mutations in the DDT domain eliminate the association of Swi1 with chromatin in S. pombe cells. DDT domain mutations also render cells highly sensitive to S-phase stressing agents and induce strong accumulation of Rad22-DNA repair foci, indicating that the DDT domain is involved in the activity of the Swi1-Swi3 complex. Interestingly, DDT domain mutations also abolish Swi1's ability to interact with Swi3 in cells. Furthermore, we show that Swi1 is required for efficient chromatin association of Swi3 and that the Swi1 C-terminal domain directly interacts with Swi3. These results indicate that Swi1 associates with chromatin through its DDT domain and recruits Swi3 to function together as the replication fork protection complex.

  13. Swi1 associates with chromatin through the DDT domain and recruits Swi3 to preserve genomic integrity.

    Directory of Open Access Journals (Sweden)

    Chiaki Noguchi

    Full Text Available Swi1 and Swi3 form the replication fork protection complex and play critical roles in proper activation of the replication checkpoint and stabilization of replication forks in the fission yeast Schizosaccharomyces pombe. However, the mechanisms by which the Swi1-Swi3 complex regulates these processes are not well understood. Here, we report functional analyses of the Swi1-Swi3 complex in fission yeast. Swi1 possesses the DDT domain, a putative DNA binding domain found in a variety of chromatin remodeling factors. Consistently, the DDT domain-containing region of Swi1 interacts with DNA in vitro, and mutations in the DDT domain eliminate the association of Swi1 with chromatin in S. pombe cells. DDT domain mutations also render cells highly sensitive to S-phase stressing agents and induce strong accumulation of Rad22-DNA repair foci, indicating that the DDT domain is involved in the activity of the Swi1-Swi3 complex. Interestingly, DDT domain mutations also abolish Swi1's ability to interact with Swi3 in cells. Furthermore, we show that Swi1 is required for efficient chromatin association of Swi3 and that the Swi1 C-terminal domain directly interacts with Swi3. These results indicate that Swi1 associates with chromatin through its DDT domain and recruits Swi3 to function together as the replication fork protection complex.

  14. Chromosome conformation maps in fission yeast reveal cell cycle dependent sub nuclear structure.

    Science.gov (United States)

    Grand, Ralph S; Pichugina, Tatyana; Gehlen, Lutz R; Jones, M Beatrix; Tsai, Peter; Allison, Jane R; Martienssen, Robert; O'Sullivan, Justin M

    2014-11-10

    Successful progression through the cell cycle requires spatial and temporal regulation of gene transcript levels and the number, positions and condensation levels of chromosomes. Here we present a high resolution survey of genome interactions in Schizosaccharomyces pombe using synchronized cells to investigate cell cycle dependent changes in genome organization and transcription. Cell cycle dependent interactions were captured between and within S. pombe chromosomes. Known features of genome organization (e.g. the clustering of telomeres and retrotransposon long terminal repeats (LTRs)) were observed throughout the cell cycle. There were clear correlations between transcript levels and chromosomal interactions between genes, consistent with a role for interactions in transcriptional regulation at specific stages of the cell cycle. In silico reconstructions of the chromosome organization within the S. pombe nuclei were made by polymer modeling. These models suggest that groups of genes with high and low, or differentially regulated transcript levels have preferred positions within the S. pombe nucleus. We conclude that the S. pombe nucleus is spatially divided into functional sub-nuclear domains that correlate with gene activity. The observation that chromosomal interactions are maintained even when chromosomes are fully condensed in M phase implicates genome organization in epigenetic inheritance and bookmarking. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. TORC1-Dependent Phosphorylation Targets in Fission Yeast

    Directory of Open Access Journals (Sweden)

    Yoko Otsubo

    2017-07-01

    Full Text Available Target of rapamycin (TOR kinase controls cell metabolism and growth in response to environmental cues such as nutrients, growth factors, and stress. TOR kinase is widely conserved across eukaryotes. As in other organisms, the fission yeast Schizosaccharomyces pombe has two types of TOR complex, namely TOR complex 1 (TORC1 and TORC2. It is interesting that the two TOR complexes in S. pombe have opposite roles in sexual differentiation, which is induced by nutrient starvation. TORC1, which contains Tor2 as a catalytic subunit, promotes vegetative growth and represses sexual differentiation in nutrient-rich conditions, while TORC2 is required for the initiation of sexual differentiation. Multiple targets of TORC1 have been identified. Some of these, such as S6 kinase and an autophagy regulator Atg13, are known targets in other organisms. In addition, there is a novel group of TORC1 targets involved in the regulation of sexual differentiation. Here, we review recent findings on phosphorylation targets of TORC1 in S. pombe. Furthermore, we briefly report a novel S. pombe target of TORC1.

  16. Characterization of polymeric pigments and pyranoanthocyanins formed in microfermentations of non-Saccharomyces yeasts.

    Science.gov (United States)

    Escott, C; Morata, A; Loira, I; Tesfaye, W; Suarez-Lepe, J A

    2016-11-01

    To assess the influence of non-Saccharomyces yeasts on the pyranoanthocyanins and polymeric pigments formation after the addition of (+)-catechin and procyanidin B2 to fresh red grape must. The fermentation of red grape musts was done with non-Saccharomyces yeasts either alone or in sequential fermentations with the Saccharomyces cerevisiae species. The characterization of both pyranoanthocyanin and polymeric pigments has been carried out with liquid chromatography coupled to mass spectroscopy (HPLC-DAD-ESI/MS). Red wines were also characterized by infrared spectroscopy (FTIR), gas chromatography (GC-FID) and spectrophotometry (UV-Vis). It has been observed that fermentation with the species Schizosaccharomyces pombe led to higher concentrations of pigments of all types: anthocyanins, polymeric pigments and pyranoanthocyanins, particularly vitisin A. The use of non-Saccharomyces yeasts improve the formation of stable pigments in red wines thanks to the differences in the microbial metabolism from among the yeasts studied. Colour stability as one of the main organoleptic properties in red wines, may be improved by the controlled use of selected non-Saccharomyces yeasts during red must fermentation. © 2016 The Society for Applied Microbiology.

  17. The fission yeast RNA binding protein Mmi1 regulates meiotic genes by controlling intron specific splicing and polyadenylation coupled RNA turnover.

    Directory of Open Access Journals (Sweden)

    Huei-Mei Chen

    Full Text Available The polyA tails of mRNAs are monitored by the exosome as a quality control mechanism. We find that fission yeast, Schizosaccharomyces pombe, adopts this RNA quality control mechanism to regulate a group of 30 or more meiotic genes at the level of both splicing and RNA turnover. In vegetative cells the RNA binding protein Mmi1 binds to the primary transcripts of these genes. We find the novel motif U(U/C/GAAAC highly over-represented in targets of Mmi1. Mmi1 can specifically regulate the splicing of particular introns in a transcript: it inhibits the splicing of introns that are in the vicinity of putative Mmi1 binding sites, while allowing the splicing of other introns that are far from such sites. In addition, binding of Mmi1, particularly near the 3' end, alters 3' processing to promote extremely long polyA tails of up to a kilobase. The hyperadenylated transcripts are then targeted for degradation by the nuclear exonuclease Rrp6. The nuclear polyA binding protein Pab2 assists this hyperadenylation-mediated RNA decay. Rrp6 also targets other hyperadenylated transcripts, which become hyperadenylated in an unknown, but Mmi1-independent way. Thus, hyperadenylation may be a general signal for RNA degradation. In addition, binding of Mmi1 can affect the efficiency of 3' cleavage. Inactivation of Mmi1 in meiosis allows meiotic expression, through splicing and RNA stabilization, of at least 29 target genes, which are apparently constitutively transcribed.

  18. GMF is an evolutionarily developed Adf/cofilin-super family protein involved in the Arp2/3 complex-mediated organization of the actin cytoskeleton.

    Science.gov (United States)

    Nakano, Kentaro; Kuwayama, Hidekazu; Kawasaki, Masato; Numata, Osamu; Takaine, Masak

    2010-06-01

    Actin-depolymerizing factor (ADF)/cofilin is widely expressed in eukaryotes and plays a central role in reorganizing the actin cytoskeleton by disassembling actin filaments. The ADF-homologous domain (ADF-H) is conserved in several other actin-modulating proteins such as twinfilin, Abp1/drebrin, and coactosin. Although these proteins interact with actin via ADF-H, their effects on actin are not identical to each other. Here, we report a novel ADF/cofilin-super family protein, Gmf1 (Glia maturation factor-like protein 1), from the fission yeast Schizosaccharomyces pombe. Gmf1 is a component of actin patches, which are located on the cell cortex and required for endocytosis, and may be involved in the control of the disassembly of actin patches since its overexpression diminishes them. We provide evidence that Gmf1 binds weakly if at all to actin, but it associates with actin-related protein (Arp) 2/3 complex and suppresses its functions such as the promotion of actin polymerization and branching filaments. Importantly, Arp2/3 complex-suppressing activity is conserved among GMF-family proteins from other organisms. Given the functional plasticity of ADF-H, GMF-family proteins possibly have changed their target from conventional actin to Arps through molecular evolution.

  19. Differential malic acid degradation by selected strains of Saccharomyces during alcoholic fermentation.

    Science.gov (United States)

    Redzepovic, S; Orlic, S; Majdak, A; Kozina, B; Volschenk, H; Viljoen-Bloom, M

    2003-05-25

    To produce a high-quality wine, it is important to obtain a fine balance between the various chemical constituents, especially between the sugar and acid content. The latter is more difficult to achieve in wines that have high acidity due to excess malic acid, since wine yeast in general cannot effectively degrade malic acid during alcoholic fermentation. An indigenous Saccharomyces paradoxus strain RO88 was able to degrade 38% of the malic acid in Chardonnay must and produced a wine of good quality. In comparison, Schizosaccharomyces pombe strain F effectively removed 90% of the malic acid, but did not produce a good-quality wine. Although commercially promoted as a malic-acid-degrading wine yeast strain, only 18% of the malic acid was degraded by Saccharomyces cerevisiae Lalvin strain 71B. Preliminary studies on the transcriptional regulation of the malic enzyme gene from three Saccharomyces strains, i.e. S. paradoxus RO88, S. cerevisiae 71B and Saccharomyces bayanus EC1118, were undertaken to elucidate the differences in their ability to degrade malic acid. Expression of the malic enzyme gene from S. paradoxus RO88 and S. cerevisiae 71B increased towards the end of fermentation once glucose was depleted, whereas no increase in transcription was observed for S. bayanus EC1118 which was also unable to effectively degrade malic acid.

  20. Biological Demalication and Deacetification of Musts and Wines: Can Wine Yeasts Make the Wine Taste Better?

    Directory of Open Access Journals (Sweden)

    Alice Vilela

    2017-10-01

    Full Text Available Grape musts sometimes reveal excess acidity. An excessive amount of organic acids negatively affect wine yeasts and yeast fermentation, and the obtained wines are characterized by an inappropriate balance between sweetness, acidity or sourness, and flavor/aroma components. An appropriate acidity, pleasant to the palate is more difficult to achieve in wines that have high acidity due to an excess of malic acid, because the Saccharomyces species in general, cannot effectively degrade malic acid during alcoholic fermentation. One approach to solving this problem is biological deacidification by lactic acid bacteria or non-Saccharomyces yeasts, like Schizosaccharomyces pombe that show the ability to degrade L-malic acid. Excessive volatile acidity in wine is also a problem in the wine industry. The use of free or immobilized Saccharomyces cells has been studied to solve both these problems since these yeasts are wine yeasts that show a good balance between taste/flavor and aromatic compounds during alcoholic fermentation. The aim of this review is to give some insights into the use of Saccharomyces cerevisiae strains to perform biological demalication (malic acid degradation and deacetification (reduction of volatile acidity of wine in an attempt to better understand their biochemistry and enological features.

  1. CryoEM structures of two spliceosomal complexes: starter and dessert at the spliceosome feast.

    Science.gov (United States)

    Nguyen, Thi Hoang Duong; Galej, Wojciech P; Fica, Sebastian M; Lin, Pei-Chun; Newman, Andrew J; Nagai, Kiyoshi

    2016-02-01

    The spliceosome is formed on pre-mRNA substrates from five small nuclear ribonucleoprotein particles (U1, U2, U4/U6 and U5 snRNPs), and numerous non-snRNP factors. Saccharomyces cerevisiae U4/U6.U5 tri-snRNP comprises U5 snRNA, U4/U6 snRNA duplex and approximately 30 proteins and represents a substantial part of the spliceosome before activation. Schizosaccharomyces pombe U2.U6.U5 spliceosomal complex is a post-catalytic intron lariat spliceosome containing U2 and U5 snRNPs, NTC (nineteen complex), NTC-related proteins (NTR), U6 snRNA, and an RNA intron lariat. Two recent papers describe near-complete atomic structures of these complexes based on cryoEM single-particle analysis. The U4/U6.U5 tri-snRNP structure provides crucial insight into the activation mechanism of the spliceosome. The U2.U6.U5 complex reveals the striking architecture of NTC and NTR and important features of the group II intron-like catalytic RNA core remaining after spliced mRNA is released. These two structures greatly advance our understanding of the mechanism of pre-mRNA splicing. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Hypotonic stress-induced calcium signaling in Saccharomyces cerevisiae involves TRP-like transporters on the endoplasmic reticulum membrane.

    Science.gov (United States)

    Rigamonti, M; Groppi, S; Belotti, F; Ambrosini, R; Filippi, G; Martegani, E; Tisi, R

    2015-02-01

    Saccharomyces cerevisiae cells respond to hypotonic stress (HTS) by a cytosolic calcium rise, either generated by an influx of calcium from extracellular medium, when calcium is available, or by a release from intracellular stores in scarcity of extracellular calcium. Calcium release from intracellular compartments is peculiarly inhibited by external calcium in a calcineurin-independent and Cch1-, but not Mid1-, driven manner. HTS-induced calcium release is also negatively regulated by the ER protein Cls2 and involves a poorly characterized protein, FLC2/YAL053W gene product, previously proposed to be required for FAD transport in the ER, albeit, due to its molecular features, it was also previously classified as an ion transporter. A computational analysis revealed that this gene and its three homologs in S. cerevisiae, together with previously identified Schizosaccharomyces pombe pkd2 and Neurospora crassa calcium-related spray protein, belong to a fungal branch of TRP-like ion transporters related to human mucolipin and polycystin 2 calcium transporters. Moreover, disruption of FLC2 gene confers severe sensitivity to Calcofluor white and hyper-activation of the cell wall integrity MAPK cascade, suggesting a role in cell wall maintenance as previously suggested for the fission yeast homolog. Perturbation in cytosolic resting calcium concentration and hyper-activation of calcineurin in exponentially growing cells suggest a role for this transporter in calcium homeostasis in yeast. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Negative regulation of mitosis in fission yeast by the shk1 interacting protein skb1 and its human homolog, Skb1Hs.

