WorldWideScience

Sample records for scf ubiquitin ligase

  1. The Role of Ubiquitin E3 Ligase SCF-SKP2 in Prostate Cancer Development

    National Research Council Canada - National Science Library

    Zhang, Hui

    2007-01-01

    .... Loss of tumor suppressors p53 and Pten is also associated with prostate cancers. We found that p27 is regulated by both SCF-SKP2 and a novel ubiquitin E3 ligase containing CUL4-DDB1-WD40-repeat proteins...

  2. The SCF ubiquitin ligase Slimb controls Nerfin-1 turnover in Drosophila.

    Science.gov (United States)

    Lin, Xiaohui; Wang, Feng; Li, Yuanpei; Zhai, Chaojun; Wang, Guiping; Zhang, Xiaoting; Gao, Yang; Yi, Tao; Sun, Dan; Wu, Shian

    2018-01-01

    The C2H2 type zinc-finger transcription factor Nerfin-1 expresses dominantly in Drosophila nervous system and plays an important role in early axon guidance decisions and preventing neurons dedifferentiation. Recently, increasing reports indicated that INSM1 (homologue to nerfin-1 in mammals) is a useful marker for prognosis of neuroendocrine tumors. The dynamic expression of Nerfin-1 is regulated post-transcriptionally by multiple microRNAs; however, its post-translational regulation is still unclear. Here we showed that the protein turnover of Nerfin-1 is regulated by Slimb, the substrate adaptor of SCF Slimb ubiquitin ligase complex. Mechanistically, Slimb associates with Nerfin-1 and promotes it ubiquitination and degradation in Drosophila S2R + cells. Furthermore, we determined that the C-terminal half of Nerfin-1 (Nerfin-1 CT ) is required for its binding to Slimb. Genetic epistasis assays showed that Slimb misexpression antagonizes, while knock-down enhances the activity of Nerfin-1 CT in Drosophila eyes. Our data revealed a new link to understand the underlying mechanism for Nerfin-1 turnover in post-translational level, and provided useful insights in animal development and disease treatment by manipulating the activity of Slimb and Nerfin-1. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Pseudosubstrate regulation of the SCF(beta-TrCP) ubiquitin ligase by hnRNP-U

    DEFF Research Database (Denmark)

    Davis, Matti; Hatzubai, Ada; Andersen, Jens S

    2002-01-01

    in the nucleus. Here we report the isolation of the major E3RS-associated protein, hnRNP-U, an abundant nuclear phosphoprotein. This protein occupies E3RS in a specific and stoichiometric manner, stabilizes the E3 component, and is likely responsible for its nuclear localization. hnRNP-U binding was abolished....... Consequently, hnRNP-U engages a highly neddylated active SCF(beta-TrCP), which dissociates in the presence of a high-affinity substrate, resulting in ubiquitination of the latter. Our study points to a novel regulatory mechanism, which secures the localization, stability, substrate binding threshold...

  4. An Atypical SCF-like Ubiquitin Ligase Complex Promotes Wallerian Degeneration through Regulation of Axonal Nmnat2

    Directory of Open Access Journals (Sweden)

    Yuya Yamagishi

    2016-10-01

    Full Text Available Axon degeneration is a tightly regulated, self-destructive program that is a critical feature of many neurodegenerative diseases, but the molecular mechanisms regulating this program remain poorly understood. Here, we identify S-phase kinase-associated protein 1A (Skp1a, a core component of a Skp/Cullin/F-box (SCF-type E3 ubiquitin ligase complex, as a critical regulator of axon degeneration after injury in mammalian neurons. Depletion of Skp1a prolongs survival of injured axons in vitro and in the optic nerve in vivo. We demonstrate that Skp1a regulates the protein level of the nicotinamide adenine dinucleotide (NAD+ synthesizing enzyme nicotinamide mononucleotide adenylyltransferase 2 (Nmnat2 in axons. Loss of axonal Nmnat2 contributes to a local ATP deficit that triggers axon degeneration. Knockdown of Skp1a elevates basal levels of axonal Nmnat2, thereby delaying axon degeneration through prolonged maintenance of axonal ATP. Consistent with Skp1a functioning through regulation of Nmnat2, Skp1a knockdown fails to protect axons from Nmnat2 knockdown. These results illuminate the molecular mechanism underlying Skp1a-dependent axonal destruction.

  5. CDK-mediated activation of the SCF(FBXO) (28) ubiquitin ligase promotes MYC-driven transcription and tumourigenesis and predicts poor survival in breast cancer

    DEFF Research Database (Denmark)

    Cepeda, Diana; Ng, Hwee-Fang; Sharifi, Hamid Reza

    2013-01-01

    SCF (Skp1/Cul1/F-box) ubiquitin ligases act as master regulators of cellular homeostasis by targeting key proteins for ubiquitylation. Here, we identified a hitherto uncharacterized F-box protein, FBXO28 that controls MYC-dependent transcription by non-proteolytic ubiquitylation. SCF(FBXO28...... results in an impairment of MYC-driven transcription, transformation and tumourigenesis. Finally, in human breast cancer, high FBXO28 expression and phosphorylation are strong and independent predictors of poor outcome. In conclusion, our data suggest that SCF(FBXO28) plays an important role...... in transmitting CDK activity to MYC function during the cell cycle, emphasizing the CDK-FBXO28-MYC axis as a potential molecular drug target in MYC-driven cancers, including breast cancer....

  6. Geminiviruses Subvert Ubiquitination by Altering CSN-Mediated Derubylation of SCF E3 Ligase Complexes and Inhibit Jasmonate Signaling in Arabidopsis thaliana[C][W

    Science.gov (United States)

    Lozano-Durán, Rosa; Rosas-Díaz, Tabata; Gusmaroli, Giuliana; Luna, Ana P.; Taconnat, Ludivine; Deng, Xing Wang; Bejarano, Eduardo R.

    2011-01-01

    Viruses must create a suitable cell environment and elude defense mechanisms, which likely involves interactions with host proteins and subsequent interference with or usurpation of cellular machinery. Here, we describe a novel strategy used by plant DNA viruses (Geminiviruses) to redirect ubiquitination by interfering with the activity of the CSN (COP9 signalosome) complex. We show that geminiviral C2 protein interacts with CSN5, and its expression in transgenic plants compromises CSN activity on CUL1. Several responses regulated by the CUL1-based SCF ubiquitin E3 ligases (including responses to jasmonates, auxins, gibberellins, ethylene, and abscisic acid) are altered in these plants. Impairment of SCF function is confirmed by stabilization of yellow fluorescent protein–GAI, a substrate of the SCFSLY1. Transcriptomic analysis of these transgenic plants highlights the response to jasmonates as the main SCF-dependent process affected by C2. Exogenous jasmonate treatment of Arabidopsis thaliana plants disrupts geminivirus infection, suggesting that the suppression of the jasmonate response might be crucial for infection. Our findings suggest that C2 affects the activity of SCFs, most likely through interference with the CSN. As SCFs are key regulators of many cellular processes, the capability of viruses to selectively interfere with or hijack the activity of these complexes might define a novel and powerful strategy in viral infections. PMID:21441437

  7. CDK-mediated activation of the SCF(FBXO) (28) ubiquitin ligase promotes MYC-driven transcription and tumourigenesis and predicts poor survival in breast cancer.

    Science.gov (United States)

    Cepeda, Diana; Ng, Hwee-Fang; Sharifi, Hamid Reza; Mahmoudi, Salah; Cerrato, Vanessa Soto; Fredlund, Erik; Magnusson, Kristina; Nilsson, Helén; Malyukova, Alena; Rantala, Juha; Klevebring, Daniel; Viñals, Francesc; Bhaskaran, Nimesh; Zakaria, Siti Mariam; Rahmanto, Aldwin Suryo; Grotegut, Stefan; Nielsen, Michael Lund; Szigyarto, Cristina Al-Khalili; Sun, Dahui; Lerner, Mikael; Navani, Sanjay; Widschwendter, Martin; Uhlén, Mathias; Jirström, Karin; Pontén, Fredrik; Wohlschlegel, James; Grandér, Dan; Spruck, Charles; Larsson, Lars-Gunnar; Sangfelt, Olle

    2013-07-01

    SCF (Skp1/Cul1/F-box) ubiquitin ligases act as master regulators of cellular homeostasis by targeting key proteins for ubiquitylation. Here, we identified a hitherto uncharacterized F-box protein, FBXO28 that controls MYC-dependent transcription by non-proteolytic ubiquitylation. SCF(FBXO28) activity and stability are regulated during the cell cycle by CDK1/2-mediated phosphorylation of FBXO28, which is required for its efficient ubiquitylation of MYC and downsteam enhancement of the MYC pathway. Depletion of FBXO28 or overexpression of an F-box mutant unable to support MYC ubiquitylation results in an impairment of MYC-driven transcription, transformation and tumourigenesis. Finally, in human breast cancer, high FBXO28 expression and phosphorylation are strong and independent predictors of poor outcome. In conclusion, our data suggest that SCF(FBXO28) plays an important role in transmitting CDK activity to MYC function during the cell cycle, emphasizing the CDK-FBXO28-MYC axis as a potential molecular drug target in MYC-driven cancers, including breast cancer. © 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.

  8. SUMO-targeted ubiquitin ligases.

    Science.gov (United States)

    Sriramachandran, Annie M; Dohmen, R Jürgen

    2014-01-01

    Covalent posttranslational modification with SUMO (small ubiquitin-related modifier) modulates functions of a wide range of proteins in eukaryotic cells. Sumoylation affects the activity, interaction properties, subcellular localization and the stability of its substrate proteins. The recent discovery of a novel class of ubiquitin ligases (E3), termed ULS (E3-S) or STUbL, that recognize sumoylated proteins, links SUMO modification to the ubiquitin/proteasome system. Here we review recent insights into the properties and function of these ligases and their roles in regulating sumoylated proteins. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf. © 2013. Published by Elsevier B.V. All rights reserved.

  9. Stealing the spotlight: CUL4-DDB1 ubiquitin ligase docks WD40-repeat proteins to destroy

    Directory of Open Access Journals (Sweden)

    Zhang Hui

    2007-02-01

    Full Text Available Abstract Recent investigation of Cullin 4 (CUL4 has ushered this class of multiprotein ubiquitin E3 ligases to center stage as critical regulators of diverse processes including cell cycle regulation, developmental patterning, DNA replication, DNA damage and repair, and epigenetic control of gene expression. CUL4 associates with DNA Damage Binding protein 1 (DDB1 to assemble an ubiquitin E3 ligase that targets protein substrates for ubiquitin-dependent proteolysis. CUL4 ligase activity is also regulated by the covalent attachment of the ubiquitin-like protein NEDD8 to CUL4, or neddylation, and the COP9 signalosome complex (CSN that removes this important modification. Recently, multiple WD40-repeat proteins (WDR were found to interact with DDB1 and serve as the substrate-recognition subunits of the CUL4-DDB1 ubiquitin ligase. As more than 150–300 WDR proteins exist in the human genome, these findings impact a wide array of biological processes through CUL4 ligase-mediated proteolysis. Here, we review the recent progress in understanding the mechanism of CUL4 ubiquitin E3 ligase and discuss the architecture of CUL4-assembled E3 ubiquitin ligase complexes by comparison to CUL1-based E3s (SCF. Then, we will review several examples to highlight the critical roles of CUL4 ubiquitin ligase in genome stability, cell cycle regulation, and histone lysine methylation. Together, these studies provide insights into the mechanism of this novel ubiquitin ligase in the regulation of important biological processes.

  10. Evolution of Plant HECT Ubiquitin Ligases

    OpenAIRE

    Mar?n, Ignacio

    2013-01-01

    HECT ubiquitin ligases are key components of the ubiquitin-proteasome system, which is present in all eukaryotes. In this study, the patterns of emergence of HECT genes in plants are described. Phylogenetic and structural data indicate that viridiplantae have six main HECT subfamilies, which arose before the split that separated green algae from the rest of plants. It is estimated that the common ancestor of all plants contained seven HECT genes. Contrary to what happened in animals, the numb...

  11. KF-1 Ubiquitin Ligase: An Anxiety Suppressor.

    Science.gov (United States)

    Hashimoto-Gotoh, Tamotsu; Iwabe, Naoyuki; Tsujimura, Atsushi; Takao, Keizo; Miyakawa, Tsuyoshi

    2009-05-01

    Anxiety is an instinct that may have developed to promote adaptive survival by evading unnecessary danger. However, excessive anxiety is disruptive and can be a basic disorder of other psychiatric diseases such as depression. The KF-1, a ubiquitin ligase located on the endoplasmic reticulum (ER), may prevent excessive anxiety; kf-1(-/-) mice exhibit selectively elevated anxiety-like behavior against light or heights. It is surmised that KF-1 degrades some target proteins, responsible for promoting anxiety, through the ER-associated degradation pathway, similar to Parkin in Parkinson's disease (PD). Parkin, another ER-ubiquitin ligase, prevents the degeneration of dopaminergic neurons by degrading the target proteins responsible for PD. Molecular phylogenetic studies have revealed that the prototype of kf-1 appeared in the very early phase of animal evolution but was lost, unlike parkin, in the lineage leading up to Drosophila. Therefore, kf-1(-/-) mice may be a powerful tool for elucidating the molecular mechanisms involved in emotional regulation, and for screening novel anxiolytic/antidepressant compounds.

  12. Proteolytic regulation of metabolic enzymes by E3 ubiquitin ligase complexes: lessons from yeast.

    Science.gov (United States)

    Nakatsukasa, Kunio; Okumura, Fumihiko; Kamura, Takumi

    2015-01-01

    Eukaryotic organisms use diverse mechanisms to control metabolic rates in response to changes in the internal and/or external environment. Fine metabolic control is a highly responsive, energy-saving process that is mediated by allosteric inhibition/activation and/or reversible modification of preexisting metabolic enzymes. In contrast, coarse metabolic control is a relatively long-term and expensive process that involves modulating the level of metabolic enzymes. Coarse metabolic control can be achieved through the degradation of metabolic enzymes by the ubiquitin-proteasome system (UPS), in which substrates are specifically ubiquitinated by an E3 ubiquitin ligase and targeted for proteasomal degradation. Here, we review select multi-protein E3 ligase complexes that directly regulate metabolic enzymes in Saccharomyces cerevisiae. The first part of the review focuses on the endoplasmic reticulum (ER) membrane-associated Hrd1 and Doa10 E3 ligase complexes. In addition to their primary roles in the ER-associated degradation pathway that eliminates misfolded proteins, recent quantitative proteomic analyses identified native substrates of Hrd1 and Doa10 in the sterol synthesis pathway. The second part focuses on the SCF (Skp1-Cul1-F-box protein) complex, an abundant prototypical multi-protein E3 ligase complex. While the best-known roles of the SCF complex are in the regulation of the cell cycle and transcription, accumulating evidence indicates that the SCF complex also modulates carbon metabolism pathways. The increasing number of metabolic enzymes whose stability is directly regulated by the UPS underscores the importance of the proteolytic regulation of metabolic processes for the acclimation of cells to environmental changes.

  13. E3 Ubiquitin Ligases Neurobiological Mechanisms: Development to Degeneration

    Directory of Open Access Journals (Sweden)

    Arun Upadhyay

    2017-05-01

    Full Text Available Cells regularly synthesize new proteins to replace old or damaged proteins. Deposition of various aberrant proteins in specific brain regions leads to neurodegeneration and aging. The cellular protein quality control system develop various defense mechanisms against the accumulation of misfolded and aggregated proteins. The mechanisms underlying the selective recognition of specific crucial protein or misfolded proteins are majorly governed by quality control E3 ubiquitin ligases mediated through ubiquitin-proteasome system. Few known E3 ubiquitin ligases have shown prominent neurodevelopmental functions, but their interactions with different developmental proteins play critical roles in neurodevelopmental disorders. Several questions are yet to be understood properly. How E3 ubiquitin ligases determine the specificity and regulate degradation of a particular substrate involved in neuronal proliferation and differentiation is certainly the one, which needs detailed investigations. Another important question is how neurodevelopmental E3 ubiquitin ligases specifically differentiate between their versatile range of substrates and timing of their functional modulations during different phases of development. The premise of this article is to understand how few E3 ubiquitin ligases sense major molecular events, which are crucial for human brain development from its early embryonic stages to throughout adolescence period. A better understanding of these few E3 ubiquitin ligases and their interactions with other potential proteins will provide invaluable insight into disease mechanisms to approach toward therapeutic interventions.

  14. KF-1 ubiquitin ligase: anxiety suppressor model.

    Science.gov (United States)

    Hashimoto-Gotoh, Tamotsu; Iwabe, Naoyuki; Tsujimura, Atsushi; Nakagawa, Masanori; Marunaka, Yoshinori

    2011-06-01

    Anxiety disorders are the most popular psychiatric disease in any human societies irrespective of nation, culture, religion, economics or politics. Anxiety expression mediated by the amygdala may be suppressed by signals transmitted from the prefrontal cortex and hippocampus. KF-1 is an endoplasmic reticulum (ER)-based E3-ubiquitin (Ub) ligase with a RING-H2 finger motif at the C-terminus. The kf-1 gene expression is up-regulated in the frontal cortex and hippocampus in rats after anti-depressant treatments. The kf-1 null mice show no apparent abnormalities, but exhibit selectively pronounced anxiety-like behaviors or increased timidity-like responses. The kf-1 orthologous genes had been generated after the Poriferan emergence, and are found widely in all animals except insects, arachnids and threadworms such as Drosophila, Ixodes and Caenorhabditis, respectively. This suggests that the kf-1 gene may be relevant to some biological functions characteristic to animals. Based on these observations, the Anxiety Suppressor Model has been proposed, which assumes that KF-1 Ub ligase may suppress the amygdala-mediated anxiety by degrading some anxiety promoting protein(s), such as a neurotransmitter receptor, through the ER-associated degradation pathway in the frontal cortex and hippocampus. According to this model, the emotional sensitivity to environmental stresses may be regulated by the cellular protein level of KF-1 relative to that of the putative anxiety promoter. The kf-1 null mice should be useful in elucidating the molecular mechanisms of the anxiety regulation and for screening novel anxiolytic compounds, which may block the putative anxiety promoter.

  15. Regulation of lipid droplet turnover by ubiquitin ligases

    Directory of Open Access Journals (Sweden)

    Rotin Daniela

    2010-07-01

    Full Text Available Abstract Mutation of the protein spartin is a cause of one form of spastic paraplegia. Spartin interacts with ubiquitin ligases of the Nedd4 family, and a recent report in BMC Biology now shows that it acts as an adaptor to recruit and activate the ubiquitin ligase AIP4 onto lipid droplets, leading to the ubiquitination and degradation of droplet-associated proteins. A deficiency of spartin apparently causes lipid droplets to accumulate. See research article: http://www.biomedcentral.com/1741-7007/8/72/

  16. Auto-ubiquitination of Mdm2 Enhances Its Substrate Ubiquitin Ligase Activity*

    Science.gov (United States)

    Ranaweera, Ruchira S.; Yang, Xiaolu

    2013-01-01

    The RING domain E3 ubiquitin ligase Mdm2 is the master regulator of the tumor suppressor p53. It targets p53 for proteasomal degradation, restraining the potent activity of p53 and enabling cell survival and proliferation. Like most E3 ligases, Mdm2 can also ubiquitinate itself. How Mdm2 auto-ubiquitination may influence its substrate ubiquitin ligase activity is undefined. Here we show that auto-ubiquitination of Mdm2 is an activating event. Mdm2 that has been conjugated to polyubiquitin chains, but not to single ubiquitins, exhibits substantially enhanced activity to polyubiquitinate p53. Mechanistically, auto-ubiquitination of Mdm2 facilitates the recruitment of the E2 ubiquitin-conjugating enzyme. This occurs through noncovalent interactions between the ubiquitin chains on Mdm2 and the ubiquitin binding domain on E2s. Mutations that diminish the noncovalent interactions render auto-ubiquitination unable to stimulate Mdm2 substrate E3 activity. These results suggest a model in which polyubiquitin chains on an E3 increase the local concentration of E2 enzymes and permit the processivity of substrate ubiquitination. They also support the notion that autocatalysis may be a prevalent mode for turning on the activity of latent enzymes. PMID:23671280

  17. Sculpting ion channel functional expression with engineered ubiquitin ligases

    Science.gov (United States)

    Kanner, Scott A; Morgenstern, Travis

    2017-01-01

    The functional repertoire of surface ion channels is sustained by dynamic processes of trafficking, sorting, and degradation. Dysregulation of these processes underlies diverse ion channelopathies including cardiac arrhythmias and cystic fibrosis. Ubiquitination powerfully regulates multiple steps in the channel lifecycle, yet basic mechanistic understanding is confounded by promiscuity among E3 ligase/substrate interactions and ubiquitin code complexity. Here we targeted the catalytic domain of E3 ligase, CHIP, to YFP-tagged KCNQ1 ± KCNE1 subunits with a GFP-nanobody to selectively manipulate this channel complex in heterologous cells and adult rat cardiomyocytes. Engineered CHIP enhanced KCNQ1 ubiquitination, eliminated KCNQ1 surface-density, and abolished reconstituted K+ currents without affecting protein expression. A chemo-genetic variation enabling chemical control of ubiquitination revealed KCNQ1 surface-density declined with a ~ 3.5 hr t1/2 by impaired forward trafficking. The results illustrate utility of engineered E3 ligases to elucidate mechanisms underlying ubiquitin regulation of membrane proteins, and to achieve effective post-translational functional knockdown of ion channels. PMID:29256394

  18. Structural basis for phosphodependent substrate selection and orientation by the SCFCdc4 ubiquitin ligase

    Energy Technology Data Exchange (ETDEWEB)

    Orlicky, Steve; Tang, Xiaojing; Willems, Andrew; Tyers, Mike; Sicheri, Frank

    2010-12-01

    Cell cycle progression depends on precise elimination of cyclins and cyclin-dependent kinase (CDK) inhibitors by the ubiquitin system. Elimination of the CDK inhibitor Sic1 by the SCF{sup Cdc4} ubiquitin ligase at the onset of S phase requires phosphorylation of Sic1 on at least six of its nine Cdc4-phosphodegron (CPD) sites. A 2.7 {angstrom} X-ray crystal structure of a Skp1-Cdc4 complex bound to a high-affinity CPD phosphopeptide from human cyclin E reveals a core CPD motif, Leu-Leu-pThr-Pro, bound to an eight-bladed WD40 propeller domain in Cdc4. The low affinity of each CPD motif in Sic1 reflects structural discordance with one or more elements of the Cdc4 binding site. Reengineering of Cdc4 to reduce selection against Sic1 sequences allows ubiquitination of lower phosphorylated forms of Sic1. These features account for the observed phosphorylation threshold in Sic1 recognition and suggest an equilibrium binding mode between a single receptor site in Cdc4 and multiple low-affinity CPD sites in Sic1.

  19. Ubiquitin-protein ligases in muscle wasting: multiple parallel pathways?

    Science.gov (United States)

    Lecker, Stewart H.; Goldberg, A. L. (Principal Investigator)

    2003-01-01

    PURPOSE OF REVIEW: Studies in a wide variety of animal models of muscle wasting have led to the concept that increased protein breakdown via the ubiquitin-proteasome pathway is responsible for the loss of muscle mass seen as muscle atrophy. The complexity of the ubiquitination apparatus has hampered our understanding of how this pathway is activated in atrophying muscles and which ubiquitin-conjugating enzymes in muscle are responsible. RECENT FINDINGS: Recent experiments have shown that two newly identified ubiquitin-protein ligases (E3s), atrogin-1/MAFbx and MURF-1, are critical in the development of muscle atrophy. Other in-vitro studies also implicated E2(14k) and E3alpha, of the N-end rule pathway, as playing an important role in the process. SUMMARY: It seems likely that multiple pathways of ubiquitin conjugation are activated in parallel in atrophying muscle, perhaps to target for degradation specific classes of muscle proteins. The emerging challenge will be to define the protein targets for, as well as inhibitors of, these E3s.

  20. UHRF2, another E3 ubiquitin ligase for p53

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Lu; Wang, Xiaohui; Jin, Fangmin; Yang, Yan; Qian, Guanhua [Department of Cell Biology and Medical Genetics, Chongqing Medical University, Chongqing (China); Duan, Changzhu, E-mail: duanchzhu@cqmu.edu.cn [Key Laboratory of Clinical Laboratory Diagnostics of Ministry of Education, Faculty of Laboratory Medicine, Chongqing Medical University, Chongqing (China); Department of Cell Biology and Medical Genetics, Chongqing Medical University, Chongqing (China)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer UHRF2 associates with p53 in vivo and in vitro. Black-Right-Pointing-Pointer UHRF2 interacts with p53 through its SRA/YDG domain. Black-Right-Pointing-Pointer UHRF2 ubiquitinates p53 in vivo and in vitro. -- Abstract: UHRF2, ubiquitin-like with PHD and ring finger domains 2, is a nuclear E3 ubiquitin ligase, which is involved in cell cycle and epigenetic regulation. UHRF2 interacts with multiple cell cycle proteins, including cyclins (A2, B1, D1, and E1), CDK2, and pRb; moreover, UHRF2 could ubiquitinate cyclin D1 and cyclin E1. Also, UHRF2 has been shown to be implicated in epigenetic regulation by associating with DNMTs, G9a, HDAC1, H3K9me2/3 and hemi-methylated DNA. We found that UHRF2 associates with tumor suppressor protein p53, and p53 is ubiquitinated by UHRF2 in vivo and in vitro. Given that both UHRF2 and p53 are involved in cell cycle regulation, this study may suggest a novel signaling pathway on cell proliferation.

  1. Protein homeostasis and aging: role of ubiquitin protein ligases.

    Science.gov (United States)

    Jana, Nihar Ranjan

    2012-04-01

    Protein homeostasis is fundamental in normal cellular function and cell survival. The ubiquitin-proteasome system (UPS) plays a central role in maintaining the protein homeostasis network through selective elimination of misfolded and damaged proteins. Impaired function of UPS is implicated in normal aging process and also in several age-related neurodegenerative disorders that are characterized by increased accumulation oxidatively modified proteins and protein aggregates. Growing literature also indicate the potential role of various ubiquitin protein ligases in the regulation of aging process by enhancing the degradation of either central lifespan regulators or abnormally folded and damaged proteins. This review mainly focuses on our current understanding of the importance of UPS function in the regulation of normal aging process. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. The San1 Ubiquitin Ligase Functions Preferentially with Ubiquitin-conjugating Enzyme Ubc1 during Protein Quality Control*

    OpenAIRE

    Ibarra, Rebeca; Sandoval, Daniella; Fredrickson, Eric K.; Gardner, Richard G.; Kleiger, Gary

    2016-01-01

    Protein quality control (PQC) is a critical process wherein misfolded or damaged proteins are cleared from the cell to maintain protein homeostasis. In eukaryotic cells, the removal of misfolded proteins is primarily accomplished by the ubiquitin-proteasome system. In the ubiquitin-proteasome system, ubiquitin-conjugating enzymes and ubiquitin ligases append polyubiquitin chains onto misfolded protein substrates signaling for their degradation. The kinetics of protein ubiquitylation are param...

  3. The ubiquitin ligase SCFFBXW7α promotes GATA3 degradation.

    Science.gov (United States)

    Song, Nan; Cao, Cheng; Tang, Yiman; Bi, Liyuan; Jiang, Yong; Zhou, Yongsheng; Song, Xin; Liu, Ling; Ge, Wenshu

    2018-03-01

    GATA3 is a key transcription factor in cell fate determination and its dysregulation has been implicated in various types of malignancies. However, how the abundance and function of GATA3 are regulated remains unclear. Here, we report that GATA3 is physically associated with FBXW7α, and FBXW7α destabilizes GATA3 through assembly of a SKP1-CUL1-F-box E3 ligase complex. Importantly, we showed that FBXW7α promotes GATA3 ubiquitination and degradation in a GSK3 dependent manner. Furthermore, we demonstrated that FBXW7α inhibits breast cancer cells survival through destabilizing GATA3, and the expression level of FBXW7α is negatively correlated with that of GATA3 in breast cancer samples. This study indicated that FBXW7α is a critical negative regulator of GATA3 and revealed a pathway for the maintenance of GATA3 abundance in breast cancer cells. © 2017 Wiley Periodicals, Inc.

  4. SCF(JFK) is a bona fide E3 ligase for ING4 and a potent promoter of the angiogenesis and metastasis of breast cancer.

    Science.gov (United States)

    Yan, Ruorong; He, Lin; Li, Zhongwu; Han, Xiao; Liang, Jing; Si, Wenzhe; Chen, Zhe; Li, Lei; Xie, Guojia; Li, Wanjin; Wang, Peiyan; Lei, Liandi; Zhang, Hongquan; Pei, Fei; Cao, Dengfeng; Sun, Luyang; Shang, Yongfeng

    2015-03-15

    Loss of function/dysregulation of inhibitor of growth 4 (ING4) and hyperactivation of NF-κB are frequent events in many types of human malignancies. However, the molecular mechanisms underlying these remarkable aberrations are not understood. Here, we report that ING4 is physically associated with JFK. We demonstrated that JFK targets ING4 for ubiquitination and degradation through assembly of an Skp1-Cul1-F-box (SCF) complex. We showed that JFK-mediated ING4 destabilization leads to the hyperactivation of the canonical NF-κB pathway and promotes angiogenesis and metastasis of breast cancer. Significantly, the expression of JFK is markedly up-regulated in breast cancer, and the level of JFK is negatively correlated with that of ING4 and positively correlated with an aggressive clinical behavior of breast carcinomas. Our study identified SCF(JFK) as a bona fide E3 ligase for ING4 and unraveled the JFK-ING4-NF-κB axis as an important player in the development and progression of breast cancer, supporting the pursuit of JFK as a potential target for breast cancer intervention. © 2015 Yan et al.; Published by Cold Spring Harbor Laboratory Press.

  5. SAG/ROC-SCFβ-TrCP E3 Ubiquitin Ligase Promotes Pro-Caspase-3 Degradation as a Mechanism of Apoptosis Protection

    Directory of Open Access Journals (Sweden)

    Mingjia Tan

    2006-12-01

    Full Text Available Skp1-cullin-F-box protein (SCF is a multicomponent E3 ubiquitin (Ub ligase that ubiquitinates a number of important biologic molecules such as p27, β-catenin, and lκB for proteasomal degradation, thus regulating cell proliferation and survival. One SCF component, SAG/ROC2/Rbx2/Hrt2, a RING finger protein, was first identified as a redox-inducible protein, which, when overexpressed, inhibited apoptosis both in vitro and in vivo. We report here that sensitive to apoptosis gene (SAG, as well as its family member ROC1/Rbxi, bound to the proinactive form of caspase-3 (pro-caspase-3. Binding was likely mediated through F-box protein, β-transducin repeat-containing protein (β-TrCP, which binds to the first 38 amino acids of pro-caspase-3. Importantly, β-TrCP1 expression significantly shortened the protein half-life of pro-caspase-3, whereas expression of a dominant-negative β-TrCP1 mutant with the F-box domain deleted extended it. An in vitro ubiquitination assay showed that SAG/ROC-SCF -Trcp promoted ubiquitination of pro-caspase-3. Furthermore, endogenous levels of pro-caspase-3 were decreased by overexpression of SAG/ROC-SCFβ-TrCP E3 Ub ligases, but increased on siRNA silencing of SAG, regulator of cullin-1 (ROC1, or β-TrCPs, leading to increased apoptosis by etoposide and TNF-related apoptosis-inducing ligand through increased activation of caspase-3. Thus, pro-caspase-3 appears to be a substrate of SAG/ROC-SCFβ-TrCP E3 Ub ligase, which protects cells from apoptosis through increased apoptosis threshold by reducing the basal level of pro-caspase-3.

  6. Ubiquitin-conjugating enzyme E2 D1 (Ube2D1) mediates lysine-independent ubiquitination of the E3 ubiquitin ligase March-I.

    Science.gov (United States)

    Lei, Lei; Bandola-Simon, Joanna; Roche, Paul A

    2018-02-01

    March-I is a membrane-bound E3 ubiquitin ligase belonging to the membrane-associated RING-CH (March) family. March-I ubiquitinates and down-regulates expression of major histocompatibility complex (MHC) class II and cluster of differentiation 86 (CD86) in antigen presenting cells. March-I expression is regulated both transcriptionally and post-translationally and it has been reported that the March-I is ubiquitinated and that this ubiquitination contributes to March-I turnover. However, the molecular mechanism regulating March-I ubiquitination and the importance of March-I's E3 ligase activity for March-I ubiquitination are not fully understood. Here we confirmed that although March-I is ubiquitinated, it is not ubiquitinated on a lysine residue as a lysine-less March-I variant was ubiquitinated similarly to wild-type March-I. We found that March-I E3 ligase activity is not required for its ubiquitination and does not regulate March-I protein expression, suggesting that March-I does not undergo autoubiquitination. Knocking down ubiquitin-conjugating enzyme E2 D1 (Ube2D1) impaired March-I ubiquitination, increased March-I expression, and enhanced March-I-dependent downregulation of MHC class II proteins. Taken together, our results suggest that March-I undergoes lysine-independent ubiquitination by an as yet unidentified E3 ubiquitin ligase that together with Ube2D1 regulates March-I expression. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Interactions between the quality control ubiquitin ligase CHIP and ubiquitin conjugating enzymes

    Directory of Open Access Journals (Sweden)

    Nix Jay C

    2008-05-01

    Full Text Available Abstract Background Ubiquitin (E3 ligases interact with specific ubiquitin conjugating (E2 enzymes to ubiquitinate particular substrate proteins. As the combination of E2 and E3 dictates the type and biological consequence of ubiquitination, it is important to understand the basis of specificity in E2:E3 interactions. The E3 ligase CHIP interacts with Hsp70 and Hsp90 and ubiquitinates client proteins that are chaperoned by these heat shock proteins. CHIP interacts with two types of E2 enzymes, UbcH5 and Ubc13-Uev1a. It is unclear, however, why CHIP binds these E2 enzymes rather than others, and whether CHIP interacts preferentially with UbcH5 or Ubc13-Uev1a, which form different types of polyubiquitin chains. Results The 2.9 Å crystal structure of the CHIP U-box domain complexed with UbcH5a shows that CHIP binds to UbcH5 and Ubc13 through similar specificity determinants, including a key S-P-A motif on the E2 enzymes. The determinants make different relative contributions to the overall interactions between CHIP and the two E2 enzymes. CHIP undergoes auto-ubiquitination by UbcH5 but not by Ubc13-Uev1a. Instead, CHIP drives the formation of unanchored polyubiquitin by Ubc13-Uev1a. CHIP also interacts productively with the class III E2 enzyme Ube2e2, in which the UbcH5- and Ubc13-binding specificity determinants are highly conserved. Conclusion The CHIP:UbcH5a structure emphasizes the importance of specificity determinants located on the long loops and central helix of the CHIP U-box, and on the N-terminal helix and loops L4 and L7 of its cognate E2 enzymes. The S-P-A motif and other specificity determinants define the set of cognate E2 enzymes for CHIP, which likely includes several Class III E2 enzymes. CHIP's interactions with UbcH5, Ube2e2 and Ubc13-Uev1a are consistent with the notion that Ubc13-Uev1a may work sequentially with other E2 enzymes to carry out K63-linked polyubiquitination of CHIP substrates.

  8. A Comprehensive Atlas of E3 Ubiquitin Ligase Mutations in Neurological Disorders

    Directory of Open Access Journals (Sweden)

    Arlene J. George

    2018-02-01

    Full Text Available Protein ubiquitination is a posttranslational modification that plays an integral part in mediating diverse cellular functions. The process of protein ubiquitination requires an enzymatic cascade that consists of a ubiquitin activating enzyme (E1, ubiquitin conjugating enzyme (E2 and an E3 ubiquitin ligase (E3. There are an estimated 600–700 E3 ligase genes representing ~5% of the human genome. Not surprisingly, mutations in E3 ligase genes have been observed in multiple neurological conditions. We constructed a comprehensive atlas of disrupted E3 ligase genes in common (CND and rare neurological diseases (RND. Of the predicted and known human E3 ligase genes, we found ~13% were mutated in a neurological disorder with 83 total genes representing 70 different types of neurological diseases. Of the E3 ligase genes identified, 51 were associated with an RND. Here, we provide an updated list of neurological disorders associated with E3 ligase gene disruption. We further highlight research in these neurological disorders and discuss the advanced technologies used to support these findings.

  9. Inhibitors of ubiquitin E3 ligase as potential new antimalarial drug leads

    Science.gov (United States)

    The ubiquitin/proteasome pathway is the principal system for degradation of proteins in eukaryotes. Ubiquitin is a highly conserved polypeptide that covalently attaches to target proteins through the combined action ofubiquitin-activating enzyme (E1), conjugating enzyme (E2) and a protein ligase (E...

  10. How a disordered ubiquitin ligase maintains order in nuclear protein homeostasis

    OpenAIRE

    Rosenbaum, Joel C; Gardner, Richard G

    2011-01-01

    Cells use protein quality control (PQC) systems to protect themselves from potentially harmful misfolded proteins. Many misfolded proteins are repaired by molecular chaperones, but irreparably damaged proteins must be destroyed. Eukaryotes predominantly destroy these abnormally folded proteins through the ubiquitin-proteasome pathway, which requires compartment-specific ubiquitin ligase complexes that mark substrates with ubiquitin for proteasome degradation. In the yeast nucleus, misfolded p...

  11. How a disordered ubiquitin ligase maintains order in nuclear protein homeostasis.

    Science.gov (United States)

    Rosenbaum, Joel C; Gardner, Richard G

    2011-01-01

    Cells use protein quality control (PQC) systems to protect themselves from potentially harmful misfolded proteins. Many misfolded proteins are repaired by molecular chaperones, but irreparably damaged proteins must be destroyed. Eukaryotes predominantly destroy these abnormally folded proteins through the ubiquitin-proteasome pathway, which requires compartment-specific ubiquitin ligase complexes that mark substrates with ubiquitin for proteasome degradation. In the yeast nucleus, misfolded proteins are targeted for degradation by the ubiquitin ligase San1, which binds misfolded nuclear proteins directly and does not appear to require chaperones for substrate binding. San1 is also remarkably adaptable, as it is capable of ubiquitinating a structurally diverse assortment of abnormally folded substrates. We attribute this adaptability to San1's high degree of structural disorder, which provides flexibility and allows San1 to conform to differently shaped substrates. Here we review our recent work characterizing San1's distinctive mode of substrate recognition and the associated implications for PQC in the nucleus.

  12. Interplays between Sumoylation, SUMO-Targeted Ubiquitin Ligases, and the Ubiquitin-Adaptor Protein Ufd1 in Fission Yeast

    DEFF Research Database (Denmark)

    Køhler, Julie Bonne

    their conformation or interactions with other macromolecules. Though, whereas the downstream consequence of ubiquitin conjugation is often protein degradation, the functional outcomes of sumoylation are less unifiable. A class of ubiquitin E3 ligases able to target sumoylated proteins for degradation by the 26S...... proteasome mediates direct cross-talk between the two modification systems. By contributing to the dynamic turnover of SUMO conjugated species these SUMO-targeted ubiquitin ligases (STUbLs) fulfills essential roles in both yeast and man. However, the specific sumoylated proteins affected by STUbL activity...... and the specific molecular interactions and sequence of events linking sumoylation, ubiquitylation and substrate degradation, has been largely uncovered. Using the fission yeast model organism I here present evidence for a role of the Ufd1 (ubiquitinfusion degradation 1) protein, and by extension of the Cdc48-Ufd1...

  13. The San1 Ubiquitin Ligase Functions Preferentially with Ubiquitin-conjugating Enzyme Ubc1 during Protein Quality Control.

    Science.gov (United States)

    Ibarra, Rebeca; Sandoval, Daniella; Fredrickson, Eric K; Gardner, Richard G; Kleiger, Gary

    2016-09-02

    Protein quality control (PQC) is a critical process wherein misfolded or damaged proteins are cleared from the cell to maintain protein homeostasis. In eukaryotic cells, the removal of misfolded proteins is primarily accomplished by the ubiquitin-proteasome system. In the ubiquitin-proteasome system, ubiquitin-conjugating enzymes and ubiquitin ligases append polyubiquitin chains onto misfolded protein substrates signaling for their degradation. The kinetics of protein ubiquitylation are paramount as a balance must be achieved between the rapid removal of misfolded proteins versus providing sufficient time for protein chaperones to attempt refolding. To uncover the molecular basis for how PQC substrate ubiquitylation rates are controlled, the reaction catalyzed by nuclear ubiquitin ligase San1 was reconstituted in vitro Our results demonstrate that San1 can function with two ubiquitin-conjugating enzymes, Cdc34 and Ubc1. Although Cdc34 and Ubc1 are both sufficient for promoting San1 activity, San1 functions preferentially with Ubc1, including when both Ubc1 and Cdc34 are present. Notably, a homogeneous peptide that mimics a misfolded PQC substrate was developed and enabled quantification of the kinetics of San1-catalyzed ubiquitylation reactions. We discuss how these results may have broad implications for the regulation of PQC-mediated protein degradation. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. A new non-catalytic role for ubiquitin ligase RNF8 in unfolding higher-order chromatin structure

    DEFF Research Database (Denmark)

    Luijsterburg, Martijn S; Acs, Klara; Ackermann, Leena

    2012-01-01

    The ubiquitin ligases RNF8 and RNF168 orchestrate DNA damage signalling through the ubiquitylation of histone H2A and the recruitment of downstream repair factors. Here, we demonstrate that RNF8, but not RNF168 or the canonical H2A ubiquitin ligase RNF2, mediates extensive chromatin decondensatio...

  15. Membrane-localized ubiquitin ligase ATL15 functions in sugar-responsive growth regulation in Arabidopsis.

    Science.gov (United States)

    Aoyama, Shoki; Terada, Saki; Sanagi, Miho; Hasegawa, Yoko; Lu, Yu; Morita, Yoshie; Chiba, Yukako; Sato, Takeo; Yamaguchi, Junji

    2017-09-09

    Ubiquitin ligases play important roles in regulating various cellular processes by modulating the protein function of specific ubiquitination targets. The Arabidopsis Tóxicos en Levadura (ATL) family is a group of plant-specific RING-type ubiquitin ligases that localize to membranes via their N-terminal transmembrane-like domains. To date, 91 ATL isoforms have been identified in the Arabidopsis genome, with several ATLs reported to be involved in regulating plant responses to environmental stresses. However, the functions of most ATLs remain unknown. This study, involving transcriptome database analysis, identifies ATL15 as a sugar responsive ATL gene in Arabidopsis. ATL15 expression was rapidly down-regulated in the presence of sugar. The ATL15 protein showed ubiquitin ligase activity in vitro and localized to plasma membrane and endomembrane compartments. Further genetic analyses demonstrated that the atl15 knockout mutants are insensitive to high glucose concentrations, whereas ATL15 overexpression depresses plant growth. In addition, endogenous glucose and starch amounts were reciprocally affected in the atl15 knockout mutants and the ATL15 overexpressors. These results suggest that ATL15 protein plays a significant role as a membrane-localized ubiquitin ligase that regulates sugar-responsive plant growth in Arabidopsis. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Bioinformatics analysis identifies several intrinsically disordered human E3 ubiquitin-protein ligases

    Directory of Open Access Journals (Sweden)

    Wouter Boomsma

    2016-02-01

    Full Text Available The ubiquitin-proteasome system targets misfolded proteins for degradation. Since the accumulation of such proteins is potentially harmful for the cell, their prompt removal is important. E3 ubiquitin-protein ligases mediate substrate ubiquitination by bringing together the substrate with an E2 ubiquitin-conjugating enzyme, which transfers ubiquitin to the substrate. For misfolded proteins, substrate recognition is generally delegated to molecular chaperones that subsequently interact with specific E3 ligases. An important exception is San1, a yeast E3 ligase. San1 harbors extensive regions of intrinsic disorder, which provide both conformational flexibility and sites for direct recognition of misfolded targets of vastly different conformations. So far, no mammalian ortholog of San1 is known, nor is it clear whether other E3 ligases utilize disordered regions for substrate recognition. Here, we conduct a bioinformatics analysis to examine >600 human and S. cerevisiae E3 ligases to identify enzymes that are similar to San1 in terms of function and/or mechanism of substrate recognition. An initial sequence-based database search was found to detect candidates primarily based on the homology of their ordered regions, and did not capture the unique disorder patterns that encode the functional mechanism of San1. However, by searching specifically for key features of the San1 sequence, such as long regions of intrinsic disorder embedded with short stretches predicted to be suitable for substrate interaction, we identified several E3 ligases with these characteristics. Our initial analysis revealed that another remarkable trait of San1 is shared with several candidate E3 ligases: long stretches of complete lysine suppression, which in San1 limits auto-ubiquitination. We encode these characteristic features into a San1 similarity-score, and present a set of proteins that are plausible candidates as San1 counterparts in humans. In conclusion, our work

  17. The BRCA1 Ubiquitin ligase function sets a new trend for remodelling in DNA repair.

    Science.gov (United States)

    Densham, Ruth M; Morris, Joanna R

    2017-03-04

    The protein product of the breast and ovarian cancer gene, BRCA1, is part of an obligate heterodimer with BARD1. Together these RING bearing proteins act as an E3 ubiquitin ligase. Several functions have been attributed to BRCA1 that contribute to genome integrity but which of these, if any, require this enzymatic function was unclear. Here we review recent studies clarifying the role of BRCA1 E3 ubiquitin ligase in DNA repair. Perhaps the most surprising finding is the narrow range of BRCA1 functions this activity relates to. Remarkably ligase activity promotes chromatin remodelling and 53BP1 positioning through the remodeller SMARCAD1, but the activity is dispensable for the cellular survival in response to cisplatin or replication stressing agents. Implications for therapy response and tumor susceptibility are discussed.

  18. The E3 ubiquitin ligase activity of Trip12 is essential for mouse embryogenesis.

    Directory of Open Access Journals (Sweden)

    Masashi Kajiro

    Full Text Available Protein ubiquitination is a post-translational protein modification that regulates many biological conditions. Trip12 is a HECT-type E3 ubiquitin ligase that ubiquitinates ARF and APP-BP1. However, the significance of Trip12 in vivo is largely unknown. Here we show that the ubiquitin ligase activity of Trip12 is indispensable for mouse embryogenesis. A homozygous mutation in Trip12 (Trip12(mt/mt that disrupts the ubiquitin ligase activity resulted in embryonic lethality in the middle stage of development. Trip12(mt/mt embryos exhibited growth arrest and increased expression of the negative cell cycle regulator p16. In contrast, Trip12(mt/mt ES cells were viable. They had decreased proliferation, but maintained both the undifferentiated state and the ability to differentiate. Trip12(mt/mt ES cells had increased levels of the BAF57 protein (a component of the SWI/SNF chromatin remodeling complex and altered gene expression patterns. These data suggest that Trip12 is involved in global gene expression and plays an important role in mouse development.

  19. HSV-1 ICP0: An E3 Ubiquitin Ligase That Counteracts Host Intrinsic and Innate Immunity

    Directory of Open Access Journals (Sweden)

    Mirna Perusina Lanfranca

    2014-05-01

    Full Text Available The herpes simplex virus type 1 (HSV-1 encoded E3 ubiquitin ligase, infected cell protein 0 (ICP0, is required for efficient lytic viral replication and regulates the switch between the lytic and latent states of HSV-1. As an E3 ubiquitin ligase, ICP0 directs the proteasomal degradation of several cellular targets, allowing the virus to counteract different cellular intrinsic and innate immune responses. In this review, we will focus on how ICP0’s E3 ubiquitin ligase activity inactivates the host intrinsic defenses, such as nuclear domain 10 (ND10, SUMO, and the DNA damage response to HSV-1 infection. In addition, we will examine ICP0’s capacity to impair the activation of interferon (innate regulatory mediators that include IFI16 (IFN γ-inducible protein 16, MyD88 (myeloid differentiation factor 88, and Mal (MyD88 adaptor-like protein. We will also consider how ICP0 allows HSV-1 to evade activation of the NF-κB (nuclear factor kappa B inflammatory signaling pathway. Finally, ICP0’s paradoxical relationship with USP7 (ubiquitin specific protease 7 and its roles in intrinsic and innate immune responses to HSV-1 infection will be discussed.

  20. Ube2w and ataxin-3 coordinately regulate the ubiquitin ligase CHIP

    Science.gov (United States)

    Scaglione, K. Matthew; Zavodszky, Eszter; Todi, Sokol V.; Patury, Srikanth; Xu, Ping; Rodríguez-Lebrón, Edgardo; Fischer, Svetlana; Konen, John; Djarmati, Ana; Peng, Junmin; Gestwicki, Jason E.; Paulson, Henry L.

    2011-01-01

    Summary The mechanisms by which ubiquitin ligases are regulated remain poorly understood. Here we describe a series of molecular events that coordinately regulate CHIP, a neuroprotective E3 implicated in protein quality control. Through their opposing activities, the initiator E2, Ube2w, and the specialized deubiquitinating enzyme (DUB), ataxin-3, participate in initiating, regulating and terminating the CHIP ubiquitination cycle. Monoubiquitination of CHIP by Ube2w stabilizes the interaction between CHIP and ataxin-3, which through its DUB activity limits the length of chains attached to CHIP substrates. Upon completion of substrate ubiquitination ataxin-3 deubiquitinates CHIP, effectively terminating the reaction. Our results suggest that functional pairing of E3s with ataxin-3 or similar DUBs represents an important point of regulation in ubiquitin-dependent protein quality control. In addition, the results shed light on disease pathogenesis in SCA3, a neurodegenerative disorder caused by polyglutamine expansion in ataxin-3. PMID:21855799

  1. CBL family E3 ubiquitin ligases control JAK2 ubiquitination and stability in hematopoietic stem cells and myeloid malignancies.

    Science.gov (United States)

    Lv, Kaosheng; Jiang, Jing; Donaghy, Ryan; Riling, Christopher R; Cheng, Ying; Chandra, Vemika; Rozenova, Krasimira; An, Wei; Mohapatra, Bhopal C; Goetz, Benjamin T; Pillai, Vinodh; Han, Xu; Todd, Emily A; Jeschke, Grace R; Langdon, Wallace Y; Kumar, Suresh; Hexner, Elizabeth O; Band, Hamid; Tong, Wei

    2017-05-15

    Janus kinase 2 (JAK2) is a central kinase in hematopoietic stem/progenitor cells (HSPCs), and its uncontrolled activation is a prominent oncogenic driver of hematopoietic neoplasms. However, molecular mechanisms underlying the regulation of JAK2 have remained elusive. Here we report that the Casitas B-cell lymphoma (CBL) family E3 ubiquitin ligases down-regulate JAK2 stability and signaling via the adaptor protein LNK/SH2B3. We demonstrated that depletion of CBL/CBL-B or LNK abrogated JAK2 ubiquitination, extended JAK2 half-life, and enhanced JAK2 signaling and cell growth in human cell lines as well as primary murine HSPCs. Built on these findings, we showed that JAK inhibitor (JAKi) significantly reduced aberrant HSPCs and mitigated leukemia development in a mouse model of aggressive myeloid leukemia driven by loss of Cbl and Cbl-b Importantly, primary human CBL mutated ( CBL mut ) leukemias exhibited increased JAK2 protein levels and signaling and were hypersensitive to JAKi. Loss-of-function mutations in CBL E3 ubiquitin ligases are found in a wide range of myeloid malignancies, which are diseases without effective treatment options. Hence, our studies reveal a novel signaling axis that regulates JAK2 in normal and malignant HSPCs and suggest new therapeutic strategies for treating CBL mut myeloid malignancies. © 2017 Lv et al.; Published by Cold Spring Harbor Laboratory Press.

  2. IFT20 modulates ciliary PDGFRα signaling by regulating the stability of Cbl E3 ubiquitin ligases

    DEFF Research Database (Denmark)

    Schmid, Fabian Marc; Schou, Kenneth Bødtker; Vilhelm, Martin Juel

    2018-01-01

    ciliogenesis, and ciliary localization of the receptor is required for its appropriate ligand-mediated activation by PDGF-AA. However, the mechanisms regulating sorting of PDGFRα and feedback inhibition of PDGFRα signaling at the cilium are unknown. Here, we provide evidence that intraflagellar transport...... protein 20 (IFT20) interacts with E3 ubiquitin ligases c-Cbl and Cbl-b and is required for Cbl-mediated ubiquitination and internalization of PDGFRα for feedback inhibition of receptor signaling. In wild-type cells treated with PDGF-AA, c-Cbl becomes enriched in the cilium, and the receptor...

  3. Structure and catalytic activation of the TRIM23 RING E3 ubiquitin ligase: DAWIDZIAK et al.

    Energy Technology Data Exchange (ETDEWEB)

    Dawidziak, Daria M. [Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville Virginia; Sanchez, Jacint G. [Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville Virginia; Wagner, Jonathan M. [Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville Virginia; Ganser-Pornillos, Barbie K. [Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville Virginia; Pornillos, Owen [Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville Virginia

    2017-07-24

    Tripartite motif (TRIM) proteins comprise a large family of RING-type ubiquitin E3 ligases that regulate important biological processes. An emerging general model is that TRIMs form elongated antiparallel coiled-coil dimers that prevent interaction of the two attendant RING domains. The RING domains themselves bind E2 conjugating enzymes as dimers, implying that an active TRIM ligase requires higher-order oligomerization of the basal coiled-coil dimers. Here, we report crystal structures of the TRIM23 RING domain in isolation and in complex with an E2–ubiquitin conjugate. Our results indicate that TRIM23 enzymatic activity requires RING dimerization, consistent with the general model of TRIM activation.

  4. Neuromuscular regulation in zebrafish by a large AAA+ ATPase/ubiquitin ligase, mysterin/RNF213

    Science.gov (United States)

    Kotani, Yuri; Morito, Daisuke; Yamazaki, Satoru; Ogino, Kazutoyo; Kawakami, Koichi; Takashima, Seiji; Hirata, Hiromi; Nagata, Kazuhiro

    2015-01-01

    Mysterin (also known as RNF213) is a huge intracellular protein with two AAA+ ATPase modules and a RING finger ubiquitin ligase domain. Mysterin was originally isolated as a significant risk factor for the cryptogenic cerebrovascular disorder moyamoya disease, and was found to be involved in physiological angiogenesis in zebrafish. However, the function and the physiological significance of mysterin in other than blood vessels remain largely unknown, although mysterin is ubiquitously expressed in animal tissues. In this study, we performed antisense-mediated suppression of a mysterin orthologue in zebrafish larvae and revealed that mysterin-deficient larvae showed significant reduction in fast myofibrils and immature projection of primary motoneurons, leading to severe motor deficits. Fast muscle-specific restoration of mysterin expression cancelled these phenotypes, and interestingly both AAA+ ATPase and ubiquitin ligase activities of mysterin were indispensable for proper fast muscle formation, demonstrating an essential role of mysterin and its enzymatic activities in the neuromuscular regulation in zebrafish. PMID:26530008

  5. Distinct functional domains contribute to degradation of the low density lipoprotein receptor (LDLR) by the E3 ubiquitin ligase inducible Degrader of the LDLR (IDOL)

    NARCIS (Netherlands)

    Sorrentino, Vincenzo; Scheer, Lilith; Santos, Ana; Reits, Eric; Bleijlevens, Boris; Zelcer, Noam

    2011-01-01

    We recently identified the liver X receptor-regulated E3 ubiquitin ligase inducible degrader of the LDL receptor (IDOL) as a modulator of lipoprotein metabolism. Acting as an E3 ubiquitin ligase, IDOL triggers ubiquitination and subsequent degradation of the low density lipoprotein receptor (LDLR).

  6. The substrate binding domains of human SIAH E3 ubiquitin ligases are now crystal clear

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qi; Wang, Zhongduo; Hou, Feng; Harding, Rachel; Huang, Xinyi; Dong, Aiping; Walker, John R.; Tong, Yufeng

    2017-01-01

    Seven in absentia homologs (SIAHs) comprise a family of highly conserved E3 ubiquitin ligases that play an important role in regulating signalling pathways in tumorigenesis, including the DNA damage repair and hypoxia response pathways. SIAH1 and SIAH2 have been found to function as a tumour repressor and a proto-oncogene, respectively, despite the high sequence identity of their substrate binding domains (SBDs). Ubiquitin-specific protease USP19 is a deubiquitinase that forms a complex with SIAHs and counteracts the ligase function. Much effort has been made to find selective inhibitors of the SIAHs E3 ligases. Menadione was reported to inhibit SIAH2 specifically. We used X-ray crystallography, peptide array, bioinformatic analysis, and biophysical techniques to characterize the structure and interaction of SIAHs with deubiquitinases and literature reported compounds. We solved the crystal structures of SIAH1 in complex with a USP19 peptide and of the apo form SIAH2. Phylogenetic analysis revealed the SIAH/USP19 complex is conserved in evolution. We demonstrated that menadione destabilizes both SIAH1 and SIAH2 non-specifically through covalent modification. The SBDs of SIAH E3 ligases are structurally similar with a subtle stability difference. USP19 is the only deubiquitinase that directly binds to SIAHs through the substrate binding pocket. Menadione is not a specific inhibitor for SIAH2. The crystallographic models provide structural insights into the substrate binding of the SIAH family E3 ubiquitin ligases that are critically involved in regulating cancer-related pathways. Our results suggest caution should be taken when using menadione as a specific SIAH2 inhibitor.

  7. Siah1/2 Ubiquitin Ligases in ER Stress Signaling in Melanoma

    Science.gov (United States)

    2016-12-01

    resistance to vemurafenib, a major obstacle in clinical management of melanoma today. Our search led to identify RNF125, which we found to regulate...is the most significant in melanoma. Among these splice variants we identified Siah1L to be expressed in a way that is best linked to the resistant ... changes that are regulated by ubiquitin ligases was initiated with a focus on Siah1/2, which led to a distinct understanding of these ligases’ impact

  8. E3 Ubiquitin Ligase Cbl-b Regulates Pten via Nedd4 in T Cells Independently of Its Ubiquitin Ligase Activity

    Directory of Open Access Journals (Sweden)

    Hui Guo

    2012-05-01

    Full Text Available E3 ubiquitin ligase Cbl-b plays a crucial role in T cell activation and tolerance induction. However, the molecular mechanism by which Cbl-b inhibits T cell activation remains unclear. Here, we report that Cbl-b does not inhibit PI3K but rather suppresses TCR/CD28-induced inactivation of Pten. The elevated Akt activity in Cbl-b−/− T cells is therefore due to heightened Pten inactivation. Suppression of Pten inactivation in T cells by Cbl-b is achieved by impeding the association of Pten with Nedd4, which targets Pten K13 for K63-linked polyubiquitination. Consistent with this finding, introducing Nedd4 deficiency into Cbl-b−/− mice abrogates hyper-T cell responses caused by the loss of Cbl-b. Hence, our data demonstrate that Cbl-b inhibits T cell activation by suppressing Pten inactivation independently of its ubiquitin ligase activity.

  9. BRCA1 Is a Histone-H2A-Specific Ubiquitin Ligase

    Directory of Open Access Journals (Sweden)

    Reinhard Kalb

    2014-08-01

    Full Text Available The RING domain proteins BRCA1 and BARD1 comprise a heterodimeric ubiquitin (E3 ligase that is required for the accumulation of ubiquitin conjugates at sites of DNA damage and for silencing at DNA satellite repeat regions. Despite its links to chromatin, the substrate and underlying function of the BRCA1/BARD1 ubiquitin ligase remain unclear. Here, we show that BRCA1/BARD1 specifically ubiquitylates histone H2A in its C-terminal tail on lysines 127 and 129 in vitro and in vivo. The specificity for K127-129 is acquired only when H2A is within a nucleosomal context. Moreover, site-specific targeting of the BRCA1/BARD1 RING domains to chromatin is sufficient for H2Aub foci formation in vivo. Our data establish BRCA1/BARD1 as a histone-H2A-specific E3 ligase, helping to explain its localization and activities on chromatin in cells.

  10. Rsp5 ubiquitin ligase is required for protein trafficking in Saccharomyces cerevisiae COPI mutants.

    Directory of Open Access Journals (Sweden)

    Katarzyna Jarmoszewicz

    Full Text Available Retrograde trafficking from the Golgi to the endoplasmic reticulum (ER depends on the formation of vesicles coated with the multiprotein complex COPI. In Saccharomyces cerevisiae ubiquitinated derivatives of several COPI subunits have been identified. The importance of this modification of COPI proteins is unknown. With the exception of the Sec27 protein (β'COP neither the ubiquitin ligase responsible for ubiquitination of COPI subunits nor the importance of this modification are known. Here we find that the ubiquitin ligase mutation, rsp5-1, has a negative effect that is additive with ret1-1 and sec28Δ mutations, in genes encoding α- and ε-COP, respectively. The double ret1-1 rsp5-1 mutant is also more severely defective in the Golgi-to-ER trafficking compared to the single ret1-1, secreting more of the ER chaperone Kar2p, localizing Rer1p mostly to the vacuole, and increasing sensitivity to neomycin. Overexpression of ubiquitin in ret1-1 rsp5-1 mutant suppresses vacuolar accumulation of Rer1p. We found that the effect of rsp5 mutation on the Golgi-to-ER trafficking is similar to that of sla1Δ mutation in a gene encoding actin cytoskeleton proteins, an Rsp5p substrate. Additionally, Rsp5 and Sla1 proteins were found by co-immunoprecipitation in a complex containing COPI subunits. Together, our results show that Rsp5 ligase plays a role in regulating retrograde Golgi-to-ER trafficking.

  11. Ubiquitination and regulation of AURKA identifies a hypoxia-independent E3 ligase activity of VHL.

    Science.gov (United States)

    Hasanov, E; Chen, G; Chowdhury, P; Weldon, J; Ding, Z; Jonasch, E; Sen, S; Walker, C L; Dere, R

    2017-06-15

    The hypoxia-regulated tumor-suppressor von Hippel-Lindau (VHL) is an E3 ligase that recognizes its substrates as part of an oxygen-dependent prolyl hydroxylase (PHD) reaction, with hypoxia-inducible factor α (HIFα) being its most notable substrate. Here we report that VHL has an equally important function distinct from its hypoxia-regulated activity. We find that Aurora kinase A (AURKA) is a novel, hypoxia-independent target for VHL ubiquitination. In contrast to its hypoxia-regulated activity, VHL mono-, rather than poly-ubiquitinates AURKA, in a PHD-independent reaction targeting AURKA for degradation in quiescent cells, where degradation of AURKA is required to maintain the primary cilium. Tumor-associated variants of VHL differentiate between these two functions, as a pathogenic VHL mutant that retains intrinsic ability to ubiquitinate HIFα is unable to ubiquitinate AURKA. Together, these data identify VHL as an E3 ligase with important cellular functions under both normoxic and hypoxic conditions.

  12. TRB3 links the E3 ubiquitin ligase COP1 to lipid metabolism.

    Science.gov (United States)

    Qi, Ling; Heredia, Jose E; Altarejos, Judith Y; Screaton, Robert; Goebel, Naomi; Niessen, Sherry; Macleod, Ian X; Liew, Chong Wee; Kulkarni, Rohit N; Bain, James; Newgard, Christopher; Nelson, Michael; Evans, Ronald M; Yates, John; Montminy, Marc

    2006-06-23

    During fasting, increased concentrations of circulating catecholamines promote the mobilization of lipid stores from adipose tissue in part by phosphorylating and inactivating acetyl-coenzyme A carboxylase (ACC), the rate-limiting enzyme in fatty acid synthesis. Here, we describe a parallel pathway, in which the pseudokinase Tribbles 3 (TRB3), whose abundance is increased during fasting, stimulates lipolysis by triggering the degradation of ACC in adipose tissue. TRB3 promoted ACC ubiquitination through an association with the E3 ubiquitin ligase constitutive photomorphogenic protein 1 (COP1). Indeed, adipocytes deficient in TRB3 accumulated larger amounts of ACC protein than did wild-type cells. Because transgenic mice expressing TRB3 in adipose tissue are protected from diet-induced obesity due to enhanced fatty acid oxidation, these results demonstrate how phosphorylation and ubiquitination pathways converge on a key regulator of lipid metabolism to maintain energy homeostasis.

  13. RNF111/Arkadia is a SUMO-targeted ubiquitin ligase that facilitates the DNA damage response

    DEFF Research Database (Denmark)

    Poulsen, Sara L; Hansen, Rebecca K; Wagner, Sebastian A

    2013-01-01

    Protein modifications by ubiquitin and small ubiquitin-like modifier (SUMO) play key roles in cellular signaling pathways. SUMO-targeted ubiquitin ligases (STUbLs) directly couple these modifications by selectively recognizing SUMOylated target proteins through SUMO-interacting motifs (SIMs...... nonproteolytic, K63-linked ubiquitylation of SUMOylated target proteins. We demonstrate that RNF111 promoted ubiquitylation of SUMOylated XPC (xeroderma pigmentosum C) protein, a central DNA damage recognition factor in nucleotide excision repair (NER) extensively regulated by ultraviolet (UV......)-induced SUMOylation and ubiquitylation. Moreover, we show that RNF111 facilitated NER by regulating the recruitment of XPC to UV-damaged DNA. Our findings establish RNF111 as a new STUbL that directly links nonproteolytic ubiquitylation and SUMOylation in the DNA damage response....

  14. Identification of HECT E3 ubiquitin ligase family genes involved in stem cell regulation and regeneration in planarians.

    Science.gov (United States)

    Henderson, Jordana M; Nisperos, Sean V; Weeks, Joi; Ghulam, Mahjoobah; Marín, Ignacio; Zayas, Ricardo M

    2015-08-15

    E3 ubiquitin ligases constitute a large family of enzymes that modify specific proteins by covalently attaching ubiquitin polypeptides. This post-translational modification can serve to regulate protein function or longevity. In spite of their importance in cell physiology, the biological roles of most ubiquitin ligases remain poorly understood. Here, we analyzed the function of the HECT domain family of E3 ubiquitin ligases in stem cell biology and tissue regeneration in planarians. Using bioinformatic searches, we identified 17 HECT E3 genes that are expressed in the Schmidtea mediterranea genome. Whole-mount in situ hybridization experiments showed that HECT genes were expressed in diverse tissues and most were expressed in the stem cell population (neoblasts) or in their progeny. To investigate the function of all HECT E3 ligases, we inhibited their expression using RNA interference (RNAi) and determined that orthologs of huwe1, wwp1, and trip12 had roles in tissue regeneration. We show that huwe1 RNAi knockdown led to a significant expansion of the neoblast population and death by lysis. Further, our experiments showed that wwp1 was necessary for both neoblast and intestinal tissue homeostasis as well as uncovered an unexpected role of trip12 in posterior tissue specification. Taken together, our data provide insights into the roles of HECT E3 ligases in tissue regeneration and demonstrate that planarians will be a useful model to evaluate the functions of E3 ubiquitin ligases in stem cell regulation. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Novel E3 ubiquitin ligases that regulate histone protein levels in the budding yeast Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Rakesh Kumar Singh

    Full Text Available Core histone proteins are essential for packaging the genomic DNA into chromatin in all eukaryotes. Since multiple genes encode these histone proteins, there is potential for generating more histones than what is required for chromatin assembly. The positively charged histones have a very high affinity for negatively charged molecules such as DNA, and any excess of histone proteins results in deleterious effects on genomic stability and cell viability. Hence, histone levels are known to be tightly regulated via transcriptional, posttranscriptional and posttranslational mechanisms. We have previously elucidated the posttranslational regulation of histone protein levels by the ubiquitin-proteasome pathway involving the E2 ubiquitin conjugating enzymes Ubc4/5 and the HECT (Homologous to E6-AP C-Terminus domain containing E3 ligase Tom1 in the budding yeast. Here we report the identification of four additional E3 ligases containing the RING (Really Interesting New Gene finger domains that are involved in the ubiquitylation and subsequent degradation of excess histones in yeast. These E3 ligases are Pep5, Snt2 as well as two previously uncharacterized Open Reading Frames (ORFs YKR017C and YDR266C that we have named Hel1 and Hel2 (for Histone E3 Ligases respectively. Mutants lacking these E3 ligases are sensitive to histone overexpression as they fail to degrade excess histones and accumulate high levels of endogenous histones on histone chaperones. Co-immunoprecipitation assays showed that these E3 ligases interact with the major E2 enzyme Ubc4 that is involved in the degradation related ubiquitylation of histones. Using mutagenesis we further demonstrate that the RING domains of Hel1, Hel2 and Snt2 are required for histone regulation. Lastly, mutants corresponding to Hel1, Hel2 and Pep5 are sensitive to replication inhibitors. Overall, our results highlight the importance of posttranslational histone regulatory mechanisms that employ multiple E3

  16. A screen for E3 ubiquitination ligases that genetically interact with the adaptor protein Cindr during Drosophila eye patterning.

    Science.gov (United States)

    Ketosugbo, Kwami F; Bushnell, Henry L; Johnson, Ruth I

    2017-01-01

    Ubiquitination is a crucial post-translational modification that can target proteins for degradation. The E3 ubiquitin ligases are responsible for recognizing substrate proteins for ubiquitination, hence providing specificity to the process of protein degradation. Here, we describe a genetic modifier screen that identified E3 ligases that modified the rough-eye phenotype generated by expression of cindrRNAi transgenes during Drosophila eye development. In total, we identified 36 E3 ligases, as well as 4 Cullins, that modified the mild cindrRNA mis-patterning phenotype. This indicates possible roles for these E3s/Cullins in processes that require Cindr function, including cytoskeletal regulation, cell adhesion, cell signaling and cell survival. Three E3 ligases identified in our screen had previously been linked to regulating JNK signaling.

  17. The Role of Ubiquitin E3 Ligase SCF-SKP2 in Prostate Cancer Development

    Science.gov (United States)

    2007-02-01

    Spasov, M.S., Technician Lei Ann Higa, B. S., Ph. D. Graduate student Damon Banks, B. S., Ph. D. Graduate student Conclusion: Low or absent expression...WDR82, glutamate-rich WD40-repeat protein 1 (GRWD1) and Suppressor of mec -8 and unc-52 (SMU1), in addition to L2DTL, DDB1 and components of the COP9

  18. A viral E3 ligase targets RNF8 and RNF168 to control histone ubiquitination and DNA damage responses

    Science.gov (United States)

    Lilley, Caroline E; Chaurushiya, Mira S; Boutell, Chris; Landry, Sebastien; Suh, Junghae; Panier, Stephanie; Everett, Roger D; Stewart, Grant S; Durocher, Daniel; Weitzman, Matthew D

    2010-01-01

    The ICP0 protein of herpes simplex virus type 1 is an E3 ubiquitin ligase and transactivator required for the efficient switch between latent and lytic infection. As DNA damaging treatments are known to reactivate latent virus, we wished to explore whether ICP0 modulates the cellular response to DNA damage. We report that ICP0 prevents accumulation of repair factors at cellular damage sites, acting between recruitment of the mediator proteins Mdc1 and 53BP1. We identify RNF8 and RNF168, cellular histone ubiquitin ligases responsible for anchoring repair factors at sites of damage, as new targets for ICP0-mediated degradation. By targeting these ligases, ICP0 expression results in loss of ubiquitinated forms of H2A, mobilization of DNA repair proteins and enhanced viral fitness. Our study raises the possibility that the ICP0-mediated control of histone ubiquitination may link DNA repair, relief of transcriptional repression, and activation of latent viral genomes. PMID:20075863

  19. The Host E3-Ubiquitin Ligase TRIM6 Ubiquitinates the Ebola Virus VP35 Protein and Promotes Virus Replication.

    Science.gov (United States)

    Bharaj, Preeti; Atkins, Colm; Luthra, Priya; Giraldo, Maria Isabel; Dawes, Brian E; Miorin, Lisa; Johnson, Jeffrey R; Krogan, Nevan J; Basler, Christopher F; Freiberg, Alexander N; Rajsbaum, Ricardo

    2017-09-15

    Ebola virus (EBOV), a member of the Filoviridae family, is a highly pathogenic virus that causes severe hemorrhagic fever in humans and is responsible for epidemics throughout sub-Saharan, central, and West Africa. The EBOV genome encodes VP35, an important viral protein involved in virus replication by acting as an essential cofactor of the viral polymerase as well as a potent antagonist of the host antiviral type I interferon (IFN-I) system. By using mass spectrometry analysis and coimmunoprecipitation assays, we show here that VP35 is ubiquitinated on lysine 309 (K309), a residue located on its IFN antagonist domain. We also found that VP35 interacts with TRIM6, a member of the E3-ubiquitin ligase tripartite motif (TRIM) family. We recently reported that TRIM6 promotes the synthesis of unanchored K48-linked polyubiquitin chains, which are not covalently attached to any protein, to induce efficient antiviral IFN-I-mediated responses. Consistent with this notion, VP35 also associated noncovalently with polyubiquitin chains and inhibited TRIM6-mediated IFN-I induction. Intriguingly, we also found that TRIM6 enhances EBOV polymerase activity in a minigenome assay and TRIM6 knockout cells have reduced replication of infectious EBOV, suggesting that VP35 hijacks TRIM6 to promote EBOV replication through ubiquitination. Our work provides evidence that TRIM6 is an important host cellular factor that promotes EBOV replication, and future studies will focus on whether TRIM6 could be targeted for therapeutic intervention against EBOV infection. IMPORTANCE EBOV belongs to a family of highly pathogenic viruses that cause severe hemorrhagic fever in humans and other mammals with high mortality rates (40 to 90%). Because of its high pathogenicity and lack of licensed antivirals and vaccines, EBOV is listed as a tier 1 select-agent risk group 4 pathogen. An important mechanism for the severity of EBOV infection is its suppression of innate immune responses. The EBOV VP35

  20. The E3 ubiquitin ligase WWP2 facilitates RUNX2 protein transactivation in a mono-ubiquitination manner during osteogenic differentiation.

    Science.gov (United States)

    Zhu, Wei; He, Xinyu; Hua, Yue; Li, Qian; Wang, Jiyong; Gan, Xiaoqing

    2017-07-07

    Poly-ubiquitination-mediated RUNX2 degradation is an important cause of age- and inflammation-related bone loss. NEDD4 family E3 ubiquitin protein ligases are thought to be the major regulators of RUNX2 poly-ubiquitination. However, we observed a mono-ubiquitination of RUNX2 that was catalyzed by WWP2, a member of the NEDD4 family of E3 ubiquitin ligases. WWP2 has been reported to catalyze the mono-ubiquitination of Goosecoid in chondrocytes, facilitating craniofacial skeleton development. In this study, we found that osteogenic differentiation of mesenchymal stem cells promoted WWP2 expression and nuclear accumulation. Knockdown of Wwp2 in mesenchymal stem cells and osteoblasts led to significant deficiencies of osteogenesis, including decreased mineral deposition and down-regulation of osteogenic marker genes. Co-immunoprecipitation experiments showed the interaction of WWP2 with RUNX2 in vitro and in vivo Mono-ubiquitination by WWP2 leads to RUNX2 transactivation, as evidenced by the wild type of WWP2, but not its ubiquitin ligase-dead mutant, augmenting RUNX2-reponsive reporter activity. Moreover, deletion of WWP2-dependent mono-ubiquitination resulted in striking defects of RUNX2 osteoblastic activity. In addition, ectopic expression of the constitutively active type 1A bone morphogenetic protein receptor enhanced WWP2-dependent RUNX2 ubiquitination and transactivation, demonstrating a regulatory role of bone morphogenetic protein signaling in the WWP2-RUNX2 axis. Taken together, our results provide evidence that WWP2 serves as a positive regulator of osteogenesis by augmenting RUNX2 transactivation in a non-proteolytic mono-ubiquitination manner. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Ubiquitin ligase Kf-1 is involved in the endoplasmic reticulum-associated degradation pathway.

    Science.gov (United States)

    Maruyama, Yoshiaki; Yamada, Misa; Takahashi, Kou; Yamada, Mitsuhiko

    2008-10-03

    Kf-1 was first identified as a gene showing enhanced expression in the cerebral cortex of a sporadic Alzheimer's disease patient. To date, however, the functional properties of Kf-1 protein remain unknown. In this study, immunohistochemical analysis showed that Kf-1 immunoreactivity was detected in rat hippocampus and cerebral cortex neurons. Interestingly, it was colocalized with endoplasmic reticulum (ER) marker. To investigate the specific function of Kf-1 protein, we generated Myc tagged wild type Kf-1 (Myc-Kf-1WT) and RING finger domain deletion mutant of Kf-1 (Myc-Kf-1DeltaR), and then transfected in HEK293 cells. Myc-Kf-1WT displayed a reticular pattern typical of ER localization, with large perinuclear aggregates and colocalized with ER marker, calnexin. Myc-Kf-1WT facilitated ubiquitination of endogenous proteins, whereas Myc-Kf-1DeltaR did not show ubiquitin ligase activity. In addition, we found that Kf-1 interacted with components of the ER-associated degradation (ERAD) pathway, including Derlin-1 and VCP. Taken together, these properties suggest that Kf-1 is an ER ubiquitin ligase involved in the ERAD pathway.

  2. Both ubiquitin ligases FBXW8 and PARK2 are sequestrated into insolubility by ATXN2 PolyQ expansions, but only FBXW8 expression is dysregulated.

    Directory of Open Access Journals (Sweden)

    Melanie Vanessa Halbach

    Full Text Available The involvement of the ubiquitin-proteasome system (UPS in the course of various age-associated neurodegenerative diseases is well established. The single RING finger type E3 ubiquitin-protein ligase PARK2 is mutated in a Parkinson's disease (PD variant and was found to interact with ATXN2, a protein where polyglutamine expansions cause Spinocerebellar ataxia type 2 (SCA2 or increase the risk for Levodopa-responsive PD and for the motor neuron disease Amyotrophic lateral sclerosis (ALS. We previously reported evidence for a transcriptional induction of the multi-subunit RING finger Skp1/Cul/F-box (SCF type E3 ubiquitin-protein ligase complex component FBXW8 in global microarray profiling of ATXN2-expansion mouse cerebellum and demonstrated its role for ATXN2 degradation in vitro. Now, we documented co-localization in vitro and co-immunoprecipitations both in vitro and in vivo, which indicate associations of FBXW8 with ATXN2 and PARK2. Both FBXW8 and PARK2 proteins are driven into insolubility by expanded ATXN2. Whereas the FBXW8 transcript upregulation by ATXN2- expansion was confirmed also in qPCR of skin fibroblasts and blood samples of SCA2 patients, a FBXW8 expression dysregulation was not observed in ATXN2-deficient mice, nor was a PARK2 transcript dysregulation observed in any samples. Jointly, all available data suggest that the degradation of wildtype and mutant ATXN2 is dependent on FBXW8, and that ATXN2 accumulation selectively modulates FBXW8 levels, while PARK2 might act indirectly through FBXW8. The effects of ATXN2-expansions on FBXW8 expression in peripheral tissues like blood may become useful for clinical diagnostics.

  3. The Role of the Cullin-5 E3 Ubiquitin Ligase in the Regulation of Insulin Receptor Substrate-1

    Directory of Open Access Journals (Sweden)

    Christine Zhiwen Hu

    2012-01-01

    Full Text Available Background. SOCS proteins are known to negatively regulate insulin signaling by inhibiting insulin receptor substrate-1 (IRS1. IRS1 has been reported to be a substrate for ubiquitin-dependent proteasomal degradation. Given that SOCS proteins can function as substrate receptor subunits of Cullin-5 E3 ubiquitin ligases, we examined whether Cullin-5 dependent ubiquitination is involved in the regulation of basal IRS1 protein stability and signal-induced IRS1 degradation. Findings. Our results indicate that basal IRS1 stability varies between cell types. However, the Cullin-5 E3 ligase does not play a major role in mediating IRS1 ubiquitination under basal conditions. Protein kinase C activation triggered pronounced IRS1 destabilization. However, this effect was also independent of the function of Cullin-5 E3 ubiquitin ligases. Conclusions. In conclusion, SOCS proteins do not exert a negative regulatory effect on IRS1 by functioning as substrate receptors for Cullin-5-based E3 ubiquitin ligases both under basal conditions and when IRS1 degradation is induced by protein kinase C activation.

  4. The ubiquitin ligase ASB4 promotes trophoblast differentiation through the degradation of ID2.

    Directory of Open Access Journals (Sweden)

    W H Davin Townley-Tilson

    Full Text Available Vascularization of the placenta is a critical developmental process that ensures fetal viability. Although the vascular health of the placenta affects both maternal and fetal well being, relatively little is known about the early stages of placental vascular development. The ubiquitin ligase Ankyrin repeat, SOCS box-containing 4 (ASB4 promotes embryonic stem cell differentiation to vascular lineages and is highly expressed early in placental development. The transcriptional regulator Inhibitor of DNA binding 2 (ID2 negatively regulates vascular differentiation during development and is a target of many ubiquitin ligases. Due to their overlapping spatiotemporal expression pattern in the placenta and contrasting effects on vascular differentiation, we investigated whether ASB4 regulates ID2 through its ligase activity in the placenta and whether this activity mediates vascular differentiation. In mouse placentas, ASB4 expression is restricted to a subset of cells that express both stem cell and endothelial markers. Placentas that lack Asb4 display immature vascular patterning and retain expression of placental progenitor markers, including ID2 expression. Using JAR placental cells, we determined that ASB4 ubiquitinates and represses ID2 expression in a proteasome-dependent fashion. Expression of ASB4 in JAR cells and primary isolated trophoblast stem cells promotes the expression of differentiation markers. In functional endothelial co-culture assays, JAR cells ectopically expressing ASB4 increased endothelial cell turnover and stabilized endothelial tube formation, both of which are hallmarks of vascular differentiation within the placenta. Co-transfection of a degradation-resistant Id2 mutant with Asb4 inhibits both differentiation and functional responses. Lastly, deletion of Asb4 in mice induces a pathology that phenocopies human pre-eclampsia, including hypertension and proteinuria in late-stage pregnant females. These results indicate that

  5. The ubiquitin ligase RNF5 regulates antiviral responses by mediating degradation of the adaptor protein MITA.

    Science.gov (United States)

    Zhong, Bo; Zhang, Lu; Lei, Caoqi; Li, Ying; Mao, Ai-Ping; Yang, Yan; Wang, Yan-Yi; Zhang, Xiao-Lian; Shu, Hong-Bing

    2009-03-20

    Viral infection activates transcription factors NF-kappaB and IRF3, which collaborate to induce type I interferons (IFNs) and elicit innate antiviral response. MITA (also known as STING) has recently been identified as an adaptor that links virus-sensing receptors to IRF3 activation. Here, we showed that the E3 ubiquitin ligase RNF5 interacted with MITA in a viral-infection-dependent manner. Overexpression of RNF5 inhibited virus-triggered IRF3 activation, IFNB1 expression, and cellular antiviral response, whereas knockdown of RNF5 had opposite effects. RNF5 targeted MITA at Lys150 for ubiquitination and degradation after viral infection. Both MITA and RNF5 were located at the mitochondria and endoplasmic reticulum (ER) and viral infection caused their redistribution to the ER and mitochondria, respectively. We further found that virus-induced ubiquitination and degradation of MITA by RNF5 occurred at the mitochondria. These findings suggest that RNF5 negatively regulates virus-triggered signaling by targeting MITA for ubiquitination and degradation at the mitochondria.

