WorldWideScience

Sample records for scattering law calculations

  1. On the thermal scattering law data for reactor lattice calculations

    International Nuclear Information System (INIS)

    Trkov, A.; Mattes, M.

    2004-01-01

    Thermal scattering law data for hydrogen bound in water, hydrogen bound in zirconium hydride and deuterium bound in heavy water have been re-evaluated. The influence of the thermal scattering law data on critical lattices has been studied with detailed Monte Carlo calculations and a summary of results is presented for a numerical benchmark and for the TRIGA reactor benchmark. Systematics for a large sequence of benchmarks analysed with the WIMS-D lattice code are also presented. (author)

  2. Calculations of the Thermal Scattering Law for Solids and Liquids

    International Nuclear Information System (INIS)

    Jarvis, R.G.

    1968-01-01

    a method has been developed, based on the incoherent approximation, to describe scattering in solids and liquids. It deals with molecules which are made up of one or more types of scatterer, such as UO 2 and D 2 O. For each scatterer there is a scattering law S(α, β) = 1/2π ∫ ∞ -∞ exp(-αw(t))exp(iβ)dt in Egelstaff's notation. The width function w(t) corresponds to a 'generalized frequency distribution' p(β) which, in its most complicated form, has five components. The first and second describe sharp peaks (such as the two main vibration levels in D 2 O ), the third and fourth represent broader peaks (such as the combined effects of minor vibration levels and the rotations and translations), the fifth is for diffusion and is omitted for solids. The integral for S is expanded over the vibration terms and then evaluated by a combination of numerical methods and saddle-point integrations. Finally, the S 1 s for the scatterers are combined to give an S for the molecule. (author)

  3. SCATLAW: a code of scattering law and cross sections calculation for liquids and solids

    International Nuclear Information System (INIS)

    Padureanu, I.; Rapeanu, S.; Rotarascu, G.; Craciun, C.

    1978-11-01

    A code for calculation of the scattering law S(Q,ω), differential and double differential cross sections and scattering kernels in the energy range E(0 - 683 meV) and wave-vector transfer Q(0 - 40 A -1 ) is presented. The code can be used both for solids and liquids which are coherent or incoherent scatterer. For liquids the calculations are based on the most recent theoretical models involving the correlation functions and generalized field approach. The phonon expansion model and the free gas model are also analysed in term of frequency spectra obtained from inelastic neutron scattering using time-of-flight technique. Several results on liquid sodium at T = 233 deg C and on liquid bismuth at T = 286 deg C and T = 402 deg C are presented. (author)

  4. Evaluation of scattering laws and cross sections for calculation of production and transport of cold and ultracold neutrons

    International Nuclear Information System (INIS)

    Bernnat, W.; Keinert, J.; Mattes, M.

    2004-01-01

    For the calculation of neutron spectra in cold and super thermal sources scattering laws for a variety of liquid and solid cyrogenic materials were evaluated and prepared for use in deterministic and Monte Carlo transport calculations. For moderator materials like liquid and solid H 2 O, liquid He, liquid D 2 O, liquid and solid H 2 and D 2 , solid CH 4 and structure materials such as Al, Bi, Pb, ZrHx, and graphite scattering law data and cross sections are available. The evaluated data were validated by comparison with measured cross sections and comparison of measured and calculated neutron spectra as far as available. Further applications are the calculation of production and transport and storing of ultra cold neutrons (UCN) in different UCN sources. The data structures of the evaluated data are prepared for the common S N -transport codes and the Monte Carlo Code MCNP. (orig.)

  5. Evaluation of scattering laws and cross sections for calculation of production and transport of cold and ultracold neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Bernnat, W.; Keinert, J.; Mattes, M. [Inst. for Nuclear Energy and Energy Systems, Univ. of Stuttgart, Stuttgart (Germany)

    2004-03-01

    For the calculation of neutron spectra in cold and super thermal sources scattering laws for a variety of liquid and solid cyrogenic materials were evaluated and prepared for use in deterministic and Monte Carlo transport calculations. For moderator materials like liquid and solid H{sub 2}O, liquid He, liquid D{sub 2}O, liquid and solid H{sub 2} and D{sub 2}, solid CH{sub 4} and structure materials such as Al, Bi, Pb, ZrHx, and graphite scattering law data and cross sections are available. The evaluated data were validated by comparison with measured cross sections and comparison of measured and calculated neutron spectra as far as available. Further applications are the calculation of production and transport and storing of ultra cold neutrons (UCN) in different UCN sources. The data structures of the evaluated data are prepared for the common S{sub N}-transport codes and the Monte Carlo Code MCNP. (orig.)

  6. Use of the Boltzmann equation for calculating the scattering law in gas mixtures

    International Nuclear Information System (INIS)

    Eder, O.J.; Lackner, T.

    1989-01-01

    A new approach is presented for the calculation of the dynamical incoherent structure factor S s (q, ω) for a dilute binary gas mixture. The starting point is the linearized one-dimensional Boltzmann equation for a mixture of particles interacting via a quasi-Maxwell potential (V(r) ≅ 1/r ν , ν=4). It is shown how - in the Fourier-Laplace space (q, ω) - the solution of the Boltzman equation can be expressed as an infinite continued fraction. The well known hydrodynamic limit (q→0) and the free gas limit (q→∞) are correctly reproduced as the appropriate limits of the continued fraction. A brief comparison between S s (q, ω) for two interaction potentials (quasi-Maxwell potential, ν=4, and hard core potential, ν=∞) is presented, and it is found that, after scaling the variables to the respective diffusion coefficients, only little dependence on the potential remains. Furthermore, for a one-component system in three dimensions results are summarized for the dynamical incoherent and coherent structure factor. (orig.) [de

  7. ENDF/B-III scattering law library

    International Nuclear Information System (INIS)

    Goulo, V.; Lemmel, H.D.

    1989-12-01

    This library contains scattering law data S(α,β) for 10 materials used for thermal reactor and shielding calculations: H 2 O, D 2 O, Be, BeO, C, CH 2 , C 6 H 6 , UO 2 , ZrH x (for H), ZrH x (for Zr) for temperatures from 296 to 1000 or 1200 deg. K. Data are in ENDF/B-3 format. The library is available from the IAEA Nuclear Data Section on magnetic tape, costfree upon request. (author). Figs and tabs

  8. Study on the scattering law and scattering kernel of hydrogen in zirconium hydride

    International Nuclear Information System (INIS)

    Jiang Xinbiao; Chen Wei; Chen Da; Yin Banghua; Xie Zhongsheng

    1999-01-01

    The nuclear analytical model of calculating scattering law and scattering kernel for the uranium zirconium hybrid reactor is described. In the light of the acoustic and optic model of zirconium hydride, its frequency distribution function f(ω) is given and the scattering law of hydrogen in zirconium hydride is obtained by GASKET. The scattering kernel σ l (E 0 →E) of hydrogen bound in zirconium hydride is provided by the SMP code in the standard WIMS cross section library. Along with this library, WIMS is used to calculate the thermal neutron energy spectrum of fuel cell. The results are satisfied

  9. A thermal neutron scattering law for yttrium hydride

    Science.gov (United States)

    Zerkle, Michael; Holmes, Jesse

    2017-09-01

    Yttrium hydride (YH2) is of interest as a high temperature moderator material because of its superior ability to retain hydrogen at elevated temperatures. Thermal neutron scattering laws for hydrogen bound in yttrium hydride (H-YH2) and yttrium bound in yttrium hydride (Y-YH2) prepared using the ab initio approach are presented. Density functional theory, incorporating the generalized gradient approximation (GGA) for the exchange-correlation energy, is used to simulate the face-centered cubic structure of YH2 and calculate the interatomic Hellmann-Feynman forces for a 2 × 2 × 2 supercell containing 96 atoms. Lattice dynamics calculations using PHONON are then used to determine the phonon dispersion relations and density of states. The calculated phonon density of states for H and Y in YH2 are used to prepare H-YH2 and Y-YH2 thermal scattering laws using the LEAPR module of NJOY2012. Analysis of the resulting integral and differential scattering cross sections demonstrates adequate resolution of the S(α,β) function. Comparison of experimental lattice constant, heat capacity, inelastic neutron scattering spectra and total scattering cross section measurements to calculated values are used to validate the thermal scattering laws.

  10. Calculation of electron-helium scattering

    International Nuclear Information System (INIS)

    Fursa, D.V.; Bray, I.

    1994-11-01

    We present the Convergent Close-Coupling (CCC) theory for the calculation of electron-helium scattering. We demonstrate its applicability at a range of projectile energies of 1.5 to 500 eV to scattering from the ground state to n ≤3 states. Excellent agreement with experiment is obtained with the available differential, integrated, ionization, and total cross sections, as well as with the electron-impact coherence parameters up to and including the 3 3 D state excitation. Comparison with other theories demonstrates that the CCC theory is the only general reliable method for the calculation of electron helium scattering. (authors). 66 refs., 2 tabs., 24 figs

  11. H + Ar collisions. II. Differential scattering calculations

    International Nuclear Information System (INIS)

    Neumann, H.; Le, T.Q.; van Zyl, B.

    1977-01-01

    Differential elastic scattering cross-section calculations have been made for H + Ar collisions using classical and eikonal techniques. The calculation procedures are described and compared with existing experimental data. It is shown that the angular distribution of the elastic cross section is similar to that obtained for proton production in such collisions at energies above about 200 eV. By combining the angular dependence of the computed elastic cross section with experimental measurements described in the preceding paper, absolute differential cross sections for proton production have been determined

  12. Calculating scattering matrices by wave function matching

    International Nuclear Information System (INIS)

    Zwierzycki, M.; Khomyakov, P.A.; Starikov, A.A.; Talanana, M.; Xu, P.X.; Karpan, V.M.; Marushchenko, I.; Brocks, G.; Kelly, P.J.; Xia, K.; Turek, I.; Bauer, G.E.W.

    2008-01-01

    The conductance of nanoscale structures can be conveniently related to their scattering properties expressed in terms of transmission and reflection coefficients. Wave function matching (WFM) is a transparent technique for calculating transmission and reflection matrices for any Hamiltonian that can be represented in tight-binding form. A first-principles Kohn-Sham Hamiltonian represented on a localized orbital basis or on a real space grid has such a form. WFM is based upon direct matching of the scattering-region wave function to the Bloch modes of ideal leads used to probe the scattering region. The purpose of this paper is to give a pedagogical introduction to WFM and present some illustrative examples of its use in practice. We briefly discuss WFM for calculating the conductance of atomic wires, using a real space grid implementation. A tight-binding muffin-tin orbital implementation very suitable for studying spin-dependent transport in layered magnetic materials is illustrated by looking at spin-dependent transmission through ideal and disordered interfaces. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Toward a new polyethylene scattering law determined using inelastic neutron scattering

    International Nuclear Information System (INIS)

    Lavelle, C.M.; Liu, C.-Y.; Stone, M.B.

    2013-01-01

    Monte Carlo neutron transport codes such as MCNP rely on accurate data for nuclear physics cross-sections to produce accurate results. At low energy, this takes the form of scattering laws based on the dynamic structure factor, S(Q,E). High density polyethylene (HDPE) is frequently employed as a neutron moderator at both high and low temperatures, however the only cross-sections available are for ambient temperatures (∼300K), and the evaluation has not been updated in quite some time. In this paper we describe inelastic neutron scattering measurements on HDPE at 5 and 294 K which are used to improve the scattering law for HDPE. We review some of the past HDPE scattering laws, describe the experimental methods, and compare computations using these models to the measured S(Q,E). The total cross-section is compared to available data, and the treatment of the carbon secondary scatterer as a free gas is assessed. We also discuss the use of the measurement itself as a scattering law via the one phonon approximation. We show that a scattering law computed using a more detailed model for the Generalized Density of States (GDOS) compares more favorably to this experiment, suggesting that inelastic neutron scattering can play an important role in both the development and validation of new scattering laws for Monte Carlo work. -- Highlights: ► Polyethylene at 5 K and 300 K is measured using inelastic neutron scattering (INS). ► Measurements conducted at the Wide Angular-Range Chopper Spectrometer at SNS. ► Several models for Polyethylene are compared to measurements. ► Improvements to existing models for the polyethylene scattering law are suggested. ► INS is shown to be highly valuable tool for scattering law development

  14. Direct Calculation of the Scattering Amplitude Without Partial Wave Analysis

    Science.gov (United States)

    Shertzer, J.; Temkin, A.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Two new developments in scattering theory are reported. We show, in a practical way, how one can calculate the full scattering amplitude without invoking a partial wave expansion. First, the integral expression for the scattering amplitude f(theta) is simplified by an analytic integration over the azimuthal angle. Second, the full scattering wavefunction which appears in the integral expression for f(theta) is obtained by solving the Schrodinger equation with the finite element method (FEM). As an example, we calculate electron scattering from the Hartree potential. With minimal computational effort, we obtain accurate and stable results for the scattering amplitude.

  15. Calculation of atom ranges in solids for quasi-small-angle scattering

    International Nuclear Information System (INIS)

    Pustovit, A.N.

    2004-01-01

    A formula for quasi-small-angle scattering of atomic particle and power law interaction potential have been used for the calculation of the differential cross-section, elastic stopping cross-section and a mean projected range in a solid. It is found that the limit energy transfer in the collisions depends on the screening of the power law interaction potentials. The calculated mean ranges in matter are compared with experimental data [ru

  16. How to calculate the Coulomb scattering amplitude

    International Nuclear Information System (INIS)

    Grosse, H.; Narnhofer, H.; Thirring, W.

    1974-01-01

    The derivation of scattering amplitudes for Coulomb scattering is discussed. A derivation of the S-matrix elements for a dense set of states in momentum space is given in the framework of time dependent scattering theory. The convergence of the S-matrix is studied. A purely algebraic derivation of the S-matrix elements and phase shifts is also presented. (HFdV)

  17. Rain Scattering and Co-ordinate Distance Calculation

    Directory of Open Access Journals (Sweden)

    M. Hajny

    1998-12-01

    Full Text Available Calculations of scattered field on the rain objects are based on using of Multiple MultiPole (MMP numerical method. Both bi-static scattering function and bi-static scattering cross section are calculated in the plane parallel to Earth surface. The co-ordination area was determined using the simple model of scattering volume [1]. Calculation for frequency 9.595 GHz and antenna elevation of 25° was done. Obtained results are compared with calculation in accordance to ITU-R recommendation.

  18. Practical model for the calculation of multiply scattered lidar returns

    International Nuclear Information System (INIS)

    Eloranta, E.W.

    1998-01-01

    An equation to predict the intensity of the multiply scattered lidar return is presented. Both the scattering cross section and the scattering phase function can be specified as a function of range. This equation applies when the cloud particles are larger than the lidar wavelength. This approximation considers photon trajectories with multiple small-angle forward-scattering events and one large-angle scattering that directs the photon back toward the receiver. Comparisons with Monte Carlo simulations, exact double-scatter calculations, and lidar data demonstrate that this model provides accurate results. copyright 1998 Optical Society of America

  19. Scattering of electromagnetic waves from a half-space of randomly distributed discrete scatterers and polarized backscattering ratio law

    Science.gov (United States)

    Zhu, P. Y.

    1991-01-01

    The effective-medium approximation is applied to investigate scattering from a half-space of randomly and densely distributed discrete scatterers. Starting from vector wave equations, an approximation, called effective-medium Born approximation, a particular way, treating Green's functions, and special coordinates, of which the origin is set at the field point, are used to calculate the bistatic- and back-scatterings. An analytic solution of backscattering with closed form is obtained and it shows a depolarization effect. The theoretical results are in good agreement with the experimental measurements in the cases of snow, multi- and first-year sea-ice. The root product ratio of polarization to depolarization in backscattering is equal to 8; this result constitutes a law about polarized scattering phenomena in the nature.

  20. Integral Parameters of the Thermal Neutron Scattering Law

    International Nuclear Information System (INIS)

    Purohit, S.N.

    1964-09-01

    Integral parameters of the thermal neutron scattering law - the thermalization binding parameter (M 2 ), the Placzek's moments of the generalized frequency spectrum of dynamical modes and the energy transfer moments of the scattering law - are theoretically discussed. A detailed study of the variation of M 2 , the thermalization time constant and the effective temperature of the vibrating atoms, with the relative weight between intra-molecular vibrations and hindered rotations for H 2 O, is presented. Theoretical results for different scattering models of H 2 O are compared with the measurements of integral experiments. A set of integral parameters for D 2 O, using Butler's model, have been obtained. Importance of the structure of hindered rotations of H 2 O and D 2 O in the study of integral parameters has also been discussed

  1. Integral Parameters of the Thermal Neutron Scattering Law

    Energy Technology Data Exchange (ETDEWEB)

    Purohit, S N

    1964-09-15

    Integral parameters of the thermal neutron scattering law - the thermalization binding parameter (M{sub 2}), the Placzek's moments of the generalized frequency spectrum of dynamical modes and the energy transfer moments of the scattering law - are theoretically discussed. A detailed study of the variation of M{sub 2}, the thermalization time constant and the effective temperature of the vibrating atoms, with the relative weight between intra-molecular vibrations and hindered rotations for H{sub 2}O, is presented. Theoretical results for different scattering models of H{sub 2}O are compared with the measurements of integral experiments. A set of integral parameters for D{sub 2}O, using Butler's model, have been obtained. Importance of the structure of hindered rotations of H{sub 2}O and D{sub 2}O in the study of integral parameters has also been discussed.

  2. Correlation expansion: a powerful alternative multiple scattering calculation method

    International Nuclear Information System (INIS)

    Zhao Haifeng; Wu Ziyu; Sebilleau, Didier

    2008-01-01

    We introduce a powerful alternative expansion method to perform multiple scattering calculations. In contrast to standard MS series expansion, where the scattering contributions are grouped in terms of scattering order and may diverge in the low energy region, this expansion, called correlation expansion, partitions the scattering process into contributions from different small atom groups and converges at all energies. It converges faster than MS series expansion when the latter is convergent. Furthermore, it takes less memory than the full MS method so it can be used in the near edge region without any divergence problem, even for large clusters. The correlation expansion framework we derive here is very general and can serve to calculate all the elements of the scattering path operator matrix. Photoelectron diffraction calculations in a cluster containing 23 atoms are presented to test the method and compare it to full MS and standard MS series expansion

  3. Scattering Length Scaling Laws for Ultracold Three-Body Collisions

    International Nuclear Information System (INIS)

    D'Incao, J.P.; Esry, B.D.

    2005-01-01

    We present a simple and unifying picture that provides the energy and scattering length dependence for all inelastic three-body collision rates in the ultracold regime for three-body systems with short-range two-body interactions. Here, we present the scaling laws for vibrational relaxation, three-body recombination, and collision-induced dissociation for systems that support s-wave two-body collisions. These systems include three identical bosons, two identical bosons, and two identical fermions. Our approach reproduces all previous results, predicts several others, and gives the general form of the scaling laws in all cases

  4. Relativistic multiple scattering X-alpha calculations

    International Nuclear Information System (INIS)

    Chermette, H.; Goursot, A.

    1986-01-01

    The necessity to include self-consistent relativistic corrections in molecular calculations has been pointed out for all compounds involving heavy atoms. Most of the changes in the electronic properties are due to the mass-velocity and the so-called Darwin terms so that the use of Wood and Boring's Hamiltonian is very convenient for this purpose as it can be easily included in MSXalpha programs. Although the spin orbit operator effects are only obtained by perturbation theory, the results compare fairly well with experiment and with other relativistic calculations, namely Hartree-Fock-Slater calculations

  5. Effects of scattering anisotropy approximation in multigroup radiation shielding calculations

    International Nuclear Information System (INIS)

    Altiparmakov, D.

    1983-01-01

    Expansion of the scattering cross sections into Legendre series is the usual way of solving neutron transport problems. Because of the large space gradients of the neutron flux, the effects of that approximation become especially remarkable in the radiation shielding calculations. In this paper, a method taking into account the scattering anisotropy is presented. From the point od view of the accuracy and computing rate, the optimal approximation of the scattering anisotropy is established for the basic protective materials on the basis of simple problem calculations. (author)

  6. Calculations of neutron spectra after neutron-neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, B E [Gettysburg College, Box 405, Gettysburg, PA 17325 (United States); Stephenson, S L [Gettysburg College, Box 405, Gettysburg, PA 17325 (United States); Howell, C R [Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Mitchell, G E [North Carolina State University, Raleigh, NC 27695-8202 (United States); Tornow, W [Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Furman, W I [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Lychagin, E V [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Muzichka, A Yu [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Nekhaev, G V [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Strelkov, A V [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Sharapov, E I [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Shvetsov, V N [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation)

    2004-09-01

    A direct neutron-neutron scattering length, a{sub nn}, measurement with the goal of 3% accuracy (0.5 fm) is under preparation at the aperiodic pulsed reactor YAGUAR. A direct measurement of a{sub nn} will not only help resolve conflicting results of a{sub nn} by indirect means, but also in comparison to the proton-proton scattering length, a{sub pp}, shed light on the charge-symmetry of the nuclear force. We discuss in detail the analysis of the nn-scattering data in terms of a simple analytical expression. We also discuss calibration measurements using the time-of-flight spectra of neutrons scattered on He and Ar gases and the neutron activation technique. In particular, we calculate the neutron velocity and time-of-flight spectra after scattering neutrons on neutrons and after scattering neutrons on He and Ar atoms for the proposed experimental geometry, using a realistic neutron flux spectrum-Maxwellian plus epithermal tail. The shape of the neutron spectrum after scattering is appreciably different from the initial spectrum, due to collisions between thermal-thermal and thermal-epithermal neutrons. At the same time, the integral over the Maxwellian part of the realistic scattering spectrum differs by only about 6 per cent from that of a pure Maxwellian nn-scattering spectrum.

  7. Multiple-scattering corrections to the Beer-Lambert law

    International Nuclear Information System (INIS)

    Zardecki, A.

    1983-01-01

    The effect of multiple scattering on the validity of the Beer-Lambert law is discussed for a wide range of particle-size parameters and optical depths. To predict the amount of received radiant power, appropriate correction terms are introduced. For particles larger than or comparable to the wavelength of radiation, the small-angle approximation is adequate; whereas for small densely packed particles, the diffusion theory is advantageously employed. These two approaches are used in the context of the problem of laser-beam propagation in a dense aerosol medium. In addition, preliminary results obtained by using a two-dimensional finite-element discrete-ordinates transport code are described. Multiple-scattering effects for laser propagation in fog, cloud, rain, and aerosol cloud are modeled

  8. Compton-scatter tissue densitometry: calculation of single and multiple scatter photon fluences

    International Nuclear Information System (INIS)

    Battista, J.J.; Bronskill, M.J.

    1978-01-01

    The accurate measurement of in vivo electron densities by the Compton-scatter method is limited by attenuations and multiple scattering in the patient. Using analytic and Monte Carlo calculation methods, the Clarke tissue density scanner has been modelled for incident monoenergetic photon energies from 300 to 2000 keV and for mean scattering angles of 30 to 130 degrees. For a single detector focussed to a central position in a uniform water phantom (25 x 25 x 25 cm 3 ) it has been demonstrated that: (1) Multiple scatter contamination is an inherent limitation of the Compton-scatter method of densitometry which can be minimised, but not eliminated, by improving the energy resolution of the scattered radiation detector. (2) The choice of the incident photon energy is a compromise between the permissible radiation dose to the patient and the tolerable level of multiple scatter contamination. For a mean scattering angle of 40 degrees, the intrinsic multiple-single scatter ratio decreases from 64 to 35%, and the radiation dose (per measurement) increases from 1.0 to 4.1 rad, as the incident photon energy increases from 300 to 2000 keV. These doses apply to a sampled volume of approximately 0.3 cm 3 and an electron density precision of 0.5%. (3) The forward scatter densitometer configuration is optimum, minimising both the dose and the multiple scatter contamination. For an incident photon energy of 1250 keV, the intrinsic multiple-single scatter ratio reduces from 122 to 27%, and the dose reduces from 14.3 to 1.2 rad, as the mean scattering angle decreases from 130 to 30 degrees. These calculations have been confirmed by experimental measurements. (author)

  9. Repair for scattering expansion truncation errors in transport calculations

    International Nuclear Information System (INIS)

    Emmett, M.B.; Childs, R.L.; Rhoades, W.A.

    1980-01-01

    Legendre expansion of angular scattering distributions is usually limited to P 3 in practical transport calculations. This truncation often results in non-trivial errors, especially alternating negative and positive lateral scattering peaks. The effect is especially prominent in forward-peaked situations such as the within-group component of the Compton Scattering of gammas. Increasing the expansion to P 7 often makes the peaks larger and narrower. Ward demonstrated an accurate repair, but his method requires special cross section sets and codes. The DOT IV code provides fully-compatible, but heuristic, repair of the erroneous scattering. An analytical Klein-Nishina estimator, newly available in the MORSE code, allows a test of this method. In the MORSE calculation, particle scattering histories are calculated in the usual way, with scoring by an estimator routine at each collision site. Results for both the conventional P 3 estimator and the analytical estimator were obtained. In the DOT calculation, the source moments are expanded into the directional representation at each iteration. Optionally a sorting procedure removes all negatives, and removes enough small positive values to restore particle conservation. The effect of this is to replace the alternating positive and negative values with positive values of plausible magnitude. The accuracy of those values is examined herein

  10. a Proposed Benchmark Problem for Scatter Calculations in Radiographic Modelling

    Science.gov (United States)

    Jaenisch, G.-R.; Bellon, C.; Schumm, A.; Tabary, J.; Duvauchelle, Ph.

    2009-03-01

    Code Validation is a permanent concern in computer modelling, and has been addressed repeatedly in eddy current and ultrasonic modeling. A good benchmark problem is sufficiently simple to be taken into account by various codes without strong requirements on geometry representation capabilities, focuses on few or even a single aspect of the problem at hand to facilitate interpretation and to avoid that compound errors compensate themselves, yields a quantitative result and is experimentally accessible. In this paper we attempt to address code validation for one aspect of radiographic modeling, the scattered radiation prediction. Many NDT applications can not neglect scattered radiation, and the scatter calculation thus is important to faithfully simulate the inspection situation. Our benchmark problem covers the wall thickness range of 10 to 50 mm for single wall inspections, with energies ranging from 100 to 500 keV in the first stage, and up to 1 MeV with wall thicknesses up to 70 mm in the extended stage. A simple plate geometry is sufficient for this purpose, and the scatter data is compared on a photon level, without a film model, which allows for comparisons with reference codes like MCNP. We compare results of three Monte Carlo codes (McRay, Sindbad and Moderato) as well as an analytical first order scattering code (VXI), and confront them to results obtained with MCNP. The comparison with an analytical scatter model provides insights into the application domain where this kind of approach can successfully replace Monte-Carlo calculations.