    Science.gov (United States)

    Gilbreth, M; Yang, P; Bartholomeusz, G; Pimental, R A; Kansra, S; Gadiraju, R; Marcus, S

    1998-12-08

    We previously provided evidence that the protein encoded by the highly conserved skb1 gene is a putative regulator of Shk1, a p21(Cdc42/Rac)-activated kinase (PAK) homolog in the fission yeast Schizosaccharomyces pombe. skb1 null mutants are viable and competent for mating but less elongate than wild-type S. pombe cells, whereas cells that overexpress skb1 are hyperelongated. These phenotypes suggest a possible role for Skb1 as a mitotic inhibitor. Here we show genetic interactions of both skb1 and shk1 with genes encoding key mitotic regulators in S. pombe. Our results indicate that Skb1 negatively regulates mitosis by a mechanism that is independent of the Cdc2-activating phosphatase Cdc25 but that is at least partially dependent on Shk1 and the Cdc2 inhibitory kinase Wee1. We provide biochemical evidence for association of Skb1 and Shk1 with Cdc2 in S. pombe, suggesting that Skb1 and Shk1 inhibit mitosis through interaction with the Cdc2 complex, rather than by an indirect mechanism. These results provide evidence of a previously undescribed role for PAK-related protein kinases as mitotic inhibitors. We also describe the cloning of a human homolog of skb1, SKB1Hs, and show that it can functionally replace skb1 in S. pombe. Thus, the molecular functions of Skb1-related proteins have likely been substantially conserved through evolution.

  4. FH3, a domain found in formins, targets the fission yeast formin Fus1 to the projection tip during conjugation

    DEFF Research Database (Denmark)

    Petersen, J; Nielsen, O; Egel, R

    1998-01-01

    is required for conjugation, and is localized to the projection tip in cells of mating pairs. We replaced genomic fus1+ with green fluorescent protein (GFP)- tagged versions that lacked either the FH1, FH2, or FH3 domain. Deletion of any FH domain essentially abolished mating. FH3, but neither FH1 nor FH2......, was required for Fus1 localization. An FH3 domain-GFP fusion protein localized to the projection tips of mating pairs. Thus, the FH3 domain alone can direct protein localization. The FH3 domains of both Fus1 and the S. pombe cytokinesis formin Cdc12 were able to localize GFP to the spindle pole body in half......Formins are involved in diverse aspects of morphogenesis, and share two regions of homology: FH1 and FH2. We describe a new formin homology region, FH3. FH3 is an amino-terminal domain that differs from the Rho binding site identified in Bni1p and p140mDia. The Schizosaccharomyces pombe formin Fus1...

  5. Interaction of the Aspergillus nidulans microtubule-organizing center (MTOC) component ApsB with gamma-tubulin and evidence for a role of a subclass of peroxisomes in the formation of septal MTOCs.

    Science.gov (United States)

    Zekert, Nadine; Veith, Daniel; Fischer, Reinhard

    2010-05-01

    Peroxisomes are a diverse class of organelles involved in different physiological processes in eukaryotic cells. Although proteins imported into peroxisomes carry a peroxisomal targeting sequence at the C terminus (PTS1) or an alternative one close to the N terminus (PTS2), the protein content of peroxisomes varies drastically. Here we suggest a new class of peroxisomes involved in microtubule (MT) formation. Eukaryotic cells assemble MTs from distinct points in the cell. In the fungus Aspergillus nidulans, septum-associated microtubule-organizing centers (sMTOCs) are very active in addition to the spindle pole bodies (SPBs). Previously, we identified a novel MTOC-associated protein, ApsB (Schizosaccharomyces pombe mto1), whose absence affected MT formation from sMTOCs more than from SPBs, suggesting that the two protein complexes are organized differently. We show here that sMTOCs share at least two further components, gamma-tubulin and GcpC (S. pombe Alp6) with SPBs and found that ApsB interacts with gamma-tubulin. In addition, we discovered that ApsB interacts with the Woronin body protein HexA and is targeted to a subclass of peroxisomes via a PTS2 peroxisomal targeting sequence. The PTS2 motif was necessary for function but could be replaced with a PTS1 motif at the C terminus of ApsB. These results suggest a novel function for a subclass of peroxisomes in cytoskeletal organization.

  6. Malo-ethanolic fermentation in grape must by recombinant strains of Saccharomyces cerevisiae.

    Science.gov (United States)

    Volschenk, H; Viljoen-Bloom, M; Subden, R E; van Vuuren, H J

    2001-07-01

    Recombinant strains of Saccharomyces cerevisiae with the ability to reduce wine acidity could have a significant influence on the future production of quality wines, especially in cool climate regions. L-Malic acid and L-tartaric acid contribute largely to the acid content of grapes and wine. The wine yeast S. cerevisiae is unable to effectively degrade L-malic acid, whereas the fission yeast Schizosaccharomyces pombe efficiently degrades high concentrations of L-malic acid by means of a malo-ethanolic fermentation. However, strains of Sz. pombe are not suitable for vinification due to the production of undesirable off-flavours. Heterologous expression of the Sz. pombe malate permease (mae1) and malic enzyme (mae2) genes on plasmids in S. cerevisiae resulted in a recombinant strain of S. cerevisiae that efficiently degraded up to 8 g/l L-malic acid in synthetic grape must and 6.75 g/l L-malic acid in Chardonnay grape must. Furthermore, a strain of S. cerevisiae containing the mae1 and mae2 genes integrated in the genome efficiently degraded 5 g/l of L-malic acid in synthetic and Chenin Blanc grape musts. Furthermore, the malo-alcoholic strains produced higher levels of ethanol during fermentation, which is important for the production of distilled beverages. Copyright 2001 John Wiley & Sons, Ltd.

  7. Lipid droplet de novo formation and fission are linked to the cell cycle in fission yeast.

    Science.gov (United States)

    Long, Allan P; Manneschmidt, Anna K; VerBrugge, Bobby; Dortch, Mary R; Minkin, Steven C; Prater, Keith E; Biggerstaff, John P; Dunlap, John R; Dalhaimer, Paul

    2012-05-01

    Cells sequester neutral lipids in bodies called lipid droplets. Thus, the formation and breakdown of the droplets are important for cellular metabolism; unfortunately, these processes are difficult to quantify. Here, we used time-lapse confocal microscopy to track the formation, movement and size changes of lipid droplets throughout the cell cycle in fission yeast Schizosaccharomyces pombe. In theory, the number of lipid droplets in these cells must increase for daughter cells to have the same number of droplets as the parent at a reference point in the cell cycle. We observed stable droplet formation events in G2 phase that were divided evenly between de novo formation of nascent droplets and fission of preexisting droplets. The observations that lipid droplet number is linked to the cell cycle and that droplets can form via fission were both new discoveries. Thus, we scrutinized each fission event for multiple signatures to eliminate possible artifacts from our microscopy. We augmented our time-lapse confocal microscopy with electron microscopy, which showed lipid droplet 'intermediates': droplets shaped like dumbbells that are potentially in transition states between two spherical droplets. Using these complementary microscopy techniques and also dynamic simulations, we show that lipid droplets can form by fission. © 2012 John Wiley & Sons A/S.

  8. Tolerance of Deregulated G1/S Transcription Depends on Critical G1/S Regulon Genes to Prevent Catastrophic Genome Instability

    Directory of Open Access Journals (Sweden)

    Catia Caetano

    2014-12-01

    Full Text Available Expression of a G1/S regulon of genes that are required for DNA replication is a ubiquitous mechanism for controlling cell proliferation; moreover, the pathological deregulated expression of E2F-regulated G1/S genes is found in every type of cancer. Cellular tolerance of deregulated G1/S transcription is surprising because this regulon includes many dosage-sensitive proteins. Here, we used the fission yeast Schizosaccharomyces pombe to investigate this issue. We report that deregulating the MBF G1/S regulon by eliminating the Nrm1 corepressor increases replication errors. Homology-directed repair proteins, including MBF-regulated Ctp1CtIP, are essential to prevent catastrophic genome instability. Surprisingly, the normally inconsequential MBF-regulated S-phase cyclin Cig2 also becomes essential in the absence of Nrm1. This requirement was traced to cyclin-dependent kinase inhibition of the MBF-regulated Cdc18Cdc6 replication origin-licensing factor. Collectively, these results establish that, although deregulation of G1/S transcription is well tolerated by cells, nonessential G1/S target genes become crucial for preventing catastrophic genome instability.

  9. Crystal Structure and Functional Analysis of Homocitrate Synthase, an Essential Enzyme in Lysine Biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Bulfer, Stacie L.; Scott, Erin M.; Couture, Jean-François; Pillus, Lorraine; Trievel, Raymond C.; (Michigan); (UCSD)

    2010-01-12

    Homocitrate synthase (HCS) catalyzes the first and committed step in lysine biosynthesis in many fungi and certain Archaea and is a potential target for antifungal drugs. Here we report the crystal structure of the HCS apoenzyme from Schizosaccharomyces pombe and two distinct structures of the enzyme in complex with the substrate 2-oxoglutarate (2-OG). The structures reveal that HCS forms an intertwined homodimer stabilized by domain-swapping between the N- and C-terminal domains of each monomer. The N-terminal catalytic domain is composed of a TIM barrel fold in which 2-OG binds via hydrogen bonds and coordination to the active site divalent metal ion, whereas the C-terminal domain is composed of mixed {alpha}/{beta} topology. In the structures of the HCS apoenzyme and one of the 2-OG binary complexes, a lid motif from the C-terminal domain occludes the entrance to the active site of the neighboring monomer, whereas in the second 2-OG complex the lid is disordered, suggesting that it regulates substrate access to the active site through its apparent flexibility. Mutations of the active site residues involved in 2-OG binding or implicated in acid-base catalysis impair or abolish activity in vitro and in vivo. Together, these results yield new insights into the structure and catalytic mechanism of HCSs and furnish a platform for developing HCS-selective inhibitors.

  10. Plasmids with E2 epitope tags: tagging modules for N- and C-terminal PCR-based gene targeting in both budding and fission yeast, and inducible expression vectors for fission yeast.

    Science.gov (United States)

    Tamm, Tiina

    2009-01-01

    A single-step PCR-based epitope tagging enables fast and efficient gene targeting with various epitope tags. This report presents a series of plasmids for the E2 epitope tagging of proteins in Saccharomyces cerevisiae and Schizosaccharomyces pombe. E2Tags are 10-amino acids (epitope E2a: SSTSSDFRDR)- and 12 amino acids (epitope E2b: GVSSTSSDFRDR)-long peptides derived from the E2 protein of bovine papillomavirus type 1. The modules for C-terminal tagging with E2a and E2b epitopes were constructed by the modification of the pYM-series plasmid. The N-terminal E2a and E2b tagging modules were based on pOM-series plasmid. The pOM-series plasmids were selected for this study because of their use of the Cre-loxP recombination system. The latter enables a marker cassette to be removed after integration into the loci of interest and, thereafter, the tagged protein is expressed under its endogenous promoter. Specifically for fission yeast, high copy pREP plasmids containing the E2a epitope tag as an N-terminal or C-terminal tag were constructed. The properties of E2a and E2b epitopes and the sensitivity of two anti-E2 monoclonal antibodies (5E11 and 3F12) were tested using several S. cerevisiae and Sz. pombe E2-tagged strains.

  11. Facile manipulation of protein localization in fission yeast through binding of GFP-binding protein to GFP.

    Science.gov (United States)

    Chen, Ying-Hui; Wang, Gao-Yuan; Hao, Hao-Chao; Chao, Chun-Jiang; Wang, Yamei; Jin, Quan-Wen

    2017-03-01

    GFP-binding protein (or GBP) has been recently developed in various systems and organisms as an efficient tool to purify GFP-fusion proteins. Due to the high affinity between GBP and GFP or GFP variants, this GBP-based approach is also ideally suited to alter the localization of functional proteins in live cells. In order to facilitate the wide use of the GBP-targeting approach in the fission yeast Schizosaccharomyces pombe, we developed a set of pFA6a-, pJK148- and pUC119-based vectors containing GBP- or GBP-mCherry-coding sequences and variants of inducible nmt1 or constitutive adh1 promoters that result in different levels of expression. The GBP or GBP-mCherry fragments can serve as cassettes for N- or C-terminal genomic tagging of genes of interest. We illustrated the application of these vectors in the construction of yeast strains with Dma1 or Cdc7 tagged with GBP-mCherry and efficient targeting of Dma1- or Cdc7-GBP-mCherry to the spindle pole body by Sid4-GFP. This series of vectors should help to facilitate the application of the GBP-targeting approach in manipulating protein localization and the analysis of gene function in fission yeast, at the level of single genes, as well as at a systematic scale. © 2017. Published by The Company of Biologists Ltd.

  12. A CRISPR/Cas9-based method and primer design tool for seamless genome editing in fission yeast

    Science.gov (United States)

    Rodríguez-López, María; Cotobal, Cristina; Fernández-Sánchez, Oscar; Borbarán Bravo, Natalia; Oktriani, Risky; Abendroth, Heike; Uka, Dardan; Hoti, Mimoza; Wang, Jin; Zaratiegui, Mikel; Bähler, Jürg

    2017-01-01

    In the fission yeast Schizosaccharomyces pombe the prevailing approach for gene manipulations is based on homologous recombination of a PCR product that contains genomic target sequences and a selectable marker. The CRISPR/Cas9 system has recently been implemented in fission yeast, which allows for seamless genome editing without integration of a selection marker or leaving any other genomic ‘scars’. The published method involves manual design of the single guide RNA (sgRNA), and digestion of a large plasmid with a problematic restriction enzyme to clone the sgRNA. To increase the efficiency of this approach, we have established and optimized a PCR-based system to clone the sgRNA without restriction enzymes into a plasmid with a dominant natMX6 (nourseothricin) selection marker. We also provide a web-tool, CRISPR4P, to support the design of the sgRNAs and the primers required for the entire process of seamless DNA deletion. Moreover, we report the preparation of G1-synchronized and cryopreserved S. pombe cells, which greatly increases the efficiency and speed for transformations, and may also facilitate standard gene manipulations. Applying this optimized CRISPR/Cas9-based approach, we have successfully deleted over 80 different non-coding RNA genes, which are generally lowly expressed, and have inserted 7 point mutations in 4 different genomic regions. PMID:28612052

  13. Fungal genome sequencing: basic biology to biotechnology.

    Science.gov (United States)

    Sharma, Krishna Kant

    2016-08-01

    The genome sequences provide a first glimpse into the genomic basis of the biological diversity of filamentous fungi and yeast. The genome sequence of the budding yeast, Saccharomyces cerevisiae, with a small genome size, unicellular growth, and rich history of genetic and molecular analyses was a milestone of early genomics in the 1990s. The subsequent completion of fission yeast, Schizosaccharomyces pombe and genetic model, Neurospora crassa initiated a revolution in the genomics of the fungal kingdom. In due course of time, a substantial number of fungal genomes have been sequenced and publicly released, representing the widest sampling of genomes from any eukaryotic kingdom. An ambitious genome-sequencing program provides a wealth of data on metabolic diversity within the fungal kingdom, thereby enhancing research into medical science, agriculture science, ecology, bioremediation, bioenergy, and the biotechnology industry. Fungal genomics have higher potential to positively affect human health, environmental health, and the planet's stored energy. With a significant increase in sequenced fungal genomes, the known diversity of genes encoding organic acids, antibiotics, enzymes, and their pathways has increased exponentially. Currently, over a hundred fungal genome sequences are publicly available; however, no inclusive review has been published. This review is an initiative to address the significance of the fungal genome-sequencing program and provides the road map for basic and applied research.