  6. The Ubiquitin E3 Ligase TRAF6 Exacerbates Ischemic Stroke by Ubiquitinating and Activating Rac1.

    Science.gov (United States)

    Li, Tao; Qin, Juan-Juan; Yang, Xia; Ji, Yan-Xiao; Guo, Fangliang; Cheng, Wen-Lin; Wu, Xiaolin; Gong, Fu-Han; Hong, Ying; Zhu, Xue-Yong; Gong, Jun; Wang, Zhihua; Huang, Zan; She, Zhi-Gang; Li, Hongliang

    2017-12-13

    Stroke is one of the leading causes of morbidity and mortality worldwide. Inflammation, oxidative stress, apoptosis, and excitotoxicity contribute to neuronal death during ischemic stroke; however, the mechanisms underlying these complicated pathophysiological processes remain to be fully elucidated. Here, we found that the expression of tumor necrosis factor receptor-associated factor 6 (TRAF6) was markedly increased after cerebral ischemia/reperfusion (I/R) in mice. TRAF6 ablation in male mice decreased the infarct volume and neurological deficit scores and decreased proinflammatory signaling, oxidative stress, and neuronal death after cerebral I/R, whereas transgenic overexpression of TRAF6 in male mice exhibited the opposite effects. Mechanistically, we demonstrated that TRAF6 induced Rac1 activation and consequently promoted I/R injury by directly binding and ubiquitinating Rac1. Either functionally mutating the TRAF6 ubiquitination site on Rac1 or inactivating Rac1 with a specific inhibitor reversed the deleterious effects of TRAF6 overexpression during I/R injury. In conclusion, our study demonstrated that TRAF6 is a key promoter of ischemic signaling cascades and neuronal death after cerebral I/R injury. Therefore, the TRAF6/Rac1 pathway might be a promising target to attenuate cerebral I/R injury. SIGNIFICANCE STATEMENT Stroke is one of the most severe and devastating neurological diseases globally. The complicated pathophysiological processes restrict the translation of potential therapeutic targets into medicine. Further elucidating the molecular mechanisms underlying cerebral ischemia/reperfusion injury may open a new window for pharmacological interventions to promote recovery from stroke. Our study revealed that ischemia-induced tumor necrosis factor receptor-associated factor 6 (TRAF6) upregulation binds and ubiquitinates Rac1 directly, which promotes neuron death through neuroinflammation and neuro-oxidative signals. Therefore, precisely targeting

  7. Differential recruitment of E3 ubiquitin ligase complexes regulates RET isoform internalization.

    Science.gov (United States)

    Hyndman, Brandy D; Crupi, Mathieu J F; Peng, Susan; Bone, Leslie N; Rekab, Aisha N; Lian, Eric Y; Wagner, Simona M; Antonescu, Costin N; Mulligan, Lois M

    2017-10-01

    The RET receptor tyrosine kinase is implicated in normal development and cancer. RET is expressed as two isoforms, RET9 and RET51, with unique C-terminal tail sequences that recruit distinct protein complexes to mediate signals. Upon activation, RET isoforms are internalized with distinct kinetics, suggesting differences in regulation. Here, we demonstrate that RET9 and RET51 differ in their abilities to recruit E3 ubiquitin ligases to their unique C-termini. RET51, but not RET9, interacts with, and is ubiquitylated by CBL, which is recruited through interactions with the GRB2 adaptor protein. RET51 internalization was not affected by CBL knockout but was delayed in GRB2-depleted cells. In contrast, RET9 ubiquitylation requires phosphorylation-dependent changes in accessibility of key RET9 C-terminal binding motifs that facilitate interactions with multiple adaptor proteins, including GRB10 and SHANK2, to recruit the NEDD4 ubiquitin ligase. We showed that NEDD4-mediated ubiquitylation is required for RET9 localization to clathrin-coated pits and subsequent internalization. Our data establish differences in the mechanisms of RET9 and RET51 ubiquitylation and internalization that may influence the strength and duration of RET isoform signals and cellular outputs.This article has an associated First Person interview with the first authors of the paper. © 2017. Published by The Company of Biologists Ltd.

  8. The Ubiquitin Ligase CBLC Maintains the Network Organization of the Golgi Apparatus.

    Directory of Open Access Journals (Sweden)

    Wan Yin Lee

    Full Text Available The Golgi apparatus plays a pivotal role in the sorting and post-translational modifications of secreted and membrane proteins. In mammalian cells, the Golgi is organized in stacks of cisternae linked together to form a network with a ribbon shape. Regulation of Golgi ribbon formation is poorly understood. Here we find in an image-based RNAi screen that depletion of the ubiquitin-ligase CBLC induces Golgi fragmentation. Depletions of the close homologues CBL and CBLB do not induce any visible defects. In CBLC-depleted cells, Golgi stacks appear relatively unperturbed at both the light and electron microscopy levels, suggesting that CBLC controls mostly network organization. CBLC partially localizes on Golgi membranes and this localization is enhanced after activation of the SRC kinase. Inhibition of SRC reverts CBLC depletion effects, suggesting interplay between the two. CBLC's regulation of Golgi network requires its ubiquitin ligase activity. However, SRC levels are not significantly affected by CBLC, and CBLC knockdown does not phenocopy SRC activation, suggesting that CBLC's action at the Golgi is not direct downregulation of SRC. Altogether, our results demonstrate a role of CBLC in regulating Golgi ribbon by antagonizing the SRC tyrosine kinase.

  9. Ubiquitin ligase ITCH recruitment suppresses the aggregation and cellular toxicity of cytoplasmic misfolded proteins.

    Science.gov (United States)

    Chhangani, Deepak; Upadhyay, Arun; Amanullah, Ayeman; Joshi, Vibhuti; Mishra, Amit

    2014-05-28

    The protein quality control (QC) system protects cells against cellular toxicity induced by misfolded proteins and maintains overall cellular fitness. Inefficient clearance of or failure to degrade damaged proteins causes several diseases, especially age-linked neurodegenerative disorders. Attenuation of misfolded protein degradation under severe stress conditions leads to the rapid over-accumulation of toxic proteinaceous aggregates in the cytoplasmic compartment. However, the precise cytoplasmic quality control degradation mechanism is unknown. In the present study, we demonstrate that the Nedd4-like E3 ubiquitin ligase ITCH specifically interacts with mutant bona fide misfolded proteins and colocalizes with their perinuclear aggregates. In a cell culture model, we demonstrate ITCH recruitment by cytoplasmic inclusions containing polyglutamine-expanded huntingtin or ataxin-3 proteins. Transient overexpression of ITCH dramatically induced the degradation of thermally denatured misfolded luciferase protein. Partial depletion of ITCH increased the rate of aggregate formation and cell death generated by expanded polyglutamine proteins. Finally, we demonstrate that overexpression of ITCH alleviates the cytotoxic potential of expanded polyglutamine proteins and reduces aggregation. These observations indicate that ITCH is involved in the cytosolic quality control pathway and may help to explain how abnormal proteins are targeted by QC ubiquitin-protein ligases.

  10. The SOCS2 ubiquitin ligase complex regulates growth hormone receptor levels.

    Directory of Open Access Journals (Sweden)

    Mattias Vesterlund

    Full Text Available Growth Hormone is essential for the regulation of growth and the homeostatic control of intermediary metabolism. GH actions are mediated by the Growth Hormone Receptor; a member of the cytokine receptor super family that signals chiefly through the JAK2/STAT5 pathway. Target tissue responsiveness to GH is under regulatory control to avoid excessive and off-target effects upon GHR activation. The suppressor of cytokine signalling 2 (SOCS is a key regulator of GHR sensitivity. This is clearly shown in mice where the SOCS2 gene has been inactivated, which show 30-40% increase in body length, a phenotype that is dependent on endogenous GH secretion. SOCS2 is a GH-stimulated, STAT5b-regulated gene that acts in a negative feedback loop to downregulate GHR signalling. Since the biochemical basis for these actions is poorly understood, we studied the molecular function of SOCS2. We demonstrated that SOCS2 is part of a multimeric complex with intrinsic ubiquitin ligase activity. Mutational analysis shows that the interaction with Elongin B/C controls SOCS2 protein turnover and affects its molecular activity. Increased GHR levels were observed in livers from SOCS2⁻/⁻ mice and in the absence of SOCS2 in in vitro experiments. We showed that SOCS2 regulates cellular GHR levels through direct ubiquitination and in a proteasomally dependent manner. We also confirmed the importance of the SOCS-box for the proper function of SOCS2. Finally, we identified two phosphotyrosine residues in the GHR to be responsible for the interaction with SOCS2, but only Y487 to account for the effects of SOCS2. The demonstration that SOCS2 is an ubiquitin ligase for the GHR unveils the molecular basis for its physiological actions.

  11. TRIM32 ubiquitin E3 ligase, one enzyme for several pathologies: From muscular dystrophy to tumours.

    Science.gov (United States)

    Lazzari, Elisa; Meroni, Germana

    2016-10-01

    TRIM32 is a member of the TRIpartite Motif family characterised by the presence of an N-terminal three-domain-module that includes a RING domain, which confers E3 ubiquitin ligase activity, one or two B-box domains and a Coiled-Coil region that mediates oligomerisation. Several TRIM32 substrates were identified including muscular proteins and proteins involved in cell cycle regulation and cell motility. As ubiquitination is a versatile post-translational modification that can affect target turnover, sub-cellular localisation or activity, it is likely that diverse substrates may be differentially affected by TRIM32-mediated ubiquitination, reflecting its multi-faceted roles in muscle physiology, cancer and immunity. With particular relevance for muscle physiology, mutations in TRIM32 are associated with autosomal recessive Limb-Girdle Muscular Dystrophy 2H, a muscle-wasting disease with variable clinical spectrum ranging from almost asymptomatic to wheelchair-bound patients. In this review, we will focus on the ability of TRIM32 to mark specific substrates for proteasomal degradation discussing how the TRIM32-proteasome axis may (i) be important for muscle homeostasis and for the pathogenesis of muscular dystrophy; and (ii) define either an oncogenic or tumour suppressive role for TRIM32 in the context of different types of cancer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Human cytomegalovirus IE1 downregulates Hes1 in neural progenitor cells as a potential E3 ubiquitin ligase.

    Directory of Open Access Journals (Sweden)

    Xi-Juan Liu

    2017-07-01

    Full Text Available Congenital human cytomegalovirus (HCMV infection is the leading cause of neurological disabilities in children worldwide, but the mechanisms underlying these disorders are far from well-defined. HCMV infection has been shown to dysregulate the Notch signaling pathway in human neural progenitor cells (NPCs. As an important downstream effector of Notch signaling, the transcriptional regulator Hairy and Enhancer of Split 1 (Hes1 is essential for governing NPC fate and fetal brain development. In the present study, we report that HCMV infection downregulates Hes1 protein levels in infected NPCs. The HCMV 72-kDa immediate-early 1 protein (IE1 is involved in Hes1 degradation by assembling a ubiquitination complex and promoting Hes1 ubiquitination as a potential E3 ubiquitin ligase, followed by proteasomal degradation of Hes1. Sp100A, an important component of PML nuclear bodies, is identified to be another target of IE1-mediated ubiquitination. A C-terminal acidic region in IE1, spanning amino acids 451 to 475, is required for IE1/Hes1 physical interaction and IE1-mediated Hes1 ubiquitination, but is dispensable for IE1/Sp100A interaction and ubiquitination. Our study suggests a novel mechanism linking downregulation of Hes1 protein to neurodevelopmental disorders caused by HCMV infection. Our findings also complement the current knowledge of herpesviruses by identifying IE1 as the first potential HCMV-encoded E3 ubiquitin ligase.

  13. The ubiquitin ligase HectH9 regulates transcriptional activation by Myc and is essential for tumor cell proliferation

    DEFF Research Database (Denmark)

    Adhikary, Sovana; Marinoni, Federica; Hock, Andreas

    2005-01-01

    The Myc oncoprotein forms a binary activating complex with its partner protein, Max, and a ternary repressive complex that, in addition to Max, contains the zinc finger protein Miz1. Here we show that the E3 ubiquitin ligase HectH9 ubiquitinates Myc in vivo and in vitro, forming a lysine 63-linked...... polyubiquitin chain. Miz1 inhibits this ubiquitination. HectH9-mediated ubiquitination of Myc is required for transactivation of multiple target genes, recruitment of the coactivator p300, and induction of cell proliferation by Myc. HectH9 is overexpressed in multiple human tumors and is essential...... for proliferation of a subset of tumor cells. Our results suggest that site-specific ubiquitination regulates the switch between an activating and a repressive state of the Myc protein, and they suggest a strategy to interfere with Myc function in vivo....

  14. Ret Finger Protein: An E3 Ubiquitin Ligase Juxtaposed to the XY Body in Meiosis

    Directory of Open Access Journals (Sweden)

    Isabelle Gillot

    2009-01-01

    Full Text Available During prophase I of male meiosis, the sex chromosomes form a compact structure called XY body that associates with the nuclear membrane of pachytene spermatocytes. Ret Finger Protein is a transcriptional repressor, able to interact with both nuclear matrix-associated proteins and double-stranded DNA. We report the precise and unique localization of Ret Finger Protein in pachytene spermatocytes, in which Ret Finger Protein takes place of lamin B1, between the XY body and the inner nuclear membrane. This localization of Ret Finger Protein does not seem to be associated with O-glycosylation or sumoylation. In addition, we demonstrate that Ret Finger Protein contains an E3 ubiquitin ligase activity. These observations lead to an attractive hypothesis in which Ret Finger Protein would be involved in the positioning and the attachment of XY body to the nuclear lamina of pachytene spermatocytes.

  15. The MIEL1 E3 Ubiquitin Ligase Negatively Regulates Cuticular Wax Biosynthesis in Arabidopsis Stems.

    Science.gov (United States)

    Lee, Hong Gil; Kim, Juyoung; Suh, Mi Chung; Seo, Pil Joon

    2017-07-01

    Cuticular wax is an important hydrophobic layer that covers the plant aerial surface. Cuticular wax biosynthesis is shaped by multiple layers of regulation. In particular, a pair of R2R3-type MYB transcription factors, MYB96 and MYB30, are known to be the main participants in cuticular wax accumulation. Here, we report that the MYB30-INTERACTING E3 LIGASE 1 (MIEL1) E3 ubiquitin ligase controls the protein stability of the two MYB transcription factors and thereby wax biosynthesis in Arabidopsis. MIEL1-deficient miel1 mutants exhibit increased wax accumulation in stems, with up-regulation of wax biosynthetic genes targeted by MYB96 and MYB30. Genetic analysis reveals that wax accumulation of the miel1 mutant is compromised by myb96 or myb30 mutation, but MYB96 is mainly epistatic to MIEL1, playing a predominant role in cuticular wax deposition. These observations indicate that the MIEL1-MYB96 module is important for balanced cuticular wax biosynthesis in developing inflorescence stems. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. APC/Cdh E3 ubiquitin ligase in the pathophysiology of Alzheimer׳s disease.

    Science.gov (United States)

    Vina, Jose; Fuchsberger, Tanja; Giraldo, Esther; Lloret, Ana

    2014-10-01

    The anaphase-promoting complex APC/C is a E3 ligase. It is regulates important functions in neural cells. Its inactivation and accumulation of its substrates has been related with neurodegenerative diseases. Glutaminase is an important target of APC/C-Cdh1 in primary neurons. It catalyzes the conversion of glutamine into glutamate. When cdh1 decreases due to incubation with Aβ, glutaminase concentration increases as does cyclin B1, a known target of the ubiquitin ligase that is involved in the pathophysiology of Alzheimer's disease (AD). The same treatment causes a high increase of glutamate levels in the supernatant of neurons in culture, which subsequently leads to an increase of Ca(2) inside the cells. The increase of glutamate due to the Aβ treatment can be partially reversed by a glutaminase inhibitor. This result suggests that the APC/C-Cdh1 signaling way is involved in the glutamate increase after the treatment with Aβ. Moreover, high levels of glutamate have been observed to further decrease cdh1 levels what also leads to an accumulation of gls. These results lead us to propose that neurons might enter into a positive feedback loop of glutamate production due to a lack of APC/C-Cdh1 signaling. This signaling pathway reveals a new mechanism to cause excitotoxicity in neurons, which could be relevant in AD. Copyright © 2014. Published by Elsevier Inc.

  17. SVIP regulates Z variant alpha-1 antitrypsin retro-translocation by inhibiting ubiquitin ligase gp78.

    Directory of Open Access Journals (Sweden)

    Nazli Khodayari

    Full Text Available Alpha-1 antitrypsin deficiency (AATD is an inherited disorder characterized by early-onset emphysema and liver disease. The most common disease-causing mutation is a single amino acid substitution (Glu/Lys at amino acid 342 of the mature protein, resulting in disruption of the 290-342 salt bridge (an electrophoretic abnormality defining the mutation [Z allele, or ZAAT], protein misfolding, polymerization, and accumulation in the endoplasmic reticulum of hepatocytes and monocytes. The Z allele causes a toxic gain of function, and the E3 ubiquitin ligase gp78 promotes degradation and increased solubility of endogenous ZAAT. We hypothesized that the accumulation of ZAAT is influenced by modulation of gp78 E3 ligase and SVIP (small VCP-interacting protein interaction with p97/VCP in ZAAT-expressing hepatocytes. We showed that the SVIP inhibitory effect on ERAD due to overexpression causes the accumulation of ZAAT in a human Z hepatocyte-like cell line (AT01. Overexpression of gp78, as well as SVIP suppression, induces gp78-VCP/p97 interaction in AT01 cells. This interaction leads to retro-translocation of ZAAT and reduction of the SVIP inhibitory role in ERAD. In this context, overexpression of gp78 or SVIP suppression may eliminate the toxic gain of function associated with polymerization of ZAAT, thus providing a potential new therapeutic approach to the treatment of AATD.

  18. Zn-binding AZUL domain of human ubiquitin protein ligase Ube3A

    Energy Technology Data Exchange (ETDEWEB)

    Lemak, Alexander; Yee, Adelinda [University of Toronto, and Northeast Structural Genomics Consortium, Ontario Cancer Institute, Campbell Family Cancer Research Institute and Department of Medical Biophysics (Canada); Bezsonova, Irina, E-mail: bezsonova@uchc.edu [University of Connecticut Health Center, Department of Molecular Microbial and Structural Biology (United States); Dhe-Paganon, Sirano, E-mail: sirano.dhepaganon@utoronto.ca [University of Toronto, Structural Genomics Consortium (Canada); Arrowsmith, Cheryl H., E-mail: carrow@uhnresearch.ca [University of Toronto, and Northeast Structural Genomics Consortium, Ontario Cancer Institute, Campbell Family Cancer Research Institute and Department of Medical Biophysics (Canada)

    2011-09-15

    Ube3A (also referred to as E6AP for E6 Associated Protein) is a E3 ubiquitin-protein ligase implicated in the development of Angelman syndrome by controlling degradation of synaptic protein Arc and oncogenic papilloma virus infection by controlling degradation of p53. This article describe the solution NMR structure of the conserved N-terminal domain of human Ube3A (residues 24-87) that contains two residues (Cys44 and Arg62) found to be mutated in patients with Angelman syndrome. The structure of this domain adopts a novel Zn-binding fold we called AZUL (Amino-terminal Zn-finger of Ube3a Ligase). The AZUL domain has a helix-loop-helix architecture with a Zn ion coordinated by four Cys residues arranged in Cys-X{sub 4}-Cys-X{sub 4}-Cys-X{sub 28}-Cys motif. Three of the Zn-bound residues are located in a 23-residue long and well structured loop that connects two {alpha}-helicies.

  19. Zn-binding AZUL domain of human ubiquitin protein ligase Ube3A

    International Nuclear Information System (INIS)

    Lemak, Alexander; Yee, Adelinda; Bezsonova, Irina; Dhe-Paganon, Sirano; Arrowsmith, Cheryl H.

    2011-01-01

    Ube3A (also referred to as E6AP for E6 Associated Protein) is a E3 ubiquitin-protein ligase implicated in the development of Angelman syndrome by controlling degradation of synaptic protein Arc and oncogenic papilloma virus infection by controlling degradation of p53. This article describe the solution NMR structure of the conserved N-terminal domain of human Ube3A (residues 24-87) that contains two residues (Cys44 and Arg62) found to be mutated in patients with Angelman syndrome. The structure of this domain adopts a novel Zn-binding fold we called AZUL (Amino-terminal Zn-finger of Ube3a Ligase). The AZUL domain has a helix-loop-helix architecture with a Zn ion coordinated by four Cys residues arranged in Cys-X 4 -Cys-X 4 -Cys-X 28 -Cys motif. Three of the Zn-bound residues are located in a 23-residue long and well structured loop that connects two α-helicies.

  20. Transcriptional repressor NIR interacts with the p53-inhibiting ubiquitin ligase MDM2.

    Science.gov (United States)

    Heyne, Kristina; Förster, Juliane; Schüle, Roland; Roemer, Klaus

    2014-04-01

    NIR (novel INHAT repressor) can bind to p53 at promoters and inhibit p53-mediated gene transactivation by blocking histone acetylation carried out by p300/CBP. Like NIR, the E3 ubiquitin ligase MDM2 can also bind and inhibit p53 at promoters. Here, we present data indicating that NIR, which shuttles between the nucleolus and nucleoplasm, not only binds to p53 but also directly to MDM2, in part via the central acidic and zinc finger domain of MDM2 that is also contacted by several other nucleolus-based MDM2/p53-regulating proteins. Like some of these, NIR was able to inhibit the ubiquitination of MDM2 and stabilize MDM2; however, unlike these nucleolus-based MDM2 regulators, NIR did not inhibit MDM2 to activate p53. Rather, NIR cooperated with MDM2 to repress p53-induced transactivation. This cooperative repression may at least in part involve p300/CBP. We show that NIR can block the acetylation of p53 and MDM2. Non-acetylated p53 has been documented previously to more readily associate with inhibitory MDM2. NIR may thus help to sustain the inhibitory p53:MDM2 complex, and we present evidence suggesting that all three proteins can indeed form a ternary complex. In sum, our findings suggest that NIR can support MDM2 to suppress p53 as a transcriptional activator.

  1. Ubiquitin chain specificities of E6AP E3 ligase and its HECT domain.

    Science.gov (United States)

    Kobayashi, Fuminori; Nishiuchi, Takumi; Takaki, Kento; Konno, Hiroki

    2018-02-05

    Ubiquitination of target proteins is accomplished by isopeptide bond formation between the carboxy group of the C-terminal glycine (Gly) residue of ubiquitin (Ub) and the ɛ-amino group of lysine (Lys) on the target proteins. The formation of an isopeptide bond between Ubs that gives rise to a poly-Ub chain on the target proteins and the types of poly-Ub chains formed depend on which of the seven Lys residues or N-terminal methionine (Met) residue on Ub is used for chain elongation. To understand the linkage specificity mechanism of Ub chains on E3, the previous study established an assay to monitor the formation of a free diubiquitin chain (Ub 2 chain synthesis assay) by HECT type E3 ligase. In this study, we investigated Ub 2 chain specificity using E6AP HECT domain. We here demonstrate the importance of the N-terminal domain of full length E6AP for Ub 2 chain specificity. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Ubiquitination of HLA-DO by MARCH family E3 ligases.

    Science.gov (United States)

    Jahnke, Martin; Trowsdale, John; Kelly, Adrian P

    2013-05-01

    HLA-DO (DO) is a nonclassical MHC class II (MHCII) molecule that negatively regulates the ability of HLA-DM to catalyse the removal of invariant chain-derived CLIP peptides from classical MHCII molecules. Here, we show that DO is posttranslationally modified by ubiquitination. The location of the modified lysine residue is shared with all classical MHCII beta chains, suggesting a conserved function. Three membrane-associated RING-CH (MARCH1, 8 and 9) family E3 ligases that polyubiquitinate MHCII induce similar profiles of polyubiquitination on DOβ. All three MARCH proteins also influenced trafficking of DO indirectly by a mechanism that required the DOβ encoded di-leucine and tyrosine-based endocytosis motifs. This may be the result of MARCH-induced ubiquitination of components of the endocytic machinery. MARCH9 was by far the most efficient at inducing intracellular redistribution of DO but did not target molecules for lysosomal degradation. The specificity of MARCH9 for HLA-DQ and HLA-DO suggests a need for common regulation of these two MHC-encoded molecules. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. The ubiquitin ligase tripartite-motif-protein 32 is induced in Duchenne muscular dystrophy.

    Science.gov (United States)

    Assereto, Stefania; Piccirillo, Rosanna; Baratto, Serena; Scudieri, Paolo; Fiorillo, Chiara; Massacesi, Manuela; Traverso, Monica; Galietta, Luis J; Bruno, Claudio; Minetti, Carlo; Zara, Federico; Gazzerro, Elisabetta

    2016-08-01

    Activation of the proteasome pathway is one of the secondary processes of cell damage, which ultimately lead to muscle degeneration and necrosis in Duchenne muscular dystrophy (DMD). In mdx mice, the proteasome inhibitor bortezomib up-regulates the membrane expression of members of the dystrophin complex and reduces the inflammatory reaction. However, chronic inhibition of the 26S proteasome may be toxic, as indicated by the systemic side-effects caused by this drug. Therefore, we sought to determine the components of the ubiquitin-proteasome pathway that are specifically activated in human dystrophin-deficient muscles. The analysis of a cohort of patients with genetically determined DMD or Becker muscular dystrophy (BMD) unveiled a selective up-regulation of the ubiquitin ligase tripartite motif-containing protein 32 (TRIM32). The induction of TRIM32 was due to a transcriptional effect and it correlated with disease severity in BMD patients. In contrast, atrogin1 and muscle RING-finger protein-1 (MuRF-1), which are strongly increased in distinct types of muscular atrophy, were not affected by the DMD dystrophic process. Knock-out models showed that TRIM32 is involved in ubiquitination of muscle cytoskeletal proteins as well as of protein inhibitor of activated STAT protein gamma (Piasγ) and N-myc downstream-regulated gene, two inhibitors of satellite cell proliferation and differentiation. Accordingly, we showed that in DMD/BMD muscle tissue, TRIM32 induction was more pronounced in regenerating myofibers rather than in necrotic muscle cells, thus pointing out a role of this protein in the regulation of human myoblast cell fate. This finding highlights TRIM32 as a possible therapeutic target to favor skeletal muscle regeneration in DMD patients.

  4. Soy Glycinin Contains a Functional Inhibitory Sequence against Muscle-Atrophy-Associated Ubiquitin Ligase Cbl-b

    Directory of Open Access Journals (Sweden)

    Tomoki Abe

    2013-01-01

    Full Text Available Background. Unloading stress induces skeletal muscle atrophy. We have reported that Cbl-b ubiquitin ligase is a master regulator of unloading-associated muscle atrophy. The present study was designed to elucidate whether dietary soy glycinin protein prevents denervation-mediated muscle atrophy, based on the presence of inhibitory peptides against Cbl-b ubiquitin ligase in soy glycinin protein. Methods. Mice were fed either 20% casein diet, 20% soy protein isolate diet, 10% glycinin diet containing 10% casein, or 20% glycinin diet. One week later, the right sciatic nerve was cut. The wet weight, cross sectional area (CSA, IGF-1 signaling, and atrogene expression in hindlimb muscles were examined at 1, 3, 3.5, or 4 days after denervation. Results. 20% soy glycinin diet significantly prevented denervation-induced decreases in muscle wet weight and myofiber CSA. Furthermore, dietary soy protein inhibited denervation-induced ubiquitination and degradation of IRS-1 in tibialis anterior muscle. Dietary soy glycinin partially suppressed the denervation-mediated expression of atrogenes, such as MAFbx/atrogin-1 and MuRF-1, through the protection of IGF-1 signaling estimated by phosphorylation of Akt-1. Conclusions. Soy glycinin contains a functional inhibitory sequence against muscle-atrophy-associated ubiquitin ligase Cbl-b. Dietary soy glycinin protein significantly prevented muscle atrophy after denervation in mice.

  5. A Family of Salmonella Virulence Factors Functions as a Distinct Class of Autoregulated E3 Ubiquitin Ligases

    Energy Technology Data Exchange (ETDEWEB)

    Quezada, C.; Hicks, S; Galan, J; Stebbins, C

    2009-01-01

    Processes as diverse as receptor binding and signaling, cytoskeletal dynamics, and programmed cell death are manipulated by mimics of host proteins encoded by pathogenic bacteria. We show here that the Salmonella virulence factor SspH2 belongs to a growing class of bacterial effector proteins that harness and subvert the eukaryotic ubiquitination pathway. This virulence protein possesses ubiquitination activity that depends on a conserved cysteine residue. A crystal structure of SspH2 reveals a canonical leucine-rich repeat (LRR) domain that interacts with a unique E{sub 3} ligase [which we have termed NEL for Novel E{sub 3} Ligase] C-terminal fold unrelated to previously observed HECT or RING-finger E{sub 3} ligases. Moreover, the LRR domain sequesters the catalytic cysteine residue contained in the NEL domain, and we suggest a mechanism for activation of the ligase requiring a substantial conformational change to release the catalytic domain for function. We also show that the N-terminal domain targets SspH2 to the apical plasma membrane of polarized epithelial cells and propose a model whereby binding of the LRR to proteins at the target site releases the ligase domain for site-specific function.

  6. Human melanocortin 1 receptor-mediated ubiquitination of nonvisual arrestins. Role of Mahogunin Ring Finger 1 E3 ligase.

    Science.gov (United States)

    Abrisqueta, Marta; Olivares, Concepción; Herraiz, Cecilia; Castejón-Griñán, María; Sirés-Campos, Julia; García-Borrón, José C; Jiménez-Cervantes, Celia

    2018-01-01

    Signaling from the melanocortin 1 receptor (MC1R), a Gs protein-coupled receptor (GPCR) crucial for melanocyte proliferation and differentiation, is regulated by cytosolic β-arrestins (ARRBs). MC1R signaling is also negatively modulated by the E3-ubiquitin ligase Mahogunin Ring Finger-1 (MGRN1), whose mutation causes hyperpigmentation, congenital heart defects and neurodegeneration in mice. We showed previously that although MC1R interacts stably with human ARRB1 or ARRB2, only ARRB2 mediates receptor desensitization and internalization. We analyzed MC1R-dependent ARRB ubiquitination, and the possible role of MGRN1. ARRB1 expressed in heterologous cells or human melanoma cells migrated in SDS-PAGE as a 55kDa protein whereas ARRB2 migrated as two major bands of apparent molecular weight near 45 and 55kDa, with an intermediate mobility band occasionally detected. These forms were related by post-translational modification rather than by proteolysis. Presence of MC1R favored expression of the 45kDa protein, the form that interacted preferentially with MC1R. MC1R also mediated poly- or multimonoubiquitination of ARRB2. Ubiquitination was agonist-independent, but required a native MC1R conformation and/or normal receptor trafficking to the plasma membrane, as it was not observed for loss-of-function MC1R variants. In a heterologous expression system, MC1R-dependent ARRB ubiquitination was enhanced by overexpression of MGRN1 and was impaired by siRNA-mediated MGRN1 knockdown thus pointing to MGRN1 as the responsible E3-ligase. Co-immunoprecipitation experiments demonstrated interaction of MGRN1 and ARRBs in the presence of MC1R, suggesting a scaffolding role for the GPCR that may determine the selectivity of E3-ubiquitin ligase engagement and the functional outcome of ARRB ubiquitination. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. CDK-mediated activation of the SCFFBXO28 ubiquitin ligase promotes MYC-driven transcription and tumourigenesis and predicts poor survival in breast cancer

    Science.gov (United States)

    Cepeda, Diana; Ng, Hwee-Fang; Sharifi, Hamid Reza; Mahmoudi, Salah; Cerrato, Vanessa Soto; Fredlund, Erik; Magnusson, Kristina; Nilsson, Helén; Malyukova, Alena; Rantala, Juha; Klevebring, Daniel; Viñals, Francesc; Bhaskaran, Nimesh; Zakaria, Siti Mariam; Rahmanto, Aldwin Suryo; Grotegut, Stefan; Nielsen, Michael Lund; Szigyarto, Cristina Al-Khalili; Sun, Dahui; Lerner, Mikael; Navani, Sanjay; Widschwendter, Martin; Uhlén, Mathias; Jirström, Karin; Pontén, Fredrik; Wohlschlegel, James; Grandér, Dan; Spruck, Charles; Larsson, Lars-Gunnar; Sangfelt, Olle

    2013-01-01

    SCF (Skp1/Cul1/F-box) ubiquitin ligases act as master regulators of cellular homeostasis by targeting key proteins for ubiquitylation. Here, we identified a hitherto uncharacterized F-box protein, FBXO28 that controls MYC-dependent transcription by non-proteolytic ubiquitylation. SCFFBXO28 activity and stability are regulated during the cell cycle by CDK1/2-mediated phosphorylation of FBXO28, which is required for its efficient ubiquitylation of MYC and downsteam enhancement of the MYC pathway. Depletion of FBXO28 or overexpression of an F-box mutant unable to support MYC ubiquitylation results in an impairment of MYC-driven transcription, transformation and tumourigenesis. Finally, in human breast cancer, high FBXO28 expression and phosphorylation are strong and independent predictors of poor outcome. In conclusion, our data suggest that SCFFBXO28 plays an important role in transmitting CDK activity to MYC function during the cell cycle, emphasizing the CDK-FBXO28-MYC axis as a potential molecular drug target in MYC-driven cancers, including breast cancer. PMID:23776131

  8. The archipelago ubiquitin ligase subunit acts in target tissue to restrict tracheal terminal cell branching and hypoxic-induced gene expression.

    Directory of Open Access Journals (Sweden)

    Nathan T Mortimer

    Full Text Available The Drosophila melanogaster gene archipelago (ago encodes the F-box/WD-repeat protein substrate specificity factor for an SCF (Skp/Cullin/F-box-type polyubiquitin ligase that inhibits tumor-like growth by targeting proteins for degradation by the proteasome. The Ago protein is expressed widely in the fly embryo and larva and promotes degradation of pro-proliferative proteins in mitotically active cells. However the requirement for Ago in post-mitotic developmental processes remains largely unexplored. Here we show that Ago is an antagonist of the physiologic response to low oxygen (hypoxia. Reducing Ago activity in larval muscle cells elicits enhanced branching of nearby tracheal terminal cells in normoxia. This tracheogenic phenotype shows a genetic dependence on sima, which encodes the HIF-1α subunit of the hypoxia-inducible transcription factor dHIF and its target the FGF ligand branchless (bnl, and is enhanced by depletion of the Drosophila Von Hippel Lindau (dVHL factor, which is a subunit of an oxygen-dependent ubiquitin ligase that degrades Sima/HIF-1α protein in metazoan cells. Genetic reduction of ago results in constitutive expression of some hypoxia-inducible genes in normoxia, increases the sensitivity of others to mild hypoxic stimulus, and enhances the ability of adult flies to recover from hypoxic stupor. As a molecular correlate to these genetic data, we find that Ago physically associates with Sima and restricts Sima levels in vivo. Collectively, these findings identify Ago as a required element of a circuit that suppresses the tracheogenic activity of larval muscle cells by antagonizing the Sima-mediated transcriptional response to hypoxia.

  9. RavN is a member of a previously unrecognized group of Legionella pneumophila E3 ubiquitin ligases

    Science.gov (United States)

    Lin, Yi-Han; Evans, Timothy R.; Doms, Alexandra G.; Beauchene, Nicole A.; Hierro, Aitor

    2018-01-01

    The eukaryotic ubiquitylation machinery catalyzes the covalent attachment of the small protein modifier ubiquitin to cellular target proteins in order to alter their fate. Microbial pathogens exploit this post-translational modification process by encoding molecular mimics of E3 ubiquitin ligases, eukaryotic enzymes that catalyze the final step in the ubiquitylation cascade. Here, we show that the Legionella pneumophila effector protein RavN belongs to a growing class of bacterial proteins that mimic host cell E3 ligases to exploit the ubiquitylation pathway. The E3 ligase activity of RavN was located within its N-terminal region and was dependent upon interaction with a defined subset of E2 ubiquitin-conjugating enzymes. The crystal structure of the N-terminal region of RavN revealed a U-box-like motif that was only remotely similar to other U-box domains, indicating that RavN is an E3 ligase relic that has undergone significant evolutionary alteration. Substitution of residues within the predicted E2 binding interface rendered RavN inactive, indicating that, despite significant structural changes, the mode of E2 recognition has remained conserved. Using hidden Markov model-based secondary structure analyses, we identified and experimentally validated four additional L. pneumophila effectors that were not previously recognized to possess E3 ligase activity, including Lpg2452/SdcB, a new paralog of SidC. Our study provides strong evidence that L. pneumophila is dedicating a considerable fraction of its effector arsenal to the manipulation of the host ubiquitylation pathway. PMID:29415051

  10. Smurf2 E3 ubiquitin ligase modulates proliferation and invasiveness of breast cancer cells in a CNKSR2 dependent manner

    OpenAIRE

    David, Diana; Jagadeeshan, Sankar; Hariharan, Ramkumar; Nair, Asha Sivakumari; Pillai, Radhakrishna Madhavan

    2014-01-01

    Background Smurf2 is a member of the HECT family of E3 ubiquitin ligases that play important roles in determining the competence of cells to respond to TGF- β/BMP signaling pathway. However, besides TGF-β/BMP pathway, Smurf2 regulates a repertoire of other signaling pathways ranging from planar cell polarity during embryonic development to cell proliferation, migration, differentiation and senescence. Expression of Smurf2 is found to be dysregulated in many cancers including breast cancer. Th...

  11. Ubiquitin ligases MuRF1 and MAFbx in human skeletal muscle atrophy.

    Science.gov (United States)

    de Palma, Luigi; Marinelli, Mario; Pavan, Matteo; Orazi, Alessandro

    2008-01-01

    Several pathological conditions can induce skeletal muscle atrophy and seem to share common enzyme pathways. In catabolic states where proteolysis is increased, two genes specific to muscle atrophy, MuRf1 and MAFbx, are upregulated. These encode ubiquitin ligases, which bind to and mediate ubiquitination of myofibrillar proteins for subsequent degradation during muscle atrophy. Fifteen patients undergoing leg amputation were divided into two groups. Group A included 12 elderly patients (mean age 79years) amputated for vascular disease (complicated by diabetes in four), chronic osteomyelitis or squamous cell carcinoma. Group B included three car accident victims (mean age 32years) amputated due to acute arterial insufficiency. Gastrocnemius muscle biopsies were collected for a histochemical and immunohistochemical (anti-MuRf1, anti-MAFbx) study. Group A specimens showed a decreased cross-sectional fiber area and length, adipose tissue replacement, and MuRf1 and MAFbx immunoreactivity. Muscle cells showed MuRf1 and MAFbx subsarcolemmal immunoreactivity and weak extracellular matrix immunoreactivity. Group B samples exhibited mild muscle structural changes; they did not stain with anti-MuRf1 or anti-MAFbx, and neither did sections showing muscle degeneration and adipose tissue replacement. Results of our preliminary study showed upregulation of MuRf1 and MAFbx in atrophied muscle and support their role as regulatory peptides in various conditions that lead to muscle atrophy. Data suggest that the study of cellular pathways can help identify promising targets for effective new treatments for skeletal muscle atrophy. The treatment of several orthopedic conditions is complicated by muscle atrophy; potential treatments could be directed to specific sites where these proteins are localized.

  12. The Deubiquitylase USP2 Regulates the LDLR Pathway by Counteracting the E3-Ubiquitin Ligase IDOL.

    Science.gov (United States)

    Nelson, Jessica Kristine; Sorrentino, Vincenzo; Avagliano Trezza, Rossella; Heride, Claire; Urbe, Sylvie; Distel, Ben; Zelcer, Noam

    2016-02-05

    The low-density lipoprotein (LDL) receptor (LDLR) is a central determinant of circulating LDL-cholesterol and as such subject to tight regulation. Recent studies and genetic evidence implicate the inducible degrader of the LDLR (IDOL) as a regulator of LDLR abundance and of circulating levels of LDL-cholesterol in humans. Acting as an E3-ubiquitin ligase, IDOL promotes ubiquitylation and subsequent lysosomal degradation of the LDLR. Consequently, inhibition of IDOL-mediated degradation of the LDLR represents a potential strategy to increase hepatic LDL-cholesterol clearance. To establish whether deubiquitylases counteract IDOL-mediated ubiquitylation and degradation of the LDLR. Using a genetic screening approach, we identify the ubiquitin-specific protease 2 (USP2) as a post-transcriptional regulator of IDOL-mediated LDLR degradation. We demonstrate that both USP2 isoforms, USP2-69 and USP2-45, interact with IDOL and promote its deubiquitylation. IDOL deubiquitylation requires USP2 enzymatic activity and leads to a marked stabilization of IDOL protein. Paradoxically, this also markedly attenuates IDOL-mediated degradation of the LDLR and the ability of IDOL to limit LDL uptake into cells. Conversely, loss of USP2 reduces LDLR protein in an IDOL-dependent manner and limits LDL uptake. We identify a tri-partite complex encompassing IDOL, USP2, and LDLR and demonstrate that in this context USP2 promotes deubiquitylation of the LDLR and prevents its degradation. Our findings identify USP2 as a novel regulator of lipoprotein clearance owing to its ability to control ubiquitylation-dependent degradation of the LDLR by IDOL. © 2015 American Heart Association, Inc.

  13. The Blue Light-Dependent Polyubiquitination and Degradation of Arabidopsis Cryptochrome2 Requires Multiple E3 Ubiquitin Ligases.

    Science.gov (United States)

    Liu, Qing; Wang, Qin; Liu, Bin; Wang, Wei; Wang, Xu; Park, Joon; Yang, Zhenming; Du, Xinglin; Bian, Mingdi; Lin, Chentao

    2016-10-01

    Cryptochromes are blue light receptors regulated by light-dependent ubiquitination and degradation in both plant and animal lineages. The Arabidopsis genome encodes two cryptochromes, CRY1 and CRY2, of which CRY2 undergoes blue light-dependent ubiquitination and 26S proteasome-dependent degradation. The molecular mechanism regulating blue light-dependent proteolysis of CRY2 is still not fully understood. We found that the F-box proteins ZEITLUPE (ZTL) and Lov Kelch Protein2 (LKP2), which mediate blue light suppression of degradation of the CRY2 signaling partner CIB1, are not required for the blue light-dependent CRY2 degradation. We further showed that the previously reported function of the COP1-SPA1 protein complex in blue light-dependent CRY2 degradation is more likely to be attributable to its cullin 4 (CUL4)-based E3 ubiquitin ligase activity than its activity as the cryptochrome signaling partner. However, the blue light-dependent CRY2 degradation is only partially impaired in the cul4 mutant, the cop1-5 null mutant and the spa1234 quadruple mutant, suggesting a possible involvement of additional E3 ubiquitin ligases in the regulation of CRY2. Consistent with this hypothesis, we demonstrated that the blue light-dependent CRY2 degradation is significantly impaired in the temperature-sensitive cul1 mutant allele (axr6-3), especially under the non-permissive temperature. Based on these and other results presented, we propose that photoexcited CRY2 undergoes Lys48-linked polyubiquitination catalyzed by the CUL4- and CUL1-based E3 ubiquitin ligases. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. E6-AP/UBE3A Protein Acts as a Ubiquitin Ligase toward SOX9 Protein*

    Science.gov (United States)

    Hattori, Takako; Kishino, Tetsuya; Stephen, Shelley; Eberspaecher, Heidi; Maki, Sayumi; Takigawa, Masaharu; de Crombrugghe, Benoit; Yasuda, Hideyo

    2013-01-01

    SOX9 is a transcription factor that acts as a key regulator at various stages of cartilage differentiation. There is ample evidence that intracellular SOX9 protein levels are tightly regulated both by sumoylation and by degradation through the ubiquitin-proteasome pathway. Using a proteomics approach, here we report the identification of a SOX9-binding protein, E6-AP/UBE3A, that may act as a ubiquitin ligase toward Sox9. E6-AP bound SOX9 through the region consisting mostly of its high mobility group domain in vitro. In nuclear lysates, FLAG-tagged E6-AP coprecipitated with Sox9 and its high mobility group domain. This finding was estimated using nuclear lysates from a chondrocytic cell line that endogenously expresses E6-AP and SOX9. Accordingly, ectopically expressed E6-AP and SOX9 colocalized in the nucleus. We show that E6-AP ubiquitinates SOX9 in vitro and in vivo and that SOX9 levels are enhanced after addition of the proteasome inhibitor bortezomib. Similar, siRNA knockdown of E6-AP and the E2 ligase Ubc9 increased cellular SOX9 amounts, supporting the notion that SOX9 may be ubiquitinated in hypertrophic chondrocytes by E6-AP and degraded by proteasomes. This is in accordance with the distribution of SOX9 levels, which are high in proliferating and prehypertrophic chondrocytes but low in hypertrophic chondrocytes, whereas E6-AP levels are high in hypertrophic chondrocytes and low in prehypertrophic chondrocytes. Furthermore, E6-AP-deficient mice showed SOX9 accumulation in chondrocytes and the brain. These findings support the concept that E6-AP regulates SOX9 levels in developing cartilage by acting as a ubiquitin ligase. PMID:24155239

  15. Ubiquitin ligase Rad18Sc localizes to the XY body and to other chromosomal regions that are unpaired and transcriptionally silenced during male meiotic prophase

    NARCIS (Netherlands)

    R. van der Laan (Roald); W.M. Baarends (Willy); E.J. Uringa; E. Wassenaar (Evelyne); J.W. Hoogerbrugge (Jos); E. Sleddens; H. Odijk (Hanny); H.P. Roest (Henk); P. de Boer (Peter); J.A. Grootegoed (Anton); J.H.J. Hoeijmakers (Jan)

    2004-01-01

    textabstractIn replicative damage bypass (RDB) in yeast, the ubiquitin-conjugating enzyme RAD6 interacts with the ubiquitin ligase RAD18. In the mouse, these enzymes are represented by two homologs of RAD6, HR6a and HR6b, and one homolog of RAD18, Rad18Sc. Expression of these genes and the encoded

  16. Real Estate in the DNA Damage Response: Ubiquitin and SUMO Ligases Home in on DNA Double-Strand Breaks.

    Science.gov (United States)

    Dantuma, Nico P; Pfeiffer, Annika

    2016-01-01

    Ubiquitin and the ubiquitin-like modifier SUMO are intimately connected with the cellular response to various types of DNA damage. A striking feature is the local accumulation of these proteinaceous post-translational modifications in the direct vicinity to DNA double-strand breaks, which plays a critical role in the formation of ionizing radiation-induced foci. The functional significance of these modifications is the coordinated recruitment and removal of proteins involved in DNA damage signaling and repair in a timely manner. The central orchestrators of these processes are the ubiquitin and SUMO ligases that are responsible for accurately tagging a broad array of chromatin and chromatin-associated proteins thereby changing their behavior or destination. Despite many differences in the mode of action of these enzymes, they share some striking features that are of direct relevance for their function in the DNA damage response. In this review, we outline the molecular mechanisms that are responsible for the recruitment of ubiquitin and SUMO ligases and discuss the importance of chromatin proximity in this process.

  17. An essential role of CBL and CBL-B ubiquitin ligases in mammary stem cell maintenance.

    Science.gov (United States)

    Mohapatra, Bhopal; Zutshi, Neha; An, Wei; Goetz, Benjamin; Arya, Priyanka; Bielecki, Timothy A; Mustaq, Insha; Storck, Matthew D; Meza, Jane L; Band, Vimla; Band, Hamid

    2017-03-15

    The ubiquitin ligases CBL and CBL-B are negative regulators of tyrosine kinase signaling with established roles in the immune system. However, their physiological roles in epithelial tissues are unknown. Here, we used MMTV-Cre-mediated Cbl gene deletion on a Cbl-b null background, as well as a tamoxifen-inducible mammary stem cell (MaSC)-specific Cbl and Cbl-b double knockout ( Cbl/Cbl-b DKO) using Lgr5-EGFP-IRES-CreERT2, to demonstrate a mammary epithelial cell-autonomous requirement of CBL and CBL-B in the maintenance of MaSCs. Using a newly engineered tamoxifen-inducible Cbl and Cbl-b deletion model with a dual fluorescent reporter ( Cbl flox/flox ; Cbl-b flox/flox ; Rosa26-CreERT; mT/mG ), we show that Cbl/Cbl-b DKO in mammary organoids leads to hyperactivation of AKT-mTOR signaling with depletion of MaSCs. Chemical inhibition of AKT or mTOR rescued MaSCs from Cbl/Cbl-b DKO-induced depletion. Our studies reveal a novel, cell-autonomous requirement of CBL and CBL-B in epithelial stem cell maintenance during organ development and remodeling through modulation of mTOR signaling. © 2017. Published by The Company of Biologists Ltd.

  18. The evolutionarily conserved E3 ubiquitin ligase AtCHIP contributes to plant immunity

    Directory of Open Access Journals (Sweden)

    Xin eLi

    2016-03-01

    Full Text Available Plants possess a sophisticated immune system to recognize and respond to microbial threats in their environment. The level of immune signaling must be tightly regulated so that immune responses can be quickly activated in the presence of pathogens, while avoiding autoimmunity. HSP90s, along with their diverse array of co-chaperones, forms chaperone complexes that have been shown to play both positive and negative roles in regulating the accumulation of immune receptors and regulators. In this study, we examined the role of AtCHIP, an evolutionarily conserved E3 ligase that was known to interact with chaperones including HSP90s in multicellular organisms including fruit fly, C. elegans, plants and human. Atchip knockout mutants display enhanced disease susceptibility to a virulent oomycete pathogen, and overexpression of AtCHIP causes enhanced disease resistance at low temperature. Although CHIP was reported to target HSP90 for ubiquitination and degradation, accumulation of HSP90.3 was not affected in Atchip plants. In addition, protein accumulation of nucleotide-binding, leucine-rich repeat domain immune receptor (NLR SNC1 is not altered in Atchip mutant. Thus, while AtCHIP plays a role in immunity, it does not seem to regulate the turnover of HSP90 or SNC1. Further investigation is needed in order to determine the exact mechanism behind AtCHIP’s role in regulating plant immune responses.

  19. Multiple functions of the E3 ubiquitin ligase CHIP in immunity.

    Science.gov (United States)

    Zhan, Shaohua; Wang, Tianxiao; Ge, Wei

    2017-09-03

    The carboxyl terminal of Hsp70-interacting protein (CHIP) is an E3 ubiquitin ligase that plays a pivotal role in the protein quality control system by shifting the balance of the folding-refolding machinery toward the degradative pathway. However, the precise mechanisms by which nonnative proteins are selected for degradation by CHIP either directly or indirectly via chaperone Hsp70 or Hsp90 are still not clear. In this review, we aim to provide a comprehensive model of the mechanism by which CHIP degrades its substrate in a chaperone-dependent or direct manner. In addition, through tight regulation of the protein level of its substrates, CHIP plays important roles in many physiological and pathological conditions, including cancers, neurological disorders, cardiac diseases, bone metabolism, immunity, and so on. Nonetheless, the precise mechanisms underlying the regulation of the immune system by CHIP are still poorly understood despite accumulating developments in our understanding of the regulatory roles of CHIP in both innate and adaptive immune responses. In this review, we also aim to provide a view of CHIP-mediated regulation of immune responses and the signaling pathways involved in the model described. Finally, we discuss the roles of CHIP in immune-related diseases.

  20. Pirh2 E3 ubiquitin ligase monoubiquitinates DNA polymerase eta to suppress translesion DNA synthesis.

    Science.gov (United States)

    Jung, Yong-Sam; Hakem, Anne; Hakem, Razqallah; Chen, Xinbin

    2011-10-01

    Polymerase eta (PolH) is necessary for translesion DNA synthesis, and PolH deficiency predisposes xeroderma pigmentosum variant (XPV) patients to cancer. Due to the critical role of PolH in translesion DNA synthesis, the activity of PolH is tightly controlled and subjected to multiple regulations, especially posttranslational modifications. Here, we show that PolH-dependent lesion bypass and intracellular translocation are regulated by Pirh2 E3 ubiquitin ligase through monoubiquitination. Specifically, we show that Pirh2, a target of the p53 tumor suppressor, monoubiquitinates PolH at one of multiple lysine residues. We also show that monoubiquitination of PolH inhibits the ability of PolH to interact with PCNA and to bypass UV-induced lesions, leading to decreased viability of UV-damaged cells. Moreover, we show that monoubiquitination of PolH alters the ability of PolH to translocate to replication foci for translesion DNA synthesis of UV-induced DNA lesions. Considering that Pirh2 is known to be overexpressed in various cancers, we postulate that in addition to mutation of PolH in XPV patients, inactivation of PolH by Pirh2 via monoubiquitination is one of the mechanisms by which PolH function is controlled, which might be responsible for the development and progression of some spontaneous tumors wherein PolH is not found to be mutated.

  1. Pirh2 E3 ubiquitin ligase targets DNA polymerase eta for 20S proteasomal degradation.

    Science.gov (United States)

    Jung, Yong-Sam; Liu, Gang; Chen, Xinbin

    2010-02-01

    DNA polymerase eta (PolH), a Y family translesion polymerase, is required for repairing UV-induced DNA damage, and loss of PolH is responsible for early onset of malignant skin cancers in patients with xeroderma pigmentosum variant (XPV), an autosomal recessive disorder. Here, we show that PolH, a target of the p53 tumor suppressor, is a short-half-life protein. We found that PolH is degraded by proteasome, which is enhanced upon UV irradiation. We also found that PolH interacts with Pirh2 E3 ligase, another target of the p53 tumor suppressor, via the polymerase-associated domain in PolH and the RING finger domain in Pirh2. In addition, we show that overexpression of Pirh2 decreases PolH protein stability, whereas knockdown of Pirh2 increases it. Interestingly, we found that PolH is recruited by Pirh2 and degraded by 20S proteasome in a ubiquitin-independent manner. Finally, we observed that Pirh2 knockdown leads to accumulation of PolH and, subsequently, enhances the survival of UV-irradiated cells. We postulate that UV irradiation promotes cancer formation in part by destabilizing PolH via Pirh2-mediated 20S proteasomal degradation.

  2. Pirh2 E3 Ubiquitin Ligase Targets DNA Polymerase Eta for 20S Proteasomal Degradation ▿

    Science.gov (United States)

    Jung, Yong-Sam; Liu, Gang; Chen, Xinbin

    2010-01-01

    DNA polymerase eta (PolH), a Y family translesion polymerase, is required for repairing UV-induced DNA damage, and loss of PolH is responsible for early onset of malignant skin cancers in patients with xeroderma pigmentosum variant (XPV), an autosomal recessive disorder. Here, we show that PolH, a target of the p53 tumor suppressor, is a short-half-life protein. We found that PolH is degraded by proteasome, which is enhanced upon UV irradiation. We also found that PolH interacts with Pirh2 E3 ligase, another target of the p53 tumor suppressor, via the polymerase-associated domain in PolH and the RING finger domain in Pirh2. In addition, we show that overexpression of Pirh2 decreases PolH protein stability, whereas knockdown of Pirh2 increases it. Interestingly, we found that PolH is recruited by Pirh2 and degraded by 20S proteasome in a ubiquitin-independent manner. Finally, we observed that Pirh2 knockdown leads to accumulation of PolH and, subsequently, enhances the survival of UV-irradiated cells. We postulate that UV irradiation promotes cancer formation in part by destabilizing PolH via Pirh2-mediated 20S proteasomal degradation. PMID:20008555

  3. News from the PUB: plant U-box type E3 ubiquitin ligases.

    Science.gov (United States)

    Trujillo, Marco

    2018-01-23

    Plant U-box type E3 ubiquitin ligases (PUBs) are well known for their functions in a variety of stress responses, including immune responses and the adaptation to abiotic stresses. First linked to pollen self-incompatibility, their repertoire of roles has grown to encompass also the regulation of developmental processes. Notably, new studies provide clues to their mode of action, underline the existence of conserved PUB-kinase modules, and suggest new links to G-protein signalling, placing PUBs at the crossroads of major signalling hubs. The frequent association with membranes, by interacting and/or targeting membrane proteins, as well as through a recently reported direct interaction with phospholipids, indicates a general function in the control of vesicle transport and their cargoes. This review aims to give an overview of the most significant advances in the field, while also trying to identify common themes of PUB function. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  4. K48-linked KLF4 ubiquitination by E3 ligase Mule controls T-cell proliferation and cell cycle progression

    DEFF Research Database (Denmark)

    Hao, Zhenyue; Sheng, Yi; Duncan, Gordon S.

    2017-01-01

    (EAE), show impaired generation of antigen-specific CD8 + T cells with reduced cytokine production, and fail to clear LCMV infections. Thus, Mule-mediated ubiquitination of the novel substrate KLF4 regulates T-cell proliferation, autoimmunity and antiviral immune responses in vivo.......T-cell proliferation is regulated by ubiquitination but the underlying molecular mechanism remains obscure. Here we report that Lys-48-linked ubiquitination of the transcription factor KLF4 mediated by the E3 ligase Mule promotes T-cell entry into S phase. Mule is elevated in T cells upon TCR...... engagement, and Mule deficiency in T cells blocks proliferation because KLF4 accumulates and drives upregulation of its transcriptional targets E2F2 and the cyclin-dependent kinase inhibitors p21 and p27. T-cell-specific Mule knockout (TMKO) mice develop exacerbated experimental autoimmune encephalomyelitis...

  5. Targeted ubiquitination and degradation of G-protein-coupled receptor kinase 5 by the DDB1-CUL4 ubiquitin ligase complex.

    Directory of Open Access Journals (Sweden)

    Ziyan Wu

    Full Text Available The G protein-coupled receptor kinases (GRKs phosphorylate agonist occupied G protein-coupled receptors (GPCRs and desensitize GPCR-mediated signaling. Recent studies indicate they also function non-catalytically via interaction with other proteins. In this study, a proteomic approach was used to screen interacting proteins of GRK5 in MDA-MB-231 cells and HUVEC cells. Mass spectrometry analysis reveals several proteins in the GRK5 immunocomplex including damaged DNA-binding protein 1 (DDB1, an adaptor subunit of the CUL4-ROC1 E3 ubiquitin ligase complex. Co-immunoprecipitation experiments confirmed the association of GRK5 with DDB1-CUL4 complex, and reveal that DDB1 acts as an adapter to link GRK5 to CUL4 to form the complex. Overexpression of DDB1 promoted, whereas knockdown of DDB1 inhibited the ubiquitination of GRK5, and the degradation of GRK5 was reduced in cells deficient of DDB1. Furthermore, the depletion of DDB1 decreased Hsp90 inhibitor-induced GRK5 destabilization and UV irradiation-induced GRK5 degradation. Thus, our study identified potential GRK5 interacting proteins, and reveals the association of GRK5 with DDB1 in cell and the regulation of GRK5 level by DDB1-CUL4 ubiquitin ligase complex-dependent proteolysis pathway.

  6. The Sumo-targeted ubiquitin ligase RNF4 regulates the localization and function of the HTLV-1 oncoprotein Tax

    Science.gov (United States)

    Fryrear, Kimberly A.; Guo, Xin

    2012-01-01

    The Really Interesting New Gene (RING) Finger Protein 4 (RNF4) represents a class of ubiquitin ligases that target Small Ubiquitin-like Modifier (SUMO)–modified proteins for ubiquitin modification. To date, the regulatory function of RNF4 appears to be ubiquitin-mediated degradation of sumoylated cellular proteins. In the present study, we show that the Human T-cell Leukemia Virus Type 1 (HTLV-1) oncoprotein Tax is a substrate for RNF4 both in vivo and in vitro. We mapped the RNF4-binding site to a region adjacent to the Tax ubiquitin/SUMO modification sites K280/K284. Interestingly, RNF4 modification of Tax protein results in relocalization of the oncoprotein from the nucleus to the cytoplasm. Overexpression of RNF4, but not the RNF4 RING mutant, resulted in cytoplasmic enrichment of Tax. The RNF4-induced nucleus-to-cytoplasm relocalization was associated with increased NF-κB–mediated and decreased cAMP Response Element-Binding (CREB)–mediated Tax activity. Finally, depletion of RNF4 by RNAi prevented the DNA damage–induced nuclear/cytoplasmic translocation of Tax. These results provide important new insight into STUbL-mediated pathways that regulate the subcellular localization and functional dynamics of viral oncogenes. PMID:22106342

  7. Mass spectrometric and mutational analyses reveal Lys-6-linked polyubiquitin chains catalyzed by BRCA1-BARD1 ubiquitin ligase.

    Science.gov (United States)

    Nishikawa, Hiroyuki; Ooka, Seido; Sato, Ko; Arima, Kei; Okamoto, Joji; Klevit, Rachel E; Fukuda, Mamoru; Ohta, Tomohiko

    2004-02-06

    The breast and ovarian cancer suppressor BRCA1 acquires significant ubiquitin ligase activity when bound to BARD1 as a RING heterodimer. Although the activity may well be important for the role of BRCA1 as a tumor suppressor, the biochemical consequence of the activity is not yet known. Here we report that BRCA1-BARD1 catalyzes Lys-6-linked polyubiquitin chain formation. K6R mutation of ubiquitin dramatically reduces the polyubiquitin products mediated by BRCA1-BARD1 in vitro. BRCA1-BARD1 preferentially utilizes ubiquitin with a single Lys residue at Lys-6 or Lys-29 to mediate autoubiquitination of BRCA1 in vivo. Furthermore, mass spectrometry analysis identified the Lys-6-linked branched ubiquitin fragment from the polyubiquitin chain produced by BRCA1-BARD1 using wild type ubiquitin. The BRCA1-BARD1-mediated Lys-6-linked polyubiquitin chains are deubiquitinated by 26 S proteasome in vitro, whereas autoubiquitinated CUL1 through Lys-48-linked polyubiquitin chains is degraded. Proteasome inhibitors do not alter the steady state level of the autoubiquitinated BRCA1 in vivo. Hence, the results indicate that BRCA1-BARD1 mediates novel polyubiquitin chains that may be distinctly edited by 26 S proteasome from conventional Lys-48-linked polyubiquitin chains.

  8. The Trim39 ubiquitin ligase inhibits APC/CCdh1-mediated degradation of the Bax activator MOAP-1.

    Science.gov (United States)

    Huang, Nai-Jia; Zhang, Liguo; Tang, Wanli; Chen, Chen; Yang, Chih-Sheng; Kornbluth, Sally

    2012-04-30

    Proapoptotic Bcl-2 family members, such as Bax, promote release of cytochrome c from mitochondria, leading to caspase activation and cell death. It was previously reported that modulator of apoptosis protein 1 (MOAP-1), an enhancer of Bax activation induced by DNA damage, is stabilized by Trim39, a protein of unknown function. In this paper, we show that MOAP-1 is a novel substrate of the anaphase-promoting complex (APC/C(Cdh1)) ubiquitin ligase. The influence of Trim39 on MOAP-1 levels stems from the ability of Trim39 (a RING domain E3 ligase) to directly inhibit APC/C(Cdh1)-mediated protein ubiquitylation. Accordingly, small interfering ribonucleic acid-mediated knockdown of Cdh1 stabilized MOAP-1, thereby enhancing etoposide-induced Bax activation and apoptosis. These data identify Trim39 as a novel APC/C regulator and provide an unexpected link between the APC/C and apoptotic regulation via MOAP-1.

  9. The Role of E3 Ubiquitin Ligase Cbl Proteins in Interleukin-2-Induced Jurkat T-Cell Activation

    Directory of Open Access Journals (Sweden)

    Ming-Fang Zhao

    2013-01-01

    Full Text Available Interleukin- (IL- 2 is the major growth factor for T-cell activation and proliferation. IL-2 has multiple functions in the regulation of immunological processes. Although most studies focus on T-cell immunomodulation, T-cell activation by IL-2 is the foundation of priming the feedback loop. Here, we investigated the effect of MAPK/ERK and PI3K/Akt signaling pathways on IL-2-induced cell activation and the regulatory mechanisms of upstream ubiquitin ligase Cbl-b and c-Cbl. Morphological analysis of Jurkat T cells was performed by cytospin preparations with Wright-Giemsa stain. CD25 expression on Jurkat T cells was determined by flow cytometry. Changes in cell activation proteins such as p-ERK, ERK, p-Akt, Akt, and ubiquitin ligase Casitas B-cell Lymphoma (Cbl proteins were analyzed by western blot. Following IL-2-induced activation of Jurkat T cells, p-ERK expression was upregulated, while there was no change in p-Akt, ERK, or Akt expression. Thus, the MAPK/ERK signaling pathway, but not PI3K/Akt, was involved in IL-2-induced T-cell activation. Either using PD98059 (a specific inhibitor for p-ERK or depletion of ERK with small interfering RNA (siRNA reduced the expression of CD25. This study also showed that ubiquitin ligase proteins Cbl-b and c-Cbl might be involved in IL-2-induced Jurkat T-cell activation by negatively regulating the MAPK/ERK signaling pathway.

  10. Non–SCF-type F-box protein Roy1/Ymr258c interacts with a Rab5-like GTPase Ypt52 and inhibits Ypt52 function

    OpenAIRE

    Liu, Yuan; Nakatsukasa, Kunio; Kotera, Michiko; Kanada, Akira; Nishimura, Takashi; Kishi, Tsutomu; Mimura, Satoru; Kamura, Takumi

    2011-01-01

    Skp1/Cul1/F-box (SCF)–type F-box proteins are a component of the Cullin-RING SCF ubiquitin E3 ligase, which is involved in numerous cellular processes. However, the function of non–SCF-type F-box proteins remains largely unknown. The Rab5-like small guanosine 5′-triphosphatase Vps21/Ypt51 is a key regulator of intracellular transportation; however, deletion of its isoforms, Ypt52 and Ypt53, results in only a modest inhibition of intracellular trafficking. The function of these proteins theref...

  11. The Trim39 ubiquitin ligase inhibits APC/CCdh1-mediated degradation of the Bax activator MOAP-1

    OpenAIRE

    Huang, Nai-Jia; Zhang, Liguo; Tang, Wanli; Chen, Chen; Yang, Chih-Sheng; Kornbluth, Sally

    2012-01-01

    Proapoptotic Bcl-2 family members, such as Bax, promote release of cytochrome c from mitochondria, leading to caspase activation and cell death. It was previously reported that modulator of apoptosis protein 1 (MOAP-1), an enhancer of Bax activation induced by DNA damage, is stabilized by Trim39, a protein of unknown function. In this paper, we show that MOAP-1 is a novel substrate of the anaphase-promoting complex (APC/CCdh1) ubiquitin ligase. The influence of Trim39 on MOAP-1 levels stems f...

  12. Toponomics analysis of functional interactions of the ubiquitin ligase PAM (Protein Associated with Myc) during spinal nociceptive processing.

    Science.gov (United States)

    Pierre, Sandra; Maeurer, Christian; Coste, Ovidiu; Becker, Wiebke; Schmidtko, Achim; Holland, Sabrina; Wittpoth, Claus; Geisslinger, Gerd; Scholich, Klaus

    2008-12-01

    Protein associated with Myc (PAM) is a giant E3 ubiquitin ligase of 510 kDa. Although the role of PAM during neuronal development is well established, very little is known about its function in the regulation of synaptic strength. Here we used multiepitope ligand cartography (MELC) to study protein network profiles associated with PAM during the modulation of synaptic strength. MELC is a novel imaging technology that utilizes biomathematical tools to describe protein networks after consecutive immunohistochemical visualization of up to 100 proteins on the same sample. As an in vivo model to modulate synaptic strength we used the formalin test, a common model for acute and inflammatory pain. MELC analysis was performed with 37 different antibodies or fluorescence tags on spinal cord slices and led to the identification of 1390 PAM-related motifs that distinguish untreated and formalin-treated spinal cords. The majority of these motifs related to ubiquitin-dependent processes and/or the actin cytoskeleton. We detected an intermittent colocalization of PAM and ubiquitin with TSC2, a known substrate of PAM, and the glutamate receptors mGluR5 and GLUR1. Importantly these complexes were detected exclusively in the presence of F-actin. A direct PAM/F-actin interaction was confirmed by colocalization and cosedimentation. The binding of PAM toward F-actin varied strongly between the PAM splice forms found in rat spinal cords. PAM did not ubiquitylate actin or alter actin polymerization and depolymerization. However, F-actin decreased the ubiquitin ligase activity of purified PAM. Because PAM activation is known to involve its translocation, the binding of PAM to F-actin may serve to control its subcellular localization as well as its activity. Taken together we show that defining protein network profiles by topological proteomics analysis is a useful tool to identify previously unknown protein/protein interactions that underlie synaptic processes.

  13. E3 ubiquitin ligases as drug targets and prognostic biomarkers in melanoma

    Directory of Open Access Journals (Sweden)

    Kristina Bielskienė

    2015-01-01

    E3 ligases are of interest as drug targets for their ability to regulate proteins stability and functions. Compared to the general proteasome inhibitor bortezomib, which blocks the entire protein degradation, drugs that target a particular E3 ligase are expected to have better selectivity with less associated toxicity. Components of different E3 ligases complexes (FBW7, MDM2, RBX1/ROC1, RBX2/ROC2, cullins and many others are known as oncogenes or tumor suppressors in melanomagenesis. These proteins participate in regulation of different cellular pathways and such important proteins in cancer development as p53 and Notch. In this review we summarized published data on the role of known E3 ligases in the development of melanoma and discuss the inhibitors of E3 ligases as a novel approach for the treatment of malignant melanomas.

  14. Loss of Ubr2, an E3 ubiquitin ligase, leads to chromosome fragility and impaired homologous recombinational repair

    International Nuclear Information System (INIS)

    Ouyang, Yan; Kwon, Yong Tae; An, Jee Young; Eller, Danny; Tsai, S.-C.; Diaz-Perez, Silvia; Troke, Joshua J.; Teitell, Michael A.; Marahrens, York

    2006-01-01

    The N-end rule pathway of protein degradation targets proteins with destabilizing N-terminal residues. Ubr2 is one of the E3 ubiquitin ligases of the mouse N-end rule pathway. We have previously shown that Ubr2 -/- male mice are infertile, owing to the arrest of spermatocytes between the leptotene/zygotene and pachytene of meiosis I, the failure of chromosome pairing, and subsequent apoptosis. Here, we report that mouse fibroblast cells derived from Ubr2 -/- embryos display genome instability. The frequency of chromosomal bridges and micronuclei were much higher in Ubr2 -/- fibroblasts than in +/+ controls. Metaphase chromosome spreads from Ubr2 -/- cells revealed a high incidence of spontaneous chromosomal gaps, indicating chromosomal fragility. These fragile sites were generally replicated late in S phase. Ubr2 -/- cells were hypersensitive to mitomycin C, a DNA cross-linking agent, but displayed normal sensitivity to gamma-irradiation. A reporter assay showed that Ubr2 -/- cells are significantly impaired in the homologous recombination repair of a double strand break. In contrast, Ubr2 -/- cells appeared normal in an assay for non-homologous end joining. Our results therefore unveil the role of the ubiquitin ligase Ubr2 in maintaining genome integrity and in homologous recombination repair

  15. A HECT Ubiquitin-Protein Ligase as a Novel Candidate Gene for Altered Quinine and Quinidine Responses in Plasmodium falciparum

    Science.gov (United States)

    Sanchez, Cecilia P.; Cyrklaff, Marek; Mu, Jianbing; Ferdig, Michael T.; Stein, Wilfred D.; Lanzer, Michael

    2014-01-01

    The emerging resistance to quinine jeopardizes the efficacy of a drug that has been used in the treatment of malaria for several centuries. To identify factors contributing to differential quinine responses in the human malaria parasite Plasmodium falciparum, we have conducted comparative quantitative trait locus analyses on the susceptibility to quinine and also its stereoisomer quinidine, and on the initial and steady-state intracellular drug accumulation levels in the F1 progeny of a genetic cross. These data, together with genetic screens of field isolates and laboratory strains associated differential quinine and quinidine responses with mutated pfcrt, a segment on chromosome 13, and a novel candidate gene, termed MAL7P1.19 (encoding a HECT ubiquitin ligase). Despite a strong likelihood of association, episomal transfections demonstrated a role for the HECT ubiquitin-protein ligase in quinine and quinidine sensitivity in only a subset of genetic backgrounds, and here the changes in IC50 values were moderate (approximately 2-fold). These data show that quinine responsiveness is a complex genetic trait with multiple alleles playing a role and that more experiments are needed to unravel the role of the contributing factors. PMID:24830312

  16. A MARCH6 and IDOL E3 Ubiquitin Ligase Circuit Uncouples Cholesterol Synthesis from Lipoprotein Uptake in Hepatocytes.

    Science.gov (United States)

    Loregger, Anke; Cook, Emma Claire Laura; Nelson, Jessica Kristin; Moeton, Martina; Sharpe, Laura Jane; Engberg, Susanna; Karimova, Madina; Lambert, Gilles; Brown, Andrew John; Zelcer, Noam

    2016-01-15

    Cholesterol synthesis and lipoprotein uptake are tightly coordinated to ensure that the cellular level of cholesterol is adequately maintained. Hepatic dysregulation of these processes is associated with pathological conditions, most notably cardiovascular disease. Using a genetic approach, we have recently identified the E3 ubiquitin ligase MARCH6 as a regulator of cholesterol biosynthesis, owing to its ability to promote degradation of the rate-limiting enzymes 3-hydroxy-3-methyl-glutaryl coenzyme A reductase (HMGCR) and squalene epoxidase (SQLE). Here, we present evidence for MARCH6 playing a multifaceted role in the control of cholesterol homeostasis in hepatocytes. We identify MARCH6 as an endogenous inhibitor of the sterol regulatory element binding protein (SREBP) transcriptional program. Accordingly, loss of MARCH6 increases expression of SREBP-regulated genes involved in cholesterol biosynthesis and lipoprotein uptake. Unexpectedly, this is associated with a decrease in cellular lipoprotein uptake, induced by enhanced lysosomal degradation of the low-density lipoprotein receptor (LDLR). Finally, we provide evidence that induction of the E3 ubiquitin ligase IDOL represents the molecular mechanism underlying this MARCH6-induced phenotype. Our study thus highlights a MARCH6-dependent mechanism to direct cellular cholesterol accretion that relies on uncoupling of cholesterol synthesis from lipoprotein uptake. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  17. NleG Type 3 effectors from enterohaemorrhagic Escherichia coli are U-Box E3 ubiquitin ligases.

    Directory of Open Access Journals (Sweden)

    Bin Wu

    2010-06-01

    Full Text Available NleG homologues constitute the largest family of Type 3 effectors delivered by pathogenic E. coli, with fourteen members in the enterohaemorrhagic (EHEC O157:H7 strain alone. Identified recently as part of the non-LEE-encoded (Nle effector set, this family remained uncharacterised and shared no sequence homology to other proteins including those of known function. The C-terminal domain of NleG2-3 (residues 90 to 191 is the most conserved region in NleG proteins and was solved by NMR. Structural analysis of this structure revealed the presence of a RING finger/U-box motif. Functional assays demonstrated that NleG2-3 as well as NleG5-1, NleG6-2 and NleG9' family members exhibited a strong autoubiquitination activity in vitro; a characteristic usually expressed by eukaryotic ubiquitin E3 ligases. When screened for activity against a panel of 30 human E2 enzymes, the NleG2-3 and NleG5-1 homologues showed an identical profile with only UBE2E2, UBE2E3 and UBE2D2 enzymes supporting NleG activity. Fluorescence polarization analysis yielded a binding affinity constant of 56+/-2 microM for the UBE2D2/NleG5-1 interaction, a value comparable with previous studies on E2/E3 affinities. The UBE2D2 interaction interface on NleG2-3 defined by NMR chemical shift perturbation and mutagenesis was shown to be generally similar to that characterised for human RING finger ubiquitin ligases. The alanine substitutions of UBE2D2 residues Arg5 and Lys63, critical for activation of eukaryotic E3 ligases, also significantly decreased both NleG binding and autoubiquitination activity. These results demonstrate that bacteria-encoded NleG effectors are E3 ubiquitin ligases analogous to RING finger and U-box enzymes in eukaryotes.

  18. Protein Interaction Screening for the Ankyrin Repeats and Suppressor of Cytokine Signaling (SOCS) Box (ASB) Family Identify Asb11 as a Novel Endoplasmic Reticulum Resident Ubiquitin Ligase

    DEFF Research Database (Denmark)

    Andresen, Christina Aaen; Smedegaard, Stine; Sylvestersen, Kathrine Beck

    2014-01-01

    The Ankyrin and SOCS (Suppressor of Cytokine Signaling) box (ASB) family of proteins function as the substrate recognition subunit in a subset of Elongin-Cullin-SOCS (ECS) E3 ubiquitin ligases. Despite counting with 18 members in humans, the identity of the physiological targets of the Asb protei...

  19. The E3 Ubiquitin Ligase IDOL Induces the Degradation of the Low Density Lipoprotein Receptor Family Members VLDLR and ApoER2

    NARCIS (Netherlands)

    Hong, Cynthia; Duit, Sarah; Jalonen, Pilvi; Out, Ruud; Scheer, Lilith; Sorrentino, Vincenzo; Boyadjian, Rima; Rodenburg, Kees C. W.; Foley, Edan; Korhonen, Laura; Lindholm, Dan; Nimpf, Johannes; van Berkel, Theo J. C.; Tontonoz, Peter; Zelcer, Noam

    2010-01-01

    We have previously identified the E3-ubiquitin ligase Inducible Degrader of the LDLR (Idol)1 as a post-translational modulator of LDLR levels. Idol is a direct target for regulation by Liver X Receptors (LXRs) and its expression is responsive to cellular sterol status independent of the

  20. RNF115/BCA2 E3 Ubiquitin Ligase Promotes Breast Cancer Cell Proliferation through Targeting p21Waf1/Cip1 for Ubiquitin-Mediated Degradation

    Directory of Open Access Journals (Sweden)

    Zehua Wang

    2013-09-01

    Full Text Available The E3 ubiquitin ligase RING finger protein 115 (RNF115, also known as breast cancer-associated gene 2 (BCA2, has previously been reported to be overexpressed in estrogen receptor α (ERα-positive breast tumors and to promote breast cell proliferation; however, its mechanism is unknown. In this study, we demonstrated that silencing of BCA2 by small interfering RNAs (siRNAs in two ERα-positive breast cancer cell lines, MCF-7 and T47D, decreases cell proliferation and increases the protein levels of the cyclin-dependent kinase inhibitor p21Waf/Cip1. The protein stability of p21 was negatively regulated by BCA2. BCA2 directly interacts with p21 and promotes p21 ubiquitination and proteasomal degradation. Knockdown of p21 partially rescues the cell growth arrest induced by the BCA2 siRNA. These results suggest that BCA2 promotes ERα-positive breast cancer cell proliferation at least partially through downregulating the expression of p21.

  1. Modulating cellular balance of Rps3 mono-ubiquitination by both Hel2 E3 ligase and Ubp3 deubiquitinase regulates protein quality control.

    Science.gov (United States)

    Jung, Youjin; Kim, Hag Dong; Yang, Hee Woong; Kim, Hye Jin; Jang, Chang-Young; Kim, Joon

    2017-11-17

    When a ribosome complex is stalled during the translation elongation process in eukaryotes, the mono-ubiquitination of Rps3 has recently been shown to be critical to ribosome quality control. We have discovered that the regulatory role of Rps3 mono-ubiquitination is controlled by a deubiquitinase. We also showed that an autophagic signal appears to be coupled to the mono-ubiquitination of Rps3p through the entrance of Ubp3p into the autophagosome in yeasts. The mono-ubiquitination of the Rps3 protein is tightly modulated by reciprocal action between the Hel2p E3 ligase and the Ubp3p deubiquitinase in yeasts and the reciprocal action between the RNF123 E3 ligase and the USP10 deubiquitinase in mammalian cells. We also found that the Ubp3p/USP10 deubiquitinases critically modulate Hel2p/RNF123-mediated Rps3p mono-ubiquitination. In addition, we found that Hel2p/RNF123 and Ubp3p/USP10 appeared to be differently localized in the ribosome complex after ultraviolet irradiation. Together, our results support a model in which coordinated ubiquitination and deubiquitination activities can finely balance the level of regulatory Rps3p mono-ubiquitination in ribosome-associated quality control and autophagy processes.

  2. E3 Ubiquitin Ligase CHIP and NBR1-Mediated Selective Autophagy Protect Additively against Proteotoxicity in Plant Stress Responses

    Science.gov (United States)

    Qi, Jingxia; Chi, Yingjin; Fan, Baofang; Yu, Jing-Quan; Chen, Zhixiang

    2014-01-01

    Plant stress responses require both protective measures that reduce or restore stress-inflicted damage to cellular structures and mechanisms that efficiently remove damaged and toxic macromolecules, such as misfolded and damaged proteins. We have recently reported that NBR1, the first identified plant autophagy adaptor with a ubiquitin-association domain, plays a critical role in plant stress tolerance by targeting stress-induced, ubiquitinated protein aggregates for degradation by autophagy. Here we report a comprehensive genetic analysis of CHIP, a chaperone-associated E3 ubiquitin ligase from Arabidopsis thaliana implicated in mediating degradation of nonnative proteins by 26S proteasomes. We isolated two chip knockout mutants and discovered that they had the same phenotypes as the nbr1 mutants with compromised tolerance to heat, oxidative and salt stresses and increased accumulation of insoluble proteins under heat stress. To determine their functional interactions, we generated chip nbr1 double mutants and found them to be further compromised in stress tolerance and in clearance of stress-induced protein aggregates, indicating additive roles of CHIP and NBR1. Furthermore, stress-induced protein aggregates were still ubiquitinated in the chip mutants. Through proteomic profiling, we systemically identified heat-induced protein aggregates in the chip and nbr1 single and double mutants. These experiments revealed that highly aggregate-prone proteins such as Rubisco activase and catalases preferentially accumulated in the nbr1 mutant while a number of light-harvesting complex proteins accumulated at high levels in the chip mutant after a relatively short period of heat stress. With extended heat stress, aggregates for a large number of intracellular proteins accumulated in both chip and nbr1 mutants and, to a greater extent, in the chip nbr1 double mutant. Based on these results, we propose that CHIP and NBR1 mediate two distinct but complementary anti

  3. E3 ubiquitin ligase CHIP and NBR1-mediated selective autophagy protect additively against proteotoxicity in plant stress responses.

    Science.gov (United States)

    Zhou, Jie; Zhang, Yan; Qi, Jingxia; Chi, Yingjin; Fan, Baofang; Yu, Jing-Quan; Chen, Zhixiang

    2014-01-01

    Plant stress responses require both protective measures that reduce or restore stress-inflicted damage to cellular structures and mechanisms that efficiently remove damaged and toxic macromolecules, such as misfolded and damaged proteins. We have recently reported that NBR1, the first identified plant autophagy adaptor with a ubiquitin-association domain, plays a critical role in plant stress tolerance by targeting stress-induced, ubiquitinated protein aggregates for degradation by autophagy. Here we report a comprehensive genetic analysis of CHIP, a chaperone-associated E3 ubiquitin ligase from Arabidopsis thaliana implicated in mediating degradation of nonnative proteins by 26S proteasomes. We isolated two chip knockout mutants and discovered that they had the same phenotypes as the nbr1 mutants with compromised tolerance to heat, oxidative and salt stresses and increased accumulation of insoluble proteins under heat stress. To determine their functional interactions, we generated chip nbr1 double mutants and found them to be further compromised in stress tolerance and in clearance of stress-induced protein aggregates, indicating additive roles of CHIP and NBR1. Furthermore, stress-induced protein aggregates were still ubiquitinated in the chip mutants. Through proteomic profiling, we systemically identified heat-induced protein aggregates in the chip and nbr1 single and double mutants. These experiments revealed that highly aggregate-prone proteins such as Rubisco activase and catalases preferentially accumulated in the nbr1 mutant while a number of light-harvesting complex proteins accumulated at high levels in the chip mutant after a relatively short period of heat stress. With extended heat stress, aggregates for a large number of intracellular proteins accumulated in both chip and nbr1 mutants and, to a greater extent, in the chip nbr1 double mutant. Based on these results, we propose that CHIP and NBR1 mediate two distinct but complementary anti

  4. Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1

    Science.gov (United States)

    Baehr, Leslie M.