  11. Calculation of Thomson scattering spectral fits for interpenetrating flows

    Energy Technology Data Exchange (ETDEWEB)

    Swadling, G. F., E-mail: george.swadling@imperial.ac.uk; Lebedev, S. V., E-mail: george.swadling@imperial.ac.uk; Burdiak, G. C.; Suttle, L.; Patankar, S.; Smith, R. A.; Bennett, M.; Suzuki-Vidal, F. [Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom); Harvey-Thompson, A. J. [Sandia National Laboratories, PO Box 5800, Albuquerque, New Mexico 87185-1193 (United States); Rozmus, W. [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2JI (Canada); Hall, G. N. [Blackett Laboratory, Imperial College, London, United Kingdom SW7 2BW and Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States); Yuan, J. [Key Laboratory of Pulsed Power, Institute of Fluid Physics, CAE, Mianyang 621900 (China)

    2014-12-15

    Collective mode optical Thomson scattering has been used to investigate the interactions of radially convergent ablation flows in Tungsten wire arrays. These experiments were carried out at the Magpie pulsed power facility at Imperial College, London. Analysis of the scattered spectra has provided direct evidence of ablation stream interpenetration on the array axis, and has also revealed a previously unobserved axial deflection of the ablation streams towards the anode as they approach the axis. It is has been suggested that this deflection is caused by the presence of a static magnetic field, advected with the ablation streams, stagnated and accrued around the axis. Analysis of the Thomson scattering spectra involved the calculation and fitting of the multi-component, non-relativistic, Maxwellian spectral density function S (k, ω). The method used to calculate the fits of the data are discussed in detail.

  12. Benchmark calculations of thermal reaction rates. I - Quantal scattering theory

    Science.gov (United States)

    Chatfield, David C.; Truhlar, Donald G.; Schwenke, David W.

    1991-01-01

    The thermal rate coefficient for the prototype reaction H + H2 yields H2 + H with zero total angular momentum is calculated by summing, averaging, and numerically integrating state-to-state reaction probabilities calculated by time-independent quantum-mechanical scattering theory. The results are very carefully converged with respect to all numerical parameters in order to provide high-precision benchmark results for confirming the accuracy of new methods and testing their efficiency.

  13. Benchmarking a first-principles thermal neutron scattering law for water ice with a diffusion experiment

    Directory of Open Access Journals (Sweden)

    Holmes Jesse

    2017-01-01

    Full Text Available The neutron scattering properties of water ice are of interest to the nuclear criticality safety community for the transport and storage of nuclear materials in cold environments. The common hexagonal phase ice Ih has locally ordered, but globally disordered, H2O molecular orientations. A 96-molecule supercell is modeled using the VASP ab initio density functional theory code and PHONON lattice dynamics code to calculate the phonon vibrational spectra of H and O in ice Ih. These spectra are supplied to the LEAPR module of the NJOY2012 nuclear data processing code to generate thermal neutron scattering laws for H and O in ice Ih in the incoherent approximation. The predicted vibrational spectra are optimized to be representative of the globally averaged ice Ih structure by comparing theoretically calculated and experimentally measured total cross sections and inelastic neutron scattering spectra. The resulting scattering kernel is then supplied to the MC21 Monte Carlo transport code to calculate time eigenvalues for the fundamental mode decay in ice cylinders at various temperatures. Results are compared to experimental flux decay measurements for a pulsed-neutron die-away diffusion benchmark.

  14. THERMAL: A routine designed to calculate neutron thermal scattering

    International Nuclear Information System (INIS)

    Cullen, D.E.

    1995-01-01

    THERMAL is designed to calculate neutron thermal scattering that is isotropic in the center of mass system. At low energy thermal motion will be included. At high energies the target nuclei are assumed to be stationary. The point of transition between low and high energies has been defined to insure a smooth transition. It is assumed that at low energy the elastic cross section is constant in the center of mass system. At high energy the cross section can be of any form. You can use this routine for all energies where the elastic scattering is isotropic in the center of mass system. In most materials this will be a fairly high energy

  15. Comparison of analytic source models for head scatter factor calculation and planar dose calculation for IMRT

    International Nuclear Information System (INIS)

    Yan Guanghua; Liu, Chihray; Lu Bo; Palta, Jatinder R; Li, Jonathan G

    2008-01-01

    The purpose of this study was to choose an appropriate head scatter source model for the fast and accurate independent planar dose calculation for intensity-modulated radiation therapy (IMRT) with MLC. The performance of three different head scatter source models regarding their ability to model head scatter and facilitate planar dose calculation was evaluated. A three-source model, a two-source model and a single-source model were compared in this study. In the planar dose calculation algorithm, in-air fluence distribution was derived from each of the head scatter source models while considering the combination of Jaw and MLC opening. Fluence perturbations due to tongue-and-groove effect, rounded leaf end and leaf transmission were taken into account explicitly. The dose distribution was calculated by convolving the in-air fluence distribution with an experimentally determined pencil-beam kernel. The results were compared with measurements using a diode array and passing rates with 2%/2 mm and 3%/3 mm criteria were reported. It was found that the two-source model achieved the best agreement on head scatter factor calculation. The three-source model and single-source model underestimated head scatter factors for certain symmetric rectangular fields and asymmetric fields, but similar good agreement could be achieved when monitor back scatter effect was incorporated explicitly. All the three source models resulted in comparable average passing rates (>97%) when the 3%/3 mm criterion was selected. The calculation with the single-source model and two-source model was slightly faster than the three-source model due to their simplicity

  16. Comparison of analytic source models for head scatter factor calculation and planar dose calculation for IMRT

    Energy Technology Data Exchange (ETDEWEB)

    Yan Guanghua [Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, FL 32611 (United States); Liu, Chihray; Lu Bo; Palta, Jatinder R; Li, Jonathan G [Department of Radiation Oncology, University of Florida, Gainesville, FL 32610-0385 (United States)

    2008-04-21

    The purpose of this study was to choose an appropriate head scatter source model for the fast and accurate independent planar dose calculation for intensity-modulated radiation therapy (IMRT) with MLC. The performance of three different head scatter source models regarding their ability to model head scatter and facilitate planar dose calculation was evaluated. A three-source model, a two-source model and a single-source model were compared in this study. In the planar dose calculation algorithm, in-air fluence distribution was derived from each of the head scatter source models while considering the combination of Jaw and MLC opening. Fluence perturbations due to tongue-and-groove effect, rounded leaf end and leaf transmission were taken into account explicitly. The dose distribution was calculated by convolving the in-air fluence distribution with an experimentally determined pencil-beam kernel. The results were compared with measurements using a diode array and passing rates with 2%/2 mm and 3%/3 mm criteria were reported. It was found that the two-source model achieved the best agreement on head scatter factor calculation. The three-source model and single-source model underestimated head scatter factors for certain symmetric rectangular fields and asymmetric fields, but similar good agreement could be achieved when monitor back scatter effect was incorporated explicitly. All the three source models resulted in comparable average passing rates (>97%) when the 3%/3 mm criterion was selected. The calculation with the single-source model and two-source model was slightly faster than the three-source model due to their simplicity.

  17. Scattering calculation and image reconstruction using elevation-focused beams.

    Science.gov (United States)

    Duncan, David P; Astheimer, Jeffrey P; Waag, Robert C

    2009-05-01

    Pressure scattered by cylindrical and spherical objects with elevation-focused illumination and reception has been analytically calculated, and corresponding cross sections have been reconstructed with a two-dimensional algorithm. Elevation focusing was used to elucidate constraints on quantitative imaging of three-dimensional objects with two-dimensional algorithms. Focused illumination and reception are represented by angular spectra of plane waves that were efficiently computed using a Fourier interpolation method to maintain the same angles for all temporal frequencies. Reconstructions were formed using an eigenfunction method with multiple frequencies, phase compensation, and iteration. The results show that the scattered pressure reduces to a two-dimensional expression, and two-dimensional algorithms are applicable when the region of a three-dimensional object within an elevation-focused beam is approximately constant in elevation. The results also show that energy scattered out of the reception aperture by objects contained within the focused beam can result in the reconstructed values of attenuation slope being greater than true values at the boundary of the object. Reconstructed sound speed images, however, appear to be relatively unaffected by the loss in scattered energy. The broad conclusion that can be drawn from these results is that two-dimensional reconstructions require compensation to account for uncaptured three-dimensional scattering.

  18. Optical model calculation of neutron-nucleus scattering cross sections

    International Nuclear Information System (INIS)

    Smith, M.E.; Camarda, H.S.

    1980-01-01

    A program to calculate the total, elastic, reaction, and differential cross section of a neutron interacting with a nucleus is described. The interaction between the neutron and the nucleus is represented by a spherically symmetric complex potential that includes spin-orbit coupling. This optical model problem is solved numerically, and is treated with the partial-wave formalism of scattering theory. The necessary scattering theory required to solve this problem is briefly stated. Then, the numerical methods used to integrate the Schroedinger equation, calculate derivatives, etc., are described, and the results of various programming tests performed are presented. Finally, the program is discussed from a user's point of view, and it is pointed out how and where the program (OPTICAL) can be changed to satisfy particular needs

  19. Calculation and Measurement of Low-Energy Radiative Moller Scattering

    Science.gov (United States)

    Epstein, Charles; DarkLight Collaboration

    2017-09-01

    A number of current nuclear physics experiments have come to rely on precise knowledge of electron-electron (Moller) and positron-electron (Bhabha) scattering. Some of these experiments, having lepton beams on targets containing atomic electrons, use these purely-QED processes as normalization. In other scenarios, with electron beams at low energy and very high intensity, Moller scattering and radiative Moller scattering have such enormous cross-sections that the backgrounds they produce must be understood. In this low-energy regime, the electron mass is also not negligible in the calculation of the cross section. This is important, for example, in the DarkLight experiment (100 MeV). As a result, we have developed a new event generator for the radiative Moller and Bhabha processes, with new calculations that keep all terms of the electron mass. The MIT High Voltage Research Laboratory provides us a unique opportunity to study this process experimentally and compare it with our work, at a low beam energy of 2.5 MeV where the effects of the electron mass are significant. We are preparing a dedicated apparatus consisting of a magnetic spectrometer in order to directly measure this process. An overview of the calculation and the status of the experiment will be presented.

  20. Calculation of electron scattering on the He+ ion

    International Nuclear Information System (INIS)

    Bray, I.; McCarthy, I.E.; Wigley, J.; Stelbovics, A.T.

    1993-11-01

    The Convergent Close-Coupling method is applied to the calculation of electron scattering on the ground state of He + . The inclusion of the treatment of the continuum, even below the ionization threshold, significantly reduces the calculated 2S cross section. Generally, it shows good agreement with the measurements of the 2S excitation cross section, though in the vicinity of a few eV near threshold the results are characteristically higher than the experiment. Complete quantitative agreement is obtained with the measurement of the total ionization cross section from threshold to 700 eV. 18 refs., 3 fig

  1. Accurate calculation of high harmonics generated by relativistic Thomson scattering

    International Nuclear Information System (INIS)

    Popa, Alexandru

    2008-01-01

    The recent emergence of the field of ultraintense laser pulses, corresponding to beam intensities higher than 10 18 W cm -2 , brings about the problem of the high harmonic generation (HHG) by the relativistic Thomson scattering of the electromagnetic radiation by free electrons. Starting from the equations of the relativistic motion of the electron in the electromagnetic field, we give an exact solution of this problem. Taking into account the Lienard-Wiechert equations, we obtain a periodic scattered electromagnetic field. Without loss of generality, the solution is strongly simplified by observing that the electromagnetic field is always normal to the direction electron-detector. The Fourier series expansion of this field leads to accurate expressions of the high harmonics generated by the Thomson scattering. Our calculations lead to a discrete HHG spectrum, whose shape and angular distribution are in agreement with the experimental data from the literature. Since no approximations were made, our approach is also valid in the ultrarelativistic regime, corresponding to intensities higher than 10 23 W cm -2 , where it predicts a strong increase of the HHG intensities and of the order of harmonics. In this domain, the nonlinear Thomson scattering could be an efficient source of hard x-rays

  2. A New Scaling Law of Resonance in Total Scattering Cross Section in Gases

    Science.gov (United States)

    Raju, Gorur Govinda

    2009-10-01

    Electrical discharges in gases continue to be an active area of research because of industrial applications such as power systems, environmental clean up, laser technology, semiconductor fabrication etc. A fundamental knowledge of electron-gas neutral interaction is indispensable and, the total scattering cross section is one of the quantities that have been measured extensively. The energy dependence of the total cross sections shows peaks or resonance processes that are operative in the collision process. These peaks and the energies at which they occur are shown to satisfy a broad relationship involving the polarizability and the dipole moment of the target particle. Data on 62 target particles belonging to the following species are analyzed. (Eq 1) Rare gas atoms (Eq 2) Di-atomic molecules with combinations of polar, non-polar, attaching, and non-attaching properties Poly-atomic molecules with combinations of polar, non-polar, attaching, and non-attaching properties. Methods of improving the newly identified scaling law and possible application have been identified. 1 INTRODUCTION: Data on electron-neutral interactions are one of the most fundamental in the study of gaseous electronics and an immense literature, both experimental and theoretical, has become available since about the year 1920. [1-5]. In view of the central role which these data play in all facets of gas discharges and plasma science, it is felt that a critical review of available data is timely, mainly for the community of high voltage engineers and industries connected with plasma science in general. The electron-neutral interaction, often referred to as scattering in the scientific literature, is quantified by using the quantity called the total scattering cross section (QT, m^2). In the literature on cross section, total cross section and total scattering cross section are terms used synonymously and we follow the same practice. A definition may be found in reference [1]. This paper concerns

  3. ZZ THERMOS, Multigroup P0 to P5 Thermal Scattering Kernels from ENDF/B Scattering Law Data

    International Nuclear Information System (INIS)

    McCrosson, F.J.; Finch, D.R.

    1975-01-01

    1 - Description of problem or function: Number of groups: 30-group THERMOS thermal scattering kernels. Nuclides: Molecular H 2 O, Molecular D 2 O, Graphite, Polyethylene, Benzene, Zr bound in ZrHx, H bound in ZrHx, Beryllium-9, Beryllium Oxide, Uranium Dioxide. Origin: ENDF/B library. Weighting Spectrum: yes. These data are 30-group THERMOS thermal scattering kernels for P0 to P5 Legendre orders for every temperature of every material from s(alpha,beta) data stored in the ENDF/B library. These scattering kernels were generated using the FLANGE2 computer code (NESC Abstract 368). To test the kernels, the integral properties of each set of kernels were determined by a precision integration of the diffusion length equation and compared to experimental measurements of these properties. In general, the agreement was very good. Details of the methods used and results obtained are contained in the reference. The scattering kernels are organized into a two volume magnetic tape library from which they may be retrieved easily for use in any 30-group THERMOS library. The contents of the tapes are as follows - (Material: ZA/Temperatures (degrees K)): Molecular H 2 O: 100.0/296, 350, 400, 450, 500, 600, Molecular D 2 O: 101.0/296, 350, 400, 450, 500, 600, Graphite: 6000.0/296, 400, 500, 600, 700, 800, Polyethylene: 205.0/296, 350 Benzene: 106.0/296, 350, 400, 450, 500, 600, Zr bound in ZrHx: 203.0/296, 400, 500, 600, 700, 800, H bound in ZrHx: 230.0/296, 400, 500, 600, 700, 800, Beryllium-9: 4009.0/296, 400, 500, 600, 700, 800, Beryllium Oxide: 200.0/296, 400, 500, 600, 700, 800, Uranium Dioxide: 207.0/296, 400, 500, 600, 700, 800 2 - Method of solution: Kernel generation is performed by direct integration of the thermal scattering law data to obtain the differential scattering cross sections for each Legendre order. The integral parameter calculation is done by precision integration of the diffusion length equation for several moderator absorption cross sections followed by a

  4. A simple algorithm for calculating the scattering angle in atomic collisions

    International Nuclear Information System (INIS)

    Belchior, J.C.; Braga, J.P.

    1996-01-01

    A geometric approach to calculate the classical atomic scattering angle is presented. The trajectory of the particle is divided into several straight-lines and changing in direction from one sector to the other is used to calculate the scattering angle. In this model, calculation of the scattering angle does not involve either the direct evaluation of integrals nor classical turning points. (author)

  5. CAB models for water: A new evaluation of the thermal neutron scattering laws for light and heavy water in ENDF-6 format

    International Nuclear Information System (INIS)

    Márquez Damián, J.I.; Granada, J.R.; Malaspina, D.C.

    2014-01-01

    Highlights: • We present a new evaluation of the thermal scattering laws for light and heavy water. • This evaluation is based on molecular and experimental data, with no free parameters. • Calculations with these libraries compare well with experimental values. • Libraries result in an improvement over existing ENDF scattering law files. - Abstract: In this work we present the CAB models for water: a set of new models for the evaluation of the thermal neutron scattering laws for light and heavy water in ENDF-6 format, using the LEAPR module of NJOY. These models are based on experimental structure data and frequency spectra computed from molecular dynamics simulations. The calculations show a significant improvement over ENDF/B-VI and ENDF/B-VII when compared with measurements of differential and integral scattering data

  6. Multiple scattering corrections to the Beer-Lambert law. 1: Open detector.

    Science.gov (United States)

    Tam, W G; Zardecki, A

    1982-07-01

    Multiple scattering corrections to the Beer-Lambert law are analyzed by means of a rigorous small-angle solution to the radiative transfer equation. Transmission functions for predicting the received radiant power-a directly measured quantity in contrast to the spectral radiance in the Beer-Lambert law-are derived. Numerical algorithms and results relating to the multiple scattering effects for laser propagation in fog, cloud, and rain are presented.

  7. Unitary three-body calculation of nucleon-nucleon scattering

    International Nuclear Information System (INIS)

    Tanabe, H.; Ohta, K.

    1986-07-01

    We calculate nucleon-nucleon elastic scattering phase parameters based on a unitary, relativistic, pion-exchange model. The results are highly dependent on the off-shell amplitudes of πN scattering. The isobar-dominated model for the P 33 interaction leads to too small pion production rates owing to its strong suppression of off-shell pions. We propose to expand the idea of the Δ-isobar model in such a manner as to incorporate a background (non-pole) interaction. The two-potential model, which was first applied to the P 11 partial wave by Mizutani and Koltun, is applied also to the P 33 wave. Our phenomenological model for πN interaction in the P 33 partial wave differs from the conventional model only in its off-shell extrapolation, and has two different variants for the πN → Δ vertex. The three-body approach of Kloet and Silbar is extended such that the background interactions can be included straightfowardly. We make detailed comparisons of the new model with the conventional one and find that our model adequately reproduces the 1 D 2 phase parameters as well as those of peripheral partial waves. We also find that the longitudinal total cross section difference Δσ L (pp → NNπ) comes closer to the data compared to Kloet and Silbar. We discuss about the backward pion propagation in the three-body calculation, and the Pauli-principle violating states for the background P 11 interaction. (author)

  8. Isopiestic density law of actinide nitrates applied to criticality calculations

    International Nuclear Information System (INIS)

    Leclaire, Nicolas; Anno, Jacques; Courtois, Gerard; Poullot, Gilles; Rouyer, Veronique

    2003-01-01

    Up to now, criticality safety experts used density laws fitted on experimental data and applied them in and outside the measurement range. Depending on the case, such an approach could be wrong for nitrate solutions. Seven components are concerned: UO 2 (NO 3 ) 2 , U(NO 3 ) 4 , Pu(NO 3 ) 4 , Pu(NO 3 ) 3 , Th(NO 3 ) 4 , Am(NO 3 ) 3 and HNO 3 . To get rid of this problem, a new methodology based on the thermodynamic concept of binary electrolytes solutions mixtures at constant water activity, so called 'isopiestic' solutions, has been developed by IRSN to calculate the nitrate solutions density. This article shortly presents the theoretical aspects of the method, its qualification using benchmarks and its implementation in IRSN graphical user interface. (author)

  9. Monte Carlo Calculation of Thermal Neutron Inelastic Scattering Cross Section Uncertainties by Sampling Perturbed Phonon Spectra

    Science.gov (United States)

    Holmes, Jesse Curtis

    Nuclear data libraries provide fundamental reaction information required by nuclear system simulation codes. The inclusion of data covariances in these libraries allows the user to assess uncertainties in system response parameters as a function of uncertainties in the nuclear data. Formats and procedures are currently established for representing covariances for various types of reaction data in ENDF libraries. This covariance data is typically generated utilizing experimental measurements and empirical models, consistent with the method of parent data production. However, ENDF File 7 thermal neutron scattering library data is, by convention, produced theoretically through fundamental scattering physics model calculations. Currently, there is no published covariance data for ENDF File 7 thermal libraries. Furthermore, no accepted methodology exists for quantifying or representing uncertainty information associated with this thermal library data. The quality of thermal neutron inelastic scattering cross section data can be of high importance in reactor analysis and criticality safety applications. These cross sections depend on the material's structure and dynamics. The double-differential scattering law, S(alpha, beta), tabulated in ENDF File 7 libraries contains this information. For crystalline solids, S(alpha, beta) is primarily a function of the material's phonon density of states (DOS). Published ENDF File 7 libraries are commonly produced by calculation and processing codes, such as the LEAPR module of NJOY, which utilize the phonon DOS as the fundamental input for inelastic scattering calculations to directly output an S(alpha, beta) matrix. To determine covariances for the S(alpha, beta) data generated by this process, information about uncertainties in the DOS is required. The phonon DOS may be viewed as a probability density function of atomic vibrational energy states that exist in a material. Probable variation in the shape of this spectrum may be

  10. A calculation of Zsub(eff) for low-energy positron-hydrogen-molecule scattering

    International Nuclear Information System (INIS)

    Armour, E.A.G.; Baker, D.J.

    1985-01-01

    The value of Zsub(eff), the effective number of electrons per molecule available to the positron for annihilation, is calculated for low-energy positron-hydrogen-molecule scattering using the scattering wavefunctions obtained in recent detailed ab initio calculations. The results are higher than those obtained in previous calculations but much lower than the experimental value. (author)

  11. Calculating Rayleigh scattering amplitudes from 100 eV to 10 MeV

    International Nuclear Information System (INIS)

    Parker, J.C.; Reynaud, G.W.; Botto, D.J.; Pratt, R.H.

    1979-01-01

    An attempt is made to explain how to calculate the contribution to elastic photon-atom scattering due to Rayleigh scattering (the scattering off bound electrons) in the photon energy range 100 eV less than or equal to W less than or equal to 10 MeV. All intermediate calculations are described, including the calculation of the potential, bound state wave functions, matrix elements, and final cross sections. 12 references

  12. Asymptotic neutron scattering laws for anomalously diffusing quantum particles

    Energy Technology Data Exchange (ETDEWEB)

    Kneller, Gerald R. [Centre de Biophysique Moléculaire, CNRS, Rue Charles Sadron, 45071 Orléans (France); Université d’Orléans, Chateau de la Source-Ave. du Parc Floral, 45067 Orléans (France); Synchrotron-SOLEIL, L’Orme de Merisiers, 91192 Gif-sur-Yvette (France)

    2016-07-28

    The paper deals with a model-free approach to the analysis of quasielastic neutron scattering intensities from anomalously diffusing quantum particles. All quantities are inferred from the asymptotic form of their time-dependent mean square displacements which grow ∝t{sup α}, with 0 ≤ α < 2. Confined diffusion (α = 0) is here explicitly included. We discuss in particular the intermediate scattering function for long times and the Fourier spectrum of the velocity autocorrelation function for small frequencies. Quantum effects enter in both cases through the general symmetry properties of quantum time correlation functions. It is shown that the fractional diffusion constant can be expressed by a Green-Kubo type relation involving the real part of the velocity autocorrelation function. The theory is exact in the diffusive regime and at moderate momentum transfers.

  13. Calculations on nucleon-deuteron scattering with realistic potentials

    International Nuclear Information System (INIS)

    Stolk, C.

    1978-01-01

    The purpose of this study is to find out how the three-nucleon observables are affected by details of the two-nucleon force. The theory of the perturbational treatment of the Faddeev equations for the three-particle transition matrix, for both elastic and breakup scattering is dealt with. Some details of the numerical treatment are discussed, results for the elastic and breakup scattering presented and conclusions drawn. (C.F.)

  14. Biasing anisotropic scattering kernels for deep-penetration Monte Carlo calculations

    International Nuclear Information System (INIS)

    Carter, L.L.; Hendricks, J.S.

    1983-01-01

    The exponential transform is often used to improve the efficiency of deep-penetration Monte Carlo calculations. This technique is usually implemented by biasing the distance-to-collision kernel of the transport equation, but leaving the scattering kernel unchanged. Dwivedi obtained significant improvements in efficiency by biasing an isotropic scattering kernel as well as the distance-to-collision kernel. This idea is extended to anisotropic scattering, particularly the highly forward Klein-Nishina scattering of gamma rays

  15. Ab initio calculation of scattering length and cross sections at very low energies for electron-helium scattering

    International Nuclear Information System (INIS)

    Saha, H.P.

    1993-01-01

    The multiconfiguration Hartree-Fock method for continuum wave functions has been used to calculate the scattering length and phase shifts over extremely low energies ranging from 0 to 1 eV very accurately for electron-helium scattering. The scattering length is calculated very accurately with wave functions computed exactly at zero energy, resulting in an upper bound of 1.1784. The electron correlation and polarization of the target by the scattering electron, which are very important in these calculations, have been taken into account in an accurate ab initio manner through the configuration-interaction procedure by optimizing both bound and continuum orbitals simultaneously at each kinetic energy of the scattered electron. Detailed results for scattering length, differential, total, and momentum-transfer cross sections obtained from the phase shifts are presented. The present scattering length is found to be in excellent agreement with the experimental result of Andrick and Bitsch [J. Phys. B 8, 402 (1975)] and the theoretical result of O'Malley, Burke, and Berrington [J. Phys. B 12, 953 (1979)]. There is excellent agreement between the present total cross sections and the corresponding experimental measurements of Buckman and Lohmann [J. Phys. B 19, 2547 (1986)]. The present momentum-transfer cross sections also show remarkable agreement with the experimental results of Crompton, Elford, and Robertson [Aust. J. Phys. 23, 667 (1970)

  16. An Efficient Method for Electron-Atom Scattering Using Ab-initio Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yuan; Yang, Yonggang; Xiao, Liantuan; Jia, Suotang [Shanxi University, Taiyuan (China)

    2017-02-15

    We present an efficient method based on ab-initio calculations to investigate electron-atom scatterings. Those calculations profit from methods implemented in standard quantum chemistry programs. The new approach is applied to electron-helium scattering. The results are compared with experimental and other theoretical references to demonstrate the efficiency of our method.