  14. Translation efficiency in yeasts correlates with nucleosome formation in promoters.

    Science.gov (United States)

    Matushkin, Yu G; Levitsky, V G; Orlov, Yu L; Likhoshvai, V A; Kolchanov, N A

    2013-01-01

    Elongation efficiency index (EEI) was suggested earlier to estimate gene expression efficiency by nucleotide context of coding sequence in unicellular organisms. We have analyzed association between EEI and nucleosome formation potential (NFP) in 5' regulatory regions upstream translation initiation site (TIS) from two yeast species. Theoretical estimations of NFP based on DNA sequence were obtained by Recon method. Experimental estimation of nucleosome occupancy was obtained by high-throughput sequencing data of nucleosomal DNA in Saccharomyces cerevisiae . For the sample of all genes correlation coefficient was calculated between two vectors: vector of NFP values for fixed position relative to TIS and vector of EEI values. Profiles of correlation coefficients of NFP and EEI were counted in (-600; +600) regions relative to TIS for gene sequences extracted from GenBank. We found regions of strong negative dependence between NFP and EEI for all genes as well as for 10% highly expressed genes in Schizosaccharomyces pombe (10% of EEI-highest genes). At the same time, we found positive dependence between NFP and EEI for all genes and for low expressed genes in S. cerevisiae (10% of EEI-lowest genes). The association between NFP and EEI could be explained by evolutionary selection of context characteristics of nucleotide sequences for gene expression optimization.

  15. Effects of FSGS-associated mutations on the stability and function of myosin-1 in fission yeast

    Directory of Open Access Journals (Sweden)

    Jing Bi

    2015-08-01

    Full Text Available Point mutations in the human MYO1E gene, encoding class I myosin Myo1e, are associated with focal segmental glomerulosclerosis (FSGS, a primary kidney disorder that leads to end-stage kidney disease. In this study, we used a simple model organism, fission yeast Schizosaccharomyces pombe, to test the effects of FSGS-associated mutations on myosin activity. Fission yeast has only one class I myosin, Myo1, which is involved in actin patch assembly at the sites of endocytosis. The amino acid residues mutated in individuals with FSGS are conserved between human Myo1e and yeast Myo1, which allowed us to introduce equivalent mutations into yeast myosin and use the resulting mutant strains for functional analysis. Yeast strains expressing mutant Myo1 exhibited defects in growth and endocytosis similar to those observed in the myo1 deletion strain. These mutations also disrupted Myo1 localization to endocytic actin patches and resulted in mis-localization of Myo1 to eisosomes, linear membrane microdomains found in yeast cells. Although both mutants examined in this study exhibited loss of function, one of these mutants was also characterized by the decreased protein stability. Thus, using the yeast model system, we were able to determine that the kidney-disease-associated mutations impair myosin functional activity and have differential effects on protein stability.

  16. Regulation of fission yeast morphogenesis by PP2A activator pta2.

    Directory of Open Access Journals (Sweden)

    Manuel Bernal

    Full Text Available Cell polarization is key for the function of most eukaryotic cells, and regulates cell shape, migration and tissue architecture. Fission yeast, Schizosaccharomyces pombe cells are cylindrical and polarize cell growth to one or both cell tips dependent on the cell cycle stage. Whereas microtubule cytoskeleton contributes to the positioning of the growth sites by delivering polarity factors to the cell ends, the Cdc42 GTPase polarizes secretion via actin-dependent delivery and tethering of secretory vesicles to plasma membrane. How growth is restricted to cell tips and how re-initiation of tip growth is regulated in the cell cycle remains poorly understood. In this work we investigated the function of protein phosphatase type 2A (PP2A in S. pombe morphogenesis by deleting the evolutionary conserved PTPA-type regulatory subunit that we named pta2. pta2-deleted cells showed morphological defects and altered growth pattern. Consistent with this, actin patches and active Cdc42 were mislocalized in the pta2 deletion. These defects were additive to the lack of Cdc42-GAP Rga4. pta2Δ cells show upregulated Cdc42 activity and pta2 interacts genetically with polarisome components Tea1, Tea4 and For3 leading to complete loss of cell polarity and rounded morphology. Thus, regulation of polarity by PP2A requires the polarisome and involves Pta2-dependent control of Cdc42 activity.

  17. Rad53 kinase activation-independent replication checkpoint function of the N-terminal forkhead-associated (FHA1) domain.

    Science.gov (United States)

    Pike, Brietta L; Tenis, Nora; Heierhorst, Jörg

    2004-09-17

    Saccharomyces cerevisiae Rad53 has crucial functions in many aspects of the cellular response to DNA damage and replication blocks. To coordinate these diverse roles, Rad53 has two forkhead-associated (FHA) phosphothreonine-binding domains in addition to a kinase domain. Here, we show that the conserved N-terminal FHA1 domain is essential for the function of Rad53 to prevent the firing of late replication origins in response to replication blocks. However, the FHA1 domain is not required for Rad53 activation during S phase, and as a consequence of defective downstream signaling, Rad53 containing an inactive FHA1 domain is hyperphosphorylated in response to replication blocks. The FHA1 mutation dramatically hypersensitizes strains with defects in the cell cycle-wide checkpoint pathways (rad9Delta and rad17Delta) to DNA damage, but it is largely epistatic with defects in the replication checkpoint (mrc1Delta). Altogether, our data indicate that the FHA1 domain links activated Rad53 to downstream effectors in the replication checkpoint. The results reveal an important mechanistic difference to the homologous Schizosaccharomyces pombe FHA domain that is required for Mrc1-dependent activation of the corresponding Cds1 kinase. Surprisingly, despite the severely impaired replication checkpoint and also G(2)/M checkpoint functions, the FHA1 mutation by itself leads to only moderate viability defects in response to DNA damage, highlighting the importance of functionally redundant pathways.

  18. The informational architecture of the cell.

    Science.gov (United States)

    Walker, Sara Imari; Kim, Hyunju; Davies, Paul C W

    2016-03-13

    We compare the informational architecture of biological and random networks to identify informational features that may distinguish biological networks from random. The study presented here focuses on the Boolean network model for regulation of the cell cycle of the fission yeast Schizosaccharomyces pombe. We compare calculated values of local and global information measures for the fission yeast cell cycle to the same measures as applied to two different classes of random networks: Erdös-Rényi and scale-free. We report patterns in local information processing and storage that do indeed distinguish biological from random, associated with control nodes that regulate the function of the fission yeast cell-cycle network. Conversely, we find that integrated information, which serves as a global measure of 'emergent' information processing, does not differ from random for the case presented. We discuss implications for our understanding of the informational architecture of the fission yeast cell-cycle network in particular, and more generally for illuminating any distinctive physics that may be operative in life. © 2016 The Author(s).

  19. Global gene expression analysis of fission yeast mutants impaired in Ser-2 phosphorylation of the RNA pol II carboxy terminal domain.

    Directory of Open Access Journals (Sweden)

    Reza Saberianfar

    Full Text Available In Schizosaccharomyces pombe the nuclear-localized Lsk1p-Lsc1p cyclin dependent kinase complex promotes Ser-2 phosphorylation of the heptad repeats found within the RNA pol II carboxy terminal domain (CTD. Here, we first provide evidence supporting the existence of a third previously uncharacterized Ser-2 CTD kinase subunit, Lsg1p. As expected for a component of the complex, Lsg1p localizes to the nucleus, promotes Ser-2 phosphorylation of the CTD, and physically interacts with both Lsk1p and Lsc1p in vivo. Interestingly, we also demonstrate that lsg1Δ mutants--just like lsk1Δ and lsc1Δ strains--are compromised in their ability to faithfully and reliably complete cytokinesis. Next, to address whether kinase mediated alterations in CTD phosphorylation might selectively alter the expression of genes with roles in cytokinesis and/or the cytoskeleton, global gene expression profiles were analyzed. Mutants impaired in Ser-2 phosphorylation display little change with respect to the level of transcription of most genes. However, genes affecting cytokinesis--including the actin interacting protein gene, aip1--as well as genes with roles in meiosis, are included in a small subset that are differentially regulated. Significantly, genetic analysis of lsk1Δ aip1Δ double mutants is consistent with Lsk1p and Aip1p acting in a linear pathway with respect to the regulation of cytokinesis.

  20. The functionally elusive RabI chromosome configuration directly regulates nuclear membrane remodeling at mitotic onset.

    Science.gov (United States)

    Fernández-Álvarez, Alfonso; Cooper, Julia Promisel

    2017-08-03

    Despite its ubiquity in interphase eukaryotic nuclei, the functional significance of the RabI configuration, in which interphase centromeres are clustered at the nuclear envelope (NE) near the centrosome and telomeres localize at the opposite end of the nucleus, has remained mysterious. In a broad variety of organisms, including Schizosaccharomyces pombe, the RabI configuration is maintained throughout mitotic interphase. The fission yeast linker of nucleoskeleton and cytoskeleton (LINC) complex mediates this centromere association. The functional significance of centromere positioning during interphase has been recently revealed using a conditionally inactivated LINC allele that maintains LINC stability but releases interphase centromere-LINC contacts. Remarkably, this interphase release abolishes mitotic spindle formation. Here, we confirm these observations using an alternative strategy to explore the role of centromere-NE association without modifying the LINC complex. We analyze spindle dynamics in cells lacking Csi1, a stabilizer of centromere-LINC associations, and Lem2, a NE protein harboring lamin interacting domains. We recapitulate these observations and their implications for the functional significance of centromere positioning for cell cycle progression in fission yeast and most likely, a wide range of eukaryotes.

  1. Evolutionarily conserved roles of the dicer helicase domain in regulating RNA interference processing.

    Science.gov (United States)

    Kidwell, Mary Anne; Chan, Jessica M; Doudna, Jennifer A

    2014-10-10

    The enzyme Dicer generates 21-25 nucleotide RNAs that target specific mRNAs for silencing during RNA interference and related pathways. Although their active sites and RNA binding regions are functionally conserved, the helicase domains have distinct activities in the context of different Dicer enzymes. To examine the evolutionary origins of Dicer helicase functions, we investigated two related Dicer enzymes from the thermophilic fungus Sporotrichum thermophile. RNA cleavage assays showed that S. thermophile Dicer-1 (StDicer-1) can process hairpin precursor microRNAs, whereas StDicer-2 can only cleave linear double-stranded RNAs. Furthermore, only StDicer-2 possesses robust ATP hydrolytic activity in the presence of double-stranded RNA. Deletion of the StDicer-2 helicase domain increases both StDicer-2 cleavage activity and affinity for hairpin RNA. Notably, both StDicer-1 and StDicer-2 could complement the distantly related yeast Schizosaccharomyces pombe lacking its endogenous Dicer gene but only in their full-length forms, underscoring the importance of the helicase domain. These results suggest an in vivo regulatory function for the helicase domain that may be conserved from fungi to humans. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Convergent evolution of a fused sexual cycle promotes the haploid lifestyle

    Science.gov (United States)

    Sherwood, Racquel Kim; Scaduto, Christine M.; Torres, Sandra E.; Bennett, Richard J.

    2014-02-01

    Sexual reproduction is restricted to eukaryotic species and involves the fusion of haploid gametes to form a diploid cell that subsequently undergoes meiosis to generate recombinant haploid forms. This process has been extensively studied in the unicellular yeast Saccharomyces cerevisiae, which exhibits separate regulatory control over mating and meiosis. Here we address the mechanism of sexual reproduction in the related hemiascomycete species Candida lusitaniae. We demonstrate that, in contrast to S. cerevisiae, C. lusitaniae exhibits a highly integrated sexual program in which the programs regulating mating and meiosis have fused. Profiling of the C. lusitaniae sexual cycle revealed that gene expression patterns during mating and meiosis were overlapping, indicative of co-regulation. This was particularly evident for genes involved in pheromone MAPK signalling, which were highly induced throughout the sexual cycle of C. lusitaniae. Furthermore, genetic analysis showed that the orthologue of IME2, a `diploid-specific' factor in S. cerevisiae, and STE12, the master regulator of S. cerevisiae mating, were each required for progression through both mating and meiosis in C. lusitaniae. Together, our results establish that sexual reproduction has undergone significant rewiring between S. cerevisiae and C. lusitaniae, and that a concerted sexual cycle operates in C. lusitaniae that is more reminiscent of the distantly related ascomycete, Schizosaccharomyces pombe. We discuss these results in light of the evolution of sexual reproduction in yeast, and propose that regulatory coupling of mating and meiosis has evolved multiple times as an adaptation to promote the haploid lifestyle.

  3. Carbon allocation in ectomycorrhizas: identification and expression analysis of an Amanita muscaria monosaccharide transporter.

    Science.gov (United States)

    Nehls, U; Wiese, J; Guttenberger, M; Hampp, R

    1998-03-01

    Ectomycorrhizas are formed between certain soil fungi and fine roots of predominantly woody plants. An important feature of this symbiosis is the supply of plant-derived carbohydrates to the fungus. As a first step toward a better understanding of the molecular basis of this process, we cloned a monosaccharide transporter from the ectomycorrhizal fungus Amanita muscaria. Degenerate oligonucleotide primers were designed to match conserved regions from known fungal sugar transporters. A cDNA fragment of the transporter was obtained from mycorrhizal mRNA by reverse transcription-polymerase chain reaction. This fragment was used to identify a clone (AmMst1) encoding the entire monosaccharide transporter in a Picea abies/A. muscaria mycorrhizal cDNA library. The cDNA codes for an open reading frame of 520 amino acids, showing best homology to a Neurospora crassa monosaccharide transporter. The function of AmMST1 as monosaccharide transporter was confirmed by heterologous expression of the cDNA in a Schizosaccharomyces pombe mutant lacking a monosaccharide uptake system. AmMst1 was constitutively expressed in fungal hyphae under all growth conditions. Nevertheless, in mycorrhizas as well as in hyphae grown at monosaccharide concentrations above 5 mM, the amount of AmMst1 transcript increased fourfold. We therefore suggest that AmMst1 is upregulated in ectomycorrhizas by a monosaccharide-controlled mechanism.

  4. Use of non-Saccharomyces yeasts and oenological tannin in red winemaking: Influence on colour, aroma and sensorial properties of young wines.

    Science.gov (United States)

    Chen, Kai; Escott, Carlos; Loira, Iris; Del Fresno, Juan Manuel; Morata, Antonio; Tesfaye, Wendu; Calderon, Fernando; Suárez-Lepe, Jose Antonio; Han, Shunyu; Benito, Santiago

    2018-02-01

    Today, many non-Saccharomyces strains have been verified can be positive for the development of wine anthocyanin and aroma in different fermentation scenarios. Moreover, oenological tannins are widely used in wine industry to improve the colour profile and aroma complexity. The aim of this work is to analyze the fermentation characters of non-Saccharomyces strains and investigate the effects of pre-fermentative addition of oenological tannins on the wine components as well as sensory properties. For this purpose, five selected non-Saccharomyces strains and grape seed tannin were used to carry out the different fermentation trials. As a result, the grape seed tannin were less likely to influence growth kinetics of non-Saccharomyces strains. Schizosaccharomyces pombe has been proved can be effective to reduce the malic acid content while increase the level of vinylphenolic pyranoanthocyanin, which is positive for wine colour stability. Pre-fermentative use of oenological tannin was verified could be beneficial for the wines fermented with non-Saccharomyces regarding the improvement of wine colour, anthocyanin composition and the complexity of volatile compounds. Nevertheless, sensory analysis showed that oenological tannin could be less effective to modify the aroma impression of non-Saccharomyces wines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Structure of an aprataxin-DNA complex with insights into AOA1 neurodegenerative disease

    Energy Technology Data Exchange (ETDEWEB)

    Tumbale, Percy; Appel, C Denise; Kraehenbuehl, Rolf; Robertson, Patrick D; Williams, Jessica S; Krahn, Joe; Ahel, Ivan; Williams, R Scott [NIEHS; (Manchester)

    2012-09-17

    DNA ligases finalize DNA replication and repair through DNA nick-sealing reactions that can abort to generate cytotoxic 5'-adenylation DNA damage. Aprataxin (Aptx) catalyzes direct reversal of 5'-adenylate adducts to protect genome integrity. Here the structure of a Schizosaccharomyces pombe Aptx-DNA-AMP-Zn2+ complex reveals active site and DNA interaction clefts formed by fusing a histidine triad (HIT) nucleotide hydrolase with a DNA minor groove-binding C2HE zinc finger (Znf). An Aptx helical 'wedge' interrogates the base stack for sensing DNA ends or DNA nicks. The HIT-Znf, the wedge and an '[F/Y]PK' pivot motif cooperate to distort terminal DNA base-pairing and direct 5'-adenylate into the active site pocket. Structural and mutational data support a wedge-pivot-cut HIT-Znf catalytic mechanism for 5'-adenylate adduct recognition and removal and suggest that mutations affecting protein folding, the active site pocket and the pivot motif underlie Aptx dysfunction in the neurodegenerative disorder ataxia with oculomotor apraxia 1 (AOA1).