    2014-01-01

    Muscle RING finger 1 (MuRF1) and muscle atrophy F-box (MAFbx)/atrogin-1 were identified more than 10 years ago as two muscle-specific E3 ubiquitin ligases that are increased transcriptionally in skeletal muscle under atrophy-inducing conditions, making them excellent markers of muscle atrophy. In the past 10 years much has been published about MuRF1 and MAFbx with respect to their mRNA expression patterns under atrophy-inducing conditions, their transcriptional regulation, and their putative substrates. However, much remains to be learned about the physiological role of both genes in the regulation of mass and other cellular functions in striated muscle. Although both MuRF1 and MAFbx are enriched in skeletal, cardiac, and smooth muscle, this review will focus on the current understanding of MuRF1 and MAFbx in skeletal muscle, highlighting the critical questions that remain to be answered. PMID:25096180

  5. Phosphorylation by PINK1 releases the UBL domain and initializes the conformational opening of the E3 ubiquitin ligase Parkin.

    Directory of Open Access Journals (Sweden)

    Thomas R Caulfield

    2014-11-01

    Full Text Available Loss-of-function mutations in PINK1 or PARKIN are the most common causes of autosomal recessive Parkinson's disease. Both gene products, the Ser/Thr kinase PINK1 and the E3 Ubiquitin ligase Parkin, functionally cooperate in a mitochondrial quality control pathway. Upon stress, PINK1 activates Parkin and enables its translocation to and ubiquitination of damaged mitochondria to facilitate their clearance from the cell. Though PINK1-dependent phosphorylation of Ser65 is an important initial step, the molecular mechanisms underlying the activation of Parkin's enzymatic functions remain unclear. Using molecular modeling, we generated a complete structural model of human Parkin at all atom resolution. At steady state, the Ub ligase is maintained inactive in a closed, auto-inhibited conformation that results from intra-molecular interactions. Evidently, Parkin has to undergo major structural rearrangements in order to unleash its catalytic activity. As a spark, we have modeled PINK1-dependent Ser65 phosphorylation in silico and provide the first molecular dynamics simulation of Parkin conformations along a sequential unfolding pathway that could release its intertwined domains and enable its catalytic activity. We combined free (unbiased molecular dynamics simulation, Monte Carlo algorithms, and minimal-biasing methods with cell-based high content imaging and biochemical assays. Phosphorylation of Ser65 results in widening of a newly defined cleft and dissociation of the regulatory N-terminal UBL domain. This motion propagates through further opening conformations that allow binding of an Ub-loaded E2 co-enzyme. Subsequent spatial reorientation of the catalytic centers of both enzymes might facilitate the transfer of the Ub moiety to charge Parkin. Our structure-function study provides the basis to elucidate regulatory mechanisms and activity of the neuroprotective Parkin. This may open up new avenues for the development of small molecule Parkin

  6. HDAC7 Ubiquitination by the E3 Ligase CBX4 Is Involved in Contextual Fear Conditioning Memory Formation.

    Science.gov (United States)

    Jing, Xu; Sui, Wen-Hai; Wang, Shuai; Xu, Xu-Feng; Yuan, Rong-Rong; Chen, Xiao-Rong; Ma, Hui-Xian; Zhu, Ying-Xiao; Sun, Jin-Kai; Yi, Fan; Chen, Zhe-Yu; Wang, Yue

    2017-04-05

    Histone acetylation, an epigenetic modification, plays an important role in long-term memory formation. Recently, histone deacetylase (HDAC) inhibitors were demonstrated to promote memory formation, which raises the intriguing possibility that they may be used to rescue memory deficits. However, additional research is necessary to clarify the roles of individual HDACs in memory. In this study, we demonstrated that HDAC7, within the dorsal hippocampus of C57BL6J mice, had a late and persistent decrease after contextual fear conditioning (CFC) training (4-24 h), which was involved in long-term CFC memory formation. We also showed that HDAC7 decreased via ubiquitin-dependent degradation. CBX4 was one of the HDAC7 E3 ligases involved in this process. Nur77, as one of the target genes of HDAC7, increased 6-24 h after CFC training and, accordingly, modulated the formation of CFC memory. Finally, HDAC7 was involved in the formation of other hippocampal-dependent memories, including the Morris water maze and object location test. The current findings facilitate an understanding of the molecular and cellular mechanisms of HDAC7 in the regulation of hippocampal-dependent memory. SIGNIFICANCE STATEMENT The current findings demonstrated the effects of histone deacetylase 7 (HDAC7) on hippocampal-dependent memories. Moreover, we determined the mechanism of decreased HDAC7 in contextual fear conditioning (CFC) through ubiquitin-dependent protein degradation. We also verified that CBX4 was one of the HDAC7 E3 ligases. Finally, we demonstrated that Nur77, as one of the important targets for HDAC7, was involved in CFC memory formation. All of these proteins, including HDAC7, CBX4, and Nur77, could be potential therapeutic targets for preventing memory deficits in aging and neurological diseases. Copyright © 2017 the authors 0270-6474/17/373848-16$15.00/0.

  7. TRAIP is a PCNA-binding ubiquitin ligase that protects genome stability after replication stress

    DEFF Research Database (Denmark)

    Hoffmann, Saskia; Smedegaard, Stine; Nakamura, Kyosuke

    2016-01-01

    ATR-dependent checkpoint signaling in human cells by facilitating the generation of RPA-bound single-stranded DNA regions upon replication stress in a manner that critically requires its E3 ligase activity and is potentiated by the PIP box. Consequently, loss of TRAIP function leads to enhanced...

  8. Bioinformatics analysis identifies several intrinsically disordered human E3 ubiquitin-protein ligases

    DEFF Research Database (Denmark)

    Boomsma, Wouter Krogh; Nielsen, Sofie Vincents; Lindorff-Larsen, Kresten

    2016-01-01

    conduct a bioinformatics analysis to examine >600 human and S. cerevisiae E3 ligases to identify enzymes that are similar to San1 in terms of function and/or mechanism of substrate recognition. An initial sequence-based database search was found to detect candidates primarily based on the homology...

  9. Trade-off and flexibility in the dynamic regulation of the cullin-RING ubiquitin ligase repertoire.

    Science.gov (United States)

    Straube, Ronny; Shah, Meera; Flockerzi, Dietrich; Wolf, Dieter A

    2017-11-01

    Cullin-RING ubiquitin ligases (CRLs) catalyze the ubiquitylation of substrates many of which are degraded by the 26S proteasome. Their modular architecture enables recognition of numerous substrates via exchangeable substrate receptors that competitively bind to a cullin scaffold with high affinity. Due to the plasticity of these interactions there is ongoing uncertainty how cells maintain a flexible CRL repertoire in view of changing substrate loads. Based on a series of in vivo and in vitro studies, different groups proposed that the exchange of substrate receptors is mediated by a protein exchange factor named Cand1. Here, we have performed mathematical modeling to provide a quantitative underpinning of this hypothesis. First we show that the exchange activity of Cand1 necessarily leads to a trade-off between high ligase activity and fast receptor exchange. Supported by measurements we argue that this trade-off yields an optimal Cand1 concentration in cells where the time scale for substrate degradation becomes minimal. In a second step we show through simulations that (i) substrates bias the CRL repertoire leading to preferential assembly of ligases for which substrates are available and (ii) differences in binding affinities or substrate receptor abundances create a temporal hierarchy for the degradation of substrates. Finally, we compare the Cand1-mediated exchange cycle with an alternative architecture lacking Cand1 which indicates superiority of a system with exchange factor if substrate receptors bind substrates and the cullin scaffold in a random order. Together, our results provide general constraints for the operating regimes of molecular exchange systems and suggest that Cand1 endows the CRL network with the properties of an "on demand" system allowing cells to dynamically adjust their CRL repertoire to fluctuating substrate abundances.

  10. Distinct functional domains contribute to degradation of the low density lipoprotein receptor (LDLR) by the E3 ubiquitin ligase inducible Degrader of the LDLR (IDOL).

    Science.gov (United States)

    Sorrentino, Vincenzo; Scheer, Lilith; Santos, Ana; Reits, Eric; Bleijlevens, Boris; Zelcer, Noam

    2011-08-26

    We recently identified the liver X receptor-regulated E3 ubiquitin ligase inducible degrader of the LDL receptor (IDOL) as a modulator of lipoprotein metabolism. Acting as an E3 ubiquitin ligase, IDOL triggers ubiquitination and subsequent degradation of the low density lipoprotein receptor (LDLR). We demonstrate here that this outcome requires the conserved FERM and RING domains present in IDOL. The RING domain promotes ubiquitination in vitro and Lys-63-specific ubiquitination of the LDLR in vivo in response to IDOL or liver X receptor activation. We further identify RING residues that differentially influence ubiquitination of the LDLR or stability of IDOL. The FERM domain interacts with the LDLR and in living cells co-localizes with the receptor at the plasma membrane. Homology modeling revealed a phosphotyrosine-binding element embedded in the FERM domain. Mutating residues within this region or residues in the LDLR preceding the NPVY endocytosis motif abrogate LDLR degradation by IDOL. Collectively, our results indicate that both the FERM and RING domains are required for promoting lysosomal degradation of the LDLR by IDOL. Our findings may facilitate development of structure-based IDOL inhibitors aimed at increasing LDLR abundance in therapeutic strategies to treat cardiovascular disease.

  11. The E3 ubiquitin-ligase Bmi1/Ring1A controls the proteasomal degradation of Top2alpha cleavage complex - a potentially new drug target.

    Directory of Open Access Journals (Sweden)

    Iris Alchanati

    2009-12-01

    Full Text Available The topoisomerases Top1, Top2alpha and Top2beta are important molecular targets for antitumor drugs, which specifically poison Top1 or Top2 isomers. While it was previously demonstrated that poisoned Top1 and Top2beta are subject to proteasomal degradation, this phenomena was not demonstrated for Top2alpha.We show here that Top2alpha is subject to drug induced proteasomal degradation as well, although at a lower rate than Top2beta. Using an siRNA screen we identified Bmi1 and Ring1A as subunits of an E3 ubiquitin ligase involved in this process. We show that silencing of Bmi1 inhibits drug-induced Top2alpha degradation, increases the persistence of Top2alpha-DNA cleavage complex, and increases Top2 drug efficacy. The Bmi1/Ring1A ligase ubiquitinates Top2alpha in-vitro and cellular overexpression of Bmi1 increases drug induced Top2alpha ubiquitination. A small-molecular weight compound, identified in a screen for inhibitors of Bmi1/Ring1A ubiquitination activity, also prevents Top2alpha ubiquitination and drug-induced Top2alpha degradation. This ubiquitination inhibitor increases the efficacy of topoisomerase 2 poisons in a synergistic manner.The discovery that poisoned Top2alpha is undergoing proteasomal degradation combined with the involvement of Bmi1/Ring1A, allowed us to identify a small molecule that inhibits the degradation process. The Bmi1/Ring1A inhibitor sensitizes cells to Top2 drugs, suggesting that this type of drug combination will have a beneficial therapeutic outcome. As Bmi1 is also a known oncogene, elevated in numerous types of cancer, the identified Bmi1/Ring1A ubiquitin ligase inhibitors can also be potentially used to directly target the oncogenic properties of Bmi1.

  12. Superior thermotolerance of Saccharomyces cerevisiae for efficient bioethanol fermentation can be achieved by overexpression of RSP5 ubiquitin ligase.

    Science.gov (United States)

    Shahsavarani, Hosein; Sugiyama, Minetaka; Kaneko, Yoshinobu; Chuenchit, Boonchird; Harashima, Satoshi

    2012-01-01

    The simultaneous saccharification and fermentation process requires thermo-tolerant yeast to facilitate the enzymatic hydrolysis of cellulose. In this paper, we describe a Htg+ strain that exhibits confluent growth at high temperature (41 °C) and resistance to heat shock, ethanol, osmotic, oxidative and DNA damage stresses. HTG6, one of the six genes responsible for the thermotolerant phenotype was identified to be the gene RSP5 encoding a ubiquitin ligase. The RSP5 allele of the Htg+ strain, designated RSP5-C, possessed five, one and two base changes in the promoter, open reading frame and terminator region, respectively. The base changes in the promoter region of the RSP5-C allele were found to be responsible for the thermotolerant phenotype by strongly increasing transcription of the RSP5 gene and consequently causing a rise in the ubiquitination of cell proteins. Overexpression of the RSP5-BY allele present in the htg6 host strain (Htg-) conferred thermotolerance at 41°C, to this strain as in the case of RSP5-C allele. We also discovered that an Htg+ strain overexpressing the RSP5-C allele exhibits a more robust Htg+ phenotype against higher temperature (43 °C). The data presented here also suggest that overexpression of RSP5 could be applied to raise the upper limit of thermotolerance in S. cerevisiae strain used for industrial bioethanol production. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Role of the ubiquitin ligase E6AP/UBE3A in controlling levels of the synaptic protein Arc

    Science.gov (United States)

    Kühnle, Simone; Mothes, Benedikt; Matentzoglu, Konstantin; Scheffner, Martin

    2013-01-01

    Inactivation of the ubiquitin ligase E6 associated protein (E6AP) encoded by the UBE3A gene has been associated with development of the Angelman syndrome. Recently, it was reported that in mice, loss of E6AP expression results in increased levels of the synaptic protein Arc and a concomitant impaired synaptic function, providing an explanation for some phenotypic features of Angelman syndrome patients. Accordingly, E6AP has been shown to negatively regulate activity-regulated cytoskeleton-associated protein (Arc) and it has been suggested that E6AP targets Arc for ubiquitination and degradation. In our study, we provide evidence that Arc is not a direct substrate for E6AP and binds only weakly to E6AP, if at all. Furthermore, we show that down-regulation of E6AP expression stimulates estradiol-induced transcription of the Arc gene. Thus, we propose that Arc protein levels are controlled by E6AP at the transcriptional rather than at the posttranslational level. PMID:23671107

  14. The Steroidogenic Enzyme AKR1C3 Regulates Stability of the Ubiquitin Ligase Siah2 in Prostate Cancer Cells*

    Science.gov (United States)

    Fan, Lingling; Peng, Guihong; Hussain, Arif; Fazli, Ladan; Guns, Emma; Gleave, Martin; Qi, Jianfei

    2015-01-01

    Re-activation of androgen receptor (AR) activity is the main driver for development of castration-resistant prostate cancer. We previously reported that the ubiquitin ligase Siah2 enhanced AR transcriptional activity and prostate cancer cell growth. Among the genes we found to be regulated by Siah2 was AKR1C3, which encodes a key androgen biosynthetic enzyme implicated in castration-resistant prostate cancer development. Here, we found that Siah2 inhibition in CWR22Rv1 prostate cancer cells decreased AKR1C3 expression as well as intracellular androgen levels, concomitant with inhibition of cell growth in vitro and in orthotopic prostate tumors. Re-expression of either wild-type or catalytically inactive forms of AKR1C3 partially rescued AR activity and growth defects in Siah2 knockdown cells, suggesting a nonenzymatic role for AKR1C3 in these outcomes. Unexpectedly, AKR1C3 re-expression in Siah2 knockdown cells elevated Siah2 protein levels, whereas AKR1C3 knockdown had the opposite effect. We further found that AKR1C3 can bind Siah2 and inhibit its self-ubiquitination and degradation, thereby increasing Siah2 protein levels. We observed parallel expression of Siah2 and AKR1C3 in human prostate cancer tissues. Collectively, our findings identify a new role for AKR1C3 in regulating Siah2 stability and thus enhancing Siah2-dependent regulation of AR activity in prostate cancer cells. PMID:26160177

  15. Cbl-family ubiquitin ligases and their recruitment of CIN85 are largely dispensable for epidermal growth factor receptor endocytosis

    Science.gov (United States)

    Ahmad, Gulzar; Mohapatra, Bhopal; Schulte, Nancy A.; Nadeau, Scott; Luan, Haitao; Zutshi, Neha; Tom, Eric; Ortega-Cava, Cesar; Tu, Chun; Sanada, Masashi; Ogawa, Seishi; Toews, Myron L.; Band, Vimla; Band, Hamid

    2014-01-01

    Members of the Casitas B-Lineage Lymphoma (Cbl) family (Cbl, Cbl-b and Cbl-c) of ubiquitin ligases serve as negative regulators of receptor tyrosine kinases (RTKs). An essential role of Cbl-family protein-dependent ubiquitination for efficient ligand-induced lysosomal targeting and degradation is now well-accepted. However, a more proximal role of Cbl and Cbl-b as adapters for CIN85-endophilin recruitment to mediate ligand-induced initial internalization of RTKs is supported by some studies but refuted by others. Overexpression and/or incomplete depletion of Cbl proteins in these studies is likely to have contributed to this dichotomy. To address the role of endogenous Cbl and Cbl-b in the internalization step of RTK endocytic traffic, we established Cbl/Cbl-b double-knockout (DKO) mouse embryonic fibroblasts (MEFs) and demonstrated that these cells lack the expression of both Cbl-family members as well as endophilin A, while they express CIN85. We show that ligand-induced ubiquitination of EGFR, as a prototype RTK, was abolished in DKO MEFs, and EGFR degradation was delayed. These traits were reversed by ectopic human Cbl expression. EGFR endocytosis, assessed using the internalization of 125I-labeled or fluorescent EGF, or of EGFR itself, was largely retained in Cbl/Cbl-b DKO compared to wild type MEFs. EGFR internalization was also largely intact in Cbl/Cbl-b depleted MCF-10A human mammary epithelial cell line. Inducible shRNA-mediated knockdown of CIN85 in wild type or Cbl/Cbl-b DKO MEFs had no impact on EGFR internalization. Our findings, establish that, at physiological expression levels, Cbl, Cbl-b and CIN85 are largely dispensable for EGFR internalization. Our results support the model that Cbl-CIN85-endophilin complex is not required for efficient internalization of EGFR, a prototype RTK. PMID:25449262

  16. E3 ubiquitin ligase CHIP and NBR1-mediated selective autophagy protect additively against proteotoxicity in plant stress responses.

    Directory of Open Access Journals (Sweden)

    Jie Zhou

    2014-01-01

    Full Text Available Plant stress responses require both protective measures that reduce or restore stress-inflicted damage to cellular structures and mechanisms that efficiently remove damaged and toxic macromolecules, such as misfolded and damaged proteins. We have recently reported that NBR1, the first identified plant autophagy adaptor with a ubiquitin-association domain, plays a critical role in plant stress tolerance by targeting stress-induced, ubiquitinated protein aggregates for degradation by autophagy. Here we report a comprehensive genetic analysis of CHIP, a chaperone-associated E3 ubiquitin ligase from Arabidopsis thaliana implicated in mediating degradation of nonnative proteins by 26S proteasomes. We isolated two chip knockout mutants and discovered that they had the same phenotypes as the nbr1 mutants with compromised tolerance to heat, oxidative and salt stresses and increased accumulation of insoluble proteins under heat stress. To determine their functional interactions, we generated chip nbr1 double mutants and found them to be further compromised in stress tolerance and in clearance of stress-induced protein aggregates, indicating additive roles of CHIP and NBR1. Furthermore, stress-induced protein aggregates were still ubiquitinated in the chip mutants. Through proteomic profiling, we systemically identified heat-induced protein aggregates in the chip and nbr1 single and double mutants. These experiments revealed that highly aggregate-prone proteins such as Rubisco activase and catalases preferentially accumulated in the nbr1 mutant while a number of light-harvesting complex proteins accumulated at high levels in the chip mutant after a relatively short period of heat stress. With extended heat stress, aggregates for a large number of intracellular proteins accumulated in both chip and nbr1 mutants and, to a greater extent, in the chip nbr1 double mutant. Based on these results, we propose that CHIP and NBR1 mediate two distinct but

  17. The E3 ubiquitin ligase NEDD4 mediates cell migration signaling of EGFR in lung cancer cells.

    Science.gov (United States)

    Shao, Genbao; Wang, Ranran; Sun, Aiqin; Wei, Jing; Peng, Ke; Dai, Qian; Yang, Wannian; Lin, Qiong

    2018-02-19

    EGFR-dependent cell migration plays an important role in lung cancer progression. Our previous study observed that the HECT E3 ubiquitin ligase NEDD4 is significantly correlated with tumor metastasis and required for migration and invasion signaling of EGFR in gastric cancer cells. However, how NEDD4 promotes the EGFR-dependent lung cancer cell migration is unknown. This study is to elucidate the mechanism by which NEDD4 mediates the EGFR lung cancer migration signaling. Lentiviral vector-loaded NEDD4 shRNA was used to deplete endogenous NEDD4 in lung cancer cell lines. Effects of the NEDD4 knockdown on the EGFR-dependent or independent lung cancer cell migration were determined using the wound-healing and transwell assays. Association of NEDD4 with activated EGFR was assayed by co-immunoprecipitation. Co-expression of NEDD4 with EGFR or PTEN was determined by immunohistochemical (IHC) staining in 63 lung adenocarcinoma tissue samples. Effects of NEDD4 ectopic expression or knockdown on PTEN ubiquitination and down-regulation, AKT activation and lysosomal secretion were examined using the GST-Uba pulldown assay, immunoblotting, immunofluorescent staining and a human cathepsin B ELISA assay respectively. The specific cathepsin B inhibitor CA-074Me was used for assessing the role of cathepsin B in lung cancer cell migration. Knockdown of NEDD4 significantly reduced EGF-stimulated cell migration in non-small cell lung carcinoma (NSCLC) cells. Co-immunoprecipitation assay found that NEDD4 is associated with EGFR complex upon EGF stimulation, and IHC staining indicates that NEDD4 is co-expressed with EGFR in lung adenocarcinoma tumor tissues, suggesting that NEDD4 might mediate lung cancer cell migration by interaction with the EGFR signaling complex. Interestingly, NEDD4 promotes the EGF-induced cathepsin B secretion, possibly through lysosomal exocytosis, as overexpression of the ligase-dead mutant of NEDD4 impedes lysosomal secretion, and knockdown of NEDD4

  18. The Steroidogenic Enzyme AKR1C3 Regulates Stability of the Ubiquitin Ligase Siah2 in Prostate Cancer Cells.

    Science.gov (United States)

    Fan, Lingling; Peng, Guihong; Hussain, Arif; Fazli, Ladan; Guns, Emma; Gleave, Martin; Qi, Jianfei

    2015-08-21

    Re-activation of androgen receptor (AR) activity is the main driver for development of castration-resistant prostate cancer. We previously reported that the ubiquitin ligase Siah2 enhanced AR transcriptional activity and prostate cancer cell growth. Among the genes we found to be regulated by Siah2 was AKR1C3, which encodes a key androgen biosynthetic enzyme implicated in castration-resistant prostate cancer development. Here, we found that Siah2 inhibition in CWR22Rv1 prostate cancer cells decreased AKR1C3 expression as well as intracellular androgen levels, concomitant with inhibition of cell growth in vitro and in orthotopic prostate tumors. Re-expression of either wild-type or catalytically inactive forms of AKR1C3 partially rescued AR activity and growth defects in Siah2 knockdown cells, suggesting a nonenzymatic role for AKR1C3 in these outcomes. Unexpectedly, AKR1C3 re-expression in Siah2 knockdown cells elevated Siah2 protein levels, whereas AKR1C3 knockdown had the opposite effect. We further found that AKR1C3 can bind Siah2 and inhibit its self-ubiquitination and degradation, thereby increasing Siah2 protein levels. We observed parallel expression of Siah2 and AKR1C3 in human prostate cancer tissues. Collectively, our findings identify a new role for AKR1C3 in regulating Siah2 stability and thus enhancing Siah2-dependent regulation of AR activity in prostate cancer cells. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Covalent ISG15 conjugation to CHIP promotes its ubiquitin E3 ligase activity and inhibits lung cancer cell growth in response to type I interferon.

    Science.gov (United States)

    Yoo, Lang; Yoon, A-Rum; Yun, Chae-Ok; Chung, Kwang Chul

    2018-01-24

    The carboxyl terminus of Hsp70-interacting protein (CHIP) acts as a ubiquitin E3 ligase and a link between the chaperones Hsp70/90 and the proteasome system, playing a vital role in maintaining protein homeostasis. CHIP regulates a number of proteins involved in a myriad of physiological and pathological processes, but the underlying mechanism of action via posttranslational modification has not been extensively explored. In this study, we investigated a novel modulatory mode of CHIP and its effect on CHIP enzymatic activity. ISG15, an ubiquitin-like modifier, is induced by type I interferon (IFN) stimulation and can be conjugated to target proteins (ISGylation). Here we demonstrated that CHIP may be a novel target of ISGylation in HEK293 cells stimulated with type I IFN. We also found that Lys143/144/145 and Lys287 residues in CHIP are important for and target residues of ISGylation. Moreover, ISGylation promotes the E3 ubiquitin ligase activity of CHIP, subsequently causing a decrease in levels of oncogenic c-Myc, one of its many ubiquitination targets, in A549 lung cancer cells and inhibiting A549 cell and tumor growth. In conclusion, the present study demonstrates that covalent ISG15 conjugation produces a novel CHIP regulatory mode that enhances the tumor-suppressive activity of CHIP, thereby contributing to the antitumor effect of type I IFN.

  20. Protein–Protein Interactions Modulate the Docking-Dependent E3-Ubiquitin Ligase Activity of Carboxy-Terminus of Hsc70-Interacting Protein (CHIP)*

    Science.gov (United States)

    Narayan, Vikram; Landré, Vivien; Ning, Jia; Hernychova, Lenka; Muller, Petr; Verma, Chandra; Walkinshaw, Malcolm D.; Blackburn, Elizabeth A.; Ball, Kathryn L.

    2015-01-01

    CHIP is a tetratricopeptide repeat (TPR) domain protein that functions as an E3-ubiquitin ligase. As well as linking the molecular chaperones to the ubiquitin proteasome system, CHIP also has a docking-dependent mode where it ubiquitinates native substrates, thereby regulating their steady state levels and/or function. Here we explore the effect of Hsp70 on the docking-dependent E3-ligase activity of CHIP. The TPR-domain is revealed as a binding site for allosteric modulators involved in determining CHIP's dynamic conformation and activity. Biochemical, biophysical and modeling evidence demonstrate that Hsp70-binding to the TPR, or Hsp70-mimetic mutations, regulate CHIP-mediated ubiquitination of p53 and IRF-1 through effects on U-box activity and substrate binding. HDX-MS was used to establish that conformational-inhibition-signals extended from the TPR-domain to the U-box. This underscores inter-domain allosteric regulation of CHIP by the core molecular chaperones. Defining the chaperone-associated TPR-domain of CHIP as a manager of inter-domain communication highlights the potential for scaffolding modules to regulate, as well as assemble, complexes that are fundamental to protein homeostatic control. PMID:26330542

  1. Nonperiodic activity of the human anaphase-promoting complex-Cdh1 ubiquitin ligase results in continuous DNA synthesis uncoupled from mitosis

    DEFF Research Database (Denmark)

    Lukas, C; Kramer, E R; Peters, J M

    2000-01-01

    Ubiquitin-proteasome-mediated destruction of rate-limiting proteins is required for timely progression through the main cell cycle transitions. The anaphase-promoting complex (APC), periodically activated by the Cdh1 subunit, represents one of the major cellular ubiquitin ligases which, in Saccha......Ubiquitin-proteasome-mediated destruction of rate-limiting proteins is required for timely progression through the main cell cycle transitions. The anaphase-promoting complex (APC), periodically activated by the Cdh1 subunit, represents one of the major cellular ubiquitin ligases which......, in Saccharomyces cerevisiae and Drosophila spp., triggers exit from mitosis and during G(1) prevents unscheduled DNA replication. In this study we investigated the importance of periodic oscillation of the APC-Cdh1 activity for the cell cycle progression in human cells. We show that conditional interference...... transition and lowered the rate of DNA synthesis during S phase, some of the activities essential for DNA replication became markedly amplified, mainly due to a progressive increase of E2F-dependent cyclin E transcription and a rapid turnover of the p27(Kip1) cyclin-dependent kinase inhibitor. Consequently...

  2. Nonperiodic activity of the human anaphase-promoting complex-Cdh1 ubiquitin ligase results in continuous DNA synthesis uncoupled from mitosis

    DEFF Research Database (Denmark)

    Lukas, C; Kramer, E R; Peters, J M

    2000-01-01

    Ubiquitin-proteasome-mediated destruction of rate-limiting proteins is required for timely progression through the main cell cycle transitions. The anaphase-promoting complex (APC), periodically activated by the Cdh1 subunit, represents one of the major cellular ubiquitin ligases which, in Saccha......Ubiquitin-proteasome-mediated destruction of rate-limiting proteins is required for timely progression through the main cell cycle transitions. The anaphase-promoting complex (APC), periodically activated by the Cdh1 subunit, represents one of the major cellular ubiquitin ligases which......, in Saccharomyces cerevisiae and Drosophila spp., triggers exit from mitosis and during G(1) prevents unscheduled DNA replication. In this study we investigated the importance of periodic oscillation of the APC-Cdh1 activity for the cell cycle progression in human cells. We show that conditional interference...... with the APC-Cdh1 dissociation at the G(1)/S transition resulted in an inability to accumulate a surprisingly broad range of critical mitotic regulators including cyclin B1, cyclin A, Plk1, Pds1, mitosin (CENP-F), Aim1, and Cdc20. Unexpectedly, although constitutively assembled APC-Cdh1 also delayed G(1)/S...

  3. Post-transcriptional regulation of lipoprotein receptors by the E3-ubiquitin ligase inducible degrader of the low-density lipoprotein receptor.

    Science.gov (United States)

    Sorrentino, Vincenzo; Zelcer, Noam

    2012-06-01

    The hepatic low-density lipoprotein receptor (LDLR) pathway is essential for clearing circulating LDL and is an important therapeutic target for treating cardiovascular disease. Abundance of the LDLR is subject to both transcriptional and nontranscriptional control. Here, we highlight a new post-transcriptional mechanism for controlling LDLR function via ubiquitination of the receptor by the E3-ubiquitin ligase inducible degrader of the LDLR (IDOL). IDOL is a recently identified transcriptional target of the liver X receptors. Acting as an E3-ubiquitin ligase IDOL promotes ubiquitination of the LDLR, thereby marking it for lysosomal degradation. The determinants required for degradation of the LDLR by IDOL have been largely identified. IDOL also targets two related lipoprotein receptors, the very low-density lipoprotein receptor and apolipoprotein E receptor 2. Despite several similarities, the IDOL, and PCSK9 pathways for controlling LDLR abundance seem independent of each other. Genome-wide association studies have recently identified IDOL as a locus influencing variability in circulating levels of LDL, thereby highlighting the possible role of IDOL in human lipoprotein metabolism. Transcriptional induction of IDOL by liver X receptor defines a new post-transcriptional pathway for controlling LDLR abundance and LDL uptake independent of sterol regulatory element binding proteins. Targeting IDOL activity may offer a novel therapeutic approach complementary to statins for treating cardiovascular disease.

  4. The Arabidopsis U-box E3 ubiquitin ligase PUB30 negatively regulates salt tolerance by facilitating BRI1 kinase inhibitor 1 (BKI1) degradation.

    Science.gov (United States)

    Zhang, Ming; Zhao, Jinfeng; Li, Long; Gao, Yanan; Zhao, Linlin; Patil, Suyash Bhimgonda; Fang, Jingjing; Zhang, Wenhui; Yang, Yuhong; Li, Ming; Li, Xueyong

    2017-11-01

    The Arabidopsis U-box E3 ubiquitin ligases play an important role in the ubiquitin/26S proteasome-mediated protein degradation pathway. Recently, PUB30 has been reported to participate in the salt stress response during seed germination stage in abscisic acid (ABA)-independent manner, but the molecular mechanism remains to be elucidated. Here, we displayed that the pub30 mutant was more tolerant to salt stress during seed germination, whereas the mutant of its closest homologue PUB31 showed mild sensitivity to salt stress. PUB30 exhibited E3 ubiquitin ligase activity in vitro. PUB30 specifically interacted with BRI1 kinase inhibitor 1 (BKI1), a regulator playing dual roles in brassinosteroids signaling, in vitro and in vivo. We found that BKI1 protein was ubiquitinated and degraded by the 26S proteasome. The degradation of BKI1 was slowed down in the pub30-1 mutant compared with that in the wild type. The bki1 mutant was sensitive to salt, whereas the transgenic plants overexpressing BKI1 showed salt tolerant phenotype. All these results indicate that PUB30 negatively regulates salt tolerance probably through regulating the degradation of BKI1 and brassinosteroids signaling in Arabidopsis. © 2017 John Wiley & Sons Ltd.

  5. Targeted ubiquitination of CDT1 by the DDB1-CUL4A-ROC1 ligase in response to DNA damage.

    Science.gov (United States)

    Hu, Jian; McCall, Chad M; Ohta, Tomohiko; Xiong, Yue

    2004-10-01

    Cullins assemble a potentially large number of ubiquitin ligases by binding to the RING protein ROC1 to catalyse polyubiquitination, as well as binding to various specificity factors to recruit substrates. The Cul4A gene is amplified in human breast and liver cancers, and loss-of-function of Cul4 results in the accumulation of the replication licensing factor CDT1 in Caenorhabditis elegans embryos and ultraviolet (UV)-irradiated human cells. Here, we report that human UV-damaged DNA-binding protein DDB1 associates stoichiometrically with CUL4A in vivo, and binds to an amino-terminal region in CUL4A in a manner analogous to SKP1, SOCS and BTB binding to CUL1, CUL2 and CUL3, respectively. As with SKP1-CUL1, the DDB1-CUL4A association is negatively regulated by the cullin-associated and neddylation-dissociated protein, CAND1. Recombinant DDB1 and CDT1 bind directly to each other in vitro, and ectopically expressed DDB1 bridges CDT1 to CUL4A in vivo. Silencing DDB1 prevented UV-induced rapid CDT1 degradation in vivo and CUL4A-mediated CDT1 ubiquitination in vitro. We suggest that DDB1 targets CDT1 for ubiquitination by a CUL4A-dependent ubiquitin ligase, CDL4A(DDB1), in response to UV irradiation.

  6. Overexpressed ubiquitin ligase Cullin7 in breast cancer promotes cell proliferation and invasion via down-regulating p53

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Hongsheng [Department of Histology and Embryology, Guangdong Medical College, Dongguan 523808, Guangdong (China); Wu, Fenping [The 7th People’s Hospital of Chengdu, Chengdu 610041, Sichuan (China); Wang, Yan [The Second School of Clinical Medicine, Guangdong Medical College, Dongguan 523808, Guangdong (China); Yan, Chong [School of Pharmacy, Guangdong Medical College, Dongguan 523808, Guangdong (China); Su, Wenmei, E-mail: wenmeisutg@126.com [Oncology of Affiliated Hospital Guangdong Medical College, Zhanjiang 524000, Guangdong (China)

    2014-08-08

    Highlights: • Cullin7 is overexpressed in human breast cancer samples. • Cullin7 stimulated proliferation and invasion of breast cancer cells. • Inhibition of p53 contributes to Cullin7-induced proliferation and invasion. - Abstract: Ubiquitin ligase Cullin7 has been identified as an oncogene in some malignant diseases such as choriocarcinoma and neuroblastoma. However, the role of Cullin7 in breast cancer carcinogenesis remains unclear. In this study, we compared Cullin7 protein levels in breast cancer tissues with normal breast tissues and identified significantly higher expression of Cullin7 protein in breast cancer specimens. By overexpressing Cullin7 in breast cancer cells HCC1937, we found that Cullin7 could promote cell growth and invasion in vitro. In contrast, the cell growth and invasion was inhibited by silencing Cullin7 in breast cancer cell BT474. Moreover, we demonstrated that Cullin7 promoted breast cancer cell proliferation and invasion via down-regulating p53 expression. Thus, our study provided evidence that Cullin7 functions as a novel oncogene in breast cancer and may be a potential therapeutic target for breast cancer management.

  7. Toll-Like Receptor-2 Ligand Peptidoglycan Upregulates Expression and Ubiquitin Ligase Activity of CHIP through JNK Pathway

    Directory of Open Access Journals (Sweden)

    Yan Meng

    2013-11-01

    Full Text Available Background: Peptidoglycan (PGN is a component of cell wall in Gram-positive bacteria that stimulates inflammatory responses through Toll-like receptor 2 (TLR2. The carboxyl terminus of constitutive heat shock cognate 70 (HSC70-interacting protein (CHIP, also known as Stub1 is a U-box-type E3 ubiquitin ligase, which plays an important role in protein quality control and inflammation through ubquitin-mediated proteasomal degradation. However, it is unclear whether TLR2 agonist PGN regulates the expression and activation of CHIP. Methods/Results: In this study, we showed that PGN significantly up-regulated the expression of CHIP in both mRNA and protein levels in RAW264.7 cells in a time-dependant manner, and the expression of CHIP induced by PGN was abolished in TLR2 knockout macrophages. No significant change in CHIP was observed after lipopolysaccharide (LPS, TLR4 agonist and cytosine-phosphorous-guanine oligonucleotide (CpG ODN, TLR9 agonist treatment. Moreover, PGN markedly induced the expression and activity of CHIP in macrophages, whereas this effect was attenuated by SP600125, a selective inhibitor of JNK. Conclusion: Our study for the first time demonstrates that TLR2 activation enhances the expression and activity of CHIP through JNK signaling pathway.

  8. The Arabidopsis E3 Ubiquitin Ligase HOS1 Negatively Regulates CONSTANS Abundance in the Photoperiodic Control of Flowering[W

    Science.gov (United States)

    Lazaro, Ana; Valverde, Federico; Piñeiro, Manuel; Jarillo, Jose A.

    2012-01-01

    The Arabidopsis thaliana early in short days6 (esd6) mutant was isolated in a screen for mutations that accelerate flowering time. Among other developmental alterations, esd6 displays early flowering in both long- and short-day conditions. Fine mapping of the mutation showed that the esd6 phenotype is caused by a lesion in the HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES1 (HOS1) locus, which encodes a RING finger–containing E3 ubiquitin ligase. The esd6/hos1 mutation causes decreased FLOWERING LOCUS C expression and requires CONSTANS (CO) protein for its early flowering phenotype under long days. Moreover, CO and HOS1 physically interact in vitro and in planta, and HOS1 regulates CO abundance, particularly during the daylight period. Accordingly, hos1 causes a shift in the regular long-day pattern of expression of FLOWERING LOCUS T (FT) transcript, starting to rise 4 h after dawn in the mutant. In addition, HOS1 interacts synergistically with CONSTITUTIVE PHOTOMORPHOGENIC1, another regulator of CO protein stability, in the regulation of flowering time. Taken together, these results indicate that HOS1 is involved in the control of CO abundance, ensuring that CO activation of FT occurs only when the light period reaches a certain length and preventing precocious flowering in Arabidopsis. PMID:22408073

  9. Pirh2 E3 Ubiquitin Ligase Monoubiquitinates DNA Polymerase Eta To Suppress Translesion DNA Synthesis ▿ †

    Science.gov (United States)

    Jung, Yong-Sam; Hakem, Anne; Hakem, Razqallah; Chen, Xinbin

    2011-01-01

    Polymerase eta (PolH) is necessary for translesion DNA synthesis, and PolH deficiency predisposes xeroderma pigmentosum variant (XPV) patients to cancer. Due to the critical role of PolH in translesion DNA synthesis, the activity of PolH is tightly controlled and subjected to multiple regulations, especially posttranslational modifications. Here, we show that PolH-dependent lesion bypass and intracellular translocation are regulated by Pirh2 E3 ubiquitin ligase through monoubiquitination. Specifically, we show that Pirh2, a target of the p53 tumor suppressor, monoubiquitinates PolH at one of multiple lysine residues. We also show that monoubiquitination of PolH inhibits the ability of PolH to interact with PCNA and to bypass UV-induced lesions, leading to decreased viability of UV-damaged cells. Moreover, we show that monoubiquitination of PolH alters the ability of PolH to translocate to replication foci for translesion DNA synthesis of UV-induced DNA lesions. Considering that Pirh2 is known to be overexpressed in various cancers, we postulate that in addition to mutation of PolH in XPV patients, inactivation of PolH by Pirh2 via monoubiquitination is one of the mechanisms by which PolH function is controlled, which might be responsible for the development and progression of some spontaneous tumors wherein PolH is not found to be mutated. PMID:21791603

  10. The Hectd1 Ubiquitin Ligase is Required for Development of the Head Mesenchyme and Neural Tube Closure

    Science.gov (United States)

    Zohn, Irene E.; Anderson, Kathryn V.; Niswander, Lee

    2009-01-01

    Closure of the cranial neural tube depends on normal development of the head mesenchyme. Homozygous-mutant embryos for the ENU-induced open mind (opm) mutation exhibit exencephaly associated with defects in head mesenchyme development and dorsal-lateral hinge point formation. The head mesenchyme in opm mutant embryos is denser than in wildtype embryos and displays an abnormal cellular organization. Since cells that originate from both the cephalic paraxial mesoderm and the neural crest populate the head mesenchyme, we explored the origin of the abnormal head mesenchyme. opm mutant embryos show apparently normal development of neural crest-derived structures. Furthermore, the abnormal head mesenchyme in opm mutant embryos is not derived from the neural crest, but instead expresses molecular markers of cephalic mesoderm. We also report the identification of the opm mutation in the ubiquitously expressed Hectd1 E3 ubiquitin ligase. Two different Hectd1 alleles cause incompletely penetrant neural tube defects in heterozygous animals, indicating that Hectd1 function is required at a critical threshold for neural tube closure. This low penetrance of neural tube defects in embryos heterozygous for Hectd1 mutations suggests that Hectd1 should be considered as candidate susceptibility gene in human neural tube defects. PMID:17442300

  11. Structures of SPOP-Substrate Complexes: Insights into Molecular Architectures of BTB-Cul3 Ubiquitin Ligases

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Min; Calabrese, Matthew F.; Liu, Jiang; Waddell, M. Brett; Nourse, Amanda; Hammel, Michal; Miller, Darcie J.; Walden, Helen; Duda, David M.; Seyedin, Steven N.; Hoggard, Timothy; Harper, J. Wade; White, Kevin P.; Schulman, Brenda A.; (Harvard-Med); (UW); (UC); (LBNL); (SJCH)

    2009-11-17

    In the largest E3 ligase subfamily, Cul3 binds a BTB domain, and an associated protein-interaction domain such as MATH recruits substrates for ubiquitination. Here, we present biochemical and structural analyses of the MATH-BTB protein, SPOP. We define a SPOP-binding consensus (SBC) and determine structures revealing recognition of SBCs from the phosphatase Puc, the transcriptional regulator Ci, and the chromatin component MacroH2A. We identify a dimeric SPOP-Cul3 assembly involving a conserved helical structure C-terminal of BTB domains, which we call '3-box' due to its facilitating Cul3 binding and its resemblance to F-/SOCS-boxes in other cullin-based E3s. Structural flexibility between the substrate-binding MATH and Cul3-binding BTB/3-box domains potentially allows a SPOP dimer to engage multiple SBCs found within a single substrate, such as Puc. These studies provide a molecular understanding of how MATH-BTB proteins recruit substrates to Cul3 and how their dimerization and conformational variability may facilitate avid interactions with diverse substrates.

  12. Regulation of mitosis-meiosis transition by the ubiquitin ligase β-TrCP in male germ cells.

    Science.gov (United States)

    Nakagawa, Tadashi; Zhang, Teng; Kushi, Ryo; Nakano, Seiji; Endo, Takahiro; Nakagawa, Makiko; Yanagihara, Noriko; Zarkower, David; Nakayama, Keiko

    2017-11-15

    The mitosis-meiosis transition is essential for spermatogenesis. Specific and timely downregulation of the transcription factor DMRT1, and consequent induction of Stra8 expression, is required for this process in mammals, but the molecular mechanism has remained unclear. Here, we show that β-TrCP, the substrate recognition component of an E3 ubiquitin ligase complex, targets DMRT1 for degradation and thereby controls the mitosis-meiosis transition in mouse male germ cells. Conditional inactivation of β-TrCP2 in male germ cells of β-TrCP1 knockout mice resulted in sterility due to a lack of mature sperm. The β-TrCP-deficient male germ cells did not enter meiosis, but instead underwent apoptosis. The induction of Stra8 expression was also attenuated in association with the accumulation of DMRT1 at the Stra8 promoter in β-TrCP-deficient testes. DMRT1 contains a consensus β-TrCP degron sequence that was found to bind β-TrCP. Overexpression of β-TrCP induced the ubiquitylation and degradation of DMRT1. Heterozygous deletion of Dmrt1 in β-TrCP-deficient spermatogonia increased meiotic cells with a concomitant reduction of apoptosis. Collectively, our data indicate that β-TrCP regulates the transition from mitosis to meiosis in male germ cells by targeting DMRT1 for degradation. © 2017. Published by The Company of Biologists Ltd.

  13. Overexpressed ubiquitin ligase Cullin7 in breast cancer promotes cell proliferation and invasion via down-regulating p53

    International Nuclear Information System (INIS)

    Guo, Hongsheng; Wu, Fenping; Wang, Yan; Yan, Chong; Su, Wenmei

    2014-01-01

    Highlights: • Cullin7 is overexpressed in human breast cancer samples. • Cullin7 stimulated proliferation and invasion of breast cancer cells. • Inhibition of p53 contributes to Cullin7-induced proliferation and invasion. - Abstract: Ubiquitin ligase Cullin7 has been identified as an oncogene in some malignant diseases such as choriocarcinoma and neuroblastoma. However, the role of Cullin7 in breast cancer carcinogenesis remains unclear. In this study, we compared Cullin7 protein levels in breast cancer tissues with normal breast tissues and identified significantly higher expression of Cullin7 protein in breast cancer specimens. By overexpressing Cullin7 in breast cancer cells HCC1937, we found that Cullin7 could promote cell growth and invasion in vitro. In contrast, the cell growth and invasion was inhibited by silencing Cullin7 in breast cancer cell BT474. Moreover, we demonstrated that Cullin7 promoted breast cancer cell proliferation and invasion via down-regulating p53 expression. Thus, our study provided evidence that Cullin7 functions as a novel oncogene in breast cancer and may be a potential therapeutic target for breast cancer management

  14. The E3 ubiquitin ligase Idol controls brain LDL receptor expression, ApoE clearance, and Aβ amyloidosis.

    Science.gov (United States)

    Choi, Jinkuk; Gao, Jie; Kim, Jaekwang; Hong, Cynthia; Kim, Jungsu; Tontonoz, Peter

    2015-11-18

    Apolipoprotein E (ApoE) is an important modifier of Alzheimer's disease (AD) pathogenesis, and its abundance has been linked to the clearance of β-amyloid (Aβ) in the brain. The pathways that control the clearance of ApoE in the brain are incompletely understood. We report that Idol, an E3 ubiquitin ligase that targets the low-density lipoprotein receptor (LDLR) for degradation, is a critical determinant of brain ApoE metabolism and Aβ plaque biogenesis. Previous work has shown that Idol contributes minimally to the regulation of hepatic LDLR expression in mice. By contrast, we demonstrate that Idol is a primary physiological regulator of LDLR protein in the brain, controlling the clearance of both ApoE-containing high-density lipoprotein (HDL) particles and Aβ. We studied the consequences of loss of Idol expression in a transgenic mouse model of Aβ amyloidosis. Idol deficiency increased brain LDLR, decreased ApoE, decreased soluble and insoluble Aβ, reduced amyloid plaque burden, and ameliorated neuroinflammation. These findings identify Idol as a gatekeeper of LDLR-dependent ApoE and Aβ clearance in the brain and a potential enzyme target for therapeutic intervention in AD. Copyright © 2015, American Association for the Advancement of Science.

  15. The E3 ubiquitin ligase IDOL regulates synaptic ApoER2 levels and is important for plasticity and learning.

    Science.gov (United States)

    Gao, Jie; Marosi, Mate; Choi, Jinkuk; Achiro, Jennifer M; Kim, Sangmok; Li, Sandy; Otis, Klara; Martin, Kelsey C; Portera-Cailliau, Carlos; Tontonoz, Peter

    2017-09-11

    Neuronal ApoE receptors are linked to learning and memory, but the pathways governing their abundance, and the mechanisms by which they affect the function of neural circuits are incompletely understood. Here we demonstrate that the E3 ubiquitin ligase IDOL determines synaptic ApoER2 protein levels in response to neuronal activation and regulates dendritic spine morphogenesis and plasticity. IDOL-dependent changes in ApoER2 abundance modulate dendritic filopodia initiation and synapse maturation. Loss of IDOL in neurons results in constitutive overexpression of ApoER2 and is associated with impaired activity-dependent structural remodeling of spines and defective LTP in primary neuron cultures and hippocampal slices. IDOL-deficient mice show profound impairment in experience-dependent reorganization of synaptic circuits in the barrel cortex, as well as diminished spatial and associative learning. These results identify control of lipoprotein receptor abundance by IDOL as a post-transcriptional mechanism underlying the structural and functional plasticity of synapses and neural circuits.

  16. An E3 ubiquitin ligase prevents ectopic localization of the centromeric histone H3 variant via the centromere targeting domain.

    Science.gov (United States)

    Ranjitkar, Prerana; Press, Maximilian O; Yi, Xianhua; Baker, Richard; MacCoss, Michael J; Biggins, Sue

    2010-11-12

    Proper centromere function is critical to maintain genomic stability and to prevent aneuploidy, a hallmark of tumors and birth defects. A conserved feature of all eukaryotic centromeres is an essential histone H3 variant called CENP-A that requires a centromere targeting domain (CATD) for its localization. Although proteolysis prevents CENP-A from mislocalizing to euchromatin, regulatory factors have not been identified. Here, we identify an E3 ubiquitin ligase called Psh1 that leads to the degradation of Cse4, the budding yeast CENP-A homolog. Cse4 overexpression is toxic to psh1Δ cells and results in euchromatic localization. Strikingly, the Cse4 CATD is a key regulator of its stability and helps Psh1 discriminate Cse4 from histone H3. Taken together, we propose that the CATD has a previously unknown role in maintaining the exclusive localization of Cse4 by preventing its mislocalization to euchromatin via Psh1-mediated degradation. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. The deubiquitylating enzyme USP44 counteracts the DNA double-strand break response mediated by the RNF8 and RNF168 ubiquitin ligases

    DEFF Research Database (Denmark)

    Mosbech, Anna; Lukas, Claudia; Bekker-Jensen, Simon

    2013-01-01

    Protein recruitment to DNA double-strand breaks (DSBs) relies on ubiquitylation of the surrounding chromatin by the RING finger ubiquitin ligases RNF8 and RNF168. Flux through this pathway is opposed by several deubiquitylating enzymes (DUBs), including OTUB1 and USP3. By analyzing the effect...... of individually overexpressing the majority of human DUBs on RNF8/RNF168-mediated 53BP1 retention at DSB sites, we found that USP44 and USP29 powerfully inhibited this response at the level of RNF168 accrual. Both USP44 and USP29 promoted efficient deubiquitylation of histone H2A, but unlike USP44, USP29...... considerable functional redundancy among cellular DUBs that restrict ubiquitin-dependent protein assembly at DSBs. Our findings implicate USP44 in negative regulation of the RNF8/RNF168 pathway and illustrate the usefulness of DUB overexpression screens for identification of antagonizers of ubiquitin...

  18. The ubiquitin ligase E6-AP is induced and recruited to aggresomes in response to proteasome inhibition and may be involved in the ubiquitination of Hsp70-bound misfolded proteins.

    Science.gov (United States)

    Mishra, Amit; Godavarthi, Swetha K; Maheshwari, Megha; Goswami, Anand; Jana, Nihar Ranjan

    2009-04-17

    Cells are equipped with an efficient quality control system to selectively eliminate abnormally folded and damaged proteins. Initially the cell tries to refold the unfolded proteins with the help of molecular chaperones, and failure to refold leads to their degradation by the ubiquitin proteasome system. But how this proteolytic machinery recognizes the abnormally folded proteins is poorly understood. Here, we report that E6-AP, a HECT domain family ubiquitin ligase implicated in Angelman syndrome, interacts with the substrate binding domain of Hsp70/Hsc70 chaperones and promotes the degradation of chaperone bound substrates. The expression of E6-AP was dramatically induced under a variety of stresses, and overexpression of E6-AP was found to protect against endoplasmic reticulum stress-induced cell death. The inhibition of proteasome function not only increases the expression of E6-AP but also causes its redistribution around microtubule-organizing center, a subcellular structure for the degradation of the cytoplasmic misfolded proteins. E6-AP is also recruited to aggresomes containing the cystic fibrosis transmembrane conductance regulator or expanded polyglutamine proteins. Finally, we demonstrate that E6-AP ubiquitinates misfolded luciferase that is bound by Hsp70. Our results suggest that E6-AP functions as a cellular quality control ubiquitin ligase and, therefore, can be implicated not only in the pathogenesis of Angelman syndrome but also in the biology of neurodegenerative disorders involving protein aggregation.

  19. The SOCS2 Ubiquitin Ligase Complex Regulates Growth Hormone Receptor Levels

    DEFF Research Database (Denmark)

    Vesterlund, Mattias; Zadjali, Fahad; Persson, Torbjörn

    2011-01-01

    Growth Hormone is essential for the regulation of growth and the homeostatic control of intermediary metabolism. GH actions are mediated by the Growth Hormone Receptor; a member of the cytokine receptor super family that signals chiefly through the JAK2/STAT5 pathway. Target tissue responsiveness......, a phenotype that is dependent on endogenous GH secretion. SOCS2 is a GH-stimulated, STAT5b-regulated gene that acts in a negative feedback loop to downregulate GHR signalling. Since the biochemical basis for these actions is poorly understood, we studied the molecular function of SOCS2. We demonstrated...... of SOCS2 in in vitro experiments. We showed that SOCS2 regulates cellular GHR levels through direct ubiquitination and in a proteasomally dependent manner. We also confirmed the importance of the SOCS-box for the proper function of SOCS2. Finally, we identified two phosphotyrosine residues in the GHR...

  20. Lentiviral Vpx accessory factor targets VprBP/DCAF1 substrate adaptor for cullin 4 E3 ubiquitin ligase to enable macrophage infection.

    Directory of Open Access Journals (Sweden)

    Smita Srivastava

    2008-05-01

    Full Text Available Vpx is a small virion-associated adaptor protein encoded by viruses of the HIV-2/SIVsm lineage of primate lentiviruses that enables these viruses to transduce monocyte-derived cells. This probably reflects the ability of Vpx to overcome an as yet uncharacterized block to an early event in the virus life cycle in these cells, but the underlying mechanism has remained elusive. Using biochemical and proteomic approaches, we have found that Vpx protein of the pathogenic SIVmac 239 strain associates with a ternary protein complex comprising DDB1 and VprBP subunits of Cullin 4-based E3 ubiquitin ligase, and DDA1, which has been implicated in the regulation of E3 catalytic activity, and that Vpx participates in the Cullin 4 E3 complex comprising VprBP. We further demonstrate that the ability of SIVmac as well as HIV-2 Vpx to interact with VprBP and its associated Cullin 4 complex is required for efficient reverse transcription of SIVmac RNA genome in primary macrophages. Strikingly, macrophages in which VprBP levels are depleted by RNA interference resist SIVmac infection. Thus, our observations reveal that Vpx interacts with both catalytic and regulatory components of the ubiquitin proteasome system and demonstrate that these interactions are critical for Vpx ability to enable efficient SIVmac replication in primary macrophages. Furthermore, they identify VprBP/DCAF1 substrate receptor for Cullin 4 E3 ubiquitin ligase and its associated protein complex as immediate downstream effector of Vpx for this function. Together, our findings suggest a model in which Vpx usurps VprBP-associated Cullin 4 ubiquitin ligase to enable efficient reverse transcription and thereby overcome a block to lentivirus replication in monocyte-derived cells, and thus provide novel insights into the underlying molecular mechanism.

  1. Establishment of a Wheat Cell-Free Synthesized Protein Array Containing 250 Human and Mouse E3 Ubiquitin Ligases to Identify Novel Interaction between E3 Ligases and Substrate Proteins.

    Directory of Open Access Journals (Sweden)

    Hirotaka Takahashi

    Full Text Available Ubiquitination is a key post-translational modification in the regulation of numerous biological processes in eukaryotes. The primary roles of ubiquitination are thought to be the triggering of protein degradation and the regulation of signal transduction. During protein ubiquitination, substrate specificity is mainly determined by E3 ubiquitin ligase (E3. Although more than 600 genes in the human genome encode E3, the E3s of many target proteins remain unidentified owing to E3 diversity and the instability of ubiquitinated proteins in cell. We demonstrate herein a novel biochemical analysis for the identification of E3s targeting specific proteins. Using wheat cell-free protein synthesis system, a protein array containing 227 human and 23 mouse recombinant E3s was synthesized. To establish the high-throughput binding assay using AlphaScreen technology, we selected MDM2 and p53 as the model combination of E3 and its target protein. The AlphaScreen assay specifically detected the binding of p53 and MDM2 in a crude translation mixture. Then, a comprehensive binding assay using the E3 protein array was performed. Eleven of the E3s showed high binding activity, including four previously reported E3s (e.g., MDM2, MDM4, and WWP1 targeting p53. This result demonstrated the reliability of the assay. Another interactors, RNF6 and DZIP3-which there have been no report to bind p53-were found to ubiquitinate p53 in vitro. Further analysis showed that RNF6 decreased the amount of p53 in H1299 cells in E3 activity-dependent manner. These results suggest the possibility that the RNF6 ubiquitinates and degrades p53 in cells. The novel in vitro screening system established herein is a powerful tool for finding novel E3s of a target protein.

  2. Haploid genetic screens identify an essential role for PLP2 in the downregulation of novel plasma membrane targets by viral E3 ubiquitin ligases.

    Directory of Open Access Journals (Sweden)

    Richard T Timms

    Full Text Available The Kaposi's sarcoma-associated herpesvirus gene products K3 and K5 are viral ubiquitin E3 ligases which downregulate MHC-I and additional cell surface immunoreceptors. To identify novel cellular genes required for K5 function we performed a forward genetic screen in near-haploid human KBM7 cells. The screen identified proteolipid protein 2 (PLP2, a MARVEL domain protein of unknown function, as essential for K5 activity. Genetic loss of PLP2 traps the viral ligase in the endoplasmic reticulum, where it is unable to ubiquitinate and degrade its substrates. Subsequent analysis of the plasma membrane proteome of K5-expressing KBM7 cells in the presence and absence of PLP2 revealed a wide range of novel K5 targets, all of which required PLP2 for their K5-mediated downregulation. This work ascribes a critical function to PLP2 for viral ligase activity and underlines the power of non-lethal haploid genetic screens in human cells to identify the genes involved in pathogen manipulation of the host immune system.

  3. Characterization of ubiquitin ligase SlATL31 and proteomic analysis of 14-3-3 targets in tomato fruit tissue (Solanum lycopersicum L.).

    Science.gov (United States)

    Lu, Yu; Yasuda, Shigetaka; Li, Xingwen; Fukao, Yoichiro; Tohge, Takayuki; Fernie, Alisdair R; Matsukura, Chiaki; Ezura, Hiroshi; Sato, Takeo; Yamaguchi, Junji

    2016-06-30

    The 14-3-3 proteins participate in many aspects of plant physiology by interacting with phosphorylated proteins and thereby regulating target protein functions. In Arabidopsis plant, the ubiquitin ligase ATL31 controls 14-3-3 stability via both direct interaction and ubiquitination, and this consequently regulates post-germinative growth in response to carbon and nitrogen nutrient availability. Since 14-3-3 proteins regulate the activities of many key enzymes related to nutrient metabolism, one would anticipate that they should play an essential role not only in vegetative but also in reproductive tissue. Because fruit yield largely depends on carbon and nitrogen availability and their utilization, the function of 14-3-3 proteins was analyzed in tomato fruit tissue. Here, we isolated and characterized an ubiquitin ligase SlATL31 (Solyc03g112340) from tomato and demonstrated that SlATL31 has ubiquitin ligase activity as well as interaction with tomato 14-3-3 proteins, suggesting the possibility that the SlATL31 functions as an ubiquitin ligase for 14-3-3 similarly to its Arabidopsis ortholog. Furthermore, we performed proteomic analysis of 14-3-3 interacting proteins and identified 106 proteins as putative 14-3-3 targets including key enzymes for carbon metabolism and photosynthesis. This 14-3-3 interactome result and available transcriptome profile suggest a considerable yet complex role of 14-3-3 proteins in tomato fruit tissue. Considerable cumulative evidence exists which implies that 14-3-3 proteins are involved in the regulation of plant primary metabolism. Here we provide the first report of 14-3-3 interactome analysis and identify putative 14-3-3 targets in tomato fruit tissue, which may be highly important given the documented metabolic shifts, which occur during fruit development and ripening. These data open future research avenues by which to understand the regulation of the role of post-translational regulation in tomato fruit development. Copyright

  4. The Expression of the Ubiquitin Ligase SIAH2 (Seven In Absentia Homolog 2 Is Increased in Human Lung Cancer.

    Directory of Open Access Journals (Sweden)

    Paula Moreno

    Full Text Available Lung cancer is the leading cause of cancer-related deaths worldwide. Overall 5-year survival has shown little improvement over the last decades. Seven in absentia homolog (SIAH proteins are E3 ubiquitin ligases that mediate proteasomal protein degradation by poly-ubiquitination. Even though SIAH proteins play a key role in several biological processes, their role in human cancer remains controversial. The aim of the study was to document SIAH2 expression pattern at different levels (mRNA, protein level and immunohistochemistry in human non-small cell lung cancer (NSCLC samples compared to surrounding healthy tissue from the same patient, and to analyse the association with clinicopathological features.One hundred and fifty-two samples from a patient cohort treated surgically for primary lung cancer were obtained for the study. Genic and protein expression levels of SIAH2 were analysed and compared with clinic-pathologic variables.The present study is the first to analyze the SIAH2 expression pattern at different levels (RNA, protein expression and immunohistochemistry in non-small cell lung cancer (NSCLC. We found that SIAH2 protein expression is significantly enhanced in human lung adenocarcinoma (ADC and squamous cell lung cancer (SCC. Paradoxically, non-significant changes at RNA level were found, suggesting a post-traductional regulatory mechanism. More importantly, an increased correlation between SIAH2 expression and tumor grade was detected, suggesting that this protein could be used as a prognostic biomarker to predict lung cancer progression. Likewise, SIAH2 protein expression showed a strong positive correlation with fluorodeoxyglucose (2-deoxy-2(18Ffluoro-D-glucose uptake in primary NSCLC, which may assist clinicians in stratifying patients at increased overall risk of poor survival. Additionally, we described an inverse correlation between the expression of SIAH2 and the levels of one of its substrates, the serine/threonine kinase

  5. Tumor Suppressor Role for the SPOP Ubiquitin Ligase in Signal-Dependent Proteolysis of the Oncogenic Coactivator SRC-3/AIB1

    Science.gov (United States)

    Li, Chao; Ao, Junping; Fu, Junjiang; Lee, Dung-Fang; Xu, Jianming; Lonard, David; O’Malley, Bert W.

    2011-01-01

    Steroid receptor coactivator-3 (SRC-3/AIB1) is an oncogene that is amplified and overexpressed in many human cancers. However, the molecular mechanisms that regulate ‘activated SRC-3 oncoprotein’ turnover during tumorigenesis remain to be elucidated. Here we report thatspeckle-type POZ protein (SPOP), a cullin 3 (CUL3)-based ubiquitin ligase, is responsible for SRC-3 ubiquitination and proteolysis. SPOP interacts directly with an SRC-3 phospho-degron in a phosphorylation dependent manner. Casein kinase Iε phosphorylates the S102 in this degron and promotes SPOP-dependent turnover of SRC-3. shRNA knockdown and overexpression experiments substantiated that the SPOP/CUL3/Rbx1 ubiquitin ligase complex promotes SRC-3 turnover. A systematic analysis of the SPOP genomic locus revealed that a high percentage of genomic loss or LOH occurs at this locus in breast cancers. Furthermore, we demonstrate that restoration of SPOP expression inhibited SRC-3-mediated oncogenic signaling and tumorigenesis, thus positioning SPOP as a tumor suppressor. PMID:21577200

  6. The ubiquitin ligase Ubr2, a recognition E3 component of the N-end rule pathway, stabilizes Tex19.1 during spermatogenesis.

    Directory of Open Access Journals (Sweden)

    Fang Yang

    2010-11-01

    Full Text Available Ubiquitin E3 ligases target their substrates for ubiquitination, leading to proteasome-mediated degradation or altered biochemical properties. The ubiquitin ligase Ubr2, a recognition E3 component of the N-end rule proteolytic pathway, recognizes proteins with N-terminal destabilizing residues and plays an important role in spermatogenesis. Tex19.1 (also known as Tex19 has been previously identified as a germ cell-specific protein in mouse testis. Here we report that Tex19.1 forms a stable protein complex with Ubr2 in mouse testes. The binding of Tex19.1 to Ubr2 is independent of the second position cysteine of Tex19.1, a putative target for arginylation by the N-end rule pathway R-transferase. The Tex19.1-null mouse mutant phenocopies the Ubr2-deficient mutant in three aspects: heterogeneity of spermatogenic defects, meiotic chromosomal asynapsis, and embryonic lethality preferentially affecting females. In Ubr2-deficient germ cells, Tex19.1 is transcribed, but Tex19.1 protein is absent. Our results suggest that the binding of Ubr2 to Tex19.1 metabolically stabilizes Tex19.1 during spermatogenesis, revealing a new function for Ubr2 outside the conventional N-end rule pathway.

  7. Inhibition of xanthine oxidase by allopurinol prevents skeletal muscle atrophy: role of p38 MAPKinase and E3 ubiquitin ligases.

    Directory of Open Access Journals (Sweden)

    Frederic Derbre

    Full Text Available Alterations in muscle play an important role in common diseases and conditions. Reactive oxygen species (ROS are generated during hindlimb unloading due, at least in part, to the activation of xanthine oxidase (XO. The major aim of this study was to determine the mechanism by which XO activation causes unloading-induced muscle atrophy in rats, and its possible prevention by allopurinol, a well-known inhibitor of this enzyme. For this purpose we studied one of the main redox sensitive signalling cascades involved in skeletal muscle atrophy i.e. p38 MAPKinase, and the expression of two well known muscle specific E3 ubiquitin ligases involved in proteolysis, the Muscle atrophy F-Box (MAFbx; also known as atrogin-1 and Muscle RING (Really Interesting New Gene Finger-1 (MuRF-1. We found that hindlimb unloading induced a significant increase in XO activity and in the protein expression of the antioxidant enzymes CuZnSOD and Catalase in skeletal muscle. The most relevant new fact reported in this paper is that inhibition of XO with allopurinol, a drug widely used in clinical practice, prevents soleus muscle atrophy by ~20% after hindlimb unloading. This was associated with the inhibition of the p38 MAPK-MAFbx pathway. Our data suggest that XO was involved in the loss of muscle mass via the activation of the p38MAPK-MAFbx pathway in unloaded muscle atrophy. Thus, allopurinol may have clinical benefits to combat skeletal muscle atrophy in bedridden, astronauts, sarcopenic, and cachexic patients.

  8. Deubiquitylase Inhibition Reveals Liver X Receptor-independent Transcriptional Regulation of the E3 Ubiquitin Ligase IDOL and Lipoprotein Uptake.

    Science.gov (United States)

    Nelson, Jessica Kristine; Cook, Emma Clare Laura; Loregger, Anke; Hoeksema, Marten Anne; Scheij, Saskia; Kovacevic, Igor; Hordijk, Peter Lodewijk; Ovaa, Huib; Zelcer, Noam

    2016-02-26

    Cholesterol metabolism is subject to complex transcriptional and nontranscriptional regulation. Herein, the role of ubiquitylation is emerging as an important post-translational modification that regulates cholesterol synthesis and uptake. Similar to other post-translational modifications, ubiquitylation is reversible in a process dependent on activity of deubiquitylating enzymes (DUBs). Yet whether these play a role in cholesterol metabolism is largely unknown. As a first step to test this possibility, we used pharmacological inhibition of cellular DUB activity. Short term (2 h) inhibition of DUBs resulted in accumulation of high molecular weight ubiquitylated proteins. This was accompanied by a dramatic decrease in abundance of the LDLR and attenuated LDL uptake into hepatic cells. Importantly, this occurred in the absence of changes in the mRNA levels of the LDLR or other SREBP2-regulated genes, in line with this phenotype being a post-transcriptional event. Mechanistically, we identify transcriptional induction of the E3 ubiquitin ligase IDOL in human and rodent cells as the underlying cause for ubiquitylation-dependent lysosomal degradation of the LDLR following DUB inhibition. In contrast to the established transcriptional regulation of IDOL by the sterol-responsive liver X receptor (LXR) transcription factors, induction of IDOL by DUB inhibition is LXR-independent and occurs in Lxrαβ(-/-) MEFs. Consistent with the role of DUBs in transcriptional regulation, we identified a 70-bp region in the proximal promoter of IDOL, distinct from that containing the LXR-responsive element, which mediates the response to DUB inhibition. In conclusion, we identify a sterol-independent mechanism to regulate IDOL expression and IDOL-mediated lipoprotein receptor degradation. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Glucocorticoids Induce Bone and Muscle Atrophy by Tissue-Specific Mechanisms Upstream of E3 Ubiquitin Ligases.

    Science.gov (United States)

    Sato, Amy Y; Richardson, Danielle; Cregor, Meloney; Davis, Hannah M; Au, Ernie D; McAndrews, Kevin; Zimmers, Teresa A; Organ, Jason M; Peacock, Munro; Plotkin, Lilian I; Bellido, Teresita

    2017-03-01

    Glucocorticoid excess, either endogenous with diseases of the adrenal gland, stress, or aging or when administered for immunosuppression, induces bone and muscle loss, leading to osteopenia and sarcopenia. Muscle weakness increases the propensity for falling, which, combined with the lower bone mass, increases the fracture risk. The mechanisms underlying glucocorticoid-induced bone and muscle atrophy are not completely understood. We have demonstrated that the loss of bone and muscle mass, decreased bone formation, and reduced muscle strength, hallmarks of glucocorticoid excess, are accompanied by upregulation in both tissues in vivo of the atrophy-related genes atrogin1, MuRF1, and MUSA1. These are E3 ubiquitin ligases traditionally considered muscle-specific. Glucocorticoids also upregulated atrophy genes in cultured osteoblastic/osteocytic cells, in ex vivo bone organ cultures, and in muscle organ cultures and C2C12 myoblasts/myotubes. Furthermore, glucocorticoids markedly increased the expression of components of the Notch signaling pathway in muscle in vivo, ex vivo, and in vitro. In contrast, glucocorticoids did not increase Notch signaling in bone or bone cells. Moreover, the increased expression of atrophy-related genes in muscle, but not in bone, and the decreased myotube diameter induced by glucocorticoids were prevented by inhibiting Notch signaling. Thus, glucocorticoids activate different mechanisms in bone and muscle that upregulate atrophy-related genes. However, the role of these genes in the effects of glucocorticoids in bone is unknown. Nevertheless, these findings advance our knowledge of the mechanism of action of glucocorticoids in the musculoskeletal system and provide the basis for novel therapies to prevent glucocorticoid-induced atrophy of bone and muscle. Copyright © 2017 by the Endocrine Society.

  10. Deubiquitylase Inhibition Reveals Liver X Receptor-independent Transcriptional Regulation of the E3 Ubiquitin Ligase IDOL and Lipoprotein Uptake*

    Science.gov (United States)

    Nelson, Jessica Kristine; Cook, Emma Clare Laura; Loregger, Anke; Hoeksema, Marten Anne; Scheij, Saskia; Kovacevic, Igor; Hordijk, Peter Lodewijk; Ovaa, Huib; Zelcer, Noam

    2016-01-01

    Cholesterol metabolism is subject to complex transcriptional and nontranscriptional regulation. Herein, the role of ubiquitylation is emerging as an important post-translational modification that regulates cholesterol synthesis and uptake. Similar to other post-translational modifications, ubiquitylation is reversible in a process dependent on activity of deubiquitylating enzymes (DUBs). Yet whether these play a role in cholesterol metabolism is largely unknown. As a first step to test this possibility, we used pharmacological inhibition of cellular DUB activity. Short term (2 h) inhibition of DUBs resulted in accumulation of high molecular weight ubiquitylated proteins. This was accompanied by a dramatic decrease in abundance of the LDLR and attenuated LDL uptake into hepatic cells. Importantly, this occurred in the absence of changes in the mRNA levels of the LDLR or other SREBP2-regulated genes, in line with this phenotype being a post-transcriptional event. Mechanistically, we identify transcriptional induction of the E3 ubiquitin ligase IDOL in human and rodent cells as the underlying cause for ubiquitylation-dependent lysosomal degradation of the LDLR following DUB inhibition. In contrast to the established transcriptional regulation of IDOL by the sterol-responsive liver X receptor (LXR) transcription factors, induction of IDOL by DUB inhibition is LXR-independent and occurs in Lxrαβ−/− MEFs. Consistent with the role of DUBs in transcriptional regulation, we identified a 70-bp region in the proximal promoter of IDOL, distinct from that containing the LXR-responsive element, which mediates the response to DUB inhibition. In conclusion, we identify a sterol-independent mechanism to regulate IDOL expression and IDOL-mediated lipoprotein receptor degradation. PMID:26719329

  11. Time-of-day- and light-dependent expression of ubiquitin protein ligase E3 component N-recognin 4 (UBR4 in the suprachiasmatic nucleus circadian clock.

    Directory of Open Access Journals (Sweden)

    Harrod H Ling

    Full Text Available Circadian rhythms of behavior and physiology are driven by the biological clock that operates endogenously but can also be entrained to the light-dark cycle of the environment. In mammals, the master circadian pacemaker is located in the suprachiasmatic nucleus (SCN, which is composed of individual cellular oscillators that are driven by a set of core clock genes interacting in transcriptional/translational feedback loops. Light signals can trigger molecular events in the SCN that ultimately impact on the phase of expression of core clock genes to reset the master pacemaker. While transcriptional regulation has received much attention in the field of circadian biology in the past, other mechanisms including targeted protein degradation likely contribute to the clock timing and entrainment process. In the present study, proteome-wide screens of the murine SCN led to the identification of ubiquitin protein ligase E3 component N-recognin 4 (UBR4, a novel E3 ubiquitin ligase component of the N-end rule pathway, as a time-of-day-dependent and light-inducible protein. The spatial and temporal expression pattern of UBR4 in the SCN was subsequently characterized by immunofluorescence microscopy. UBR4 is expressed across the entire rostrocaudal extent of the SCN in a time-of-day-dependent fashion. UBR4 is localized exclusively to arginine vasopressin (AVP-expressing neurons of the SCN shell. Upon photic stimulation in the early subjective night, the number of UBR4-expressing cells within the SCN increases. This study is the first to identify a novel E3 ubiquitin ligase component, UBR4, in the murine SCN and to implicate the N-end rule degradation pathway as a potential player in regulating core clock mechanisms and photic entrainment.

  12. Functional analysis of NopM, a novel E3 ubiquitin ligase (NEL domain effector of Rhizobium sp. strain NGR234.

    Directory of Open Access Journals (Sweden)

    Da-Wei Xin

    Full Text Available Type 3 effector proteins secreted via the bacterial type 3 secretion system (T3SS are not only virulence factors of pathogenic bacteria, but also influence symbiotic interactions between nitrogen-fixing nodule bacteria (rhizobia and leguminous host plants. In this study, we characterized NopM (nodulation outer protein M of Rhizobium sp. strain NGR234, which shows sequence similarities with novel E3 ubiquitin ligase (NEL domain effectors from the human pathogens Shigella flexneri and Salomonella enterica. NopM expressed in Escherichia coli, but not the non-functional mutant protein NopM-C338A, showed E3 ubiquitin ligase activity in vitro. In vivo, NopM, but not inactive NopM-C338A, promoted nodulation of the host plant Lablab purpureus by NGR234. When NopM was expressed in yeast, it inhibited mating pheromone signaling, a mitogen-activated protein (MAP kinase pathway. When expressed in the plant Nicotiana benthamiana, NopM inhibited one part of the plant's defense response, as shown by a reduced production of reactive oxygen species (ROS in response to the flagellin peptide flg22, whereas it stimulated another part, namely the induction of defense genes. In summary, our data indicate the potential for NopM as a functional NEL domain E3 ubiquitin ligase. Our findings that NopM dampened the flg22-induced ROS burst in N. benthamiana but promoted defense gene induction are consistent with the concept that pattern-triggered immunity is split in two separate signaling branches, one leading to ROS production and the other to defense gene induction.

  13. Downregulation of the proapoptotic protein MOAP-1 by the UBR5 ubiquitin ligase and its role in ovarian cancer resistance to cisplatin.

    Science.gov (United States)

    Matsuura, K; Huang, N-J; Cocce, K; Zhang, L; Kornbluth, S

    2017-03-23

    Evasion of apoptosis allows many cancers to resist chemotherapy. Apoptosis is mediated by the serial activation of caspase family proteins. These proteases are often activated upon the release of cytochrome c from the mitochondria, which is promoted by the proapoptotic Bcl-2 family protein, Bax. This function of Bax is enhanced by the MOAP-1 (modulator of apoptosis protein 1) protein in response to DNA damage. Previously, we reported that MOAP-1 is targeted for ubiquitylation and degradation by the APC/C Cdh1 ubiquitin ligase. In this study, we identify the HECT (homologous to the E6-AP carboxyl terminus) family E3 ubiquitin ligase, UBR5, as a novel ubiquitin ligase for MOAP-1. We demonstrate that UBR5 interacts physically with MOAP-1, ubiquitylates MOAP-1 in vitro and inhibits MOAP-1 stability in cultured cells. In addition, we show that Dyrk2 kinase, a reported UBR5 interactor, cooperates with UBR5 in mediating MOAP-1 ubiquitylation. Importantly, we found that cisplatin-resistant ovarian cancer cell lines exhibit lower levels of MOAP-1 accumulation than their sensitive counterparts upon cisplatin treatment, consistent with the previously reported role of MOAP-1 in modulating cisplatin-induced apoptosis. Accordingly, UBR5 knockdown increased MOAP-1 expression, enhanced Bax activation and sensitized otherwise resistant cells to cisplatin-induced apoptosis. Furthermore, UBR5 expression was higher in ovarian cancers from cisplatin-resistant patients than from cisplatin-responsive patients. These results show that UBR5 downregulates proapoptotic MOAP-1 and suggest that UBR5 can confer cisplatin resistance in ovarian cancer. Thus UBR5 may be an attractive therapeutic target for ovarian cancer treatment.

  14. The Banana Fruit SINA Ubiquitin Ligase MaSINA1 Regulates the Stability of MaICE1 to be Negatively Involved in Cold Stress Response

    OpenAIRE

    Zhong-Qi Fan; Jian-Ye Chen; Jian-Fei Kuang; Wang-Jin Lu; Wei Shan

    2017-01-01

    The regulation of ICE1 protein stability is important to ensure effective cold stress response, and is extensively studied in Arabidopsis. Currently, how ICE1 stability in fruits under cold stress is controlled remains largely unknown. Here, we reported the possible involvement of a SEVEN IN ABSENTIA (SINA) ubiquitin ligase MaSINA1 from banana fruit in affecting MaICE1 stability. MaSINA1 was identified based on a yeast two-hybrid screening using MaICE1 as bait. Further yeast two-hybrid, pull-...

  15. Ubiquitin Ligase ATL31 Functions in Leaf Senescence in Response to the Balance Between Atmospheric CO2 and Nitrogen Availability in Arabidopsis

    OpenAIRE

    Aoyama, Shoki; Huarancca Reyes, Thais; Guglielminetti, Lorenzo; Lu, Yu; Morita, Yoshie; Sato, Takeo; Yamaguchi, Junji

    2014-01-01

    Carbon (C) and nitrogen (N) are essential elements for metabolism, and their availability, called the C/N balance, must be tightly coordinated for optimal growth in plants. Previously, we have identified the ubiquitin ligase CNI1/ATL31 as a novel C/N regulator by screening plants grown on C/N stress medium containing excess sugar and limited N. To elucidate further the effect of C/N balance on plant growth and to determine the physiological function of ATL31, we performed C/N response analysi...

  16. HECT-Type Ubiquitin E3 Ligase ITCH Interacts With Thioredoxin-Interacting Protein and Ameliorates Reactive Oxygen Species-Induced Cardiotoxicity.

    Science.gov (United States)

    Otaki, Yoichiro; Takahashi, Hiroki; Watanabe, Tetsu; Funayama, Akira; Netsu, Shunsuke; Honda, Yuki; Narumi, Taro; Kadowaki, Shinpei; Hasegawa, Hiromasa; Honda, Shintaro; Arimoto, Takanori; Shishido, Tetsuro; Miyamoto, Takuya; Kamata, Hideaki; Nakajima, Osamu; Kubota, Isao

    2016-01-21

    The homologous to the E6-AP carboxyl terminus (HECT)-type ubiquitin E3 ligase ITCH is an enzyme that plays a pivotal role in posttranslational modification by ubiquitin proteasomal protein degradation. Thioredoxin-interacting protein (TXNIP) is a negative regulator of the thioredoxin system and an endogenous reactive oxygen species scavenger. In the present study, we focused on the functional role of ubiquitin E3 ligase ITCH and its interaction with TXNIP to elucidate the mechanism of cardiotoxicity induced by reactive oxygen species, such as doxorubicin and hydrogen peroxide. Protein interaction between TXNIP and ITCH in cardiomyocyte was confirmed by immunoprecipitation assays. Overexpression of ITCH increased proteasomal TXNIP degradation and augmented thioredoxin activity, leading to inhibition of reactive oxygen species generation, p38 MAPK, p53, and subsequent intrinsic pathway cardiomyocyte apoptosis in reactive oxygen species-induced cardiotoxicity. Conversely, knockdown of ITCH using small interfering RNA inhibited TXNIP degradation and resulted in a subsequent increase in cardiomyocyte apoptosis. Next, we generated a transgenic mouse with cardiac-specific overexpression of ITCH, called the ITCH-Tg mouse. The expression level of TXNIP in the myocardium in ITCH-Tg mice was significantly lower than WT littermates. In ITCH-Tg mice, cardiac dysfunction and remodeling were restored compared with WT littermates after doxorubicin injection and myocardial infarction surgery. Kaplan-Meier analysis revealed that ITCH-Tg mice had a higher survival rate than WT littermates after doxorubicin injection and myocardial infarction surgery. We demonstrated, for the first time, that ITCH targets TXNIP for ubiquitin-proteasome degradation in cardiomyocytes and ameliorates reactive oxygen species-induced cardiotoxicity through the thioredoxin system. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  17. Genome-wide identification and characterization of the apple (Malus domestica) HECT ubiquitin-protein ligase family and expression analysis of their responsiveness to abiotic stresses.