  17. From parallel to distributed computing for reactive scattering calculations

    International Nuclear Information System (INIS)

    Lagana, A.; Gervasi, O.; Baraglia, R.

    1994-01-01

    Some reactive scattering codes have been ported on different innovative computer architectures ranging from massively parallel machines to clustered workstations. The porting has required a drastic restructuring of the codes to single out computationally decoupled cpu intensive subsections. The suitability of different theoretical approaches for parallel and distributed computing restructuring is discussed and the efficiency of related algorithms evaluated

  18. Classical Calculations of Scattering Signatures from a Gravitational ...

    Indian Academy of Sciences (India)

    The objective of this section is to compile the relevant equations to compute the trajectories and the scattering cross-sections for objects with small velocities (with respect to the speed of light) and with large impact parameters (in Schwarzschild radius units), s >> sl. We are going to reference later these equations as the limit.

  19. Progress on calculation of direct inelastic scattering cross section of neutron

    Energy Technology Data Exchange (ETDEWEB)

    Zhenpeng, Chen [Qinghua Univ., Beijing, BJ (China). Dept. of Physics

    1996-06-01

    For n+ {sup 238}U inelastic scattering cross, there exist discrepancies among the available evaluations in various libraries. This is partly duo to the difference of direct inelastic scattering cross section calculated with coupled channel optical model (CCOM). The research on the level frame used in CCOM calculation, the research on used parameters of spherical optical model in CCOM calculation and the research on the amplitude of octupole phonon {beta}{sub 3} were presented. (2 figs.).

  20. Impact of the Improved Resonance Scattering Kernel on HTR Calculations

    International Nuclear Information System (INIS)

    Becker, B.; Dagan, R.; Broeders, C.H.M.; Lohnert, G.

    2008-01-01

    The importance of an advanced neutron scattering model for heavy isotopes with strong energy dependent cross sections such as the pronounced resonances of U 238 has been discussed in various publications where the full double differential scattering kernel was derived. In this study we quantify the effect of the new scattering model for specific innovative types of High Temperature Reactor (HTR) systems which commonly exhibit a higher degree of heterogeneity and higher fuel temperatures, hence increasing the importance of the secondary neutron energy distribution. In particular the impact on the multiplication factor (k ∞ ) and the Doppler reactivity coefficient is presented in view of the packing factors and operating temperatures. A considerable reduction of k ∞ (up to 600 pcm) and an increased Doppler reactivity (up to 10%) is observed. An increase of up to 2.3% of the Pu 239 inventory can be noticed at 90 MWd/tHM burnup due to enhanced neutron absorption of U 238 . Those effects are more pronounced for design cases in which the neutron flux spectrum is hardened towards the resolved resonance range. (authors)

  1. Scaling laws governing the multiple scattering of diatomic molecules under Coulomb explosion

    International Nuclear Information System (INIS)

    Sigmund, P.

    1992-01-01

    The trajectories of fast molecules during and after penetration through foils are governed by Coulomb explosion and distorted by multiple scattering and other penetration phenomena. A scattering event may cause the energy available for Coulomb explosion to increase or decrease, and angular momentum may be transferred to the molecule. Because of continuing Coulomb explosion inside and outside the target foil, the transmission pattern recorded at a detector far away from the target is not just a linear superposition of Coulomb explosion and multiple scattering. The velocity distribution of an initially monochromatic and well-collimated, but randomly oriented, beam of molecular ions is governed by a generalization of the standard Bothe-Landau integral that governs the multiple scattering of atomic ions. Emphasis has been laid on the distribution in relative velocity and, in particular, relative energy. The statistical distributions governing the longitudinal motion (i.e., the relative motion along the molecular axis) and the rotational motion can be scaled into standard multiple-scattering distributions of atomic ions. The two scaling laws are very different. For thin target foils, the significance of rotational energy transfer is enhanced by an order of magnitude compared to switched-off Coulomb explosion. A distribution for the total relative energy (i.e., longitudinal plus rotational motion) has also been found, but its scaling behavior is more complex. Explicit examples given for all three distributions refer to power-law scattering. As a first approximation, scattering events undergone by the two atoms in the molecule were assumed uncorrelated. A separate section has been devoted to an estimate of the effect of impact-parameter correlation on the multiple scattering of penetrating molecules

  2. Calculation of far-field scattering from nonspherical particles using a geometrical optics approach

    Science.gov (United States)

    Hovenac, Edward A.

    1991-01-01

    A numerical method was developed using geometrical optics to predict far-field optical scattering from particles that are symmetric about the optic axis. The diffractive component of scattering is calculated and combined with the reflective and refractive components to give the total scattering pattern. The phase terms of the scattered light are calculated as well. Verification of the method was achieved by assuming a spherical particle and comparing the results to Mie scattering theory. Agreement with the Mie theory was excellent in the forward-scattering direction. However, small-amplitude oscillations near the rainbow regions were not observed using the numerical method. Numerical data from spheroidal particles and hemispherical particles are also presented. The use of hemispherical particles as a calibration standard for intensity-type optical particle-sizing instruments is discussed.

  3. Detailed calculations on low-energy positron-hydrogen-molecule and helium-antihydrogen scattering

    Energy Technology Data Exchange (ETDEWEB)

    Armour, E A G; Cooper, J N; Gregory, M R; Todd, A C [School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Jonsell, S [Department of Physics, University of Swansea, Swansea SA2 8PP (United Kingdom); Plummer, M, E-mail: edward.armour@nottingham.ac.u [Computational Science and Engineering, STFC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom)

    2010-01-01

    In this paper, we consider two scattering processes: low-energy positron-hydrogen-molecule and helium-antihydrogen scattering. In the positron-hydrogen-molecule scattering calculations, we use the Kohn variational method to calculate Z{sub eff}, the number of target electrons available to the positron for annihilation. In the helium-antihydrogen scattering calculations, we use the Rayleigh-Ritz variational method to calculate a wave function for the leptons as a function of the distance between the helium and the antihydrogen. This is used, together with the associated nuclear wave function and the wave function for {alpha} p-bar + Ps{sup -}, to calculate the cross section for the rearrangement reaction He + H-bar {yields} {alpha} p-bar + Ps{sup -}, using the T-matrix and a form of the distorted wave approximation. For both processes, positron-electron correlation is taken into account accurately using Hylleraas-type functions.

  4. Static model calculation of pion-nucleon scattering

    International Nuclear Information System (INIS)

    Itoh, Takashi

    1975-01-01

    The p-wave pion-nucleon scattering phase-shifts are computed by the Chew-Low static model for pion incident energy of 0-300 MeV. The square of the unrenormalized coupling constant is taken to be f 2 =0.2, and the cutoff is made at k sub(max)=6μ. The computed 3,3 phase-shift passes through 90 deg about at the right energy. The other phase-shifts computed are small in rough agreement with experiment. (auth.)

  5. Quantum Monte Carlo calculation of neutral-current ν -12C inclusive quasielastic scattering

    Science.gov (United States)

    Lovato, A.; Gandolfi, S.; Carlson, J.; Lusk, Ewing; Pieper, Steven C.; Schiavilla, R.

    2018-02-01

    Quasielastic neutrino scattering is an important aspect of the experimental program to study fundamental neutrino properties including neutrino masses, mixing angles, mass hierarchy, and charge-conjugation parity (CP)- violating phase. Proper interpretation of the experiments requires reliable theoretical calculations of neutrino-nucleus scattering. In this paper we present calculations of response functions and cross sections by neutral-current scattering of neutrinos off 12C. These calculations are based on realistic treatments of nuclear interactions and currents, the latter including the axial, vector, and vector-axial interference terms crucial for determining the difference between neutrino and antineutrino scattering and the CP-violating phase. We find that the strength and energy dependence of two-nucleon processes induced by correlation effects and interaction currents are crucial in providing the most accurate description of neutrino-nucleus scattering in the quasielastic regime.

  6. The simple analytical method for scattered radiation calculation in contrast X-ray diagnostic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Markovic, S; Pavlovic, R [Inst. of Nuclear Science Vinca, Belgrade (Yugoslavia). Radiation and Environmental Protection Lab.; Boreli, F [Fac. of Electrical Engineering, Belgrade (Yugoslavia)

    1996-12-31

    In realization of radiation protection measures for medical staff present during diagnostic procedures, the necessary condition is knowledge of the space - energy distributions of the scattered radiation from the patient. In this paper, the simple calculation procedure for the scattered radiation field of the actual diagnostic energies is presented. Starting from the single Compton scattering model and using the justified transformations the final equations in elementary form are derived. For numerical calculations the computer code ANGIO was created. The calculated results were confirmed by detailed dosimetric measurements of the scattered field around patient (the water phantom) in SSDL in the Institute of nuclear sciences `Vinca`, Belgrade. These results are good base for assessment of irradiation. The main irradiation source for the physician and the other members of the medical team is the back scattered radiation from patient - albedo. (author). 3 figs., 3 refs.

  7. Comment on the modified Beer-Lambert law for scattering media

    International Nuclear Information System (INIS)

    Sassaroli, Angelo; Fantini, Sergio

    2004-01-01

    We present a concise overview of the modified Beer-Lambert law, which has been extensively used in the literature of near-infrared spectroscopy (NIRS) of scattering media. In particular, we discuss one form of the modified Beer-Lambert law that is commonly found in the literature and that is not strictly correct. However, this incorrect form of the modified Beer-Lambert law still leads to the correct expression for the changes in the continuous wave optical signal associated with changes in the absorption coefficient of the investigated medium. Here we propose a notation for the modified Beer-Lambert law that keeps the typical form commonly found in the literature without introducing any incorrect assumptions. (note)

  8. Comment on the modified Beer-Lambert law for scattering media.

    Science.gov (United States)

    Sassaroli, Angelo; Fantini, Sergio

    2004-07-21

    We present a concise overview of the modified Beer-Lambert law, which has been extensively used in the literature of near-infrared spectroscopy (NIRS) of scattering media. In particular, we discuss one form of the modified Beer-Lambert law that is commonly found in the literature and that is not strictly correct. However, this incorrect form of the modified Beer-Lambert law still leads to the correct expression for the changes in the continuous wave optical signal associated with changes in the absorption coefficient of the investigated medium. Here we propose a notation for the modified Beer-Lambert law that keeps the typical form commonly found in the literature without introducing any incorrect assumptions.

  9. Efficient Calculation of Born Scattering for Fixed-Offset Ground-Penetrating Radar Surveys

    DEFF Research Database (Denmark)

    Meincke, Peter

    2007-01-01

    A formulation is presented for efficient calculation of linear electromagnetic scattering by buried penetrable objects, as involved in the analysis of fixed-offset ground-penetrating radar (GPR) systems. The actual radiation patterns of the GPR antennas are incorporated in the scattering...

  10. Calculation of the mean scattering angle, the logarithmic decrement and its mean square

    International Nuclear Information System (INIS)

    Bersillon, O.; Caput, B.

    1984-06-01

    The calculation of the mean scattering angle, the logarithmic decrement and its mean square, starting from the Legendre polynomial expansion coefficients of the relevant elastic scattering angular distribution, is numerically studied with different methods, one of which is proposed for the usual determination of these quantities which are present in the evaluated data files ENDF [fr

  11. A least squares calculational method: application to e±-H elastic scattering

    International Nuclear Information System (INIS)

    Das, J.N.; Chakraborty, S.

    1989-01-01

    The least squares calcualtional method proposed by Das has been applied for the e ± -H elastic scattering problems for intermediate energies. Some important conclusions are made on the basis of the calculation. (author). 7 refs ., 2 tabs

  12. Method for calculating anisotropic neutron transport using scattering kernel without polynomial expansion

    International Nuclear Information System (INIS)

    Takahashi, Akito; Yamamoto, Junji; Ebisuya, Mituo; Sumita, Kenji

    1979-01-01

    A new method for calculating the anisotropic neutron transport is proposed for the angular spectral analysis of D-T fusion reactor neutronics. The method is based on the transport equation with new type of anisotropic scattering kernels formulated by a single function I sub(i) (μ', μ) instead of polynomial expansion, for instance, Legendre polynomials. In the calculation of angular flux spectra by using scattering kernels with the Legendre polynomial expansion, we often observe the oscillation with negative flux. But in principle this oscillation disappears by this new method. In this work, we discussed anisotropic scattering kernels of the elastic scattering and the inelastic scatterings which excite discrete energy levels. The other scatterings were included in isotropic scattering kernels. An approximation method, with use of the first collision source written by the I sub(i) (μ', μ) function, was introduced to attenuate the ''oscillations'' when we are obliged to use the scattering kernels with the Legendre polynomial expansion. Calculated results with this approximation showed remarkable improvement for the analysis of the angular flux spectra in a slab system of lithium metal with the D-T neutron source. (author)

  13. Scattering at low energies by potentials containing power-law corrections to the Coulomb interaction

    International Nuclear Information System (INIS)

    Kuitsinskii, A.A.

    1986-01-01

    The low-energy asymptotic behavior is found for the phase shifts and scattering amplitudes in the case of central potentials which decrease at infinity as n/r+ar /sup -a/,a 1. In problems of atomic and nuclear physics one is generally interested in collisions of clusters consisting of several charged particles. The effective interaction potential of such clusters contains long-range power law corrections to the Coulomb interaction that is presented

  14. Effects of the scattering anisotropy approximation in multigroup radiation shielding calculations

    International Nuclear Information System (INIS)

    Altiparmarkov, D.

    1983-01-01

    Expansion of the scattering cross-sections into Legendre series is the usual way of solving the neutron transport problem. Because of the large space gradients of the neutron flux, the effects of that approximations become especially remarkable in the radiation shielding calculations. In this paper, a method taking into account scattering anisotropy is presented. From the point of view of the accuracy and computing speed, the optimal approximation of the scattering anisotropy is established for the basic protective materials on the basis of simple problem calculations (author) [sr

  15. Density of states calculations and multiple-scattering theory for photons

    International Nuclear Information System (INIS)

    Moroz, A.

    1994-05-01

    The density of states for a finite or an infinite cluster of scatterers in the case of both, electrons and photons, can be represented in a general form as the sum over all Krein-Friedel contributions of individual scatterers and a contribution due to the presence of multiple scatterers. The latter is given by the sum over all periodic orbits between different scatterers. General three dimensional multiple-scattering theory for electromagnetic waves in the presence of scatterers of arbitrary shape is presented. Vector structure constants are calculated and general rules for obtaining them from known scalar structure constants are given. The KKR equations for photons are explicitly written down. (author). 22 refs., 2 figs

  16. Modified automatic term selection v2: A faster algorithm to calculate inelastic scattering cross-sections

    Energy Technology Data Exchange (ETDEWEB)

    Rusz, Ján, E-mail: jan.rusz@fysik.uu.se

    2017-06-15

    Highlights: • New algorithm for calculating double differential scattering cross-section. • Shown good convergence properties. • Outperforms older MATS algorithm, particularly in zone axis calculations. - Abstract: We present a new algorithm for calculating inelastic scattering cross-section for fast electrons. Compared to the previous Modified Automatic Term Selection (MATS) algorithm (Rusz et al. [18]), it has far better convergence properties in zone axis calculations and it allows to identify contributions of individual atoms. One can think of it as a blend of MATS algorithm and a method described by Weickenmeier and Kohl [10].

  17. Dose calculations for irregular fields using three-dimensional first-scatter integration

    International Nuclear Information System (INIS)

    Boesecke, R.; Scharfenberg, H.; Schlegel, W.; Hartmann, G.H.

    1986-01-01

    This paper describes a method of dose calculations for irregular fields which requires only the mean energy of the incident photons, the geometrical properties of the irregular field and of the therapy unit, and the attenuation coefficient of tissue. The method goes back to an approach including spatial aspects of photon scattering for inhomogeneities for the calculation of dose reduction factors as proposed by Sontag and Cunningham (1978). It is based on the separation of dose into a primary component and a scattered component. The scattered component can generally be calculated for each field by integration over dose contributions from scattering in neighbouring volume elements. The quotient of this scattering contribution in the irregular field and the scattering contribution in the equivalent open field is then the correction factor for scattering in an irregular field. A correction factor for the primary component can be calculated if the attenuation of the photons in the shielding block is properly taken into account. The correction factor is simply given by the quotient of primary photons of the irregular field and the primary photons of the open field. (author)

  18. Lloyd's formula in multiple-scattering calculations with finite temperature

    International Nuclear Information System (INIS)

    Zeller, Rudolf

    2005-01-01

    Lloyd's formula is an elegant tool to calculate the number of states directly from the imaginary part of the logarithm of the Korringa-Kohn-Rostoker (KKR) determinant. It is shown how this formula can be used at finite electronic temperatures and how the difficult problem to determine the physically significant correct phase of the complex logarithm can be circumvented by working with the single-valued real part of the logarithm. The approach is based on contour integrations in the complex energy plane and exploits the analytical properties of the KKR Green function and the Fermi-Dirac function. It leads to rather accurate results, which is illustrated by a local-density functional calculation of the temperature dependence of the intrinsic Fermi level in zinc-blende GaN

  19. Generating bessel functions in mie scattering calculations using continued fractions.

    Science.gov (United States)

    Lentz, W J

    1976-03-01

    A new method of generating the Bessel functions and ratios of Bessel functions necessary for Mie calculations is presented. Accuracy is improved while eliminating the need for extended precision word lengths or large storage capability. The algorithm uses a new technique of evaluating continued fractions that starts at the beginning rather than the tail and has a built-in error check. The continued fraction representations for both spherical Bessel functions and ratios of Bessel functions of consecutive order are presented.

  20. Faddeev and Glauber calculations at intermediate energies in a model for n+d scattering

    International Nuclear Information System (INIS)

    Elster, Ch.; Lin, T.; Gloeckle, W.; Jeschonnek, S.

    2008-01-01

    Obtaining cross sections for nuclear reactions at intermediate energies based on the Glauber formulation has a long tradition. Only recently the energy regime of a few hundred MeV has become accessible to ab initio Faddeev calculations of three-body scattering. In order to go to higher energies, the Faddeev equation for three-body scattering is formulated and directly solved without employing a partial wave decomposition. In the simplest form the Faddeev equation for interacting scalar particles is a three-dimensional integral equation in five variables, from which the total cross section, the cross sections for elastic scattering and breakup reactions, as well as differential cross sections are obtained. The same observables are calculated based on the Glauber formulation. The first order Glauber calculation and the Glauber rescattering corrections are compared in detail with the corresponding terms of the Faddeev multiple scattering series for projectile energies between 100 MeV and 2 GeV

  1. Point kernels and superposition methods for scatter dose calculations in brachytherapy

    International Nuclear Information System (INIS)

    Carlsson, A.K.

    2000-01-01

    Point kernels have been generated and applied for calculation of scatter dose distributions around monoenergetic point sources for photon energies ranging from 28 to 662 keV. Three different approaches for dose calculations have been compared: a single-kernel superposition method, a single-kernel superposition method where the point kernels are approximated as isotropic and a novel 'successive-scattering' superposition method for improved modelling of the dose from multiply scattered photons. An extended version of the EGS4 Monte Carlo code was used for generating the kernels and for benchmarking the absorbed dose distributions calculated with the superposition methods. It is shown that dose calculation by superposition at and below 100 keV can be simplified by using isotropic point kernels. Compared to the assumption of full in-scattering made by algorithms currently in clinical use, the single-kernel superposition method improves dose calculations in a half-phantom consisting of air and water. Further improvements are obtained using the successive-scattering superposition method, which reduces the overestimates of dose close to the phantom surface usually associated with kernel superposition methods at brachytherapy photon energies. It is also shown that scatter dose point kernels can be parametrized to biexponential functions, making them suitable for use with an effective implementation of the collapsed cone superposition algorithm. (author)

  2. Scaling laws in high-energy inverse compton scattering. II. Effect of bulk motions

    International Nuclear Information System (INIS)

    Nozawa, Satoshi; Kohyama, Yasuharu; Itoh, Naoki

    2010-01-01

    We study the inverse Compton scattering of the CMB photons off high-energy nonthermal electrons. We extend the formalism obtained by the previous paper to the case where the electrons have nonzero bulk motions with respect to the CMB frame. Assuming the power-law electron distribution, we find the same scaling law for the probability distribution function P 1,K (s) as P 1 (s) which corresponds to the zero bulk motions, where the peak height and peak position depend only on the power-index parameter. We solved the rate equation analytically. It is found that the spectral intensity function also has the same scaling law. The effect of the bulk motions to the spectral intensity function is found to be small. The present study will be applicable to the analysis of the x-ray and gamma-ray emission models from various astrophysical objects with nonzero bulk motions such as radio galaxies and astrophysical jets.

  3. Convergent close-coupling calculations of electron-hydrogen scattering

    International Nuclear Information System (INIS)

    Bray, Igor; Stelbovics, A.T.

    1992-04-01

    The convergence of the close-coupling formalism is studied by expanding the target states in an orthogonal L 2 Laguerre basis. The theory is without approximation and convergence is established by simply increasing the basis size. The convergent elastic, 2s, and 2p differential cross sections, spin asymmetries, and angular correlation parameters for the 2p excitation at 35, 54.4, and 100 eV are calculated. Integrated and total cross sections as well as T-matrix elements for the first five partial waves are also given. 30 refs., 3 tabs., 9 figs

  4. Analytical calculations of multiple scattering for high energy photons and neutrons

    International Nuclear Information System (INIS)

    Thoe, R.S.

    1994-04-01

    Radiography of large dense objects often require the use of highly penetrating radiation. For example, a couple of centimeters of steel attenuates 50 keV x-rays by a factor of approximately 10 -14 whereas this same amount of steel would attenuate a 500 keV photon beam by only a factor of about 0.25. However, this increase in penetrating power comes with a price. In the case of x-radiation there are two bills to pay: (1) For projection radiography, this increase in penetration directly causes a corresponding decrease in resolution. (2) This increase in penetration occurs in a region where the interaction of radiation and matter is changing from absorption to scattering. In the above example the fraction of scattering goes from about 0.1 at 50 keV to over 0.99 at 500 keV. These scattered photons can significantly degrade contrast. In order to overcome some of these difficulties, radiography using scattered photons has been studied by myself and numerous other authors. In all the above cases, calculation of the intensity of scattered radiation is of primary importance. In cases where scattering is probable, multiple scattering can also be probable. Calculations of multiple scattering are generally very difficult and usually require the use of extremely sophisticated Monte Carlo simulations. It is not unusual for these calculations to require several hours of CPU time on some of the worlds largest and fastest supercomputers. In this paper I will present an alternative approach. I will present an analytical solution to the equations of double scattering, and show how this solution can extended to the case of higher order scattering. Finally, I will give numerical examples of these solutions and compare them to solutions obtained by Monte Carlo simulations

  5. Monte Carlo calculation of scattered radiation from applicators in low energy clinical electron beams

    International Nuclear Information System (INIS)

    Jabbari, N.; Hashemi-Malayeri, B.; Farajollahi, A. R.; Kazemnejad, A.

    2007-01-01

    In radiotherapy with electron beams, scattered radiation from an electron applicator influences the dose distribution in the patient. The contribution of this radiation to the patient dose is significant, even in modern accelerators. In most of radiotherapy treatment planning systems, this component is not explicitly included. In addition, the scattered radiation produced by applicators varies based on the applicator design as well as the field size and distance from the applicators. The aim of this study was to calculate the amount of scattered dose contribution from applicators. We also tried to provide an extensive set of calculated data that could be used as input or benchmark data for advanced treatment planning systems that use Monte Carlo algorithms for dose distribution calculations. Electron beams produced by a NEPTUN 10PC medical linac were modeled using the BEAMnrc system. Central axis depth dose curves of the electron beams were measured and calculated, with and without the applicators in place, for different field sizes and energies. The scattered radiation from the applicators was determined by subtracting the central axis depth dose curves obtained without the applicators from that with the applicator. The results of this study indicated that the scattered radiation from the electron applicators of the NEPTUN 10PC is significant and cannot be neglected in advanced treatment planning systems. Furthermore, our results showed that the scattered radiation depends on the field size and decreases almost linearly with depth. (author)

  6. Calculations for very low energy scattering of positrons by molecular hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, J.N. [School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD (United Kingdom)], E-mail: james.cooper@maths.nottingham.ac.uk; Armour, E.A.G. [School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD (United Kingdom)

    2008-02-15

    We give a progress report on ongoing calculations of phase shifts for very low energy elastic scattering of positrons by molecular hydrogen, using the generalised Kohn variational method. Further, provisional calculations of Z{sub eff} for molecular hydrogen at low energies are presented and discussed. The preliminary nature of the work is emphasised throughout.

  7. A Calculation of the Angular Moments of the Kernel for a Monatomic Gas Scatterer

    Energy Technology Data Exchange (ETDEWEB)

    Haakansson, Rune

    1964-07-15

    B. Davison has given in an unpublished paper a method of calculating the moments of the monatomic gas scattering kernel. We present here this method and apply it to calculate the first four moments. Numerical results for these moments for the masses M = 1 and 3.6 are also given.

  8. Inelastic plasmon and inter-band electron-scattering potentials for Si from dielectric matrix calculations

    International Nuclear Information System (INIS)

    Josefsson, T.W.; Smith, A.E.

    1994-01-01

    Inelastic scattering of electrons in a crystalline environment may be represented by a complex non-hermitian potential. Completed generalised expressions for this inelastic electron scattering potential matrix, including virtual inelastic scattering, are derived for outer-shell electron and plasmon excitations. The relationship between these expressions and the general anisotropic dielectric response matrix of the solid is discussed. These generalised expressions necessarily include the off-diagonal terms representing effects due to departure from translational invariance in the interaction. Results are presented for the diagonal back structure dependent inelastic and virtual inelastic scattering potentials for Si, from a calculation of the inverse dielectric matrix in the random phase approximation. Good agreement is found with experiment as a function of incident energies from 10 eV to 100 keV. Anisotropy effects and hence the interaction de localisation represented by the off-diagonal scattering potential terms, are found to be significant below 1 keV. 38 refs., 2 figs

  9. Practical considerations in the calculation of orientation distribution functions from electron back-scattered diffraction patterns

    International Nuclear Information System (INIS)

    Bowen, A.W.