  6. Comparison of media formulations used to selectively cultivate Dekkera/Brettanomyces.

    Science.gov (United States)

    Morneau, A D; Zuehlke, J M; Edwards, C G

    2011-10-01

    The objectives of this research were to (i) optimize the concentration of cycloheximide for use in WL media used in the wine industry and (ii) evaluate Dekkera/Brettanomyces differential medium (DBDM) as a means to detect Dekkera. Dekkera bruxellensis and other yeasts were transferred into WL broths containing 0, 10, 50 or 100 mg l(-1) of cycloheximide. While several grew in 10 mg l(-1) , only Hanseniaspora uvarum, Pichia guillermondii, Schizosaccharomyces pombe and D. bruxellensis tolerated ≥50 mg l(-1) of the antibiotic. On solidified WL media after 8-days incubation, colony sizes of two strains of D. bruxellensis (B1b and ATCC 52905) decreased with increased concentrations of cycloheximide, while others (F3 and P2) were unaffected. Although D. bruxellensis B1b did not grow well on another selective medium, DBDM, colony development was improved by the addition of sterilized red wine. Of the concentrations tested, 50 mg l(-1) cycloheximide inhibited many grape/wine yeasts yet generally yielded countable colonies of Dekkera (1-2.5 mm diameter). Several strains of Dekkera did not grow well on DBDM, probably due to the lack of an unidentified nutrient(s). Better media formulations will improve the detection of Dekkera, thereby increasing microbiological control during winemaking. © 2011 The Authors. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.

  7. Mitochondrial dysfunction increases oxidative stress and decreases chronological life span in fission yeast.

    Directory of Open Access Journals (Sweden)

    Alice Zuin

    Full Text Available BACKGROUND: Oxidative stress is a probable cause of aging and associated diseases. Reactive oxygen species (ROS originate mainly from endogenous sources, namely the mitochondria. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed the effect of aerobic metabolism on oxidative damage in Schizosaccharomyces pombe by global mapping of those genes that are required for growth on both respiratory-proficient media and hydrogen-peroxide-containing fermentable media. Out of a collection of approximately 2700 haploid yeast deletion mutants, 51 were sensitive to both conditions and 19 of these were related to mitochondrial function. Twelve deletion mutants lacked components of the electron transport chain. The growth defects of these mutants can be alleviated by the addition of antioxidants, which points to intrinsic oxidative stress as the origin of the phenotypes observed. These respiration-deficient mutants display elevated steady-state levels of ROS, probably due to enhanced electron leakage from their defective transport chains, which compromises the viability of chronologically-aged cells. CONCLUSION/SIGNIFICANCE: Individual mitochondrial dysfunctions have often been described as the cause of diseases or aging, and our global characterization emphasizes the primacy of oxidative stress in the etiology of such processes.

  8. Condensin HEAT subunits required for DNA repair, kinetochore/centromere function and ploidy maintenance in fission yeast.

    Directory of Open Access Journals (Sweden)

    Xingya Xu

    Full Text Available Condensin, a central player in eukaryotic chromosomal dynamics, contains five evolutionarily-conserved subunits. Two SMC (structural maintenance of chromosomes subunits contain ATPase, hinge, and coiled-coil domains. One non-SMC subunit is similar to bacterial kleisin, and two other non-SMC subunits contain HEAT (similar to armadillo repeats. Here we report isolation and characterization of 21 fission yeast (Schizosaccharomyces pombe mutants for three non-SMC subunits, created using error-prone mutagenesis that resulted in single-amino acid substitutions. Beside condensation, segregation, and DNA repair defects, similar to those observed in previously isolated SMC and cnd2 mutants, novel phenotypes were observed for mutants of HEAT-repeats containing Cnd1 and Cnd3 subunits. cnd3-L269P is hypersensitive to the microtubule poison, thiabendazole, revealing defects in kinetochore/centromere and spindle assembly checkpoints. Three cnd1 and three cnd3 mutants increased cell size and doubled DNA content, thereby eliminating the haploid state. Five of these mutations reside in helix B of HEAT repeats. Two non-SMC condensin subunits, Cnd1 and Cnd3, are thus implicated in ploidy maintenance.

  9. Fission Yeast Exo1 and Rqh1-Dna2 Redundantly Contribute to Resection of Uncapped Telomeres.

    Directory of Open Access Journals (Sweden)

    Tomoko Nanbu

    Full Text Available The uncapping of telomeres induces a DNA damage response. In Schizosaccharomyces pombe, deletion of pot1+ causes telomere uncapping and rapid telomere resection, resulting in chromosome fusion. Using the nmt-pot1-aid strain, we previously reported that Pot1 shut-off causes telomere loss and chromosome fusion in S. pombe. However, the factors responsible for the resection of uncapped telomeres remain unknown. In this study, we investigated these factors and found that concomitant deletion of rqh1+ and exo1+ alleviated the loss of telomeres following Pot1 shut-off, suggesting that Rqh1 and Exo1 are redundantly involved in the resection of uncapped telomeres. We also investigated the role of Rqh1 helicase activity and found it to be essential for the resection of uncapped telomeres. Moreover, we found that Dna2 and Exo1 function redundantly in the resection of uncapped telomeres. Taken together, these results suggest that Exo1 and Rqh1-Dna2 redundantly contribute to the resection of uncapped telomeres. Therefore, our results demonstrate that nmt-pot1-aid is an important model strain to study the role of helicases and nucleases in the resection of uncapped telomeres and to improve our understanding of DNA double-strand break repair.

  10. Biosynthesis of cadmium sulphide quantum semiconductor crystallites

    Science.gov (United States)

    Dameron, C. T.; Reese, R. N.; Mehra, R. K.; Kortan, A. R.; Carroll, P. J.; Steigerwald, M. L.; Brus, L. E.; Winge, D. R.

    1989-04-01

    NANOMETRE-SCALE semiconductor quantum crystallites exhibit size-dependent and discrete excited electronic states which occur at energies higher than the band gap of the corresponding bulk solid1-4. These crystallites are too small to have continuous energy bands, even though a bulk crystal structure is present. The onset of such quantum properties sets a fundamental limit to device miniaturization in microelectronics5. Structures with either one, two or all three dimensions on the nanometer scale are of particular interest in solid state physics6. We report here our discovery of the biosynthesis of quantum crystallites in yeasts Candida glabrata and Schizosaccharomyces pombe, cultured in the presence of cad-mium salts. Short chelating peptides of general structure (γ-Glu-Cys)n-Gly control the nucleation and growth of CdS crystallites to peptide-capped intracellular particles of diameter 20 Å. These quantum CdS crystallites are more monodisperse than CdS par-ticles synthesized chemically. X-ray data indicate that, at this small size, the CdS structure differs from that of bulk CdS and tends towards a six-coordinate rock-salt structure.

  11. Constriction model of actomyosin ring for cytokinesis by fission yeast using a two-state sliding filament mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yong-Woon [Department of Chemistry, Texas A and M University, College Station, Texas 77843-3255 (United States); Mascagni, Michael, E-mail: Mascagni@fsu.edu [Departments of Computer Science, Mathematics and Scientific Computing, and Graduate Program in Molecular Biophysics, Florida State University, Tallahassee, Florida 32306-4530 (United States)

    2014-09-28

    We developed a model describing the structure and contractile mechanism of the actomyosin ring in fission yeast, Schizosaccharomyces pombe. The proposed ring includes actin, myosin, and α-actinin, and is organized into a structure similar to that of muscle sarcomeres. This structure justifies the use of the sliding-filament mechanism developed by Huxley and Hill, but it is probably less organized relative to that of muscle sarcomeres. Ring contraction tension was generated via the same fundamental mechanism used to generate muscle tension, but some physicochemical parameters were adjusted to be consistent with the proposed ring structure. Simulations allowed an estimate of ring constriction tension that reproduced the observed ring constriction velocity using a physiologically possible, self-consistent set of parameters. Proposed molecular-level properties responsible for the thousand-fold slower constriction velocity of the ring relative to that of muscle sarcomeres include fewer myosin molecules involved, a less organized contractile configuration, a low α-actinin concentration, and a high resistance membrane tension. Ring constriction velocity is demonstrated as an exponential function of time despite a near linear appearance. We proposed a hypothesis to explain why excess myosin heads inhibit constriction velocity rather than enhance it. The model revealed how myosin concentration and elastic resistance tension are balanced during cytokinesis in S. pombe.

  12. A central role for TOR signalling in a yeast model for juvenile CLN3 disease

    Directory of Open Access Journals (Sweden)

    Michael E. Bond

    2015-11-01

    Full Text Available Yeasts provide an excellent genetically tractable eukaryotic system for investigating the function of genes in their biological context, and are especially relevant for those conserved genes that cause disease. We study the role of btn1, the orthologue of a human gene that underlies an early onset neurodegenerative disease (juvenile CLN3 disease, neuronal ceroid lipofuscinosis (NCLs or Batten disease in the fission yeast Schizosaccharomyces pombe. A global screen for genetic interactions with btn1 highlighted a conserved key signalling hub in which multiple components functionally relate to this conserved disease gene. This signalling hub includes two major mitogen-activated protein kinase (MAPK cascades, and centers on the Tor kinase complexes TORC1 and TORC2. We confirmed that yeast cells modelling CLN3 disease exhibit features consistent with dysfunction in the TORC pathways, and showed that modulating TORC function leads to a comprehensive rescue of defects in this yeast disease model. The same pathways may be novel targets in the development of therapies for the NCLs and related diseases.

  13. Data Mining for Expressivity of Recombinant Protein Expression

    Science.gov (United States)

    Kira, Satoshi; Isoai, Atsushi; Yamamura, Masayuki

    We analyzed the expressivity of recombinant proteins by using data mining methods. The expression technique of recombinant protein is a key step towards elucidating the functions of genes discovered through genomic sequence projects. We have studied the productive efficiency of recombinant proteins in fission yeast, Schizosaccharomyces pombe (S.pombe), by mining the expression results. We gathered 57 proteins whose expression levels were known roughly in the host. Correlation analysis, principal component analysis and decision tree analysis were applied to these expression data. Analysis featuring codon usage and amino acid composition clarified that the amino acid composition affected to the expression levels of a recombinant protein strongly than the effect of codon usage. Furthermore, analysis of amino acid composition showed that protein solubility and the metabolism cost of amino acids correlated with a protein expressivity. Codon usage was often interesting in the field of recombinant expressions. However, our analysis found the weak correlation codon features with expressivities. These results indicated that ready-made indices of codon bias were irrelevant ones for modeling the expressivities of recombinant proteins. Our data driven approach was an easy and powerful method to improve recombinant protein expression, and this approach should be concentrated attention with the huge amount of expression data accumulating through the post-genome era.

  14. Mechanism of Action of a Flavin-Containing Monooxygenase

    Energy Technology Data Exchange (ETDEWEB)

    Eswaramoorthy,S.; Bonanno, J.; Burley, S.; Swaminathan, S.

    2006-01-01

    Elimination of nonnutritional and insoluble compounds is a critical task for any living organism. Flavin-containing monooxygenases (FMOs) attach an oxygen atom to the insoluble nucleophilic compounds to increase solubility and thereby increase excretion. Here we analyze the functional mechanism of FMO from Schizosaccharomyces pombe using the crystal structures of the wild type and protein-cofactor and protein-substrate complexes. The structure of the wild-type FMO revealed that the prosthetic group FAD is an integral part of the protein. FMO needs NADPH as a cofactor in addition to the prosthetic group for its catalytic activity. Structures of the protein-cofactor and protein-substrate complexes provide insights into mechanism of action. We propose that FMOs exist in the cell as a complex with a reduced form of the prosthetic group and NADPH cofactor, readying them to act on substrates. The 4{alpha}-hydroperoxyflavin form of the prosthetic group represents a transient intermediate of the monooxygenation process. The oxygenated and reduced forms of the prosthetic group help stabilize interactions with cofactor and substrate alternately to permit continuous enzyme turnover.

  15. Structural Basis for l-Lysine Feedback Inhibition of Homocitrate Synthase

    Energy Technology Data Exchange (ETDEWEB)

    Bulfer, Stacie L.; Scott, Erin M.; Pillus, Lorraine; Trievel, Raymond C. (Michigan); (UCSD)

    2010-09-02

    The {alpha}-aminoadipate pathway of lysine biosynthesis is modulated at the transcriptional and biochemical levels by feedback inhibition. The first enzyme in the {alpha}-aminoadipate pathway, homocitrate synthase (HCS), is the target of the feedback regulation and is strongly inhibited by L-lysine. Here we report the structure of Schizosaccharomyces pombe HCS (SpHCS) in complex with L-lysine. The structure illustrates that the amino acid directly competes with the substrate 2-oxoglutarate for binding within the active site of HCS. Differential recognition of the substrate and inhibitor is achieved via a switch position within the ({alpha}/{beta}){sub 8} TIM barrel of the enzyme that can distinguish between the C5-carboxylate group of 2-oxoglutarate and the {epsilon}-ammonium group of L-lysine. In vitro and in vivo assays demonstrate that mutations of the switch residues, which interact with the L-lysine {epsilon}-ammonium group, abrogate feedback inhibition, as do substitutions of residues within the C-terminal domain that were identified in a previous study of L-lysine-insensitive HCS mutants in Saccharomyces cerevisiae. Together, these results yield new insights into the mechanism of feedback regulation of an enzyme central to lysine biosynthesis.

  16. Yeast signaling pathways in the oxidative stress response

    Energy Technology Data Exchange (ETDEWEB)

    Ikner, Aminah [Section of Microbiology, Division of Biological Sciences, University of California, Davis, CA 95616 (United States); Shiozaki, Kazuhiro [Section of Microbiology, Division of Biological Sciences, University of California, Davis, CA 95616 (United States)]. E-mail: kshiozaki@ucdavis.edu

    2005-01-06

    Oxidative stress that generates the reactive oxygen species (ROS) is one of the major causes of DNA damage and mutations. The 'DNA damage checkpoint' that arrests cell cycle and repairs damaged DNA has been a focus of recent studies, and the genetically amenable model systems provided by yeasts have been playing a leading role in the eukaryotic checkpoint research. However, means to eliminate ROS are likely to be as important as the DNA repair mechanisms in order to suppress mutations in the chromosomal DNA, and yeasts also serve as excellent models to understand how eukaryotes combat oxidative stress. In this article, we present an overview of the signaling pathways that sense oxidative stress and induce expression of various anti-oxidant genes in the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe and the pathogenic yeast Candida albicans. Three conserved signaling modules have been identified in the oxidative stress response of these diverse yeast species: the stress-responsive MAP kinase cascade, the multistep phosphorelay and the AP-1-like transcription factor. The structure and function of these signaling modules are discussed.

