WorldWideScience

Sample records for scattering ultra-short pulse

  1. 8th conference on Ultra-Wideband Short-Pulse Electromagnetics

    CERN Document Server

    Tyo, J. Scott; Baum, Carl E; Ultra-Wideband Short-Pulse Electromagnetics 8; UWBSP8

    2007-01-01

    The purpose of the Ultra-Wideband Short-Pulse Electromagnetics Conference series is to focus on advanced technologies for the generation, radiation and detection of ultra-wideband short pulse signals, taking into account their propagation and scattering from and coupling to targets of interest. This Conference series reports on developments in supporting mathematical and numerical methods and presents current and potential future applications of the technology. Ultra-Wideband Short-Pulse Electromagnetics 8 is based on the American Electromagnetics 2006 conference held from June 3-7 in Albuquerque, New Mexico. Topical areas covered in this volume include pulse radiation and measurement, scattering theory, target detection and identification, antennas, signal processing, and communications.

  2. 7th conference on ultra-wideband, short-pulse electromagnetics

    CERN Document Server

    Schenk, Uwe; Nitsch, Daniel; Sabath, Frank; Ultra-Wideband, Short-Pulse Electromagnetics 7; UWBSP7

    2007-01-01

    Ultra-wideband (UWB), short-pulse (SP) electromagnetics are now being used for an increasingly wide variety of applications, including collision avoidance radar, concealed object detection, and communications. Notable progress in UWB and SP technologies has been achieved by investigations of their theoretical bases and improvements in solid-state manufacturing, computers, and digitizers. UWB radar systems are also being used for mine clearing, oil pipeline inspections, archeology, geology, and electronic effects testing. Ultra-Wideband Short-Pulse Electromagnetics 7 presents selected papers of deep technical content and high scientific quality from the UWB-SP7 Conference, including wide-ranging contributions on electromagnetic theory, scattering, UWB antennas, UWB systems, ground penetrating radar (GPR), UWB communications, pulsed-power generation, time-domain computational electromagnetics, UWB compatibility, target detection and discrimination, propagation through dispersive media, and wavelet and multi-res...

  3. Ultra-short laser pulses. Petawatt and femtosecond

    International Nuclear Information System (INIS)

    Lemoine, P.

    1999-01-01

    This book deals with a series of new results obtained thanks to the use of ultra-short laser pulses. This branch of physics has made incredible progresses during the last 25 years. Ultra-short laser pulses offer the opportunity to explore the domain of ultra-high energies and of ultra-short duration events. Applications are various, from controlled nuclear fusion to eye surgery and to more familiar industrial applications such as electronics. (J.S.)

  4. Strong-field QED processes in short laser pulses. One- and two-photon Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Seipt, Daniel

    2012-12-20

    The purpose of this thesis is to advance the understanding of strong-field QED processes in short laser pulses. The processes of non-linear one-photon and two-photon Compton scattering are studied, that is the scattering of photons in the interaction of relativistic electrons with ultra-short high-intensity laser pulses. These investigations are done in view of the present and next generation of ultra-high intensity optical lasers which are supposed to achieve unprecedented intensities of the order of 10{sup 24} W/cm{sup 2} and beyond, with pulse lengths in the order of some femtoseconds. The ultra-high laser intensity requires a non-perturbative description of the interaction of charged particles with the laser field to allow for multi-photon interactions, which is beyond the usual perturbative expansion of QED organized in powers of the fine structure constant. This is achieved in strong-field QED by employing the Furry picture and non-perturbative solutions of the Dirac equation in the presence of a background laser field as initial and final state wave functions, as well as the laser dressed Dirac-Volkov propagator. The primary objective is a realistic description of scattering processes with regard to the finite laser pulse duration beyond the common approximation of infinite plane waves, which is made necessary by the ultra-short pulse length of modern high-intensity lasers. Non-linear finite size effects are identified, which are a result of the interplay between the ultra-high intensity and the ultra-short pulse length. In particular, the frequency spectra and azimuthal photon emission spectra are studied emphasizing the differences between pulsed and infinite laser fields. The proper description of the finite temporal duration of the laser pulse leads to a regularization of unphysical infinities (due to the infinite plane-wave description) of the laser-dressed Dirac-Volkov propagator and in the second-order strong-field process of two-photon Compton

  5. 10th and 11th conference on Ultra-Wideband Short-Pulse Electromagnetics

    CERN Document Server

    Mokole, Eric; UWB SP 10; UWB SP 11

    2014-01-01

    This book presents contributions of deep technical content and high scientific quality in the areas of electromagnetic theory, scattering, UWB antennas, UWB systems, ground penetrating radar (GPR), UWB communications, pulsed-power generation, time-domain computational electromagnetics, UWB compatibility, target detection and discrimination, propagation through dispersive media, and wavelet and multi-resolution techniques. Ultra-wideband (UWB), short-pulse (SP) electromagnetics are now being used for an increasingly wide variety of applications, including collision avoidance radar, concealed object detection, and communications. Notable progress in UWB and SP technologies has been achieved by investigations of their theoretical bases and improvements in solid-state manufacturing, computers, and digitizers. UWB radar systems are also being used for mine clearing, oil pipeline inspections, archeology, geology, and electronic effects testing. Like previous books in this series, Ultra-Wideband Short-Pulse Electrom...

  6. Ultra-Wideband, Short Pulse Electromagnetics 9

    CERN Document Server

    Rachidi, Farhad; Kaelin, Armin; Sabath, Frank; UWB SP 9

    2010-01-01

    Ultra-wideband (UWB), short-pulse (SP) electromagnetics are now being used for an increasingly wide variety of applications, including collision avoidance radar, concealed object detection, and communications. Notable progress in UWB and SP technologies has been achieved by investigations of their theoretical bases and improvements in solid-state manufacturing, computers, and digitizers. UWB radar systems are also being used for mine clearing, oil pipeline inspections, archeology, geology, and electronic effects testing. Ultra-wideband Short-Pulse Electromagnetics 9 presents selected papers of deep technical content and high scientific quality from the UWB-SP9 Conference, which was held from July 21-25, 2008, in Lausanne, Switzerland. The wide-ranging coverage includes contributions on electromagnetic theory, time-domain computational techniques, modeling, antennas, pulsed-power, UWB interactions, radar systems, UWB communications, and broadband systems and components. This book serves as a state-of-the-art r...

  7. Radiobiological response to ultra-short pulsed megavoltage electron beams of ultra-high pulse dose rate.

    Science.gov (United States)

    Beyreuther, Elke; Karsch, Leonhard; Laschinsky, Lydia; Leßmann, Elisabeth; Naumburger, Doreen; Oppelt, Melanie; Richter, Christian; Schürer, Michael; Woithe, Julia; Pawelke, Jörg

    2015-08-01

    In line with the long-term aim of establishing the laser-based particle acceleration for future medical application, the radiobiological consequences of the typical ultra-short pulses and ultra-high pulse dose rate can be investigated with electron delivery. The radiation source ELBE (Electron Linac for beams with high Brilliance and low Emittance) was used to mimic the quasi-continuous electron beam of a clinical linear accelerator (LINAC) for comparison with electron pulses at the ultra-high pulse dose rate of 10(10) Gy min(-1) either at the low frequency of a laser accelerator or at 13 MHz avoiding effects of prolonged dose delivery. The impact of pulse structure was analyzed by clonogenic survival assay and by the number of residual DNA double-strand breaks remaining 24 h after irradiation of two human squamous cell carcinoma lines of differing radiosensitivity. The radiation response of both cell lines was found to be independent from electron pulse structure for the two endpoints under investigation. The results reveal, that ultra-high pulse dose rates of 10(10) Gy min(-1) and the low repetition rate of laser accelerated electrons have no statistically significant influence (within the 95% confidence intervals) on the radiobiological effectiveness of megavoltage electrons.

  8. Thin film surface processing by UltraShort Laser Pulses (USLP)

    NARCIS (Netherlands)

    Scorticati, D.; Skolski, J.Z.P.; Römer, G.R.B.E.; Huis in 't Veld, A.J.; Workum, M.; Theelen, M.J.; Zeman, M.

    2012-01-01

    In this work, we studied the feasibility of surface texturing of thin molybdenum layers on a borosilicate glass substrate with Ultra-Short Laser Pulses (USLP). Large areas of regular diffraction gratings were produced consisting of Laserinduced periodic surface structures (LIPSS). A short pulsed

  9. Interaction of ultra-short ultra-intense laser pulses with under-dense plasmas

    International Nuclear Information System (INIS)

    Solodov, A.

    2000-12-01

    Different aspects of interaction of ultra-short ultra-intense laser pulses with underdense plasmas are studied analytically and numerically. These studies can be interesting for laser-driven electron acceleration in plasma, X-ray lasers, high-order harmonic generation, initial confinement fusion with fast ignition. For numerical simulations a fully-relativistic particle code WAKE was used, developed earlier at Ecole Polytechnique. It was modified during the work on the thesis in the part of simulation of ion motion, test electron motion, diagnostics for the field and plasma. The studies in the thesis cover the problems of photon acceleration in the plasma wake of a short intense laser pulse, phase velocity of the plasma wave in the Self-Modulated Laser Wake-Field Accelerator (SM LWFA), relativistic channeling of laser pulses with duration of the order of a plasma period, ion dynamics in the wake of a short intense laser pulse, plasma wave breaking. Simulation of three experiments on the laser pulse propagation in plasma and electron acceleration were performed. Among the main results of the thesis, it was found that reduction of the plasma wave phase velocity in the SM LWFA is crucial for electron acceleration, only if a plasma channel is used for the laser pulse guiding. Self-similar structures describing relativistic guiding of short laser pulses in plasmas were found and relativistic channeling of initially Gaussian laser pulses of a few plasma periods in duration was demonstrated. It was shown that ponderomotive force of a plasma wake excited by a short laser pulse forms a channel in plasma and plasma wave breaking in the channel was analyzed in detail. Effectiveness of electron acceleration by the laser field and plasma wave was compared and frequency shift of probe laser pulses by the plasma waves was found in conditions relevant to the current experiments. (author)

  10. Measurement of Ultra-Short Solitary Electromagnetic Pulses

    Directory of Open Access Journals (Sweden)

    Eva Gescheidtova

    2004-01-01

    Full Text Available In connection with the events of the last few years and with the increased number of terrorist activities, the problem of identification and measurement of electromagnetic weapons or other systems impact occurred. Among these are also microwave sources, which can reach extensive peak power of up to Pmax = 100 MW. Solitary, in some cases several times repeated, impulses lasting from tp E <1, 60>ns, cause the destruction of semiconductor junctions. These days we can find scarcely no human activity, where semiconductor structures are not used. The problem of security support of the air traffic, transportation, computer nets, banks, national strategic data canter’s, and other applications crops up. Several types of system protection from the ultra-short electromagnetic pulses present itself, passive and active protection. The analysis of the possible measuring methods, convenient for the identification and measurement of the ultra-short solitary electromagnetic pulses in presented in this paper; some of the methods were chosen and used for practical measurement. This work is part of Research object MSM262200022 "Research of microelectronic systems".

  11. Optical and electrical properties of SnO2 thin films after ultra-short pulsed laser annealing

    NARCIS (Netherlands)

    Scorticati, D.; Illiberi, A.; Römer, G.R.B.E.; Bor, T.; Ogieglo, W.; Klein Gunnewiek, M.; Lenferink, A.; Otto, C.; Skolski, J.Z.P.; Grob, F.; Lange, D.F. de; Huis in 't Veld, A.J.

    2013-01-01

    Ultra-short pulsed laser sources, with pulse durations in the ps and fs regime, are commonly exploited for cold ablation. However, operating ultra-short pulsed laser sources at fluence levels well below the ablation threshold allows for fast and selective thermal processing. The latter is especially

  12. Generation of Attosecond X-Ray Pulse through Coherent Relativistic Nonlinear Thomson Scattering

    CERN Document Server

    Lee, K; Jeong, Y U; Lee, B C; Park, S H

    2005-01-01

    In contrast to some recent experimental results, which state that the Nonlinear Thomson Scattered (NTS) radiation is incoherent, a coherent condition under which the scattered radiation of an incident laser pulse by a bunch of electrons can be coherently superposed has been investigated. The Coherent Relativistic Nonlinear Thomson Scattered (C-RNTS) radiation makes it possible utilizing the ultra-short pulse nature of NTS radiation with a bunch of electrons, such as plasma or electron beams. A numerical simulation shows that a 25 attosecond X-ray pulse can be generated by irradiating an ultra-intense laser pulse of 4x10(19) W/cm2 on an ultra-thin solid target of 50 nm thickness, which is commercially available. The coherent condition can be easily extended to an electron beam from accelerators. Different from the solid target, much narrower electron beam is required for the generation of an attosecond pulse. Instead, this condition could be applied for the generation of intense Compton scattered X-rays with a...

  13. Propagation and spatiotemporal coupling characteristics of ultra-short Gaussian vortex pulse

    Science.gov (United States)

    Nie, Jianye; Liu, Guodong; Zhang, Rongzhu

    2018-05-01

    Based on Collins diffraction integral formula, the propagation equation of ultra-short Gaussian vortex pulse beam has been derived. Using the equation, the intensity distribution variations of vortex pulse in the propagation process are calculated. Specially, the spatiotemporal coupling characteristics of ultra-short vortex beams are discussed in detail. The results show that some key parameters, such as transverse distance, transmission distance, pulse width and topological charge number will influence the spatiotemporal coupling characteristics significantly. With the increasing of transverse distance, the waveforms of the pulses distort obviously. And when transmission distance is far than 50 mm, the distribution curve of transverse intensity gradually changes into a Gaussian type. In addition, initial pulse width will affect the distribution of light field, however, when initial pulse width is larger than 3 fs, the spatiotemporal coupling effect will be insignificant. Topological charge number does not affect the time delay characteristics, since with the increasing of topological charge number, the waveform of the pulse distorts gradually but the time delay does not occur.

  14. Applications of ultra-short pulsed laser ablation: thin films deposition and fs/ns dual-pulse laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Teghil, R; De Bonis, A; Galasso, A; Santagata, A; Albano, G; Villani, P; Spera, D; Parisi, G P

    2008-01-01

    In this paper, we report a survey of two of the large number of possible practical applications of the laser ablation performed by an ultra-short pulse laser, namely pulsed laser deposition (PLD) and fs/ns dual-pulse laser-induced breakdown spectroscopy (DP-LIBS). These applications differ from those using just longer pulsed lasers as a consequence of the distinctive characteristics of the plasma produced by ultra-short laser beams. The most important feature of this plasma is the large presence of particles with nanometric size which plays a fundamental role in both applications.

  15. Optical soliton communication using ultra-short pulses

    CERN Document Server

    Sadegh Amiri, Iraj

    2015-01-01

    This brief analyzes the characteristics of a microring resonator (MRR) to perform communication using ultra-short soliton pulses. The raising of nonlinear refractive indices, coupling coefficients and radius of the single microring resonator leads to decrease in input power and round trips wherein the bifurcation occurs. As a result, bifurcation or chaos behaviors are seen at lower input power of 44 W, where the nonlinear refractive index is n2=3.2×10−20 m2/W. Using a decimal convertor system, these ultra-short signals can be converted into quantum information. Results show that multi solitons with FWHM and FSR of 10 pm and 600 pm can be generated respectively. The multi optical soliton with FWHM and FSR of 325 pm and 880 nm can be incorporated with a time division multiple access (TDMA) system wherein the transportation of quantum information is performed.

  16. Extending ultra-short pulse laser texturing over large area

    Energy Technology Data Exchange (ETDEWEB)

    Mincuzzi, G., E-mail: girolamo.mincuzzi@alphanov.com; Gemini, L.; Faucon, M.; Kling, R.

    2016-11-15

    Highlights: • We carried out metal surface texturing (Ripples, micro grooves, Spikes) using a high power, high repetition rate, industrial, Ultra-short pulses laser. • Extremely Fast processing is shown (Laser Scan speed as high as 90 m/s) with a polygon scanner head. • Stainless steel surface blackening with Ultra-short pulses laser has been obtained with unprecedented scanspeed. • Full SEM surface characterization was carried out for all the different structures obtained. • Reflectance measurements were carried out to characterize surface reflectance. - Abstract: Surface texturing by Ultra-Short Pulses Laser (UPL) for industrial applications passes through the use of both fast beam scanning systems and high repetition rate, high average power P, UPL. Nevertheless unwanted thermal effects are expected when P exceeds some tens of W. An interesting strategy for a reliable heat management would consists in texturing with a low fluence values (slightly higher than the ablation threshold) and utilising a Polygon Scanner Heads delivering laser pulses with unrepeated speed. Here we show for the first time that with relatively low fluence it is possible over stainless steel, to obtain surface texturing by utilising a 2 MHz femtosecond laser jointly with a polygonal scanner head in a relatively low fluence regime (0.11 J cm{sup −2}). Different surface textures (Ripples, micro grooves and spikes) can be obtained varying the scan speed from 90 m s{sup −1} to 25 m s{sup −1}. In particular, spikes formation process has been shown and optimised at 25 m s{sup −1} and a full morphology characterization by SEM has been carried out. Reflectance measurements with integrating sphere are presented to compare reference surface with high scan rate textures. In the best case we show a black surface with reflectance value < 5%.

  17. Theory and simulation of ultra-short pulse laser interactions

    Energy Technology Data Exchange (ETDEWEB)

    More, R; Walling, R; Price, D; Guethlein, G; Stewart, R; Libby, S; Graziani, F; Levatin, J [Lawrence Livermore National Lab., Livermore, CA (United States)

    1998-03-01

    This paper describes recent Livermore work aimed at building computational tools to describe ultra-short pulse laser plasmas. We discuss calculations of laser absorption, atomic data for high-charge ions, and a new idea for linear-response treatment of non-equilibrium phenomena near LTE. (author)

  18. XUV and x-ray elastic scattering of attosecond electromagnetic pulses on atoms

    Science.gov (United States)

    Rosmej, F. B.; Astapenko, V. A.; Lisitsa, V. S.

    2017-12-01

    Elastic scattering of electromagnetic pulses on atoms in XUV and soft x-ray ranges is considered for ultra-short pulses. The inclusion of the retardation term, non-dipole interaction and an efficient scattering tensor approximation allowed studying the scattering probability in dependence of the pulse duration for different carrier frequencies. Numerical calculations carried out for Mg, Al and Fe atoms demonstrate that the scattering probability is a highly nonlinear function of the pulse duration and has extrema for pulse carrier frequencies in the vicinity of the resonance-like features of the polarization charge spectrum. Closed expressions for the non-dipole correction and the angular dependence of the scattered radiation are obtained.

  19. Optical and electrical properties of SnO2 thin films after ultra-short pulsed laser annealing

    OpenAIRE

    Scorticati, D.; Illiberi, A.; Römer, G.R.B.E.; Bor, T.; Ogieglo, W.; Klein Gunnewiek, M.; Lenferink, A.; Otto, C.; Skolski, J.Z.P.; Grob, F.; Lange, D.F. de; Huis in 't Veld, A.J.

    2013-01-01

    Ultra-short pulsed laser sources, with pulse durations in the ps and fs regime, are commonly exploited for cold ablation. However, operating ultra-short pulsed laser sources at fluence levels well below the ablation threshold allows for fast and selective thermal processing. The latter is especially advantageous for the processing of thin films. A precise control of the heat affected zone, as small as tens of nanometers, depending on the material and laser conditions, can be achieved. It enab...

  20. Innovation: study of 'ultra-short' time reactions

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    This short article presents the new Elyse facility of Orsay-Paris 11 university for the study of ultra-short chemical and biochemical phenomena. Elyse uses the 'pump-probe' technique which consists in two perfectly synchronized electron and photon pulses. It comprises a 3 to 9 MeV electron accelerator with a HF gun photo-triggered with a laser. Elyse can initiate reactions using ultra-short electron pulses (radiolysis) or ultra-short photon pulses (photolysis). (J.S.)

  1. Erosion resistant anti-ice surfaces generated by ultra short laser pulses

    NARCIS (Netherlands)

    Del Cerro, D.A.; Römer, G.R.B.E.; Huis in't Veld, A.J.

    2010-01-01

    Wetting properties of a wide range of materials can be modified by accurate laser micromachining with ultra short laser pulses. Controlling the surface topography in a micro and sub-micrometer scale allows the generation of water-repellent surfaces, which remain dry and prevent ice accumulation

  2. Selective laser melting of hypereutectic Al-Si40-powder using ultra-short laser pulses

    Science.gov (United States)

    Ullsperger, T.; Matthäus, G.; Kaden, L.; Engelhardt, H.; Rettenmayr, M.; Risse, S.; Tünnermann, A.; Nolte, S.

    2017-12-01

    We investigate the use of ultra-short laser pulses for the selective melting of Al-Si40-powder to fabricate complex light-weight structures with wall sizes below 100 μ {m} combined with higher tensile strength and lower thermal expansion coefficient in comparison to standard Al-Si alloys. During the cooling process using conventional techniques, large primary silicon particles are formed which impairs the mechanical and thermal properties. We demonstrate that these limitations can be overcome using ultra-short laser pulses enabling the rapid heating and cooling in a non-thermal equilibrium process. We analyze the morphology characteristics and micro-structures of single tracks and thin-walled structures depending on pulse energy, repetition rate and scanning velocity utilizing pulses with a duration of 500 {fs} at a wavelength of 1030 {nm}. The possibility to specifically change and optimize the microstructure is shown.

  3. Correction of echo shift in reconstruction processing for ultra-short TE pulse sequence

    International Nuclear Information System (INIS)

    Takizawa, Masahiro; Ootsuka, Takehiro; Abe, Takayuki; Takahashi, Tetsuhiko

    2010-01-01

    An ultra-short echo time (TE) pulse sequence is composed of a radial sampling that acquires echo signals radially in the K-space and a half-echo acquisition that acquires only half of the echo signal. The shift in the position of the echo signal (echo shift) caused by the timing errors in the gradient magnetic field pulses affects the image quality in the radial sampling with the half-echo acquisition. To improve image quality, we have developed a signal correction algorithm that detects and eliminates this echo shift during reconstruction by performing a pre-scan within 10 seconds. The results showed that image quality is improved under oblique and/or off-centering conditions that frequently cause image distortion due to hardware error. In conclusion, we have developed a robust ultra-short TE pulse sequence that allows wide latitude in the scan parameters, including oblique and off-centering conditions. (author)

  4. Heat wave propagation in a thin film irradiated by ultra-short laser pulses

    International Nuclear Information System (INIS)

    Yoo, Jae Gwon; Kim, Cheol Jung; Lim, C. H.

    2004-01-01

    A thermal wave solution of a hyperbolic heat conduction equation in a thin film is developed on the basis of the Green's function formalism. Numerical computations are carried out to investigate the temperature response and the propagation of the thermal wave inside a thin film due to a heat pulse generated by ultra-short laser pulses with various laser pulse durations and thickness of the film

  5. Chromium carbide thin films deposited by ultra-short pulse laser deposition

    International Nuclear Information System (INIS)

    Teghil, R.; Santagata, A.; De Bonis, A.; Galasso, A.; Villani, P.

    2009-01-01

    Pulsed laser deposition performed by a laser with a pulse duration of 250 fs has been used to deposit films from a Cr 3 C 2 target. Due to the different processes involved in the laser ablation when it is performed by an ultra-short pulse source instead of a conventional short pulse one, it has been possible to obtain in vacuum films containing only one type of carbide, Cr 3 C 2 , as shown by X-ray photoelectron spectroscopy. On the other hand, Cr 3 C 2 is not the only component of the films, since a large amount of amorphous carbon is also present. The films, deposited at room temperature, are amorphous and seem to be formed by the coalescence of a large number of particles with nanometric size. The film composition can be explained in terms of thermal evaporation from particles ejected from the target.

  6. Annealing of SnO2 thin films by ultra-short laser pulses

    NARCIS (Netherlands)

    Scorticati, D.; Illiberi, A.; Bor, T.; Eijt, S.W.H.; Schut, H.; Römer, G.R.B.E.; Lange, D.F. de; Huis In't Veld, A.J.

    2014-01-01

    Post-deposition annealing by ultra-short laser pulses can modify the optical properties of SnO2 thin films by means of thermal processing. Industrial grade SnO2 films exhibited improved optical properties after picosecond laser irradiation, at the expense of a slightly increased sheet resistance

  7. Interaction of ultra-short ultra-intense laser pulses with under-dense plasmas; Interaction d'impulsions laser ultra-courtes et ultra-intenses avec des plasmas sous denses

    Energy Technology Data Exchange (ETDEWEB)

    Solodov, A

    2000-12-15

    Different aspects of interaction of ultra-short ultra-intense laser pulses with underdense plasmas are studied analytically and numerically. These studies can be interesting for laser-driven electron acceleration in plasma, X-ray lasers, high-order harmonic generation, initial confinement fusion with fast ignition. For numerical simulations a fully-relativistic particle code WAKE was used, developed earlier at Ecole Polytechnique. It was modified during the work on the thesis in the part of simulation of ion motion, test electron motion, diagnostics for the field and plasma. The studies in the thesis cover the problems of photon acceleration in the plasma wake of a short intense laser pulse, phase velocity of the plasma wave in the Self-Modulated Laser Wake-Field Accelerator (SM LWFA), relativistic channeling of laser pulses with duration of the order of a plasma period, ion dynamics in the wake of a short intense laser pulse, plasma wave breaking. Simulation of three experiments on the laser pulse propagation in plasma and electron acceleration were performed. Among the main results of the thesis, it was found that reduction of the plasma wave phase velocity in the SM LWFA is crucial for electron acceleration, only if a plasma channel is used for the laser pulse guiding. Self-similar structures describing relativistic guiding of short laser pulses in plasmas were found and relativistic channeling of initially Gaussian laser pulses of a few plasma periods in duration was demonstrated. It was shown that ponderomotive force of a plasma wake excited by a short laser pulse forms a channel in plasma and plasma wave breaking in the channel was analyzed in detail. Effectiveness of electron acceleration by the laser field and plasma wave was compared and frequency shift of probe laser pulses by the plasma waves was found in conditions relevant to the current experiments. (author)

  8. Electron emission from insulator surfaces by ultra-short laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Acuna, M; Gravielle, M S, E-mail: mario@iafe.uba.a, E-mail: msilvia@iafe.uba.a [Institutes de AstronomIa y Fisica del Espacio, Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires (Argentina)

    2009-11-01

    Photoelectron emission from insulator surfaces induced by ultra-short laser pulses is studied within a time-dependent distorted wave method. The proposed approach combines the Volkov phase, which takes into account the laser interaction, with a simple representation of the unperturbed surface states, given by the Tight-binding method. The model is applied to evaluate the photoelectron emission from a LiF(001) surface, finding effects of interference produced by the crystal lattice.

  9. Complex {PT}-symmetric extensions of the nonlinear ultra-short light pulse model

    Science.gov (United States)

    Yan, Zhenya

    2012-11-01

    The short pulse equation u_{xt}=u+\\frac{1}{2}(u^2u_x)_x is PT symmetric, which arises in nonlinear optics for the ultra-short pulse case. We present a family of new complex PT-symmetric extensions of the short pulse equation, i[(iu_x)^{\\sigma }]_t=au+bu^m+ic[u^n(iu_x)^{\\epsilon }]_x \\,\\, (\\sigma ,\\, \\epsilon ,\\,a,\\,b,\\,c,\\,m,\\,n \\in {R}), based on the complex PT-symmetric extension principle. Some properties of these equations with some chosen parameters are studied including the Hamiltonian structures and exact solutions such as solitary wave solutions, doubly periodic wave solutions and compacton solutions. Our results may be useful to understand complex PT-symmetric nonlinear physical models. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Quantum physics with non-Hermitian operators’.

  10. Ultra short pulse laser generated surface textures for anti-ice applications in aviation

    NARCIS (Netherlands)

    Römer, G.W.; Del Cerro, D.A.; Sipkema, R.C.J.; Groenendijk, M.N.W.; Huis in 't Veld, A.J.

    2009-01-01

    By laser ablation with ultra short laser pulses in the pico- and femto-second range, well controlled dual scaled micro- and nano-scaled surface textures can be obtained. The micro-scale of the texture is mainly determined by the dimensions of the laser spot, whereas the superimposed nano-structure

  11. Generation of Attosecond x-ray pulse using Coherent Relativistic Nonlinear Thomson Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ki Tae; Park, Seong Hee; Cha, Yong Ho; Jeong, Young Uk; Lee, Byung Cheol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2005-07-01

    Relativistic plasma, a new regime in physics, has been opened due to the development in ultra-intense laser technology during the past decade. Not only the fundamental aspect of relativistic plasma are attractive but also its potential application seems to be significant especially in the area of the generation of high energy particles such as electrons, ions, positrons, and {gamma}-rays. The generation of x-ray radiation with a pulse width of sub-femtoseconds presently draws much attention because such a radiation allows one to explore ultra-fast dynamics of electrons and nucleons. Several schemes have been proposed and/or demonstrated to generate an ultra-short x-ray pulse: the relativistic Doppler shift of a backscattered laser pulse by a relativistic electron beam, the harmonic frequency upshift of a laser pulse by relativistic nonlinear motion of electrons, high order harmonic generation in the interaction of intense laser pulse with noble gases and solids The train of a few 100 attosecond pulses has been observed in the case of laser-noble gas interaction. When a low-intensity laser pulse is irradiated on an electron, the electron undergoes a harmonic oscillatory motion and generates a dipole radiation with the same frequency as the incident laser pulse, which is called Thomson scattering. As the laser intensity increases, the oscillatory motion of the electron becomes relativistically nonlinear, which leads to the generation of harmonic radiations, referred to as Relativistic Nonlinear Thomson Scattered (RNTS) radiation. The motion of the electron begins to be relativistic as the following normalized vector potential approaches to unity: a{sub 0}=8.5 x 10{sup -10} {lambda}{iota}{sup 1/2} , (1) where {lambda} is the laser wavelength in {mu}m and I the laser intensity in W/cm{sup 2} The RNTS radiation has been investigated in analytical ways. Recently, indebted to the development of the ultra-intense laser pulse, experiments on RNTS radiation have been carried

  12. Computational modeling of ultra-short-pulse ablation of enamel

    Energy Technology Data Exchange (ETDEWEB)

    London, R.A.; Bailey, D.S.; Young, D.A. [and others

    1996-02-29

    A computational model for the ablation of tooth enamel by ultra-short laser pulses is presented. The role of simulations using this model in designing and understanding laser drilling systems is discussed. Pulses of duration 300 sec and intensity greater than 10{sup 12} W/cm{sup 2} are considered. Laser absorption proceeds via multi-photon initiated plasma mechanism. The hydrodynamic response is calculated with a finite difference method, using an equation of state constructed from thermodynamic functions including electronic, ion motion, and chemical binding terms. Results for the ablation efficiency are presented. An analytic model describing the ablation threshold and ablation depth is presented. Thermal coupling to the remaining tissue and long-time thermal conduction are calculated. Simulation results are compared to experimental measurements of the ablation efficiency. Desired improvements in the model are presented.

  13. Short Pulse High Brightness X-ray Production with the PLEIADES Thomson Scattering Source

    International Nuclear Information System (INIS)

    Anderson, S.G.; Barty, C.P.J.; Betts, S.M.; Brown, W.J.; Crane, J.K.; Cross, R.R.; Fittinghoff, D.N.; Gibson, D.J.; Hartemann, F.V.; Kuba, J.; LaSage, G.P.; Rosenzweig, J.B.; Slaughter, D.R.; Springer, P.T.; Tremaine, A.M.

    2003-01-01

    We describe PLEIADES, a compact, tunable, high-brightness, ultra-short pulse, Thomson x-ray source. The peak brightness of the source is expected to exceed 10 20 photons/s/0.1% bandwidth/mm 2 /mrad 2 . Initial results are reported and compared to theoretical calculations

  14. Ultra-wideband short-pulse radar with range accuracy for short range detection

    Energy Technology Data Exchange (ETDEWEB)

    Rodenbeck, Christopher T; Pankonin, Jeffrey; Heintzleman, Richard E; Kinzie, Nicola Jean; Popovic, Zorana P

    2014-10-07

    An ultra-wideband (UWB) radar transmitter apparatus comprises a pulse generator configured to produce from a sinusoidal input signal a pulsed output signal having a series of baseband pulses with a first pulse repetition frequency (PRF). The pulse generator includes a plurality of components that each have a nonlinear electrical reactance. A signal converter is coupled to the pulse generator and configured to convert the pulsed output signal into a pulsed radar transmit signal having a series of radar transmit pulses with a second PRF that is less than the first PRF.

  15. A high-order corrected description of ultra-short and tightly focused laser pulses, and their electron acceleration in vacuum

    International Nuclear Information System (INIS)

    Zhang, J.T.; Wang, P.X.; Kong, Q.; Chen, Z.; Ho, Y.K.

    2007-01-01

    Field expressions are derived for ultra-short, tightly focused laser pulses up to the second-order temporal correction and seventh-order spatial correction. To evaluate the importance of these corrections, we simulate these fields and investigate the final energy of the accelerated electrons. We vary the order of the corrected expressions, the pulse duration, and the beam waist. We find that electron capture is still an important and generic phenomenon in ultra-short, tightly focused laser pulses. While small differences in the electron acceleration are obtained for various orders of the corrected field equations relative to the paraxial field equations, there is no qualitative difference in the behavior of the electron. Furthermore, the temporal and spatial corrections are found to be correlated

  16. Ultra-short laser pulses: review of the 3. physics talks, September 17-18, 1998

    International Nuclear Information System (INIS)

    Lemoine, P.

    1999-01-01

    This book deals with the operation of lasers with ultra-short pulses and with the laser beam-matter interaction. The applications in concern are: the acceleration of particles, the production of X-ray or photon sources, the micro-machining, the fast ignition in thermonuclear fusion, the production of thin films and the surgery of cornea. (J.S.)

  17. Atomistic simulations of ultra-short pulse laser ablation of aluminum: validity of the Lambert-Beer law

    Science.gov (United States)

    Eisfeld, Eugen; Roth, Johannes

    2018-05-01

    Based on hybrid molecular dynamics/two-temperature simulations, we study the validity of the application of Lambert-Beer's law, which is conveniently used in various modeling approaches of ultra-short pulse laser ablation of metals. The method is compared to a more rigorous treatment, which involves solving the Helmholtz wave equation for different pulse durations ranging from 100 fs to 5 ps and a wavelength of 800 nm. Our simulations show a growing agreement with increasing pulse durations, and we provide appropriate optical parameters for all investigated pulse durations.

  18. Ultra-short laser pulse ablation using shear-force feedback: Femtosecond laser induced breakdown spectroscopy feasibility study

    International Nuclear Information System (INIS)

    Samek, Ota; Kurowski, Andre; Kittel, Silke; Kukhlevsky, Sergei; Hergenroeder, Roland

    2005-01-01

    This work reports on a feasibility study of proximity ablation using femtosecond pulses. Ultra-short pulses were launched to a bare tapered optical fiber and delivered to the sample. The tip-sample distance was controlled by means of shear-force feedback. Consequently, ablation craters with submicrometer dimensions were obtained. Potential analytical applications for Laser Induced Breakdown Spectroscopy (LIBS) technique, such as e.g. inclusions in steel or bio cells, are suggested

  19. Hydrodynamic model for ultra-short pulse ablation of hard dental tissue

    Energy Technology Data Exchange (ETDEWEB)

    London, R.A.; Bailey, D.S.; Young, D.A.; Alley, W.E.; Feit, M.D.; Rubenchik, A.M. [Lawrence Livermore National Lab., CA (United States); Neev, J. [Beckman Laser Inst., Irvine, CA (United States)

    1996-02-29

    A computational model for the ablation of tooth enamel by ultra-short laser pulses is presented. The role of simulations using this model in designing and understanding laser drilling systems is discussed. Pulses of duration 300 fsec and intensity greater than 10{sup 12} W/cm{sup 2} are considered. Laser absorption proceeds via multi-photon initiated plasma mechanism. The hydrodynamic response is calculated with a finite difference method, using an equation of state constructed from thermodynamic functions including electronic, ion motion, and chemical binding terms. Results for the ablation efficiency are presented. An analytic model describing the ablation threshold and ablation depth is presented. Thermal coupling to the remaining tissue and long-time thermal conduction are calculated. Simulation results are compared to experimental measurements of the ablation efficiency. Desired improvements in the model are presented.

  20. Two-dimensional angular energy spectrum of electrons accelerated by the ultra-short relativistic laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Borovskiy, A. V. [Department of Computer Science and Cybernetics, Baikal State University of Economics and Law, 11 Lenin Street, Irkutsk 664003 (Russian Federation); Galkin, A. L. [Coherent and Nonlinear Optics Department, A.M. Prokhorov General Physics Institute of the RAS, 38 Vavilov Street, Moscow 119991 (Russian Federation); Department of Physics of MBF, Pirogov Russian National Research Medical University, 1 Ostrovitianov Street, Moscow 117997 (Russian Federation); Kalashnikov, M. P., E-mail: galkin@kapella.gpi.ru [Max-Born-Institute for Nonlinear Optics and Short-Time Spectroscopy, 2a Max-Born-Strasse, Berlin 12489 (Germany)

    2015-04-15

    The new method of calculating energy spectra of accelerated electrons, based on the parameterization by their initial coordinates, is proposed. The energy spectra of electrons accelerated by Gaussian ultra-short relativistic laser pulse at a selected angle to the axis of the optical system focusing the laser pulse in a low density gas are theoretically calculated. The two-peak structure of the electron energy spectrum is obtained. Discussed are the reasons for its appearance as well as an applicability of other models of the laser field.

  1. The interaction of super-intense ultra-short laser pulse and micro-clusters with large atomic clusters

    International Nuclear Information System (INIS)

    Miao Jingwei; Yang Chaowen; An Zhu; Yuan Xuedong; Sun Weiguo; Luo Xiaobing; Wang Hu; Bai Lixing; Shi Miangong; Miao Lei; Zhen Zhijian; Gu Yuqin; Liu Hongjie; Zhu Zhouseng; Sun Liwei; Liao Xuehua

    2007-01-01

    The fusion mechanism of large deuterium clusters (100-1000 Atoms/per cluster) in super-intense ultra-short laser pulse field, Coulomb explosions of micro-cluster in solids, gases and Large-size clusters have been studied using the interaction of a high-intensity femtosecond laser pulses with large deuterium clusters, collision of high-quality beam of micro-cluster from 2.5 MV van de Graaff accelerator with solids, gases and large clusters. The experimental advance of the project is reported. (authors)

  2. An ultra short pulse reconstruction software applied to the GEMINI high power laser system

    Energy Technology Data Exchange (ETDEWEB)

    Galletti, Mario, E-mail: mario.gall22@gmail.com [INFN – LNF, Via Enrico Fermi 40, 00044 Frascati (Italy); Galimberti, Marco [Central Laser Facility, Rutherford Appleton Laboratory, Didcot (United Kingdom); Hooker, Chris [Central Laser Facility, Rutherford Appleton Laboratory, Didcot (United Kingdom); University of Oxford, Oxford (United Kingdom); Chekhlov, Oleg; Tang, Yunxin [Central Laser Facility, Rutherford Appleton Laboratory, Didcot (United Kingdom); Bisesto, Fabrizio Giuseppe [INFN – LNF, Via Enrico Fermi 40, 00044 Frascati (Italy); Curcio, Alessandro [INFN – LNF, Via Enrico Fermi 40, 00044 Frascati (Italy); Sapienza – University of Rome, P.le Aldo Moro, 2, 00185 Rome (Italy); Anania, Maria Pia [INFN – LNF, Via Enrico Fermi 40, 00044 Frascati (Italy); Giulietti, Danilo [Physics Department of the University and INFN, Pisa (Italy)

    2016-09-01

    The GRENOUILLE traces of Gemini pulses (15 J, 30 fs, PW, shot per 20 s) were acquired in the Gemini Target Area PetaWatt at the Central Laser Facility (CLF), Rutherford Appleton Laboratory (RAL). A comparison between the characterizations of the laser pulse parameters made using two different types of algorithms: Video Frog and GRenouille/FrOG (GROG), was made. The temporal and spectral parameters came out to be in great agreement for the two kinds of algorithms. In this experimental campaign it has been showed how GROG, the developed algorithm, works as well as VideoFrog algorithm with the PetaWatt pulse class. - Highlights: • Integration of the diagnostic tool on high power laser. • Validation of the GROG algorithm in comparison to a well-known commercial available software. • Complete characterization of the GEMINI ultra-short high power laser pulse.

  3. Generation of ultra-short relativistic-electron-bunch by a laser wakefield

    NARCIS (Netherlands)

    Khachatryan, A.G.; Boller, Klaus J.; van Goor, F.A.

    2003-01-01

    The possibility of the generation of an ultra-short (about one micron long) relativistic (up to a few GeVs) electron-bunch in a moderately nonlinear laser wakefield excited in an underdense plasma by an intense laser pulse is investigated. The ultra-short bunch is formed by trapping, effective

  4. Dynamics of ultra-short electromagnetic pulses in the system of chiral carbon nanotube waveguides in the presence of external alternating electric field

    Energy Technology Data Exchange (ETDEWEB)

    Konobeeva, N.N., E-mail: yana_nn@inbox.ru [Volgograd State University, University Avenue 100, Volgograd 400062 (Russian Federation); Belonenko, M.B. [Volgograd Institute of Business, Uzhno-ukrainskaya str., Volgograd 400048 (Russian Federation)

    2014-04-01

    The paper addresses the propagation of ultra-short optical pulses in chiral carbon nanotubes in the presence of external alternating electric field. Following the assumption that the considered optical pulses are represented in the form of discrete solitons, we analyze the wave equation for the electromagnetic field and consider the dynamics of pulses in external field, their initial amplitudes and frequencies.

  5. High-energy, short-pulse, carbon-dioxide lasers

    International Nuclear Information System (INIS)

    Fenstermacher, C.A.

    1979-01-01

    Lasers for fusion application represent a special class of short-pulse generators; not only must they generate extremely short temporal pulses of high quality, but they must do this at ultra-high powers and satisfy other stringent requirements by this application. This paper presents the status of the research and development of carbon-dioxide laser systems at the Los Alamos Scientific Laboratory, vis-a-vis the fusion requirements

  6. 2nd International Conference on Ultra-Wideband, Short-Pulse Electromagnetics

    CERN Document Server

    Felsen, Leopold

    1995-01-01

    The papers published in this volume were presented at the Second International Conference on Ultra-WidebandiShort-Pulse (UWB/SP) Electromagnetics, ApriIS-7, 1994. To place this second international conference in proper perspective with respect to the first conference held during October 8-10, 1992, at Polytechnic University, some background information is necessary. As we had hoped, the first conference struck a responsive cord, both in timeliness and relevance, among the electromagnetic community 1. Participants at the first conference already inquired whether and when a follow-up meeting was under consideration. The first concrete proposal in this direction was made a few months after the first conference by Prof. A. Terzuoli of the Air Force Institute of Technology (AFIT), Dayton, Ohio, who has been a strong advocate of time-domain methods and technologies. He initially proposed a follow-up time-domain workshop under AFIT auspices. Realizing that interest in this subject is lodged also at other Air Force i...

  7. Fiscal 1998 R and D report on femtosecond technology (ultra-short pulse optoelectronics technology); 1998 nendo femuto byo technology no kenkyu kaihatsu (chotan pulse hikari electronics gijutsu kaihatsu) seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This report reports the result of the fiscal 1998 R and D on femtosecond technology supported by NEDO. For creation of industrial basic technologies supporting the advanced information society in the 21st century, ultra-high speed electronics technology including new functions beyond the speed limit of conventional electronics technologies is indispensable. From such viewpoint, this R and D aims at establishment of the basic technology necessary for ultra- high speed electronics technology through R and D of technology controlling conditions of beams and electrons in a femtosecond (10{sup -15}-10{sup -12} seconds) region. In fiscal 1998, this project first succeeded in fabrication of a prototype pulse compressor by using semiconductors, and developed a new pulse compressing method by using fibers to generate ultra-short pulse of 38fs. By developing new materials for intersubband transition where ultra-high speed responses can be expected, optical absorption by intersubband transition was first confirmed at optical communication wavelength. The main result for every theme is reported and explained. (NEDO)

  8. Spectral phase encoding of ultra-short optical pulse in time domain for OCDMA application.

    Science.gov (United States)

    Wang, Xu; Wada, Naoya

    2007-06-11

    We propose a novel reconfigurable time domain spectral phase encoding (SPE) scheme for coherent optical code-division-multiple-access application. In the proposed scheme, the ultra-short optical pulse is stretched by dispersive device and the SPE is done in time domain using high speed phase modulator. The time domain SPE scheme is robust to wavelength drift of the light source and is very flexible and compatible with the fiber optical system. Proof-of-principle experiments of encoding with 16-chip, 20 GHz/chip binary-phase-shift-keying codes and 1.25 Gbps data transmission have been successfully demonstrated together with an arrayed-wave-guide decoder.

  9. Ultra-short pulse delivery at high average power with low-loss hollow core fibers coupled to TRUMPF's TruMicro laser platforms for industrial applications

    Science.gov (United States)

    Baumbach, S.; Pricking, S.; Overbuschmann, J.; Nutsch, S.; Kleinbauer, J.; Gebs, R.; Tan, C.; Scelle, R.; Kahmann, M.; Budnicki, A.; Sutter, D. H.; Killi, A.

    2017-02-01

    Multi-megawatt ultrafast laser systems at micrometer wavelength are commonly used for material processing applications, including ablation, cutting and drilling of various materials or cleaving of display glass with excellent quality. There is a need for flexible and efficient beam guidance, avoiding free space propagation of light between the laser head and the processing unit. Solid core step index fibers are only feasible for delivering laser pulses with peak powers in the kW-regime due to the optical damage threshold in bulk silica. In contrast, hollow core fibers are capable of guiding ultra-short laser pulses with orders of magnitude higher peak powers. This is possible since a micro-structured cladding confines the light within the hollow core and therefore minimizes the spatial overlap between silica and the electro-magnetic field. We report on recent results of single-mode ultra-short pulse delivery over several meters in a lowloss hollow core fiber packaged with industrial connectors. TRUMPF's ultrafast TruMicro laser platforms equipped with advanced temperature control and precisely engineered opto-mechanical components provide excellent position and pointing stability. They are thus perfectly suited for passive coupling of ultra-short laser pulses into hollow core fibers. Neither active beam launching components nor beam trackers are necessary for a reliable beam delivery in a space and cost saving packaging. Long term tests with weeks of stable operation, excellent beam quality and an overall transmission efficiency of above 85 percent even at high average power confirm the reliability for industrial applications.

  10. Multiloop soliton and multibreather solutions of the short pulse model equation

    International Nuclear Information System (INIS)

    Matsuno, Yoshimasa

    2007-01-01

    We develop a systematic procedure for constructing the multisoliton solutions of the short pulse (SP) model equation which describes the propagation of ultra-short pulses in nonlinear medica. We first introduce a novel hodograph transformation to convert the SP equation into the sine-Gordon (sG) equation. With the soliton solutions of the sG equation, the system of linear partial differential equations governing the inverse mapping can be integrated analytically to obtain the soliton solutions of the SP equation in the form of the parametric representation. By specifying the soliton parameters, we obtain the multiloop and multibreather solutions. We investigate the asymptotic behavior of both solutions and confirm their solitonic feature. The nonsingular breather solutions may play an important role in studying the propagation of ultra-short pulses in an optical fibre. (author)

  11. Ultra-short laser processing of transparent material at the interface to liquid

    International Nuclear Information System (INIS)

    Boehme, R; Pissadakis, S; Ehrhardt, M; Ruthe, D; Zimmer, K

    2006-01-01

    Similarly to laser-induced backside wet etching (LIBWE) with nanosecond ultraviolet (ns UV) laser pulses, the irradiation of the solid/liquid interface of fused silica with sub-picosecond (sub-ps) UV and femtosecond near infrared (fs NIR) laser pulses results in etching of the fused silica surface and deposition of decomposition products from liquid. Furthermore, the etch threshold is reduced compared with both direct ablation with an fs laser in air and backside etching with UV ns pulses. Using 0.5 M pyrene/toluene as absorbing liquid, the thresholds were determined to be 70 mJ cm -2 (sub-ps UV) and 330 mJ cm -2 (fs NIR). Furthermore, an almost linear increase in the etch rate with increasing laser fluence was found. The roughness of surfaces backside etched with ultra-short pulses is higher in comparison with ns pulses but lower than that obtained using direct fs laser ablation. Hence a combination of processes involved in fs laser ablation and ns backside etching can be expected. The processes at the ultra-short pulse laser irradiated solid/liquid interface are discussed, considering the effects of ultra-fast heating, multi-photon absorption processes, as well as defect generation in the materials

  12. Ultra-intense, short pulse laser-plasma interactions with applications to the fast ignitor

    International Nuclear Information System (INIS)

    Wilks, S.C.; Kruer, W.L.; Young, P.E.; Hammer, J.; Tabak, M.

    1995-04-01

    Due to the advent of chirped pulse amplification (CPA) as an efficient means of creating ultra-high intensity laser light (I > 5x10 17 W/cm 2 ) in pulses less than a few picoseconds, new ideas for achieving ignition and gain in DT targets with less than 1 megajoule of input energy are currently being pursued. Two types of powerful lasers are employed in this scheme: (1) channeling beams and (2) ignition beams. The current state of laser-plasma interactions relating to this fusion scheme will be discussed. In particular, plasma physics issues in the ultra-intense regime are crucial to the success of this scheme. We compare simulation and experimental results in this highly nonlinear regime

  13. Multifunctional gold nanorods for selective plasmonic photothermal therapy in pancreatic cancer cells using ultra-short pulse near-infrared laser irradiation.

    Science.gov (United States)

    Patino, Tania; Mahajan, Ujjwal; Palankar, Raghavendra; Medvedev, Nikolay; Walowski, Jakob; Münzenberg, Markus; Mayerle, Julia; Delcea, Mihaela

    2015-03-12

    Gold nanorods (AuNRs) have attracted considerable attention in plasmonic photothermal therapy for cancer treatment by exploiting their selective and localized heating effect due to their unique photophysical properties. Here we describe a strategy to design a novel multifunctional platform based on AuNRs to: (i) specifically target the adenocarcinoma MUC-1 marker through the use of the EPPT-1 peptide, (ii) enhance cellular uptake through a myristoylated polyarginine peptide (MPAP) and (iii) selectively induce cell death by ultra-short near infrared laser pulses. We used a biotin-avidin based approach to conjugate EPPT-1 and MPAP to AuNRs. Dual-peptide (EPPT-1+MPAP) labelled AuNRs showed a significantly higher uptake by pancreatic ductal adenocarcinoma cells when compared to their single peptide or avidin conjugated counterparts. In addition, we selectively induced cell death by ultra-short near infrared laser pulses in small target volumes (∼1 μm3), through the creation of plasmonic nanobubbles that lead to the destruction of a local cell environment. Our approach opens new avenues for conjugation of multiple ligands on AuNRs targeting cancer cells and tumors and it is relevant for plasmonic photothermal therapy.

  14. Ultra-intense, short pulse laser-plasma interactions with applications to the fast ignitor

    Energy Technology Data Exchange (ETDEWEB)

    Wilks, S.C.; Kruer, W.L.; Young, P.E.; Hammer, J.; Tabak, M.

    1995-04-01

    Due to the advent of chirped pulse amplification (CPA) as an efficient means of creating ultra-high intensity laser light (I > 5{times}10{sup 17} W/cm{sup 2}) in pulses less than a few picoseconds, new ideas for achieving ignition and gain in DT targets with less than 1 megajoule of input energy are currently being pursued. Two types of powerful lasers are employed in this scheme: (1) channeling beams and (2) ignition beams. The current state of laser-plasma interactions relating to this fusion scheme will be discussed. In particular, plasma physics issues in the ultra-intense regime are crucial to the success of this scheme. We compare simulation and experimental results in this highly nonlinear regime.

  15. New solid laser: Ceramic laser. From ultra stable laser to ultra high output laser

    International Nuclear Information System (INIS)

    Ueda, Kenichi

    2006-01-01

    An epoch-making solid laser is developed. It is ceramic laser, polycrystal, which is produced as same as glass and shows ultra high output. Ti 3+ :Al 2 O 3 laser crystal and the CPA (chirped pulse amplification) technique realized new ultra high output lasers. Japan has developed various kinds of ceramic lasers, from 10 -2 to 67 x 10 3 w average output, since 1995. These ceramic lasers were studied by gravitational radiation astronomy. The scattering coefficient of ceramic laser is smaller than single crystals. The new fast ignition method is proposed by Institute of Laser Engineering of Osaka University, Japan. Ultra-intense short pulse laser can inject the required energy to the high-density imploded core plasma within the core disassembling time. Ti 3+ :Al 2 O 3 crystal for laser, ceramic YAG of large caliber for 100 kW, transparent laser ceramic from nano-crystals, crystal grain and boundary layer between grains, the scattering coefficient of single crystal and ceramic, and the derived release cross section of Yb:YAG ceramic are described. (S.Y.)

  16. Ultrawide spectral broadening and compression of single extremely short pulses in the visible, uv-vuv, and middle infrared by high-order stimulated Raman scattering

    International Nuclear Information System (INIS)

    Kalosha, V. P.; Herrmann, J.

    2003-01-01

    We present the results of a comprehensive analytical and numerical study of ultrawide spectral broadening and compression of isolated extremely short visible, uv-vuv and middle infrared (MIR) pulses by high-order stimulated Raman scattering in hollow waveguides. Spectral and temporal characteristics of the output pulses and the mechanism of pulse compression using dispersion of the gas filling and output glass window are investigated without the slowly varying envelope approximation. Physical limitations due to phase mismatch, velocity walk off, and pump-pulse depletion as well as improvements through the use of pump-pulse sequences and dispersion control are studied. It is shown that phase-locked pulses as short as ∼2 fs in the visible and uv-vuv, and 6.5 fs in the MIR can be generated by coherent scattering in impulsively excited Raman media without the necessity of external phase control. Using pump-pulse sequences, shortest durations in the range of about 1 fs for visible and uv-vuv probe pulses are predicted

  17. Hosing, sausaging, filamentation and side-scatter of a high-intensity short-pulse laser in an under-dense plasma

    International Nuclear Information System (INIS)

    Najmudin, Z.; Krushelnick, K.; Clark, E.L.; Salvati, M.; Santala, M.I.K.; Tatarakis, M.; Dangor, A.E.

    2000-01-01

    Previous studies of high-intensity short-pulse laser beams propagating in under-dense plasma have relied on spectrally integrated Thomson scattering images. Though interesting, many significant features of the interaction cannot be diagnosed by this method. We report on shadow-graphy and spectrally resolved Thomson scattering of such an interaction. These images reveal many processes previously predicted but unseen, such as the Raman side-scatter and filamentation instabilities. Also the interaction is shown to clearly demonstrate many propagation instabilities such as 'sausaging' and 'hosing' for the first time. (authors)

  18. Radiobiological influence of megavoltage electron pulses of ultra-high pulse dose rate on normal tissue cells.

    Science.gov (United States)

    Laschinsky, Lydia; Karsch, Leonhard; Leßmann, Elisabeth; Oppelt, Melanie; Pawelke, Jörg; Richter, Christian; Schürer, Michael; Beyreuther, Elke

    2016-08-01

    Regarding the long-term goal to develop and establish laser-based particle accelerators for a future radiotherapeutic treatment of cancer, the radiobiological consequences of the characteristic short intense particle pulses with ultra-high peak dose rate, but low repetition rate of laser-driven beams have to be investigated. This work presents in vitro experiments performed at the radiation source ELBE (Electron Linac for beams with high Brilliance and low Emittance). This accelerator delivered 20-MeV electron pulses with ultra-high pulse dose rate of 10(10) Gy/min either at the low pulse frequency analogue to previous cell experiments with laser-driven electrons or at high frequency for minimizing the prolonged dose delivery and to perform comparison irradiation with a quasi-continuous electron beam analogue to a clinically used linear accelerator. The influence of the different electron beam pulse structures on the radiobiological response of the normal tissue cell line 184A1 and two primary fibroblasts was investigated regarding clonogenic survival and the number of DNA double-strand breaks that remain 24 h after irradiation. Thereby, no considerable differences in radiation response were revealed both for biological endpoints and for all probed cell cultures. These results provide evidence that the radiobiological effectiveness of the pulsed electron beams is not affected by the ultra-high pulse dose rates alone.

  19. Radiobiological influence of megavoltage electron pulses of ultra-high pulse dose rate on normal tissue cells

    International Nuclear Information System (INIS)

    Laschinsky, Lydia; Karsch, Leonhard; Schuerer, Michael; Lessmann, Elisabeth; Beyreuther, Elke; Oppelt, Melanie; Pawelke, Joerg; Richter, Christian

    2016-01-01

    Regarding the long-term goal to develop and establish laser-based particle accelerators for a future radiotherapeutic treatment of cancer, the radiobiological consequences of the characteristic short intense particle pulses with ultra-high peak dose rate, but low repetition rate of laser-driven beams have to be investigated. This work presents in vitro experiments performed at the radiation source ELBE (Electron Linac for beams with high Brilliance and low Emittance). This accelerator delivered 20-MeV electron pulses with ultra-high pulse dose rate of 10"1"0 Gy/min either at the low pulse frequency analogue to previous cell experiments with laser-driven electrons or at high frequency for minimizing the prolonged dose delivery and to perform comparison irradiation with a quasi-continuous electron beam analogue to a clinically used linear accelerator. The influence of the different electron beam pulse structures on the radiobiological response of the normal tissue cell line 184A1 and two primary fibroblasts was investigated regarding clonogenic survival and the number of DNA double-strand breaks that remain 24 h after irradiation. Thereby, no considerable differences in radiation response were revealed both for biological endpoints and for all probed cell cultures. These results provide evidence that the radiobiological effectiveness of the pulsed electron beams is not affected by the ultra-high pulse dose rates alone. (orig.)

  20. FY 1999 report on the results of the R and D of femtosecond technology. Development of ultra-short pulse optoelectronics technology; 1999 nendo femutobyo technology no kenkyu kaihatsu seika hokokusho. Chotan pulse hikari electronics gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The paper described the FY 1999 results of the R and D of femtosecond technology. For the purpose of creating new industrial basement technology which supports the highly information-oriented society in the 21st century, the ultra-high speed electronics technology is indispensable which is beyond speed limits of the existing electronics technology and has new functionality. The ultra-high speed electronics basement technology is established through the R and D of the technology to control the state of light and electronics in the femtosecond time domain (10{sup -15} - 10{sup -12} second). Themes of the R and D are technology to generate/transmit femtosecond optical pulse, technology for control/distribution, and ultra-short pulse optoelectronics common basement technology. In FY 1999, a lot of results were obtained in the following: generation of the pulse train highly repeated at 500GHz in semiconductor laser; 139km transmission of 250fs optical pulse; switching movement at ultra-high speed of 150fs-1.2ps in transition among subbands of GaN base and Sb base materials; DEMUXA movement toward 160-10Gb/s in Mach-Zehnder type optical switch. (NEDO)

  1. Time-dependent H-like and He-like Al lines produced by ultra-short pulse laser

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Takako; Kato, Masatoshi [National Inst. for Fusion Science, Nagoya (Japan); Shepherd, R; Young, B; More, R; Osterheld, Al

    1998-03-01

    We have performed numerical modeling of time-resolved x-ray spectra from thin foil targets heated by the LLNL Ultra-short pulse (USP) laser. The targets were aluminum foils of thickness ranging from 250 A to 1250 A, heated with 120 fsec pulses of 400 nm light from the USP laser. The laser energy was approximately 0.2 Joules, focused to a 3 micron spot size for a peak intensity near 2 x 10{sup 19} W/cm{sup 2}. Ly{alpha} and He{alpha} lines were recorded using a 900 fsec x-ray streak camera. We calculate the effective ionization, recombination and emission rate coefficients including density effects for H-like and He-like aluminum ions using a collisional radiative model. We calculate time-dependent ion abundances using these effective ionization and recombination rate coefficients. The time-dependent electron temperature and density used in the calculation are based on an analytical model for the hydrodynamic expansion of the target foils. During the laser pulse the target is ionized. After the laser heating stops, the plasma begins to recombine. Using the calculated time dependent ion abundances and the effective emission rate coefficients, we calculate the time dependent Ly{alpha} and He{alpha} lines. The calculations reproduce the main qualitative features of the experimental spectra. (author)

  2. Generation of ultra-intense and ultra-short laser pulses with high temporal contrast

    International Nuclear Information System (INIS)

    Julien, A.

    2006-03-01

    The topic of this thesis work concerns the design and the characterization of an efficient device devoted to the temporal contrast improvement for ultra-intense femtosecond laser pulses. The contrast is defined as the intensity ratio between the main femtosecond pulse and its nanosecond pedestal. This pedestal is the amplified spontaneous emission (ASE), inherent with laser amplification mechanism. The ASE background has dramatic effects for laser-matter interactions on a solid target. The presented work consists in the theoretical and experimental study of a temporal filter based on a third order nonlinear effect acting on the pulse polarization. We have studied several kinds of nonlinear filters. The selected device is based on the process of cross-polarized wave generation (XPW) in crystals with an anisotropic third-order nonlinear susceptibility. This nonlinear filter has been experimented on various femtosecond systems. It allows a contrast improvement of several orders of magnitude, as demonstrated by temporal profiles measurements on a large intensity dynamic. A device to improve the nonlinear process conversion efficiency, it means the filter transmission, has also been achieved. This method is based on constructive interferences between XPW signals generated in different crystals. This setup has made it possible to reach experimentally the maximum theoretical efficiency ( >20%) and in the same time ensures the system stability. At least, we have demonstrated that the filter preserves, or even improves, spectral and spatial qualities of the laser pulse. These results are thus particularly promising and allow contemplating the implementation of the filter in current femtosecond systems. (author)

  3. Ultra-short coherent terahertz radiation from ultra-short dips in electron bunches circulating in a storage ring

    International Nuclear Information System (INIS)

    Yamamoto, N.; Shimada, M.; Adachi, M.; Zen, H.; Tanikawa, T.; Taira, Y.; Kimura, S.; Hosaka, M.; Takashima, Y.; Takahashi, T.; Katoh, M.

    2011-01-01

    Terahertz (THz) coherent synchrotron radiation (CSR) is emitted not only from ultra-short electron bunches, but also from electron bunches with micro-structures. Formation of micro-structures at the sub-picosecond scale in electron bunches by a laser slicing technique is experimentally studied through observation of the THz CSR. The THz CSR spectrum was found to depend strongly on the intensity and the pulse width of the laser. The results agreed qualitatively with a numerical simulation. It was suggested that the evolution of the micro-structure during CSR emission is important under some experimental conditions.

  4. Linear and non-linear carrier-envelope phase difference effects in interactions of ultra-short laser pulses with a metal nano-layer

    International Nuclear Information System (INIS)

    Varro, S.

    2006-01-01

    Complete test of publication follows. On the basis of classical electrodynamics the reflection and transmission of an ultra-short laser pulse impinging on a metal nano-layer have been analysed. The thickness of the layer was assumed to be of the order of 2-10 nm, and the metallic electrons were represented by a surface current density at the plane boundary of a dielectric substrate. It has been shown that in the scattered fields a non-oscillatory wake-field appears following the main pulse with an exponential decay and with a definite sign of the electric and magnetic fields. The characteristic time of these wake-fields is inversely proportional to the square of the plasma frequency and to the thickness of the metal nano-layer, and can be of order or larger then the original pulse duration. The magnitude of these wake-fields is proportional with the incoming field strength - so this is a linear effect - and the definite sign of them is governed by the cosine of the carrier-envelope phase difference of the incoming ultrashort laser pulse. As a consequence, when we let such a wake-field excite the electrons of a secondary target - say a plasma, a metal surface or a gas - we obtain 100 percent modulation depth in the electron signal in a given direction. This scheme can perhaps serve as a basis for the construction of a robust linear carrier-envelope phase difference mater. At relativistic laser intensities the target becomes a plasma layer generated, e.g. by the rising part of the incoming laser pulse. An approximate analytic solution has been given for the system of the coupled Maxwell-Lorentz equations describing the dynamics of the surface current (representing the plasma electrons) and the composite radiation field. With the help of these solutions the Fourier components of the reflected and transmitted radiation have been calculated. The nonlinearities stemming from the relativistic kinematics lead to the appearance of higher-order harmonics in the scattered

  5. Peculiarities of the propagation of multidimensional extremely short optical pulses in germanene

    Energy Technology Data Exchange (ETDEWEB)

    Zhukov, Alexander V., E-mail: alex_zhukov@sutd.edu.sg [Singapore University of Technology and Design, 8 Somapah Road, 487372 Singapore (Singapore); Bouffanais, Roland [Singapore University of Technology and Design, 8 Somapah Road, 487372 Singapore (Singapore); Konobeeva, Natalia N. [Volgograd State University, 400062 Volgograd (Russian Federation); Belonenko, Mikhail B. [Laboratory of Nanotechnology, Volgograd Institute of Business, 400048 Volgograd (Russian Federation); Volgograd State University, 400062 Volgograd (Russian Federation)

    2016-09-07

    Highlights: • Established dynamics of ultra-short pulses in germanene. • Studied balance between dispersive and nonlinear effects in germanene. • Spin–orbit interaction effect onto pulse propagation. - Abstract: In this Letter, we study the propagation characteristics of both two-dimensional and three-dimensional extremely short optical pulses in germanene. A distinguishing feature of germanene—in comparison with other graphene-like structures—is the presence of a significant spin–orbit interaction. The account of this interaction has a significant impact on the evolution of extremely short pulses in such systems. Specifically, extremely short optical pulses, consisting of two electric field oscillations, cause the appearance of a tail associated with the excitation of nonlinear waves. Due to the large spin–orbit interaction in germanene, this tail behind the main pulse is much smaller in germanene-based samples as compared to graphene-based ones, thereby making germanene a preferred material for the stable propagation of pulses along the sample.