    1994-01-01

    Using model data sets for the Brass orientation, the importance of scatter width, angular accuracy and grain size and volume fraction on the sensitivity of the calculated Orientation Distribution Functions have been determined in order to highlight some of the practical considerations needed in the processing of experimental data from individual grain orientation measurements determined by the Electron Back-Scattered Diffraction technique. It is suggested that the most appropriate scatter width can be calculated from the maximum function height versus scatter width curve in order to accommodate variations in texture sharpness. The sensitivity of the ODF to careful sample preparation, mounting and pattern analysis, in order to keep errors in angular accuracy to 1 or less is demonstrated, as is the imperative need to correct for the size of grains, and their volume fractions. (orig.)

  10. Efficient SPECT scatter calculation in non-uniform media using correlated Monte Carlo simulation

    International Nuclear Information System (INIS)

    Beekman, F.J.

    1999-01-01

    Accurate simulation of scatter in projection data of single photon emission computed tomography (SPECT) is computationally extremely demanding for activity distribution in non-uniform dense media. This paper suggests how the computation time and memory requirements can be significantly reduced. First the scatter projection of a uniform dense object (P SDSE ) is calculated using a previously developed accurate and fast method which includes all orders of scatter (slab-derived scatter estimation), and then P SDSE is transformed towards the desired projection P which is based on the non-uniform object. The transform of P SDSE is based on two first-order Compton scatter Monte Carlo (MC) simulated projections. One is based on the uniform object (P u ) and the other on the object with non-uniformities (P ν ). P is estimated by P-tilde=P SDSE P ν /P u . A tremendous decrease in noise in P-tilde is achieved by tracking photon paths for P ν identical to those which were tracked for the calculation of P u and by using analytical rather than stochastic modelling of the collimator. The method was validated by comparing the results with standard MC-simulated scatter projections (P) of 99m Tc and 201 Tl point sources in a digital thorax phantom. After correction, excellent agreement was obtained between P-tilde and P. The total computation time required to calculate an accurate scatter projection of an extended distribution in a thorax phantom on a PC is a only few tens of seconds per projection, which makes the method attractive for application in accurate scatter correction in clinical SPECT. Furthermore, the method removes the need of excessive computer memory involved with previously proposed 3D model-based scatter correction methods. (author)

  11. Feynman path integrals - from the prodistribution definition to the calculation of glory scattering

    International Nuclear Information System (INIS)

    DeWitt-Morette, C.

    1984-01-01

    In these lectures I present a path integral calculation, starting from a global definition of Feynman path integrals and ending at a scattering cross section formula. Along the way I discuss some basic issues which had to be resolved to exploit the computational power of the proposed definition of Feynman integrals. I propose to compute the glory scattering of gravitational waves by black holes. (orig./HSI)

  12. Anisotropic scattering effect in calculations of nuclear reactor cells by the surface preseudosource method

    International Nuclear Information System (INIS)

    Laletin, N.I.; Sultanov, N.V.; Boyarinov, V.F.

    1992-01-01

    Estimation is fulfilled of an influence of scattering anisotropy on K ef the TRX and BAPL assemblies by the WIMS-D4 program in the transport (TA) and linear-anisotropic (LAA) approximations. It is shown that account for the scattering anisotropy in the LAA in comparison with TA decreases K ef by 0.8% for TRX assemblies and by 0.5-0.6% for BAPL ones. For more detailed account for the scattering anisotropy in calculations of cylindrical and cluster cells in the one-velocity approximation is developed a technique for account for the anisotropy in the methods of surface pseudosources

  13. Calculations of light scattering matrices for stochastic ensembles of nanosphere clusters

    International Nuclear Information System (INIS)

    Bunkin, N.F.; Shkirin, A.V.; Suyazov, N.V.; Starosvetskiy, A.V.

    2013-01-01

    Results of the calculation of the light scattering matrices for systems of stochastic nanosphere clusters are presented. A mathematical model of spherical particle clustering with allowance for cluster–cluster aggregation is used. The fractal properties of cluster structures are explored at different values of the model parameter that governs cluster–cluster interaction. General properties of the light scattering matrices of nanosphere-cluster ensembles as dependent on their mean fractal dimension have been found. The scattering-matrix calculations were performed for finite samples of 10 3 random clusters, made up of polydisperse spherical nanoparticles, having lognormal size distribution with the effective radius 50 nm and effective variance 0.02; the mean number of monomers in a cluster and its standard deviation were set to 500 and 70, respectively. The implemented computation environment, modeling the scattering matrices for overall sequences of clusters, is based upon T-matrix program code for a given single cluster of spheres, which was developed in [1]. The ensemble-averaged results have been compared with orientation-averaged ones calculated for individual clusters. -- Highlights: ► We suggested a hierarchical model of cluster growth allowing for cluster–cluster aggregation. ► We analyzed the light scattering by whole ensembles of nanosphere clusters. ► We studied the evolution of the light scattering matrix when changing the fractal dimension

  14. Calculation of the Kernel scattering for thermal neutrons in H2O e D2O

    International Nuclear Information System (INIS)

    Leal, L.C.; Assis, J.T. de

    1981-01-01

    A computer code, using the Nelkin-and Butler models for the calculations of the Kernel scattering, was developed. Calculations of the thermal neutron flux in an homogeneous-and infinite medium with a 1 /v absorber in 30 energy groups were done and compared with experimental data. The reactors parameters calculated by the Hammer code (in the original version and with the new library generated by the authors' code) are presented. (E.G) [pt

  15. Calculation of cobalt-60 primary and scatter dose in layered heterogeneous phantoms using primary and scatter dose spread arrays

    International Nuclear Information System (INIS)

    Iwasaki, Akira

    1993-01-01

    A method of making 60 Co γ-ray primary and scatter dose spread arrays in water is described. The primary dose spread array is made using forward and backward primary dose spread equations (h 1 and h 2 ), where both equations contain a laterally spread primary dose equation (G), made from measured dose data in a cork phantom. The scatter dose spread array is made using differential scatter-maximum ratio (dSMR) and differential backscatter factor (dBSF) equations (k 1 and k 2 ), where both equations are made to be continuous on the boundary. Primary and scatter dose calculations are performed along the beam axis in layered cork heterogeneous phantoms. It is found, even for 60 Co γ-rays, that when a small tumor in the lung is irradiated with a field that just surrounds the tumor, the beam entrance surface and lateral side of the tumor may obtain no therapeutic dose, because of loss of longitudinal and lateral electronic equilibrium, and when a large tumor in the lung is irradiated with a field just surrounding the tumor, the lateral side of the tumor may obtain no therapeutic dose due to loss of lateral electronic equilibrium. (author)

  16. Quantitative photoplethysmography: Lambert-Beer law or inverse function incorporating light scatter.

    Science.gov (United States)

    Cejnar, M; Kobler, H; Hunyor, S N

    1993-03-01

    Finger blood volume is commonly determined from measurement of infra-red (IR) light transmittance using the Lambert-Beer law of light absorption derived for use in non-scattering media, even when such transmission involves light scatter around the phalangeal bone. Simultaneous IR transmittance and finger volume were measured over the full dynamic range of vascular volumes in seven subjects and outcomes compared with data fitted according to the Lambert-Beer exponential function and an inverse function derived for light attenuation by scattering materials. Curves were fitted by the least-squares method and goodness of fit was compared using standard errors of estimate (SEE). The inverse function gave a better data fit in six of the subjects: mean SEE 1.9 (SD 0.7, range 0.7-2.8) and 4.6 (2.2, 2.0-8.0) respectively (p < 0.02, paired t-test). Thus, when relating IR transmittance to blood volume, as occurs in the finger during measurements of arterial compliance, an inverse function derived from a model of light attenuation by scattering media gives more accurate results than the traditional exponential fit.

  17. A fast calculating two-stream-like multiple scattering algorithm that captures azimuthal and elevation variations

    Science.gov (United States)

    Fiorino, Steven T.; Elmore, Brannon; Schmidt, Jaclyn; Matchefts, Elizabeth; Burley, Jarred L.

    2016-05-01

    Properly accounting for multiple scattering effects can have important implications for remote sensing and possibly directed energy applications. For example, increasing path radiance can affect signal noise. This study describes the implementation of a fast-calculating two-stream-like multiple scattering algorithm that captures azimuthal and elevation variations into the Laser Environmental Effects Definition and Reference (LEEDR) atmospheric characterization and radiative transfer code. The multiple scattering algorithm fully solves for molecular, aerosol, cloud, and precipitation single-scatter layer effects with a Mie algorithm at every calculation point/layer rather than an interpolated value from a pre-calculated look-up-table. This top-down cumulative diffusivity method first considers the incident solar radiance contribution to a given layer accounting for solid angle and elevation, and it then measures the contribution of diffused energy from previous layers based on the transmission of the current level to produce a cumulative radiance that is reflected from a surface and measured at the aperture at the observer. Then a unique set of asymmetry and backscattering phase function parameter calculations are made which account for the radiance loss due to the molecular and aerosol constituent reflectivity within a level and allows for a more accurate characterization of diffuse layers that contribute to multiple scattered radiances in inhomogeneous atmospheres. The code logic is valid for spectral bands between 200 nm and radio wavelengths, and the accuracy is demonstrated by comparing the results from LEEDR to observed sky radiance data.

  18. Power-law temperature dependence of the inelastic-scattering rate in disordered superconductors

    International Nuclear Information System (INIS)

    Devereaux, T.P.; Belitz, D.

    1991-01-01

    We present a theory of the quasiparticle inelastic lifetime τ in in disordered superconducting films. We find that both the Coulomb and the electron-phonon contribution to τ in -1 are enhanced by disorder, and that for reasonably strong electron-phonon coupling the latter is dominant. In contrast to clean superconductors, the scattering rate is larger than the recombination rate at all temperatures. This leads to a power-law temperature dependence of τ in -1 , in agreement with experimental observations. The theory quantitatively accounts for the magnitude, disorder dependence, and temperature dependence of τ in measured in recent experiments

  19. Merkuriev Cut-off in e+ − H Multichannel Scattering Calculations

    Directory of Open Access Journals (Sweden)

    Vitaly A. Gradusov

    2016-03-01

    Full Text Available We present the results of positron-Hydrogen multichannel scattering calculations performed on the base of Faddeev-Merkuriev equations. We discuss an optimal choice of the Merkuriev’s Coulomb splitting parameters. Splitting the Coulomb potential in two-body configuration space is applicable for a limited energy range. Splitting the potential in three-body configuration space makes it possible to perform calculations in a broader range of energies and to optimize the numerical convergence. Scattering cross sections for zero total angular momentum for all processes between the positronium formation threshold and the third excitation threshold of the Hydrogen atom are reported.

  20. Calculation of the thermal utilization factor in a heterogeneous slab cell scattering neutrons anisotropically

    Energy Technology Data Exchange (ETDEWEB)

    Abdallah, A M; Elsherbiny, E M; Sobhy, M [Reactor departement, nuclear research centre, Inshaas, (Egypt)

    1995-10-01

    The P{sub n}-spatial expansion method has been used for calculating the one speed transport utilization factor in heterogenous slab cells in which neutrons may scatter anisotropically; by considering the P{sup 1-} approximation with a two-term scattering kernel in both the fuel and moderator regions, an analytical expression for the disadvantage factor has been derived. The numerical results obtained have been shown to be much better than those calculated by the usual P{sup 1-} and P{sup 3-} approximations and comparable with those obtained by some exact methods. 3 tabs.

  1. DWPI: a computer program to calculate the inelastic scattering of pions from nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Eisenstein, R A; Miller, G A [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA). Dept. of Physics

    1976-02-01

    Angular distributions for the inelastic scattering of pions are generated using the distorted wave impulse approximation (DWIA). The cross section for a given transition is calculated by summing a partial wave expansion. The T-matrix elements are calculated using distorted pion waves from the program PIRK, and therefore include elastic scattering to all orders. The excitation is treated in first order only. Several optical potentials and nuclear densities are available in the program. The transition form factor may be uncoupled from the ground-state density. Coulomb excitation, which interferes coherently with the strong interaction, is a program option.

  2. Precision calculation of the {pi}{sup -}d scattering length and its impact on threshold {pi}N scattering

    Energy Technology Data Exchange (ETDEWEB)

    Baru, V. [Institut fuer Kernphysik and Juelich Center for Hadron Physics, Forschungszentrum Juelich, D-52425 Juelich (Germany); Institute for Theoretical and Experimental Physics, B. Cheremushinskaya 25, 117218 Moscow (Russian Federation); Hanhart, C. [Institut fuer Kernphysik and Juelich Center for Hadron Physics, Forschungszentrum Juelich, D-52425 Juelich (Germany); Institute for Advanced Simulation, Forschungszentrum Juelich, D-52425 Juelich (Germany); Hoferichter, M.; Kubis, B. [Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universitaet Bonn, D-53115 Bonn (Germany); Nogga, A. [Institut fuer Kernphysik and Juelich Center for Hadron Physics, Forschungszentrum Juelich, D-52425 Juelich (Germany); Institute for Advanced Simulation, Forschungszentrum Juelich, D-52425 Juelich (Germany); Phillips, D.R., E-mail: phillips@phy.ohiou.ed [Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universitaet Bonn, D-53115 Bonn (Germany); Institute of Nuclear and Particle Physics and Department of Physics and Astronomy, Ohio University, Athens, OH 45701 (United States)

    2011-01-03

    We present a calculation of the {pi}{sup -}d scattering length with an accuracy of a few percent using chiral perturbation theory. For the first time isospin-violating corrections are included consistently. Using data on pionic deuterium and pionic hydrogen atoms, we extract the isoscalar and isovector pion-nucleon scattering lengths and obtain a{sup +}=(7.6{+-}3.1).10{sup -3}M{sub {pi}}{sup -1} and a{sup -}=(86.1{+-}0.9).10{sup -3}M{sub {pi}}{sup -1}. Via the Goldberger-Miyazawa-Oehme sum rule, this leads to a charged-pion-nucleon coupling constant g{sub c}{sup 2}/4{pi}=13.69{+-}0.20.

  3. Ab Initio Many-Body Calculations Of Nucleon-Nucleus Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Quaglioni, S; Navratil, P

    2008-12-17

    We develop a new ab initio many-body approach capable of describing simultaneously both bound and scattering states in light nuclei, by combining the resonating-group method with the use of realistic interactions, and a microscopic and consistent description of the nucleon clusters. This approach preserves translational symmetry and Pauli principle. We outline technical details and present phase shift results for neutron scattering on {sup 3}H, {sup 4}He and {sup 10}Be and proton scattering on {sup 3,4}He, using realistic nucleon-nucleon (NN) potentials. Our A = 4 scattering results are compared to earlier ab initio calculations. We find that the CD-Bonn NN potential in particular provides an excellent description of nucleon-{sup 4}He S-wave phase shifts. We demonstrate that a proper treatment of the coupling to the n-{sup 10}Be continuum is successful in explaining the parity-inverted ground state in {sup 11}Be.

  4. Calculation of the Full Scattering Amplitude without Partial Wave Decomposition II: Inclusion of Exchange

    Science.gov (United States)

    Shertzer, Janine; Temkin, A.

    2003-01-01

    As is well known, the full scattering amplitude can be expressed as an integral involving the complete scattering wave function. We have shown that the integral can be simplified and used in a practical way. Initial application to electron-hydrogen scattering without exchange was highly successful. The Schrodinger equation (SE), which can be reduced to a 2d partial differential equation (pde), was solved using the finite element method. We have now included exchange by solving the resultant SE, in the static exchange approximation, which is reducible to a pair of coupled pde's. The resultant scattering amplitudes, both singlet and triplet, calculated as a function of energy are in excellent agreement with converged partial wave results.

  5. Calculation of the Full Scattering Amplitude without Partial Wave Decomposition II

    Science.gov (United States)

    Shertzer, J.; Temkin, A.

    2003-01-01

    As is well known, the full scattering amplitude can be expressed as an integral involving the complete scattering wave function. We have shown that the integral can be simplified and used in a practical way. Initial application to electron-hydrogen scattering without exchange was highly successful. The Schrodinger equation (SE) can be reduced to a 2d partial differential equation (pde), and was solved using the finite element method. We have now included exchange by solving the resultant SE, in the static exchange approximation. The resultant equation can be reduced to a pair of coupled pde's, to which the finite element method can still be applied. The resultant scattering amplitudes, both singlet and triplet, as a function of angle can be calculated for various energies. The results are in excellent agreement with converged partial wave results.

  6. ASYMPTOTICAL CALCULATION OF ELECTROMAGNETIC WAVES SCATTERED FROM A DIELECTRIC COATED CYLINDRICAL SURFACE WITH PHYSICAL OPTICS APPROACH

    Directory of Open Access Journals (Sweden)

    Uğur YALÇIN

    2004-02-01

    Full Text Available In this study, quasi-optical scattering of finite source electromagnetic waves from a dielectric coated cylindrical surface is analysed with Physical Optics (PO approach. A linear electrical current source is chosen as the finite source. Reflection coefficient of the cylindrical surface is derived by using Geometrical Theory of Diffraction (GTD. Then, with the help of this coefficient, fields scattered from the surface are obtained. These field expressions are used in PO approach and surface scattering integral is determined. Evaluating this integral asymptotically, fields reflected from the surface and surface divergence coefficient are calculated. Finally, results obtained in this study are evaluated numerically and effects of the surface impedance to scattered fields are analysed. The time factor is taken as j te? in this study.

  7. CRPA calculations for neutrino-nucleus scattering. From very low energies to the quasielastic peak

    International Nuclear Information System (INIS)

    Jachowicz, Natalie; Pandey, Vishvas; Martini, Marco; Gonzalez-Jimenez, Raul; Van Cuyck, Tom; Van Dessel, Nils

    2016-01-01

    We present continuum random phase approximation calculations (CRPA) for neutrino-induced quasielastic scattering off atomic nuclei. The validity of our formalism is checked by a careful confrontation of its results with semi-inclusive double-differential electron scattering data. We pay special attention to excitations in the giant resonance region. The CRPA is well-suited for the description of interactions in this energy range. We aim at providing a uniform description of one-nucleon knockout processes over the whole energy range from threshold to the quasielastic peak. Our calculations point to the fact that low-energy and giant-resonance excitations provide a non-negligible contribution to the interaction strength, especially at forward lepton-scattering angles. (author)

  8. Precision calculation of threshold {pi}{sup -}d scattering, {pi}N scattering lengths, and the GMO sum rule

    Energy Technology Data Exchange (ETDEWEB)

    Baru, V. [Institut fuer Theoretische Physik II, Ruhr-Universitaet Bochum, D-44870 Bochum (Germany); Institut fuer Kernphysik and Juelich Center for Hadron Physics, Forschungszentrum Juelich, D-52425 Juelich (Germany); Institute for Theoretical and Experimental Physics, B. Cheremushinskaya 25, 117218 Moscow (Russian Federation); Hanhart, C. [Institut fuer Kernphysik and Juelich Center for Hadron Physics, Forschungszentrum Juelich, D-52425 Juelich (Germany); Institute for Advanced Simulation, Forschungszentrum Juelich, D-52425 Juelich (Germany); Hoferichter, M., E-mail: hoferichter@hiskp.uni-bonn.de [Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universitaet Bonn, D-53115 Bonn (Germany); Institute of Nuclear and Particle Physics and Department of Physics and Astronomy, Ohio University, Athens, OH 45701 (United States); Kubis, B. [Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universitaet Bonn, D-53115 Bonn (Germany); Nogga, A. [Institut fuer Kernphysik and Juelich Center for Hadron Physics, Forschungszentrum Juelich, D-52425 Juelich (Germany); Institute for Advanced Simulation, Forschungszentrum Juelich, D-52425 Juelich (Germany)

    2011-12-15

    We use chiral perturbation theory (ChPT) to calculate the {pi}{sup -}d scattering length with an accuracy of a few percent, including isospin-violating corrections in both the two- and three-body sectors. In particular, we provide the technical details of a recent letter (Baru et al., 2011) , where we used data on pionic deuterium and pionic hydrogen atoms to extract the isoscalar and isovector pion-nucleon scattering lengths a{sup +} and a{sup -}. We study isospin-breaking contributions to the three-body part of a{sub {pi}}{sup -}{sub d} due to mass differences, isospin violation in the {pi}N scattering lengths, and virtual photons. This last class of effects is ostensibly infrared enhanced due to the smallness of the deuteron binding energy. However, we show that the leading virtual-photon effects that might undergo such enhancement cancel, and hence the standard ChPT counting provides a reliable estimate of isospin violation in a{sub {pi}}{sup -}{sub d} due to virtual photons. Finally, we discuss the validity of the Goldberger-Miyazawa-Oehme sum rule in the presence of isospin violation, and use it to determine the charged-pion-nucleon coupling constant.

  9. Precision calculation of threshold πd scattering, πN scattering lengths, and the GMO sum rule

    Science.gov (United States)

    Baru, V.; Hanhart, C.; Hoferichter, M.; Kubis, B.; Nogga, A.; Phillips, D. R.

    2011-12-01

    We use chiral perturbation theory (ChPT) to calculate the πd scattering length with an accuracy of a few percent, including isospin-violating corrections in both the two- and three-body sectors. In particular, we provide the technical details of a recent letter (Baru et al., 2011) [1], where we used data on pionic deuterium and pionic hydrogen atoms to extract the isoscalar and isovector pion-nucleon scattering lengths a and a. We study isospin-breaking contributions to the three-body part of a due to mass differences, isospin violation in the πN scattering lengths, and virtual photons. This last class of effects is ostensibly infrared enhanced due to the smallness of the deuteron binding energy. However, we show that the leading virtual-photon effects that might undergo such enhancement cancel, and hence the standard ChPT counting provides a reliable estimate of isospin violation in a due to virtual photons. Finally, we discuss the validity of the Goldberger-Miyazawa-Oehme sum rule in the presence of isospin violation, and use it to determine the charged-pion-nucleon coupling constant.

  10. Multigroup transport calculations of critical and fuel assemblies with taking into account the scattering anisotropy

    International Nuclear Information System (INIS)

    Rubin, I.E.; Dneprovskaya, N.M.

    2005-01-01

    A technique for calculation of reactor lattices by means of the transmission probabilities with taking into account the scattering anisotropy is generalized for the multigroup case. The errors of the calculated multiplication coefficients and energy release distributions do noe exceed practically the errors, of these values, obtained by the Monte Carlo method. The proposed method is most effective when determining the small difference effects [ru

  11. Calculation of the radiance distribution at the boundary of an isotropically scattering slab

    NARCIS (Netherlands)

    Doosje, M; Hoenders, B.J; Rinzema, K.

    The radiance arising from an anisotropically scattering illuminated stack of n slabs is calulated using the equation of radiative transfer. It appears to be unnecessary to calculate the radiance inside the material; including only the radiance at the boundary surfaces is sufficient to obtain the

  12. On calculating phase shifts and performing fits to scattering cross sections or transport properties

    International Nuclear Information System (INIS)

    Hepburn, J.W.; Roy, R.J. Le

    1978-01-01

    Improved methods of calculating quantum mechanical phase shifts and for performing least-squares fits to scattering cross sections or transport properties, are described. Their use in a five-parameter fit to experimental differential cross sections reduces the computer time by a factor of 4-7. (Auth.)

  13. Solar Cycle Variability and Grand Minima Induced by Joy's Law Scatter

    Science.gov (United States)

    Karak, Bidya Binay; Miesch, Mark S.

    2017-08-01

    The strength of the solar cycle varies from one cycle to another in an irregular manner and the extreme example of this irregularity is the Maunder minimum when Sun produced only a few spots for several years. We explore the cause of these variabilities using a 3D Babcock--Leighton dynamo. In this model, based on the toroidal flux at the base of the convection zone, bipolar magnetic regions (BMRs) are produced with flux, tilt angle, and time of emergence all obtain from their observed distributions. The dynamo growth is limited by a tilt quenching.The randomnesses in the BMR emergences make the poloidal field unequal and eventually cause an unequal solar cycle. When observed fluctuations of BMR tilts around Joy's law, i.e., a standard deviation of 15 degrees, are considered, our model produces a variation in the solar cycle comparable to the observed solar cycle variability. Tilt scatter also causes occasional Maunder-like grand minima, although the observed scatter does not reproduce correct statistics of grand minima. However, when we double the tilt scatter, we find grand minima consistent with observations. Importantly, our dynamo model can operate even during grand minima with only a few BMRs, without requiring any additional alpha effect.

  14. Calculating the reduced scattering coefficient of turbid media from a single optical reflectance signal

    Science.gov (United States)

    Johns, Maureen; Liu, Hanli

    2003-07-01

    When light interacts with tissue, it can be absorbed, scattered or reflected. Such quantitative information can be used to characterize the optical properties of tissue, differentiate tissue types in vivo, and identify normal versus diseased tissue. The purpose of this research is to develop an algorithm that determines the reduced scattering coefficient (μs") of tissues from a single optical reflectance spectrum with a small source-detector separation. The basic relationship between μs" and optical reflectance was developed using Monte Carlo simulations. This produced an analytical equation containing μs" as a function of reflectance. To experimentally validate this relationship, a 1.3-mm diameter fiber optic probe containing two 400-micron diameter fibers was used to deliver light to and collect light from Intralipid solutions of various concentrations. Simultaneous measurements from optical reflectance and an ISS oximeter were performed to validate the calculated μs" values determined by the reflectance measurement against the 'gold standard" ISS readings. The calculated μs" values deviate from the expected values by approximately -/+ 5% with Intralipid concentrations between 0.5 - 2.5%. The scattering properties within this concentration range are similar to those of in vivo tissues. Additional calculations are performed to determine the scattering properties of rat brain tissues and to discuss accuracy of the algorithm for measured samples with a broad range of the absorption coefficient (μa).

  15. Statistical mechanical calculations of molecular pair correlation functions and scattering intensities

    International Nuclear Information System (INIS)

    Bertagnolli, H.

    1978-01-01

    For the case of special molecular models representing the acetonitrile molecule the expansion coefficients of the molecular par distribution function are calculated by use of pertubation theory. These results are used to get theoretical access to scattering intensities in the frame of several approximations. The first model describes the molecule by three hard spheres and uses a hard sphere liquid as reference. In the second cast the calculations are based on an anisotropic Lennard-Jones potential by application of a model of overlapping ellipsoids and by use of a Lennard-Jones liquid as a reference system. In the third model dipolar attractive forces are taken into account with an anisotropic hard-sphere liquid as a reference. In the third model dipolar attractive forces are taken into account with an anisotropic hard-sphere liquid as a reference. Finally all the calculations with different intermolecular potentials are compared with neutron scattering experiments. (orig.) 891 HK [de

  16. Time-Dependent Wave Packet Dynamics Calculations of Cross Sections for Ultracold Scattering of Molecules

    Science.gov (United States)

    Huang, Jiayu; Liu, Shu; Zhang, Dong H.; Krems, Roman V.