  17. An RNA polymerase III-dependent heterochromatin barrier at fission yeast centromere 1.

    Directory of Open Access Journals (Sweden)

    Kristin C Scott

    Full Text Available Heterochromatin formation involves the nucleation and spreading of structural and epigenetic features along the chromatin fiber. Chromatin barriers and associated proteins counteract the spreading of heterochromatin, thereby restricting it to specific regions of the genome. We have performed gene expression studies and chromatin immunoprecipitation on strains in which native centromere sequences have been mutated to study the mechanism by which a tRNA(Alanine gene barrier (cen1 tDNA(Ala blocks the spread of pericentromeric heterochromatin at the centromere of chromosome 1 (cen1 in the fission yeast, Schizosaccharomyces pombe. Within the centromere, barrier activity is a general property of tDNAs and, unlike previously characterized barriers, requires the association of both transcription factor IIIC and RNA Polymerase III. Although the cen1 tDNA(Ala gene is actively transcribed, barrier activity is independent of transcriptional orientation. These findings provide experimental evidence for the involvement of a fully assembled RNA polymerase III transcription complex in defining independent structural and functional domains at a eukaryotic centromere.

  18. Structure and Biochemical Properties of Fission Yeast Arp2/3 Complex Lacking the Arp2 Subunit

    Energy Technology Data Exchange (ETDEWEB)

    Nolen, B.; Pollard, T

    2008-01-01

    Arp2/3 (actin-related protein 2/3) complex is a seven-subunit complex that nucleates branched actin filaments in response to cellular signals. Nucleation-promoting factors such as WASp/Scar family proteins activate the complex by facilitating the activating conformational change and recruiting the first actin monomer for the daughter branch. Here we address the role of the Arp2 subunit in the function of Arp2/3 complex by isolating a version of the complex lacking Arp2 (Arp2? Arp2/3 complex) from fission yeast. An x-ray crystal structure of the ?Arp2 Arp2/3 complex showed that the rest of the complex is unperturbed by the loss of Arp2. However, the Arp2? Arp2/3 complex was inactive in actin nucleation assays, indicating that Arp2 is essential to form a branch. A fluorescence anisotropy assay showed that Arp2 does not contribute to the affinity of the complex for Wsp1-VCA, a Schizosaccharomyces pombe nucleation-promoting factor protein. Fluorescence resonance energy transfer experiments showed that the loss of Arp2 does not prevent VCA from recruiting an actin monomer to the complex. Truncation of the N terminus of ARPC5, the smallest subunit in the complex, increased the yield of Arp2? Arp2/3 complex during purification but did not compromise nucleation activity of the full Arp2/3 complex.

  19. Bystander effects in unicellular organisms

    Energy Technology Data Exchange (ETDEWEB)

    DeVeaux, Linda C. [Idaho Accelerator Center, Campus Box 8263, Idaho State University, Pocatello, ID 83209 (United States) and Department of Biological Sciences, Campus Box 8007, Idaho State University, Pocatello, ID 83209 (United States)]. E-mail: develind@isu.edu; Durtschi, Lynn S. [Department of Biological Sciences, Campus Box 8007, Idaho State University, Pocatello, ID 83209 (United States); Case, Jonathan G. [Department of Physics, Campus Box 8106, Idaho State University, Pocatello, ID 83209 (United States); Wells, Douglas P. [Department of Physics, Campus Box 8106, Idaho State University, Pocatello, ID 83209 (United States)

    2006-05-11

    Radiation-induced bystander effects have been seen in mammalian cells from diverse origins. These effects can be transmitted through the medium to cells not present at the time of irradiation. We have developed an assay for detecting bystander effects in the unicellular eukaryote, the fission yeast Schizosaccharomyces pombe. This assay allows maximal exposure of unirradiated cells to cells that have received electron beam irradiation. S. pombe cells were irradiated with 16-18 MeV electrons from a pulsed electron LINAC. When survival of the irradiated cells decreased to approximately 50%, forward-mutation to 2-deoxy-D-glucose resistance increased in the unirradiated bystander cells. Further increase in dose had no additional effect on this increase. In order to detect this response, it was necessary for the irradiated cell/unirradiated cell ratio to be high. Other cellular stresses, such as heat treatment, UV irradiation, and bleomycin exposure, also caused a detectable response in untreated cells grown with the treated cells. We discuss evolutionary implications of these results.

  20. WD40 domain divergence is important for functional differences between the fission yeast Tup11 and Tup12 co-repressor proteins.

    Directory of Open Access Journals (Sweden)

    Monica E Ferreira

    Full Text Available We have previously demonstrated that subsets of Ssn6/Tup target genes have distinct requirements for the Schizosaccharomyces pombe homologs of the Tup1/Groucho/TLE co-repressor proteins, Tup11 and Tup12. The very high level of divergence in the histone interacting repression domains of the two proteins suggested that determinants distinguishing Tup11 and Tup12 might be located in this domain. Here we have combined phylogenetic and structural analysis as well as phenotypic characterization, under stress conditions that specifically require Tup12, to identify and characterize the domains involved in Tup12-specific action. The results indicate that divergence in the repression domain is not generally relevant for Tup12-specific function. Instead, we show that the more highly conserved C-terminal WD40 repeat domain of Tup12 is important for Tup12-specific function. Surface amino acid residues specific for the WD40 repeat domain of Tup12 proteins in different fission yeasts are clustered in blade 3 of the propeller-like structure that is characteristic of WD40 repeat domains. The Tup11 and Tup12 proteins in fission yeasts thus provide an excellent model system for studying the functional divergence of WD40 repeat domains.

  1. Incompatibility with Formin Cdc12p Prevents Human Profilin from Substituting for Fission Yeast Profilin: Insights from Crystal Structures of Fission Yeast Proflin

    Energy Technology Data Exchange (ETDEWEB)

    Ezezika, O.; Younger, N; Lu, J; Kaiser, D; Corbin, Z; Nolen, B; Kovar, D; Pollard, T

    2009-01-01

    Expression of human profilin-I does not complement the temperature-sensitive cdc3-124 mutation of the single profilin gene in fission yeast Schizosaccharomyces pombe, resulting in death from cytokinesis defects. Human profilin-I and S. pombe profilin have similar affinities for actin monomers, the FH1 domain of fission yeast formin Cdc12p and poly-l-proline, but human profilin-I does not stimulate actin filament elongation by formin Cdc12p like S. pombe profilin. Two crystal structures of S. pombe profilin and homology models of S. pombe profilin bound to actin show how the two profilins bind to identical surfaces on animal and yeast actins even though 75% of the residues on the profilin side of the interaction differ in the two profilins. Overexpression of human profilin-I in fission yeast expressing native profilin also causes cytokinesis defects incompatible with viability. Human profilin-I with the R88E mutation has no detectable affinity for actin and does not have this dominant overexpression phenotype. The Y6D mutation reduces the affinity of human profilin-I for poly-l-proline by 1000-fold, but overexpression of Y6D profilin in fission yeast is lethal. The most likely hypotheses to explain the incompatibility of human profilin-I with Cdc12p are differences in interactions with the proline-rich sequences in the FH1 domain of Cdc12p and wider 'wings' that interact with actin.

  2. Mechanics of cell division in fission yeast

    Science.gov (United States)

    Chang, Fred

    2012-02-01

    Cytokinesis is the stage of cell division in which a cell divides into two. A paradigm of cytokinesis in animal cells is that the actomyosin contractile ring provides the primary force to squeeze the cell into two. In the fission yeast Schizosaccharomyces pombe, cytokinesis also requires a actomyosin ring, which has been generally assumed to provide the force for cleavage. However, in contrast to animal cells, yeast cells assemble a cell wall septum concomitant with ring contraction and possess large (MPa) internal turgor pressure. Here, we show that the inward force generated by the division apparatus opposes turgor pressure; a decrease in effective turgor pressure leads to an increase in cleavage rate. We show that the ring cannot be the primary force generator. Scaling arguments indicate that the contractile ring can only provide a tiny fraction of the mechanical stress required to overcome turgor. Further, we show that cleavage can occur even in the absence of the contractile ring. Instead of the contractile ring, scaling arguments and modeling suggest that the large forces for cytokinesis are produced by the assembly of cell wall polymers in the growing septum.

  3. Network evolution: rewiring and signatures of conservation in signaling.

    Directory of Open Access Journals (Sweden)

    Mark G F Sun

    Full Text Available The analysis of network evolution has been hampered by limited availability of protein interaction data for different organisms. In this study, we investigate evolutionary mechanisms in Src Homology 3 (SH3 domain and kinase interaction networks using high-resolution specificity profiles. We constructed and examined networks for 23 fungal species ranging from Saccharomyces cerevisiae to Schizosaccharomyces pombe. We quantify rates of different rewiring mechanisms and show that interaction change through binding site evolution is faster than through gene gain or loss. We found that SH3 interactions evolve swiftly, at rates similar to those found in phosphoregulation evolution. Importantly, we show that interaction changes are sufficiently rapid to exhibit saturation phenomena at the observed timescales. Finally, focusing on the SH3 interaction network, we observe extensive clustering of binding sites on target proteins by SH3 domains and a strong correlation between the number of domains that bind a target protein (target in-degree and interaction conservation. The relationship between in-degree and interaction conservation is driven by two different effects, namely the number of clusters that correspond to interaction interfaces and the number of domains that bind to each cluster leads to sequence specific conservation, which in turn results in interaction conservation. In summary, we uncover several network evolution mechanisms likely to generalize across peptide recognition modules.

  4. Shape and Size of the Fission Yeast Nucleus are governed by Equilibrium Mechanics

    Science.gov (United States)

    Lim, Gerald; Huber, Greg; Miller, Jonathan; Sazer, Shelley

    2006-03-01

    Nuclear morphogenesis in the asexual reproduction of Schizosaccharomyces pombe (fission yeast) consists of two stages: (i) volume-doubling growth, in which a round nucleus inflates uniformly, and (ii) division, in which the nucleus undergoes shape changes from round to oblong to peanut to dumbbell before it resolves into two smaller, round daughter nuclei, driven by the formation and elongation of a microtubule-based spindle within the nucleus. The combined volume of the daughter nuclei immediately after division is the same as the volume of the single nucleus at the onset of division. Consequently, the nuclear envelope (NE) area must increase by 26% during division. We are developing a model in order to determine the mechanics governing these shape and size changes. It is based on current knowledge of the nuclear structure, insight from normal and abnormal nuclei, and concepts from the mechanics governing lipid-bilayer membranes. We predict that (a) the NE prefers to be flat, (b) the NE is under tension, (c) the nucleus has an internal pressure, (d) nuclear growth is governed by the Law of Laplace, and (e) some abnormal nuclei behave like vesicles with encapsulated microtubules.

  5. A Transcript-Specific eIF3 Complex Mediates Global Translational Control of Energy Metabolism

    Directory of Open Access Journals (Sweden)

    Meera Shah

    2016-08-01

    Full Text Available The multi-subunit eukaryotic translation initiation factor eIF3 is thought to assist in the recruitment of ribosomes to mRNA. The expression of eIF3 subunits is frequently disrupted in human cancers, but the specific roles of individual subunits in mRNA translation and cancer remain elusive. Using global transcriptomic, proteomic, and metabolomic profiling, we found a striking failure of Schizosaccharomyces pombe cells lacking eIF3e and eIF3d to synthesize components of the mitochondrial electron transport chain, leading to a defect in respiration, endogenous oxidative stress, and premature aging. Energy balance was maintained, however, by a switch to glycolysis with increased glucose uptake, upregulation of glycolytic enzymes, and strict dependence on a fermentable carbon source. This metabolic regulatory function appears to be conserved in human cells where eIF3e binds metabolic mRNAs and promotes their translation. Thus, via its eIF3d-eIF3e module, eIF3 orchestrates an mRNA-specific translational mechanism controlling energy metabolism that may be disrupted in cancer.

  6. Structure of the intact ATM/Tel1 kinase

    Science.gov (United States)

    Wang, Xuejuan; Chu, Huanyu; Lv, Mengjuan; Zhang, Zhihui; Qiu, Shuwan; Liu, Haiyan; Shen, Xuetong; Wang, Weiwu; Cai, Gang

    2016-05-01

    The ataxia-telangiectasia mutated (ATM) protein is an apical kinase that orchestrates the multifaceted DNA-damage response. Normally, ATM kinase is in an inactive, homodimer form and is transformed into monomers upon activation. Besides a conserved kinase domain at the C terminus, ATM contains three other structural modules, referred to as FAT, FATC and N-terminal helical solenoid. Here we report the first cryo-EM structure of ATM kinase, which is an intact homodimeric ATM/Tel1 from Schizosaccharomyces pombe. We show that two monomers directly contact head-to-head through the FAT and kinase domains. The tandem N-terminal helical solenoid tightly packs against the FAT and kinase domains. The structure suggests that ATM/Tel1 dimer interface and the consecutive HEAT repeats inhibit the binding of kinase substrates and regulators by steric hindrance. Our study provides a structural framework for understanding the mechanisms of ATM/Tel1 regulation as well as the development of new therapeutic agents.

  7. Mitochondrial localization of fission yeast manganese superoxide dismutase is required for its lysine acetylation and for cellular stress resistance and respiratory growth

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hidekazu, E-mail: hidetakahashi@riken.jp [Chemical Genetics Laboratory/Chemical Genomics Research Group, RIKEN Advanced Science Institute, Wako, Saitama 351-0198 (Japan); Suzuki, Takehiro [Biomolecular Characterization Team, RIKEN Advanced Science Institute, Wako, Saitama 351-0198 (Japan); CREST Research Project, Japan Science and Technology Corporation, Kawaguchi, Saitama 332-0012 (Japan); Shirai, Atsuko; Matsuyama, Akihisa [Chemical Genetics Laboratory/Chemical Genomics Research Group, RIKEN Advanced Science Institute, Wako, Saitama 351-0198 (Japan); Dohmae, Naoshi [Biomolecular Characterization Team, RIKEN Advanced Science Institute, Wako, Saitama 351-0198 (Japan); CREST Research Project, Japan Science and Technology Corporation, Kawaguchi, Saitama 332-0012 (Japan); Yoshida, Minoru, E-mail: yoshidam@riken.jp [Chemical Genetics Laboratory/Chemical Genomics Research Group, RIKEN Advanced Science Institute, Wako, Saitama 351-0198 (Japan); CREST Research Project, Japan Science and Technology Corporation, Kawaguchi, Saitama 332-0012 (Japan)

    2011-03-04

    Research highlights: {yields} Fission yeast manganese superoxide dismutase (MnSOD) is acetylated. {yields} The mitochondrial targeting sequence (MTS) is required for the acetylation of MnSOD. {yields} The MTS is not crucial for MnSOD activity, but is important for respiratory growth. {yields} Posttranslational regulation of MnSOD differs between budding and fission yeast. -- Abstract: Manganese-dependent superoxide dismutase (MnSOD) is localized in the mitochondria and is important for oxidative stress resistance. Although transcriptional regulation of MnSOD has been relatively well studied, much less is known about the protein's posttranslational regulation. In budding yeast, MnSOD is activated after mitochondrial import by manganese ion incorporation. Here we characterize posttranslational modification of MnSOD in the fission yeast Schizosaccharomyces pombe. Fission yeast MnSOD is acetylated at the 25th lysine residue. This acetylation was diminished by deletion of N-terminal mitochondrial targeting sequence, suggesting that MnSOD is acetylated after import into mitochondria. Mitochondrial localization of MnSOD is not essential for the enzyme activity, but is crucial for oxidative stress resistance and growth under respiratory conditions of fission yeast. These results suggest that, unlike the situation in budding yeast, S. pombe MnSOD is already active even before mitochondrial localization; nonetheless, mitochondrial localization is critical to allow the cell to cope with reactive oxygen species generated inside or outside of mitochondria.