  6. H{sup +}{sub 2} ionization by ultra-short electromagnetic pulses investigated through a non-perturbative Coulomb-Volkov approach

    Energy Technology Data Exchange (ETDEWEB)

    RodrIguez, V D [Departamento de Fisica, FCEyN, Universidad de Buenos Aires, 1428 Buenos Aires (Argentina); Macri, P [Departamento de Fisica, FCEyN, Universidad de Buenos Aires, 1428 Buenos Aires (Argentina); Instituto de Astronomia y Fisica del Espacio, Consejo Nacional de Investigaciones CientIficas y Tecnicas, 1428 Buenos Aires (Argentina); Gayet, R [CELIA, Centre Lasers Intenses et Applications, UMR 5107, Unite Mixte de Recherche CNRS-CEA-Universite Bordeaux 1, Universite Bordeaux 1, 351 Cours de la Liberation, 33405 Talence Cedex (France)

    2005-08-14

    The sudden Coulomb-Volkov theoretical approximation has been shown to well describe atomic ionization by intense and ultra-short electromagnetic pulses, such as pulses generated by very fast highly-charged ions. This approach is extended here to investigate single ionization of homonuclear diatomic molecules by such pulses in the framework of one-active electron. Under particular conditions, a Young-like interference formula can approximately be factored out. Present calculations show interference effects originating from the molecular two-centre structure. Fivefold differential angular distributions of the ejected electron are studied as a function of the molecular orientation and internuclear distance. Both non-perturbative and perturbative regimes are examined. In the non-perturbative case, an interference pattern is visible but a main lobe, opposite to the electric field polarization direction, dominates the angular distribution. In contrast, in perturbation conditions the structure of interferences shows analogies to the Young-like interference pattern obtained in ionization of molecules by fast electron impacts. Finally, the strong dependence of these Young-like angular distributions on the internuclear distance is addressed.

  7. Theoretical study of relativistic corrections induced by an ultra-short and intense light pulse in matter

    International Nuclear Information System (INIS)

    Hinschberger Schreiber, Yannick

    2012-01-01

    This thesis focuses on the relativistic corrections induced by an ultra-short and intense light pulse in condensed matter. It is part of the new theme of the coherent ultra-fast demagnetization of ferromagnetic systems induced by a femtosecond laser pulse [Nature, 5, 515 (2009)] [1]. A relativistic coupling between spins and photons has been proposed to explain the experimental results obtained in [1]. The first part of this work focuses on the nonrelativistic limit of the Dirac's formalism. By means of the Foldy-Wouthuysen transformation the nonrelativistic approximation of the external-electromagnetic-field Dirac equation to fifth order in powers of 1/m is obtained. Generalizing this result we postulate a general expression of the direct spin-field electronic Hamiltonian valid at any order in 1/m. A similar work is performed on a two-interacting electrons system described with the Breit Hamiltonian, whose the diagonalization at third order in 1/m illustrates an original coupling between the spin, the coulomb interaction and the time-dependent external electromagnetic field. In a second part, a classical model is developed for modeling ultrafast nonlinear coherent magneto-optical experiments performed on ferromagnetic thin films. Theoretical predictions of the Faraday rotation angles are compared to available experimental values and give meaningful insights about the physical mechanisms underlying the observed coherent magneto-optical phenomena. The crucial role played by the spin-orbit mechanism resulting from the direct interaction between the external electric field of the laser and the electron spins of the sample is underlined. (author) [fr

  8. Generation of ultra short pulses by auto injection in the Nd: YAG laser

    International Nuclear Information System (INIS)

    Faria, I.C. de.

    1986-01-01

    Yhe work presented here, was concerned to the construction of a coherent light source in the near infrared region with pulses of 10 -10 seconds. The auto-injection technique was employed for generating these short pulses with posterior extraction of the pulse applied to a Nd=YAG-pulsed laser. (author) [pt

  9. Complementarity of long pulse and short pulse spallation sources

    Energy Technology Data Exchange (ETDEWEB)

    Mezei, F [Hahn-Meitner-Institut Berlin GmbH (Germany)

    1995-11-01

    The complementarity of short pulse spallation sources (SPSS) and steady state (CW) reactors is a widely accepted concept. SPSS and long pulse spallation sources (LPSS) are complementary in two ways: (a) in their performance in neutron scattering experiments LPSS closely emulate CW reactors. In this respect two facets of the time-of-flight (TOF) monochromator method adequate for LPSS will be discussed: the superiority of the TOF approach to the crystal monochromator method in high resolution powder diffraction, and the novel technique of repetition rate multiplication in TOF spectroscopy, (b) LPSS combined with adequate chopper systems can also emulate SPSS in a number of applications. It will be shown that the LPSS method of producing short neutron pulses is more efficient for cold and thermal neutrons (below an energy of about 100 MeV), while SPSS is the more favourable approach for hot, epithermal neutrons, i.e. in the slowing down regime in contrast to the moderated regime. These two aspects of complementarity of LPSS and SPSS lead to the conclusions that for about 75% of the spectrum of neutron scattering experiments as known of today the LPSS approach is the most advantageous one with a feasible neutron intensity exceeding that available at ILL by a factor of about 30, while for the remaining 25% of applications the SPSS technique is superior with a well-known potential of a similar gain over present day performances. (author) 7 figs., 6 refs.

  10. Complementarity of long pulse and short pulse spallation sources

    International Nuclear Information System (INIS)

    Mezei, F.

    1995-01-01

    The complementarity of short pulse spallation sources (SPSS) and steady state (CW) reactors is a widely accepted concept. SPSS and long pulse spallation sources (LPSS) are complementary in two ways: a) in their performance in neutron scattering experiments LPSS closely emulate CW reactors. In this respect two facets of the time-of-flight (TOF) monochromator method adequate for LPSS will be discussed: the superiority of the TOF approach to the crystal monochromator method in high resolution powder diffraction, and the novel technique of repetition rate multiplication in TOF spectroscopy, b) LPSS combined with adequate chopper systems can also emulate SPSS in a number of applications. It will be shown that the LPSS method of producing short neutron pulses is more efficient for cold and thermal neutrons (below an energy of about 100 MeV), while SPSS is the more favourable approach for hot, epithermal neutrons, i.e. in the slowing down regime in contrast to the moderated regime. These two aspects of complementarity of LPSS and SPSS lead to the conclusions that for about 75% of the spectrum of neutron scattering experiments as known of today the LPSS approach is the most advantageous one with a feasible neutron intensity exceeding that available at ILL by a factor of about 30, while for the remaining 25% of applications the SPSS technique is superior with a well-known potential of a similar gain over present day performances. (author) 7 figs., 6 refs

  11. Probing Photoinduced Structural Phase Transitions by Fast or Ultra-Fast Time-Resolved X-Ray Diffraction

    Science.gov (United States)

    Cailleau, Hervé Collet, Eric; Buron-Le Cointe, Marylise; Lemée-Cailleau, Marie-Hélène Koshihara, Shin-Ya

    A new frontier in the field of structural science is the emergence of the fast and ultra-fast X-ray science. Recent developments in time-resolved X-ray diffraction promise direct access to the dynamics of electronic, atomic and molecular motions in condensed matter triggered by a pulsed laser irradiation, i.e. to record "molecular movies" during the transformation of matter initiated by light pulse. These laser pump and X-ray probe techniques now provide an outstanding opportunity for the direct observation of a photoinduced structural phase transition as it takes place. The use of X-ray short-pulse of about 100ps around third-generation synchrotron sources allows structural investigations of fast photoinduced processes. Other new X-ray sources, such as laser-produced plasma ones, generate ultra-short pulses down to 100 fs. This opens the way to femtosecond X-ray crystallography, but with rather low X-ray intensities and more limited experimental possibilities at present. However this new ultra-fast science rapidly progresses around these sources and new large-scale projects exist. It is the aim of this contribution to overview the state of art and the perspectives of fast and ultra-fast X-ray scattering techniques to study photoinduced phase transitions (here, the word ultra-fast is used for sub-picosecond time resolution). In particular we would like to largely present the contribution of crystallographic methods in comparison with optical methods, such as pump-probe reflectivity measurements, the reader being not necessary familiar with X-ray scattering. Thus we want to present which type of physical information can be obtained from the positions of the Bragg peaks, their intensity and their shape, as well as from the diffuse scattering beyond Bragg peaks. An important physical feature is to take into consideration the difference in nature between a photoinduced phase transition and conventional homogeneous photoinduced chemical or biochemical processes where

  12. Microdrilling of metals with an inexpensive and compact ultra-short-pulse fiber amplified microchip laser

    Energy Technology Data Exchange (ETDEWEB)

    Ancona, A. [Friedrich-Schiller-Universitaet Jena, Institut fuer Angewandte Physik, Jena (Germany); CNR-INFM Regional Laboratory ' LIT3' , Dipartimento Interuniversitario di Fisica, Bari (Italy); Nodop, D.; Limpert, J.; Nolte, S. [Friedrich-Schiller-Universitaet Jena, Institut fuer Angewandte Physik, Jena (Germany); Tuennermann, A. [Friedrich-Schiller-Universitaet Jena, Institut fuer Angewandte Physik, Jena (Germany); Fraunhofer Institute for Applied Optics and Precision Engineering (IOF), Jena (Germany)

    2009-01-15

    We have investigated the ultra-fast microdrilling of metals using a compact and cheap fiber amplified passively Q-switched microchip laser. This laser system delivers 100-ps pulses with repetition rates higher than 100 kHz and pulse energies up to 80 {mu}J. The ablation process has been studied on metals with quite different thermal properties (copper, carbon steel and stainless steel). The dependence of the ablation depth per pulse on the pulse energy follows the same logarithmic scaling laws governing laser ablation with sub-picosecond pulses. Structures ablated with 100-ps laser pulses are accompanied only by a thin layer of melted material. Despite this, results with a high level of precision are obtained when using the laser trepanning technique. This simple and affordable laser system could be a valid alternative to nanosecond laser sources for micromachining applications. (orig.)

  13. Synchronization of sub-picosecond electron and laser pulses

    International Nuclear Information System (INIS)

    Rosenzweig, J.B.; Le Sage, G.P.

    1999-01-01

    Sub-picosecond laser-electron synchronization is required to take full advantage of the experimental possibilities arising from the marriage of modern high intensity lasers and high brightness electron beams in the same laboratory. Two particular scenarios stand out in this regard, injection of ultra-short electron pulses in short wavelength laser-driven plasma accelerators, and Compton scattering of laser photons from short electron pulses. Both of these applications demand synchronization, which is sub-picosecond, with tens of femtosecond synchronization implied for next generation experiments. The design of a microwave timing modulator system is now being investigated in more detail. (AIP) copyright 1999 American Institute of Physics

  14. Ion acceleration with ultra intense and ultra short laser pulses

    International Nuclear Information System (INIS)

    Floquet, V.

    2012-01-01

    Accelerating ions/protons can be done using short laser pulse (few femto-seconds) focused on few micrometers area on solid target (carbon, aluminum, plastic...). The electromagnetic field intensity reached on target (≥10 18 W.cm -2 ) allows us to turn the solid into a hot dense plasma. The dynamic motion of the electrons is responsible for the creation of intense static electric field at the plasma boundaries. These electric fields accelerate organic pollutants (including protons) located at the boundaries. This acceleration mechanism known as the Target Normal Sheath Acceleration (TNSA) has been the topic of the research presented in this thesis.The goal of this work has been to study the acceleration mechanism and to increase the maximal ion energy achievable. Indeed, societal application such as proton therapy requires proton energy up to few hundreds of MeV. To proceed, we have studied different target configurations allowing us to increase the laser plasma coupling and to transfer as much energy as possible to ions (target with microspheres deposit, foam target, grating). Different experiments have also dealt with generating a pre-plasma on the target surface thanks to a pre-pulse. On the application side, fluorescent material such as CdWO 4 has been studied under high flux rate of protons. These high flux rates have been, up to now, beyond the conventional accelerators capabilities. (author) [fr

  15. Non-Fourier conduction model with thermal source term of ultra short high power pulsed laser ablation and temperature evolvement before melting

    International Nuclear Information System (INIS)

    Zhang Duanming; Li, Li; Li Zhihua; Guan Li; Tan Xinyu

    2005-01-01

    A non-Fourier conduction model with heat source term is presented to study the target temperature evolvement when the target is radiated by high power (the laser intensity is above 10 9 w/cm 2 ) and ultra short (the pulse width is less than 150 ps) pulsed laser. By Laplace transform, the analytical expression of the space- and time-dependence of temperature is derived. Then as an example of aluminum target, the target temperature evolvement is simulated. Compared with the results of Fourier conduction model and non-Fourier model without heat source term, it is found that the effect of non-Fourier conduction is notable and the heat source plays an important role during non-Fourier conduction which makes surface temperature ascending quickly with time. Meanwhile, the corresponding physical mechanism is analyzed theoretically

  16. Ultra-Short Laser Absorption In Solid Targets

    International Nuclear Information System (INIS)

    Harfouche, A.; Bendib, A.

    2008-01-01

    With the rapid development and continuously improving technology of subpicosecond laser pulse generation, new interesting physical problems are now investigated. Among them the laser light absorption in solid targets. During the interaction with solid targets, high intensity laser pulses are absorbed by electrons in optical skin depths, leading to rapid ionization before that significant ablation of solid material takes place. The ultra-short laser is absorbed in the overdense plasma through the electron-ion collisions (normal skin effect) or collisionless mechanisms (anomalous skin effect or sheath inverse bremsstrahlung). These two regimes depend on the laser intensity, the plasma temperature and the ionization state Z. In this work we solve numerically the Fokker-Planck equation to compute the electron distribution function in the skin layer. In the second step we compute the surface impedance and we deduce the absorption coefficient.

  17. High frequency and pulse scattering physical acoustics

    CERN Document Server

    Pierce, Allan D

    1992-01-01

    High Frequency and Pulse Scattering investigates high frequency and pulse scattering, with emphasis on the phenomenon of echoes from objects. Geometrical and catastrophe optics methods in scattering are discussed, along with the scattering of sound pulses and the ringing of target resonances. Caustics and associated diffraction catastrophes are also examined.Comprised of two chapters, this volume begins with a detailed account of geometrically based approximation methods in scattering theory, focusing on waves transmitted through fluid and elastic scatterers and glory scattering; surface ray r

  18. Self-focusing and Raman scattering of laser pulses in tenuous plasmas

    International Nuclear Information System (INIS)

    Antonsen, T.M. Jr.; Mora, P.

    1993-01-01

    The propagation and self-focusing of short, intense laser pulses in a tenuous plasma is studied both analytically and numerically. Specifically, pulses of length of the order of a few plasma wavelengths and of intensity, which is large enough for relativistic self-focusing to occur, are considered. Such pulses are of interest in various laser plasma acceleration schemes. It is found that these pulses are likely to be strongly affected by Raman instabilities. Two different regimes of instability, corresponding to large and small scattering angles, are found to be important. Small-angle scattering is perhaps the most severe since it couples strongly with relativistic self-focusing, leading the pulses to acquire significant axial and transverse structure in a time of the order of the self-focusing time. Thus it will be difficult to propagate smooth self-focused pulses through tenuous plasmas for distances longer than the Rayleigh length, except for pulse duration of the order of the plasma period

  19. Laser system using ultra-short laser pulses

    Science.gov (United States)

    Dantus, Marcos [Okemos, MI; Lozovoy, Vadim V [Okemos, MI; Comstock, Matthew [Milford, MI

    2009-10-27

    A laser system using ultrashort laser pulses is provided. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and binary pulse shaping (BPS). Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and a SHG crystal.

  20. UCN up-scattering as a source of highly intense monochromatic pulsed beams

    International Nuclear Information System (INIS)

    Rauch, H.; Geltenborg, P.; Zimmer, O.

    2011-01-01

    The present proposal opens new possibilities to increase the usable neutron flux by advanced neutron cooling and phase space transformation methods. Thus a new instrument should be installed where the available neutron flux is used more efficiently. The essential point is an increase of phase space density and brilliance due to a more effective production of ultra-cold neutrons and a following transformation of these neutrons to higher energies. Recently reported progresses in the production of UCN's and in the up-scattering of such neutrons make the time mature to step towards a new method to produce high intense pulsed neutron beams. The up-scattering is made by fast moving Bragg crystals

  1. Separate observation of ballistic and scattered photons in the propagation of short laser pulses through a strongly scattering medium

    International Nuclear Information System (INIS)

    Tereshchenko, Sergei A; Podgaetskii, Vitalii M; Vorob'ev, Nikolai S; Smirnov, A V

    1998-01-01

    The conditions are identified for simultaneous observation of the peaks of scattered and unscattered (ballistic) photons in a narrow pulsed laser beam crossing a strongly scattering medium. The experimental results are explained on the basis of a nonstationary two-flux model of radiation transport. An analytic expression is given for the contribution of ballistic photons to the transmitted radiation, as a function of the characteristics of the scattering medium. It is shown that the ballistic photon contribution can be increased by the use of high-contrast substances which alter selectively the absorption and scattering coefficients of the medium. (laser applications and other topics in quantum electronics)

  2. Methods for Free-Space Ultra-Short Solitary EMP Measurement

    Directory of Open Access Journals (Sweden)

    Petr Drexler

    2006-01-01

    Full Text Available There are some suitable methods for ultra-short solitary electromagnetic pulses (EMP measurement. The EMPs are generated by high power microwave generators. The characteristic of EMPs is high power level (Pmax = 250 MW and very short time duration (tp Î <1, 60> ns. Special requirements for measurement methods are placed because of the specific EMPs properties.Two suitable methods for this application are presented in the paper. The first – calorimetric method, utilizes the thermal impacts of microwave absorption. The second method presented – magneto-optic method, use the Faraday’s magneto-optic effect as a sensor principle. It was realized combined calorimetric sensor and there were made some experimental EMP measurements with good results. The sensor utilizing magneto-optic method is in development.

  3. Self-cleaning effect in high quality percussion ablating of cooling hole by picosecond ultra-short pulse laser

    Science.gov (United States)

    Zhao, Wanqin; Yu, Zhishui

    2018-06-01

    Comparing with the trepanning technology, cooling hole could be processed based on the percussion drilling with higher processing efficiency. However, it is widely believed that the ablating precision of hole is lower for percussion drilling than for trepanning, wherein, the melting spatter materials around the hole surface and the recast layer inside the hole are the two main issues for reducing the ablating precision of hole, especially for the recast layer, it can't be eliminated completely even through the trepanning technology. In this paper, the self-cleaning effect which is a particular property just for percussion ablating of holes has been presented in detail. In addition, the reasons inducing the self-cleaning effect have been discussed. At last, based on the self-cleaning effect of percussion drilling, high quality cooling hole without the melting spatter materials around the hole surface and recast layer inside the hole could be ablated in nickel-based superalloy by picosecond ultra-short pulse laser.

  4. Application of pulse power technology to ultra high energy electron accelerators

    International Nuclear Information System (INIS)

    Nation, J.A.

    1989-01-01

    The author presents in this paper a review of the application of pulse power technology to the development of high gradient electron accelerators. The technology demands are relatively modest compared to the ultra high power technology used for inertial confinement fusion drivers. With the advent of magnetic switching intense electron beams can be generated with a sufficiently high repetition rate to be of interest for high energy electron accelerator driver applications. Most of the techniques considered rely on the excitation of large amplitude waves on the beams. Within this framework there are two broad categories of accelerator, those in which the waves are directly excited in and supported by the medium and, secondly, those where the waves are used to generate radiofrequency signals which are then coupled via structures to the beam being accelerated. In what follows we shall consider both approaches. Present-day pulse power technology limits pulse durations to about 100 nsec. Consequently, if these sources are to be used, we will need to use high group velocity structures to avoid the need for short accelerator module lengths. An advantage of the short pulse duration is that the available acceleration voltage gradient increases compared to that obtained using conventional rf drivers. 19 references, 9 figures, 1 table

  5. Ultra-Wideband Electromagnetic Pulse Propagation through Causal Media

    Science.gov (United States)

    2016-03-04

    AFRL-AFOSR-VA-TR-2016-0112 Ultra-Wideband Electromagnetic Pulse Propagation through Causal Media Natalie Cartwright RESEARCH FOUNDATION OF STATE... Electromagnetic Pulse Propagation through Causal Media 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-13-1-0013 5c.  PROGRAM ELEMENT NUMBER 61102F 6...SUPPLEMENTARY NOTES 14. ABSTRACT When an electromagnetic pulse travels through a dispersive material each frequency of the transmitted pulse changes in both

  6. The performance of neutron scattering spectrometers at a long-pulse spallation source

    International Nuclear Information System (INIS)

    Pynn, R.

    1997-01-01

    In this document the author considers the performance of a long pulse spallation source for those neutron scattering experiments that are usually performed with a monochromatic beam at a continuous wave (CW) source such as a nuclear reactor. The first conclusion drawn is that comparison of the performance of neutron scattering spectrometers at CW and pulsed sources is simpler for long-pulsed sources than it is for the short-pulse variety. Even though detailed instrument design and assessment will require Monte Carlo simulations (which have already been performed at Los Alamos for SANS and reflectometry), simple arguments are sufficient to assess the approximate performance of spectrometers at an LPSS and to support the contention that a 1 MW long-pulse source can provide attractive performance, especially for instrumentation designed for soft-condensed-matter science. Because coupled moderators can be exploited at such a source, its time average cold flux is equivalent to that of a research reactor with a power of about 15 MW, so only a factor of 4 gain from source pulsing is necessary to obtain performance that is comparable with the ILL. In favorable cases, the gain from pulsing can be even more than this, approaching the limit set by the peak flux, giving about 4 times the performance of the ILL. Because of its low duty factor, an LPSS provides the greatest performance gains for relatively low resolution experiments with cold neutrons. It should thus be considered complementary to short pulse sources which are most effective for high resolution experiments using thermal or epithermal neutrons

  7. Impact of pumping configuration on all-fibered femtosecond chirped pulse amplification

    Science.gov (United States)

    Lecourt, Jean-Bernard; Duterte, Charles; Bertrand, Anthony; Liégeois, Flavien; Hernandez, Yves; Giannone, Domenico

    2008-04-01

    We experimentally compared the co- and counter-propagative pumping scheme for the amplification of ultra-short optical pulses. According to pumping direction we show that optical pulses with a duration of 75 fs and 100mW of average output power can be obtained for co-propagative pumping, while pulse duration is never shorter than 400 fs for the counter-propagative case. We show that the impact of non-linear effects on pulse propagation is different for the two pumping configurations. We assume that Self Phase Modulation (SPM) is the main effect in the copropagative case, whereas the impact of Stimulated Raman Scattering is bigger for the counter-propagative case.

  8. Allowable propagation of short pulse laser beam in a plasma channel and electromagnetic solitary waves

    International Nuclear Information System (INIS)

    Zhang, Shan; Hong, Xue-Ren; Wang, Hong-Yu; Xie, Bai-Song

    2011-01-01

    Nonparaxial and nonlinear propagation of a short intense laser beam in a parabolic plasma channel is analyzed by means of the variational method and nonlinear dynamics. The beam propagation properties are classified by five kinds of behaviors. In particularly, the electromagnetic solitary wave for finite pulse laser is found beside the other four propagation cases including beam periodically oscillating with defocussing and focusing amplitude, constant spot size, beam catastrophic focusing. It is also found that the laser pulse can be allowed to propagate in the plasma channel only when a certain relation for laser parameters and plasma channel parameters is satisfied. For the solitary wave, it may provide an effective way to obtain ultra-short laser pulse.

  9. Small-angle scattering instruments on a 1 MW long pulse spallation source

    Energy Technology Data Exchange (ETDEWEB)

    Olah, G.A. [Los Alamos National Lab., Chemical Science and Tehcnology Div., Biosciences and Biotechnology Group, Los aalamos, NM (United States); Hjelm, R.P. [Los Alamos National Lab., Neutron Scattering Center, Los Alamos, NM (United States); Seeger, P.A.

    1995-11-01

    We have designed and optimized two small-angle neutron scattering instruments for installation at a 1 MW long pulse spallation source. The first of these instruments measures a Q-domain from 0.002 to 0.44 A{sup -1}, and the second instrument from 0.00069-0.17 A{sup -1}, Design characteristics were determined and optimization was done using a Monte Carlo instrument simulation package under development at Los alamos. A performance comparison was made between these instruments with D11 at the ILL by evaluating the scattered intensity and rms resolution for the instrument response function at different Q values for various instrument configurations needed to spn a Q-range of 0.0007-0.44 A{sup -1}. We concluded that the first of these instruments outperforms D11 in both intensity and resolution over most of the Q-domain and that the second is comparable to D11. Comparisons were also made of the performance of the optimized long pulse instruments with different reflectors and with a short pulse source, from which we concluded that there is an optimal moderator-reflector combination, and that a short pulse does not substantially improve the instrument performance. (author) 7 figs., 2 tabs., 9 refs.

  10. Small-angle scattering instruments on a 1 MW long pulse spallation source

    International Nuclear Information System (INIS)

    Olah, G.A.; Hjelm, R.P.; Seeger, P.A.

    1995-01-01

    We have designed and optimized two small-angle neutron scattering instruments for installation at a 1 MW long pulse spallation source. The first of these instruments measures a Q-domain from 0.002 to 0.44 A -1 , and the second instrument from 0.00069-0.17 A -1 , Design characteristics were determined and optimization was done using a Monte Carlo instrument simulation package under development at Los alamos. A performance comparison was made between these instruments with D11 at the ILL by evaluating the scattered intensity and rms resolution for the instrument response function at different Q values for various instrument configurations needed to spn a Q-range of 0.0007-0.44 A -1 . We concluded that the first of these instruments outperforms D11 in both intensity and resolution over most of the Q-domain and that the second is comparable to D11. Comparisons were also made of the performance of the optimized long pulse instruments with different reflectors and with a short pulse source, from which we concluded that there is an optimal moderator-reflector combination, and that a short pulse does not substantially improve the instrument performance. (author) 7 figs., 2 tabs., 9 refs

  11. Ultra-short period X-ray mirrors: Production and investigation

    International Nuclear Information System (INIS)

    Bibishkin, M.S.; Chkhalo, N.I.; Fraerman, A.A.; Pestov, A.E.; Prokhorov, K.A.; Salashchenko, N.N.; Vainer, Yu.A.

    2005-01-01

    Technological problems that deal with manufacturing of highly effective ultra-short (d=0.7-3.2 nm) period X-ray multilayer mirrors (MLM) are discussed in the article. In an example of Cr/Sc and W/B 4 C MLM it is experimentally shown, that the problem of periodicity and selectivity for multilayer dispersive X-ray elements has been generally solved by now. However, the problem of short-period MLM reflectivity increase related to existing of transitive borders between layers in structures remains rather urgent. The new technique of tungsten deposition using the RF source in order to decrease roughness in borders is discussed and tested. The results of measurements on wavelengths of 0.154, 0.834 and 1.759 nm are given. The RbAP crystals ordinary used in experiments and short-period W/B 4 C MLM produced are compared. The specular and non-specular characteristics of scattering on the 0.154 nm wavelengths are also measured in order to study transitive borders structures

  12. Temporal analysis of reflected optical signals for short pulse laser interaction with nonhomogeneous tissue phantoms

    International Nuclear Information System (INIS)

    Trivedi, Ashish; Basu, Soumyadipta; Mitra, Kunal

    2005-01-01

    The use of short pulse laser for minimally invasive detection scheme has become an indispensable tool in the technological arsenal of modern medicine and biomedical engineering. In this work, a time-resolved technique has been used to detect tumors/inhomogeneities in tissues by measuring transmitted and reflected scattered temporal optical signals when a short pulse laser source is incident on tissue phantoms. A parametric study involving different scattering and absorption coefficients of tissue phantoms and inhomogeneities, size of inhomogeneity as well as the detector position is performed. The experimental measurements are validated with a numerical solution of the transient radiative transport equation obtained by using discrete ordinates method. Thus, both simultaneous experimental and numerical studies are critical for predicting the optical properties of tissues and inhomogeneities from temporal scattered optical signal measurements

  13. Experimental approach to interaction physics challenges of the shock ignition scheme using short pulse lasers.

    Science.gov (United States)

    Goyon, C; Depierreux, S; Yahia, V; Loisel, G; Baccou, C; Courvoisier, C; Borisenko, N G; Orekhov, A; Rosmej, O; Labaune, C

    2013-12-06

    An experimental program was designed to study the most important issues of laser-plasma interaction physics in the context of the shock ignition scheme. In the new experiments presented in this Letter, a combination of kilojoule and short laser pulses was used to study the laser-plasma coupling at high laser intensities for a large range of electron densities and plasma profiles. We find that the backscatter is dominated by stimulated Brillouin scattering with stimulated Raman scattering staying at a limited level. This is in agreement with past experiments using long pulses but laser intensities limited to 2×10(15)  W/cm2, or short pulses with intensities up to 5×10(16)  W/cm2 as well as with 2D particle-in-cell simulations.

  14. Experimental investigation of electron beam wave interactions utilising short pulses

    International Nuclear Information System (INIS)

    Wiggins, Samuel Mark

    2000-01-01

    Experiments have investigated the production of ultra-short electromagnetic pulses and their interaction with electrons in various resonant structures. Diagnostic systems used in the measurements included large bandwidth detection systems for capturing the short pulses. Deconvolution techniques have been applied to account for bandwidth limitation of the detection systems and to extract the actual pulse amplitudes and durations from the data. A Martin-Puplett interferometer has been constructed for use as a Fourier transform spectrometer. The growth of superradiant electromagnetic spikes from short duration (0.5-1.0 ns), high current (0.6-2.0 kA) electron pulses has been investigated in a Ka-band Cherenkov maser and Ka- and W-band backward wave oscillators (BWO). In the Cherenkov maser, radiation spikes were produced with a peak power ≤ 3 MW, a duration ≥ 70 ps and a bandwidth ≤ 19 %. It is shown that coherent spontaneous emission from the leading edge of the electron pulse drives these interactions, giving rise to self-amplified coherent spontaneous emission (SACSE). BWO spikes were produced with a peak power ≤ 63 MW and a pulse duration ∼ 250 ps in the Ka-band and ≤ 12 MW and ∼ 170 ps in the W-band. Evidence of superradiant evolution has been observed in the measurements of scaling laws such as power scaling with the current squared and duration scaling inversely with the fourth root of the power. An X-band free-electron maser amplifier, in which a short (1.0ns) injected radiation pulse interacts with a long (∼ 140 ns) electron beam, has been investigated. The interaction is shown to evolve in the linear regime. The peak output power was 320 kW, which corresponded to a gain, approximately constant across the band, of 42 dB. Changes to the spectrum, that occur when the input radiation pulse is injected into electrons with an energy gradient, have been analysed. (author)

  15. Generating high-power short terahertz electromagnetic pulses with a multifoil radiator.

    Science.gov (United States)

    Vinokurov, Nikolay A; Jeong, Young Uk

    2013-02-08

    We describe a multifoil cone radiator capable of generating high-field short terahertz pulses using short electron bunches. Round flat conducting foil plates with successively decreasing radii are stacked, forming a truncated cone with the z axis. The gaps between the foil plates are equal and filled with some dielectric (or vacuum). A short relativistic electron bunch propagates along the z axis. At sufficiently high particle energy, the energy losses and multiple scattering do not change the bunch shape significantly. When passing by each gap between the foil plates, the electron bunch emits some energy into the gap. Then, the radiation pulses propagate radially outward. For transverse electromagnetic waves with a longitudinal (along the z axis) electric field and an azimuthal magnetic field, there is no dispersion in these radial lines; therefore, the radiation pulses conserve their shapes (time dependence). At the outer surface of the cone, we have synchronous circular radiators. Their radiation field forms a conical wave. Ultrashort terahertz pulses with gigawatt-level peak power can be generated with this device.

  16. Pulse pile-up. I: Short pulses

    International Nuclear Information System (INIS)

    Wilkinson, D.H.

    1990-07-01

    The search for rare large pulses against an intense background of smaller ones involves consideration of pulse pile-up. Approximate methods are presented, based on ruin theory, by which the probability of such pile-up may be estimated for pulses of arbitrary form and of arbitrary pulse-height distribution. These methods are checked against cases for which exact solutions are available. The present paper is concerned chiefly with short pulses of finite total duration. (Author) (5 refs., 24 figs.)

  17. Simulation study on cross polarization scattering of ultrashort-pulse electromagnetic waves

    International Nuclear Information System (INIS)

    Katsuragawa, Naoki; Hojo, Hitoshi; Mase, Atushi

    1996-11-01

    Simulation study on cross polarization scattering of ultrashort-pulse electromagnetic waves due to magnetic fluctuations is presented. One-dimensional coupled wave equations for the ordinary and extraordinary modes are solved for incident unipolar sub-cycle pulses in an inhomogeneous magnetized plasma. It is shown that the peak frequencies in the frequency-spectral signals of the mode-converted reflected waves are determined from the Bragg resonance condition in the wave numbers of the ordinary mode, the extraordinary mode and the magnetic fluctuations for relatively short-wavelength localized magnetic fluctuations. (author)

  18. Arc Shape Characteristics with Ultra-High-Frequency Pulsed Arc Welding

    Directory of Open Access Journals (Sweden)

    Mingxuan Yang

    2017-01-01

    Full Text Available Arc plasma possesses a constriction phenomenon with a pulsed current. The constriction is created by the Lorentz force, the radial electromagnetic force during arc welding, which determines the energy distribution of the arc plasma. Welding experiments were carried out with ultra-high-frequency pulsed arc welding (UHFP-AW. Ultra-high-speed camera observations were produced for arc surveillance. Hue-saturation-intensity (HSI image analysis was used to distinguish the regions of the arc plasma that represented the heat energy distribution. The measurement of arc regions indicated that, with an ultra-high-frequency pulsed arc, the constriction was not only within the decreased arc geometry, but also within the constricted arc core region. This can be checked by the ratio of the core region to the total area. The arc core region expanded significantly at 40 kHz at 60 A. A current level of 80 A caused a decrease in the total region of the arc. Meanwhile, the ratio of the core region to the total increased. It can be concluded that arc constriction depends on the increased area of the core region with the pulsed current (>20 kHz.

  19. Development of transient collisional excitation x-ray laser with ultra short-pulse laser

    International Nuclear Information System (INIS)

    Kado, Masataka; Kawachi, Tetsuya; Hasegawa, Noboru; Tanaka, Momoko; Sukegawa, Kouta; Nagashima, Keisuke; Kato, Yoshiaki

    2001-01-01

    We have observed lasing on Ne-like 3s-3p line from titanium (32.4 nm), Ni-like 4p-4d line from silver (13.9 nm) and tin (11.9 nm) with the transient collisional excitation (TCE) scheme that uses combination of a long pre-pulse (∼ns) and a short main pulse (∼ps). A gain coefficient of 23 cm -1 was measured for plasma length up to 4 mm with silver slab targets. We have also observed lasing on Ne-like and Ni-like lines with new TCE scheme that used pico-seconds laser pulse to generate plasma and observed strong improvement of x-ray laser gain coefficient. A gain coefficient of 14 cm -1 was measured for plasma length up to 6 mm with tin targets. (author)

  20. Stretchers and compressors for ultra-high power laser systems

    Energy Technology Data Exchange (ETDEWEB)

    Yakovlev, I V [Institute of Applied Physics, Russian Academy of Sciences, Nizhnii Novgorod (Russian Federation)

    2014-05-30

    This review is concerned with pulse stretchers and compressors as key components of ultra-high power laser facilities that take advantage of chirped-pulse amplification. The potentialities, characteristics, configurations and methods for the matching and alignment of these devices are examined, with particular attention to the history of the optics of ultra-short, ultra-intense pulses before and after 1985, when the chirped-pulse amplification method was proposed, which drastically changed the view of the feasibility of creating ultra-high power laser sources. The review is intended primarily for young scientists and experts who begin to address the amplification and compression of chirped pulses, experts in laser optics and all who are interested in scientific achievements in the field of ultra-high power laser systems. (review)

  1. Scattering of an ultrashort electromagnetic pulse in a plasma

    International Nuclear Information System (INIS)

    Astapenko, V. A.

    2011-01-01

    An analytic approach is developed to describing how ultrashort electromagnetic pulses with a duration of one period or less at the carrier frequency are scattered in a plasma. Formulas are derived to calculate and analyze the angular and spectral probabilities of radiation scattering via two possible mechanisms-Compton and transition radiation channels-throughout the entire pulse. Numerical simulations were carried out for a Gaussian pulse. The effect of the phase of the carrier frequency relative to the pulse envelope on the scattering parameters is investigated.

  2. Revisiting Bragg's X-ray microscope: scatter based optical transient grating detection of pulsed ionising radiation.

    Science.gov (United States)

    Fullagar, Wilfred K; Paganin, David M; Hall, Chris J

    2011-06-01

    Transient optical gratings for detecting ultrafast signals are routine for temporally resolved photochemical investigations. Many processes can contribute to the formation of such gratings; we indicate use of optically scattering centres that can be formed with highly variable latencies in different materials and devices using ionising radiation. Coherent light scattered by these centres can form the short-wavelength-to-optical-wavelength, incoherent-to-coherent basis of a Bragg X-ray microscope, with inherent scope for optical phasing. Depending on the dynamics of the medium chosen, the way is open to both ultrafast pulsed and integrating measurements. For experiments employing brief pulses, we discuss high-dynamic-range short-wavelength diffraction measurements with real-time optical reconstructions. Applications to optical real-time X-ray phase-retrieval are considered. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Optically transparent and durable Al2O3 coatings for harsh environments by ultra short pulsed laser deposition

    Science.gov (United States)

    Korhonen, Hannu; Syväluoto, Aki; Leskinen, Jari T. T.; Lappalainen, Reijo

    2018-01-01

    Nowadays, an environmental protection is needed for a number of optical applications in conditions quickly impairing the clarity of optical surfaces. Abrasion resistant optical coatings applied onto plastics are usually based on alumina or polysiloxane technology. In many applications transparent glasses and ceramics need a combination of abrasive and chemically resistant shielding or other protective solutions like coatings. In this study, we intended to test our hypothesis that clear and pore free alumina coating can be uniformly distributed on glass prisms by ultra short pulsed laser deposition (USPLD) technique to protect the sensitive surfaces against abrasives. Abrasive wear tests were carried out by the use of SiC emery paper using specified standard procedures. After the wear tests the measured transparencies of coated prisms turned out to be close those of the prisms before coating. The coating on sensitive surfaces consistently displayed enhanced wear resistance exhibiting still high quality, even after severe wear testing. Furthermore, the coating modified the surface properties towards hydrophobic nature in contrast to untreated prisms, which became very hydrophilic especially due to wear.

  4. Thermoacoustic Imaging and Therapy Guidance based on Ultra-short Pulsed Microwave Pumped Thermoelastic Effect Induced with Superparamagnetic Iron Oxide Nanoparticles.

    Science.gov (United States)

    Wen, Liewei; Yang, Sihua; Zhong, Junping; Zhou, Quan; Xing, Da

    2017-01-01

    Multifunctional nanoparticle-mediated imaging and therapeutic techniques are promising modalities for accurate localization and targeted treatment of cancer in clinical settings. Thermoacoustic (TA) imaging is highly sensitive to detect the distribution of water, ions or specific nanoprobes and provides excellent resolution, good contrast and superior tissue penetrability. TA therapy is a potential non-invasive approach for the treatment of deep-seated tumors. In this study, human serum albumin (HSA)-functionalized superparamagnetic iron oxide nanoparticle (HSA-SPIO) is used as a multifunctional nanoprobe with clinical application potential for MRI, TA imaging and treatment of tumor. In addition to be a MRI contrast agent for tumor localization, HSA-SPIO can absorb pulsed microwave energy and transform it into shockwave via the thermoelastic effect. Thereby, the reconstructed TA image by detecting TA signal is expected to be a sensitive and accurate representation of the HSA-SPIO accumulation in tumor. More importantly, owing to the selective retention of HSA-SPIO in tumor tissues and strong TA shockwave at the cellular level, HSA-SPIO induced TA effect under microwave-pulse radiation can be used to highly-efficiently kill cancer cells and inhibit tumor growth. Furthermore, ultra-short pulsed microwave with high excitation efficiency and deep penetrability in biological tissues makes TA therapy a highly-efficient anti-tumor modality on the versatile platform. Overall, HSA-SPIO mediated MRI and TA imaging would offer more comprehensive diagnostic information and enable dynamic visualization of nanoagents in the tumorous tissue thereby tumor-targeted therapy.

  5. Femto-second pulses of synchrotron radiation

    International Nuclear Information System (INIS)

    Zholents, A.A.; Zolotorev, M.S.

    1995-07-01

    A method capable of producing femto-second pulses of synchrotron radiation is proposed. It is based on the interaction of femto-second light pulses with electrons in a storage ring. The application of the method to the generation of ultra-short x-ray pulses at the Advance Light Source of Lawrence Berkeley National Laboratory has been considered. The same method can also be used for extraction of electrons from a storage ring in ultra-short series of microbunches spaced by the periodicity of light wavelength

  6. Studying the mechanism of micromachining by short pulsed laser

    Science.gov (United States)

    Gadag, Shiva

    The semiconductor materials like Si and the transparent dielectric materials like glass and quartz are extensively used in optoelectronics, microelectronics, and microelectromechanical systems (MEMS) industries. The combination of these materials often go hand in hand for applications in MEMS such as in chips for pressure sensors, charge coupled devices (CCD), and photovoltaic (PV) cells for solar energy generation. The transparent negative terminal of the solar cell is made of glass on one surface of the PV cell. The positive terminal (cathode) on the other surface of the solar cell is made of silicon with a glass negative terminal (anode). The digital watches and cell phones, LEDs, micro-lens, optical components, and laser optics are other examples for the application of silicon and or glass. The Si and quartz are materials extensively used in CCD and LED for digital cameras and CD players respectively. Hence, three materials: (1) a semiconductor silicon and transparent dielectrics,- (2) glass, and (3) quartz are chosen for laser micromachining as they have wide spread applications in microelectronics industry. The Q-switched, nanosecond pulsed lasers are most extensively used for micro-machining. The nanosecond type of short pulsed laser is less expensive for the end users than the second type, pico or femto, ultra-short pulsed lasers. The majority of the research work done on these materials (Si, SiO 2, and glass) is based on the ultra-short pulsed lasers. This is because of the cut quality, pin point precision of the drilled holes, formation of the nanometer size microstructures and fine features, and minimally invasive heat affected zone. However, there are many applications such as large surface area dicing, cutting, surface cleaning of Si wafers by ablation, and drilling of relatively large-sized holes where some associated heat affected zone due to melting can be tolerated. In such applications the nanosecond pulsed laser ablation of materials is very

  7. LIGHT SOURCE: A simulation study of Tsinghua Thomson scattering X-ray source

    Science.gov (United States)

    Tang, Chuan-Xiang; Li, Ren-Kai; Huang, Wen-Hui; Chen, Huai-Bi; Du, Ying-Chao; Du, Qiang; Du, Tai-Bin; He, Xiao-Zhong; Hua, Jian-Fei; Lin, Yu-Zhen; Qian, Hou-Jun; Shi, Jia-Ru; Xiang, Dao; Yan, Li-Xin; Yu, Pei-Cheng

    2009-06-01

    Thomson scattering X-ray sources are compact and affordable facilities that produce short duration, high brightness X-ray pulses enabling new experimental capacities in ultra-fast science studies, and also medical and industrial applications. Such a facility has been built at the Accelerator Laboratory of Tsinghua University, and upgrade is in progress. In this paper, we present a proposed layout of the upgrade with design parameters by simulation, aiming at high X-ray pulses flux and brightness, and also enabling advanced dynamics studies and applications of the electron beam. Design and construction status of main subsystems are also presented.

  8. Scattering of Femtosecond Laser Pulses on the Negative Hydrogen Ion

    Science.gov (United States)

    Astapenko, V. A.; Moroz, N. N.

    2018-05-01

    Elastic scattering of ultrashort laser pulses (USLPs) on the negative hydrogen ion is considered. Results of calculations of the USLP scattering probability are presented and analyzed for pulses of two types: the corrected Gaussian pulse and wavelet pulse without carrier frequency depending on the problem parameters.

  9. Half-period optical pulse generation using a free-electron laser

    International Nuclear Information System (INIS)

    Jaroszynski, D.A.; Chaix, P.; Piovella, N.

    1995-01-01

    Recently there has been growth, in interest in non-equilibrium interaction of half-period long optical pulses with matter. To date the optical pulses have been produced by chopping out a half-period long segment from a longer pulse using a semiconductor switch driven by a femtosecond laser. In this paper we present new methods for producing tunable ultra-short optical pulses as short as half an optical period using a free-electron laser driven by electron bunches with a duration a fraction of an optical period. Two different methods relying on the production of coherent spontaneous emission will be described. In the first method we show that when a train of ultra-short optical pulses as short as one half period. We present calculations which show that the small signal gain is unimportant in the early stages of radiation build up in the cavity when the startup process is dominated by coherent spontaneous emission. To support our proposed method we present encouraging experimental results from the FELIX experiment in the Netherlands which show that interference effects between the coherent spontaneous optical pulses at start-up are very important. The second proposed method relies on the fact that coherent spontaneous emission mimics the undulations of electrons as they pass through the undulator. We show that ultra-short optical pulses are produced by coherent spontaneous emission when ultra-short electron bunches pass through an ultra-short undulator. We discuss the interesting case of such undulator radiation in the presence of an optical cavity and show that the optical pulse can be open-quotes tayloredclose quotes by simply adjusting the optical cavity desynchronism. The proposed methods may be realisable using existing rf driven FELs in the far-infrared

  10. Survey of Ultra-wideband Radar

    Science.gov (United States)

    Mokole, Eric L.; Hansen, Pete

    The development of UWB radar over the last four decades is very briefly summarized. A discussion of the meaning of UWB is followed by a short history of UWB radar developments and discussions of key supporting technologies and current UWB radars. Selected UWB radars and the associated applications are highlighted. Applications include detecting and imaging buried mines, detecting and mapping underground utilities, detecting and imaging objects obscured by foliage, through-wall detection in urban areas, short-range detection of suicide bombs, and the characterization of the impulse responses of various artificial and naturally occurring scattering objects. In particular, the Naval Research Laboratory's experimental, low-power, dual-polarized, short-pulse, ultra-high resolution radar is used to discuss applications and issues of UWB radar. Some crucial issues that are problematic to UWB radar are spectral availability, electromagnetic interference and compatibility, difficulties with waveform control/shaping, hardware limitations in the transmission chain, and the unreliability of high-power sources for sustained use above 2 GHz.

  11. Scattering of ultrashort electromagnetic pulses on metal clusters

    International Nuclear Information System (INIS)

    Astapenko, V. A.; Sakhno, S. V.

    2016-01-01

    We have calculated and analyzed the probability of ultrashort electromagnetic pulse (USP) scattering on small metal clusters in the frequency range of plasmon resonances during the field action. The main attention is devoted to dependence of the probability of scattering on the pulse duration for various detunings of the USP carrier frequency from the plasmon resonance frequency. Peculiarities of the USP scattering from plasmon resonances with various figures of merit are revealed.

  12. Scattering of ultrashort electromagnetic pulses on metal clusters

    Energy Technology Data Exchange (ETDEWEB)

    Astapenko, V. A., E-mail: astval@mail.ru; Sakhno, S. V. [Moscow Institute of Physics and Technology (State University) (Russian Federation)

    2016-12-15

    We have calculated and analyzed the probability of ultrashort electromagnetic pulse (USP) scattering on small metal clusters in the frequency range of plasmon resonances during the field action. The main attention is devoted to dependence of the probability of scattering on the pulse duration for various detunings of the USP carrier frequency from the plasmon resonance frequency. Peculiarities of the USP scattering from plasmon resonances with various figures of merit are revealed.

  13. Generation of ultra-intense and ultra-short laser pulses with high temporal contrast; Generation d'impulsions laser ultra-breves et ultra-intenses a contraste temporel eleve

    Energy Technology Data Exchange (ETDEWEB)

    Julien, A

    2006-03-15

    The topic of this thesis work concerns the design and the characterization of an efficient device devoted to the temporal contrast improvement for ultra-intense femtosecond laser pulses. The contrast is defined as the intensity ratio between the main femtosecond pulse and its nanosecond pedestal. This pedestal is the amplified spontaneous emission (ASE), inherent with laser amplification mechanism. The ASE background has dramatic effects for laser-matter interactions on a solid target. The presented work consists in the theoretical and experimental study of a temporal filter based on a third order nonlinear effect acting on the pulse polarization. We have studied several kinds of nonlinear filters. The selected device is based on the process of cross-polarized wave generation (XPW) in crystals with an anisotropic third-order nonlinear susceptibility. This nonlinear filter has been experimented on various femtosecond systems. It allows a contrast improvement of several orders of magnitude, as demonstrated by temporal profiles measurements on a large intensity dynamic. A device to improve the nonlinear process conversion efficiency, it means the filter transmission, has also been achieved. This method is based on constructive interferences between XPW signals generated in different crystals. This setup has made it possible to reach experimentally the maximum theoretical efficiency ( >20%) and in the same time ensures the system stability. At least, we have demonstrated that the filter preserves, or even improves, spectral and spatial qualities of the laser pulse. These results are thus particularly promising and allow contemplating the implementation of the filter in current femtosecond systems. (author)

  14. The performance of neutron scattering spectrometers at a long-pulse spallation source

    International Nuclear Information System (INIS)

    Pynn, R.

    1995-01-01

    The first conclusion the author wants to draw is that comparison of the performance of neutron scattering spectrometers at CW and pulsed sources is simpler for long-pulsed sources than it is for the short-pulse variety. Even though detailed instrument design and assessment will require Monte Carlo simulations (which have already been performed at Los Alamos for SANS and reflectometry), simple arguments are sufficient to assess the approximate performance of spectrometers at an LPSS and to support the contention that a 1 MW long-pulse source can provide attractive performance, especially for instrumentation designed for soft-condensed-matter science. Because coupled moderators can be exploited at such a source, its time average cold flux is equivalent to that of a research reactor with a power of about 15 MW, so only a factor of 4 gain from source pulsing is necessary to obtain performance that is comparable with the ILL. In favorable cases, the gain from pulsing can be even more than this, approaching the limit set by the peak flux, giving about 4 times the performance of the ILL. Because of its low duty factor, an LPSS provides the greatest performance gains for relatively low resolution experiments with cold neutrons. It should thus be considered complementary to short pulse sources which are most effective for high resolution experiments using thermal or epithermal neutrons

  15. Ultra-high-resolution inelastic X-ray scattering at high-repetition-rate self-seeded X-ray free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Chubar, Oleg [Brookhaven National Laboratory, Upton, NY 11973 (United States); Geloni, Gianluca [European X-ray Free-Electron Laser, Albert-Einstein-Ring 19, 22761 Hamburg (Germany); Kocharyan, Vitali [Deutsches Elektronen-Synchrotron, 22761 Hamburg (Germany); Madsen, Anders [European X-ray Free-Electron Laser, Albert-Einstein-Ring 19, 22761 Hamburg (Germany); Saldin, Evgeni; Serkez, Svitozar [Deutsches Elektronen-Synchrotron, 22761 Hamburg (Germany); Shvyd’ko, Yuri, E-mail: shvydko@aps.anl.gov [Argonne National Laboratory, Argonne, IL 60439 (United States); Sutter, John [Diamond Light Source Ltd, Didcot OX11 0DE (United Kingdom)

    2016-02-12

    This article explores novel opportunities for ultra-high-resolution inelastic X-ray scattering (IXS) at high-repetition-rate self-seeded XFELs. These next-generation light sources are promising a more than three orders of magnitude increase in average spectral flux compared with what is possible with storage-ring-based radiation sources. In combination with the advanced IXS spectrometer described here, this may become a real game-changer for ultra-high-resolution X-ray spectroscopies, and hence for the studies of dynamics in condensed matter systems. Inelastic X-ray scattering (IXS) is an important tool for studies of equilibrium dynamics in condensed matter. A new spectrometer recently proposed for ultra-high-resolution IXS (UHRIX) has achieved 0.6 meV and 0.25 nm{sup −1} spectral and momentum-transfer resolutions, respectively. However, further improvements down to 0.1 meV and 0.02 nm{sup −1} are required to close the gap in energy–momentum space between high- and low-frequency probes. It is shown that this goal can be achieved by further optimizing the X-ray optics and by increasing the spectral flux of the incident X-ray pulses. UHRIX performs best at energies from 5 to 10 keV, where a combination of self-seeding and undulator tapering at the SASE-2 beamline of the European XFEL promises up to a 100-fold increase in average spectral flux compared with nominal SASE pulses at saturation, or three orders of magnitude more than what is possible with storage-ring-based radiation sources. Wave-optics calculations show that about 7 × 10{sup 12} photons s{sup −1} in a 90 µeV bandwidth can be achieved on the sample. This will provide unique new possibilities for dynamics studies by IXS.

  16. Development of ultra-short high voltage pulse technology using magnetic pulse compression

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Byung Heon; Kim, S. G.; Nam, S. M.; Lee, B. C.; Lee, S. M.; Jeong, Y. U.; Cho, S. O.; Jin, J. T.; Choi, H. L

    1998-01-01

    The control circuit for high voltage switches, the saturable inductor for magnetic assist, and the magnetic pulse compression circuit were designed, constructed, and tested. The core materials of saturable inductors in magnetic pulse compression circuit were amorphous metal and ferrite and total compression stages were 3. By the test, in high repetition rate, high pulse compression were certified. As a result of this test, it became possible to increase life-time of thyratrons and to replace thyratrons by solid-state semiconductor switches. (author). 16 refs., 16 tabs.

  17. Development of ultra-short high voltage pulse technology using magnetic pulse compression

    International Nuclear Information System (INIS)

    Cha, Byung Heon; Kim, S. G.; Nam, S. M.; Lee, B. C.; Lee, S. M.; Jeong, Y. U.; Cho, S. O.; Jin, J. T.; Choi, H. L.

    1998-01-01

    The control circuit for high voltage switches, the saturable inductor for magnetic assist, and the magnetic pulse compression circuit were designed, constructed, and tested. The core materials of saturable inductors in magnetic pulse compression circuit were amorphous metal and ferrite and total compression stages were 3. By the test, in high repetition rate, high pulse compression were certified. As a result of this test, it became possible to increase life-time of thyratrons and to replace thyratrons by solid-state semiconductor switches. (author). 16 refs., 16 tabs

  18. Revisiting Bragg's X-ray microscope: Scatter based optical transient grating detection of pulsed ionising radiation

    International Nuclear Information System (INIS)

    Fullagar, Wilfred K.; Paganin, David M.; Hall, Chris J.

    2011-01-01

    Transient optical gratings for detecting ultrafast signals are routine for temporally resolved photochemical investigations. Many processes can contribute to the formation of such gratings; we indicate use of optically scattering centres that can be formed with highly variable latencies in different materials and devices using ionising radiation. Coherent light scattered by these centres can form the short-wavelength-to-optical-wavelength, incoherent-to-coherent basis of a Bragg X-ray microscope, with inherent scope for optical phasing. Depending on the dynamics of the medium chosen, the way is open to both ultrafast pulsed and integrating measurements. For experiments employing brief pulses, we discuss high-dynamic-range short-wavelength diffraction measurements with real-time optical reconstructions. Applications to optical real-time X-ray phase-retrieval are considered. -- Research highlights: → It is timely that the concept of Bragg's X-ray microscope be revisited. → Transient gratings can be used for X-ray all-optical information processing. → Applications to optical real-time X-ray phase-retrieval are considered.

  19. Nonlinear evolutions of an ultra-intense ultra-short laser pulse in a rarefied plasma through a new quasi-static theory

    Science.gov (United States)

    Yazdanpanah, J.

    2018-02-01

    In this paper, we present a new description of self-consistent wake excitation by an intense short laser pulse, based on applying the quasi-static approximation (slow variations of the pulse-envelope) in the instantaneous Lorentz-boosted pulse co-moving frame (PCMF), and best verify our results through comparison with particle-in-cell simulations. According to this theory, the plasma motion can be treated perturbatively in the PCMF due to its high initial-velocity and produces a quasi-static wakefield in this frame. The pulse envelope, on the other hand, is governed by a form of the Schrödinger equation in the PCMF, in which the wakefield acts as an effective potential. In this context, pulse evolutions are characterized by local conservation laws resulted from this equation and subjected to Lorentz transformation into the laboratory frame. Using these conservation laws, precise formulas are obtained for spatiotemporal pulse evolutions and related wakefield variations at initial stages, and new equations are derived for instantaneous group velocity and carrier frequency. In addition, based on properties of the Schrödinger equation, spectral-evolutions of the pulse are described and the emergence of an anomalous dispersion branch with linear relation ω ≈ ck (c is the light speed) is predicted. Our results are carefully discussed versus previous publications and the significance of our approach is described by showing almost all suggestive definitions of group-velocity based on energy arguments fail to reproduce our formula and correctly describe the instantaneous pulse-velocity.

  20. Ultra-small-angle neutron scattering. History, developments and applications

    International Nuclear Information System (INIS)

    Koizumi, Satoshi; Yamaguchi, Daisuke

    2011-01-01

    Ultra-small-angle neutron scattering (USANS), which is a scattering method observing in a q-region of q=10 -3 nm -1 , was initiated by double crystal (Bonse-Hart) method. Recently, a focusing USANS method was developed by combining a pin-hole type spectrometer and focusing lenses. These two methods, which are complementary to each other, were employed to achieve wide q-observations on microbial cellulose, actin cytoskeleton, tire, and membrane-electrolyte assembly of fuel cell. (author)

  1. Plans for an Ultra Cold Neutron source at Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Seestrom, S.J.; Bowles, T.J.; Hill, R.; Greene, G.L. [Los Alamos National Lab., NM (United States)

    1996-08-01

    Ultra Cold Neutrons (UCN) can be produced at spallation sources using a variety of techniques. To date the technique used has been to Bragg scatter and Doppler shift cold neutrons into UCN from a moving crystal. This is particularly applicable to short-pulse spallation sources. We are presently constructing a UCN source at LANSCE using method. In addition, large gains in UCN density should be possible using cryogenic UCN sources. Research is under way at Gatchina to demonstrate technical feasibility of be a frozen deuterium source. If successful, a source of this type could be implemented at future spallation source, such as the long pulse source being planned at Los Alamos, with a UCN density that may be two orders of magnitude higher than that presently available at reactors. (author)

  2. Transient thermal and nonthermal electron and phonon relaxation after short-pulsed laser heating of metals

    International Nuclear Information System (INIS)

    Giri, Ashutosh; Hopkins, Patrick E.

    2015-01-01

    Several dynamic thermal and nonthermal scattering processes affect ultrafast heat transfer in metals after short-pulsed laser heating. Even with decades of measurements of electron-phonon relaxation, the role of thermal vs. nonthermal electron and phonon scattering on overall electron energy transfer to the phonons remains unclear. In this work, we derive an analytical expression for the electron-phonon coupling factor in a metal that includes contributions from equilibrium and nonequilibrium distributions of electrons. While the contribution from the nonthermal electrons to electron-phonon coupling is non-negligible, the increase in the electron relaxation rates with increasing laser fluence measured by thermoreflectance techniques cannot be accounted for by only considering electron-phonon relaxations. We conclude that electron-electron scattering along with electron-phonon scattering have to be considered simultaneously to correctly predict the transient nature of electron relaxation during and after short-pulsed heating of metals at elevated electron temperatures. Furthermore, for high electron temperature perturbations achieved at high absorbed laser fluences, we show good agreement between our model, which accounts for d-band excitations, and previous experimental data. Our model can be extended to other free electron metals with the knowledge of the density of states of electrons in the metals and considering electronic excitations from non-Fermi surface states

  3. A broadly tunable autocorrelator for ultra-short, ultra-high power infrared optical pulses

    Energy Technology Data Exchange (ETDEWEB)

    Szarmes, E.B.; Madey, J.M.J. [Duke Univ., Durham, NC (United States)

    1995-12-31

    We describe the design of a crossed-beam, optical autocorrelator that uses an uncoated, birefringent beamsplitter to split a linearly polarized incident pulse into two orthogonally polarized pulses, and a Type II, SHG crystal to generate the intensity autocorrelation function. The uncoated beamsplitter accommodates extremely broad tunability while precluding any temporal distortion of ultrashort optical pulses at the dielectric interface, and the specific design provides efficient operation between 1 {mu}m and 4 {mu}m. Furthermore, the use of Type II SHG completely eliminates any single-beam doubling, so the autocorrelator can be operated at very shallow crossed-beam angles without generating a background pedestal. The autocorrelator has been constructed and installed in the Mark III laboratory at Duke University as a broadband diagnostic for ongoing compression experiments on the chirped-pulse FEL.

  4. The Maxwell-Lorentz Model for optical Pulses

    DEFF Research Database (Denmark)

    Sørensen, Mads Peter; Brio, Moysey

    2007-01-01

    Dynamics of optical pulses, especially of ultra short femtosecond pulses, are of great technological and theoretical interest. The dynamics of optical pulses is usually studied using the nonlinear Schrodinger (NLS) equation model. While such approach works surprisingly well for description of pulse...

  5. Influence of chirp on laser-pulse amplification in Brillouin backscattering schemes

    Science.gov (United States)

    Lehmann, Goetz; Schluck, Friedrich; Spatschek, Karl-Heinz

    2015-11-01

    Plasma-based amplification of laser pulses is currently discussed as a key component for the next generation of high-intensity laser systems, possibly enabling the generation of ultra-short pulses in the exawatt-zetawatt regime. In these scenarios the energy of a long pump pulse (several ps to ns of duration) is transferred to a short seed pulse via a plasma oscillation. Weakly- and strongly-coupled (sc) Brillouin backscattering have been identified as potential candidates for robust amplification scenarios. With the help of three-wave interaction models, we investigate the influence of a chirp of the pump beam on the seed amplification. We show that chirp can mitigate deleterious spontaneous Raman backscattering of the pump off noise and that at the same time the amplification dynamics due to Brillouin scattering is still intact. For the experimentally very interesting case of sc-Brillouin we find a dependence of the efficiency on the sign of the chirp. Funding provided by project B10 of SFB TR18 of the Deutsche Forschungsgemeinschaft (DFG).

  6. Ion acceleration in electrostatic field of charged cavity created by ultra-short laser pulses of 1020-1021 W/cm2

    Science.gov (United States)

    Bychenkov, V. Yu.; Singh, P. K.; Ahmed, H.; Kakolee, K. F.; Scullion, C.; Jeong, T. W.; Hadjisolomou, P.; Alejo, A.; Kar, S.; Borghesi, M.; Ter-Avetisyan, S.

    2017-01-01

    Ion acceleration resulting from the interaction of ultra-high intensity and ultra-high contrast (˜10-10) laser pulses with thin A l foil targets at 30° angle of laser incidence is studied. Proton maximum energies of 30 and 18 MeV are measured along the target normal rear and front sides, respectively, showing intensity scaling as Ib . For the target front bf r o n t= 0.5-0.6 and for the target rear br e a r= 0.7-0.8 is observed in the intensity range 1020-1021 W/cm2. The fast scaling from the target rear ˜I0.75 can be attributed enhancement of laser energy absorption as already observed at relatively low intensities. The backward acceleration of the front side protons with intensity scaling as ˜I0.5 can be attributed to the to the formation of a positively charged cavity at the target front via ponderomotive displacement of the target electrons at the interaction of relativistic intense laser pulses with a solid target. The experimental results are in a good agreement with theoretical predictions.

  7. Pump Side-scattering in Ultra-powerful Backward Raman Amplifiers

    International Nuclear Information System (INIS)

    Solodov, A.A.; Malkin, V.M.; Fisch, N.J.