    2018-04-01

    Because the de Broglie wavelength of ultracold molecules is very large, the cross sections for collisions of molecules at ultracold temperatures are always computed by the time-independent quantum scattering approach. Here, we report the first accurate time-dependent wave packet dynamics calculation for reactive scattering of ultracold molecules. Wave packet dynamics calculations can be applied to molecular systems with more dimensions and provide real-time information on the process of bond rearrangement and/or energy exchange in molecular collisions. Our work thus makes possible the extension of rigorous quantum calculations of ultracold reaction properties to polyatomic molecules and adds a new powerful tool for the study of ultracold chemistry.

  17. Numerical tables of anomalous scattering factors calculated by the Cromer and Liberman's method

    International Nuclear Information System (INIS)

    Sasaki, Satoshi.

    1989-02-01

    Anomalous scattering factors f' and f'' have been calculated for the atoms Li through Bi, plus U, using the relativistic treatment described by Cromer and Liberman. The final f' value does not include the Jensen's correction term on the magnetic scattering. The tables are presented with the f' and f'' values (i) at 0.01 A intervals in the wavelength range from 0.1 to 2.89 A and (ii) at 0.0001 A intervals in the neighborhood of the K, L 1 , L 2 , and L 3 absorption edges. (author)

  18. Light scattering by multiple spheres: comparison between Maxwell theory and radiative-transfer-theory calculations.

    Science.gov (United States)

    Voit, Florian; Schäfer, Jan; Kienle, Alwin

    2009-09-01

    We present a methodology to compare results of classical radiative transfer theory against exact solutions of Maxwell theory for a high number of spheres. We calculated light propagation in a cubic scattering region (20 x 20 x 20 microm(3)) consisting of different concentrations of polystyrene spheres in water (diameter 2 microm) by an analytical solution of Maxwell theory and by a numerical solution of radiative transfer theory. The relative deviation of differential as well as total scattering cross sections obtained by both approaches was evaluated for each sphere concentration. For the considered case, we found that deviations due to radiative transfer theory remain small, even for concentrations up to ca. 20 vol. %.

  19. Extracting scattering phase shifts in higher partial waves from lattice QCD calculations

    Energy Technology Data Exchange (ETDEWEB)

    Luu, Thomas; Savage, Martin J.

    2011-06-01

    Lüscher’s method is routinely used to determine meson-meson, meson-baryon, and baryon-baryon s-wave scattering amplitudes below inelastic thresholds from lattice QCD calculations—presently at unphysical light-quark masses. In this work we review the formalism and develop the requisite expressions to extract phase shifts describing meson-meson scattering in partial waves with angular momentum l≤6 and l=9. The implications of the underlying cubic symmetry, and strategies for extracting the phase shifts from lattice QCD calculations, are presented, along with a discussion of the signal-to-noise problem that afflicts the higher partial waves.

  20. Calculation of total cross sections for electron and positron scattering on sodium and potassium

    International Nuclear Information System (INIS)

    McCarthy, I.E.; Ratnavelu, K.; Zhou, Y.

    1993-02-01

    Total cross sections for electron and positron scattering on sodium and potassium are calculated at various energies and compared with experiment. The method use is the coupled-channels-optical method with the equivalent-local polarisation potential, which takes all channels into account. For electrons the calculations are checked by comparison with coupled-channels-optical calculations using a detailed polarisation potential that makes only one approximation, that of weak coupling in the ionisation space. The polarisation potential for positrons includes effects of ionisation and positronium formation. 13 refs., 2 tabs

  1. Scaling laws with current for equilibrium momentum spread and emittances from intrabeam scattering and electron cooling

    International Nuclear Information System (INIS)

    Hasse, R.W.; Boine-Frankenheim, O.

    2004-01-01

    Based on the theories of Piwinski, Bjorken-Mtingawa and Martini of Coulomb scattering, expressions for the heating rates due to intrabeam scattering were known since a long time. Simplifications by Wei-Parzen and Rao and Piwinski led to analytic approximations which are easily applicable to existing lattices. We use these approximations and also the formulae from thermal equilibration of Struckmeier and equate them to either constant cooling rates from electron cooling or to the Novosibirsk cooling rates for electron cooling to calculate the equilibrium values of the horizontal and vertical emittances and the momentum spread (longitudinal emittance) for typical beams in the ESR or in the HESR. For constant cooling and all approximation formulae the ratio of current to the product of the three emittances remains almost constant. This yields a slope of the momentum spread with current between 0.2 and 0.3, in agreement with experimental data. Using the Novosibirsk cooling rates this slope is much larger

  2. Impact of the thermal scattering law of H in H_2O on the isothermal temperatures reactivity coefficients for UOX and MOX fuel lattices in cold operating conditions

    International Nuclear Information System (INIS)

    Scotta, J.P.; Noguere, G.; Bernard, D.; Santamarina, A.; Damian, J.I.M.

    2016-01-01

    The contribution of the thermal scattering law of hydrogen in light water to isothermal temperature reactivity coefficients for UOX and MOX lattices was studied in the frame of the MISTRAL critical experiments carried out in the zero power reactor EOLE of CEA Cadarache (France). The interpretation of the core residual reactivity measured between 6 to 80 C. degrees (by step of 5 C. degrees) was performed with the Monte-Carlo code TRIPOLI-4"R. The nuclear data from the JEFF-3.1.1 library were used in the calculations. 3 different thermal scattering laws of hydrogen in light water were tested in order to evaluate their impact on the MISTRAL calculations. The thermal scattering laws of interest were firstly those recommended in JEFF-3.1.1 and ENDF/BVII.1 and also that recently produced at the atomic center of Bariloche (CAB, Argentina) with molecular dynamic simulations. The present work indicates that the calculation-to-experimental bias is (0.4 ± 0.3) pcm/C. degree in the UOX core and (1.0 ± 0.3) pcm/C. degree in the MOX cores, when the JEFF-3.1.1 library is used. An improvement is observed over the whole temperature range with the CAB model. The calculation-to-experimental bias vanishes for the UOX core (0.02 pcm/C. degree) and becomes close to 0.7 pcm/C. degree for the MOX cores. The magnitude of these bias have to be connected to the typical value of the temperature reactivity coefficient that ranges from 5 pcm/C. degree at Beginning Of Cycle (BOC) up to 50 pcm/C. degrees at End Of Cycle (EOC), in PWR conditions. (authors)

  3. Calculation of total and ionization cross sections for electron scattering by primary benzene compounds

    Science.gov (United States)

    Singh, Suvam; Naghma, Rahla; Kaur, Jaspreet; Antony, Bobby

    2016-07-01

    The total and ionization cross sections for electron scattering by benzene, halobenzenes, toluene, aniline, and phenol are reported over a wide energy domain. The multi-scattering centre spherical complex optical potential method has been employed to find the total elastic and inelastic cross sections. The total ionization cross section is estimated from total inelastic cross section using the complex scattering potential-ionization contribution method. In the present article, the first theoretical calculations for electron impact total and ionization cross section have been performed for most of the targets having numerous practical applications. A reasonable agreement is obtained compared to existing experimental observations for all the targets reported here, especially for the total cross section.

  4. Calculation of total and ionization cross sections for electron scattering by primary benzene compounds

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Suvam; Naghma, Rahla; Kaur, Jaspreet; Antony, Bobby, E-mail: bka.ism@gmail.com [Atomic and Molecular Physics Lab, Department of Applied Physics, Indian School of Mines, Dhanbad (India)

    2016-07-21

    The total and ionization cross sections for electron scattering by benzene, halobenzenes, toluene, aniline, and phenol are reported over a wide energy domain. The multi-scattering centre spherical complex optical potential method has been employed to find the total elastic and inelastic cross sections. The total ionization cross section is estimated from total inelastic cross section using the complex scattering potential-ionization contribution method. In the present article, the first theoretical calculations for electron impact total and ionization cross section have been performed for most of the targets having numerous practical applications. A reasonable agreement is obtained compared to existing experimental observations for all the targets reported here, especially for the total cross section.

  5. Accurate Calculations of Rotationally Inelastic Scattering Cross Sections Using Mixed Quantum/Classical Theory.

    Science.gov (United States)

    Semenov, Alexander; Babikov, Dmitri

    2014-01-16

    For computational treatment of rotationally inelastic scattering of molecules, we propose to use the mixed quantum/classical theory, MQCT. The old idea of treating translational motion classically, while quantum mechanics is used for rotational degrees of freedom, is developed to the new level and is applied to Na + N2 collisions in a broad range of energies. Comparison with full-quantum calculations shows that MQCT accurately reproduces all, even minor, features of energy dependence of cross sections, except scattering resonances at very low energies. The remarkable success of MQCT opens up wide opportunities for computational predictions of inelastic scattering cross sections at higher temperatures and/or for polyatomic molecules and heavier quenchers, which is computationally close to impossible within the full-quantum framework.

  6. Calculated energy distributions for light 0.25--18-keV ions scattered from solid surfaces

    International Nuclear Information System (INIS)

    Robinson, J.E.; Harms, A.A.; Karapetsas, S.K.

    1975-01-01

    Scattered energy distributions are calculated for light ions incident on Nb and Mo surfaces of interest for controlled nulcear fusion reactors. The scattered energy is found to vary as a function of the reflection coefficient between a multiple-collision limit at low energies and a single-collision Rutherford scattering limit at high energies. High-energy peaking of the scattered particle distributions is also found for low incident energies

  7. Independent dosimetric calculation with inclusion of head scatter and MLC transmission for IMRT

    International Nuclear Information System (INIS)

    Yang, Y.; Xing, L.; Li, J.G.; Palta, J.; Chen, Y.; Luxton, Gary; Boyer, A.

    2003-01-01

    Independent verification of the MU settings and dose calculation of IMRT treatment plans is an important step in the IMRT quality assurance (QA) procedure. At present, the verification is mainly based on experimental measurements, which are time consuming and labor intensive. Although a few simplified algorithms have recently been proposed for the independent dose (or MU) calculation, head scatter has not been precisely taken into account in all these investigations and the dose validation has mainly been limited to the central axis. In this work we developed an effective computer algorithm for IMRT MU and dose validation. The technique is superior to the currently available computer-based MU check systems in that (1) it takes full consideration of the head scatter and leaf transmission effects; and (2) it allows a precise dose calculation at an arbitrary spatial point instead of merely a point on the central axis. In the algorithm the dose at an arbitrary spatial point is expressed as a summation of the contributions of primary and scatter radiation from all beamlets. Each beamlet is modulated by a dynamic modulation factor (DMF), which is determined by the MLC leaf trajectories, the head scatter, the jaw positions, and the MLC leaf transmission. A three-source model was used to calculate the head scatter distribution for irregular segments shaped by MLC and the scatter dose contributions were computed using a modified Clarkson method. The system reads in MLC leaf sequence files (or RTP files) generated by the Corvus (NOMOS Corporation, Sewickley, PA) inverse planning system and then computes the doses at the desired points. The algorithm was applied to study the dose distributions of several testing intensity modulated fields and two multifield Corvus plans and the results were compared with Corvus plans and experimental measurements. The final dose calculations at most spatial points agreed with the experimental measurements to within 3% for both the specially

  8. Calculation of accurate small angle X-ray scattering curves from coarse-grained protein models

    Directory of Open Access Journals (Sweden)

    Stovgaard Kasper

    2010-08-01

    Full Text Available Abstract Background Genome sequencing projects have expanded the gap between the amount of known protein sequences and structures. The limitations of current high resolution structure determination methods make it unlikely that this gap will disappear in the near future. Small angle X-ray scattering (SAXS is an established low resolution method for routinely determining the structure of proteins in solution. The purpose of this study is to develop a method for the efficient calculation of accurate SAXS curves from coarse-grained protein models. Such a method can for example be used to construct a likelihood function, which is paramount for structure determination based on statistical inference. Results We present a method for the efficient calculation of accurate SAXS curves based on the Debye formula and a set of scattering form factors for dummy atom representations of amino acids. Such a method avoids the computationally costly iteration over all atoms. We estimated the form factors using generated data from a set of high quality protein structures. No ad hoc scaling or correction factors are applied in the calculation of the curves. Two coarse-grained representations of protein structure were investigated; two scattering bodies per amino acid led to significantly better results than a single scattering body. Conclusion We show that the obtained point estimates allow the calculation of accurate SAXS curves from coarse-grained protein models. The resulting curves are on par with the current state-of-the-art program CRYSOL, which requires full atomic detail. Our method was also comparable to CRYSOL in recognizing native structures among native-like decoys. As a proof-of-concept, we combined the coarse-grained Debye calculation with a previously described probabilistic model of protein structure, TorusDBN. This resulted in a significant improvement in the decoy recognition performance. In conclusion, the presented method shows great promise for

  9. In-medium scaling law and electron scattering from high-spin states in 208Pb

    International Nuclear Information System (INIS)

    Arias de Saavedra, F.; Lallena, A.M.

    1994-01-01

    The effects of the environment modifications in the structure of the low-lying high-spin states of 208 Pb are studied by analyzing how the in-medium scaling law works on the excitation energies, wave functions, and electron scattering form factors corresponding to these states. It is shown that the consideration of f π * in addition to the effective ρ-meson mass does not affect too much most of the states analyzed. However, some of them appear to be extremely sensitive to its inclusion in the residual nucleon-nucleon interaction. As a result, a value of m ρ * /m ρ ∼f π * /f π ∼0.91 gives a good description of the (e,e') form factors of these particular states without any quenching factor. This value is in agreement with the one found for 48 Ca in a similar analysis performed in a previous work

  10. Calculation of Scattering Amplitude Without Partial Analysis. II; Inclusion of Exchange

    Science.gov (United States)

    Temkin, Aaron; Shertzer, J.; Fisher, Richard R. (Technical Monitor)

    2002-01-01

    There was a method for calculating the whole scattering amplitude, f(Omega(sub k)), directly. The idea was to calculate the complete wave function Psi numerically, and use it in an integral expression for f, which can be reduced to a 2 dimensional quadrature. The original application was for e-H scattering without exchange. There the Schrodinger reduces a 2-d partial differential equation (pde), which was solved using the finite element method (FEM). Here we extend the method to the exchange approximation. The S.E. can be reduced to a pair of coupled pde's, which are again solved by the FEM. The formal expression for f(Omega(sub k)) consists two integrals, f+/- = f(sub d) +/- f(sub e); f(sub d) is formally the same integral as the no-exchange f. We have also succeeded in reducing f(sub e) to a 2-d integral. Results will be presented at the meeting.

  11. Detailed calculation of low-energy positron scattering by the hydrogen molecular ion

    International Nuclear Information System (INIS)

    Armour, E.A.G.; Carr, J.M.; Franklin, C.P.

    1996-01-01

    Detailed calculations are made using the Kohn method of positron scattering by the hydrogen molecular ion below the positronium formation threshold at 9.45 eV. Phase shifts from the two-centre Coulomb value are obtained for the lowest partial wave of Σ g + symmetry using a very flexible trial function containing a large number of short-range correlation functions. The convergence of the results with respect to both the linear and non-linear parameters is explored. (author)

  12. Convergent J-matrix calculation of the Poet-Temkin model of electron-hydrogen scattering

    International Nuclear Information System (INIS)

    Konovalov, D.A.; McCarthy, I.E.

    1994-01-01

    It is shown that the Poet-Temkin model of electron-hydrogen scattering could be solved to any required accuracy using the J-matrix method. The convergence in the basis size is achieved to an accuracy of better than 2% with the inclusion of 37 basis L 2 functions. Previously observed pseudoresonances in the J-matrix calculation naturally disappear with an increase in basis size. No averaging technique is necessary to smooth the convergent J-matrix results. (Author)

  13. Calculation of accurate small angle X-ray scattering curves from coarse-grained protein models

    DEFF Research Database (Denmark)

    Stovgaard, Kasper; Andreetta, Christian; Ferkinghoff-Borg, Jesper

    2010-01-01

    , which is paramount for structure determination based on statistical inference. Results: We present a method for the efficient calculation of accurate SAXS curves based on the Debye formula and a set of scattering form factors for dummy atom representations of amino acids. Such a method avoids......DBN. This resulted in a significant improvement in the decoy recognition performance. In conclusion, the presented method shows great promise for use in statistical inference of protein structures from SAXS data....

  14. Anomalous scattering factors for synchrotron radiation users, calculated using Cromer and Liberman's method

    International Nuclear Information System (INIS)

    Sasaki, Satoshi.

    1984-01-01

    Anomalous scattering factors f' and f'' have been calculated for the atoms Li through Bi, plus U, using the relativistic treatment described by Cromer and Liberman (1970, 1981). The tables presented in this paper include values (i) in the wavelength range from 0.1 to 2.89 A in 0.01 A intervals and (ii) in the neighborhood of the K,L 1 ,L 2 , and L 3 absorption edges in 0.0001 A intervals. (author)

  15. Hybrid theory calculation of electron-N2 scattering at 5 and 10 eV

    Science.gov (United States)

    Chandra, N.; Temkin, A.

    1976-01-01

    Hybrid theory results pertaining to e-N2 scattering have been evaluated for differential elastic and first vibrational excitation cross sections at 5 and 10 eV. Comparison with the recent experiment of Chutjian, Srivastava, and Trajmar is good (1976), although there is an indication that the calculated nonresonant (adiabatic-nuclei) contribution is somewhat too small. A short discussion engendered by this point is given.

  16. A new shielding calculation method for X-ray computed tomography regarding scattered radiation.

    Science.gov (United States)

    Watanabe, Hiroshi; Noto, Kimiya; Shohji, Tomokazu; Ogawa, Yasuyoshi; Fujibuchi, Toshioh; Yamaguchi, Ichiro; Hiraki, Hitoshi; Kida, Tetsuo; Sasanuma, Kazutoshi; Katsunuma, Yasushi; Nakano, Takurou; Horitsugi, Genki; Hosono, Makoto

    2017-06-01

    The goal of this study is to develop a more appropriate shielding calculation method for computed tomography (CT) in comparison with the Japanese conventional (JC) method and the National Council on Radiation Protection and Measurements (NCRP)-dose length product (DLP) method. Scattered dose distributions were measured in a CT room with 18 scanners (16 scanners in the case of the JC method) for one week during routine clinical use. The radiation doses were calculated for the same period using the JC and NCRP-DLP methods. The mean (NCRP-DLP-calculated dose)/(measured dose) ratios in each direction ranged from 1.7 ± 0.6 to 55 ± 24 (mean ± standard deviation). The NCRP-DLP method underestimated the dose at 3.4% in fewer shielding directions without the gantry and a subject, and the minimum (NCRP-DLP-calculated dose)/(measured dose) ratio was 0.6. The reduction factors were 0.036 ± 0.014 and 0.24 ± 0.061 for the gantry and couch directions, respectively. The (JC-calculated dose)/(measured dose) ratios ranged from 11 ± 8.7 to 404 ± 340. The air kerma scatter factor κ is expected to be twice as high as that calculated with the NCRP-DLP method and the reduction factors are expected to be 0.1 and 0.4 for the gantry and couch directions, respectively. We, therefore, propose a more appropriate method, the Japanese-DLP method, which resolves the issues of possible underestimation of the scattered radiation and overestimation of the reduction factors in the gantry and couch directions.

  17. Numerical Exact Ab Initio Four-Nucleon Scattering Calculations: from Dream to Reality

    Science.gov (United States)

    Fonseca, A. C.; Deltuva, A.

    2017-03-01

    In the present manuscript we review the work of the last ten years on the pursuit to obtain numerical exact solutions of the four-nucleon scattering problem using the most advanced force models that fit two nucleon data up to pion production threshold with a χ ^2 per data point approximately one, together with the Coulomb interaction between protons; three- and four-nucleon forces are also included in the framework of a meson exchange potential model where NN couples to NΔ. Failure to describe the world data on four-nucleon scattering observables in the framework of a non relativistic scattering approach falls necessarily on the force models one uses. Four-nucleon observables pose very clear challenges, particular in the low energy region where there are a number of resonances whose position and width needs to be dynamically generated by the nucleon-nucleon (NN) interactions one uses. In addition, our calculations constitute the most advance piece of work where observables for all four-nucleon reactions involving isospin I=0, I=0 coupled to I=1 and isospin I=1 initial states are calculated at energies both below and above breakup threshold. We also present a very extensive comparison between calculated results and data for cross sections and spin observables. Therefore the present work reveals both the shortcomings and successes of some of the present NN force models in describing four-nucleon data and serve as a benchmark for future developments.

  18. Neutron-deuteron scattering calculations with W-matrix representation of the two-body input

    International Nuclear Information System (INIS)

    Bartnik, E.A.; Haberzettl, H.; Januschke, T.; Kerwath, U.; Sandhas, W.

    1987-05-01

    Employing the W-matrix representation of the partial-wave T matrix introduced by Bartnik, Haberzettl, and Sandhas, we show for the example of the Malfliet-Tjon potentials I and III that the single-term separable part of the W-matrix representation, when used as input in three-nucleon neutron-deuteron scattering calculations, is fully capable of reproducing the exact results obtained by Kloet and Tjon. This approximate two-body input not only satisfies the two-body off-shell unitarity relation but, moreover, it also contains a parameter which may be used in optimizing the three-body data. We present numerical evidence that there exists a variational (minimum) principle for the determination of the three-body binding energy which allows one to choose this parameter also in the absence of an exact reference calculation. Our results for neutron-deuteron scattering show that it is precisely this choice of the parameter which provides optimal scattering data. We conclude that the W-matrix approach, despite its simplicity, is a remarkably efficient tool for high-quality three-nucleon calculations. (orig.)

  19. New developments in analytical calculation of first order scattering for 3D complex objects

    International Nuclear Information System (INIS)

    Duvauchelle, Philippe; Berthier, Jerome

    2007-01-01

    The principle of the analytical calculation of first order scattering used in our simulation code named VXI (Virtual X-ray Imaging) is based on a double ray-tracing. The first step consists in realizing a ray-tracing from the X-ray source point to each point of the object (an elementary volume in practice) including attenuation effect in the primary beam. This calculation gives the number of photons and their direction arriving on each voxel. A voxel acts as a secondary source which properties accord to the physics of X-ray scattering (Compton and Rayleigh). The second step of the ray-tracing is then done from each voxel of the object in the direction of each pixel of the detector, taking into account the attenuation along the scattering path. To simulate a 3D complex object, the first problem consists in realizing an automatic 3D sampling of the object. This is done by using an octree-based method optimized for deterministic scattering computation. The basic octree method consists in dividing recursively the volume of the object in decreasing-size voxels until each of them is completely included under the surface of the sample. The object volume is then always under evaluated. This is a problem because the scattering phenomenon strongly depends on the real volume of the object. The second problem is that artefacts due to sampling effects can occur in synthesis images. These two particular aspects are taken into account in our simulation code and an optimized octree-based method has been specially developed for this application. To respond to the first problem, our 3D sampling algorithm may accept voxels on the surface of the sample under conditions defined by the user. The second problem is treated in generating a random sampling instead of a regular one. The algorithm developed for 3D sampling is easily configurable, fast (about a few seconds maximum), robust and can be applied to all object shapes (thin, massive). The sampling time depends on the number of

  20. Dynamical basis sets for algebraic variational calculations in quantum-mechanical scattering theory

    Science.gov (United States)

    Sun, Yan; Kouri, Donald J.; Truhlar, Donald G.; Schwenke, David W.

    1990-01-01

    New basis sets are proposed for linear algebraic variational calculations of transition amplitudes in quantum-mechanical scattering problems. These basis sets are hybrids of those that yield the Kohn variational principle (KVP) and those that yield the generalized Newton variational principle (GNVP) when substituted in Schlessinger's stationary expression for the T operator. Trial calculations show that efficiencies almost as great as that of the GNVP and much greater than the KVP can be obtained, even for basis sets with the majority of the members independent of energy.

  1. Impact of neutron thermal scattering laws on the burn-up analysis of supercritical LWR's fuel assemblies

    International Nuclear Information System (INIS)

    Conti, Andrea

    2011-10-01

    This work is a contribution to the HPLWR2 (High Performance Light Water Reactor Phase 2), a research project having the goal to investigate the technical feasibility of the High Performance Light Water Reactor. The basic idea of the HPLWR is that of an LWR working at supercritical pressure, which would allow heating up the coolant to a temperature of about 500 C without having phase transition and sending the coolant directly to the turbine. One issue aroused by this design, deserving to be addressed by research, is the behaviour of thermal neutrons in supercritical water. At thermal energies, the De Broglie wavelength associated with the neutron is comparable to the interatomic distances in crystals and molecules and the scattering is fully governed by the laws of quantum mechanics, according to which the geometry of the aggregates the nuclei are bound to and their intra- and intermolecular dynamics are of crucial importance. It can be shown that there is a certain mathematical relation between the Fourier-transform of the hydrogen atoms' velocity autocorrelation function and their double-differential scattering cross section. This Fourier-transform, called ''generalized frequency distribution'', can be derived from experimental measurements and, effectively, Bernnat et al. of the Institut fuer Kernenergetik und Energiesysteme of the University of Stuttgart derived the generalized frequency distribution for liquid water on the basis of experimental results of Page and Haywood. Unfortunately there exists no experimental facility nowadays to support a thorough work of this type on supercritical water and therefore the scattering kernel for thermal neutrons in supercritical water is unknown. In criticality calculations involving supercritical water one can turn to one of the thermal scattering kernels available nowadays for hydrogen bound to the H 2 O molecule: for liquid water, for vapour or considering the nuclei of hydrogen as unbound. The third, most naive option

  2. THERMAL: A routine designed to calculate neutron thermal scattering. Revision 1

    International Nuclear Information System (INIS)

    Cullen, D.E.