  8. Fission yeast arrestin-related trafficking adaptor, Arn1/Any1, is ubiquitinated by Pub1 E3 ligase and regulates endocytosis of Cat1 amino acid transporter

    Directory of Open Access Journals (Sweden)

    Akio Nakashima

    2014-05-01

    Full Text Available The Tsc1–Tsc2 complex homologous to human tuberous sclerosis complex proteins governs amino acid uptake by regulating the expression and intracellular distribution of amino acid transporters in Schizosaccharomyces pombe. Here, we performed a genetic screening for molecules that are involved in amino acid uptake and found Arn1 (also known as Any1. Arn1 is homologous to ART1, an arrestin-related trafficking adaptor (ART in Saccharomyces cerevisiae, and contains a conserved arrestin motif, a ubiquitination site, and two PY motifs. Overexpression of arn1+ confers canavanine resistance on cells, whereas its disruption causes hypersensitivity to canavanine. We also show that Arn1 regulates endocytosis of the Cat1 amino acid transporter. Furthermore, deletion of arn1+ suppresses a defect of amino acid uptake and the aberrant Cat1 localization in tsc2Δ. Arn1 interacts with and is ubiquitinated by the Pub1 ubiquitin ligase, which is necessary to regulate Cat1 endocytosis. Cat1 undergoes ubiquitinations on lysine residues within the N-terminus, which are mediated, in part, by Arn1 to determine Cat1 localization. Correctively, Arn1 is an ART in S. pombe and contributes to amino acid uptake through regulating Cat1 endocytosis in which Tsc2 is involved.

  9. Constriction model of actomyosin ring for cytokinesis by fission yeast using a two-state sliding filament mechanism

    Science.gov (United States)

    Jung, Yong-Woon; Mascagni, Michael

    2014-09-01

    We developed a model describing the structure and contractile mechanism of the actomyosin ring in fission yeast, Schizosaccharomyces pombe. The proposed ring includes actin, myosin, and α-actinin, and is organized into a structure similar to that of muscle sarcomeres. This structure justifies the use of the sliding-filament mechanism developed by Huxley and Hill, but it is probably less organized relative to that of muscle sarcomeres. Ring contraction tension was generated via the same fundamental mechanism used to generate muscle tension, but some physicochemical parameters were adjusted to be consistent with the proposed ring structure. Simulations allowed an estimate of ring constriction tension that reproduced the observed ring constriction velocity using a physiologically possible, self-consistent set of parameters. Proposed molecular-level properties responsible for the thousand-fold slower constriction velocity of the ring relative to that of muscle sarcomeres include fewer myosin molecules involved, a less organized contractile configuration, a low α-actinin concentration, and a high resistance membrane tension. Ring constriction velocity is demonstrated as an exponential function of time despite a near linear appearance. We proposed a hypothesis to explain why excess myosin heads inhibit constriction velocity rather than enhance it. The model revealed how myosin concentration and elastic resistance tension are balanced during cytokinesis in S. pombe.

  10. Why Cells Grow and Divide? General Growth Mechanism and How it Defines Cells’ Growth, Reproduction and Metabolic Properties

    Science.gov (United States)

    Shestopaloff, Yuri K.

    2015-02-01

    We consider a general growth mechanism, which acts at cellular level and above (organs, systems and whole organisms). Using its mathematical representation, the growth equation, we study the growth and division mechanisms of amoeba and fission yeast Schizosaccharomyces pombe. We show how this mechanism, together with biomolecular machinery, governs growth and reproduction of cells, and these organisms in particular. This mechanism provides revealing answers to fundamental questions of biology, like why cells grow and divide, why and when cells’ growth stops. It also sheds light on questions like why and how life originated and developed. Solving the growth equation, we obtain analytical expression for the growth curve of fission yeast as a function of geometrical characteristics and nutrient influxes for RNA and protein synthesis, and compare the computed growth curves with 85 experiments. Statistical evaluation shows that these growth curves correspond to experimental data significantly better than all previous approximations. Also, using the general growth mechanism, we show how metabolic characteristics of cells, their size and evolutionary traits relate, considering fission yeast. In particular, we found that fission yeast S. pombe consumes about 16-18 times more nutrients for maintenance needs than for biomass synthesis.

  11. The Tubulation Activity of a Fission Yeast F-BAR Protein Is Dispensable for Its Function in Cytokinesis

    Directory of Open Access Journals (Sweden)

    Nathan A. McDonald

    2016-01-01

    Full Text Available F-BAR proteins link cellular membranes to the actin cytoskeleton in many biological processes. Here we investigated the function of the Schizosaccharomyces pombe Imp2 F-BAR domain in cytokinesis and find that it is critical for Imp2’s role in contractile ring constriction and disassembly. To understand mechanistically how the F-BAR domain functions, we determined its structure, elucidated how it interacts with membranes, and identified an interaction between dimers that allows helical oligomerization and membrane tubulation. Using mutations that block either membrane binding or tubulation, we find that membrane binding is required for Imp2’s cytokinetic function but that oligomerization and tubulation, activities often deemed central to F-BAR protein function, are dispensable. Accordingly, F-BARs that do not have the capacity to tubulate membranes functionally substitute for the Imp2 F-BAR, establishing that its major role is as a cell-cycle-regulated bridge between the membrane and Imp2 protein partners, rather than as a driver of membrane curvature.

  12. The Chp1–Tas3 core is a multifunctional platform critical for gene silencing by RITS

    Energy Technology Data Exchange (ETDEWEB)

    Schalch, Thomas; Job, Godwin; Shanker, Sreenath; Partridge, Janet F.; Joshua-Tor, Leemor

    2011-11-13

    RNA interference (RNAi) is critical for the assembly of heterochromatin at Schizosaccharomyces pombe centromeres. Central to this process is the RNA-induced initiation of transcriptional gene silencing (RITS) complex, which physically anchors small noncoding RNAs to chromatin. RITS includes Ago1, the chromodomain protein Chp1, and Tas3, which forms a bridge between Chp1 and Ago1. Chp1 is a large protein with no recognizable domains, apart from its chromodomain. Here we describe how the structured C-terminal half of Chp1 binds the Tas3 N-terminal domain, revealing the tight association of Chp1 and Tas3. The structure also shows a PIN domain at the C-terminal tip of Chp1 that controls subtelomeric transcripts through a post-transcriptional mechanism. We suggest that the Chp1–Tas3 complex provides a solid and versatile platform to recruit both RNAi-dependent and RNAi-independent gene-silencing pathways for locus-specific regulation of heterochromatin.

  13. Variety in intracellular diffusion during the cell cycle

    Science.gov (United States)

    Selhuber-Unkel, Christine; Yde, Pernille; Berg-Sørensen, Kirstine; Oddershede, Lene B.

    2009-06-01

    During the cell cycle, the organization of the cytoskeletal network undergoes dramatic changes. In order to reveal possible changes of the viscoelastic properties in the intracellular space during the cell cycle we investigated the diffusion of endogenous lipid granules within the fission yeast Schizosaccharomyces Pombe using optical tweezers. The cell cycle was divided into interphase and mitotic cell division, and the mitotic cell division was further subdivided in its stages. During all stages of the cell cycle, the granules predominantly underwent subdiffusive motion, characterized by an exponent α that is also linked to the viscoelastic moduli of the cytoplasm. The exponent α was significantly smaller during interphase than during any stage of the mitotic cell division, signifying that the cytoplasm was more elastic during interphase than during division. We found no significant differences in the subdiffusive exponents from granules measured in different stages of cell division. Also, our results for the exponent displayed no significant dependence on the position of the granule within the cell. The observation that the cytoplasm is more elastic during interphase than during mitotic cell division is consistent with the fact that elastic cytoskeletal elements such as microtubules are less abundantly present during cell division than during interphase.

  14. LAMMER kinase Kic1 is involved in pre-mRNA processing

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zhaohua, E-mail: ztang@jsd.claremont.edu [W.M. Keck Science Center, The Claremont Colleges, Claremont, CA 91711 (United States); Luca, Maria; Portillio, Jessica; Ngo, Benson; Chang, Cathey; Wen, Teresa [W.M. Keck Science Center, The Claremont Colleges, Claremont, CA 91711 (United States); Murray, Johanne; Carr, Antony [Genome Damage and Stability Centre, University of Sussex, Falmer, BN1 9RQ (United Kingdom)

    2011-10-01

    The LAMMER kinases are conserved through evolution. They play vital roles in cell growth/differentiation, development, and metabolism. One of the best known functions of the kinases in animal cells is the regulation of pre-mRNA splicing. Kic1 is the LAMMER kinase in fission yeast Schizosaccharomyces pombe. Despite the reported pleiotropic effects of kic1{sup +} deletion/overexpression on various cellular processes the involvement of Kic1 in splicing remains elusive. In this study, we demonstrate for the first time that Kic1 not only is required for efficient splicing but also affects mRNA export, providing evidence for the conserved roles of LAMMER kinases in the unicellular context of fission yeast. Consistent with the hypothesis of its direct participation in multiple steps of pre-mRNA processing, Kic1 is predominantly present in the nucleus during interphase. In addition, the kinase activity of Kic1 plays a role in modulating its own cellular partitioning. Interestingly, Kic1 expression oscillates in a cell cycle-dependent manner and the peak level coincides with mitosis and cytokinesis, revealing a potential mechanism for controlling the kinase activity during the cell cycle. The novel information about the in vivo functions and regulation of Kic1 offers insights into the conserved biological roles fundamental to LAMMER kinases in eukaryotes.

  15. Genome-wide screen of genes required for caffeine tolerance in fission yeast.

    Directory of Open Access Journals (Sweden)

    Isabel A Calvo

    Full Text Available BACKGROUND: An excess of caffeine is cytotoxic to all eukaryotic cell types. We aim to study how cells become tolerant to a toxic dose of this drug, and the relationship between caffeine and oxidative stress pathways. METHODOLOGY/PRINCIPAL FINDINGS: We searched for Schizosaccharomyces pombe mutants with inhibited growth on caffeine-containing plates. We screened a collection of 2,700 haploid mutant cells, of which 98 were sensitive to caffeine. The genes mutated in these sensitive clones were involved in a number of cellular roles including the H(2O(2-induced Pap1 and Sty1 stress pathways, the integrity and calcineurin pathways, cell morphology and chromatin remodeling. We have investigated the role of the oxidative stress pathways in sensing and promoting survival to caffeine. The Pap1 and the Sty1 pathways are both required for normal tolerance to caffeine, but only the Sty1 pathway is activated by the drug. Cells lacking Pap1 are sensitive to caffeine due to the decreased expression of the efflux pump Hba2. Indeed, ?hba2 cells are sensitive to caffeine, and constitutive activation of the Pap1 pathway enhances resistance to caffeine in an Hba2-dependent manner. CONCLUSIONS/SIGNIFICANCE: With our caffeine-sensitive, genome-wide screen of an S. pombe deletion collection, we have demonstrated the importance of some oxidative stress pathway components on wild-type tolerance to the drug.

  16. Fission yeast Scp3 potentially maintains microtubule orientation through bundling.

    Directory of Open Access Journals (Sweden)

    Kanako Ozaki

    Full Text Available Microtubules play important roles in organelle transport, the maintenance of cell polarity and chromosome segregation and generally form bundles during these processes. The fission yeast gene scp3+ was identified as a multicopy suppressor of the cps3-81 mutant, which is hypersensitive to isopropyl N-3-chlorophenylcarbamate (CIPC, a poison that induces abnormal multipolar spindle formation in higher eukaryotes. In this study, we investigated the function of Scp3 along with the effect of CIPC in the fission yeast Schizosaccharomyces pombe. Microscopic observation revealed that treatment with CIPC, cps3-81 mutation and scp3+ gene deletion disturbed the orientation of microtubules in interphase cells. Overexpression of scp3+ suppressed the abnormal orientation of microtubules by promoting bundling. Functional analysis suggested that Scp3 functions independently from Ase1, a protein largely required for the bundling of the mitotic spindle. A strain lacking the ase1+ gene was more sensitive to CIPC, with the drug affecting the integrity of the mitotic spindle, indicating that CIPC has a mitotic target that has a role redundant with Ase1. These results suggested that multiple systems are independently involved to ensure microtubule orientation by bundling in fission yeast.

  17. The fission yeast ubiquitin-conjugating enzymes UbcP3, Ubc15, and Rhp6 affect transcriptional silencing of the mating-type region

    DEFF Research Database (Denmark)

    Nielsen, Inga Sig; Nielsen, Olaf; Murray, Johanne M

    2002-01-01

    Genes transcribed by RNA polymerase II are silenced when introduced near the mat2 or mat3 mating-type loci of the fission yeast Schizosaccharomyces pombe. Silencing is mediated by a number of gene products and cis-acting elements. We report here the finding of novel trans-acting factors identified...... in a screen for high-copy-number disruptors of silencing. Expression of cDNAs encoding the putative E2 ubiquitin-conjugating enzymes UbcP3, Ubc15 (ubiquitin-conjugating enzyme), or Rhp6 (Rad homolog pombe) from the strong nmt1 promoter derepressed the silent mating-type loci mat2 and mat3 and reporter genes...... inserted nearby. Deletion of rhp6 slightly derepressed an ade6 reporter gene placed in the mating-type region, whereas disruption of ubcP3 or ubc15 had no obvious effect on silencing. Rhp18 is the S. pombe homolog of Saccharomyces cerevisiae Rad18p, a DNA-binding protein that physically interacts with Rad6...

  18. Oxidative stress and replication-independent DNA breakage induced by arsenic in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Ireneusz Litwin

    Full Text Available Arsenic is a well-established human carcinogen of poorly understood mechanism of genotoxicity. It is generally accepted that arsenic acts indirectly by generating oxidative DNA damage that can be converted to replication-dependent DNA double-strand breaks (DSBs, as well as by interfering with DNA repair pathways and DNA methylation. Here we show that in budding yeast arsenic also causes replication and transcription-independent DSBs in all phases of the cell cycle, suggesting a direct genotoxic mode of arsenic action. This is accompanied by DNA damage checkpoint activation resulting in cell cycle delays in S and G2/M phases in wild type cells. In G1 phase, arsenic activates DNA damage response only in the absence of the Yku70-Yku80 complex which normally binds to DNA ends and inhibits resection of DSBs. This strongly indicates that DSBs are produced by arsenic in G1 but DNA ends are protected by Yku70-Yku80 and thus invisible for the checkpoint response. Arsenic-induced DSBs are processed by homologous recombination (HR, as shown by Rfa1 and Rad52 nuclear foci formation and requirement of HR proteins for cell survival during arsenic exposure. We show further that arsenic greatly sensitizes yeast to phleomycin as simultaneous treatment results in profound accumulation of DSBs. Importantly, we observed a similar response in fission yeast Schizosaccharomyces pombe, suggesting that the mechanisms of As(III genotoxicity may be conserved in other organisms.