    2004-01-01

    Extremely large laser power might be obtained by compressing laser pulses through backward Raman amplification (BRA) in plasmas. Premature Raman backscattering of a laser pump by plasma noise might be suppressed by an appropriate detuning of the Raman resonance, even as the desired amplification of the seed persists with a high efficiency. In this paper, we analyze side-scattering of laser pumps by plasma noise in backward Raman amplifiers. Though its growth rate is smaller than that of backscattering, the side-scattering can nevertheless be dangerous, because of a longer path of side-scattered pulses in plasmas and because of an angular dependence of the Raman resonance detuning. We show that side-scattering of laser pumps by plasma noise in BRA might be suppressed to a tolerable level at all angles by an appropriate combination of two detuning mechanisms associated with plasma density gradient and pump chirp

  8. Measurement and deconvolution of detector response time for short HPM pulses: Part 1, Microwave diodes

    International Nuclear Information System (INIS)

    Bolton, P.R.

    1987-06-01

    A technique is described for measuring and deconvolving response times of microwave diode detection systems in order to generate corrected input signals typical of an infinite detection rate. The method has been applied to cases of 2.86 GHz ultra-short HPM pulse detection where pulse rise time is comparable to that of the detector; whereas, the duration of a few nanoseconds is significantly longer. Results are specified in terms of the enhancement of equivalent deconvolved input voltages for given observed voltages. The convolution integral imposes the constraint of linear detector response to input power levels. This is physically equivalent to the conservation of integrated pulse energy in the deconvolution process. The applicable dynamic range of a microwave diode is therefore limited to a smaller signal region as determined by its calibration

  9. Using the ultra-long pulse width pulsed dye laser and elliptical spot to treat resistant nasal telangiectasia.

    Science.gov (United States)

    Madan, Vishal; Ferguson, Janice

    2010-01-01

    Thick linear telangiectasia on the ala nasi and nasolabial crease can be resistant to treatment with the potassium-titanyl-phosphate (KTP) laser and the traditional round spot on a pulsed dye laser (PDL). We evaluated the efficacy of a 3 mm x 10 mm elliptical spot using the ultra-long pulse width on a Candela Vbeam(R) PDL for treatment of PDL- and KTP laser-resistant nasal telangiectasia. Nasal telangiectasia resistant to PDL (12 patients) and KTP laser (12 patients) in 18 patients were treated with a 3 mm x 10 mm elliptical spot on the ultra-long pulse pulsed dye laser (ULPDL) utilising long pulse width [595 nm, 40 ms, double pulse, 30:20 dynamic cooling device (DCD)]. Six patients had previously received treatment with both PDL and KTP laser prior to ULPDL (40 treatments, range1-4, mean 2.2). Complete clearance was seen in ten patients, and eight patients displayed more than 80% improvement after ULPDL treatment. Self-limiting purpura occurred with round spot PDL and erythema with KTP laser and ULPDL. Subtle linear furrows along the treatment sites were seen in three patients treated with the KTP laser. ULPDL treatment delivered using a 3 mm x 10 mm elliptical spot was non-purpuric and highly effective in the treatment of nasal telangiectasia resistant to KTP laser and PDL.

  10. Thin film surface processing by ultrashort laser pulses (USLP)

    NARCIS (Netherlands)

    Scorticati, D.; Skolski, J.Z.P.; Romer, G.R.B.E.; Huis in 't Veld, A.J.; Workum, M.J.; Theelen, M.J.; Zeman, M.

    2012-01-01

    In this work, we studied the feasibility of surface texturing of thin molybdenum layers on a borosilicate glass substrate with Ultra-Short Laser Pulses (USLP). Large areas of regular diffraction gratings were produced consisting of Laserinduced periodic surface structures (LIPSS). A short pulsed

  11. Proton- and x-ray beams generated by ultra-fast CO2 lasers for medical applications

    Science.gov (United States)

    Pogorelsky, Igor; Polyanskiy, Mikhail; Yakimenko, Vitaly; Ben-Zvi, Ilan; Shkolnikov, Peter; Najmudin, Zulfikar; Palmer, Charlotte A. J.; Dover, Nicholas P.; Oliva, Piernicola; Carpinelli, Massimo

    2011-05-01

    Recent progress in using picosecond CO2 lasers for Thomson scattering and ion-acceleration experiments underlines their potentials for enabling secondary radiation- and particle- sources. These experiments capitalize on certain advantages of long-wavelength CO2 lasers, such as higher number of photons per energy unit, and favorable scaling of the electrons' ponderomotive energy and critical plasma density. The high-flux x-ray bursts produced by Thomson scattering of the CO2 laser off a counter-propagating electron beam enabled high-contrast, time-resolved imaging of biological objects in the picosecond time frame. In different experiments, the laser, focused on a hydrogen jet, generated monoenergetic proton beams via the radiation-pressure mechanism. The strong power-scaling of this regime promises realization of proton beams suitable for laser-driven proton cancer therapy after upgrading the CO2 laser to sub-PW peak power. This planned improvement includes optimizing the 10-μm ultra-short pulse generation, assuring higher amplification in the CO2 gas under combined isotopic- and power-broadening effects, and shortening the postamplification pulse to a few laser cycles (150-200 fs) via chirping and compression. These developments will move us closer to practical applications of ultra-fast CO2 lasers in medicine and other areas.

  12. FY 2000 report on the results of the R and D of femtosecond technology. Development of the ultra-short pulse optoelectronic technology; 2000 nendo femto byo technology no kenkyu kaihatsu seika hokokusho. Chotan pulse hikari electronics gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    This project aims at creating new industrial basement technology which supports the highly information-oriented society in the 21st century, conducts the R and D of technology to control the state of light and electron in the femtosecond time domain (10{sup -15} - 10{sup -12} sec), and establishes the basement technology which exceeds the speed limit of the conventional electronics technology and also includes new functionality. Especially, it aims at establishing the basement technology of the ultra-high speed optoelectronics which are absolutely necessary for construction of the Tb/s class ultra-high speed/large capacity information communication infrastructure. The results obtained in this fiscal year were as follows: successful transmission of 144km of 600fs optical pulse, successful experiment of 4-chain pulse DEMUX equivalent to 1Tb/s by ultra-high speed intersubband transition optical switch of Sb-base material combination quantum well, realization of 2-bit coding/decoding in the spectral region, realization of serial-parallel conversion motion of optical pulse equivalent to 1Tb/s using squarylium J aggregate thin films, realization of subpico second optical pulse 20nm wavelength conversion by DFB laser structure, etc. (NEDO)

  13. Extremely Short Optical Pulses and Ads/CFT Compliance

    Directory of Open Access Journals (Sweden)

    Konobeeva N.N.

    2015-01-01

    Full Text Available Dynamics of few cycle optical pulses in non-Fermi liquid was considered. Energy spectrum of non-Fermi liquid was taken from the AdS/CFT compliance. Conditions of quasiparticle excitation existence were defined. Non-Fermi liquid parameters impact on the shape of few cycle pulses were estimated. It was shown that extremely short optical pulse propagation in the non-Fermi liquid is a stable pattern. The value of chemical potential has a significant impact on extremely short pulse shape. An increase in initial pulse amplitude does not result in pulse-shape distortions under its propagation in considered medium that is why the non-Fermi liquid can be used in applications inherent in extremely short pulse processing.

  14. Compressing and focusing a short laser pulse by a thin plasma lens

    International Nuclear Information System (INIS)

    Ren, C.; Duda, B. J.; Hemker, R. G.; Mori, W. B.; Katsouleas, T.; Antonsen, T. M.; Mora, P.

    2001-01-01

    We consider the possibility of using a thin plasma slab as an optical element to both focus and compress an intense laser pulse. By thin we mean that the focal length is larger than the lens thickness. We derive analytic formulas for the spot size and pulse length evolution of a short laser pulse propagating through a thin uniform plasma lens. The formulas are compared to simulation results from two types of particle-in-cell code. The simulations give a greater final spot size and a shorter focal length than the analytic formulas. The difference arises from spherical aberrations in the lens which lead to the generation of higher-order vacuum Gaussian modes. The simulations also show that Raman side scattering can develop. A thin lens experiment could provide unequivocal evidence of relativistic self-focusing

  15. Delay-time distribution in the scattering of time-narrow wave packets (II)—quantum graphs

    Science.gov (United States)

    Smilansky, Uzy; Schanz, Holger

    2018-02-01

    We apply the framework developed in the preceding paper in this series (Smilansky 2017 J. Phys. A: Math. Theor. 50 215301) to compute the time-delay distribution in the scattering of ultra short radio frequency pulses on complex networks of transmission lines which are modeled by metric (quantum) graphs. We consider wave packets which are centered at high wave number and comprise many energy levels. In the limit of pulses of very short duration we compute upper and lower bounds to the actual time-delay distribution of the radiation emerging from the network using a simplified problem where time is replaced by the discrete count of vertex-scattering events. The classical limit of the time-delay distribution is also discussed and we show that for finite networks it decays exponentially, with a decay constant which depends on the graph connectivity and the distribution of its edge lengths. We illustrate and apply our theory to a simple model graph where an algebraic decay of the quantum time-delay distribution is established.

  16. Ultra-short time sciences. From the atto-second to the peta-watts

    International Nuclear Information System (INIS)

    2000-01-01

    This book presents the recent advances in the scientific and technical domains linked with ultra-short time physics. It deals first with the conceptual and technological aspects of ultra-intense and ultra-brief lasers. Then, it describes the different domains of research (atoms, molecules and aggregates; gaseous phase dynamics using the pump-probe technique; femto-chemistry in dense phase; condensed matter; plasma physics; consistent control; aerosols; functional femto-biology) and the different domains of application (medical diagnosis; ophthalmology; telecommunications; technological and industrial developments). A last part is devoted to the teaching of ultra-short time sciences. (J.S.)

  17. Simulation of intense short-pulse laser-plasma interaction

    International Nuclear Information System (INIS)

    Yamagiwa, Mitsuru

    2000-01-01

    We have completed the massive parallelization of a 2-dimensional giga-particle code and have achieved a 530-fold acceleration rate with 512 processing elements (PE's). Using this we have implemented a simulation of the interaction of a solid thin film and a high intensity laser and have discovered a phenomenon in which high quality short pulses from the far ultraviolet to soft X-rays are generated at the back surface of the thin layer. We have also introduced the atomic process database code (Hullac) and have the possibility for high precision simulations of X-ray laser radiation. With respect to laser acceleration we have the possibility to quantitatively evaluate relativistic self-focusing assumed to occur in higher intensity fields. Ion acceleration from a solid target and an underdense plasma irradiated by an intense and an ultra intense laser, respectively, has also been studied by particle-in-cell (PIC) simulations. (author)

  18. Inverse Compton scattering X-ray source yield optimization with a laser path folding system inserted in a pre-existent RF linac

    Energy Technology Data Exchange (ETDEWEB)

    Chaleil, A.; Le Flanchec, V.; Binet, A.; Nègre, J.P.; Devaux, J.F.; Jacob, V.; Millerioux, M.; Bayle, A.; Balleyguier, P. [CEA DAM DIF, F-91297 Arpajon (France); Prazeres, R. [CLIO/LCP, Bâtiment 201, Université Paris-Sud, F-91450 Orsay (France)

    2016-12-21

    An inverse Compton scattering source is under development at the ELSA linac of CEA, Bruyères-le-Châtel. Ultra-short X-ray pulses are produced by inverse Compton scattering of 30 ps-laser pulses by relativistic electron bunches. The source will be able to operate in single shot mode as well as in recurrent mode with 72.2 MHz pulse trains. Within this framework, an optical multipass system that multiplies the number of emitted X-ray photons in both regimes has been designed in 2014, then implemented and tested on ELSA facility in the course of 2015. The device is described from both geometrical and timing viewpoints. It is based on the idea of folding the laser optical path to pile-up laser pulses at the interaction point, thus increasing the interaction probability. The X-ray output gain measurements obtained using this system are presented and compared with calculated expectations.

  19. Experimental investigation of 1 GW repeatable ultra-wide band pulse radiating source

    International Nuclear Information System (INIS)

    Meng Fanbao; Ma Hongge; Zhou Chuanming; Yang Zhoubing; Lu Wei; Ju Bingquan; Yu Huilong

    2001-01-01

    The single cycle pulse of 1.6 GW peak power with 20 Hz repetition-rate was generated. It radiated a peak power of more than 500 MW with a coaxial biconical antenna. The technological problems of the insulation and energy loss during generating and radiating high peak power ultra-wide band (UWB) pulse have been resolved. The experiments show that the material insulation and dispersion in sub-nanosecond pulse should be investigated deeply

  20. Experimental investigation of 1 GW repeatable ultra-wide band pulse radiating source

    Energy Technology Data Exchange (ETDEWEB)

    Fanbao, Meng; Hongge, Ma; Chuanming, Zhou; Zhoubing, Yang; Wei, Lu; Bingquan, Ju; Huilong, Yu [China Academy of Engineering Physics, Chengdu (China)

    2000-11-01

    The single cycle pulse of 1.6 GW peak power with 20 Hz repetition-rate was generated. It radiated a peak power of more than 500 MW with a coaxial biconical antenna. The technological problems of the insulation and energy loss during generating and radiating high peak power ultra-wide band (UWB) pulse have been resolved. The experiments show that the material insulation and dispersion in subnanosecond pulse should be investigated deeply.

  1. Optically resonant magneto-electric cubic nanoantennas for ultra-directional light scattering

    Energy Technology Data Exchange (ETDEWEB)

    Sikdar, Debabrata, E-mail: debabrata.sikdar@monash.edu; Premaratne, Malin [Advanced Computing and Simulation Laboratory (A chi L), Department of Electrical and Computer Systems Engineering, Monash University, Clayton 3800, Victoria (Australia); Cheng, Wenlong [Department of Chemical Engineering, Faculty of Engineering, Monash University, Clayton 3800, Victoria (Australia); The Melbourne Centre for Nanofabrication, 151 Wellington Road, Clayton 3168, Victoria (Australia)

    2015-02-28

    Cubic dielectric nanoparticles are promising candidates for futuristic low-loss, ultra-compact, nanophotonic applications owing to their larger optical coefficients, greater packing density, and relative ease of fabrication as compared to spherical nanoparticles; besides possessing negligible heating at nanoscale in contrast to their metallic counterparts. Here, we present the first theoretical demonstration of azimuthally symmetric, ultra-directional Kerker's-type scattering of simple dielectric nanocubes in visible and near-infrared regions via simultaneous excitation and interference of optically induced electric- and magnetic-resonances up to quadrupolar modes. Unidirectional forward-scattering by individual nanocubes is observed at the first generalized-Kerker's condition for backward-scattering suppression, having equal electric- and magnetic-dipolar responses. Both directionality and magnitude of these unidirectional-scattering patterns get enhanced where matching electric- and magnetic-quadrupolar responses spectrally overlap. While preserving azimuthal-symmetry and backscattering suppression, a nanocube homodimer provides further directionality improvement for increasing interparticle gap, but with reduced main-lobe magnitude due to emergence of side-scattering lobes from diffraction-grating effect. We thoroughly investigate the influence of interparticle gap on scattering patterns and propose optimal range of gap for minimizing side-scattering lobes. Besides suppressing undesired side-lobes, significant enhancement in scattering magnitude and directionality is attained with increasing number of nanocubes forming a linear chain. Optimal directionality, i.e., the narrowest main-scattering lobe, is found at the wavelength of interfering quadrupolar resonances; whereas the largest main-lobe magnitude is observed at the wavelength satisfying the first Kerker's condition. These unique optical properties of dielectric nanocubes thus can

  2. Scattering of electromagnetic pulses by metal nanospheres in the vicinity of a Fano-like resonance

    International Nuclear Information System (INIS)

    Astapenko, V.A.; Svita, S.Yu.

    2015-01-01

    In the work, radiation scattering by metal nanospheres in a dielectric matrix in case of ultrashort and long electromagnetic pulses is studied theoretically. Spectral efficiencies of backward and forward scattering by silver nanospheres in glass are calculated with the use of experimental data on the dielectric permittivity of silver. The presence of Fano-like resonances in spectral dependences of scattering efficiency caused by interference of dipole and quadrupole scatterings is shown. Backward and forward scattering of ultrashort pulses is calculated and analyzed. The obtained dependences of the total probability of scattering (during all time of the action of a pulse) on pulse duration demonstrate an essential distinction between an ultrashort case and a long pulse limit

  3. Scattering Fields Control by Metamaterial Device Based on Ultra-Broadband Polarization Converters

    Directory of Open Access Journals (Sweden)

    Si-Jia Li

    2016-12-01

    Full Text Available We proposed a novel ultra-broadband meta¬material screen with controlling the electromagnetic scat¬tering fields based on the three layers wideband polariza¬tion converter (TLW-PC. The unit cell of TLW-PC was composed of a three layers substrate loaded with double metallic split-rings structure and a metal ground plane. We observed that the polarization converter primarily per¬formed ultra-broadband cross polarization conversion from 5.71 GHz to 14.91 GHz. Furthermore, a metamaterial screen, which contributed to the low scattering charac¬teristics, had been exploited with the orthogonal array based on TLW-PC. The near scattering electronic fields are controlled due to the change of phase and amplitude for incident wave. The metamaterial screen significantly exhibited low scattering characteristics from 5.81 GHz to 15.06 GHz. To demonstrate design, a metamaterial device easily implemented by the common printed circuit board method has been fabricated and measured. Experimental results agreed well with the simulated results.

  4. Solutions for ultra-high speed optical wavelength conversion and clock recovery

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Galili, Michael; Mulvad, Hans Christian Hansen

    2006-01-01

    This paper reports on our recent advances in ultra-fast optical communications relying on ultra-short pulses densely stacked in ultra-high bit rate serial data signals at a single wavelength. The paper describes details in solutions for the network functionalities of wavelength conversion and clock...... recovery at bit rates up to 320 Gb/s...

  5. Interaction of relativistic electrons with an intense laser pulse: High-order harmonic generation based on Thomson scattering

    International Nuclear Information System (INIS)

    Hack, Szabolcs; Varró, Sándor; Czirják, Attila

    2016-01-01

    We investigate nonlinear Thomson scattering as a source of high-order harmonic radiation with the potential to enable attosecond light pulse generation. We present a new analytic solution of the electron’s relativistic equations of motion in the case of a short laser pulse with a sine-squared envelope. Based on the single electron emission, we compute and analyze the radiated amplitude and phase spectrum for a realistic electron bunch, with special attention to the correct initial values. These results show that the radiation spectrum of an electron bunch in head-on collision with a sufficiently strong laser pulse of sine-squared envelope has a smooth frequency dependence to allow for the synthesis of attosecond light pulses.

  6. Interaction of relativistic electrons with an intense laser pulse: High-order harmonic generation based on Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Hack, Szabolcs [ELI-ALPS, ELI-HU Non-Profit Ltd., Dugonics tér 13, H-6720 Szeged (Hungary); Department of Theoretical Physics, University of Szeged, Tisza L. krt. 84-86, H-6720 Szeged (Hungary); Varró, Sándor [ELI-ALPS, ELI-HU Non-Profit Ltd., Dugonics tér 13, H-6720 Szeged (Hungary); Wigner Research Center for Physics, SZFI, PO Box 49, H-1525 Budapest (Hungary); Czirják, Attila [ELI-ALPS, ELI-HU Non-Profit Ltd., Dugonics tér 13, H-6720 Szeged (Hungary); Department of Theoretical Physics, University of Szeged, Tisza L. krt. 84-86, H-6720 Szeged (Hungary)

    2016-02-15

    We investigate nonlinear Thomson scattering as a source of high-order harmonic radiation with the potential to enable attosecond light pulse generation. We present a new analytic solution of the electron’s relativistic equations of motion in the case of a short laser pulse with a sine-squared envelope. Based on the single electron emission, we compute and analyze the radiated amplitude and phase spectrum for a realistic electron bunch, with special attention to the correct initial values. These results show that the radiation spectrum of an electron bunch in head-on collision with a sufficiently strong laser pulse of sine-squared envelope has a smooth frequency dependence to allow for the synthesis of attosecond light pulses.

  7. One-phonon scattering of ultra cold neutrons in copper

    International Nuclear Information System (INIS)

    Holas, A.

    1977-01-01

    Experiments with ultra cold neutrons (UCN) showed that their lifetime in a closed vessel is much smaller than expected. In order to explain this phenomenon, many different mechanisms leading to heating of UCN were proposed, among other things one-phonon coherent inelastic scattering (with phonon absorption). This paper shows quantitatively the contribution of this process to the total heating of UCN

  8. Pulsed laser ablation and deposition of niobium carbide

    International Nuclear Information System (INIS)

    Sansone, M.; De Bonis, A.; Santagata, A.; Rau, J.V.; Galasso, A.; Teghil, R.

    2016-01-01

    Highlights: • We have deposited in vacuum niobium carbide films by fs and ns PLD. • We have compared PLD performed by ultra-short and short laser pulses. • The films deposited by fs PLD of NbC are formed by nanoparticles. • The structure of the films produced by fs PLD at 500 °C corresponds to NbC. - Abstract: NbC crystalline films have been deposited in vacuum by ultra-short pulsed laser deposition technique. The films have been characterized by transmission and scanning electron microscopies and by X-ray diffraction. To clarify the ablation–deposition mechanism, the plasma produced by the ablation process has been characterized by optical emission spectroscopy and fast imaging. A comparison of the results with those obtained by ns pulsed deposition of the same target has been carried out.

  9. Ultra-low-power and ultra-low-cost short-range wireless receivers in nanoscale CMOS

    CERN Document Server

    Lin, Zhicheng; Martins, Rui Paulo

    2016-01-01

    This book provides readers with a description of state-of-the-art techniques to be used for ultra-low-power (ULP) and ultra-low-cost (ULC), short-range wireless receivers. Readers will learn what is required to deploy these receivers in short-range wireless sensor networks, which are proliferating widely to serve the internet of things (IoT) for “smart cities.” The authors address key challenges involved with the technology and the typical tradeoffs between ULP and ULC. Three design examples with advanced circuit techniques are described in order to address these trade-offs, which specially focus on cost minimization. These three techniques enable respectively, cascading of radio frequency (RF) and baseband (BB) circuits under an ultra-low-voltage (ULV) supply, cascoding of RF and BB circuits in current domain for current reuse, and a novel function-reuse receiver architecture, suitable for ULV and multi-band ULP applications such as the sub-GHz ZigBee. ·         Summarizes the state-of-the-art i...

  10. Complex characterization of short-pulse propagation through InAs/InP quantum-dash optical amplifiers: From the quasi-linear to the two-photon-dominated regime

    DEFF Research Database (Denmark)

    Capua, Amir; Saal, Abigael; Karni, Ouri

    2012-01-01

    We describe direct measurements at a high temporal resolution of the changes experienced by the phase and amplitude of an ultra-short pulse upon propagation through an inhomogenously broadened semiconductor nanostructured optical gain medium. Using a cross frequency-resolved optical gating techni...

  11. Study of surface layer assessment of solids by ultra-slow and short-pulsed positron beams

    International Nuclear Information System (INIS)

    Suzuki, Ryouichi; Ohdaira, Toshiyuki; Mikado, Tomohisa; Yamada, Kawakatsu

    2004-01-01

    Thin films of insulators with low dielectric constant, as a candidate for next generation LSI (large scale integration), were assessed by two dimensional positron life time and wave height measurements using variable incident energy and also short pulsed positron beams. Linkages and openness of nano-scale voids in the films were evaluated by the measurements. Amorphous SiO 2 films were compared with SiCOH films synthesized by plasma CVD (Chemical Vapor Deposition) by measurements of the correlation between positron lifetime and momentum using short-pulsed positron beams. From the measurements, many hydrocarbons were found on void surface of SiCOH films. Positron lifetime measurement gives information about void sizes, and Doppler broadening due to annihilation γ-rays offers electron momentum distribution, which is a counterpart of positron annihilation. Two γ-rays are emitted on the positron annihilation. Coincident measurements of these two γ-rays provide the correlation spectra between positron lifetime and momentum. An instrument for positron annihilation excitation Auger electron spectroscopy (PAES) was improved, and a time-of-flight (TOF) PAES instrument was developed. Double counting rate and high resolution, compared with a conventional Auger electron spectrometer, were attained in elementary analysis using above TOF-PAES instrument. (Y. Kazumata)

  12. Forward and backward scattering experiments in ultra-cold Rubidium atoms

    DEFF Research Database (Denmark)

    Kampel, Nir Shlomo

    project, we have studied coherent forward scattering in the form of a memory experiment. In such an experiment we convert the input light pulse to an atomic excitation, and at a later time convert back the atomic excitation into the retrieved light pulse. In the first project, we investigate the source...

  13. Scattering of an ultrashort electromagnetic radiation pulse by an atom in a broad spectral range

    International Nuclear Information System (INIS)

    Astapenko, V. A.

    2011-01-01

    The scattering of an ultrashort electromagnetic pulse by atomic particles is described using a consistent quantum-mechanical approach taking into account excitation of a target and nondipole electromagnetic interaction, which is valid in a broad spectral range. This approach is applied to the scattering of single- and few-cycle pulses by a multielectron atom and a hydrogen atom. Scattering spectra are obtained for ultrashort pulses of different durations. The relative contribution of “elastic” scattering of a single-cycle pulse by a hydrogen atom is studied in the high-frequency limit as a function of the carrier frequency and scattering angle.

  14. ON THE ORIGIN OF THE SCATTER BROADENING OF FAST RADIO BURST PULSES AND ASTROPHYSICAL IMPLICATIONS

    International Nuclear Information System (INIS)

    Xu, Siyao; Zhang, Bing

    2016-01-01

    Fast radio bursts (FRBs) have been identified as extragalactic sources that can probe turbulence in the intergalactic medium (IGM) and their host galaxies. To account for the observed millisecond pulses caused by scatter broadening, we examine a variety of possible electron density fluctuation models in both the IGM and the host galaxy medium. We find that a short-wave-dominated power-law spectrum of density, which may arise in highly supersonic turbulence with pronounced local dense structures of shock-compressed gas in the host interstellar medium (ISM), can produce the required density enhancements at sufficiently small scales to interpret the scattering timescale of FRBs. This implies that an FRB residing in a galaxy with efficient star formation in action tends to have a broadened pulse. The scaling of the scattering time with the dispersion measure (DM) in the host galaxy varies in different turbulence and scattering regimes. The host galaxy can be the major origin of scatter broadening, but contributes to a small fraction of the total DM. We also find that the sheet-like structure of the density in the host ISM associated with folded magnetic fields in a viscosity-dominated regime of magnetohydrodynamic (MHD) turbulence cannot give rise to strong scattering. Furthermore, valuable insights into the IGM turbulence concerning the detailed spatial structure of density and magnetic field can be gained from the observed scattering timescale of FRBs. Our results favor the suppression of micro-plasma instabilities and the validity of the collisional-MHD description of turbulence properties in the collisionless IGM.

  15. ON THE ORIGIN OF THE SCATTER BROADENING OF FAST RADIO BURST PULSES AND ASTROPHYSICAL IMPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Siyao; Zhang, Bing, E-mail: syxu@pku.edu.cn, E-mail: zhang@physics.unlv.edu [Department of Astronomy, School of Physics, Peking University, Beijing 100871 (China)

    2016-12-01

    Fast radio bursts (FRBs) have been identified as extragalactic sources that can probe turbulence in the intergalactic medium (IGM) and their host galaxies. To account for the observed millisecond pulses caused by scatter broadening, we examine a variety of possible electron density fluctuation models in both the IGM and the host galaxy medium. We find that a short-wave-dominated power-law spectrum of density, which may arise in highly supersonic turbulence with pronounced local dense structures of shock-compressed gas in the host interstellar medium (ISM), can produce the required density enhancements at sufficiently small scales to interpret the scattering timescale of FRBs. This implies that an FRB residing in a galaxy with efficient star formation in action tends to have a broadened pulse. The scaling of the scattering time with the dispersion measure (DM) in the host galaxy varies in different turbulence and scattering regimes. The host galaxy can be the major origin of scatter broadening, but contributes to a small fraction of the total DM. We also find that the sheet-like structure of the density in the host ISM associated with folded magnetic fields in a viscosity-dominated regime of magnetohydrodynamic (MHD) turbulence cannot give rise to strong scattering. Furthermore, valuable insights into the IGM turbulence concerning the detailed spatial structure of density and magnetic field can be gained from the observed scattering timescale of FRBs. Our results favor the suppression of micro-plasma instabilities and the validity of the collisional-MHD description of turbulence properties in the collisionless IGM.

  16. Ultra-short laser interactions with nanoparticles in different media: from electromagnetic to thermal and electrostatic effects

    Science.gov (United States)

    Itina, Tatiana E.

    2017-02-01

    Key issues of the controlled synthesis of nanoparticles and nanostructures, as well as laser-particle interactions are considered in the context of the latest applications appearing in many fields such as photonics, medicine, 3D printing, etc. The results of a multi-physics numerical study of laser interaction with nanoparticles will be presented in the presence of several environments. In particular, attention will be paid to the numerical study of laser interactions with heterogeneous materials (eg. colloidal liquids and/or nanoparticles in a dielectric medium) and the aggregation/sintering/fragmentation processes induced by ultra-short laser pulses.

  17. Short-pulse laser interactions with disordered materials and liquids

    Energy Technology Data Exchange (ETDEWEB)

    Phinney, L.M.; Goldman, C.H.; Longtin, J.P.; Tien, C.L. [Univ. of California, Berkeley, CA (United States)

    1995-12-31

    High-power, short-pulse lasers in the picosecond and subpicosecond range are utilized in an increasing number of technologies, including materials processing and diagnostics, micro-electronics and devices, and medicine. In these applications, the short-pulse radiation interacts with a wide range of media encompassing disordered materials and liquids. Examples of disordered materials include porous media, polymers, organic tissues, and amorphous forms of silicon, silicon nitride, and silicon dioxide. In order to accurately model, efficiently control, and optimize short-pulse, laser-material interactions, a thorough understanding of the energy transport mechanisms is necessary. Thus, fractals and percolation theory are used to analyze the anomalous diffusion regime in random media. In liquids, the thermal aspects of saturable and multiphoton absorption are examined. Finally, a novel application of short-pulse laser radiation to reduce surface adhesion forces in microstructures through short-pulse laser-induced water desorption is presented.

  18. Short pulse neutron generator

    Science.gov (United States)

    Elizondo-Decanini, Juan M.

    2016-08-02

    Short pulse neutron generators are described herein. In a general embodiment, the short pulse neutron generator includes a Blumlein structure. The Blumlein structure includes a first conductive plate, a second conductive plate, a third conductive plate, at least one of an inductor or a resistor, a switch, and a dielectric material. The first conductive plate is positioned relative to the second conductive plate such that a gap separates these plates. A vacuum chamber is positioned in the gap, and an ion source is positioned to emit ions in the vacuum chamber. The third conductive plate is electrically grounded, and the switch is operable to electrically connect and disconnect the second conductive plate and the third conductive plate. The at least one of the resistor or the inductor is coupled to the first conductive plate and the second conductive plate.

  19. Physics design of an ultra-long pulsed tokamak reactor

    International Nuclear Information System (INIS)

    Ogawa, Y.; Inoue, N.; Wang, J.; Yamamoto, T.; Okano, K.

    1993-01-01

    A pulsed tokamak reactor driven only by inductive current drive has recently revived, because the non-inductive current drive efficiency seems to be too low to realize a steady-state tokamak reactor with sufficiently high energy gain Q. Essential problems in pulsed operation mode is considered to be material fatigue due to cyclic operation and expensive energy storage system to keep continuous electric output during a dwell time. To overcome these problems, we have proposed an ultra-long pulsed tokamak reactor called IDLT (abbr. Inductively operated Day-Long Tokamak), which has the major and minor radii of 10 m and 1.87 m, respectively, sufficiently to ensure the burning period of about ten hours. Here we discuss physical features of inductively operated tokamak plasmas, employing the similar constraints with ITER CDA design for engineering issues. (author) 9 refs., 2 figs., 1 tab

  20. Ultra-short pulse, ultra-high intensity laser improvement techniques for laser-driven quantum beam science

    International Nuclear Information System (INIS)

    Kiriyama, Hiromitsu; Kando, Masaki

    2014-01-01

    Recent development activities of the Quantum Beam Research Team in JAEA are reported. The downsized, petawatt and femtosecond pulse laser is described at first. The process of the system development and utilization effort of so-called J-KAREN is explained with its time and space control system. For high contrast, OPCPA (Optical Parametric Chirped Pulse Amplification) preamplifier is adopted by using the titanium-sapphire laser system in which only the seed light pulses can be amplified. In addition, high contrast is obtained by adopting the high energy seed light to the amplifier. The system configuration of J-KAREN laser is illustrated. Typical spectra with and without OPCPA, as well as the spectra with OPCPA adjustment and without one are shown. The result of the recompressed pulses is shown in which the pulse width of 29.5 femtoseconds is close to the theoretical limit. Considering the throughput of the pulse compressor is 64 percent it is possible to generate high power laser beam of about 600 terawatts. In the supplementary budget of 2012, it has been approved to cope with the aging or obsoleteness of the system and at the same time to further sophisticate the laser using system. The upgraded laser system is named as J-KAREN-P in which the repetition rate is improved and another booster amplifier is added to increase the power. The system configuration of J-KAREN-P after the upgrading is illustrated. (S. Funahashi)

  1. Ultrashort Laser Pulse Phenomena

    CERN Document Server

    Diels, Jean-Claude

    2006-01-01

    Ultrashort Laser Pulse Phenomena, 2e serves as an introduction to the phenomena of ultra short laser pulses and describes how this technology can be used to examine problems in areas such as electromagnetism, optics, and quantum mechanics. Ultrashort Laser Pulse Phenomena combines theoretical backgrounds and experimental techniques and will serve as a manual on designing and constructing femtosecond (""faster than electronics"") systems or experiments from scratch. Beyond the simple optical system, the various sources of ultrashort pulses are presented, again with emphasis on the basic

  2. Fracture Mechanisms of Zirconium Diboride Ultra-High Temperature Ceramics under Pulse Loading

    Science.gov (United States)

    Skripnyak, Vladimir V.; Bragov, Anatolii M.; Skripnyak, Vladimir A.; Lomunov, Andrei K.; Skripnyak, Evgeniya G.; Vaganova, Irina K.

    2015-06-01

    Mechanisms of failure in ultra-high temperature ceramics (UHTC) based on zirconium diboride under pulse loading were studied experimentally by the method of SHPB and theoretically using the multiscale simulation method. The obtained experimental and numerical data are evidence of the quasi-brittle fracture character of nanostructured zirconium diboride ceramics under compression and tension at high strain rates and the room temperatures. Damage of nanostructured porous zirconium diboride -based UHTC can be formed under stress pulse amplitude below the Hugoniot elastic limit. Fracture of nanostructured ultra-high temperature ceramics under pulse and shock-wave loadings is provided by fast processes of intercrystalline brittle fracture and relatively slow processes of quasi-brittle failure via growth and coalescence of microcracks. A decrease of the shear strength can be caused by nano-voids clusters in vicinity of triple junctions between ceramic matrix grains and ultrafine-grained ceramics. This research was supported by grants from ``The Tomsk State University Academic D.I. Mendeleev Fund Program'' and also N. I. Lobachevski State University of Nizhny Novgorod (Grant of post graduate mobility).

  3. Ultra-thin Cu2ZnSnS4 solar cell by pulsed laser deposition

    DEFF Research Database (Denmark)

    Cazzaniga, Andrea Carlo; Crovetto, Andrea; Yan, Chang

    2017-01-01

    We report on the fabrication of a 5.2% efficiency Cu2ZnSnS4 (CZTS) solar cell made by pulsed laser deposition (PLD) featuring an ultra-thin absorber layer (less than 450 nm). Solutions to the issues of reproducibility and micro-particulate ejection often encountered with PLD are proposed. At the ......We report on the fabrication of a 5.2% efficiency Cu2ZnSnS4 (CZTS) solar cell made by pulsed laser deposition (PLD) featuring an ultra-thin absorber layer (less than 450 nm). Solutions to the issues of reproducibility and micro-particulate ejection often encountered with PLD are proposed...

  4. Ultra-low power anti-crosstalk collision avoidance light detection and ranging using chaotic pulse position modulation approach

    International Nuclear Information System (INIS)

    Hao Jie; Gong Ma-li; Du Peng-fei; Lu Bao-jie; Zhang Fan; Zhang Hai-tao; Fu Xing

    2016-01-01

    A novel concept of collision avoidance single-photon light detection and ranging (LIDAR) for vehicles has been demonstrated, in which chaotic pulse position modulation is applied on the transmitted laser pulses for robust anti-crosstalk purposes. Besides, single-photon detectors (SPD) and time correlated single photon counting techniques are adapted, to sense the ultra-low power used for the consideration of compact structure and eye safety. Parameters including pulse rate, discrimination threshold, and number of accumulated pulses have been thoroughly analyzed based on the detection requirements, resulting in specified receiver operating characteristics curves. Both simulation and indoor experiments were performed to verify the excellent anti-crosstalk capability of the presented collision avoidance LIDAR despite ultra-low transmitting power. (paper)

  5. Uneven-Layered Coding Metamaterial Tile for Ultra-wideband RCS Reduction and Diffuse Scattering.

    Science.gov (United States)

    Su, Jianxun; He, Huan; Li, Zengrui; Yang, Yaoqing Lamar; Yin, Hongcheng; Wang, Junhong

    2018-05-25

    In this paper, a novel uneven-layered coding metamaterial tile is proposed for ultra-wideband radar cross section (RCS) reduction and diffuse scattering. The metamaterial tile is composed of two kinds of square ring unit cells with different layer thickness. The reflection phase difference of 180° (±37°) between two unit cells covers an ultra-wide frequency range. Due to the phase cancellation between two unit cells, the metamaterial tile has the scattering pattern of four strong lobes deviating from normal direction. The metamaterial tile and its 90-degree rotation can be encoded as the '0' and '1' elements to cover an object, and diffuse scattering pattern can be realized by optimizing phase distribution, leading to reductions of the monostatic and bi-static RCSs simultaneously. The metamaterial tile can achieve -10 dB RCS reduction from 6.2 GHz to 25.7 GHz with the ratio bandwidth of 4.15:1 at normal incidence. The measured and simulated results are in good agreement and validate the proposed uneven-layered coding metamaterial tile can greatly expanding the bandwidth for RCS reduction and diffuse scattering.

  6. Stimulated brillouin backscatter of a short-pulse laser

    International Nuclear Information System (INIS)

    Hinkel, D.E.; Williams, E.A.; Berger, R.L.

    1994-01-01

    Stimulated Brillouin backscattering (SBBS) from a short-pulse laser, where the pulse length is short compared to the plasma length, is found to be qualitatively different than in the long pulse regime, where the pulse length is long compared to the plasma length. We find that after an initial transient of order the laser pulse length transit time, the instability reaches a steady state in the variables x' = x - V g t, t' = t, where V g is the pulse group velocity. In contrast, SBBS in a long pulse can be absolutely unstable and grows indefinitely, or until nonlinearities intervene. We find that the motion of the laser pulse induces Doppler related effects that substantially modify the backscattered spectrum at higher intensities, where the instability is strongly coupled (i.e. , has a growth rate large compared to the ion acoustic frequency)

  7. Pulse shaping for all-optical signal processing of ultra-high bit rate serial data signals

    DEFF Research Database (Denmark)

    Palushani, Evarist

    The following thesis concerns pulse shaping and optical waveform manipulation for all-optical signal processing of ultra-high bit rate serial data signals, including generation of optical pulses in the femtosecond regime, serial-to-parallel conversion and terabaud coherent optical time division...

  8. Development of a coherent THz radiation source based on the ultra-short electron beam and its applications

    International Nuclear Information System (INIS)

    Kuroda, R.; Yasumoto, M.; Toyokawa, H.; Sei, N.; Koike, M.; Yamada, K.

    2011-01-01

    At the National Institute of Advanced Industrial Science and Technology (AIST), a coherent terahertz (THz) radiation source has been developed based on an ultra-short electron beam using an S-band compact electron linac. The designed THz pulse has a high peak power of more than 1 kW in the frequency range 0.1-2 THz. The entire system is located in one research room of about 10 m square. The linac consists of a laser photocathode rf gun (BNL type) with a Cs 2 Te photocathode load-lock system and two 1.5-m-long S-band accelerator tubes. The electron beam can be accelerated up to approximately 42 MeV. The electron bunch was compressed to less than 1 ps (rms) with a magnetic bunch compressor. The coherent synchrotron radiation (CSR) of the THz region was generated from the ultra-short electron bunch at the 90 o bending magnet, and it was extracted from a z-cut quartz window for THz applications. In this work, the THz scanning transmission imaging was successfully demonstrated for measuring the freshness of a vegetable leaf over a period of time.

  9. Ultra-High Field Magnets for X-Ray and Neutron Scattering using High Temperature Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Winn, Barry L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Broholm, C. [Johns Hopkins Univ., Baltimore, MD (United States); Bird, M. [Florida State Univ., Tallahassee, FL (United States). National High Magnetic Field Lab. (MagLab); Breneman, Bruce C. [General Atomics, San Diego, CA (United States); Coffey, Michael [Cryomagnetics, Oak Ridge, TN (United States); Cutler, Roy I. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Duckworth, Robert C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Erwin, R. [National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States); Hahn, Seungyong [Florida State Univ., Tallahassee, FL (United States). National High Magnetic Field Lab. (MagLab); Hernandez, Yamali [National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States); Herwig, Kenneth W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holland, Leo D. [General Atomics, San Diego, CA (United States); Lonergan, Kevin M. [Oxford Instruments, Abingdon (United Kingdom); Melhem, Ziad [Oxford Instruments, Abingdon (United Kingdom); Minter, Stephen J. [Cryomagnetics, Oak Ridge, TN (United States); Nelson, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Paranthaman, M. Parans [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pierce, Josh [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ruff, Jacob [Cornell Univ., Ithaca, NY (United States); Shen, Tengming [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sherline, Todd E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Smeibidl, Peter G. [Helmholtz-Zentrum Berlin (HZB), (Germany); Tennant, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); van der Laan, Danko [Advanced Conductor Technologies, LLC, Boulder, CO (United States); Wahle, Robert J. [Helmholtz-Zentrum Berlin (HZB), (Germany); Zhang, Yifei [SuperPower, Inc., Schenectady, NY (United States)

    2017-01-01

    X-ray and neutron scattering techniques are capable of acquiring information about the structure and dynamics of quantum matter. However, the high-field magnet systems currently available at x-ray and neutron scattering facilities in the United States are limited to fields of 16 tesla (T) at maximum, which precludes applications that require and/or study ultra-high field states of matter. This gap in capability—and the need to address it—is a central conclusion of the 2005 National Academy of Sciences report by the Committee on Opportunities in High Magnetic Field Science. To address this gap, we propose a magnet development program that would more than double the field range accessible to scattering experiments. With the development and use of new ultra-high field–magnets, the program would bring into view new worlds of quantum matter with profound impacts on our understanding of advanced electronic materials.

  10. Interaction of ultra-high intensity laser pulse with a mass limited targets

    International Nuclear Information System (INIS)

    Andreev, A.A.; Platonov, K.Yu.; Limpouch, J.; Psikal, J.; Kawata, S.

    2006-01-01

    Complete test of publication follows. Ultra-high intensity laser pulses may be produced now via CPA scheme by using very short laser pulses of a relatively low energy. Interaction of such pulses with massive target is not very efficient as the energy delivered to charged particles spreads out quickly over large distances and it is redistributed between many secondary particles. One possibility to limit this undesirable energy spread is to use mass limited targets (MLT), for example droplets, big clusters or small foil sections. This is an intermediate regime in target dimensions between bulk solid and nanometer-size atomic cluster targets. A few experimental and theoretical studies have been carried out on laser absorption, fast particle generation and induced nuclear fusion reactions in the interaction of ultrashort laser pulses with MLT plasma. We investigate here laser interactions with MLT via 2D3V relativistic electromagnetic PIC simulations. We assume spherical droplet as a typical MLT. However, the sphere is represented in 2D simulations by an infinite cylinder irradiated uniformly along its length. We assume that MLT is fully ionized before main pulse interaction either due to insufficient laser contrast or due to a prepulse. For simplicity, we assume homogeneous plasma of high initial temperature. We analyze the interaction of relativistic laser pulses of various polarizations with targets of different shapes, such as a foil, quadrant and sphere. The mechanisms of laser absorption, electron and ion acceleration are clarified for different laser and target parameters. When laser interacts with the target front side, kinetic energy of electrons rises rapidly with fast oscillations in the kinetic and field energy, caused by electron oscillations in the laser field. Small energy oscillations, observed later, are caused by the electron motion back and forth through the droplet. Approximately 40% of laser energy is transferred to the kinetic energy of electrons

  11. Broadband and short (10-ps) pulse generation on Nova

    International Nuclear Information System (INIS)

    Perry, M.D.; Browning, D.; Bibeau, C.; Patterson, F.G.; Wilcox, R.; Henesian, M.

    1990-01-01

    The ability to produce high power broadband pulses for purposes of focal spot beam smoothing has recently become an important issue in inertial confinement fusion (ICF). As the first step toward the generation and propagation of such pulses on Nova, the authors have performed a series of experiments with 10-ps pulses. Aside from the inherently broad bandwidth, these short pulses have important applications in ICF experiments and x-ray laser research. The author's experimental results are discussed. The short pulses were produced by diffraction grating pulse compression of chirped pulses formed from self-phase modulation in a single-mode 10-m fused silica fiber. Use of such a short fiber produces a nonlinearly chirped spectrum of 0.74 nm. The central nearly linearly chirped 0.26 nm is selected by polarization discrimination and compressed using 1800-line/mm diffraction gratings to a nearly Gaussian pulse of 10 ps FWHM with an energy contrast ratio of 20:1. This 1-nJ pulse is injected into a Nova amplifier chain with selected amplifiers unfired

  12. Black hole formation and classicalization in ultra-Planckian 2→N scattering

    Directory of Open Access Journals (Sweden)

    G. Dvali

    2015-04-01

    Full Text Available We establish a connection between the ultra-Planckian scattering amplitudes in field and string theory and unitarization by black hole formation in these scattering processes. Using as a guideline an explicit microscopic theory in which the black hole represents a bound-state of many soft gravitons at the quantum critical point, we were able to identify and compute a set of perturbative amplitudes relevant for black hole formation. These are the tree-level N-graviton scattering S-matrix elements in a kinematical regime (called classicalization limit where the two incoming ultra-Planckian gravitons produce a large number N of soft gravitons. We compute these amplitudes by using the Kawai–Lewellen–Tye relations, as well as scattering equations and string theory techniques. We discover that this limit reveals the key features of the microscopic corpuscular black hole N-portrait. In particular, the perturbative suppression factor of a N-graviton final state, derived from the amplitude, matches the non-perturbative black hole entropy when N reaches the quantum criticality value, whereas final states with different value of N are either suppressed or excluded by non-perturbative corpuscular physics. Thus we identify the microscopic reason behind the black hole dominance over other final states including non-black hole classical object. In the parameterization of the classicalization limit the scattering equations can be solved exactly allowing us to obtain closed expressions for the high-energy limit of the open and closed superstring tree-level scattering amplitudes for a generic number N of external legs. We demonstrate matching and complementarity between the string theory and field theory in different large-s and large-N regimes.

  13. Enhanced hole boring with two-color relativistic laser pulses in the fast ignition scheme

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Changhai; Tian, Ye; Li, Wentao; Wang, Wentao; Zhang, Zhijun; Qi, Rong; Wang, Cheng [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Deng, Aihua, E-mail: aihuadeng1985@gmail.com [Department of Physics and Astronomy, University of California, Los Angeles, California 90095 (United States); Liu, Jiansheng, E-mail: michaeljs-liu@siom.ac.cn [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240 (China)

    2016-08-15

    A scheme of using two-color laser pulses for hole boring into overdense plasma as well as energy transfer into electron and ion beams has been studied using particle-in-cell simulations. Following an ultra-short ultra-intense hole-boring laser pulse with a short central wavelength in extreme ultra-violet range, the main infrared driving laser pulse can be guided in the hollow channel preformed by the former laser and propagate much deeper into an overdense plasma, as compared to the case using the infrared laser only. In addition to efficiently transferring the main driving laser energy into energetic electrons and ions generation deep inside the overdense plasma, the ion beam divergence can be greatly reduced. The results might be beneficial for the fast ignition concept of inertial confinement fusion.

  14. Non-destructive diagnostics of irradiated materials using neutron scattering from pulsed neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Korenev, Sergey E-mail: sergey_korenev@steris.com; Sikolenko, Vadim

    2004-10-01

    The advantage of neutron-scattering studies as compared to the standard X-ray technique is the high penetration of neutrons that allow us to study volume effects. The high resolution of instrumentation on the basis neutron scattering allows measurement of the parameters of lattice structure with high precision. We suggest the use of neutron scattering from pulsed neutron sources for analysis of materials irradiated with pulsed high current electron and ion beams. The results of preliminary tests using this method for Ni foils that have been studied by neutron diffraction at the IBR-2 (Pulsed Fast Reactor at Joint Institute for Nuclear Research) are presented.

  15. Non-destructive diagnostics of irradiated materials using neutron scattering from pulsed neutron sources

    Science.gov (United States)

    Korenev, Sergey; Sikolenko, Vadim

    2004-09-01

    The advantage of neutron-scattering studies as compared to the standard X-ray technique is the high penetration of neutrons that allow us to study volume effects. The high resolution of instrumentation on the basis neutron scattering allows measurement of the parameters of lattice structure with high precision. We suggest the use of neutron scattering from pulsed neutron sources for analysis of materials irradiated with pulsed high current electron and ion beams. The results of preliminary tests using this method for Ni foils that have been studied by neutron diffraction at the IBR-2 (Pulsed Fast Reactor at Joint Institute for Nuclear Research) are presented.

  16. Guiding of laser pulses in plasma waveguides created by linearly-polarized femtosecond laser pulses

    OpenAIRE

    Lemos, N.; Cardoso, L.; Geada, J.; Figueira, G.; Albert, F.; Dias, J. M.

    2018-01-01

    We experimentally demonstrate that plasma waveguides produced with ultra-short laser pulses (sub-picosecond) in gas jets are capable of guiding high intensity laser pulses. This scheme has the unique ability of guiding a high-intensity laser pulse in a plasma waveguide created by the same laser system in the very simple and stable experimental setup. A hot plasma column was created by a femtosecond class laser that expands into an on-axis parabolic low density profile suitable to act as a wav...

  17. Short pulse laser systems for biomedical applications

    CERN Document Server

    Mitra, Kunal

    2017-01-01

    This book presents practical information on the clinical applications of short pulse laser systems and the techniques for optimizing these applications in a manner that will be relevant to a broad audience, including engineering and medical students as well as researchers, clinicians, and technicians. Short pulse laser systems are useful for both subsurface tissue imaging and laser induced thermal therapy (LITT), which hold great promise in cancer diagnostics and treatment. Such laser systems may be used alone or in combination with optically active nanoparticles specifically administered to the tissues of interest for enhanced contrast in imaging and precise heating during LITT. Mathematical and computational models of short pulse laser-tissue interactions that consider the transient radiative transport equation coupled with a bio-heat equation considering the initial transients of laser heating were developed to analyze the laser-tissue interaction during imaging and therapy. Experiments were first performe...

  18. Moving converter as the possible tool for producing ultra-cold neutrons on pulsed neutron sources

    International Nuclear Information System (INIS)

    Pokotilovskij, Yu.N.

    1991-01-01

    A method is proposed for producing ultra-cold neutrons (UCN) at aperiodic pulse neutron sources. It is based on the use of the fast moving cooled converter of UCN in the time of the neutron pulse and includes the trapping of generated UCN's in a moving trap. 6 refs.; 2 figs

  19. Nonlinear Thomson scattering of a relativistically strong tightly focused ultrashort laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Vais, O. E.; Bochkarev, S. G., E-mail: bochkar@sci.lebedev.ru; Bychenkov, V. Yu. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2016-09-15

    The problem of nonlinear Thomson scattering of a relativistically strong linearly polarized ultrashort laser pulse tightly focused into a spot with a diameter of D{sub F} ≳ λ (where λ is the laser wavelength) is solved. The energy, spectral, and angular distributions of radiation generated due to Thomson scattering from test electrons located in the focal region are found. The characteristics of scattered radiation are studied as functions of the tightness of laser focusing and the initial position of test particles relative to the center of the focal region for a given laser pulse energy. It is demonstrated that the ultratight focusing is not optimal for obtaining the brightest and hardest source of secondary electromagnetic radiation. The hardest and shortest radiation pulse is generated when the beam waist diameter is ≃10λ.

  20. SBS [stimulated Brillouin scattering] pulse distortion in multimode optical fibers

    International Nuclear Information System (INIS)

    Smith, J.R.; Hawkins, R.J.; Laumann, C.W.; Hatch, J.

    1989-01-01

    We have observed sever temporal-pulse-shape distortion due to stimulated Brillouin scattering (SBS) in multimode optical fibers used to diagnose 351 m laser pulses on the Nova laser system. Our measurements can be fit by a basic model of SBS and provide a clear indication of the intensity and temporal regimes where significant SBS-induced temporal-pulse-shape distortion can be avoided. 15 refs., 3 figs., 1 tab

  1. High-voltage short-fall pulse generator

    International Nuclear Information System (INIS)

    Dolbilov, G.V.; Fateev, A.A.; Petrov, V.A.

    1986-01-01

    Powerful high-voltage pulses with short fall times and relatively low afterpulse amplitude are required for the deflection systems of accelerators. A generator is described that provides, into a 75-ohm load, a voltage pulse of up to 100 kV with a fall time of less than 1 nsec and a relative afterpulse amplitude of less than or equal to 15%. The generator employs a short-circuited ferrite-filled line in which shock waves are formed. A magnetic section is used to increase power. The switch is a TGI1-2500/50 thyratron. The main causes of afterpulses and methods for reducing their amplitude are examined

  2. Short Pulse Laser Applications Design

    International Nuclear Information System (INIS)

    Town, R.J.; Clark, D.S.; Kemp, A.J.; Lasinski, B.F.; Tabak, M.

    2008-01-01

    We are applying our recently developed, LDRD-funded computational simulation tool to optimize and develop applications of Fast Ignition (FI) for stockpile stewardship. This report summarizes the work performed during a one-year exploratory research LDRD to develop FI point designs for the National Ignition Facility (NIF). These results were sufficiently encouraging to propose successfully a strategic initiative LDRD to design and perform the definitive FI experiment on the NIF. Ignition experiments on the National Ignition Facility (NIF) will begin in 2010 using the central hot spot (CHS) approach, which relies on the simultaneous compression and ignition of a spherical fuel capsule. Unlike this approach, the fast ignition (FI) method separates fuel compression from the ignition phase. In the compression phase, a laser such as NIF is used to implode a shell either directly, or by x rays generated from the hohlraum wall, to form a compact dense (∼300 g/cm 3 ) fuel mass with an areal density of ∼3.0 g/cm 2 . To ignite such a fuel assembly requires depositing ∼20kJ into a ∼35 (micro)m spot delivered in a short time compared to the fuel disassembly time (∼20ps). This energy is delivered during the ignition phase by relativistic electrons generated by the interaction of an ultra-short high-intensity laser. The main advantages of FI over the CHS approach are higher gain, a lower ignition threshold, and a relaxation of the stringent symmetry requirements required by the CHS approach. There is worldwide interest in FI and its associated science. Major experimental facilities are being constructed which will enable 'proof of principle' tests of FI in integrated subignition experiments, most notably the OMEGA-EP facility at the University of Rochester's Laboratory of Laser Energetics and the FIREX facility at Osaka University in Japan. Also, scientists in the European Union have recently proposed the construction of a new FI facility, called HiPER, designed to

  3. Ultra-Short-Term Heart Rate Variability is Sensitive to Training Effects in Team Sports Players.

    Science.gov (United States)

    Nakamura, Fabio Y; Flatt, Andrew A; Pereira, Lucas A; Ramirez-Campillo, Rodrigo; Loturco, Irineu; Esco, Michael R

    2015-09-01

    The aim of this study was to test the possibility of the ultra-short-term lnRMSSD (measured in 1-min post-1-min stabilization period) to detect training induced adaptations in futsal players. Twenty-four elite futsal players underwent HRV assessments pre- and post-three or four weeks preseason training. From the 10-min HRV recording period, lnRMSSD was analyzed in the following time segments: 1) from 0-5 min (i.e., stabilization period); 2) from 0-1 min; 1-2 min; 2-3 min; 3-4 min; 4-5 min and; 3) from 5-10 min (i.e., criterion period). The lnRMSSD was almost certainly higher (100/00/00) using the magnitude-based inference in all periods at the post- moment. The correlation between changes in ultra-short-term lnRMSSD (i.e., 0-1 min; 1-2 min; 2-3 min; 3-4 min; 4-5 min) and lnRMSSDCriterion ranged between 0.45-0.75, with the highest value (p = 0.75; 90% CI: 0.55 - 0.85) found between ultra-short-term lnRMDSSD at 1-2 min and lnRMSSDCriterion. In conclusion, lnRMSSD determined in a short period of 1-min is sensitive to training induced changes in futsal players (based on the very large correlation to the criterion measure), and can be used to track cardiac autonomic adaptations. Key pointsThe ultra-short-term (1 min) natural log of the root-mean-square difference of successive normal RR intervals (lnRMSSD) is sensitive to training effects in futsal playersThe ultra-short-term lnRMSSD may simplify the assessment of the cardiac autonomic changes in the field compared to the traditional and lengthier (10 min duration) analysisCoaches are encouraged to implement the ultra-short-term heart rate variability in their routines to monitor team sports athletes.

  4. Ultra-Broadband Infrared Pulses from a Potassium-Titanyl Phosphate Optical Parametric Amplifier for VIS-IR-SFG Spectroscopy

    Science.gov (United States)

    Isaienko, Oleksandr; Borguet, Eric

    A non-collinear KTP-OPA to provide ultra-broadband mid-infrared pulses was designed and characterized. With proper pulse-front and phase correction, the system has a potential for high-time resolution vibrational VIS-IR-SFG spectroscopy.

  5. Self-focusing of optical pulses in media with normal dispersion

    DEFF Research Database (Denmark)

    Bergé, L.; Kuznetsov, E.A.; Juul Rasmussen, J.

    1996-01-01

    The self-focusing of ultra short optical pulses in a nonlinear medium with normal (i.e., negative) group-velocity dispersion is investigated. By using a combination of various techniques like virial-type arguments and self-similar transformations, we obtain strong evidence suggesting that a pulse...

  6. The Israeli EA-FEL Upgrade Towards Long Pulse Operation for Ultra-High Resolution Single Pulse Coherent Spectroscopy

    CERN Document Server

    Gover, A; Kanter, M; Kapilevich, B; Litvak, B; Peleg, S; Socol, Y; Volshonok, M

    2005-01-01

    The Israeli Electrostatic Accelerator FEL (EA-FEL) is now being upgraded towards long pulse (1005s) operation and ultra-high resolution (10(-6)) single pulse coherent spectroscopy. We present quantitative estimations regarding the applications of controlled radiation chirp for spectroscopic applications with pulse-time Fourier Transform limited spectral resolution. Additionally, we describe a novel extraction-efficiency-improving scheme based on increase of accelerating voltage (boosting) after saturation is achieved. The efficiency of the proposed scheme is confirmed by theoretical and numerical calculations. The latter are performed using software, based on 3D space-frequency domain model. The presentation provides an overview of the upgrade status: the high-voltage terminal is being reconfigured to accept the accelerating voltage boost system; a new broad band low-loss resonator is being manufactured; multi-stage depressed collector is assembled.

  7. Jitter-Robust Orthogonal Hermite Pulses for Ultra-Wideband Impulse Radio Communications

    Directory of Open Access Journals (Sweden)

    Ryuji Kohno

    2005-03-01

    Full Text Available The design of a class of jitter-robust, Hermite polynomial-based, orthogonal pulses for ultra-wideband impulse radio (UWB-IR communications systems is presented. A unified and exact closed-form expression of the auto- and cross-correlation functions of Hermite pulses is provided. Under the assumption that jitter values are sufficiently smaller than pulse widths, this formula is used to decompose jitter-shifted pulses over an orthonormal basis of the Hermite space. For any given jitter probability density function (pdf, the decomposition yields an equivalent distribution of N-by-N matrices which simplifies the convolutional jitter channel model onto a multiplicative matrix model. The design of jitter-robust orthogonal pulses is then transformed into a generalized eigendecomposition problem whose solution is obtained with a Jacobi-like simultaneous diagonalization algorithm applied over a subset of samples of the channel matrix distribution. Examples of the waveforms obtained with the proposed design and their improved auto- and cross-correlation functions are given. Simulation results are presented, which demonstrate the superior performance of a pulse-shape modulated (PSM- UWB-IR system using the proposed pulses, over the same system using conventional orthogonal Hermite pulses, in jitter channels with additive white Gaussian noise (AWGN.

  8. Water-selective excitation of short T2 species with binomial pulses.

    Science.gov (United States)

    Deligianni, Xeni; Bär, Peter; Scheffler, Klaus; Trattnig, Siegfried; Bieri, Oliver

    2014-09-01

    For imaging of fibrous musculoskeletal components, ultra-short echo time methods are often combined with fat suppression. Due to the increased chemical shift, spectral excitation of water might become a favorable option at ultra-high fields. Thus, this study aims to compare and explore short binomial excitation schemes for spectrally selective imaging of fibrous tissue components with short transverse relaxation time (T2 ). Water selective 1-1-binomial excitation is compared with nonselective imaging using a sub-millisecond spoiled gradient echo technique for in vivo imaging of fibrous tissue at 3T and 7T. Simulations indicate a maximum signal loss from binomial excitation of approximately 30% in the limit of very short T2 (0.1 ms), as compared to nonselective imaging; decreasing rapidly with increasing field strength and increasing T2 , e.g., to 19% at 3T and 10% at 7T for T2 of 1 ms. In agreement with simulations, a binomial phase close to 90° yielded minimum signal loss: approximately 6% at 3T and close to 0% at 7T for menisci, and for ligaments 9% and 13%, respectively. Overall, for imaging of short-lived T2 components, short 1-1 binomial excitation schemes prove to offer marginal signal loss especially at ultra-high fields with overall improved scanning efficiency. Copyright © 2013 Wiley Periodicals, Inc.

  9. High count problems in elemental analysis using pulsed neutron inelastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Vartsky, D; Wielopolski, L; Ellis, K J; Cohn, S H [Brookhaven National Lab., Upton, NY (USA). Medical Dept.

    1983-03-01

    Elemental analysis by neutron inelastic scattering using a miniature intense pulsed neutron source ('Zetatron') was evaluated. The particular problems associated with detector pulse-pile-up during the neutron burst and the limited ability of the analyzer to process on average more than one detector pulse per neutron burst were examined. The severity of these problems is described and a solution using a multiple ADC system is proposed.

  10. A Novel Subnanosecond Monocycle Pulse Generator for UWB Radar Applications

    Directory of Open Access Journals (Sweden)

    Xinfan Xia

    2014-01-01

    Full Text Available A novel ultra-wideband (UWB monocycle pulse generator with good performance is designed and demonstrated in this paper. It contains a power supply circuit, a pulse drive circuit, a unique pulse forming circuit, and a novel monopolar-to-monocycle pulse transition circuit. The drive circuit employs wideband bipolar junction transistors (BJTs and linear power amplifier transistor to produce a high amplitude drive pulse, and the pulse forming circuit uses the transition characteristics of step recovery diode (SRD effectively to produce a negative narrow pulse. At last, the monocycle pulse forming circuit utilizes a novel inductance L short-circuited stub to generate the monocycle pulse directly. Measurement results show that the waveform of the generated monocycle pulses is over 76 V in peak-to-peak amplitude and 3.2 ns in pulse full-width. These characteristics of the monocycle pulse are advantageous for obtaining long detection range and high resolution, when it is applied to ultra-wideband radar applications.

  11. Ultra-short X-ray sources generated through laser-matter interaction and their applications

    International Nuclear Information System (INIS)

    Rousse, A.

    2004-04-01

    This work is dedicated to the sources of ultra-short X-rays. The K α source, the non-linear Thomson source, the betatron source and the X-γ source are presented. We show that a pump-probe experiment where the pump is a laser excitation and the probe is the X-K α ultra-short radiation, can be used to study the dynamics of material structure with a time resolution of 100 femtosecond. We describe 2 applications that have been achieved in the field of solid physics by using the diffraction technique with a time resolution in the range of the femtosecond. The first application has permitted the observation and characterization of the ultra-quick solid-phase transition that occurs on the surface of a semiconductor crystal. The second experiment deals with the role of optical phonons in the antecedent processes that lead to such ultra-quick solid-phase transitions. (A.C.)

  12. Nonlinear propagation of vector extremely short pulses in a medium of symmetric and asymmetric molecules

    Energy Technology Data Exchange (ETDEWEB)

    Sazonov, S. V., E-mail: sazonov.sergey@gmail.com [National Research Centre “Kurchatov Institute,” (Russian Federation); Ustinov, N. V., E-mail: n-ustinov@mail.ru [Moscow State University of Railways, Kaliningrad Branch (Russian Federation)

    2017-02-15

    The nonlinear propagation of extremely short electromagnetic pulses in a medium of symmetric and asymmetric molecules placed in static magnetic and electric fields is theoretically studied. Asymmetric molecules differ in that they have nonzero permanent dipole moments in stationary quantum states. A system of wave equations is derived for the ordinary and extraordinary components of pulses. It is shown that this system can be reduced in some cases to a system of coupled Ostrovsky equations and to the equation intagrable by the method for an inverse scattering transformation, including the vector version of the Ostrovsky–Vakhnenko equation. Different types of solutions of this system are considered. Only solutions representing the superposition of periodic solutions are single-valued, whereas soliton and breather solutions are multivalued.