    1995-01-01

    THERMAL is designed to calculate neutron thermal scattering that is elastic and isotropic in the center of mass system. At low energy thermal motion will be included. At high energies the target nuclei are assumed to be stationary. The point of transition between low and high energies has been defined to insure a smooth transition. It is assumed that at low energy the elastic cross section is constant in the relative system. At high energy the cross section can be of any form. You can use this routine for all energies where the elastic scattering is isotropic in the center of mass system. In most materials this will be a fairly high energy, e.g., the keV energy range. The THERMAL method is simple, clean, easy to understand, and most important very efficient; on a SUN SPARC-10 workstation, at low energies with thermal scattering it can do almost 6 million scatters a minute and at high energy over 13 million. Warning: This version of THERMAL completely supersedes the original version described in the same report number, dated February 24, 1995. The method used in the original code is incorrect, as explained in this report

  3. The boomerang effect in electron-hydrogen molecule scattering as determined by time-dependent calculations

    Science.gov (United States)

    Ben-Asher, Anael; Moiseyev, Nimrod

    2017-05-01

    The appearance of oscillations in the energy-dependent cross sections of the vibrational excitation ν =0 →ν ≥3 of the hydrogen molecule in its electronic ground state as predicted by Mündel, Berman, and Domcke [Phys. Rev. A 32, 181 (1985)] was confirmed in the electron scattering experiments by Allan [J. Phys. B: At. Mol. Phys. 18, L451 (1985)]. These unusual structures were obtained in spite of the extremely short lifetime of H2- in its ro-vibrational states. Based on the standard (Hermitian) time-independent scattering calculations, Horáček et al. [Phys. Rev. A 73, 022701 (2006)] associated these oscillations with the boomerang effect. Here, we show the boomerang effect as developed in time, based on our time-dependent nuclear wavepacket (WP) calculations. The nuclear WP dynamics of H2- is determined using the non-Hermitian quantum mechanics (NH-QM) which enables the use of the Born-Oppenheimer approximation with complex potential energy surfaces. This NH-QM approach, which enables us the association of the nuclear WP dynamics as obtained from the complex potential energy curve of H2- with the evolution of cross section in time, can enlighten the dynamics in other scattering experiments.

  4. Influence of six-quark bags on the NN interaction in a resonating group scattering calculation

    International Nuclear Information System (INIS)

    Zhang Zongye; Braeuer, K.; Faessler, A.; Shimizu, K.

    1985-01-01

    The influence of six-quark bags oin the nucleon-nucleon (NN) interaction is studied in a dynamical calculation of the NN scattering process. The NN interaction is described by the exchange of gluons and pions between quarks and a phenomenological sigma-meson exchange between nucleons. The quark wave functions are harmonic oscillators and the relative wave function between the two nucleons is determined by the resonating group method. At short distances the NN system is allowed to fuse to a six-quark bag where all six quarks are in a ground state or where two quarks are in excited Op states. The sizes of these six-quark bags are dynamical parameters in the resonating group calculation allowing for spatial polarisation effects during the interaction. The S-wave NN scattering data can be reproduced by adjusting the sigma-coupling strength. The main result is that the six-quark bags with an increased radius have a large influence on the NN scattering process. (orig.)

  5. Variational treatment of electron-polyatomic-molecule scattering calculations using adaptive overset grids

    Science.gov (United States)

    Greenman, Loren; Lucchese, Robert R.; McCurdy, C. William

    2017-11-01

    The complex Kohn variational method for electron-polyatomic-molecule scattering is formulated using an overset-grid representation of the scattering wave function. The overset grid consists of a central grid and multiple dense atom-centered subgrids that allow the simultaneous spherical expansions of the wave function about multiple centers. Scattering boundary conditions are enforced by using a basis formed by the repeated application of the free-particle Green's function and potential Ĝ0+V ̂ on the overset grid in a Born-Arnoldi solution of the working equations. The theory is shown to be equivalent to a specific Padé approximant to the T matrix and has rapid convergence properties, in both the number of numerical basis functions employed and the number of partial waves employed in the spherical expansions. The method is demonstrated in calculations on methane and CF4 in the static-exchange approximation and compared in detail with calculations performed with the numerical Schwinger variational approach based on single-center expansions. An efficient procedure for operating with the free-particle Green's function and exchange operators (to which no approximation is made) is also described.

  6. Improvement of Lambert-Beer law dynamic range by the use of temporal gates on transmitted light pulse through a scattering medium

    International Nuclear Information System (INIS)

    Yoshino, Hironori; Wada, Kenji; Horinaka, Hiromichi; Cho, Yoshio; Umeda, Tokuo; Osawa, Masahiko.

    1995-01-01

    The Lambert-Beer law holding for pulsed lights transmitted through a scattering medium was examined using a streak camera. The Lambert-Beer law dynamic range is found to be limited by floor levels that are caused by scattered photons and are controllable by the use of a temporal gate on the transmitted pulse. The dynamic range improvement obtained for a scattering medium of 2.8 cm -1 scattering coefficient of a thickness of 80 mm by a temporal gate of 60 ps was as much as 50 dB and the Lambert-Beer law dynamic rang reached to 140 dB. (author)

  7. Exciton scattering approach for optical spectra calculations in branched conjugated macromolecules

    International Nuclear Information System (INIS)

    Li, Hao; Wu, Chao; Malinin, Sergey V.; Tretiak, Sergei; Chernyak, Vladimir Y.

    2016-01-01

    The exciton scattering (ES) technique is a multiscale approach based on the concept of a particle in a box and developed for efficient calculations of excited-state electronic structure and optical spectra in low-dimensional conjugated macromolecules. Within the ES method, electronic excitations in molecular structure are attributed to standing waves representing quantum quasi-particles (excitons), which reside on the graph whose edges and nodes stand for the molecular linear segments and vertices, respectively. Exciton propagation on the linear segments is characterized by the exciton dispersion, whereas exciton scattering at the branching centers is determined by the energy-dependent scattering matrices. Using these ES energetic parameters, the excitation energies are then found by solving a set of generalized “particle in a box” problems on the graph that represents the molecule. Similarly, unique energy-dependent ES dipolar parameters permit calculations of the corresponding oscillator strengths, thus, completing optical spectra modeling. Both the energetic and dipolar parameters can be extracted from quantum-chemical computations in small molecular fragments and tabulated in the ES library for further applications. Subsequently, spectroscopic modeling for any macrostructure within a considered molecular family could be performed with negligible numerical effort. We demonstrate the ES method application to molecular families of branched conjugated phenylacetylenes and ladder poly-para-phenylenes, as well as structures with electron donor and acceptor chemical substituents. Time-dependent density functional theory (TD-DFT) is used as a reference model for electronic structure. The ES calculations accurately reproduce the optical spectra compared to the reference quantum chemistry results, and make possible to predict spectra of complex macromolecules, where conventional electronic structure calculations are unfeasible.

  8. Exciton scattering approach for optical spectra calculations in branched conjugated macromolecules

    Science.gov (United States)

    Li, Hao; Wu, Chao; Malinin, Sergey V.; Tretiak, Sergei; Chernyak, Vladimir Y.

    2016-12-01

    The exciton scattering (ES) technique is a multiscale approach based on the concept of a particle in a box and developed for efficient calculations of excited-state electronic structure and optical spectra in low-dimensional conjugated macromolecules. Within the ES method, electronic excitations in molecular structure are attributed to standing waves representing quantum quasi-particles (excitons), which reside on the graph whose edges and nodes stand for the molecular linear segments and vertices, respectively. Exciton propagation on the linear segments is characterized by the exciton dispersion, whereas exciton scattering at the branching centers is determined by the energy-dependent scattering matrices. Using these ES energetic parameters, the excitation energies are then found by solving a set of generalized "particle in a box" problems on the graph that represents the molecule. Similarly, unique energy-dependent ES dipolar parameters permit calculations of the corresponding oscillator strengths, thus, completing optical spectra modeling. Both the energetic and dipolar parameters can be extracted from quantum-chemical computations in small molecular fragments and tabulated in the ES library for further applications. Subsequently, spectroscopic modeling for any macrostructure within a considered molecular family could be performed with negligible numerical effort. We demonstrate the ES method application to molecular families of branched conjugated phenylacetylenes and ladder poly-para-phenylenes, as well as structures with electron donor and acceptor chemical substituents. Time-dependent density functional theory (TD-DFT) is used as a reference model for electronic structure. The ES calculations accurately reproduce the optical spectra compared to the reference quantum chemistry results, and make possible to predict spectra of complex macromolecules, where conventional electronic structure calculations are unfeasible.

  9. Exciton scattering approach for optical spectra calculations in branched conjugated macromolecules

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hao [Department of Chemistry, University of Houston, Houston, TX 77204 (United States); Wu, Chao [Electronic Structure Lab, Center of Microscopic Theory and Simulation, Frontier Institute of Science and Technology, Xian Jiaotong University, Xian 710054 (China); Malinin, Sergey V. [Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202 (United States); Tretiak, Sergei, E-mail: serg@lanl.gov [Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Chernyak, Vladimir Y., E-mail: chernyak@chem.wayne.edu [Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202 (United States)

    2016-12-20

    The exciton scattering (ES) technique is a multiscale approach based on the concept of a particle in a box and developed for efficient calculations of excited-state electronic structure and optical spectra in low-dimensional conjugated macromolecules. Within the ES method, electronic excitations in molecular structure are attributed to standing waves representing quantum quasi-particles (excitons), which reside on the graph whose edges and nodes stand for the molecular linear segments and vertices, respectively. Exciton propagation on the linear segments is characterized by the exciton dispersion, whereas exciton scattering at the branching centers is determined by the energy-dependent scattering matrices. Using these ES energetic parameters, the excitation energies are then found by solving a set of generalized “particle in a box” problems on the graph that represents the molecule. Similarly, unique energy-dependent ES dipolar parameters permit calculations of the corresponding oscillator strengths, thus, completing optical spectra modeling. Both the energetic and dipolar parameters can be extracted from quantum-chemical computations in small molecular fragments and tabulated in the ES library for further applications. Subsequently, spectroscopic modeling for any macrostructure within a considered molecular family could be performed with negligible numerical effort. We demonstrate the ES method application to molecular families of branched conjugated phenylacetylenes and ladder poly-para-phenylenes, as well as structures with electron donor and acceptor chemical substituents. Time-dependent density functional theory (TD-DFT) is used as a reference model for electronic structure. The ES calculations accurately reproduce the optical spectra compared to the reference quantum chemistry results, and make possible to predict spectra of complex macromolecules, where conventional electronic structure calculations are unfeasible.

  10. On the representation of electron multiple elastic-scattering distributions for Monte Carlo calculations

    International Nuclear Information System (INIS)

    Kawrakow, I.; Bielajew, A.F.

    1998-01-01

    A new representation of elastic electron-nucleus (Coulomb) multiple-scattering distributions is developed. Using the screened Rutherford cross section with the Moliere screening parameter as an example, a simple analytic angular transformation of the Goudsmit-Saunderson multiple-scattering distribution accounts for most of the structure of the angular distribution leaving a residual 3-parameter (path-length, transformed angle and screening parameter) function that is reasonably slowly varying and suitable for rapid, accurate interpolation in a computer-intensive algorithm. The residual function is calculated numerically for a wide range of Moliere screening parameters and path-lengths suitable for use in a general-purpose condensed-history Monte Carlo code. Additionally, techniques are developed that allow the distributions to be scaled to account for energy loss. This new representation allows ''''on-the-fly'''' sampling of Goudsmit-Saunderson angular distributions in a screened Rutherford approximation suitable for class II condensed-history Monte Carlo codes. (orig.)

  11. Hybrid theory and calculation of e-N2 scattering. [quantum mechanics - nuclei (nuclear physics)

    Science.gov (United States)

    Chandra, N.; Temkin, A.

    1975-01-01

    A theory of electron-molecule scattering was developed which was a synthesis of close coupling and adiabatic-nuclei theories. The theory is shown to be a close coupling theory with respect to vibrational degrees of freedom but is a adiabatic-nuclei theory with respect to rotation. It can be applied to any number of partial waves required, and the remaining ones can be calculated purely in one or the other approximation. A theoretical criterion based on fixed-nuclei calculations and not on experiment can be given as to which partial waves and energy domains require the various approximations. The theory allows all cross sections (i.e., pure rotational, vibrational, simultaneous vibration-rotation, differential and total) to be calculated. Explicit formulae for all the cross sections are presented.

  12. Wall attenuation and scatter corrections for ion chambers: measurements versus calculations

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, D W.O.; Bielajew, A F [National Research Council of Canada, Ottawa, ON (Canada). Div. of Physics

    1990-08-01

    In precision ion chamber dosimetry in air, wall attenuation and scatter are corrected for A{sub wall} (K{sub att} in IAEA terminology, K{sub w}{sup -1} in standards laboratory terminology). Using the EGS4 system the authors show that Monte Carlo calculated A{sub wall} factors predict relative variations in detector response with wall thickness which agree with all available experimental data within a statistical uncertainty of less than 0.1%. They calculated correction factors for use in exposure and air kerma standards are different by up to 1% from those obtained by extrapolating these same measurements. Using calculated correction factors would imply increases of 0.7-1.0% in the exposure and air kerma standards based on spherical and large diameter, large length cylindrical chambers and decreases of 0.3-0.5% for standards based on large diameter pancake chambers. (author).

  13. Inelastic neutron scattering an ab-initio calculation of negative thermal expansion in Ag2O

    International Nuclear Information System (INIS)

    Gupta, M.K.; Mittal, R.; Rols, S.; Chaplot, S.L.

    2012-01-01

    The compound Ag 2 O undergoes large and isotropic negative thermal expansion over 0-500 K. We report temperature dependent inelastic neutron scattering measurements and ab-initio calculations of the phonon spectrum. The temperature dependence of the experimental phonon spectrum shows strong anharmonic nature of phonon modes of energy around 2.4 meV. The ab-initio calculations reveal that the maximum negative Grüneisen parameter, which is a measure of the relevant anharmonicity, occurs for the transverse phonon modes that involve bending motions of the Ag 4 O tetrahedra. The thermal expansion is evaluated from the ab-initio calculation of the pressure dependence of the phonon modes, and found in good agreement with available experimental data.

  14. Q resolution calculation of small angle neutron scattering spectrometer and analysis of form factor

    International Nuclear Information System (INIS)

    Chen Liang; Peng Mei; Wang Yan; Sun Liangwei; Chen Bo

    2011-01-01

    The calculational methods of Small Angle Neutron Scattering (SANS) spectrometer Q resolution function and its correlative Q standard difference were introduced. The effects of Q standard difference were analysed with the geometry lay out of spectrometer and the spread of neutron wavelength. The one dimension Q resolution Gaussian function were analysed. The form factor curve of ideal solid sphere and two different instrument arrangement parameter was convoluted respectively and the different smearing curve of form factor was obtained. The combination of using the Q resolution function to more accurately analysis SANS data. (authors)

  15. Probability density of tunneled carrier states near heterojunctions calculated numerically by the scattering method.

    Energy Technology Data Exchange (ETDEWEB)

    Wampler, William R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Myers, Samuel M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Modine, Normand A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    The energy-dependent probability density of tunneled carrier states for arbitrarily specified longitudinal potential-energy profiles in planar bipolar devices is numerically computed using the scattering method. Results agree accurately with a previous treatment based on solution of the localized eigenvalue problem, where computation times are much greater. These developments enable quantitative treatment of tunneling-assisted recombination in irradiated heterojunction bipolar transistors, where band offsets may enhance the tunneling effect by orders of magnitude. The calculations also reveal the density of non-tunneled carrier states in spatially varying potentials, and thereby test the common approximation of uniform- bulk values for such densities.

  16. Archean Earth Atmosphere Fractal Haze Aggregates: Light Scattering Calculations and the Faint Young Sun Paradox

    Science.gov (United States)

    Boness, D. A.; Terrell-Martinez, B.

    2010-12-01

    As part of an ongoing undergraduate research project of light scattering calculations involving fractal carbonaceous soot aggregates relevant to current anthropogenic and natural sources in Earth's atmosphere, we have read with interest a recent paper [E.T. Wolf and O.B Toon,Science 328, 1266 (2010)] claiming that the Faint Young Sun paradox discussed four decades ago by Carl Sagan and others can be resolved without invoking heavy CO2 concentrations as a greenhouse gas warming the early Earth enough to sustain liquid water and hence allow the origin of life. Wolf and Toon report that a Titan-like Archean Earth haze, with a fractal haze aggregate nature due to nitrogen-methane photochemistry at high altitudes, should block enough UV light to protect the warming greenhouse gas NH3 while allowing enough visible light to reach the surface of the Earth. To test this hypothesis, we have employed a rigorous T-Matrix arbitrary-particle light scattering technique, to avoid the simplifications inherent in Mie-sphere scattering, on haze fractal aggregates at UV and visible wavelenths of incident light. We generate these model aggregates using diffusion-limited cluster aggregation (DLCA) algorithms, which much more closely fit actual haze fractal aggregates than do diffusion-limited aggregation (DLA) algorithms.

  17. Anisotropic kernel p(μ → μ') for transport calculations of elastically scattered neutrons

    International Nuclear Information System (INIS)

    Stevenson, B.

    1985-01-01

    Literature in the area of anisotropic neutron scattering is by no means lacking. Attention, however, is usually devoted to solution of some particular neutron transport problem and the model employed is at best approximate. The present approach to the problem in general is classically exact and may be of some particular value to individuals seeking exact numerical results in transport calculations. For attempts neutrons originally directed toward the unit vector Omega, it attempts the evaluation of p(theta'), defined such that p(theta') d theta' is that fraction of scattered neutrons that emerges in the vicinity of a cone i.e., having been scattered to between angles theta' and theta' + d theta' with the axis of preferred orientation i; Omega makes an angle theta with i. The relative simplicity of the final form of the solution for hydrogen, in spite of the complicated nature of the limits involved, is a trade-off that truly is not necessary. The exact general solution presented here in integral form, has exceedingly simple limits, i.e., 0 ≤ theta' ≤ π regardless of the material involved; but the form of the final solution is extraordinarily complicated

  18. Equilibrium Limit of Boundary Scattering in Carbon Nanostructures: Molecular Dynamics Calculations of Thermal Transport

    Science.gov (United States)

    Haskins, Justin; Kinaci, Alper; Sevik, Cem; Cagin, Tahir

    2012-01-01

    It is widely known that graphene and many of its derivative nanostructures have exceedingly high reported thermal conductivities (up to 4000 W/mK at 300 K). Such attractive thermal properties beg the use of these structures in practical devices; however, to implement these materials while preserving transport quality, the influence of structure on thermal conductivity should be thoroughly understood. For graphene nanostructures, having average phonon mean free paths on the order of one micron, a primary concern is how size influences the potential for heat conduction. To investigate this, we employ a novel technique to evaluate the lattice thermal conductivity from the Green-Kubo relations and equilibrium molecular dynamics in systems where phonon-boundary scattering dominates heat flow. Specifically, the thermal conductivities of graphene nanoribbons and carbon nanotubes are calculated in sizes up to 3 microns, and the relative influence of boundary scattering on thermal transport is determined to be dominant at sizes less than 1 micron, after which the thermal transport largely depends on the quality of the nanostructure interface. The method is also extended to carbon nanostructures (fullerenes) where phonon confinement, as opposed to boundary scattering, dominates, and general trends related to the influence of curvature on thermal transport in these materials are discussed.

  19. Coupled-channel optical calculation of electron-atom scattering: elastic scattering from sodium at 20 to 150 eV

    International Nuclear Information System (INIS)

    Bray, Igor; Konovalov, D.A.; McCarthy, I.E.

    1991-04-01

    A coupled-channel optical method for electron-atom scattering is applied to elastic electron-sodium scattering at energies of 20, 22.1, 54.4, 100, and 150 eV. It is demonstrated that the effect of all the inelastic channels on elastic scattering may be well reproduced by the 'ab initio' calculated complex non-local polarization potential. Whilst the experiments generally agree at small angles and therefore agree on the total elastic cross section, there is considerable discrepancy at intermediate and backward angles. 9 refs., 2 tabs., 1 fig

  20. Proton dose calculation on scatter-corrected CBCT image: Feasibility study for adaptive proton therapy

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yang-Kyun, E-mail: ykpark@mgh.harvard.edu; Sharp, Gregory C.; Phillips, Justin; Winey, Brian A. [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 (United States)

    2015-08-15

    Purpose: To demonstrate the feasibility of proton dose calculation on scatter-corrected cone-beam computed tomographic (CBCT) images for the purpose of adaptive proton therapy. Methods: CBCT projection images were acquired from anthropomorphic phantoms and a prostate patient using an on-board imaging system of an Elekta infinity linear accelerator. Two previously introduced techniques were used to correct the scattered x-rays in the raw projection images: uniform scatter correction (CBCT{sub us}) and a priori CT-based scatter correction (CBCT{sub ap}). CBCT images were reconstructed using a standard FDK algorithm and GPU-based reconstruction toolkit. Soft tissue ROI-based HU shifting was used to improve HU accuracy of the uncorrected CBCT images and CBCT{sub us}, while no HU change was applied to the CBCT{sub ap}. The degree of equivalence of the corrected CBCT images with respect to the reference CT image (CT{sub ref}) was evaluated by using angular profiles of water equivalent path length (WEPL) and passively scattered proton treatment plans. The CBCT{sub ap} was further evaluated in more realistic scenarios such as rectal filling and weight loss to assess the effect of mismatched prior information on the corrected images. Results: The uncorrected CBCT and CBCT{sub us} images demonstrated substantial WEPL discrepancies (7.3 ± 5.3 mm and 11.1 ± 6.6 mm, respectively) with respect to the CT{sub ref}, while the CBCT{sub ap} images showed substantially reduced WEPL errors (2.4 ± 2.0 mm). Similarly, the CBCT{sub ap}-based treatment plans demonstrated a high pass rate (96.0% ± 2.5% in 2 mm/2% criteria) in a 3D gamma analysis. Conclusions: A priori CT-based scatter correction technique was shown to be promising for adaptive proton therapy, as it achieved equivalent proton dose distributions and water equivalent path lengths compared to those of a reference CT in a selection of anthropomorphic phantoms.

  1. The nodal discrete-ordinate transport calculation of anisotropy scattering problem in three-dimensional cartesian geometry

    International Nuclear Information System (INIS)

    Wu Hongchun; Xie Zhongsheng; Zhu Xuehua

    1994-01-01

    The nodal discrete-ordinate transport calculating model of anisotropy scattering problem in three-dimensional cartesian geometry is given. The computing code NOTRAN/3D has been encoded and the satisfied conclusion is gained

  2. Calculation of zero-norm states and reduction od stringy scattering amplitudes

    International Nuclear Information System (INIS)

    Lee Jen-Chi

    2005-01-01

    We give a simplified method to generate two types of zero-norm states in the old covariant first quantized (OCFQ) spectrum of open bosonic string. Zero-norm states up to the fourth massive level and general formulas of some zero-norm tensor states at arbitrary mass levels are calculated. On-shell Ward identities generated by zero-norm states and the factor-ization property of stringy vertex operators can then be used to argue that the string-tree scattering amplitudes of the degenerate lower spin propagating states are fixed by those of higher spin propagating states at each fixed mass level. This decoupling phenomenon is, in contrast to Gross's high-energy symmetries, valid to all energies. As examples, we explicitly demonstrate this stringy phenomenon up to fourth massive level (spin-five), which justifies the calculation of two other previous approaches based on the massive worldsheet sigma-model and Witten's string field theory (WSFT). (author)

  3. Measurement with total scatter calibrate factor at different depths in the calculation of prescription dose

    International Nuclear Information System (INIS)

    Li Lijun; Zhu Haijun; Zhang Xinzhong; Li Feizhou; Song Hongyu

    2004-01-01

    Objective: To evaluate the method of measurement of total scatter calibrate factor (Sc, p). Methods: To measure the Sc, p at different depths on central axis of 6MV, 15MV photon beams through different ways. Results: It was found that the measured data of Sc, p changed with the different depths to a range of 1% - 7%. Using the direct method, the Sc, p measured depth should be the same as the depth in dose normalization point of the prescription dose. If the Sc, p (fsz, d) was measured at the other depths, it could be obtained indirectly by the calculation formula. Conclusions: The Sc, p in the prescription dose can be obtained either by the direct measure method or the indirect calculation formula. But emphasis should be laid on the proper measure depth. (authors)

  4. The LAW Library -- A multigroup cross-section library for use in radioactive waste analysis calculations

    International Nuclear Information System (INIS)

    Greene, N.M.; Arwood, J.W.; Wright, R.Q.; Parks, C.V.

    1994-08-01

    The 238-group LAW Library is a new multigroup neutron cross-section library based on ENDF/B-V data, with five sets of data taken from ENDF/B-VI ( 14 N 7 , 15 N 7 , 16 O 8 , 154Eu 63 , and 155 Eu 63 ). These five nuclides are included because the new evaluations are thought to be superior to those in Version 5. The LAW Library contains data for over 300 materials and will be distributed by the Radiation Shielding Information Center, located at Oak Ridge National Laboratory. It was generated for use in neutronics calculations required in radioactive waste analyses, although it has equal utility in any study requiring multigroup neutron cross sections

  5. Power-law correlations and finite-size effects in silica particle aggregates studied by small-angle neutron scattering

    DEFF Research Database (Denmark)

    Freltoft, T.; Kjems, Jørgen; Sinha, S. K.

    1986-01-01

    Small-angle neutron scattering from normal, compressed, and water-suspended powders of aggregates of fine silica particles has been studied. The samples possessed average densities ranging from 0.008 to 0.45 g/cm3. Assuming power-law correlations between particles and a finite correlation length ξ......, the authors derive the scattering function S(q) from specific models for particle-particle correlation in these systems. S(q) was found to provide a satisfactory fit to the data for all samples studied. The fractal dimension df corresponding to the power-law correlation was 2.61±0.1 for all dry samples, and 2...

  6. Development of a computer model using the EGS4 simulation code to calculate scattered X-rays through some materials

    International Nuclear Information System (INIS)

    Al-Ghorabie, F.H.H.

    2003-01-01

    In this paper a computer model based on the use of the well-known Monte Carlo simulation code EGS4 was developed to simulate the scattering of polyenergetic X-ray beams through some materials. These materials are: lucite, polyethylene, polypropylene and aluminium. In particular, the ratio of the scattered to total X-ray fluence (scatter fraction) has been calculated for X-ray beams in the energy region 30-120 keV. In addition scatter fractions have been determined experimentally using a polyenergetic superficial X-ray unit. Comparison of the measured and the calculated results has been performed. The Monte Carlo calculations have also been carried out for water, bakelite and bone to examine the dependence of scatter fraction on the density of the scatterer. Good agreement (estimated statistical error < 5%) was obtained between the measured and the calculated values of the scatter fractions for materials with Z < 20 that were studied in this paper. Copyright (2003) Australasian College of Physical Scientists and Engineers in Medicine

  7. Matter Scatter and Energy Anarchy. The Second Law of Thermodynamics is Simply Common Experience.

    Science.gov (United States)

    Ross, Keith A.