    Science.gov (United States)

    Xu, Jianing; Xing, Shanshan; Cui, Haoran; Chen, Xuesen; Wang, Xiaoyun

    2016-04-01

    The ubiquitin-protein ligases (E3s) directly participate in ubiquitin (Ub) transferring to the target proteins in the ubiquitination pathway. The HECT ubiquitin-protein ligase (UPL), one type of E3s, is characterized as containing a conserved HECT domain of approximately 350 amino acids in the C terminus. Some UPLs were found to be involved in trichome development and leaf senescence in Arabidopsis. However, studies on plant UPLs, such as characteristics of the protein structure, predicted functional motifs of the HECT domain, and the regulatory expression of UPLs have all been limited. Here, we present genome-wide identification of the genes encoding UPLs (HECT gene) in apple. The 13 genes (named as MdUPL1-MdUPL13) from ten different chromosomes were divided into four groups by phylogenetic analysis. Among these groups, the encoding genes in the intron-exon structure and the included additional functional domains were quite different. Notably, the F-box domain was first found in MdUPL7 in plant UPLs. The HECT domain in different MdUPL groups also presented different spatial features and three types of conservative motifs were identified. The promoters of each MdUPL member carried multiple stress-response related elements by cis-acting element analysis. Experimental results demonstrated that the expressions of several MdUPLs were quite sensitive to cold-, drought-, and salt-stresses by qRT-PCR assay. The results of this study helped to elucidate the functions of HECT proteins, especially in Rosaceae plants.

  18. Smurf2 E3 ubiquitin ligase modulates proliferation and invasiveness of breast cancer cells in a CNKSR2 dependent manner.

    Science.gov (United States)

    David, Diana; Jagadeeshan, Sankar; Hariharan, Ramkumar; Nair, Asha Sivakumari; Pillai, Radhakrishna Madhavan

    2014-01-01

    Smurf2 is a member of the HECT family of E3 ubiquitin ligases that play important roles in determining the competence of cells to respond to TGF- β/BMP signaling pathway. However, besides TGF-β/BMP pathway, Smurf2 regulates a repertoire of other signaling pathways ranging from planar cell polarity during embryonic development to cell proliferation, migration, differentiation and senescence. Expression of Smurf2 is found to be dysregulated in many cancers including breast cancer. The purpose of the present study is to examine the effect of Smurf2 knockdown on the tumorigenic potential of human breast cancer cells emphasizing more on proliferative signaling pathway. siRNAs targeting different regions of the Smurf2 mRNA were employed to knockdown the expression of Smurf2. The biological effects of synthetic siRNAs on human breast cancer cells were investigated by examining the cell proliferation, migration, invasion, focus formation, anchorage-independent growth, cell cycle arrest, and cell cycle and cell proliferation related protein expressions upon Smurf2 silencing. Smurf2 silencing in human breast cancer cells resulted in a decreased focus formation potential and clonogenicity as well as in vitro cell migration/invasion capabilities. Moreover, knockdown of Smurf2 suppressed cell proliferation. Cell cycle analysis showed that the anti-proliferative effect of Smurf2 siRNA was mediated by arresting cells in the G0/G1 phase, which was caused by decreased expression of cyclin D1and cdk4, followed by upregulation p21 and p27. Furthermore, we demonstrated that silencing of Smurf2 downregulated the proliferation of breast cancer cells by modulating the PI3K- PTEN-AKT-FoxO3a pathway via the scaffold protein CNKSR2 which is involved in RAS-dependent signaling pathways. The present study provides the first evidence that silencing Smurf2 using synthetic siRNAs can regulate the tumorigenic properties of human breast cancer cells in a CNKSR2 dependent manner. Our results

  19. The tomato DWD motif-containing protein DDI1 interacts with the CUL4–DDB1-based ubiquitin ligase and plays a pivotal role in abiotic stress responses

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Min [Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064 (China); School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009 (China); Department of Plant, Soil and Entomological Sciences, University of Idaho, Moscow, ID 83844-2339 (United States); Zhu, Yunye [School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009 (China); Qiao, Maiju [Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064 (China); Tang, Xiaofeng [Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064 (China); School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009 (China); Zhao, Wei [School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009 (China); Xiao, Fangming [Department of Plant, Soil and Entomological Sciences, University of Idaho, Moscow, ID 83844-2339 (United States); Liu, Yongsheng, E-mail: liuyongsheng1122@hfut.edu.cn [Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064 (China); School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009 (China)

    2014-08-08

    Highlights: • We identify DDI1 as a DAMAGED DNA BINDING PROTEIN1 (DDB1)-interacting protein. • DDI1 interacts with the CUL4–DDB1-based ubiquitin ligase in the nucleus. • DDI1 plays a positive role in regulating abiotic stress response in tomato. - Abstract: CULLIN4(CUL4)–DAMAGED DNA BINDING PROTEIN1 (DDB1)-based ubiquitin ligase plays significant roles in multiple physiological processes via ubiquitination-mediated degradation of relevant target proteins. The DDB1–CUL4-associated factor (DCAF) acts as substrate receptor in the CUL4–DDB1 ubiquitin ligase complex and determines substrate specificity. In this study, we identified a tomato (Solanum lycopersicum) DDB1-interacting (DDI1) protein as a DCAF protein involved in response to abiotic stresses, including UV radiation, high salinity and osmotic stress. Co-immunoprecipitation and bimolecular fluorescence complementation assay indicated that DDI1 associates with CUL4–DDB1 in the nucleus. Quantitative RT-PCR analysis indicated the DDI1 gene is induced by salt, mannitol and UV-C treatment. Moreover, transgenic tomato plants with overexpression or knockdown of the DDI1 gene exhibited enhanced or attenuated tolerance to salt/mannitol/UV-C, respectively. Thus, our data suggest that DDI1 functions as a substrate receptor of the CUL4–DDB1 ubiquitin ligase, positively regulating abiotic stress response in tomato.

  20. The tomato DWD motif-containing protein DDI1 interacts with the CUL4–DDB1-based ubiquitin ligase and plays a pivotal role in abiotic stress responses

    International Nuclear Information System (INIS)

    Miao, Min; Zhu, Yunye; Qiao, Maiju; Tang, Xiaofeng; Zhao, Wei; Xiao, Fangming; Liu, Yongsheng

    2014-01-01

    Highlights: • We identify DDI1 as a DAMAGED DNA BINDING PROTEIN1 (DDB1)-interacting protein. • DDI1 interacts with the CUL4–DDB1-based ubiquitin ligase in the nucleus. • DDI1 plays a positive role in regulating abiotic stress response in tomato. - Abstract: CULLIN4(CUL4)–DAMAGED DNA BINDING PROTEIN1 (DDB1)-based ubiquitin ligase plays significant roles in multiple physiological processes via ubiquitination-mediated degradation of relevant target proteins. The DDB1–CUL4-associated factor (DCAF) acts as substrate receptor in the CUL4–DDB1 ubiquitin ligase complex and determines substrate specificity. In this study, we identified a tomato (Solanum lycopersicum) DDB1-interacting (DDI1) protein as a DCAF protein involved in response to abiotic stresses, including UV radiation, high salinity and osmotic stress. Co-immunoprecipitation and bimolecular fluorescence complementation assay indicated that DDI1 associates with CUL4–DDB1 in the nucleus. Quantitative RT-PCR analysis indicated the DDI1 gene is induced by salt, mannitol and UV-C treatment. Moreover, transgenic tomato plants with overexpression or knockdown of the DDI1 gene exhibited enhanced or attenuated tolerance to salt/mannitol/UV-C, respectively. Thus, our data suggest that DDI1 functions as a substrate receptor of the CUL4–DDB1 ubiquitin ligase, positively regulating abiotic stress response in tomato

  1. A forward genetic approach in Arabidopsis thaliana identifies a RING-type ubiquitin ligase as a novel determinant of seed longevity.

    Science.gov (United States)

    Bueso, Eduardo; Ibañez, Carla; Sayas, Enric; Muñoz-Bertomeu, Jesús; Gonzalez-Guzmán, Miguel; Rodriguez, Pedro L; Serrano, Ramón

    2014-02-01

    Seed longevity is important to preserve crops and wild plants and it is limited by progressive cellular damage (aging) during storage. The induction of cellular stress defenses and the formation of the seed coat are crucial protecting events during seed development, a process mediated in Arabidopsis thaliana by the transcription factors LEC1, LEC2, FUS3 and the abscisic acid-activated ABI3. In order to identify novel determinants of seed longevity we have screened an activation-tagging mutant collection of Arabidopsis and isolated a dominant mutant with increased seed longevity under both natural and accelerated aging conditions. Molecular characterization indicates that the mutant phenotype is caused by over-expression of the At2g26130 gene encoding a RING-type zinc finger putative ubiquitin ligase. Loss of function of this gene in a T-DNA insertion mutant resulted in decreased seed longevity. We named this important gene for seed longevity RSL1 (from Ring finger of Seed Longevity1) and we could demonstrate ubiquitin ligase activity with the recombinant protein. Morphological alterations in shoot tissues of the RSL1 over-expressing plants and analysis of gibberellins levels suggest that RSL1 may increase gibberellins responses by some unknown mechanism. These results validate the forward genetic approach to seed longevity and anticipate the identification of many novel determinants of this important trait. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. The E3 Ubiquitin Ligase IDOL Induces the Degradation of the Low Density Lipoprotein Receptor Family Members VLDLR and ApoER2*

    Science.gov (United States)

    Hong, Cynthia; Duit, Sarah; Jalonen, Pilvi; Out, Ruud; Scheer, Lilith; Sorrentino, Vincenzo; Boyadjian, Rima; Rodenburg, Kees W.; Foley, Edan; Korhonen, Laura; Lindholm, Dan; Nimpf, Johannes; van Berkel, Theo J. C.; Tontonoz, Peter; Zelcer, Noam

    2010-01-01

    We have previously identified the E3 ubiquitin ligase-inducible degrader of the low density lipoprotein receptor (LDLR) (Idol) as a post-translational modulator of LDLR levels. Idol is a direct target for regulation by liver X receptors (LXRs), and its expression is responsive to cellular sterol status independent of the sterol-response element-binding proteins. Here we demonstrate that Idol also targets two closely related LDLR family members, VLDLR and ApoE receptor 2 (ApoER2), proteins implicated in both neuronal development and lipid metabolism. Idol triggers ubiquitination of the VLDLR and ApoER2 on their cytoplasmic tails, leading to their degradation. We further show that the level of endogenous VLDLR is sensitive to cellular sterol content, Idol expression, and activation of the LXR pathway. Pharmacological activation of the LXR pathway in mice leads to increased Idol expression and to decreased Vldlr levels in vivo. Finally, we establish an unexpected functional link between LXR and Reelin signaling. We demonstrate that LXR activation results in decreased Reelin binding to VLDLR and reduced Dab1 phosphorylation. The identification of VLDLR and ApoER2 as Idol targets suggests potential roles for this LXR-inducible E3 ligase in the central nervous system in addition to lipid metabolism. PMID:20427281

  3. The E3 ubiquitin ligase IDOL induces the degradation of the low density lipoprotein receptor family members VLDLR and ApoER2.

    Science.gov (United States)

    Hong, Cynthia; Duit, Sarah; Jalonen, Pilvi; Out, Ruud; Scheer, Lilith; Sorrentino, Vincenzo; Boyadjian, Rima; Rodenburg, Kees W; Foley, Edan; Korhonen, Laura; Lindholm, Dan; Nimpf, Johannes; van Berkel, Theo J C; Tontonoz, Peter; Zelcer, Noam

    2010-06-25

    We have previously identified the E3 ubiquitin ligase-inducible degrader of the low density lipoprotein receptor (LDLR) (Idol) as a post-translational modulator of LDLR levels. Idol is a direct target for regulation by liver X receptors (LXRs), and its expression is responsive to cellular sterol status independent of the sterol-response element-binding proteins. Here we demonstrate that Idol also targets two closely related LDLR family members, VLDLR and ApoE receptor 2 (ApoER2), proteins implicated in both neuronal development and lipid metabolism. Idol triggers ubiquitination of the VLDLR and ApoER2 on their cytoplasmic tails, leading to their degradation. We further show that the level of endogenous VLDLR is sensitive to cellular sterol content, Idol expression, and activation of the LXR pathway. Pharmacological activation of the LXR pathway in mice leads to increased Idol expression and to decreased Vldlr levels in vivo. Finally, we establish an unexpected functional link between LXR and Reelin signaling. We demonstrate that LXR activation results in decreased Reelin binding to VLDLR and reduced Dab1 phosphorylation. The identification of VLDLR and ApoER2 as Idol targets suggests potential roles for this LXR-inducible E3 ligase in the central nervous system in addition to lipid metabolism.

  4. The E3 ubiquitin-ligase SEVEN IN ABSENTIA like 7 mono-ubiquitinates glyceraldehyde-3-phosphate dehydrogenase 1 isoform in vitro and is required for its nuclear localization in Arabidopsis thaliana.

    Science.gov (United States)

    Peralta, Diego A; Araya, Alejandro; Busi, Maria V; Gomez-Casati, Diego F

    2016-01-01

    The E3 ubiquitin-protein ligases are associated to various processes such as cell cycle control and diverse developmental pathways. Arabidopsis thaliana SEVEN IN ABSENTIA like 7, which has ubiquitin ligase activity, is located in the nucleus and cytosol and is expressed at several stages in almost all plant tissues suggesting an important role in plant functions. However, the mechanism underlying the regulation of this protein is unknown. Since we found that the SEVEN IN ABSENTIA like 7 gene expression is altered in plants with impaired mitochondria, and in plants deficient in the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase 1, we decided to study the possible interactions between both proteins as potential partners in plant signaling functions. We found that SEVEN IN ABSENTIA like 7 is able to interact in vitro with glyceraldehyde-3-phosphate dehydrogenase and that the Lys231 residue of the last is essential for this function. Following the interaction, a concomitant increase in the glyceraldehyde-3-phosphate dehydrogenase catalytic activity was observed. However, when SEVEN IN ABSENTIA like 7 was supplemented with E1 and E2 proteins to form a complete E1-E2-E3 modifier complex, we observed the mono-ubiquitination of glyceraldehyde-3-phosphate dehydrogenase 1 at the Lys76 residue and a dramatic decrease of its catalytic activity. Moreover, we found that localization of glyceraldehyde-3-phosphate dehydrogenase 1 in the nucleus is dependent on the expression SEVEN IN ABSENTIA like 7. These observations suggest that the association of both proteins might result in different biological consequences in plants either through affecting the glycolytic flux or via cytoplasm-nucleus relocation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Structural basis for c-KIT inhibition by the suppressor of cytokine signaling 6 (SOCS6) ubiquitin ligase

    DEFF Research Database (Denmark)

    Zadjali, Fahad; Pike, Ashley C W; Vesterlund, Mattias

    2011-01-01

    The c-KIT receptor tyrosine kinase mediates the cellular response to stem cell factor (SCF). Whereas c-KIT activity is important for the proliferation of hematopoietic cells, melanocytes and germ cells, uncontrolled c-KIT activity contributes to the growth of diverse human tumors. Suppressor...

  6. Ubiquitin

    DEFF Research Database (Denmark)

    Vinther-Jensen, T.; Simonsen, A. H.; Budtz-Jorgensen, E.

    2015-01-01

    BACKGROUND: Finding early and dynamic biomarkers in Huntington's disease is a key to understanding the early pathology of Huntington's disease and potentially to tracking disease progression. This would benefit the future evaluation of potential neuroprotective and disease-modifying therapies......, as well as aid in identifying an optimal time point for initiating a potential therapeutic intervention. METHODS: This explorative proteomics study evaluated cerebrospinal fluid from 94 Huntington's disease gene-expansion carriers (39 premanifest and 55 manifest) and 27 Huntington's disease gene...... and controls. One of them identified as ubiquitin was shown to be dependent on the Unified Huntington Disease Rating Scale Total Functional Capacity, a pseudo-measure of disease severity (P = 0.001), and the Symbol Digit Modalities Test (0.04) in manifest and CAG-age product score (P = 0.019) in all gene...

  7. Fibroblast Growth Factor-21 (FGF21) Regulates Low-density Lipoprotein Receptor (LDLR) Levels in Cells via the E3-ubiquitin Ligase Mylip/Idol and the Canopy2 (Cnpy2)/Mylip-interacting Saposin-like Protein (Msap)

    NARCIS (Netherlands)

    Do, Hai Thi; Tselykh, Timofey V.; Mäkelä, Johanna; Ho, Tho Huu; Olkkonen, Vesa M.; Bornhauser, Beat C.; Korhonen, Laura; Zelcer, Noam; Lindholm, Dan

    2012-01-01

    The LDLR is a critical factor in the regulation of blood cholesterol levels that are altered in different human diseases. The level of LDLR in the cell is regulated by both transcriptional and post-transcriptional events. The E3 ubiquitin ligase, myosin regulatory light chain-interacting protein

  8. Overexpression of E3 Ubiquitin Ligase Gene AdBiL Contributes to Resistance against Chilling Stress and Leaf Mold Disease in Tomato

    Directory of Open Access Journals (Sweden)

    Shuangchen Chen

    2017-06-01

    Full Text Available Ubiquitination is a common regulatory mechanism, playing a critical role in diverse cellular and developmental processes in eukaryotes. However, a few reports on the functional correlation between E3 ubiquitin ligases and reactive oxygen species (ROS or reactive nitrogen species (RNS metabolism in response to stress are currently available in plants. In the present study, the E3 ubiquitin ligase gene AdBiL (Adi3 Binding E3 Ligase was introduced into tomato line Ailsa Craig via Agrobacterium-mediated method. Transgenic lines were confirmed for integration into the tomato genome using PCR. Transcription of AdBiL in various transgenic lines was determined using real-time PCR. Evaluation of stress tolerance showed that T1 generation of transgenic tomato lines showed only mild symptoms of chilling injury as evident by higher biomass accumulation and chlorophyll content than those of non-transformed plants. Compared with wild-type plants, the contents of AsA, AsA/DHA, GSH and the activity of GaILDH, γ-GCS and GSNOR were increased, while H2O2, O2.−, MDA, NO, SNOs, and GSNO accumulations were significantly decreased in AdBiL overexpressing plants in response to chilling stress. Furthermore, transgenic tomato plants overexpressing AdBiL showed higher activities of enzymes such as G6PDH, 6PGDH, NADP-ICDH, and NADP-ME involved in pentose phosphate pathway (PPP. The transgenic tomato plants also exhibited an enhanced tolerance against the necrotrophic fungus Cladosporium fulvum. Tyrosine nitration protein was activated in the plants infected with leaf mold disease, while the inhibition could be recovered in AdBiL gene overexpressing lines. Taken together, our results revealed a possible physiological role of AdBiL in the activation of the key enzymes of AsA–GSH cycle, PPP and down-regulation of GSNO reductase, thereby reducing oxidative and nitrosative stress in plants. This study demonstrates an optimized transgenic strategy using AdBiL gene for crop

  9. Ubiquitin ligase RNF123 mediates degradation of heterochromatin protein 1α and β in lamin A/C knock-down cells.

    Directory of Open Access Journals (Sweden)

    Pankaj Chaturvedi

    Full Text Available The nuclear lamina is a key determinant of nuclear architecture, integrity and functionality in metazoan nuclei. Mutations in the human lamin A gene lead to highly debilitating genetic diseases termed as laminopathies. Expression of lamin A mutations or reduction in levels of endogenous A-type lamins leads to nuclear defects such as abnormal nuclear morphology and disorganization of heterochromatin. This is accompanied by increased proteasomal degradation of certain nuclear proteins such as emerin, nesprin-1α, retinoblastoma protein and heterochromatin protein 1 (HP1. However, the pathways of proteasomal degradation have not been well characterized.To investigate the mechanisms underlying the degradation of HP1 proteins upon lamin misexpression, we analyzed the effects of shRNA-mediated knock-down of lamins A and C in HeLa cells. Cells with reduced levels of expression of lamins A and C exhibited proteasomal degradation of HP1α and HP1β but not HP1γ. Since specific ubiquitin ligases are upregulated in lamin A/C knock-down cells, further studies were carried out with one of these ligases, RNF123, which has a putative HP1-binding motif. Ectopic expression of GFP-tagged RNF123 directly resulted in degradation of HP1α and HP1β. Mutational analysis showed that the canonical HP1-binding pentapeptide motif PXVXL in the N-terminus of RNF123 was required for binding to HP1 proteins and targeting them for degradation. The role of endogenous RNF123 in the degradation of HP1 isoforms was confirmed by RNF123 RNAi experiments. Furthermore, FRAP analysis suggested that HP1β was displaced from chromatin in laminopathic cells.Our data support a role for RNF123 ubiquitin ligase in the degradation of HP1α and HP1β upon lamin A/C knock-down. Hence lamin misexpression can cause degradation of mislocalized proteins involved in key nuclear processes by induction of specific components of the ubiquitin-proteasome system.

  10. Ubiquitin ligase ATL31 functions in leaf senescence in response to the balance between atmospheric CO2 and nitrogen availability in Arabidopsis.

    Science.gov (United States)

    Aoyama, Shoki; Huarancca Reyes, Thais; Guglielminetti, Lorenzo; Lu, Yu; Morita, Yoshie; Sato, Takeo; Yamaguchi, Junji

    2014-02-01

    Carbon (C) and nitrogen (N) are essential elements for metabolism, and their availability, called the C/N balance, must be tightly coordinated for optimal growth in plants. Previously, we have identified the ubiquitin ligase CNI1/ATL31 as a novel C/N regulator by screening plants grown on C/N stress medium containing excess sugar and limited N. To elucidate further the effect of C/N balance on plant growth and to determine the physiological function of ATL31, we performed C/N response analysis using an atmospheric CO2 manipulation system. Under conditions of elevated CO2 and sufficient N, plant biomass and total sugar and starch dramatically increased. In contrast, elevated CO2 with limited N did not increase plant biomass but promoted leaf chlorosis, with anthocyanin accumulation and increased senescence-associated gene expression. Similar results were obtained with plants grown in medium containing excess sugar and limited N, suggesting that disruption of the C/N balance affects senescence progression. In ATL31-overexpressing plants, promotion of senescence under disrupted CO2/N conditions was repressed, whereas in the loss-of-function mutant it was enhanced. The ATL31 gene was transcriptionally up-regulated under N deficiency and in senescent leaves, and ATL31 expression was highly correlated with WRKY53 expression, a key regulator of senescence. Furthermore, transient protoplast analysis implicated the direct activation of ATL31 expression by WRKY53, which was in accordance with the results of WRKY53 overexpression experiments. Together, these results demonstrate the importance of C/N balance in leaf senescence and the involvement of ubiquitin ligase ATL31 in the process of senescence in Arabidopsis.

  11. mTORC1 promotes denervation-induced muscle atrophy through a mechanism involving the activation of FoxO and E3 ubiquitin ligases.

    Science.gov (United States)

    Tang, Huibin; Inoki, Ken; Lee, Myung; Wright, Erika; Khuong, Andy; Khuong, Amanda; Sugiarto, Sista; Garner, Matthew; Paik, Jihye; DePinho, Ronald A; Goldman, Daniel; Guan, Kun-Liang; Shrager, Joseph B

    2014-02-25

    Skeletal muscle mass and function are regulated by motor innervation, and denervation results in muscle atrophy. The activity of mammalian target of rapamycin complex 1 (mTORC1) is substantially increased in denervated muscle, but its regulatory role in denervation-induced atrophy remains unclear. At early stages after denervation of skeletal muscle, a pathway involving class II histone deacetylases and the transcription factor myogenin mediates denervation-induced muscle atrophy. We found that at later stages after denervation of fast-twitch muscle, activation of mTORC1 contributed to atrophy and that denervation-induced atrophy was mitigated by inhibition of mTORC1 with rapamycin. Activation of mTORC1 through genetic deletion of its inhibitor TSC1 (tuberous sclerosis complex 1) sensitized mice to denervation-induced muscle atrophy and suppressed the kinase activity of Akt, leading to activation of FoxO transcription factors and increasing the expression of genes encoding E3 ubiquitin ligases atrogin [also known as MAFbx (muscle atrophy F-box protein)] and MuRF1 (muscle-specific ring finger 1). Rapamycin treatment of mice restored Akt activity, suggesting that the denervation-induced increase in mTORC1 activity was producing feedback inhibition of Akt. Genetic deletion of the three FoxO isoforms in skeletal muscle induced muscle hypertrophy and abolished the late-stage induction of E3 ubiquitin ligases after denervation, thereby preventing denervation-induced atrophy. These data revealed that mTORC1, which is generally considered to be an important component of anabolism, is central to muscle catabolism and atrophy after denervation. This mTORC1-FoxO axis represents a potential therapeutic target in neurogenic muscle atrophy.

  12. Ubiquitination of exposed glycoproteins by SCFFBXO27 directs damaged lysosomes for autophagy

    Science.gov (United States)

    Yoshida, Yukiko; Yasuda, Sayaka; Fujita, Toshiharu; Hamasaki, Maho; Murakami, Arisa; Kawawaki, Junko; Iwai, Kazuhiro; Saeki, Yasushi; Yoshimori, Tamotsu; Matsuda, Noriyuki; Tanaka, Keiji

    2017-01-01

    Ubiquitination functions as a signal to recruit autophagic machinery to damaged organelles and induce their clearance. Here, we report the characterization of FBXO27, a glycoprotein-specific F-box protein that is part of the SCF (SKP1/CUL1/F-box protein) ubiquitin ligase complex, and demonstrate that SCFFBXO27 ubiquitinates glycoproteins in damaged lysosomes to regulate autophagic machinery recruitment. Unlike F-box proteins in other SCF complexes, FBXO27 is subject to N-myristoylation, which localizes it to membranes, allowing it to accumulate rapidly around damaged lysosomes. We also screened for proteins that are ubiquitinated upon lysosomal damage, and identified two SNARE proteins, VAMP3 and VAMP7, and five lysosomal proteins, LAMP1, LAMP2, GNS, PSAP, and TMEM192. Ubiquitination of all glycoproteins identified in this screen increased upon FBXO27 overexpression. We found that the lysosomal protein LAMP2, which is ubiquitinated preferentially on lysosomal damage, enhances autophagic machinery recruitment to damaged lysosomes. Thus, we propose that SCFFBXO27 ubiquitinates glycoproteins exposed upon lysosomal damage to induce lysophagy. PMID:28743755

  13. Aging Triggers Cytoplasmic Depletion and Nuclear Translocation of the E3 Ligase Mahogunin: A Function for Ubiquitin in Neuronal Survival.

    Science.gov (United States)

    Benvegnù, Stefano; Mateo, María Inés; Palomer, Ernest; Jurado-Arjona, Jerónimo; Dotti, Carlos G

    2017-05-04

    A decline in proteasome function is causally connected to neuronal aging and aging-associated neuropathologies. By using hippocampal neurons in culture and in vivo, we show that aging triggers a reduction and a cytoplasm-to-nucleus redistribution of the E3 ubiquitin ligase mahogunin (MGRN1). Proteasome impairment induces MGRN1 monoubiquitination, the key post-translational modification for its nuclear entry. One potential mechanism for MGRN1 monoubiquitination is via progressive deubiquitination at the proteasome of polyubiquitinated MGRN1. Once in the nucleus, MGRN1 potentiates the transcriptional cellular response to proteotoxic stress. Inhibition of MGRN1 impairs ATF3-mediated neuronal responsiveness to proteosomal stress and increases neuronal stress, while increasing MGRN1 ameliorates signs of neuronal aging, including cognitive performance in old animals. Our results imply that, among others, the strength of neuronal survival in a proteasomal deterioration background, like during aging, depends on the fine-tuning of ubiquitination-deubiquitination. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. HTLV-1 Tax Functions as a Ubiquitin E3 Ligase for Direct IKK Activation via Synthesis of Mixed-Linkage Polyubiquitin Chains.

    Science.gov (United States)

    Wang, Chong; Long, Wenying; Peng, Chao; Hu, Lin; Zhang, Qiong; Wu, Ailing; Zhang, Xiaoqing; Duan, Xiaotao; Wong, Catherine C L; Tanaka, Yuetsu; Xia, Zongping

    2016-04-01

    The HTLV-1 oncoprotein Tax plays a key role in CD4+ T cell transformation by promoting cell proliferation and survival, mainly through permanent activation of the NK-κB pathway and induction of many NF-κB target genes. Elucidating the underlying molecular mechanism is therefore critical in understanding HTLV-1-mediated transformation. Current studies have suggested multiple but controversial mechanisms regarding Tax-induced IKK activation mainly due to blending of primary Tax-induced IKK activation events and secondary IKK activation events induced by cytokines secreted by the primary Tax-induced IKK-NF-κB activation events. We reconstituted Tax-stimulated IKK activation in a cell-free system to dissect the essential cellular components for primary IKK activation by Tax and studied the underlying biochemical mechanism. We found that Tax is a putative E3 ubiquitin ligase, which, together with UbcH2, UhcH5c, or UbcH7, catalyzes the assembly of free mixed-linkage polyubiquitin chains. These free mixed-linkage polyubiquitin chains are then responsible for direct IKK activation by binding to the NEMO subunit of IKK. Our studies revealed the biochemical function of Tax in the process of IKK activation, which utilizes the minimal cellular ubiquitination components for NF-κB activation.

  15. The E3 ubiquitin ligase seven in absentia homolog 1 may be a potential new therapeutic target for Parkinson′s disease

    Directory of Open Access Journals (Sweden)

    Zeng-lin Cai

    2015-01-01

    Full Text Available In this study, we investigated the effect of an antibody against E3 ubiquitin ligase seven in absentia homolog 1 (SIAH-1 in PC12 cells. 1-Methyl-4-phenylpyridinium (MPP + treatment increased α-synuclein, E1 and SIAH-1 protein levels in PC12 cells, and it reduced cell viability; however, there was no significant change in light chain 3 expression. Treatment with an SIAH-1 antibody decreased mRNA expression levels of α-synuclein, light chain 3 and SIAH-1, but increased E1 mRNA expression. It also increased cell viability. Combined treatment with MPP + and rapamycin reduced SIAH-1 and α-synuclein levels. Treatment with SIAH-1 antibody alone diminished α-synuclein immunoreactivity in PC12 cells, and reduced the colocalization of α-synuclein and light chain 3. These findings suggest that the SIAH-1 antibody reduces the monoubiquitination and aggregation of α-synuclein, promoting its degradation by the ubiquitin-proteasome pathway. Consequently, SIAH-1 may be a potential new therapeutic target for Parkinson′s disease.

  16. Insight into the Roles of E3 Ubiquitin Ligase c-Cbl, ESCRT Machinery, and Host Cell Signaling in Kaposi's Sarcoma-Associated Herpesvirus Entry and Trafficking.

    Science.gov (United States)

    Kumar, Binod; Roy, Arunava; Veettil, Mohanan Valiya; Chandran, Bala

    2018-02-15

    Kaposi's sarcoma-associated herpesvirus (KSHV) in vitro infection of dermal endothelial cells begins with its binding to host cell surface receptor molecules such as heparan sulfate (HS), integrins (α3β1, αVβ3, and αVβ5), xCT, and EphA2 receptor tyrosine kinase (EphA2R). These initial events initiate dynamic host protein-protein interactions involving a multimolecular complex of receptors, signal molecules (focal adhesion kinase [FAK], Src, phosphatidylinositol 3-kinase [PI3-K], and RhoA-GTPase), adaptors (c-Cbl, CIB1, Crk, p130Cas, and GEF-C3G), actin, and myosin II light chain that lead to virus entry via macropinocytosis. Here we discuss how KSHV hijacks c-Cbl, an E3 ubiquitin ligase, to monoubiquitinate the receptors and actin, which acts like a marker for trafficking (similar to zip codes), resulting in the recruitment of the members of the host endosomal sorting complexes required for transport (ESCRT) Hrs, Tsg101, EAP45, and the CHMP5 and -6 proteins (zip code readers) recognizing the ubiquitinated protein and adaptor machinery to traffic through the different endosomal compartments in the cytoplasm to initiate the macropinocytic process and infection. Copyright © 2018 American Society for Microbiology.

  17. Molecular Basis for the Association of Human E4B U Box Ubiquitin Ligase with E2-Conjugating Enzymes UbcH5c and Ubc4

    Energy Technology Data Exchange (ETDEWEB)

    Benirschke, Robert C.; Thompson, James R.; Nominé, Yves; Wasielewski, Emeric; Jurani& #263; , Nenad; Macura, Slobodan; Hatakeyama, Shigetsugu; Nakayama, Keiichi I.; Botuyan, Maria Victoria; Mer, Georges (Hokkaido); (Mayo); (Kyushu)

    2010-09-07

    Human E4B, also called UFD2a, is a U box-containing protein that functions as an E3 ubiquitin ligase and an E4 polyubiquitin chain elongation factor. E4B is thought to participate in the proteasomal degradation of misfolded or damaged proteins through association with chaperones. The U box domain is an anchor site for E2 ubiquitin-conjugating enzymes, but little is known of the binding mechanism. Using X-ray crystallography and NMR spectroscopy, we determined the structures of E4B U box free and bound to UbcH5c and Ubc4 E2s. Whereas previously characterized U box domains are homodimeric, we show that E4B U box is a monomer stabilized by a network of hydrogen bonds identified from scalar coupling measurements. These structural studies, complemented by calorimetry- and NMR-based binding assays, suggest an allosteric regulation of UbcH5c and Ubc4 by E4B U box and provide a molecular basis to understand how the ubiquitylation machinery involving E4B assembles.

  18. The Chinese wild grapevine (Vitis pseudoreticulata) E3 ubiquitin ligase Erysiphe necator-induced RING finger protein 1 (EIRP1) activates plant defense responses by inducing proteolysis of the VpWRKY11 transcription factor.

    Science.gov (United States)

    Yu, Yihe; Xu, Weirong; Wang, Jie; Wang, Lei; Yao, Wenkong; Yang, Yazhou; Xu, Yan; Ma, Fuli; Du, Yangjian; Wang, Yuejin

    2013-11-01

    Ubiquitin-mediated regulation responds rapidly to specific stimuli; this rapidity is particularly important for defense responses to pathogen attack. Here, we investigated the role of the E3 ubiquitin ligase Erysiphe necator-induced RING finger protein 1 (EIRP1) in the defense response of Chinese wild grapevine Vitis pseudoreticulata. The regulatory function of E3 ubiquitin ligase EIRP1 was investigated using molecular, genetic and biochemical approaches. EIRP1 encodes a C3HC4-type Really Interesting New Gene (RING) finger protein that harbors E3 ligase activity. This activity requires the conserved RING domain, and VpWRKY11 also interacts with EIRP1 through the RING domain. VpWRKY11 localizes to the nucleus and activates W-box-dependent transcription in planta. EIRP1 targeted VpWRKY11 in vivo, resulting in VpWRKY11 degradation. The expression of EIRP1 and VpWRKY11 responds rapidly to powdery mildew in Vitis pseudoreticulata grapevine; also, overexpression of EIRP1 in Arabidopsis confers enhanced resistance to the pathogens Golovinomyces cichoracearum and Pseudomonas syringae pv tomato DC3000. Our data suggest that the EIRP1 E3 ligase positively regulates plant disease resistance by mediating proteolysis of the negative regulator VpWRKY11 via degradation by the 26S proteasome. © 2013 College of Horticulture. New Phytologist © 2013 New Phytologist Trust.

  19. Phosphorylation of Arabidopsis ubiquitin ligase ATL31 is critical for plant carbon/nitrogen nutrient balance response and controls the stability of 14-3-3 proteins.

    Science.gov (United States)

    Yasuda, Shigetaka; Sato, Takeo; Maekawa, Shugo; Aoyama, Shoki; Fukao, Yoichiro; Yamaguchi, Junji

    2014-05-30

    Ubiquitin ligase plays a fundamental role in regulating multiple cellular events in eukaryotes by fine-tuning the stability and activity of specific target proteins. We have previously shown that ubiquitin ligase ATL31 regulates plant growth in response to nutrient balance between carbon and nitrogen (C/N) in Arabidopsis. Subsequent study demonstrated that ATL31 targets 14-3-3 proteins for ubiquitination and modulates the protein abundance in response to C/N-nutrient status. However, the underlying mechanism for the targeting of ATL31 to 14-3-3 proteins remains unclear. Here, we show that ATL31 interacts with 14-3-3 proteins in a phosphorylation-dependent manner. We identified Thr(209), Ser(247), Ser(270), and Ser(303) as putative 14-3-3 binding sites on ATL31 by motif analysis. Mutation of these Ser/Thr residues to Ala in ATL31 inhibited the interaction with 14-3-3 proteins, as demonstrated by yeast two-hybrid and co-immunoprecipitation analyses. Additionally, we identified in vivo phosphorylation of Thr(209) and Ser(247) on ATL31 by MS analysis. A peptide competition assay showed that the application of synthetic phospho-Thr(209) peptide, but not the corresponding unphosphorylated peptide, suppresses the interaction between ATL31 and 14-3-3 proteins. Moreover, Arabidopsis plants overexpressing mutated ATL31, which could not bind to 14-3-3 proteins, showed accumulation of 14-3-3 proteins and growth arrest in disrupted C/N-nutrient conditions similar to wild-type plants, although overexpression of intact ATL31 resulted in repression of 14-3-3 accumulation and tolerance to the conditions. Together, these results demonstrate that the physiological role of phosphorylation at 14-3-3 binding sites on ATL31 is to modulate the binding ability and stability of 14-3-3 proteins to control plant C/N-nutrient response. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. OsNLA1, a RING-type ubiquitin ligase, maintains phosphate homeostasis in Oryza sativa via degradation of phosphate transporters.

    Science.gov (United States)

    Yue, Wenhao; Ying, Yinghui; Wang, Chuang; Zhao, Yang; Dong, Changhe; Whelan, James; Shou, Huixia

    2017-06-01

    Inorganic phosphate (Pi) transporters (PTs) play vital roles in Pi uptake and translocation in plants. Under Pi sufficient conditions, PTs are degraded to prevent excess Pi accumulation. The mechanisms targeting PTs for degradation are not fully elucidated. In this study, we found that the Oryza sativa (rice) ortholog of Arabidopsis thaliana nitrogen limitation adaptation (NLA), OsNLA1 protein, a RING-type E3 ubiquitin-ligase, was predominantly localized in the plasma membrane, and could interact with rice phosphate transporters OsPT2 and OsPT8. Mutation of the 265th cysteine residue in OsNLA1 that was required for ubiquitination prevented breakdown of OsPT2/PT8, suggesting OsNLA1 targeted OsPT2/PT8 for degradation. Mutation in OsNLA1 (osnla1) led to a significant increase of Pi concentration in leaves in a nitrate-independent manner. Overexpression of OsNLA1 or repression of OsPT2/PT8 restored the high leaf Pi concentration in osnla1 mutants to a level similar to that of wild-type plants. In contrast to what has been observed in Arabidopsis, the transcript abundance of OsNLA1 did not decrease under Pi limited conditions or in OsmiR827 (microRNA827)- or OsPHR2 (PHOSPHATE STARVATION RESPONSE 2)-overexpressing transgenic lines. Moreover, there was no interaction of OsNLA1 and OsPHO2, an E2 ubiquitin-conjugase, suggesting that OsPHO2 was not the partner of OsNLA1 involved in ubiquitin-mediated PT degradation. Our results show that OsNLA1 is involved in maintaining phosphate homeostasis in rice by mediating the degradation of OsPT2 and OsPT8, and OsNLA1 differs from the ortholog in Arabidopsis in several aspects. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  1. The COP9 signalosome interacts with SCF UFO and participates in Arabidopsis flower development.

    Science.gov (United States)

    Wang, Xiping; Feng, Suhua; Nakayama, Naomi; Crosby, W L; Irish, Vivian; Deng, Xing Wang; Wei, Ning

    2003-05-01

    The COP9 signalosome (CSN) is involved in multiple developmental processes. It interacts with SCF ubiquitin ligases and deconjugates Nedd8/Rub1 from cullins (deneddylation). CSN is highly expressed in Arabidopsis floral tissues. To investigate the role of CSN in flower development, we examined the expression pattern of CSN in developing flowers. We report here that two csn1 partially deficient Arabidopsis strains exhibit aberrant development of floral organs, decline of APETALA3 (AP3) expression, and low fertility in addition to defects in shoot and inflorescence meristems. We show that UNUSUAL FLORAL ORGANS (UFO) forms a SCF(UFO) complex, which is associated with CSN in vivo. Genetic interaction analysis indicates that CSN is necessary for the gain-of-function activity of the F-box protein UFO in AP3 activation and in floral organ transformation. Compared with the previously reported csn5 antisense and csn1 null mutants, partial deficiency of CSN1 causes a reduction in the level of CUL1 in the mutant flowers without an obvious defect in CUL1 deneddylation. We conclude that CSN is an essential regulator of Arabidopsis flower development and suggest that CSN regulates Arabidopsis flower development in part by modulating SCF(UFO)-mediated AP3 activation.

  2. A major isoform of the E3 ubiquitin ligase March-I in antigen-presenting cells has regulatory sequences within its gene.

    Science.gov (United States)

    Kaul, Sunil; Mittal, Sharad K; Roche, Paul A

    2018-03-23

    Regulation of major histocompatibility complex class II (MHC-II) expression is important not only to maintain a diverse pool of MHC-II-peptide complexes but also to prevent development of autoimmunity. The membrane-associated RING-CH (March) E3 ubiquitin ligase March-I regulates ubiquitination and turnover of MHC-II-peptide complexes in resting dendritic cells (DCs) and B cells. However, activation of either cell type terminates March-I expression, thereby stabilizing MHC-II-peptide complexes. Despite March-I's important role in the biology of antigen-presenting cells (APCs), how expression of March-I mRNA is regulated remains unknown. We now show that both DCs and B cells possess a distinct isoform of March-I whose expression is regulated by a promoter located within the March-I gene. Using March-I promoter fragments to drive expression of GFP , we also identified a core promoter for expression of March-I in DCs and B cells, but not in fibroblasts, kidney cells, or epithelial cells, that contains regulatory regions that down-regulate March-I expression upon activation of DCs. Curiously, we found downstream sequence elements, present in the first coding exon of March-I in APCs, that confer regulation of March-I expression in activated APCs. In summary, our study identifies regulatory regions of the March-I gene that confer APC-specific expression and activation-induced modulation of March-I expression in DCs and B cells.

  3. Cardiac-specific ablation of the E3 ubiquitin ligase Mdm2 leads to oxidative stress, broad mitochondrial deficiency and early death.

    Directory of Open Access Journals (Sweden)

    Ludger Hauck

    Full Text Available The maintenance of normal heart function requires proper control of protein turnover. The ubiquitin-proteasome system is a principal regulator of protein degradation. Mdm2 is the main E3 ubiquitin ligase for p53 in mitotic cells thereby regulating cellular growth, DNA repair, oxidative stress and apoptosis. However, which of these Mdm2-related activities are preserved in differentiated cardiomyocytes has yet to be determined. We sought to elucidate the role of Mdm2 in the control of normal heart function. We observed markedly reduced Mdm2 mRNA levels accompanied by highly elevated p53 protein expression in the hearts of wild type mice subjected to myocardial infarction or trans-aortic banding. Accordingly, we generated conditional cardiac-specific Mdm2 gene knockout (Mdm2f/f;mcm mice. In adulthood, Mdm2f/f;mcm mice developed spontaneous cardiac hypertrophy, left ventricular dysfunction with early mortality post-tamoxifen. A decreased polyubiquitination of myocardial p53 was observed, leading to its stabilization and activation, in the absence of acute stress. In addition, transcriptomic analysis of Mdm2-deficient hearts revealed that there is an induction of E2f1 and c-Myc mRNA levels with reduced expression of the Pgc-1a/Ppara/Esrrb/g axis and Pink1. This was associated with a significant degree of cardiomyocyte apoptosis, and an inhibition of redox homeostasis and mitochondrial bioenergetics. All these processes are early, Mdm2-associated events and contribute to the development of pathological hypertrophy. Our genetic and biochemical data support a role for Mdm2 in cardiac growth control through the regulation of p53, the Pgc-1 family of transcriptional coactivators and the pivotal antioxidant Pink1.

  4. Complementary genetic screens identify the E3 ubiquitin ligase CBLC, as a modifier of PARP inhibitor sensitivity

    Czech Academy of Sciences Publication Activity Database

    Frankum, J.; Moudrý, P.; Brough, R.; Hodný, Zdeněk; Ashworth, A.; Bartek, Jiří; Lord, C.J.

    2015-01-01

    Roč. 6, č. 13 (2015), s. 10746-10758 ISSN 1949-2553 R&D Projects: GA ČR GA13-17555S EU Projects: European Commission HEALTH-F2-2010-259893 Grant - others:Lundbeck Foundation(DK) R93-A8990; Danish Council for Independent Research(DK) DFF-1331-00262 Institutional support: RVO:68378050 Keywords : DNA damage response * ubiquitin-proteasome system * RNA interference screens * PARP inhibitors * CBLC Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.008, year: 2015

  5. Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle's dynamics and signaling.

    Directory of Open Access Journals (Sweden)

    Wei Li

    2008-01-01

    Full Text Available Specificity of protein ubiquitylation is conferred by E3 ubiquitin (Ub ligases. We have annotated approximately 617 putative E3s and substrate-recognition subunits of E3 complexes encoded in the human genome. The limited knowledge of the function of members of the large E3 superfamily prompted us to generate genome-wide E3 cDNA and RNAi expression libraries designed for functional screening. An imaging-based screen using these libraries to identify E3s that regulate mitochondrial dynamics uncovered MULAN/FLJ12875, a RING finger protein whose ectopic expression and knockdown both interfered with mitochondrial trafficking and morphology. We found that MULAN is a mitochondrial protein - two transmembrane domains mediate its localization to the organelle's outer membrane. MULAN is oriented such that its E3-active, C-terminal RING finger is exposed to the cytosol, where it has access to other components of the Ub system. Both an intact RING finger and the correct subcellular localization were required for regulation of mitochondrial dynamics, suggesting that MULAN's downstream effectors are proteins that are either integral to, or associated with, mitochondria and that become modified with Ub. Interestingly, MULAN had previously been identified as an activator of NF-kappaB, thus providing a link between mitochondrial dynamics and mitochondria-to-nucleus signaling. These findings suggest the existence of a new, Ub-mediated mechanism responsible for integration of mitochondria into the cellular environment.

  6. The E3 ubiquitin ligase ZNRF2 is a substrate of mTORC1 and regulates its activation by amino acids

    Science.gov (United States)

    Hoxhaj, Gerta; Caddye, Edward; Najafov, Ayaz; Houde, Vanessa P; Johnson, Catherine; Dissanayake, Kumara; Toth, Rachel; Campbell, David G; Prescott, Alan R; MacKintosh, Carol

    2016-01-01

    The mechanistic Target of Rapamycin complex 1 (mTORC1) senses intracellular amino acid levels through an intricate machinery, which includes the Rag GTPases, Ragulator and vacuolar ATPase (V-ATPase). The membrane-associated E3 ubiquitin ligase ZNRF2 is released into the cytosol upon its phosphorylation by Akt. In this study, we show that ZNRF2 interacts with mTOR on membranes, promoting the amino acid-stimulated translocation of mTORC1 to lysosomes and its activation in human cells. ZNRF2 also interacts with the V-ATPase and preserves lysosomal acidity. Moreover, knockdown of ZNRF2 decreases cell size and cell proliferation. Upon growth factor and amino acid stimulation, mTORC1 phosphorylates ZNRF2 on Ser145, and this phosphosite is dephosphorylated by protein phosphatase 6. Ser145 phosphorylation stimulates vesicle-to-cytosol translocation of ZNRF2 and forms a novel negative feedback on mTORC1. Our findings uncover ZNRF2 as a component of the amino acid sensing machinery that acts upstream of Rag-GTPases and the V-ATPase to activate mTORC1. DOI: http://dx.doi.org/10.7554/eLife.12278.001 PMID:27244671

  7. Delineation of the role of chromatin assembly and the Rtt101Mms1 E3 ubiquitin ligase in DNA damage checkpoint recovery in budding yeast.

    Directory of Open Access Journals (Sweden)

    Li-Ting Diao

    Full Text Available The DNA damage checkpoint is activated in response to DNA double-strand breaks (DSBs. We had previously shown that chromatin assembly mediated by the histone chaperone Asf1 triggers inactivation of the DNA damage checkpoint in yeast after DSB repair, also called checkpoint recovery. Here we show that chromatin assembly factor 1 (CAF-1 also contributes to chromatin reassembly after DSB repair, explaining its role in checkpoint recovery. Towards understanding how chromatin assembly promotes checkpoint recovery, we find persistent presence of the damage sensors Ddc1 and Ddc2 after DSB repair in asf1 mutants. The genes encoding the E3 ubiquitin ligase complex Rtt101Mms1 are epistatic to ASF1 for survival following induction of a DSB, and Rtt101Mms1 are required for checkpoint recovery after DSB repair but not for chromatin assembly. By contrast, the Mms22 substrate adaptor that is degraded by Rtt101Mms1 is required for DSB repair per se. Deletion of MMS22 blocks loading of Rad51 at the DSB, while deletion of ASF1 or RTT101 leads to persistent Rad51 loading. We propose that checkpoint recovery is promoted by Rtt101Mms1-mediated ubiquitylation of Mms22 in order to halt Mms22-dependent loading of Rad51 onto double-stranded DNA after DSB repair, in concert with the chromatin assembly-mediated displacement of Rad51 and checkpoint sensors from the site of repair.

  8. Cell-Penetrating Function of the Poly(ADP-Ribose (PAR-Binding Motif Derived from the PAR-Dependent E3 Ubiquitin Ligase Iduna

    Directory of Open Access Journals (Sweden)

    Ja-Hyun Koo

    2018-03-01

    Full Text Available Iduna is a poly(ADP-ribose (PAR-dependent E3 ubiquitin ligase that regulates cellular responses such as proteasomal degradation and DNA repair upon interaction with its substrate. We identified a highly cationic region within the PAR-binding motif of Iduna; the region was similar among various species and showed amino acid sequence similarity with that of known cell-penetrating peptides (CPPs. We hypothesized that this Iduna-derived cationic sequence-rich peptide (Iduna could penetrate the cell membrane and deliver macromolecules into cells. To test this hypothesis, we generated recombinant Iduna-conjugated enhanced green fluorescent protein (Iduna-EGFP and its tandem-repeat form (d-Iduna-EGFP. Both Iduna-EGFP and d-Iduna-EGFP efficiently penetrated Jurkat cells, with the fluorescence signals increasing dose- and time-dependently. Tandem-repeats of Iduna and other CPPs enhanced intracellular protein delivery efficiency. The delivery mechanism involves lipid-raft-mediated endocytosis following heparan sulfate interaction; d-Iduna-EGFP was localized in the nucleus as well as the cytoplasm, and its residence time was much longer than that of other controls such as TAT and Hph-1. Moreover, following intravenous administration to C57/BL6 mice, d-Iduna-EGFP was efficiently taken up by various tissues, including the liver, spleen, and intestine suggesting that the cell-penetrating function of the human Iduna-derived peptide can be utilized for experimental and therapeutic delivery of macromolecules.

  9. Overexpression of the human ubiquitin E3 ligase CUL4A alleviates hypoxia-reoxygenation injury in pheochromocytoma (PC12) cells

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Can [Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, 172 Tong Zipo Road, Changsha 410013 (China); Zhang, Li-Yang [Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, 110 Xiang Ya Road, Changsha 410078 (China); Chen, Hong [Department of Developmental Biology, School of Biological Science and Technology, Central South University, 172 Tong Zipo Road, Changsha 410013 (China); Xiao, Ling [Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, 172 Tong Zipo Road, Changsha 410013 (China); Liu, Xian-Peng, E-mail: xliu@lsuhsc.edu [Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932 (United States); Zhang, Jian-Xiang, E-mail: jianxiangzhang@yahoo.cn [Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, 172 Tong Zipo Road, Changsha 410013 (China); Department of Developmental Biology, School of Biological Science and Technology, Central South University, 172 Tong Zipo Road, Changsha 410013 (China)

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer Overexpression of human CUL4A (hCUL4A) in PC12 cells. Black-Right-Pointing-Pointer The effects of hCUL4A on hypoxia-reoxygenation injury were investigated. Black-Right-Pointing-Pointer hCUL4A suppresses apoptosis and DNA damage and thus promotes cell survival. Black-Right-Pointing-Pointer hCUL4A regulates apoptosis-related proteins and cell cycle regulators. -- Abstract: The ubiquitin E3 ligase CUL4A plays important roles in diverse cellular processes including carcinogenesis and proliferation. It has been reported that the expression of CUL4A can be induced by hypoxic-ischemic injury. However, the effect of elevated expression of CUL4A on hypoxia-reoxygenation injury is currently unclear. In this study, human CUL4A (hCUL4A) was expressed in rat pheochromocytoma (PC12) cells using adenoviral vector-mediated gene transfer, and the effects of hCUL4A expression on hypoxia-reoxygenation injury were investigated. In PC12 cells subjected to hypoxia and reoxygenation, we found that hCUL4A suppresses apoptosis and DNA damage by regulating apoptosis-related proteins and cell cycle regulators (Bcl-2, caspase-3, p53 and p27); consequently, hCUL4A promotes cell survival. Taken together, our results reveal the beneficial effects of hCUL4A in PC12 cells upon hypoxia-reoxygenation injury.

  10. Regulation of copper-dependent endocytosis and vacuolar degradation of the yeast copper transporter, Ctr1p, by the Rsp5 ubiquitin ligase.

    Science.gov (United States)

    Liu, Jingxuan; Sitaram, Anand; Burd, Christopher G

    2007-10-01

    The Saccharomyces cerevisiae high-affinity copper transporter, Ctr1p, mediates cellular uptake of Cu(I). We report that when copper (50 microm CuSO(4)) is added to the growth medium of copper-starved cells, Ctr1p is rapidly internalized by endocytosis, delivered to the lumen of the lysosome-like vacuole and slowly degraded by vacuolar proteases. Through analysis of the trafficking and degradation of Ctr1p mutants, two lysine residues in the C-terminal cytoplasmic tail of Ctr1p, Lys340 and Lys345, were found to be critical for copper-dependent endocytosis and degradation. In response to copper addition, Ctr1p was found to be ubiquitylated and a mutation in the Rsp5 ubiquitin ligase largely abolished ubiquitylation, endocytosis and degradation. In a strain lacking the Rsp5p accessory factors Bul1p and Bul2p, endocytosis and degradation of Ctr1p-green fluorescent protein were substantially diminished. Surprisingly, a Ctr1p mutant that lacks Lys340 and Lys345 was still ubiquitylated in a copper-dependent manner, indicating that ubiquitylation of Ctr1p on other sites is insufficient to drive copper-dependent endocytosis and degradation. This study demonstrates that copper regulates turnover of Ctr1p by stimulating Rsp5p-dependent endocytosis and degradation of Ctr1p in the vacuole.

  11. The ART-Rsp5 ubiquitin ligase network comprises a plasma membrane quality control system that protects yeast cells from proteotoxic stress

    Science.gov (United States)

    Zhao, Yingying; MacGurn, Jason A; Liu, Max; Emr, Scott

    2013-01-01

    Secretory cargo that cannot fold properly in the ER are selectively targeted for removal by a well-studied ER-associated degradation pathway, or ERAD. In contrast, very little is known about post-ER quality control mechanisms for damaged or misfolded integral membrane proteins. Here we describe a quality control function of the Rsp5-ART ubiquitin ligase adaptor network that functions to protect plasma membrane (PM) integrity. Failure to mediate this protective response during heat stress leads to toxic accumulation of misfolded integral membrane proteins at the cell surface, which causes loss of PM integrity and cell death. Thus, the Rsp5-ART network comprises a PM quality control system that works together with sequential quality control pathways in the ER and Golgi to (i) target the degradation of proteins that have exceeded their functional lifetime due to damage and/or misfolding and (ii) limit the toxic accumulation of specific proteins at the cell surface during proteotoxic stress. DOI: http://dx.doi.org/10.7554/eLife.00459.001 PMID:23599894

  12. Lineage-Specific Viral Hijacking of Non-canonical E3 Ubiquitin Ligase Cofactors in the Evolution of Vif Anti-APOBEC3 Activity

    Directory of Open Access Journals (Sweden)

    Joshua R. Kane

    2015-05-01

    Full Text Available HIV-1 encodes the accessory protein Vif, which hijacks a host Cullin-RING ubiquitin ligase (CRL complex as well as the non-canonical cofactor CBFβ, to antagonize APOBEC3 antiviral proteins. Non-canonical cofactor recruitment to CRL complexes by viral factors, to date, has only been attributed to HIV-1 Vif. To further study this phenomenon, we employed a comparative approach combining proteomic, biochemical, structural, and virological techniques to investigate Vif complexes across the lentivirus genus, including primate (HIV-1 and simian immunodeficiency virus macaque [SIVmac] and non-primate (FIV, BIV, and MVV viruses. We find that CBFβ is completely dispensable for the activity of non-primate lentiviral Vif proteins. Furthermore, we find that BIV Vif requires no cofactor and that MVV Vif requires a novel cofactor, cyclophilin A (CYPA, for stable CRL complex formation and anti-APOBEC3 activity. We propose modular conservation of Vif complexes allows for potential exaptation of functions through the acquisition of non-CRL-associated host cofactors while preserving anti-APOBEC3 activity.

  13. pVHL interacts with Ceramide kinase like (CERKL) protein and ubiquitinates it for oxygen dependent proteasomal degradation.

    Science.gov (United States)

    Chen, Jiaxiang; Liu, Fei; Li, Hui; Archacki, Stephen; Gao, Meng; Liu, Ying; Liao, Shengjie; Huang, Mi; Wang, Jiuxiang; Yu, Shanshan; Li, Chang; Tang, Zhaohui; Liu, Mugen

    2015-11-01

    Mutations of Ceramide kinase-like (CERKL) gene are associated with retinitis pigmentosa (RP), an inherited degenerative eye disease. CERKL encodes an antioxidant protein which is critical to photoreceptor survival, its deficiency causes retinal degeneration as a result of oxidative damage. However, the regulation of CERKL in response to oxidative stress, and its contribution to photoreceptor survival remain unclear. pVHL, the substrate receptor of RING finger-type SCF like ECV ubiquitin ligase, binds and ubiquitinates a number of hydroxylated proteins for proteasomal degradation. Due to hydroxylated proteins which are modified by PHD1-3, pVHL dependent ubiquitin-proteasomal degradation pathway is blocked by PHD1-3 inhibitors (e.g. hypoxia or oxidative stress). In this study, we identified pVHL as an important regulator of CERKL. Western blot and in vivo ubiquitination assays showed hypoxia up-regulates CERKL at protein level by down-regulating its poly-ubiquitination. By Co-IP and domain mapping studies, we found CERKL complexes with ECV ligase via pVHL. Through overexpression and small RNA interference analysis, we demonstrated pVHL ubiquitinates CERKL for proteasomal degradation. Additionally, our work showed that the oxygen sensors PHD1 and PHD3 are involved in CERKL degradation. Collectively, our results indicated that pVHL interacts with CERKL and ubiquitinates it for oxygen dependent proteasomal degradation. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. The F-box protein FBXO44 mediates BRCA1 ubiquitination and degradation.

    Science.gov (United States)

    Lu, Yunzhe; Li, Jiezhi; Cheng, Dongmei; Parameswaran, Balaji; Zhang, Shaohua; Jiang, Zefei; Yew, P Renee; Peng, Junmin; Ye, Qinong; Hu, Yanfen

    2012-11-30

    BRCA1 mutations account for a significant proportion of familial breast and ovarian cancers. In addition, reduced BRCA1 protein is associated with sporadic cancer cases in these tissues. At the cellular level, BRCA1 plays a critical role in multiple cellular functions such as DNA repair and cell cycle checkpoint control. Its protein level is regulated in a cell cycle-dependent manner. However, regulation of BRCA1 protein stability is not fully understood. Our earlier study showed that the amino terminus of BRCA1 harbors a degron sequence that is sufficient and necessary for conferring BRCA1 degradation. In the current study, we used mass spectrometry to identify Skp1 that regulates BRCA1 protein stability. Small interfering RNA screening that targets all human F-box proteins uncovered FBXO44 as an important protein that influences BRCA1 protein level. The Skp1-Cul1-F-box-protein44 (SCF(FBXO44)) complex ubiquitinates full-length BRCA1 in vitro. Furthermore, the N terminus of BRCA1 mediates the interaction between BRCA1 and FBXO44. Overexpression of SCF(FBXO44) reduces BRCA1 protein level. Taken together, our work strongly suggests that SCF(FBXO44) is an E3 ubiquitin ligase responsible for BRCA1 degradation. In addition, FBXO44 expression pattern in breast carcinomas suggests that SCF(FBXO44)-mediated BRCA1 degradation might contribute to sporadic breast tumor development.

  15. HTLV-1 Tax Stimulates Ubiquitin E3 Ligase, Ring Finger Protein 8, to Assemble Lysine 63-Linked Polyubiquitin Chains for TAK1 and IKK Activation.

    Science.gov (United States)

    Ho, Yik-Khuan; Zhi, Huijun; Bowlin, Tara; Dorjbal, Batsukh; Philip, Subha; Zahoor, Muhammad Atif; Shih, Hsiu-Ming; Semmes, Oliver John; Schaefer, Brian; Glover, J N Mark; Giam, Chou-Zen

    2015-08-01

    Human T lymphotropic virus type 1 (HTLV-1) trans-activator/oncoprotein, Tax, impacts a multitude of cellular processes, including I-κB kinase (IKK)/NF-κB signaling, DNA damage repair, and mitosis. These activities of Tax have been implicated in the development of adult T-cell leukemia (ATL) in HTLV-1-infected individuals, but the underlying mechanisms remain obscure. IKK and its upstream kinase, TGFβ-activated kinase 1 (TAK1), contain ubiquitin-binding subunits, NEMO and TAB2/3 respectively, which interact with K63-linked polyubiquitin (K63-pUb) chains. Recruitment to K63-pUb allows cross auto-phosphorylation and activation of TAK1 to occur, followed by TAK1-catalyzed IKK phosphorylation and activation. Using cytosolic extracts of HeLa and Jurkat T cells supplemented with purified proteins we have identified ubiquitin E3 ligase, ring finger protein 8 (RNF8), and E2 conjugating enzymes, Ubc13:Uev1A and Ubc13:Uev2, to be the cellular factors utilized by Tax for TAK1 and IKK activation. In vitro, the combination of Tax and RNF8 greatly stimulated TAK1, IKK, IκBα and JNK phosphorylation. In vivo, RNF8 over-expression augmented while RNF8 ablation drastically reduced canonical NF-κB activation by Tax. Activation of the non-canonical NF-κB pathway by Tax, however, is unaffected by the loss of RNF8. Using purified components, we further demonstrated biochemically that Tax greatly stimulated RNF8 and Ubc13:Uev1A/Uev2 to assemble long K63-pUb chains. Finally, co-transfection of Tax with increasing amounts of RNF8 greatly induced K63-pUb assembly in a dose-dependent manner. Thus, Tax targets RNF8 and Ubc13:Uev1A/Uev2 to promote the assembly of K63-pUb chains, which signal the activation of TAK1 and multiple downstream kinases including IKK and JNK. Because of the roles RNF8 and K63-pUb chains play in DNA damage repair and cytokinesis, this mechanism may also explain the genomic instability of HTLV-1-transformed T cells and ATL cells.

  16. Regulation of CNKSR2 protein stability by the HECT E3 ubiquitin ligase Smurf2, and its role in breast cancer progression.

    Science.gov (United States)

    David, Diana; Surendran, Arun; Thulaseedharan, Jissa V; Nair, Asha S

    2018-03-13

    Smurf2 E3 ubiquitin ligase physically associates with and regulate the stability of distinct cellular protein substrates. The multi-functional scaffold protein Connector enhancer of kinase suppressor of ras 2 (CNKSR2) plays a key role in regulating cell proliferation, and differentiation through multiple receptor tyrosine kinase pathways. The aim of this study was to investigate whether the interaction between Smurf2 and CNKSR2 has any significant role in the post transcriptional regulation of CNKSR2 expression in breast cancer. Here we demonstrate a novel interaction of CNKSR2 with Smurf2 by co-immunoprecipitation, indirect immunofluorescence studies, and surface plasmon resonance (SPR) analysis, which can ubiquitinate, but stabilize CNKSR2 by protecting it from proteasome mediated degradation. CNKSR2 protein levels were significantly increased upon forced overexpression of Smurf2, indicating the role of Smurf2 in regulating the stability of CNKSR2. Conversely, Smurf2 knockdown resulted in a marked decrease in the protein level expression of CNKSR2 by facilitating enhanced polyubiquitination and proteasomal degradation and reduced the proliferation and clonogenic survival of MDA-MB-231 breast cancer cell lines. Tissue microarray data from 84 patients with various stages of mammary carcinoma, including (in order of increasing malignant potential) normal, usual hyperplasia, fibrocystic changes, fibroadenoma, carcinoma-in-situ, and invasive ductal carcinoma showed a statistically significant association between Smurf2 and CNKSR2 expression, which is also well correlated with the ER, PR, and HER2 status of the tissue samples. A comparatively high expression of Smurf2 and CNKSR2 was observed when the expression of ER and PR was low, and HER2 was high. Consistently, both Smurf2 and CNKSR2 showed an integrated expression in MCF10 breast progression model cell lines. Altogether, our findings reveal that Smurf2 is a novel positive regulator of CNKSR2 and suggest that Smurf

  17. Forkhead box O3 plays a role in skeletal muscle atrophy through expression of E3 ubiquitin ligases MuRF-1 and atrogin-1 in Cushing's syndrome.

    Science.gov (United States)

    Kang, Seol-Hee; Lee, Hae-Ahm; Kim, Mina; Lee, Eunjo; Sohn, Uy Dong; Kim, Inkyeom

    2017-06-01

    Cushing's syndrome is caused by overproduction of the adrenocorticotropic hormone (ACTH), which stimulates the adrenal grand to make cortisol. Skeletal muscle wasting occurs in pathophysiological response to Cushing's syndrome. The forkhead box (FOX) protein family has been implicated as a key regulator of muscle loss under conditions such as diabetes and sepsis. However, the mechanistic role of the FOXO family in ACTH-induced muscle atrophy is not understood. We hypothesized that FOXO3a plays a role in muscle atrophy through expression of the E3 ubiquitin ligases, muscle RING finger protein-1 (MuRF-1), and atrogin-1 in Cushing's syndrome. For establishment of a Cushing's syndrome animal model, Sprague-Dawley rats were implanted with osmotic minipumps containing ACTH (40 ng·kg -1 ·day -1 ). ACTH infusion significantly reduced muscle weight. In ACTH-infused rats, MuRF-1, atrogin-1, and FOXO3a were upregulated and the FOXO3a promoter was targeted by the glucocorticoid receptor (GR). Transcriptional activity and expression of FOXO3a were significantly decreased by the GR antagonist RU486. Treatment with RU486 reduced MuRF-1 and atrogin-1 expression in accordance with reduced enrichment of FOXO3a and Pol II on the promoters. Knockdown of FOXO3a prevented dexamethasone-induced MuRF-1 and atrogin-1 expression. These results indicate that FOXO3a plays a role in muscle atrophy through expression of MuRF-1 and atrogin-1 in Cushing's syndrome. Copyright © 2017 the American Physiological Society.

  18. Loss of the nuclear pool of ubiquitin ligase CHIP/STUB1 in breast cancer unleashes the MZF1-cathepsin pro-oncogenic program.

    Science.gov (United States)

    Luan, Haitao; Mohapatra, Bhopal; Bielecki, Timothy A; Mushtaq, Insha; Mirza, Sameer; Jennings, Tameka A; Clubb, Robert J; An, Wei; Ahmed, Dena; El Ansari, Rokaya; Storck, Matthew D; Mishra, Nitish K; Guda, Chittibabu; Sheinin, Yuri M; Meza, Jane L; Raja, Srikumar; Rakha, Emad A; Band, Vimla; Band, Hamid

    2018-03-06

    CHIP/STUB1 ubiquitin ligase is a negative co-chaperone for HSP90/HSC70, and its expression is reduced or lost in several cancers, including breast cancer. Using an extensive and well-annotated breast cancer tissue collection, we identified the loss of nuclear but not cytoplasmic CHIP to predict more aggressive tumorigenesis and shorter patient survival, with loss of CHIP in two-thirds of ErbB2+ and triple-negative breast cancers and in one-third of ER+ breast cancers. Reduced CHIP expression was seen in breast cancer patient-derived xenograft tumors and in ErbB2+ and triple-negative breast cancer cell lines. Ectopic CHIP expression in ErbB2+ lines suppressed in vitro oncogenic traits and in vivo xenograft tumor growth. An unbiased screen for CHIP-regulated nuclear transcription factors identified many candidates whose DNA-binding activity was up- or down-regulated by CHIP. We characterized Myeloid Zinc Finger 1 (MZF1) as a CHIP target given its recently identified role as a positive regulator of cathepsin B/L (CTSB/L)-mediated tumor cell invasion downstream of ErbB2. We show that CHIP negatively regulates CTSB/L expression in ErbB2+ and other breast cancer cell lines. CTSB inhibition abrogates invasion and matrix degradation in vitro and halts ErbB2+ breast cancer cell line xenograft growth. We conclude that loss of CHIP remodels the cellular transcriptome to unleash critical pro-oncogenic pathways, such as the matrix-degrading enzymes of the cathepsin family, whose components can provide new therapeutic opportunities in breast and other cancers with loss of CHIP expression. Copyright ©2018, American Association for Cancer Research.

  19. The putative E3 ubiquitin ligase ECERIFERUM9 regulates abscisic acid biosynthesis and response during seed germination and postgermination growth in arabidopsis

    KAUST Repository

    Zhao, Huayan

    2014-05-08

    The ECERIFERUM9 (CER9) gene encodes a putative E3 ubiquitin ligase that functions in cuticle biosynthesis and the maintenance of plant water status. Here, we found that CER9 is also involved in abscisic acid (ABA) signaling in seeds and young seedlings of Arabidopsis (Arabidopsis thaliana). The germinated embryos of the mutants exhibited enhanced sensitivity to ABA during the transition from reversible dormancy to determinate seedling growth. Expression of the CER9 gene is closely related to ABA levels and displays a similar pattern to that of ABSCISIC ACID-INSENSITIVE5 (ABI5), which encodes a positive regulator of ABA responses in seeds. cer9 mutant seeds exhibited delayed germination that is independent of seed coat permeability. Quantitative proteomic analyses showed that cer9 seeds had a protein profile similar to that of the wild type treated with ABA. Transcriptomics analyses revealed that genes involved in ABA biosynthesis or signaling pathways were differentially regulated in cer9 seeds. Consistent with this, high levels of ABA were detected in dry seeds of cer9. Blocking ABA biosynthesis by fluridone treatment or by combining an ABA-deficient mutation with cer9 attenuated the phenotypes of cer9. Whereas introduction of the abi1-1, abi3-1, or abi4-103 mutation could completely eliminate the ABA hypersensitivity of cer9, introduction of abi5 resulted only in partial suppression. These results indicate that CER9 is a novel negative regulator of ABA biosynthesis and the ABA signaling pathway during seed germination. © 2014 American Society of Plant Biologists. All Rights Reserved.

  20. TRIM22 Inhibits HIV-1 Transcription Independently of Its E3 Ubiquitin Ligase Activity, Tat, and NF-κB-Responsive Long Terminal Repeat Elements▿

    Science.gov (United States)

    Kajaste-Rudnitski, Anna; Marelli, Sara S.; Pultrone, Cinzia; Pertel, Thomas; Uchil, Pradeep D.; Mechti, Nadir; Mothes, Walther; Poli, Guido; Luban, Jeremy; Vicenzi, Elisa

    2011-01-01

    Previous studies identified clones of the U937 promonocytic cell line that were either permissive or nonpermissive for human immunodeficiency virus type 1 (HIV-1) replication. These clones were investigated further in the search for host restriction factors that could explain their differential capacity to support HIV-1 replication. Among known HIV-1 restriction factors screened, tripartite motif-containing protein 22 (TRIM22) was the only factor constitutively expressed in nonpermissive and absent in permissive U937 cells. Stable TRIM22 knockdown (KD) rescued HIV-1 long-terminal-repeat (LTR)-driven transcription in KD-nonpermissive cells to the levels observed in permissive cells. Conversely, transduction-mediated expression of TRIM22 in permissive cells reduced LTR-driven luciferase expression by ∼7-fold, supporting a negative role of TRIM22 in HIV-1 transcription. This finding was further confirmed in the human T cell line A3.01 expressing TRIM22. Moreover, overexpression of TRIM22 in 293T cells significantly impaired basal and phorbol myristate acetate-ionomycin-induced HIV-1 LTR-driven gene expression, whereas inhibition of tumor necrosis factor alpha-induced viral transcription was a consequence of lower basal expression. In agreement, TRIM22 equally inhibited an LTR construct lacking the tandem NF-κB binding sites. In addition, TRIM22 did not affect Tat-mediated LTR transactivation. Finally, these effects were independent of TRIM22 E3 ubiquitin-ligase activity. In the context of replication-competent virus, significantly higher levels of HIV-1 production were observed in KD-nonpermissive versus control nonpermissive U937 cells after infection. In contrast, lower peak levels of HIV-1 replication characterized U937 and A3.01 cells expressing TRIM22 versus their control transduced counterpart. Thus, nuclear TRIM22 significantly impairs HIV-1 replication, likely by interfering with Tat- and NF-κB-independent LTR-driven transcription. PMID:21345949

  1. A short motif in Arabidopsis CDK inhibitor ICK1 decreases the protein level, probably through a ubiquitin-independent mechanism.

    Science.gov (United States)

    Li, Qin; Shi, Xianzong; Ye, Shengjian; Wang, Sheng; Chan, Ron; Harkness, Troy; Wang, Hong

    2016-09-01

    The ICK/KRP family of cyclin-dependent kinase (CDK) inhibitors modulates the activity of plant CDKs through protein binding. Previous work has shown that changing the levels of ICK/KRP proteins by overexpression or downregulation affects cell proliferation and plant growth, and also that the ubiquitin proteasome system is involved in degradation of ICK/KRPs. We show in this study that the region encompassing amino acids 21 to 40 is critical for ICK1 levels in both Arabidopsis and yeast. To determine how degradation of ICK1 is controlled, we analyzed the accumulation of hemagglutinin (HA) epitope-tagged ICK1 proteins in yeast mutants defective for two ubiquitin E3 ligases. The highest level of HA-ICK1 protein was observed when both the N-terminal 1-40 sequence was removed and the SCF (SKP1-Cullin1-F-box complex) function disrupted, suggesting the involvement of both SCF-dependent and SCF-independent mechanisms in the degradation of ICK1 in yeast. A short motif consisting of residues 21-30 is sufficient to render green fluorescent protein (GFP) unstable in plants and had a similar effect in plants regardless of whether it was fused to the N-terminus or C-terminus of GFP. Furthermore, results from a yeast ubiquitin receptor mutant rpn10Δ indicate that protein ubiquitination is not critical in the degradation of GFP-ICK1(1-40) in yeast. These results thus identify a protein-destabilizing sequence motif that does not contain a typical ubiquitination residue, suggesting that it probably functions through an SCF-independent mechanism. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  2. Fbxw5 suppresses nuclear c-Myb activity via DDB1-Cul4-Rbx1 ligase-mediated sumoylation

    Energy Technology Data Exchange (ETDEWEB)

    Kanei-Ishii, Chie; Nomura, Teruaki; Egoh, Ayako [Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074 (Japan); Ishii, Shunsuke, E-mail: sishii@rtc.riken.jp [Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074 (Japan)

    2012-09-14

    Highlights: Black-Right-Pointing-Pointer Fbxw5 enhances sumoylation of c-Myb. Black-Right-Pointing-Pointer The DDB1-Cul4A-Rbx1 complex mediates c-Myb sumoylation. Black-Right-Pointing-Pointer The Fbxw5-DDB1-Cul4A-Rdx1 complex is a dual SUMO/ubiquitin ligase. Black-Right-Pointing-Pointer Fbxw5 suppresses the c-Myb trans-activating capacity. -- Abstract: The c-myb proto-oncogene product (c-Myb) is degraded in response to Wnt-1 signaling. In this process, Fbxw7{alpha}, the F-box protein of the SCF complex, binds to c-Myb via its C-terminal WD40 domain, and induces the ubiquitination of c-Myb. Here, we report that Fbxw5, another F-box protein, enhances sumoylation of nuclear c-Myb. Fbxw5 enhanced c-Myb sumoylation via the DDB1-Cul4A-Rbx1 complex. Since the Fbxw5-DDB1-Cul4A-Rbx1 complex was shown to act as a ubiquitin ligase for tumor suppressor TSC2, our results suggest that this complex can function as a dual SUMO/ubiquitin ligase. Fbxw5, which is localized to both nucleus and cytosol, enhanced sumoylation of nuclear c-Myb and induced the localization of c-Myb to nuclear dot-like domains. Co-expression of Fbxw5 suppressed the trans-activation of c-myc promoter by wild-type c-Myb, but not by v-Myb, which lacks the sumoylation sites. These results suggest that multiple E3 ligases suppress c-Myb activity through sumoylation or ubiquitination, and that v-Myb is no longer subject to these negative regulations.

  3. Role of the feline immunodeficiency virus L-domain in the presence or absence of Gag processing: involvement of ubiquitin and Nedd4-2s ligase in viral egress.

    Science.gov (United States)

    Calistri, Arianna; Del Vecchio, Claudia; Salata, Cristiano; Celestino, Michele; Celegato, Marta; Göttlinger, Heinrich; Palù, Giorgio; Parolin, Cristina

    2009-01-01

    RNA-enveloped viruses bud from infected cells by exploiting the multivesicular body (MVB) pathway. In this context, ubiquitination of structural viral proteins and their direct interaction with cellular factors involved in the MVB biogenesis through short proline rich regions, named late domains (L-domains), are crucial mechanisms. Here we report that, in contrast with the human immunodeficiency virus (HIV), the feline immunodeficiency virus (FIV), a non-primate lentivirus, is strictly dependent for its budding on a "PSAP"-type L-domain, mapping in the carboxy-terminal region of Gag, irrespective of a functional viral protease. Moreover, we provide evidence that FIV egress is related to Gag ubiquitination, that is, linked to the presence of an active L-domain. Finally, although FIV Gag does not contain a PPxY motif, we show that the Nedd4-2s ubiquitin ligase enhances FIV Gag ubiquitination and it is capable to rescue viral mutants lacking a functional L-domain. In conclusion, our data bring to light peculiar aspects of FIV egress, but we also demonstrate that a non-primate lentivirus shares with HIV-1 a novel mechanism of connection to the cellular budding machinery. (c) 2008 Wiley-Liss, Inc.

  4. The E3 Ubiquitin Ligase- and Protein Phosphatase 2A (PP2A)-binding Domains of the Alpha4 Protein Are Both Required for Alpha4 to Inhibit PP2A Degradation

    Energy Technology Data Exchange (ETDEWEB)

    LeNoue-Newton, Michele; Watkins, Guy R.; Zou, Ping; Germane, Katherine L.; McCorvey, Lisa R.; Wadzinski, Brian E.; Spiller, Benjamin W. (Vanderbilt)

    2012-04-30

    Protein phosphatase 2A (PP2A) is regulated through a variety of mechanisms, including post-translational modifications and association with regulatory proteins. Alpha4 is one such regulatory protein that binds the PP2A catalytic subunit (PP2Ac) and protects it from polyubiquitination and degradation. Alpha4 is a multidomain protein with a C-terminal domain that binds Mid1, a putative E3 ubiquitin ligase, and an N-terminal domain containing the PP2Ac-binding site. In this work, we present the structure of the N-terminal domain of mammalian Alpha4 determined by x-ray crystallography and use double electron-electron resonance spectroscopy to show that it is a flexible tetratricopeptide repeat-like protein. Structurally, Alpha4 differs from its yeast homolog, Tap42, in two important ways: (1) the position of the helix containing the PP2Ac-binding residues is in a more open conformation, showing flexibility in this region; and (2) Alpha4 contains a ubiquitin-interacting motif. The effects of wild-type and mutant Alpha4 on PP2Ac ubiquitination and stability were examined in mammalian cells by performing tandem ubiquitin-binding entity precipitations and cycloheximide chase experiments. Our results reveal that both the C-terminal Mid1-binding domain and the PP2Ac-binding determinants are required for Alpha4-mediated protection of PP2Ac from polyubiquitination and degradation.

  5. Downregulation of Smurf2, a tumor-suppressive ubiquitin ligase, in triple-negative breast cancers: Involvement of the RB-microRNA axis

    International Nuclear Information System (INIS)

    Liu, Xianpeng; Gu, Xin; Sun, Limin; Flowers, Ashley B; Rademaker, Alfred W; Zhou, Yiran; Kiyokawa, Hiroaki

    2014-01-01

    The HECT family ubiquitin ligase Smurf2 regulates cell polarity, migration, division, differentiation and death, by targeting diverse substrates that are critical for receptor signaling, cytoskeleton, chromatin remodeling and transcription. Recent studies suggest that Smurf2 functions as a tumor suppressor in mice. However, no inactivating mutation of SMURF2 has been reported in human, and information about Smurf2 expression in human cancer remains limited or complicated. Here we demonstrate that Smurf2 expression is downregulated in human breast cancer tissues, especially of the triple-negative subtype, and address the mechanism of Smurf2 downregulation in triple-negative breast cancer cells. Human breast cancer tissues (47 samples expressing estrogen receptor (ER) and 43 samples with triple-negative status) were examined by immunohistochemistry for the expression of Smurf2. Ten widely-studied human breast cancer cell lines were examined for the expression of Smurf2. Furthermore, microRNA-mediated regulation of Smurf2 was investigated in triple-negative cancer cell lines. Immunohistochemical analysis showed that benign mammary epithelial cells expressed high levels of Smurf2, so did cells in ductal carcinomas in situ. In contrast, invasive ductal carcinomas showed focal or diffuse decrease in Smurf2 expression, which was observed more frequently in triple-negative tumors than in ER-positive tumors. Consistently, human triple-negative breast cancer cell lines such as BT549, MDA-MB-436, DU-4475 and MDA-MB-468 cells showed significantly lower expression of Smurf2 protein, compared to ER + or HER2+ cell lines. Studies using quantitative PCR and specific microRNA inhibitors indicated that increased expression of miR-15a, miR-15b, miR-16 and miR-128 was involved in Smurf2 downregulation in those triple-negative cancer cell lines, which have mutations in the retinoblastoma (RB) gene. Forced expression of RB increased levels of Smurf2 protein with concomitant decreases in

  6. The Matrix Protein of Nipah Virus Targets the E3-Ubiquitin Ligase TRIM6 to Inhibit the IKKε Kinase-Mediated Type-I IFN Antiviral Response.

    Directory of Open Access Journals (Sweden)

    Preeti Bharaj

    2016-09-01

    Full Text Available For efficient replication, viruses have developed mechanisms to evade innate immune responses, including the antiviral type-I interferon (IFN-I system. Nipah virus (NiV, a highly pathogenic member of the Paramyxoviridae family (genus Henipavirus, is known to encode for four P gene-derived viral proteins (P/C/W/V with IFN-I antagonist functions. Here we report that NiV matrix protein (NiV-M, which is important for virus assembly and budding, can also inhibit IFN-I responses. IFN-I production requires activation of multiple signaling components including the IκB kinase epsilon (IKKε. We previously showed that the E3-ubiquitin ligase TRIM6 catalyzes the synthesis of unanchored K48-linked polyubiquitin chains, which are not covalently attached to any protein, and activate IKKε for induction of IFN-I mediated antiviral responses. Using co-immunoprecipitation assays and confocal microscopy we show here that the NiV-M protein interacts with TRIM6 and promotes TRIM6 degradation. Consequently, NiV-M expression results in reduced levels of unanchored K48-linked polyubiquitin chains associated with IKKε leading to impaired IKKε oligomerization, IKKε autophosphorylation and reduced IFN-mediated responses. This IFN antagonist function of NiV-M requires a conserved lysine residue (K258 in the bipartite nuclear localization signal that is found in divergent henipaviruses. Consistent with this, the matrix proteins of Ghana, Hendra and Cedar viruses were also able to inhibit IFNβ induction. Live NiV infection, but not a recombinant NiV lacking the M protein, reduced the levels of endogenous TRIM6 protein expression. To our knowledge, matrix proteins of paramyxoviruses have never been reported to be involved in innate immune antagonism. We report here a novel mechanism of viral innate immune evasion by targeting TRIM6, IKKε and unanchored polyubiquitin chains. These findings expand the universe of viral IFN antagonism strategies and provide a new

  7. Differential gene expression of muscle-specific ubiquitin ligase MAFbx/Atrogin-1 and MuRF1 in response to immobilization-induced atrophy of slow-twitch and fast-twitch muscles.