  13. Radiation and propagation of short acoustical pulses from underground explosions

    International Nuclear Information System (INIS)

    Banister, J.R.

    1982-06-01

    Radiation and propagation of short acoustical pulses from underground nuclear explosions were analyzed. The cone of more intense radiation is defined by the ratio of sound speeds in the ground and air. The pressure history of the radiated pulse is a function of the vertical ground-motion history, the range, the burial depth, and the velocity of longitudinal seismic waves. The analysis of short-pulse propagation employed an N-wave model with and without enegy conservation. Short pulses with initial wave lengths less than 100 m are severely attenuated by the energy loss in shocks and viscous losses in the wave interior. The methods developed in this study should be useful for system analysis

  14. Printed organic smart devices characterized by ultra-short laser pulses

    DEFF Research Database (Denmark)

    Pastorelli, Francesco

    Resume: In this study, we demonstrate that nonlinear optical microscopy is a promising technique to characterize organic printed electronics. Using ultrashort laser pulses we stimulate two-photon absorption in a roll coated polymer semiconductor and map the resulting two-photon induced...

  15. Ultrashort hard x-ray pulses generated by 90 degrees Thomson scattering

    International Nuclear Information System (INIS)

    Chin, A.H.; Schoenlein, R.W.; Glover, T.E.

    1997-01-01

    Ultrashort x-ray pulses permit observation of fast structural dynamics in a variety of condensed matter systems. The authors have generated 300 femtosecond, 30 keV x-ray pulses by 90 degrees Thomson scattering between femtosecond laser pulses and relativistic electrons. The x-ray and laser pulses are synchronized on a femtosecond time scale, an important prerequisite for ultrafast pump-probe spectroscopy. Analysis of the x-ray beam properties also allows for electron bunch characterization on a femtosecond time scale

  16. Non-vacuum, single-step conductive transparent ZnO patterning by ultra-short pulsed laser annealing of solution-deposited nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Daeho; Pan, Heng; Kim, Eunpa; Grigoropoulos, Costas P. [University of California, Department of Mechanical Engineering, Berkeley, CA (United States); Ko, Seung Hwan [Korea Advanced Institute of Science and Technology (KAIST), Department of Mechanical Engineering, Daejeon (Korea, Republic of); Park, Hee K. [AppliFlex LLC, Sunnyvale, CA (United States)

    2012-04-15

    A solution-processable, high-concentration transparent ZnO nanoparticle (NP) solution was successfully synthesized in a new process. A highly transparent ZnO thin film was fabricated by spin coating without vacuum deposition. Subsequent ultra-short-pulsed laser annealing at room temperature was performed to change the film properties without using a blanket high temperature heating process. Although the as-deposited NP thin film was not electrically conductive, laser annealing imparted a large conductivity increase and furthermore enabled selective annealing to write conductive patterns directly on the NP thin film without a photolithographic process. Conductivity enhancement could be obtained by altering the laser annealing parameters. Parametric studies including the sheet resistance and optical transmittance of the annealed ZnO NP thin film were conducted for various laser powers, scanning speeds and background gas conditions. The lowest resistivity from laser-annealed ZnO thin film was about 4.75 x 10{sup -2} {omega} cm, exhibiting a factor of 10{sup 5} higher conductivity than the previously reported furnace-annealed ZnO NP film and is even comparable to that of vacuum-deposited, impurity-doped ZnO films within a factor of 10. The process developed in this work was applied to the fabrication of a thin film transistor (TFT) device that showed enhanced performance compared with furnace-annealed devices. A ZnO TFT performance test revealed that by just changing the laser parameters, the solution-deposited ZnO thin film can also perform as a semiconductor, demonstrating that laser annealing offers tunability of ZnO thin film properties for both transparent conductors and semiconductors. (orig.)

  17. Ultra fast imaging of a laser wake field accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Saevert, Alexander; Schnell, Michael; Nicolai, Maria; Reuter, Maria; Schwab, Matthew B.; Moeller, Max [Friedrich-Schiller-Universitaet, Jena (Germany); Mangles, Stuart P.D.; Cole, Jason M.; Poder, Kristjan; Najmudin, Zulfikar [The John Adams Institute Imperial College, London (United Kingdom); Jaeckel, Oliver; Paulus, Gerhard G.; Spielmann, Christian; Kaluza, Malte C. [Friedrich-Schiller-Universitaet, Jena (Germany); Helmholtz Institut Jena, Jena (Germany)

    2014-07-01

    Ultra intense laser pulses are known to excite plasma waves with a relativistic phase velocity. By harnessing these waves it is possible to generate quasi-monoenergetic, ultra-short electron pulses with kinetic energies from 0.1 to 2 GeV by guiding the laser pulse over several Rayleigh lengths. To further improve the stability of these particle pulses and ultimately to be able to tailor the energy spectrum toward their suitability for various applications, the physics underlying the different acceleration scenarios need to be understood as completely as possible. To be able to resolve the acceleration process diagnostics well-suited for this plasma environment need to be designed and realized. By using sub-10 fs probe pulses we were able to freeze the transient accelerating structure in the plasma. We will present the first results of an experiment which was carried out with the 30 TW JETi Laser and a few cycle probe pulse at the Institute of Optics and Quantum Electronics Jena. The resulting snapshots show unprecedented details from the laser plasma interaction and allow a direct comparison to computer simulations.

  18. Propagation and scattering of high-intensity X-ray pulses in dense atomic gases and plasmas

    International Nuclear Information System (INIS)

    Weninger, Clemens

    2015-10-01

    Nonlinear spectroscopy in the X-ray domain is a promising technique to explore the dynamics of elementary excitations in matter. X-rays provide an element specificity that allows them to target individual chemical elements, making them a great tool to study complex molecules. The recent advancement of X-ray free electron lasers (XFELs) allows to investigate non-linear processes in the X-ray domain for the first time. XFELs provide short femtosecond X-ray pulses with peak powers that exceed previous generation synchrotron X-ray sources by more than nine orders of magnitude. This thesis focuses on the theoretical description of stimulated emission processes in the X-ray regime in atomic gases. These processes form the basis for more complex schemes in molecules and provide a proof of principle for nonlinear X-ray spectroscopy. The thesis also includes results from two experimental campaigns at the Linac Coherent Light Source and presents the first experimental demonstration of stimulated X-ray Raman scattering. Focusing an X-ray free electron laser beam into an elongated neon gas target generates an intense stimulated X-ray emission beam in forward direction. If the incoming X-rays have a photon energy above the neon K edge, they can efficiently photo-ionize 1s electrons and generate short-lived core excited states. The core-excited states decay mostly via Auger decay but have a small probability to emit a spontaneous X-ray photon. The spontaneous emission emitted in forward direction can stimulate X-ray emission along the medium and generate a highly directional and intense X-ray laser pulse. If the photon energy of the incoming X-rays however is below the ionization edge in the region of the pre-edge resonance the incoming X-rays can be inelastically scattered. This spontaneous X-ray Raman scattering process has a very low probability, but the spontaneously scattered photons in the beginning of the medium can stimulate Raman scattering along the medium. The

  19. Feasibility study for a recirculating linac-based facility for femtosecond dynamics

    CERN Document Server

    Corlett, J N; Barry, W; Byrd, J M; De Santis, S; Doolittle, L; Fawley, W; Green, M A; Hartman, N; Heimann, P A; Kairan, D; Kujawski, E; Li, D; Lidia, S M; Luft, P; McClure, R; Parmigiani, F; Petroff, Y; Pirkl, Werner; Placidi, Massimo; Ratti, A; Reavill, D; Reichel, I; Rimmer, R A; Robinson, K E; Sannibale, F; Schönlein, R W; Staples, J; Tanabe, J; Truchlikova, D; Wan, W; Wang, S; Wells, R; Wolski, A; Zholents, A

    2002-01-01

    LBNL is pursuing design studies and the scientific program for a facility of the production of x-ray pulses with ultra-short time duration, for application in dynamical studies of processes in physics, biology, and chemistry. The proposed x-ray facility has the short x-ray pulse length (approx 60 fs FWHM) necessary to study very fast dynamics, high flux (up to approximately 10E11 photons/sec/0.1 percentBW) to study weakly scattering systems, and tuneability over 1-12 keV photon energy. The hard x-ray photon production section of the machine accommodates seven 2-m long undulators. Design studies for longer wavelength sources, using high-gain harmonic generation, are in progress. The x-ray pulse repetition rate of 10 kHz is matched to studies of dynamical processes (initiated by ultra-short laser pulses) that typically have a long recovery time or are not generally cyclic or reversible and need time to allow relaxation, replacement, or flow of the sample. The technique for producing ultra-short x-ray pulses use...

  20. Short-pulse lasers for weather control

    Science.gov (United States)

    Wolf, J. P.

    2018-02-01

    Filamentation of ultra-short TW-class lasers recently opened new perspectives in atmospheric research. Laser filaments are self-sustained light structures of 0.1–1 mm in diameter, spanning over hundreds of meters in length, and producing a low density plasma (1015–1017 cm‑3) along their path. They stem from the dynamic balance between Kerr self-focusing and defocusing by the self-generated plasma and/or non-linear polarization saturation. While non-linearly propagating in air, these filamentary structures produce a coherent supercontinuum (from 230 nm to 4 µm, for a 800 nm laser wavelength) by self-phase modulation (SPM), which can be used for remote 3D-monitoring of atmospheric components by Lidar (Light Detection and Ranging). However, due to their high intensity (1013–1014 W cm‑2), they also modify the chemical composition of the air via photo-ionization and photo-dissociation of the molecules and aerosols present in the laser path. These unique properties were recently exploited for investigating the capability of modulating some key atmospheric processes, like lightning from thunderclouds, water vapor condensation, fog formation and dissipation, and light scattering (albedo) from high altitude clouds for radiative forcing management. Here we review recent spectacular advances in this context, achieved both in the laboratory and in the field, reveal their underlying mechanisms, and discuss the applicability of using these new non-linear photonic catalysts for real scale weather control.

  1. Short-pulse optical parametric chirped-pulse amplification for the generation of high-power few-cycle pulses

    International Nuclear Information System (INIS)

    Major, Zs.; Osterhoff, J.; Hoerlein, R.; Karsch, S.; Fuoloep, J.A.; Krausz, F.; Ludwig-Maximilians Universitaet, Muenchen

    2006-01-01

    Complete test of publication follows. In the quest for a way to generate ultrashort, high-power, few-cycle laser pulses the discovery of optical parametric amplification (OPA) has opened up to the path towards a completely new regime, well beyond that of conventional laser amplification technology. The main advantage of this parametric amplification process is that it allows for an extremely broad amplification bandwidth compared to any known laser amplifier medium. When combined with the chirped-pulse amplification (CPA) principle (i.e. OPCPA), on one hand pulses of just 10 fs duration and 8 mJ pulse energy have been demonstrated. On the other hand, pulse energies of up to 30 J were also achieved on a different OPCPA system; the pulse duration in this case, however, was 100 fs. In order to combine ultrashort pulse durations (i.e. pulses in the few-cycle regime) with high pulse energies (i.e. in the Joule range) we propose tu pump on OPCPA chain with TW-scale short pulses (100 fs - 1 ps instead of > 100 ps of previous OPCPA systems) delivered by a conventional CPA system. This approach inherently improves the conditions for generating high-power ultrashort pulses using OPCPA in the following ways. Firstly, the short pump pulse duration reduces the necessary stretching factor for the seed pulse, thereby increasing stretching and compression fidelity. Secondly, also due to the shortened pump pulse duration, a much higher contrast is achieved. Finally, the significantly increased pump power makes the use of thinner OPCPA crystals possible, which implies an even broader amplification bandwidth, thereby allowing for even shorter pulses. We carried out theoretical investigations to show the feasibility of such a set-up. Alongside these studies we will also present preliminary experimental results of an OPCPA system pumped by the output of our Ti:Sapphire ATLAS laser, currently delivering 350 mJ in 43 fs. An insight into the planned scaling of this technique to petawatt

  2. Antimalarial Activity of Ultra-Short Peptides

    Directory of Open Access Journals (Sweden)

    María Yolanda Rios

    2009-12-01

    Full Text Available Ultra-short peptides 1-9 were designed and synthesized with phenylalanine, ornithine and proline amino acid residues and their effect on antimalarial activity was analyzed. On the basis of the IC50 data for these compounds, the effects of nature, polarity, and amino acid sequence on Plasmodium berghei schizont cultures were analyzed too. Tetrapeptides Phe-Orn-Phe-Orn (4 and Lys-Phe-Phe-Orn (5 showed a very important activity with IC50 values of 3.31 and 2.57 μM, respectively. These two tetrapeptides are candidates for subsequent in vivo assays and SARS investigations.

  3. DETERMINATION OF THE THERMODYNAMICS OF β-LACTOGLOBULIN AGGREGATION USING ULTRA VIOLET LIGHT SCATTERING SPECTROSCOPY

    OpenAIRE

    Belton, Daniel; Austerberry, James

    2018-01-01

    The problem of protein aggregation is widely studied across a number of disciplines, where understanding the behaviour of the protein monomer, and its behaviour with co-solutes is imperative in order to devise solutions to the problem. Here we present a method for measuring the kinetics of protein aggregation based on ultra violet light scattering spectroscopy (UVLSS) across a range of NaCl conditions. Through measurement of wavelength dependant scattering and using the model protein β-lactog...

  4. Time-resolved pulse propagation in a strongly scattering material

    NARCIS (Netherlands)

    Johnson, Patrick M.; Imhof, Arnout; Bret, B.P.J.; Gomez Rivas, J.; Gomez Rivas, Jaime; Lagendijk, Aart

    2003-01-01

    Light transport in macroporous gallium phosphide, perhaps the strongest nonabsorbing scatterer of visible light, is studied using phase-sensitive femtosecond pulse interferometry. Phase statistics are measured at optical wavelengths in both reflection and transmission and compared with theory. The

  5. SHORT-PULSE ELECTROMAGNETIC TRANSPONDER FOR HOLE-TO-HOLE USE.

    Science.gov (United States)

    Wright, David L.; Watts, Raymond D.; Bramsoe, Erik

    1983-01-01

    Hole-to-hole observations were made through nearly 20 m of granite using an electromagnetic transponder (an active reflector) in one borehole and a single-hole short-pulse radar in another. The transponder is inexpensive, operationally simple, and effective in extending the capability of a short-pulse borehole radar system to allow hole-to-hole operation without requiring timing cables. A detector in the transponder senses the arrival of each pulse from the radar. Each pulse detection triggers a kilovolt-amplitude pulse for retransmission. The transponder 'echo' may be stronger than that of a passive reflector by a factor of as much as 120 db. The result is an increase in range capability by a factor which depends on attenuation in the medium and hole-to-hole wavepath geometry.

  6. Generation of short optical pulses for laser fusion. M.L. report No. 2451

    International Nuclear Information System (INIS)

    Kuizenga, D.J.

    1975-06-01

    This report considers some of the problems involved in generating the required short pulses for the laser-fusion program. Short pulses are required to produce the laser fusion, and pulses produced synchronously with this primary pulse are required for plasma diagnostics. The requirements of these pulses are first described. Several methods are considered in order to generate pulses at 1.064 μ to drive the Nd:Glass amplifiers to produce laser fusion. Conditions for optimum energy extraction per short pulse for Nd:YAG and Nd:Glass lasers are given. Four methods are then considered to produce these pulses: (1) using a fast switch to chop the required pulse out of a much longer Q-switched pulse; (2) active mode locking; (3) passive mode locking; and (4) a combination of active and passive mode locking. The use of cavity dumping is also considered to increase the energy per short pulse

  7. Quantum energy duplication using super high output pulse laser

    International Nuclear Information System (INIS)

    Sugisaki, Kiwamu; Koyama, Kazuyoshi; Tanimoto, Mitsumori; Saito, Naoaki

    2000-01-01

    This study aims at elucidation on phenomena induced by strong electric field of super high output ultra short laser pulse to carry out development of basic technology required for promotion of a study on generation of high energy particle and photon using them, in order to contribute to application of super high output ultra short laser pulse and high energy plasma formed by it. In 1998 fiscal year of the last fiscal year in this study, by intending to increase the output by narrowing pulse width of the super high output laser, some basic experiments such as verification due to experiment on relativity theoretical self-convergence, generation of high energy particles, and so forth were carried out to establish a forecasting on future application. And, by conducting plasma generation experiment, self-guide and high energy particle formation experiment in plasma of super high intensity laser pulse important for its applications, and so forth, various technologies constituting foundation of future developments were developed, and more results could be obtained than those at proposal of this study. (G.K.)

  8. Assessment and mitigation of electromagnetic pulse (EMP) impacts at short-pulse laser facilities

    International Nuclear Information System (INIS)

    Brown, C G Jr; Bond, E; Clancy, T; Dangi, S; Eder, D C; Ferguson, W; Kimbrough, J; Throop, A

    2010-01-01

    The National Ignition Facility (NIF) will be impacted by electromagnetic pulse (EMP) during normal long-pulse operation, but the largest impacts are expected during short-pulse operation utilizing the Advanced Radiographic Capability (ARC). Without mitigation these impacts could range from data corruption to hardware damage. We describe our EMP measurement systems on Titan and NIF and present some preliminary results and thoughts on mitigation.

  9. Novel system for pulse radiolysis with multi-angle light scattering detection (PR-MALLS) - concept, construction and first tests

    Science.gov (United States)

    Kadlubowski, S.; Sawicki, P.; Sowinski, S.; Rokita, B.; Bures, K. D.; Rosiak, J. M.; Ulanski, P.

    2018-01-01

    Time-resolved pulse radiolysis, utilizing short pulses of high-energy electrons from accelerators, is an effective method for rapidly generating free radicals and other transient species in solution. Combined with fast time-resolved spectroscopic detection (typically in the ultraviolet/visible/near-infrared), it is invaluable for monitoring the reactivity of species subjected to radiolysis on timescales ranging from picoseconds to seconds. When used for polymer solutions, pulse radiolysis can be coupled with light-scattering detection, creating a powerful tool for kinetic and mechanistic analysis of processes like degradation or cross-linking of macromolecules. Changes in the light scattering intensity (LSI) of polymer solutions are indicative of alterations in the molecular weight and/or in the radius of gyration, i.e., the dimensions and shape of the macromolecules. In addition to other detection methods, LSI technique provides a convenient tool to study radiation-induced alterations in macromolecules as a function of time after the pulse. Pulse radiolysis systems employing this detection mode have been so far constructed to follow light scattered at a single angle (typically the right angle) to the incident light beam. Here we present an advanced pulse radiolysis & multi-angle light-scattering-intensity system (PR-MALLS) that has been built at IARC and is currently in the phase of optimization and testing. Idea of its design and operation is described and preliminary results for radiation-induced degradation of pullulan as well as polymerization and crosslinking of poly(ethylene glycol) diacrylate are presented. Implementation of the proposed system provides a novel research tool, which is expected to contribute to the expansion of knowledge on free-radical reactions in monomer- and polymer solutions, by delivering precise kinetic data on changes in molecular weight and size, and thus allowing to formulate or verify reaction mechanisms. The proposed method is

  10. Nonlinear scattering in hard tissue studied with ultrashort laser pulses

    International Nuclear Information System (INIS)

    Eichler, J.; Kim, B.M.

    2002-01-01

    The back-scattered spectrum of ultrashort laser pulses (800 nm, 0.2 ps) was studied in human dental and other hard tissues in vitro below the ablation threshold. Frequency doubled radiation (SHG), frequency tripled radiation and two-photon fluorescence were detected. The relative yield for these processes was measured for various pulse energies. The dependence of the SHG signal on probe thickness was determined in forward and back scattering geometry. SHG is sensitive to linear polarization of the incident laser radiation. SHG in human teeth was studied in vitro showing larger signals in dentin than in cementum and enamel. In carious areas no SHG signal could be detected. Possible applications of higher harmonic radiation for diagnostics and microscopy are discussed. (orig.)

  11. Validity of (Ultra-)Short Recordings for Heart Rate Variability Measurements

    NARCIS (Netherlands)

    Muñoz Venegas, Loretto; van Roon, Arie; Riese, Harriette; Thio, Chris; Oostenbroek, Emma; Westrik, Iris; de Geus, Eco J. C.; Gansevoort, Ron; Lefrandt, Joop; Nolte, Ilja M.; Snieder, Harold

    2015-01-01

    Objectives In order to investigate the applicability of routine 10s electrocardiogram (ECG) recordings for time-domain heart rate variability (HRV) calculation we explored to what extent these (ultra-)short recordings capture the "actual" HRV. Methods The standard deviation of normal-to-normal

  12. The relationship between ultra-short telomeres, aging of articular cartilage and the development of human hip osteoarthritis

    DEFF Research Database (Denmark)

    Harbo, M; Delaisse, J M; Kjaersgaard-Andersen, P

    2013-01-01

    Ultra-short telomeres caused by stress-induced telomere shortening are suggested to induce chondrocyte senescence in human osteoarthritic knees. Here we have further investigated the role of ultra-short telomeres in the development of osteoarthritis (OA) and in aging of articular cartilage in human...

  13. Multi-pulse frequency shifted (MPFS) multiple access modulation for ultra wideband

    Science.gov (United States)

    Nekoogar, Faranak [San Ramon, CA; Dowla, Farid U [Castro Valley, CA

    2012-01-24

    The multi-pulse frequency shifted technique uses mutually orthogonal short duration pulses o transmit and receive information in a UWB multiuser communication system. The multiuser system uses the same pulse shape with different frequencies for the reference and data for each user. Different users have a different pulse shape (mutually orthogonal to each other) and different transmit and reference frequencies. At the receiver, the reference pulse is frequency shifted to match the data pulse and a correlation scheme followed by a hard decision block detects the data.

  14. GINGER simulations of short-pulse effects in the LEUTL FEL

    International Nuclear Information System (INIS)

    Huang, Z.; Fawley, W.M.

    2001-01-01

    While the long-pulse, coasting beam model is often used in analysis and simulation of self-amplified spontaneous emission (SASE) free-electron lasers (FELs), many current SASE demonstration experiments employ relatively short electron bunches whose pulse length is on the order of the radiation slippage length. In particular, the low-energy undulator test line (LEUTL) FEL at the Advanced Photon Source has recently lased and nominally saturated in both visible and near-ultraviolet wavelength regions with a sub-ps pulse length that is somewhat shorter than the total slippage length in the 22-m undulator system. In this paper we explore several characteristics of the short pulse regime for SASE FELs with the multidimensional, time-dependent simulation code GINGER, concentrating on making a direct comparison with the experimental results from LEUTL. Items of interest include the radiation gain length, pulse energy, saturation position, and spectral bandwidth. We address the importance of short-pulse effects when scaling the LEUTL results to proposed x-ray FELs and also briefly discuss the possible importance of coherent spontaneous emission at startup

  15. Ultra-long-pulse microwave negative high voltage power supply with fast protection

    International Nuclear Information System (INIS)

    Xu Weihua; Wu Junshuan; Zheng Guanghua; Huang Qiaolin; Yang Chunsheng; Zhou Yuanwei; Chen Yonghao

    1998-01-01

    Two 1.4 MW high voltage power supply (HVPS) modules with 3-5 s pulse duration have been developed for LHCD experiment in the HT-7 tokamak. The power source consists of a pulsed generator and the electric circuit. Duration of the ultra-long-pulse is controlled by switching-on dc relay immediately and switching-off ac contactor after a given time, and the fast protection is executed by a crowbar. Due to the soft starting of the power source, the problem of overvoltage induced by dc relay switching-on has been solved. Each power supply module outputs a rated power (-35 kV, 40 A) on the dummy load. With the klystrons connected as the load of the power supply modules, LHCD experiments have been conducted successfully in the HT-7 tokamak

  16. Ultrashort pulse laser processing of hard tissue, dental restoration materials, and biocompatibles

    Science.gov (United States)

    Yousif, A.; Strassl, M.; Beer, F.; Verhagen, L.; Wittschier, M.; Wintner, E.

    2007-07-01

    During the last few years, ultra-short laser pulses have proven their potential for application in medical tissue treatment in many ways. In hard tissue ablation, their aptitude for material ablation with negligible collateral damage provides many advantages. Especially teeth representing an anatomically and physiologically very special region with less blood circulation and lower healing rates than other tissues require most careful treatment. Hence, overheating of the pulp and induction of microcracks are some of the most problematic issues in dental preparation. Up till now it was shown by many authors that the application of picosecond or femtosecond pulses allows to perform ablation with very low damaging potential also fitting to the physiological requirements indicated. Beside the short interaction time with the irradiated matter, scanning of the ultra-short pulse trains turned out to be crucial for ablating cavities of the required quality. One main reason for this can be seen in the fact that during scanning the time period between two subsequent pulses incident on the same spot is so much extended that no heat accumulation effects occur and each pulse can be treated as a first one with respect to its local impact. Extension of this advantageous technique to biocompatible materials, i.e. in this case dental restoration materials and titanium plasma-sprayed implants, is just a matter of consequence. Recently published results on composites fit well with earlier data on dental hard tissue. In case of plaque which has to be removed from implants, it turns out that removal of at least the calcified version is harder than tissue removal. Therefore, besides ultra-short lasers, also Diode and Neodymium lasers, in cw and pulsed modes, have been studied with respect to plaque removal and sterilization. The temperature increase during laser exposure has been experimentally evaluated in parallel.

  17. Decreased memory loss associated with right unilateral ultra-brief pulse wave ECT.

    Science.gov (United States)

    Kim, Suck Won; Grant, Jon E; Rittberg, Barry R; Simon, John E; Vine, Craig J; Schulz, S Charles

    2007-01-01

    The purpose of this brief article is to share with our colleagues in the psychiatric community and other physicians information about the efficacy of an emerging new method of electroconvulsive therapy (ECT) that shows advantages over existing treatments for depression. Patients treated with the method, ultra-brief pulse wave ECT, have less memory loss and confusion than those treated with longer-duration ECT.

  18. REACHING ULTRA HIGH PEAK CHARACTERISTICS IN RELATIVISTIC THOMSON BACKSCATTERING

    International Nuclear Information System (INIS)

    POGORELSKY, I.V.; BEN ZVI, I.; HIROSE, T.; KASHIWAGI, S.; YAKIMENKO, V.; KUSCHE, K.; SIDDONS, P.; ET AL

    2001-01-01

    The concept of x-ray laser synchrotron sources (LSS) based on Thomson scattering between laser photons and relativistic electrons leads to future femtosecond light-source facilities fit to multidisciplinary research in ultra-fast structural dynamics. Enticed by these prospects, the Brookhaven Accelerator Test Facility (ATF) embarked into development of the LSS based on a combination of a photocathode RF linac and a picosecond CO 2 laser. We observed the record 1.7 x 10 8 x-ray photons/pulse yield generated via relativistic Thomson scattering between the 14 GW CO 2 laser and 60 MeV electron beam

  19. Temperature field analysis of single layer TiO2 film components induced by long-pulse and short-pulse lasers

    International Nuclear Information System (INIS)

    Wang Bin; Zhang Hongchao; Qin Yuan; Wang Xi; Ni Xiaowu; Shen Zhonghua; Lu Jian

    2011-01-01

    To study the differences between the damaging of thin film components induced by long-pulse and short-pulse lasers, a model of single layer TiO 2 film components with platinum high-absorptance inclusions was established. The temperature rises of TiO 2 films with inclusions of different sizes and different depths induced by a 1 ms long-pulse and a 10 ns short-pulse lasers were analyzed based on temperature field theory. The results show that there is a radius range of inclusions that corresponds to high temperature rises. Short-pulse lasers are more sensitive to high-absorptance inclusions and long-pulse lasers are more easily damage the substrate. The first-damage decision method is drawn from calculations.

  20. Ultrashort pulsed laser technology development program

    Science.gov (United States)

    Manke, Gerald C.

    2014-10-01

    The Department of Navy has been pursuing a technology development program for advanced, all-fiber, Ultra Short Pulsed Laser (USPL) systems via Small Business Innovative Research (SBIR) programs. Multiple topics have been published to promote and fund research that encompasses every critical component of a standard USPL system and enable the demonstration of mJ/pulse class systems with an all fiber architecture. This presentation will summarize published topics and funded programs.

  1. Third order effects generated by refractive lenses on sub 20 femtosecond optical pulses

    International Nuclear Information System (INIS)

    Estrada-Silva, F C; Rosete-Aguilar, M; Garduno-Mejia, J; Gonzalez-Galicia, M A; Bruce, N C; Ortega-Martinez, R

    2011-01-01

    When using lenses to focus ultra-short pulses, chromatic aberration produces pulse spreading, after propagation through the lens. The focusing of ultra-short pulses has been analyzed by using Fourier optics where the field amplitude of the pulse is evaluated around the focal region of the lens by performing a third order expansion on the wave number around the central frequency of the carrier. In the literature, the pulse focusing in the neighborhood of the focal region of the lens has been calculated by expanding the wave number up to second order. The second order approximation works for pulses with a duration greater than 20fs, or pulses propagating through low dispersion materials; but, it is necessary to do third order approximation for pulses with a shorter duration, or propagating through highly dispersive materials. In this paper we analyze 15fs and 20fs pulses, with a carrier wavelength of 810nm, at the paraxial focal plane of singlets and achromatic doublets. The analysis includes the third order GVD and the results are compared with those obtained when the wave number is expanded up to second order.

  2. Transient radiative transfer in a scattering slab considering polarization.

    Science.gov (United States)

    Yi, Hongliang; Ben, Xun; Tan, Heping

    2013-11-04

    The characteristics of the transient and polarization must be considered for a complete and correct description of short-pulse laser transfer in a scattering medium. A Monte Carlo (MC) method combined with a time shift and superposition principle is developed to simulate transient vector (polarized) radiative transfer in a scattering medium. The transient vector radiative transfer matrix (TVRTM) is defined to describe the transient polarization behavior of short-pulse laser propagating in the scattering medium. According to the definition of reflectivity, a new criterion of reflection at Fresnel surface is presented. In order to improve the computational efficiency and accuracy, a time shift and superposition principle is applied to the MC model for transient vector radiative transfer. The results for transient scalar radiative transfer and steady-state vector radiative transfer are compared with those in published literatures, respectively, and an excellent agreement between them is observed, which validates the correctness of the present model. Finally, transient radiative transfer is simulated considering the polarization effect of short-pulse laser in a scattering medium, and the distributions of Stokes vector in angular and temporal space are presented.

  3. Characterization of enzymatically induced aggregation of casein micelles in natural concentration by in situ static light scattering and ultra low shear viscosimetry

    DEFF Research Database (Denmark)

    Lehner, D.; Worning, Peder; G, Fritz

    1999-01-01

    of multiple scattering whenthe transmission is above 0.85. Due to the very complex and porous structure of the casein aggregates theRayleigh-Debye-Gans scattering theory has been used in the data analysis. Measurements with a newinstrument using ultra low shear showed good agreement with theory. Copyright......The aggregation of casein micelles in undiluted skim milk after the addition of chymosin was studied bystatic light scattering and ultra low shear viscometry. The static light scattering measurements were madewith two different sample thicknesses, 72 and 16 mum. The scattering data were analyzed...... by indirect Fouriertransformation and by the polydispersity inversion technique which led to pair distance distributionfunctions and size distribution function, respectively. The minimum scattering angle was 1 degrees, whichallows for the determination of particle sizes up to a maximum diameter of 12 mum...

  4. Relaxation oscillations in stimulated Raman scattering

    International Nuclear Information System (INIS)

    Kachen, G.I.; Lowdermilk, W.H.

    1977-01-01

    Light pulses created by stimulated Raman scattering having been found to exhibit a complex time dependence which resembles relaxation oscillations. A focused laser pulse generated both forward and backward Raman emissions which appeared as a series of pulses with durations much shorter than the incident laser pulse. Time dependence of the Raman emission was observed directly by use of a streak camera. The number of observed pulses increased with the intensity of the incident pulse, while separation of the pulses in time depended on the length of the focal region. Beam focusing was incorporated in the coupled wave equations for stimulated Raman scattering. These rate equations were then solved numerically, and the results are in good qualitative agreement with the experimental observations. The short Raman pulses are created by a process associated with depletion of the incident laser pulse. This process occurs under a broad range of conditions

  5. The Clinical Efficacy of Autologous Platelet-Rich Plasma Combined with Ultra-Pulsed Fractional CO2 Laser Therapy for Facial Rejuvenation.

    Science.gov (United States)

    Hui, Qiang; Chang, Peng; Guo, Bingyu; Zhang, Yu; Tao, Kai

    2017-02-01

    Ultra-pulsed fractional CO 2 laser is an efficient, precise, and safe therapeutic intervention for skin refreshing, although accompanied with prolonged edema and erythema. In recent years, autologous platelet-rich plasma (PRP) has been proven to promote wound and soft tissue healing and collagen regeneration. To investigate whether the combination of PRP and ultra-pulsed fractional CO 2 laser had a synergistic effect on therapy for facial rejuvenation. Totally, 13 facial aging females were treated with ultra-pulsed fractional CO 2 laser. One side of the face was randomly selected as experimental group and injected with PRP, the other side acted as the control group and was injected with physiological saline at the same dose. Comprehensive assessment of clinical efficacy was performed by satisfaction scores, dermatologists' double-blind evaluation and the VISIA skin analysis system. After treatment for 3 months, subjective scores of facial wrinkles, skin texture, and skin elasticity were higher than that in the control group. Similarly, improvement of skin wrinkles, texture, and tightness in the experimental group was better compared with the control group. Additionally, the total duration of erythema, edema, and crusting was decreased, in the experimental group compared with the control group. PRP combined with ultra-pulsed fractional CO 2 laser had a synergistic effect on facial rejuvenation, shortening duration of side effects, and promoting better therapeutic effect.

  6. The EMP excitation of radiation by the pulsed relativistic electron beam

    International Nuclear Information System (INIS)

    Balakirev, V.A.; Sidelnikov, G.L.

    1996-01-01

    The mechanisms of excitation of ultra-wideband electromagnetic pulses (EMP) by short pulses of high-current relativistic electron beams were proposed and investigated. It is shown that the transformation efficiency of the bunch kinetic energy to the excited energy of the EMP can be very significant. (author). 2 figs., 4 refs

  7. The EMP excitation of radiation by the pulsed relativistic electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Balakirev, V A; Sidelnikov, G L [Kharkov Inst. of Physics and Technology (Russian Federation)

    1997-12-31

    The mechanisms of excitation of ultra-wideband electromagnetic pulses (EMP) by short pulses of high-current relativistic electron beams were proposed and investigated. It is shown that the transformation efficiency of the bunch kinetic energy to the excited energy of the EMP can be very significant. (author). 2 figs., 4 refs.

  8. Phase Noise Comparision of Short Pulse Laser Systems

    Energy Technology Data Exchange (ETDEWEB)

    S. Zhang; S. V. Benson; J. Hansknecht; D. Hardy; G. Neil; Michelle D. Shinn

    2006-12-01

    This paper describes the phase noise measurement on several different mode-locked laser systems that have completely different gain media and configurations including a multi-kW free-electron laser. We will focus on the state of the art short pulse lasers, especially the drive lasers for photocathode injectors. A comparison between the phase noise of the drive laser pulses, electron bunches and FEL pulses will also be presented.

  9. Formation of nanosecond SBS-compressed pulses for pumping an ultra-high power parametric amplifier

    Science.gov (United States)

    Kuz’min, A. A.; Kulagin, O. V.; Rodchenkov, V. I.

    2018-04-01

    Compression of pulsed Nd : glass laser radiation under stimulated Brillouin scattering (SBS) in perfluorooctane is investigated. Compression of 16-ns pulses at a beam diameter of 30 mm is implemented. The maximum compression coefficient is 28 in the optimal range of laser pulse energies from 2 to 4 J. The Stokes pulse power exceeds that of the initial laser pulse by a factor of about 11.5. The Stokes pulse jitter (fluctuations of the Stokes pulse exit time from the compressor) is studied. The rms spread of these fluctuations is found to be 0.85 ns.

  10. Temperature field analysis of single layer TiO2 film components induced by long-pulse and short-pulse lasers.

    Science.gov (United States)

    Wang, Bin; Zhang, Hongchao; Qin, Yuan; Wang, Xi; Ni, Xiaowu; Shen, Zhonghua; Lu, Jian

    2011-07-10

    To study the differences between the damaging of thin film components induced by long-pulse and short-pulse lasers, a model of single layer TiO(2) film components with platinum high-absorptance inclusions was established. The temperature rises of TiO(2) films with inclusions of different sizes and different depths induced by a 1 ms long-pulse and a 10 ns short-pulse lasers were analyzed based on temperature field theory. The results show that there is a radius range of inclusions that corresponds to high temperature rises. Short-pulse lasers are more sensitive to high-absorptance inclusions and long-pulse lasers are more easily damage the substrate. The first-damage decision method is drawn from calculations. © 2011 Optical Society of America

  11. Study on quantum beam science by using ultra short electron pulse, FEL, and slow positron beam at ISIR (Institute of Science and Industrial Research), Osaka University

    International Nuclear Information System (INIS)

    Yoshida, Y.; Tagawa, S.; Okuda, S.; Honda, Y.; Kimura, N.; Yamamoto, T.; Isoyama, G.

    1995-01-01

    Three projects for quantum beam science, an ultra fast electron pulse, a free electron laser, and a slow positron beam, has been started by using 38 MeV L-band and 150 MeV S-band linacs at ISIR in Osaka University. Both study on the production of three beams and study on quantum material science by using three beams will play an important role in the beam science. (author)

  12. Determination of ultra-short laser induced damage threshold of KH2PO4 crystal: Numerical calculation and experimental verification

    Directory of Open Access Journals (Sweden)

    Jian Cheng

    2016-03-01

    Full Text Available Rapid growth and ultra-precision machining of large-size KDP (KH2PO4 crystals with high laser damage resistance are tough challenges in the development of large laser systems. It is of high interest and practical significance to have theoretical models for scientists and manufacturers to determine the laser-induced damage threshold (LIDT of actually prepared KDP optics. Here, we numerically and experimentally investigate the laser-induced damage on KDP crystals in ultra-short pulse laser regime. On basis of the rate equation for free electron generation, a model dedicated to predicting the LIDT is developed by considering the synergistic effect of photoionization, impact ionization and decay of electrons. Laser damage tests are performed to measure the single-pulse LIDT with several testing protocols. The testing results combined with previously reported experimental data agree well with those calculated by the model. By taking the light intensification into consideration, the model is successfully applied to quantitatively evaluate the effect of surface flaws inevitably introduced in the preparation processes on the laser damage resistance of KDP crystals. This work can not only contribute to further understanding of the laser damage mechanisms of optical materials, but also provide available models for evaluating the laser damage resistance of exquisitely prepared optical components used in high power laser systems.

  13. Evaluation of cytogenetic effects of very short laser pulsed radiations

    International Nuclear Information System (INIS)

    Guedeney, G.; Courant, D.; Malarbet, J.-L.; Dolloy, M.-T.; Court, L.

    1992-01-01

    The aim of this study is to evaluate the capacity of a laser, delivering very short pulses in the near infrared spectrum with a high pulse ratio frequency, to induce genetic modification on biological tissues. Chromatid exchanges and chromosomal aberrations studies are used to test potential effect on human lymphocytes. The laser irradiation induces a significant increase of acentric fragments but the absence of dicentric suggests that a repetitive very short pulses irradiation has a relatively low capacity to induce genetic abnormalities. (author)

  14. Temporal reflectance from a light pulse irradiated medium embedded with highly scattering cores

    International Nuclear Information System (INIS)

    Hsu Peifeng; Lu Xiaodong

    2007-01-01

    This paper presents a new approach to utilize ultrashort pulsed laser for optical diagnostics with numerical simulations. The method is based on the use of ultrafast pulses with a pulsewidth selected according to the probed medium's radiative property and/or size. Our previous work in nonhomogeneous media has shown that the resulting time-resolved reflectance signal will have a unique characteristic: it will show a direct correlation of ballistic photon travel time and interface location, which is in between different layers or nonhomogeneous regions. The premise is based on utilizing the medium's structural information carried by the ballistic and snake photons without being masked by the diffuse photons. In this study, the space-time correlation is further explored in the case of minimally scattered photons from a large scattering coefficient core region embedded within a less-scattering medium. Time-resolved reflectance signals of the single scattering core and multiple scattering cores within a three-dimensional medium demonstrate the concept and illustrate the additional effect due to the scattered photons from the core region. A unique temporal signal profile's correlation at various detector positions with respect to the scattering core is explained in detail. The result has important implications. This approach will lead to a much simpler and more precise determination of the probed medium's composition or structure. Due to the large computational requirement to obtain the physical details of the light pulse propagation inside highly scattering multi-dimensional media, the reverse Monte-Carlo method is used. The potential applications of the method include non-destructive diagnostics, optical imaging, and remote sensing of underwater objects

  15. Ultra-fast ipsilateral DPOAE adaptation not modulated by attention?

    Science.gov (United States)

    Dalhoff, Ernst; Zelle, Dennis; Gummer, Anthony W.

    2018-05-01

    Efferent stimulation of outer hair cells is supposed to attenuate cochlear amplification of sound waves and is accompanied by reduced DPOAE amplitudes. Recently, a method using two subsequent f2 pulses during presentation of a longer f1 pulse was introduced to measure fast ipsilateral adaptation effects on separated DPOAE components. Compensating primary-tone onsets for their latencies at the f2-tonotopic place, the average adaptation measured in four normal-hearing subjects was 5.0 dB with a time constant below 5 ms. In the present study, two experiments were performed to determine the origin of this ultra-fast ipsilateral adaptation effect. The first experiment measured ultra-fast ipsilateral adaptation using a two-pulse paradigm at three frequencies in the four subjects, while controlling for visual attention of the subjects. The other experiment also controlled for visual attention, but utilized a sequence of f2 short pulses in the presence of a continuous f1 tone to sample ipsilateral adaptation effects with longer time constants in eight subjects. In the first experiment, no significant change in the ultra-fast adaptation between non-directed attention and visual attention could be detected. In contrast, the second experiment revealed significant changes in the magnitude of the slower ipsilateral adaptation in the visual-attention condition. In conclusion, the lack of an attentional influence indicates that the ultra-fast ipsilateral DPOAE adaptation is not solely mediated by the medial olivocochlear reflex.

  16. Ultra low-noise differential ac-coupled photodetector for sensitive pulse detection applications

    International Nuclear Information System (INIS)

    Windpassinger, Patrick J; Boisen, Axel; Kjærgaard, Niels; Polzik, Eugene S; Müller, Jörg Helge; Kubasik, Marcin; Koschorreck, Marco

    2009-01-01

    We report on the performance of ultra low-noise differential photodetectors especially designed for probing of atomic ensembles with weak light pulses. The working principle of the detectors is described together with the analysis procedures employed to extract the photon shot noise of light pulses with ∼1 μs duration. As opposed to frequency response peaked detectors, our approach allows for broadband quantum noise measurements. The equivalent noise charge (ENC) for two different hardware approaches is evaluated to 280 and 340 electrons per pulse, respectively, which corresponds to a dark noise equivalent photon number of n 3dB = 0.8 × 10 5 and n 3dB = 1.2 × 10 5 in the two approaches. Finally, we discuss the possibility of removing classical correlations in the output signal caused by detector imperfection by using double-correlated sampling methods

  17. Ultra-short silicon MMI duplexer

    Science.gov (United States)

    Yi, Huaxiang; Huang, Yawen; Wang, Xingjun; Zhou, Zhiping

    2012-11-01

    The fiber-to-the-home (FTTH) systems are growing fast these days, where two different wavelengths are used for upstream and downstream traffic, typically 1310nm and 1490nm. The duplexers are the key elements to separate these wavelengths into different path in central offices (CO) and optical network unit (ONU) in passive optical network (PON). Multimode interference (MMI) has some benefits to be a duplexer including large fabrication tolerance, low-temperature dependence, and low-polarization dependence, but its size is too large to integrate in conventional case. Based on the silicon photonics platform, ultra-short silicon MMI duplexer was demonstrated to separate the 1310nm and 1490nm lights. By studying the theory of self-image phenomena in MMI, the first order images are adopted in order to keep the device short. A cascaded MMI structure was investigated to implement the wavelength splitting, where both the light of 1310nm and 1490nm was input from the same port, and the 1490nm light was coupling cross the first MMI and output at the cross-port in the device while the 1310nm light was coupling through the first and second MMI and output at the bar-port in the device. The experiment was carried on with the SOI wafer of 340nm top silicon. The cascaded MMI was investigated to fold the length of the duplexer as short as 117μm with the extinct ratio over 10dB.

  18. Ultra-fast movies of thin-film laser ablation

    Science.gov (United States)

    Domke, Matthias; Rapp, Stephan; Schmidt, Michael; Huber, Heinz P.

    2012-11-01

    Ultra-short-pulse laser irradiation of thin molybdenum films from the glass substrate side initiates an intact Mo disk lift off free from thermal effects. For the investigation of the underlying physical effects, ultra-fast pump-probe microscopy is used to produce stop-motion movies of the single-pulse ablation process, initiated by a 660-fs laser pulse. The ultra-fast dynamics in the femtosecond and picosecond ranges are captured by stroboscopic illumination of the sample with an optically delayed probe pulse of 510-fs duration. The nanosecond and microsecond delay ranges of the probe pulse are covered by an electronically triggered 600-ps laser. Thus, the setup enables an observation of general laser ablation processes from the femtosecond delay range up to the final state. A comparison of time- and space-resolved observations of film and glass substrate side irradiation of a 470-nm molybdenum layer reveals the driving mechanisms of the Mo disk lift off initiated by glass-side irradiation. Observations suggest that a phase explosion generates a liquid-gas mixture in the molybdenum/glass interface about 10 ps after the impact of the pump laser pulse. Then, a shock wave and gas expansion cause the molybdenum layer to bulge, while the enclosed liquid-gas mixture cools and condenses at delay times in the 100-ps range. The bulging continues for approximately 20 ns, when an intact Mo disk shears and lifts off at a velocity of above 70 m/s. As a result, the remaining hole is free from thermal effects.

  19. Short pulse, high resolution, backlighters for point projection high-energy radiography at the National Ignition Facility

    Science.gov (United States)

    Tommasini, R.; Bailey, C.; Bradley, D. K.; Bowers, M.; Chen, H.; Di Nicola, J. M.; Di Nicola, P.; Gururangan, G.; Hall, G. N.; Hardy, C. M.; Hargrove, D.; Hermann, M.; Hohenberger, M.; Holder, J. P.; Hsing, W.; Izumi, N.; Kalantar, D.; Khan, S.; Kroll, J.; Landen, O. L.; Lawson, J.; Martinez, D.; Masters, N.; Nafziger, J. R.; Nagel, S. R.; Nikroo, A.; Okui, J.; Palmer, D.; Sigurdsson, R.; Vonhof, S.; Wallace, R. J.; Zobrist, T.

    2017-05-01

    High-resolution, high-energy X-ray backlighters are very active area of research for radiography experiments at the National Ignition Facility (NIF) [Miller et al., Nucl. Fusion 44, S228 (2004)], in particular those aiming at obtaining Compton-scattering produced radiographs from the cold, dense fuel surrounding the hot spot. We report on experiments to generate and characterize point-projection-geometry backlighters using short pulses from the advanced radiographic capability (ARC) [Crane et al., J. Phys. 244, 032003 (2010); Di Nicola et al., Proc. SPIE 2015, 93450I-12], at the NIF, focused on Au micro-wires. We show the first hard X-ray radiographs, at photon energies exceeding 60 keV, of static objects obtained with 30 ps-long ARC laser pulses, and the measurements of strength of the X-ray emission, the pulse duration and the source size of the Au micro-wire backlighters. For the latter, a novel technique has been developed and successfully applied.

  20. Integrable discretizations of the short pulse equation

    International Nuclear Information System (INIS)

    Feng Baofeng; Maruno, Ken-ichi; Ohta, Yasuhiro

    2010-01-01

    In this paper, we propose integrable semi-discrete and full-discrete analogues of the short pulse (SP) equation. The key construction is the bilinear form and determinant structure of solutions of the SP equation. We also give the determinant formulas of N-soliton solutions of the semi-discrete and full-discrete analogues of the SP equations, from which the multi-loop and multi-breather solutions can be generated. In the continuous limit, the full-discrete SP equation converges to the semi-discrete SP equation, and then to the continuous SP equation. Based on the semi-discrete SP equation, an integrable numerical scheme, i.e. a self-adaptive moving mesh scheme, is proposed and used for the numerical computation of the short pulse equation.

  1. Short-pulse propagation in fiber optical parametric amplifiers

    DEFF Research Database (Denmark)

    Cristofori, Valentina

    Fiber optical parametric amplifiers (FOPAs) are attractive because they can provide large gain over a broad range of central wavelengths, depending only on the availability of a suitable pump laser. In addition, FOPAs are suitable for the realization of all-optical signal processing functionalities...... transfer can be reduced in saturated F OPAs. In order to characterize propagation impairments such as dispersion and Kerr effect, affecting signals reaching multi-terabit per second per channel, short pulses on the order of 500 fs need to be considered. Therefore, a short pulses fiber laser source...... is implemented to obtain an all-fiber system. The advantages of all fiber-systems are related to their reliability, long-term stability and compactness. Fiber optical parametric chirped pulse amplification is promising for the amplification of such signals thanks to the inherent compatibility of FOPAs with fiber...

  2. Poincaré plot analysis of ultra-short-term heart rate variability during recovery from exercise in physically active men.

    Science.gov (United States)

    Gomes, Rayana L; Marques Vanderlei, Luiz C; Garner, David M; Ramos Santana, Milana D; de Abreu, Luiz C; Valenti, Vitor E

    2017-04-26

    Recently there has been increasing interest in the study of ultra-short- term heart rate variability (HRV) in sports performance and exercise physiology. In order to improve standardization of this specific analysis, we evaluated the ultra-short-term HRV analysis through SD1Poincaré index to identify exercise induced responses. We investigated 35 physically active men aged between 18 and 35 years old. Volunteers performed physical exercise on treadmill with intensity of 6.0 km / hour + 1% slope in the first five minutes for physical "warming up." This was followed by 25 minutes with intensity equivalent to 60% of Vmax, with the same slope according to the Conconi threshold. HRV was analyzed in the following periods: the five-minute period before the exercise and the five-minute period immediately after the exercise, the five minutes were divided into five segments of 60 RR intervals. Ultra-short-term RMSSD and SD1 analysis were performed. Ultra-short-term RMSSD and SD1 were significantly (panalysis with the Poincaré plot detected changes in HRV after exercise. Ultra-short-term HRV analysis through Poincaré plot identified heart rate autonomic responses induced by aerobic exercise.

  3. Two-stage optical parametric chirped-pulse amplifier using sub-nanosecond pump pulse generated by stimulated Brillouin scattering compression

    Science.gov (United States)

    Ogino, Jumpei; Miyamoto, Sho; Matsuyama, Takahiro; Sueda, Keiichi; Yoshida, Hidetsugu; Tsubakimoto, Koji; Miyanaga, Noriaki

    2014-12-01

    We demonstrate optical parametric chirped-pulse amplification (OPCPA) based on two-beam pumping, using sub-nanosecond pulses generated by stimulated Brillouin scattering compression. Seed pulse energy, duration, and center wavelength were 5 nJ, 220 ps, and ˜1065 nm, respectively. The 532 nm pulse from a Q-switched Nd:YAG laser was compressed to ˜400 ps in heavy fluorocarbon FC-40 liquid. Stacking of two time-delayed pump pulses reduced the amplifier gain fluctuation. Using a walk-off-compensated two-stage OPCPA at a pump energy of 34 mJ, a total gain of 1.6 × 105 was obtained, yielding an output energy of 0.8 mJ. The amplified chirped pulse was compressed to 97 fs.

  4. Time evolution of photon-pulse propagation in scattering and absorbing media: The dynamic radiative transfer system

    Science.gov (United States)

    Georgakopoulos, A.; Politopoulos, K.; Georgiou, E.

    2018-03-01

    A new dynamic-system approach to the problem of radiative transfer inside scattering and absorbing media is presented, directly based on first-hand physical principles. This method, the Dynamic Radiative Transfer System (DRTS), employs a dynamical system formality using a global sparse matrix, which characterizes the physical, optical and geometrical properties of the material-volume of interest. The new system state is generated by the above time-independent matrix, using simple matrix-vector multiplication for each subsequent time step. DRTS is capable of calculating accurately the time evolution of photon propagation in media of complex structure and shape. The flexibility of DRTS allows the integration of time-dependent sources, boundary conditions, different media and several optical phenomena like reflection and refraction in a unified and consistent way. Various examples of DRTS simulation results are presented for ultra-fast light pulse 3-D propagation, demonstrating greatly reduced computational cost and resource requirements compared to other methods.

  5. The Thomson scattering experiment pulsed by CO2 laser in FT

    International Nuclear Information System (INIS)

    Bartolini, L.; Fornetti, G.; Nardi, M.; Occhionero, G.; Ferri de Collibus, M.

    1987-01-01

    An experiment carried out to measure the plasma ion temperature Tsub(i) in the tokamak FT in Frascati by Collective Thomson Scattering. A tandem laser system generates two single mode beams (10.6μ) one of which is pulsed and amplified up to levels of 5 MW, 1μs and actively frequency locked to a second continuous wave low pressure CO 2 laser. The pulse beam crosses the plasma and the forward scattered light is collected at angles between 1 degrees centigrade and 1.6 degrees centigrade. An heterodyne technique in which the c.w. beam is the local oscillator is used to measure the Doppler enlarged spectral density of the signal. The experimental apparatus is described and the results are reported and discussed

  6. Adequacy of the Ultra-Short-Term HRV to Assess Adaptive Processes in Youth Female Basketball Players.

    Science.gov (United States)

    Nakamura, Fabio Y; Pereira, Lucas A; Cal Abad, Cesar C; Cruz, Igor F; Flatt, Andrew A; Esco, Michael R; Loturco, Irineu

    2017-02-01

    Heart rate variability has been widely used to monitor athletes' cardiac autonomic control changes induced by training and competition, and recently shorter recording times have been sought to improve its practicality. The aim of this study was to test the agreement between the (ultra-short-term) natural log of the root-mean-square difference of successive normal RR intervals (lnRMSSD - measured in only 1 min post-1 min stabilization) and the criterion lnRMSSD (measured in the last 5 min out of 10 min of recording) in young female basketball players. Furthermore, the correlation between training induced delta change in the ultra-short-term lnRMSSD and the criterion lnRMSSD was calculated. Seventeen players were assessed at rest pre- and post-eight weeks of training. Trivial effect sizes (-0.03 in the pre- and 0.10 in the post- treatment) were found in the comparison between the ultra-short-term lnRMSSD (3.29 ± 0.45 and 3.49 ± 0.35 ms, in the pre- and post-, respectively) and the criterion lnRMSSD (3.30 ± 0.40 and 3.45 ± 0.41 ms, in the pre- and post-, respectively) (intraclass correlation coefficient = 0.95 and 0.93). In both cases, the response to training was significant, with Pearson's correlation of 0.82 between the delta changes of the ultra-short-term lnRMSSD and the criterion lnRMSSD. In conclusion, the lnRMSSD can be calculated within only 2 min of data acquisition (the 1 st min discarded) in young female basketball players, with the ultra-short-term measure presenting similar sensitivity to training effects as the standard criterion measure.

  7. High beam quality and high energy short-pulse laser with MOPA

    Science.gov (United States)

    Jin, Quanwei; Pang, Yu; Jiang, JianFeng; Tan, Liang; Cui, Lingling; Wei, Bin; Sun, Yinhong; Tang, Chun

    2018-03-01

    A high energy, high beam quality short-pulse diode-pumped Nd:YAG master oscillator power-amplifier (MOPA) laser with two amplifier stages is demonstrated. The two-rod birefringence compensation was used as beam quality controlling methods, which presents a short-pulse energy of 40 mJ with a beam quality value of M2 = 1.2 at a repetition rate of 400Hz. The MOPA system delivers a short-pulse energy of 712.5 mJ with a pulse width of 12.4 ns.The method of spherical aberration compensation is improved the beam quality, a M2 factor of 2.3 and an optical-to-optical efficiency of 27.7% is obtained at the maximum laser out power.The laser obtained 1.4J out energy with polarization integration.

  8. Producing High Intense Attosecond Pulse Train by Interaction of Three-Color Pulse and Overdense Plasma

    Science.gov (United States)

    Salehi, M.; Mirzanejad, S.

    2017-05-01

    Amplifying the attosecond pulse by the chirp pulse amplification method is impossible. Furthermore, the intensity of attosecond pulse is low in the interaction of laser pulse and underdense plasma. This motivates us to propose using a multi-color pulse to produce the high intense attosecond pulse. In the present study, the relativistic interaction of a three-color linearly-polarized laser-pulse with highly overdense plasma is studied. We show that the combination of {{ω }}1, {{ω }}2 and {{ω }}3 frequencies decreases the instance full width at half maximum reflected attosecond pulse train from the overdense plasma surface. Moreover, we show that the three-color pulse increases the intensity of generated harmonics, which is explained by the relativistic oscillating mirror model. The obtained results demonstrate that if the three-color laser pulse interacts with overdense plasma, it will enhance two orders of magnitude of intensity of ultra short attosecond pulses in comparison with monochromatic pulse.

  9. PSPICE simulation of bipolar pulse converter based on short-circuited coaxial transmission line

    International Nuclear Information System (INIS)

    Shi Lei; Fan Yajun

    2010-01-01

    The operating principle of the bipolar pulse converter based on short-circuited coaxial transmission line type is given. The output bipolar pulses are simulated by using PSPICE program on condition of different electric length and different impedance of the short-circuited coaxial transmission line. The bipolar pulses are generated by using unipolar pulse with pulse width of 2 ns in experiment, the experimental result fit well with the simulation result. (authors)

  10. FDTD computation of human eye exposure to ultra-wideband electromagnetic pulses

    Energy Technology Data Exchange (ETDEWEB)

    Simicevic, Neven [Center for Applied Physics Studies, Louisiana Tech University, Ruston, LA 71272 (United States)], E-mail: neven@phys.latech.edu

    2008-03-21

    With an increase in the application of ultra-wideband (UWB) electromagnetic pulses in the communications industry, radar, biotechnology and medicine, comes an interest in UWB exposure safety standards. Despite an increase of the scientific research on bioeffects of exposure to non-ionizing UWB pulses, characterization of those effects is far from complete. A numerical computational approach, such as a finite-difference time domain (FDTD) method, is required to visualize and understand the complexity of broadband electromagnetic interactions. The FDTD method has almost no limits in the description of the geometrical and dispersive properties of the simulated material, it is numerically robust and appropriate for current computer technology. In this paper, a complete calculation of exposure of the human eye to UWB electromagnetic pulses in the frequency range of 3.1-10.6, 22-29 and 57-64 GHz is performed. Computation in this frequency range required a geometrical resolution of the eye of 0.1 mm and an arbitrary precision in the description of its dielectric properties in terms of the Debye model. New results show that the interaction of UWB pulses with the eye tissues exhibits the same properties as the interaction of the continuous electromagnetic waves (CWs) with the frequencies from the pulse's frequency spectrum. It is also shown that under the same exposure conditions the exposure to UWB pulses is from one to many orders of magnitude safer than the exposure to CW.

  11. FDTD computation of human eye exposure to ultra-wideband electromagnetic pulses.

    Science.gov (United States)

    Simicevic, Neven

    2008-03-21

    With an increase in the application of ultra-wideband (UWB) electromagnetic pulses in the communications industry, radar, biotechnology and medicine, comes an interest in UWB exposure safety standards. Despite an increase of the scientific research on bioeffects of exposure to non-ionizing UWB pulses, characterization of those effects is far from complete. A numerical computational approach, such as a finite-difference time domain (FDTD) method, is required to visualize and understand the complexity of broadband electromagnetic interactions. The FDTD method has almost no limits in the description of the geometrical and dispersive properties of the simulated material, it is numerically robust and appropriate for current computer technology. In this paper, a complete calculation of exposure of the human eye to UWB electromagnetic pulses in the frequency range of 3.1-10.6, 22-29 and 57-64 GHz is performed. Computation in this frequency range required a geometrical resolution of the eye of 0.1 mm and an arbitrary precision in the description of its dielectric properties in terms of the Debye model. New results show that the interaction of UWB pulses with the eye tissues exhibits the same properties as the interaction of the continuous electromagnetic waves (CWs) with the frequencies from the pulse's frequency spectrum. It is also shown that under the same exposure conditions the exposure to UWB pulses is from one to many orders of magnitude safer than the exposure to CW.

  12. FDTD computation of human eye exposure to ultra-wideband electromagnetic pulses

    International Nuclear Information System (INIS)

    Simicevic, Neven

    2008-01-01

    With an increase in the application of ultra-wideband (UWB) electromagnetic pulses in the communications industry, radar, biotechnology and medicine, comes an interest in UWB exposure safety standards. Despite an increase of the scientific research on bioeffects of exposure to non-ionizing UWB pulses, characterization of those effects is far from complete. A numerical computational approach, such as a finite-difference time domain (FDTD) method, is required to visualize and understand the complexity of broadband electromagnetic interactions. The FDTD method has almost no limits in the description of the geometrical and dispersive properties of the simulated material, it is numerically robust and appropriate for current computer technology. In this paper, a complete calculation of exposure of the human eye to UWB electromagnetic pulses in the frequency range of 3.1-10.6, 22-29 and 57-64 GHz is performed. Computation in this frequency range required a geometrical resolution of the eye of 0.1 mm and an arbitrary precision in the description of its dielectric properties in terms of the Debye model. New results show that the interaction of UWB pulses with the eye tissues exhibits the same properties as the interaction of the continuous electromagnetic waves (CWs) with the frequencies from the pulse's frequency spectrum. It is also shown that under the same exposure conditions the exposure to UWB pulses is from one to many orders of magnitude safer than the exposure to CW

  13. Coherent, Short-Pulse X-ray Generation via Relativistic Flying Mirrors

    Directory of Open Access Journals (Sweden)

    Masaki Kando

    2018-04-01

    Full Text Available Coherent, Short X-ray pulses are demanded in material science and biology for the study of micro-structures. Currently, large-sized free-electron lasers are used; however, the available beam lines are limited because of the large construction cost. Here we review a novel method to downsize the system as well as providing fully (spatially and temporally coherent pulses. The method is based on the reflection of coherent laser light by a relativistically moving mirror (flying mirror. Due to the double Doppler effect, the reflected pulses are upshifted in frequency and compressed in time. Such mirrors are formed when an intense short laser pulse excites a strongly nonlinear plasma wave in tenuous plasma. Theory, proof-of-principle, experiments, and possible applications are addressed.

  14. Isolated grid electron gun and pulser system for long/short pulse operation

    International Nuclear Information System (INIS)

    Koontz, R.F.; Feathers, L.; Kilbourne, C.; Leger, G.; McKinney, T.

    1984-04-01

    The new NPI gun at SLAC serves the dual functions of producing long pulse (up to 5 μsec, 180 pps) electron bursts for nuclear physics experiments, and also short (1 nsec) pulses for filling Stanford Synchrotron Radiation Laboratory (SSRL). This is accomplished by means of a newly designed, isolated grid gun, cathode pulsed with a solid state long pulse pulser, and grid pulsed with a fast recharging avalanche type short pulse (1 nsec) grid pulser. The grid pulser is bipolar so that a fast blackout notch can be placed in the long cathode pulse. This fast notch can be seen by Stanford Linear Collider (SLC) instrumentation and allows the long pulse beam to be computer controlled by SLC intensity and beam position monitors

  15. Reverse Monte Carlo simulations of light pulse propagation in nonhomogeneous media

    International Nuclear Information System (INIS)

    Lu Xiaodong; Hsu Peifeng

    2005-01-01

    This paper presents a follow-up study of our previous work on the reverse Monte Carlo solution of transient radiation transport in the homogeneous media. In this study, the method is extended to consider nonhomogeneous media, which exist in many practical problems. The transport process of ultra-short light pulse propagation inside the non-emitting, absorbing, and anisotropically scattering multi-layer media is studied. Although only one-dimensional geometry is treated here, the method is applicable and easy to extend to multi-dimensional geometries. In multi-layer media, the time-resolved reflectance exhibits a direct correlation between the signal magnitude and the travel time to the layer interface if the ballistic photons encounter a strongly scattering layer. Furthermore, it is found that even with a symmetric radiative property distribution in a three-layer medium, the reflectance and transmittance signals do not converge at long time when the mid-layer is optically thick. The long time slope of the temporal signal does not provide the specificity required for an inverse analysis parameter as stipulated by earlier studies

  16. High-quality electron pulse generation from a laser photocathode RF gun

    International Nuclear Information System (INIS)

    Yang, Jinfeng; Sakai, Fumio; Aoki, Yasushi

    1999-01-01

    A laser photocathode RF gun system was developed for ultra short X-ray pulse generation via the inverse Compton scattering. The gun is a BNL-type S-band RF gun and the performance test of the gun was performed at the Linear Accelerator Facility in the Institute of Scientific and Industries Research, Osaka University. The gun system produced 115 pC electron bunches with the energy of 1.6 MeV under the condition of RF peak power of 1.5 MW and laser pulse energy of 65 μJ. The quantum efficiency and dark current were obtained to be 10 -5 and 0.6 nA at the repetition rate of 10 Hz, respectively. The energy and charge of the electron bunch were measured as a function of laser injection phase. Furthermore, the electron bunches were accelerated up to 117 MeV by three s-band TW linacs and the energy monochromaticity (ΔE/E) of the beam was 1.2%. The transverse emittance was also experimentally investigated at the end of the linacs. (author)

  17. A novel ultra-short scanning nuclear microprobe: Design and preliminary results

    International Nuclear Information System (INIS)

    Lebed, S.; Butz, T.; Vogt, J.; Reinert, T.; Spemann, D.; Heitmann, J.; Stachura, Z.; Lekki, J.; Potempa, A.; Styczen, J.; Sulkio-Cleff, B.