    1988-01-01

    Shows that the second law of thermodynamics is in the common experience of many people and if taught first, before the law of conservation, can result in fewer misconceptions among pupils. Stresses the use of common experiences in teaching. (CW)

  8. Calculation of the nonlinear relativistic Thomson scattering fields and Its application to electron distribution function diagnostic

    Science.gov (United States)

    Guasp, J.; Pastor, I.; Álvarez-Estrada, R. F.; Castejón, F.

    2015-02-01

    Analytical results obtained recently of the ab-initio classical incoherent Thomson Scattering (TS) spectrum from a single-electron (Alvarez-Estrada et al 2012 Phys. Plasmas 19 062302) have been numerically implemented in a paralelized code to efficiently compute the TS emission from a given electron distribution function, irrespective of its characteristics and/or the intensity of the incoming radiation. These analytical results display certain differences, when compared with other authors, in the general case of incoming linearly and circularly polarized radiation and electrons with arbitrary initial directions. We regard such discrepancies and the ubiquitous interest in TS as motivations for this work. Here, we implement some analytical advances (like generalized Bessel functions for incoming linearly polarized radiation) in TS. The bulk of this work reports on the efficient computation of TS spectra (based upon our analytical approach), for an electron population having an essentially arbitrary distribution function and for both incoming linearly and circularly polarized radiation. A detailed comparison between the present approach and a previous Monte Carlo one (Pastor et al 2011 Nuclear Fusion 51 043011), dealing with the ab-initio computation of TS spectra, is reported. Both approaches are shown to fully agree with each other. As key computational improvements, the analytical technique yields a × 30 to × 100 gain in computation time and is a very flexible tool to compute the scattered spectrum and eventually the scattered electromagnetic fields in the time domain. The latter are computed explicitly here for the first time, as far as we know. Scaling laws for the power integrated over frequency versus initial kinetic energy are studied for the case of isotropic and monoenergetic electron distribution functions and their potential application as diagnostic tools for high-energy populations is briefly discussed. Finally, we discuss the application of these

  9. Bremsstrahlung scattering calculations for the beam stops and collimators in the APS insertion-device beamlines

    International Nuclear Information System (INIS)

    Job, P.K.; Haeffner, D.R.; Shu, D.

    1994-12-01

    Bremsstrahlung is produced in the APS storage ring by the interaction of positrons with the residual gas molecules in the vacuum chamber of the storage ring. The bremsstrahlung production causes a serious challenge in shielding the insertion-device beamlines because the entire straight section (15 meters) is in the line of sight of the beamline. The radiation emerges in a narrow cone tangential to the beam path with the characteristic emission angle 1/γ, where γ is E/mc 2 which is the ratio of the kinetic energy to the rest mass for the positrons. This high-energy gamma radiation has an approximate 1/E spectrum with the maximum energy extending up to the particle energy (7 GeV for the APS). Bremsstrahlung, being high-energy photons, produces an electromagnetic shower when it encounters the beamline elements. A beamline element not thick enough to fully contain an electromagnetic shower can cause considerable scatter of the high-energy bremsstrahlung radiation. The low-energy component of the bremsstrahlung can also be scattered and create high dose rates in the first-optical and white-beam enclosures. The fully developed electromagnetic shower will have a photon spectrum almost independent of the material. The electromagnetic showers in the high-Z materials can also produce photoneutrons. This note reports the summary of EGS4 calculations performed on bremsstrahlung scattering from different beamline components in a typical APS insertion-device beamline. The related recommendations for shielding are also given. The shielding criterion adopted is a total dose rate of 2.5μSv/h (0.25 mrem/h) at 30 cm from the shield

  10. A T-matrix calculation for in-medium heavy-quark gluon scattering

    International Nuclear Information System (INIS)

    Huggins, K.; Rapp, R.

    2012-01-01

    The interactions of charm and bottom quarks in a quark-gluon plasma (QGP) are evaluated using a thermodynamic 2-body T-matrix. We specifically focus on heavy-quark (HQ) interactions with thermal gluons with an input potential motivated by lattice-QCD computations of the HQ free energy. The latter is implemented into a field-theoretic ansatz for color-Coulomb and (remnants of) confining interactions. This, in particular, enables to discuss corrections to the potential approach, specifically hard-thermal-loop corrections to the vertices, relativistic corrections deduced from pertinent Feynman diagrams, and a suitable projection on transverse thermal gluons. The resulting potentials are applied to compute scattering amplitudes in different color channels and utilized for a calculation of the corresponding HQ drag coefficient in the QGP. A factor of ∼2-3 enhancement over perturbative results is obtained, mainly driven by the resummation in the attractive color-channels.

  11. Hauser-Feshbach cross-section calculations for elastic and inelastic scattering of alpha particles-program CORA

    International Nuclear Information System (INIS)

    Hartman, A.; Siemaszko, M.; Zipper, W.

    1975-01-01

    The program CORA was prepared on the basis of Hauser and Feshbach compound reaction formalism. It allows the differential cross-section distributions for the elastic and inelastic scattering of alpha particles (via compound nucleus state) to be calculated. The transmission coefficients are calculated on the basis of a four parameter optical model. The search procedure is also included. (author)

  12. Some experience in applying the REDUCE algebraic system to the calculation of scattering processes in QED and QCD

    International Nuclear Information System (INIS)

    Mohring, H.J.; Schiller, A.

    1980-01-01

    The problems arising in the use of the REDUCE algebraic system for calculating traces of the Dirac matrix products describing scattering processes in quantum electrodynamics (QED) and quantum chromodynamics (QCD) are considered. Application of the REDUCE system for describing two-photon processes in e + e - reactions is discussed. An example of using the REDUCE system for calculating matrix elements of elementary processes of hard scattering is described. The calculations were performed by means of the REDUCE2 version on an EC1040 computer. The computations take almost 10 minutes of machine time and computer storage capacity of abo t 800 kiuobites

  13. Convergent Close-Coupling Calculations for Electron-Atom and Electron-Molecule Scattering

    International Nuclear Information System (INIS)

    Fursa, Dmitry; Zammit, M.C.; Bostock, C.J.; Bray, I.

    2014-01-01

    The Convergent Close-Coupling (CCC) method developed in our group has been applied extensively to study electron-atom/ion collisions and recently has been extended to electron collisions with diatomic molecules. This approach relies on the ability to represent the infinite number of target bound states and its continuum via a finite number of states obtained by a diagonalization of the target in a square-integrable (Sturmian) one-electron basis. We normally use a Laguerre basis though other choices are possible, for example a boxed-based basis or a B-spline basis. The choice of the basis is governed by the physical problem under consideration. As the size of a Sturmian basis increases the calculated negative energy states (relative to the corresponding ionization stage of the target) converge to the target true bound states and the positive energy states provide an increasingly dense representation of the target continuum. We then perform a multichannel expansion of the total (projectile plus target electrons) wave function and formulate a set of close-coupling equations. These equations are transformed into momentum space where they take the form of the Lippmann-Schwinger equations for the T-matrix. A solution of the T-matrix equations is obtained at each total energy E by converting them into a set of linear equations that are solved by standard techniques. We perform a partial-wave expansion of the projectile wave function and take into account the symmetry of the scattering system (e.g, total spin, parity, etc.) in order to reduce the size of the coupled equations and make calculations feasible. As soon as the T-matrix is obtained we can evaluate scattering amplitudes and cross sections for the transitions of interest. For the case of molecular targets the formulation is done within the fixed-nuclei approximation. We adopt a single-centre approach in CCC calculations. This allows us to utilize a great deal of computational development thoroughly tested for

  14. Unconventional application of the two-flux approximation for the calculation of the Ambartsumyan-Chandrasekhar function and the angular spectrum of the backward-scattered radiation for a semi-infinite isotropically scattering medium

    Science.gov (United States)

    Remizovich, V. S.

    2010-06-01

    . Note that the simplicity of the expressions is supplemented with unexpectedly high accuracy. The results demonstrate the unknown possibilities offered by the two-flux approximation, which is the simplest approximate method to solve the equations of transport theory. We assume that the method can be employed in the calculations of the angular characteristics of the reflected radiation for media whose single scattering is described using complicated (in comparison with isotropic) laws.

  15. Electron density values of various human tissues: in vitro Compton scatter measurements and calculated ranges

    International Nuclear Information System (INIS)

    Shrimpton, P.C.

    1981-01-01

    Accurate direct measurements of electron density have been performed on specimens from 10 different tissue types of the human body, representing the major organs, using a Compton scatter technique. As a supplement to these experimental values, calculations have been carried out to determine the electron densities expected for these tissue types. The densities observed are in good agreement with the broad ranges deduced from the basic data previously published. The results of both the in vitro sample measurements and the approximate calculations indicate that the electron density of most normal healthy soft tissue can be expected to fall within the fairly restricted range of +- 5% around 3.4 X 10 23 electrons per cm 3 . The obvious exception to this generalisation is the result for lung tissue, which falls considerably below this range owing to the high air content inherent in its construction. In view of such an overall limited variation with little difference between tissues, it would appear that electron density alone is likely to be a rather poor clinical parameter for tissue analysis, with high accuracy and precision being essential in any in vivo Compton measurements for imaging or diagnosis on specific organs. (author)

  16. SCATTER

    International Nuclear Information System (INIS)

    Broome, J.

    1965-11-01

    The programme SCATTER is a KDF9 programme in the Egtran dialect of Fortran to generate normalized angular distributions for elastically scattered neutrons from data input as the coefficients of a Legendre polynomial series, or from differential cross-section data. Also, differential cross-section data may be analysed to produce Legendre polynomial coefficients. Output on cards punched in the format of the U.K. A. E. A. Nuclear Data Library is optional. (author)

  17. Failure of the n3 scaling law in the Temkin-Poet model of e-H scattering

    International Nuclear Information System (INIS)

    Shakletron, T.; Stelbovics, A.T.

    2000-01-01

    Full text: We have carried out a study of the Temkin-Poet model of e-H scattering. This model has been of considerable interest to scattering theorists because it is a subset of the full e-H problem and has been used many times to test methods of solution of the full problem. Recently it was shown by Ihra and Macek that the ionisation cross section should be suppressed near threshold. The reason for this is that, classically, ionisation is forbidden in a small region above threshold and hence quantum mechanically we expect a manifestation of quantum mechanical tunnelling. Because the total ionisation cross section can be found using the optical theorem for total cross section and then subtracting off the discrete inelastic scattering cross sections, one might expect interesting behaviour of the inelastic cross sections. Indeed this is confirmed by our extensive numerical simulations using a solution method based on Poet's Fredholm equation of the first kind for the scattering matrix. We conclude that the cross sections fall off at a rate faster than the n 3 scaling law in a region of about 2eV below and above the ionisation threshold. The rate varies with nearness to the threshold

  18. The exact calculation of the e. m. field arising from the scattering of twodimensional electromagnetic waves at a perfectly conducting cylindrical surface of arbitrary shape

    NARCIS (Netherlands)

    Hoenders, B.J.

    1982-01-01

    The scattered field generated by the interaction of an incoming twodimensional electromagnetic wave with a cylindrical perfectly conducting surface is calculated. The scattered field is obtained in closed form.

  19. Calculation of the Scattered Radiation Profile in 64 Slice CT Scanners Using Experimental Measurement

    Directory of Open Access Journals (Sweden)

    Afshin Akbarzadeh

    2009-06-01

    Full Text Available Introduction: One of the most important parameters in x-ray CT imaging is the noise induced by detected scattered radiation. The detected scattered radiation is completely dependent on the scanner geometry as well as size, shape and material of the scanned object. The magnitude and spatial distribution of the scattered radiation in x-ray CT should be quantified for development of robust scatter correction techniques. Empirical methods based on blocking the primary photons in a small region are not able to extract scatter in all elements of the detector array while the scatter profile is required for a scatter correction procedure. In this study, we measured scatter profiles in 64 slice CT scanners using a new experimental measurement. Material and Methods: To measure the scatter profile, a lead block array was inserted under the collimator and the phantom was exposed at the isocenter. The raw data file, which contained detector array readouts, was transferred to a PC and was read using a dedicated GUI running under MatLab 7.5. The scatter profile was extracted by interpolating the shadowed area. Results: The scatter and SPR profiles were measured. Increasing the tube voltage from 80 to 140 kVp resulted in an 80% fall off in SPR for a water phantom (d=210 mm and 86% for a polypropylene phantom (d = 350 mm. Increasing the air gap to 20.9 cm caused a 30% decrease in SPR. Conclusion: In this study, we presented a novel approach for measurement of scattered radiation distribution and SPR in a CT scanner with 64-slice capability using a lead block array. The method can also be used on other multi-slice CT scanners. The proposed technique can accurately estimate scatter profiles. It is relatively straightforward, easy to use, and can be used for any related measurement.

  20. Coupled-channel optical calculation of electron-hydrogen scattering: elastic scattering from 0.5 to 30 eV

    International Nuclear Information System (INIS)

    Bray, I.; Konovalov, D.A.; McCarthy, I.E.

    1991-01-01

    A coupled-channel optical method for electron-atomic hydrogen scattering is presented in a form that treats both the projectile and the target electrons symmetrically. Elastic differential cross sections are calculated at a range of energies from 0.5 to 30 eV and are found to be in complete agreement with the absolute measurements, previously reported. Total and total ionization cross sections are also presented. 13 refs., 2 tabs., 2 figs

  1. Rayleigh Scattering Density Measurements, Cluster Theory, and Nucleation Calculations at Mach 10

    Science.gov (United States)

    Balla, R. Jeffrey; Everhart, Joel L.

    2012-01-01

    In an exploratory investigation, quantitative unclustered laser Rayleigh scattering measurements of density were performed in the air in the NASA Langley Research Center's 31 in. Mach 10 wind tunnel. A review of 20 previous years of data in supersonic and Mach 6 hypersonic flows is presented where clustered signals typically overwhelmed molecular signals. A review of nucleation theory and accompanying nucleation calculations are also provided to interpret the current observed lack of clustering. Data were acquired at a fixed stagnation temperature near 990Kat five stagnation pressures spanning 2.41 to 10.0 MPa (350 to 1454 psi) using a pulsed argon fluoride excimer laser and double-intensified charge-coupled device camera. Data averaged over 371 images and 210 pixels along a 36.7mmline measured freestream densities that agree with computed isentropic-expansion densities to less than 2% and less than 6% at the highest and lowest densities, respectively. Cluster-free Mach 10 results are compared with previous clustered Mach 6 and condensation-free Mach 14 results. Evidence is presented indicating vibrationally excited oxygen and nitrogen molecules are absorbed as the clusters form, release their excess energy, and inhibit or possibly reverse the clustering process. Implications for delaying clustering and condensation onset in hypersonic and hypervelocity facilities are discussed.

  2. RGM calculation of scattering in 4He + 6Li system at Eα ≤ 30 MeV

    International Nuclear Information System (INIS)

    Kozyr', Yu.E.

    2005-01-01

    One carried out the resonating-group method based calculations using the shell model results of the structural basis of two-particle channels with 2≤A≤8 clusters making possible to describe the experimental data on 6 Li(αα') inelastic scattering at E α = 29.4 MeV. The results within inelastic channels are formed almost without regard to d + 8 Be channels included in the calculation. The calculation overvalues significantly the elastic scattering cross sections, as well as the calculation grounded on the basis A ≤ 4 clusters. 6 Li → 2 H + 4 He direct break-down in the Coulomb field of 4 He incident nucleus may serve as a probable reason of divergences [ru

  3. Evaluation of neutron thermalization parameters and benchmark reactor calculations using a synthetic scattering function for molecular gases

    International Nuclear Information System (INIS)

    Gillete, V.H.; Patino, N.E.; Granada, J.E.; Mayer, R.E.

    1988-01-01

    Using a synthetic scattering function which describes the interaction of neutrons with molecular gases we provide analytical expressions for zero-and first-order scattering kernels, σ 0 (E 0 →E), σ 1 (E 0 →E), and total cross section σ 0 (E 0 ). Based on these quantities, we have performed calculations of thermalization parameters and transport coefficients for H 2 O, D 2 O, C 6 H 6 and (CH 2 ) n at room temperature. Comparasion of such values with available experimental data and other calculations is satisfactory. We also generated nuclear data libraries for H 2 O with 47 thermal groups at 300K and performed some benchmark calculations ( 235 U, 239 Pu, PWR cell and typical APWR cell); the resulting reactivities are compared with experimental data and ENDF/B-IV calculations. (author) [pt

  4. Ab initio molecular dynamics calculations on scattering of hyperthermal H atoms from Cu(111) and Au(111)

    Energy Technology Data Exchange (ETDEWEB)

    Kroes, Geert-Jan, E-mail: g.j.kroes@chem.leidenuniv.nl; Pavanello, Michele [Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands); Blanco-Rey, María [Departamento de Física de Materiales, Facultad de Químicas UPV/EHU, Apartado 1072, 20080 Donostia-San Sebastián (Spain); Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián (Spain); Alducin, Maite [Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián (Spain); Centro de Física de Materiales, Centro Mixto CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián (Spain); Auerbach, Daniel J. [Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands); Max Planck Institute for Biophysical Chemistry, Göttingen (Germany); Institute for Physical Chemistry, Georg-August University of Göttingen, Göttingen (Germany)

    2014-08-07

    Energy loss from the translational motion of an atom or molecule impinging on a metal surface to the surface may determine whether the incident particle can trap on the surface, and whether it has enough energy left to react with another molecule present at the surface. Although this is relevant to heterogeneous catalysis, the relative extent to which energy loss of hot atoms takes place to phonons or electron-hole pair (ehp) excitation, and its dependence on the system's parameters, remain largely unknown. We address these questions for two systems that present an extreme case of the mass ratio of the incident atom to the surface atom, i.e., H + Cu(111) and H + Au(111), by presenting adiabatic ab initio molecular dynamics (AIMD) predictions of the energy loss and angular distributions for an incidence energy of 5 eV. The results are compared to the results of AIMDEFp calculations modeling energy loss to ehp excitation using an electronic friction (“EF”) model applied to the AIMD trajectories, so that the energy loss to the electrons is calculated “post” (“p”) the computation of the AIMD trajectory. The AIMD calculations predict average energy losses of 0.38 eV for Cu(111) and 0.13-0.14 eV for Au(111) for H-atoms that scatter from these surfaces without penetrating the surface. These energies closely correspond with energy losses predicted with Baule models, which is suggestive of structure scattering. The predicted adiabatic integral energy loss spectra (integrated over all final scattering angles) all display a lowest energy peak at an energy corresponding to approximately 80% of the average adiabatic energy loss for non-penetrative scattering. In the adiabatic limit, this suggests a way of determining the approximate average energy loss of non-penetratively scattered H-atoms from the integral energy loss spectrum of all scattered H-atoms. The AIMDEFp calculations predict that in each case the lowest energy loss peak should show additional energy

  5. Ab initio molecular dynamics calculations on scattering of hyperthermal H atoms from Cu(111) and Au(111).

    Science.gov (United States)

    Kroes, Geert-Jan; Pavanello, Michele; Blanco-Rey, María; Alducin, Maite; Auerbach, Daniel J

    2014-08-07

    Energy loss from the translational motion of an atom or molecule impinging on a metal surface to the surface may determine whether the incident particle can trap on the surface, and whether it has enough energy left to react with another molecule present at the surface. Although this is relevant to heterogeneous catalysis, the relative extent to which energy loss of hot atoms takes place to phonons or electron-hole pair (ehp) excitation, and its dependence on the system's parameters, remain largely unknown. We address these questions for two systems that present an extreme case of the mass ratio of the incident atom to the surface atom, i.e., H + Cu(111) and H + Au(111), by presenting adiabatic ab initio molecular dynamics (AIMD) predictions of the energy loss and angular distributions for an incidence energy of 5 eV. The results are compared to the results of AIMDEFp calculations modeling energy loss to ehp excitation using an electronic friction ("EF") model applied to the AIMD trajectories, so that the energy loss to the electrons is calculated "post" ("p") the computation of the AIMD trajectory. The AIMD calculations predict average energy losses of 0.38 eV for Cu(111) and 0.13-0.14 eV for Au(111) for H-atoms that scatter from these surfaces without penetrating the surface. These energies closely correspond with energy losses predicted with Baule models, which is suggestive of structure scattering. The predicted adiabatic integral energy loss spectra (integrated over all final scattering angles) all display a lowest energy peak at an energy corresponding to approximately 80% of the average adiabatic energy loss for non-penetrative scattering. In the adiabatic limit, this suggests a way of determining the approximate average energy loss of non-penetratively scattered H-atoms from the integral energy loss spectrum of all scattered H-atoms. The AIMDEFp calculations predict that in each case the lowest energy loss peak should show additional energy loss in the

  6. Calculated shape dependence of electromagnetic field in tip-enhanced Raman scattering by using a monopole antenna model

    Science.gov (United States)

    Kitahama, Yasutaka; Itoh, Tamitake; Suzuki, Toshiaki

    2018-05-01

    To evaluate the shape of an Ag tip with regard to tip-enhanced Raman scattering (TERS) signal, the enhanced electromagnetic (EM) field and scattering spectrum, arising from surface plasmon resonance at the apex of the tip, were calculated using a finite-difference time domain (FDTD) method. In the calculated forward scattering spectra from the smooth Ag tip, the band appeared within the visible region, similar to the experimental results and calculation for a corrugated Ag cone. In the FDTD calculation of TERS, the Ag tip acting as a monopole antenna was adopted by insertion of a perfect electric conductor between the root of the tip and a top boundary surface of the calculation space. As a result, the EM field was only enhanced at the apex. The shape dependence i.e. the EM field calculated at the apex with various curvatures on the different tapered tips, obtained using the monopole antenna model, was different from that simulated using a conventional dipole antenna model.

  7. Basis for calculating cross sections for nuclear magnetic resonance spin-modulated polarized neutron scattering.

    Science.gov (United States)

    Kotlarchyk, Michael; Thurston, George M

    2016-12-28

    In this work we study the potential for utilizing the scattering of polarized neutrons from nuclei whose spin has been modulated using nuclear magnetic resonance (NMR). From first principles, we present an in-depth development of the differential scattering cross sections that would arise in such measurements from a hypothetical target system containing nuclei with non-zero spins. In particular, we investigate the modulation of the polarized scattering cross sections following the application of radio frequency pulses that impart initial transverse rotations to selected sets of spin-1/2 nuclei. The long-term aim is to provide a foundational treatment of the scattering cross section associated with enhancing scattering signals from selected nuclei using NMR techniques, thus employing minimal chemical or isotopic alterations, so as to advance the knowledge of macromolecular or liquid structure.

  8. Importance of scatter compensation algorithm in heterogeneous tissue for the radiation dose calculation of small lung nodules. A clinical study

    International Nuclear Information System (INIS)

    Baba, Yuji; Murakami, Ryuji; Mizukami, Naohisa; Morishita, Shoji; Yamashita, Yasuyuki; Araki, Fujio; Moribe, Nobuyuki; Hirata, Yukinori

    2004-01-01

    The purpose of this study was to compare radiation doses of small lung nodules calculated with beam scattering compensation and those without compensation in heterogeneous tissues. Computed tomography (CT) data of 34 small (1-2 cm: 12 nodules, 2-3 cm 11 nodules, 3-4 cm 11 nodules) lung nodules were used in the radiation dose measurements. Radiation planning for lung nodule was performed with a commercially available unit using two different radiation dose calculation methods: the superposition method (with scatter compensation in heterogeneous tissues), and the Clarkson method (without scatter compensation in heterogeneous tissues). The energy of the linac photon used in this study was 10 MV and 4 MV. Monitor unit (MU) to deliver 10 Gy at the center of the radiation field (center of the nodule) calculated with the two methods were compared. In 1-2 cm nodules, MU calculated by Clarkson method (MUc) was 90.0±1.1% (4 MV photon) and 80.5±2.7% (10 MV photon) compared to MU calculated by superposion method (MUs), in 2-3 cm nodules, MUc was 92.9±1.1% (4 MV photon) and 86.6±2.8% (10 MV photon) compared to MUs, and in 3-4 cm nodules, MUc was 90.5±2.0% (4 MV photon) and 90.1±1.7% (10 MV photon) compared to MUs. In 1-2 cm nodules, MU calculated without lung compensation (MUn) was 120.6±8.3% (4 MV photon) and 95.1±4.1% (10 MV photon) compared to MU calculated by superposion method (MUs), in 2-3 cm nodules, MUc was 120.3±11.5% (4 MV photon) and 100.5±4.6% (10 MV photon) compared to MUs, and in 3-4 cm nodules, MUc was 105.3±9.0% (4 MV photon) and 103.4±4.9% (10 MV photon) compared to MUs. The MU calculated without lung compensation was not significantly different from the MU calculated by superposition method in 2-3 cm nodules. We found that the conventional dose calculation algorithm without scatter compensation in heterogeneous tissues substantially overestimated the radiation dose of small nodules in the lung field. In the calculation of dose distribution of small

  9. ELSEPA—Dirac partial-wave calculation of elastic scattering of electrons and positrons by atoms, positive ions and molecules

    Science.gov (United States)

    Salvat, Francesc; Jablonski, Aleksander; Powell, Cedric J.

    2005-01-01

    The FORTRAN 77 code system ELSEPA for the calculation of elastic scattering of electrons and positrons by atoms, positive ions and molecules is presented. These codes perform relativistic (Dirac) partial-wave calculations for scattering by a local central interaction potential V(r). For atoms and ions, the static-field approximation is adopted, with the potential set equal to the electrostatic interaction energy between the projectile and the target, plus an approximate local exchange interaction when the projectile is an electron. For projectiles with kinetic energies up to 10 keV, the potential may optionally include a semiempirical correlation-polarization potential to describe the effect of the target charge polarizability. Also, for projectiles with energies less than 1 MeV, an imaginary absorptive potential can be introduced to account for the depletion of the projectile wave function caused by open inelastic channels. Molecular cross sections are calculated by means of a single-scattering independent-atom approximation in which the electron density of a bound atom is approximated by that of the free neutral atom. Elastic scattering by individual atoms in solids is described by means of a muffin-tin model potential. Partial-wave calculations are feasible on modest personal computers for energies up to about 5 MeV. The ELSEPA code also implements approximate factorization methods that allow the fast calculation of elastic cross sections for much higher energies. The interaction model adopted in the calculations is defined by the user by combining the different options offered by the code. The nuclear charge distribution can be selected among four analytical models (point nucleus, uniformly charged sphere, Fermi's distribution and Helm's uniform-uniform distribution). The atomic electron density is handled in numerical form. The distribution package includes data files with electronic densities of neutral atoms of the elements hydrogen to lawrencium ( Z=1

  10. Test of Mie-based single-scattering properties of non-spherical dust aerosols in radiative flux calculations

    International Nuclear Information System (INIS)

    Fu, Q.; Thorsen, T.J.; Su, J.; Ge, J.M.; Huang, J.P.