    Science.gov (United States)

    Okamoto, Takeshi; Torii, Suguru; Machida, Shuichi

    2011-11-01

    We examined muscle-specific ubiquitin ligases MAFbx/Atrogin-1 and MuRF1 gene expression resulting from immobilization-induced skeletal muscle atrophy of slow-twitch soleus and fast-twitch plantaris muscles. Male C57BL/6 mice were subjected to hindlimb immobilization, which induced similar percentage decreases in muscle mass in the soleus and plantaris muscles. Expression of MAFbx/Atrogin-1 and MuRF1 was significantly greater in the plantaris muscle than in the soleus muscle during the early stage of atrophy. After a 3-day period of atrophy, total FOXO3a protein level had increased in both muscles, while phosphorylated FOXO3a protein had decreased in the plantaris muscle, but not in the soleus muscle. PGC-1α protein expression did not change following immobilization in both muscles, but basal PGC-1α protein in the soleus was markedly higher than that in plantaris muscles. These data suggest that although soleus and plantaris muscles atrophied to a similar extent and that muscle-specific ubiquitin protein ligases (E3) may contribute more to the atrophy of fast-twitch muscle than to that of slow-twitch muscle during immobilization.

  8. The E3 ubiquitin ligases β-TrCP and FBXW7 cooperatively mediates GSK3-dependent Mcl-1 degradation induced by the Akt inhibitor API-1, resulting in apoptosis.

    Science.gov (United States)

    Ren, Hui; Koo, Junghui; Guan, Baoxiang; Yue, Ping; Deng, Xingming; Chen, Mingwei; Khuri, Fadlo R; Sun, Shi-Yong

    2013-11-22

    The novel Akt inhibitor, API-1, induces apoptosis through undefined mechanisms. The current study focuses on revealing the mechanisms by which API-1 induces apoptosis. API-1 rapidly and potently reduced the levels of Mcl-1 primarily in API-1-senstive lung cancer cell lines. Ectopic expression of Mcl-1 protected cells from induction of apoptosis by API-1. API-1 treatment decreased the half-life of Mcl-1, whereas inhibition of the proteasome with MG132 rescued Mcl-1 reduction induced by API-1. API-1 decreased Mcl-1 levels accompanied with a rapid increase in Mcl-1 phosphorylation (S159/T163). Moreover, inhibition of GSK3 inhibited Mcl-1 phosphorylation and reduction induced by API-1 and antagonized the effect of API-1 on induction of apoptosis. Knockdown of either FBXW7 or β-TrCP alone, both of which are E3 ubiquitin ligases involved in Mcl-1 degradation, only partially rescued Mcl-1 reduction induced by API-1. However, double knockdown of both E3 ubiquitin ligases enhanced the rescue of API-1-induced Mcl-1 reduction. API-1 induces GSK3-dependent, β-TrCP- and FBXW7-mediated Mcl-1 degradation, resulting in induction of apoptosis.

  9. The E3 ubiquitin ligase protein associated with Myc (Pam) regulates mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signaling in vivo through N- and C-terminal domains.

    Science.gov (United States)

    Han, Sangyeul; Kim, Sun; Bahl, Samira; Li, Lin; Burande, Clara F; Smith, Nicole; James, Marianne; Beauchamp, Roberta L; Bhide, Pradeep; DiAntonio, Aaron; Ramesh, Vijaya

    2012-08-31

    Pam and its homologs (the PHR protein family) are large E3 ubiquitin ligases that function to regulate synapse formation and growth in mammals, zebrafish, Drosophila, and Caenorhabditis elegans. Phr1-deficient mouse models (Phr1(Δ8,9) and Phr1(Magellan), with deletions in the N-terminal putative guanine exchange factor region and the C-terminal ubiquitin ligase region, respectively) exhibit axon guidance/outgrowth defects and striking defects of major axon tracts in the CNS. Our earlier studies identified Pam to be associated with tuberous sclerosis complex (TSC) proteins, ubiquitinating TSC2 and regulating mammalian/mechanistic target of rapamycin (mTOR) signaling. Here, we examine the potential involvement of the TSC/mTOR complex 1(mTORC1) signaling pathway in Phr1-deficient mouse models. We observed attenuation of mTORC1 signaling in the brains of both Phr1(Δ8,9) and Phr1(Magellan) mouse models. Our results establish that Pam regulates TSC/mTOR signaling in vitro and in vivo through two distinct domains. To further address whether Pam regulates mTORC1 through two functionally independent domains, we undertook heterozygous mutant crossing between Phr1(Δ8,9) and Phr1(Magellan) mice to generate a compound heterozygous model to determine whether these two domains can complement each other. mTORC1 signaling was not attenuated in the brains of double mutants (Phr1(Δ8,9/Mag)), confirming that Pam displays dual regulation of the mTORC1 pathway through two functional domains. Our results also suggest that although dysregulation of mTORC1 signaling may be responsible for the corpus callosum defects, other neurodevelopmental defects observed with Phr1 deficiency are independent of mTORC1 signaling. The ubiquitin ligase complex containing Pam-Fbxo45 likely targets additional synaptic and axonal proteins, which may explain the overlapping neurodevelopmental defects observed in Phr1 and Fbxo45 deficiency.

  10. The ubiquitin ligase Cullin5SOCS2 regulates NDR1/STK38 stability and NF-κB transactivation

    DEFF Research Database (Denmark)

    Paul, Indranil; Batth, Tanveer S; Iglesias-Gato, Diego

    2017-01-01

    SOCS2 is a pleiotropic E3 ligase. Its deficiency is associated with gigantism and organismal lethality upon inflammatory challenge. However, mechanistic understanding of SOCS2 function is dismal due to our unawareness of its protein substrates. We performed a mass spectrometry based proteomic pro...

  11. Ubiquitination of human leukocyte antigen (HLA)-DM by different membrane-associated RING-CH (MARCH) protein family E3 ligases targets different endocytic pathways.

    Science.gov (United States)

    Jahnke, Martin; Trowsdale, John; Kelly, Adrian P

    2012-03-02

    HLA-DM plays an essential role in the peptide loading of classical class II molecules and is present both at the cell surface and in late endosomal peptide-loading compartments. Trafficking of DM within antigen-presenting cells is complex and is, in part, controlled by a tyrosine-based targeting signal present in the cytoplasmic tail of DMβ. Here, we show that DM also undergoes post-translational modification through ubiquitination of a single lysine residue present in the cytoplasmic tail of the α chain, DMα. Ubiquitination of DM by MARCH1 and MARCH9 induced loss of DM molecules from the cell surface by a mechanism that cumulatively involved both direct attachment of ubiquitin chains to DMα and a functional tyrosine-based signal on DMβ. In contrast, MARCH8-induced loss of surface DM was entirely dependent upon the tyrosine signal on DMβ. In the absence of this tyrosine residue, levels of DM remained unchanged irrespective of whether DMα was ubiquitinated by MARCH8. The influence of MARCH8 was indirect and may have resulted from modification of components of the endocytic machinery by ubiquitination.

  12. Ubiquitination of Human Leukocyte Antigen (HLA)-DM by Different Membrane-associated RING-CH (MARCH) Protein Family E3 Ligases Targets Different Endocytic Pathways*

    Science.gov (United States)

    Jahnke, Martin; Trowsdale, John; Kelly, Adrian P.

    2012-01-01

    HLA-DM plays an essential role in the peptide loading of classical class II molecules and is present both at the cell surface and in late endosomal peptide-loading compartments. Trafficking of DM within antigen-presenting cells is complex and is, in part, controlled by a tyrosine-based targeting signal present in the cytoplasmic tail of DMβ. Here, we show that DM also undergoes post-translational modification through ubiquitination of a single lysine residue present in the cytoplasmic tail of the α chain, DMα. Ubiquitination of DM by MARCH1 and MARCH9 induced loss of DM molecules from the cell surface by a mechanism that cumulatively involved both direct attachment of ubiquitin chains to DMα and a functional tyrosine-based signal on DMβ. In contrast, MARCH8-induced loss of surface DM was entirely dependent upon the tyrosine signal on DMβ. In the absence of this tyrosine residue, levels of DM remained unchanged irrespective of whether DMα was ubiquitinated by MARCH8. The influence of MARCH8 was indirect and may have resulted from modification of components of the endocytic machinery by ubiquitination. PMID:22247549

  13. Fibroblast growth factor-21 (FGF21) regulates low-density lipoprotein receptor (LDLR) levels in cells via the E3-ubiquitin ligase Mylip/Idol and the Canopy2 (Cnpy2)/Mylip-interacting saposin-like protein (Msap).

    Science.gov (United States)

    Do, Hai Thi; Tselykh, Timofey V; Mäkelä, Johanna; Ho, Tho Huu; Olkkonen, Vesa M; Bornhauser, Beat C; Korhonen, Laura; Zelcer, Noam; Lindholm, Dan

    2012-04-13

    The LDLR is a critical factor in the regulation of blood cholesterol levels that are altered in different human diseases. The level of LDLR in the cell is regulated by both transcriptional and post-transcriptional events. The E3 ubiquitin ligase, myosin regulatory light chain-interacting protein (Mylip)/inducible degrader of the LDL-R (Idol) was shown to induce degradation of LDLR via protein ubiquitination. We have here studied novel factors and mechanisms that may regulate Mylip/Idol in human hepatocyte cells and in mouse macrophages. We observed that FGF21 that is present in serum in different conditions reduced Mylip/Idol at the RNA and protein level, and increased LDLR levels and stability in the cells. FGF21 also enhanced expression of Canopy2 (Cnpy2)/MIR-interacting Saposin-like protein (Msap) that is known to interact with Mylip/Idol. Overexpression of Cnpy2/Msap increased LDLRs, and knockdown experiments showed that Cnpy2/Msap is crucial for the FGF21 effect on LDLRs. Experiments using DiI-labeled LDL particles showed that FGF21 increased lipoprotein uptake and the effect of FGF21 was additive to that of statins. Our results are consistent with an important role of FGF21 and Cnpy2/Msap in the regulation of LDLRs in cultured cells, which warrants further studies using human samples.

  14. Fibroblast Growth Factor-21 (FGF21) Regulates Low-density Lipoprotein Receptor (LDLR) Levels in Cells via the E3-ubiquitin Ligase Mylip/Idol and the Canopy2 (Cnpy2)/Mylip-interacting Saposin-like Protein (Msap)*

    Science.gov (United States)

    Do, Hai Thi; Tselykh, Timofey V.; Mäkelä, Johanna; Ho, Tho Huu; Olkkonen, Vesa M.; Bornhauser, Beat C.; Korhonen, Laura; Zelcer, Noam; Lindholm, Dan

    2012-01-01

    The LDLR is a critical factor in the regulation of blood cholesterol levels that are altered in different human diseases. The level of LDLR in the cell is regulated by both transcriptional and post-transcriptional events. The E3 ubiquitin ligase, myosin regulatory light chain-interacting protein (Mylip)/inducible degrader of the LDL-R (Idol) was shown to induce degradation of LDLR via protein ubiquitination. We have here studied novel factors and mechanisms that may regulate Mylip/Idol in human hepatocyte cells and in mouse macrophages. We observed that FGF21 that is present in serum in different conditions reduced Mylip/Idol at the RNA and protein level, and increased LDLR levels and stability in the cells. FGF21 also enhanced expression of Canopy2 (Cnpy2)/MIR-interacting Saposin-like protein (Msap) that is known to interact with Mylip/Idol. Overexpression of Cnpy2/Msap increased LDLRs, and knockdown experiments showed that Cnpy2/Msap is crucial for the FGF21 effect on LDLRs. Experiments using DiI-labeled LDL particles showed that FGF21 increased lipoprotein uptake and the effect of FGF21 was additive to that of statins. Our results are consistent with an important role of FGF21 and Cnpy2/Msap in the regulation of LDLRs in cultured cells, which warrants further studies using human samples. PMID:22378787

  15. The small ubiquitin-like modifier E3 ligase MdSIZ1 promotes anthocyanin accumulation by sumoylating MdMYB1 under low-temperature conditions in apple.

    Science.gov (United States)

    Zhou, Li-Jie; Li, Yuan-Yuan; Zhang, Rui-Fen; Zhang, Chun-Ling; Xie, Xing-Bin; Zhao, Cheng; Hao, Yu-Jin

    2017-10-01

    MdMYB1 acts as a crucial component of the MYB-bHLH-WD40 complex to regulate anthocyanin biosynthesis in red-skinned apples (Malus domestica), but little is known about its post-translational regulation. Here, a small ubiquitin-like modifier E3 ligase MdSIZ1 was screened out as an MdMYB1-interacting protein with a yeast two-hybridization approach. The interaction between MdSIZ1 and MdMYB1 was further verified with pull-down and CoIP assays. Furthermore, it was found that MdSIZ1 directly sumoylated MdMYB1 proteins in vivo and in vitro, especially under moderately low temperature (17 °C) conditions, and that this sumoylation was required for MdMYB1 protein stability. Moreover, the transcription level of MdSIZ1 gene was remarkably induced by low temperature and phosphorus deficiency, and MdSIZ1 overexpression exerted a large positive influence on anthocyanin accumulation and red fruit coloration, suggesting its important role in the regulation of anthocyanin biosynthesis under stress conditions. Our findings reveal an important role for a small ubiquitin-like modifier modification of MYB transcription factors in regulation of anthocyanin biosynthesis in plants. © 2017 John Wiley & Sons Ltd.

  16. Non–SCF-type F-box protein Roy1/Ymr258c interacts with a Rab5-like GTPase Ypt52 and inhibits Ypt52 function

    Science.gov (United States)

    Liu, Yuan; Nakatsukasa, Kunio; Kotera, Michiko; Kanada, Akira; Nishimura, Takashi; Kishi, Tsutomu; Mimura, Satoru; Kamura, Takumi

    2011-01-01

    Skp1/Cul1/F-box (SCF)–type F-box proteins are a component of the Cullin-RING SCF ubiquitin E3 ligase, which is involved in numerous cellular processes. However, the function of non–SCF-type F-box proteins remains largely unknown. The Rab5-like small guanosine 5′-triphosphatase Vps21/Ypt51 is a key regulator of intracellular transportation; however, deletion of its isoforms, Ypt52 and Ypt53, results in only a modest inhibition of intracellular trafficking. The function of these proteins therefore remains largely elusive. Here we analyze the role of a previously uncharacterized non–SCF-type F-box protein, Roy1/Ymr258c, in cell growth and intracellular transport in Saccharomyces cerevisiae. Roy1 binds to Ypt52 under physiological conditions, and Skp1 is indispensable for the association of Roy1 with Ypt52. The vps21Δ yeast cells exhibit severe deficiencies in cell growth and intracellular trafficking, whereas simultaneous deletion of roy1 alleviates the defects caused by deletion of vps21. However, additional disruption of ypt52 in roy1Δvps21Δ cells largely suppresses the cell growth and trafficking observed in roy1Δvps21Δ cells. We demonstrate that Roy1 interacts with guanosine 5′-diphosphate–bound and nucleotide-free Ypt52 and thereby inhibits the formation of guanosine 5′-triphosphate–bound, active Ypt52. These results thus indicate that Roy1 negatively modulates cell viability and intracellular transport by suppressing Ypt52. PMID:21389113

  17. Non-SCF-type F-box protein Roy1/Ymr258c interacts with a Rab5-like GTPase Ypt52 and inhibits Ypt52 function.

    Science.gov (United States)

    Liu, Yuan; Nakatsukasa, Kunio; Kotera, Michiko; Kanada, Akira; Nishimura, Takashi; Kishi, Tsutomu; Mimura, Satoru; Kamura, Takumi

    2011-05-01

    Skp1/Cul1/F-box (SCF)-type F-box proteins are a component of the Cullin-RING SCF ubiquitin E3 ligase, which is involved in numerous cellular processes. However, the function of non-SCF-type F-box proteins remains largely unknown. The Rab5-like small guanosine 5'-triphosphatase Vps21/Ypt51 is a key regulator of intracellular transportation; however, deletion of its isoforms, Ypt52 and Ypt53, results in only a modest inhibition of intracellular trafficking. The function of these proteins therefore remains largely elusive. Here we analyze the role of a previously uncharacterized non-SCF-type F-box protein, Roy1/Ymr258c, in cell growth and intracellular transport in Saccharomyces cerevisiae. Roy1 binds to Ypt52 under physiological conditions, and Skp1 is indispensable for the association of Roy1 with Ypt52. The vps21Δ yeast cells exhibit severe deficiencies in cell growth and intracellular trafficking, whereas simultaneous deletion of roy1 alleviates the defects caused by deletion of vps21. However, additional disruption of ypt52 in roy1Δvps21Δ cells largely suppresses the cell growth and trafficking observed in roy1Δvps21Δ cells. We demonstrate that Roy1 interacts with guanosine 5'-diphosphate-bound and nucleotide-free Ypt52 and thereby inhibits the formation of guanosine 5'-triphosphate-bound, active Ypt52. These results thus indicate that Roy1 negatively modulates cell viability and intracellular transport by suppressing Ypt52.

  18. Control of lipid metabolism by phosphorylation-dependent degradation of the SREBP family of transcription factors by SCF(Fbw7).

    Science.gov (United States)

    Sundqvist, Anders; Bengoechea-Alonso, Maria T; Ye, Xin; Lukiyanchuk, Vasyl; Jin, Jianping; Harper, J Wade; Ericsson, Johan

    2005-06-01

    The sterol regulatory element binding protein (SREBP) family of transcription factors controls cholesterol and lipid metabolism. The nuclear forms of these proteins are rapidly degraded by the ubiquitin-proteasome pathway, but the signals and factors required for this are unknown. Here, we identify a phosphodegron in SREBP1a that serves as a recognition motif for the SCF(Fbw7) ubiquitin ligase. Fbw7 interacts with nuclear SREBP1a and enhances its ubiquitination and degradation in a manner dependent on the phosphorylation of T426 and S430 by GSK-3. Fbw7 also degrades nuclear SREBP1c and SREBP2, and inactivation of endogenous Fbw7 results in stabilization of nuclear SREBP1 and -2, enhanced expression of SREBP target genes, enhanced synthesis of cholesterol and fatty acids, and enhanced receptor-mediated uptake of LDL. Thus, our results suggest that Fbw7 may be a major regulator of lipid metabolism through control of the phosphorylation-dependent degradation of the SREBP family of transcription factors.

  19. RING E3 ligases

    DEFF Research Database (Denmark)

    Cho, Seok Keun; Ryu, Moon Young; Kim, Jong Hum

    2017-01-01

    Plants are constantly exposed to a variety of abiotic stresses, such as drought, heat, cold, flood, and salinity. To survive under such unfavorable conditions, plants have evolutionarily developed their own resistant-mechanisms. For several decades, many studies have clarified specific stress...... response pathways of plants through various molecular and genetic studies. In particular, it was recently discovered that ubiquitin proteasome system (UPS), a regulatory mechanism for protein turn over, is greatly involved in the stress responsive pathways. In the UPS, many E3 ligases play key roles...

  20. The E3 Ubiquitin Ligase TRIM40 Attenuates Antiviral Immune Responses by Targeting MDA5 and RIG-I

    Directory of Open Access Journals (Sweden)

    Chunyuan Zhao

    2017-11-01

    Full Text Available Retinoic acid-inducible gene-I (RIG-I-like receptors (RLRs, including melanoma differentiation-associated gene 5 (MDA5 and RIG-I, are crucial for host recognition of non-self RNAs, especially viral RNA. Thus, the expression and activation of RLRs play fundamental roles in eliminating the invading RNA viruses and maintaining immune homeostasis. However, how RLR expression is tightly regulated remains to be further investigated. In this study, we identified a major histocompatibility complex (MHC-encoded gene, tripartite interaction motif 40 (TRIM40, as a suppressor of RLR signaling by directly targeting MDA5 and RIG-I. TRIM40 binds to MDA5 and RIG-I and promotes their K27- and K48-linked polyubiquitination via its E3 ligase activity, leading to their proteasomal degradation. TRIM40 deficiency enhances RLR-triggered signaling. Consequently, TRIM40 deficiency greatly enhances antiviral immune responses and decreases viral replication in vivo. Thus, we demonstrate that TRIM40 limits RLR-triggered innate activation, suggesting TRIM40 as a potential therapeutic target for the control of viral infection.

  1. The Fbw7 tumor suppressor targets KLF5 for ubiquitin-mediated degradation and suppresses breast cell proliferation.

    Science.gov (United States)

    Zhao, Dong; Zheng, Han-Qiu; Zhou, Zhongmei; Chen, Ceshi

    2010-06-01

    Fbw7 is a tumor suppressor frequently inactivated in cancers. The KLF5 transcription factor promotes breast cell proliferation and tumorigenesis through upregulating FGF-BP. The KLF5 protein degrades rapidly through the ubiquitin proteasome pathway. Here, we show that the Skp1-CUL1-Fbw7 E3 ubiquitin ligase complex (SCF(Fbw7)) targets KLF5 for ubiquitin-mediated degradation in a GSK3beta-mediated KLF5 phosphorylation-dependent manner. Mutation of the critical S303 residue in the KLF5 Cdc4 phospho-degrons motif ((303)SPPSS) abolishes the protein interaction, ubiquitination, and degradation by Fbw7. Inactivation of endogenous Fbw7 remarkably increases the endogenous KLF5 protein abundances. Endogenous Fbw7 suppresses the FGF-BP gene expression and breast cell proliferation through targeting KLF5 for degradation. These findings suggest that Fbw7 inhibits breast cell proliferation at least partially through targeting KLF5 for proteolysis. This new regulatory mechanism of KLF5 degradation may result in useful diagnostic and therapeutic targets for breast cancer and other cancers. Copyright 2010 AACR.

  2. Human disorders of ubiquitination and proteasomal degradation.

    Science.gov (United States)

    Jiang, Yong-hui; Beaudet, Arthur L

    2004-08-01

    The goal of this review is to provide an overview of rapidly evolving information on a new group of genetic inborn errors affecting ubiquitination and proteasomal degradation of proteins and to suggest a classification scheme for these disorders. The relevant genes encode ubiquitin, ubiquitin enzymes (E1 and many E2s and E3s), deubiquitinating enzymes, proteasomal subunits, and substrates undergoing ubiquitination. Since the initial recognition that Angelman syndrome is caused by maternal deficiency of the E6-AP ubiquitin E3 ligase (gene symbol UBE3A), several. other disorders of E3 ligases have been identified, including autosomal recessive juvenile Parkinson disease, the APECED form of autoimmune polyendocrinopathy syndrome, von Hippel-Lindau syndrome, and congenital polycythemia. Disorders that disturb ubiquitin regulatory signaling include at least two subtypes of Fanconi anemia, the BRCA1 and BRCA2 forms of breast and ovarian cancer susceptibility, incontinentia pigmenti, and cylindromatosis. Many disorders affect ubiquitin pathways secondarily. The authors propose both a genetic and a functional classification for disorders of ubiquitination and proteasomal degradation, as follows. Genetic classes include mutations in (1) the UBB ubiquitin gene; (2) enzymes of ubiquitination including E1, E2, E3, and related proteins; (3) deubiquitinases; (4) proteasomal subunits; and (5) substrates of ubiquitination. Functional classes include defects in (1) proteolytic degradation, (2) ubiquitin signaling, and (3) subcellular localization of substrates. Additional functional classes are likely to be defined, and individual disorders may involve multiple functional defects.

  3. Defining the interactions and role of DCAF1/VPRBP in the DDB1-cullin4A E3 ubiquitin ligase complex engaged by HIV-1 Vpr to induce a G2 cell cycle arrest.

    Directory of Open Access Journals (Sweden)

    Francine C A Gérard

    Full Text Available HIV viral protein R (Vpr induces a cell cycle arrest at the G2/M phase by activating the ATR DNA damage/replication stress signalling pathway through engagement of the DDB1-CUL4A-DCAF1 E3 ubiquitin ligase via a direct binding to the substrate specificity receptor DCAF1. Since no high resolution structures of the DDB1-DCAF1-Vpr substrate recognition module currently exist, we used a mutagenesis approach to better define motifs in DCAF1 that are crucial for Vpr and DDB1 binding. Herein, we show that the minimal domain of DCAF1 that retained the ability to bind Vpr and DDB1 was mapped to residues 1041 to 1393 (DCAF1 WD. Mutagenic analyses identified an α-helical H-box motif and F/YxxF/Y motifs located in the N-terminal domain of DCAF1 WD that are involved in exclusive binding to DDB1. While we could not identify elements specifically involved in Vpr binding, overall, the mutagenesis data suggest that the predicted β-propeller conformation of DCAF1 is likely to be critical for Vpr association. Importantly, we provide evidence that binding of Vpr to DCAF1 appears to modulate the formation of a DDB1/DCAF1 complex. Lastly, we show that expression of DCAF1 WD in the absence of endogenous DCAF1 was not sufficient to enable Vpr-mediated G2 arrest activity. Overall, our results reveal that Vpr and DDB1 binding on DCAF1 can be genetically separated and further suggest that DCAF1 contains determinants in addition to the Vpr and DDB1 minimal binding domain, which are required for Vpr to enable the induction of a G2 arrest.

  4. Light and the E3 ubiquitin ligase COP1/SPA control the protein stability of the MYB transcription factors PAP1 and PAP2 involved in anthocyanin accumulation in Arabidopsis.

    Science.gov (United States)

    Maier, Alexander; Schrader, Andrea; Kokkelink, Leonie; Falke, Christian; Welter, Bastian; Iniesto, Elisa; Rubio, Vicente; Uhrig, Joachim F; Hülskamp, Martin; Hoecker, Ute

    2013-05-01

    Anthocyanins are natural pigments that accumulate only in light-grown and not in dark-grown Arabidopsis plants. Repression of anthocyanin accumulation in darkness requires the CONSTITUTIVELY PHOTOMORPHOGENIC1/SUPPRESSOR OF PHYA-105 (COP1/SPA) ubiquitin ligase, as cop1 and spa mutants produce anthocyanins also in the dark. Here, we show that COP1 and SPA proteins interact with the myeloblastosis (MYB) transcription factors PRODUCTION OF ANTHOCYANIN PIGMENT1 (PAP)1 and PAP2, two members of a small protein family that is required for anthocyanin accumulation and for the expression of structural genes in the anthocyanin biosynthesis pathway. The increased anthocyanin levels in cop1 mutants requires the PAP1 gene family, indicating that COP1 functions upstream of the PAP1 gene family. PAP1 and PAP2 proteins are degraded in the dark and this degradation is dependent on the proteasome and on COP1. Hence, the light requirement for anthocyanin biosynthesis results, at least in part, from the light-mediated stabilization of PAP1 and PAP2. Consistent with this conclusion, moderate overexpression of PAP1 leads to an increase in anthocyanin levels only in the light and not in darkness. Here we show that SPA genes are also required for reducing PAP1 and PAP2 transcript levels in dark-grown seedlings. Taken together, these results indicate that the COP1/SPA complex affects PAP1 and PAP2 both transcriptionally and post-translationally. Thus, our findings have identified mechanisms via which the COP1/SPA complex controls anthocyanin levels in Arabidopsis that may be useful for applications in biotechnology directed towards increasing anthocyanin content in plants. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  5. Molecular and structural insight into lysine selection on substrate and ubiquitin lysine 48 by the ubiquitin-conjugating enzyme Cdc34

    DEFF Research Database (Denmark)

    Suryadinata, Randy; Holien, Jessica K; Yang, George

    2013-01-01

    The attachment of ubiquitin (Ub) to lysines on substrates or itself by ubiquitin-conjugating (E2) and ubiquitin ligase (E3) enzymes results in protein ubiquitination. Lysine selection is important for generating diverse substrate-Ub structures and targeting proteins to different fates; however, t...

  6. Post-translational control of IL-1β via the human papillomavirus type 16 E6 oncoprotein: a novel mechanism of innate immune escape mediated by the E3-ubiquitin ligase E6-AP and p53.

    Directory of Open Access Journals (Sweden)

    Martina Niebler

    Full Text Available Infections with high-risk human papillomaviruses (HPVs are causally involved in the development of anogenital cancer. HPVs apparently evade the innate immune response of their host cells by dysregulating immunomodulatory factors such as cytokines and chemokines, thereby creating a microenvironment that favors malignancy. One central key player in the immune surveillance interactome is interleukin-1 beta (IL-1β which not only mediates inflammation, but also links innate and adaptive immunity. Because of its pleiotropic physiological effects, IL-1β production is tightly controlled on transcriptional, post-translational and secretory levels. Here, we describe a novel mechanism how the high-risk HPV16 E6 oncoprotein abrogates IL-1β processing and secretion in a NALP3 inflammasome-independent manner. We analyzed IL-1β regulation in immortalized keratinocytes that harbor the HPV16 E6 and/or E7 oncogenes as well as HPV-positive cervical tumor cells. While in primary and in E7-immortalized human keratinocytes the secretion of IL-1β was highly inducible upon inflammasome activation, E6-positive cells did not respond. Western blot analyses revealed a strong reduction of basal intracellular levels of pro-IL-1β that was independent of dysregulation of the NALP3 inflammasome, autophagy or lysosomal activity. Instead, we demonstrate that pro-IL-1β is degraded in a proteasome-dependent manner in E6-positive cells which is mediated via the ubiquitin ligase E6-AP and p53. Conversely, in E6- and E6/E7-immortalized cells pro-IL-1β levels were restored by siRNA knock-down of E6-AP and simultaneous recovery of functional p53. In the context of HPV-induced carcinogenesis, these data suggest a novel post-translational mechanism of pro-IL-1β regulation which ultimately inhibits the secretion of IL-1β in virus-infected keratinocytes. The clinical relevance of our results was further confirmed in HPV-positive tissue samples, where a gradual decrease of IL-1

  7. Schistosoma mansoni: Heterologous complementation of a yeast null mutant by SmRbx, a protein similar to a RING box protein involved in ubiquitination.

    Science.gov (United States)

    Santos, Débora N; Aguiar, Pedro H N; Lobo, Francisco P; Mourão, Marina M; Tambor, José H M; Valadão, Analina F; Vilas-Boas, Adlane; Nobrega, Francisco G; LoVerde, Philip T; Macedo, Andréa M; Pena, Sérgio D J; Machado, Carlos R; Franco, Glória R

    2007-08-01

    The SCF (Skp1-Cul1-F-box) complex is one of the several E3 ligase enzymes and it catalyzes protein ubiquitination and degradation by the 26S proteasome. Rbx1 is a member of the SCF complex in humans and HRT1 is its yeast orthologue. A cDNA encoding a Schistosoma mansoni Rbx1 homolog was cloned and functionally characterized. Heterologous functional complementation in yeast showed that the worm SmRbx gene was able to complement the HRT1yeast null mutation. Gene deletion constructs for N- and C-termini truncated proteins were used to transform hrt1(-) yeast mutant strains, allowing us to observe that regions reported to be involved in the interaction with cullin1 (Cul1) were essential for SmRbx function. Yeast two-hybrid assays using SmRbx and yeast Cul1 confirmed that SmRbx, but not the mutant SmRbxDelta24N, lacking the N-terminus of the protein, was capable of interacting with Cul1. These results suggest that SmRbx protein is involved in the SCF complex formation.

  8. Linear ubiquitination signals in adaptive immune responses.

    Science.gov (United States)

    Ikeda, Fumiyo

    2015-07-01

    Ubiquitin can form eight different linkage types of chains using the intrinsic Met 1 residue or one of the seven intrinsic Lys residues. Each linkage type of ubiquitin chain has a distinct three-dimensional topology, functioning as a tag to attract specific signaling molecules, which are so-called ubiquitin readers, and regulates various biological functions. Ubiquitin chains linked via Met 1 in a head-to-tail manner are called linear ubiquitin chains. Linear ubiquitination plays an important role in the regulation of cellular signaling, including the best-characterized tumor necrosis factor (TNF)-induced canonical nuclear factor-κB (NF-κB) pathway. Linear ubiquitin chains are specifically generated by an E3 ligase complex called the linear ubiquitin chain assembly complex (LUBAC) and hydrolyzed by a deubiquitinase (DUB) called ovarian tumor (OTU) DUB with linear linkage specificity (OTULIN). LUBAC linearly ubiquitinates critical molecules in the TNF pathway, such as NEMO and RIPK1. The linear ubiquitin chains are then recognized by the ubiquitin readers, including NEMO, which control the TNF pathway. Accumulating evidence indicates an importance of the LUBAC complex in the regulation of apoptosis, development, and inflammation in mice. In this article, I focus on the role of linear ubiquitin chains in adaptive immune responses with an emphasis on the TNF-induced signaling pathways. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Structure of the HHARI catalytic domain shows glimpses of a HECT E3 ligase.

    Directory of Open Access Journals (Sweden)

    Donald E Spratt

    Full Text Available The ubiquitin-signaling pathway utilizes E1 activating, E2 conjugating, and E3 ligase enzymes to sequentially transfer the small modifier protein ubiquitin to a substrate protein. During the last step of this cascade different types of E3 ligases either act as scaffolds to recruit an E2 enzyme and substrate (RING, or form an ubiquitin-thioester intermediate prior to transferring ubiquitin to a substrate (HECT. The RING-inBetweenRING-RING (RBR proteins constitute a unique group of E3 ubiquitin ligases that includes the Human Homologue of Drosophila Ariadne (HHARI. These E3 ligases are proposed to use a hybrid RING/HECT mechanism whereby the enzyme uses facets of both the RING and HECT enzymes to transfer ubiquitin to a substrate. We now present the solution structure of the HHARI RING2 domain, the key portion of this E3 ligase required for the RING/HECT hybrid mechanism. The structure shows the domain possesses two Zn²⁺-binding sites and a single exposed cysteine used for ubiquitin catalysis. A structural comparison of the RING2 domain with the HECT E3 ligase NEDD4 reveals a near mirror image of the cysteine and histidine residues in the catalytic site. Further, a tandem pair of aromatic residues exists near the C-terminus of the HHARI RING2 domain that is conserved in other RBR E3 ligases. One of these aromatic residues is remotely located from the catalytic site that is reminiscent of the location found in HECT E3 enzymes where it is used for ubiquitin catalysis. These observations provide an initial structural rationale for the RING/HECT hybrid mechanism for ubiquitination used by the RBR E3 ligases.

  10. Identification of SFBB-containing canonical and noncanonical SCF complexes in pollen of apple (Malus × domestica).

    Science.gov (United States)

    Minamikawa, Mai F; Koyano, Ruriko; Kikuchi, Shinji; Koba, Takato; Sassa, Hidenori

    2014-01-01

    Gametophytic self-incompatibility (GSI) of Rosaceae, Solanaceae and Plantaginaceae is controlled by a single polymorphic S locus. The S locus contains at least two genes, S-RNase and F-box protein encoding gene SLF/SFB/SFBB that control pistil and pollen specificity, respectively. Generally, the F-box protein forms an E3 ligase complex, SCF complex with Skp1, Cullin1 (CUL1) and Rbx1, however, in Petunia inflata, SBP1 (S-RNase binding protein1) was reported to play the role of Skp1 and Rbx1, and form an SCFSLF-like complex for ubiquitination of non-self S-RNases. On the other hand, in Petunia hybrida and Petunia inflata of Solanaceae, Prunus avium and Pyrus bretschneideri of Rosaceae, SSK1 (SLF-interacting Skp1-like protein1) is considered to form the SCFSLF/SFB complex. Here, we isolated pollen-expressed apple homologs of SSK1 and CUL1, and named MdSSK1, MdCUL1A and MdCUL1B. MdSSK1 was preferentially expressed in pollen, but weakly in other organs analyzed, while, MdCUL1A and MdCUL1B were almost equally expressed in all the organs analyzed. MdSSK1 transcript abundance was significantly (>100 times) higher than that of MdSBP1. In vitro binding assays showed that MdSSK1 and MdSBP1 interacted with MdSFBB1-S9 and MdCUL1, and MdSFBB1-S9 interacted more strongly with MdSSK1 than with MdSBP1. The results suggest that both MdSSK1-containing SCFSFBB1 and MdSBP1-containing SCFSFBB1-like complexes function in pollen of apple, and the former plays a major role.

  11. Structure of a Glomulin-RBX1-CUL1 Complex: Inhibition of a RING E3 Ligase through Masking of Its E2-Binding Surface

    Energy Technology Data Exchange (ETDEWEB)

    Duda, David M.; Olszewski, Jennifer L.; Tron, Adriana E.; Hammel, Michal; Lambert, Lester J.; Waddell, M. Brett; Mittag, Tanja; DeCaprio, James A.; Schulman, Brenda A. (BWH); (LBNL); (SJCH); (DFCI)

    2012-11-01

    The approximately 300 human cullin-RING ligases (CRLs) are multisubunit E3s in which a RING protein, either RBX1 or RBX2, recruits an E2 to catalyze ubiquitination. RBX1-containing CRLs also can bind Glomulin (GLMN), which binds RBX1's RING domain, regulates the RBX1-CUL1-containing SCF{sup FBW7} complex, and is disrupted in the disease Glomuvenous Malformation. Here we report the crystal structure of a complex between GLMN, RBX1, and a fragment of CUL1. Structural and biochemical analyses reveal that GLMN adopts a HEAT-like repeat fold that tightly binds the E2-interacting surface of RBX1, inhibiting CRL-mediated chain formation by the E2 CDC34. The structure explains the basis for GLMN's selectivity toward RBX1 over RBX2, and how disease-associated mutations disrupt GLMN-RBX1 interactions. Our study reveals a mechanism for RING E3 ligase regulation, whereby an inhibitor blocks E2 access, and raises the possibility that other E3s are likewise controlled by cellular proteins that mask E2-binding surfaces to mediate inhibition.

  12. Histone Deacetylase Inhibitors Increase p27Kip1 by Affecting Its Ubiquitin-Dependent Degradation through Skp2 Downregulation

    Directory of Open Access Journals (Sweden)

    Adriana Borriello

    2016-01-01

    Full Text Available Histone deacetylase inhibitors (HDACIs represent an intriguing class of pharmacologically active compounds. Currently, some HDACIs are FDA approved for cancer therapy and many others are in clinical trials, showing important clinical activities at well tolerated doses. HDACIs also interfere with the aging process and are involved in the control of inflammation and oxidative stress. In vitro, HDACIs induce different cellular responses including growth arrest, differentiation, and apoptosis. Here, we evaluated the effects of HDACIs on p27Kip1, a key cyclin-dependent kinase inhibitor (CKI. We observed that HDACI-dependent antiproliferative activity is associated with p27Kip1 accumulation due to a reduced protein degradation. p27Kip1 removal requires a preliminary ubiquitination step due to the Skp2-SCF E3 ligase complex. We demonstrated that HDACIs increase p27Kip1 stability through downregulation of Skp2 protein levels. Skp2 decline is only partially due to a reduced Skp2 gene expression. Conversely, the protein decrease is more profound and enduring compared to the changes of Skp2 transcript. This argues for HDACIs effects on Skp2 protein posttranslational modifications and/or on its removal. In summary, we demonstrate that HDACIs increase p27Kip1 by hampering its nuclear ubiquitination/degradation. The findings might be of relevance in the phenotypic effects of these compounds, including their anticancer and aging-modulating activities.

  13. Ubiquitination of specific mitochondrial matrix proteins

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, Gilad [The Janet and David Polak Tumor and Vascular Biology Research Center and the Technion Integrated Cancer Center (TICC), The Rappaport Faculty of Medicine and Research Institute, Haifa, 31096 (Israel); Ziv, Tamar [The Smoler Proteomics Center, Faculty of Biology – Technion-Israel Institute of Technology, Haifa, 32000 (Israel); Braten, Ori [The Janet and David Polak Tumor and Vascular Biology Research Center and the Technion Integrated Cancer Center (TICC), The Rappaport Faculty of Medicine and Research Institute, Haifa, 31096 (Israel); Admon, Arie [The Smoler Proteomics Center, Faculty of Biology – Technion-Israel Institute of Technology, Haifa, 32000 (Israel); Udasin, Ronald G. [The Janet and David Polak Tumor and Vascular Biology Research Center and the Technion Integrated Cancer Center (TICC), The Rappaport Faculty of Medicine and Research Institute, Haifa, 31096 (Israel); Ciechanover, Aaron, E-mail: aaroncie@tx.technion.ac.il [The Janet and David Polak Tumor and Vascular Biology Research Center and the Technion Integrated Cancer Center (TICC), The Rappaport Faculty of Medicine and Research Institute, Haifa, 31096 (Israel)

    2016-06-17

    Several protein quality control systems in bacteria and/or mitochondrial matrix from lower eukaryotes are absent in higher eukaryotes. These are transfer-messenger RNA (tmRNA), The N-end rule ATP-dependent protease ClpAP, and two more ATP-dependent proteases, HslUV and ClpXP (in yeast). The lost proteases resemble the 26S proteasome and the role of tmRNA and the N-end rule in eukaryotic cytosol is performed by the ubiquitin proteasome system (UPS). Therefore, we hypothesized that the UPS might have substituted these systems – at least partially – in the mitochondrial matrix of higher eukaryotes. Using three independent experimental approaches, we demonstrated the presence of ubiquitinated proteins in the matrix of isolated yeast mitochondria. First, we show that isolated mitochondria contain ubiquitin (Ub) conjugates, which remained intact after trypsin digestion. Second, we demonstrate that the mitochondrial soluble fraction contains Ub-conjugates, several of which were identified by mass spectrometry and are localized to the matrix. Third, using immunoaffinity enrichment by specific antibodies recognizing digested ubiquitinated peptides, we identified a group of Ub-modified matrix proteins. The modification was further substantiated by separation on SDS-PAGE and immunoblots. Last, we attempted to identify the ubiquitin ligase(s) involved, and identified Dma1p as a trypsin-resistant protein in our mitochondrial preparations. Taken together, these data suggest a yet undefined role for the UPS in regulation of the mitochondrial matrix proteins. -- Highlights: •Mitochondrial matrix contains ubiquitinated proteins. •Ubiquitination occurs most probably in the matrix. •Dma1p is a ubiquitin ligase present in mitochondrial preparations.

  14. The Role of RUB (related to ubiquitin) Family of Proteins in the Hormone Response. Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Callis, Judy [Univ. of California, Davis, CA (United States). Dept. of Molecular and Cellular Biology

    2013-03-22

    The Rub pathway is a conserved protein modification pathway. RUB (called Rubp1 in budding yeast, Nedd8 in animals and RUB in plants) is a ubiquitin-like 76-amino acid protein. It covalently attaches to protein using an enzymatic machinery analogous to the enzymes that attach ubiquitin to its substrate proteins. However, the nature of the complement of Rub-modified proteins in organisms was not clear. From bioinformatics analyses, one can identify a Rub activating enzymes and Rub conjugating enzymes. However, in many cases, their biochemical properties were not described. In DOE-funded work, we made major advances in our understanding of the Rub pathway in yeast and plants, work that is applicable to other organisms as well. There is a multi-subunit enzyme called SCF in all eukaryotes. The SCF consists of several subunits that serve as a scaffold (the cullin, SKP and RBX subunits) and one subunit that interacts with the substrate. This cullin protein (called Cdc53p in yeast and CULLIN 1 in plants and animals) was a known Rub target. In this work, we identified additional Rub targets in yeast as the other cullin-like proteins Cul3p and Rtt101p. Additionally we described the conservation of the Rub pathway because plant RUB1 can conjugated to yeast Cdc53p- in yeast. In the model plant Arabidopsis thaliana, we characterized the Rub activating enzymes and showed that they are not biochemically equivalent. We also showed that the Rub pathway is essential in plants and characterized plants with reduced levels of rub proteins. These plants are affected in multiple developmental processes. We discovered that they over-produce ethylene as dark-grown seedlings. We characterized a mutant allele of CULLIN1 in Arabidopsis with impaired interaction with RBX and showed that it is unstable in vivo. We used our knowledge of monitoring protein degradation to map the degradation determinants in a plant transcription factor. Finally, we took a mass spectrometric approach to identify

  15. Cooperativity of the SUMO and Ubiquitin Pathways in Genome Stability

    Directory of Open Access Journals (Sweden)

    Minghua Nie

    2016-02-01

    Full Text Available Covalent attachment of ubiquitin (Ub or SUMO to DNA repair proteins plays critical roles in maintaining genome stability. These structurally related polypeptides can be viewed as distinct road signs, with each being read by specific protein interaction motifs. Therefore, via their interactions with selective readers in the proteome, ubiquitin and SUMO can elicit distinct cellular responses, such as directing DNA lesions into different repair pathways. On the other hand, through the action of the SUMO-targeted ubiquitin ligase (STUbL family proteins, ubiquitin and SUMO can cooperate in the form of a hybrid signal. These mixed SUMO-ubiquitin chains recruit “effector” proteins such as the AAA+ ATPase Cdc48/p97-Ufd1-Npl4 complex that contain both ubiquitin and SUMO interaction motifs. This review will summarize recent key findings on collaborative and distinct roles that ubiquitin and SUMO play in orchestrating DNA damage responses.

  16. Mcl-1 Ubiquitination: Unique Regulation of an Essential Survival Protein

    Directory of Open Access Journals (Sweden)

    Barbara Mojsa

    2014-05-01

    Full Text Available Mcl-1 is an anti-apoptotic protein of the Bcl-2 family that is essential for the survival of multiple cell lineages and that is highly amplified in human cancer. Under physiological conditions, Mcl-1 expression is tightly regulated at multiple levels, involving transcriptional, post-transcriptional and post-translational processes. Ubiquitination of Mcl-1, that targets it for proteasomal degradation, allows for rapid elimination of the protein and triggering of cell death, in response to various cellular events. In the last decade, a number of studies have elucidated different pathways controlling Mcl-1 ubiquitination and degradation. Four different E3 ubiquitin-ligases (e.g., Mule, SCFβ-TrCP, SCFFbw7 and Trim17 and one deubiquitinase (e.g., USP9X, that respectively mediate and oppose Mcl-1 ubiquitination, have been formerly identified. The interaction between Mule and Mcl-1 can be modulated by other Bcl-2 family proteins, while recognition of Mcl-1 by the other E3 ubiquitin-ligases and deubiquitinase is influenced by phosphorylation of specific residues in Mcl-1. The protein kinases and E3 ubiquitin-ligases that are involved in the regulation of Mcl-1 stability vary depending on the cellular context, highlighting the complexity and pivotal role of Mcl-1 regulation. In this review, we attempt to recapitulate progress in understanding Mcl-1 regulation by the ubiquitin-proteasome system.

  17. MdCOP1 Ubiquitin E3 Ligases Interact with MdMYB1 to Regulate Light-Induced Anthocyanin Biosynthesis and Red Fruit Coloration in Apple1[W][OA

    Science.gov (United States)

    Li, Yuan-Yuan; Mao, Ke; Zhao, Cheng; Zhao, Xian-Yan; Zhang, Hua-Lei; Shu, Huai-Rui; Hao, Yu-Jin

    2012-01-01

    MdMYB1 is a crucial regulator of light-induced anthocyanin biosynthesis and fruit coloration in apple (Malus domestica). In this study, it was found that MdMYB1 protein accumulated in the light but degraded via a ubiquitin-dependent pathway in the dark. Subsequently, the MdCOP1-1 and MdCOP1-2 genes were isolated from apple fruit peel and were functionally characterized in the Arabidopsis (Arabidopsis thaliana) cop1-4 mutant. Yeast (Saccharomyces cerevisiae) two-hybrid, bimolecular fluorescence complementation, and coimmunoprecipitation assays showed that MdMYB1 interacts with the MdCOP1 proteins. Furthermore, in vitro and in vivo experiments indicated that MdCOP1s are necessary for the ubiquitination and degradation of MdMYB1 protein in the dark and are therefore involved in the light-controlled stability of the MdMYB1 protein. Finally, a viral vector-based transformation approach demonstrated that MdCOP1s negatively regulate the peel coloration of apple fruits by modulating the degradation of the MdMYB1 protein. Our findings provide new insight into the mechanism by which light controls anthocyanin accumulation and red fruit coloration in apple and even other plant species. PMID:22855936

  18. CLCuMuB βC1 Subverts Ubiquitination by Interacting with NbSKP1s to Enhance Geminivirus Infection in Nicotiana benthamiana.

    Directory of Open Access Journals (Sweden)

    Qi Jia

    2016-06-01

    Full Text Available Viruses interfere with and usurp host machinery and circumvent defense responses to create a suitable cellular environment for successful infection. This is usually achieved through interactions between viral proteins and host factors. Geminiviruses are a group of plant-infecting DNA viruses, of which some contain a betasatellite, known as DNAβ. Here, we report that Cotton leaf curl Multan virus (CLCuMuV uses its sole satellite-encoded protein βC1 to regulate the plant ubiquitination pathway for effective infection. We found that CLCuMu betasatellite (CLCuMuB βC1 interacts with NbSKP1, and interrupts the interaction of NbSKP1s with NbCUL1. Silencing of either NbSKP1s or NbCUL1 enhances the accumulation of CLCuMuV genomic DNA and results in severe disease symptoms in plants. βC1 impairs the integrity of SCFCOI1 and the stabilization of GAI, a substrate of the SCFSYL1 to hinder responses to jasmonates (JA and gibberellins (GA. Moreover, JA treatment reduces viral accumulation and symptoms. These results suggest that CLCuMuB βC1 inhibits the ubiquitination function of SCF E3 ligases through interacting with NbSKP1s to enhance CLCuMuV infection and symptom induction in plants.

  19. Cellular contractility requires ubiquitin mediated proteolysis.

    Directory of Open Access Journals (Sweden)

    Yuval Cinnamon

    Full Text Available BACKGROUND: Cellular contractility, essential for cell movement and proliferation, is regulated by microtubules, RhoA and actomyosin. The RhoA dependent kinase ROCK ensures the phosphorylation of the regulatory Myosin II Light Chain (MLC Ser19, thereby activating actomyosin contractions. Microtubules are upstream inhibitors of contractility and their depolymerization or depletion cause cells to contract by activating RhoA. How microtubule dynamics regulates RhoA remains, a major missing link in understanding contractility. PRINCIPAL FINDINGS: We observed that contractility is inhibited by microtubules not only, as previously reported, in adherent cells, but also in non-adhering interphase and mitotic cells. Strikingly we observed that contractility requires ubiquitin mediated proteolysis by a Cullin-RING ubiquitin ligase. Inhibition of proteolysis, ubiquitination and neddylation all led to complete cessation of contractility and considerably reduced MLC Ser19 phosphorylation. CONCLUSIONS: Our results imply that cells express a contractility inhibitor that is degraded by ubiquitin mediated proteolysis, either constitutively or in response to microtubule depolymerization. This degradation seems to depend on a Cullin-RING ubiquitin ligase and is required for cellular contractions.

  20. Mass spectrometry techniques for studying the ubiquitin system.

    Science.gov (United States)

    Heap, Rachel E; Gant, Megan S; Lamoliatte, Frederic; Peltier, Julien; Trost, Matthias

    2017-10-15

    Post-translational control of proteins through covalent attachment of ubiquitin plays important roles in all eukaryotic cell functions. The ubiquitin system in humans consists of 2 E1, 35 E2 and >600 E3 ubiquitin ligases as well as hundreds of deubiquitylases, which reverse ubiquitin attachment. Moreover, there are hundreds of proteins with ubiquitin-binding domains that bind one of the eight possible polyubiquitin chains. Dysfunction of the ubiquitin system is associated with many diseases such as cancer, autoimmunity and neurodegeneration, demonstrating the importance of ubiquitylation. Therefore, enzymes of the ubiquitin system are considered highly attractive drug targets. In recent years, mass spectrometry (MS)-based techniques have become increasingly important in the deciphering of the ubiquitin system. This short review addresses the state-of-the-art MS techniques for the identification of ubiquitylated proteins and their ubiquitylation sites. We also discuss the identification and quantitation of ubiquitin chain topologies and highlight how the activity of enzymes in the ubiquitin pathway can be measured. Finally, we present current MS tools that can be used for drug discovery in the ubiquitin space. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  1. Ubiquitination-dependent mechanisms regulate synaptic growth and function.

    Science.gov (United States)

    DiAntonio, A; Haghighi, A P; Portman, S L; Lee, J D; Amaranto, A M; Goodman, C S

    2001-07-26

    The covalent attachment of ubiquitin to cellular proteins is a powerful mechanism for controlling protein activity and localization. Ubiquitination is a reversible modification promoted by ubiquitin ligases and antagonized by deubiquitinating proteases. Ubiquitin-dependent mechanisms regulate many important processes including cell-cycle progression, apoptosis and transcriptional regulation. Here we show that ubiquitin-dependent mechanisms regulate synaptic development at the Drosophila neuromuscular junction (NMJ). Neuronal overexpression of the deubiquitinating protease fat facets leads to a profound disruption of synaptic growth control; there is a large increase in the number of synaptic boutons, an elaboration of the synaptic branching pattern, and a disruption of synaptic function. Antagonizing the ubiquitination pathway in neurons by expression of the yeast deubiquitinating protease UBP2 (ref. 5) also produces synaptic overgrowth and dysfunction. Genetic interactions between fat facets and highwire, a negative regulator of synaptic growth that has structural homology to a family of ubiquitin ligases, suggest that synaptic development may be controlled by the balance between positive and negative regulators of ubiquitination.

  2. SUMO and ubiquitin-dependent XPC exchange drives nucleotide excision repair

    DEFF Research Database (Denmark)

    Van Cuijk, Loes; Van Belle, Gijsbert J.; Turkyilmaz, Yasemin

    2015-01-01

    XPC recognizes UV-induced DNA lesions and initiates their removal by nucleotide excision repair (NER). Damage recognition in NER is tightly controlled by ubiquitin and SUMO modifications. Recent studies have shown that the SUMO-targeted ubiquitin ligase RNF111 promotes K63-linked ubiquitylation o...

  3. CaPUB1, a Hot Pepper U-box E3 Ubiquitin Ligase, Confers Enhanced Cold Stress Tolerance and Decreased Drought Stress Tolerance in Transgenic Rice (Oryza sativa L.).

    Science.gov (United States)

    Min, Hye Jo; Jung, Ye Jin; Kang, Bin Goo; Kim, Woo Taek

    2016-03-01

    Abiotic stresses such as drought and low temperature critically restrict plant growth, reproduction, and productivity. Higher plants have developed various defense strategies against these unfavorable conditions. CaPUB1 (Capsicum annuum Putative U-box protein 1) is a hot pepper U-box E3 Ub ligase. Transgenic Arabidopsis plants that constitutively expressed CaPUB1 exhibited drought-sensitive phenotypes, suggesting that it functions as a negative regulator of the drought stress response. In this study, CaPUB1 was over-expressed in rice (Oryza sativa L.), and the phenotypic properties of transgenic rice plants were examined in terms of their drought and cold stress tolerance. Ubi:CaPUB1 T3 transgenic rice plants displayed phenotypes hypersensitive to dehydration, suggesting that its role in the negative regulation of drought stress response is conserved in dicot Arabidopsis and monocot rice plants. In contrast, Ubi:CaPUB1 progeny exhibited phenotypes markedly tolerant to prolonged low temperature (4°C) treatment, compared to those of wild-type plants, as determined by survival rates, electrolyte leakage, and total chlorophyll content. Cold stress-induced marker genes, including DREB1A, DREB1B, DREB1C, and Cytochrome P450, were more up-regulated by cold treatment in Ubi:CaPUB1 plants than in wild-type plants. These results suggest that CaPUB1 serves as both a negative regulator of the drought stress response and a positive regulator of the cold stress response in transgenic rice plants. This raises the possibility that CaPUB1 participates in the cross-talk between drought and low-temperature signaling pathways.

  4. MPSR1 is a cytoplasmic PQC E3 ligase for eliminating emergent misfolded proteins in Arabidopsis thaliana

    Science.gov (United States)

    Kim, Jong Hum; Cho, Seok Keun; Oh, Tae Rin; Ryu, Moon Young; Yang, Seong Wook

    2017-01-01

    Ubiquitin E3 ligases are crucial for eliminating misfolded proteins before they form cytotoxic aggregates that threaten cell fitness and survival. However, it remains unclear how emerging misfolded proteins in the cytoplasm can be selectively recognized and eliminated by E3 ligases in plants. We found that Misfolded Protein Sensing RING E3 ligase 1 (MPSR1) is an indispensable E3 ligase required for plant survival after protein-damaging stress. Under no stress, MPSR1 is prone to rapid degradation by the 26S proteasome, concealing its protein quality control (PQC) E3 ligase activity. Upon proteotoxic stress, MPSR1 directly senses incipient misfolded proteins and tethers ubiquitins for subsequent degradation. Furthermore, MPSR1 sustains the structural integrity of the proteasome complex at the initial stage of proteotoxic stress. Here, we suggest that the MPSR1 pathway is a constitutive mechanism for proteostasis under protein-damaging stress, as a front-line surveillance system in the cytoplasm. PMID:29087340

  5. Ubiquitination of the common cytokine receptor γc and regulation of expression by an ubiquitination/deubiquitination machinery

    International Nuclear Information System (INIS)

    Gesbert, Franck; Malarde, Valerie; Dautry-Varsat, Alice

    2005-01-01

    The common cytokine receptor γ c is shared by the interleukin-2, -4, -7, -9, -15, and -21 receptors, and is essential for lymphocyte proliferation and survival. The regulation of γ c receptor expression level is therefore critical for the ability of cells to respond to these cytokines. We previously reported that γ c is efficiently constitutively internalized and addressed towards a degradation endocytic compartment. We show that γ c is ubiquitinated and also associated to ubiquitinated proteins. We report that the ubiquitin-ligase c-Cbl induces γ c down-regulation. In addition, the ubiquitin-hydrolase, DUB-2, counteracts the effect of c-Cbl on γ c expression. We show that an increase in DUB-2 expression correlates with an increased γ c half-life, resulting in the up-regulation of the receptor. Altogether, we show that γ c is the target of an ubiquitination mechanism and its expression level can be regulated through the activities of a couple of ubiquitin-ligase/ubiquitin-hydrolase enzymes, namely c-Cbl/DUB-2

  6. Fas-associated factor 1 is a scaffold protein that promotes β-transducin repeat-containing protein (β-TrCP)-mediated β-catenin ubiquitination and degradation.

    Science.gov (United States)

    Zhang, Long; Zhou, Fangfang; Li, Yihao; Drabsch, Yvette; Zhang, Juan; van Dam, Hans; ten Dijke, Peter

    2012-08-31

    FAS-associated factor 1 (FAF1) antagonizes Wnt signaling by stimulating β-catenin degradation. However, the molecular mechanism underlying this effect is unknown. Here, we demonstrate that the E3 ubiquitin ligase β-transducin repeat-containing protein (β-TrCP) is required for FAF1 to suppress Wnt signaling and that FAF1 specifically associates with the SCF (Skp1-Cul1-F-box protein)-β-TrCP complex. Depletion of β-TrCP reduced FAF1-mediated β-catenin polyubiquitination and impaired FAF1 in antagonizing Wnt/β-catenin signaling. FAF1 was shown to act as a scaffold for β-catenin and β-TrCP and thereby to potentiate β-TrCP-mediated β-catenin ubiquitination and degradation. Data mining revealed that FAF1 expression is statistically down-regulated in human breast carcinoma compared with normal breast tissue. Consistent with this, FAF1 expression is higher in epithelial-like MCF7 than mesenchymal-like MDA-MB-231 human breast cancer cells. Depletion of FAF1 in MCF7 cells resulted in increased β-catenin accumulation and signaling. Importantly, FAF1 knockdown promoted a decrease in epithelial E-cadherin and an increase in mesenchymal vimentin expression, indicative for an epithelial to mesenchymal transition. Moreover, ectopic FAF1 expression reduces breast cancer cell migration in vitro and invasion/metastasis in vivo. Thus, our studies strengthen a tumor-suppressive function for FAF1.

  7. SCFJFK is a bona fide E3 ligase for ING4 and a potent promoter of the angiogenesis and metastasis of breast cancer

    Science.gov (United States)

    Yan, Ruorong; He, Lin; Li, Zhongwu; Han, Xiao; Liang, Jing; Si, Wenzhe; Chen, Zhe; Li, Lei; Xie, Guojia; Li, Wanjin; Wang, Peiyan; Lei, Liandi; Zhang, Hongquan; Pei, Fei; Cao, Dengfeng

    2015-01-01

    Loss of function/dysregulation of inhibitor of growth 4 (ING4) and hyperactivation of NF-κB are frequent events in many types of human malignancies. However, the molecular mechanisms underlying these remarkable aberrations are not understood. Here, we report that ING4 is physically associated with JFK. We demonstrated that JFK targets ING4 for ubiquitination and degradation through assembly of an Skp1–Cul1–F-box (SCF) complex. We showed that JFK-mediated ING4 destabilization leads to the hyperactivation of the canonical NF-κB pathway and promotes angiogenesis and metastasis of breast cancer. Significantly, the expression of JFK is markedly up-regulated in breast cancer, and the level of JFK is negatively correlated with that of ING4 and positively correlated with an aggressive clinical behavior of breast carcinomas. Our study identified SCFJFK as a bona fide E3 ligase for ING4 and unraveled the JFK–ING4–NF-κB axis as an important player in the development and progression of breast cancer, supporting the pursuit of JFK as a potential target for breast cancer intervention. PMID:25792601

  8. Puromycin induces SUMO and ubiquitin redistribution upon proteasome inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Hotaru [Course for Biological Sciences, Faculty of Science, Kumamoto University, Kumamoto (Japan); Saitoh, Hisato, E-mail: hisa@kumamoto-u.ac.jp [Course for Biological Sciences, Faculty of Science, Kumamoto University, Kumamoto (Japan); Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto (Japan)

    2016-07-29

    We have previously reported the co-localization of O-propargyl-puromycin (OP-Puro) with SUMO-2/3 and ubiquitin at promyelocytic leukemia-nuclear bodies (PML-NBs) in the presence of the proteasome inhibitor MG132, implying a role for the ubiquitin family in sequestering OP-puromycylated immature polypeptides to the nucleus during impaired proteasome activity. Here, we found that as expected puromycin induced SUMO-1/2/3 accumulation with ubiquitin at multiple nuclear foci in HeLa cells when co-exposed to MG132. Co-administration of puromycin and MG132 also facilitated redistribution of PML and the SUMO-targeted ubiquitin ligase RNF4 concurrently with SUMO-2/3. As removal of the drugs from the medium led to disappearance of the SUMO-2/3-ubiquitin nuclear foci, our findings indicated that nuclear assembly/disassembly of SUMO-2/3 and ubiquitin was pharmacologically manipulable, supporting our previous observation on OP-Puro, which predicted the ubiquitin family function in sequestrating aberrant proteins to the nucleus. -- Highlights: •Puromycin exhibits the O-propargyl-puromycin effect. •Puromycin induces SUMO redistribution upon proteasome inhibition. •Ubiquitin and RNF4 accumulate at PML-nuclear bodies with SUMO-2/3. •The ubiquitin family may function in nuclear sequestration of immature proteins.

  9. Overexpression of the E2 ubiquitin-conjugating enzyme UbcH10 causes chromosome missegregation and tumor formation.

    NARCIS (Netherlands)

    Ree, J.H.; Jeganathan, K.B.; Malureanu, L.; Deursen, J.M.A. van

    2010-01-01

    The anaphase-promoting complex/cyclosome (APC/C) E3 ubiquitin ligase functions with the E2 ubiquitin-conjugating enzyme UbcH10 in the orderly progression through mitosis by marking key mitotic regulators for destruction by the 26-S proteasome. UbcH10 is overexpressed in many human cancer types and

  10. Functional interchangeability of late domains, late domain cofactors and ubiquitin in viral budding.

    Directory of Open Access Journals (Sweden)

    Maria Zhadina

    2010-10-01

    Full Text Available The membrane scission event that separates nascent enveloped virions from host cell membranes often requires the ESCRT pathway, which can be engaged through the action of peptide motifs, termed late (L- domains, in viral proteins. Viral PTAP and YPDL-like L-domains bind directly to the ESCRT-I and ALIX components of the ESCRT pathway, while PPxY motifs bind Nedd4-like, HECT-domain containing, ubiquitin ligases (e.g. WWP1. It has been unclear precisely how ubiquitin ligase recruitment ultimately leads to particle release. Here, using a lysine-free viral Gag protein derived from the prototypic foamy virus (PFV, where attachment of ubiquitin to Gag can be controlled, we show that several different HECT domains can replace the WWP1 HECT domain in chimeric ubiquitin ligases and drive budding. Moreover, artificial recruitment of isolated HECT domains to Gag is sufficient to stimulate budding. Conversely, the HECT domain becomes dispensable if the other domains of WWP1 are directly fused to an ESCRT-1 protein. In each case where budding is driven by a HECT domain, its catalytic activity is essential, but Gag ubiquitination is dispensable, suggesting that ubiquitin ligation to trans-acting proteins drives budding. Paradoxically, however, we also demonstrate that direct fusion of a ubiquitin moiety to the C-terminus of PFV Gag can also promote budding, suggesting that ubiquitination of Gag can substitute for ubiquitination of trans-acting proteins. Depletion of Tsg101 and ALIX inhibits budding that is dependent on ubiquitin that is fused to Gag, or ligated to trans-acting proteins through the action of a PPxY motif. These studies underscore the flexibility in the ways that the ESCRT pathway can be engaged, and suggest a model in which the identity of the protein to which ubiquitin is attached is not critical for subsequent recruitment of ubiquitin-binding components of the ESCRT pathway and viral budding to proceed.

  11. Overview of the membrane-associated RING-CH (MARCH) E3 ligase family.

    Science.gov (United States)

    Bauer, Johannes; Bakke, Oddmund; Morth, J Preben

    2017-09-25

    E3 ligases are critical checkpoints for protein ubiquitination, a signal that often results in protein sorting and degradation but has also been linked to regulation of transcription and DNA repair. In line with their key role in cellular trafficking and cell-cycle control, malfunction of E3 ligases is often linked to human disease. Thus, they have emerged as prime drug targets. However, the molecular basis of action of membrane-bound E3 ligases is still unknown. Here, we review the current knowledge on the membrane-embedded MARCH E3 ligases (MARCH-1-6,7,8,11) with a focus on how the transmembrane regions can contribute via GxxxG-motifs to the selection and recognition of other membrane proteins as substrates for ubiquitination. Further understanding of the molecular parameters that govern target protein recognition of MARCH E3 ligases will contribute to development of strategies for therapeutic regulation of MARCH-induced ubiquitination. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Ubiquitination independent of E1 and E2 enzymes by bacterial effectors

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Jiazhang; Sheedlo, Michael J.; Yu, Kaiwen; Tan, Yunhao; Nakayasu, Ernesto S.; Das, Chittaranjan; Liu, Xiaoyun; Luo, Zhao-Qing

    2016-04-06

    Signaling by ubiquitination regulates virtually every cellular process in eukaryotes. Covalent attachment of ubiquitin to a substrate is catalyzed by the E1, E2 and E3 three-enzyme cascade 1, which links the C terminus of ubiquitin via an isopeptide bond mostly to the ε-amino group of a lysine of the substrate. Given the essential roles of ubiquitination in the regulation of the immune system, it is not surprising that the ubiquitination network is a common target for diverse infectious agents 2. For example, many bacterial pathogens exploit ubiquitin signaling using virulence factors that function as E3 ligases, deubiquitinases 3 or as enzymes that directly attack ubiquitin 4. The bacterial pathogen Legionella pneumophila utilizes approximately 300 effectors that modulate diverse host processes to create a niche permissive for its replication in phagocytes 5. Here we demonstrate that members of the SidE effector family (SidEs) of L. pneumophila ubiquitinate multiple Rab small GTPases associated with the endoplasmic reticulum (ER). Moreover, we show that these proteins are capable of catalyzing ubiquitination without the need for the E1 and E2 enzymes. The E1/E2-independent ubiquitination catalyzed by these enzymes requires NAD but not ATP and Mg2+. A putative mono ADP-ribosyltransferase (mART) motif critical for the ubiquitination activity is also essential for the role of SidEs in intracellular bacterial replication in a protozoan host. These results establish that ubiquitination can be catalyzed by a single enzyme.

  13. A novel ubiquitin ligase is deficient in Fanconi anemia.

    NARCIS (Netherlands)

    Meetei, AR; Winter, de J.P.; Medhurst, A.L. dr.; Wallisch, M; Waisfisz, Q.; Vrugt, van der H.J.; Oostra, A.B.; Yan, Z; Ling, C; Bishop, CE; Hoatlin, M.E.; Joenje, H.

    2003-01-01

    Fanconi anemia is a recessively inherited disease characterized by congenital defects, bone marrow failure and cancer susceptibility. Cells from individuals with Fanconi anemia are highly sensitive to DNA-crosslinking drugs, such as mitomycin C (MMC). Fanconi anemia proteins function in a DNA damage

  14. The Ubiquitin System and Jasmonate Signaling

    Directory of Open Access Journals (Sweden)

    Astrid Nagels Durand

    2016-01-01

    Full Text Available The ubiquitin (Ub system is involved in most, if not all, biological processes in eukaryotes. The major specificity determinants of this system are the E3 ligases, which bind and ubiquitinate specific sets of proteins and are thereby responsible for target recruitment to the proteasome or other cellular processing machineries. The Ub system contributes to the regulation of the production, perception and signal transduction of plant hormones. Jasmonic acid (JA and its derivatives, known as jasmonates (JAs, act as signaling compounds regulating plant development and plant responses to various biotic and abiotic stress conditions. We provide here an overview of the current understanding of the Ub system involved in JA signaling.

  15. Linear ubiquitination in immunity.

    Science.gov (United States)

    Shimizu, Yutaka; Taraborrelli, Lucia; Walczak, Henning

    2015-07-01

    Linear ubiquitination is a post-translational protein modification recently discovered to be crucial for innate and adaptive immune signaling. The function of linear ubiquitin chains is regulated at multiple levels: generation, recognition, and removal. These chains are generated by the linear ubiquitin chain assembly complex (LUBAC), the only known ubiquitin E3 capable of forming the linear ubiquitin linkage de novo. LUBAC is not only relevant for activation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs) in various signaling pathways, but importantly, it also regulates cell death downstream of immune receptors capable of inducing this response. Recognition of the linear ubiquitin linkage is specifically mediated by certain ubiquitin receptors, which is crucial for translation into the intended signaling outputs. LUBAC deficiency results in attenuated gene activation and increased cell death, causing pathologic conditions in both, mice, and humans. Removal of ubiquitin chains is mediated by deubiquitinases (DUBs). Two of them, OTULIN and CYLD, are constitutively associated with LUBAC. Here, we review the current knowledge on linear ubiquitination in immune signaling pathways and the biochemical mechanisms as to how linear polyubiquitin exerts its functions distinctly from those of other ubiquitin linkage types. © 2015 The Authors. Immunological Reviews Published by John Wiley & Sons Ltd.

  16. Classification, expression pattern, and E3 ligase activity assay of rice U-box-containing proteins.

    Science.gov (United States)

    Zeng, Li-Rong; Park, Chan Ho; Venu, R C; Gough, Julian; Wang, Guo-Liang

    2008-09-01

    Ubiquitin ligases play a central role in determining the specificity of the ubiquitination system by selecting a myriad of appropriate candidate proteins for modification. The U-box is a recently identified, ubiquitin ligase activity-related protein domain that shows greater presence in plants than in other organisms. In this study, we identified 77 putative U-box proteins from the rice genome using a battery of whole genome analysis algorithms. Most of the U-box protein genes are expressed, as supported by the identification of their corresponding expressed sequence tags (ESTs), full-length cDNAs, or massively parallel signature sequencing (MPSS) tags. Using the same algorithms, we identified 61 U-box proteins from the Arabidopsis genome. The rice and Arabidopsis U-box proteins were classified into nine major classes based on their domain compositions. Comparison between rice and Arabidopsis U-box proteins indicates that the majority of rice and Arabidopsis U-box proteins have the same domain organizations. The inferred phylogeny established the homology between rice and Arabidopsis U-box/ARM proteins. Cell death assay using the rice protoplast system suggests that one rice U-box gene, OsPUB51, might act as a negative regulator of cell death signaling. In addition, the selected U-box proteins were found to be functional E3 ubiquitin ligases. The identification and analysis of rice U-box proteins hereby at the genomic level will help functionally characterize this class of E3 ubiquitin ligase in the future.

  17. Regulation of MHC Class II-Peptide Complex Expression by Ubiquitination

    Directory of Open Access Journals (Sweden)

    Kyung Jin eCho

    2013-11-01

    Full Text Available MHC class II (MHC-II molecules are present on antigen presenting cells (APCs and these molecules function by binding antigenic peptides and presenting these peptides to antigen-specific CD4+ T cells. APCs continuously generate and degrade MHC-II molecules, and ubiquitination of MHC-II has recently been shown to be a key regulator of MHC-II expression in dendritic cells (DCs. In this mini-review we will examine the mechanism by which the E3 ubiquitin ligase March-I regulates MHC-II expression on APCs and will discuss the functional consequences of altering MHC-II ubiquitination.

  18. Receptor Tyrosine Kinase Ubiquitination and De-Ubiquitination in Signal Transduction and Receptor Trafficking

    Directory of Open Access Journals (Sweden)

    William R. Critchley

    2018-03-01

    Full Text Available Receptor tyrosine kinases (RTKs are membrane-based sensors that enable rapid communication between cells and their environment. Evidence is now emerging that interdependent regulatory mechanisms, such as membrane trafficking, ubiquitination, proteolysis and gene expression, have substantial effects on RTK signal transduction and cellular responses. Different RTKs exhibit both basal and ligand-stimulated ubiquitination, linked to trafficking through different intracellular compartments including the secretory pathway, plasma membrane, endosomes and lysosomes. The ubiquitin ligase superfamily comprising the E1, E2 and E3 enzymes are increasingly implicated in this post-translational modification by adding mono- and polyubiquitin tags to RTKs. Conversely, removal of these ubiquitin tags by proteases called de-ubiquitinases (DUBs enables RTK recycling for another round of ligand sensing and signal transduction. The endocytosis of basal and activated RTKs from the plasma membrane is closely linked to controlled proteolysis after trafficking and delivery to late endosomes and lysosomes. Proteolytic RTK fragments can also have the capacity to move to compartments such as the nucleus and regulate gene expression. Such mechanistic diversity now provides new opportunities for modulating RTK-regulated cellular responses in health and disease states.

  19. Receptor Tyrosine Kinase Ubiquitination and De-Ubiquitination in Signal Transduction and Receptor Trafficking

    Science.gov (United States)

    Critchley, William R.; Pellet-Many, Caroline; Ringham-Terry, Benjamin; Zachary, Ian C.; Ponnambalam, Sreenivasan

    2018-01-01

    Receptor tyrosine kinases (RTKs) are membrane-based sensors that enable rapid communication between cells and their environment. Evidence is now emerging that interdependent regulatory mechanisms, such as membrane trafficking, ubiquitination, proteolysis and gene expression, have substantial effects on RTK signal transduction and cellular responses. Different RTKs exhibit both basal and ligand-stimulated ubiquitination, linked to trafficking through different intracellular compartments including the secretory pathway, plasma membrane, endosomes and lysosomes. The ubiquitin ligase superfamily comprising the E1, E2 and E3 enzymes are increasingly implicated in this post-translational modification by adding mono- and polyubiquitin tags to RTKs. Conversely, removal of these ubiquitin tags by proteases called de-ubiquitinases (DUBs) enables RTK recycling for another round of ligand sensing and signal transduction. The endocytosis of basal and activated RTKs from the plasma membrane is closely linked to controlled proteolysis after trafficking and delivery to late endosomes and lysosomes. Proteolytic RTK fragments can also have the capacity to move to compartments such as the nucleus and regulate gene expression. Such mechanistic diversity now provides new opportunities for modulating RTK-regulated cellular responses in health and disease states. PMID:29543760

  20. Regulation of G Protein-Coupled Receptors by Ubiquitination

    Directory of Open Access Journals (Sweden)

    Kamila Skieterska

    2017-04-01

    Full Text Available G protein-coupled receptors (GPCRs comprise the largest family of membrane receptors that control many cellular processes and consequently often serve as drug targets. These receptors undergo a strict regulation by mechanisms such as internalization and desensitization, which are strongly influenced by posttranslational modifications. Ubiquitination is a posttranslational modification with a broad range of functions that is currently gaining increased appreciation as a regulator of GPCR activity. The role of ubiquitination in directing GPCRs for lysosomal degradation has already been well-established. Furthermore, this modification can also play a role in targeting membrane and endoplasmic reticulum-associated receptors to the proteasome. Most recently, ubiquitination was also shown to be involved in GPCR signaling. In this review, we present current knowledge on the molecular basis of GPCR regulation by ubiquitination, and highlight the importance of E3 ubiquitin ligases, deubiquitinating enzymes and β-arrestins. Finally, we discuss classical and newly-discovered functions of ubiquitination in controlling GPCR activity.

  1. Ubiquitin-SUMO Circuitry Controls Activated Fanconi Anemia ID Complex Dosage in Response to DNA Damage

    DEFF Research Database (Denmark)

    Gibbs-Seymour, Ian; Oka, Yasuyoshi; Rajendra, Eeson

    2015-01-01

    We show that central components of the Fanconi anemia (FA) DNA repair pathway, the tumor suppressor proteins FANCI and FANCD2 (the ID complex), are SUMOylated in response to replication fork stalling. The ID complex is SUMOylated in a manner that depends on the ATR kinase, the FA ubiquitin ligase...

  2. The mechanism of OTUB1-mediated inhibition of ubiquitination

    Energy Technology Data Exchange (ETDEWEB)

    Wiener, Reuven; Zhang, Xiangbin; Wang, Tao; Wolberger, Cynthia (JHU)

    2013-04-08

    Histones are ubiquitinated in response to DNA double-strand breaks (DSB), promoting recruitment of repair proteins to chromatin. UBC13 (also known as UBE2N) is a ubiquitin-conjugating enzyme (E2) that heterodimerizes with UEV1A (also known as UBE2V1) and synthesizes K63-linked polyubiquitin (K63Ub) chains at DSB sites in concert with the ubiquitin ligase (E3), RNF168 (ref. 3). K63Ub synthesis is regulated in a non-canonical manner by the deubiquitinating enzyme, OTUB1 (OTU domain-containing ubiquitin aldehyde-binding protein 1), which binds preferentially to the UBC13-Ub thiolester. Residues amino-terminal to the OTU domain, which had been implicated in ubiquitin binding, are required for binding to UBC13-Ub and inhibition of K63Ub synthesis. Here we describe structural and biochemical studies elucidating how OTUB1 inhibits UBC13 and other E2 enzymes. We unexpectedly find that OTUB1 binding to UBC13-Ub is allosterically regulated by free ubiquitin, which binds to a second site in OTUB1 and increases its affinity for UBC13-Ub, while at the same time disrupting interactions with UEV1A in a manner that depends on the OTUB1 N terminus. Crystal structures of an OTUB1-UBC13 complex and of OTUB1 bound to ubiquitin aldehyde and a chemical UBC13-Ub conjugate show that binding of free ubiquitin to OTUB1 triggers conformational changes in the OTU domain and formation of a ubiquitin-binding helix in the N terminus, thus promoting binding of the conjugated donor ubiquitin in UBC13-Ub to OTUB1. The donor ubiquitin thus cannot interact with the E2 enzyme, which has been shown to be important for ubiquitin transfer. The N-terminal helix of OTUB1 is positioned to interfere with UEV1A binding to UBC13, as well as with attack on the thiolester by an acceptor ubiquitin, thereby inhibiting K63Ub synthesis. OTUB1 binding also occludes the RING E3 binding site on UBC13, thus providing a further component of inhibition. The general features of the inhibition mechanism explain how OTUB1

  3. Ubiquitination in apoptosis signaling

    NARCIS (Netherlands)

    van de Kooij, L.W.

    2014-01-01

    The work described in this thesis focuses on ubiquitination and protein degradation, with an emphasis on how these processes regulate apoptosis signaling. More specifically, our aims were: 1. To increase the understanding of ubiquitin-mediated regulation of apoptosis signaling. 2. To identify the E3

  4. Genome-wide identification and expression analysis of E2 ubiquitin-conjugating enzymes in tomato.

    Science.gov (United States)

    Sharma, Bhaskar; Bhatt, Tarun Kumar

    2017-08-17

    The ubiquitin-proteasomal degradation mechanism has gained the attention over the past decade. The E2 ubiquitin conjugating enzymes are the crucial part of ubiquitination mechanism and they are believed to hold imperative association for plant development. It accepts ubiquitin from the E1 enzyme and interacts with the E3 ligase to transfer ubiquitin or directly transfers ubiquitin to the substrate. The functional aspects of E2 ubiquitin enzymes in plant systems are unclear. Tomato is being used as a model plant and rarely explored to study E2 ubiquitin enzyme. We have utilized in-silico methods to analyze E2 enzymes in Solanum lycopersicum and 59 genes were identified with UBC family domains. The physio-chemical properties, chromosomal localization, structural organization, gene duplication, promoter analysis, gene ontology and conserved motifs were investigated along with phylogenetic analysis of tomato E2 genes exploring evolutionary relations. The gene expression analysis of RNA sequencing data revealed expression profile of tomato E2 genes in seedling, root, leaf, seed, fruit, and flower tissues. Our study aid in the understanding of distribution, expansion, evolutionary relation and probable participation in plant biological processes of tomato E2 enzymes that will facilitate strong base for future research on ubiquitin-mediated regulations in tomato and other plant systems.

  5. Ubiquitin and ubiquitine-like systems in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    van de Pasch, L.A.L.

    2012-01-01

    Ubiquitin and ubiquitin-like modifiers are small proteins that exist in all eukaryotes, from yeast to humans. Ubiquitin(-like) modifiers can be coupled to other proteins, which is mediated specific combinations of enzymes. The attachment of a ubiquitin(-like) modifier to a protein is important for

  6. SCF(SAP) controls organ size by targeting PPD proteins for degradation in Arabidopsis thaliana.

    Science.gov (United States)

    Wang, Zhibiao; Li, Na; Jiang, Shan; Gonzalez, Nathalie; Huang, Xiahe; Wang, Yingchun; Inzé, Dirk; Li, Yunhai

    2016-04-06

    Control of organ size by cell proliferation and growth is a fundamental process, but the mechanisms that determine the final size of organs are largely elusive in plants. We have previously revealed that the ubiquitin receptor DA1 regulates organ size by repressing cell proliferation in Arabidopsis. Here we report that a mutant allele of STERILE APETALA (SAP) suppresses the da1-1 mutant phenotype. We show that SAP is an F-box protein that forms part of a SKP1/Cullin/F-box E3 ubiquitin ligase complex and controls organ size by promoting the proliferation of meristemoid cells. Genetic analyses suggest that SAP may act in the same pathway with PEAPOD1 and PEAPOD2, which are negative regulators of meristemoid proliferation, to control organ size, but does so independently of DA1. Further results reveal that SAP physically associates with PEAPOD1 and PEAPOD2, and targets them for degradation. These findings define a molecular mechanism by which SAP and PEAPOD control organ size.