    2001-01-01

    The paper describes an optimized scanning nuclear microprobe (MP) with a new ultra-short (total length of 1.85 m) probe forming system based on a divided Russian quadruplet (DRQ) of magnetic quadrupole lenses. Modern electrostatic accelerators have a comparatively high beam brightness of about 10-25 pA/μm 2 /mrad 2 /MeV. This allows the MP proposed to provide a high lateral resolution even with large (1%) parasitic (sextupole and octupole) pole tip field components in all lenses. The features of the design permit the MP operation in the high current and low current modes with a short working distance and inexpensive quadrupole lenses. A new quadrupole doublet design has been developed for the MP. In the present work the calculated features of the new MP are compared with preliminary experimental results obtained with a similar system (total length of 2.3 m) at the INP in Cracow. The new MP is promising for studies of solids or biological samples with high resolutions (0.08-2 μm) in both modes under ambient conditions. A vertical version of the ultra-short MP can be very useful for single ion bombardments of living cells

  18. An Analog Correlator for Ultra-Wideband Receivers

    Directory of Open Access Journals (Sweden)

    Tu Chunjiang

    2005-01-01

    Full Text Available We present a new analog circuit exhibiting high bandwidth and low distortion, specially designed for signal correlation in an ultra-wideband receiver front end. The ultra-wideband short impulse signals are correlated with a local pulse template by the correlator. A comparator then samples the output for signal detection. A typical Gilbert mixer core is adopted for multiplication of broadband signals up to . As a result of synchronization of the received signal and the local template, the output voltage level after integration and sampling can reach up to , which is sufficient for detection by the comparator. The circuit dissipates about from double voltage supplies of and using SiGe BiCMOS technology. Simulation results are presented to show the feasibility of this circuit design for use in ultra-wideband receivers.

  19. Controlling Pulsed EM Scattering of a One-Port Receiving Antenna

    Science.gov (United States)

    Štumpf, Martin

    2017-12-01

    A time domain compensation theorem concerning electromagnetic (EM) scattering of a one-port antenna system is derived with the aid of the reciprocity theorem of the time convolution type. The theorem describes the impact of a change in the antenna load on receiving antenna scattering properties. The compensation theorem is next applied to express the change of the copolarized backscattered far-field amplitude in terms of (local) Kirchhoff circuit quantities excited in the corresponding receiving scenarios. Applications of the results can be found in controlling the pulsed echo of a receiving antenna as well as in related theoretical aspects of receiving antenna scattering theory. Illustrative numerical results are given for both linear and nonlinear antenna loads.

  20. Forge: a short pulse x-ray diagnostic development facility

    International Nuclear Information System (INIS)

    Stradling, G.L.; Hurry, T.R.; Denbow, E.R.; Selph, M.M.; Ameduri, F.P.

    1985-01-01

    A new short pulse x-ray calibration facility has been brought on line at Los Alamos. This facility is being used for the development, testing and calibration of fast x-ray diagnostic systems. The x-ray source consists of a moderate size, sub-nanosecond laser focused at high intensity on an appropriate target material to generate short pulses of x-ray emission from the resulting plasma. Dynamic performance parameters of fast x-ray diagnostic instruments, such as x-ray streak cameras, can be conveniently measured using this facility

  1. Concepts for the Temporal Characterization of Short Optical Pulses

    Directory of Open Access Journals (Sweden)

    Walmsley Ian A

    2005-01-01

    Full Text Available Methods for the characterization of the time-dependent electric field of short optical pulses are reviewed. The representation of these pulses in terms of correlation functions and time-frequency distributions is discussed, and the strategies for their characterization are explained using these representations. Examples of the experimental implementations of the concepts of spectrography, interferometry, and tomography for the characterization of pulses in the optical telecommunications environment are presented.

  2. Sensitive and ultra-fast species detection using pulsed cavity ringdown spectroscopy

    KAUST Repository

    Alquaity, Awad

    2015-01-01

    Pulsed cavity ringdown spectroscopy (CRDS) is used to develop a novel, ultra-fast, high-sensitivity diagnostic for measuring species concentrations in shock tube experiments. The diagnostic is demonstrated by monitoring trace concentrations of ethylene in the mid-IR region near 949.47 cm-1. Each ringdown measurement is completed in less than 1 μs and the time period between successive pulses is 10 μs. The high sensitivity diagnostic has a noise-equivalent detection limit of 1.08 x 10-5 cm-1 which enables detection of 15 ppm ethylene at fuel pyrolysis conditions (1845 K and 2 bar) and 294 ppb ethylene under ambient conditions (297 K and 1 bar). To our knowledge, this is the first successful application of the cavity ringdown method to the measurement of species time-histories in a shock tube. © 2015 OSA.

  3. Double scattering of light from Biophotonic Nanostructures with short-range order

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Heeso; Liew, Seng Fatt; Saranathan, Vinodkumar; Prum, Richard O.; Mochrie, Simon G.J.; Dufresne, Eric R.; Cao, Hui (Yale)

    2010-07-28

    We investigate the physical mechanism for color production by isotropic nanostructures with short-range order in bird feather barbs. While the primary peak in optical scattering spectra results from constructive interference of singly-scattered light, many species exhibit secondary peaks with distinct characteristic. Our experimental and numerical studies show that these secondary peaks result from double scattering of light by the correlated structures. Without an analog in periodic or random structures, such a phenomenon is unique for short-range ordered structures, and has been widely used by nature for non-iridescent structural coloration.

  4. A comparison between short pulse spallation source and long pulse spallation source

    Energy Technology Data Exchange (ETDEWEB)

    Aizawa, Kazuya; Watanabe, Noboru; Suzuki, Jun-ichi; Niimura, Nobuo; Morii, Yukio; Katano, Susumu; Osakabe, Toyotaka; Teshigawara, Makoto [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Mezei, F.

    1997-11-01

    The performance for a 5 MW short pulse spallation source (SPSS) and a 4.5 MW long pulse spallation source (LPSS) in a JAERI program which is based on the availability of a 1.5 GeV superconducting linac with a 30 mA peak current for both proton and H{sup -} beams is discussed. We have examined the superiority of SPSS to LPSS. While a LPSS facility is a second option, we propose an SPSS facility as a first option. (author)

  5. A comparison between short pulse spallation source and long pulse spallation source

    International Nuclear Information System (INIS)

    Aizawa, Kazuya; Watanabe, Noboru; Suzuki, Jun-ichi; Niimura, Nobuo; Morii, Yukio; Katano, Susumu; Osakabe, Toyotaka; Teshigawara, Makoto; Mezei, F.

    1997-01-01

    The performance for a 5 MW short pulse spallation source (SPSS) and a 4.5 MW long pulse spallation source (LPSS) in a JAERI program which is based on the availability of a 1.5 GeV superconducting linac with a 30 mA peak current for both proton and H - beams is discussed. We have examined the superiority of SPSS to LPSS. While a LPSS facility is a second option, we propose an SPSS facility as a first option. (author)

  6. Scattering of a pulse by a cavity in an elastic half-space

    International Nuclear Information System (INIS)

    Scandrett, C.L.; Kriegsmann, G.A.; Achienbach, J.D.

    1986-01-01

    The finite difference technique is employed to study plane strain scattering of pulses from finite anomalies embedded in an isotropic, homogeneous, elastic half-space. In particular, the scatterer is taken to by a cylindrical cavity. A new transmission boundary condition is developed which transmits energy conveyed by Rayleigh surface waves. This condition is successfully employed in reducing the domain of numerical calculations from a semi-infinite to a finite region. A test of the numerical scheme is given by considering a time harmonic pulse of infinite extent. The numerical technique is marched out in time until transients have radiated away and a steady state solution has been reached which is found to be in good agreement with results produced by a series type solution. Time domain solutions are given in terms of time histories of displacements at the half-space free surface; and by sequences of snapshots, taken of the entire numerical domain, which illustrate the scattering dynamics

  7. Determination of ultra-short laser induced damage threshold of KH{sub 2}PO{sub 4} crystal: Numerical calculation and experimental verification

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Jian [Center for Precision Engineering, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Department of Physics, The Ohio State University, 191 W. Woodruff Ave, Columbus, OH 43210 (United States); Chen, Mingjun, E-mail: chenmj@hit.edu.cn, E-mail: chowdhury.24@osu.edu; Wang, Jinghe; Xiao, Yong [Center for Precision Engineering, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Kafka, Kyle; Austin, Drake; Chowdhury, Enam, E-mail: chenmj@hit.edu.cn, E-mail: chowdhury.24@osu.edu [Department of Physics, The Ohio State University, 191 W. Woodruff Ave, Columbus, OH 43210 (United States)

    2016-03-15

    Rapid growth and ultra-precision machining of large-size KDP (KH{sub 2}PO{sub 4}) crystals with high laser damage resistance are tough challenges in the development of large laser systems. It is of high interest and practical significance to have theoretical models for scientists and manufacturers to determine the laser-induced damage threshold (LIDT) of actually prepared KDP optics. Here, we numerically and experimentally investigate the laser-induced damage on KDP crystals in ultra-short pulse laser regime. On basis of the rate equation for free electron generation, a model dedicated to predicting the LIDT is developed by considering the synergistic effect of photoionization, impact ionization and decay of electrons. Laser damage tests are performed to measure the single-pulse LIDT with several testing protocols. The testing results combined with previously reported experimental data agree well with those calculated by the model. By taking the light intensification into consideration, the model is successfully applied to quantitatively evaluate the effect of surface flaws inevitably introduced in the preparation processes on the laser damage resistance of KDP crystals. This work can not only contribute to further understanding of the laser damage mechanisms of optical materials, but also provide available models for evaluating the laser damage resistance of exquisitely prepared optical components used in high power laser systems.

  8. Generation of short electrical pulses based on bipolar transistorsny

    Directory of Open Access Journals (Sweden)

    M. Gerding

    2004-01-01

    Full Text Available A system for the generation of short electrical pulses based on the minority carrier charge storage and the step recovery effect of bipolar transistors is presented. Electrical pulses of about 90 ps up to 800 ps duration are generated with a maximum amplitude of approximately 7V at 50Ω. The bipolar transistor is driven into saturation and the base-collector and base-emitter junctions become forward biased. The resulting fast switch-off edge of the transistor’s output signal is the basis for the pulse generation. The fast switching of the transistor occurs as a result of the minority carriers that have been injected and stored across the base-collector junction under forward bias conditions. If the saturated transistor is suddenly reverse biased the pn-junction will appear as a low impedance until the stored charge is depleted. Then the impedance will suddenly increase to its normal high value and the flow of current through the junction will turn to zero, abruptly. A differentiation of the output signal of the transistor results in two short pulses with opposite polarities. The differentiating circuit is implemented by a transmission line network, which mainly acts as a high pass filter. Both the transistor technology (pnp or npn and the phase of the transfer function of the differentating circuit influence the polarity of the output pulses. The pulse duration depends on the transistor parameters as well as on the transfer function of the pulse shaping network. This way of generating short electrical pulses is a new alternative for conventional comb generators based on steprecovery diodes (SRD. Due to the three-terminal structure of the transistor the isolation problem between the input and the output signal of the transistor network is drastically simplified. Furthermore the transistor is an active element in contrast to a SRD, so that its current gain can be used to minimize the power of the driving signal.

  9. A self-starting hybrid optoelectronic oscillator generating ultra low jitter 10-GHz optical pulses and low phase noise electrical signals

    DEFF Research Database (Denmark)

    Lasri, J.; Bilenca, A.; Dahan, D.

    2002-01-01

    In this letter, we describe a self-starting optical pulse source generating ultra low noise 15-ps-wide pulses at 10 GHz. It is based on a hybrid optoelectronic oscillator comprising a fiber extended cavity mode-locked diode laser which injection locks a self-oscillating heterojunction bipolar...

  10. Unresolved spectral structures emitted from heavy atom plasmas produced by short pulse laser

    International Nuclear Information System (INIS)

    Fraenkel, M.; Zigler, A.

    1999-01-01

    Spectra of rare earth elements emitted from ultra short pulse laser produced plasma were recorded using simultaneously high and low resolution, spectrometers. A study of the broad band emission of the Δn = 1 transitions in highly ionized Ba and Sm plasma showed that this band is completely unresolved. The spectra were analyzed using the LTE based on super-transition array (STA) model. The theory reconstructs the entire Ba spectrum using a single temperature and density, whereas for Sm the discrepancies between the theory and experiment are not reconcilable. The agreement in the Ba case is attributed to the fact that BaF 2 target is transparent to the laser's prepulse effects, producing a homogeneous dense plasma, whereas for Sm the dilute plasma created by the prepulse is far from LTE. The obtained results posses a significant implication to the applicability of the STA model, in particular for calculations of opacities and conversion of laser light to X-rays. (orig.)

  11. Unresolved spectral structures emitted from heavy atom plasmas produced by short pulse laser

    Energy Technology Data Exchange (ETDEWEB)

    Fraenkel, M.; Zigler, A. [Hebrew Univ., Jerusalem (Israel). Racah Inst. of Physics; Bar-Shalom, A.; Oreg, J. [Israel Atomic Energy Commission, Beersheba (Israel). Nuclear Research Center-Negev; Faenov, A.Ya.; Pikuz, T.A. [Multicharged Ions Spectra Data Center of VNIIFTRI, Russian Committee of Standards Moscow region (Russian Federation)

    1999-09-01

    Spectra of rare earth elements emitted from ultra short pulse laser produced plasma were recorded using simultaneously high and low resolution, spectrometers. A study of the broad band emission of the {delta}n = 1 transitions in highly ionized Ba and Sm plasma showed that this band is completely unresolved. The spectra were analyzed using the LTE based on super-transition array (STA) model. The theory reconstructs the entire Ba spectrum using a single temperature and density, whereas for Sm the discrepancies between the theory and experiment are not reconcilable. The agreement in the Ba case is attributed to the fact that BaF{sub 2} target is transparent to the laser's prepulse effects, producing a homogeneous dense plasma, whereas for Sm the dilute plasma created by the prepulse is far from LTE. The obtained results posses a significant implication to the applicability of the STA model, in particular for calculations of opacities and conversion of laser light to X-rays. (orig.)

  12. Introduction of a breast cancer care programme including ultra short hospital stay in 4 early adopter centres: framework for an implementation study.

    Science.gov (United States)

    de Kok, Mascha; Frotscher, Caroline N A; van der Weijden, Trudy; Kessels, Alfons G H; Dirksen, Carmen D; van de Velde, Cornelis J H; Roukema, Jan A; Bell, Antoine V R J; van der Ent, Fred W; von Meyenfeldt, Maarten F

    2007-07-02

    Whereas ultra-short stay (day care or 24 hour hospitalisation) following breast cancer surgery was introduced in the US and Canada in the 1990s, it is not yet common practice in Europe. This paper describes the design of the MaDO study, which involves the implementation of ultra short stay admission for patients after breast cancer surgery, and evaluates whether the targets of the implementation strategy are reached. The ultra short stay programme and the applied implementation strategy will be evaluated from the economic perspective. The MaDO study is a pre-post-controlled multi-centre study, that is performed in four hospitals in the Netherlands. It includes a pre and post measuring period of six months each with six months of implementation in between in at least 40 patients per hospital per measurement period. Primary outcome measure is the percentage of patients treated in ultra short stay. Secondary endpoints are the percentage of patients treated according to protocol, degree of involvement of home care nursing, quality of care from the patient's perspective, cost-effectiveness of the ultra short stay programme and cost-effectiveness of the implementation strategy. Quality of care will be measured by the QUOTE-breast cancer instrument, cost-effectiveness of the ultra short stay programme will be measured by means of the EuroQol (administered at four time-points) and a cost book for patients. Cost-effectiveness analysis will be performed from a societal perspective. Cost-effectiveness of the implementation strategy will be measured by determination of the costs of implementation activities. This study will reveal barriers and facilitators for implementation of the ultra short stay programme. Moreover, the results of the study will provide information about the cost-effectiveness of the ultra short stay programme and the implementation strategy. Current Controlled Trials ISRCTN77253391.

  13. Small-angle neutron scattering at pulsed spallation sources

    International Nuclear Information System (INIS)

    Seeger, P.A.; Hjelm, R.P. Jr.

    1991-01-01

    The importance of small-angle neutron scattering (SANS) in biological, chemical, physical and engineering research mandates that all intense neutron sources be equipped with SANS instruments. Four existing instruments at pulsed sources are described and the general differences between pulsed-source and reactor-based instrument designs are discussed. The basic geometries are identical, but dynamic range is generally achieved by using a broad band of wavelengths (with time-of-flight analysis) rather than by moving the detector. This allows optimization for maximum beam intensity at a given beam size over the full dynamic range with fixed collimation. Data-acquisition requirements at a pulsed source are more severe, requiring large fast histrograming memories. Data reduction is also more complex, as all wavelength-dependent and angle-dependent backgrounds and nonlinearities must be accounted for before data can be transformed to intensity vs momentum transfer (Q). A comparison is shown between the Los Alamos pulsed instrument and D11 (Institut Laue-Langevin) and examples from the four major topics of the conference are shown. The general conclusion is that reactor-based instruments remain superior at very low Q or if only a narrow range of Q is required, but that the current generation of pulsed-source instruments is competitive of moderate Q and may be faster when a wide range of Q is required. (orig.)

  14. Structure analysis of liquids and disordered materials using pulsed neutron diffraction and total scattering

    International Nuclear Information System (INIS)

    Suzuya, Kentaro

    2011-01-01

    Neutron diffraction·total scattering at pulsed neutron source is a powerful method to analyze the complex structure of disordered materials: liquids, glasses, amorphous materials and disordered crystals. The basic idea of the structure of disordered materials, the fundamental diffraction theory for disordered materials, and structure analysis of disordered materials using pulsed neutron diffraction·total scattering technique (TOF method) are described in detail. In addition, the precise information of the world highest class J-PARC MLF spallation neutron source and typical J-PARC neutron total scattering instrument NOVA are also given. Recent structural modelling methods of disordered materials such like reverse Monte Carlo (RMC) simulation method is briefly described using an example of the analysis of a typical disordered material silica glass. (author)

  15. Recent advances in Thomson scattering: high repetition rate Thomson scattering diagnostics on large plasma devices

    International Nuclear Information System (INIS)

    Roehr, H.; Steuer, K.H.; Hirsch, K.; Salzmann, H.

    1982-09-01

    In contrast to conventional ruby laser scattering devices allowing only singly pulse measurements, time evolution of Te and ne can be obtained with multipulse lasers. Within a short time interval ( proportional 1 ms) rapid variations can be investigated by employing a periodically Q-switched ruby laser. Several scattering systems under construction in different laboratories to register the time evolution of Tsub(e) and nsub(e) during the whole plasma discharge will be reported. The set-up operating successfully on the Garching tokamak ASDEX will be described in detail. This scattering system uses a Nd:YAG laser (1 J/pulse, up to 100 pps, pulse duration 30 ns, burst of max. 400 pulses) and silicon avalanche diodes as detectors. Time resolved nsub(e) and Tsub(e) measurements on different types of ASDEX discharges are shown, e.g. the electron density and electron heating during neutral beam injection in a divertor discharge. As an example of relatively fast changes of nsub(e) and Tsub(e), results on pellet injection are presented. Interferometric and ECE measurements are in good agreement with the Thomson results. Stationary ''long pulse discharges'' in ASDEX (10 s) at low densitites (10 12 cm -3 ) were diagnosed with reduced time resolution by averaging over several laser pulses. Measurements of the time evolution of electron temperature and -density profiles were done in a first step with a scanning mirror system. These results enables optimazing out 15 spatial-point Thomson scattering system on ASDEX. (orig./AH)

  16. Magnetospheric Truncation, Tidal Inspiral, and the Creation of Short-period and Ultra-short-period Planets

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eve J.; Chiang, Eugene, E-mail: evelee@berkeley.edu [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States)

    2017-06-10

    Sub-Neptunes around FGKM dwarfs are evenly distributed in log orbital period down to ∼10 days, but dwindle in number at shorter periods. Both the break at ∼10 days and the slope of the occurrence rate down to ∼1 day can be attributed to the truncation of protoplanetary disks by their host star magnetospheres at corotation. We demonstrate this by deriving planet occurrence rate profiles from empirical distributions of pre-main-sequence stellar rotation periods. Observed profiles are better reproduced when planets are distributed randomly in disks—as might be expected if planets formed in situ—rather than piled up near disk edges, as would be the case if they migrated in by disk torques. Planets can be brought from disk edges to ultra-short (<1 day) periods by asynchronous equilibrium tides raised on their stars. Tidal migration can account for how ultra-short-period planets are more widely spaced than their longer-period counterparts. Our picture provides a starting point for understanding why the sub-Neptune population drops at ∼10 days regardless of whether the host star is of type FGK or early M. We predict planet occurrence rates around A stars to also break at short periods, but at ∼1 day instead of ∼10 days because A stars rotate faster than stars with lower masses (this prediction presumes that the planetesimal building blocks of planets can drift inside the dust sublimation radius).

  17. Magnetospheric Truncation, Tidal Inspiral, and the Creation of Short-period and Ultra-short-period Planets

    International Nuclear Information System (INIS)

    Lee, Eve J.; Chiang, Eugene

    2017-01-01

    Sub-Neptunes around FGKM dwarfs are evenly distributed in log orbital period down to ∼10 days, but dwindle in number at shorter periods. Both the break at ∼10 days and the slope of the occurrence rate down to ∼1 day can be attributed to the truncation of protoplanetary disks by their host star magnetospheres at corotation. We demonstrate this by deriving planet occurrence rate profiles from empirical distributions of pre-main-sequence stellar rotation periods. Observed profiles are better reproduced when planets are distributed randomly in disks—as might be expected if planets formed in situ—rather than piled up near disk edges, as would be the case if they migrated in by disk torques. Planets can be brought from disk edges to ultra-short (<1 day) periods by asynchronous equilibrium tides raised on their stars. Tidal migration can account for how ultra-short-period planets are more widely spaced than their longer-period counterparts. Our picture provides a starting point for understanding why the sub-Neptune population drops at ∼10 days regardless of whether the host star is of type FGK or early M. We predict planet occurrence rates around A stars to also break at short periods, but at ∼1 day instead of ∼10 days because A stars rotate faster than stars with lower masses (this prediction presumes that the planetesimal building blocks of planets can drift inside the dust sublimation radius).

  18. Examination of vocal fold movement by ultra-short pulse X radiography

    International Nuclear Information System (INIS)

    Noscoe, N.J.; Berry, R.J.; Brown, N.J.

    1983-01-01

    Antero-posterior radiographs of the larynx lack spatial and temporal resolution, due to the movement of the vocal folds during phonation. By utilising the electrolaryngograph to monitor vocal fold movement, single X-ray pulses of 30 nanoseconds duration have been triggered at pre-determined points during the cycle of vocal fold movement to visualise these in normal phonation. (author)

  19. High-repetition-rate short-pulse gas discharge.

    Science.gov (United States)

    Tulip, J; Seguin, H; Mace, P N

    1979-09-01

    A high-average-power short-pulse gas discharge is described. This consists of a volume-preionized transverse discharge of the type used in gas lasers driven by a Blumlein energy storage circuit. The Blumlein circuit is fabricated from coaxial cable, is pulse-charged from a high-repetition-rate Marx-bank generator, and is switched by a high-repetition-rate segmented rail gap. The operation of this discharge under conditions typical of rare-gas halide lasers is described. A maximum of 900 pps was obtained, giving a power flow into the discharge of 30 kW.

  20. International Conference on the Interaction of atoms, molecules and plasmas with intense ultrashort laser pulses. Book of abstracts

    International Nuclear Information System (INIS)

    2006-01-01

    International Conference on the Interaction of atoms, molecules and plasmas with intense ultrashort laser pulses was held in Hungary in 2006. This conference which joined the ULTRA COST activity ('Laser-matter interactions with ultra-short pulses, high-frequency pulses and ultra-intense pulses. From attophysics to petawatt physics') and the XTRA ('Ultrashort XUV Pulses for Time-Resolved and Non-Linear Applications') Marie-Curie Research Training Network, intends to offer a possibility to the members of both of these activities to exchange ideas on recent theoretical and experimental results on the interaction of ultrashort laser pulses with matter giving a broad view from theoretical models to practical and technical applications. Ultrashort laser pulses reaching extra high intensities open new windows to obtain information about molecular and atomic processes. These pulses are even able to penetrate into atomic scalelengths not only by generating particles of ultrahigh energy but also inside the spatial and temporal atomic scalelengths. New regimes of laser-matter interaction were opened in the last decade with an increasing number of laboratories and researchers in these fields. (S.I.)

  1. Dynamics of a collisionless plasma interacting with an ultra-intense laser pulse

    International Nuclear Information System (INIS)

    Capdessus, Remi

    2013-01-01

    The interaction of a plasma with an ultra-intense laser pulse becomes more and more interesting as a result of the advances made in terms of numerical tools laser technology. The radiation reaction impacts the electrons dynamics, those of the synchrotron radiation as well as those of the ions by means of charge separation field, for laser intensities above 10 22 W/cm 2 . The kinetic equations governing the particles transport at ultra-high intensity have been obtained. The radiation reaction involves the shrinkage of the space volume of the electrons phases. It has been shown with numerical simulations the strong retro-action that the collective effects induce on the synchrotron radiation generated by the accelerated electrons. The importance of the collective effects depends strongly on the ions mass and of the thickness of the considered plasma. These effects could be verified experimentally with hydrogen cryogenic targets. (author) [fr

  2. Proposal for the design of a small-angle neutron scattering facility at a pulsed neutron source

    International Nuclear Information System (INIS)

    Kley, W.

    1980-01-01

    The intensity-resolution-background considerations of an optimized small angle neutron scattering facility are reviewed for the special case of a pulsed neutron source. In the present proposal we conclude that for 'true elastic scattering experiments' filters can be used instead of expensive neutron guide tubes since low background conditions can be achieved by a combined action of filters as well as a proper time gating of the twodimensional detector. The impinging neutron beam is monochromatized by phasing a disk chopper to the neutron source pulses and in the scattered beam a second disk chopper is used to eliminate the inelastically scattered neutrons. Therefore, no time of fligh analysis is necessary for the scattered neutron intensity and true-elastic conditions are obtained by simply gating the two-dimensional detector. Considering a 4 m thick shield for the pulsed neutron source and choosing for optimum conditions a detector area element of (2.5 cm) 2 and a sample area of (1.25 cm) 2 , than for a minimum sample-detector-distance of 1.5 m, a maximum neutron source diameter of 6.67 cm is required in order to maintain always the optimum intensity- and resolution requirements

  3. An isolated grid electron gun and pulser system for long/short pulse operation

    International Nuclear Information System (INIS)

    Koontz, R.F.; Feathers, L.; Kilbourne, C.; Leger, G.; McKinney, T.

    1984-01-01

    The new NPI gun at SLAC serves the dual functions of producing long pulse (up to 5 μsec, 180 pps) electron bursts for nuclear physics experiments, and also short ( 1 nsec) pulses for filling Stanford Synchrotron Radiation Laboratory (SSRL). This is accomplished by means of a newly designed, isolated grid gun, cathode pulsed with a solid state long pulse pulser, and grid pulsed with a fast recharging avalanche type short pulse (1 nsec) grid pulser. The grid pulser is bipolar so that a fast blackout notch can be placed in the long cathode pulse. This fast notch can be seen by Stanford Linear Collider (SLC) instrumentation and allows the long pulse beam to be computer controlled by SLC intensity and beam position monitors. (orig.)

  4. Research on imploded plasma heating by short pulse laser for fast ignition

    International Nuclear Information System (INIS)

    Kodama, R.; Kitagawa, Y.; Mima, K.

    2001-01-01

    Since the peta watt module (PWM) laser was constructed in 1995, investigated are heating processes of imploded plasmas by intense short pulse lasers. In order to heat the dense plasma locally, a heating laser pulse should be guided into compressed plasmas as deeply as possible. Since the last IAEA Fusion Conference, the feasibility of fast ignition has been investigated by using the short pulse GEKKO MII glass laser and the PWM laser with GEKKO XII laser. We found that relativistic electrons are generated efficiently in a preformed plasma to heat dense plasmas. The coupling efficiency of short pulse laser energy to a solid density plasma is 40% when no plasmas are pre-formed, and 20% when a large scale plasma is formed by a long pulse laser pre-irradiation. The experimental results are confirmed by numerical simulations using the simulation code 'MONET' which stands for the Monte-Carlo Electron Transport code developed at Osaka. In the GEKKO XII and PWM laser experiments, intense heating pulses are injected into imploded plasmas. As a result of the injection of heating pulse, it is found that high energy electrons and ions could penetrate into imploded core plasmas to enhance neutron yield by factor 3∼5. (author)

  5. Coherent combs in ionization by intense and short laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Krajewska, K., E-mail: Katarzyna.Krajewska@fuw.edu.pl [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warszawa (Poland); Department of Physics and Astronomy, University of Nebraska, Lincoln, NE 68588-0299 (United States); Kamiński, J.Z., E-mail: Jerzy.Kaminski@fuw.edu.pl [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warszawa (Poland)

    2016-03-22

    Photoionization of positive ions by a train of intense, short laser pulses is investigated within the relativistic strong field approximation, using the velocity gauge. The formation of broad peak structures in the high-energy domain of photoelectrons is observed and interpreted. The emergence of coherent photoelectron energy combs within these structures is demonstrated, and it is interpreted as the consequence of the Fraunhofer-type interference/diffraction of probability amplitudes of ionization from individual pulses comprising the train. Extensions to the coherent angular combs are also studied, and effects related to the radiation pressure are presented. - Highlights: • We develop relativistic Strong-Field Approximation for ionization by intense and short laser pulses of arbitrary spectral compositions. • We show that the consistent interpretation of results is provided by the Keldysh-type saddle point analysis of probability amplitudes. • We derive a general Fraunhofer-type interference/diffraction formula for finite train of pulses. • We study the coherent combs in photoelectron probability distributions.

  6. Laser short-pulse heating of an aluminum thin film: Energy transfer in electron and lattice sub-systems

    Energy Technology Data Exchange (ETDEWEB)

    Bin Mansoor, Saad; Sami Yilbas, Bekir, E-mail: bsyilbas@kfupm.edu.sa

    2015-08-15

    Laser short-pulse heating of an aluminum thin film is considered and energy transfer in the film is formulated using the Boltzmann equation. Since the heating duration is short and the film thickness is considerably small, thermal separation of electron and lattice sub-systems is incorporated in the analysis. The electron–phonon coupling is used to formulate thermal communication of both sub-systems during the heating period. Equivalent equilibrium temperature is introduced to account for the average energy of all phonons around a local point when they redistribute adiabatically to an equilibrium state. Temperature predictions of the Boltzmann equation are compared with those obtained from the two-equation model. It is found that temperature predictions from the Boltzmann equation differ slightly from the two-equation model results. Temporal variation of equivalent equilibrium temperature does not follow the laser pulse intensity in the electron sub-system. The time occurrence of the peak equivalent equilibrium temperature differs for electron and lattice sub-systems, which is attributed to phonon scattering in the irradiated field in the lattice sub-system. In this case, time shift is observed for occurrence of the peak temperature in the lattice sub-system.

  7. Laser short-pulse heating of an aluminum thin film: Energy transfer in electron and lattice sub-systems

    International Nuclear Information System (INIS)

    Bin Mansoor, Saad; Sami Yilbas, Bekir

    2015-01-01

    Laser short-pulse heating of an aluminum thin film is considered and energy transfer in the film is formulated using the Boltzmann equation. Since the heating duration is short and the film thickness is considerably small, thermal separation of electron and lattice sub-systems is incorporated in the analysis. The electron–phonon coupling is used to formulate thermal communication of both sub-systems during the heating period. Equivalent equilibrium temperature is introduced to account for the average energy of all phonons around a local point when they redistribute adiabatically to an equilibrium state. Temperature predictions of the Boltzmann equation are compared with those obtained from the two-equation model. It is found that temperature predictions from the Boltzmann equation differ slightly from the two-equation model results. Temporal variation of equivalent equilibrium temperature does not follow the laser pulse intensity in the electron sub-system. The time occurrence of the peak equivalent equilibrium temperature differs for electron and lattice sub-systems, which is attributed to phonon scattering in the irradiated field in the lattice sub-system. In this case, time shift is observed for occurrence of the peak temperature in the lattice sub-system

  8. Generation of Ultra-high Intensity Laser Pulses

    International Nuclear Information System (INIS)

    Fisch, N.J.; Malkin, V.M.

    2003-01-01

    Mainly due to the method of chirped pulse amplification, laser intensities have grown remarkably during recent years. However, the attaining of very much higher powers is limited by the material properties of gratings. These limitations might be overcome through the use of plasma, which is an ideal medium for processing very high power and very high total energy. A plasma can be irradiated by a long pump laser pulse, carrying significant energy, which is then quickly depleted in the plasma by a short counterpropagating pulse. This counterpropagating wave effect has already been employed in Raman amplifiers using gases or plasmas at low laser power. Of particular interest here are the new effects which enter in high power regimes. These new effects can be employed so that one high-energy optical system can be used like a flashlamp in what amounts to pumping the plasma, and a second low-power optical system can be used to extract quickly the energy from the plasma and focus it precisely. The combined system can be very compact. Thus, focused intensities more than 10 25 W/cm 2 can be contemplated using existing optical elements. These intensities are several orders of magnitude higher than what is currently available through chirped pump amplifiers

  9. Longitudinal Diagnostics for Short Electron Beam Bunches

    Energy Technology Data Exchange (ETDEWEB)

    Loos, H.; /SLAC

    2010-06-11

    Single-pass free electron lasers require high peak currents from ultra-short electron bunches to reach saturation and an accurate measurement of bunch length and longitudinal bunch profile is necessary to control the bunch compression process from low to high beam energy. The various state-of-the-art diagnostics methods from ps to fs time scales using coherent radiation detection, RF deflection, and other techniques are presented. The use of linear accelerators as drivers for free electron lasers (FEL) and the advent of single-pass (SASE) FELs has driven the development of a wide range of diagnostic techniques for measuring the length and longitudinal distribution of short and ultra-short electron bunches. For SASE FELs the radiation power and the length of the undulator needed to achieve saturation depend strongly on the charge density of the electron beam. In the case of X-ray FELs, this requires the accelerator to produce ultra-high brightness beams with micron size transverse normalized emittances and peak currents of several kA through several stages of magnetic bunch compression. Different longitudinal diagnostics are employed to measure the peak current and bunch profile along these stages. The measurement techniques can be distinguished into different classes. Coherent methods detect the light emitted from the beam by some coherent radiation process (spectroscopic measurement), or directly measure the Coulomb field traveling with the beam (electro-optic). Phase space manipulation techniques map the time coordinate onto a transverse dimension and then use conventional transverse beam diagnostics (transverse deflector, rf zero-phasing). Further methods measure the profile or duration of an incoherent light pulse emitted by the bunch at wavelengths much shorted than the bunch length (streak camera, fluctuation technique) or modulate the electron beam at an optical wavelength and then generate a narrow bandwidth radiation pulse with the longitudinal profile of

  10. Ultrashort x-ray pulse generation by nonlinear Thomson scattering of a relativistic electron with an intense circularly polarized laser pulse

    Directory of Open Access Journals (Sweden)

    F. Liu

    2012-07-01

    Full Text Available The nonlinear Thomson scattering of a relativistic electron with an intense laser pulse is calculated numerically. The results show that an ultrashort x-ray pulse can be generated by an electron with an initial energy of 5 MeV propagating across a circularly polarized laser pulse with a duration of 8 femtosecond and an intensity of about 1.1×10^{21}  W/cm^{2}, when the detection direction is perpendicular to the propagation directions of both the electron and the laser beam. The optimal values of the carrier-envelop phase and the intensity of the laser pulse for the generation of a single ultrashort x-ray pulse are obtained and verified by our calculations of the radiation characteristics.

  11. Observation of Ultra-Slow Antiprotons using Micro-channel Plate

    Science.gov (United States)

    Imao, H.; Torii, H. A.; Nagata, Y.; Toyoda, H.; Shimoyama, T.; Enomoto, Y.; Higaki, H.; Kanai, Y.; Mohri, A.; Yamazaki, Y.

    2008-08-01

    Our group ASACUSA-MUSASHI has succeeded in accumulating several million antiprotons and extracting them as monochromatic ultra-slow antiproton beams (10 eV-1 keV) at CERN AD. We have observed ultra-slow antiprotons using micro-channel plates (MCP). The integrated pulse area of the output signals generated when the MCP was irradiated by ultra-slow antiprotons was 6 times higher than that by electrons. As a long-term effect, we also observed an increase in the background rate presumably due to the radioactivation of the MCP surface. Irradiating the antiproton beams on the MCP induces antiproton-nuclear annihilations only on the first layer of the surface. Low-energy and short-range secondary particles like charged nuclear fragments caused by the "surface nuclear reactions" would be the origin of our observed phenomena.

  12. Short-circuited coil in a solenoid circuit of a pulse magnetic field

    International Nuclear Information System (INIS)

    Kivshik, A.F.; Dubrovin, V.Yu.

    1976-01-01

    A short-circuited coil at the end of a long pulse solenoid attenuates the dissipation field by 3-5 times. A plug-configuration field is set up in the middle portion of the pulse solenoid incorporating the short-circuited coils. Shunting of the coils with the induction current by resistor Rsub(shunt) provides for the adjustment of the plug ratio γ

  13. A method of precise profile analysis of diffuse scattering for the KENS pulsed neutrons

    International Nuclear Information System (INIS)

    Todate, Y.; Fukumura, T.; Fukazawa, H.

    2001-01-01

    An outline of our profile analysis method, which is now of practical use for the asymmetric KENS pulsed thermal neutrons, are presented. The analysis of the diffuse scattering from a single crystal of D 2 O is shown as an example. The pulse shape function is based on the Ikeda-Carpenter function adjusted for the KENS neutron pulses. The convoluted intensity is calculated by a Monte-Carlo method and the precision of the calculation is controlled. Fitting parameters in the model cross section can be determined by the built-in nonlinear least square fitting procedure. Because this method is the natural extension of the procedure conventionally used for the triple-axis data, it is easy to apply with generality and versatility. Most importantly, furthermore, this method has capability of precise correction of the time shift of the observed peak position which is inevitably caused in the case of highly asymmetric pulses and broad scattering function. It will be pointed out that the accurate determination of true time-of-flight is important especially in the single crystal inelastic experiments. (author)

  14. The use of vanadium as a scattering standard for pulsed source neutron spectrometers

    International Nuclear Information System (INIS)

    Mayers, J.

    1983-06-01

    The Gaussian approximation for multiphonon cross-sections has been used in a calculation of the variation of vanadium cross-sections with incident neutron energy. The results show that vanadium behaves as an elastic scatterer to within a few percent on pulsed neutron spectrometers with incident neutron energies up to 1 eV. There is a calculated anisotropy in the scattering of 8%. It is found that the scattering properties of vanadium at 77K and 293K differ by a maximum of 1% except for neutron energies < 15 meV. (author)

  15. Experimental investigation of plasma dynamics in dc and short-pulse magnetron discharges

    International Nuclear Information System (INIS)

    Seo, Sang-Hun; In, Jung-Hwan; Chang, Hong-Young

    2006-01-01

    The spatiotemporal evolution of the electron energy distribution function (EEDF) and of plasma parameters such as the electron density, the electron temperature and the plasma and floating potentials has been investigated using spatially and temporally resolved single Langmuir probe measurements in dc and mid-frequency, short-pulse magnetron discharges with a repetition frequency of 10 kHz and a duty cycle of 10%. In the pulsed discharge of the short duty cycle, a peak electron temperature higher than 10 eV was observed near the cathode fall region during the early phase of the pulse-on, which is about three times higher than the steady-state value of the electron temperature in the dc discharge. The temporal evolution of the measured EEDFs showed the initial efficient electron heating during the early phase of the pulse-on and the subsequent relaxation of electron energy by the inelastic collisions and the diffusive loss. The high-energy electrons generated during the pulse-on phase diffused the downstream region toward the grounded substrate, resulting in a bi-Maxwellian EEDF consisting of the background low-energy electrons and the high-energy electrons. The results of the spatially and temporally resolved probe measurements will be presented and the enhanced efficiency of the electron heating in the short-pulse discharge will be explained on the basis of the global model of a pulsed discharge

  16. Roll-to-roll suitable short-pulsed laser scribing of organic photovoltaics and close-to-process characterization

    Science.gov (United States)

    Kuntze, Thomas; Wollmann, Philipp; Klotzbach, Udo; Fledderus, Henri

    2017-03-01

    The proper long term operation of organic electronic devices like organic photovoltaics OPV depends on their resistance to environmental influences such as permeation of water vapor. Major efforts are spent to encapsulate OPV. State of the art is sandwich-like encapsulation between two ultra-barrier foils. Sandwich encapsulation faces two major disadvantages: high costs ( 1/3 of total costs) and parasitic intrinsic water (sponge effects of the substrate foil). To fight these drawbacks, a promising approach is to use the OPV substrate itself as barrier by integration of an ultra-barrier coating, followed by alternating deposition and structuring of OPV functional layers. In effect, more functionality will be integrated into less material, and production steps are reduced in number. All processing steps must not influence the underneath barrier functionality, while all electrical functionalities must be maintained. As most reasonable structuring tool, short and ultrashort pulsed lasers USP are used. Laser machining applies to three layers: bottom electrode made of transparent conductive materials (P1), organic photovoltaic operative stack (P2) and top electrode (P3). In this paper, the machining of functional 110…250 nm layers of flexible OPV by USP laser systems is presented. Main focus is on structuring without damaging the underneath ultra-barrier layer. The close-to-process machining quality characterization is performed with the analysis tool "hyperspectral imaging" (HSI), which is checked crosswise with the "gold standard" Ca-test. It is shown, that both laser machining and quality controlling, are well suitable for R2R production of OPV.

  17. Impact of temporal, spatial and cascaded effects on the pulse formation in ultra-broadband parametric amplifiers.

    Science.gov (United States)

    Lang, T; Harth, A; Matyschok, J; Binhammer, T; Schultze, M; Morgner, U

    2013-01-14

    A 2 + 1 dimensional nonlinear pulse propagation model is presented, illustrating the weighting of different effects for the parametric amplification of ultra-broadband spectra in different regimes of energy scaling. Typical features in the distribution of intensity and phase of state-of-the-art OPA-systems can be understood by cascaded spatial and temporal effects.

  18. Pleiades: A Sub-picosecond Tunable X-ray Source at the LLNL Electron Linac

    International Nuclear Information System (INIS)

    Slaughter, Dennis; Springer, Paul; Le Sage, Greg; Crane, John; Ditmire, Todd; Cowan, Tom; Anderson, Scott G.; Rosenzweig, James B.

    2002-01-01

    The use of ultra fast laser pulses to generate very high brightness, ultra short (fs to ps) pulses of x-rays is a topic of great interest to the x-ray user community. In principle, femto-second-scale pump-probe experiments can be used to temporally resolve structural dynamics of materials on the time scale of atomic motion. The development of sub-ps x-ray pulses will make possible a wide range of materials and plasma physics studies with unprecedented time resolution. A current project at LLNL will provide such a novel x-ray source based on Thomson scattering of high power, short laser pulses with a high peak brightness, relativistic electron bunch. The system is based on a 5 mm-mrad normalized emittance photo-injector, a 100 MeV electron RF linac, and a 300 mJ, 35 fs solid-state laser system. The Thomson x-ray source produces ultra fast pulses with x-ray energies capable of probing into high-Z metals, and a high flux per pulse enabling single shot experiments. The system will also operate at a high repetition rate (∼ 10 Hz). (authors)

  19. Digital pulse-shape discrimination applied to an ultra-low-background gas-proportional counting system. First results

    International Nuclear Information System (INIS)

    Aalseth, C.E.; Day, A.R.; Fuller, E.S.; Hoppe, E.W.; Keillor, M.E.; Mace, E.K.; Myers, A.W.; Overman, C.T.; Panisko, M.E.; Seifert, A.

    2013-01-01

    A new ultra-low-background proportional counter design was recently developed at Pacific Northwest National Laboratory (PNNL). This design, along with an ultra-low-background counting system which provides passive and active shielding with radon exclusion, has been developed to complement a new shallow underground laboratory (∼30 m water-equivalent) constructed at PNNL. After these steps to mitigate dominant backgrounds (cosmic rays, external gamma-rays, radioactivity in materials), remaining background events do not exclusively arise from ionization of the proportional counter gas. Digital pulse-shape discrimination (PSD) is thus employed to further improve measurement sensitivity. In this work, a template shape is generated for each individual sample measurement of interest, a 'self-calibrating' template. Differences in event topology can also cause differences in pulse shape. In this work, the temporal region analyzed for each event is refined to maximize background discrimination while avoiding unwanted sensitivity to event topology. This digital PSD method is applied to sample and background data, and initial measurement results from a biofuel methane sample are presented in the context of low-background measurements currently being developed. (author)

  20. Electron scattering off short-lived radioactive nuclei

    International Nuclear Information System (INIS)

    Wang, S.; Emoto, T.; Furukawa, Y.

    2009-01-01

    We have established a novel method which make electron scattering off short-lived radioactive nuclei come into being. This novel method was named SCRIT (Self-Confining RI ion Target). It was based on the well known "ion trapping" phenomenon in electron storage rings. Stable nucleus, 133 Cs, was used as target nucleus in the R&D experiment. The luminosity of interaction between stored electrons and Cs ions was about 1.02(0.06) × 10 26 cm -2 s -1 at beam current around 80 mA. The angular distribution of elastically scattered electrons from trapped Cs ions was measured. And an online luminosity monitor was used to monitor the change of luminosity during the experiment. (author)

  1. Subfemtosecond pulse generation by cascade-stimulated Raman scattering with modulated Raman excitation

    International Nuclear Information System (INIS)

    Wu Kun; Wu Jian; Zeng Heping

    2003-01-01

    Subfemtosecond (sub-fs) pulses can be generated by cascade-stimulated Raman scattering in a Raman medium with modulated Raman excitations, driven by two sufficiently intense laser beams, one of which is amplitude modulated. The nonadiabatic Raman interaction establishes a strong modulated Raman coherence, which supports compression of the generated broadband Raman sidebands to a train of sub-fs pulses regardless of whether the carrier frequencies of the driving lasers are tuned above, below or on two-photon Raman resonance. (letter to the editor)

  2. Ultra-Short-Term Heart Rate Variability is Sensitive to Training Effects in Team Sports Players

    Directory of Open Access Journals (Sweden)

    Fabio Y. Nakamura, Andrew A. Flatt, Lucas A. Pereira, Rodrigo Ramirez-Campillo, Irineu Loturco, Michael R. Esco

    2015-09-01

    Full Text Available The aim of this study was to test the possibility of the ultra-short-term lnRMSSD (measured in 1-min post-1-min stabilization period to detect training induced adaptations in futsal players. Twenty-four elite futsal players underwent HRV assessments pre- and post-three or four weeks preseason training. From the 10-min HRV recording period, lnRMSSD was analyzed in the following time segments: 1 from 0-5 min (i.e., stabilization period; 2 from 0-1 min; 1-2 min; 2-3 min; 3-4 min; 4-5 min and; 3 from 5-10 min (i.e., criterion period. The lnRMSSD was almost certainly higher (100/00/00 using the magnitude-based inference in all periods at the post- moment. The correlation between changes in ultra-short-term lnRMSSD (i.e., 0-1 min; 1-2 min; 2-3 min; 3-4 min; 4-5 min and lnRMSSDCriterion ranged between 0.45-0.75, with the highest value (p = 0.75; 90% CI: 0.55 – 0.85 found between ultra-short-term lnRMDSSD at 1-2 min and lnRMSSDCriterion. In conclusion, lnRMSSD determined in a short period of 1-min is sensitive to training induced changes in futsal players (based on the very large correlation to the criterion measure, and can be used to track cardiac autonomic adaptations.

  3. A mechanical velocity selector for a small angle scattering instrument on a pulsed neutron source

    International Nuclear Information System (INIS)

    Meardon, B.H.; Stewart, R.J.; Williams, W.G.

    1978-11-01

    Design parameters and performance calculations are given for a straight-slot velocity selector which can be used for discriminating between elastic and inelastic scattering events in small angle scattering experiments on a pulsed neutron source. The selector has a high transmittance over the wavelength range 3 A 5%. (author)

  4. Plasma effects in attosecond pulse generation from ultra-relativistic laser-plasma interactions

    International Nuclear Information System (INIS)

    Boyd, T.J.M.

    2010-01-01

    Complete text of publication follows. Particle-in-cell simulations were performed to examine the influence of plasma effects on high harmonic spectra from the interaction of ultra-intense p-polarized laser pulses with overdense plasma targets. Furthermore, a theoretical model is proposed to explain the radiation mechanism that leads to attosecond pulse generation in the reflected field. It is shown that plasma harmonic emission affects the spectral characteristics, causing deviations in the harmonic power decay as compared with the so-called universal 8/3-decay. These deviations may occur, in a varying degree, as a consequence of the extent to which the plasma line and its harmonics affect the emission. It is also found a strong correlation of the emitted attosecond pulses with electron density structures within the plasma, responsible to generate intense localised electrostatic fields. A theoretical model based on the excitation of Langmuir waves by the re-entrant Brunel electron beams in the plasma and their electromagnetic interaction with the laser field is proposed to explain the flatter power spectral emission - described by a weaker 5/3 index and observed in numerical simulations - than that of the universal decay.

  5. Effects of moderate pump and Stokes chirp on chirped-probe pulse femtosecond coherent anti-Stokes Raman scattering thermometry

    KAUST Repository

    Gu, Mingming; Satija, Aman; Lucht, Robert P.

    2018-01-01

    The effects of moderate levels of chirp in the pump and Stokes pulses on chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering (CPP fs CARS) were investigated. The frequency chirp in the pump and Stokes pulses was introduced

  6. Pulse shaping for high data rate ultra-wideband wireless transmission under the Russian spectral emission mask

    DEFF Research Database (Denmark)

    Rommel, Simon; Grakhova, Elizaveta P.; Jurado-Navas, Antonio

    2017-01-01

    This paper addresses impulse-radio ultra-wideband (IR-UWB) transmission under the Russian spectral emission mask for unlicensed UWB radio communications. Four pulse shapes are proposed and their bit error rate (BER) performance is both estimated analytically and evaluated experimentally. Well......-known shapes such as the Gaussian, root-raised cosine, hyperbolic secant, and the frequency B-spline wavelet are used to form linear combinations of component pulses, shaped to make efficient use of the spectral emission mask. Analytical BER values are derived using a Nakagami-m model, and good agreement......-UWB transmission under the strict regulations of the Russian spectral emission mask....

  7. Small-angle neutron scattering at pulsed spallation sources

    International Nuclear Information System (INIS)

    Seeger, P.A.; Hjelm, R.P. Jr.

    1990-01-01

    The importance of small-angle neutron scattering (SANS) in biological, chemical, physical, and engineering research mandates that all intense neutron sources be equipped with SANS instruments. Four existing instruments are described, and the general differences between pulsed-source and reactor-based instrument designs are discussed. The basic geometries are identical, but dynamic range is achieved by using a broad band of wavelengths (with time-of-flight analysis) rather than by moving the detector. This allows a more optimized collimation system. Data acquisition requirements at a pulsed source are more severe, requiring large, fast histogramming memories. Data reduction is also more complex, as all wave length-dependent and angle-dependent backgrounds and non-linearities must be accounted for before data can be transformed to intensity vs Q. A comparison is shown between the Los Alamos pulsed instrument and D-11 (Institute Laue-Langevin), and examples from the four major topics of the conference are shown. The general conclusion is that reactor-based instruments remain superior at very low Q or if only a narrow range of Q is required, but that the current generation of pulsed-source instruments is competitive at moderate Q and may be faster when a wide range of Q is required. In principle, a user should choose which facility to use on the basis of optimizing the experiment; in practice the tradeoffs are not severe and the choice is usually made on the basis of availability

  8. Characteristics of short pulse grid pulser for an electron LINAC

    International Nuclear Information System (INIS)

    Wang Guicheng; Fang Zhigao; Hong Jun

    1996-01-01

    An equivalent circuit is used to obtain the output waveform of a short pulse grid pulser for an electron LINAC, and the amplitude of the output pulse is studied as a function of number of switching transistors for some kinds of transistor. Two pulsers were fabricated to fulfill the requirements of the 200 MeV LINAC at NSRL

  9. Modular High Voltage Pulse Converter for Short Rise and Decay Times

    NARCIS (Netherlands)

    Mao, S.

    2018-01-01

    This thesis explores a modular HV pulse converter technology with short rise and decay times. A systematic methodology to derive and classify HV architectures based on a modularization level of power building blocks of the HV pulse converter is developed to summarize existing architectures and

  10. Ultra Stable, Industrial Green Tailored Pulse Fiber Laser with Diffraction-limited Beam Quality for Advanced Micromachining

    International Nuclear Information System (INIS)

    Deladurantaye, P; Roy, V; Desbiens, L; Drolet, M; Taillon, Y; Galarneau, P

    2011-01-01

    We report on a novel pulsed fiber laser platform providing pulse shaping agility at high repetition rates and at a wavelength of 532 nm. The oscillator is based on the direct modulation of a seed laser diode followed by a chain of fiber amplifiers. Advanced Large Mode Area (LMA) fiber designs as well as proprietary techniques to mitigate non-linear effects enable output energy per pulse up to 100 μJ at 1064 nm with diffraction-limited beam quality and narrow line widths suitable for efficient frequency conversion. Ultra stable pulses with tailored pulse shapes were demonstrated in the green region of the spectrum at repetition rates higher than 200 kHz. Pulse durations between 2.5 ns and 640 ns are available, as well as pulse to pulse dynamic shape selection at repetition rates up to 1 MHz. The pulse energy stability at 532 nm is better than ± 1.5%, 3σ, over 10 000 pulses. Excellent beam characteristics were obtained. The M 2 parameter is lower than 1.05, the beam waist astigmatism and beam waist asymmetry are below 10% and below 8% respectively, with high stability over time. We foresee that the small spot size, high repetition rate and pulse tailoring capability of this platform will provide advantages to practitioners who are developing novel, advanced processes in many industrially important applications.

  11. Nonlinear dynamics in integrated coupled DFB lasers with ultra-short delay.

    Science.gov (United States)

    Liu, Dong; Sun, Changzheng; Xiong, Bing; Luo, Yi

    2014-03-10

    We report rich nonlinear dynamics in integrated coupled lasers with ultra-short coupling delay. Mutually stable locking, period-1 oscillation, frequency locking, quasi-periodicity and chaos are observed experimentally. The dynamic behaviors are reproduced numerically by solving coupled delay differential equations that take the variation of both frequency detuning and coupling phase into account. Moreover, it is pointed out that the round-trip frequency is not involved in the above nonlinear dynamical behaviors. Instead, the relationship between the frequency detuning Δν and the relaxation oscillation frequency νr under mutual injection are found to be critical for the various observed dynamics in mutually coupled lasers with very short delay.

  12. Pulsed TRIGA reactor as substitute for long pulse spallation neutron source

    International Nuclear Information System (INIS)

    Whittemore, W.L.

    1999-01-01

    TRIGA reactor cores have been used to demonstrate various pulsing applications. The TRIGA reactor fuel (U-ZrH x ) is very robust especially in pulsing applications. The features required to produce 50 pulses per second have been successfully demonstrated individually, including pulse tests with small diameter fuel rods. A partially optimized core has been evaluated for pulses at 50 Hz with peak pulsed power up to 100 MW and an average power up to 10 MW. Depending on the design, the full width at half power of the individual pulses can range between 2000 μsec to 3000 μsec. Until recently, the relatively long pulses (2000 μsec to 3000 μsec) from a pulsed thermal reactor or a long pulse spallation source (LPSS) have been considered unsuitable for time-of-flight measurements of neutron scattering. More recently considerable attention has been devoted to evaluating the performance of long pulse (1000 to 4000 μs) spallation sources for the same type of neutron measurements originally performed only with short pulses from spallation sources (SPSS). Adequate information is available to permit meaningful comparisons between CW, SPSS, and LPSS neutron sources. Except where extremely high resolution is required (fraction of a percent), which does require short pulses, it is demonstrated that the LPSS source with a 1000 msec or longer pulse length and a repetition rate of 50 to 60 Hz gives results comparable to those from the 60 MW ILL (CW) source. For many of these applications the shorter pulse is not necessarily a disadvantage, but it is not an advantage over the long pulse system. In one study, the conclusion is that a 5 MW 2000 μsec LPSS source improves the capability for structural biology studies of macromolecules by at least a factor of 5 over that achievable with a high flux reactor. Recent studies have identified the advantages and usefulness of long pulse neutron sources. It is evident that the multiple pulse TRIGA reactor can produce pulses comparable to

  13. Enhancement and stabilization of plasma using collinear long-short double-pulse laser-induced breakdown spectroscopy

    Science.gov (United States)

    Cui, Minchao; Deguchi, Yoshihiro; Wang, Zhenzhen; Fujita, Yuki; Liu, Renwei; Shiou, Fang-Jung; Zhao, Shengdun

    2018-04-01

    A collinear long-short dual-pulse laser-induced breakdown spectroscopy (DP-LIBS) method was employed to enhance and stabilize the laser-induced plasma from steel sample. The long-pulse-width laser beam with the pulse width of 60 μs was generated by a Nd: YAG laser which was operated at FR (free running) mode. The comparative experiments were carried out between single pulse LIBS (SP-LIBS) and long-short DP-LIBS. The recorded results showed that the emission intensities and the temperature of plasma were enhanced by long-short DP-LIBS. The plasma images showed that the plasma was bigger and had a longer lifetime in long-short DP-LIBS situation. Through the calculation of time-resolved plasma temperature and intensity ratio, it can be concluded that the plasma was stabilized by the long-pulse-width laser beam. The long-short DP-LIBS method also generated the stable plasma condition from the samples with different initial temperatures, which overcame the difficulties of LIBS in the online measurement for steel production line.

  14. Pulse Sign Separation Technique for the Received Bits in Wireless Ultra-Wideband Combination Approach

    Directory of Open Access Journals (Sweden)

    Rashid A. Fayadh

    2014-01-01

    Full Text Available When receiving high data rate in ultra-wideband (UWB technology, many users have experienced multiple-user interference and intersymbol interference in the multipath reception technique. Structures have been proposed for implementing rake receivers to enhance their capabilities by reducing the bit error probability (Pe, thereby providing better performances by indoor and outdoor multipath receivers. As a result, several rake structures have been proposed in the past to reduce the number of resolvable paths that must be estimated and combined. To achieve this aim, we suggest two maximal ratio combiners based on the pulse sign separation technique, such as the pulse sign separation selective combiner (PSS-SC and the pulse sign separation partial combiner (PSS-PC to reduce complexity with fewer fingers and to improve the system performance. In the combiners, a comparator was added to compare the positive quantity of positive pulses and negative quantities of negative pulses to decide whether the transmitted bit was 1 or 0. The Pe was driven by simulation for multipath environments for impulse radio time-hopping binary phase shift keying (TH-BPSK modulation, and the results were compared with those of conventional selective combiners (C-SCs and conventional partial combiners (C-PCs.

  15. Small-angle neutron scattering at pulsed sources compared to reactor sources

    International Nuclear Information System (INIS)

    Hjelm, R.P. Jr.; Seeger, P.A.; Thiyagarajan, P.

    1990-01-01

    Detailed comparisons of measurements made on small-angle neutron scattering instruments at pulsed spallation and reactor sources show that the results from the two types of instruments are comparable. It is further demonstrated that spallation instruments are preferable for measurements in the mid-momentum transfer domain or when a large domain is needed. 8 refs., 2 figs

  16. Formation of very short pulse by neutron spin flip chopper for J-PARC

    International Nuclear Information System (INIS)

    Ebisawa, T.; Soyama, K.; Yamazaki, D.; Tasaki, S.; Sakai, K.; Oku, T.; Maruyama, R.; Hino, M.

    2004-01-01

    We have developed neutron spin flip choppers with high S/N ratio and high intensity for pulsed sources using multi-stage spin flip choppers. It is not easy for us to obtain a very short neutron pulse less than 10 μs using a spin flip chopper, due to the time constant L/R in the normal LR circuit. We will discuss a method obtaining a very short neutron pulse applying the modified push-pull circuit proposed by Ito and Takahashi [4] to the double spin flip chopper with polarizing guides

  17. Feasibility study for a recirculating linac-based facility for femtosecond dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Corlett, J.N.; Barry, W.; Barletta, W.A.; Byrd, J.M.; DeSantis, S.; Doolittle, L.; Fawley, W.; Green, M.A.; Hartman, N.; Heimann, P.; Kairan, D.; Kujawski, E.; Li, D.; Lidia, S.; Luft, P.; McClure, R.; Parmigiani, F.; Petroff, Y.; Pirkl, W.; Placidi, M.; Reavill, D.; Reichel, I.; Rimmer, R.A.; Ratti, A.; Robinson, K.E.; Sannibale, F.; Schoenlein, R.; Staples, J.; Tanabe, J.; Truchlikova, D.; Wan, W.; Wang, S.; Wells, R.; Wolski, A.; Zholents, A.

    2002-12-21

    LBNL is pursuing design studies and the scientific program for a facility dedicated to the production of x-ray pulses with ultra-short time duration, for application in dynamical studies of processes in physics, biology, and chemistry. The proposed x-ray facility has the short x-ray pulse length ({approx}60 fs FWHM) necessary to study very fast dynamics, high flux (up to approximately 10E11 photons/sec/0.1 percentBW) to study weakly scattering systems, and tuneability over 1-12 keV photon energy. The hard x-ray photon production section of the machine accommodates seven 2-m long undulators. Design studies for longer wavelength sources, using high-gain harmonic generation, are in progress. The x-ray pulse repetition rate of 10 kHz is matched to studies of dynamical processes (initiated by ultra-short laser pulses) that typically have a long recovery time or are not generally cyclic or reversible and need time to allow relaxation, replacement, or flow of the sample. The technique for producing ultra-short x-ray pulses uses relatively long electron bunches to minimize high-peak-current collective effects, and the ultimate x-ray duration is achieved by a combination of bunch manipulation and optical compression. Synchronization of x-ray pulses to sample excitation signals is expected to be of order 50 - 100 fs. Techniques for making use of the recirculating geometry to provide beam-based signals from early passes through the machine are being studied.

  18. Feasibility study for a recirculating linac-based facility for femtosecond dynamics

    International Nuclear Information System (INIS)

    Corlett, J.N.; Barry, W.; Barletta, W.A.; Byrd, J.M.; DeSantis, S.; Doolittle, L.; Fawley, W.; Green, M.A.; Hartman, N.; Heimann, P.; Kairan, D.; Kujawski, E.; Li, D.; Lidia, S.; Luft, P.; McClure, R.; Parmigiani, F.; Petroff, Y.; Pirkl, W.; Placidi, M.; Reavill, D.; Reichel, I.; Rimmer, R.A.; Ratti, A.; Robinson, K.E.; Sannibale, F.; Schoenlein, R.; Staples, J.; Tanabe, J.; Truchlikova, D.; Wan, W.; Wang, S.; Wells, R.; Wolski, A.; Zholents, A.