  19. Cbf11 and Cbf12, the fission yeast CSL proteins, play opposing roles in cell adhesion and coordination of cell and nuclear division

    Energy Technology Data Exchange (ETDEWEB)

    Prevorovsky, Martin; Grousl, Tomas; Stanurova, Jana; Rynes, Jan [Department of Cell Biology, Faculty of Science, Charles University in Prague, Vinicna 7, 128 43, Prague 2 (Czech Republic); Nellen, Wolfgang [Department of Genetics, Kassel University, Heinrich Plett Strasse 40, 34132 Kassel (Germany); Puta, Frantisek [Department of Cell Biology, Faculty of Science, Charles University in Prague, Vinicna 7, 128 43, Prague 2 (Czech Republic); Folk, Petr, E-mail: folk@natur.cuni.cz [Department of Cell Biology, Faculty of Science, Charles University in Prague, Vinicna 7, 128 43, Prague 2 (Czech Republic)

    2009-05-01

    The CSL (CBF1/RBP-J{kappa}/Suppressor of Hairless/LAG-1) family is comprised of transcription factors essential for metazoan development, mostly due to their involvement in the Notch receptor signaling pathway. Recently, we identified two novel classes of CSL genes in the genomes of several fungal species, organisms lacking the Notch pathway. In this study, we characterized experimentally cbf11{sup +} and cbf12{sup +}, the two CSL genes of Schizosaccharomyces pombe, in order to elucidate the CSL function in fungi. We provide evidence supporting their identity as genuine CSL genes. Both cbf11{sup +} and cbf12{sup +} are non-essential; they have distinct expression profiles and code for nuclear proteins with transcription activation potential. Significantly, we demonstrated that Cbf11 recognizes specifically the canonical CSL response element GTG{sup A}/{sub G}GAA in vitro. The deletion of cbf11{sup +} is associated with growth phenotypes and altered colony morphology. Furthermore, we found that Cbf11 and Cbf12 play opposite roles in cell adhesion, nuclear and cell division and their coordination. Disturbed balance of the two CSL proteins leads to cell separation defects (sep phenotype), cut phenotype, and high-frequency diploidization in heterothallic strains. Our data show that CSL proteins operate in an organism predating the Notch pathway, which should be of relevance to the understanding of (Notch-independent) CSL functions in metazoans.

  20. Boolean network model predicts cell cycle sequence of fission yeast.

    Directory of Open Access Journals (Sweden)

    Maria I Davidich

    Full Text Available A Boolean network model of the cell-cycle regulatory network of fission yeast (Schizosaccharomyces Pombe is constructed solely on the basis of the known biochemical interaction topology. Simulating the model in the computer faithfully reproduces the known activity sequence of regulatory proteins along the cell cycle of the living cell. Contrary to existing differential equation models, no parameters enter the model except the structure of the regulatory circuitry. The dynamical properties of the model indicate that the biological dynamical sequence is robustly implemented in the regulatory network, with the biological stationary state G1 corresponding to the dominant attractor in state space, and with the biological regulatory sequence being a strongly attractive trajectory. Comparing the fission yeast cell-cycle model to a similar model of the corresponding network in S. cerevisiae, a remarkable difference in circuitry, as well as dynamics is observed. While the latter operates in a strongly damped mode, driven by external excitation, the S. pombe network represents an auto-excited system with external damping.

  1. Time-lapse electrical impedance spectroscopy for monitoring the cell cycle of single immobilized S. pombe cells

    Science.gov (United States)

    Zhu, Zhen; Frey, Olivier; Haandbaek, Niels; Franke, Felix; Rudolf, Fabian; Hierlemann, Andreas

    2015-11-01

    As a complement and alternative to optical methods, wide-band electrical impedance spectroscopy (EIS) enables multi-parameter, label-free and real-time detection of cellular and subcellular features. We report on a microfluidics-based system designed to reliably capture single rod-shaped Schizosaccharomyces pombe cells by applying suction through orifices in a channel wall. The system enables subsequent culturing of immobilized cells in an upright position, while dynamic changes in cell-cycle state and morphology were continuously monitored through EIS over a broad frequency range. Besides measuring cell growth, clear impedance signals for nuclear division have been obtained. The EIS system has been characterized with respect to sensitivity and detection limits. The spatial resolution in measuring cell length was 0.25 μm, which corresponds to approximately a 5-min interval of cell growth under standard conditions. The comprehensive impedance data sets were also used to determine the occurrence of nuclear division and cytokinesis. The obtained results have been validated through concurrent confocal imaging and plausibilized through comparison with finite-element modeling data. The possibility to monitor cellular and intracellular features of single S. pombe cells during the cell cycle at high spatiotemporal resolution renders the presented microfluidics-based EIS system a suitable tool for dynamic single-cell investigations.

  2. Ultradian clocks in eukaryotic microbes: from behavioural observation to functional genomics.

    Science.gov (United States)

    Kippert, F; Hunt, P

    2000-01-01

    Period homeostasis is the defining characteristic of a biological clock. Strict period homeostasis is found for the ultradian clocks of eukaryotic microbes. In addition to being temperature-compensated, the period of these rhythms is unaffected by differences in nutrient composition or changes in other environmental variables. The best-studied examples of ultradian clocks are those of the ciliates Paramecium tetraurelia and Tetrahymena sp. and of the fission yeast, Schizosaccharomyces pombe. In these single cell eukaryotes, up to seven different parameters display ultradian rhythmicity with the same, species- and strain-specific period. In fission yeast, the molecular genetic analysis of ultradian clock mechanisms has begun with the systematic analysis of mutants in identified candidate genes. More than 40 "clock mutants" have already been identified, most of them affected in components of major regulatory and signalling pathways. These results indicate a high degree of complexity for a eukaryotic clock mechanism. BioEssays 22:16-22, 2000. Copyright 2000 John Wiley & Sons, Inc.

  3. CSL protein regulates transcription of genes required to prevent catastrophic mitosis in fission yeast.

    Science.gov (United States)

    Převorovský, Martin; Oravcová, Martina; Zach, Róbert; Jordáková, Anna; Bähler, Jürg; Půta, František; Folk, Petr

    2016-11-16

    For every eukaryotic cell to grow and divide, intricately coordinated action of numerous proteins is required to ensure proper cell-cycle progression. The fission yeast Schizosaccharomyces pombe has been instrumental in elucidating the fundamental principles of cell-cycle control. Mutations in S. pombe 'cut' (cell untimely torn) genes cause failed coordination between cell and nuclear division, resulting in catastrophic mitosis. Deletion of cbf11, a fission yeast CSL transcription factor gene, triggers a 'cut' phenotype, but the precise role of Cbf11 in promoting mitotic fidelity is not known. We report that Cbf11 directly activates the transcription of the acetyl-coenzyme A carboxylase gene cut6, and the biotin uptake/biosynthesis genes vht1 and bio2, with the former 2 implicated in mitotic fidelity. Cbf11 binds to a canonical, metazoan-like CSL response element (GTGGGAA) in the cut6 promoter. Expression of Cbf11 target genes shows apparent oscillations during the cell cycle using temperature-sensitive cdc25-22 and cdc10-M17 block-release experiments, but not with other synchronization methods. The penetrance of catastrophic mitosis in cbf11 and cut6 mutants is nutrient-dependent. We also show that drastic decrease in biotin availability arrests cell proliferation but does not cause mitotic defects. Taken together, our results raise the possibility that CSL proteins play conserved roles in regulating cell-cycle progression, and they could guide experiments into mitotic CSL functions in mammals.

  4. Mto2 multisite phosphorylation inactivates non-spindle microtubule nucleation complexes during mitosis

    Science.gov (United States)

    Borek, Weronika E.; Groocock, Lynda M.; Samejima, Itaru; Zou, Juan; de Lima Alves, Flavia; Rappsilber, Juri; Sawin, Kenneth E.

    2015-01-01

    Microtubule nucleation is highly regulated during the eukaryotic cell cycle, but the underlying molecular mechanisms are largely unknown. During mitosis in fission yeast Schizosaccharomyces pombe, cytoplasmic microtubule nucleation ceases simultaneously with intranuclear mitotic spindle assembly. Cytoplasmic nucleation depends on the Mto1/2 complex, which binds and activates the γ-tubulin complex and also recruits the γ-tubulin complex to both centrosomal (spindle pole body) and non-centrosomal sites. Here we show that the Mto1/2 complex disassembles during mitosis, coincident with hyperphosphorylation of Mto2 protein. By mapping and mutating multiple Mto2 phosphorylation sites, we generate mto2-phosphomutant strains with enhanced Mto1/2 complex stability, interaction with the γ-tubulin complex and microtubule nucleation activity. A mutant with 24 phosphorylation sites mutated to alanine, mto2[24A], retains interphase-like behaviour even in mitotic cells. This provides a molecular-level understanding of how phosphorylation ‘switches off' microtubule nucleation complexes during the cell cycle and, more broadly, illuminates mechanisms regulating non-centrosomal microtubule nucleation. PMID:26243668

  5. H3K9 methylation regulates growth and development in Aspergillus fumigatus.

    Science.gov (United States)

    Palmer, Jonathan M; Perrin, Robyn M; Dagenais, Taylor R T; Keller, Nancy P

    2008-12-01

    In most species, chromatin remodeling mediates critical biological processes ranging from development to disease states. In fungi within the genus Aspergillus, chromatin remodeling may regulate expression of metabolic gene clusters, but other processes regulated by chromatin structure remain to be elucidated. In many eukaryotic species, methylation of lysine 9 of histone 3 (H3K9) is a hallmark of heterochromatin formation and subsequent gene silencing. The sole H3K9 methyltransferase in Schizosaccharomyces pombe is Clr4. We report that disruption of the Clr4 homolog in the pathogenic mold Aspergillus fumigatus (ClrD), which is involved in both mono- and trimethylation of H3K9, results in several growth abnormalities. Developmental defects in DeltaAfclrD include reduction in radial growth, reduction in conidial production, and delayed conidiation after developmental competence mediated by delayed expression of brlA, the master regulator of conidiophore development. Sensitivity of DeltaAfclrD to 6-azauracil suggests that ClrD influences transcriptional processing in A. fumigatus. Despite growth abnormalities, macrophage assays suggest ClrD may be dispensable for host interactions.

  6. STN1 protects chromosome ends in Arabidopsis thaliana.

    Science.gov (United States)

    Song, Xiangyu; Leehy, Katherine; Warrington, Ross T; Lamb, Jonathan C; Surovtseva, Yulia V; Shippen, Dorothy E

    2008-12-16

    Telomeres shield the natural ends of chromosomes from nucleolytic attack, recognition as double-strand breaks, and inappropriate processing by DNA repair machinery. The trimeric Stn1/Ten1/Cdc13 complex is critical for chromosome end protection in Saccharomyces cerevisiae, while vertebrate telomeres are protected by shelterin, a complex of six proteins that does not include STN1 or TEN1. Recent studies demonstrate that Stn1 and Ten1 orthologs in Schizosaccharomyces pombe contribute to telomere integrity in a complex that is distinct from the shelterin components, Pot1 and Tpp1. Thus, chromosome-end protection may be mediated by distinct subcomplexes of telomere proteins. Here we report the identification of a STN1 gene in Arabidopsis that is essential for chromosome-end protection. AtSTN1 encodes an 18-kDa protein bearing a single oligonucleotide/oligosaccharide binding fold with significant sequence similarity to the yeast Stn1 proteins. Plants null for AtSTN1 display an immediate onset of growth and developmental defects and reduced fertility. These outward phenotypes are accompanied by catastrophic loss of telomeric and subtelomeric DNA, high levels of end-to-end chromosome fusions, increased G-overhang signals, and elevated telomere recombination. Thus, AtSTN1 is a crucial component of the protective telomere cap in Arabidopsis, and likely in other multicellular eukaryotes.

  7. 2010 CELL AND MOLECULAR FUNGAL BIOLOGY GORDON RESEARCH CONFERENCE, JUNE 13-18, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Michelle Momany

    2010-06-18

    The Cellular and Molecular Fungal Biology Conference provides a forum for presentation of the latest advances in fungal research with an emphasis on filamentous fungi. This open-registration scientific meeting brings together the leading scientists from academia, government and industry to discuss current research results and future directions at Holderness School, an outstanding venue for scientific interaction. A key objective of the conference is to foster interaction among scientists working on model fungi such as Saccharomyces cerevisiae, Schizosaccharomyces pombe, Neurospora crassa and Aspergillus nidulans and scientists working on a variety of filamentous fungi whose laboratory tractability is often inversely proportional to their medical, industrial or ecological importance. Sessions will be devoted to Systems Biology, Fungi and Cellulosic Biomass, Small RNAs, Population Genomics, Symbioses, Pathogenesis, Membrane Trafficking and Polarity, and Cytoskeleton and Motors. A session will also be devoted to hot topics picked from abstracts. The CMFB conference provides a unique opportunity to examine the breadth of fungal biology in a small meeting format that encourages in-depth discussion among the attendees.

  8. The phenotypic characterization of yeast strains to stresses inherent to wine fermentation in warm climates.

    Science.gov (United States)

    García, M; Greetham, D; Wimalasena, T T; Phister, T G; Cabellos, J M; Arroyo, T

    2016-07-01

    Climate change is exerting an increasingly profound effect on grape composition, microbiology, chemistry and the sensory aspects of wine. Identification of autochthonous yeasts tolerant to stress could help to alleviate this effect. Tolerance to osmotic pressure, ethanol and pH of 94 Saccharomyces cerevisiae strains and 29 strains non-Saccharomyces from the warm climate region DO 'Vinos de Madrid' (Spain) using phenotypic microarray and their fermentative behaviour were studied. The screening highlighted 12 strains of S. cerevisiae isolated from organic cellars with improved tolerance to osmotic stress, high ethanol concentrations and suitable fermentative properties. Screening of non-Saccharomyces spp. such as Lanchacea thermotolerans, Torulaspora delbrueckii, Schizosaccharomyces pombe and Mestchnikowia pulcherrima also highlighted tolerance to these stress conditions. This study confirmed the adaptation of native strains to the climatic conditions in each area of production and correlated these adaptations with good fermentation properties. Screening has revealed that identifying yeast strains adapted to fermentation stresses is an important approach for making quality wines in very warm areas. The results have special relevance because it is a pioneering study that has approached the problem of climate change for wines from a microbiological aspect and has analysed the situation in situ in wineries from a warm climate zone. Resistant strains were found with good biological properties; studying these strains for their stress response mechanisms during fermentation will be of interest to the wine making industry. © 2016 The Society for Applied Microbiology.

  9. Yeast Monitoring of Wine Mixed or Sequential Fermentations Made by Native Strains from D.O. "Vinos de Madrid" Using Real-Time Quantitative PCR.

    Science.gov (United States)

    García, Margarita; Esteve-Zarzoso, Braulio; Crespo, Julia; Cabellos, Juan M; Arroyo, Teresa

    2017-01-01

    There is an increasing trend toward understanding the impact of non-Saccharomyces yeasts on the winemaking process. Although Saccharomyces cerevisiae is the predominant species at the end of fermentation, it has been recognized that the presence of non-Saccharomyces species during alcoholic fermentation can produce an improvement in the quality and complexity of the final wines. A previous work was developed for selecting the best combinations between S. cerevisiae and five non-Saccharomyces (Torulaspora delbrueckii, Schizosaccharomyces pombe, Candida stellata, Metschnikowia pulcherrima, and Lachancea thermotolorans) native yeast strains from D.O. "Vinos de Madrid" at the laboratory scale. The best inoculation strategies between S. cerevisiae and non-Saccharomyces strains were chosen to analyze, by real-time quantitative PCR (qPCR) combined with the use of specific primers, the dynamics of inoculated populations throughout the fermentation process at the pilot scale using the Malvar white grape variety. The efficiency of the qPCR system was verified independently of the samples matrix, founding the inoculated yeast species throughout alcoholic fermentation. Finally, we can validate the positive effect of selected co-cultures in the Malvar wine quality, highlighting the sequential cultures of T. delbrueckii CLI 918/S. cerevisiae CLI 889 and C. stellata CLI 920/S. cerevisiae CLI 889 and, mixed and sequential cultures of L. thermotolerans 9-6C combined with S. cerevisiae CLI 889.