  7. PIASxα Ligase Enhances SUMO1 Modification of PTEN Protein as a SUMO E3 Ligase*

    Science.gov (United States)

    Wang, Weibin; Chen, Yifan; Wang, Shuya; Hu, Ningguang; Cao, Zhengyi; Wang, Wengong; Tong, Tanjun; Zhang, Xiaowei

    2014-01-01

    The tumor suppressor PTEN plays a critical role in the regulation of multiple cellular processes that include survival, cell cycle, proliferation, and apoptosis. PTEN is frequently mutated or deleted in various human cancer cells to promote tumorigenesis. PTEN is regulated by SUMOylation, but the SUMO E3 ligase involved in the SUMOylation of PTEN remains unclear. Here, we demonstrated that PIASxα is a SUMO E3 ligase for PTEN. PIASxα physically interacted with PTEN both in vitro and in vivo. Their interaction depended on the integrity of phosphatase and C2 domains of PTEN and the region of PIASxα comprising residues 134–347. PIASxα enhanced PTEN protein stability by reducing PTEN ubiquitination, whereas the mutation of PTEN SUMO1 conjugation sites neutralized the effect of PIASxα on PTEN protein half-life. Functionally, PIASxα, as a potential tumor suppressor, negatively regulated the PI3K-Akt pathway through stabilizing PTEN protein. Overexpression of PIASxα led to G0/G1 cell cycle arrest, thus triggering cell proliferation inhibition and tumor suppression, whereas PIASxα knockdown or deficiency in catalytic activity abolished the inhibition. Together our studies suggest that PIASxα is a novel SUMO E3 ligase for PTEN, and it positively regulates PTEN protein level in tumor suppression. PMID:24344134

  8. PIASxα ligase enhances SUMO1 modification of PTEN protein as a SUMO E3 ligase.

    Science.gov (United States)

    Wang, Weibin; Chen, Yifan; Wang, Shuya; Hu, Ningguang; Cao, Zhengyi; Wang, Wengong; Tong, Tanjun; Zhang, Xiaowei

    2014-02-07

    The tumor suppressor PTEN plays a critical role in the regulation of multiple cellular processes that include survival, cell cycle, proliferation, and apoptosis. PTEN is frequently mutated or deleted in various human cancer cells to promote tumorigenesis. PTEN is regulated by SUMOylation, but the SUMO E3 ligase involved in the SUMOylation of PTEN remains unclear. Here, we demonstrated that PIASxα is a SUMO E3 ligase for PTEN. PIASxα physically interacted with PTEN both in vitro and in vivo. Their interaction depended on the integrity of phosphatase and C2 domains of PTEN and the region of PIASxα comprising residues 134-347. PIASxα enhanced PTEN protein stability by reducing PTEN ubiquitination, whereas the mutation of PTEN SUMO1 conjugation sites neutralized the effect of PIASxα on PTEN protein half-life. Functionally, PIASxα, as a potential tumor suppressor, negatively regulated the PI3K-Akt pathway through stabilizing PTEN protein. Overexpression of PIASxα led to G0/G1 cell cycle arrest, thus triggering cell proliferation inhibition and tumor suppression, whereas PIASxα knockdown or deficiency in catalytic activity abolished the inhibition. Together our studies suggest that PIASxα is a novel SUMO E3 ligase for PTEN, and it positively regulates PTEN protein level in tumor suppression.

  9. UV-B induction of the E3 ligase ARIADNE12 depends on CONSTITUTIVELY PHOTOMORPHOGENIC 1.

    Science.gov (United States)

    Xie, Lisi; Lang-Mladek, Christina; Richter, Julia; Nigam, Neha; Hauser, Marie-Theres

    2015-08-01

    The UV-B inducible ARIADNE12 (ARI12) gene of Arabidopsis thaliana is a member of the RING-between-RING (RBR) family of E3 ubiquitin ligases for which a novel ubiquitination mechanism was identified in mammalian homologs. This RING-HECT hybrid mechanism needs a conserved cysteine which is replaced by serine in ARI12 and might affect the E3 ubiquitin ligase activity. We have shown that under photomorphogenic UV-B, ARI12 is a downstream target of the classical ultraviolet B (UV-B) UV Resistance Locus 8 (UVR8) pathway. However, under high fluence rate of UV-B ARI12 was induced independently of UVR8 and the UV-A/blue light and red/far-red photoreceptors. A key component of several light signaling pathways is Constitutively Photomorphogenic 1 (COP1). Upon UV-B COP1 is trapped in the nucleus through interaction with UVR8 permitting the activation of genes that regulate the biosynthesis of UV-B protective metabolites and growth adaptations. To clarify the role of COP1 in the regulation of ARI12 mRNA expression and ARI12 protein stability, localization and interaction with COP1 was assessed with and without UV-B. We found that COP1 controls ARI12 in white light, low and high fluence rate of UV-B. Furthermore we show that ARI12 is indeed an E3 ubiquitin ligase which is mono-ubiquitinated, a prerequisite for the RING-HECT hybrid mechanism. Finally, genetic analyses with transgenes expressing a genomic pmARI12:ARI12-GFP construct confirm the epistatic interaction between COP1 and ARI12 in growth responses to high fluence rate UV-B. Copyright © 2015 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

  10. Cyanogen Azide. Ionization Potentials and Ab Initio SCF MO Calculation

    DEFF Research Database (Denmark)

    Bak, Börge; Jansen, Peter; Stafast, Herbert

    1975-01-01

    The Ne(I) and He(I) photoelectron(PE) spectra of cyanogen azide, NCN3, have been recorded at high resolution. Their interpretation is achieved by comparison with the PE spectrum of HN3 and an ab initio LCGO SCF MO calculation. Deviations from Koopmans' theorem of quite different magnitudes...

  11. Regulation of PTEN degradation and NEDD4-1 E3 ligase activity by Numb.

    Science.gov (United States)

    Shao, Chen; Li, Zhiguo; Ahmad, Nihal; Liu, Xiaoqi

    2017-05-19

    The critical tumor suppressor PTEN is regulated by numerous post-translational modifications including phosphorylation, acetylation and ubiquitination. Ubiquitination of PTEN was reported to control both PTEN stability and nuclear localization. Notably, the HECT E3-ligase NEDD4-1 was identified as the ubiquitin ligase for PTEN, mediating its degradation and down-stream events. However, the mechanisms how NEDD4-1 is regulated by up-stream signaling pathways or interaction with other proteins in promoting PTEN degradation remain largely unclear. In the present study, we identified that the adaptor protein Numb, which is demonstrated to be a novel binding partner of NEDD4-1, plays important roles in controlling PTEN ubiquitination through regulating NEDD4-1 activity and the association between PTEN and NEDD4-1. Furthermore, we provided data to show that Numb regulates cell proliferation and glucose metabolism in a PTEN-dependent manner. Overall, our study revealed a novel regulation of the well-documented NEDD4-1/PTEN pathway and its oncogenic behavior.

  12. An Arabidopsis SUMO E3 Ligase, SIZ1, Negatively Regulates Photomorphogenesis by Promoting COP1 Activity

    KAUST Repository

    Lin, Xiao-Li

    2016-04-29

    COP1 (CONSTITUTIVE PHOTOMORPHOGENIC 1), a ubiquitin E3 ligase, is a central negative regulator of photomorphogenesis. However, how COP1 activity is regulated by post-translational modifications remains largely unknown. Here we show that SUMO (small ubiquitin-like modifier) modification enhances COP1 activity. Loss-of-function siz1 mutant seedlings exhibit a weak constitutive photomorphogenic phenotype. SIZ1 physically interacts with COP1 and mediates the sumoylation of COP1. A K193R substitution in COP1 blocks its SUMO modification and reduces COP1 activity in vitro and in planta. Consistently, COP1 activity is reduced in siz1 and the level of HY5, a COP1 target protein, is increased in siz1. Sumoylated COP1 may exhibits higher transubiquitination activity than does non-sumoylated COP1, but SIZ1-mediated SUMO modification does not affect COP1 dimerization, COP1-HY5 interaction, and nuclear accumulation of COP1. Interestingly, prolonged light exposure reduces the sumoylation level of COP1, and COP1 mediates the ubiquitination and degradation of SIZ1. These regulatory mechanisms may maintain the homeostasis of COP1 activity, ensuing proper photomorphogenic development in changing light environment. Our genetic and biochemical studies identify a function for SIZ1 in photomorphogenesis and reveal a novel SUMO-regulated ubiquitin ligase, COP1, in plants.

  13. Both K63 and K48 ubiquitin linkages signal lysosomal degradation of the LDL receptor.

    Science.gov (United States)

    Zhang, Li; Xu, Ming; Scotti, Elena; Chen, Zhijian J; Tontonoz, Peter

    2013-05-01

    Linkage-specific ubiquitination often leads to distinct cellular events. It has been difficult to establish definitively the requirement for a particular linkage in mammalian degradation pathways due to the inability to deplete endogenous ubiquitin while maintaining cell viability. The E3 ubiquitin ligase inducible degrader of the LDL receptor (IDOL) targets the low density lipoprotein receptor (LDLR) for degradation. The nature of the linkages employed to signal lysosomal degradation of the LDLR, and to signal proteasomal autodegradation of IDOL, have not been determined. We used an inducible RNAi strategy to replace endogenous ubiquitin with mutants lacking K48 or K63. We found that IDOL catalyzes the transfer of ubiquitin chains to itself and to the LDLR that do not contain exclusively K48 or K63 linkages. Thus, LDLR can be targeted to the lysosome by either K48 or K63 linkages. We further demonstrate that although both ubiquitin conjugating enzyme E2 (UBE2)Ds and UBE2N/V1 can catalyze LDLR ubiquitination in a cell-free system, UBE2Ds appear to be the major E2 enzymes employed by IDOL in cells, consistent with their ability to catalyze both K48 and K63 linkages. The results reveal mechanistic insight into the posttranscriptional control of lipoprotein uptake and provide a test of the requirement of linkage-specific ubiquitination for specific lysosomal and proteasomal degradation pathways in mammalian cells.

  14. Nedd8 processing enzymes in Schizosaccharomyces pombe

    DEFF Research Database (Denmark)

    O'Donoghue, Jean; Bech-Otschir, Dawadschargal; Larsen, Ida

    2013-01-01

    Conjugation of the ubiquitin-like modifier Nedd8 to cullins is critical for the function of SCF-type ubiquitin ligases and thus facilitates ubiquitin conjugation and ultimately degradation of SCF substrates, including several cell cycle regulators. Like ubiquitin, Nedd8 is produced as a precursor...... that must first be processed before it becomes active. In Saccharomyces cerevisiae this is carried out exclusively by the enzyme Yuh1....

  15. Structural insights into the nanomolar affinity of RING E3 ligase ZNRF1 for Ube2N and its functional implications.

    Science.gov (United States)

    Behera, Adaitya Prasad; Naskar, Pritam; Agarwal, Shubhangi; Banka, Prerana Agarwal; Poddar, Asim; Datta, Ajit B

    2018-04-06

    RING domains in Ubiquitin RING E3 ligases exclusively engage ubiquitin (Ub) loaded E2s to facilitate ubiquitination of their substrates. Despite such specificity, all RINGs characterized till-date bind unloaded E2s with dissociation constants ( K d s) in the micromolar to the sub-millimolar range. Here we show that the RING domain of E3 ligase ZNRF1, an essential E3 ligase implicated in diverse cellular pathways, binds Ube2N with a K d of ~50 nM. This high-affinity interaction is exclusive for Ube2N as ZNRF1 interacts with Ube2D2 with a K d of ~1 µM alike few other E3s. The crystal structure of ZNRF1 C-terminal domain in complex with Ube2N coupled with mutational analyses reveals the molecular basis of this unusual affinity. We further demonstrate that the ubiquitination efficiency of ZNRF1:E2 pairs correlates with their affinity. Intriguingly, as a consequence of its high E2 affinity, an excess of ZNRF1 inhibits Ube2N mediated ubiquitination at concentrations ≥500 nM instead of showing enhanced ubiquitination. This suggests a novel mode of activity regulation of E3 ligases and emphasizes the importance of E3:E2 ratio for the optimum activity. Based on our results we propose that overexpression based functional analyses on E3 ligases such as ZNRF1 must be approached with caution as enhanced cellular levels might result in aberrant modification activity. ©2018 The Author(s).

  16. Ataxia, Dementia, and Hypogonadotropism Caused by Disordered Ubiquitination

    DEFF Research Database (Denmark)

    Margolin, David H.; Kousi, Maria; Chan, Yee-Ming

    2013-01-01

    affected patients. Neurologic and reproductive endocrine phenotypes were characterized in detail. The effects of sequence variants and the presence of an epistatic interaction were tested in a zebrafish model. RESULTS Digenic homozygous mutations in RNF216 and OTUD4, which encode a ubiquitin E3 ligase...... in zebrafish embryos induced defects in the eye, optic tectum, and cerebellum; combinatorial suppression of both genes exacerbated these phenotypes, which were rescued by nonmutant, but not mutant, human RNF216 or OTUD4 messenger RNA. All patients had progressive ataxia and dementia. Neuronal loss was observed...

  17. Cell fate determination by ubiquitin-dependent regulation of translation

    Science.gov (United States)

    Werner, Achim; Iwasaki, Shintaro; McGourty, Colleen; Medina-Ruiz, Sofia; Teerikorpi, Nia; Fedrigo, Indro; Ingolia, Nicholas T.; Rape, Michael

    2015-01-01

    Metazoan development depends on accurate execution of differentiation programs that allow pluripotent stem cells to adopt specific fates 1. Differentiation requires changes to chromatin architecture and transcriptional networks, yet whether other regulatory events support cell fate determination is less well understood. Here, we have identified the vertebrate-specific ubiquitin ligase CUL3KBTBD8 as an essential regulator of neural crest specification. CUL3KBTBD8 monoubiquitylates NOLC1 and its paralog TCOF1, whose mutation underlies the neurocristopathy Treacher Collins Syndrome 2,3. Ubiquitylation drives formation of a TCOF1-NOLC1 platform that connects RNA polymerase I with ribosome modification enzymes and remodels the translational program of differentiating cells in favor of neural crest specification. We conclude that ubiquitin-dependent regulation of translation is an important feature of cell fate determination. PMID:26399832

  18. A comparative analysis of the ubiquitination kinetics of multiple degrons to identify an ideal targeting sequence for a proteasome reporter.

    Directory of Open Access Journals (Sweden)

    Adam T Melvin

    Full Text Available The ubiquitin proteasome system (UPS is the primary pathway responsible for the recognition and degradation of misfolded, damaged, or tightly regulated proteins. The conjugation of a polyubiquitin chain, or polyubiquitination, to a target protein requires an increasingly diverse cascade of enzymes culminating with the E3 ubiquitin ligases. Protein recognition by an E3 ligase occurs through a specific sequence of amino acids, termed a degradation sequence or degron. Recently, degrons have been incorporated into novel reporters to monitor proteasome activity; however only a limited few degrons have successfully been incorporated into such reporters. The goal of this work was to evaluate the ubiquitination kinetics of a small library of portable degrons that could eventually be incorporated into novel single cell reporters to assess proteasome activity. After an intensive literary search, eight degrons were identified from proteins recognized by a variety of E3 ubiquitin ligases and incorporated into a four component degron-based substrate to comparatively calculate ubiquitination kinetics. The mechanism of placement of multiple ubiquitins on the different degron-based substrates was assessed by comparing the data to computational models incorporating first order reaction kinetics using either multi-monoubiquitination or polyubiquitination of the degron-based substrates. A subset of three degrons was further characterized to determine the importance of the location and proximity of the ubiquitination site lysine with respect to the degron. Ultimately, this work identified three candidate portable degrons that exhibit a higher rate of ubiquitination compared to peptidase-dependent degradation, a desired trait for a proteasomal targeting motif.

  19. Ubiquitination regulates MHC class II-peptide complex retention and degradation in dendritic cells

    OpenAIRE

    Walseng, Even; Furuta, Kazuyuki; Bosch, Berta; Weih, Karis A.; Matsuki, Yohei; Bakke, Oddmund; Ishido, Satoshi; Roche, Paul A.

    2010-01-01

    The expression and turnover of MHC class II-peptide complexes (pMHC-II) on the surface of dendritic cells (DCs) is essential for their ability to activate CD4 T cells efficiently. The half-life of surface pMHC-II is significantly greater in activated (mature) DCs than in resting (immature) DCs, but the molecular mechanism leading to this difference remains unknown. We now show that ubiquitination of pMHC-II by the E3 ubiquitin ligase membrane-associated RING-CH 1 (March-I) regulates surface e...

  20. Breaking It Down: The Ubiquitin Proteasome System in Neuronal Morphogenesis

    Directory of Open Access Journals (Sweden)

    Andrew M. Hamilton

    2013-01-01

    Full Text Available The ubiquitin-proteasome system (UPS is most widely known for its role in intracellular protein degradation; however, in the decades since its discovery, ubiquitination has been associated with the regulation of a wide variety of cellular processes. The addition of ubiquitin tags, either as single moieties or as polyubiquitin chains, has been shown not only to mediate degradation by the proteasome and the lysosome, but also to modulate protein function, localization, and endocytosis. The UPS plays a particularly important role in neurons, where local synthesis and degradation work to balance synaptic protein levels at synapses distant from the cell body. In recent years, the UPS has come under increasing scrutiny in neurons, as elements of the UPS have been found to regulate such diverse neuronal functions as synaptic strength, homeostatic plasticity, axon guidance, and neurite outgrowth. Here we focus on recent advances detailing the roles of the UPS in regulating the morphogenesis of axons, dendrites, and dendritic spines, with an emphasis on E3 ubiquitin ligases and their identified regulatory targets.

  1. UbiGate: a synthetic biology toolbox to analyse ubiquitination.

    Science.gov (United States)

    Kowarschik, Kathrin; Hoehenwarter, Wolfgang; Marillonnet, Sylvestre; Trujillo, Marco

    2018-03-01

    Ubiquitination is mediated by an enzymatic cascade that results in the modification of substrate proteins, redefining their fate. This post-translational modification is involved in most cellular processes, yet its analysis faces manifold obstacles due to its complex and ubiquitous nature. Reconstitution of the ubiquitination cascade in bacterial systems circumvents several of these problems and was shown to faithfully recapitulate the process. Here, we present UbiGate - a synthetic biology toolbox, together with an inducible bacterial expression system - to enable the straightforward reconstitution of the ubiquitination cascades of different organisms in Escherichia coli by 'Golden Gate' cloning. This inclusive toolbox uses a hierarchical modular cloning system to assemble complex DNA molecules encoding the multiple genetic elements of the ubiquitination cascade in a predefined order, to generate polycistronic operons for expression. We demonstrate the efficiency of UbiGate in generating a variety of expression elements to reconstitute autoubiquitination by different E3 ligases and the modification of their substrates, as well as its usefulness for dissecting the process in a time- and cost-effective manner. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  2. A novel role of the N terminus of budding yeast histone H3 variant Cse4 in ubiquitin-mediated proteolysis.

    Science.gov (United States)

    Au, Wei Chun; Dawson, Anthony R; Rawson, David W; Taylor, Sara B; Baker, Richard E; Basrai, Munira A

    2013-06-01

    Regulating levels of centromeric histone H3 (CenH3) variant is crucial for genome stability. Interaction of Psh1, an E3 ligase, with the C terminus of Cse4 has been shown to contribute to its proteolysis. Here, we demonstrate a role for ubiquitination of the N terminus of Cse4 in regulating Cse4 proteolysis for faithful chromosome segregation and a role for Doa1 in ubiquitination of Cse4.

  3. Crystal structure of the substrate-recognition domain of the Shigella E3 ligase IpaH9.8.

    Science.gov (United States)

    Takagi, Kenji; Kim, Minsoo; Sasakawa, Chihiro; Mizushima, Tsunehiro

    2016-04-01

    Infectious diseases caused by bacteria have significant impacts on global public health. During infection, pathogenic bacteria deliver a variety of virulence factors, called effectors, into host cells. The Shigella effector IpaH9.8 functions as an ubiquitin ligase, ubiquitinating the NF-κB essential modulator (NEMO)/IKK-γ to inhibit host inflammatory responses. IpaH9.8 contains leucine-rich repeats (LRRs) involved in substrate recognition and an E3 ligase domain. To elucidate the structural basis of the function of IpaH9.8, the crystal structure of the LRR domain of Shigella IpaH9.8 was determined and this structure was compared with the known structures of other IpaH family members. This model provides insights into the structural features involved in substrate specificity.

  4. The glomuvenous malformation protein Glomulin binds Rbx1 and regulates cullin RING ligase-mediated turnover of Fbw7.

    Science.gov (United States)

    Tron, Adriana E; Arai, Takehiro; Duda, David M; Kuwabara, Hiroshi; Olszewski, Jennifer L; Fujiwara, Yuko; Bahamon, Brittany N; Signoretti, Sabina; Schulman, Brenda A; DeCaprio, James A

    2012-04-13

    Fbw7, a substrate receptor for Cul1-RING-ligase (CRL1), facilitates the ubiquitination and degradation of several proteins, including Cyclin E and c-Myc. In spite of much effort, the mechanisms underlying Fbw7 regulation are mostly unknown. Here, we show that Glomulin (Glmn), a protein found mutated in the vascular disorder glomuvenous malformation (GVM), binds directly to the RING domain of Rbx1 and inhibits its E3 ubiquitin ligase activity. Loss of Glmn in a variety of cells, tissues, and GVM lesions results in decreased levels of Fbw7 and increased levels of Cyclin E and c-Myc. The increased turnover of Fbw7 is dependent on CRL and proteasome activity, indicating that Glmn modulates the E3 activity of CRL1(Fbw7). These data reveal an unexpected functional connection between Glmn and Rbx1 and demonstrate that defective regulation of Fbw7 levels contributes to GVM. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. The E3 Ligase CHIP Mediates p21 Degradation to Maintain Radioresistance.

    Science.gov (United States)

    Biswas, Kuntal; Sarkar, Sukumar; Du, Kangping; Brautigan, David L; Abbas, Tarek; Larner, James M

    2017-06-01

    Lung cancer resists radiotherapy, making it one of the deadliest forms of cancer. Here, we show that human lung cancer cell lines can be rendered sensitive to ionizing radiation (IR) by RNAi knockdown of C-terminus of Hsc70-interacting protein (CHIP/STUB1), a U-box-type E3 ubiquitin ligase that targets a number of stress-induced proteins. Mechanistically, ubiquitin-dependent degradation of the cyclin-dependent kinase (CDK) inhibitor, p21 protein, is reduced by CHIP knockdown, leading to enhanced senescence of cells in response to exposure to IR. Cellular senescence and sensitivity to IR is prevented by CRISPR/Cas9-mediated deletion of the p21 gene ( CDKN1A) in CHIP knockdown cells. Conversely, overexpression of CHIP potentiates p21 degradation and promotes greater radioresistance of lung cancer cells. In vitro and cell-based assays demonstrate that p21 is a novel and direct ubiquitylation substrate of CHIP that also requires the CHIP-associated chaperone HSP70. These data reveal that the inhibition of the E3 ubiquitin ligase CHIP promotes radiosensitivity, thus suggesting a novel strategy for the treatment of lung cancer. Implications: The CHIP-HSP70-p21 ubiquitylation/degradation axis identified here could be exploited to enhance the efficacy of radiotherapy in patients with non-small cell lung cancer. Mol Cancer Res; 15(6); 651-9. ©2017 AACR . ©2017 American Association for Cancer Research.

  6. Rates of ubiquitin conjugation increase when muscles atrophy, largely through activation of the N-end rule pathway

    Science.gov (United States)

    Solomon, V.; Baracos, V.; Sarraf, P.; Goldberg, A. L.

    1998-01-01

    The rapid loss of muscle mass that accompanies many disease states, such as cancer or sepsis, is primarily a result of increased protein breakdown in muscle, and several observations have suggested an activation of the ubiquitin-proteasome system. Accordingly, in extracts of atrophying muscles from tumor-bearing or septic rats, rates of 125I-ubiquitin conjugation to endogenous proteins were found to be higher than in control extracts. On the other hand, in extracts of muscles from hypothyroid rats, where overall proteolysis is reduced below normal, the conjugation of 125I-ubiquitin to soluble proteins decreased by 50%, and treatment with triiodothyronine (T3) restored ubiquitination to control levels. Surprisingly, the N-end rule pathway, which selectively degrades proteins with basic or large hydrophobic N-terminal residues, was found to be responsible for most of these changes in ubiquitin conjugation. Competitive inhibitors of this pathway that specifically block the ubiquitin ligase, E3alpha, suppressed most of the increased ubiquitin conjugation in the muscle extracts from tumor-bearing and septic rats. These inhibitors also suppressed ubiquitination in normal extracts toward levels in hypothyroid extracts, which showed little E3alpha-dependent ubiquitination. Thus, the inhibitors eliminated most of the differences in ubiquitination under these different pathological conditions. Moreover, 125I-lysozyme, a model N-end rule substrate, was ubiquitinated more rapidly in extracts from tumor-bearing and septic rats, and more slowly in those from hypothyroid rats, than in controls. Thus, the rate of ubiquitin conjugation increases in atrophying muscles, and these hormone- and cytokine-dependent responses are in large part due to activation of the N-end rule pathway.

  7. Application of a parallel hybrid N--body SCF code

    Science.gov (United States)

    Hemsendorf, M.

    The implementation of a hybrid ``self consistent field'' (SCF) (Hernquist & Ostriker 1992) and direct Aarseth N--body integrator (NBODY6) (Aarseth 1993) which synthesises the advantages of the direct force calculation with the efficiency of the field method is described. The resulting code is aimed for use on parallel architectures and is therefore applicable for collisional N--body integrations with extraordinary large particle numbers. It opens a perspective to simulate the dynamics of globular clusters with realistic relaxation as well as stellar systems around a supermassive black hole in galactic nuclei.

  8. Applications of a Parallel Hybrid N-BODY Scf Code

    Science.gov (United States)

    Hemsendorf, Marc

    The implementation of a hybrid "self consistent field" (SCF)1 and direct Aarseth N-body integrator (NBODY6)2 which synthesises the advantages of the direct force calculation with the efficiency of the field method is described. The resulting code is aimed for use on parallel architectures and is therefore applicable for collisional N-body integrations with extraordinarily large particle numbers. It opens the perspective to simulate the dynamics of globular clusters with realistic relaxation as well as stellar systems surrounding a supermassive black hole in galactic nuclei.

  9. Implementing a hybrid N-body SCF code

    Science.gov (United States)

    Hemsendorf, M.

    1998-07-01

    The implementation of a hybrid ``self consistent field'' (SCF) (Hernquist and Ostriker 1992) and direct Aarseth N-body integrator (NBODY6) (Aarseth 1993) which synthesises the advantages of the direct force calculation with the efficiency of the field method. The resulting code is aimed for use on parallel architectures and is therefore applicable for collisional N-body integrations with extraordinary large particle numbers. It opens a perspective to simulate the dynamics of globular clusters with realistic relaxation as well as stellar systems around a supermassive black hole in galactic nuclei.

  10. Stem cell factor (SCF) protects osteoblasts from oxidative stress through activating c-Kit-Akt signaling

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Lei [Department of Orthopedics, Changzhou Wujin People’s Hospital-South Division, Affiliated Hospital of Jiangsu University, Changzhou (China); Wu, Zhong [Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai (China); Yin, Gang; Liu, Haifeng; Guan, Xiaojun; Zhao, Xiaoqiang [Department of Orthopedics, Changzhou Wujin People’s Hospital-South Division, Affiliated Hospital of Jiangsu University, Changzhou (China); Wang, Jianguang, E-mail: jianguangwang@163.com [Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai (China); Zhu, Jianguo, E-mail: gehujianguo68@163.com [Department of Orthopedics, Changzhou Wujin People’s Hospital-South Division, Affiliated Hospital of Jiangsu University, Changzhou (China)

    2014-12-12

    Highlights: • SCF receptor c-Kit is functionally expressed in primary and transformed osteoblasts. • SCF protects primary and transformed osteoblasts from H{sub 2}O{sub 2}. • SCF activation of c-Kit in osteoblasts, required for its cyto-protective effects. • c-Kit mediates SCF-induced Akt activation in cultured osteoblasts. • Akt activation is required for SCF-regulated cyto-protective effects in osteoblasts. - Abstract: Osteoblasts regulate bone formation and remodeling, and are main target cells of oxidative stress in the progression of osteonecrosis. The stem cell factor (SCF)-c-Kit pathway plays important roles in the proliferation, differentiation and survival in a range of cell types, but little is known about its functions in osteoblasts. In this study, we found that c-Kit is functionally expressed in both osteoblastic-like MC3T3-E1 cells and primary murine osteoblasts. Its ligand SCF exerted significant cyto-protective effects against hydrogen peroxide (H{sub 2}O{sub 2}). SCF activated its receptor c-Kit in osteoblasts, which was required for its cyto-protective effects against H{sub 2}O{sub 2}. Pharmacological inhibition (by Imatinib and Dasatinib) or shRNA-mediated knockdown of c-Kit thus inhibited SCF-mediated osteoblast protection. Further investigations showed that protection by SCF against H{sub 2}O{sub 2} was mediated via activation of c-Kit-dependent Akt pathway. Inhibition of Akt activation, through pharmacological or genetic means, suppressed SCF-mediated anti-H{sub 2}O{sub 2} activity in osteoblasts. In summary, we have identified a new SCF-c-Kit-Akt physiologic pathway that protects osteoblasts from H{sub 2}O{sub 2}-induced damages, and might minimize the risk of osteonecrosis caused by oxidative stress.

  11. Rictor forms a complex with Cullin-1 to promote SGK1 ubiquitination and destruction

    Science.gov (United States)

    Gao, Daming; Wan, Lixin; Inuzuka, Hiroyuki; Berg, Anders H.; Tseng, Alan; Zhai, Bo; Shaik, Shavali; Bennett, Eric; Tron, Adriana E.; Gasser, Jessica A.; Lau, Alan; Gygi, Steven; Harper, J. Wade; DeCaprio, James A.; Toker, Alex; Wei, Wenyi

    2010-01-01

    Summary The Rictor/mTOR complex (also known as mTORC2) plays a critical role in cellular homeostasis by phosphorylating AGC kinases such as Akt and SGK at their hydrophobic motifs to activate downstream signaling. However, the regulation of mTORC2 and whether it has additional function(s), remains largely unknown. Here we report that Rictor associates with Cullin-1 to form a functional E3 ubiquitin ligase. Rictor, but not Raptor or mTOR alone promotes SGK1 ubiquitination. Loss of Rictor/Cullin-1-mediated ubiquitination leads to increased SGK1 protein levels as detected in Rictor null cells. Moreover, as part of a feedback mechanism, phosphorylation of Rictor at T1135 by multiple AGC kinases disrupts the interaction between Rictor and Cullin-1 to impair SGK1 ubiquitination. These findings indicate that the Rictor/Cullin-1 E3 ligase activity is regulated by a specific signal relay cascade and that misregulation of this mechanism may contribute to the frequent overexpression of SGK1 in various human cancers. PMID:20832730

  12. The ubiquitin-proteasome system and chromosome 17 in cerebellar granule cells and medulloblastoma subgroups.

    Science.gov (United States)

    Vriend, Jerry; Marzban, Hassan

    2017-02-01

    Chromosome 17 abnormalities are often observed in medulloblastomas (MBs), particularly those classified in the consensus Groups 3 and 4. Herein we review MB signature genes associated with chromosome 17 and the relationship of these signature genes to the ubiquitin-proteasome system. While clinical investigators have not focused on the ubiquitin-proteasome system in relation to MB, a substantial amount of data on the topic has been hidden in the form of supplemental datasets of gene expression. A supplemental dataset associated with the Thompson classification of MBs shows that a subgroup of MB with 17p deletions is characterized by reduced expression of genes for several core particle subunits of the beta ring of the proteasome (β1, β4, β5, β7). One of these genes (PSMB6, the gene for the β1 subunit) is located on chromosome 17, near the telomeric end of 17p. By comparison, in the WNT group of MBs only one core proteasome subunit, β6, associated with loss of a gene (PSMB1) on chromosome 6, was down-regulated in this dataset. The MB subgroups with the worst prognosis have a significant association with chromosome 17 abnormalities and irregularities of APC/C cyclosome genes. We conclude that the expression of proteasome subunit genes and genes for ubiquitin ligases can contribute to prognostic classification of MBs. The therapeutic value of targeting proteasome subunits and ubiquitin ligases in the various subgroups of MB remains to be determined separately for each classification of MB.

  13. Complete genome sequence of “Enterobacter lignolyticus” SCF1

    Energy Technology Data Exchange (ETDEWEB)

    DeAngelis, Kristen M.; D' Haeseleer, Patrik; Chivian, Dylan; Fortney, Julian L.; Khudyakov, Jane I.; Simmons, Blake A.; Woo, Hannah; Arkin, Adam P.; Davenport, Karen W.; Goodwin, Lynne A.; Chen, Amy; Ivanova, Natalia; Kyrpides, Nikos C.; Mavromatis, Konstantinos; Woyke, Tanja; Hazen, Terry C.

    2011-09-23

    In an effort to discover anaerobic bacteria capable of lignin degradation, we isolated 'Ente-robacter lignolyticus' SCF1 on minimal media with alkali lignin as the sole source of carbon. This organism was isolated anaerobically from tropical forest soils collected from the Short Cloud Forest site in the El Yunque National Forest in Puerto Rico, USA, part of the Luquillo Long-Term Ecological Research Station. At this site, the soils experience strong fluctuations in redox potential and are net methane producers. Because of its ability to grow on lignin anae-robically, we sequenced the genome. The genome of 'E. lignolyticus' SCF1 is 4.81 Mbp with no detected plasmids, and includes a relatively small arsenal of lignocellulolytic carbohy-drate active enzymes. Lignin degradation was observed in culture, and the genome revealed two putative laccases, a putative peroxidase, and a complete 4-hydroxyphenylacetate degra-dation pathway encoded in a single gene cluster.

  14. RFP-mediated ubiquitination of PTEN modulates its effect on AKT activation

    Science.gov (United States)

    Lee, James T; Shan, Jing; Zhong, Jiayun; Li, Muyang; Zhou, Brenda; Zhou, Amanda; Parsons, Ramon; Gu, Wei

    2013-01-01

    The PTEN tumor suppressor is a lipid phosphatase that has a central role in regulating the phosphatidylinositol-3-kinase (PI3K) signal transduction cascade. Nevertheless, the mechanism by which the PTEN activity is regulated in cells needs further elucidation. Although previous studies have shown that ubiquitination of PTEN can modulate its stability and subcellular localization, the role of ubiquitination in the most critical aspect of PTEN function, its phosphatase activity, has not been fully addressed. Here, we identify a novel E3 ubiquitin ligase of PTEN, Ret finger protein (RFP), that is able to promote atypical polyubiquitinations of PTEN. These ubiquitinations do not lead to PTEN instability or relocalization, but rather significantly inhibit PTEN phosphatase activity and therefore modulate its ability to regulate the PI3K signal transduction cascade. Indeed, RFP overexpression relieves PTEN-mediated inhibitory effects on AKT activation; in contrast, RNAi-mediated knockdown of endogenous RFP enhances the ability of PTEN to suppress AKT activation. Moreover, RFP-mediated ubiquitination of PTEN inhibits PTEN-dependent activation of TRAIL expression and also suppresses its ability to induce apoptosis. Our findings demonstrate a crucial role of RFP-mediated ubiquitination in controlling PTEN activity. PMID:23419514

  15. Histone H1 couples initiation and amplification of ubiquitin signalling after DNA damage

    DEFF Research Database (Denmark)

    Thorslund, Tina; Ripplinger, Anita; Hoffmann, Saskia

    2015-01-01

    DNA double-strand breaks (DSBs) are highly cytotoxic DNA lesions that trigger non-proteolytic ubiquitylation of adjacent chromatin areas to generate binding sites for DNA repair factors. This depends on the sequential actions of the E3 ubiquitin ligases RNF8 and RNF168 (refs 1-6), and UBC13 (also...... known as UBE2N), an E2 ubiquitin-conjugating enzyme that specifically generates K63-linked ubiquitin chains. Whereas RNF168 is known to catalyse ubiquitylation of H2A-type histones, leading to the recruitment of repair factors such as 53BP1 (refs 8-10), the critical substrates of RNF8 and K63-linked...

  16. Ubiquitination In Plant Nutrient Utilisation

    Directory of Open Access Journals (Sweden)

    Gary eYates

    2013-11-01

    Full Text Available Ubiquitin is well established as a major modifier of signaling in eukaryotes. However the extent to which plants rely on ubiquitin for regulating nutrient uptake is still in its infancy. The main characteristic of ubiquitination is the conjugation of ubiquitin onto lysine residues of acceptor proteins. In most cases the targeted protein is rapidly degraded by the 26S proteasome, the major proteolysis machinery in eukaryotic cells. The Ubiquitin-Proteasome System is responsible for removing most abnormal peptides and short-lived cellular regulators, which, in turn, control many processes. This allows cells to respond rapidly to intracellular signals and changing environmental conditions. This perspective will discuss how plants utilize ubiquitin conjugation for sensing environmental nutrient levels. We will highlight recent advances in understanding how ubiquitin aids nutrient homeostasis by affecting the trafficking of membrane bound transporters. Given the overrepresentation of genes encoding ubiquitin-metabolizing enzymes in plants, intracellular signaling events regulated by ubiquitin that lead to transcriptional responses due to nutrient starvation is an under explored area ripe for new discoveries.

  17. Ubiquitin C-Terminal Hydrolase L1 in Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Jennifer Hurst-Kennedy

    2012-01-01

    Full Text Available Ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1, aka PGP9.5 is an abundant, neuronal deubiquitinating enzyme that has also been suggested to possess E3 ubiquitin-protein ligase activity and/or stabilize ubiquitin monomers in vivo. Recent evidence implicates dysregulation of UCH-L1 in the pathogenesis and progression of human cancers. Although typically only expressed in neurons, high levels of UCH-L1 have been found in many nonneuronal tumors, including breast, colorectal, and pancreatic carcinomas. UCH-L1 has also been implicated in the regulation of metastasis and cell growth during the progression of nonsmall cell lung carcinoma, colorectal cancer, and lymphoma. Together these studies suggest UCH-L1 has a potent oncogenic role and drives tumor development. Conversely, others have observed promoter methylation-mediated silencing of UCH-L1 in certain tumor subtypes, suggesting a potential tumor suppressor role for UCH-L1. In this paper, we provide an overview of the evidence supporting the involvement of UCH-L1 in tumor development and discuss the potential mechanisms of action of UCH-L1 in oncogenesis.

  18. The Human IL-22 Receptor Is Regulated through the Action of the Novel E3 Ligase Subunit FBXW12, Which Functions as an Epithelial Growth Suppressor

    Directory of Open Access Journals (Sweden)

    Joseph Franz

    2015-01-01

    Full Text Available Interleukin- (IL- 22 signaling is protective in animal models of pneumonia and bacteremia by Klebsiella pneumoniae and mediates tissue recovery from influenza and Staph aureus infection. We recently described processing of mouse lung epithelial IL-22 receptor (IL-22R by ubiquitination on the intracellular C-terminal. To identify cellular factors that regulate human IL-22R, we screened receptor abundance while overexpressing constituents of the ubiquitin system and identify that IL-22R can be shuttled for degradation by multiple previously uncharacterized F-box protein E3 ligase subunits. We observe that in human cells IL-22R is destabilized by FBXW12. FBXW12 causes depletion of endogenous and plasmid-derived IL-22R in lung epithelia, binds the E3 ligase constituent Skp-1, and facilitates ubiquitination of IL-22R in vitro. FBXW12 knockdown with shRNA increases IL-22R abundance and STAT3 phosphorylation in response to IL-22 cytokine treatment. FBXW12 shRNA increases human epithelial cell growth and cell cycle progression with enhanced constitutive activity of map kinases JNK and ERK. These findings indicate that the heretofore-undescribed protein FBXW12 functions as an E3 ligase constituent to ubiquitinate and degrade IL-22R and that therapeutic FBXW12 inhibition may enhance IL-22 signaling and bolster mucosal host defense and infection containment.

  19. Opposing roles of RNF8/RNF168 and deubiquitinating enzymes in ubiquitination-dependent DNA double-strand break response signaling and DNA-repair pathway choice

    International Nuclear Information System (INIS)

    Nakada, Shinichiro

    2016-01-01

    The E3 ubiquitin ligases ring finger protein (RNF) 8 and RNF168 transduce the DNA double-strand break (DSB) response (DDR) signal by ubiquitinating DSB sites. The depletion of RNF8 or RNF168 suppresses the accumulation of DNA-repair regulating factors such as 53BP1 and RAP80 at DSB sites, suggesting roles for RNF8- and RNF168-mediated ubiquitination in DSB repair. This mini-review provides a brief overview of the RNF8- and RNF168-dependent DDR-signaling and DNA-repair pathways. The choice of DNA-repair pathway when RNF8- and RNF168-mediated ubiquitination-dependent DDR signaling is negatively regulated by deubiquitinating enzymes (DUBs) is reviewed to clarify how the opposing roles of RNF8/RNF168 and DUBs regulate ubiquitination-dependent DDR signaling and the choice of DNA-repair pathway

  20. E6AP inhibits G-CSFR turnover and functions by promoting its ubiquitin-dependent proteasome degradation.

    Science.gov (United States)

    Chhabra, Stuti; Kumar, Yogesh; Thacker, Gatha; Kapoor, Isha; Lochab, Savita; Sanyal, Sabyasachi; Bhatt, Madan L B; Chattopadhyay, Naibedya; Trivedi, Arun Kumar

    2017-10-01

    Granulocyte colony-stimulating factor receptor (G-CSFR) plays a crucial role in regulating myeloid cell survival, proliferation, and neutrophilic granulocyte precursor cells maturation. Previously, we demonstrated that Fbw7α negatively regulates G-CSFR and its downstream signaling through ubiquitin-proteasome mediated degradation. However, whether additional ubiquitin ligases for G-CSFR exist is not known. Identifying multiple E3 ubiquitin ligases for G-CSFR shall improve our understanding of activation and subsequent attenuation of G-CSFR signaling required for differentiation and proliferation. Here, for the first time we demonstrate that E6 associated protein (E6AP), an E3 ubiquitin ligase physically associates with G-CSFR and targets it for ubiquitin-mediated proteasome degradation and thereby attenuates its functions. We further show that E6AP promoted G-CSFR degradation leads to reduced phosphorylation of signal transducer and activator of transcription 3 (STAT3) which is required for G-CSF dependent granulocytic differentiation. More importantly, our finding shows that E6AP also targets mutant form of G-SCFR (G-CSFR-T718), frequently observed in severe congenital neutropenia (SCN) patients that very often culminate to AML, however, at a quite slower rate than wild type G-CSFR. In addition, our data showed that knockdown of E6AP restores G-CSFR and its signaling thereby promoting granulocytic differentiation. Collectively, our data demonstrates that E6AP facilitates ubiquitination and subsequent degradation of G-CSFR leading to attenuation of its downstream signaling and inhibition of granulocytic differentiation. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. [Construction and pathogenicity tests of a mutated specific fragment SCF73 in Verticillium dahliae].

    Science.gov (United States)

    Wang, Jinlong; Chen, Jieyin; Liu, Shaoyan; Li, Lei; Dai, Xiaofeng

    2012-11-04

    To identify preliminarily the specific fragment SCF73's function in Verticillium dahlia virulence. The specific fragment SCF73 exposed to be existed in the high-virulent V. dahliae strain VDG1 and not in the mild one VDG2. The SCF73 fragment was obtained from comparatively aligned genome sequences of the two strains and its existence was confirmed using PCR method. According to SCF73's DNA sequence, a homologous recombination plasmid was constructed to knock out the fragment. The Agrobacterium tumefaciens-mediated transformation technique was used to initiate the mutant deltaSCF73, followed by antibiotic resistance screening, and PCR verification. The mutant's ability to secrete carbohydrate hydrolase was analyzed using pectin, cellulose and starch media and its virulence to the susceptible cotton cultivar Gossypium hirsutum cv. Junmian1 was assessed. SCF73 (27.1 kb) contains 5 genes, two of them have glycosyl hydrolase activity. Although the, mutant deltaSCF73's carbohydrate hydrolase secretion was not significantly different from the control VDG1, virulence of the mutant to cotton plants decreased significantly accompanied with disease outburst delay. The specific fragment SCF73 plays an important role in the virulence of V. dahlia towards its cotton host plants.

  2. A scalable implementation of RI-SCF on parallel computers

    International Nuclear Information System (INIS)

    Fruechtl, H.A.; Kendall, R.A.; Harrison, R.J.

    1996-01-01

    In order to avoid the integral bottleneck of conventional SCF calculations, the Resolution of the Identity (RI) method is used to obtain an approximate solution to the Hartree-Fock equations. In this approximation only three-center integrals are needed to build the Fock matrix. It has been implemented as part of the NWChem package of portable and scalable ab initio programs for parallel computers. Utilizing the V-approximation, both the Coulomb and exchange contribution to the Fock matrix can be calculated from a transformed set of three-center integrals which have to be precalculated and stored. A distributed in-core method as well as a disk based implementation have been programmed. Details of the implementation as well as the parallel programming tools used are described. We also give results and timings from benchmark calculations

  3. Ubiquitin domain proteins in disease

    DEFF Research Database (Denmark)

    Klausen, Louise Kjær; Schulze, Andrea; Seeger, Michael

    2007-01-01

    The human genome encodes several ubiquitin-like (UBL) domain proteins (UDPs). Members of this protein family are involved in a variety of cellular functions and many are connected to the ubiquitin proteasome system, an essential pathway for protein degradation in eukaryotic cells. Despite...... and cancer. Publication history: Republished from Current BioData's Targeted Proteins database (TPdb; http://www.targetedproteinsdb.com)....

  4. The ubiquitin-proteasome system

    Indian Academy of Sciences (India)

    ... the discovery of protein ubiquitination has led to the recognition of cellular proteolysis as a central area of research in biology. Eukaryotic proteins targeted for degradation by this pathway are first 'tagged' by multimers of a protein known as ubiquitin and are later proteolyzed by a giant enzyme known as the proteasome.

  5. Oxidation of the cysteine-rich regions of parkin perturbs its E3 ligase activity and contributes to protein aggregation

    Directory of Open Access Journals (Sweden)

    Ma Yuliang

    2011-05-01

    Full Text Available Abstract Background Accumulation of aberrant proteins to form Lewy bodies (LBs is a hallmark of Parkinson's disease (PD. Ubiquitination-mediated degradation of aberrant, misfolded proteins is critical for maintaining normal cell function. Emerging evidence suggests that oxidative/nitrosative stress compromises the precisely-regulated network of ubiquitination in PD, particularly affecting parkin E3 ligase activity, and contributes to the accumulation of toxic proteins and neuronal cell death. Results To gain insight into the mechanism whereby cell stress alters parkin-mediated ubiquitination and LB formation, we investigated the effect of oxidative stress. We found significant increases in oxidation (sulfonation and subsequent aggregation of parkin in SH-SY5Y cells exposed to the mitochondrial complex I inhibitor 1-methyl-4-phenlypyridinium (MPP+, representing an in vitro cell-based PD model. Exposure of these cells to direct oxidation via pathological doses of H2O2 induced a vicious cycle of increased followed by decreased parkin E3 ligase activity, similar to that previously reported following S-nitrosylation of parkin. Pre-incubation with catalase attenuated H2O2 accumulation, parkin sulfonation, and parkin aggregation. Mass spectrometry (MS analysis revealed that H2O2 reacted with specific cysteine residues of parkin, resulting in sulfination/sulfonation in regions of the protein similar to those affected by parkin mutations in hereditary forms of PD. Immunohistochemistry or gel electrophoresis revealed an increase in aggregated parkin in rats and primates exposed to mitochondrial complex I inhibitors, as well as in postmortem human brain from patients with PD with LBs. Conclusion These findings show that oxidative stress alters parkin E3 ligase activity, leading to dysfunction of the ubiquitin-proteasome system and potentially contributing to LB formation.

  6. Sent to destroy: the ubiquitin proteasome system regulates cell signaling and protein quality control in cardiovascular development and disease.

    Science.gov (United States)

    Willis, Monte S; Townley-Tilson, W H Davin; Kang, Eunice Y; Homeister, Jonathon W; Patterson, Cam

    2010-02-19

    The ubiquitin proteasome system (UPS) plays a crucial role in biological processes integral to the development of the cardiovascular system and cardiovascular diseases. The UPS prototypically recognizes specific protein substrates and places polyubiquitin chains on them for subsequent destruction by the proteasome. This system is in place to degrade not only misfolded and damaged proteins, but is essential also in regulating a host of cell signaling pathways involved in proliferation, adaptation to stress, regulation of cell size, and cell death. During the development of the cardiovascular system, the UPS regulates cell signaling by modifying transcription factors, receptors, and structural proteins. Later, in the event of cardiovascular diseases as diverse as atherosclerosis, cardiac hypertrophy, and ischemia/reperfusion injury, ubiquitin ligases and the proteasome are implicated in protecting and exacerbating clinical outcomes. However, when misfolded and damaged proteins are ubiquitinated by the UPS, their destruction by the proteasome is not always possible because of their aggregated confirmations. Recent studies have discovered how these ubiquitinated misfolded proteins can be destroyed by alternative "specific" mechanisms. The cytosolic receptors p62, NBR, and histone deacetylase 6 recognize aggregated ubiquitinated proteins and target them for autophagy in the process of "selective autophagy." Even the ubiquitination of multiple proteins within whole organelles that drive the more general macro-autophagy may be due, in part, to similar ubiquitin-driven mechanisms. In summary, the crosstalk between the UPS and autophagy highlight the pivotal and diverse roles the UPS plays in maintaining protein quality control and regulating cardiovascular development and disease.

  7. Functional Characterization of the Apple RING E3 Ligase MdMIEL1 in Transgenic Arabidopsis

    Directory of Open Access Journals (Sweden)

    Jianping AN

    2017-03-01

    Full Text Available E3 ubiquitin ligases are involved in various physiological processes, and they play pivotal roles in growth and development. In this study, we identified a previously unknown gene in the apple fruit (Malus × domestica and named it MdMIEL1. The MdMIEL1 gene encoded a protein that contained a zinc-finger domain at its N-terminus and a RING-finger motif at its C-terminus. To investigate MdMIEL1 functions, we generated transgenic Arabidopsis lines expressing the MdMIEL1 gene under the control of the Cauliflower mosaic virus 35S promoter. Interestingly, ectopic expression of MdMIEL1 in Arabidopsis produced multiple phenotypes, including early germination, early flowering and a lateral root number increase relative to wild-type plants. Further analysis indicated that MdMIEL1 regulated lateral root initiation by increasing auxin accumulation in the roots. In a word, these results suggest that, MdMIEL1 as a novel RING-finger ubiquitin ligase influences plant growth and development, and highlight that MdMIEL1 regulates lateral root growth.

  8. Ubiquitin systems mark pathogen-containing vacuoles as targets for host defense by guanylate binding proteins.

    Science.gov (United States)

    Haldar, Arun K; Foltz, Clémence; Finethy, Ryan; Piro, Anthony S; Feeley, Eric M; Pilla-Moffett, Danielle M; Komatsu, Masaki; Frickel, Eva-Maria; Coers, Jörn

    2015-10-13

    Many microbes create and maintain pathogen-containing vacuoles (PVs) as an intracellular niche permissive for microbial growth and survival. The destruction of PVs by IFNγ-inducible guanylate binding protein (GBP) and immunity-related GTPase (IRG) host proteins is central to a successful immune response directed against numerous PV-resident pathogens. However, the mechanism by which IRGs and GBPs cooperatively detect and destroy PVs is unclear. We find that host cell priming with IFNγ prompts IRG-dependent association of Toxoplasma- and Chlamydia-containing vacuoles with ubiquitin through regulated translocation of the E3 ubiquitin ligase tumor necrosis factor (TNF) receptor associated factor 6 (TRAF6). This initial ubiquitin labeling elicits p62-mediated escort and deposition of GBPs to PVs, thereby conferring cell-autonomous immunity. Hypervirulent strains of Toxoplasma gondii evade this process via specific rhoptry protein kinases that inhibit IRG function, resulting in blockage of downstream PV ubiquitination and GBP delivery. Our results define a ubiquitin-centered mechanism by which host cells deliver GBPs to PVs and explain how hypervirulent parasites evade GBP-mediated immunity.

  9. K63 ubiquitylation triggers proteasomal degradation by seeding branched ubiquitin chains.

    Science.gov (United States)

    Ohtake, Fumiaki; Tsuchiya, Hikaru; Saeki, Yasushi; Tanaka, Keiji

    2018-02-13

    Different polyubiquitin chain linkages direct substrates toward distinct cellular pathways. K63-linked ubiquitylation is known to regulate proteasome-independent events such as signal transduction, but its function in the context of heterogeneous ubiquitin chains remains unclear. Here, we report that K63 ubiquitylation plays a critical role in proteasome-mediated substrate degradation by serving as a "seed" for K48/K63 branched ubiquitin chains. Quantitative analysis revealed that K48/K63 branched linkages preferentially associate with proteasomes in cells. We found that ITCH-dependent K63 ubiquitylation of the proapoptotic regulator TXNIP triggered subsequent assembly of K48/K63 branched chains by recruiting ubiquitin-interacting ligases such as UBR5, leading to TXNIP degradation. These results reveal a role for K63 chains as a substrate-specific mark for proteasomal degradation involved in regulating cell fate. Our findings provide insight into how cellular interpretation of the ubiquitin code is altered by combinations of ubiquitin linkages.

  10. A central role for ubiquitination within a circadian clock protein modification code

    Directory of Open Access Journals (Sweden)

    Katarina eStojkovic

    2014-08-01

    Full Text Available Circadian rhythms, endogenous cycles of about 24 h in physiology, are generated by a master clock located in the suprachiasmatic nucleus of the hypothalamus and other clocks located in the brain and peripheral tissues. Circadian disruption is known to increase the incidence of various illnesses, such as mental disorders, metabolic syndrome and cancer. At the molecular level, periodicity is established by a set of clock genes via autoregulatory translation-transcription feedback loops. This clock mechanism is regulated by post-translational modifications such as phosphorylation and ubiquitination, which set the pace of the clock. Ubiquitination in particular has been found to regulate the stability of core clock components, but also other clock protein functions. Mutation of genes encoding ubiquitin ligases can cause either elongation or shortening of the endogenous circadian period. Recent research has also started to uncover roles for deubiquitination in the molecular clockwork. Here we review the role of the ubiquitin pathway in regulating the circadian clock and we propose that ubiquitination is a key element in a clock protein modification code that orchestrates clock mechanisms and circadian behavior over the daily cycle.

  11. Fanconi anemia core complex-dependent HES1 mono-ubiquitination regulates its transcriptional activity.

    Science.gov (United States)

    Tremblay, Cédric S; Huang, Feng Fei; Lévesque, Georges; Carreau, Madeleine

    2018-02-20

    The Hairy Enhancer of Split 1 (HES1) is a transcriptional repressor that regulates cellular proliferation and differentiation during development. We previously found an interaction between HES1 and Fanconi anemia (FA) proteins. FA is a hematological and developmental disorder caused by mutations in more than 20 different genes. Eight FA gene products form a nuclear core complex containing E3 ligase activity required for mono-ubiquitination of FANCD2 and FANCI, both of which are FA proteins. Given that HES1 interacts with members of the FA core complex, the aim of this study was to determine whether HES1 is mono-ubiquitinated via the FA core complex. We show that HES1 is mono-ubiquitinated on a highly-conserved lysine residue that is located within a FA-like recognition motif. HES1 modification is dependent on a functional FA complex. Absence of HES1 mono-ubiquitination affects transcriptional repression of its own promoter. This study uncovers a novel post-translational modification of HES1 that regulates its transcriptional activity and suggests that ubiquitination of HES1 occurs in a FA core complex-dependent manner.

  12. Deubiquitinase USP13 maintains glioblastoma stem cells by antagonizing FBXL14-mediated Myc ubiquitination

    Science.gov (United States)

    Zhou, Wenchao; Mack, Stephen C.; Wang, Xiuxing; Ouyang, Gaoliang; Bian, Xiu-wu

    2017-01-01

    Glioblastoma is the most lethal brain tumor and harbors glioma stem cells (GSCs) with potent tumorigenic capacity. The function of GSCs in tumor propagation is maintained by several core transcriptional regulators including c-Myc. c-Myc protein is tightly regulated by posttranslational modification. However, the posttranslational regulatory mechanisms for c-Myc in GSCs have not been defined. In this study, we demonstrate that the deubiquitinase USP13 stabilizes c-Myc by antagonizing FBXL14-mediated ubiquitination to maintain GSC self-renewal and tumorigenic potential. USP13 was preferentially expressed in GSCs, and its depletion potently inhibited GSC proliferation and tumor growth by promoting c-Myc ubiquitination and degradation. In contrast, overexpression of the ubiquitin E3 ligase FBXL14 induced c-Myc degradation, promoted GSC differentiation, and inhibited tumor growth. Ectopic expression of the ubiquitin-insensitive mutant T58A–c-Myc rescued the effects caused by FBXL14 overexpression or USP13 disruption. These data suggest that USP13 and FBXL14 play opposing roles in the regulation of GSCs through reversible ubiquitination of c-Myc. PMID:27923907

  13. Ubiquitin-binding proteins: similar, but different

    DEFF Research Database (Denmark)

    Andersen, Katrine M; Hofmann, Kay; Hartmann-Petersen, Rasmus

    2005-01-01

    and phosphatases, specific sets of ubiquitinating/deubiquitinating enzymes control the degree of ubiquitination. A large number of ubiquitin-binding proteins act at different steps in the downstream pathways, followed by the ubiquitinated protein. Different families of ubiquitin-binding proteins have been...... described. UBA (ubiquitin-associated) domain-containing proteins is the largest family and includes members involved in different cell processes. The smaller groups of UIM (ubiquitin-interacting motif), GAT [GGA (Golgi-associated gamma-adaptin homologous) and Tom1 (target of Myb 1)], CUE (coupling...

  14. MARCH9-mediated ubiquitination regulates MHC I export from the TGN.

    Science.gov (United States)

    De Angelis Rigotti, Francesca; De Gassart, Aude; Pforr, Carina; Cano, Florencia; N'Guessan, Prudence; Combes, Alexis; Camossetto, Voahirana; Lehner, Paul J; Pierre, Philippe; Gatti, Evelina

    2017-10-01

    Given the heterogeneous nature of antigens, major histocompatibility complex class I (MHC I) intracellular transport intersects with multiple degradation pathways for efficient peptide loading and presentation to cytotoxic T cells. MHC I loading with peptides in the endoplasmic reticulum (ER) is a tightly regulated process, while post-ER intracellular transport is considered to occur by default, leading to peptide-bearing MHC I delivery to the plasma membrane. We show here that MHC I traffic is submitted to a previously uncharacterized sorting step at the trans Golgi network (TGN), dependent on the ubiquitination of its cytoplasmic tail lysine residues. MHC I ubiquitination is mediated by the E3 ligase membrane-associated RING-CH 9 (MARCH9) and allows MHC I access to Syntaxin 6-positive endosomal compartments. We further show that MARCH9 can also target the human MHC I-like lipid antigen-presentation molecule CD1a. MARCH9 expression is modulated by microbial pattern exposure in dendritic cells (DCs), thus revealing the role of this ubiquitin E3 ligase in coordinating MHC I access to endosomes and DC activation for efficient antigen cross-presentation.

  15. Knockdown of SCF(Skp2 function causes double-parked accumulation in the nucleus and DNA re-replication in Drosophila plasmatocytes.

    Directory of Open Access Journals (Sweden)

    Paul T Kroeger

    Full Text Available In Drosophila, circulating hemocytes are derived from the cephalic mesoderm during the embryonic wave of hematopoiesis. These cells are contributed to the larva and persist through metamorphosis into the adult. To analyze this population of hemocytes, we considered data from a previously published RNAi screen in the hematopoietic niche, which suggested several members of the SCF complex play a role in lymph gland development. eater-Gal4;UAS-GFP flies were crossed to UAS-RNAi lines to knockdown the function of all known SCF complex members in a plasmatocyte-specific fashion, in order to identify which members are novel regulators of plasmatocytes. This specific SCF complex contains five core members: Lin-19-like, SkpA, Skp2, Roc1a and complex activator Nedd8. The complex was identified by its very distinctive large cell phenotype. Furthermore, these large cells stained for anti-P1, a plasmatocyte-specific antibody. It was also noted that the DNA in these cells appeared to be over-replicated. Gamma-tubulin and DAPI staining suggest the cells are undergoing re-replication as they had multiple centrioles and excessive DNA content. Further experimentation determined enlarged cells were BrdU-positive indicating they have progressed through S-phase. To determine how these cells become enlarged and undergo re-replication, cell cycle proteins were analyzed by immunofluorescence. This analysis identified three proteins that had altered subcellular localization in these enlarged cells: Cyclin E, Geminin and Double-parked. Previous research has shown that Double-parked must be degraded to exit S-phase, otherwise the DNA will undergo re-replication. When Double-parked was titrated from the nucleus by an excess of its inhibitor, geminin, the enlarged cells and aberrant protein localization phenotypes were partially rescued. The data in this report suggests that the SCF(Skp2 complex is necessary to ubiquitinate Double-parked during plasmatocyte cell division

  16. Miniature optical fiber temperature sensor based on FMF-SCF structure

    Science.gov (United States)

    Zhang, Chuanbiao; Ning, Tigang; Zheng, Jingjing; Gao, Xuekai; Lin, Heng; Li, Jing; Pei, Li; Wen, Xiaodong

    2018-03-01

    We proposed and experimentally demonstrated a miniature optical fiber temperature sensor consisting of a seven core fiber (SCF) and a few mode fiber (FMF). The device is fabricated by splicing a section of FMF with a segment of SCF to form a FMF-SCF based sensing structure, and during the FMF region, few modes can be excited and will propagate within the SCF. In experiment, the proposed device has good quality interferometric spectra, and the highest extinction ratio of 27 dB was achieved. When the temperature increases from room temperature to 110 °C, the temperature response properties of the sensor have been investigated, the wavelength sensitivity of about 91.8 pm/°C and the amplitude sensitivity of about 1.57 × 10-2 a.u./°C are obtained, respectively. Due to its easy and controllable fabrication, the sensor can be a suitable candidate in temperature sensing applications.

  17. PARAQUAT TOLERANCE3 Is an E3 Ligase That Switches off Activated Oxidative Response by Targeting Histone-Modifying PROTEIN METHYLTRANSFERASE4b.

    Directory of Open Access Journals (Sweden)

    Chao Luo

    2016-09-01

    Full Text Available Oxidative stress is unavoidable for aerobic organisms. When abiotic and biotic stresses are encountered, oxidative damage could occur in cells. To avoid this damage, defense mechanisms must be timely and efficiently modulated. While the response to oxidative stress has been extensively studied in plants, little is known about how the activated response is switched off when oxidative stress is diminished. By studying Arabidopsis mutant paraquat tolerance3, we identified the genetic locus PARAQUAT TOLERANCE3 (PQT3 as a major negative regulator of oxidative stress tolerance. PQT3, encoding an E3 ubiquitin ligase, is rapidly down-regulated by oxidative stress. PQT3 has E3 ubiquitin ligase activity in ubiquitination assay. Subsequently, we identified PRMT4b as a PQT3-interacting protein. By histone methylation, PRMT4b upregulates the expression of APX1 and GPX1, encoding two key enzymes against oxidative stress. On the other hand, PRMT4b is recognized by PQT3 for targeted degradation via 26S proteasome. Therefore, we have identified PQT3 as an E3 ligase that acts as a negative regulator of activated response to oxidative stress and found that histone modification by PRMT4b at APX1 and GPX1 loci plays an important role in oxidative stress tolerance.

  18. PARAQUAT TOLERANCE3 Is an E3 Ligase That Switches off Activated Oxidative Response by Targeting Histone-Modifying PROTEIN METHYLTRANSFERASE4b

    Science.gov (United States)

    Du, Jin; Zhao, Tao-Lan; Wang, Peng-Fei; Zhao, Ping-Xia; Xie, Qi; Cao, Xiao-Feng; Xiang, Cheng-Bin

    2016-01-01

    Oxidative stress is unavoidable for aerobic organisms. When abiotic and biotic stresses are encountered, oxidative damage could occur in cells. To avoid this damage, defense mechanisms must be timely and efficiently modulated. While the response to oxidative stress has been extensively studied in plants, little is known about how the activated response is switched off when oxidative stress is diminished. By studying Arabidopsis mutant paraquat tolerance3, we identified the genetic locus PARAQUAT TOLERANCE3 (PQT3) as a major negative regulator of oxidative stress tolerance. PQT3, encoding an E3 ubiquitin ligase, is rapidly down-regulated by oxidative stress. PQT3 has E3 ubiquitin ligase activity in ubiquitination assay. Subsequently, we identified PRMT4b as a PQT3-interacting protein. By histone methylation, PRMT4b upregulates the expression of APX1 and GPX1, encoding two key enzymes against oxidative stress. On the other hand, PRMT4b is recognized by PQT3 for targeted degradation via 26S proteasome. Therefore, we have identified PQT3 as an E3 ligase that acts as a negative regulator of activated response to oxidative stress and found that histone modification by PRMT4b at APX1 and GPX1 loci plays an important role in oxidative stress tolerance. PMID:27676073

  19. Ubiquitination of lysine-331 by Kaposi's sarcoma-associated herpesvirus protein K5 targets HFE for lysosomal degradation.

    Science.gov (United States)

    Rhodes, David A; Boyle, Louise H; Boname, Jessica M; Lehner, Paul J; Trowsdale, John

    2010-09-14

    The nonclassical MHC class I-related (MHC-I) molecule HFE controls cellular iron homeostasis by a mechanism that has not been fully elucidated. We examined the regulation of HFE by K5, the E3 ubiquitin ligase encoded by Kaposi's sarcoma-associated herpesvirus (KSHV/HHV8), that is known to down-regulate classical MHC-I. K5 down-regulated HFE efficiently, using polyubiquitination of the membrane proximal lysine in the HFE cytoplasmic tail (K331), to target the molecule for degradation via ESCRT1/TSG101-dependent sorting from endosomes to multivesicular bodies (MVBs)/lysosomes. In the primary effusion lymphoma cell line BC-3, which carries latent KSHV, HFE was degraded rapidly upon virus reactivation. HFE was ubiquitinated on lysine-331 in unactivated BC-3 cells, conditions where K5 was not detectable, consistent with an endogenous E3 ubiquitin ligase controlling HFE expression. The results show regulated expression of HFE by ubiquitination, consistent with a role in cellular iron homeostasis, a molecular mechanism targeted by KSHV to achieve a positive iron balance.

  20. SCF increases in utero-labeled stem cells migration and improves wound healing.

    Science.gov (United States)

    Zgheib, Carlos; Xu, Junwang; Mallette, Andrew C; Caskey, Robert C; Zhang, Liping; Hu, Junyi; Liechty, Kenneth W

    2015-01-01

    Diabetic skin wounds lack the ability to heal properly and constitute a major and significant complication of diabetes. Nontraumatic lower extremity amputations are the number one complication of diabetic skin wounds. The complexity of their pathophysiology requires an intervention at many levels to enhance healing and wound closure. Stem cells are a promising treatment for diabetic skin wounds as they have the ability to correct abnormal healing. Stem cell factor (SCF), a chemokine expressed in the skin, can induce stem cells migration, however the role of SCF in diabetic skin wound healing is still unknown. We hypothesize that SCF would correct the impairment and promote the healing of diabetic skin wounds. Our results show that SCF improved wound closure in diabetic mice and increased HIF-1α and vascular endothelial growth factor (VEGF) expression levels in these wounds. SCF treatment also enhanced the migration of red fluorescent protein (RFP)-labeled skin stem cells via in utero intra-amniotic injection of lenti-RFP at E8. Interestingly these RFP+ cells are present in the epidermis, stain negative for K15, and appear to be distinct from the already known hair follicle stem cells. These results demonstrate that SCF improves diabetic wound healing in part by increasing the recruitment of a unique stem cell population present in the skin. © 2015 by the Wound Healing Society.

  1. Ubc13: the Lys63 ubiquitin chain building machine.

    Science.gov (United States)

    Hodge, Curtis D; Spyracopoulos, Leo; Glover, J N Mark

    2016-09-27

    Ubc13 is an ubiquitin E2 conjugating enzyme that participates with many different E3 ligases to form lysine 63-linked (Lys63) ubiquitin chains that are critical to signaling in inflammatory and DNA damage response pathways. Recent studies have suggested Ubc13 as a potential therapeutic target for intervention in various human diseases including several different cancers, alleviation of anti-cancer drug resistance, chronic inflammation, and viral infections. Understanding a potential therapeutic target from different angles is important to assess its usefulness and potential pitfalls. Here we present a global review of Ubc13 from its structure, function, and cellular activities, to its natural and chemical inhibition. The aim of this article is to review the literature that directly implicates Ubc13 in a biological function, and to integrate structural and mechanistic insights into the larger role of this critical E2 enzyme. We discuss observations of multiple Ubc13 structures that suggest a novel mechanism for activation of Ubc13 that involves conformational change of the active site loop.

  2. The Role of Ubiquitin-Mediated Proteolysis of Cyclin D in Breast Cancer

    Science.gov (United States)

    2005-04-01

    ligase (E3).3 Cdc34 is an ubiquitin conjugating enzyme (UBC3) that is required for the G1 to S phase transition in Saccharomyces cerevisae and the...polyubiquitination by Cdc34 1-200 is a general characteristic of Cdc34 1-200 or whether this effect is specific only to the p27Kip1 substrate. Our previous work has...function in the initiation of Saccharomyces cerevisiae DNA synthesis. J Mol Biol. 84(3):445-61. 6. Petroski MD, Deshaies RJ. 2005. Mechanism of lysine 48

  3. Transcriptional profile analysis of E3 ligase and hormone-related genes expressed during wheat grain development

    Directory of Open Access Journals (Sweden)

    Capron Delphine

    2012-03-01

    Full Text Available Abstract Background Wheat grains are an important source of food, stock feed and raw materials for industry, but current production levels cannot meet world needs. Elucidation of the molecular mechanisms underlying wheat grain development will contribute valuable information to improving wheat cultivation. One of the most important mechanisms implicated in plant developmental processes is the ubiquitin-proteasome system (UPS. Among the different roles of the UPS, it is clear that it is essential to hormone signaling. In particular, E3 ubiquitin ligases of the UPS have been shown to play critical roles in hormone perception and signal transduction. Results A NimbleGen microarray containing 39,179 UniGenes was used to study the kinetics of gene expression during wheat grain development from the early stages of cell division to the mid-grain filling stage. By comparing 11 consecutive time-points, 9284 differentially expressed genes were identified and annotated during this study. A comparison of the temporal profiles of these genes revealed dynamic transcript accumulation profiles with major reprogramming events that occurred during the time intervals of 80-120 and 220-240°Cdays. The list of the genes expressed differentially during these transitions were identified and annotated. Emphasis was placed on E3 ligase and hormone-related genes. In total, 173 E3 ligase coding genes and 126 hormone-related genes were differentially expressed during the cell division and grain filling stages, with each family displaying a different expression profile. Conclusions The differential expression of genes involved in the UPS and plant hormone pathways suggests that phytohormones and UPS crosstalk might play a critical role in the wheat grain developmental process. Some E3 ligase and hormone-related genes seem to be up- or down-regulated during the early and late stages of the grain development.

  4. Itch inhibits IL-17-mediated colon inflammation and tumorigenesis by ROR-γt ubiquitination.

    Science.gov (United States)

    Kathania, Mahesh; Khare, Prashant; Zeng, Minghui; Cantarel, Brandi; Zhang, Haiying; Ueno, Hideki; Venuprasad, K

    2016-08-01

    Dysregulated expression of interleukin 17 (IL-17) in the colonic mucosa is associated with colonic inflammation and cancer. However, the cell-intrinsic molecular mechanisms by which IL-17 expression is regulated remain unclear. We found that deficiency in the ubiquitin ligase Itch led to spontaneous colitis and increased susceptibility to colon cancer. Itch deficiency in the TH17 subset of helper T cells, innate lymphoid cells and γδ T cells resulted in the production of elevated amounts of IL-17 in the colonic mucosa. Mechanistically, Itch bound to the transcription factor ROR-γt and targeted ROR-γt for ubiquitination. Inhibition or genetic inactivation of ROR-γt attenuated IL-17 expression and reduced spontaneous colonic inflammation in Itch(-/-) mice. Thus, we have identified a previously unknown role for Itch in regulating IL-17-mediated colonic inflammation and carcinogenesis.

  5. Cell-fate determination by ubiquitin-dependent regulation of translation.

    Science.gov (United States)

    Werner, Achim; Iwasaki, Shintaro; McGourty, Colleen A; Medina-Ruiz, Sofia; Teerikorpi, Nia; Fedrigo, Indro; Ingolia, Nicholas T; Rape, Michael

    2015-09-24

    Metazoan development depends on the accurate execution of differentiation programs that allow pluripotent stem cells to adopt specific fates. Differentiation requires changes to chromatin architecture and transcriptional networks, yet whether other regulatory events support cell-fate determination is less well understood. Here we identify the ubiquitin ligase CUL3 in complex with its vertebrate-specific substrate adaptor KBTBD8 (CUL3(KBTBD8)) as an essential regulator of human and Xenopus tropicalis neural crest specification. CUL3(KBTBD8) monoubiquitylates NOLC1 and its paralogue TCOF1, the mutation of which underlies the neurocristopathy Treacher Collins syndrome. Ubiquitylation drives formation of a TCOF1-NOLC1 platform that connects RNA polymerase I with ribosome modification enzymes and remodels the translational program of differentiating cells in favour of neural crest specification. We conclude that ubiquitin-dependent regulation of translation is an important feature of cell-fate determination.

  6. LXR regulates cholesterol uptake through Idol-dependent ubiquitination of the LDL receptor.

    Science.gov (United States)

    Zelcer, Noam; Hong, Cynthia; Boyadjian, Rima; Tontonoz, Peter

    2009-07-03

    Cellular cholesterol levels reflect a balance between uptake, efflux, and endogenous synthesis. Here we show that the sterol-responsive nuclear liver X receptor (LXR) helps maintain cholesterol homeostasis, not only through promotion of cholesterol efflux but also through suppression of low-density lipoprotein (LDL) uptake. LXR inhibits the LDL receptor (LDLR) pathway through transcriptional induction of Idol (inducible degrader of the LDLR), an E3 ubiquitin ligase that triggers ubiquitination of the LDLR on its cytoplasmic domain, thereby targeting it for degradation. LXR ligand reduces, whereas LXR knockout increases, LDLR protein levels in vivo in a tissue-selective manner. Idol knockdown in hepatocytes increases LDLR protein levels and promotes LDL uptake. Conversely, adenovirus-mediated expression of Idol in mouse liver promotes LDLR degradation and elevates plasma LDL levels. The LXR-Idol-LDLR axis defines a complementary pathway to sterol response element-binding proteins for sterol regulation of cholesterol uptake.

  7. Ability of CK2beta to selectively regulate cellular protein kinases

    DEFF Research Database (Denmark)

    Olsen, Birgitte; Guerra, Barbara

    2008-01-01

    The Wee1 protein kinase plays a prominent role in keeping cyclin dependent kinase 1 (CDK1) inactive during the G2 phase of the cell cycle. At the onset of mitosis, Wee1 is ubiquitinated by the E3 ubiquitin ligase SCF(beta-TrCP) and subsequently degraded by the proteasome machinery. Previously, it...

  8. TRIM32 protein modulates type I interferon induction and cellular antiviral response by targeting MITA/STING protein for K63-linked ubiquitination.

    Science.gov (United States)

    Zhang, Jing; Hu, Ming-Ming; Wang, Yan-Yi; Shu, Hong-Bing

    2012-08-17

    Viral infection activates several transcription factors including NF-κB and IRF3, which collaborate to induce type I interferons (IFNs) and innate antiviral response. MITA (also called STING) is a critical adaptor protein that links virus-sensing receptors to IRF3 activation upon infection by both RNA and DNA pathogens. Here we show that the E3 ubiquitin ligase tripartite motif protein 32 (TRIM32) ubiquitinated MITA and dramatically enhanced MITA-mediated induction of IFN-β. Overexpression of TRIM32 potentiated virus-triggered IFNB1 expression and cellular antiviral response. Consistently, knockdown of TRIM32 had opposite effects. TRIM32 interacted with MITA, and was located at the mitochondria and endoplasmic reticulum. TRIM32 targeted MITA for K63-linked ubiquitination at K20/150/224/236 through its E3 ubiquitin ligase activity, which promoted the interaction of MITA with TBK1. These findings suggest that TRIM32 is an important regulatory protein for innate immunity against both RNA and DNA viruses by targeting MITA for K63-linked ubiquitination and downstream activation.

  9. Suppression of gluconeogenic gene transcription by SIK1-induced ubiquitination and degradation of CRTC1.

    Science.gov (United States)

    Gao, Wei-Wei; Tang, Hei-Man Vincent; Cheng, Yun; Chan, Ching-Ping; Chan, Chi-Ping; Jin, Dong-Yan

    2018-01-31

    CRTCs are a group of three transcriptional coactivators required for CREB-dependent transcription. CREB and CRTCs are critically involved in the regulation of various biological processes such as cell proliferation, metabolism, learning and memory. However, whether CRTC1 efficiently induces gluconeogenic gene expression and how CRTC1 is regulated by upstream kinase SIK1 remain to be understood. In this work, we demonstrated SIK1-induced phosphorylation, ubiquitination and degradation of CRTC1 in the context of the regulation of gluconeogenesis. CRTC1 protein was destabilized by SIK1 but not SIK2 or SIK3. This effect was likely mediated by phosphorylation at S155, S167, S188 and S346 residues of CRTC1 followed by K48-linked polyubiquitination and proteasomal degradation. Expression of gluconeogenic genes such as that coding for phosphoenolpyruvate carboxykinase was stimulated by CRTC1, but suppressed by SIK1. Depletion of CRTC1 protein also blocked forskolin-induced gluconeogenic gene expression, knockdown or pharmaceutical inhibition of SIK1 had the opposite effect. Finally, SIK1-induced ubiquitination of CRTC1 was mediated by RFWD2 ubiquitin ligase at a site not equivalent to K628 in CRTC2. Taken together, our work reveals a regulatory circuit in which SIK1 suppresses gluconeogenic gene transcription by inducing ubiquitination and degradation of CRTC1. Our findings have implications in the development of new antihyperglycemic agents. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Cullin4B/E3-ubiquitin ligase negatively regulates β-catenin

    Indian Academy of Sciences (India)

    -catenin is the key transducer of Wingless-type MMTV integration site family member (Wnt) signalling, upregulation of which is the cause of cancer of the colon and other tissues. In the absence of Wnt signals, -catenin is targeted to ubiquitin–proteasome-mediated degradation. Here we present the functional ...

  11. The Oncogenic Role of WWP1 E3 Ubiquitin Ligase in Prostate Cancer Development

    Science.gov (United States)

    2011-05-01

    Journal of Cancer, 41, 2438–2448. 107. Wu, J., & Lingrel, J. B. (2004). KLF2 inhibits Jurkat T leukemia cell growth via upregulation of cyclin-dependent...2004) KLF2 inhibits Jurkat T leukemia cell growth via upregulation of cyclin-dependent kinase inhibitor p21WAF1/CIP1. Oncogene 23:8088–8096 9

  12. Sterol homeostasis requires regulated degradation of squalene monooxygenase by the ubiquitin ligase Doa10/Teb4

    DEFF Research Database (Denmark)

    Foresti, Ombretta; Ruggiano, Annamaria; Hannibal-Bach, Hans K

    2013-01-01

    Sterol homeostasis is essential for the function of cellular membranes and requires feedback inhibition of HMGR, a rate-limiting enzyme of the mevalonate pathway. As HMGR acts at the beginning of the pathway, its regulation affects the synthesis of sterols and of other essential mevalonate-derive...... to control sterol biosynthesis at different levels and thereby allowing independent regulation of multiple products of the mevalonate pathway. DOI:http://dx.doi.org/10.7554/eLife.00953.001....

  13. Siah1/2 Ubiquitin Ligases in ER Stress Signaling in Melanoma

    Science.gov (United States)

    2015-10-01

    194,203 Novel Insights in the Regulation of HIF1alpha Stability Goals: The proposed studies will identify mechanisms underlying FoxA2 and Siah2...forms of prostate tumors. By characterizing the roles of FoxA2 and Siah2 these studies will provide insight into mechanisms underlying HIF activity and...Specific Aims: (1) Determine the role of FoxA2 , HIF-1α and Siah in human prostate tumor development and progression. (2) Characterize mechanisms

  14. Ubiquitin Lysine 63 Chain–Forming Ligases Regulate Apical Dominance in Arabidopsis

    Czech Academy of Sciences Publication Activity Database

    Yin, X.J.; Volk, S.; Ljung, C.; Mehlmer, D.; Doležal, Karel; Ditengou, F.; Hanano, S.; Davis, S.J.; Schmelzer, E.; Sandberg, G.; Teige, M.; Palme, K.; Pickart, C.; Bachmair, A.

    2007-01-01

    Roč. 19, č. 6 (2007), s. 1898-1911 ISSN 1040-4651 Institutional research plan: CEZ:AV0Z50380511 Keywords : POLAR AUXIN TRANSPORT * F-BOX PROTEINS * CYTOKININ BIOSYNTHESIS Subject RIV: ED - Physiology Impact factor: 9.653, year: 2007

  15. Cloning and characterization of mouse cullin4B/E3 ubiquitin ligase

    Indian Academy of Sciences (India)

    Unknown

    Cell-culture, molecular cloning and associated nucleic acid and protein techniques were as per the standard ... designed to amplify 3′ end of each transcript. 2.1 Cloning, expression and generation of antibodies ..... Chen X, Zhang Y, Douglas L and Zhou P 2001 UV-damaged. DNA binding Proteins Are Targets of CUL-4A- ...

  16. The Ubiquitin Ligase XIAP Recruits LUBAC for NOD2 Signaling in Inflammation and Innate Immunity

    DEFF Research Database (Denmark)

    Damgaard, Rune Busk; Nachbur, Ueli; Yabal, Monica

    2012-01-01

    Nucleotide-binding and oligomerization domain (NOD)-like receptors constitute a first line of defense against invading bacteria. X-linked Inhibitor of Apoptosis (XIAP) is implicated in the control of bacterial infections, and mutations in XIAP are causally linked to immunodeficiency in X-linked l...

  17. Cullin4B/E3-ubiquitin ligase negatively regulates β-catenin

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    Introduction. Wingless-type MMTV integration site family member. (Wnt) signalling is one of the important signal transduction pathways regulating several events during growth and development, and is also implicated in a variety of cancers. (reviewed in Polakis 1997). Stabilization of β-catenin, a highly oncogenic protein, is ...