    2002-01-01

    LBNL is pursuing design studies and the scientific program for a facility dedicated to the production of x-ray pulses with ultra-short time duration, for application in dynamical studies of processes in physics, biology, and chemistry. The proposed x-ray facility has the short x-ray pulse length (∼60 fs FWHM) necessary to study very fast dynamics, high flux (up to approximately 10E11 photons/sec/0.1 percentBW) to study weakly scattering systems, and tuneability over 1-12 keV photon energy. The hard x-ray photon production section of the machine accommodates seven 2-m long undulators. Design studies for longer wavelength sources, using high-gain harmonic generation, are in progress. The x-ray pulse repetition rate of 10 kHz is matched to studies of dynamical processes (initiated by ultra-short laser pulses) that typically have a long recovery time or are not generally cyclic or reversible and need time to allow relaxation, replacement, or flow of the sample. The technique for producing ultra-short x-ray pulses uses relatively long electron bunches to minimize high-peak-current collective effects, and the ultimate x-ray duration is achieved by a combination of bunch manipulation and optical compression. Synchronization of x-ray pulses to sample excitation signals is expected to be of order 50 - 100 fs. Techniques for making use of the recirculating geometry to provide beam-based signals from early passes through the machine are being studied

  19. Neutron scattering studies of the dynamics of biopolymer-water systems using pulsed-source spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Middendorf, H.D. [Univ. of Oxford (United Kingdom); Miller, A. [Stirling Univ., Stirling (United Kingdom)

    1994-12-31

    Energy-resolving neutron scattering techniques provide spatiotemporal data suitable for testing and refining analytical models or computer simulations of a variety of dynamical processes in biomolecular systems. This paper reviews experimental work on hydrated biopolymers at ISIS, the UK Pulsed Neutron Facility. Following an outline of basic concepts and a summary of the new instrumental capabilities, the progress made is illustrated by results from recent experiments in two areas: quasi- elastic scattering from highly hydrated polysaccharide gels (agarose and hyaluronate), and inelastic scattering from vibrational modes of slightly hydrated collagen fibers.

  20. Neutron scattering studies of the dynamics of biopolymer-water systems using pulsed-source spectrometers

    International Nuclear Information System (INIS)

    Middendorf, H.D.; Miller, A.

    1994-01-01

    Energy-resolving neutron scattering techniques provide spatiotemporal data suitable for testing and refining analytical models or computer simulations of a variety of dynamical processes in biomolecular systems. This paper reviews experimental work on hydrated biopolymers at ISIS, the UK Pulsed Neutron Facility. Following an outline of basic concepts and a summary of the new instrumental capabilities, the progress made is illustrated by results from recent experiments in two areas: quasi- elastic scattering from highly hydrated polysaccharide gels (agarose and hyaluronate), and inelastic scattering from vibrational modes of slightly hydrated collagen fibers

  1. Short intense ion pulses for materials and warm dense matter research

    Energy Technology Data Exchange (ETDEWEB)

    Seidl, Peter A., E-mail: PASeidl@lbl.gov [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Persaud, Arun; Waldron, William L. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Barnard, John J. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Davidson, Ronald C. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Friedman, Alex [Lawrence Livermore National Laboratory, Livermore, CA (United States); Gilson, Erik P. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Greenway, Wayne G. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Grote, David P. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Kaganovich, Igor D. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Lidia, Steven M.; Stettler, Matthew; Takakuwa, Jeffrey H.; Schenkel, Thomas [Lawrence Berkeley National Laboratory, Berkeley, CA (United States)

    2015-11-11

    We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment-II at Lawrence Berkeley National Laboratory, by generating beam spots size with radius r<1 mm within 2 ns FWHM and approximately 10{sup 10} ions/pulse. To enable the short pulse durations and mm-scale focal spot radii, the 1.2 MeV Li{sup +} ion beam is neutralized in a 1.6-meter drift compression section located after the last accelerator magnet. An 8-Tesla short focal length solenoid compresses the beam in the presence of the large volume plasma near the end of this section before the target. The scientific topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including selected topics of relevance to the development of heavy-ion drivers for inertial fusion energy. Here we describe the accelerator commissioning and time-resolved ionoluminescence measurements of yttrium aluminum perovskite using the fully integrated accelerator and neutralized drift compression components.

  2. Short intense ion pulses for materials and warm dense matter research

    International Nuclear Information System (INIS)

    Seidl, Peter A.; Persaud, Arun; Waldron, William L.; Barnard, John J.; Davidson, Ronald C.; Friedman, Alex; Gilson, Erik P.; Greenway, Wayne G.; Grote, David P.; Kaganovich, Igor D.; Lidia, Steven M.; Stettler, Matthew; Takakuwa, Jeffrey H.; Schenkel, Thomas

    2015-01-01

    We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment-II at Lawrence Berkeley National Laboratory, by generating beam spots size with radius r<1 mm within 2 ns FWHM and approximately 10"1"0 ions/pulse. To enable the short pulse durations and mm-scale focal spot radii, the 1.2 MeV Li"+ ion beam is neutralized in a 1.6-meter drift compression section located after the last accelerator magnet. An 8-Tesla short focal length solenoid compresses the beam in the presence of the large volume plasma near the end of this section before the target. The scientific topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including selected topics of relevance to the development of heavy-ion drivers for inertial fusion energy. Here we describe the accelerator commissioning and time-resolved ionoluminescence measurements of yttrium aluminum perovskite using the fully integrated accelerator and neutralized drift compression components.

  3. Effect of radiation damping on the interaction of ultra-intense laser pulses with an overdense plasma

    International Nuclear Information System (INIS)

    Zhidkov, Alexei; Koga, James; Sasaki, Akira; Ueshima, Yutaka

    2001-01-01

    The effect of radiation damping on the interaction of an ultra-intense laser pulse with an overdense plasma is studied via relativistic particle-in-cell simulation. The calculation is performed for a Cu solid slab including ionization. We find a strong effect from radiation damping on the electron energy cut-off at about 150 MeV and on the absorption of a laser pulse with an intensity I=5x10 22 W/cm 2 and duration of 20 fs. Hot electrons reradiate more then 10% of the laser energy during the laser pulse. With the laser intensity, the energy loss due to the radiation damping increases as I 3 . In addition, we observe that the laser pulse may not propagate in the plasma even if ω pl 2 /ω 2 γ<1. The increase of skin depth with the laser intensity due to relativistic effects gives rise to the absorption efficiency. (author)

  4. Measurements on Prototype Inductive Adders with Ultra-Flat-Top Output Pulses for CLIC DR Kickers

    CERN Document Server

    Holma, J; Belver-Aguilar, C

    2014-01-01

    The CLIC study is investigating the technical feasibility of an electron-positron collider with high luminosity and a nominal centre-of-mass energy of 3 TeV. The CLIC pre-damping rings and damping rings (DRs) will produce ultra-low emittance beam with high bunch charge. To avoid beam emittance increase, the DR kicker systems must provide extremely flat, high-voltage, pulses. The specifications for the DR extraction kickers call for a 160 ns duration flat-top pulses of ±12.5 kV, 250 A, with a combined ripple and droop of not more than ±0.02 % (±2.5 V). An inductive adder is a very promising approach to meeting the specifications because this topology allows the use of both passive and analogue modulation methods to adjust the output waveform. Recently, two five-layer, 3.5 kV, prototype inductive adders have been built at CERN. The first of these has been used to test the passive and active analogue modulation methods to compensate voltage droop and ripple of the output pulses. Pulse waveforms have been reco...

  5. Influence of short heat pulses on the helium boiling heat transfer rate

    International Nuclear Information System (INIS)

    Andreev, V.K.; Deev, V.I.; Savin, A.N.; Kutsenko, K.V.

    1987-01-01

    Investigation results on heat transfer in the process of helium boiling on a heated wall under conditions of pulsed heat effect are described. Results of the given study point to one of possible ways of heat exchange intensification in boiling helium by supplying short heat pulse to the heater. Even short-time noncontrolled or incidental increase in the heater capacity during experiment with boiling helium can result in a considerable disagreement of experimental data on heat transfer

  6. A novel femtosecond-gated, high-resolution, frequency-shifted shearing interferometry technique for probing pre-plasma expansion in ultra-intense laser experiments

    Energy Technology Data Exchange (ETDEWEB)

    Feister, S., E-mail: feister.7@osu.edu; Orban, C. [Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States); Innovative Scientific Solutions, Inc., Dayton, Ohio 45459 (United States); Nees, J. A. [Innovative Scientific Solutions, Inc., Dayton, Ohio 45459 (United States); Center for Ultra-Fast Optical Science, University of Michigan, Ann Arbor, Michigan 48109 (United States); Morrison, J. T. [Fellow, National Research Council, Washington, D.C. 20001 (United States); Frische, K. D. [Innovative Scientific Solutions, Inc., Dayton, Ohio 45459 (United States); Chowdhury, E. A. [Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States); Intense Energy Solutions, LLC., Plain City, Ohio 43064 (United States); Roquemore, W. M. [Air Force Research Laboratory, Dayton, Ohio 45433 (United States)

    2014-11-15

    Ultra-intense laser-matter interaction experiments (>10{sup 18} W/cm{sup 2}) with dense targets are highly sensitive to the effect of laser “noise” (in the form of pre-pulses) preceding the main ultra-intense pulse. These system-dependent pre-pulses in the nanosecond and/or picosecond regimes are often intense enough to modify the target significantly by ionizing and forming a plasma layer in front of the target before the arrival of the main pulse. Time resolved interferometry offers a robust way to characterize the expanding plasma during this period. We have developed a novel pump-probe interferometry system for an ultra-intense laser experiment that uses two short-pulse amplifiers synchronized by one ultra-fast seed oscillator to achieve 40-fs time resolution over hundreds of nanoseconds, using a variable delay line and other techniques. The first of these amplifiers acts as the pump and delivers maximal energy to the interaction region. The second amplifier is frequency shifted and then frequency doubled to generate the femtosecond probe pulse. After passing through the laser-target interaction region, the probe pulse is split and recombined in a laterally sheared Michelson interferometer. Importantly, the frequency shift in the probe allows strong plasma self-emission at the second harmonic of the pump to be filtered out, allowing plasma expansion near the critical surface and elsewhere to be clearly visible in the interferograms. To aid in the reconstruction of phase dependent imagery from fringe shifts, three separate 120° phase-shifted (temporally sheared) interferograms are acquired for each probe delay. Three-phase reconstructions of the electron densities are then inferred by Abel inversion. This interferometric system delivers precise measurements of pre-plasma expansion that can identify the condition of the target at the moment that the ultra-intense pulse arrives. Such measurements are indispensable for correlating laser pre-pulse measurements

  7. The challenge of observation on livings things by employing an ultra small-angle neutron scattering method

    International Nuclear Information System (INIS)

    Koizumi, Satoshi; Motokawa, Ryuhei; Iwase, Hiroki; Miyamoto, Nobuyoshi; Tanaka, Kazuhiro; Masui, Tomomi; Iida, You; Yue, Zhao; Chiba, Kaori; Kumada, Takayuki; Yamaguchi, Daisuke; Hashimoto, Takeji

    2007-01-01

    To address the question as to how small-angle scattering is effectively applied to the cell, i.e., a hierarchically ordered system comprising multi-components of macro and small molecules, the size of which ranges from 100 μm to several μm, we reconstructed SANS-J (pinhole small-angle neutron scattering spectrometer at research reactor JRR3, Tokai) to focusing and polarized neutron small-angle spectrometer (SANS-J-II), by employing focusing neutron lenses and high resolution photomultiplier. Consequently, an accessible minimum wave number q min was improved from 3x10 -3 A -1 to medium ultra-small angle scattering of 3x10 -4 A -1 . The focusing USANS method, thus developed, is crucial to fill the gap in wave number q between those covered by a double crystal method and by a conventional pin-hole method. (author)

  8. Ultra-short channel GaN high electron mobility transistor-like Gunn diode with composite contact

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ying; Yang, Lin' an, E-mail: layang@xidian.edu.cn; Wang, Zhizhe; Chen, Qing; Huang, Yonghong; Dai, Yang; Chen, Haoran; Zhao, Hongliang; Hao, Yue [The State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi' an 710071 (China)

    2014-09-07

    We present a numerical analysis on an ultra-short channel AlGaN/GaN HEMT-like planar Gunn diode based on the velocity-field dependence of two-dimensional electron gas (2-DEG) channel accounting for the ballistic electron acceleration and the inter-valley transfer. In particular, we propose a Schottky-ohmic composite contact instead of traditional ohmic contact for the Gunn diode in order to significantly suppress the impact ionization at the anode side and shorten the “dead zone” at the cathode side, which is beneficial to the formation and propagation of dipole domain in the ultra-short 2-DEG channel and the promotion of conversion efficiency. The influence of the surface donor-like traps on the electron domain in the 2-DEG channel is also included in the simulation.

  9. Laser-assisted electron scattering in strong-field ionization of dense water vapor by ultrashort laser pulses

    International Nuclear Information System (INIS)

    Wilke, M; Al-Obaidi, R; Moguilevski, A; Kothe, A; Engel, N; Metje, J; Kiyan, I Yu; Aziz, E F

    2014-01-01

    We report on strong-field ionization of dense water gas in a short infrared laser pulse. By employing a unique combination of photoelectron spectroscopy with a liquid micro-jet technique, we observe how the character of electron emission at high kinetic energies changes with the increase of the medium density. This change is associated with the process of laser-assisted electron scattering (LAES) on neighboring particles, which becomes a dominant mechanism of hot electron emission at higher medium densities. The manifestation of this mechanism is found to require densities that are orders of magnitude lower than those considered for heating the laser-generated plasmas via the LAES process. The experimental results are supported by simulations of the LAES yield with the use of the Kroll–Watson theory. (paper)

  10. The performance of neutron spectrometers AR a long-pulse spallation source

    International Nuclear Information System (INIS)

    Pynn, R.; Daemen, L.L.

    1995-01-01

    At a recent workshop at Lawrence Berkeley National Laboratory members of the international neutron scattering community discussed the performance to be anticipated from neutron scattering instruments installed at a 1 MW long-pulse spallation source (LPSS). Although the report of this workshop is long, its principal conclusions can be easily summarised and almost as easily understood. This article presents such a synthesis for a 60 Hz LPSS with 1 msec proton pulses. We discuss some of the limitations of the workshop conclusions and suggest a simple analysis of the performance differences that might be expected between short- and long-pulse sources both of which exploit coupled moderators

  11. Time-dependent Bragg diffraction and short-pulse reflection by one-dimensional photonic crystals

    International Nuclear Information System (INIS)

    André, Jean-Michel; Jonnard, Philippe

    2015-01-01

    The time-dependence of the Bragg diffraction by one-dimensional photonic crystals and its influence on the short pulse reflection are studied in the framework of the coupled-wave theory. The indicial response of the photonic crystal is calculated and it appears that it presents a time-delay effect with a transient time conditioned by the extinction length. A numerical simulation is presented for a Bragg mirror in the x-ray domain and a pulse envelope modelled by a sine-squared shape. The potential consequences of the time-delay effect in time-dependent optics of short-pulses are emphasized. (paper)

  12. UV saturable absorber for short-pulse KrF laser systems

    Energy Technology Data Exchange (ETDEWEB)

    Nishioka, H.; Kuranishi, H.; Ueda, K.; Takuma, H.

    1989-07-01

    A derivative of the linear tricyclic compound, acridine, is shown to beuseful as a saturable absorber for short-pulse KrF lasers. The saturationcharacteristics and absorption recovery of a methanol solution of acridine for a20-psec KrF laser pulse are reported. We obtain a saturation fluence of 1.2mJ/cm/sup 2/ and a ratio of the primary to the excited absorption cross sectionof 6.25:1.

  13. Symmetry issues in a class of ion beam targets using short direct drive pulses

    International Nuclear Information System (INIS)

    Mark, J.W.K.; Lindl, J.D.

    1986-01-01

    We address a class of modified ion beam targets where the symmetry issues are ameliorated in the regime of short bursts of direct drive pulses. Short pulses are here defined so that the fractional change in target radii of peak beam energy deposition are assumed to be small (during each such direct drive burst with a fixed beam focal radius). This requirement is actually not stringent on the temporal pulse-length. In fact we show an explicit example where this can be satisfied by a ≥ 60 ns direct drive pulse-train. A new beam placement scheme is used which systematically eliminated low order spherical harmonic asymmetries. The residual asymmetries of such pulses are studied with both simple model and numerical simulations

  14. 3d particle simulations on ultra short laser interaction

    Energy Technology Data Exchange (ETDEWEB)

    Nishihara, Katsunobu; Okamoto, Takashi; Yasui, Hidekazu [Osaka Univ., Suita (Japan). Inst. of Laser Engineering

    1998-03-01

    Two topics related to ultra short laser interaction with matter, linear and nonlinear high frequency conductivity of a solid density hydrogen plasma and anisotropic self-focusing of an intense laser in an overdense plasma, have been investigated with the use of 3-d particle codes. Frequency dependence of linear conductivity in a dense plasma is obtained, which shows anomalous conductivity near plasma frequency. Since nonlinear conductivity decreases with v{sub o}{sup -3}, where v{sub o} is a quivering velocity, an optimum amplitude exists leading to a maximum electron heating. Anisotropic self-focusing of a linear polarized intense laser is observed in an overdense plasma. (author)

  15. Apparatus And Method For Wireless Monitoring Using Ultra-wideband Frequencies

    KAUST Repository

    Sana, Furrukh

    2015-04-23

    A system for and a method of wirelessly monitoring one or more patients can include transmitting ultra-wideband pulses toward the one or more patients, receiving ultra-wideband signals, and sampling the ultra-wideband signals. Sampling the ultra-wideband pulses can be performed with a sample rate that is less than the Nyquist rate. Impulse response can be estimated and/or recovered by exploiting sparsity of the impulse response.

  16. Ultrafast pulse generation in integrated arrays of anapole nanolasers

    KAUST Repository

    Gongora, J. S. Totero

    2017-11-02

    One of the main challenges in photonics is the integration of ultrafast coherent sources in silicon compatible platforms at the nanoscale [1]. Generally, the emission of ultra-short pulses is achieved by synchronizing the cavity modes of the system via external active components, such as, e.g., Q-switch or saturable absorbers. Consequently, the required optical setups are complex and difficult to integrate on-chip. To address these difficulties, we propose a novel type of integrated source based on the spontaneous synchronization of several near-field nanolasers. We design our near-field lasers by considering the nonlinear amplification of non-radiating Anapole modes [2]. Anapoles represent an intriguing non-conventional state of radiation, whose excitation is responsible for the formation of scattering suppression states in dielectric nanostructures [3]. Due to their inherent near-field emission properties, an ensemble of anapole-based nanolasers represent an ideal candidate to investigate and tailor spontaneous synchronization phenomena in a silicon-compatible framework. Additionally, their mutual non-linear interaction can be precisely controlled within standard nanofabrication tolerances.

  17. Hybrid Pulsed Nd:YAG Laser

    Science.gov (United States)

    Miller, Sawyer; Trujillo, Skyler; Fort Lewis College Laser Group Team

    This work concerns the novel design of an inexpensive pulsed Nd:YAG laser, consisting of a hybrid Kerr Mode Lock (KLM) and Q-switch pulse. The two pulse generation systems work independently, non simultaneously of each other, thus generating the ability for the user to easily switch between ultra-short pulse widths or large energy density pulses. Traditionally, SF57 glass has been used as the Kerr medium. In this work, novel Kerr mode-locking mediums are being investigated including: tellurite compound glass (TeO2), carbon disulfide (CS2), and chalcogenide glass. These materials have a nonlinear index of refraction orders of magnitude,(n2), larger than SF57 glass. The Q-switched pulse will utilize a Pockels cell. As the two pulse generation systems cannot be operated simultaneously, the Pockels cell and Kerr medium are attached to kinematic mounts, allowing for quick interchange between systems. Pulse widths and repetition rates will vary between the two systems. A goal of 100 picosecond pulse widths are desired for the mode-locked system. A goal of 10 nanosecond pulse widths are desired for the Q-switch system, with a desired repetition rate of 50 Hz. As designed, the laser will be useful in imaging applications.

  18. A photonic ultra-wideband pulse generator based on relaxation oscillations of a semiconductor laser

    DEFF Research Database (Denmark)

    Yu, Xianbin; Gibbon, Timothy Braidwood; Pawlik, Michal

    2009-01-01

    A photonic ultra-wideband (UWB) pulse generator based on relaxation oscillations of a semiconductor laser is proposed and experimentally demonstrated. We numerically simulate the modulation response of a direct modulation laser (DML) and show that due to the relaxation oscillations of the laser......, the generated signals with complex shape in time domain match the Federal Communications Commission (FCC) mask in the frequency domain. Experimental results using a DML agree well with simulation predictions. Furthermore, we also experimentally demonstrate the generation of FCC compliant UWB signals...

  19. Absorption of short-pulse electromagnetic energy by a resistively loaded straight wire

    International Nuclear Information System (INIS)

    Miller, E.K.; Deadrick, F.J.; Landt, J.A.

    1975-01-01

    Absorption of short-pulse electromagnetic energy by a resistively loaded straight wire is examined. Energy collected by the wire, load energy, peak load currents, and peak load voltages are found for a wide range of parameters, with particular emphasis on nuclear electromagnetic pulse (EMP) phenomena. A series of time-sequenced plots is used to illustrate pulse propagation on wires when loads and wire ends are encountered

  20. UV saturable absorber for short-pulse KrF laser systems.

    Science.gov (United States)

    Nishioka, H; Kuranishi, H; Ueda, K; Takuma, H

    1989-07-01

    A derivative of the linear tricyclic compound, acridine, is shown to be useful as a saturable absorber for short-pulse KrF lasers. The saturation characteristics and absorption recovery of a methanol solution of acridine for a 20-psec KrF laser pulse are reported. We obtain a saturation fluence of 1.2 mJ/cm(2) and a ratio of the primary to the excited absorption cross section of 6.25:1.

  1. Improvement of Lambert-Beer law dynamic range by the use of temporal gates on transmitted light pulse through a scattering medium

    International Nuclear Information System (INIS)

    Yoshino, Hironori; Wada, Kenji; Horinaka, Hiromichi; Cho, Yoshio; Umeda, Tokuo; Osawa, Masahiko.

    1995-01-01

    The Lambert-Beer law holding for pulsed lights transmitted through a scattering medium was examined using a streak camera. The Lambert-Beer law dynamic range is found to be limited by floor levels that are caused by scattered photons and are controllable by the use of a temporal gate on the transmitted pulse. The dynamic range improvement obtained for a scattering medium of 2.8 cm -1 scattering coefficient of a thickness of 80 mm by a temporal gate of 60 ps was as much as 50 dB and the Lambert-Beer law dynamic rang reached to 140 dB. (author)

  2. Frequency-resolved measurement of the orbital angular momentum spectrum of femtosecond ultra-broadband optical-vortex pulses based on field reconstruction

    International Nuclear Information System (INIS)

    Yamane, Keisaku; Yang, Zhili; Toda, Yasunori; Morita, Ryuji

    2014-01-01

    We propose a high-precision method for measuring the orbital angular momentum (OAM) spectrum of ultra-broadband optical-vortex (OV) pulses from fork-like interferograms between OV pulses and a reference plane-wave pulse. It is based on spatial reconstruction of the electric fields of the pulses to be measured from the frequency-resolved interference pattern. Our method is demonstrated experimentally by obtaining the OAM spectra for different spectral components of the OV pulses, enabling us to characterize the frequency dispersion of the topological charge of the OAM spectrum by a simple experimental setup. Retrieval is carried out in quasi-real time, allowing us to investigate OAM spectra dynamically. Furthermore, we determine the relative phases (including the sign) of the topological-charge-resolved electric-field amplitudes, which are significant for evaluating OVs or OV pulses with arbitrarily superposed modes. (paper)

  3. Ultra-fast Movies Resolve Ultra-short Pulse Laser Ablation and Bump Formation on Thin Molybdenum Films

    Science.gov (United States)

    Domke, Matthias; Rapp, Stephan; Huber, Heinz

    For the monolithic serial interconnection of CIS thin film solar cells, 470 nm molybdenum films on glass substrates must be separated galvanically. The single pulse ablation with a 660 fs laser at a wavelength of 1053 nm is investigated in a fluence regime from 0.5 to 5.0 J/cm2. At fluences above 2.0 J/cm2 bump and jet formation can be observed that could be used for creating microstructures. For the investigation of the underlying mechanisms of the laser ablation process itself as well as of the bump or jet formation, pump probe microscopy is utilized to resolve the transient ablation behavior.

  4. DURATION LIMIT OF LASER PULSES EMITTED FROM A Ce-DOPED CRYSTAL SHORT CAVITY

    Directory of Open Access Journals (Sweden)

    Le Hoang Hai

    2017-11-01

    Full Text Available Based on the rate equation set for broadband cavities, the dependence of pulse duration on cavity and pumping parameters is analyzed. The cavity uses a Ce-doped crystal as a gain medium. Computation results show the variation of the pulse width with the change of cavity length, mirror reflectivity, pumping energy and pumping pulse duration. A significant influence of multiple-pulse operation in limiting pulse duration is realized and a pulse-width of the order 200 ps is found to be the limit for the direct generation of ultraviolet single picosecond pulses from a Ce:LLF short cavity.

  5. A portable high-field pulsed-magnet system for single-crystal x-ray scattering studies

    International Nuclear Information System (INIS)

    Islam, Zahirul; Lang, Jonathan C.; Ruff, Jacob P. C.; Ross, Kathryn A.; Gaulin, Bruce D.; Nojiri, Hiroyuki; Matsuda, Yasuhiro H.; Qu Zhe

    2009-01-01

    We present a portable pulsed-magnet system for x-ray studies of materials in high magnetic fields (up to 30 T). The apparatus consists of a split-pair of minicoils cooled on a closed-cycle cryostat, which is used for x-ray diffraction studies with applied field normal to the scattering plane. A second independent closed-cycle cryostat is used for cooling the sample to near liquid helium temperatures. Pulsed magnetic fields (∼1 ms in total duration) are generated by discharging a configurable capacitor bank into the magnet coils. Time-resolved scattering data are collected using a combination of a fast single-photon counting detector, a multichannel scaler, and a high-resolution digital storage oscilloscope. The capabilities of this instrument are used to study a geometrically frustrated system revealing strong magnetostrictive effects in the spin-liquid state.

  6. Observation of superradiance in a short-pulse FEL oscillator

    NARCIS (Netherlands)

    Jaroszynski, D. A.; Chaix, P.; Piovella, N.; Oepts, D.; Knippels, G.M.H.; van der Meer, A. F. G.; Weits, H. H.

    1997-01-01

    Superradiance has been experimentally studied, in a short-pulse free-electron laser (FEL) oscillator. Superradiance is the optimal way of extracting optical radiation from an FEL and can be characterised by the following scale laws: peak optical power P, scales as the square of electron charge, Q,

  7. PHASE NOISE COMPARISON OF SHORT PULSE LASER SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Shukui Zhang; Stephen Benson; John Hansknecht; David Hardy; George Neil; Michelle D. Shinn

    2006-08-27

    This paper describes phase noise measurements of several different laser systems that have completely different gain media and configurations including a multi-kW free-electron laser. We will focus on state-of-the-art short pulse lasers, especially drive lasers for photocathode injectors. Phase noise comparison of the FEL drive laser, electron beam and FEL laser output also will be presented.

  8. Self-reflection of extremely short light pulses in nonlinear optical waveguides

    Science.gov (United States)

    Kurasov, Alexander E.; Kozlov, Sergei A.

    2004-07-01

    An equation describing the generation of reflected radiation during the propagation of high-intensity extremely short pulses in a nonlinear optical waveguide is derived. The phenomena taking place during the strong self-inducted changes of the temporal structure of the forward wave are studied. It is shown that the duration of the backward pulse is much greater than the duration of the forward pulse and that the main part of the energy of the backward wave is carried by lower frequencies than the central frequency of the forward wave.

  9. Ultra fast shutter driven by pulsed high current

    International Nuclear Information System (INIS)

    Zeng Jiangtao; Sun Fengju; Qiu Aici; Yin Jiahui; Guo Jianming; Chen Yulan

    2005-01-01

    Radiation simulation utilizing plasma radiation sources (PRS) generates a large number of undesirable debris, which may damage the expensive diagnosing detectors. An ultra fast shutter (UFS) driven by pulsed high current can erect a physical barrier to the slowly moving debris after allowing the passage of X-ray photons. The UFS consists of a pair of thin metal foils twisting the parallel axes in a Nylon cassette, compressed with an outer magnetic field, generated from a fast capacitor bank, discharging into a single turn loop. A typical capacitor bank is of 7.5 μF charging voltages varying from 30 kV to 45 kV, with corresponding currents of approximately 90 kA to 140 kA and discharging current periods of approximately 13.1 μs. A shutter closing time as fast as 38 microseconds has been obtained with an aluminium foil thickness of 100 micrometers and a cross-sectional area of 15 mm by 20 mm. The design, construction and the expressions of the valve-closing time of the UFS are presented along with the measured results of valve-closing velocities. (authors)

  10. Emission Characteristics of Laser-Induced Plasma Using Collinear Long and Short Dual-Pulse Laser-Induced Breakdown Spectroscopy (LIBS).

    Science.gov (United States)

    Wang, Zhenzhen; Deguchi, Yoshihiro; Liu, Renwei; Ikutomo, Akihiro; Zhang, Zhenzhen; Chong, Daotong; Yan, Junjie; Liu, Jiping; Shiou, Fang-Jung

    2017-09-01

    Collinear long and short dual-pulse laser-induced breakdown spectroscopy (DP-LIBS) was employed to clarify the emission characteristics from laser-induced plasma. The plasma was sustained and became stable by the long pulse-width laser with the pulse width of 60 μs under free running (FR) conditions as an external energy source. Comparing the measurement results of stainless steel in air using single-pulse LIBS (SP-LIBS) and DP-LIBS, the emission intensity was markedly enhanced using DP-LIBS. The temperature of plasma induced by DP-LIBS was maintained at a higher temperature under different gate delay time and short pulse-width laser power conditions compared with those measured using short SP-LIBS. Moreover, the variation rates of plasma temperatures measured using DP-LIBS were also lower. The superior detection ability was verified by the measurement of aluminum sample in water. The spectra were clearly detected using DP-LIBS, whereas it cannot be identified using SP-LIBS of short and long pulse widths. The effects of gate delay time and short pulse-width laser power were also discussed. These results demonstrate the feasibility and enhanced detection ability of the proposed collinear long and short DP-LIBS method.

  11. Do Cloaked Objects Really Scatter Less?

    Directory of Open Access Journals (Sweden)

    Francesco Monticone

    2013-10-01

    Full Text Available We discuss the global scattering response of invisibility cloaks over the entire electromagnetic spectrum, from static to very high frequencies. Based on linearity, causality, and energy conservation, we show that the total extinction and scattering, integrated over all wavelengths, of any linear, passive, causal, and nondiamagnetic cloak, necessarily increase compared to the uncloaked case. In light of this general principle, we provide a quantitative measure to compare the global performance of different cloaking techniques and we discuss solutions to minimize the global scattering signature of an object using thin, superconducting shells. Our results provide important physical insights on how invisibility cloaks operate and affect the global scattering of an object, suggesting ways to defeat countermeasures aimed at detecting cloaked objects using short impinging pulses.

  12. Time resolved Thomson scattering diagnostic of pulsed gas metal arc welding (GMAW) process

    International Nuclear Information System (INIS)

    Kühn-Kauffeldt, M; Schein, J; Marquès, J L

    2014-01-01

    In this work a Thomson scattering diagnostic technique was applied to obtain time resolved electron temperature and density values during a gas metal arc welding (GMAW) process. The investigated GMAW process was run with aluminum wire (AlMg 4,5 Mn) with 1.2 mm diameter as a wire electrode, argon as a shielding gas and peak currents in the range of 400 A. Time resolved measurements could be achieved by triggering the laser pulse at shifted time positions with respect to the current pulse driving the process. Time evaluation of resulting electron temperatures and densities is used to investigate the state of the plasma in different phases of the current pulse and to determine the influence of the metal vapor and droplets on the plasma properties

  13. Controlling semiconductor nanoparticle size distributions with tailored ultrashort pulses

    International Nuclear Information System (INIS)

    Hergenroeder, R; Miclea, M; Hommes, V

    2006-01-01

    The laser generation of size-controlled semiconductor nanoparticle formation under gas phase conditions is investigated. It is shown that the size distribution can be changed if picosecond pulse sequences of tailored ultra short laser pulses (<200 fs) are employed. By delivering the laser energy in small packages, a temporal energy flux control at the target surface is achieved, which results in the control of the thermodynamic pathway the material takes. The concept is tested with silicon and germanium, both materials with a predictable response to double pulse sequences, which allows deduction of the materials' response to complicated pulse sequences. An automatic, adaptive learning algorithm was employed to demonstrate a future strategy that enables the definition of more complex optimization targets such as particle size on materials less predictable than semiconductors

  14. Phase-resolved pulse propagation through metallic photonic crystal slabs: plasmonic slow light

    Science.gov (United States)

    Schönhardt, Anja; Nau, Dietmar; Bauer, Christina; Christ, André; Gräbeldinger, Hedi; Giessen, Harald

    2017-03-01

    We characterized the electromagnetic field of ultra-short laser pulses after propagation through metallic photonic crystal structures featuring photonic and plasmonic resonances. The complete pulse information, i.e. the envelope and phase of the electromagnetic field, was measured using the technique of cross-correlation frequency resolved optical gating. In good agreement, measurements and scattering matrix simulations show a dispersive behaviour of the spectral phase at the position of the resonances. Asymmetric Fano-type resonances go along with asymmetric phase characteristics. Furthermore, the spectral phase is used to calculate the dispersion of the sample and possible applications in dispersion compensation are investigated. Group refractive indices of 700 and 70 and group delay dispersion values of 90 000 fs2 and 5000 fs2 are achieved in transverse electric and transverse magnetic polarization, respectively. The behaviour of extinction and spectral phase can be understood from an intuitive model using the complex transmission amplitude. An associated depiction in the complex plane is a useful approach in this context. This method promises to be valuable also in photonic crystal and filter design, for example, with regards to the symmetrization of the resonances. This article is part of the themed issue 'New horizons for nanophotonics'.

  15. Guiding of short, intense laser pulses through solid guides and preformed plasma channels

    International Nuclear Information System (INIS)

    Borghesi, M.; Mackinnon, A.J.; Gaillard, R.; Malka, G.; Vickers, C.; Willi, O.; Blanchot, N.; Miquel, J.L.; Canaud, B.; Davies, J.R.; Malka, G.; Offenberger, A.A.

    2000-01-01

    In a series of experiments carried out at the Rutherford Appleton Laboratory, Chilton (UK) and at the Commissariat a l'Energie Atomique, Limeil (France), various techniques of guiding ultra-intense laser pulses over distances exceeding the natural diffraction length were investigated. Efficient guiding was demonstrated both through density channels formed in an underdense plasma by an intense prepulse and through solid guides (hollow capillary tubes). Indication of collimated fast electron propagation though solid targets has also been obtained. (authors)

  16. High Energy, Short Pulse Fiber Injection Lasers at Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, J W; Messerly, M J; Phan, H H; Crane, J K; Beach, R J; Siders, C W; Barty, C J

    2008-09-10

    A short pulse fiber injection laser for the Advanced Radiographic Capability (ARC) on the National Ignition Facility (NIF) has been developed at Lawrence Livermore National Laboratory (LLNL). This system produces 100 {micro}J pulses with 5 nm of bandwidth centered at 1053 nm. The pulses are stretched to 2.5 ns and have been recompressed to sub-ps pulse widths. A key feature of the system is that the pre-pulse power contrast ratio exceeds 80 dB. The system can also precisely adjust the final recompressed pulse width and timing and has been designed for reliable, hands free operation. The key challenges in constructing this system were control of the signal to noise ratio, dispersion management and managing the impact of self phase modulation on the chirped pulse.

  17. Dynamic Volume Holography and Optical Information Processing by Raman Scattering

    International Nuclear Information System (INIS)

    Dodin, I.Y.; Fisch, N.J.

    2002-01-01

    A method of producing holograms of three-dimensional optical pulses is proposed. It is shown that both the amplitude and the phase profile of three-dimensional optical pulse can be stored in dynamic perturbations of a Raman medium, such as plasma. By employing Raman scattering in a nonlinear medium, information carried by a laser pulse can be captured in the form of a slowly propagating low-frequency wave that persists for a time large compared with the pulse duration. If such a hologram is then probed with a short laser pulse, the information stored in the medium can be retrieved in a second scattered electromagnetic wave. The recording and retrieving processes can conserve robustly the pulse shape, thus enabling the recording and retrieving with fidelity of information stored in optical signals. While storing or reading the pulse structure, the optical information can be processed as an analogue or digital signal, which allows simultaneous transformation of three-dimensional continuous images or computing discrete arrays of binary data. By adjusting the phase fronts of the reference pulses, one can also perform focusing, redirecting, and other types of transformation of the output pulses

  18. On scattering diagnostics with periodically pulsed lasers to follow the continuous evolution of time dependent plasma parameters

    International Nuclear Information System (INIS)

    Hellermann, M. von; Hirsch, K.; Doeble, H.F.

    1977-04-01

    The possibilities to use periodically pulsed lasers for plasma scattering diagnostics are discussed. An experiment with succesful application of a periodically pulsed frequency-doubled Nd:YAG laser is described and results are given. Application of the method to monitor continuously, with millisecond time resolution, parameters of Tokamak type plasmas, is considered. (orig.) [de

  19. Interaction of an ultra-intense laser pulse with a dense plasma: heating and transport of electrons and ions

    International Nuclear Information System (INIS)

    Toupin, Catherine

    1999-01-01

    This work was aimed at characterizing the acceleration and transport of the plasma electrons and ions during the interaction of an ultra-intense laser pulse with a dense plasma. Our main tool was numerical simulation with kinetic particle-in-cell codes. During the interaction, the target surface electrons are accelerated up to high energies inward the target. The electron acceleration mechanisms are proved to strongly depend on the density profile deformation due to the ion motion. This motion has been studied as well and different acceleration mechanisms have been identified: pushing in of the target surface by the laser ponderomotive pressure, acceleration by an electrostatic shock or by breaking of an ion acoustic wave, acceleration by the space charge force induced by radial expulsion of the electrons out of a channel drilled in a slightly overcritical plasma. The electrons and ions accelerated at the target surface penetrate inward the target and interact with it. The competition between the focussing due to the self-generated magnetic field, driven by the very important electron current, and the scattering induced by collisions has been analyzed. In a homogeneous, hot plasma, the existence of an optimum current for which the propagation length without scattering is maximum, has been demonstrated. The electron drag-back effect of the axial electric field is also proved to be more significant than the friction due to collisions. By penetrating into the target, the accelerated ions can produce neutrons if the target is deuterated. A strong correlation between the ion acceleration mechanisms and the angle and energy distributions of the produced neutrons has been underlined. (author) [fr

  20. Short pulse absorption dynamics in a p-i-n InGaAsP MQW waveguide saturable absorber

    DEFF Research Database (Denmark)

    Romstad, Francis Pascal; Öhman, Filip; Mørk, Jesper

    2002-01-01

    The saturation properties and absorption dynamics of an InGaAsP MQW waveguide saturable absorber is measured using short 200-fs and 1-ps pulses. The dependence on the pulse energy and reverse bias is characterized.......The saturation properties and absorption dynamics of an InGaAsP MQW waveguide saturable absorber is measured using short 200-fs and 1-ps pulses. The dependence on the pulse energy and reverse bias is characterized....

  1. Resonant multiphoton ionization of caesium atoms by ultra-short laser pulses at 1.06 μm

    International Nuclear Information System (INIS)

    Lompre, L.A.; Mainfray, G.; Manus, C.; Thebault, J.

    1978-01-01

    This paper reports the four-photon ionization of caesium atoms when the laser frequency is tuned through the resonant three-photon transition 6S → 6F. This experiment was performed by using a tunable-wavelength bandwidth-limited subnanosecond laser pulse at 1.06 μm, in the 10 8 -10 9 W.cm -2 laser intensity range. Pulse widths of 1.5 ns, 50 ps, and 15 ps were used. The resonant character of the multiphoton ionization process was observed, even with the shortest pulse of 15 ps. Nevertheless the influence of a temporal effect is demonstrated according to theoretical predictions. The resonance shift ΔE of the 6S → 6F transition energy was found to be linear with the laser intensity I within the range 10 8 -10 9 W.cm -2 . ΔE = αI, with α = 2 cm -1 /GW.cm -2 . This results confirms previous measurements performed with single-mode 35 ns laser pulses and is in very good agreement with calculated resonance shifts

  2. The interaction of intense subpicosecond laser pulses with underdense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Coverdale, Christine Ann [Univ. of California, Davis, CA (United States)

    1995-05-11

    Laser-plasma interactions have been of interest for many years not only from a basic physics standpoint, but also for their relevance to numerous applications. Advances in laser technology in recent years have resulted in compact laser systems capable of generating (psec), 1016 W/cm2 laser pulses. These lasers have provided a new regime in which to study laser-plasma interactions, a regime characterized by Lplasma ≥ 2LRayleigh > cτ. The goal of this dissertation is to experimentally characterize the interaction of a short pulse, high intensity laser with an underdense plasma (no ≤ 0.05ncr). Specifically, the parametric instability known as stimulated Raman scatter (SRS) is investigated to determine its behavior when driven by a short, intense laser pulse. Both the forward Raman scatter instability and backscattered Raman instability are studied. The coupled partial differential equations which describe the growth of SRS are reviewed and solved for typical experimental laser and plasma parameters. This solution shows the growth of the waves (electron plasma and scattered light) generated via stimulated Raman scatter. The dispersion relation is also derived and solved for experimentally accessible parameters. The solution of the dispersion relation is used to predict where (in k-space) and at what frequency (in ω-space) the instability will grow. Both the nonrelativistic and relativistic regimes of the instability are considered.

  3. Fiscal 1998 R and D report on femtosecond technology (power generation facility monitoring system using high- intensity X-ray pulse); 1998 nendo femuto byo technology no kenkyu kaihatsu (kokido X senb pulse riyo hatsuden shisetsu monitoring system no kenkyu kaihatsu) seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This report reports the fiscal 1998 R and D result of Femtosecond Technology Research Association (FESTA) supported by NEDO. For creation of industrial basic technologies supporting the advanced information society in the 21st century, ultra-high speed electronics technology including new functions beyond the speed limit of conventional electronics technologies is indispensable. From such viewpoint, this R and D aims at establishment of the basic technology controlling conditions of beams and electrons in a femtosecond (10{sup -15}-10{sup -12} seconds) region. In development of the titled system, this R and D aims at generation of high-intensity X-ray pulse by interaction between femtosecond light pulse and high-density electron beam pulse, and development of measurement technology (non- stop inspection) of high-speed moving objects using such X- ray pulse. In fiscal 1998, this project succeeded in time stabilization of laser oscillators at a 100fs level and generation of low-emittance electron beam pulse through development of ultra-short pulse synchronization, laser stabilization and electron beam pulse generation technologies. (NEDO)

  4. Time-of-flight small-angle scattering spectrometers on pulsed neutron sources

    International Nuclear Information System (INIS)

    Ostanevich, Yu.M.

    1987-01-01

    The operation principles, constructions, advantages and shortcomings of known time-of-flight small angle neutron scattering (TOF SANS) spectrometers built up with pulsed neutron sources are reviewed. The most important characteristics of TOF SANS apparatuses are rather a high luminosity and the possibility for the measurement in an extremely wide range of scattering vector at a single exposure. This is achieved by simultaneous employment of white beam, TOF technique for wave length-scan and the commonly known angle-scan. However, the electronic equipment, data-matching programs, and the measurement procedure, necessary for accurate normalization of experimental data and their transformation into absolute cross-section scale, they all become more complex, as compared with those for SANS apparatuses operating on steady-state neutron sources, where only angle-scan is used

  5. Pondermotive absorption of a short intense laser pulse in a non-uniform plasma

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, A A; Platonov, K Yu [Inst. for Laser Physics, SC ` Vavilov State Optical Inst.` 12, Birzhevaya line, St Petersburg (Russian Federation); Tanaka, K A

    1998-03-01

    An analytical description of the pondermotive absorption mechanism at a short high intense laser pulse interaction with a strong inhomogeneous plasma is presented. The optimal conditions for the maximum of resonance absorption of laser pulse interaction with non-uniform plasma at normal incidence are founded. (author)

  6. Direct nn-Scattering Measurement With the Pulsed Reactor YAGUAR.

    Science.gov (United States)

    Mitchell, G E; Furman, W I; Lychagin, E V; Muzichka, A Yu; Nekhaev, G V; Strelkov, A V; Sharapov, E I; Shvetsov, V N; Chernuhin, Yu I; Levakov, B G; Litvin, V I; Lyzhin, A E; Magda, E P; Crawford, B E; Stephenson, S L; Howell, C R; Tornow, W

    2005-01-01

    Although crucial for resolving the issue of charge symmetry in the nuclear force, direct measurement of nn-scattering by colliding free neutrons has never been performed. At present the Russian pulsed reactor YAGUAR is the best neutron source for performing such a measurement. It has a through channel where the neutron moderator is installed. The neutrons are counted by a neutron detector located 12 m from the reactor. In preliminary experiments an instantaneous value of 1.1 × 10(18)/cm(2)s was obtained for the thermal neutron flux density. The experiment will be performed by the DIANNA Collaboration as International Science & Technology Center (ISTC) project No. 2286.

  7. MOSFET-based high voltage short pulse generator for ultrasonic transducer excitation

    Science.gov (United States)

    Hidayat, Darmawan; Setianto, Syafei, Nendi Suhendi; Wibawa, Bambang Mukti

    2018-02-01

    This paper presents the generation of a high-voltage short pulse for the excitation of high frequency ultrasonic transducers. This is highly required in the purpose of various ultrasonic-based evaluations, particularly when high resolution measurement is necessary. A high voltage (+760 V) DC voltage source was pulsated by an ultrafast switching MOSFET which was driven by a pulse generator circuit consisting of an astable multivibrator, a one-shot multivibrator with Schmitt trigger input and a high current MOSFET driver. The generated pulses excited a 200-kHz and a 1-MHz ultrasonic transducers and tested in the transmission mode propagation to evaluate the performances of the generated pulse. The test results showed the generator were able to produce negative spike pulses up to -760 V voltage with the shortest time-width of 107.1 nanosecond. The transmission-received ultrasonic waves show frequency oscillation at 200 and 961 kHz and their amplitudes varied with the voltage of excitation pulse. These results conclude that the developed pulse generator is applicable to excite transducer for the generation of high frequency ultrasonic waves.

  8. Decoration of silica nanowires with gold nanoparticles through ultra-short pulsed laser deposition

    Science.gov (United States)

    Gontad, F.; Caricato, A. P.; Cesaria, M.; Resta, V.; Taurino, A.; Colombelli, A.; Leo, C.; Klini, A.; Manousaki, A.; Convertino, A.; Rella, R.; Martino, M.; Perrone, A.

    2017-10-01

    The ablation of a metal target at laser energy densities in the range of 1-10 TW/cm2 leads to the generation of nanoparticles (NP) of the ablated material. This aspect is of particular interest if the immobilization of NPs on three-dimensional (3D) substrates is necessary as for example in sensing applications. In this work the deposition of Au NP by irradiation of a Au bulk target with a sub-picosecond laser beam (500 fs; 248 nm; 10 Hz) on 2D (silica and Si(100)) and 3D substrates (silica nanowire forests) is reported for different number of laser pulses (500, 1000, 1500, 2000, 2500). A uniform coverage of small Au NPs (with a diameter of few nm) on both kinds of substrates has been obtained using a suitable number of laser pulses. The presence of spherical droplets, with a diameter ranging from tens of nm up to few μm was also detected on the substrate surface and their presence can be explained by the weak electron-phonon coupling of Au. The optical characterization of the samples on 2D and 3D substrates evidenced the surface plasmon resonance peak characteristic of the Au NPs although further improvements of the size-distribution are necessary for future applications in sensing devices.

  9. Small-angle scattering at a pulsed neutron source: comparison with a steady-state reactor

    Energy Technology Data Exchange (ETDEWEB)

    Borso, C S; Carpenter, J M; Williamson, F S; Holmblad, G L; Mueller, M H; Faber, J Jr; Epperson, J E; Danyluk, S S [Argonne National Lab., IL (USA)

    1982-08-01

    A time-of-flight small-angle diffractometer employing seven tapered collimator elements and a two-dimensional gas proportional counter was successfully utilized to collect small-angle scattering data from a solution sample of the lipid salt cetylpyridinium chloride, C/sub 21/H/sub 38/N/sup +/.Cl/sup -/, at the Argonne National Laboratory prototype pulsed spallation neutron source, ZING-P'. Comparison of the small-angle scattering observed from the same compound at the University of Missouri Research Reactor corroborated the ZING-P' results. The results are used to compare the neutron flux available from the ZING-P' source relative to the well characterized University of Missouri source. Calculations based on experimentally determined parameters indicated the time-averaged rate of detected neutrons at the ZING-P' pulsed spallation source to have been at least 33% higher than the steady-state count rate from the same sample. Differences between time-of-flight techniques and conventional steady-state techniques are discussed.

  10. Development and application of sub-nanosecond pulse-repeatable hard X-ray source

    International Nuclear Information System (INIS)

    Quan Lin; Fan Yajun; Tu Jing

    2013-01-01

    A multipurpose X-ray source was developed to meet the needs of multitask application such as radiation detection, radiation imaging and so on. The multipurpose X-ray source has characteristic of adjustable width and energy, pulse-repetition operation, ultra-short pulse and fine stability. Its rising time is close to 98.6 ps, the operation voltage reaches 425 kV, and the peak fluence rate exceeds 2.07 × 10 18 cm -2 · s -1 at 10 cm, which provides an ideal radiation environment for relevant application. (authors)

  11. Neutron scattering instrumentation for biology at spallation neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Pynn, R. [Los Alamos National Laboratory, NM (United States)

    1994-12-31

    Conventional wisdom holds that since biological entities are large, they must be studied with cold neutrons, a domain in which reactor sources of neutrons are often supposed to be pre-eminent. In fact, the current generation of pulsed spallation neutron sources, such as LANSCE at Los Alamos and ISIS in the United Kingdom, has demonstrated a capability for small angle scattering (SANS) - a typical cold- neutron application - that was not anticipated five years ago. Although no one has yet built a Laue diffractometer at a pulsed spallation source, calculations show that such an instrument would provide an exceptional capability for protein crystallography at one of the existing high-power spoliation sources. Even more exciting is the prospect of installing such spectrometers either at a next-generation, short-pulse spallation source or at a long-pulse spallation source. A recent Los Alamos study has shown that a one-megawatt, short-pulse source, which is an order of magnitude more powerful than LANSCE, could be built with today`s technology. In Europe, a preconceptual design study for a five-megawatt source is under way. Although such short-pulse sources are likely to be the wave of the future, they may not be necessary for some applications - such as Laue diffraction - which can be performed very well at a long-pulse spoliation source. Recently, it has been argued by Mezei that a facility that combines a short-pulse spallation source similar to LANSCE, with a one-megawatt, long-pulse spallation source would provide a cost-effective solution to the global shortage of neutrons for research. The basis for this assertion as well as the performance of some existing neutron spectrometers at short-pulse sources will be examined in this presentation.

  12. Diffraction properties study of reflection volume holographic grating in dispersive photorefractive material under ultra-short pulse readout

    Energy Technology Data Exchange (ETDEWEB)

    Yi Yingyan; Liu Deming; Liu Hairong, E-mail: yiyingyan0410@163.com [Wuhan National Laboratory for Optoelectronics, School of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 (China)

    2011-02-01

    Based on the modified Kogelnik diffraction efficiency equation, we study the diffraction intensity spectrum and the total diffraction efficiency of reflection volume holographic gratings in photorefractive media. Taking photorefractive LiNbO{sub 3} crystal as an example, the effect of the grating parameters and the pulse width on the diffraction properties is presented under the influence of crystal material dispersion. Under the combined effects, the diffraction pulse profiles and the total diffraction efficiency are compared with and without crystal material dispersion. The results show that the dispersion will decrease the diffraction intensity. Moreover, when pulse width is smaller or the grating spacing and the grating thickness are larger, the influence of dispersion on diffraction is large. The results of our paper can be used in pulse shaping applications.

  13. Pulse sliced picosecond Ballistic Imaging and two planar elastic scattering: Development of the techniques and their application to diesel sprays

    Science.gov (United States)

    Duran, Sean Patrick Hynes

    A line of sight imaging technique was developed which utilized pulse slicing of laser pulses to shorten the duration of the parent laser pulse, thereby making time gating more effective at removing multiple scattered light. This included the development of an optical train which utilized a Kerr cell to selectively pass the initial part of the laser pulse while rejecting photons contained later within the pulse. This line of sight ballistic imaging technique was applied to image high-pressure fuel sprays injected into conditions typically encountered in a diesel combustion chamber. Varying the environmental conditions into which the fuel was injected revealed trends in spray behavior which depend on both temperature and pressure. Different fuel types were also studied in this experiment which demonstrated remarkably different shedding structures from one another. Additional experiments were performed to characterize the imaging technique at ambient conditions. The technique was modified to use two wavelengths to allow further rejection of scattered light. The roles of spatial, temporal and polarization filtration were examined by imaging an USAF 1951 line-pair target through a highly scattering field of polystyrene micro-spheres. The optical density of the scattering field was varied by both the optical path length and number densities of the spheres. The equal optical density, but with variable path length results demonstrated the need for an aggressively shorter pulse length to effectively image the distance scales typical encountered in the primary breakup regions of diesel sprays. Results indicate that the system performance improved via the use of two wavelengths. A final investigation was undertaken to image coherent light which has elastically scattered orthogonal to the direction of the laser pulse. Two wavelengths were focused into ˜150 micron sheets via a cylindrical lens and passed under the injector nozzle. The two sheets were adjustable spatially to

  14. Installation And Test Of Electron Beam Generation System To Produce Far-Infrared Radiation And X-Ray Pulses

    International Nuclear Information System (INIS)

    Wichaisirimongkol, Pathom; Jinamoon, Witoon; Khangrang, Nopadon; Kusoljariyakul, Keerati; Rhodes, Michael W.; Rimjaem, Sakhorn; Saisut, Jatuporn; Chitrlada, Thongbai; Vilaithong, Thiraphat; Wiedemann, Helmut

    2005-10-01

    SURIYA project at the Fast Neutron Research Facility, Chiang Mai University, aims to establish a facility to generate femtosecond electron beams. This electron beam can be used to generate high intensity far-infrared radiation and ultra-short X-ray pulses. The main components of the system are a 3 MeV RF electron gun with a thermionic cathode, an a-magnet as a bunch compressor, and post acceleration 15-20 MeV by a linear accelerator (linac). Between the main components, there are focusing quadrupole magnets and steering magnets to maintain the electron beam within a high vacuum tube. At the end of the beam transport line, a dipole magnet has been installed to function as a beam dump and an energy spectrometer. After the installation and testing of individual major components were completed, we have been investigating the generation of the electron beam, intense far- infrared radiation and ultra short X-ray pulses

  15. First observation of multi-pulse X-ray train via multi-collision laser Compton scattering

    International Nuclear Information System (INIS)

    Kuroda, R.; Toyokawa, H.; Yasumoto, M.; Ikeura-Sekiguchi, H.; Koike, M.; Yamada, K.; Yanagida, T.; Nakajyo, T.; Sakai, F.

    2009-01-01

    A compact hard X-ray source via laser Compton scattering (LCS) has been developed for biological and medical applications at the National Institute of Advanced Industrial Science and Technology (AIST) in Japan. The multi-collision LCS has been investigated in order to enhance the X-ray yields. The first observation of multi-pulse X-ray train with 6 pulses via the multi-collision LCS has been successfully demonstrated between the multi-bunch electron train with 6 bunches and the multi-pulse Ti:Sa laser train with 6 pulses. The 32 MeV electron train was generated from a Cs 2 Te photocathode rf gun with a multi-pulse UV laser and the S-band linac. The Ti:Sa laser train was obtained with the chirp pulse amplification (CPA) including the modified regenerative amplifier. The X-ray train with 6 pulses with 12.6 ns spacing was observed with the micro-channel plate (MCP). The maximum energy of the X-ray is analytically estimated to be about 24 keV and the total number of generated photons was calculated to be about 1.8x10 6 photons/train.

  16. Efficient and controllable thermal ablation induced by short-pulsed HIFU sequence assisted with perfluorohexane nanodroplets.

    Science.gov (United States)

    Chang, Nan; Lu, Shukuan; Qin, Dui; Xu, Tianqi; Han, Meng; Wang, Supin; Wan, Mingxi

    2018-07-01

    A HIFU sequence with extremely short pulse duration and high pulse repetition frequency can achieve thermal ablation at a low acoustic power using inertial cavitation. Because of its cavitation-dependent property, the therapeutic outcome is unreliable when the treatment zone lacks cavitation nuclei. To overcome this intrinsic limitation, we introduced perfluorocarbon nanodroplets as extra cavitation nuclei into short-pulsed HIFU-mediated thermal ablation. Two types of nanodroplets were used with perfluorohexane (PFH) as the core material coated with bovine serum albumin (BSA) or an anionic fluorosurfactant (FS) to demonstrate the feasibility of this study. The thermal ablation process was recorded by high-speed photography. The inertial cavitation activity during the ablation was revealed by sonoluminescence (SL). The high-speed photography results show that the thermal ablation volume increased by ∼643% and 596% with BSA-PFH and FS-PFH, respectively, than the short-pulsed HIFU alone at an acoustic power of 19.5 W. Using nanodroplets, much larger ablation volumes were created even at a much lower acoustic power. Meanwhile, the treatment time for ablating a desired volume significantly reduced in the presence of nanodroplets. Moreover, by adjusting the treatment time, lesion migration towards the HIFU transducer could also be avoided. The SL results show that the thermal lesion shape was significantly dependent on the inertial cavitation in this short-pulsed HIFU-mediated thermal ablation. The inertial cavitation activity became more predictable by using nanodroplets. Therefore, the introduction of PFH nanodroplets as extra cavitation nuclei made the short-pulsed HIFU thermal ablation more efficient by increasing the ablation volume and speed, and more controllable by reducing the acoustic power and preventing lesion migration. Copyright © 2018. Published by Elsevier B.V.

  17. A new coding concept for fast ultrasound imaging using pulse trains

    DEFF Research Database (Denmark)

    Misaridis, T.; Jensen, Jørgen Arendt

    2002-01-01

    Frame rate in ultrasound imaging can he increased by simultaneous transmission of multiple beams using coded waveforms. However, the achievable degree of orthogonality among coded waveforms is limited in ultrasound, and the image quality degrades unacceptably due to interbeam interference....... In this paper, an alternative combined time-space coding approach is undertaken. In the new method all transducer elements are excited with short pulses and the high time-bandwidth (TB) product waveforms are generated acoustically. Each element transmits a short pulse spherical wave with a constant transmit...... delay from element to element, long enough to assure no pulse overlapping for all depths in the image. Frequency shift keying is used for "per element" coding. The received signals from a point scatterer are staggered pulse trains which are beamformed for all beam directions and further processed...

  18. Investigation of laser plasma instabilities using picosecond laser pulses

    International Nuclear Information System (INIS)

    Kline, J L; Montgomery, D S; Yin, L; Flippo, K A; Shimada, T; Johnson, R P; Rose, H A; Albright, B J; Hardin, R A

    2008-01-01

    A new short-pulse version of the single-hot-spot configuration has been implemented to enhance the performance of experiments to understand Stimulated Raman Scattering. The laser pulse length was reduced from ∼200 to ∼3 ps. The reduced pulse length improves the experiment by minimizing effects such as plasma hydrodynamic evolution and ponderomotive filamentation of the interaction beam. In addition, the shortened laser pulses allow full length 2D particle-in-cell simulations of the experiments. Using the improved single-hot-spot configuration, a series of experiments to investigate kλ D scaling of SRS has been performed. Details of the experimental setup and initial results will be presented

  19. Application of Grey Model GM(1, 1) to Ultra Short-Term Predictions of Universal Time

    Science.gov (United States)

    Lei, Yu; Guo, Min; Zhao, Danning; Cai, Hongbing; Hu, Dandan

    2016-03-01

    A mathematical model known as one-order one-variable grey differential equation model GM(1, 1) has been herein employed successfully for the ultra short-term (advantage is that the developed method is easy to use. All these reveal a great potential of the GM(1, 1) model for UT1-UTC predictions.

  20. Bunching phase evolution of short-pulse FEL oscillator system

    CERN Document Server

    Song, S B; Choi, D I

    2000-01-01

    We studied numerically the short-pulse FEL oscillator system using properly defined bunching phase theta sub B and PSI sub B. In stable operation, we have found that the optical field 'locks' the phase to pi/2 at the trailing edge, which gives the maximum gain. Moreover, electrons can be detrapped from ponderomotive bucket due to the spatial variation of the optical field, and this detrapping effect is a major cause of the limit cycle oscillation of the system. The 'bump' of the output power during the amplification usually exists at the near-perfect cavity synchronism regime, which can be explained as the change of the matching condition between electron micropulse and optical pulse.

  1. Impact of Raman scattering on pulse dynamics in a fiber laser with narrow gain bandwidth

    Science.gov (United States)

    Uthayakumar, T.; Alsaleh, M.; Igbonacho, J.; Tchomgo Felenou, E.; Tchofo Dinda, P.; Grelu, Ph; Porsezian, K.

    2018-06-01

    We examine theoretically the multi-pulse dynamics in a dispersion-managed fiber laser, in which the pulse’s spectral width is controlled by a pass-band filter. We show that in the domain of stable states with very narrow spectral width, i.e. which is one order of magnitude smaller than the bandwidth of the Raman gain of the intra-cavity fiber system, the Raman scattering (RS) significantly alters the multi-pulse dynamics. RS is found to have a greater impact in the immediate vicinity of some critical values of the pump power of the intra-cavity gain medium, where processes of pulse fragmentation occur. As a result, all the borders between the zones of stability of the multi-pulse states are altered, i.e. either shifted or suppressed.

  2. Coherent anti-Stokes Raman scattering and spontaneous Raman scattering diagnostics of nonequilibrium plasmas and flows

    Science.gov (United States)

    Lempert, Walter R.; Adamovich, Igor V.

    2014-10-01

    The paper provides an overview of the use of coherent anti-Stokes Raman scattering (CARS) and spontaneous Raman scattering for diagnostics of low-temperature nonequilibrium plasmas and nonequilibrium high-enthalpy flows. A brief review of the theoretical background of CARS, four-wave mixing and Raman scattering, as well as a discussion of experimental techniques and data reduction, are included. The experimental results reviewed include measurements of vibrational level populations, rotational/translational temperature, electric fields in a quasi-steady-state and transient molecular plasmas and afterglow, in nonequilibrium expansion flows, and behind strong shock waves. Insight into the kinetics of vibrational energy transfer, energy thermalization mechanisms and dynamics of the pulse discharge development, provided by these experiments, is discussed. Availability of short pulse duration, high peak power lasers, as well as broadband dye lasers, makes possible the use of these diagnostics at relatively low pressures, potentially with a sub-nanosecond time resolution, as well as obtaining single laser shot, high signal-to-noise spectra at higher pressures. Possibilities for the development of single-shot 2D CARS imaging and spectroscopy, using picosecond and femtosecond lasers, as well as novel phase matching and detection techniques, are discussed.

  3. Ultra-small-angle X-ray scattering characterization of diesel/gasoline soot: sizes and particle-packing conditions

    Science.gov (United States)

    Kameya, Yuki; Lee, Kyeong O.

    2013-10-01

    Regulations on particulate emissions from internal combustion engines tend to become more stringent, accordingly the importance of particulate filters in the after-treatment system has been increasing. In this work, the applicability of ultra-small-angle X-ray scattering (USAXS) to diesel soot cake and gasoline soot was investigated. Gasoline-direct-injection engine soot was collected at different fuel injection timings. The unified fits method was applied to analyze the resultant scattering curves. The validity of analysis was supported by comparing with carbon black and taking the sample images using a transmission electron microscope, which revealed that the primary particle size ranged from 20 to 55 nm. In addition, the effects of particle-packing conditions on the USAXS measurement were demonstrated by using samples suspended in acetone. Then, the investigation was extended to characterization of diesel soot cake deposited on a diesel particulate filter (DPF). Diesel soot was trapped on a small piece of DPF at different deposition conditions which were specified using the Peclet number. The dependence of scattering curve on soot-deposition conditions was demonstrated. To support the interpretation of the USAXS results, soot cake samples were observed using a scanning electron microscope and the influence of particle-packing conditions on scattering curve was discussed.

  4. Ultra-small-angle X-ray scattering characterization of diesel/gasoline soot: sizes and particle-packing conditions

    International Nuclear Information System (INIS)

    Kameya, Yuki; Lee, Kyeong O.