  10. Yeast Monitoring of Wine Mixed or Sequential Fermentations Made by Native Strains from D.O. “Vinos de Madrid” Using Real-Time Quantitative PCR

    Directory of Open Access Journals (Sweden)

    Margarita García

    2017-12-01

    Full Text Available There is an increasing trend toward understanding the impact of non-Saccharomyces yeasts on the winemaking process. Although Saccharomyces cerevisiae is the predominant species at the end of fermentation, it has been recognized that the presence of non-Saccharomyces species during alcoholic fermentation can produce an improvement in the quality and complexity of the final wines. A previous work was developed for selecting the best combinations between S. cerevisiae and five non-Saccharomyces (Torulaspora delbrueckii, Schizosaccharomyces pombe, Candida stellata, Metschnikowia pulcherrima, and Lachancea thermotolorans native yeast strains from D.O. “Vinos de Madrid” at the laboratory scale. The best inoculation strategies between S. cerevisiae and non-Saccharomyces strains were chosen to analyze, by real-time quantitative PCR (qPCR combined with the use of specific primers, the dynamics of inoculated populations throughout the fermentation process at the pilot scale using the Malvar white grape variety. The efficiency of the qPCR system was verified independently of the samples matrix, founding the inoculated yeast species throughout alcoholic fermentation. Finally, we can validate the positive effect of selected co-cultures in the Malvar wine quality, highlighting the sequential cultures of T. delbrueckii CLI 918/S. cerevisiae CLI 889 and C. stellata CLI 920/S. cerevisiae CLI 889 and, mixed and sequential cultures of L. thermotolerans 9-6C combined with S. cerevisiae CLI 889.

  11. Yeast Monitoring of Wine Mixed or Sequential Fermentations Made by Native Strains from D.O. “Vinos de Madrid” Using Real-Time Quantitative PCR

    Science.gov (United States)

    García, Margarita; Esteve-Zarzoso, Braulio; Crespo, Julia; Cabellos, Juan M.; Arroyo, Teresa

    2017-01-01

    There is an increasing trend toward understanding the impact of non-Saccharomyces yeasts on the winemaking process. Although Saccharomyces cerevisiae is the predominant species at the end of fermentation, it has been recognized that the presence of non-Saccharomyces species during alcoholic fermentation can produce an improvement in the quality and complexity of the final wines. A previous work was developed for selecting the best combinations between S. cerevisiae and five non-Saccharomyces (Torulaspora delbrueckii, Schizosaccharomyces pombe, Candida stellata, Metschnikowia pulcherrima, and Lachancea thermotolorans) native yeast strains from D.O. “Vinos de Madrid” at the laboratory scale. The best inoculation strategies between S. cerevisiae and non-Saccharomyces strains were chosen to analyze, by real-time quantitative PCR (qPCR) combined with the use of specific primers, the dynamics of inoculated populations throughout the fermentation process at the pilot scale using the Malvar white grape variety. The efficiency of the qPCR system was verified independently of the samples matrix, founding the inoculated yeast species throughout alcoholic fermentation. Finally, we can validate the positive effect of selected co-cultures in the Malvar wine quality, highlighting the sequential cultures of T. delbrueckii CLI 918/S. cerevisiae CLI 889 and C. stellata CLI 920/S. cerevisiae CLI 889 and, mixed and sequential cultures of L. thermotolerans 9-6C combined with S. cerevisiae CLI 889. PMID:29326669

  12. TeloPCR-seq: a high-throughput sequencing approach for telomeres

    Science.gov (United States)

    Bennett, Henrietta W.; Liu, Na; Hu, Yan; King, Megan C.

    2017-01-01

    We have developed a high-throughput sequencing approach that enables us to determine terminal telomere sequences from tens of thousands of individual Schizosaccharomyces pombe telomeres. This method provides unprecedented coverage of telomeric sequence complexity in fission yeast. S. pombe telomeres are composed of modular degenerate repeats that can be explained by variation in usage of the TER1 RNA template during reverse transcription. Taking advantage of this deep sequencing approach, we find that “like” repeat modules are highly correlated within individual telomeres. Moreover, repeat module preference varies with telomere length, suggesting that existing repeats promote the incorporation of like repeats and/or that specific conformations of the telomerase holoenzyme efficiently and/or processively add repeats of like nature. After the loss of telomerase activity, this sequencing and analysis pipeline defines a population of telomeres with altered sequence content. This approach will be adaptable to study telomeric repeats in other organisms and also to interrogate repetitive sequences throughout the genome that are inaccessible to other sequencing methods. PMID:27714790

  13. Polyadenylation site selection: linking transcription and RNA processing via a conserved carboxy-terminal domain (CTD)-interacting protein.

    Science.gov (United States)

    Larochelle, Marc; Hunyadkürti, Judit; Bachand, François

    2017-05-01

    Despite the fact that the process of mRNA polyadenylation has been known for more than 40 years, a detailed understating of the mechanism underlying polyadenylation site selection is still far from complete. As 3' end processing is intimately associated with RNA polymerase II (RNAPII) transcription, factors that can successively interact with the transcription machinery and recognize cis-acting sequences on the nascent pre-mRNA would be well suited to contribute to poly(A) site selection. Studies using the fission yeast Schizosaccharomyces pombe have recently identified Seb1, a protein that shares homology with Saccharomyces cerevisiae Nrd1 and human SCAF4/8, and that is critical for poly(A) site selection. Seb1 binds to the C-terminal domain (CTD) of RNAPII via a conserved CTD-interaction domain and recognizes specific sequence motifs clustered downstream of the polyadenylation site on the uncleaved pre-mRNA. In this short review, we summarize insights into Seb1-dependent poly(A) site selection and discuss some unanswered questions regarding its molecular mechanism and conservation.

  14. A Comparative Study of RNA Polymerase II Transcription Machinery in Yeasts

    Science.gov (United States)

    Sharma, Nimisha; Mehta, Surbhi

    The control of gene expression, predominantly at the level of transcription, plays a fundamental role in biological processes determining the phenotypic changes in cells and organisms. The eukaryotes have evolved a complex and sophisticated transcription machinery to transcribe DNA into RNA. RNA polymerase II enzyme lies at the centre of the transcription apparatus that comprises nearly 60 polypeptides and is responsible for the expression and regulation of proteinencoding genes. Much of our present understanding and knowledge of the RNA polymerase II transcription apparatus in eukaryotes has been derived from studies in Saccharomyces cerevisiae. More recently, Schizosaccharomyces pombe has emerged as a better model system to study transcription because the transcription mechanism in this yeast is closer to that in higher eukaryotes. Also, studies on components of the basal transcription machinery have revealed a number of properties that are common with other eukaryotes, but have also highlighted some features unique to S. pombe. In fact, the fungal transcription associated protein families show greater species specificity and only 15% of these proteins contain homologues shared between both S. cerevisiae and S. pombe. In this chapter, we compare the RNA polymerase II transcription apparatus in different yeasts.

  15. Yeast community associated with the solid state fermentation of traditional Chinese Maotai-flavor liquor.

    Science.gov (United States)

    Wu, Qun; Chen, Liangqiang; Xu, Yan

    2013-09-02

    Yeasts are the most important group of microorganisms contributing to liquor quality in the solid-state fermentation process of Chinese Maotai-flavor liquor. There occurred a complex yeast community structure during this process, including stages of Daqu (the starter) making, stacking fermentation on the ground and liquor fermentation in the pits. In the Daqu making stage, few yeast strains accumulated. However, the stacking fermentation stage accumulated nine yeast species with different physio-biochemical characteristics. But only four species kept dominant until liquor fermentation, which were Zygosaccharomyces bailii, Saccharomyces cerevisiae, Pichia membranifaciens, and Schizosaccharomyces pombe, implying their important functions in liquor making. The four species tended to inhabit in different locations of the stack and pits during stacking and liquor fermentation, due to the condition heterogeneity of the solid-state fermentation, including the different fermentation temperature profiles and oxygen density in different locations. Moreover, yeast population was much larger in the upper layer than that in the middle and bottom layers in liquor fermentation, which was in accordance with the profile of reducing sugar consumption and ethanol production. This was a systematical investigation of yeast community structure dynamics in the Maotai-flavor liquor fermentation process. It would be of help to understand the fermentative mechanism in solid-state fermentation for Maotai-flavor liquor. © 2013.

  16. A simple dependence between protein evolution rate and the number of protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Hirsh Aaron E

    2003-05-01

    Full Text Available Abstract Background It has been shown for an evolutionarily distant genomic comparison that the number of protein-protein interactions a protein has correlates negatively with their rates of evolution. However, the generality of this observation has recently been challenged. Here we examine the problem using protein-protein interaction data from the yeast Saccharomyces cerevisiae and genome sequences from two other yeast species. Results In contrast to a previous study that used an incomplete set of protein-protein interactions, we observed a highly significant correlation between number of interactions and evolutionary distance to either Candida albicans or Schizosaccharomyces pombe. This study differs from the previous one in that it includes all known protein interactions from S. cerevisiae, and a larger set of protein evolutionary rates. In both evolutionary comparisons, a simple monotonic relationship was found across the entire range of the number of protein-protein interactions. In agreement with our earlier findings, this relationship cannot be explained by the fact that proteins with many interactions tend to be important to yeast. The generality of these correlations in other kingdoms of life unfortunately cannot be addressed at this time, due to the incompleteness of protein-protein interaction data from organisms other than S. cerevisiae. Conclusions Protein-protein interactions tend to slow the rate at which proteins evolve. This may be due to structural constraints that must be met to maintain interactions, but more work is needed to definitively establish the mechanism(s behind the correlations we have observed.

  17. Mis16 Independently Recognizes Histone H4 and the CENP-ACnp1-Specific Chaperone Scm3sp

    Energy Technology Data Exchange (ETDEWEB)

    An, Sojin; Kim, Hanseong; Cho, Uhn-Soo (Michigan-Med)

    2015-09-04

    CENP-A is a centromere-specific histone H3 variant that is required for kinetochore assembly and accurate chromosome segregation. For it to function properly, CENP-A must be specifically localized to centromeres. In fission yeast, Scm3sp and the Mis18 complex, composed of Mis16, Eic1, and Mis18, function as a CENP-ACnp1-specific chaperone and a recruiting factor, respectively, and together ensure accurate delivery of CENP-ACnp1 to centromeres. Although how Scm3sp specifically recognizes CENP-ACnp1 has been revealed recently, the recruiting mechanism of CENP-ACnp1 via the Mis18 complex remains unknown. In this study, we have determined crystal structures of Schizosaccharomyces japonicus Mis16 alone and in complex with the helix 1 of histone H4 (H4α1). Crystal structures followed by mutant analysis and affinity pull-downs have revealed that Mis16 recognizes both H4α1 and Scm3sp independently within the CENP-ACnp1/H4:Scm3sp complex. This observation suggests that Mis16 gains CENP-ACnp1 specificity by recognizing both Scm3sp and histone H4. Our studies provide insights into the molecular mechanisms underlying specific recruitment of CENP-ACnp1/H4:Scm3sp into centromeres.

  18. A CRISPR/Cas9-based method and primer design tool for seamless genome editing in fission yeast [version 3; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    María Rodríguez-López

    2017-05-01

    Full Text Available In the fission yeast Schizosaccharomyces pombe the prevailing approach for gene manipulations is based on homologous recombination of a PCR product that contains genomic target sequences and a selectable marker. The CRISPR/Cas9 system has recently been implemented in fission yeast, which allows for seamless genome editing without integration of a selection marker or leaving any other genomic ‘scars’. The published method involves manual design of the single guide RNA (sgRNA, and digestion of a large plasmid with a problematic restriction enzyme to clone the sgRNA. To increase the efficiency of this approach, we have established and optimized a PCR-based system to clone the sgRNA without restriction enzymes into a plasmid with a dominant natMX6 (nourseothricin selection marker. We also provide a web-tool, CRISPR4P, to support the design of the sgRNAs and the primers required for the entire process of seamless DNA deletion. Moreover, we report the preparation of G1-synchronized and cryopreserved S. pombe cells, which greatly increases the efficiency and speed for transformations, and may also facilitate standard gene manipulations. Applying this optimized CRISPR/Cas9-based approach, we have successfully deleted over 80 different non-coding RNA genes, which are generally lowly expressed, and have inserted 7 point mutations in 4 different genomic regions.

  19. A CRISPR/Cas9-based method and primer design tool for seamless genome editing in fission yeast [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    María Rodríguez-López

    2017-01-01

    Full Text Available In the fission yeast Schizosaccharomyces pombe the prevailing approach for gene manipulations is based on homologous recombination of a PCR product that contains genomic target sequences and a selectable marker. The CRISPR/Cas9 system has recently been implemented in fission yeast, which allows for seamless genome editing without integration of a selection marker or leaving any other genomic ‘scars’. The published method involves manual design of the single guide RNA (sgRNA, and digestion of a large plasmid with a problematic restriction enzyme to clone the sgRNA. To increase the efficiency of this approach, we have established and optimized a PCR-based system to clone the sgRNA without restriction enzymes into a plasmid with a dominant natMX6 (nourseothricin selection marker. We also provide a web-tool, CRISPR4P, to support the design of the sgRNAs and the primers required for the entire process of seamless DNA deletion. Moreover, we report the preparation of G1-synchronized and cryopreserved S. pombe cells, which greatly increases the efficiency and speed for transformations, and may also facilitate standard gene manipulations. Applying this optimized CRISPR/Cas9-based approach, we have successfully deleted over 80 different non-coding RNA genes, which are generally lowly expressed, and have inserted 7 point mutations in 4 different genomic regions.

  20. An Effective Big Data Supervised Imbalanced Classification Approach for Ortholog Detection in Related Yeast Species

    Directory of Open Access Journals (Sweden)

    Deborah Galpert

    2015-01-01

    Full Text Available Orthology detection requires more effective scaling algorithms. In this paper, a set of gene pair features based on similarity measures (alignment scores, sequence length, gene membership to conserved regions, and physicochemical profiles are combined in a supervised pairwise ortholog detection approach to improve effectiveness considering low ortholog ratios in relation to the possible pairwise comparison between two genomes. In this scenario, big data supervised classifiers managing imbalance between ortholog and nonortholog pair classes allow for an effective scaling solution built from two genomes and extended to other genome pairs. The supervised approach was compared with RBH, RSD, and OMA algorithms by using the following yeast genome pairs: Saccharomyces cerevisiae-Kluyveromyces lactis, Saccharomyces cerevisiae-Candida glabrata, and Saccharomyces cerevisiae-Schizosaccharomyces pombe as benchmark datasets. Because of the large amount of imbalanced data, the building and testing of the supervised model were only possible by using big data supervised classifiers managing imbalance. Evaluation metrics taking low ortholog ratios into account were applied. From the effectiveness perspective, MapReduce Random Oversampling combined with Spark SVM outperformed RBH, RSD, and OMA, probably because of the consideration of gene pair features beyond alignment similarities combined with the advances in big data supervised classification.