  18. The Deubiquitylase USP2 Regulates the LDLR Pathway by Counteracting the E3-Ubiquitin Ligase IDOL

    NARCIS (Netherlands)

    Nelson, Jessica Kristine; Sorrentino, Vincenzo; Avagliano Trezza, Rossella; Heride, Claire; Urbe, Sylvie; Distel, Ben; Zelcer, Noam

    2016-01-01

    The low-density lipoprotein (LDL) receptor (LDLR) is a central determinant of circulating LDL-cholesterol and as such subject to tight regulation. Recent studies and genetic evidence implicate the inducible degrader of the LDLR (IDOL) as a regulator of LDLR abundance and of circulating levels of

  19. Characterization of an E3 Ubiquitin Ligase that Degrades Neurofibromin in Vitro and Vivo

    Science.gov (United States)

    2012-04-01

    of Internal Medicine and Cell and Developmental Biology 3Department of Ecology and Evolutionary Biology, College of Literature, Science, and the Arts...hyperproliferative or tumorigenic, but rather maintain homeostasis during adulthood (Figure S2D). Second, we measured the percentage of BrdU + cells in

  20. Cloning and characterization of mouse cullin4B/E3 ubiquitin ligase

    Indian Academy of Sciences (India)

    Unknown

    Mintz B, Chin L and Jaenisch R 2004 Nuclear cloning of embryonal carcinoma cells; Proc. Natl. Acad. Sci. USA 101. 13985–13990. Bisht K S, Revathi C J and Srinivas U K 1994 Differentiation of mouse embryonal carcinoma cells PCC4 by heat shock and the kinetics of induction of heat shock proteins; Indian. J. Biochem.

  1. Ubiquitin ligase ITCH recruitment suppresses the aggregation and cellular toxicity of cytoplasmic misfolded proteins

    OpenAIRE

    Chhangani, Deepak; Upadhyay, Arun; Amanullah, Ayeman; Joshi, Vibhuti; Mishra, Amit

    2014-01-01

    The protein quality control (QC) system protects cells against cellular toxicity induced by misfolded proteins and maintains overall cellular fitness. Inefficient clearance of or failure to degrade damaged proteins causes several diseases, especially age-linked neurodegenerative disorders. Attenuation of misfolded protein degradation under severe stress conditions leads to the rapid over-accumulation of toxic proteinaceous aggregates in the cytoplasmic compartment. However, the precise cytopl...

  2. Bone marrow adipocytes promote the regeneration of stem cells and haematopoiesis by secreting SCF.

    Science.gov (United States)

    Zhou, Bo O; Yu, Hua; Yue, Rui; Zhao, Zhiyu; Rios, Jonathan J; Naveiras, Olaia; Morrison, Sean J

    2017-08-01

    Endothelial cells and leptin receptor + (LepR + ) stromal cells are critical sources of haematopoietic stem cell (HSC) niche factors, including stem cell factor (SCF), in bone marrow. After irradiation or chemotherapy, these cells are depleted while adipocytes become abundant. We discovered that bone marrow adipocytes synthesize SCF. They arise from Adipoq-Cre/ER + progenitors, which represent ∼5% of LepR + cells, and proliferate after irradiation. Scf deletion using Adipoq-Cre/ER inhibited haematopoietic regeneration after irradiation or 5-fluorouracil treatment, depleting HSCs and reducing mouse survival. Scf from LepR + cells, but not endothelial, haematopoietic or osteoblastic cells, also promoted regeneration. In non-irradiated mice, Scf deletion using Adipoq-Cre/ER did not affect HSC frequency in long bones, which have few adipocytes, but depleted HSCs in tail vertebrae, which have abundant adipocytes. A-ZIP/F1 'fatless' mice exhibited delayed haematopoietic regeneration in long bones but not in tail vertebrae, where adipocytes inhibited vascularization. Adipocytes are a niche component that promotes haematopoietic regeneration.

  3. Sperm ubiquitination in epididymal feline semen.

    Science.gov (United States)

    Vernocchi, Valentina; Morselli, Maria Giorgia; Varesi, Sara; Nonnis, Simona; Maffioli, Elisa; Negri, Armando; Tedeschi, Gabriella; Luvoni, Gaia Cecilia

    2014-09-01

    Ubiquitin is a 8.5-kDa peptide that tags other proteins for proteasomal degradation. It has been proposed that ubiquitination might be responsible for the elimination of defective spermatozoa during transit through the epididymis in humans and cattle, but its exact biological function in seminal plasma has not yet been clarified. In the domestic cat (Felis catus), the percentage of immature, unviable, and abnormal spermatozoa decreases during the epididymal transit, indicating the existence of a mechanism that removes defective spermatozoa. Magnetic cell separation techniques, based on the use of magnetic beads coated with anti-ubiquitin antibodies, may allow the selective capture of ubiquitinated spermatozoa from semen, thus contributing to the identification of a potential correlation between semen quality and ubiquitination process. Moreover, the selective identification of all the ubiquitinated proteins in different epididymal regions could give a better understanding of the ubiquitin role in feline sperm maturation. The aims of this study were as follows: (1) to verify the possibility of separating ubiquitinated spermatozoa with magnetic ubiquitin beads and identify the morphological and acrosomal differences between whole sample and unbound gametes, (2) to characterize all the ubiquitinated proteins in spermatozoa retrieved in the three epididymal regions by a proteomic approach. The data indicated the presence of ubiquitinated proteins in cat epididymal semen. However, a correlation between abnormal and ubiquitinated spermatozoa has not been found, and ubiquitin cannot be considered as a biomarker of quality of epididymal feline spermatozoa. To the author's knowledge, this is the first identification of all the ubiquitinated proteins of cat spermatozoa collected from different epididymal regions. The proteomic pattern allows a further characterization of cat epididymal semen and represents a contribute to a better understanding of the ubiquitin role in

  4. Electronic structure of cubic ScF3 from first-principles calculations

    International Nuclear Information System (INIS)

    Bocharov, D.; Piskunov, S.; Kuz'min, A.; Purans, J.; Zhguns, P.

    2016-01-01

    The ground state properties of cubic scandium trifluoride (ScF 3 ) perovskite were studied using first-principles calculations. The electronic structure of ScF 3 was determined by linear combination of atomic orbital (LCAO) and plane wave projector augmented-wave (PAW) methods using modified hybrid exchange-correlation functionals within the density functional theory (DFT). The comprehensive comparison of the results obtained by two methods is presented. Both methods allowed us to reproduce the lattice constant found experimentally in ScF 3 at low temperatures and to predict its electronic structure in good agreement with known experimental valence-band photoelectron and F 1s x-ray absorption spectra.

  5. A chloroplastic RNA ligase activity analogous to the bacterial and archaeal 2´-5' RNA ligase.

    Science.gov (United States)

    Molina-Serrano, Diego; Marqués, Jorge; Nohales, María-Ángeles; Flores, Ricardo; Daròs, José-Antonio

    2012-03-01

    Bacteria and archaea contain a 2'-5' RNA ligase that seals in vitro 2',3'-cyclic phosphodiester and 5'-hydroxyl RNA termini, generating a 2',5'-phosphodiester bond. In our search for an RNA ligase able to circularize the monomeric linear replication intermediates of viroids belonging to the family Avsunviroidae, which replicate in the chloroplast, we have identified in spinach (Spinacea oleracea L.) chloroplasts a new RNA ligase activity whose properties resemble those of the bacterial and archaeal 2'-5' RNA ligase. The spinach chloroplastic RNA ligase recognizes the 5'-hydroxyl and 2',3'-cyclic phosphodiester termini of Avocado sunblotch viroid and Eggplant latent viroid RNAs produced by hammerhead-mediated self-cleavage, yielding circular products linked through an atypical, most likely 2',5'-phosphodiester, bond. The enzyme neither requires divalent cations as cofactors, nor NTPs as substrate. The reaction apparently reaches equilibrium at a low ratio between the final circular product and the linear initial substrate. Even if its involvement in viroid replication seems unlikely, the identification of a 2'-5' RNA ligase activity in higher plant chloroplasts, with properties very similar to an analogous enzyme widely distributed in bacterial and archaeal proteomes, is intriguing and suggests an important biological role so far unknown.

  6. Ubiquitin-binding proteins: similar, but different

    DEFF Research Database (Denmark)

    Andersen, Katrine M; Hofmann, Kay; Hartmann-Petersen, Rasmus

    2005-01-01

    of ubiquitin conjugation to endoplasmic reticulum degradation), UEV [ubiquitin E2 (ubiquitin-conjugating enzyme) variant] and NZF (nuclear protein localization gene 4 zinc finger) domain-containing proteins appear to have more specialized functions. Here we discuss functional and structural properties......Covalent modification of proteins with ubiquitin is a common regulatory mechanism in eukaryotic cells. Typically, ubiquitinated proteins are targeted for degradation by the 26 S proteasome. However, more recently the ubiquitin signal has also been connected with many other cell processes, including...... endocytosis, vesicle fusion, DNA repair and transcriptional silencing. Hence ubiquitination may be comparable with phosphorylation in its importance as an intracellular switch, controlling various signal-transduction pathways. Similar to the regulation of the extent of phosphorylation by kinases...

  7. Blocking an N-terminal acetylation–dependent protein interaction inhibits an E3 ligase

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Daniel C.; Hammill, Jared T.; Min, Jaeki; Rhee, David Y.; Connelly, Michele; Sviderskiy, Vladislav O.; Bhasin, Deepak; Chen, Yizhe; Ong, Su-Sien; Chai, Sergio C.; Goktug, Asli N.; Huang, Guochang; Monda, Julie K.; Low, Jonathan; Kim, Ho Shin; Paulo, Joao A.; Cannon, Joe R.; Shelat, Anang A.; Chen, Taosheng; Kelsall, Ian R.; Alpi, Arno F.; Pagala, Vishwajeeth; Wang, Xusheng; Peng, Junmin; Singh , Bhuvanesh; Harper, J. Wade; Schulman, Brenda A.; Guy, R. Kip (MSKCC); (Dundee); (SJCH); (Harvard-Med); (MXPL)

    2017-06-05

    N-terminal acetylation is an abundant modification influencing protein functions. Because ~80% of mammalian cytosolic proteins are N-terminally acetylated, this modification is potentially an untapped target for chemical control of their functions. Structural studies have revealed that, like lysine acetylation, N-terminal acetylation converts a positively charged amine into a hydrophobic handle that mediates protein interactions; hence, this modification may be a druggable target. We report the development of chemical probes targeting the N-terminal acetylation–dependent interaction between an E2 conjugating enzyme (UBE2M or UBC12) and DCN1 (DCUN1D1), a subunit of a multiprotein E3 ligase for the ubiquitin-like protein NEDD8. The inhibitors are highly selective with respect to other protein acetyl-amide–binding sites, inhibit NEDD8 ligation in vitro and in cells, and suppress anchorage-independent growth of a cell line with DCN1 amplification. Overall, our data demonstrate that N-terminal acetyl-dependent protein interactions are druggable targets and provide insights into targeting multiprotein E2–E3 ligases.

  8. TMEM129 is a Derlin-1 associated ERAD E3 ligase essential for virus-induced degradation of MHC-I

    DEFF Research Database (Denmark)

    van den Boomen, Dick J H; Timms, Richard T; Grice, Guinevere L

    2014-01-01

    The US11 gene product of human cytomegalovirus promotes viral immune evasion by hijacking the endoplasmic reticulum (ER)-associated degradation (ERAD) pathway. US11 initiates dislocation of newly translocated MHC I from the ER to the cytosol for proteasome-mediated degradation. Despite the critical......, and subsequent degradation of US11-associated MHC-I. US11 engages two degradation pathways: a Derlin-1/TMEM129-dependent pathway required for MHC-I degradation and a SEL1L/HRD1-dependent pathway required for "free" US11 degradation. Our data show that TMEM129 is a novel ERAD E3 ligase and the central component......-mediated MHC-I degradation and acts as a novel ER resident E3 ubiquitin ligase. TMEM129 contains an unusual cysteine-only RING with intrinsic E3 ligase activity and is recruited to US11 via Derlin-1. Together with its E2 conjugase Ube2J2, TMEM129 is responsible for the ubiquitination, dislocation...

  9. Non-degradative Ubiquitination of Protein Kinases.

    Directory of Open Access Journals (Sweden)

    K Aurelia Ball

    2016-06-01

    Full Text Available Growing evidence supports other regulatory roles for protein ubiquitination in addition to serving as a tag for proteasomal degradation. In contrast to other common post-translational modifications, such as phosphorylation, little is known about how non-degradative ubiquitination modulates protein structure, dynamics, and function. Due to the wealth of knowledge concerning protein kinase structure and regulation, we examined kinase ubiquitination using ubiquitin remnant immunoaffinity enrichment and quantitative mass spectrometry to identify ubiquitinated kinases and the sites of ubiquitination in Jurkat and HEK293 cells. We find that, unlike phosphorylation, ubiquitination most commonly occurs in structured domains, and on the kinase domain, ubiquitination is concentrated in regions known to be important for regulating activity. We hypothesized that ubiquitination, like other post-translational modifications, may alter the conformational equilibrium of the modified protein. We chose one human kinase, ZAP-70, to simulate using molecular dynamics with and without a monoubiquitin modification. In Jurkat cells, ZAP-70 is ubiquitinated at several sites that are not sensitive to proteasome inhibition and thus may have other regulatory roles. Our simulations show that ubiquitination influences the conformational ensemble of ZAP-70 in a site-dependent manner. When monoubiquitinated at K377, near the C-helix, the active conformation of the ZAP-70 C-helix is disrupted. In contrast, when monoubiquitinated at K476, near the kinase hinge region, an active-like ZAP-70 C-helix conformation is stabilized. These results lead to testable hypotheses that ubiquitination directly modulates kinase activity, and that ubiquitination is likely to alter structure, dynamics, and function in other protein classes as well.

  10. PCNA ubiquitination is important, but not essential for translesion DNA synthesis in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Ayal Hendel

    2011-09-01

    Full Text Available Translesion DNA synthesis (TLS is a DNA damage tolerance mechanism in which specialized low-fidelity DNA polymerases bypass replication-blocking lesions, and it is usually associated with mutagenesis. In Saccharomyces cerevisiae a key event in TLS is the monoubiquitination of PCNA, which enables recruitment of the specialized polymerases to the damaged site through their ubiquitin-binding domain. In mammals, however, there is a debate on the requirement for ubiquitinated PCNA (PCNA-Ub in TLS. We show that UV-induced Rpa foci, indicative of single-stranded DNA (ssDNA regions caused by UV, accumulate faster and disappear more slowly in Pcna(K164R/K164R cells, which are resistant to PCNA ubiquitination, compared to Pcna(+/+ cells, consistent with a TLS defect. Direct analysis of TLS in these cells, using gapped plasmids with site-specific lesions, showed that TLS is strongly reduced across UV lesions and the cisplatin-induced intrastrand GG crosslink. A similar effect was obtained in cells lacking Rad18, the E3 ubiquitin ligase which monoubiquitinates PCNA. Consistently, cells lacking Usp1, the enzyme that de-ubiquitinates PCNA exhibited increased TLS across a UV lesion and the cisplatin adduct. In contrast, cells lacking the Rad5-homologs Shprh and Hltf, which polyubiquitinate PCNA, exhibited normal TLS. Knocking down the expression of the TLS genes Rev3L, PolH, or Rev1 in Pcna(K164R/K164R mouse embryo fibroblasts caused each an increased sensitivity to UV radiation, indicating the existence of TLS pathways that are independent of PCNA-Ub. Taken together these results indicate that PCNA-Ub is required for maximal TLS. However, TLS polymerases can be recruited to damaged DNA also in the absence of PCNA-Ub, and perform TLS, albeit at a significantly lower efficiency and altered mutagenic specificity.

  11. Why Ubiquitin Has Not Evolved

    Directory of Open Access Journals (Sweden)

    Douglas C. Allan

    2017-09-01

    Full Text Available Ubiquitin, discovered less than 50 years ago, tags thousands of diseased proteins for destruction. It is small (only 76 amino acids, and is found unchanged in mammals, birds, fish, and even worms, indicating that ubiquitin is perfect. Key features of its functionality are identified here using critical point thermodynamic scaling theory. These include synchronized pivots and hinges, a stabilizing central pivot, and Fano interference between first- and second-order elements of correlated long-range (allosteric globular surface shape transitions. Comparison with its closest relative, 76 amino acid Nedd8, shows that the latter lacks all these features. A cracked elastic network model is proposed for the common target shared by many diseased proteins.

  12. Paving TRAIL's Path with Ubiquitin.

    Science.gov (United States)

    Lafont, Elodie; Hartwig, Torsten; Walczak, Henning

    2018-01-01

    Despite its name, signalling induced by the tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is versatile. Besides eliciting cell death by both apoptosis and necroptosis, TRAIL can also induce migration, proliferation, and cytokine production in cancerous and non-cancerous cells. Unravelling the mechanisms regulating the intricate balance between these different outputs could therefore facilitate our understanding of the role of TRAIL in tissue homeostasis, immunity, and cancer. Ubiquitination and its reversal, deubiquitination, are crucial modulators of immune receptor signalling. This review discusses recent progress on the orchestration of TRAIL signalling outcomes by ubiquitination of various components of the signalling complexes, our understanding of the molecular switches that decide between cell death and gene activation, and what remains to be discovered. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. FERM-dependent E3 ligase recognition is a conserved mechanism for targeted degradation of lipoprotein receptors.

    Science.gov (United States)

    Calkin, Anna C; Goult, Benjamin T; Zhang, Li; Fairall, Louise; Hong, Cynthia; Schwabe, John W R; Tontonoz, Peter

    2011-12-13

    The E3 ubiquitin ligase IDOL (inducible degrader of the LDL receptor) regulates LDL receptor (LDLR)-dependent cholesterol uptake, but its mechanism of action, including the molecular basis for its stringent specificity, is poorly understood. Here we show that IDOL uses a singular strategy among E3 ligases for target recognition. The IDOL FERM domain binds directly to a recognition sequence in the cytoplasmic tails of lipoprotein receptors. This physical interaction is independent of IDOL's really interesting new gene (RING) domain E3 ligase activity and its capacity for autoubiquitination. Furthermore, IDOL controls its own stability through autoubiquitination of a unique FERM subdomain fold not present in other FERM proteins. Key residues defining the IDOL-LDLR interaction and IDOL autoubiquitination are functionally conserved in their insect homologs. Finally, we demonstrate that target recognition by IDOL involves a tripartite interaction between the FERM domain, membrane phospholipids, and the lipoprotein receptor tail. Our data identify the IDOL-LDLR interaction as an evolutionarily conserved mechanism for the regulation of lipid uptake and suggest that this interaction could potentially be exploited for the pharmacologic modulation of lipid metabolism.

  14. Centriolar Satellites Control GABARAP Ubiquitination and GABARAP-Mediated Autophagy.

    Science.gov (United States)

    Joachim, Justin; Razi, Minoo; Judith, Delphine; Wirth, Martina; Calamita, Emily; Encheva, Vesela; Dynlacht, Brian D; Snijders, Ambrosius P; O'Reilly, Nicola; Jefferies, Harold B J; Tooze, Sharon A

    2017-07-24

    Autophagy maintains cellular health and homeostasis during stress by delivering cytosolic material captured by autophagosomes to lysosomes for degradation. Autophagosome formation is complex: initiated by the recruitment of autophagy (Atg) proteins to the formation site, it is sustained by activation of Atg proteins to allow growth and closure of the autophagosome. How Atg proteins are translocated to the forming autophagosome is not fully understood. Transport of the ATG8 family member GABARAP from the centrosome occurs during starvation-induced autophagosome biogenesis, but how centrosomal proteins regulate GABARAP localization is unknown. We show that the centriolar satellite protein PCM1 regulates the recruitment of GABARAP to the pericentriolar material. In addition to residing on the pericentriolar material, GABARAP marks a subtype of PCM1-positive centriolar satellites. GABARAP, but not another ATG8 family member LC3B, binds directly to PCM1 through a canonical LIR motif. Loss of PCM1 results in destabilization of GABARAP, but not LC3B, through proteasomal degradation. GABARAP instability is mediated through the centriolar satellite E3 ligase Mib1, which interacts with GABARAP through its substrate-binding region and promotes K48-linked ubiquitination of GABARAP. Ubiquitination of GABARAP occurs in the N terminus, a domain associated with ATG8-family-specific functions during autophagosome formation, on residues absent in the LC3 family. Furthermore, PCM1-GABARAP-positive centriolar satellites colocalize with forming autophagosomes. PCM1 enhances GABARAP/WIPI2/p62-positive autophagosome formation and flux but has no significant effect on LC3B-positive autophagosome formation. These data suggest a mechanism for how centriolar satellites can specifically regulate an ATG8 ortholog, the centrosomal GABARAP reservoir, and centrosome-autophagosome crosstalk. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  15. TRIM65 negatively regulates p53 through ubiquitination

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yang [Department of Respiration, The First Hospital of Jilin University, Changchun 130021 (China); Ma, Chengyuan [Department of Neurosurgery, The First Hospital of Jilin University, Changchun 130021 (China); Zhou, Tong [Department of Endocrinology, The First Hospital of Jilin University, Changchun 130021 (China); Liu, Ying [Department of Respiration, The First Hospital of Jilin University, Changchun 130021 (China); Sun, Luyao [Department of Infectious Diseases, The First Hospital of Jilin University, Changchun 130021 (China); Yu, Zhenxiang, E-mail: zhenxiangyu2015@gmail.com [Department of Respiration, The First Hospital of Jilin University, Changchun 130021 (China)

    2016-04-22

    Tripartite-motif protein family member 65 (TRIM65) is an important protein involved in white matter lesion. However, the role of TRIM65 in human cancer remains less understood. Through the Cancer Genome Atlas (TCGA) gene alteration database, we found that TRIM65 is upregulated in a significant portion of non-small cell lung carcinoma (NSCLC) patients. Our cell growth assay revealed that TRIM65 overexpression promotes cell proliferation, while knockdown of TRIM65 displays opposite effect. Mechanistically, TRIM65 binds to p53, one of the most critical tumor suppressors, and serves as an E3 ligase toward p53. Consequently, TRIM65 inactivates p53 through facilitating p53 poly-ubiquitination and proteasome-mediated degradation. Notably, chemotherapeutic reagent cisplatin induction of p53 is markedly attenuated in response to ectopic expression of TRIM65. Cell growth inhibition by TRIM65 knockdown is more significant in p53 positive H460 than p53 negative H1299 cells, and knockdown of p53 in H460 cells also shows compromised cell growth inhibition by TRIM65 knockdown, indicating that p53 is required, at least in part, for TRIM65 function. Our findings demonstrate TRIM65 as a potential oncogenic protein, highly likely through p53 inactivation, and provide insight into development of novel approaches targeting TRIM65 for NSCLC treatment, and also overcoming chemotherapy resistance. - Highlights: • TRIM65 expression is elevated in NSCLC. • TRIM65 inactivates p53 through mediating p53 ubiquitination and degradation. • TRIM65 attenuates the response of NSCLC cells to cisplatin.

  16. The FA Core Complex Contains a Homo-dimeric Catalytic Module for the Symmetric Mono-ubiquitination of FANCI-FANCD2

    Directory of Open Access Journals (Sweden)

    Paolo Swuec

    2017-01-01

    Full Text Available Activation of the main DNA interstrand crosslink repair pathway in higher eukaryotes requires mono-ubiquitination of FANCI and FANCD2 by FANCL, the E3 ligase subunit of the Fanconi anemia core complex. FANCI and FANCD2 form a stable complex; however, the molecular basis of their ubiquitination is ill defined. FANCD2 mono-ubiquitination by FANCL is stimulated by the presence of the FANCB and FAAP100 core complex components, through an unknown mechanism. How FANCI mono-ubiquitination is achieved remains unclear. Here, we use structural electron microscopy, combined with crosslink-coupled mass spectrometry, to find that FANCB, FANCL, and FAAP100 form a dimer of trimers, containing two FANCL molecules that are ideally poised to target both FANCI and FANCD2 for mono-ubiquitination. The FANCC-FANCE-FANCF subunits bridge between FANCB-FANCL-FAAP100 and the FANCI-FANCD2 substrate. A transient interaction with FANCC-FANCE-FANCF alters the FANCI-FANCD2 configuration, stabilizing the dimerization interface. Our data provide a model to explain how equivalent mono-ubiquitination of FANCI and FANCD2 occurs.

  17. Priming with r-metHuSCF and filgrastim or chemotherapy and filgrastim in patients with malignant lymphomas: a randomized phase II pilot study of mobilization and engraftment

    DEFF Research Database (Denmark)

    Johnsen, H E; Geisler, C; Juvonen, E

    2011-01-01

    SCF has been shown to synergize with G-CSF to mobilize CD34(+) PBPCs. In this study we report results from this combination after a phase II trial of 32 patients with malignant lymphoma randomized to receive recombinant methionyl human SCF (ancestim, r-metHuSCF) in combination with recombinant me...

  18. Delineating Crosstalk Mechanisms of the Ubiquitin Proteasome System That Regulate Apoptosis

    Directory of Open Access Journals (Sweden)

    Ishita Gupta

    2018-02-01

    Full Text Available Regulatory functions of the ubiquitin-proteasome system (UPS are exercised mainly by the ubiquitin ligases and deubiquitinating enzymes. Degradation of apoptotic proteins by UPS is central to the maintenance of cell health, and deregulation of this process is associated with several diseases including tumors, neurodegenerative disorders, diabetes, and inflammation. Therefore, it is the view that interrogating protein turnover in cells can offer a strategy for delineating disease-causing mechanistic perturbations and facilitate identification of drug targets. In this review, we are summarizing an overview to elucidate the updated knowledge on the molecular interplay between the apoptosis and UPS pathways. We have condensed around 100 enzymes of UPS machinery from the literature that ubiquitinates or deubiquitinates the apoptotic proteins and regulates the cell fate. We have also provided a detailed insight into how the UPS proteins are able to fine-tune the intrinsic, extrinsic, and p53-mediated apoptotic pathways to regulate cell survival or cell death. This review provides a comprehensive overview of the potential of UPS players as a drug target for cancer and other human disorders.

  19. The Regulation of Tumor Suppressor p63 by the Ubiquitin-Proteasome System

    Directory of Open Access Journals (Sweden)

    Stephen R. Armstrong

    2016-12-01

    Full Text Available The protein p63 has been identified as a homolog of the tumor suppressor protein p53 and is capable of inducing apoptosis, cell cycle arrest, or senescence. p63 has at least six isoforms, which can be divided into two major groups: the TAp63 variants that contain the N-terminal transactivation domain and the ΔNp63 variants that lack the N-terminal transactivation domain. The TAp63 variants are generally considered to be tumor suppressors involved in activating apoptosis and suppressing metastasis. ΔNp63 variants cannot induce apoptosis but can act as dominant negative inhibitors to block the function of TAp53, TAp73, and TAp63. p63 is rarely mutated in human tumors and is predominately regulated at the post-translational level by phosphorylation and ubiquitination. This review focuses primarily on regulation of p63 by the ubiquitin E-3 ligase family of enzymes via ubiquitination and proteasome-mediated degradation, and introduces a new key regulator of the p63 protein.

  20. Role of the ubiquitin proteasome system in renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Corn Paul G

    2007-11-01

    Full Text Available Abstract Renal cell carcinoma (RCC accounts for approximately 2.6% of all cancers in the United States. While early stage disease is curable by surgery, the median survival of metastatic disease is only 13 months. In the last decade, there has been considerable progress in understanding the genetics of RCC. The VHL tumor suppressor gene is inactivated in the majority of RCC cases. The VHL protein (pVHL acts as an E3 ligase that targets HIF-1, the hypoxia inducible transcription factor, for degradation by the ubiquitin proteasome system (UPS. In RCC cases with mutant pVHL, HIF-1 is stabilized and aberrantly expressed in normoxia, leading to the activation of pro-survival genes such as vascular endothelial growth factor (VEGF. This review will focus on the defect in the UPS that underlies RCC and describe the development of novel therapies that target the UPS. Publication history: Republished from Current BioData's Targeted Proteins database (TPdb; http://www.targetedproteinsdb.com.

  1. The Type II Hsp40 Sis1 cooperates with Hsp70 and the E3 ligase Ubr1 to promote degradation of terminally misfolded cytosolic protein.

    Directory of Open Access Journals (Sweden)

    Daniel W Summers

    Full Text Available Mechanisms for cooperation between the cytosolic Hsp70 system and the ubiquitin proteasome system during protein triage are not clear. Herein, we identify new mechanisms for selection of misfolded cytosolic proteins for degradation via defining functional interactions between specific cytosolic Hsp70/Hsp40 pairs and quality control ubiquitin ligases. These studies revolved around the use of S. cerevisiae to elucidate the degradation pathway of a terminally misfolded reporter protein, short-lived GFP (slGFP. The Type I Hsp40 Ydj1 acts with Hsp70 to suppress slGFP aggregation. In contrast, the Type II Hsp40 Sis1 is required for proteasomal degradation of slGFP. Sis1 and Hsp70 operate sequentially with the quality control E3 ubiquitin ligase Ubr1 to target slGFP for degradation. Compromise of Sis1 or Ubr1 function leads slGFP to accumulate in a Triton X-100-soluble state with slGFP degradation intermediates being concentrated into perinuclear and peripheral puncta. Interestingly, when Sis1 activity is low the slGFP that is concentrated into puncta can be liberated from puncta and subsequently degraded. Conversely, in the absence of Ubr1, slGFP and the puncta that contain slGFP are relatively stable. Ubr1 mediates proteasomal degradation of slGFP that is released from cytosolic protein handling centers. Pathways for proteasomal degradation of misfolded cytosolic proteins involve functional interplay between Type II Hsp40/Hsp70 chaperone pairs, PQC E3 ligases, and storage depots for misfolded proteins.

  2. Ubiquitination is absolutely required for the degradation of hypoxia-inducible factor - 1 alpha protein in hypoxic conditions

    International Nuclear Information System (INIS)

    Wang, Ronghai; Zhang, Ping; Li, Jinhang; Guan, Hongzai; Shi, Guangjun

    2016-01-01

    The hypoxia-inducible factor (HIF) is recognized as the master regulator of hypoxia response. HIF-α subunits expression are tightly regulated. In this study, our data show that ts20 cells still expressed detectable E1 protein even at 39.5° C for 12 h, and complete depletion of E1 protein expression at 39.5° C by siRNA enhanced HIF-1α and P53 protein expression. Further inhibition of E1 at 39.5 °C by siRNA, or E1 inhibitor Ube1-41 completely blocked HIF-1α degradation. Moreover, immunoprecipitations of co-transfection of HA-ubiquitin and FLAG–HIF–1α plasmids directly confirmed the involvement of ubiquitin in the hypoxic degradation of HIF-1α. Additionally, hypoxic HIF-1 α degradation is independent of HAF, RACK1, sumoylation or nuclear/cytoplasmic localization. Taken together, our data suggest that constitutive HIF-1α protein degradation in hypoxia is absolutely ubiquitination-dependent, and unidentified E3 ligase may exist for this degradation pathway. - Highlights: • HIF-1α protein is constitutively degraded in hypoxic conditions. • Requirement of ubiquitination for HIF-1α degradation in hypoxia. • Hypoxic HIF-1α degradation is independent of HAF, RACK1, sumoylation or nuclear/cytoplasmic localization.

  3. Ubiquitination is absolutely required for the degradation of hypoxia-inducible factor - 1 alpha protein in hypoxic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ronghai [Department of Urology, Linzi District People' s Hospital, Zibo, 255400 (China); Zhang, Ping, E-mail: zpskx001@163.com [Department of Gynecology, Qingdao Municipal Hospital, Qingdao, 266011 (China); Li, Jinhang [Department of Gynecology, Qingdao Municipal Hospital, Qingdao, 266011 (China); Guan, Hongzai [Laboratory Department, School of Medicine, Qingdao University, Qingdao, 266071 (China); Shi, Guangjun, E-mail: qdmhshigj@yahoo.com [Department of Hepatobiliary Surgery, Qingdao Municipal Hospital, Qingdao, 266071 (China)

    2016-01-29

    The hypoxia-inducible factor (HIF) is recognized as the master regulator of hypoxia response. HIF-α subunits expression are tightly regulated. In this study, our data show that ts20 cells still expressed detectable E1 protein even at 39.5° C for 12 h, and complete depletion of E1 protein expression at 39.5° C by siRNA enhanced HIF-1α and P53 protein expression. Further inhibition of E1 at 39.5 °C by siRNA, or E1 inhibitor Ube1-41 completely blocked HIF-1α degradation. Moreover, immunoprecipitations of co-transfection of HA-ubiquitin and FLAG–HIF–1α plasmids directly confirmed the involvement of ubiquitin in the hypoxic degradation of HIF-1α. Additionally, hypoxic HIF-1 α degradation is independent of HAF, RACK1, sumoylation or nuclear/cytoplasmic localization. Taken together, our data suggest that constitutive HIF-1α protein degradation in hypoxia is absolutely ubiquitination-dependent, and unidentified E3 ligase may exist for this degradation pathway. - Highlights: • HIF-1α protein is constitutively degraded in hypoxic conditions. • Requirement of ubiquitination for HIF-1α degradation in hypoxia. • Hypoxic HIF-1α degradation is independent of HAF, RACK1, sumoylation or nuclear/cytoplasmic localization.

  4. TRIM39 is a MOAP-1-binding protein that stabilizes MOAP-1 through inhibition of its poly-ubiquitination process.

    Science.gov (United States)

    Lee, San San; Fu, Nai Yang; Sukumaran, Sunil K; Wan, Kah Fei; Wan, Qian; Yu, Victor C

    2009-04-15

    Bax, a multi-domain pro-apoptotic Bcl-2 family member, is a key regulator for the release of apoptogenic factors from mitochondria. MOAP-1, which was first isolated from a screen for Bax-associating proteins, interacts with Bax upon apoptotic induction. MOAP-1 is a short-lived protein that is constitutively degraded by the ubiquitin-proteasome system. Apoptotic stimuli upregulate MOAP-1 rapidly through inhibition of its poly-ubiquitination process. However, cellular factors that regulate the stability of MOAP-1 have not yet been identified. In this study, we report the identification of TRIM39 as a MOAP-1-binding protein. TRIM39 belongs to a family of proteins characterized by a Tripartite Motif (TRIM), consisting of RING domain, B-box and coiled-coil domain. Several TRIM family members are known to demonstrate E3 ubiquitin ligase activity. Surprisingly, TRIM39 significantly extends the half-life of MOAP-1 by inhibiting its poly-ubiquitination process. In agreement with its effect on enhancing MOAP-1 stability, TRIM39 sensitizes cells to etoposide-induced apoptosis. Conversely, knockdown of TRIM39 reduces the sensitivity of cells to etoposide-stimulated apoptosis. Furthermore, TRIM39 elevates the level of MOAP-1 in mitochondria and promotes cytochrome c release from isolated mitochondria stimulated by recombinant Bax. Together, these data suggest that TRIM39 can promote apoptosis signalling through stabilization of MOAP-1.

  5. Fab-based inhibitors reveal ubiquitin independent functions for HIV Vif neutralization of APOBEC3 restriction factors.

    Directory of Open Access Journals (Sweden)

    Jennifer M Binning

    2018-01-01

    Full Text Available The lentiviral protein Viral Infectivity Factor (Vif counteracts the antiviral effects of host APOBEC3 (A3 proteins and contributes to persistent HIV infection. Vif targets A3 restriction factors for ubiquitination and proteasomal degradation by recruiting them to a multi-protein ubiquitin E3 ligase complex. Here, we describe a degradation-independent mechanism of Vif-mediated antagonism that was revealed through detailed structure-function studies of antibody antigen-binding fragments (Fabs to the Vif complex. Two Fabs were found to inhibit Vif-mediated A3 neutralization through distinct mechanisms: shielding A3 from ubiquitin transfer and blocking Vif E3 assembly. Combined biochemical, cell biological and structural studies reveal that disruption of Vif E3 assembly inhibited A3 ubiquitination but was not sufficient to restore its packaging into viral particles and antiviral activity. These observations establish that Vif can neutralize A3 family members in a degradation-independent manner. Additionally, this work highlights the potential of Fabs as functional probes, and illuminates how Vif uses a multi-pronged approach involving both degradation dependent and independent mechanisms to suppress A3 innate immunity.

  6. Lithium Suppresses Hedgehog Signaling via Promoting ITCH E3 Ligase Activity and Gli1–SUFU Interaction in PDA Cells

    Directory of Open Access Journals (Sweden)

    Xinshuo Wang

    2017-11-01

    Full Text Available Dysregulation of Hedgehog (Hh signaling pathway is one of the hallmarks of pancreatic ductal adenocarcinoma (PDA. Lithium, a clinical mood stabilizer for the treatment of mental disorders, is known to suppress tumorigenic potential of PDA cells by targeting the Hh/Gli signaling pathway. In this study, we investigated the molecular mechanism of lithium induced down-regulation of Hh/Gli1. Our data show that lithium promotes the poly-ubiquitination and proteasome-mediated degradation of Gli1 through activating E3 ligase ITCH. Additionally, lithium enhances interaction between Gli1 and SUFU via suppressing GSK3β, which phosphorylates SUFU and destabilizes the SUFU-Gli1 inhibitory complex. Our studies illustrate a novel mechanism by which lithium suppresses Hh signaling via simultaneously promoting ITCH-dependent Gli1 ubiquitination/degradation and SUFU-mediated Gli1 inhibition.

  7. Triaminoguanidinium Ion in Triaminoguanidinium Nitrate by the MINDO/3 Semi-Empirical SCF-MO Treatment

    Science.gov (United States)

    1980-06-01

    PERFORMING ORGANIZATION NAME AND ADDRESS ARRADCOM, LCWSL Applied Sciencies Div (DRDAR-LCA-G) Dover, NJ 07801 ^ II. CONTROLLING OFFICE^IAI...the factors which determine this preference dictated mainly by the crystalline forces or by the directional forces associated with hydrogen bonds? Or...energy barrier to rotation across the N-N bonds. Considerations of this nature directs attention to the semi- empirical SCF-MD treatment, MIND0/3

  8. SCF/c-kit signaling is required for cyclic regeneration of the hair pigmentation unit.

    Science.gov (United States)

    Botchkareva, N V; Khlgatian, M; Longley, B J; Botchkarev, V A; Gilchrest, B A

    2001-03-01

    Hair graying, an age-associated process of unknown etiology, is characterized by a reduced number and activity of hair follicle (HF) melanocytes. Stem cell factor (SCF) and its receptor c-kit are important for melanocyte survival during development, and mutations in these genes result in unpigmented hairs. Here we show that during cyclic HF regeneration in C57BL/6 mice, proliferating, differentiating, and melanin-producing melanocytes express c-kit, whereas presumptive melanocyte precursors do not. SCF overexpression in HF epithelium significantly increases the number and proliferative activity of melanocytes. During the induced hair cycle in C57BL/6 mice, administration of anti-c-kit antibody dose-dependently decreases hair pigmentation and leads to partially depigmented (gray) or fully depigmented (white) hairs, associated with significant decreases in melanocyte proliferation and differentiation, as determined by immunostaining and confocal microscopy. However, in the next hair cycle, the previously treated animals grow fully pigmented hairs with the normal number and distribution of melanocytes. This suggests that melanocyte stem cells are not dependent on SCF/c-kit and when appropriately stimulated can generate melanogenically active melanocytes. Therefore, the blockade of c-kit signaling offers a fully reversible model for hair depigmentation, which might be used for the studies of hair pigmentation disorders.

  9. Localized Symmetry Breaking for Tuning Thermal Expansion in ScF 3 Nanoscale Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Lei [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China; Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States; Qin, Feiyu [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China; Sanson, Andrea [Department of Physics and Astronomy, University of Padova, Padova I-35131, Italy; Huang, Liang-Feng [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States; Pan, Zhao [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China; Li, Qiang [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China; Sun, Qiang [International Laboratory for Quantum Functional Materials of Henan, School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001, China; Wang, Lu [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China; Guo, Fangmin [X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States; Aydemir, Umut [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States; Department of Chemistry, Koc University, Sariyer, Istanbul 34450, Turkey; Ren, Yang [X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States; Sun, Chengjun [X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States; Deng, Jinxia [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China; Aquilanti, Giuliana [Elettra Sincrotrone Trieste, Basovizza, Trieste I-34149, Italy; Rondinelli, James M. [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States; Chen, Jun [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China; Xing, Xianran [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China

    2018-03-15

    The local symmetry, beyond the averaged crystallographic structure, tends to bring unu-sual performances. Negative thermal expansion is a peculiar physical property of solids. Here, we report the delicate design of the localized symmetry breaking to achieve the controllable thermal expansion in ScF3 nano-scale frameworks. Intriguingly, an isotropic zero thermal expansion is concurrently engi-neered by localized symmetry breaking, with a remarkably low coefficient of thermal expansion of about +4.0×10-8/K up to 675K. This mechanism is investigated by the joint analysis of atomic pair dis-tribution function of synchrotron X-ray total scattering and extended X-ray absorption fine structure spectra. A localized rhombohedral distortion presumably plays a critical role in stiffening ScF3 nano-scale frameworks and concomitantly suppressing transverse thermal vibrations of fluorine atoms. This physical scenario is also theoretically corroborated by the extinction of phonon modes with negative Grüneisen parameters in the rhombohedral ScF3. The present work opens an untraditional chemical modification to achieve controllable thermal expansion by breaking local symmetries of materials.

  10. Atg5-independent sequestration of ubiquitinated mycobacteria.

    Directory of Open Access Journals (Sweden)

    Cathleen A Collins

    2009-05-01

    Full Text Available Like several other intracellular pathogens, Mycobacterium marinum (Mm escapes from phagosomes into the host cytosol where it can polymerize actin, leading to motility that promotes spread to neighboring cells. However, only approximately 25% of internalized Mm form actin tails, and the fate of the remaining bacteria has been unknown. Here we show that cytosolic access results in a new and intricate host pathogen interaction: host macrophages ubiquitinate Mm, while Mm shed their ubiquitinated cell walls. Phagosomal escape and ubiquitination of Mm occurred rapidly, prior to 3.5 hours post infection; at the same time, ubiquitinated Mm cell wall material mixed with host-derived dense membrane networks appeared in close proximity to cytosolic bacteria, suggesting cell wall shedding and association with remnants of the lysed phagosome. At 24 hours post-infection, Mm that polymerized actin were not ubiquitinated, whereas ubiquitinated Mm were found within LAMP-1-positive vacuoles resembling lysosomes. Though double membranes were observed which sequestered Mm away from the cytosol, targeting of Mm to the LAMP-1-positive vacuoles was independent of classical autophagy, as demonstrated by absence of LC3 association and by Atg5-independence of their formation. Further, ubiquitination and LAMP-1 association did not occur with mutant avirulent Mm lacking ESX-1 (type VII secretion, which fail to escape the primary phagosome; apart from its function in phagosome escape, ESX-1 was not directly required for Mm ubiquitination in macrophages or in vitro. These data suggest that virulent Mm follow two distinct paths in the cytosol of infected host cells: bacterial ubiquitination is followed by sequestration into lysosome-like organelles via an autophagy-independent pathway, while cell wall shedding may allow escape from this fate to permit continued residence in the cytosol and formation of actin tails.

  11. Heat Shock Protein 70 and CHIP Promote Nox4 Ubiquitination and Degradation within the Losartan Antioxidative Effect in Proximal Tubule Cells.

    Science.gov (United States)

    Gil Lorenzo, Andrea F; Costantino, Valeria V; Appiolaza, Martin López; Cacciamani, Valeria; Benardon, Maria E; Bocanegra, Victoria; Vallés, Patricia G

    2015-01-01

    Angiotensin II/Angiotensin II type 1 receptor (AT1R) effects are dependent on ROS production stimulated by NADPH oxidase activation. Hsp70 regulates a diverse set of signaling pathways through their interactions with proteins. CHIP is a E3 ubiquitin ligase that targets proteins for polyubiquitination and degradation. We study whether Hsp70/CHIP contribute to the negative regulation of Nox4 after AT1R blockage. Primary culture of proximal tubule epithelial cells (PTCs) from SHR and WKY were stimulated with Angiotensin II (AII) or treated with Losartan (L) or Losartan plus Angiotensin II (L+AII). Losartan decreased AT1R and Nox4 while enhancing caveolin-1 and Hsp70 protein expression in SHR PTCs. Immunoprecipitation and immunofluorescence proved interaction and colocalization of increased Hsp70/CHIP with decreased Nox4 in SHR PTCs (L) vs (All). Hsp72 knockdown resulted in enhanced Nox4 protein levels, NADPH oxidase activity and ROS generation in (L+AII) revealing that Losartan was unable to abrogate AII effects on Nox4 expression and oxidative activity. Moreover, MG132 exposed PTCs (L) demostrated blocked ubiquitinated Nox4 degradation and increased colocalization of Nox4/Ubiquitin by inmunofluorescence. Conversely, Hsp72 depletion reduced Nox4/Ubiquitin colocalization causing Nox4 upregulation due to proteosomal degradation inhibition, although Losartan treatment. Our study demonstrates that Hsp70 and CHIP mediates the ubiquitination and proteasomal degradation of Nox4 as part of the antioxidative effect of Losartan in SHR. © 2015 S. Karger AG, Basel.

  12. Met1-linked Ubiquitination in Immune Signalling

    DEFF Research Database (Denmark)

    Fiil, Berthe Katrine; Gyrd-Hansen, Mads

    2014-01-01

    identification of physiological substrates for Met1-Ub in response to activation of innate immune receptors. These discoveries have significantly advanced our understanding of how non-degradative ubiquitin modifications control pro-inflammatory responses mediated by nuclear factor κB and mitogen......Methionine 1-linked ubiquitin chains (Met1-Ub), or linear ubiquitin, has emerged as a central post-translational modification in innate immune signalling. Molecular machinery that assembles, senses and, more recently, disassembles Met1-Ub has been identified, and technical advances have enabled...

  13. E3 ligase CHIP and Hsc70 regulate Kv1.5 protein expression and function in mammalian cells.

    Science.gov (United States)

    Li, Peili; Kurata, Yasutaka; Maharani, Nani; Mahati, Endang; Higaki, Katsumi; Hasegawa, Akira; Shirayoshi, Yasuaki; Yoshida, Akio; Kondo, Tatehito; Kurozawa, Youichi; Yamamoto, Kazuhiro; Ninomiya, Haruaki; Hisatome, Ichiro

    2015-09-01

    Kv1.5 confers ultra-rapid delayed-rectifier potassium channel current (IKur) which contributes to repolarization of the atrial action potential. Kv1.5 proteins, degraded via the ubiquitin-proteasome pathway, decreased in some atrial fibrillation patients. Carboxyl-terminus heat shock cognate 70-interacting protein (CHIP), an E3 ubiquitin ligase, is known to ubiquitinate short-lived proteins. Here, we investigated the roles of CHIP in Kv1.5 degradation to provide insights into the mechanisms of Kv1.5 decreases and treatments targeting Kv1.5 for atrial fibrillation. Coexpression of CHIP with Kv1.5 in HEK293 cells increased Kv1.5 protein ubiquitination and decreased the protein level. Immunofluorescence revealed decreases of Kv1.5 proteins in the endoplasmic reticulum and on the cell membrane. A siRNA against CHIP suppressed Kv1.5 protein ubiquitination and increased its protein level. CHIP mutants, lacking either the N-terminal tetratricopeptide region domain or the C-terminal U-box domain, failed to exert these effects on Kv1.5 proteins. Immunoprecipitation showed that CHIP formed complexes with Kv1.5 proteins and heat shock cognate protein 70 (Hsc70). Effects of Hsc70 on Kv1.5 were similar to CHIP by altering interaction of CHIP with Kv1.5 protein. Coexpression of CHIP and Hsc70 with Kv1.5 additionally enhanced Kv1.5 ubiquitination. Kv1.5 currents were decreased by overexpression of CHIP or Hsc70 but were increased by knockdown of CHIP or Hsc70 in HEK 293 cells stably expressing Kv1.5. These effects of CHIP and Hsc70 were also observed on endogenous Kv1.5 in HL-1 mouse cardiomyocytes, decreasing IKur and prolonging action potential duration. These results indicate that CHIP decreases the Kv1.5 protein level and functional channel by facilitating its degradation in concert with chaperone Hsc70. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Pirh2: an E3 ligase with central roles in the regulation of cell cycle, DNA damage response, and differentiation.

    Science.gov (United States)

    Halaby, Marie-jo; Hakem, Razqallah; Hakem, Anne

    2013-09-01

    Ubiquitylation is currently recognized as a major posttranslational modification that regulates diverse cellular processes. Pirh2 is a ubiquitin E3 ligase that regulates the turnover and functionality of several proteins involved in cell proliferation and differentiation, cell cycle checkpoints, and cell death. Here we review the role of Pirh2 as a regulator of the DNA damage response through the ubiquitylation of p53, Chk2, p73, and PolH. By ubiquitylating these proteins, Pirh2 regulates cell cycle checkpoints and cell death in response to DNA double-strand breaks or the formation of bulky DNA lesions. We also discuss how Pirh2 affects cell proliferation and differentiation in unstressed conditions through ubiquitylation and degradation of c-Myc, p63, and p27(kip1). Finally, we link these different functions of Pirh2 to its role as a tumor suppressor in mice and as a prognosis marker in various human cancer subtypes.

  15. Ubiquitination in melanoma pathogenesis and treatment.

    Science.gov (United States)

    Ma, Jinyuan; Guo, Weinan; Li, Chunying

    2017-06-01

    Melanoma is one of the most aggressive skin cancers with fiercely increasing incidence and mortality. Since the progressive understanding of the mutational landscape and immunologic pathogenic factors in melanoma, the targeted therapy and immunotherapy have been recently established and gained unprecedented improvements for melanoma treatment. However, the prognosis of melanoma patients remains unoptimistic mainly due to the resistance and nonresponse to current available drugs. Ubiquitination is a posttranslational modification which plays crucial roles in diverse cellular biological activities and participates in the pathogenesis of various cancers, including melanoma. Through the regulation of multiple tumor promoters and suppressors, ubiquitination is emerging as the key contributor and therefore a potential therapeutic target for melanoma. Herein, we summarize the current understanding of ubiquitination in melanoma, from mechanistic insights to clinical progress, and discuss the prospect of ubiquitination modification in melanoma treatment. © 2017 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  16. Prokaryotic Ubiquitin-Like Protein Modification

    OpenAIRE

    Maupin-Furlow, Julie A.

    2014-01-01

    Prokaryotes form ubiquitin (Ub)-like isopeptide bonds on the lysine residues of proteins by at least two distinct pathways that are reversible and regulated. In mycobacteria, the C-terminal Gln of Pup (prokaryotic ubiquitin-like protein) is deamidated and isopeptide linked to proteins by a mechanism distinct from ubiquitylation in enzymology yet analogous to ubiquitylation in targeting proteins for destruction by proteasomes. Ub-fold proteins of archaea (SAMPs, small archaeal modifier protein...

  17. Protein Kinase C-dependent Ubiquitination and Clathrin-mediated Endocytosis of the Cationic Amino Acid Transporter CAT-1*

    Science.gov (United States)

    Vina-Vilaseca, Arnau; Bender-Sigel, Julia; Sorkina, Tatiana; Closs, Ellen Ildicho; Sorkin, Alexander

    2011-01-01

    Cationic amino acid transporter 1 (CAT-1) is responsible for the bulk of the uptake of cationic amino acids in most mammalian cells. Activation of protein kinase C (PKC) leads to down-regulation of the cell surface CAT-1. To examine the mechanisms of PKC-induced down-regulation of CAT-1, a functional mutant of CAT-1 (CAT-1-HA-GFP) was generated in which a hemagglutinin antigen (HA) epitope tag was introduced into the second extracellular loop and GFP was attached to the carboxyl terminus. CAT-1-HA-GFP was stably expressed in porcine aorthic endothelial and human epithelial kidney (HEK) 293 cells. Using the HA antibody internalization assay we have demonstrated that PKC-dependent endocytosis was strongly inhibited by siRNA depletion of clathrin heavy chain, indicating that CAT-1-HA-GFP internalization requires clathrin-coated pits. Internalized CAT-1-HA-GFP was accumulated in early, recycling, and late endosomes. PKC activation also resulted in ubiquitination of CAT-1. CAT-1 ubiquitination and endocytosis in phorbol ester-stimulated porcine aorthic endothelial and HEK293 cells were inhibited by siRNA knockdown of NEDD4-2 and NEDD4-1 E3 ubiquitin ligases, respectively. In contrast, ubiquitination and endocytosis of the dopamine transporter was dependent on NEDD4-2 in all cell types tested. Altogether, our data suggest that ubiquitination mediated by NEDD4-2 or NEDD4-1 leading to clathrin-mediated endocytosis is the common mode of regulation of various transporter proteins by PKC. PMID:21212261

  18. Degradation Signals Recognized by the Ubc6p-Ubc7p Ubiquitin-Conjugating Enzyme Pair

    Science.gov (United States)

    Gilon, Tamar; Chomsky, Orna; Kulka, Richard G.

    2000-01-01

    Proteolysis by the ubiquitin-proteasome system is highly selective. Specificity is achieved by the cooperation of diverse ubiquitin-conjugating enzymes (Ubcs or E2s) with a variety of ubiquitin ligases (E3s) and other ancillary factors. These recognize degradation signals characteristic of their target proteins. In a previous investigation, we identified signals directing the degradation of β-galactosidase and Ura3p fusion proteins via a subsidiary pathway of the ubiquitin-proteasome system involving Ubc6p and Ubc7p. This pathway has recently been shown to be essential for the degradation of misfolded and regulated proteins in the endoplasmic reticulum (ER) lumen and membrane, which are transported to the cytoplasm via the Sec61p translocon. Mutant backgrounds which prevent retrograde transport of ER proteins (hrd1/der3Δ and sec61-2) did not inhibit the degradation of the β-galactosidase and Ura3p fusions carrying Ubc6p/Ubc7p pathway signals. We therefore conclude that the ubiquitination of these fusion proteins takes place on the cytosolic face of the ER without prior transfer to the ER lumen. The contributions of different sequence elements to a 16-amino-acid-residue Ubc6p-Ubc7p-specific signal were analyzed by mutation. A patch of bulky hydrophobic residues was an essential element. In addition, positively charged residues were found to be essential. Unexpectedly, certain substitutions of bulky hydrophobic or positively charged residues with alanine created novel degradation signals, channeling the degradation of fusion proteins to an unidentified proteasomal pathway not involving Ubc6p and Ubc7p. PMID:10982838

  19. CAR Suppresses Hepatic Gluconeogenesis by Facilitating the Ubiquitination and Degradation of PGC1α

    Science.gov (United States)

    Gao, Jie; Yan, Jiong; Xu, Meishu; Ren, Songrong

    2015-01-01

    The constitutive androstane receptor (CAR) and peroxisome proliferator-activated receptor gamma coactivator-1α (PGC1α) are master regulators of drug metabolism and gluconeogenesis, respectively. In supporting the cross talk between drug metabolism and energy metabolism, activation of CAR has been shown to suppress hepatic gluconeogenesis and ameliorate hyperglycemia in vivo, but the underlying molecular mechanism remains elusive. In this study, we demonstrated that CAR suppressed hepatic gluconeogenic gene expression through posttranslational regulation of the subcellular localization and degradation of PGC1α. Activated CAR translocated into the nucleus and served as an adaptor protein to recruit PGC1α to the Cullin1 E3 ligase complex for ubiquitination. The interaction between CAR and PGC1α also led to their sequestration within the promyelocytic leukemia protein-nuclear bodies, where PGC1α and CAR subsequently underwent proteasomal degradation. Taken together, our findings revealed an unexpected function of CAR in recruiting an E3 ligase and targeting the gluconeogenic activity of PGC1α. Both drug metabolism and gluconeogenesis are energy-demanding processes. The negative regulation of PGC1α by CAR may represent a cellular adaptive mechanism to accommodate energy-restricted conditions. PMID:26407237

  20. Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis.

    Science.gov (United States)

    Ordureau, Alban; Sarraf, Shireen A; Duda, David M; Heo, Jin-Mi; Jedrychowski, Mark P; Sviderskiy, Vladislav O; Olszewski, Jennifer L; Koerber, James T; Xie, Tiao; Beausoleil, Sean A; Wells, James A; Gygi, Steven P; Schulman, Brenda A; Harper, J Wade

    2014-11-06

    Phosphorylation is often used to promote protein ubiquitylation, yet we rarely understand quantitatively how ligase activation and ubiquitin (UB) chain assembly are integrated with phosphoregulation. Here we employ quantitative proteomics and live-cell imaging to dissect individual steps in the PINK1 kinase-PARKIN UB ligase mitochondrial control pathway disrupted in Parkinson's disease. PINK1 plays a dual role by phosphorylating PARKIN on its UB-like domain and poly-UB chains on mitochondria. PARKIN activation by PINK1 produces canonical and noncanonical UB chains on mitochondria, and PARKIN-dependent chain assembly is required for accumulation of poly-phospho-UB (poly-p-UB) on mitochondria. In vitro, PINK1 directly activates PARKIN's ability to assemble canonical and noncanonical UB chains and promotes association of PARKIN with both p-UB and poly-p-UB. Our data reveal a feedforward mechanism that explains how PINK1 phosphorylation of both PARKIN and poly-UB chains synthesized by PARKIN drives a program of PARKIN recruitment and mitochondrial ubiquitylation in response to mitochondrial damage. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. CAR Suppresses Hepatic Gluconeogenesis by Facilitating the Ubiquitination and Degradation of PGC1α.

    Science.gov (United States)

    Gao, Jie; Yan, Jiong; Xu, Meishu; Ren, Songrong; Xie, Wen

    2015-11-01

    The constitutive androstane receptor (CAR) and peroxisome proliferator-activated receptor gamma coactivator-1α (PGC1α) are master regulators of drug metabolism and gluconeogenesis, respectively. In supporting the cross talk between drug metabolism and energy metabolism, activation of CAR has been shown to suppress hepatic gluconeogenesis and ameliorate hyperglycemia in vivo, but the underlying molecular mechanism remains elusive. In this study, we demonstrated that CAR suppressed hepatic gluconeogenic gene expression through posttranslational regulation of the subcellular localization and degradation of PGC1α. Activated CAR translocated into the nucleus and served as an adaptor protein to recruit PGC1α to the Cullin1 E3 ligase complex for ubiquitination. The interaction between CAR and PGC1α also led to their sequestration within the promyelocytic leukemia protein-nuclear bodies, where PGC1α and CAR subsequently underwent proteasomal degradation. Taken together, our findings revealed an unexpected function of CAR in recruiting an E3 ligase and targeting the gluconeogenic activity of PGC1α. Both drug metabolism and gluconeogenesis are energy-demanding processes. The negative regulation of PGC1α by CAR may represent a cellular adaptive mechanism to accommodate energy-restricted conditions.

  2. A lysine-to-arginine mutation on NEDD8 markedly reduces the activity of cullin RING E3 ligase through the impairment of neddylation cascades.

    Science.gov (United States)

    Sui, Yiyan; Liu, Yaobin; Xu, Guoqiang

    2015-06-12

    Neural-precursor-cell-expressed developmentally down-regulated 8 (NEDD8) is a ubiquitin-like modifier, which forms covalent conjugates on lysines of its substrates. This post-translational modification, neddylation, plays important roles in tumor cell proliferation and viability. Ubiquitin can form diverse polyubiquitin chains, on its seven lysines, which play important functions in various biological processes. However, the roles of lysines in NEDD8 have not been explored. Here, we generated nine NEDD8 point mutants, each with one lysine replaced by an arginine, to study the putative function of lysines in NEDD8. Our experiments discover that Lys27 in NEDD8 is a critical residue for protein neddylation. Replacement of this residue with arginine almost completely eliminates the conjugation of NEDD8 to its substrates. Furthermore, we find that the K27R mutant impairs NEDD8 conjugation to the E2 enzyme, which normally forms thioester bonds for further transferring NEDD8 to its ligases and substrates. Therefore, this mutation completely inhibits global protein neddylation, including neddylation of cullin family proteins, resulting in decreased activity of cullin-RING E3 ligases. This work sheds new light on the roles of NEDD8 lysines on neddylation cascades and provides a dominant negative mutant for the study of neddylation and its biological functions. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Ubiquitin-mediated proteolysis in Xenopus extract.

    Science.gov (United States)

    McDowell, Gary S; Philpott, Anna

    2016-01-01

    The small protein modifier, ubiquitin, can be covalently attached to proteins in the process of ubiquitylation, resulting in a variety of functional outcomes. In particular, the most commonly-associated and well-studied fate for proteins modified with ubiquitin is their ultimate destruction: degradation by the 26S proteasome via the ubiquitin-proteasome system, or digestion in lysosomes by proteolytic enzymes. From the earliest days of ubiquitylation research, a reliable and versatile "cell-in-a-test-tube" system has been employed in the form of cytoplasmic extracts from the eggs and embryos of the frog Xenopus laevis. Biochemical studies of ubiquitin and protein degradation using this system have led to significant advances particularly in the study of ubiquitin-mediated proteolysis, while the versatility of Xenopus as a developmental model has allowed investigation of the in vivo consequences of ubiquitylation. Here we describe the use and history of Xenopus extract in the study of ubiquitin-mediated protein degradation, and highlight the versatility of this system that has been exploited to uncover mechanisms and consequences of ubiquitylation and proteolysis.

  4. Proteostasis regulation by the ubiquitin system.

    Science.gov (United States)

    Bett, John S

    2016-10-15

    Cells have developed an evolutionary obligation to survey and maintain proteome fidelity and avoid the possible toxic consequences of protein misfolding and aggregation. Disturbances to protein homoeostasis (proteostasis) can result in severe cellular phenotypes and are closely linked with the accumulation of microscopically visible deposits of aggregated proteins. These include inclusion bodies found in AD (Alzheimer's disease), HD (Huntington's disease) and ALS (amyotrophic lateral sclerosis) patient neurons. Protein aggregation is intimately linked with the ubiquitin and ubiquitin-like post-translational modifier system, which manages cellular protein folding stress and promotes the restoration of proteostasis. This is achieved in large part through the action of the UPS (ubiquitin-proteasome system), which is responsible for directing the proteasomal destruction of misfolded and damaged proteins tagged with ubiquitin chains. There are other less well understood ways in which ubiquitin family members can help to maintain proteostasis that complement, but are independent of, the UPS. This article discusses our current understanding of how the ubiquitin family regulates the protein misfolding pathways that threaten proteome fidelity, and how this is achieved by the key players in this process. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  5. Molecular Characterization of PDGFR-α/PDGF-A and c-KIT/SCF in Gliosarcomas

    Directory of Open Access Journals (Sweden)

    Rui M. Reis

    2005-01-01

    Full Text Available Gliosarcomas are rare and poorly characterized malignant brain tumors that exhibit a biphasic tissue pattern with areas of gliomatous and sarcomatous differentiation. These tumors are histological variants of glioblastoma, displaying a similar genetic profile and dismal prognosis. Up-regulation of PDGFR subfamily of tyrosine kinase members, PDGFR-α and c-Kit, and their intracellular effectors RAS/RAF/MAPK has a crucial role in the cancer development. In addition, signal transduction mediated by activating mutations of c-Kit and PDGFR can be effectively blocked by specific tyrosine kinase inhibitors, such as Imatinib mesylate. The aim of this study was to characterize the molecular alterations of PDGFR signaling in gliosarcomas. Six cases were analyzed by immunohistochemistry for the expression of PDGFR-α, c-Kit and their ligands PDGF-A and SCF, respectively. The cases were further evaluated for the presence of activating mutations of PDGFR-α (exons 12 and 18 and c-kit (exons 9, 11, 13, and 17, as well as B-RAF (exons 11 and 15. Expression of PDGF-A was found in all cases and co-expression of PDGFR-α was observed in three cases. Four cases showed expression of SCF, and c-Kit was observed only in one case that also expressed SCF. Generally, immunoreaction predominates in the glial component. The mutational analysis of PDGFR-α showed the presence of an IVS17-50insT intronic insertion in two cases, one of them also with a 2472C > T silent mutation; this silent mutation was also found in another case. Glioma cell line analysis of IVS17-50insT insertion showed no influence on PDGFR-α gene splicing. No mutations were detected in c-kit and B-RAF oncogenes. Our Results indicate that activating mutations of PDGFR-α, c-kit and B-RAF are absent in gliosarcomas. Nevertheless, the presence of a PDGFR-a/PDGFA and c-Kit/SCF autocrine/paracrine stimulation loop in a proportion of cases, supports the potential role of specific tyrosine kinase inhibitors in

  6. Ehrlichia chaffeensis TRP32 Nucleomodulin Function and Localization Is Regulated by NEDD4L-Mediated Ubiquitination

    Directory of Open Access Journals (Sweden)

    Tierra R. Farris

    2018-01-01

    Full Text Available Ehrlichia chaffeensis is an obligately intracellular bacterium that reprograms the mononuclear phagocyte through diverse effector-host interactions to modulate various host cell processes. In a previous study, we reported that the E. chaffeensis nucleomodulin TRP32 regulates transcription of host genes in several biologically relevant categories, including cell differentiation and proliferation. In this study, we investigate the effect of ubiquitination on TRP32 function and localization within the host cell. TRP32 is both mono- and polyubiquitinated on multiple lysine residues during infection and when ectopically expressed. Despite lacking a canonical PPxY motif, TRP32 interacted with, and was modified by the human HECT E3 ubiquitin (Ub ligase NEDD4L. TRP32 ubiquitination was not by K48-linked polyUb chains, nor was it degraded by the proteasome; however, TRP32 was modified by K63-linked polyUb chains detected both in the cytosol and nucleus. HECT ligase inhibitor, heclin, altered the subnuclear localization of ectopically expressed TRP32 from a diffuse nuclear pattern to a lacy, punctate pattern with TRP32 distributed around the periphery of the nucleus and nucleoli. When a TRP32 lysine null (K-null mutant was ectopically expressed, it exhibited a similar phenotype as single lysine mutants (K63R, K93R, and K123R. However, the K-null mutant showed increased amounts of cytoplasmic TRP32 compared to single lysine mutants or heclin-treated cells ectopically expressing TRP32. These alterations in localization corresponded to changes in TRP32 transcriptional repressor function with heclin-treated and single lysine mutants unable to repress transcription of a TRP32 target genes in a luciferase assay.

  7. The Salmonella Effector Protein SopA Modulates Innate Immune Responses by Targeting TRIM E3 Ligase Family Members.

    Directory of Open Access Journals (Sweden)

    Jana Kamanova

    2016-04-01

    Full Text Available Salmonella Typhimurium stimulates inflammatory responses in the intestinal epithelium, which are essential for its ability to replicate within the intestinal tract. Stimulation of these responses is strictly dependent on the activity of a type III secretion system encoded within its pathogenicity island 1, which through the delivery of effector proteins, triggers signaling pathways leading to inflammation. One of these effectors is SopA, a HECT-type E3 ligase, which is required for the efficient stimulation of inflammation in an animal model of Salmonella Typhimurium infection. We show here that SopA contributes to the stimulation of innate immune responses by targeting two host E3 ubiquitin ligases, TRIM56 and TRIM65. We also found that TRIM65 interacts with the innate immune receptor MDA5 enhancing its ability to stimulate interferon-β signaling. Therefore, by targeting TRIM56 and TRIM65, SopA can stimulate signaling through two innate immune receptors, RIG-I and MDA5. These findings describe a Salmonella mechanism to modulate inflammatory responses by directly targeting innate immune signaling mechanisms.

  8. Inhibiting Skp2 E3 Ligase Suppresses Bleomycin-Induced Pulmonary Fibrosis

    Directory of Open Access Journals (Sweden)

    Masashi Mikamo

    2018-02-01

    Full Text Available Idiopathic pulmonary fibrosis (IPF is a progressive disease with poor prognosis and no curative therapies. SCF-Skp2 E3 ligase is a target for cancer therapy, but there have been no reports about Skp2 as a target for IPF. Here we demonstrate that Skp2 is a promising therapeutic target for IPF. We examined whether disrupting Skp2 suppressed pulmonary fibrosis in a bleomycin (BLM-induced mouse model and found that pulmonary fibrosis was significantly suppressed in Skp2-deficient mice compared with controls. The pulmonary accumulation of fibrotic markers such as collagen type 1 and fibronectin in BLM-infused mice was decreased in Skp2-deficient mice. Moreover, the number of bronchoalveolar lavage fluid cells accompanied with pulmonary fibrosis was significantly diminished. Levels of the Skp2 target p27 were significantly decreased by BLM-administration in wild-type mice, but recovered in Skp2−/− mice. In vimentin-positive mesenchymal fibroblasts, the decrease of p27-positive cells and increase of Ki67-positive cells by BLM-administration was suppressed by Skp2-deficency. As these results suggested that inhibiting Skp2 might be effective for BLM-induced pulmonary fibrosis, we next performed a treatment experiment using the Skp2 inhibitor SZL-P1-41. As expected, BLM-induced pulmonary fibrosis was significantly inhibited by SZL-P1-41. Moreover, p27 levels were increased by the SZL-P1-41 treatment, suggesting p27 may be an important Skp2 target for BLM-induced pulmonary fibrosis. Our study suggests that Skp2 is a potential molecular target for human pulmonary fibrosis including IPF.

  9. HUWE1 and TRIP12 Collaborate in Degradation of Ubiquitin-Fusion Proteins and Misframed Ubiquitin

    DEFF Research Database (Denmark)

    Poulsen, Esben G; Steinhauer, Cornelia; Lees, Michael

    2012-01-01

    In eukaryotic cells an uncleavable ubiquitin moiety conjugated to the N-terminus of a protein signals the degradation of the fusion protein via the proteasome-dependent ubiquitin fusion degradation (UFD) pathway. In yeast the molecular mechanism of the UFD pathway has been well characterized. Rec...

  10. Regulation of DNA double-strand break repair by ubiquitin and ubiquitin-like modifiers

    DEFF Research Database (Denmark)

    Schwertman, Petra; Bekker-Jensen, Simon; Mailand, Niels

    2016-01-01

    DNA double-strand breaks (DSBs) are highly cytotoxic DNA lesions. The swift recognition and faithful repair of such damage is crucial for the maintenance of genomic stability, as well as for cell and organismal fitness. Signalling by ubiquitin, SUMO and other ubiquitin-like modifiers (UBLs...

  11. Ubiquitin/SUMO modification regulates VHL protein stability and nucleocytoplasmic localization.

    Directory of Open Access Journals (Sweden)

    Qiliang Cai

    Full Text Available Functional inactivation of the von Hippel-Lindau (VHL tumor suppressor protein is linked to the development of several forms of cancer as well as oncogenic progression like sporadic renal clear-cell carcinomas (RCC. Despite the critical role played by VHL in destruction of hypoxia-inducible factor α (HIFα via ubiquitin-mediated proteolysis, very little is known about the post-translational modification which regulates VHL activity. Our previous study showed that the SUMO E3 ligase PIASy interacts with VHL and induces VHL SUMOylation on lysine residue 171 (Cai et al, PLoS ONE, 2010, 5(3:e9720. Here we further report that VHL also undergoes ubiquitylation on both lysine residues 171 and 196, which is blocked by PIASy. Moreover, using a VHL-SUMO1 or ubiquitin fusion protein, we found that ubiquitylated VHL is localized predominantly in the cytoplasm, while SUMOylated VHL results in increased VHL protein stability and nuclear redistribution. Interestingly, substitution of lysine 171 and 196 to arginine of VHL abrogates its inhibitory function on the transcriptional activity of HIFα, and tube formation in vitro. This demonstrates that post-translational modifications like ubiquitylation and SUMOylation contributes to VHL protein stability and nucleocytoplasmic shuttling, and that the overall function of VHL in tumor suppression may require a precise and dynamically regulated process which involves protein modification.

  12. The F-box Protein FBXO44 Mediates BRCA1 Ubiquitination and Degradation*

    Science.gov (United States)

    Lu, Yunzhe; Li, Jiezhi; Cheng, Dongmei; Parameswaran, Balaji; Zhang, Shaohua; Jiang, Zefei; Yew, P. Renee; Peng, Junmin; Ye, Qinong; Hu, Yanfen

    2012-01-01

    BRCA1 mutations account for a significant proportion of familial breast and ovarian cancers. In addition, reduced BRCA1 protein is associated with sporadic cancer cases in these tissues. At the cellular level, BRCA1 plays a critical role in multiple cellular functions such as DNA repair and cell cycle checkpoint control. Its protein level is regulated in a cell cycle-dependent manner. However, regulation of BRCA1 protein stability is not fully understood. Our earlier study showed that the amino terminus of BRCA1 harbors a degron sequence that is sufficient and necessary for conferring BRCA1 degradation. In the current study, we used mass spectrometry to identify Skp1 that regulates BRCA1 protein stability. Small interfering RNA screening that targets all human F-box proteins uncovered FBXO44 as an important protein that influences BRCA1 protein level. The Skp1-Cul1-F-box-protein44 (SCFFBXO44) complex ubiquitinates full-length BRCA1 in vitro. Furthermore, the N terminus of BRCA1 mediates the interaction between BRCA1 and FBXO44. Overexpression of SCFFBXO44 reduces BRCA1 protein level. Taken together, our work strongly suggests that SCFFBXO44 is an E3 ubiquitin ligase responsible for BRCA1 degradation. In addition, FBXO44 expression pattern in breast carcinomas suggests that SCFFBXO44-mediated BRCA1 degradation might contribute to sporadic breast tumor development. PMID:23086937

  13. Polo-Like Kinase-1 Controls Aurora A Destruction by Activating APC/C-Cdh1

    NARCIS (Netherlands)

    van Leuken, Renske; Clijsters, Linda; van Zon, Wouter; Lim, Dan; Yao, XueBiao; Wolthuis, Rob M. F.; Yaffe, Michael B.; Medema, Rene H.; van Vugt, Marcel A. T. M.

    2009-01-01

    Polo-like kinase-1 (Plk1) is activated before mitosis by Aurora A and its cofactor Bora. In mitosis, Bora is degraded in a manner dependent on Plk1 kinase activity and the E3 ubiquitin ligase SCF-beta TrCP. Here, we show that Plk1 is also required for the timely destruction of its activator Aurora A

  14. SCF-KIT signaling induces endothelin-3 synthesis and secretion: Thereby activates and regulates endothelin-B-receptor for generating temporally- and spatially-precise nitric oxide to modulate SCF- and or KIT-expressing cell functions.

    Science.gov (United States)

    Chen, Lei L; Zhu, Jing; Schumacher, Jonathan; Wei, Chongjuan; Ramdas, Latha; Prieto, Victor G; Jimenez, Arnie; Velasco, Marco A; Tripp, Sheryl R; Andtbacka, Robert H I; Gouw, Launce; Rodgers, George M; Zhang, Liansheng; Chan, Benjamin K; Cassidy, Pamela B; Benjamin, Robert S; Leachman, Sancy A; Frazier, Marsha L

    2017-01-01

    We demonstrate that SCF-KIT signaling induces synthesis and secretion of endothelin-3 (ET3) in human umbilical vein endothelial cells and melanoma cells in vitro, gastrointestinal stromal tumors, human sun-exposed skin, and myenteric plexus of human colon post-fasting in vivo. This is the first report of a physiological mechanism of ET3 induction. Integrating our finding with supporting data from literature leads us to discover a previously unreported pathway of nitric oxide (NO) generation derived from physiological endothelial NO synthase (eNOS) or neuronal NOS (nNOS) activation (referred to as the KIT-ET3-NO pathway). It involves: (1) SCF-expressing cells communicate with neighboring KIT-expressing cells directly or indirectly (cleaved soluble SCF). (2) SCF-KIT signaling induces timely local ET3 synthesis and secretion. (3) ET3 binds to ETBR on both sides of intercellular space. (4) ET3-binding-initiated-ETBR activation increases cytosolic Ca2+, activates cell-specific eNOS or nNOS. (5) Temporally- and spatially-precise NO generation. NO diffuses into neighboring cells, thus acts in both SCF- and KIT-expressing cells. (6) NO modulates diverse cell-specific functions by NO/cGMP pathway, controlling transcriptional factors, or other mechanisms. We demonstrate the critical physiological role of the KIT-ET3-NO pathway in fulfilling high demand (exceeding basal level) of endothelium-dependent NO generation for coping with atherosclerosis, pregnancy, and aging. The KIT-ET3-NO pathway most likely also play critical roles in other cell functions that involve dual requirement of SCF-KIT signaling and NO. New strategies (e.g. enhancing the KIT-ET3-NO pathway) to harness the benefit of endogenous eNOS and nNOS activation and precise NO generation for correcting pathophysiology and restoring functions warrant investigation.

  15. A lysine-to-arginine mutation on NEDD8 markedly reduces the activity of cullin RING E3 ligase through the impairment of neddylation cascades

    Energy Technology Data Exchange (ETDEWEB)

    Sui, Yiyan; Liu, Yaobin; Xu, Guoqiang, E-mail: gux2002@suda.edu.cn

    2015-06-12

    Neural-precursor-cell-expressed developmentally down-regulated 8 (NEDD8) is a ubiquitin-like modifier, which forms covalent conjugates on lysines of its substrates. This post-translational modification, neddylation, plays important roles in tumor cell proliferation and viability. Ubiquitin can form diverse polyubiquitin chains, on its seven lysines, which play important functions in various biological processes. However, the roles of lysines in NEDD8 have not been explored. Here, we generated nine NEDD8 point mutants, each with one lysine replaced by an arginine, to study the putative function of lysines in NEDD8. Our experiments discover that Lys27 in NEDD8 is a critical residue for protein neddylation. Replacement of this residue with arginine almost completely eliminates the conjugation of NEDD8 to its substrates. Furthermore, we find that the K27R mutant impairs NEDD8 conjugation to the E2 enzyme, which normally forms thioester bonds for further transferring NEDD8 to its ligases and substrates. Therefore, this mutation completely inhibits global protein neddylation, including neddylation of cullin family proteins, resulting in decreased activity of cullin-RING E3 ligases. This work sheds new light on the roles of NEDD8 lysines on neddylation cascades and provides a dominant negative mutant for the study of neddylation and its biological functions. - Highlights: • Lys27 in NEDD8 is critical for protein neddylation. • NEDD8 K27R mutant impairs the NEDD8 conjugation. • NEDD8 K27R mutant significantly reduces the activity of cullin-RING E3 ligases.

  16. Evidence supporting dissimilatory and assimilatory lignin degradation in Enterobacter lignolyticus SCF1

    Energy Technology Data Exchange (ETDEWEB)

    DeAngelis, Kristen M.; Sharma, Deepak; Varney, Rebecca; Simmons, Blake A.; Isern, Nancy G.; Markillie, Lye Meng; Nicora, Carrie D.; Norbeck, Angela D.; Taylor, Ronald C.; Aldrich, Joshua T.; Robinson, Errol W.

    2013-08-29

    The anaerobic isolate Enterobacter lignolyticus SCF1 was initially cultivated based on anaerobic growth on lignin as sole carbon source. The source of the isolated bacteria was from tropical forest soils that decompose litter rapidly with low and fluctuating redox potentials, making it likely that bacteria using oxygen-independent enzymes play an important role in decomposition. We have examined differential expression of the anaerobic isolate Enterobacter lignolyticus SCF1 during growth on lignin. After 48 hours of growth, we used transcriptomics and proteomics to define the enzymes and other regulatory machinery that these organisms use to degrade lignin, as well as metabolomics to measure lignin degradation and monitor the use of lignin and iron as terminal electron acceptors that facilitate more efficient use of carbon. Proteomics revealed accelerated xylose uptake and metabolism under lignin-amended growth, and lignin degradation via the 4-hydroxyphenylacetate degradation pathway, catalase/peroxidase enzymes, and the glutathione biosynthesis and glutathione S-transferase proteins. We also observed increased production of NADH-quinone oxidoreductase, other electron transport chain proteins, and ATP synthase and ATP-binding cassette (ABC) transporters. Our data shows the advantages of a multi-omics approach, where incomplete pathways identified by genomics were completed, and new observations made on coping with poor carbon availability. The fast growth, high efficiency and specificity of enzymes employed in bacterial anaerobic litter deconstruction makes these soils useful templates for improving biofuel production.

  17. Evidence supporting dissimilatory and assimilatory lignin degradation in Enterobacter lignolyticus SCF1

    Directory of Open Access Journals (Sweden)

    Kristen M DeAngelis

    2013-09-01

    Full Text Available The anaerobic isolate Enterobacter lignolyticus SCF1 was initially cultivated based on anaerobic growth on lignin as sole carbon source. The source of the isolated bacteria was from tropical forest soils that decompose litter rapidly with low and fluctuating redox potentials, making it likely that bacteria using oxygen-independent enzymes play an important role in decomposition. We have used transcriptomics and proteomics to examine the increased growth of the anaerobic isolate Enterobacter lignolyticus SCF1 when grown on media amended with lignin compared to unamended growth. Proteomics revealed accelerated xylose uptake and metabolism under lignin-amended growth, and lignin degradation via the 4-hydroxyphenylacetate degradation pathway, catalase/peroxidase enzymes, and the glutathione biosynthesis and glutathione S-transferase proteins. We also observed increased production of NADH-quinone oxidoreductase, other electron transport chain proteins, and ATP synthase and ATP-binding cassette (ABC transporters. We detected significant lignin degradation over time by absorbance, and also used metabolomics to demonstrate increased xylose utilization in lignin-amended compared to unamended growth. Our data shows the advantages of a multi-omics approach, where incomplete pathways identified by genomics were completed, and new observations made on coping with poor carbon availability. The fast growth, high efficiency and specificity of enzymes employed in bacterial anaerobic litter deconstruction makes these soils useful templates for improving biofuel production.

  18. Curcumin ameliorates skeletal muscle atrophy in type 1 diabetic mice by inhibiting protein ubiquitination.

    Science.gov (United States)

    Ono, Taisuke; Takada, Shingo; Kinugawa, Shintaro; Tsutsui, Hiroyuki

    2015-09-01

    What is the central question of this study? We sought to examine whether curcumin could ameliorate skeletal muscle atrophy in diabetic mice by inhibiting protein ubiquitination, inflammatory cytokines and oxidative stress. What is the main finding and its importance? We found that curcumin ameliorated skeletal muscle atrophy in streptozotocin-induced diabetic mice by inhibiting protein ubiquitination without affecting protein synthesis. This favourable effect of curcumin was possibly due to the inhibition of inflammatory cytokines and oxidative stress. Curcumin may be beneficial for the treatment of muscle atrophy in type 1 diabetes mellitus. Skeletal muscle atrophy develops in patients with diabetes mellitus (DM), especially in type 1 DM, which is associated with chronic inflammation. Curcumin, the active ingredient of turmeric, has various biological actions, including anti-inflammatory and antioxidant properties. We hypothesized that curcumin could ameliorate skeletal muscle atrophy in mice with streptozotocin-induced type 1 DM. C57BL/6 J mice were injected with streptozotocin (200 mg kg(-1) i.p.; DM group) or vehicle (control group). Each group of mice was randomly subdivided into two groups of 10 mice each and fed a diet with or without curcumin (1500 mg kg(-1) day(-1)) for 2 weeks. There were significant decreases in body weight, skeletal muscle weight and cellular cross-sectional area of the skeletal muscle in DM mice compared with control mice, and these changes were significantly attenuated in DM+Curcumin mice without affecting plasma glucose and insulin concentrations. Ubiquitination of protein was increased in skeletal muscle from DM mice and decreased in DM+Curcumin mice. Gene expressions of muscle-specific ubiquitin E3 ligase atrogin-1/MAFbx and MuRF1 were increased in DM and inhibited in DM+Curcumin mice. Moreover, nuclear factor-κB activation, concentrations of the inflammatory cytokines tumour necrosis factor-α and interleukin-1β and oxidative

  19. Targeting the ubiquitin-conjugating enzyme E2D4 for cancer drug discovery-a structure-based approach.

    Science.gov (United States)

    Ramatenki, Vishwanath; Dumpati, Ramakrishna; Vadija, Rajender; Vellanki, Santhiprada; Potlapally, Sarita Rajender; Rondla, Rohini; Vuruputuri, Uma

    2017-04-01

    Cancer progression is a global burden. The incidence and mortality now reach 30 million deaths per year. Several pathways of cancer are under investigation for the discovery of effective therapeutics. The present study highlights the structural details of the ubiquitin protein 'Ubiquitin-conjugating enzyme E2D4' (UBE2D4) for the novel lead structure identification in cancer drug discovery process. The evaluation of 3D structure of UBE2D4 was carried out using homology modelling techniques. The optimized structure was validated by standard computational protocols. The active site region of the UBE2D4 was identified using computational tools like CASTp, Q-site Finder and SiteMap. The hydrophobic pocket which is responsible for binding with its natural receptor ubiquitin ligase CHIP (C-terminal of Hsp 70 interacting protein) was identified through protein-protein docking study. Corroborating the results obtained from active site prediction tools and protein-protein docking study, the domain of UBE2D4 which is responsible for cancer cell progression is sorted out for further docking study. Virtual screening with large structural database like CB_Div Set and Asinex BioDesign small molecular structural database was carried out. The obtained new ligand molecules that have shown affinity towards UBE2D4 were considered for ADME prediction studies. The identified new ligand molecules with acceptable parameters of docking, ADME are considered as potent UBE2D4 enzyme inhibitors for cancer therapy.