    2013-01-01

    Regulations on particulate emissions from internal combustion engines tend to become more stringent, accordingly the importance of particulate filters in the after-treatment system has been increasing. In this work, the applicability of ultra-small-angle X-ray scattering (USAXS) to diesel soot cake and gasoline soot was investigated. Gasoline-direct-injection engine soot was collected at different fuel injection timings. The unified fits method was applied to analyze the resultant scattering curves. The validity of analysis was supported by comparing with carbon black and taking the sample images using a transmission electron microscope, which revealed that the primary particle size ranged from 20 to 55 nm. In addition, the effects of particle-packing conditions on the USAXS measurement were demonstrated by using samples suspended in acetone. Then, the investigation was extended to characterization of diesel soot cake deposited on a diesel particulate filter (DPF). Diesel soot was trapped on a small piece of DPF at different deposition conditions which were specified using the Peclet number. The dependence of scattering curve on soot-deposition conditions was demonstrated. To support the interpretation of the USAXS results, soot cake samples were observed using a scanning electron microscope and the influence of particle-packing conditions on scattering curve was discussed

  5. Ultra-small-angle X-ray scattering characterization of diesel/gasoline soot: sizes and particle-packing conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kameya, Yuki, E-mail: ykameya@anl.gov; Lee, Kyeong O. [Argonne National Laboratory, Center for Transportation Research (United States)

    2013-10-15

    Regulations on particulate emissions from internal combustion engines tend to become more stringent, accordingly the importance of particulate filters in the after-treatment system has been increasing. In this work, the applicability of ultra-small-angle X-ray scattering (USAXS) to diesel soot cake and gasoline soot was investigated. Gasoline-direct-injection engine soot was collected at different fuel injection timings. The unified fits method was applied to analyze the resultant scattering curves. The validity of analysis was supported by comparing with carbon black and taking the sample images using a transmission electron microscope, which revealed that the primary particle size ranged from 20 to 55 nm. In addition, the effects of particle-packing conditions on the USAXS measurement were demonstrated by using samples suspended in acetone. Then, the investigation was extended to characterization of diesel soot cake deposited on a diesel particulate filter (DPF). Diesel soot was trapped on a small piece of DPF at different deposition conditions which were specified using the Peclet number. The dependence of scattering curve on soot-deposition conditions was demonstrated. To support the interpretation of the USAXS results, soot cake samples were observed using a scanning electron microscope and the influence of particle-packing conditions on scattering curve was discussed.

  6. Ultra-fast facial topometry using pulsed holography

    Science.gov (United States)

    Thelen, Andrea; Frey, Susanne; Hirsch, Sven; Ladrière, Natalie; Hering, Peter

    2006-02-01

    For planning, simulation and documentation of interventions in maxillofacial surgery high resolving soft tissue information of the human face in upright position is needed. This information can be gained by holographic methods, which allow a recording of the whole face in an extremely short time period, so that no movement artefacts occur. The hologram is recorded with a single laser pulse of 25 ns duration and stored in photosensitive material. After automated wet-chemical processing, the hologram is optically reconstructed with a cw-laser. During the optical reconstruction, a light field, which is a one-to-one three-dimensional representation of the recorded face, emerges at its original position and is digitized into a set of two-dimensional projections. Digital image processing leads to merging of these projections into a three-dimensional computer model. Besides the topometric information, a high resolving pixel precise texture is also extracted from the holographic reconstruction and used for the texturing of the computer models. The use of mirrors allows the simultaneous recording of three different views of the face with one laser pulse. The three different views of the face can be combined easily, because they are simultaneously recorded. Thus a recording range of approximately 270 degrees is achieved. In addition to the medical application, high resolving and textured computer models of faces are of tremendous importance for facial reconstruction in anthropology, forensic science and archaeology.

  7. Pulse-shaping strategies in short-pulse fiber amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Schimpf, Damian Nikolaus

    2010-02-09

    Ultrashort pulse lasers are an important tool in scientific and industrial applications. However, many applications are demanding higher average powers from these ultrashort pulse sources. This can be achieved by combining direct diode pumping with novel gain media designs. In particular, ultrashort pulse fiber lasers are now delivering average powers in the kW range. However, the design of fiber lasers, producing pulses with high peak-powers, is challenging due to the impact of nonlinear effects. To significantly reduce these detrimental effects in ultrashort pulse fiber amplifers, the combination of chirped pulse amplification (CPA) and large mode area fibers is employed. Using these methods, the pulse energy of fiber lasers has been steadily increasing for the past few years. Recently, a fiber-based CPA-system has been demonstrated which produces pulse energies of around 1 mJ. However, both the stretching and the enlargement of the mode area are limited, and therefore, the impact of nonlinearity is still noticed in systems employing such devices. The aim of this thesis is the analysis of CPA-systems operated beyond the conventional nonlinear limit, which corresponds to accumulated nonlinear phase-shifts around 1 rad. This includes a detailed discussion of the influence of the nonlinear effect self-phase modulation on the output pulse of CPA-systems. An analytical model is presented. Emphasis is placed on the design of novel concepts to control the impact of self-phase modulation. Pulse-shaping is regarded as a powerful tool to accomplish this goal. Novel methods to control the impact of SPM are experimentally demonstrated. The design of these concepts is based on the theoretical findings. Both amplitude- and phase-shaping are studied. Model-based phase-shaping is implemented in a state-of-the-art fiber CPA-system. The influence of the polarization state is also highlighted. Additionally, existing techniques and recent advances are put into context. (orig.)

  8. Pulse-shaping strategies in short-pulse fiber amplifiers

    International Nuclear Information System (INIS)

    Schimpf, Damian Nikolaus

    2010-01-01

    Ultrashort pulse lasers are an important tool in scientific and industrial applications. However, many applications are demanding higher average powers from these ultrashort pulse sources. This can be achieved by combining direct diode pumping with novel gain media designs. In particular, ultrashort pulse fiber lasers are now delivering average powers in the kW range. However, the design of fiber lasers, producing pulses with high peak-powers, is challenging due to the impact of nonlinear effects. To significantly reduce these detrimental effects in ultrashort pulse fiber amplifers, the combination of chirped pulse amplification (CPA) and large mode area fibers is employed. Using these methods, the pulse energy of fiber lasers has been steadily increasing for the past few years. Recently, a fiber-based CPA-system has been demonstrated which produces pulse energies of around 1 mJ. However, both the stretching and the enlargement of the mode area are limited, and therefore, the impact of nonlinearity is still noticed in systems employing such devices. The aim of this thesis is the analysis of CPA-systems operated beyond the conventional nonlinear limit, which corresponds to accumulated nonlinear phase-shifts around 1 rad. This includes a detailed discussion of the influence of the nonlinear effect self-phase modulation on the output pulse of CPA-systems. An analytical model is presented. Emphasis is placed on the design of novel concepts to control the impact of self-phase modulation. Pulse-shaping is regarded as a powerful tool to accomplish this goal. Novel methods to control the impact of SPM are experimentally demonstrated. The design of these concepts is based on the theoretical findings. Both amplitude- and phase-shaping are studied. Model-based phase-shaping is implemented in a state-of-the-art fiber CPA-system. The influence of the polarization state is also highlighted. Additionally, existing techniques and recent advances are put into context. (orig.)

  9. Clinical observation of one time short-pulse pattern scan laser pan-retinal photocoagulation for proliferative diabetic retinopathy

    Directory of Open Access Journals (Sweden)

    Xin Liu

    2016-04-01

    Full Text Available AIM: To investigate the clinical efficacy and benefit of short-pulse pattern scan laser(PASCALphotocoagulation for proliferative diabetic retinopathy(PDR.METHODS:Twenty-eight PDR patients(42 eyesunderwent short-pulse PASCAL pan-retinal photocoagulation(PRPwere analyzed.The best corrected visual acuity was ≥0.1 in 36 eyes, RESULTS: All the cases had no pain during the short-pulse PASCAL treatment.One year after treatments,the final visual acuity was improved in 6 eyes,kept stable in 28 eyes and decreased in 8 eyes; neovascularization were regressed in 18 eyes(43%, stable in 12 eyes(29%, uncontrolled in 12 eyes(29%. Five eyes(12%received vitrectomy due to vitreous hemorrhage.Compared with before operation, retina thickness in central fovea of macula and visual field had no obvious change after one-time PASCAL PRP(P>0.05. CONCLUSION:The one-time short-pulse PASCAL PRP could stabilize the progress of PDR safely, effectively and simply.

  10. Single flux pulses affecting the ensemble of superconducting qubits

    Science.gov (United States)

    Denisenko, M. V.; Klenov, N. V.; Satanin, A. M.

    2018-02-01

    The present study is devoted to development of a technique for numerical simulation of the wave function dynamics the single Josephson qubits and arrays of noninteracting qubits controlled by ultra-short pulses. We wish to demonstrate the feasibility of a new principle of basic logical operations on the picosecond timescale. The influence of the unipolar pulse ("fluxon") form on the evolution of the state during the execution of the quantum one-qubit operations - "NOT", "READ" and " √{N O T } " - is investigated in the presence of decoherence. In the array of non interacting qubits, the question of the influence of the spread of their energy parameters (tunnel constants) is studied. It is shown that a single unipolar pulse can control a huge array of artificial atoms with 10% spread of geometric parameters in the array.

  11. FY 1999 report on the results of the R and D of femtosecond technology. R and D of femtosecond technology; 1999 nendo femto byo technology no kenkyu kaihatsu seika hokokusho. Femto byo technology no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    This project aims at creating new industrial basement technology which supports the highly information-oriented society in the 21st century, conducts the R and D of technology to control the state of light and electron in the femtosecond time domain (10{sup -15} - 10{sup -12} sec), and establishes the basement technology which exceeds the speed limit of the conventional electronics technology and also includes new functionality. The themes are as follows: 1) R and D of ultra-short pulse optoelectronic technology; 2) R and D of ultra-short optical pulse applied measuring technology. In 1), in addition to the investigational study of the ultra-high speed light source technology, ultra-high speed modulation technology and ultra-high speed switching technology which are needed for the ultra-high speed optical information communication system and the construction, made were the survey and the evaluation of crystal growth technology/process technology of new semiconductor materials which make the fabrication of these high-tech ultra-high speed devices possible. In 2), investigationally studied were the technology for generation/control of ultra-short optical pulse and ultra-short electron beam pulse and the technology for stabilization, and the technology for generation of femtosecond high-intensity X-ray pulse by collision of optical pulse with electron beam pulse. (NEDO)

  12. Data acquisition system for the neutron scattering instruments at the intense pulsed neutron source

    International Nuclear Information System (INIS)

    Crawford, R.K.; Daly, R.T.; Haumann, J.R.; Hitterman, R.L.; Morgan, C.B.; Ostrowski, G.E.; Worlton, T.G.

    1981-01-01

    The Intense Pulsed Neutron Source (IPNS) at Argonne National Laboratory is a major new user-oriented facility which is now coming on line for basic research in neutron scattering and neutron radiation damage. This paper describes the data-acquisition system which will handle data acquisition and instrument control for the time-of-flight neutron-scattering instruments at IPNS. This discussion covers the scientific and operational requirements for this system, and the system architecture that was chosen to satisfy these requirements. It also provides an overview of the current system implementation including brief descriptions of the hardware and software which have been developed

  13. Variable Power, Short Microwave Pulses Generation using a CW Magnetron

    Directory of Open Access Journals (Sweden)

    CIUPA, R.

    2011-05-01

    Full Text Available Fine control of microwave power radiation in medical and scientific applications is a challenging task. Since a commercial Continuous Wave (CW magnetron is the most inexpensive microwave device available today on the market, it becomes the best candidate for a microwave power generator used in medical diathermy and hyperthermia treatments or high efficiency chemical reactions using microwave reactors as well. This article presents a new method for driving a CW magnetron with short pulses, using a modified commercial Zero Voltage Switching (ZVS inverter, software driven by a custom embedded system. The microwave power generator designed with this method can be programmed for output microwave pulses down to 1% of the magnetron's power and allows microwave low frequency pulse modulation in the range of human brain electrical activity, intended for medical applications. Microwave output power continuous control is also possible with the magnetron running in the oscillating area, using a dual frequency Pulse Width Modulation (PWM, where the low frequency PWM pulse is modulating a higher resonant frequency required by the ZVS inverter's transformer. The method presented allows a continuous control of both power and energy (duty-cycle at the inverter's output.

  14. Ultra-violet emission in Ho:ZBLAN fiber

    International Nuclear Information System (INIS)

    Kowalska, M.; Klocek, G.; Piramidowicz, R.; Malinowski, M.

    2004-01-01

    We report on the short wavelength (green, blue, and ultra-violet (UV)) emission in trivalent holmium doped fluoro-zirconate fiber (Ho 3+ :ZBLAN) under direct and upconversion pumping. Efficient red to UV upconversion has been observed using 647 nm cw pumping by krypton ion laser. A close to cubic UV signal intensity dependence on incident red pump power was determined, confirming the three-photon character of the observed process. The responsible upconversion mechanisms were investigated and shown to be excited state absorption (ESA) via low-lying 5 I 7 and 5 I 6 sates. Dynamics of the involved excited states have been studied under pulsed laser excitation

  15. Absence of a Metallicity Effect for Ultra-short-period Planets

    International Nuclear Information System (INIS)

    Winn, Joshua N.; Sanchis-Ojeda, Roberto; Isaacson, Howard; Marcy, Geoffrey W.; Rogers, Leslie; Petigura, Erik A.; Howard, Andrew W.; Schlaufman, Kevin C.; Cargile, Phillip; Hebb, Leslie

    2017-01-01

    Ultra-short-period (USP) planets are a newly recognized class of planets with periods shorter than one day and radii smaller than about 2  R ⊕ . It has been proposed that USP planets are the solid cores of hot Jupiters that have lost their gaseous envelopes due to photo-evaporation or Roche lobe overflow. We test this hypothesis by asking whether USP planets are associated with metal-rich stars, as has long been observed for hot Jupiters. We find the metallicity distributions of USP-planet and hot-Jupiter hosts to be significantly different ( p = 3 × 10 −4 ) based on Keck spectroscopy of Kepler stars. Evidently, the sample of USP planets is not dominated by the evaporated cores of hot Jupiters. The metallicity distribution of stars with USP planets is indistinguishable from that of stars with short-period planets with sizes between 2 and 4  R ⊕ . Thus, it remains possible that the USP planets are the solid cores of formerly gaseous planets that are smaller than Neptune.

  16. Absence of a Metallicity Effect for Ultra-short-period Planets

    Energy Technology Data Exchange (ETDEWEB)

    Winn, Joshua N. [Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ 08540 (United States); Sanchis-Ojeda, Roberto; Isaacson, Howard; Marcy, Geoffrey W. [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); Rogers, Leslie [Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Petigura, Erik A.; Howard, Andrew W. [Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Schlaufman, Kevin C. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Cargile, Phillip [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Hebb, Leslie [Hobart and William Smith Colleges, Geneva, NY 14456 (United States)

    2017-08-01

    Ultra-short-period (USP) planets are a newly recognized class of planets with periods shorter than one day and radii smaller than about 2  R {sub ⊕}. It has been proposed that USP planets are the solid cores of hot Jupiters that have lost their gaseous envelopes due to photo-evaporation or Roche lobe overflow. We test this hypothesis by asking whether USP planets are associated with metal-rich stars, as has long been observed for hot Jupiters. We find the metallicity distributions of USP-planet and hot-Jupiter hosts to be significantly different ( p = 3 × 10{sup −4}) based on Keck spectroscopy of Kepler stars. Evidently, the sample of USP planets is not dominated by the evaporated cores of hot Jupiters. The metallicity distribution of stars with USP planets is indistinguishable from that of stars with short-period planets with sizes between 2 and 4  R {sub ⊕}. Thus, it remains possible that the USP planets are the solid cores of formerly gaseous planets that are smaller than Neptune.

  17. Ultra-wideband horn antenna with abrupt radiator

    Science.gov (United States)

    McEwan, Thomas E.

    1998-01-01

    An ultra-wideband horn antenna transmits and receives impulse waveforms for short-range radars and impulse time-of flight systems. The antenna reduces or eliminates various sources of close-in radar clutter, including pulse dispersion and ringing, sidelobe clutter, and feedline coupling into the antenna. Dispersion is minimized with an abrupt launch point radiator element; sidelobe and feedline coupling are minimized by recessing the radiator into a metallic horn. Low frequency cut-off associated with a horn is extended by configuring the radiator drive impedance to approach a short circuit at low frequencies. A tapered feed plate connects at one end to a feedline, and at the other end to a launcher plate which is mounted to an inside wall of the horn. The launcher plate and feed plate join at an abrupt edge which forms the single launch point of the antenna.

  18. Short-pulse generation in a diode-end-pumped solid-state laser

    CSIR Research Space (South Africa)

    Ngcobo, S

    2010-09-01

    Full Text Available , Development of High Average Power Picosecond Laser Systems, Opto- Electronic Devices, (2002). INTRODUCTION A Nd:YVO4 modelocked laser has been constructed using a resonator designed according to the theoretical parameters. The laser produced pulses... theoretical PQSML,th of 2.08W. Short-Pulse Generation in a Diode-End-Pumped Solid-State Laser S. Ngcobo1,2, C. Bollig1 and H. Von Bergmann2 1CSIR National Laser Centre, PO Box 395, Pretoria, 0001, South Africa 2Laser Research Center, University...

  19. Microstructure and lubricating property of ultra-fast laser pulse textured silicon carbide seals

    Science.gov (United States)

    Chen, Chien-Yu; Chung, Chung-Jen; Wu, Bo-Hsiung; Li, Wang-Long; Chien, Chih-Wei; Wu, Ping-Han; Cheng, Chung-Wei

    2012-05-01

    Most previous studies have employed surface patterning to improve the performance of lubrication systems. However, few have experimentally analyzed improved effects on friction reduction in SiC mechanical seals by ultra-fast laser pulse texturing. This work applies surface texturing on a non-contact mechanical seal and analyzes the characteristics of the resultant surface morphology. A femtosecond laser system is employed to fabricate micro/nanostructures on the SiC mechanical seal, and generates microscale-depth stripes and induces nanostructures on the seal surface. This work examines the morphology and cross section of the SiC nanostructures that correspond to the different scanning speeds of the laser pulse. Results show that varying the scanning speed enables the application of nanostructures of different amplitudes and widths on the surface of the seal. The friction coefficient of the introduced SiC full-textured seal is about 20% smaller than that of a conventional SiC mechanical seal. Hence, femtosecond laser texturing is effective and enables direct fabrication of the surface micro/nanostructures of SiC seals. This technique also serves as a potential approach to lubricating applications.

  20. Microstructure and lubricating property of ultra-fast laser pulse textured silicon carbide seals

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chien-Yu.; Li, Wang-Long [National Cheng Kung University, Department of Materials Science and Engineering, Tainan, Taiwan (China); Chung, Chung-Jen; Wu, Bo-Hsiung [National Cheng Kung University, Center for Micro/Nano Science and Technology, Tainan, Taiwan (China); Chien, Chih-Wei; Wu, Ping-Han; Cheng, Chung-Wei [ITRI South, Industrial Technology, Research Institute, Laser Application Technology Center, Tainan, Taiwan (China)

    2012-05-15

    Most previous studies have employed surface patterning to improve the performance of lubrication systems. However, few have experimentally analyzed improved effects on friction reduction in SiC mechanical seals by ultra-fast laser pulse texturing. This work applies surface texturing on a non-contact mechanical seal and analyzes the characteristics of the resultant surface morphology. A femtosecond laser system is employed to fabricate micro/nanostructures on the SiC mechanical seal, and generates microscale-depth stripes and induces nanostructures on the seal surface. This work examines the morphology and cross section of the SiC nanostructures that correspond to the different scanning speeds of the laser pulse. Results show that varying the scanning speed enables the application of nanostructures of different amplitudes and widths on the surface of the seal. The friction coefficient of the introduced SiC full-textured seal is about 20% smaller than that of a conventional SiC mechanical seal. Hence, femtosecond laser texturing is effective and enables direct fabrication of the surface micro/nanostructures of SiC seals. This technique also serves as a potential approach to lubricating applications. (orig.)

  1. Quantum computer based on activated dielectric nanoparticles selectively interacting with short optical pulses

    International Nuclear Information System (INIS)

    Gadomskii, Oleg N; Kharitonov, Yu Ya

    2004-01-01

    The operation principle of a quantum computer is proposed based on a system of dielectric nanoparticles activated with two-level atoms - cubits, in which electric dipole transitions are excited by short intense optical pulses. It is proved that the logical operation (logical operator) CNOT (controlled NOT) is performed by means of time-dependent transfer of quantum information over 'long' (of the order of 10 4 nm) distances between spherical nanoparticles owing to the delayed interaction between them in the optical radiation field. It is shown that one-cubit and two-cubit logical operators required for quantum calculations can be realised by selectively exciting dielectric particles with short optical pulses. (quantum calculations)

  2. Comment on "Defocusing complex short-pulse equation and its multi-dark-soliton solution"

    Science.gov (United States)

    Youssoufa, Saliou; Kuetche, Victor K.; Kofane, Timoleon C.

    2017-08-01

    In their recent paper, Feng et al. [Phys. Rev. E 93, 052227 (2016), 10.1103/PhysRevE.93.052227] proposed a complex short-pulse equation of both focusing and defocusing types. They studied in detail the defocusing case and derived its multi-dark-soliton solutions. Nonetheless, from a physical viewpoint in order to better and deeply understand their genuine implications, we find it useful to provide a real and proper background for the derivation of the previous evolution system while showing that the expression of the nonlinear electric polarization the above authors used in their scheme is not suitable for getting the defocusing complex short-pulse equation.

  3. The Toulouse pulsed magnet facility

    International Nuclear Information System (INIS)

    2006-01-01

    The 'Laboratoire National des Champs Magnetiques Pulses' (LNCMP) is an international user facility providing access to pulsed magnetic fields up to and beyond 60 T. The laboratory disposes of 10 magnet stations equipped with long-pulse magnets operating in the 35-60 T range and a short-pulse system reaching magnetic fields in excess of 70 T. The experimental infrastructure includes various high and low-temperature systems ranging from ordinary flow-type cryostats to dilution refrigerators reaching 50 mK, as well as different types of high-pressure cells. Experimental techniques include magnetization, transport, luminescence, IR-spectroscopy and polarimetry. The LNCMP pursues an extensive in-house research program focussing on all technological and scientific aspects of pulsed magnetic fields. Recent technical developments include the implementation of 60 T rapid-cooling coils, an 80 T prototype, a pulsed dipole magnet for optical investigations of dilute matter and a transportable horizontal access magnet for small angle x-ray scattering experiments. Scientific activities cover a variety of domains, including correlated electron systems, magnetism, semiconductors and nanoscience

  4. Development of the dense plasma focus for short-pulse applications

    Science.gov (United States)

    Bennett, N.; Blasco, M.; Breeding, K.; Constantino, D.; DeYoung, A.; DiPuccio, V.; Friedman, J.; Gall, B.; Gardner, S.; Gatling, J.; Hagen, E. C.; Luttman, A.; Meehan, B. T.; Misch, M.; Molnar, S.; Morgan, G.; O'Brien, R.; Robbins, L.; Rundberg, R.; Sipe, N.; Welch, D. R.; Yuan, V.

    2017-01-01

    The dense plasma focus (DPF) has long been considered a compact source for pulsed neutrons and has traditionally been optimized for the total neutron yield. In this paper, we describe the efforts to optimize the DPF for short-pulse applications by introducing a reentrant cathode at the end of the coaxial plasma gun. The resulting neutron pulse widths are reduced by an average of 21 ±9 % from the traditional long-drift DPF design. Pulse widths and yields achieved from deuterium-tritium fusion at 2 MA are 61.8 ±30.7 ns FWHM and 1.84 ±0.49 ×1012 neutrons per shot. Simulations were conducted concurrently to elucidate the DPF operation and confirm the role of the reentrant cathode. A hybrid fluid-kinetic particle-in-cell modeling capability demonstrates correct sheath velocities, plasma instabilities, and fusion yield rates. Consistent with previous findings that the DPF is dominated by beam-target fusion from superthermal ions, we estimate that the thermonuclear contribution is at the 1% level.

  5. Controllable nonlocal behaviour by cascaded second-harmonic generation of fs pulses

    DEFF Research Database (Denmark)

    Bache, Morten; Bang, Ole; Krolikowski, Wieslaw

    2008-01-01

    Second-harmonic generation (SHG) of ultra-short pulses can act as a prototypical nonlocal nonlinear model, since the strength and nature of the temporal nonlocality can be controlled through the phase-mismatch parameter. The presence of a group-velocity mismatch namely implies that when the phase...... mismatch is small the nonlocal response function becomes oscillatory, while for large phase mismatch it becomes localized. In the transition between the two regimes the strength of the nonlocality diverges, and the system goes from a weakly nonlocal to a strongly nonlocal state. When simulating soliton...... compression to few-cycle pulses in the cascaded quadratic soliton compressor, the spectral content of the full coupled SHG model is predicted by the nonlocal model even when few-cycle pulses are interacting....

  6. A high-resolution two-pulse coherent anti-Stokes Raman scattering spectrum using a spectral amplitude modulation

    International Nuclear Information System (INIS)

    Lu, Chenhui; Zhang, Shian; Wu, Meizhen; Jia, Tianqing; Sun, Zhenrong; Qiu, Jianrong

    2013-01-01

    Femtosecond coherent anti-Stokes Raman scattering (CARS) spectra suffer from low spectral resolution because of the broadband laser spectrum. In this paper, we propose a feasible scheme to achieve a high-resolution two-pulse CARS spectrum by shaping both the pump and probe pulses using rectangular amplitude modulation. We show that a narrowband hole in the CARS spectrum can be created by the amplitude-shaped laser pulse, the position of which is correlated with the Raman resonant frequency of the molecule. Thus, by observing holes in the CARS spectrum, we are able to obtain a high-resolution CARS spectrum and the energy-level diagram of the molecule. (paper)

  7. Gnom 3 as a Donor for Ultra Short- Stem Trait of Winter Rye

    Directory of Open Access Journals (Sweden)

    В. В. Скорик

    2011-05-01

    Full Text Available The article reflects the progress of genetic decrease of Rye F 3k- 10029/ Saratovske (Саратовське 4 height by means of the shortest stem plants selection during the period from 1974 to 2010. 37 years selection of the shortest- stern genotypes decreased the plants height from 119.33 cm to 22.57cm. Targeted selection into minus direction decreased the plants height in 5,29 times on the background of the dominant HI expression. In average, the height of plants in the course of 27 breeding cycles were decreasing by 2.69 cm, but that was not going gradually. A new donor Gnom 3 had been created for ultra short-stem trait of the Winter Rye, with the marking of alleles HI-3HI-3. Relative influence on the minus selection efficiency has been established by height of plants for the selection differential (38% and coefficient of inheritance in narrow sense (14,56%. Realized efficiency of selection in decrease of winter rye height in 72,08% of cases corresponded to predicted hit ration of the breeding. Analyzes of genetic and statistical parameters and correlation clusters of 11 utilitarian average characteristics of ultra short- stem rye Gnom 3 for the period of 1974 to 2010 has been performed.

  8. An imaging proton spectrometer for short-pulse laser plasma experiments

    International Nuclear Information System (INIS)

    Chen Hui; Hazi, A. U.; Maren, R. van; Chen, S. N.; Le Pape, S.; Rygg, J. R.; Shepherd, R.; Fuchs, J.; Gauthier, M.

    2010-01-01

    The ultraintense short pulse laser pulses incident on solid targets can generate energetic protons. In addition to their potentially important applications such as in cancer treatments and proton fast ignition, these protons are essential to understand the complex physics of intense laser plasma interaction. To better characterize these laser-produced protons, we designed and constructed a novel spectrometer that will not only measure proton energy distribution with high resolution but also provide its angular characteristics. The information obtained from this spectrometer compliments those from commonly used diagnostics including radiochromic film packs, CR39 nuclear track detectors, and nonimaging magnetic spectrometers. The basic characterizations and sample data from this instrument are presented.

  9. An imaging proton spectrometer for short-pulse laser plasma experiments

    Energy Technology Data Exchange (ETDEWEB)

    Chen Hui; Hazi, A. U.; Maren, R. van; Chen, S. N.; Le Pape, S.; Rygg, J. R.; Shepherd, R. [Lawrence Livermore National Laboratory, Livemore, California 94551 (United States); Fuchs, J.; Gauthier, M. [LULI Ecole Polytechnique, 91128 Palaiseau Cedex (France)

    2010-10-15

    The ultraintense short pulse laser pulses incident on solid targets can generate energetic protons. In addition to their potentially important applications such as in cancer treatments and proton fast ignition, these protons are essential to understand the complex physics of intense laser plasma interaction. To better characterize these laser-produced protons, we designed and constructed a novel spectrometer that will not only measure proton energy distribution with high resolution but also provide its angular characteristics. The information obtained from this spectrometer compliments those from commonly used diagnostics including radiochromic film packs, CR39 nuclear track detectors, and nonimaging magnetic spectrometers. The basic characterizations and sample data from this instrument are presented.

  10. Pulsed neutron sources for epithermal neutrons

    International Nuclear Information System (INIS)

    Windsor, C.G.

    1978-01-01

    It is shown how accelerator based neutron sources, giving a fast neutron pulse of short duration compared to the neutron moderation time, promise to open up a new field of epithermal neutron scattering. The three principal methods of fast neutron production: electrons, protons and fission boosters will be compared. Pulsed reactors are less suitable for epithermal neutrons and will only be briefly mentioned. The design principle of the target producing fast neutrons, the moderator and reflector to slow them down to epithermal energies, and the cell with its beam tubes and shielding will all be described with examples taken from the new Harwell electron linac to be commissioned in 1978. A general comparison of pulsed neutron performance with reactors is fraught with difficulties but has been attempted. Calculation of the new pulsed source fluxes and pulse widths is now being performed but we have taken the practical course of basing all comparisons on extrapolations from measurements on the old 1958 Harwell electron linac. Comparisons for time-of-flight and crystal monochromator experiments show reactors to be at their best at long wavelengths, at coarse resolution, and for experiments needing a specific incident wavelength. Even existing pulsed sources are shown to compete with the high flux reactors in experiments where the hot neutron flux and the time-of-flight methods can be best exploited. The sources under construction can open a new field of inelastic neutron scattering based on energy transfer up to an electron volt and beyond

  11. Forward voltage short-pulse technique for measuring high power laser array junction temperature

    Science.gov (United States)

    Meadows, Byron L. (Inventor); Amzajerdian, Frazin (Inventor); Barnes, Bruce W. (Inventor); Baker, Nathaniel R. (Inventor)

    2012-01-01

    The present invention relates to a method of measuring the temperature of the P-N junction within the light-emitting region of a quasi-continuous-wave or pulsed semiconductor laser diode device. A series of relatively short and low current monitor pulses are applied to the laser diode in the period between the main drive current pulses necessary to cause the semiconductor to lase. At the sufficiently low current level of the monitor pulses, the laser diode device does not lase and behaves similar to an electronic diode. The voltage across the laser diode resulting from each of these low current monitor pulses is measured with a high degree of precision. The junction temperature is then determined from the measured junction voltage using their known linear relationship.

  12. LIDAR Thomson scattering for advanced tokamaks. Final report

    International Nuclear Information System (INIS)

    Molvik, A.W.; Lerche, R.A.; Nilson, D.G.

    1996-01-01

    The LIDAR Thomson Scattering for Advanced Tokamaks project made a valuable contribution by combining LLNL expertise from the MFE Program: tokamak design and diagnostics, and the ICF Program and Physics Dept.: short-pulse lasers and fast streak cameras. This multidisciplinary group evaluated issues involved in achieving a factor of 20 higher high spatial resolution (to as small as 2-3 mm) from the present state of the art in LIDAR Thomson scattering, and developed conceptual designs to apply LIDAR Thomson scattering to three tokamaks: Upgraded divertor measurements in the existing DIII-D tokamak; Both core and divertor LIDAR Thomson scattering in the proposed (now cancelled) TPX; and core, edge, and divertor LIDAR Thomson scattering on the presently planned International Tokamak Experimental Reactor, ITER. Other issues were evaluated in addition to the time response required for a few millimeter spatial resolution. These include the optimum wavelength, 100 Hz operation of the laser and detectors, minimizing stray light - always the Achilles heel of Thomson scattering, and time dispersion in optics that could prevent good spatial resolution. Innovative features of our work included: custom short pulsed laser concepts to meet specific requirements, use of a prism spectrometer to maintain a constant optical path length for high temporal and spatial resolution, the concept of a laser focus outside the plasma to ionize gas and form an external fiducial to use in locating the plasma edge as well as to spread the laser energy over a large enough area of the inner wall to avoid laser ablation of wall material, an improved concept for cleaning windows between shots by means of laser ablation, and the identification of a new physics issue - nonlinear effects near a laser focus which could perturb the plasma density and temperature that are to be measured

  13. Study of the fast inversion recovery pulse sequence. With reference to fast fluid attenuated inversion recovery and fast short TI inversion recovery pulse sequence

    International Nuclear Information System (INIS)

    Tsuchihashi, Toshio; Maki, Toshio; Suzuki, Takeshi

    1997-01-01

    The fast inversion recovery (fast IR) pulse sequence was evaluated. We compared the fast fluid attenuated inversion recovery (fast FLAIR) pulse sequence in which inversion time (TI) was established as equal to the water null point for the purpose of the water-suppressed T 2 -weighted image, with the fast short TI inversion recovery (fast STIR) pulse sequence in which TI was established as equal to the fat null point for purpose of fat suppression. In the fast FLAIR pulse sequence, the water null point was increased by making TR longer. In the FLAIR pulse sequence, the longitudinal magnetization contrast is determined by TI. If TI is increased, T 2 -weighted contrast improves in the same way as increasing TR for the SE pulse sequence. Therefore, images should be taken with long TR and long TI, which are longer than TR and longer than the water null point. On the other hand, the fat null point is not affected by TR in the fast STIR pulse sequence. However, effective TE was affected by variation of the null point. This increased in proportion to the increase in effective TE. Our evaluation indicated that the fast STIR pulse sequence can control the extensive signals from fat in a short time. (author)

  14. High intensive short laser pulse interaction with submicron clusters media

    International Nuclear Information System (INIS)

    Faenov, A. Ya

    2008-01-01

    The interaction of short intense laser pulses with structured targets, such as clusters, exhibits unique features, stemming from the enhanced absorption of the incident laser light compared to solid targets. Due to the increased absorption, these targets are heated significantly, leading to enhanced emission of x rays in the keV range and generation of electrons and multiple charged ions with kinetic energies from tens of keV to tens of MeV. Possible applications of these targets can be an electron/ion source for a table top accelerator, a neutron source for a material damage study, or an x ray source for microscopy or lithography. The overview of recent results, obtained by the high intensive short laser pulse interaction with different submicron clusters media will be presented. High resolution K and L shell spectra of plasma generated by superintense laser irradiation of micron sized Ar, Kr and Xe clusters have been measured with intensity 10"17"-10"19"W/cm"2"and a pulse duration of 30-1000fs. It is found that hot electrons produced by high contrast laser pulses allow the isochoric heating of clusters and shift the ion balance toward the higher charge states, which enhances both the X ray line yield and the ion kinetic energy. Irradiation of clusters, produced from such gas mixture, by a fs Ti:Sa laser pulses allows to enhance the soft X ray radiation of Heβ(665.7eV)and Lyα(653.7eV)of Oxygen in 2-8 times compare with the case of using as targets pure CO"2"or N"2"O clusters and reach values 2.8x10"10"(∼3μJ)and 2.7x10"10"(∼2.9μJ)ph/(sr·pulse), respectively. Nanostructure conventional soft X ray images of 100nm thick Mo and Zr foils in a wide field of view (cm"2"scale)with high spatial resolution (700nm)are obtained using the LiF crystals as soft X ray imaging detectors. When the target used for the ion acceleration studies consists of solid density clusters embedded into the background gas, its irradiation by high intensity laser light makes the target

  15. A hybrid approach for generating ultra-short bunches for advanced accelerator applications

    Energy Technology Data Exchange (ETDEWEB)

    Stratakis, Diktys [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-09-01

    Generation of electron beams with high phase-space density, short bunch length and high peak current is an essential requirement for future linear colliders and bright electron beam sources. Unfortunately, such bunches cannot be produced directly from the source since forces from the mutual repulsion of electrons would destroy the brilliance of the beam within a short distance. Here, we detail a beam dynamics study of an innovative two-stage compression scheme that can generate ultra-short bunches without degrading the beam quality. In the first stage, the beam is compressed with an advanced velocity bunching technique in which the longitudinal phase space is rotated so that electrons on the bunch tail become faster than electrons in the bunch head. In the second stage, the beam is further compressed with a conventional magnetic chicane. With the aid of numerical simulations we show that our two-staged scheme is capable to increase the current of a 50 pC bunch to a notable factor of 100 while the emittance growth can be suppressed to 1% with appropriate tailoring of the initial beam distribution.

  16. Birefringence profile adjustment by spatial overlap of nanogratings induced by ultra-short laser pulses inside fused silica

    Science.gov (United States)

    Arabanian, Atoosa Sadat; Najafi, Somayeh; Ajami, Aliasghar; Husinsky, Wolfgang; Massudi, Reza

    2018-02-01

    We have succeeded in realizing a method to control the spatial distribution of optical retardation as a result of nanogratings in bulk-fused silica induced by ultrashort laser pulses. A colorimetry-based retardation measurement (CBRM) based on the Michel-Levy interference color chart using a polarization microscope is used to determine the profiles of the optical retardation. Effects of the spatial overlap of written regions as well as the energy and polarization of the writing pulses on the induced retardations are studied. It has been found that the spatial overlap of lines written by pulse trains with different energies and polarizations can result in an adjustment of the induced birefringence in the overlap region. This approach offers the possibility of designing polarization-sensitive components with a desired birefringence profile.

  17. Multiphoton atomic ionization in the field of a very short laser pulse

    International Nuclear Information System (INIS)

    Popov, V.S.

    2001-01-01

    Closed analytic expressions are derived for the probability of multiphoton atomic and ionic ionization in a variable electric field E(t), which are applicable for arbitrary Keldysh parameters γ. Dependencies of the ionization probability and photoelectron pulse spectrum on the shape of a very short laser pulse are analyzed. Examples of pulse fields of various forms, including a modulated light pulse with a Gaussian or Lorentz envelope, are considered in detail. The interference effect in the photoelectron energy spectrum during atomic ionization by a periodic field of a general form is examined. The range of applicability of the adiabatic approximation in the multiphoton ionization theory is discussed. The imaginary time method is used in the calculations, which allows the probability of particle tunneling through oscillating barriers to be effectively calculated

  18. Bit rate and pulse width dependence of four-wave mixing of short optical pulses in semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Diez, S.; Mecozzi, A.; Mørk, Jesper

    1999-01-01

    We investigate the saturation properties of four-wave mixing of short optical pulses in a semiconductor optical amplifier. By varying the gain of the optical amplifier, we find a strong dependence of both conversion efficiency and signal-to-background ratio on pulse width and bit rate....... In particular, the signal-to-background ratio can be optimized for a specific amplifier gain. This behavior, which is coherently described in experiment and theory, is attributed to the dynamics of the amplified spontaneous emission, which is the main source of noise in a semiconductor optical amplifier....

  19. Small-angle neutron scattering of short-segment block polymers

    International Nuclear Information System (INIS)

    Cooper, S.L.; Miller, J.A.; Homan, J.G.

    1988-01-01

    Small-angle neutron scattering has been used to investigate the chain conformation of the hard and soft segments in short-segment polyether-polyester and polyether-polyurethane materials. The method of phase-contrast matching was used to eliminate the coherent neutron scattering due to the two-phase microstructure in these materials. The partial deutero-labelling necessary for this technique also provides a neutron scattering contrast between labelled and unlabelled segments. The structure factor for each segment type is determined from the coherent scattering from such deuterolabelled materials. In all of the materials examined, the poly(tetramethylene oxide) (PTMO) soft segment was found to be in a slightly extended conformation relative to bulk PTMO at room temperature. Upon heating, the PTMO segments contracted to a more relaxed conformation. In one polyether-polyurethane sample, the radius of gyration of the PTMO segment increased again at high temperatures, indicating phase mixing. The hardsegment radii of gyration in the polyether-polyester materials were found to increase with temperature, indicating a transition from a chain-folded conformation at room temperature to a more extended conformation at higher temperatures. The radius of gyration of the whole polyether-polyester chain first decreased then increased with temperature, indicative of the combined effects of the component hard- and soft-segment chain conformation changes. The hard-segment radius of gyration in a polyether-polyurethane was observed to decrease with temperature. (orig.)

  20. Traveling waves of the regularized short pulse equation

    International Nuclear Information System (INIS)

    Shen, Y; Horikis, T P; Kevrekidis, P G; Frantzeskakis, D J

    2014-01-01

    The properties of the so-called regularized short pulse equation (RSPE) are explored with a particular focus on the traveling wave solutions of this model. We theoretically analyze and numerically evolve two sets of such solutions. First, using a fixed point iteration scheme, we numerically integrate the equation to find solitary waves. It is found that these solutions are well approximated by a finite sum of hyperbolic secants powers. The dependence of the soliton's parameters (height, width, etc) to the parameters of the equation is also investigated. Second, by developing a multiple scale reduction of the RSPE to the nonlinear Schrödinger equation, we are able to construct (both standing and traveling) envelope wave breather type solutions of the former, based on the solitary wave structures of the latter. Both the regular and the breathing traveling wave solutions identified are found to be robust and should thus be amenable to observations in the form of few optical cycle pulses. (paper)

  1. High repetition Thomson scattering profile measurements using a nonimaging technique

    International Nuclear Information System (INIS)

    Zigler, A.

    1983-01-01

    The Thomson scattering technique is one of the most useful diagnostics for the study of magnetically confined plasmas. In this work, a simple multi-space and time Thomson scattering technique has been proposed. The spatial resolution is obtained by conversion of the scattered laser light collected from different plasma points into a time sequence. This can be done by focusing the image of the laser beam through a wideangle lens onto an array of fiber optic light pipes. Since the laser emits relatively short pulses (1020 nsec), scattered light pulses from each of the light pipes can be delayed relative to one another without overlapping. Such delays can be achieved by using an array of fiber optics of differing lengths (2-4 meters). The light is transmitted then into a spectrometer and detected by fast detectros (few nsec rise and fall time). Reconstruction from the time sequence to the spatial structure is obtained by using existing fast gate circuits. The data then is A/D converted and handled by using a data acquisition system

  2. Propagation of an ultra intense laser pulse in an under dense plasma: production of quasi monoenergetic electron beams and development of applications; Propagation d'une impulsion laser ultra-intense dans un plasma sous-dense: generation de faisceaux d'electrons quasi monoenergetiques et developpement d'applications

    Energy Technology Data Exchange (ETDEWEB)

    Glinec, Y

    2006-09-15

    This experimental study concerns the generation of electron beams with original properties. These electrons beams originate from the interaction of an ultra-intense and short laser pulse with a gas jet. Previously, these electron beams had a large divergence and a broad spectrum. A major improvement in this field was achieved when an electron beam with low divergence (10 mrad) and a peaked spectrum (170 MeV) was observed during this thesis, using a new single shot electron spectrometer. A parametric study of the interaction allowed to observe the evolution of the electron beam. Experiments have been carried out to deepen the characterization of the electron beam. The observation of transition radiation generated by the electrons at an interface shows that the electron beam interacts with the laser pulse during the acceleration. Radial oscillations of the electron beam around the laser axis, named betatron oscillations, were also observed on the electron spectra. Such a quasi-monoenergetic spectrum is essential for many applications. In order to justify the interest of this electron beam, several applications are presented: a sub-milli-metric gamma-ray radiography of dense objects, a dose profile of the electron beam comparable to present capabilities of photon sources for radiotherapy, a very short temporal profile useful for water radiolysis and the generation of a bright X-ray source with low divergence. (author)

  3. Fiscal 1997 R and D project under a consignment from NEDO. R and D of the femtosecond technology (R and D of the monitoring system using high-intensity X-ray pulse for power plants); 1997 nendo Shin energy Sangyo Gijutsu Sogo Kaihatsu Kiko itaku. Femto byo technology no kenkyu kaihatsu (kokido X sen pulse riyo hatsuden shisetsu monitoring system no kenkyu kaihatsu) seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This paper reports the result on R and D of the femtosecond technology in fiscal 1997. Ultrahigh-speed electronic technology is indispensable for industrial basic technologies supporting the advanced information society in the 21st century. Control technology of photonic and electronic states in a femtosecond region is essential. In R and D of metrological technology using ultra-short light-pulses, study was made on generating and controlling technology for ultra- short light/electron beam pulses. Ti-sapphire mode-locked laser was prepared, and it was found that time-fluctuation of mode-locked laser pulses is measurable up to 100 femtosecond level. As measures against an instability of gain-switching semiconductor laser, light injection from the outside was effective. The stable directivity of laser beam was obtained by regenerative amplifier, while less temperature variation of an optical switch was necessary to stabilize energy. To generate femtosecond high-intensity X-ray pulse by collision of laser and electron beams, it was confirmed that sub- picosecond synchronization is possible by RF and picosecond laser synchronization circuit. 48 refs., 89 figs., 11 tabs.

  4. Tailored long range forces on polarizable particles by collective scattering of broadband radiation

    International Nuclear Information System (INIS)

    Holzmann, D; Ritsch, H

    2016-01-01

    Collective coherent light scattering by polarizable particles creates surprisingly strong, long range inter-particle forces originating from interference of the light scattered by different particles. While for monochromatic laser beams this interaction decays with the inverse distance, we show here that in general the effective interaction range and geometry can be controlled by the illumination bandwidth and geometry. As generic example we study the modifications inter-particle forces within a 1D chain of atoms trapped in the field of a confined optical nanofiber mode. For two particles we find short range attraction as well as optical binding at multiple distances. The range of stable distances shrinks with increasing light bandwidth and for a very large bandwidth field as e.g. blackbody radiation. We find a strongly attractive potential up to a critical distance beyond which the force gets repulsive. Including multiple scattering can even lead to the appearance of a stable configuration at a large distance. Such broadband scattering forces should be observable contributions in ultra-cold atom interferometers or atomic clocks setups. They could be studied in detail in 1D geometries with ultra-cold atoms trapped along or within an optical nanofiber. Broadband radiation force interactions might also contribute in astrophysical scenarios as illuminated cold dust clouds. (paper)

  5. Recrystallization and grain growth behavior of rolled tungsten under VDE-like short pulse high heat flux loads

    International Nuclear Information System (INIS)

    Yuan, Y.; Greuner, H.; Böswirth, B.; Krieger, K.; Luo, G.-N.; Xu, H.Y.; Fu, B.Q.; Li, M.; Liu, W.

    2013-01-01

    Highlights: ► Recrystallization temperature of a rolled W was ∼2480 °C under applied HHF loads. ► Fine grains were obtained under HHF loads with appropriate short pulse length. ► With increasing pulse length, the recrystallized grains significantly grew larger. ► A linear relationship between ln d and 1/T max was found. ► Activation energy for grain growth in T evolution up to T max in 1.5 s was obtained. -- Abstract: Short pulse heat loads expected for vertical displacement events (VDEs) in ITER were applied in the high heat flux (HHF) test facility GLADIS at IPP-Garching onto samples of rolled W. Pulsed neutral beams with the central heat flux of 23 MW/m 2 were applied for 0.5, 1.0 and 1.5 s, respectively. Rapid recrystallization of the adiabatically loaded 3 mm thick samples was observed when the pulse duration was up to 1.0 s. Grains grew markedly following recrystallization with increasing pulse length. The recrystallization temperature and temperature dependence of the recrystallized grain size were also investigated. The results showed that the recrystallization temperature of the W grade was around 2480 °C under the applied heat loading condition, which was nearly 1150 °C higher than the conventional recrystallization temperature, and the grains were much finer. A linear relationship between the logarithm of average grain size (ln d) and the inverse of maximum surface temperature (1/T max ) was found and accordingly the activation energy for grain growth in temperature evolution up to T max in 1.5 s of the short pulse HHF load was deduced to be 4.1 eV. This provided an effective clue to predict the structure evolution under short pulse HHF loads

  6. Direct imaging of turbid media using long-time back-scattered photons, a numerical study

    International Nuclear Information System (INIS)

    Boulanger, Joan; Liu, Fengshan; El Akel, Azad; Charette, Andre

    2006-01-01

    Direct imaging is a convenient way to obtain information on the interior of a semi-transparent turbid material by non-invasive probing using laser beams. The major difficulty is linked to scattering which scrambles the directional information coming from the laser beam. It is found in this paper that the long-term multiple-scattered reflected photons may provide structural information on the inside of a material, which offers an interesting alternative to using information only from un-scattered or least-scattered photons as obtained from current direct imaging set-ups for thin media. Based on some observations on a non-homogeneous three layered 1-D slab irradiated by a laser pulse, a direct probing methodology making use of the long-term back-scattered photons is illustrated to recover inclusions positions in a turbid 2-D medium. First, the numerical model is presented. Second, an extended parametrical study is conducted on 1-D homogeneous and non-homogeneous slabs with different laser pulse durations. It is found that the reflected asymptotic logarithmic slope carries information about the presence of the inclusion and that short laser pulses are not necessary since only the decaying parts of the remanent optical signature is important. Longer laser pulses allow a higher level of energy injection and signal to noise ratio. Third, those observations are used for the probing of a 2-D non-homogeneous phantom. (author)

  7. High-order harmonic generation with short-pulse lasers

    International Nuclear Information System (INIS)

    Schafer, K.J.; Krause, J.L.; Kulander, K.C.

    1992-12-01

    Recent progress in the understanding of high-order harmonic conversion from atoms and ions exposed to high-intensity, short-pulse optical lasers is reviewed. We find that ions can produce harmonics comparable in strength to those obtained from neutral atoms, and that the emission extends to much higher order. Simple scaling laws for the strength of the harmonic emission and the maximium observable harmonic are suggested. These results imply that the photoemission observed in recent experiments in helium and neon contains contributions from ions as well as neutrals

  8. Validity of (Ultra-Short Recordings for Heart Rate Variability Measurements.

    Directory of Open Access Journals (Sweden)

    M Loretto Munoz

    Full Text Available In order to investigate the applicability of routine 10s electrocardiogram (ECG recordings for time-domain heart rate variability (HRV calculation we explored to what extent these (ultra-short recordings capture the "actual" HRV.The standard deviation of normal-to-normal intervals (SDNN and the root mean square of successive differences (RMSSD were measured in 3,387 adults. SDNN and RMSSD were assessed from (ultrashort recordings of 10s(3x, 30s, and 120s and compared to 240s-300s (gold standard measurements. Pearson's correlation coefficients (r, Bland-Altman 95% limits of agreement and Cohen's d statistics were used as agreement analysis techniques.Agreement between the separate 10s recordings and the 240s-300s recording was already substantial (r = 0.758-0.764/Bias = 0.398-0.416/d = 0.855-0.894 for SDNN; r = 0.853-0.862/Bias = 0.079-0.096/d = 0.150-0.171 for RMSSD, and improved further when three 10s periods were averaged (r = 0.863/Bias = 0.406/d = 0.874 for SDNN; r = 0.941/Bias = 0.088/d = 0.167 for RMSSD. Agreement increased with recording length and reached near perfect agreement at 120s (r = 0.956/Bias = 0.064/d = 0.137 for SDNN; r = 0.986/Bias = 0.014/d = 0.027 for RMSSD. For all recording lengths and agreement measures, RMSSD outperformed SDNN.Our results confirm that it is unnecessary to use recordings longer than 120s to obtain accurate measures of RMSSD and SDNN in the time domain. Even a single 10s (standard ECG recording yields a valid RMSSD measurement, although an average over multiple 10s ECGs is preferable. For SDNN we would recommend either 30s or multiple 10s ECGs. Future research projects using time-domain HRV parameters, e.g. genetic epidemiological studies, could calculate HRV from (ultra-short ECGs enabling such projects to be performed at a large scale.

  9. Recrystallization and grain growth behavior of rolled tungsten under VDE-like short pulse high heat flux loads

    Science.gov (United States)

    Yuan, Y.; Greuner, H.; Böswirth, B.; Krieger, K.; Luo, G.-N.; Xu, H. Y.; Fu, B. Q.; Li, M.; Liu, W.

    2013-02-01

    Short pulse heat loads expected for vertical displacement events (VDEs) in ITER were applied in the high heat flux (HHF) test facility GLADIS at IPP-Garching onto samples of rolled W. Pulsed neutral beams with the central heat flux of 23 MW/m2 were applied for 0.5, 1.0 and 1.5 s, respectively. Rapid recrystallization of the adiabatically loaded 3 mm thick samples was observed when the pulse duration was up to 1.0 s. Grains grew markedly following recrystallization with increasing pulse length. The recrystallization temperature and temperature dependence of the recrystallized grain size were also investigated. The results showed that the recrystallization temperature of the W grade was around 2480 °C under the applied heat loading condition, which was nearly 1150 °C higher than the conventional recrystallization temperature, and the grains were much finer. A linear relationship between the logarithm of average grain size (ln d) and the inverse of maximum surface temperature (1/Tmax) was found and accordingly the activation energy for grain growth in temperature evolution up to Tmax in 1.5 s of the short pulse HHF load was deduced to be 4.1 eV. This provided an effective clue to predict the structure evolution under short pulse HHF loads.

  10. Electromagnetic soliton production during interaction of relativistically strong laser pulses with plasma

    International Nuclear Information System (INIS)

    Bulanov, S.V.; Esirkepov, T.Zh.; Kamenets, F.F.; Naumova, N.M.

    1995-01-01

    The paper presents the results of a numeric modelling of the propagation of ultra short relativistically strong laser pulses in a rarefied plasma by the 'particle in cell'. Primary attention is paid to the process of the formation of electromagnetic solitons which can not be described in the approximation of envelopes. It is found that under certain conditions a significant portion of pulse energy can transform is solitons. The soliton excitation mechanism is related to a decrease of local frequency of electromagnetic radiation due to the generation of wave plasma waves. From one soliton to a stub of solitons can be generated in the wake of a relatively long pulse depending on the parameters of laser pulse in plasma. Particles are effectively accelerated forwards radiation propagation in the electric field of wake plasma waves. 22 refs., 7 figs

  11. High Average Power, High Energy Short Pulse Fiber Laser System

    Energy Technology Data Exchange (ETDEWEB)

    Messerly, M J

    2007-11-13

    Recently continuous wave fiber laser systems with output powers in excess of 500W with good beam quality have been demonstrated [1]. High energy, ultrafast, chirped pulsed fiber laser systems have achieved record output energies of 1mJ [2]. However, these high-energy systems have not been scaled beyond a few watts of average output power. Fiber laser systems are attractive for many applications because they offer the promise of high efficiency, compact, robust systems that are turn key. Applications such as cutting, drilling and materials processing, front end systems for high energy pulsed lasers (such as petawatts) and laser based sources of high spatial coherence, high flux x-rays all require high energy short pulses and two of the three of these applications also require high average power. The challenge in creating a high energy chirped pulse fiber laser system is to find a way to scale the output energy while avoiding nonlinear effects and maintaining good beam quality in the amplifier fiber. To this end, our 3-year LDRD program sought to demonstrate a high energy, high average power fiber laser system. This work included exploring designs of large mode area optical fiber amplifiers for high energy systems as well as understanding the issues associated chirped pulse amplification in optical fiber amplifier systems.

  12. Time-resolved investigations of the fragmentation dynamic of H2 (D2) in and with ultra-short laser pulses

    International Nuclear Information System (INIS)

    Ergler, T.

    2006-01-01

    In course of this work pump-probe experiments aimed to study ultrafast nuclear motion in H 2 (D 2 ) fragmentation by intense 6-25 fs laser pulses have been carried out. In order to perform time-resolved measurements, a Mach-Zehnder interferometer providing two identical synchronized laser pulses with the time-delay variable from 0 to 3000 fs with 300 as accuracy and long-term stability has been built. The laser pulses at the intensities of up to 10 15 W/cm 2 were focused onto a H 2 (D 2 ) molecular beam leading to the ionization or dissociation of the molecules, and the momenta of all charged reactions fragments were measured with a reaction microscope. With 6-7 fs pulses it was possible to probe the time evolution of the bound H + 2 (D + 2 ) nuclear wave packet created by the first (pump) laser pulse, fragmenting the molecule with the second (probe) pulse. A fast delocalization, or ''collapse'', and subsequent ''revival'' of the vibrational wave packet have been observed. In addition, the signatures of the ground state vibrational excitation in neutral D 2 molecule have been found, and the dominance of a new, purely quantum mechanical wave packet preparation mechanism (the so-called ''Lochfrass'') has been proved. In the experiments with 25 fs pulses the theoretically predicted enhancement of the ionization probability for the dissociating H + 2 molecular ion at large internuclear distances has been detected for the first time. (orig.)

  13. Electron localization in fragmentation of H2 with CEP stabilized laser pulses

    International Nuclear Information System (INIS)

    Kremer, Manuel; Fischer, Bettina; Schroeter, Claus Dieter; Feuerstein, Bernold; Moshammer, Robert; Ullrich, Joachim; Rudenko, Artem; Jesus, Vitor L B de

    2009-01-01

    Fully differential data on ionization and dissociation of H 2 in ultra-short (∼ 6 fs), linearly polarized, intense (∼ 4 . 10 14 W/cm 2 ) laser pulses with stabilized carrier-envelope-phase (CEP) have been measured using a reaction microscope. Depending on the CEP of the laser pulses we see a clear asymmetry in the emission direction of the created protons. Contrary to earlier measurements by Kling et al. we observe the highest asymmetry for kinetic energy releases (proton energy) between 0-2 eV. This excludes the electron re-collision mechanism suggested in [1] as dominant excitation channel and requires another explanation.

  14. Interference Mitigation Technique for Coexistence of Pulse-Based UWB and OFDM

    Directory of Open Access Journals (Sweden)

    Ohno Kohei

    2008-01-01

    Full Text Available Abstract Ultra-wideband (UWB is a useful radio technique for sharing frequency bands between radio systems. It uses very short pulses to spread spectrum. However, there is a potential for interference between systems using the same frequency bands at close range. In some regulatory systems, interference detection and avoidance (DAA techniques are required to prevent interference with existing radio systems. In this paper, the effect of interference on orthogonal frequency division multiplexing (OFDM signals from pulse-based UWB is discussed, and an interference mitigation technique is proposed. This technique focuses on the pulse repetition cycle of UWB. The pulse repetition interval is set the same or half the period of the OFDM symbol excluding the guard interval to mitigate interference. These proposals are also made for direct sequence (DS-UWB. Bit error rate (BER performance is illustrated through both simulation and theoretical approximations.

  15. Study of the oncogenic expression in human fibroblast cells after exposure to very short pulsed laser radiations

    International Nuclear Information System (INIS)

    Dormont, D.; Freville, Th.; Raoul, H.; Courant, D.; Court, L.

    1992-01-01

    The aim of this study is to evaluate the capacity of a laser, delivering very short pulses in the near infrared spectrum with a high pulse ratio frequency, to induce genetic modification on biological tissues. The absence of dicentric among chromosomal aberrations on human lymphocytes suggests that a repetitive very short pulses irradiation has a relatively low capacity to induce genetic abnormalities. The studies of the radiation effects on the cellular growth and the oncogenic expression show that the modifications, induced at the cellular level, do not seem the origin of a cellular transformation and a possible mechanism of carcinogenesis. (author)

  16. Nonlinear interaction of powerful short electromagnetic pulses with an electron plasma

    International Nuclear Information System (INIS)

    Rao, N.N.; Yu, M.Y.; Shukla, P.K.

    1990-01-01

    The nonlinear interaction of powerful short electromagnetic pulses with a plasma consisting of two groups of electrons and immobile ions has been studied. It is shown that the interaction is governed by a nonlinear equation for the electromagnetic wave envelope and a driven nonlinear equation for the low-frequency electron fluctuations. The driver for the latter depends explicitly on the spatio-temporal evolution of the electromagnetic wave flux. It is found that, depending on the cold-to-hot electron density ratio, the localized pulse can propagate with sub- as well as supersonic velocities accompanied by compressional or rarefactional density perturbations. The conditions of existence for the different types of solitary pulses are obtained. The present investigation may be relevant to the study of wave-plasma interaction devices such as inertial fusion confinement as well as to ionospheric modification experiments. (author)

  17. An ultra-short screening version of the Recalled Parental Rearing Behavior questionnaire (FEE-US and its factor structure in a representative German sample

    Directory of Open Access Journals (Sweden)

    Petrowski Katja

    2012-11-01

    Full Text Available Abstract Background The Recalled Parental Rearing Behavior questionnaire (FEE, [1,2] assesses perceived parental rearing behavior separately for each parent. An ultra-short screening version (FEE-US with the same three scales each for the mother and the father is reported and factor-analytically validated. Methods N = 4,640 subjects aged 14 to 92 (M = 48.4 years were selected by the random-route sampling method. The ultra-short questionnaire version was derived from the long version through item and factor analyses. In a confirmatory factor analysis framework, the hypothesized three-factorial structure was fitted to the empirical data and tested for measurement invariance, differential item functioning, item discriminability, and convergent and discriminant factorial validity. Effects of gender or age were assessed using MANOVAs. Results The a-priori hypothesized model resulted in mostly adequate overall fit. Neither gender nor age group yielded considerable effects on the factor structure, but had small effects on means of raw score sums. Factorial validities could be confirmed. Scale sums are well-suited to rank respondents along the respective latent dimension. Conclusion The structure of the long version with the factors Rejection & Punishment, Emotional Warmth, and Control & Overprotection could be replicated for both father and mother items in the ultra-short screening version using confirmatory factor analyses. These results indicate that the ultra-short screening version is a time-saving and promising screening instrument for research settings and in individual counseling. However, the shortened scales do not necessarily represent the full spectrum covered by the full-scale dimensions.

  18. Multi-pulse 20 kHz TV Thomson scattering with high spatial resolution on TEXTOR-94

    International Nuclear Information System (INIS)

    Meiden, H.J.V.D.; Barth, C.J.; Oyevaar, T.

    2001-01-01

    This article describes the first high repetition rate TVTS system in the world. It will be implemented on TEXTOR-94, with the aim to study the dynamic behaviour of meso scale plasma phenomena, like MHD modes, filaments, transport barriers and edge phenomena. To reach this, a 20 kHz intracavity laser system is combined with an ultra fast CCD camera. During one discharge of TEXTOR-94 three bursts of 40 pulses can be extracted from the laser system with a time separation of 0.5 s between the bursts. This new equipment will be implemented on the beam line and spectrometer of the present double pulse TVTS system of TEXTOR-94. The new TVTS system will be capable of producing three times 40 electron temperature- and density profiles along a laser chord of 900 mm with a spatial resolution of 7.5 mm for the full plasma diameter and 2 mm for the edge region, respectively. An observational error of 6% on T e and 3% on n e is expected for n e = 3.5x10 19 m -3 , using a laser pulse energy of typical 16 J. (author)

  19. Verification of the validity of the short-pulse approximation for one-dimensional Rydberg atoms

    International Nuclear Information System (INIS)

    Kopyciuk, T; Grajek, M

    2011-01-01

    In this paper, we investigate the short-pulse approximation (SPA) for one-dimensional Rydberg atoms. We analyse the limits that SPA has to fulfil in order to be applicable. These concern the shape, the duration and the displacement caused by the pulse. The correctness of SPA is tested by comparing the results obtained using SPA with a numerical solution of the set of time-dependent Schroedinger equations. We show that the limit for the displacement caused by the pulse is of greatest importance. Violation of the limit for the duration of the pulse is shown to lead to concurrent violation of the limit for the displacement. We also show that the shape of the pulse has no influence on the created wave packet.

  20. Background subtraction system for pulsed neutron logging of earth boreholes

    International Nuclear Information System (INIS)

    Hertzog, R.C.

    1983-01-01

    The invention provides a method for determining the characteristics of earth formations surrounding a well borehole comprising the steps of: repetitively irradiating the earth formations surrounding the well bore with relatively short duration pulses of high energy neutrons; detecting during each pulse of high energy neutrons, gamma radiation due to the inelastic scattering of neutrons by materials comprising the earth formations surrounding the borehole and providing information representative thereof; detecting immediately following each such pulse of high energy neutrons, background gamma radiation due to thermal neutron capture and providing information representative thereof; and correcting the inelastic gamma representative information to compensate for said background representative information

  1. Pulsed Neutron Scattering Studies of Strongly Fluctuating solids, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Collin Broholm

    2006-06-22

    The conventional description of a solid is based on a static atomic structure with small amplitude so-called harmonic fluctuations about it. This is a final technical report for a project that has explored materials where fluctuations are sufficiently strong to severely challenge this approach and lead to unexpected and potentially useful materials properties. Fluctuations are enhanced when a large number of configurations share the same energy. We used pulsed spallation source neutron scattering to obtain detailed microscopic information about structure and fluctuations in such materials. The results enhance our understanding of strongly fluctuating solids and their potential for technical applications. Because new materials require new experimental techniques, the project has also developed new techniques for probing strongly fluctuating solids. Examples of material that were studied are ZrW2O8 with large amplitude molecular motion that leads to negative thermal expansion, NiGa2S4 where competing interactions lead to an anomalous short range ordered magnet, Pr1- xBixRu2O7 where a partially filled electron shell (Pr) in a weakly disordered environment produces anomalous metallic properties, and TbMnO3 where competing interactions lead to a magneto-electric phase. The experiments on TbMnO3 exemplify the relationship between research funded by this project and future applications. Magneto-electric materials may produce a magnetic field when an electric field is applied or vise versa. Our experiments have clarified the reason why electric and magnetic polarization is coupled in TbMnO3. While this knowledge does not render TbMnO3 useful for applications it will focus the search for a practical room temperature magneto-electric for applications.

  2. Unilateral ultra-brief pulse electroconvulsive therapy for depression in Parkinson's disease.

    Science.gov (United States)

    Williams, N R; Bentzley, B S; Sahlem, G L; Pannu, J; Korte, J E; Revuelta, G; Short, E B; George, M S

    2017-04-01

    Electroconvulsive therapy (ECT) has demonstrated efficacy in treating core symptoms of Parkinson's disease (PD); however, widespread use of ECT in PD has been limited due to concern over cognitive burden. We investigated the use of a newer ECT technology known to have fewer cognitive side effects (right unilateral [RUL] ultra-brief pulse [UBP]) for the treatment of medically refractory psychiatric dysfunction in PD. This open-label pilot study included 6 patients who were assessed in the motoric, cognitive, and neuropsychiatric domains prior to and after RUL UBP ECT. Primary endpoints were changes in total score on the HAM-D-17 and GDS-30 rating scales. Patients were found to improve in motoric and psychiatric domains following RUL UBP ECT without cognitive side effects, both immediately following ECT and at 1-month follow-up. This study demonstrates that RUL UBP ECT is safe, feasible, and potentially efficacious in treating multiple domains of PD, including motor and mood, without clear cognitive side effects. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Effect of pulse slippage on resonant second harmonic generation of a short pulse laser in a plasma

    International Nuclear Information System (INIS)

    Nitikant; Sharma, A K

    2004-01-01

    The process of second harmonic generation of an intense short pulse laser in a plasma is resonantly enhanced by the application of a magnetic wiggler. The wiggler of suitable wave number k-vector 0 provides necessary momentum to second harmonic photons to make harmonic generation a resonant process. The laser imparts an oscillatory velocity to electrons and exerts a longitudinal ponderomotive force on them at (2ω 1 ,2k-vector 1 ), where ω 1 and k-vector 1 are the frequency and the wave number of the laser, respectively. As the electrons acquire oscillatory velocity at the second harmonic, the wiggler magnetic field beats with it to produce a transverse second harmonic current at (2ω 1 ,2k-vector 1 +k-vector 0 ), driving the second harmonic electromagnetic radiation. However, the group velocity of the second harmonic wave is greater than that of the fundamental wave, hence, the generated pulse slips out of the main laser pulse and its amplitude saturates

  4. No effect of short-term amino acid supplementation on variables related to skeletal muscle damage in 100 km ultra-runners - a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Rosemann Thomas

    2011-04-01

    Full Text Available Abstract Background The purpose of this study was to investigate the effect of short-term supplementation of amino acids before and during a 100 km ultra-marathon on variables of skeletal muscle damage and muscle soreness. We hypothesized that the supplementation of amino acids before and during an ultra-marathon would lead to a reduction in the variables of skeletal muscle damage, a decrease in muscle soreness and an improved performance. Methods Twenty-eight experienced male ultra-runners were divided into two groups, one with amino acid supplementation and the other as a control group. The amino acid group was supplemented a total of 52.5 g of an amino acid concentrate before and during the 100 km ultra-marathon. Pre- and post-race, creatine kinase, urea and myoglobin were determined. At the same time, the athletes were asked for subjective feelings of muscle soreness. Results Race time was not different between the groups when controlled for personal best time in a 100 km ultra-marathon. The increases in creatine kinase, urea and myoglobin were not different in both groups. Subjective feelings of skeletal muscle soreness were not different between the groups. Conclusions We concluded that short-term supplementation of amino acids before and during a 100 km ultra-marathon had no effect on variables of skeletal muscle damage and muscle soreness.

  5. Applying short-duration pulses as a mean to enhance volatile organic compounds removal by air sparging.

    Science.gov (United States)

    Ben Neriah, Asaf; Paster, Amir

    2017-10-01

    Application of short-duration pulses of high air pressure, to an air sparging system for groundwater remediation, was tested in a two-dimensional laboratory setup. It was hypothesized that this injection mode, termed boxcar, can enhance the remediation efficiency due to the larger ZOI and enhanced mixing which results from the pressure pulses. To test this hypothesis, flow and transport experiments were performed. Results confirm that cyclically applying short-duration pressure pulses may enhance contaminant cleanup. Comparing the boxcar to conventional continuous air-injection shows up to a three-fold increase in the single well radius of influence, dependent on the intensity of the short-duration pressure-pulses. The cleanup efficiency of Toluene from the water was 95% higher than that achieved under continuous injection with the same average conditions. This improvement was attributed to the larger zone of influence and higher average air permeability achieved in the boxcar mode, relative to continuous sparging. Mixing enhancement resultant from recurring pressure pulses was suggested as one of the mechanisms which enhance the contaminant cleanup. The application of a boxcar mode in an existing, multiwell, air sparging setup can be relatively straightforward: it requires the installation of an on-off valve in each of the injection-wells and a central control system. Then, turning off some of the wells, for a short-duration, result in a stepwise increase in injection pressure in the rest of the wells. It is hoped that this work will stimulate the additional required research and ultimately a field scale application of this new injection mode. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. KrF laser ablation of a polyethersulfone film: Effect of pulse duration on structure formation

    International Nuclear Information System (INIS)

    Pazokian, Hedieh; Selimis, Alexandros; Stratakis, Emmanuel; Mollabashi, Mahmoud; Barzin, Jalal; Jelvani, Saeid

    2011-01-01

    Polyethersulfone (PES) films were processed with KrF laser irradiation of different pulse durations (τ). Scanning electron microscopy (SEM) and Raman spectroscopy were employed for the examination of the morphology and chemical composition of the irradiated surfaces, respectively. During ablation with 500 fs and 5 ps pulses, localized deformations (beads), micro-ripple and conical structures were observed on the surface depending on the irradiation fluence (F) and the number of pulses (N). In addition, the number density of the structures is affected by the irradiation parameters (τ, F, N). Furthermore, at longer pulse durations (τ = 30 ns), conical structures appear at lower laser fluence values, which are converted into columnar structures upon irradiation at higher fluences. The Raman spectra collected from the top of the structures following irradiation at different pulse durations revealed graphitization of the ns laser treated areas, in contrast to those processed with ultra-short laser pulses.

  7. Ultra-fast laser microprocessing of medical polymers for cell engineering applications

    International Nuclear Information System (INIS)

    Ortiz, R.; Moreno-Flores, S.; Quintana, I.; Vivanco, MdM; Sarasua, J.R.; Toca-Herrera, J.L.

    2014-01-01

    Picosecond laser micromachining technology (PLM) has been employed as a tool for the fabrication of 3D structured substrates. These substrates have been used as supports in the in vitro study of the effect of substrate topography on cell behavior. Different micropatterns were PLM-generated on polystyrene (PS) and poly-L-lactide (PLLA) and employed to study cellular proliferation and morphology of breast cancer cells. The laser-induced microstructures included parallel lines of comparable width to that of a single cell (which in this case is roughly 20 μm), and the fabrication of square-like compartments of a much larger area than a single cell (250,000 μm 2 ). The results obtained from this in vitro study showed that though the laser treatment altered substrate roughness, it did not noticeably affect the adhesion and proliferation of the breast cancer cells. However, pattern direction directly affected cell proliferation, leading to a guided growth of cell clusters along the pattern direction. When cultured in square-like compartments, cells remained confined inside these for eleven incubation days. According to these results, laser micromachining with ultra-short laser pulses is a suitable method to directly modify the cell microenvironment in order to induce a predefined cellular behavior and to study the effect of the physical microenvironment on cell proliferation. - Highlights: • Microstructuring of biocompatible polymers by ultra-short pulsed laser technology. • Contact guidance effect on a supracellular scale along microgrooved substrates. • Cell confinement inside square compartments. • Fabrication of a 3D microenvironment that induces predefined behavior of cells

  8. Ultra-fast laser microprocessing of medical polymers for cell engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, R. [Ultraprecision Processes Unit, Fundación IK4-TEKNIKER, Iñaki Goenaga 5, 20600, Eibar, Gipuzkoa (Spain); Moreno-Flores, S., E-mail: susana.moreno-flores@boku.ac.at [Biosurfaces Unit, CIC biomaGUNE, Po Miramón, 182, 20009, San Sebastián, Donostia (Spain); Quintana, I., E-mail: iban.quintana@tekniker.es [Ultraprecision Processes Unit, Fundación IK4-TEKNIKER, Iñaki Goenaga 5, 20600, Eibar, Gipuzkoa (Spain); Micro and Nanoengineering Unit, CIC microGUNE, Goiru Kalea 9, 20500, Arrasate-Mondragón, Gipuzkoa (Spain); Vivanco, MdM [Cell Biology and Stem Cells Unit, CIC bioGUNE, Technology Park of Bizkaia, Ed. 801A, 48160 Derio (Spain); Sarasua, J.R. [University of the Basque Country (EHU-UPV), School of Engineering, Department of Mining and Metallurgy Engineering and Materials Science, Alameda de Urquijo s/n, 48013 Bilbao (Spain); Toca-Herrera, J.L. [Biosurfaces Unit, CIC biomaGUNE, Po Miramón, 182, 20009, San Sebastián, Donostia (Spain); Micro and Nanoengineering Unit, CIC microGUNE, Goiru Kalea 9, 20500, Arrasate-Mondragón, Gipuzkoa (Spain)

    2014-04-01

    Picosecond laser micromachining technology (PLM) has been employed as a tool for the fabrication of 3D structured substrates. These substrates have been used as supports in the in vitro study of the effect of substrate topography on cell behavior. Different micropatterns were PLM-generated on polystyrene (PS) and poly-L-lactide (PLLA) and employed to study cellular proliferation and morphology of breast cancer cells. The laser-induced microstructures included parallel lines of comparable width to that of a single cell (which in this case is roughly 20 μm), and the fabrication of square-like compartments of a much larger area than a single cell (250,000 μm{sup 2}). The results obtained from this in vitro study showed that though the laser treatment altered substrate roughness, it did not noticeably affect the adhesion and proliferation of the breast cancer cells. However, pattern direction directly affected cell proliferation, leading to a guided growth of cell clusters along the pattern direction. When cultured in square-like compartments, cells remained confined inside these for eleven incubation days. According to these results, laser micromachining with ultra-short laser pulses is a suitable method to directly modify the cell microenvironment in order to induce a predefined cellular behavior and to study the effect of the physical microenvironment on cell proliferation. - Highlights: • Microstructuring of biocompatible polymers by ultra-short pulsed laser technology. • Contact guidance effect on a supracellular scale along microgrooved substrates. • Cell confinement inside square compartments. • Fabrication of a 3D microenvironment that induces predefined behavior of cells.

  9. Numerical analysis of short-pulse laser interactions with thin metal film

    Directory of Open Access Journals (Sweden)

    E. Majchrzak

    2010-10-01

    Full Text Available Thin metal film subjected to a short-pulse laser heating is considered. The hyperbolic two-temperature model describing the temporal andspatial evolution of the lattice and electrons temperatures is discussed. At the stage of numerical computations the finite difference method is used. In the final part of the paper the examples of computations are shown.

  10. Self-Guiding of Ultrashort Relativistically Intense Laser Pulses to the Limit of Nonlinear Pump Depletion

    International Nuclear Information System (INIS)

    Ralph, J. E.; Marsh, K. A.; Pak, A. E.; Lu, W.; Clayton, C. E.; Fang, F.; Joshi, C.; Tsung, F. S.; Mori, W. B.

    2009-01-01

    A study of self-guiding of ultra short, relativistically intense laser pulses is presented. Here, the laser pulse length is on the order of the nonlinear plasma wavelength and the normalized vector potential is greater than one. Self-guiding of ultrashort laser pulses over tens of Rayliegh lengths is possible when driving a highly nonlinear wake. In this case, self-guiding is limited by nonlinear pump depletion. Erosion of the pulse due to diffraction at the head of the laser pulse is minimized for spot sizes close to the blow-out radius. This is due to the slowing of the group velocity of the photons at the head of the laser pulse. Using an approximately 10 TW Ti:Sapphire laser with a pulse length of approximately 50 fs, experimental results are presented showing self-guiding over lengths exceeding 30 Rayliegh lengths in various length Helium gas jets. Fully explicit 3D PIC simulations supporting the experimental results are also presented.

  11. Self-modulation and anomalous collective scattering of laser produced intense ion beam in plasmas

    Directory of Open Access Journals (Sweden)

    K. Mima

    2018-05-01

    Full Text Available The collective interaction between intense ion beams and plasmas is studied by simulations and experiments, where an intense proton beam produced by a short pulse laser is injected into a pre-ionized gas. It is found that, depending on its current density, collective effects can significantly alter the propagated ion beam and the stopping power. The quantitative agreement that is found between theories and experiments constitutes the first validation of the collective interaction theory. The effects in the interaction between intense ion beams and background gas plasmas are of importance for the design of laser fusion reactors as well as for beam physics. Keywords: Two stream instabilities, Ultra intense short pulse laser, Proton beam, Wake field, Electron plasma wave, Laser plasma interaction, PACS codes: 52.38.Kd, 29.27.Fh, 52.40.Kh, 52.70.Nc

  12. Recent developments and ASAXS measurements at the ultra small angle X-ray scattering instrument of HASYLAB

    CERN Document Server

    Krosigk, G V; Gehrke, R; Kranold, R

    2001-01-01

    The wiggler beamline BW4 at the synchrotron radiation facility HASYLAB (DESY) is mainly designed for Ultra Small Angle X-ray Scattering (USAXS) and usually operated with detector-sample distances up to 13 m and at photon energies between 4 and 16 keV. With a new optical design the largest observable correlation distances have now been increased up to 9x10 sup 3 A. A grazing incidence set-up [P. Mueller-Buschbaum et al., Europhys. Lett. 42 (5) (1998) 517], vapor chamber, furnace, tensile testing machine and other instruments make the USAXS beamline attractive for a variety of scattering experiments [A. Endres et al., Rev. Sci. Instrum. 11 (1997) 68; A. Karl et al., J. Macromolecular Sci.-Phys. B 38 (5 and 6) (1999) 901; S. Minko et al., J. Macromolecular Sci., Phys. B 38 (5 and 6) (1999) 913]. A fully evacuated beampath allows high quality measurements with very low background signal. A photodiode mounted in the primary beam stop registers the primary beam flux simultaneously to the data acquisition and thus p...

  13. Remote Water Temperature Measurements Based on Brillouin Scattering with a Frequency Doubled Pulsed Yb:doped Fiber Amplifier

    Directory of Open Access Journals (Sweden)

    Thomas Walther

    2008-09-01

    Full Text Available Temperature profiles of the ocean are of interest for weather forecasts, climate studies and oceanography in general. Currently, mostly in situ techniques such as fixed buoys or bathythermographs deliver oceanic temperature profiles. A LIDAR method based on Brillouin scattering is an attractive alternative for remote sensing of such water temperature profiles. It makes it possible to deliver cost-effective on-line data covering an extended region of the ocean. The temperature measurement is based on spontaneous Brillouin scattering in water. In this contribution, we present the first water temperature measurements using a Yb:doped pulsed fiber amplifier. The fiber amplifier is a custom designed device which can be operated in a vibrational environment while emitting narrow bandwidth laser pulses. The device shows promising performance and demonstrates the feasibility of this approach. Furthermore, the current status of the receiver is briefly discussed; it is based on an excited state Faraday anomalous dispersion optical filter.

  14. Scattering and short-distance properties in field theory models

    International Nuclear Information System (INIS)

    Iagolnitzer, D.

    1987-01-01

    The aim of constructive field theory is not only to define models but also to establish their general properties of physical interest. We here review recent works on scattering and on short-distance properties for weakly coupled theories with mass gap such as typically P(φ) in dimension 2, φ 4 in dimension 3 and the (renormalizable, asymptotically free) massive Gross-Neveu (GN) model in dimension 2. Many of the ideas would apply similarly to other (possibly non renormalizable) theories that might be defined in a similar way via phase-space analysis

  15. Study and development of 22 kW peak power fiber coupled short pulse Nd:YAG laser for cleaning applications

    Science.gov (United States)

    Choubey, Ambar; Vishwakarma, S. C.; Vachhani, D. M.; Singh, Ravindra; Misra, Pushkar; Jain, R. K.; Arya, R.; Upadhyaya, B. N.; Oak, S. M.

    2014-11-01

    Free running short pulse Nd:YAG laser of microsecond pulse duration and high peak power has a unique capability to ablate material from the surface without heat propagation into the bulk. Applications of short pulse Nd:YAG lasers include cleaning and restoration of marble, stones, and a variety of metals for conservation. A study on the development of high peak power short pulses from Nd:YAG laser along with its cleaning and conservation applications has been performed. A pulse energy of 1.25 J with 55 μs pulse duration and a maximum peak power of 22 kW has been achieved. Laser beam has an M2 value of ~28 and a pulse-to-pulse stability of ±2.5%. A lower value of M2 means a better beam quality of the laser in multimode operation. A top hat spatial profile of the laser beam was achieved at the exit end of 200 μm core diameter optical fiber, which is desirable for uniform cleaning. This laser system has been evaluated for efficient cleaning of surface contaminations on marble, zircaloy, and inconel materials for conservation with cleaning efficiency as high as 98%. Laser's cleaning quality and efficiency have been analysed by using a microscope, a scanning electron microscope (SEM), and X-ray photon spectroscopy (XPS) measurements.

  16. Laser generation of proton beams for the production of short-lived positron emitting radioisotopes

    International Nuclear Information System (INIS)

    Spencer, I.; Ledingham, K.W.D.; Singhal, R.P.; McCanny, T.; McKenna, P.; Clark, E.L.; Krushelnick, K.; Zepf, M.; Beg, F.N.; Tatarakis, M.; Dangor, A.E.; Norreys, P.A.; Clarke, R.J.; Allott, R.M.; Ross, I.N.

    2001-01-01

    Protons of energies up to 37 MeV have been generated when ultra-intense lasers (up to 10 20 W cm -2 ) interact with hydrogen containing solid targets. These protons can be used to induce nuclear reactions in secondary targets to produce β + -emitting nuclei of relevance to the nuclear medicine community, namely 11 C and 13 N via (p, n) and (p,α) reactions. Activities of the order of 200 kBq have been measured from a single laser pulse interacting with a thin solid target. The possibility of using ultra-intense lasers to produce commercial amounts of short-lived positron emitting sources for positron emission tomography (PET) is discussed

  17. Coupling of (ultra- relativistic atomic nuclei with photons

    Directory of Open Access Journals (Sweden)

    M. Apostol

    2013-11-01

    Full Text Available The coupling of photons with (ultra- relativistic atomic nuclei is presented in two particular circumstances: very high electromagnetic fields and very short photon pulses. We consider a typical situation where the (bare nuclei (fully stripped of electrons are accelerated to energies ≃ 1 TeV per nucleon (according to the state of the art at LHC, for instance and photon sources like petawatt lasers ≃ 1 eV-radiation (envisaged by ELI-NP project, for instance, or free-electron laser ≃ 10 keV-radiation, or synchrotron sources, etc. In these circumstances the nuclear scale energy can be attained, with very high field intensities. In particular, we analyze the nuclear transitions induced by the radiation, including both one- and two-photon proceses, as well as the polarization-driven transitions which may lead to giant dipole resonances. The nuclear (electrical polarization concept is introduced. It is shown that the perturbation theory for photo-nuclear reactions is applicable, although the field intensity is high, since the corresponding interaction energy is low and the interaction time (pulse duration is short. It is also shown that the description of the giant nuclear dipole resonance requires the dynamics of the nuclear electrical polarization degrees of freedom.

  18. Propagation of an ultra intense laser pulse in an under dense plasma: production of quasi monoenergetic electron beams and development of applications; Propagation d'une impulsion laser ultra-intense dans un plasma sous-dense: generation de faisceaux d'electrons quasi monoenergetiques et developpement d'applications

    Energy Technology Data Exchange (ETDEWEB)

    Glinec, Y

    2006-09-15

    This experimental study concerns the generation of electron beams with original properties. These electrons beams originate from the interaction of an ultra-intense and short laser pulse with a gas jet. Previously, these electron beams had a large divergence and a broad spectrum. A major improvement in this field was achieved when an electron beam with low divergence (10 mrad) and a peaked spectrum (170 MeV) was observed during this thesis, using a new single shot electron spectrometer. A parametric study of the interaction allowed to observe the evolution of the electron beam. Experiments have been carried out to deepen the characterization of the electron beam. The observation of transition radiation generated by the electrons at an interface shows that the electron beam interacts with the laser pulse during the acceleration. Radial oscillations of the electron beam around the laser axis, named betatron oscillations, were also observed on the electron spectra. Such a quasi-monoenergetic spectrum is essential for many applications. In order to justify the interest of this electron beam, several applications are presented: a sub-milli-metric gamma-ray radiography of dense objects, a dose profile of the electron beam comparable to present capabilities of photon sources for radiotherapy, a very short temporal profile useful for water radiolysis and the generation of a bright X-ray source with low divergence. (author)

  19. Limiting effects on laser compression by resonant backward Raman scattering in modern experiments

    International Nuclear Information System (INIS)

    Yampolsky, Nikolai A.; Fisch, Nathaniel J.

    2011-01-01

    Through resonant backward Raman scattering, the plasma wave mediates the energy transfer between long pump and short seed laser pulses. These mediations can result in pulse compression at extraordinarily high powers. However, both the overall efficiency of the energy transfer and the duration of the amplified pulse depend upon the persistence of the plasma wave excitation. At least with respect to the recent state-of-the-art experiments, it is possible to deduce that at present the experimentally realized efficiency of the amplifier is likely constrained mainly by two effects, namely, the pump chirp and the plasma wave wavebreaking.

  20. Dynamical cancellation of pulse-induced transients in a metallic shielded room for ultra-low-field magnetic resonance imaging

    International Nuclear Information System (INIS)

    Zevenhoven, Koos C. J.; Ilmoniemi, Risto J.; Dong, Hui; Clarke, John

    2015-01-01

    Pulse-induced transients such as eddy currents can cause problems in measurement techniques where a signal is acquired after an applied preparatory pulse. In ultra-low-field magnetic resonance imaging, performed in magnetic fields typically of the order of 100 μT, the signal-to-noise ratio is enhanced in part by prepolarizing the proton spins with a pulse of much larger magnetic field and in part by detecting the signal with a Superconducting QUantum Interference Device (SQUID). The pulse turn-off, however, can induce large eddy currents in the shielded room, producing an inhomogeneous magnetic-field transient that both seriously distorts the spin dynamics and exceeds the range of the SQUID readout. It is essential to reduce this transient substantially before image acquisition. We introduce dynamical cancellation (DynaCan), a technique in which a precisely designed current waveform is applied to a separate coil during the later part and turn off of the polarizing pulse. This waveform, which bears no resemblance to the polarizing pulse, is designed to drive the eddy currents to zero at the precise moment that the polarizing field becomes zero. We present the theory used to optimize the waveform using a detailed computational model with corrections from measured magnetic-field transients. SQUID-based measurements with DynaCan demonstrate a cancellation of 99%. Dynamical cancellation has the great advantage that, for a given system, the cancellation accuracy can be optimized in software. This technique can be applied to both metal and high-permeability alloy shielded rooms, and even to transients other than eddy currents

  1. Enhancing caries resistance with a short-pulsed CO2 9.3-μm laser: a laboratory study (Conference Presentation)

    Science.gov (United States)

    Rechmann, Peter; Rechmann, Beate M.; Groves, William H.; Le, Charles; Rapozo-Hilo, Marcia L.; Featherstone, John D. B.

    2016-02-01

    The objective of this laboratory study was to test whether irradiation with a new 9.3µm microsecond short-pulsed CO2-laser enhances enamel caries resistance with and without additional fluoride applications. 101 human enamel samples were divided into 7 groups. Each group was treated with different laser parameters (Carbon-dioxide laser, wavelength 9.3µm, 43Hz pulse-repetition rate, pulse duration between 3μs to 7μs (1.5mJ/pulse to 2.9mJ/pulse). Using a pH-cycling model and cross-sectional microhardness testing determined the mean relative mineral loss delta Z (∆Z) for each group. The pH-cycling was performed with or without additional fluoride. The CO2 9.3μm short-pulsed laser energy rendered enamel caries resistant with and without additional fluoride use.

  2. Photodetachment of H- by a short laser pulse in crossed static electric and magnetic fields

    International Nuclear Information System (INIS)

    Peng Liangyou; Wang Qiaoling; Starace, Anthony F.

    2006-01-01

    We present a detailed quantum mechanical treatment of the photodetachment of H - by a short laser pulse in the presence of crossed static electric and magnetic fields. An exact analytic formula is presented for the final state electron wave function (describing an electron in both static electric and magnetic fields and a short laser pulse of arbitrary intensity). In the limit of a weak laser pulse, final state electron wave packet motion is examined and related to the closed classical electron orbits in crossed static fields predicted by Peters and Delos [Phys. Rev. A 47, 3020 (1993)]. Owing to these closed orbit trajectories, we show that the detachment probability can be modulated, depending on the time delay between two laser pulses and their relative phase, thereby providing a means to partially control the photodetachment process. In the limit of a long, weak pulse (i.e., a monochromatic radiation field) our results reduce to those of others; however, for this case we analyze the photodetachment cross section numerically over a much larger range of electron kinetic energy (i.e., up to 500 cm -1 ) than in previous studies and relate the detailed structures both analytically and numerically to the above-mentioned, closed classical periodic orbits

  3. Optical Detection in Ultrafast Short Wavelength Science

    International Nuclear Information System (INIS)

    Fullagar, Wilfred K.; Hall, Chris J.

    2010-01-01

    A new approach to coherent detection of ionising radiation is briefly motivated and recounted. The approach involves optical scattering of coherent light fields by colour centres in transparent solids. It has significant potential for diffractive imaging applications that require high detection dynamic range from pulsed high brilliance short wavelength sources. It also motivates new incarnations of Bragg's X-ray microscope for pump-probe studies of ultrafast molecular structure-dynamics.

  4. Aurora: A short-pulse multikilojoule KrF inertial fusion laser system

    International Nuclear Information System (INIS)

    Rosocha, L.A.

    1985-01-01

    Aurora is a laser system that serves as an operating technology demonstration prototype for large-scale high-energy KrF laser systems of interest for inertial fusion applications. This system will incorporate the following elements to achieve an end-to-end 248-nm laser fusion concept demonstration: an injection-locked oscillator-amplifier front end; an optical angular multiplexer to produce 96 encoded optical channels each of 5-nsec duration; a chain of four electron-beam-driven KrF laser amplifiers; automated alignment systems for beam alignment; a decoder to provide for pulse compression of some fraction of the total beam train to be delivered to target, and a target chamber to house and diagnose fusion targets. The front end configuration uses a stable resonator master oscillator to drive an injection-locked unstable resonator slave oscillator. An extension of existing technology has been used to develop an electrooptic switchout at 248 nm that produces a 5-nsec pulse from the longer slave oscillator pulse. This short pulse is amplified by a postamplifier. Using these discharge lasers, the front end then delivers at least 250 mJ of KrF laser light output to the optical encoder

  5. Techniques for Pump-Probe Synchronisation of Fsec Radiation Pulses

    CERN Document Server

    Schlarb, Holger

    2005-01-01

    The increasing interest on the production of ultra-short photon pulses in future generations of Free-Electron Lasers operating in the UV, VUV or X-ray regime demands new techniques to reliably measure and control the arrival time of the FEL-pulses at the experiment. For pump-probe experiments using external optical lasers the desired synchronisation is in the order of tens of femtoseconds, the typical duration of the FEL pulse. Since, the accelerators are large scale facilities of the length of several hundred meters or even kilometers, the problem of synchronisation has to be attacked twofold. First, the RF acceleration sections upstream of the magnetic bunch compressors need to be stabilised in amplitude and phase to high precision. Second, the remain electron beam timing jitter needs to be determined with femtosecond accuracy for off-line analysis. In this talk, several techniques using the electron or the FEL beam to monitor the arrival time are presented, and the proposed layout of the synchronisation sy...

  6. Solutions for implementing time-of-flight techniques in low-angle neutron scattering, as realized on the Low-Q Diffractometer at Los Alamos

    International Nuclear Information System (INIS)

    Hjelm, R.P. Jr.; Seeger, P.A.

    1992-01-01

    The implementation of small-angle (Low-momentum transfer) neutron scattering at pulsed spallation sources, using time of flight methods, has meant the introduction of some new ideas in instrument design, data acquisition, data reduction and computer management of the experiment and the data. Here we recount some of the salient aspects of solutions for implementing time of fight small-angle neutron scattering instruments at pulsed sources, as realized on the Low-Q Diffractometer, LQD, at Los Alamos. We consider, fortlier, some of the problems that are yet to be solved, and take a short excursion into the future of SANS instrumentation at pulsed sources

  7. Source of ultra-short laser pulses at 1,55μm in vertical-external-cavity for linear optical sampling applications

    International Nuclear Information System (INIS)

    Khadour, A.

    2009-12-01

    The objectives of this thesis were, in a first step, to develop and implement VECSEL structures containing an active zone formed by GaAlInAs/InP quantum wells located at the anti-nodes of the resonant electric field, positioned on a Bragg mirror, all this being bonded to a substrate of good thermal conductivity. For this, we have designed structures optimizing the evacuation of heat generated in the active zone. This has greatly improved the VECSEL performances, especially their output power. The VECSEL performances were evaluated in a simple cavity with two mirrors (plane-concave). The second point was to develop and implement SESAM structures which, owing to their nonlinear characteristics, would allow a passively mode-locked laser operation. The structures contained InGaAsN/GaAs quantum wells. The studied parameters were the number of quantum wells, and the resonant or anti-resonant behavior of the structure. The linear and nonlinear optical characterizations were used to optimize the SESAM structure and estimate their performances. Finally, the compatibility between the VECSEL and SESAM structures, in terms of modulation depth and resonance wavelength, made it possible to obtain the passive mode locking operation. The obtained pulses show two different behaviors depending on the dispersion properties of the structures. With low dispersion, we have made the first demonstration of a passively mode-locked VECSEL at 1550 nm, operating at room temperature. An all-optical sampling device implementing the linear optical sampling technique using short laser pulses has been realized and tested. This device will allow displaying eye diagrams and constellation diagrams with an expected sensitivity around -20 dBm of average power. Testing the device allowed to visualize the acquisition of very high repetition rate signals (40 Gb/s). (author)

  8. Preparation of metastable CoFeNi alloys with ultra-high magnetic saturation (Bs = 2.4-2.59 T) by reverse pulse electrodeposition

    Science.gov (United States)

    Tabakovic, Ibro; Venkatasamy, Venkatram

    2018-04-01

    The results of reverse pulse electrodeposition of CoFeNi films with ultra-high magnetic saturation, i.e. Bs values between 2.4 and 2.59 T, are presented in this work. Based on valence-bond theory (Hund's rule) it was assumed that the electronic configuration of MOH obtained by one electron reduction of electroactive intermediate (MOH+ads + e → MOHads) or oxidation of metal (M - e + HOH → MOH + H+) would result with larger number of spins per atom for each of transition metals in MOH-precipitated in CoFeNi deposit- with one more spin than their respective neutral metal in the order: Fe > Co > Ni. The experimental results showed that the increase of Bs value above Slater-Pauling curve was not observed for CoFe alloys, thus FeOH and CoOH compounds were not present in deposit. However, the increase of the Bs values above the Slater-Pauling curve (Bs = 2.4-2.59 T) was observed, for CoFeNi films obtained by reverse pulse electrodeposition. Therefore, NiOH as a stable compound is probably formed in a one-electron oxidation step during anodic pulse oxidation reaction precipitated presumably at the grain boundaries, giving rise to the ultra-high magnetic saturation of CoFeNi films. The effects of experimental conditions on elemental composition, magnetic properties, crystal structure, and thermal stability of CoFeNi films were studied.

  9. Revealing silent vibration modes of nanomaterials by detecting anti-Stokes hyper-Raman scattering with femtosecond laser pulses.

    Science.gov (United States)

    Zeng, Jianhua; Chen, Lei; Dai, Qiaofeng; Lan, Sheng; Tie, Shaolong

    2016-01-21

    We proposed a scheme in which normal Raman scattering is coupled with hyper-Raman scattering for generating a strong anti-Stokes hyper-Raman scattering in nanomaterials by using femtosecond laser pulses. The proposal was experimentally demonstrated by using a single-layer MoS2 on a SiO2/Si substrate, a 17 nm-thick MoS2 on an Au/SiO2 substrate and a 9 nm-thick MoS2 on a SiO2-SnO2/Ag/SiO2 substrate which were confirmed to be highly efficient for second harmonic generation. A strong anti-Stokes hyper-Raman scattering was also observed in other nanomaterials possessing large second-order susceptibilities, such as silicon quantum dots self-assembled into "coffee" rings and tubular Cu-doped ZnO nanorods. In all the cases, many Raman inactive vibration modes were clearly revealed in the anti-Stokes hyper-Raman scattering. Apart from the strong anti-Stokes hyper-Raman scattering, Stokes hyper-Raman scattering with small Raman shifts was detected during the ablation process of thick MoS2 layers. It was also observed by slightly defocusing the excitation light. The detection of anti-Stokes hyper-Raman scattering may serve as a new technique for studying the Raman inactive vibration modes in nanomaterials.

  10. Ultra-short-period WC/SiC multilayer coatings for x-ray applications

    International Nuclear Information System (INIS)

    Fernández-Perea, Mónica; Pivovaroff, Mike J.; Soufli, Regina; Alameda, Jennifer; Mirkarimi, Paul; Descalle, Marie-Anne; Baker, Sherry L.; McCarville, Tom; Ziock, Klaus; Hornback, Donald; Romaine, Suzanne; Bruni, Ric; Zhong, Zhong; Honkimäki, Veijo; Ziegler, Eric; Christensen, Finn E.; Jakobsen, Anders C.

    2013-01-01

    Multilayer coatings enhance x-ray mirror performance at incidence angles steeper than the critical angle, allowing for improved flux, design flexibility and facilitating alignment. In an attempt to extend the use of multilayer coatings to photon energies higher than previously achieved, we have developed multilayers with ultra-short periods between 1 and 2 nm based on the material system WC/SiC. This material system was selected because it possesses very sharp and stable interfaces. In this article, we show highlights from a series of experiments performed in order to characterize the stress, microstructure and morphology of the multilayer films, as well as their reflective performance at photon energies from 8 to 384 keV

  11. Ultra-short X-ray sources generated through laser-matter interaction and their applications; Sources de rayonnement X ultrabref generees par interaction laser-matiere et leurs applications

    Energy Technology Data Exchange (ETDEWEB)

    Rousse, A

    2004-04-15

    This work is dedicated to the sources of ultra-short X-rays. The K{sub {alpha}} source, the non-linear Thomson source, the betatron source and the X-{gamma} source are presented. We show that a pump-probe experiment where the pump is a laser excitation and the probe is the X-K{sub {alpha}} ultra-short radiation, can be used to study the dynamics of material structure with a time resolution of 100 femtosecond. We describe 2 applications that have been achieved in the field of solid physics by using the diffraction technique with a time resolution in the range of the femtosecond. The first application has permitted the observation and characterization of the ultra-quick solid-phase transition that occurs on the surface of a semiconductor crystal. The second experiment deals with the role of optical phonons in the antecedent processes that lead to such ultra-quick solid-phase transitions. (A.C.)

  12. Femtosecond timing-jitter between photo-cathode laser and ultra-short electron bunches by means of hybrid compression

    CERN Document Server

    Pompili, Riccardo; Bellaveglia, M; Biagioni, A; Castorina, G; Chiadroni, E; Cianchi, A; Croia, M; Di Giovenale, D; Ferrario, M; Filippi, F; Gallo, A; Gatti, G; Giorgianni, F; Giribono, A; Li, W; Lupi, S; Mostacci, A; Petrarca, M; Piersanti, L; Di Pirro, G; Romeo, S; Scifo, J; Shpakov, V; Vaccarezza, C; Villa, F

    2017-01-01

    The generation of ultra-short electron bunches with ultra-low timing-jitter relative to the photo-cathode (PC) laser has been experimentally proved for the first time at the SPARC_LAB test-facility (INFN-LNF, Frascati) exploiting a two-stage hybrid compression scheme. The first stage employs RF-based compression (velocity-bunching), which shortens the bunch and imprints an energy chirp on it. The second stage is performed in a non-isochronous dogleg line, where the compression is completed resulting in a final bunch duration below 90 fs (rms). At the same time, the beam arrival timing-jitter with respect to the PC laser has been measured to be lower than 20 fs (rms). The reported results have been validated with numerical simulations.

  13. Femtosecond timing-jitter between photo-cathode laser and ultra-short electron bunches by means of hybrid compression

    International Nuclear Information System (INIS)

    Pompili, R; Anania, M P; Bellaveglia, M; Biagioni, A; Castorina, G; Chiadroni, E; Croia, M; Giovenale, D Di; Ferrario, M; Gallo, A; Gatti, G; Cianchi, A; Filippi, F; Giorgianni, F; Giribono, A; Lupi, S; Mostacci, A; Petrarca, M; Piersanti, L; Li, W

    2016-01-01

    The generation of ultra-short electron bunches with ultra-low timing-jitter relative to the photo-cathode (PC) laser has been experimentally proved for the first time at the SPARC-LAB test-facility (INFN-LNF, Frascati) exploiting a two-stage hybrid compression scheme. The first stage employs RF-based compression (velocity-bunching), which shortens the bunch and imprints an energy chirp on it. The second stage is performed in a non-isochronous dogleg line, where the compression is completed resulting in a final bunch duration below 90 fs (rms). At the same time, the beam arrival timing-jitter with respect to the PC laser has been measured to be lower than 20 fs (rms). The reported results have been validated with numerical simulations. (paper)

  14. A Test Bed for Short Pulse OA Detection of Optical Directors in Amphibious Operations

    National Research Council Canada - National Science Library

    Ertem, M

    1999-01-01

    ...) system to detect optical directors of potential threats in amphibious operations. The use of a short pulse duration allows discrimination of retroreflections from natural sources such as rock formations and vegetation...

  15. Nearly copropagating sheared laser pulse FEL undulator for soft x-rays

    International Nuclear Information System (INIS)

    Lawler, J E; Yavuz, D; Bisognano, J; Bosch, R A; Chiang, T C; Green, M A; Jacobs, K; Miller, T; Wehlitz, R; York, R C

    2013-01-01

    A conceptual design for a soft x-ray free-electron laser (FEL) using a short-pulsed, high energy near infrared laser undulator and a low-emittance modest-energy (∼170 MeV) electron beam is described. This low-cost design uses the laser undulator beam in a nearly copropagating fashion with respect to the electron beam, instead of the traditional ‘head-on’ fashion. The nearly copropagating geometry reduces the Doppler shift of scattered radiation to yield soft, rather than hard x-rays. To increase the FEL gain a sheared laser pulse from a Ti : sapphire or other broadband laser is used to extend the otherwise short interaction time of the nearly copropagating laser undulator beam with a relativistic electron beam. (paper)

  16. Tracking of Short Distance Transport Pathways in Biological Tissues by Ultra-Small Nanoparticles

    Science.gov (United States)

    Segmehl, Jana S.; Lauria, Alessandro; Keplinger, Tobias; Berg, John K.; Burgert, Ingo

    2018-03-01

    In this work, ultra-small europium-doped HfO2 nanoparticles were infiltrated into native wood and used as trackers for studying penetrability and diffusion pathways in the hierarchical wood structure. The high electron density, laser induced luminescence, and crystallinity of these particles allowed for a complementary detection of the particles in the cellular tissue. Confocal Raman microscopy and high-resolution synchrotron scanning wide-angle X-ray scattering (WAXS) measurements were used to detect the infiltrated particles in the native wood cell walls. This approach allows for simultaneously obtaining chemical information of the probed biological tissue and the spatial distribution of the integrated particles. The in-depth information about particle distribution in the complex wood structure can be used for revealing transport pathways in plant tissues, but also for gaining better understanding of modification treatments of plant scaffolds aiming at novel functionalized materials.

  17. Metal processing with ultrashort laser pulses

    Science.gov (United States)

    Banks, Paul S.; Felt, M. D.; Komashko, Aleksey M.; Perry, Michael D.; Rubenchik, Alexander M.; Stuart, Brent C.

    2000-08-01

    Femtosecond laser ablation has been shown to produce well-defined cuts and holes in metals with minimal heat effect to the remaining material. Ultrashort laser pulse processing shows promise as an important technique for materials processing. We will discuss the physical effects associated with processing based experimental and modeling results. Intense ultra-short laser pulse (USLP) generates high pressures and temperatures in a subsurface layer during the pulse, which can strongly modify the absorption. We carried out simulations of USLP absorption versus material and pulse parameters. The ablation rate as function of the laser parameters has been estimated. Since every laser pulse removes only a small amount of material, a practical laser processing system must have high repetition rate. We will demonstrate that planar ablation is unstable and the initially smooth crater bottom develops a corrugated pattern after many tens of shots. The corrugation growth rate, angle of incidence and the polarization of laser electric field dependence will be discussed. In the nonlinear stage, the formation of coherent structures with scales much larger than the laser wavelength was observed. Also, there appears to be a threshold fluence above which a narrow, nearly perfectly circular channel forms after a few hundred shots. Subsequent shots deepen this channel without significantly increasing its diameter. The role of light absorption in the hole walls will be discussed.

  18. Single pulse two photon fluorescence lifetime imaging (SP-FLIM) with MHz pixel rate.

    Science.gov (United States)

    Eibl, Matthias; Karpf, Sebastian; Weng, Daniel; Hakert, Hubertus; Pfeiffer, Tom; Kolb, Jan Philip; Huber, Robert

    2017-07-01

    Two-photon-excited fluorescence lifetime imaging microscopy (FLIM) is a chemically specific 3-D sensing modality providing valuable information about the microstructure, composition and function of a sample. However, a more widespread application of this technique is hindered by the need for a sophisticated ultra-short pulse laser source and by speed limitations of current FLIM detection systems. To overcome these limitations, we combined a robust sub-nanosecond fiber laser as the excitation source with high analog bandwidth detection. Due to the long pulse length in our configuration, more fluorescence photons are generated per pulse, which allows us to derive the lifetime with a single excitation pulse only. In this paper, we show high quality FLIM images acquired at a pixel rate of 1 MHz. This approach is a promising candidate for an easy-to-use and benchtop FLIM system to make this technique available to a wider research community.

  19. An Ultra Low Noise Self-Starting Pulse Generator

    DEFF Research Database (Denmark)

    Lasri, J.; Bilenca, A.; Dahan, D.

    2002-01-01

    We describe a self-starting optical pulse source generating 10 GHz, 15 ps pulses with an average jitter of 43 fs and a o.15% amplitude noise over a frequency range of 500 Hz - 1 MHz.......We describe a self-starting optical pulse source generating 10 GHz, 15 ps pulses with an average jitter of 43 fs and a o.15% amplitude noise over a frequency range of 500 Hz - 1 MHz....

  20. Ultrashort X-ray pulse science

    Energy Technology Data Exchange (ETDEWEB)

    Chin, Alan Hap [Univ. of California, Berkeley, CA (US). Dept. of Physics; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    1998-05-01

    A variety of phenomena involves atomic motion on the femtosecond time-scale. These phenomena have been studied using ultrashort optical pulses, which indirectly probe atomic positions through changes in optical properties. Because x-rays can more directly probe atomic positions, ultrashort x-ray pulses are better suited for the study of ultrafast structural dynamics. One approach towards generating ultrashort x-ray pulses is by 90° Thomson scattering between terawatt laser pulses and relativistic electrons. Using this technique, the author generated ~ 300 fs, 30 keV (0.4 Å) x-ray pulses. These x-ray pulses are absolutely synchronized with ultrashort laser pulses, allowing femtosecond optical pump/x-ray probe experiments to be performed. Using the right-angle Thomson scattering x-ray source, the author performed time-resolved x-ray diffraction studies of laser-perturbated InSb. These experiments revealed a delayed onset of lattice expansion. This delay is due to the energy relaxation from a dense electron-hole plasma to the lattice. The dense electron-hole plasma first undergoes Auger recombination, which reduces the carrier concentration while maintaining energy content. Longitudinal-optic (LO) phonon emission then couples energy to the lattice. LO phonon decay into acoustic phonons, and acoustic phonon propagation then causes the growth of a thermally expanded layer. Source characterization is instrumental in utilizing ultrashort x-ray pulses in time-resolved x-ray spectroscopies. By measurement of the electron beam diameter at the generation point, the pulse duration of the Thomson scattered x-rays is determined. Analysis of the Thomson scattered x-ray beam properties also provides a novel means of electron bunch characterization. Although the pulse duration is inferred for the Thomson scattering x-ray source, direct measurement is required for other x-ray pulse sources. A method based on the laser-assisted photoelectric effect (LAPE) has been demonstrated as a

  1. Ultrashort X-ray pulse science

    International Nuclear Information System (INIS)

    Chin, A.H.; Lawrence Berkeley National Lab., CA

    1998-01-01

    A variety of phenomena involves atomic motion on the femtosecond time-scale. These phenomena have been studied using ultrashort optical pulses, which indirectly probe atomic positions through changes in optical properties. Because x-rays can more directly probe atomic positions, ultrashort x-ray pulses are better suited for the study of ultrafast structural dynamics. One approach towards generating ultrashort x-ray pulses is by 90 o Thomson scattering between terawatt laser pulses and relativistic electrons. Using this technique, the author generated ∼ 300 fs, 30 keV (0.4 (angstrom)) x-ray pulses. These x-ray pulses are absolutely synchronized with ultrashort laser pulses, allowing femtosecond optical pump/x-ray probe experiments to be performed. Using the right-angle Thomson scattering x-ray source, the author performed time-resolved x-ray diffraction studies of laser-perturbated InSb. These experiments revealed a delayed onset of lattice expansion. This delay is due to the energy relaxation from a dense electron-hole plasma to the lattice. The dense electron-hole plasma first undergoes Auger recombination, which reduces the carrier concentration while maintaining energy content. Longitudinal-optic (LO) phonon emission then couples energy to the lattice. LO phonon decay into acoustic phonons, and acoustic phonon propagation then causes the growth of a thermally expanded layer. Source characterization is instrumental in utilizing ultrashort x-ray pulses in time-resolved x-ray spectroscopies. By measurement of the electron beam diameter at the generation point, the pulse duration of the Thomson scattered x-rays is determined. Analysis of the Thomson scattered x-ray beam properties also provides a novel means of electron bunch characterization. Although the pulse duration is inferred for the Thomson scattering x-ray source, direct measurement is required for other x-ray pulse sources. A method based on the laser-assisted photoelectric effect (LAPE) has been

  2. Numerical analysis of breakdown dynamics dependence on pulse width in laser-induced damage in fused silica: Role of optical system

    Directory of Open Access Journals (Sweden)

    Kholoud A. Hamam

    2018-06-01

    Full Text Available We report a numerical investigation of the breakdown and damage in fused silica caused by ultra-short laser pulses. The study based on a modified model (Gaabour et al., 2012 that solves the rate equation numerically for the electron density evolution during the laser pulse, under the combined effect of both multiphoton and electron impact ionization processes. Besides, electron loss processes due to diffusion out of the focal volume and recombination are also considered in this analysis. The model is applied to investigate the threshold intensity dependence on laser pulse width in the experimental measurements that are given by Liu et al. (2005. In this experiment, a Ti-sapphire laser source operating at 800 nm with pulse duration varies between 240 fs and 2.5 ps is used to irradiate a bulk of fused silica with dimensions 10 × 5 × 3 mm. The laser beam was focused into the bulk using two optical systems with effective numerical apertures (NA 0.126 and 0.255 to give beam spot radius at the focus of the order 2.0 μm and 0.95 μm respectively. Reasonable agreement between the calculated thresholds and the measured ones is attained. Moreover, a study is performed to examine the respective role of the physical processes of the breakdown of fused silica in relation to the pulse width and focusing optical system. The analysis revealed a real picture of the location and size of the generated plasma. Keywords: Ultra-short laser pulses, Ablation mechanisms, Electron density, Electron loss processes, Avalanche ionization, Breakdown threshold

  3. Ultra-short wavelength x-ray system

    Science.gov (United States)

    Umstadter, Donald [Ann Arbor, MI; He, Fei [Ann Arbor, MI; Lau, Yue-Ying [Potomac, MD

    2008-01-22

    A method and apparatus to generate a beam of coherent light including x-rays or XUV by colliding a high-intensity laser pulse with an electron beam that is accelerated by a synchronized laser pulse. Applications include x-ray and EUV lithography, protein structural analysis, plasma diagnostics, x-ray diffraction, crack analysis, non-destructive testing, surface science and ultrafast science.

  4. Ultra fast atomic process in X-ray emission by inner-shell ionization

    Energy Technology Data Exchange (ETDEWEB)

    Moribayashi, Kengo; Sasaki, Akira [Japan Atomic Energy Research Inst., Neyagawa, Osaka (Japan). Kansai Research Establishment; Tajima, T

    1998-03-01

    An ultra-fast atomic process together with X-ray emission by inner-shell ionization using high intensity (10{sup 18} W/cm{sup 2}) short pulse (20fs) X-ray is studied. A new class of experiment is proposed and a useful pumping source is suggested. In this method, it is found that the gain value of X-ray laser amounts to larger than 1000(1/cm) with use of the density of 10{sup 22}/cm{sup 3} of carbon atom. Electron impact ionization effect and initial density effect as well as intensity of pumping source effect are also discussed. (author)

  5. Determination of Proper Peaking Time for Ultra Lege detector at Medium Energies

    International Nuclear Information System (INIS)

    Karabidak, S. M.

    2008-01-01

    Reducing count losses and pile-up pulse effects in quantitative and qualitative analysis is necessary for accuracy of analysis. Therefore, the optimum peaking time for particular detector systems is important. For this purpose, pure Se and Zn elements were excited by 59.5 keV γ-rays from a 50 mCi 241 A m annular radioactive source in this study. The characteristic x-rays emitted from pure Se and Zn elements were detected by using an ultra low energy Ge (Ultra-LEGe) detector connecting Tennelec TC 244 spectroscopy amplifier at different peaking time modes. Overall pulse widths were determined by HM 203-7 oscilloscope connecting amplifier. The proper peaking time for ultra low energy germanium detector (Ultra-LEGe) is determined about 4 μs

  6. Ultra-low noise supercontinuum source for ultra-high resolution optical coherence tomography at 1300 nm

    Science.gov (United States)

    Gonzalo, I. B.; Maria, M.; Engelsholm, R. D.; Feuchter, T.; Leick, L.; Moselund, P. M.; Podoleanu, A.; Bang, O.

    2018-02-01

    Supercontinuum (SC) sources are of great interest for many applications due to their ultra-broad optical bandwidth, good beam quality and high power spectral density [1]. In particular, the high average power over large bandwidths makes SC light sources excellent candidates for ultra-high resolution optical coherence tomography (UHR-OCT) [2-5]. However, conventional SC sources suffer from high pulse-to-pulse intensity fluctuations as a result of the noise-sensitive nonlinear effects involved in the SC generation process [6-9]. This intensity noise from the SC source can limit the performance of OCT, resulting in a reduced signal-to-noise ratio (SNR) [10-12]. Much work has been done to reduce the noise of the SC sources for instance with fiber tapers [7,8] or increasing the repetition rate of the pump laser for averaging in the spectrometer [10,12]. An alternative approach is to use all-normal dispersion (ANDi) fibers [13,14] to generate SC light from well-known coherent nonlinear processes [15-17]. In fact, reduction of SC noise using ANDi fibers compared to anomalous dispersion SC pumped by sub-picosecond pulses has been recently demonstrated [18], but a cladding mode was used to stabilize the ANDi SC. In this work, we characterize the noise performance of a femtosecond pumped ANDi based SC and a commercial SC source in an UHR-OCT system at 1300 nm. We show that the ANDi based SC presents exceptional noise properties compared to a commercial source. An improvement of 5 dB in SNR is measured in the UHR-OCT system, and the noise behavior resembles that of a superluminiscent diode. This preliminary study is a step forward towards development of an ultra-low noise SC source at 1300 nm for ultra-high resolution OCT.

  7. Development of fiber lasers and devices for coherent Raman scattering microscopy

    Science.gov (United States)

    Lamb, Erin Stranford

    As ultrafast laser technology has found expanding application in machining, spectroscopy, microscopy, surgery, and numerous other areas, the desire for inexpensive and robust laser sources has grown. Until recently, nonlinear effects in fiber systems due to the tight confinement of the light in the core have limited their performance. However, with advances in managing nonlinearity through pulse propagation physics and the use of large core fibers, the performance of fiber lasers can compete with that of their solid-state counterparts. As specific applications, such as coherent Raman scattering microscopy, emerge that stand to benefit from fiber technology, new performance challenges in areas such as laser noise are anticipated. This thesis studies nonlinear pulse propagation in fiber lasers and fiber parametric devices. Applications of dissipative solitons and self-similar pulse propagation to low-repetition rate oscillators that have the potential to simplify short-pulse amplification schemes will be examined. The rest of this thesis focuses on topics relevant to fiber laser development for coherent Raman scattering microscopy sources. Coherent pulse division and recombination inside the laser cavity will be introduced as an energy-scaling mechanism and demonstrated for a fiber soliton laser. The relative intensity noise properties of mode-locked fiber lasers, with a particular emphasis on normal dispersion lasers, will be explored in simulation and experiment. A fiber optical parametric oscillator will be studied in detail for low noise frequency conversion of picosecond pulses, and its utility for coherent Raman imaging will be demonstrated. Spectral compression of femtosecond pulses is used to generate picosecond pulses to pump this device, and this technique provides a route to future noise reduction in the system. Furthermore, this device forms a multimodal source capable of providing the picosecond pulses for coherent Raman scattering microscopy and the

  8. Characterization of a high repetition-rate laser-driven short-pulsed neutron source

    Science.gov (United States)

    Hah, J.; Nees, J. A.; Hammig, M. D.; Krushelnick, K.; Thomas, A. G. R.

    2018-05-01

    We demonstrate a repetitive, high flux, short-pulsed laser-driven neutron source using a heavy-water jet target. We measure neutron generation at 1/2 kHz repetition rate using several-mJ pulse energies, yielding a time-averaged neutron flux of 2 × 105 neutrons s‑1 (into 4π steradians). Deuteron spectra are also measured in order to understand source characteristics. Analyses of time-of-flight neutron spectra indicate that two separate populations of neutrons, ‘prompt’ and ‘delayed’, are generated at different locations. Gamma-ray emission from neutron capture 1H(n,γ) is also measured to confirm the neutron flux.

  9. Estimation of radiative parameters in participating media using shuffled frog leaping algorithm

    Directory of Open Access Journals (Sweden)

    Ren Ya-Tao

    2017-01-01

    Full Text Available The transient radiative transfer in 1-D homogeneous media with ultra-short Gaussian pulse laser irradiated was investigation by the finite volume method. The concept of optimal detection distance was proposed. The radiation characteristic was studied thoroughly. Afterwards, a memetic meta-heuristic shuffled frog leaping algorithm was introduced to inverse transient radiative problems. It is demonstrated that the extinction coefficient and scattering albedo can be retrieved accurately even with noisy data in a homogeneous absorbing and isotropic scattering plane-parallel slab. Finally, a technique was proposed to accelerate the inverse process by reducing the searching space of the radiative parameters.

  10. Ultra-Smooth ZnS Films Grown on Silicon via Pulsed Laser Deposition

    Science.gov (United States)

    Reidy, Christopher; Tate, Janet

    2011-10-01

    Ultra-smooth, high quality ZnS films were grown on (100) and (111) oriented Si wafers via pulsed laser deposition with a KrF excimer laser in UHV (10-9 Torr). The resultant films were examined with optical spectroscopy, electron diffraction, and electron probe microanalysis. The films have an rms roughness of ˜1.5 nm, and the film stoichiometry is approximately Zn:S :: 1:0.87. Additionally, each film exhibits an optical interference pattern which is not a function of probing location on the sample, indicating excellent film thickness uniformity. Motivation for high-quality ZnS films comes from a proposed experiment to measure carrier amplification via impact ionization at the boundary between a wide-gap and a narrow-gap semiconductor. If excited charge carriers in a sufficiently wide-gap harvester can be extracted into a narrow-gap host material, impact ionization may occur. We seek near-perfect interfaces between ZnS, with a direct gap between 3.3 and 3.7 eV, and Si, with an indirect gap of 1.1 eV.

  11. Modelling of Ne-like copper X-ray laser driven by 1.2 ps short pulse and 280 ps background pulse configuration

    International Nuclear Information System (INIS)

    Demir, A.; Kenar, N.; Goktas, H.; Tallents, G.J.

    2004-01-01

    Detailed simulations of Ne-like Cu x-ray laser are undertaken using the EHYBRID code. The atomic physics data are obtained using the Cowan code. The optimization calculations are performed in terms of the intensity of background and the time separation between the background and the short pulse. The optimum value is obtained for the conditions of a Nd:glass laser with 1.2 ps pulse at 4.4 x 10 15 W cm -2 irradiance pumping a plasma pre-formed by a 280 ps duration pulse at 5.4 x 10 12 W cm -2 with peak-to-peak pulse separation set at 300 ps. X-ray resonance lines between 6 A and 15 A emitted from copper plasmas have been simulated. Free-free and free-bound emission from the Si-, Al-, Mg-, Na-, Ne- and F-like ions is calculated in the simulation. (author)

  12. Characterization of porous materials by small-angle scattering

    Indian Academy of Sciences (India)

    With the availability of ultra small-angle scattering instruments, one can investigate porous materials in the sub-micron length scale. Because of the increased accessible length scale vis-a-vis the multiple scattering effect, conventional data analysis procedures based on single scattering approximation quite often fail.

  13. Extremely short light pulses: generation; diagnostics, and application in attosecond spectroscopy

    International Nuclear Information System (INIS)

    Iakovlev, V.

    2003-06-01

    The scope of the thesis includes the design of chirped mirrors, as well as theoretical investigations in the fields of high-harmonic generation and laser-dressed Auger decay, the unifying aspect being the presence of extremely short light pulses and physical processes taking place on a femtosecond scale. The main results of the research are the following: 1) It was shown that efficient global optimization of chirped mirrors is possible with an adapted version of the memetic algorithm (also known as hybrid genetic algorithm). 2) The analysis of high-harmonic spectra generated by a few-cycle laser pulse can reveal the electric field of the pulse in the vicinity of its envelope peak. The method developed for this purpose can also be regarded as a method to measure the carrier-envelope phase of laser pulses, which is more robust and has a larger range of applicability compared to the simple analysis of the cut-off region of high-harmonic spectra. 3) A quantum theory of time-resolved Auger spectroscopy was developed. Based on the essential states method, closed-form expressions for probability amplitudes were derived. The theory lays the foundation for the interpretation of experiments that probe electronic motion during atomic excitation, deexcitation, and ionization. (author)

  14. Generation of Attosecond Light Pulses from Gas and Solid State Media

    Directory of Open Access Journals (Sweden)

    Stefanos Chatziathanasiou

    2017-03-01

    Full Text Available Real-time observation of ultrafast dynamics in the microcosm is a fundamental approach for understanding the internal evolution of physical, chemical and biological systems. Tools for tracing such dynamics are flashes of light with duration comparable to or shorter than the characteristic evolution times of the system under investigation. While femtosecond (fs pulses are successfully used to investigate vibrational dynamics in molecular systems, real time observation of electron motion in all states of matter requires temporal resolution in the attosecond (1 attosecond (asec = 10−18 s time scale. During the last decades, continuous efforts in ultra-short pulse engineering led to the development of table-top sources which can produce asec pulses. These pulses have been synthesized by using broadband coherent radiation in the extreme ultraviolet (XUV spectral region generated by the interaction of matter with intense fs pulses. Here, we will review asec pulses generated by the interaction of gas phase media and solid surfaces with intense fs IR laser fields. After a brief overview of the fundamental process underlying the XUV emission form these media, we will review the current technology, specifications and the ongoing developments of such asec sources.

  15. Short pulse laser-induced optical damage and fracto-emission of amorphous, diamond-like carbon

    Energy Technology Data Exchange (ETDEWEB)

    SOKOLOWSKI-TINTEN,K.; VON DER LINDE,D.; SIEGAL,MICHAEL P.; OVERMYER,DONALD L.

    2000-02-07

    Short pulse laser damage and ablation of amorphous, diamond-like carbon films is investigated. Material removal is due to fracture of the film and ejection of large fragments, which exhibit a broadband emission of microsecond duration.

  16. A differential optical interferometer for measuring short pulses of surface acoustic waves.

    Science.gov (United States)

    Shaw, Anurupa; Teyssieux, Damien; Laude, Vincent

    2017-09-01

    The measurement of the displacements caused by the propagation of a short pulse of surface acoustic waves on a solid substrate is investigated. A stabilized time-domain differential interferometer is proposed, with the surface acoustic wave (SAW) sample placed outside the interferometer. Experiments are conducted with surface acoustic waves excited by a chirped interdigital transducer on a piezoelectric lithium niobate substrate having an operational bandwidth covering the 200-400MHz frequency range and producing 10-ns pulses with 36nm maximum out-of-plane displacement. The interferometric response is compared with a direct electrical measurement obtained with a receiving wide bandwidth interdigital transducer and good correspondence is observed. The effects of varying the path difference of the interferometer and the measurement position on the surface are discussed. Pulse compression along the chirped interdigital transducer is observed experimentally. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Control of ion beam generation in intense short pulse laser target interaction

    International Nuclear Information System (INIS)

    Nagashima, T.; Izumiyama, T.; Barada, D.; Kawata, S.; Gu, Y.J.; Wang, W.M.; Ma, Y.Y.; Kong, Q.

    2013-01-01

    In intense laser plasma interaction, several issues still remain to be solved for future laser particle acceleration. In this paper we focus on a control of generation of high-energy ions. In this study, near-critical density plasmas are employed and are illuminated by high intensity short laser pulses; we have successfully generated high-energy ions, and also controlled ion energy and the ion energy spectrum by multiple-stages acceleration. We performed particle-in-cell simulations in this paper. The first near-critical plasma target is illuminated by a laser pulse, and the ions accelerated are transferred to the next target. The next identical target is also illuminated by another identical large pulse, and the ion beam introduced is further accelerated and controlled. In this study four stages are employed, and finally a few hundreds of MeV of protons are realized. A quasi-monoenergetic energy spectrum is also obtained. (author)

  18. Some models of propagation of extremely short electromagnetic pulses in a nonlinear medium

    International Nuclear Information System (INIS)

    Maimistov, Andrei I

    2000-01-01

    Some cases of model media considered in this paper allow analytical solutions to nonlinear wave equations to be found and the time dependence of the electric field strength to be determined in the explicit form for arbitrarily short electromagnetic pulses. Our analysis does not employ any assumptions concerning a harmonic carrier wave or the variation rate of the field in such pulses. The class of models considered includes two-level resonance and quasi-resonance systems. Nonresonance media are analysed in terms of models of anharmonic oscillators - the Duffing and Lorentz models. In most cases, only particular solutions describing the stationary propagation of a video pulse (a unipolar transient of the electric field or a pulse including a small number of oscillations of the electric field around zero) can be found. These solutions correspond to sufficiently strong electromagnetic fields when the dispersion inherent in the medium is suppressed by nonlinear processes. (invited paper)

  19. Condensed matter and materials research using neutron diffraction and spectroscopy: reactor and pulsed neutron sources

    International Nuclear Information System (INIS)

    Bisanti, Paola; Lovesey, S.W.

    1987-05-01

    The paper provides a short, and partial view of the neutron scattering technique applied to condensed matter and materials research. Reactor and accelerator-based neutron spectrometers are discussed, together with examples of research projects that illustrate the puissance and modern applications of neutron scattering. Some examples are chosen to show the range of facilities available at the medium flux reactor operated by Casaccia ENEA, Roma and the advanced, pulsed spallation neutron source at the Rutherford Appleton Laboratory, Oxfordshire. (author)

  20. Short-pulse-laser-induced optical damage and fracto-emission of amorphous, diamond-like carbon films

    Science.gov (United States)

    Sokolowski-Tinten, Klaus; Ziegler, Wolfgang; von der Linde, Dietrich; Siegal, Michael P.; Overmyer, D. L.

    2005-03-01

    Short-pulse-laser-induced damage and ablation of thin films of amorphous, diamond-like carbon have been investigated. Material removal and damage are caused by fracture of the film and ejection of large fragments. The fragments exhibit a delayed, intense and broadband emission of microsecond duration. Both fracture and emission are attributed to the laser-initiated relaxation of the high internal stresses of the pulse laser deposition-grown films.