  20. Ubiquitination is absolutely required for the degradation of hypoxia-inducible factor--1 alpha protein in hypoxic conditions.

    Science.gov (United States)

    Wang, Ronghai; Zhang, Ping; Li, Jinhang; Guan, Hongzai; Shi, Guangjun

    2016-01-29

    The hypoxia-inducible factor (HIF) is recognized as the master regulator of hypoxia response. HIF-α subunits expression are tightly regulated. In this study, our data show that ts20 cells still expressed detectable E1 protein even at 39.5° C for 12 h, and complete depletion of E1 protein expression at 39.5° C by siRNA enhanced HIF-1α and P53 protein expression. Further inhibition of E1 at 39.5 °C by siRNA, or E1 inhibitor Ube1-41 completely blocked HIF-1α degradation. Moreover, immunoprecipitations of co-transfection of HA-ubiquitin and FLAG-HIF-1α plasmids directly confirmed the involvement of ubiquitin in the hypoxic degradation of HIF-1α. Additionally, hypoxic HIF-1 α degradation is independent of HAF, RACK1, sumoylation or nuclear/cytoplasmic localization. Taken together, our data suggest that constitutive HIF-1α protein degradation in hypoxia is absolutely ubiquitination-dependent, and unidentified E3 ligase may exist for this degradation pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Cytosolic Pellino-1-Mediated K63-Linked Ubiquitination of IRF5 in M1 Macrophages Regulates Glucose Intolerance in Obesity

    Directory of Open Access Journals (Sweden)

    Donghyun Kim

    2017-07-01

    Full Text Available IRF5 is a signature transcription factor that induces M1 macrophage polarization. However, little is known regarding cytosolic proteins that induce IRF5 activation for M1 polarization. Here, we report the interaction between ubiquitin E3 ligase Pellino-1 and IRF5 in the cytoplasm, which increased nuclear translocation of IRF5 by K63-linked ubiquitination in human and mouse M1 macrophages. LPS and/or IFN-γ increased Pellino-1 expression, and M1 polarization was attenuated in Pellino-1-deficient macrophages in vitro and in vivo. Defective M1 polarization in Pellino-1-deficient macrophages improved glucose intolerance in mice fed a high-fat diet. Furthermore, macrophages in adipose tissues from obese humans exhibited increased Pellino-1 expression and IRF5 nuclear translocation compared with nonobese subjects, and these changes are associated with insulin resistance index. This study demonstrates that cytosolic Pellino-1-mediated K63-linked ubiquitination of IRF5 in M1 macrophages regulates glucose intolerance in obesity, suggesting a cytosolic mediator function of Pellino-1 in TLR4/IFN-γ receptor-IRF5 axis during M1 polarization.

  2. CRL2(LRR-1 E3-ligase regulates proliferation and progression through meiosis in the Caenorhabditis elegans germline.

    Directory of Open Access Journals (Sweden)

    Julien Burger

    2013-03-01

    Full Text Available The ubiquitin-proteolytic system controls the stability of proteins in space and time. In this study, using a temperature-sensitive mutant allele of the cul-2 gene, we show that CRL2(LRR-1 (CUL-2 RING E3 ubiquitin-ligase and the Leucine Rich Repeat 1 substrate recognition subunit acts at multiple levels to control germline development. CRL2(LRR-1 promotes germ cell proliferation by counteracting the DNA replication ATL-1 checkpoint pathway. CRL2(LRR-1 also participates in the mitotic proliferation/meiotic entry decision, presumably controlling the stability of meiotic promoting factors in the mitotic zone of the germline. Finally, CRL2(LRR-1 inhibits the first steps of meiotic prophase by targeting in mitotic germ cells degradation of the HORMA domain-containing protein HTP-3, required for loading synaptonemal complex components onto meiotic chromosomes. Given its widespread evolutionary conservation, CUL-2 may similarly regulate germline development in other organisms as well.

  3. Transcriptional effects of E3 ligase atrogin-1/MAFbx on apoptosis, hypertrophy and inflammation in neonatal rat cardiomyocytes.

    Science.gov (United States)

    Zeng, Yong; Li, Junjie; Wang, Hong-Xia; Guo, Shu-Bin; Yang, Hui; Zeng, Xiang-Jun; Fang, Quan; Tang, Chao-Shu; Du, Jie; Li, Hui-Hua

    2013-01-01

    Atrogin-1/MAFbx is an ubiquitin E3 ligase that regulates myocardial structure and function through the ubiquitin-dependent protein modification. However, little is known about the effect of atrogin-1 activation on the gene expression changes in cardiomyocytes. Neonatal rat cardiomyocytes were infected with adenovirus atrogin-1 (Ad-atrogin-1) or GFP control (Ad-GFP) for 24 hours. The gene expression profiles were compared with microarray analysis. 314 genes were identified as differentially expressed by overexpression of atrogin-1, of which 222 were up-regulated and 92 were down-regulated. Atrogin-1 overexpression significantly modulated the expression of genes in 30 main functional categories, most genes clustered around the regulation of cell death, proliferation, inflammation, metabolism and cardiomyoctye structure and function. Moreover, overexpression of atrogin-1 significantly inhibited cardiomyocyte survival, hypertrophy and inflammation under basal condition or in response to lipopolysaccharide (LPS). In contrast, knockdown of atrogin-1 by siRNA had opposite effects. The mechanisms underlying these effects were associated with inhibition of MAPK (ERK1/2, JNK1/2 and p38) and NF-κB signaling pathways. In conclusion, the present microarray analysis reveals previously unappreciated atrogin-1 regulation of genes that could contribute to the effects of atrogin-1 on cardiomyocyte survival, hypertrophy and inflammation in response to endotoxin, and may provide novel insight into how atrogin-1 modulates the programming of cardiac muscle gene expression.

  4. Generation and Validation of Intracellular Ubiquitin Variant Inhibitors for USP7 and USP10

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei; Sartori, Maria A.; Makhnevych, Taras; Federowicz, Kelly E.; Dong, Xiaohui; Liu, Li; Nim, Satra; Dong, Aiping; Yang, Jingsong; Li, Yanjun; Haddad, Dania; Ernst, Andreas; Heerding, Dirk; Tong, Yufeng; Moffat, Jason; Sidhu, Sachdev S.

    2017-11-01

    Post-translational modification of the p53 signaling pathway plays an important role in cell cycle progression and stress-induced apoptosis. Indeed, a large body of work has shown that dysregulation of p53 and its E3 ligase MDM2 by the ubiquitin-proteasome system (UPS) promotes carcinogenesis and malignant transformation. Thus, drug discovery efforts have focused on the restoration of wild-type p53 activity or inactivation of oncogenic mutant p53 by targeted inhibition of UPS components, particularly key deubiquitinases (DUBs) of the ubiquitin-specific protease (USP) class. However, development of selective small-molecule USP inhibitors has been challenging, partly due to the highly conserved structural features of the catalytic sites across the class. To tackle this problem, we devised a protein engineering strategy for rational design of inhibitors for DUBs and other UPS proteins. We employed a phage-displayed ubiquitin variant (UbV) library to develop inhibitors targeting the DUBs USP7 and USP10, which are involved in regulating levels of p53 and MDM2. We were able to identify UbVs that bound USP7 or USP10 with high affinity and inhibited deubiquitination activity. We solved the crystal structure of UbV.7.2 and rationalized the molecular basis for enhanced affinity and specificity for USP7. Finally, cell death was increased significantly by UbV.7.2 expression in a colon cancer cell line that was treated with the chemotherapy drug cisplatin, demonstrating the therapeutic potential of inhibiting USP7 by this approach

  5. Regulation of STIM1 and SOCE by the ubiquitin-proteasome system (UPS).

    Science.gov (United States)

    Keil, Jeffrey M; Shen, Zhouxin; Briggs, Steven P; Patrick, Gentry N

    2010-10-18

    The ubiquitin proteasome system (UPS) mediates the majority of protein degradation in eukaryotic cells. The UPS has recently emerged as a key degradation pathway involved in synapse development and function. In order to better understand the function of the UPS at synapses we utilized a genetic and proteomic approach to isolate and identify novel candidate UPS substrates from biochemically purified synaptic membrane preparations. Using these methods, we have identified Stromal interacting molecule 1 (STIM1). STIM1 is as an endoplasmic reticulum (ER) calcium sensor that has been shown to regulate store-operated Ca(2+) entry (SOCE). We have characterized STIM1 in neurons, finding STIM1 is expressed throughout development with stable, high expression in mature neurons. As in non-excitable cells, STIM1 is distributed in a membranous and punctate fashion in hippocampal neurons. In addition, a population of STIM1 was found to exist at synapses. Furthermore, using surface biotinylation and live-cell labeling methods, we detect a subpopulation of STIM1 on the surface of hippocampal neurons. The role of STIM1 as a regulator of SOCE has typically been examined in non-excitable cell types. Therefore, we examined the role of the UPS in STIM1 and SOCE function in HEK293 cells. While we find that STIM1 is ubiquitinated, its stability is not altered by proteasome inhibitors in cells under basal conditions or conditions that activate SOCE. However, we find that surface STIM1 levels and thapsigargin (TG)-induced SOCE are significantly increased in cells treated with proteasome inhibitors. Additionally, we find that the overexpression of POSH (Plenty of SH3's), an E3 ubiquitin ligase recently shown to be involved in the regulation of Ca(2+) homeostasis, leads to decreased STIM1 surface levels. Together, these results provide evidence for previously undescribed roles of the UPS in the regulation of STIM1 and SOCE function.

  6. Functional implications and ubiquitin-dependent degradation of the peptide transporter Ptr2 in Saccharomyces cerevisiae.

    Science.gov (United States)

    Kawai, Ken; Moriya, Atsuto; Uemura, Satoshi; Abe, Fumiyoshi

    2014-11-01

    The peptide transporter Ptr2 plays a central role in di- or tripeptide import in Saccharomyces cerevisiae. Although PTR2 transcription has been extensively analyzed in terms of upregulation by the Ubr1-Cup9 circuit, the structural and functional information for this transporter is limited. Here we identified 14 amino acid residues required for peptide import through Ptr2 based on the crystallographic information of Streptococcus thermophilus peptide transporter PepTst and based on the conservation of primary sequences among the proton-dependent oligopeptide transporters (POTs). Expression of Ptr2 carrying one of the 14 mutations of which the corresponding residues of PepTst are involved in peptide recognition, salt bridge interaction, or peptide translocation failed to enable ptr2Δtrp1 cell growth in alanyl-tryptophan (Ala-Trp) medium. We observed that Ptr2 underwent rapid degradation after cycloheximide treatment (half-life, approximately 1 h), and this degradation depended on Rsp5 ubiquitin ligase. The ubiquitination of Ptr2 most likely occurs at the N-terminal lysines 16, 27, and 34. Simultaneous substitution of arginine for the three lysines fully prevented Ptr2 degradation. Ptr2 mutants of the presumed peptide-binding site (E92Q, R93K, K205R, W362L, and E480D) exhibited severe defects in peptide import and were subjected to Rsp5-dependent degradation when cells were moved to Ala-Trp medium, whereas, similar to what occurs in the wild-type Ptr2, mutant proteins of the intracellular gate were upregulated. These results suggest that Ptr2 undergoes quality control and the defects in peptide binding and the concomitant conformational change render Ptr2 subject to efficient ubiquitination and subsequent degradation. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  7. Mutation in SUMO E3 ligase, SIZ1, disrupts the mature female gametophyte in Arabidopsis

    KAUST Repository

    Ling, Yu

    2012-01-09

    Female gametophyte is the multicellular haploid structure that can produce embryo and endosperm after fertilization, which has become an attractive model system for investigating molecular mechanisms in nuclei migration, cell specification, cell-to-cell communication and many other processes. Previous reports found that the small ubiquitin-like modifier (SUMO) E3 ligase, SIZ1, participated in many processes depending on particular target substrates and suppression of salicylic acid (SA) accumulation. Here, we report that SIZ1 mediates the reproductive process. SIZ1 showed enhanced expression in female organs, but was not detected in the anther or pollen. A defect in the siz1-2 maternal source resulted in reduced seed-set regardless of high SA concentration within the plant. Moreover, aniline blue staining and scanning electron microscopy revealed that funicular and micropylar pollen tube guidance was arrested in siz1-2 plants. Some of the embryo sacs of ovules in siz1-2 were also disrupted quickly after stage FG7. There was no significant affects of the siz1-2 mutation on expression of genes involved in female gametophyte development- or pollen tube guidance in ovaries. Together, our results suggest that SIZ1 sustains the stability and normal function of the mature female gametophyte which is necessary for pollen tube guidance. © 2012 Ling et al.

  8. Dengue Virus Genome Uncoating Requires Ubiquitination

    Directory of Open Access Journals (Sweden)

    Laura A. Byk

    2016-06-01

    Full Text Available The process of genome release or uncoating after viral entry is one of the least-studied steps in the flavivirus life cycle. Flaviviruses are mainly arthropod-borne viruses, including emerging and reemerging pathogens such as dengue, Zika, and West Nile viruses. Currently, dengue virus is one of the most significant human viral pathogens transmitted by mosquitoes and is responsible for about 390 million infections every year around the world. Here, we examined for the first time molecular aspects of dengue virus genome uncoating. We followed the fate of the capsid protein and RNA genome early during infection and found that capsid is degraded after viral internalization by the host ubiquitin-proteasome system. However, proteasome activity and capsid degradation were not necessary to free the genome for initial viral translation. Unexpectedly, genome uncoating was blocked by inhibiting ubiquitination. Using different assays to bypass entry and evaluate the first rounds of viral translation, a narrow window of time during infection that requires ubiquitination but not proteasome activity was identified. In this regard, ubiquitin E1-activating enzyme inhibition was sufficient to stabilize the incoming viral genome in the cytoplasm of infected cells, causing its retention in either endosomes or nucleocapsids. Our data support a model in which dengue virus genome uncoating requires a nondegradative ubiquitination step, providing new insights into this crucial but understudied viral process.

  9. Heat shock induced change in protein ubiquitination in Chlamydomonas

    International Nuclear Information System (INIS)

    Shimogawara, K.; Muto, S.

    1989-01-01

    Ubiquitin was purified from pea (Pisum sativum L.) and its antibody was produced. Western blot analysis showed that the antibody cross-reacted with ubiquitins from a green alga Chlamydomonas reinhardtii, a brown alga Laminaria angustata and a red alga Porphyridium cruentum but not with ubiquitin from a blue-green alga Synechococcus sp. In Chlamydomonas, the antibody also reacted with some ubiquitinated proteins including 28- and 31-kDa polypeptides. The isoelectric points of Chlamydomonas ubiquitin and the 28- and 31-kDa ubiquitinated proteins were 8.0, 8.9 and 10.3, respectively. The ubiquitinated proteins, including the 28- and 31-kDa polypeptides were detected after in vitro ATP-dependent ubiquitination of Chlamydomonas cell extract with l25 I-labeled bovine ubiquitin. Heat treatment of Chlamydomonas cells (>40°C) caused drastic increase of ubiquitinated proteins with high mol wt (>60kDa), and coordinated redistribution or decrease of other ubiquitinated proteins and free ubiquitin. Quantitative analysis revealed that the 28- and 31-kDa ubiquitinated proteins showed different responses against heat stress, i.e. the former being more sensitive than the latter. (author)

  10. Ubiquitin Accumulation on Disease Associated Protein Aggregates Is Correlated with Nuclear Ubiquitin Depletion, Histone De-Ubiquitination and Impaired DNA Damage Response.

    Directory of Open Access Journals (Sweden)

    Adi Ben Yehuda

    Full Text Available Deposition of ubiquitin conjugates on inclusion bodies composed of protein aggregates is a definitive cytopathological hallmark of neurodegenerative diseases. We show that accumulation of ubiquitin on polyQ IB, associated with Huntington's disease, is correlated with extensive depletion of nuclear ubiquitin and histone de-ubiquitination. Histone ubiquitination plays major roles in chromatin regulation and DNA repair. Accordingly, we observe that cells expressing IB fail to respond to radiomimetic DNA damage, to induce gamma-H2AX phosphorylation and to recruit 53BP1 to damaged foci. Interestingly ubiquitin depletion, histone de-ubiquitination and impaired DNA damage response are not restricted to PolyQ aggregates and are associated with artificial aggregating luciferase mutants. The longevity of brain neurons depends on their capacity to respond to and repair extensive ongoing DNA damage. Impaired DNA damage response, even modest one, could thus lead to premature neuron aging and mortality.

  11. MID1 catalyzes the ubiquitination of protein phosphatase 2A and mutations within its Bbox1 domain disrupt polyubiquitination of alpha4 but not of PP2Ac.

    Directory of Open Access Journals (Sweden)

    Haijuan Du

    Full Text Available MID1 is a microtubule-associated protein that belongs to the TRIM family. MID1 functions as an ubiquitin E3 ligase, and recently was shown to catalyze the polyubiquitination of, alpha4, a protein regulator of protein phosphatase 2A (PP2A. It has been hypothesized that MID1 regulates PP2A, requiring the intermediary interaction with alpha4. Here we report that MID1 catalyzes the in vitro ubiquitination of the catalytic subunit of PP2A (PP2Ac in the absence of alpha4. In the presence of alpha4, the level of PP2Ac ubiquitination is reduced. Using the MID1 RING-Bbox1-Bbox2 (RB1B2 construct containing the E3 ligase domains, we investigate the functional effects of mutations within the Bbox domains that are identified in patients with X-linked Opitz G syndrome (XLOS. The RB1B2 proteins harboring the C142S, C145T, A130V/T mutations within the Bbox1 domain and C195F mutation within the Bbox2 domain maintain auto-polyubiquitination activity. Qualitatively, the RB1B2 proteins containing these mutations are able to catalyze the ubiquitination of PP2Ac. In contrast, the RB1B2 proteins with mutations within the Bbox1 domain are unable to catalyze the polyubiquitination of alpha4. These results suggest that unregulated alpha4 may be the direct consequence of these natural mutations in the Bbox1 domain of MID1, and hence alpha4 could play a greater role to account for the increased amount of PP2A observed in XLOS-derived fibroblasts.

  12. Regulation of GPCR Trafficking by Ubiquitin.

    Science.gov (United States)

    Kennedy, Justine E; Marchese, Adriano

    2015-01-01

    G protein-coupled receptor (GPCR)-promoted signaling mediates cellular responses to a variety of stimuli involved in diverse physiological processes. In addition, GPCRs are also the largest class of target for many drugs used to treat a variety of diseases. Despite the role of GPCR signaling in health and disease, the molecular mechanisms governing GPCR signaling remain poorly understanding. Classically, GPCR signaling is tightly regulated by GPCR kinases and β-arrestins, which act in a concerted fashion to govern GPCR desensitization and also GPCR trafficking. Ubiquitination has now emerged as an important posttranslational modification that has multiple roles, either directly or indirectly, in governing GPCR trafficking. Recent studies have revealed a mechanistic link between GPCR phosphorylation, β-arrestins, and ubiquitination. Here, we review recent developments in our understanding of how ubiquitin regulates GPCR trafficking within the endocytic pathway. © 2015 Elsevier Inc. All rights reserved.

  13. Dynamic recruitment of ubiquitin to mutant huntingtin inclusion bodies

    NARCIS (Netherlands)

    Juenemann, Katrin; Jansen, Anne H. P.; van Riel, Luigi; Merkx, Remco; Mulder, Monique P. C.; An, Heeseon; Statsyuk, Alexander; Kirstein, Janine; Ovaa, Huib; Reits, Eric A.

    2018-01-01

    Many neurodegenerative diseases, such as Huntington's disease, are hallmarked by the formation of intracellular inclusion bodies (IBs) that are decorated with ubiquitin, proteasomes and chaperones. The apparent enrichment of ubiquitin and components involved in protein quality control at IBs

  14. Ubiquitin-dependent system controls radiation induced apoptosis

    International Nuclear Information System (INIS)

    Delic, J.; Magdelenat, H.; Glaisner, S.; Magdelenat, H.; Maciorowski, Z.

    1997-01-01

    The selective proteolytic pathway, dependent upon 'N-end rule' protein recognition/ubiquitination and on the subsequent proteasome dependent processing of ubiquitin conjugates, operates in apoptosis induced by γ-irradiation. The proteasome inhibitor peptide aldehyde, MG132, efficiently induced apoptosis and was also able (at doses lower than those required for apoptosis induction) to potentiate apoptosis induced by DNA damage. Its specificity is suggested by the induction of the ubiquitin (UbB and UbC) and E1 (ubiquitin activating enzyme) genes and by an altered ubiquitination pattern. More selectively, a di-peptide competitor of the 'N-end rule' of ubiquitin dependent protein processing inhibited radiation induced apoptosis. This inhibition is also followed by an altered ubiquitination pattern and by activation of Poly (ADP-ribose) polymerase (PARP). These data strongly suggest that early apoptosis radiation induced events are controlled by ubiquitin-dependent proteolytic processing. (author)

  15. Poxvirus targeting of E3 ligase β-TrCP by molecular mimicry: a mechanism to inhibit NF-κB activation and promote immune evasion and virulence.

    Directory of Open Access Journals (Sweden)

    Daniel S Mansur

    2013-02-01

    Full Text Available The transcription factor NF-κB is essential for immune responses against pathogens and its activation requires the phosphorylation, ubiquitination and proteasomal degradation of IκBα. Here we describe an inhibitor of NF-κB from vaccinia virus that has a closely related counterpart in variola virus, the cause of smallpox, and mechanistic similarity with the HIV protein Vpu. Protein A49 blocks NF-κB activation by molecular mimicry and contains a motif conserved in IκBα which, in IκBα, is phosphorylated by IKKβ causing ubiquitination and degradation. Like IκBα, A49 binds the E3 ligase β-TrCP, thereby preventing ubiquitination and degradation of IκBα. Consequently, A49 stabilised phosphorylated IκBα (p-IκBα and its interaction with p65, so preventing p65 nuclear translocation. Serine-to-alanine mutagenesis within the IκBα-like motif of A49 abolished β-TrCP binding, stabilisation of p-IκBα and inhibition of NF-κB activation. Remarkably, despite encoding nine other inhibitors of NF-κB, a VACV lacking A49 showed reduced virulence in vivo.

  16. Poxvirus targeting of E3 ligase β-TrCP by molecular mimicry: a mechanism to inhibit NF-κB activation and promote immune evasion and virulence.

    Science.gov (United States)

    Mansur, Daniel S; Maluquer de Motes, Carlos; Unterholzner, Leonie; Sumner, Rebecca P; Ferguson, Brian J; Ren, Hongwei; Strnadova, Pavla; Bowie, Andrew G; Smith, Geoffrey L

    2013-02-01

    The transcription factor NF-κB is essential for immune responses against pathogens and its activation requires the phosphorylation, ubiquitination and proteasomal degradation of IκBα. Here we describe an inhibitor of NF-κB from vaccinia virus that has a closely related counterpart in variola virus, the cause of smallpox, and mechanistic similarity with the HIV protein Vpu. Protein A49 blocks NF-κB activation by molecular mimicry and contains a motif conserved in IκBα which, in IκBα, is phosphorylated by IKKβ causing ubiquitination and degradation. Like IκBα, A49 binds the E3 ligase β-TrCP, thereby preventing ubiquitination and degradation of IκBα. Consequently, A49 stabilised phosphorylated IκBα (p-IκBα) and its interaction with p65, so preventing p65 nuclear translocation. Serine-to-alanine mutagenesis within the IκBα-like motif of A49 abolished β-TrCP binding, stabilisation of p-IκBα and inhibition of NF-κB activation. Remarkably, despite encoding nine other inhibitors of NF-κB, a VACV lacking A49 showed reduced virulence in vivo.

  17. The stem cell factor (SCF)/c-KIT system in carcinogenesis of reproductive tissues: What does the hormonal regulation tell us?

    Science.gov (United States)

    Figueira, Marília I; Cardoso, Henrique J; Correia, Sara; Maia, Cláudio J; Socorro, Sílvia

    2017-10-01

    The tyrosine kinase receptor c-KIT and its ligand, the stem cell factor (SCF) are expressed in several tissues of male and female reproductive tract, playing an important role in the regulation of basic biological processes. The activation of c-KIT by SCF controls, cell survival and death, cell differentiation and migration. Also, the SCF/c-KIT system has been implicated in carcinogenesis of reproductive tissues due to its altered expression pattern or overactivation in consequence of gain-of-functions mutations. Over the years, it has also been shown that hormones, the primary regulators of reproductive function and causative agents in the case of hormone-dependent cancers, are also able to control the SCF/c-KIT tissue levels. Therefore, it is liable to suppose that disturbed SCF/c-KIT expression driven by (de)regulated hormone actions can be a relevant step towards carcinogenesis. The present review describes the SCF and c-KIT expression in cancers of reproductive tissues, discussing the implications of the hormonal regulation of the SCF/c-KIT system in cancer development. Understanding the relationship between hormonal imbalance and the SCF/c-KIT expression and activity would be relevant in the context of novel therapeutic approaches in reproductive cancers. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. How Chemical Synthesis of Ubiquitin Conjugates Helps To Understand Ubiquitin Signal Transduction.

    Science.gov (United States)

    Hameed, Dharjath S; Sapmaz, Aysegul; Ovaa, Huib

    2017-03-15

    Ubiquitin (Ub) is a small post-translational modifier protein involved in a myriad of biochemical processes including DNA damage repair, proteasomal proteolysis, and cell cycle control. Ubiquitin signaling pathways have not been completely deciphered due to the complex nature of the enzymes involved in ubiquitin conjugation and deconjugation. Hence, probes and assay reagents are important to get a better understanding of this pathway. Recently, improvements have been made in synthesis procedures of Ub derivatives. In this perspective, we explain various research reagents available and how chemical synthesis has made an important contribution to Ub research.

  19. Comparative analysis of the end-joining activity of several DNA ligases.

    Directory of Open Access Journals (Sweden)

    Robert J Bauer

    Full Text Available DNA ligases catalyze the repair of phosphate backbone breaks in DNA, acting with highest activity on breaks in one strand of duplex DNA. Some DNA ligases have also been observed to ligate two DNA fragments with short complementary overhangs or blunt-ended termini. In this study, several wild-type DNA ligases (phage T3, T4, and T7 DNA ligases, Paramecium bursaria chlorella virus 1 (PBCV1 DNA ligase, human DNA ligase 3, and Escherichia coli DNA ligase were tested for their ability to ligate DNA fragments with several difficult to ligate end structures (blunt-ended termini, 3'- and 5'- single base overhangs, and 5'-two base overhangs. This analysis revealed that T4 DNA ligase, the most common enzyme utilized for in vitro ligation, had its greatest activity on blunt- and 2-base overhangs, and poorest on 5'-single base overhangs. Other ligases had different substrate specificity: T3 DNA ligase ligated only blunt ends well; PBCV1 DNA ligase joined 3'-single base overhangs and 2-base overhangs effectively with little blunt or 5'- single base overhang activity; and human ligase 3 had highest activity on blunt ends and 5'-single base overhangs. There is no correlation of activity among ligases on blunt DNA ends with their activity on single base overhangs. In addition, DNA binding domains (Sso7d, hLig3 zinc finger, and T4 DNA ligase N-terminal domain were fused to PBCV1 DNA ligase to explore whether modified binding to DNA would lead to greater activity on these difficult to ligate substrates. These engineered ligases showed both an increased binding affinity for DNA and increased activity, but did not alter the relative substrate preferences of PBCV1 DNA ligase, indicating active site structure plays a role in determining substrate preference.

  20. A soluble CAR-SCF fusion protein improves adenoviral vector-mediated gene transfer to c-Kit-positive hematopoietic cells.

    Science.gov (United States)

    Itoh, Akira; Okada, Takashi; Mizuguchi, Hiroyuki; Hayakawa, Takao; Mizukami, Hiroaki; Kume, Akihiro; Takatoku, Masaaki; Komatsu, Norio; Hanazono, Yutaka; Ozawa, Keiya

    2003-11-01

    Although adenoviral vectors primarily derived from the adenovirus serotype 5 (Ad5) are widely used for many gene transfer applications, they cannot efficiently infect hematopoietic cells, since these cells do not express the coxsackie-adenoviral receptor (CAR). We have developed a soluble fusion protein that bridges adenoviral fibers and the c-Kit receptor to alter Ad5 tropism to immature hematopoietic cells. The CAR-SCF fusion protein consists of the extracellular domains of CAR and stem cell factor (SCF). The human megakaryoblastic leukemia cell lines UT-7 and M07e, human chronic myelogenous leukemia cell line K-562, and erythroleukemia cell line TF-1 were used to assess CAR-SCF-assisted Ad5-mediated gene transfer. Hematopoietic cell lines were infected with an Ad5 vector (Ad5-eGFP) or a fiber-mutant Ad5/F35 (Ad5/F35-eGFP) expressing the enhanced green fluorescent protein gene in the presence or absence of CAR-SCF. Twenty-four hours after infection, more than 80% of M07e cells infected in the presence of CAR-SCF were eGFP-positive, compared with very few eGFP-positive cells following Ad5-eGFP infection in the absence of CAR-SCF. The enhancement of Ad5-eGFP infection by CAR-SCF was greater than that caused by Ad5/F35-eGFP (50%). The ability of CAR-SCF to enhance Ad5-eGFP infectivity was highly dependent on cellular c-Kit expression levels. Furthermore, CAR-SCF also enhanced Ad5-mediated gene transfer into human primary CD34(+) cells. The CAR-SCF fusion protein assists Ad5-mediated transduction to c-Kit(+) CAR(-) hematopoietic cells. The use of this fusion protein would enhance a utility of Ad5-mediated hematopoietic cell transduction strategies. Copyright 2003 John Wiley & Sons, Ltd.

  1. Resveratrol induces cellular senescence with attenuated mono-ubiquitination of histone H2B in glioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhen; Xu, Michael S.; Barnett, Tamara L. [Nevada Cancer Institute, Las Vegas, NV 89135 (United States); Xu, C. Wilson, E-mail: wxu@nvcancer.org [Nevada Cancer Institute, Las Vegas, NV 89135 (United States)

    2011-04-08

    Research highlights: {yields} Resveratrol induces cellular senescence in glioma cell. {yields} Resveratrol inhibits mono-ubiquitination of histone H2B at K120. {yields} Depletion of RNF20, phenocopies the inhibitory effects of resveratrol. {yields} Mono-ubiquitination of histone H2B at K120 is a novel target of resveratrol. {yields} RNF20 inhibits cellular senescence in proliferating glioma cells. -- Abstract: Resveratrol (3,4',5-trihydroxy-trans-stilbene), a polyphenol naturally occurring in grapes and other plants, has cancer chemo-preventive effects and therapeutic potential. Although resveratrol modulates multiple pathways in tumor cells, how resveratrol or its affected pathways converge on chromatin to mediate its effects is not known. Using glioma cells as a model, we showed here that resveratrol inhibited cell proliferation and induced cellular hypertrophy by transforming spindle-shaped cells to enlarged, irregular and flatten-shaped ones. We further showed that resveratrol-induced hypertrophic cells expressed senescence-associated-{beta}-galactosidase, suggesting that resveratrol-induced cellular senescence in glioma cells. Consistent with these observations, we demonstrated that resveratrol inhibited clonogenic efficiencies in vitro and tumor growth in a xenograft model. Furthermore, we found that acute treatment of resveratrol inhibited mono-ubiquitination of histone H2B at K120 (uH2B) in breast, prostate, pancreatic, lung, brain tumor cells as well as primary human cells. Chronic treatment with low doses of resveratrol also inhibited uH2B in the resveratrol-induced senescent glioma cells. Moreover, we showed that depletion of RNF20, a ubiquitin ligase of histone H2B, inhibited uH2B and induced cellular senescence in glioma cells in vitro, thereby recapitulated the effects of resveratrol. Taken together, our results suggest that uH2B is a novel direct or indirect chromatin target of resveratrol and RNF20 plays an important role in inhibiting cellular

  2. Relevance of Simultaneous Mono-Ubiquitinations of Multiple Units of PCNA Homo-Trimers in DNA Damage Tolerance

    Science.gov (United States)

    Kanao, Rie; Masuda, Yuji; Deguchi, Saori; Yumoto-Sugimoto, Mayumi; Hanaoka, Fumio; Masutani, Chikahide

    2015-01-01

    DNA damage tolerance (DDT) pathways, including translesion synthesis (TLS) and additional unknown mechanisms, enable recovery from replication arrest at DNA lesions. DDT pathways are regulated by post-translational modifications of proliferating cell nuclear antigen (PCNA) at its K164 residue. In particular, mono-ubiquitination by the ubiquitin ligase RAD18 is crucial for Polη-mediated TLS. Although the importance of modifications of PCNA to DDT pathways is well known, the relevance of its homo-trimer form, in which three K164 residues are present in a single ring, remains to be elucidated. Here, we show that multiple units of a PCNA homo-trimer are simultaneously mono-ubiquitinated in vitro and in vivo. RAD18 catalyzed sequential mono-ubiquitinations of multiple units of a PCNA homo-trimer in a reconstituted system. Exogenous PCNA formed hetero-trimers with endogenous PCNA in WI38VA13 cell transformants. When K164R-mutated PCNA was expressed in these cells at levels that depleted endogenous PCNA homo-trimers, multiple modifications of PCNA complexes were reduced and the cells showed defects in DDT after UV irradiation. Notably, ectopic expression of mutant PCNA increased the UV sensitivities of Polη-proficient, Polη-deficient, and REV1-depleted cells, suggesting the disruption of a DDT pathway distinct from the Polη- and REV1-mediated pathways. These results suggest that simultaneous modifications of multiple units of a PCNA homo-trimer are required for a certain DDT pathway in human cells. PMID:25692884

  3. Deubiquitinase–based analysis of ubiquitin chain architecture using Ubiquitin Chain Restriction (UbiCRest)

    OpenAIRE

    Hospenthal, Manuela K.; Mevissen, Tycho E.T.; Komander, David

    2015-01-01

    Protein ubiquitination is a versatile protein modification that regulates virtually all cellular processes. This versatility originates from polyubiquitin chains, which can be linked in eight distinct ways. The combinatorial complexity of eight linkage types in homotypic (one chain type per polymer) and heterotypic (multiple linkage types per polymer) chains poses significant problems for biochemical analysis. Here we describe UbiCRest, in which substrates (ubiquitinated proteins or polyubiqu...

  4. Biochemical function of typical and variant Arabidopsis thaliana U-box E3 ubiquitin-protein ligases

    DEFF Research Database (Denmark)

    Wiborg, Jakob; O'Shea, Charlotte; Skriver, Karen

    2008-01-01

    respectively, but no productive interaction was observed with the UBC15 E2 tested. The activity of AtPUB54 [Arabidopsis thaliana (thale cress) plant U-box 54 protein] was dependent on Trp(266) in the E2-binding cleft, and the E2 selectivity was changed by substitution of this position. The function...... of the distant U-box protein, AtPUB49, representing a large family of eukaryotic proteins containing a U-box linked to a cyclophilin-like peptidyl-prolyl cis-trans isomerase domain, was characterized biochemically. AtPUB49 functioned both as a prolyl isomerase and a chaperone by catalysing cis.......g. co-existence or interactions with additional domains. The biochemical functions of AtPUB49 suggest that the protein can be involved in folding or degradation of protein substrates. Similar functions can also be retained within a protein complex with separate chaperone and U-box proteins....

  5. BRCC36, a Novel Subunit of a BRCA1 E3 Ubiquitin Ligase Complex: Candidates for BRCA3

    Science.gov (United States)

    2008-06-01

    Radiat Oncol Biol Phys 1994;29: 559–64. 25. Zhu XD, Kuster B, Mann M, Petrini JH, de Lange T. Cell- cycle -regulated association of RAD50/MRE11/NBS1 with...factors, including BRCA1 and p53, which are involved in DNA repair, apoptosis and cell cycle arrest (Banin, et al., 1998; Canman, et al., 1998...activates another. Oncogene 8(12):3271-6. Ford D, Easton DF, Stratton M, Narod S, Goldgar D, Devilee P, Bishop DT, Weber B, Lenoir G, Chang-Claude J and

  6. Control of the B cell-intrinsic tolerance programs by ubiquitin ligases Cbl and Cbl-b.

    Science.gov (United States)

    Kitaura, Yasuyuki; Jang, Ihn Kyung; Wang, Yan; Han, Yoon-Chi; Inazu, Tetsuya; Cadera, Emily J; Schlissel, Mark; Hardy, Richard R; Gu, Hua

    2007-05-01

    B cell receptor (BCR) signaling plays a critical role in B cell tolerance and activation. Here, we show that mice with B cell-specific ablation of both Cbl and Cbl-b (Cbl-/-Cblb-/-) manifested systemic lupus erythematosus (SLE)-like autoimmune disease. The Cbl double deficiency resulted in a substantial increase in marginal zone (MZ) and B1 B cells. The mutant B cells were not hyperresponsive in terms of proliferation and antibody production upon BCR stimulation; however, B cell anergy to protein antigen appeared to be impaired. Concomitantly, BCR-proximal signaling, including tyrosine phosphorylation of Syk tyrosine kinase, Phospholipase C-gamma2 (PLC-gamma2), and Rho-family GTP-GDP exchange factor Vav, and Ca2+ mobilization were enhanced, whereas tyrosine phosphorylation of adaptor protein BLNK was substantially attenuated in the mutant B cells. These results suggested that the loss of coordination between these pathways was responsible for the impaired B cell tolerance induction. Thus, Cbl proteins control B cell-intrinsic checkpoint of immune tolerance, possibly through coordinating multiple BCR-proximal signaling pathways during anergy induction.

  7. Deubiquitylase Inhibition Reveals Liver X Receptor-independent Transcriptional Regulation of the E3 Ubiquitin Ligase IDOL and Lipoprotein Uptake

    NARCIS (Netherlands)

    Nelson, Jessica Kristine; Cook, Emma Clare Laura; Loregger, Anke; Hoeksema, Marten Anne; Scheij, Saskia; Kovacevic, Igor; Hordijk, Peter Lodewijk; Ovaa, Huib; Zelcer, Noam

    2016-01-01

    Cholesterol metabolism is subject to complex transcriptional and nontranscriptional regulation. Herein, the role of ubiquitylation is emerging as an important post-translational modification that regulates cholesterol synthesis and uptake. Similar to other post-translational modifications,

  8. The EHEC type III effector NleL is an E3 ubiquitin ligase that modulates pedestal formation

    Science.gov (United States)

    Enterohemorrhagic Escherichia coli (EHEC) O157:H7 causes hemorrhagic colitis and may result in potentially fatal hemolytic uremia syndrome in humans. EHEC colonize the intestinal mucosa and promote formation of “pedestals” in the tissue beneath the adherent bacteria. Secreted proteins are key playe...

  9. The Ubiquitin Ligase PUB22 Targets a Subunit of the Exocyst Complex Required for PAMP-Triggered Responses in Arabidopsis

    Czech Academy of Sciences Publication Activity Database

    Stegmann, M.; Anderson, R. G.; Ichimura, K.; Pečenková, Tamara; Reuter, P.; Žárský, V.; McDowell, J. M.; Shirasu, K.; Trujillo, M.

    2012-01-01

    Roč. 24, č. 11 (2012), s. 4703-4716 ISSN 1040-4651 R&D Projects: GA ČR GAP501/10/2081 Institutional research plan: CEZ:AV0Z50380511 Keywords : RECOGNITION RECEPTOR FLS2 * RICH REPEAT RECEPTOR * INNATE IMMUNITY Subject RIV: EF - Botanics Impact factor: 9.251, year: 2012

  10. Rice ubiquitin ligase EL5 prevents root meristematic cell death under high nitrogen conditions and interacts with a cytosolic GAPDH.

    Science.gov (United States)

    Nishizawa, Yoko; Mochizuki, Susumu; Koiwai, Hanae; Kondo, Katsuhiko; Kishimoto, Kyutaro; Katoh, Etsuko; Minami, Eiichi

    2015-01-01

    Root formation in rice transformants overexpressing mutated EL5 (mEL5) was severely inhibited because of meristematic cell death. Cell death was caused by nitrogen sources, particularly nitrate forms, in the culture medium. Nitrite treatment increased the cytokinin contents in roots, but mEL5 contained more cytokinins than non-transformants. Transcriptome profiling showed overlaps between nitrite-responsive genes in non-transformants and genes with altered expression in untreated mEL5. These results indicate that impairment of EL5 function activates nitrogen signaling despite the absence of a nitrogen source. Physical interaction between the EL5 C-terminal region and a cytosolic glyceraldehyde-3-phosphate dehydrogenase, OsGapC2, was demonstrated in vitro and in vivo. Elucidation of the role of glyceraldehyde-3-phosphate dehydrogenase in oxidative cell death in plants is expected in future.

  11. Ubiquitin in signaling and protein quality control

    DEFF Research Database (Denmark)

    Al-Saoudi, Sofie Vincents

    Protein ubiquitylation is an important post-translational modification that holds a variety of cellular functions. This Ph.D. thesis is comprised of two studies, of which one focused on ubiquitylation related to inflammatory signaling, and the other on the role of the ubiquitin-proteasome system...

  12. Dengue Virus Genome Uncoating Requires Ubiquitination.

    Science.gov (United States)

    Byk, Laura A; Iglesias, Néstor G; De Maio, Federico A; Gebhard, Leopoldo G; Rossi, Mario; Gamarnik, Andrea V

    2016-06-28

    The process of genome release or uncoating after viral entry is one of the least-studied steps in the flavivirus life cycle. Flaviviruses are mainly arthropod-borne viruses, including emerging and reemerging pathogens such as dengue, Zika, and West Nile viruses. Currently, dengue virus is one of the most significant human viral pathogens transmitted by mosquitoes and is responsible for about 390 million infections every year around the world. Here, we examined for the first time molecular aspects of dengue virus genome uncoating. We followed the fate of the capsid protein and RNA genome early during infection and found that capsid is degraded after viral internalization by the host ubiquitin-proteasome system. However, proteasome activity and capsid degradation were not necessary to free the genome for initial viral translation. Unexpectedly, genome uncoating was blocked by inhibiting ubiquitination. Using different assays to bypass entry and evaluate the first rounds of viral translation, a narrow window of time during infection that requires ubiquitination but not proteasome activity was identified. In this regard, ubiquitin E1-activating enzyme inhibition was sufficient to stabilize the incoming viral genome in the cytoplasm of infected cells, causing its retention in either endosomes or nucleocapsids. Our data support a model in which dengue virus genome uncoating requires a nondegradative ubiquitination step, providing new insights into this crucial but understudied viral process. Dengue is the most significant arthropod-borne viral infection in humans. Although the number of cases increases every year, there are no approved therapeutics available for the treatment of dengue infection, and many basic aspects of the viral biology remain elusive. After entry, the viral membrane must fuse with the endosomal membrane to deliver the viral genome into the cytoplasm for translation and replication. A great deal of information has been obtained in the last decade

  13. ΔF508 CFTR surface stability is regulated by DAB2 and CHIP-mediated ubiquitination in post-endocytic compartments.

    Directory of Open Access Journals (Sweden)

    Lianwu Fu

    Full Text Available The ΔF508 mutant form of the cystic fibrosis transmembrane conductance regulator (ΔF508 CFTR that is normally degraded by the ER-associated degradative pathway can be rescued to the cell surface through low-temperature (27°C culture or small molecular corrector treatment. However, it is unstable on the cell surface, and rapidly internalized and targeted to the lysosomal compartment for degradation. To understand the mechanism of this rapid turnover, we examined the role of two adaptor complexes (AP-2 and Dab2 and three E3 ubiquitin ligases (c-Cbl, CHIP, and Nedd4-2 on low-temperature rescued ΔF508 CFTR endocytosis and degradation in human airway epithelial cells. Our results demonstrate that siRNA depletion of either AP-2 or Dab2 inhibits ΔF508 CFTR endocytosis by 69% and 83%, respectively. AP-2 or Dab2 depletion also increases the rescued protein half-life of ΔF508 CFTR by ~18% and ~91%, respectively. In contrast, the depletion of each of the E3 ligases had no effect on ΔF508 CFTR endocytosis, whereas CHIP depletion significantly increased the surface half-life of ΔF508 CFTR. To determine where and when the ubiquitination occurs during ΔF508 CFTR turnover, we monitored the ubiquitination of rescued ΔF508 CFTR during the time course of CFTR endocytosis. Our results indicate that ubiquitination of the surface pool of ΔF508 CFTR begins to increase 15 min after internalization, suggesting that CFTR is ubiquitinated in a post-endocytic compartment. This post-endocytic ubiquination of ΔF508 CFTR could be blocked by either inhibiting endocytosis, by siRNA knockdown of CHIP, or by treating cells with the CFTR corrector, VX-809. Our results indicate that the post-endocytic ubiquitination of CFTR by CHIP is a critical step in the peripheral quality control of cell surface ΔF508 CFTR.

  14. Murine Myocardial Transcriptome Analysis Reveals a Critical Role of COPS8 in the Gene Expression of Cullin-RING Ligase Substrate Receptors and Redox and Vesicle Trafficking Pathways

    Directory of Open Access Journals (Sweden)

    Ammara Abdullah

    2017-08-01

    Full Text Available Background: The COP9 signalosome (CSN consisting of 8 unique protein subunits (COPS1 through COPS8 serves as the cullin deneddylase, regulating the catalytic dynamics of cullin RING ligases (CRLs, the largest family of ubiquitin ligases Background: The COP9 signalosome (CSN consisting of 8 unique protein subunits (COPS1 through COPS8 serves as the cullin deneddylase, regulating the catalytic dynamics of cullin RING ligases (CRLs, the largest family of ubiquitin ligases. Supported primarily by the decrease of substrate receptor (SR proteins of CRLs in cells deficient of a CSN subunit, CSN-mediated cullin deneddylation is believed to prevent autoubiquitination and self-destruction of the SR in active CRLs. However, it is unclear whether the decrease in SRs is solely due to protein destabilization. Moreover, our prior studies have demonstrated that cardiac specific knockout of Cops8 (Cops8-CKO impairs autophagosome maturation and causes massive necrosis in cardiomyocytes but the underlying mechanism remains poorly understood. Given that Cops8 is nucleus-enriched and a prior report showed its binding to the promoter of several genes and association of its ablation with decreased mRNA levels of these genes, we sought to determine the dynamic changes of myocardial transcriptome in mice with perinatal Cops8-CKO and to explore their functional implications.Methods and Results: Myocardial transcriptomes of Cops8flox/flox, Cops8flox/+::Myh6-Cre, and Cops8flox/flox::Myh6-Cre littermate mice at postnatal 2 and 3 weeks were analyzed. The data were imported into an in-house analysis pipeline using Bioconductor for quantile normalization and statistical analysis. Differentially expressed genes (DEGs between groups at each time point or between time points within the group were revealed by t-test. Genes with p < 0.05 after Benjamini and Hochberg false discovery rate correction for multiple hypothesis testing were considered as significant DEGs. We found that (1

  15. Differential dependence on DNA ligase of type II restriction enzymes: a practical way toward ligase-free DNA automaton.

    Science.gov (United States)

    Chen, Peng; Li, Jing; Zhao, Jian; He, Lin; Zhang, Zhizhou

    2007-02-16

    DNA computing study is a new paradigm in computer science and biological computing fields. As one of DNA computing approaches, DNA automaton is composed of the hardware, input DNA molecule and state transition molecules. By now restriction enzymes are key hardware for DNA computing automaton. It has been found that DNA computing efficiency may be independent on DNA ligases when type IIS restriction enzymes like FokI are used as hardware. In this study, we compared FokI with four other distinct enzymes HgaI, BsmFI, BbsI, and BseMII, and found their differential independence on T4 DNA ligase when performing automaton reactions. Since DNA automaton is a potential powerful tool to tackle gene relationship in genomic network scale, the feasible ligase-free DNA automaton may set an initial base to develop functional DNA automata for various DNA technology development and implications in genetics study in the near future.

  16. Ubiquitin reference technique and its use in ubiquitin-lacking prokaryotes.

    Directory of Open Access Journals (Sweden)

    Konstantin Piatkov

    Full Text Available In a pulse-chase assay, the in vivo degradation of a protein is measured through a brief labeling of cells with, for example, a radioactive amino acid, followed by cessation of labeling and analysis of cell extracts prepared at different times afterward ("chase", using immunoprecipitation, electrophoresis and autoradiography of a labeled protein of interest. A conventional pulse-chase assay is fraught with sources of data scatter, as the efficacy of labeling and immunoprecipitation can vary, and sample volumes can vary as well. The ubiquitin reference technique (URT, introduced in 1996, addresses these problems. In eukaryotes, a DNA-encoded linear fusion of ubiquitin to another protein is cleaved by deubiquitylases at the ubiquitin-protein junction. A URT assay uses a fusion in which the ubiquitin moiety is located between a downstream polypeptide (test protein and an upstream polypeptide (a long-lived reference protein. The cotranslational cleavage of a URT fusion by deubiquitylases after the last residue of ubiquitin produces, at the initially equimolar ratio, a test protein with a desired N-terminal residue and a reference protein containing C-terminal ubiquitin moiety. In addition to being more accurate than pulse-chases without a reference, URT makes it possible to detect and measure the degradation of a test protein during the pulse (before the chase. Because prokaryotes, including Gram-negative bacteria such as, for example, Escherichia coli and Vibrio vulnificus, lack the ubiquitin system, the use of URT in such cells requires ectopic expression of a deubiquitylase. We describe designs and applications of plasmid vectors that coexpress, in bacteria, both a URT-type fusion and Ubp1, a deubiquitylase of the yeast Saccharomyces cerevisiae. This single-plasmid approach extends the accuracy-enhancing URT assay to studies of protein degradation in prokaryotes.

  17. Plasmid containing a DNA ligase gene from Haemophilus influenzae

    International Nuclear Information System (INIS)

    McCarthy, D.; Griffin, K.; Setlow, J.K.

    1984-01-01

    A ligase gene from Haemophilus influenzae was cloned into the shuttle vector pDM2. Although the plasmid did not affect X-ray sensitivity, it caused an increase in UV sensitivity of the wild-type but not excision-defective H. influenzae and a decrease in UV sensitivity of the rec-1 mutant. 14 references, 2 figures

  18. Salvaging recombinants from low-efficiency ligase reactions for more efficient subcloning.

    Science.gov (United States)

    Sun, H W; Lolis, E

    1995-04-01

    Certain types of ligase reactions can be problematic, such as those involving PCR products, blunt-ends and multiple DNA inserts. A simple PCR-based strategy was developed to overcome cloning difficulties with these inefficient ligase reactions. After an initial ligase reaction, primers complementary to the vector are utilized to amplify the DNA fragment from (the few) successful recombinants in the ligation mixture. This DNA fragment is processed for use in a more conventional and straightforward ligase reaction. We demonstrate the potential of the technique by applying it to a variety of difficult ligase reactions.

  19. Regulation of the Tumor-Suppressor Function of the Class III Phosphatidylinositol 3-Kinase Complex by Ubiquitin and SUMO

    International Nuclear Information System (INIS)

    Reidick, Christina; El Magraoui, Fouzi; Meyer, Helmut E.; Stenmark, Harald; Platta, Harald W.

    2014-01-01

    The occurrence of cancer is often associated with a dysfunction in one of the three central membrane-involution processes—autophagy, endocytosis or cytokinesis. Interestingly, all three pathways are controlled by the same central signaling module: the class III phosphatidylinositol 3-kinase (PI3K-III) complex and its catalytic product, the phosphorylated lipid phosphatidylinositol 3-phosphate (PtdIns3P). The activity of the catalytic subunit of the PI3K-III complex, the lipid-kinase VPS34, requires the presence of the membrane-targeting factor VPS15 as well as the adaptor protein Beclin 1. Furthermore, a growing list of regulatory proteins associates with VPS34 via Beclin 1. These accessory factors define distinct subunit compositions and thereby guide the PI3K-III complex to its different cellular and physiological roles. Here we discuss the regulation of the PI3K-III complex components by ubiquitination and SUMOylation. Especially Beclin 1 has emerged as a highly regulated protein, which can be modified with Lys11-, Lys48- or Lys63-linked polyubiquitin chains catalyzed by distinct E3 ligases from the RING-, HECT-, RBR- or Cullin-type. We also point out other cross-links of these ligases with autophagy in order to discuss how these data might be merged into a general concept

  20. Regulation of the Tumor-Suppressor Function of the Class III Phosphatidylinositol 3-Kinase Complex by Ubiquitin and SUMO

    Energy Technology Data Exchange (ETDEWEB)

    Reidick, Christina [Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, Bochum 44801 (Germany); El Magraoui, Fouzi; Meyer, Helmut E. [Biomedical Research, Human Brain Proteomics II, Leibniz-Institut für Analytische Wissenschaften-ISAS, Dortmund 44139 (Germany); Stenmark, Harald [Department of Biochemistry, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo 0310 (Norway); Platta, Harald W., E-mail: harald.platta@rub.de [Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, Bochum 44801 (Germany)

    2014-12-23

    The occurrence of cancer is often associated with a dysfunction in one of the three central membrane-involution processes—autophagy, endocytosis or cytokinesis. Interestingly, all three pathways are controlled by the same central signaling module: the class III phosphatidylinositol 3-kinase (PI3K-III) complex and its catalytic product, the phosphorylated lipid phosphatidylinositol 3-phosphate (PtdIns3P). The activity of the catalytic subunit of the PI3K-III complex, the lipid-kinase VPS34, requires the presence of the membrane-targeting factor VPS15 as well as the adaptor protein Beclin 1. Furthermore, a growing list of regulatory proteins associates with VPS34 via Beclin 1. These accessory factors define distinct subunit compositions and thereby guide the PI3K-III complex to its different cellular and physiological roles. Here we discuss the regulation of the PI3K-III complex components by ubiquitination and SUMOylation. Especially Beclin 1 has emerged as a highly regulated protein, which can be modified with Lys11-, Lys48- or Lys63-linked polyubiquitin chains catalyzed by distinct E3 ligases from the RING-, HECT-, RBR- or Cullin-type. We also point out other cross-links of these ligases with autophagy in order to discuss how these data might be merged into a general concept.

  1. A comparison of the super-CI and the Newton-Raphson scheme in the complete active space SCF method

    International Nuclear Information System (INIS)

    Siegbahn, P.; Heiberg, A.; Roos, B.; Levy, B.

    1980-01-01

    A density matrix formulation is presented of the super-CI and Newton-Raphson methods in complete active space SCF (CASSCF) calculations. The CASSCF method is a special form of the MC-SCF method, where the CI wave function is assumed to be complete in a subset of the orbital space (the active space), leaving the remaining orbitals doubly occupied in all configurations. Explicit formulas are given for all matrix elements in the super-CI method and the first and second derivatives in the Newton-Raphson formulation. The similarities between the two methods are pointed out and the differences in the detailed formulations are discussed. Especially interesting is the fact, that while the second derivatives can be expressed in terms of first and second order density matrices, the matrix elements between the super-CI states involve also the third order density matrix in some cases. (Auth.)

  2. Electronic structure and related properties of ferrocyanide ion calculated by the SCF Xα-scattered wave method

    International Nuclear Information System (INIS)

    Guenzburger, D.; Maffeo, B.; Siqueira, M.L. de

    1975-08-01

    The SCF-XαSW method is used to calculate the electronic structure of the ferrocyanide ion. Optical transitions and X-Ray photoelectron emission are obtained from the energy level scheme and compared with experimental results. The charge density in the Fe nucleus is also computed and the result is correlated with isomer shift measurements made on this and other Fe complexes for which theoretical calculations have been performed

  3. Chaperones, but not oxidized proteins, are ubiquitinated after oxidative stress

    DEFF Research Database (Denmark)

    Kästle, Marc; Reeg, Sandra; Rogowska-Wrzesinska, Adelina

    2012-01-01

    After oxidative stress proteins which are oxidatively modified are degraded by the 20S proteasome. However, several studies documented an enhanced ubiquitination of yet unknown proteins. Since ubiqutination is a prerequisite for degradation by the 26S proteasome in an ATP-dependent manner...... this raises the question whether these proteins are also oxidized and, if not, what proteins need to be ubiquitinated and degraded after oxidative conditions. By determination of oxidized- and ubiquitinated proteins we demonstrate here that most oxidized proteins are not preferentially ubiquitinated. However......, we were able to confirm an increase of ubiquitinated proteins 16h upon oxidative stress. Therefore, we isolated ubiquitinated proteins from hydrogen peroxide treated cells, as well as from control and lactacystin, an irreversible proteasome inhibitor, treated cells, and identified some...

  4. Targeting c-kit receptor in neuroblastomas and colorectal cancers using stem cell factor (SCF)-based recombinant bacterial toxins.

    Science.gov (United States)

    Choudhary, Swati; Pardo, Alessa; Rosinke, Reinhard; Batra, Janendra K; Barth, Stefan; Verma, Rama S

    2016-01-01

    Autocrine activation of c-kit (KIT receptor tyrosine kinase) has been postulated to be a potent oncogenic driver in small cell lung cancer, neuroblastoma (NB), and poorly differentiated colorectal carcinoma (CRC). Although targeted therapy involving tyrosine kinase inhibitors (TKIs) such as imatinib mesylate is highly effective for gastrointestinal stromal tumor carrying V560G c-kit mutation, it does not show much potential for targeting wild-type KIT (WT-KIT). Our study demonstrates the role of stem cell factor (SCF)-based toxin conjugates for targeting WT-KIT-overexpressing malignancies such as NBs and CRCs. We constructed SCF-based recombinant bacterial toxins by genetically fusing mutated form of natural ligand SCF to receptor binding deficient forms of Diphtheria toxin (DT) or Pseudomonas exotoxin A (ETA') and evaluated their efficacy in vitro. Efficient targeting was achieved in all receptor-positive neuroblastoma (IMR-32 and SHSY5Y) and colon cancer cell lines (COLO 320DM, HCT 116, and DLD-1) but not in receptor-negative breast carcinoma cell line (MCF-7) thereby proving specificity. While dose- and time-dependent cytotoxicity was observed in both neuroblastoma cell lines, COLO 320DM and HCT 116 cells, only an anti-proliferative effect was observed in DLD-1 cells. We prove that these novel targeting agents have promising potential as KIT receptor tyrosine kinase targeting system.

  5. Multi-time series RNA-seq analysis of Enterobacter lignolyticus SCF1 during growth in lignin-amended medium

    Energy Technology Data Exchange (ETDEWEB)

    Orellana, Roberto; Chaput, Gina; Markillie, Lye Meng; Mitchell, Hugh; Gaffrey, Matt; Orr, Galya; DeAngelis, Kristen M.; Yang, Shihui

    2017-10-19

    The production of lignocellulosic-derived biofuels is a highly promising source of alternative energy, but it has been constrained by the lack of a microbial platform capable to efficiently degrade this recalcitrant material and cope with by-products that can be toxic to cells. Species that naturally grow in environments where carbon is mainly available as lignin are promising for finding new ways of removing the lignin that protects cellulose for improved conversion of lignin to fuel precursors. Enterobacter lignolyticus SCF1 is a facultative anaerobic Gammaproteobacteria isolated from tropical rain forest soil collected in El Yunque forest, Puerto Rico under anoxic growth conditions with lignin as sole carbon source. Whole transcriptome analysis of SCF1 during E.lignolyticus SCF1 lignin degradation was conducted on cells grown in the presence (0.1%, w/w) and the absence of lignin, where samples were taken at three different times during growth, beginning of exponential phase, midexponential phase and beginning of stationary phase. Lignin-amended cultures achieved twice the cell biomass as unamended cultures over three days, and in this time degraded 60% of lignin. Transcripts in early exponential phase reflected this accelerated growth. A complement of laccases, aryl-alcohol dehydrogenases, and peroxidases were most up-regulated in lignin amended conditions in mid-exponential and early stationary phases compared to unamended growth. The association of hydrogen production by way of the formate hydrogenlyase complex with lignin degradation suggests a possible value added to lignin degradation in the future.

  6. Characterization of multimetric variants of ubiquitin carboxyl-terminal hydrolase L1 in water by small-angle neutron scattering

    International Nuclear Information System (INIS)

    Naito, Sachio; Mochizuki, Hideki; Yasuda, Toru; Mizuno, Yoshikuni; Furusaka, Michihiro; Ikeda, Susumu; Adachi, Tomohiro; Shimizu, Hirohiko M.; Suzuki, Junichi; Fujiwara, Satoru; Okada, Tomoko; Nishikawa, Kaori; Aoki, Shunsuke; Wada, Keiji

    2006-01-01

    Here, we illustrated that the morphological structures of ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1) variants and Parkinson's disease (PD) exhibit good pathological correlation by a small-angle neutron scattering (SANS). UCH-L1 is a neuro-specific multiple functional enzyme, deubiquitinating, ubiquityl ligase, and also involved in stabilization of mono-ubiquitin. To examine the relationship between multiple functions of UCH-L1 and the configuration of its variants [wild-type, I93M (linked to familial Parkinson's disease), and S18Y (linked to reduced risk of Parkinson's disease)], in this report, we proposed that these were all self-assembled dimers by an application of a rotating ellipsoidal model; the configurations of these dimers were quite different. The wild-type was a rotating ellipsoidal. The globular form of the monomeric component deformed by the I93M mutation. Conversely, the S18Y polymorphism promoted the globularity. Thus, the multiple functional balance is closely linked to the intermolecular interactions between the UCH-L1 monomer and the final dimeric configuration

  7. Ubiquitination-Deficient Mutations in Human Piwi Cause Male Infertility by Impairing Histone-to-Protamine Exchange during Spermiogenesis.

    Science.gov (United States)

    Gou, Lan-Tao; Kang, Jun-Yan; Dai, Peng; Wang, Xin; Li, Feng; Zhao, Shuang; Zhang, Man; Hua, Min-Min; Lu, Yi; Zhu, Yong; Li, Zheng; Chen, Hong; Wu, Li-Gang; Li, Dangsheng; Fu, Xiang-Dong; Li, Jinsong; Shi, Hui-Juan; Liu, Mo-Fang

    2017-06-01

    Genetic studies have elucidated critical roles of Piwi proteins in germline development in animals, but whether Piwi is an actual disease gene in human infertility remains unknown. We report germline mutations in human Piwi (Hiwi) in patients with azoospermia that prevent its ubiquitination and degradation. By modeling such mutations in Piwi (Miwi) knockin mice, we demonstrate that the genetic defects are directly responsible for male infertility. Mechanistically, we show that MIWI binds the histone ubiquitin ligase RNF8 in a Piwi-interacting RNA (piRNA)-independent manner, and MIWI stabilization sequesters RNF8 in the cytoplasm of late spermatids. The resulting aberrant sperm show histone retention, abnormal morphology, and severely compromised activity, which can be functionally rescued via blocking RNF8-MIWI interaction in spermatids with an RNF8-N peptide. Collectively, our findings identify Piwi as a factor in human infertility and reveal its role in regulating the histone-to-protamine exchange during spermiogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Huntingtin interacts with the cue domain of gp78 and inhibits gp78 binding to ubiquitin and p97/VCP.

    Directory of Open Access Journals (Sweden)

    Hui Yang

    2010-01-01

    Full Text Available Huntington's disease (HD is caused by polyglutamine expansion in huntingtin (htt protein, but the exact mechanism of HD pathogenesis remains uncertain. Recent evidence suggests that htt proteins with expanded polyglutamine tracts induce endoplasmic reticulum (ER stress, probably by interfering with ER-associated degradation (ERAD. Here we report that mutant htt interacts and interferes with the function of gp78, an ER membrane-anchored ubiquitin ligase (E3 involved in ERAD. Mapping studies showed that the HEAT repeats 2&3 of htt interact with the cue domain of gp78. The interaction competitively reduces polyubiquitinated protein binding to gp78 and also sterically blocks gp78 interaction of p97/VCP, a molecular chaperone that is essential for ERAD. These effects of htt negatively regulate the function of gp78 in ERAD and are aggravated by polyglutamine expansion. Paradoxically, gp78 is still able to ubiquitinate and facilitate degradation of htt proteins with expanded polyglutamine. The impairment of ERAD by mutant htt proteins is associated with induction of ER stress. Our studies provide a novel molecular mechanism that supports the involvement of ER stress in HD pathogenesis.

  9. Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin.

    Science.gov (United States)

    Lazarou, Michael; Jin, Seok Min; Kane, Lesley A; Youle, Richard J

    2012-02-14

    Mutations in the mitochondrial kinase PINK1 and the cytosolic E3 ligase Parkin can cause Parkinson's disease. Damaged mitochondria accumulate PINK1 on the outer membrane where, dependent on kinase activity, it recruits and activates Parkin to induce mitophagy, potentially maintaining organelle fidelity. How PINK1 recruits Parkin is unknown. We show that endogenous PINK1 forms a 700 kDa complex with the translocase of the outer membrane (TOM) selectively on depolarized mitochondria whereas PINK1 ectopically targeted to the outer membrane retains association with TOM on polarized mitochondria. Inducibly targeting PINK1 to peroxisomes or lysosomes, which lack a TOM complex, recruits Parkin and activates ubiquitin ligase activity on the respective organelles. Once there, Parkin induces organelle selective autophagy of peroxisomes but not lysosomes. We propose that the association of PINK1 with the TOM complex allows rapid reimport of PINK1 to rescue repolarized mitochondria from mitophagy, and discount mitochondrial-specific factors for Parkin translocation and activation. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. The E3 Ligase APIP10 Connects the Effector AvrPiz-t to the NLR Receptor Piz-t in Rice.

    Directory of Open Access Journals (Sweden)

    Chan Ho Park

    2016-03-01

    Full Text Available Although nucleotide-binding domain, leucine-rich repeat (NLR proteins are the major immune receptors in plants, the mechanism that controls their activation and immune signaling remains elusive. Here, we report that the avirulence effector AvrPiz-t from Magnaporthe oryzae targets the rice E3 ligase APIP10 for degradation, but that APIP10, in return, ubiquitinates AvrPiz-t and thereby causes its degradation. Silencing of APIP10 in the non-Piz-t background compromises the basal defense against M. oryzae. Conversely, silencing of APIP10 in the Piz-t background causes cell death, significant accumulation of Piz-t, and enhanced resistance to M. oryzae, suggesting that APIP10 is a negative regulator of Piz-t. We show that APIP10 promotes degradation of Piz-t via the 26S proteasome system. Furthermore, we demonstrate that AvrPiz-t stabilizes Piz-t during M. oryzae infection. Together, our results show that APIP10 is a novel E3 ligase that functionally connects the fungal effector AvrPiz-t to its NLR receptor Piz-t in rice.

  11. Structure of a Glomulin-RBX1-CUL1 complex: inhibition of a RING E3 ligase through masking of its E2-binding surface

    Science.gov (United States)

    Duda, David M.; Olszewski, Jennifer L.; Tron, Adriana E.; Hammel, Michal; Lambert, Lester J.; Waddell, M. Brett; Mittag, Tanja; DeCaprio, James A.; Schulman, Brenda A.

    2012-01-01

    Summary The ~300 human Cullin-RING ligases (CRLs) are multisubunit E3s in which a RING protein, either RBX1 or RBX2, recruits an E2 to catalyze ubiquitination. RBX1-containing CRLs also can bind Glomulin (GLMN), which binds RBX1’s RING domain, regulates the RBX1-CUL1-containing SCFFBW7 complex, and is disrupted in the disease Glomuvenous Malformation. Here we report the crystal structure of a complex between GLMN, RBX1, and a fragment of CUL1. Structural and biochemical analyses reveal that GLMN adopts a HEAT-like repeat fold that tightly binds the E2-interacting surface of RBX1, inhibiting CRL-mediated chain formation by the E2 CDC34. The structure explains the basis for GLMN’s selectivity toward RBX1 over RBX2, and how disease-associated mutations disrupt GLMN-RBX1 interactions. Our study reveals a mechanism for RING E3 ligase regulation whereby an inhibitor blocks E2 access, and raises the possibility that other E3s are likewise controlled by cellular proteins that mask E2-binding surfaces to mediate inhibition. PMID:22748924

  12. Integrated Genomic Analysis of the Ubiquitin Pathway across Cancer Types

    Directory of Open Access Journals (Sweden)

    Zhongqi Ge

    2018-04-01

    Full Text Available Summary: Protein ubiquitination is a dynamic and reversible process of adding single ubiquitin molecules or various ubiquitin chains to target proteins. Here, using multidimensional omic data of 9,125 tumor samples across 33 cancer types from The Cancer Genome Atlas, we perform comprehensive molecular characterization of 929 ubiquitin-related genes and 95 deubiquitinase genes. Among them, we systematically identify top somatic driver candidates, including mutated FBXW7 with cancer-type-specific patterns and amplified MDM2 showing a mutually exclusive pattern with BRAF mutations. Ubiquitin pathway genes tend to be upregulated in cancer mediated by diverse mechanisms. By integrating pan-cancer multiomic data, we identify a group of tumor samples that exhibit worse prognosis. These samples are consistently associated with the upregulation of cell-cycle and DNA repair pathways, characterized by mutated TP53, MYC/TERT amplification, and APC/PTEN deletion. Our analysis highlights the importance of the ubiquitin pathway in cancer development and lays a foundation for developing relevant therapeutic strategies. : Ge et al. analyze a cohort of 9,125 TCGA samples across 33 cancer types to provide a comprehensive characterization of the ubiquitin pathway. They detect somatic driver candidates in the ubiquitin pathway and identify a cluster of patients with poor survival, highlighting the importance of this pathway in cancer development. Keywords: ubiquitin pathway, pan-cancer analysis, The Cancer Genome Atlas, tumor subtype, cancer prognosis, therapeutic targets, biomarker, FBXW7

  13. The human otubain2-ubiquitin structure provides insights into the cleavage specificity of poly-ubiquitin-linkages.

    Directory of Open Access Journals (Sweden)

    Mikael Altun

    Full Text Available Ovarian tumor domain containing proteases cleave ubiquitin (Ub and ubiquitin-like polypeptides from proteins. Here we report the crystal structure of human otubain 2 (OTUB2 in complex with a ubiquitin-based covalent inhibitor, Ub-Br2. The ubiquitin binding mode is oriented differently to how viral otubains (vOTUs bind ubiquitin/ISG15, and more similar to yeast and mammalian OTUs. In contrast to OTUB1 which has exclusive specificity towards Lys48 poly-ubiquitin chains, OTUB2 cleaves different poly-Ub linked chains. N-terminal tail swapping experiments between OTUB1 and OTUB2 revealed how the N-terminal structural motifs in OTUB1 contribute to modulating enzyme activity and Ub-chain selectivity, a trait not observed in OTUB2, supporting the notion that OTUB2 may affect a different spectrum of substrates in Ub-dependent pathways.

  14. High Fat Diet-Induced Skeletal Muscle Wasting Is Decreased by Mesenchymal Stem Cells Administration: Implications on Oxidative Stress, Ubiquitin Proteasome Pathway Activation, and Myonuclear Apoptosis

    Directory of Open Access Journals (Sweden)

    Johanna Abrigo

    2016-01-01

    Full Text Available Obesity can lead to skeletal muscle atrophy, a pathological condition characterized by the loss of strength and muscle mass. A feature of muscle atrophy is a decrease of myofibrillar proteins as a result of ubiquitin proteasome pathway overactivation, as evidenced by increased expression of the muscle-specific ubiquitin ligases atrogin-1 and MuRF-1. Additionally, other mechanisms are related to muscle wasting, including oxidative stress, myonuclear apoptosis, and autophagy. Stem cells are an emerging therapy in the treatment of chronic diseases such as high fat diet-induced obesity. Mesenchymal stem cells (MSCs are a population of self-renewable and undifferentiated cells present in the bone marrow and other mesenchymal tissues of adult individuals. The present study is the first to analyze the effects of systemic MSC administration on high fat diet-induced skeletal muscle atrophy in the tibialis anterior of mice. Treatment with MSCs reduced losses of muscle strength and mass, decreases of fiber diameter and myosin heavy chain protein levels, and fiber type transitions. Underlying these antiatrophic effects, MSC administration also decreased ubiquitin proteasome pathway activation, oxidative stress, and myonuclear apoptosis. These results are the first to indicate that systemically administered MSCs could prevent muscle wasting associated with high fat diet-induced obesity and diabetes.

  15. DNA-PKcs Negatively Regulates Cyclin B1 Protein Stability through Facilitating Its Ubiquitination Mediated by Cdh1-APC/C Pathway.

    Science.gov (United States)

    Shang, Zeng-Fu; Tan, Wei; Liu, Xiao-Dan; Yu, Lan; Li, Bing; Li, Ming; Song, Man; Wang, Yu; Xiao, Bei-Bei; Zhong, Cai-Gao; Guan, Hua; Zhou, Ping-Kun

    2015-01-01

    The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is a critical component of the non-homologous end-joining pathway of DNA double-stranded break repair. DNA-PKcs has also been shown recently functioning in mitotic regulation. Here, we report that DNA-PKcs negatively regulates the stability of Cyclin B1 protein through facilitating its ubiquitination mediated by Cdh1 / E 3 ubiquitin ligase APC/C pathway. Loss of DNA-PKcs causes abnormal accumulation of Cyclin B1 protein. Cyclin B1 degradation is delayed in DNA-PKcs-deficient cells as result of attenuated ubiquitination. The impact of DNA-PKcs on Cyclin B1 stability relies on its kinase activity. Our study further reveals that DNA-PKcs interacts with APC/C core component APC2 and its co-activator Cdh1. The destruction of Cdh1 is accelerated in the absence of DNA-PKcs. Moreover, overexpression of exogenous Cdh1 can reverse the increase of Cyclin B1 protein in DNA-PKcs-deficient cells. Thus, DNA-PKcs, in addition to its direct role in DNA damage repair, functions in mitotic progression at least partially through regulating the stability of Cyclin B1 protein.

  16. Ubr3, a Novel Modulator of Hh Signaling Affects the Degradation of Costal-2 and Kif7 through Poly-ubiquitination.

    Directory of Open Access Journals (Sweden)

    Tongchao Li

    2016-05-01

    Full Text Available Hedgehog (Hh signaling regulates multiple aspects of metazoan development and tissue homeostasis, and is constitutively active in numerous cancers. We identified Ubr3, an E3 ubiquitin ligase, as a novel, positive regulator of Hh signaling in Drosophila and vertebrates. Hh signaling regulates the Ubr3-mediated poly-ubiquitination and degradation of Cos2, a central component of Hh signaling. In developing Drosophila eye discs, loss of ubr3 leads to a delayed differentiation of photoreceptors and a reduction in Hh signaling. In zebrafish, loss of Ubr3 causes a decrease in Shh signaling in the developing eyes, somites, and sensory neurons. However, not all tissues that require Hh signaling are affected in zebrafish. Mouse UBR3 poly-ubiquitinates Kif7, the mammalian homologue of Cos2. Finally, loss of UBR3 up-regulates Kif7 protein levels and decreases Hh signaling in cultured cells. In summary, our work identifies Ubr3 as a novel, evolutionarily conserved modulator of Hh signaling that boosts Hh in some tissues.

  17. MuRF1 mono-ubiquitinates TRα to inhibit T3-induced cardiac hypertrophy in vivo.

    Science.gov (United States)

    Wadosky, Kristine M; Berthiaume, Jessica M; Tang, Wei; Zungu, Makhosi; Portman, Michael A; Gerdes, A Martin; Willis, Monte S

    2016-04-01

    Thyroid hormone (TH) is recognized for its role in cellular metabolism and growth and participates in homeostasis of the heart. T3 activates pro-survival pathways including Akt and mTOR. Treatment with T3 after myocardial infarction is cardioprotective and promotes elements of physiological hypertrophic response after cardiac injury. Although T3 is known to benefit the heart, very little about its regulation at the molecular level has been described to date. The ubiquitin proteasome system (UPS) regulates nuclear hormone receptors such as estrogen, progesterone, androgen, and glucocorticoid receptors by both degradatory and non-degradatory mechanisms. However, how the UPS regulates T3-mediated activity is not well understood. In this study, we aim to determine the role of the muscle-specific ubiquitin ligase muscle ring finger-1 (MuRF1) in regulating T3-induced cardiomyocyte growth. An increase in MuRF1 expression inhibits T3-induced physiological cardiac hypertrophy, whereas a decrease in MuRF1 expression enhances T3's activity both in vitro and in cardiomyocytes in vivo MuRF1 interacts directly with TRα to inhibit its activity by posttranslational ubiquitination in a non-canonical manner. We then demonstrated that a nuclear localization apparatus that regulates/inhibits nuclear receptors by sequestering them within a subcompartment of the nucleus was necessary for MuRF1 to inhibit T3 activity. This work implicates a novel mechanism that enhances the beneficial T3 activity specifically within the heart, thereby offering a potential target to enhance cardiac T3 activity in an organ-specific manner. © 2016 Society for Endocrinology.

  18. Identifying the substrate proteins of U-box E3s E4B and CHIP by orthogonal ubiquitin transfer.

    Science.gov (United States)

    Bhuripanyo, Karan; Wang, Yiyang; Liu, Xianpeng; Zhou, Li; Liu, Ruochuan; Duong, Duc; Zhao, Bo; Bi, Yingtao; Zhou, Han; Chen, Geng; Seyfried, Nicholas T; Chazin, Walter J; Kiyokawa, Hiroaki; Yin, Jun

    2018-01-01

    E3 ubiquitin (UB) ligases E4B and carboxyl terminus of Hsc70-interacting protein (CHIP) use a common U-box motif to transfer UB from E1 and E2 enzymes to their substrate proteins and regulate diverse cellular processes. To profile their ubiquitination targets in the cell, we used phage display to engineer E2-E4B and E2-CHIP pairs that were free of cross-reactivity with the native UB transfer cascades. We then used the engineered E2-E3 pairs to construct "orthogonal UB transfer (OUT)" cascades so that a mutant UB (xUB) could be exclusively used by the engineered E4B or CHIP to label their substrate proteins. Purification of xUB-conjugated proteins followed by proteomics analysis enabled the identification of hundreds of potential substrates of E4B and CHIP in human embryonic kidney 293 cells. Kinase MAPK3 (mitogen-activated protein kinase 3), methyltransferase PRMT1 (protein arginine N -methyltransferase 1), and phosphatase PPP3CA (protein phosphatase 3 catalytic subunit alpha) were identified as the shared substrates of the two E3s. Phosphatase PGAM5 (phosphoglycerate mutase 5) and deubiquitinase OTUB1 (ovarian tumor domain containing ubiquitin aldehyde binding protein 1) were confirmed as E4B substrates, and β-catenin and CDK4 (cyclin-dependent kinase 4) were confirmed as CHIP substrates. On the basis of the CHIP-CDK4 circuit identified by OUT, we revealed that CHIP signals CDK4 degradation in response to endoplasmic reticulum stress.

  19. Unraveling the biochemistry and provenance of pupylation: a prokaryotic analog of ubiquitination

    Directory of Open Access Journals (Sweden)

    Aravind L

    2008-11-01

    Full Text Available Abstract Recently Mycobacterium tuberculosis was shown to possess a novel protein modification, in which a small protein Pup is conjugated to the epsilon-amino groups of lysines in target proteins. Analogous to ubiquitin modification in eukaryotes, this remarkable modification recruits proteins for degradation via archaeal-type proteasomes found in mycobacteria and allied actinobacteria. While a mycobacterial protein named PafA was found to be required for this conjugation reaction, its biochemical mechanism has not been elucidated. Using sensitive sequence profile comparison methods we establish that the PafA family proteins are related to the γ-glutamyl-cysteine synthetase and glutamine synthetase. Hence, we predict that PafA is the Pup ligase, which catalyzes the ATP-dependent ligation of the terminal γ-carboxylate of glutamate to lysines, similar to the above enzymes. We further discovered that an ortholog of the eukaryotic PAC2 (e.g. cg2106 is often present in the vicinity of the actinobacterial Pup-proteasome gene neighborhoods and is likely to represent the ancestral proteasomal chaperone. Pup-conjugation is sporadically present outside the actinobacteria in certain lineages, such as verrucomicrobia, nitrospirae, deltaproteobacteria and planctomycetes, and in the latter two lineages it might modify membrane proteins. Reviewers This article was reviewed by M. Madan Babu and Andrei Osterman

  20. Label-free electrochemical monitoring of DNA ligase activity

    Czech Academy of Sciences Publication Activity Database

    Vacek, Jan; Cahová, Kateřina; Paleček, Emil; Bullard, D.R.; Lavesa-Curto, M.; Bowater, R.P.; Fojta, Miroslav

    2008-01-01

    Roč. 80, č. 19 (2008), s. 7609-7613 ISSN 0003-2700 R&D Projects: GA ČR(CZ) GA203/07/1195; GA AV ČR(CZ) KAN400310651; GA MŠk(CZ) LC06035 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : DNA ligase activity * DNA damage electrochemistry Subject RIV: BO - Biophysics Impact factor: 5.712, year: 2008

  1. SCFβTrCP, discovering new sides of the E3 ligase by studying its substrates

    NARCIS (Netherlands)

    Kruiswijk, F.

    2013-01-01

    The ubiquitin-proteasome system controls molecular networks that underlie fundamental cellular functions such as DNA replication, DNA repair, transcription, protein synthesis, cell differentiation and apoptosis. Aberrant functions of components of the ubiquitin-proteasome system (particularly of

  2. Vaccinia virus protein A49 activates Wnt signalling by targetting the E3 ligase β-TrCP

    Science.gov (United States)

    Maluquer de Motes, Carlos; Smith, Geoffrey L.

    2017-01-01

    Vaccinia virus (VACV) encodes multiple proteins inhibiting the NF-κB signalling pathway. One of these, A49, targets the E3 ubiquitin ligase β-TrCP, which is responsible for the ubiquitylation and consequential proteosomal degradation of IκBα and the release of the NF-κB heterodimer. β-TrCP is a pleiotropic enzyme ubiquitylating multiple cellular substrates, including the transcriptional activator β-catenin. Here we demonstrate that A49 can activate the Wnt signalling pathway, a critical pathway that is involved in cell cycle and cell differentiation, and is controlled by β-catenin. The data presented show that the expression of A49 ectopically or during VACV infection causes accumulation of β-catenin, and that A49 triggering of Wnt signalling is dependent on binding β-TrCP. This is consistent with A49 blocking the ability of β-TrCP to recognise β-catenin and IκBα, and possibly other cellular targets. Thus, A49 targetting of β-TrCP affects multiple cellular pathways, including the NF-κB and Wnt signalling cascades. PMID:29058646

  3. Hijacking of the Host Ubiquitin Network by Legionella pneumophila

    Directory of Open Access Journals (Sweden)

    Jiazhang Qiu

    2017-12-01

    Full Text Available Protei