    2009-01-01

    We simulate the single-scattering properties (SSPs) of dust aerosols with both spheroidal and spherical shapes at a wavelength of 0.55 μm for two refractive indices and four effective radii. Herein spheres are defined by preserving both projected area and volume of a non-spherical particle. It is shown that the relative errors of the spheres to approximate the spheroids are less than 1% in the extinction efficiency and single-scattering albedo, and less than 2% in the asymmetry factor. It is found that the scattering phase function of spheres agrees with spheroids better than the Henyey-Greenstein (HG) function for the scattering angle range of 0-90 o . In the range of ∼90-180 o , the HG function is systematically smaller than the spheroidal scattering phase function while the spherical scattering phase function is smaller from ∼90 o to 145 o but larger from ∼145 o to 180 o . We examine the errors in reflectivity and absorptivity due to the use of SSPs of equivalent spheres and HG functions for dust aerosols. The reference calculation is based on the delta-DISORT-256-stream scheme using the SSPs of the spheroids. It is found that the errors are mainly caused by the use of the HG function instead of the SSPs for spheres. By examining the errors associated with the delta-four- and delta-two-stream schemes using various approximate SSPs of dust aerosols, we find that the errors related to the HG function dominate in the delta-four-stream results, while the errors related to the radiative transfer scheme dominate in the delta-two-stream calculations. We show that the relative errors in the global reflectivity due to the use of sphere SSPs are always less than 5%. We conclude that Mie-based SSPs of non-spherical dust aerosols are well suited in radiative flux calculations.

  11. Complex Correlation Kohn-T Method of Calculating Total and Elastic Cross Sections. Part 1; Electron-Hydrogen Elastic Scattering

    Science.gov (United States)

    Bhatia, A. K.; Temkin, A.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    We report on the first part of a study of electron-hydrogen scattering, using a method which allows for the ab initio calculation of total and elastic cross sections at higher energies. In its general form the method uses complex 'radial' correlation functions, in a (Kohn) T-matrix formalism. The titled method, abbreviated Complex Correlation Kohn T (CCKT) method, is reviewed, in the context of electron-hydrogen scattering, including the derivation of the equation for the (complex) scattering function, and the extraction of the scattering information from the latter. The calculation reported here is restricted to S-waves in the elastic region, where the correlation functions can be taken, without loss of generality, to be real. Phase shifts are calculated using Hylleraas-type correlation functions with up to 95 terms. Results are rigorous lower bounds; they are in general agreement with those of Schwartz, but they are more accurate and outside his error bounds at a couple of energies,

  12. Large-scale nuclear structure calculations for spin-dependent WIMP scattering with chiral effective field theory currents

    OpenAIRE

    Klos, P.; Menéndez, J.; Gazit, D.; Schwenk, A.

    2013-01-01

    We perform state-of-the-art large-scale shell-model calculations of the structure factors for elastic spin-dependent WIMP scattering off 129,131Xe, 127I, 73Ge, 19F, 23Na, 27Al, and 29Si. This comprehensive survey covers the non-zero-spin nuclei relevant to direct dark matter detection. We include a pedagogical presentation of the formalism necessary to describe elastic and inelastic WIMP-nucleus scattering. The valence spaces and nuclear interactions employed have been previously used in nucl...

  13. Calculation of spin-dependent observables in electron-sodium scattering using the coupled-channel optical method

    International Nuclear Information System (INIS)

    Bray, Igor.

    1992-04-01

    The calculations of the 3 2 S and 3 2 P spin asymmetries and the angular momentum for singlet and triplet scattering for projectile energies of 10 and 20 eV is presented. Together these observables give a most stringent test of any electron-atom scattering theory. An excellent agreement was found between the results of the coupled-channel optical method and experiment, which for the spin asymmetries can only be obtained by a good description of the couplings between the lower-lying target states and the target continuum. 10 refs., 2 figs

  14. Q-Space Scattering Power Laws and the Interior Fields of Particles

    Science.gov (United States)

    2016-02-12

    valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. Kansas State University 2 Fairchild Hall 1601 Vattier Street Manhattan , KS...papers submitted or published that acknowledge ARO support from the start of the project to the date of this printing. List the papers, including...scattered field were made during the project period. Three papers were published [1-3], two are accepted for publication [4,5], and two are being

  15. Accurate calculation of the differential cross section of compton scattering with electron mixed chain propagator in SM

    International Nuclear Information System (INIS)

    Chen Xuewen; Fang Zhenyun; Shi Chengye

    2012-01-01

    By using the electroweak standard model (SM), we analyzed the framework of electron mixed chain propagator which composed of serious of different physical loops participating in electroweak interaction and completed the relevant analytical calculation. Then, we obtained the analytical result of electron mixed chain propagator. By applying our result to Compton scattering, the differential cross section of Compton scattering dσ SM (chain) /dcosθ is counted accurately. This result is compared with the lowest order differential cross section dσ (tree) /dcosθ and the electronic chain propagator Compton scattering differential cross section dσ QED (chain) /dcosθ in quantum electrodynamics (QED). It can be seen that dσ SM (chain ) /dcosθ can show the radiation correction more subtly than dσ QED (chain) /dcosθ. (authors)

  16. Radiation doses by radiation diagnostics at the border of a hospital. Calculation model for Nuclear Energy Law regulations

    International Nuclear Information System (INIS)

    Shapiro, B.; Thijssen, T.; De Jong, R.

    2000-01-01

    According to the Nuclear Energy Law in the Netherlands radiation doses at the border of a specific institute (e.g. hospitals) must be determined which can not simply be done by measurements. In this article a model calculation for radiation diagnostics is described

  17. Multiple scattering corrections to the Beer-Lambert law. 2: Detector with a variable field of view.

    Science.gov (United States)

    Zardecki, A; Tam, W G

    1982-07-01

    The multiple scattering corrections to the Beer-Lambert law in the case of a detector with a variable field of view are analyzed. We introduce transmission functions relating the received radiant power to reference power levels relevant to two different experimental situations. In the first case, the transmission function relates the received power to a reference power level appropriate to a nonattenuating medium. In the second case, the reference power level is established by bringing the receiver to the close-up position with respect to the source. To examine the effect of the variation of the detector field of view the behavior of the gain factor is studied. Numerical results modeling the laser beam propagation in fog, cloud, and rain are presented.

  18. Calculation of the mean force constants of the rare gases and the rectilinear law of mean force

    International Nuclear Information System (INIS)

    Lee, M.W.; Bigeleisen, J.

    1977-01-01

    The mean energies, (U), and the mean force constants, (nabla 2 U), have been calculated for liquid argon and liquid krypton using the WCA perturbation theory, and for gaseous argon and krypton along the coexistence line by solution of the PY equation for the radial distribution function. Calculations have been made for the Lennard-Jones, Barker-Henderson, and Maitland-Smith potentials. There is little difference in the values of (U) and (nabla 2 U) calculated for the three potentials. The calculated values are in good agreement with experimental data. Correlation of the calculated values of (nabla 2 U) for the liquid and gas leads to an empirical relationship between (nabla 2 U) and the density of the phase along the coexistence line. When the latter is combined with the law of rectilinear diameters of the density, the rectilinear law of mean force is obtained, which is in good agreement with experimental data on argon. It is shown that the scaling exponent for the mean force constant, (nabla 2 U)/sub l/-(nabla 2 U)/sub g/, is larger than the scaling exponent of the density below the critical temperature and becomes equal to it at the critical temperature. The rationale for the rectilinear law of mean force is provided by an expansion of the radial distribution function of the liquid in powers of the density and the use of the WCA approximation to the radial distribution function

  19. Recent progress on the calculation of three-loop heavy flavor Wilson coefficients in deep-inelastic scattering

    International Nuclear Information System (INIS)

    Ablinger, J.; Hasselhuhn, A.; Schneider, C.; Behring, A.; Bluemlein, J.; Freitas, A. de; Raab, C.; Round, M.; Manteuffel, A. von

    2014-07-01

    We report on our latest results in the calculation of the three-loop heavy flavor contributions to the Wilson coefficients in deep-inelastic scattering in the asymptotic region Q 2 >>m 2 . We discuss the different methods used to compute the required operator matrix elements and the corresponding Feynman integrals. These methods very recently allowed us to obtain a series of new operator matrix elements and Wilson coefficients like the flavor non-singlet and pure singlet Wilson coefficients.

  20. Towards efficient ab initio calculations of electron scattering by polyatomic molecules: II. Efficient evaluation of exchange integrals

    Czech Academy of Sciences Publication Activity Database

    Čársky, Petr

    2010-01-01

    Roč. 43, č. 17 (2010), s. 175204 ISSN 0953-4075 R&D Projects: GA MŠk OC09079; GA MŠk(CZ) OC10046; GA ČR GA202/08/0631 Institutional research plan: CEZ:AV0Z40400503 Keywords : ab initio calculations * electron scattering * polyatomic molecules Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.902, year: 2010

  1. On the use of a Hamiltonian with projected potential for the calculation of scattering wave functions : Methods and general properties

    International Nuclear Information System (INIS)

    Colle, R.; Simonucci, S.

    1996-01-01

    The theoretical framework of a method that utilizes a projected potential operator to construct scattering wave functions is presented. Theorems and spectral properties of a Hamiltonian with the potential energy operator represented in terms of L'2(R'3)-functions are derived. The computational advantages offered by the method for calculating spectroscopic quantities, like resonance energies, decay probabilities and photoionization cross-sections, are discussed

  2. Convergent close-coupling calculations of low-energy positron-atomic-hydrogen scattering

    International Nuclear Information System (INIS)

    Bray, I.; Stelbovics, A.T.

    1993-07-01

    The convergent close coupling approach developed by the authors is applied to positron scattering from atomic hydrogen below the first excitation threshold. In this approach the multi-channel expansion one-electron states are obtained by diagonalizing the target Hamiltonian in a large Laguerre basis. It is demonstrated that this expansion of the scattering wave function is sufficient to reproduce the very accurate low-energy variational results, provided target states with l≤ 15 are included in the expansions. 10 refs., 1 tab

  3. A law of removing radon by ventilation and air requirement calculation for eliminating radon daughters in uranium mines

    International Nuclear Information System (INIS)

    Wu Gang

    1988-06-01

    In accordance with testing data of removing radon and its daughters by ventilation from shrinkage and filling stopes of uranium mines, a law of removing radon by ventilation from the stopes is analyzed and summed. According to the decay law of radon and its daughters, an accumulation equation of potential alpha energy from radon daughters is presented with hyperbolic regression equation. the calculating formulae of ventilation flow are derived from the accumulation equation for eliminating radon daughters in inlet flow with or without contamination. It has been proved that the amount of ventilation air calcuated could meet the requirements of radiation safety rationally and economically

  4. Absolute values of inelastic neutron scattering cross-sections calculated with account taken of the pre-equilibrium mechanism

    International Nuclear Information System (INIS)

    Jahn, H.

    1980-01-01

    Absolute values of secondary energy-dependent inelastic neutron scattering cross sections can be calculated either with the master equation pre-equilibrium formalism of Cline and Blann or with Blann's more recent geometry-dependent hybrid model. The master equation formalism was used at Dubna and Dresden to reproduce experimental results for 14 MeV incident energy. The geometry-dependent hybrid model was used at Karlsruhe to cover for a number of materials the whole range from 5 to 14 MeV incident energy and to reproduce smoothed experimental spectra at 7.45 and 14 MeV. Only the geometry-dependent hybrid model accounts for scattering in the diffuse nuclear surface and thus for a certain average over the direct interaction. It is also free of any fit parameters other than those of the usual optical model. The master equation calculations, on the other hand, are based on nucleon-nucleon scattering cross sections inserted into the high-energy approximation of Kikuchi and Kawai for the intranuclear transition rate. Other approaches require either mass- or energy-dependent or more global fit parameters for a satisfactory reproduction of experimental results, but a genuine prediction of the incident-energy dependence of the inelastic neutron cross section, especially below 14 MeV, is needed for transport and shielding calculations for instance in connection with fusion reactor design studies. (author)

  5. Investigation of scaling laws by critical neutron scattering from beta-brass

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage

    1969-01-01

    Using a Cu65-Zn β-brass crystal, the critical scattering of neutrons has been studied, both above and below T c. The staggered susceptibilities χ vary as C+(T/Tc-1)-γ and C-(1-T/Tc)-γ ', respectively. It is found that γ=γ' within an accuracy of 3%, in agreement with the scaling hypothesis of static...... critical phenomena; and that C+/C-=5.46±0.05, in excellent agreement with the recent parametric representation theory of Schofield and in fair agreement with the results of series expansions by Essam and Hunter. For fixed q, a flat maximum is observed in the wave-vector-dependent susceptibility χ(q, T...

  6. On the calculation of x-ray scattering signals from pairwise radial distribution functions

    DEFF Research Database (Denmark)

    Dohn, Asmus Ougaard; Biasin, Elisa; Haldrup, Kristoffer

    2015-01-01

    We derive a formulation for evaluating (time-resolved) x-ray scattering signals of solvated chemical systems, based on pairwise radial distribution functions, with the aim of this formulation to accompany molecular dynamics simulations. The derivation is described in detail to eliminate any possi...

  7. Optical noninvasive calculation of hemoglobin components concentrations and fractional oxygen saturation using a ring-scattering pulse oximeter

    Science.gov (United States)

    Abdallah, Omar; Stork, Wilhelm; Muller-Glaser, Klaus

    2004-06-01

    The deficiencies of the currently used pulse oximeter are discussed in diverse literature. A hazardous pitfalls of this method is that the pulse oximeter will not detect carboxyhemoglobin (COHb) and methemoglobin (metHb) concentrations. This leads to incorrect measurement of oxygen saturation by carbon monoxide poisoning and methemoglobinemia. Also the total hemoglobin concentration will not be considered and can only be measured in-vitro up to now. A second pitfall of the standard pulse oximetry is that it will not be able to show a result by low perfusion of tissues. This case is available inter alia when the patient is under shock or has a low blood pressure. The new non-invasive system we designed measures the actual (fractional) oxygen saturation and hemoglobin concentration. It will enable us also to measure COHb and metHb. The measurement can be applied at better perfused body central parts. Four or more light emitting diodes (LEDs) or laser diodes (LDs) and five photodiodes (PDs) are used. The reflected light signal detected by photodiodes is processed using a modified Lambert-Beer law (I=I0×e-α.d ). According to this law, when a non scattering probe is irradiated with light having the incident intensity I0, the intensity of transmitted light I decays exponentially with the absorption coefficient a of that probe and its thickness d. Modifications of this law have been performed following the theoretical developed models in literature, Monte Carlo simulation and experimental measurement.

  8. Influence on dose calculation by difference of dose calculation algorithms in stereotactic lung irradiation. Comparison of pencil beam convolution (inhomogeneity correction: batho power law) and analytical anisotropic algorithm

    International Nuclear Information System (INIS)

    Tachibana, Masayuki; Noguchi, Yoshitaka; Fukunaga, Jyunichi; Hirano, Naomi; Yoshidome, Satoshi; Hirose, Takaaki

    2009-01-01

    The monitor unit (MU) was calculated by pencil beam convolution (inhomogeneity correction algorithm: batho power law) [PBC (BPL)] which is the dose calculation algorithm based on measurement in the past in the stereotactic lung irradiation study. The recalculation was done by analytical anisotropic algorithm (AAA), which is the dose calculation algorithm based on theory data. The MU calculated by PBC (BPL) and AAA was compared for each field. In the result of the comparison of 1031 fields in 136 cases, the MU calculated by PBC (BPL) was about 2% smaller than that calculated by AAA. This depends on whether one does the calculation concerning the extension of the second electrons. In particular, the difference in the MU is influenced by the X-ray energy. With the same X-ray energy, when the irradiation field size is small, the lung pass length is long, the lung pass length percentage is large, and the CT value of the lung is low, and the difference of MU is increased. (author)

  9. The effect of the new nucleon-nucleus elastic scattering data in LAHET trademark Version 2.8 on neutron displacement cross section calculations

    International Nuclear Information System (INIS)

    Pitcher, E.J.; Ferguson, P.D.; Russell, G.J.; Prael, R.E.; Madland, D.G.; Court, J.D.; Daemen, L.L.; Wechsler, M.S.

    1997-01-01

    The latest release of the medium-energy Monte Carlo transport code LAHET includes a new nucleon-nucleus elastic scattering treatment based on a global medium-energy phenomenological optical-model potential. Implementation of this new model in LAHET allows nuclear elastic scattering for neutrons with energies greater than 15 MeV and for protons with energies greater than 50 MeV. Previous investigations on the impact of the new elastic scattering data revealed that the addition of the proton elastic scattering channel can lead to a significant increase in the calculated damage energy under certain conditions. The authors report here results on the impact of the new elastic scattering data on calculated displacement cross sections in various elements for neutrons with energies in the range 16 to 3,160 MeV. Calculated displacement cross sections at 20 MeV in low-mass materials are in better agreement with SPECTER-calculated cross sections

  10. Calculation of inelastic helium atom scattering from H2/ NaCl(001)

    DEFF Research Database (Denmark)

    Bruch, L.W.; Hansen, Flemming Yssing; Traeger, F.

    2011-01-01

    The one-phonon inelastic low energy helium atom scattering theory is adapted to cases where the target monolayer is a p(1 × 1) commensurate square lattice. Experimental data for para-H2/NaCl(001) are re-analyzed and the relative intensities of energy loss peaks in the range 6 to 9 meV are determi......The one-phonon inelastic low energy helium atom scattering theory is adapted to cases where the target monolayer is a p(1 × 1) commensurate square lattice. Experimental data for para-H2/NaCl(001) are re-analyzed and the relative intensities of energy loss peaks in the range 6 to 9 me...

  11. Exact Rayleigh scattering calculations for use with the Nimbus-7 Coastal Zone Color Scanner

    Science.gov (United States)

    Gordon, Howard R.; Brown, James W.; Evans, Robert H.

    1988-01-01

    The radiance reflected from a plane-parallel atmosphere and flat sea surface in the absence of aerosols has been determined with an exact multiple scattering code to improve the analysis of Nimbus-7 CZCS imagery. It is shown that the single scattering approximation normally used to compute this radiance can result in errors of up to 5 percent for small and moderate solar zenith angles. A scheme to include the effect of variations in the surface pressure in the exact computation of the Rayleigh radiance is discussed. The results of an application of these computations to CZCS imagery suggest that accurate atmospheric corrections can be obtained for solar zenith angles at least as large as 65 deg.

  12. Analytical calculation of the average scattering cross sections using fourier series

    International Nuclear Information System (INIS)

    Palma, Daniel A.P.; Goncalves, Alessandro C.; Martinez, Aquilino S.; Silva, Fernando C. da

    2009-01-01

    The precise determination of the Doppler broadening functions is very important in different applications of reactors physics, mainly in the processing of nuclear data. Analytical approximations are obtained in this paper for average scattering cross section using expansions in Fourier series, generating an approximation that is simple and precise. The results have shown to be satisfactory from the point-of-view of accuracy and do not depend on the type of resonance considered. (author)

  13. Analytical calculation of the average scattering cross sections using fourier series

    Energy Technology Data Exchange (ETDEWEB)

    Palma, Daniel A.P. [Instituto Federal do Rio de Janeiro, Nilopolis, RJ (Brazil)], e-mail: dpalmaster@gmail.com; Goncalves, Alessandro C.; Martinez, Aquilino S.; Silva, Fernando C. da [Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear], e-mail: asilva@con.ufrj.br, e-mail: agoncalves@con.ufrj.br, e-mail: aquilino@lmp.ufrj.br, e-mail: fernando@con.ufrj.br

    2009-07-01

    The precise determination of the Doppler broadening functions is very important in different applications of reactors physics, mainly in the processing of nuclear data. Analytical approximations are obtained in this paper for average scattering cross section using expansions in Fourier series, generating an approximation that is simple and precise. The results have shown to be satisfactory from the point-of-view of accuracy and do not depend on the type of resonance considered. (author)

  14. COUPLED-CHANNELS FADDEEV CALCULATION OF THE K(-) d SCATTERING LENGTH

    Czech Academy of Sciences Publication Activity Database

    Shevchenko, Nina V.

    2011-01-01

    Roč. 26, 3-4 (2011), s. 558-560 ISSN 0217-751X. [11th International Workshop on Meson Production , Properties and Interaction. Krakow, 10.06.2010-15.06.2010] R&D Projects: GA AV ČR KJB100480801 Institutional research plan: CEZ:AV0Z10480505 Keywords : Few-body systems * multichannel scattering * antikaon-baryon interaction Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.053, year: 2011

  15. Cloudy bag model calculation of P11 πN scattering

    International Nuclear Information System (INIS)

    Rinat, A.S.

    1981-05-01

    πN, πΔ scattering in the cloudy bag model (CBM) is considered using an elementary π field and bare bag states for N, Δ, Nsup(*)(1470). The resulting 2-channel problem is solved neglecting intermediate states with anti-baryons and states with more than a single pion. It is shown that delta 11 may be reproduced for parameters close to their theoretical values. The fit thus provides a test for the CBM. (author)

  16. Polarization effects in coherent and incoherent photon scattering: survey of measurements and theory relevant to radiation transport calculations

    International Nuclear Information System (INIS)

    Hubbell, J.H.

    1993-01-01

    This report reviews available information on polarization effects arising when photons in the X-ray and gamma-ray energy regime undergo coherent (Rayleigh) scattering and incoherent (Compton) scattering by atomic electrons. In addition to descriptions and discussions of these effects, including estimates of their magnitudes as they apply to radiation transport calculations, an annotated bibliography of 102 selected works covering the period 1905-1991 is provided, with particularly relevant works for the purpose of this report flagged with asterisks (*). A major resource for this report is a 1948 unpublished informal report by L.V. Spencer which has been quoted here almost in its entirety, since, of all the works cited in the annotated bibliography, it appears to be the only one which explicitly and directly addresses the purpose of this report. Hence this valuable material should be re-introduced into the available and current literature. (author). 119 refs., 7 figs

  17. A new potential energy surface for vibration-vibration coupling in HF-HF collisions. Formulation and quantal scattering calculations

    Science.gov (United States)

    Schwenke, David W.; Truhlar, Donald G.

    1988-04-01

    We present new ab initio calculations of the HF-HF interaction potential for the case where both molecules are simultaneously displaced from their equilibrium internuclear distance. These and previous ab initio calculations are then fit to a new analytic representation which is designed to be efficient to evaluate and to provide an especially faithful account of the forces along the vibrational coordinates. We use the new potential for two sets of quantal scattering calculations for collisions in three dimensions with total angular momentum zero. First we test that the angular harmonic representation of the anisotropy is adequate by comparing quantal rigid rotator calculations to those carried out for potentials involving higher angular harmonics and for which the expansion in angular harmonics is systematically increased to convergence. Then we carry out large-scale quantal calculations of vibration-vibration energy transfer including the coupling of both sets of vibrational and rotational coordinates. These calculations indicate that significant rotational energy transfer accompanies the vibration-to-vibration energy transfer process.

  18. Recent progress on the calculation of three-loop heavy flavor Wilson coefficients in deep-inelastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Ablinger, J.; Hasselhuhn, A.; Schneider, C. [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation (RISC); Behring, A.; Bluemlein, J.; Freitas, A. de; Raab, C.; Round, M. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Manteuffel, A. von [Mainz Univ. (Germany). PRISMA Cluster of Excellence; Wissbrock, F. [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation (RISC); Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); IHES Institut des Hautes Etudes Scientifiques, Bures-sur-Yvette (France)

    2014-07-15

    We report on our latest results in the calculation of the three-loop heavy flavor contributions to the Wilson coefficients in deep-inelastic scattering in the asymptotic region Q{sup 2}>>m{sup 2}. We discuss the different methods used to compute the required operator matrix elements and the corresponding Feynman integrals. These methods very recently allowed us to obtain a series of new operator matrix elements and Wilson coefficients like the flavor non-singlet and pure singlet Wilson coefficients.

  19. Sensitivity of relativistic impulse approximation proton-nucleus elastic scattering calculations on relativistic mean-field parameterizations

    International Nuclear Information System (INIS)

    Hojsik, M.; Gmuca, S.

    1998-01-01

    Relativistic microscopic calculations are presented for proton elastic scattering from 40 Ca at 500 MeV. The underlying target densities are calculated within the framework of the relativistic mean-field theory with several parameter sets commonly in use. The self consistency of the scalar and vector densities (and thus to relativistic mean-field parameters) is investigated. Recently, the relativistic impulse approximation (RIA) has been widely and repeatedly used for the calculations of proton-nucleus scattering at intermediate energies. These calculations have exhibited significant improvements over the nonrelativistic approaches. The relativistic impulse approximation calculations. in particular, provide a dramatically better description of the spin observables, namely the analyzing power, A y , and the spin-rotation function, Q, at least for energies higher than 400 MeV. In the relativistic impulse approximation, the Dirac optical potential is obtained by folding of the local Lorentz-invariant amplitudes with the corresponding nuclear densities. For the spin zero targets the scalar and vector terms give the dominant contributions. Thus the scalar and vector nuclear densities (both, proton and neutron ones) play the dominant role in the relativistic impulse approximation. While the proton vector densities can be obtained by unfolding from the empirically known charge densities, all other densities used rely to a great extent on theoretical models. The various recipes are used to construct the neutron vector densities and the scalar densities for both, neutrons and protons. In this paper we will study the sensitivity of the relativistic impulse approximation results on the various sets of relativistic mean-field parameters currently in use

  20. A Study on Scattered Wave Amplitude Closed-Form Solution Calculation of Torsional Wave Mode by Reciprocity Theorem

    International Nuclear Information System (INIS)

    Lee, Jaesun; Cho, Younho; Achenbach, Jan D.

    2016-01-01

    Guided waves can be used for the inspection of long range pipelines. Surface corrosion is often found as a major defect type in pipelines. The reciprocity relation is a well-established theorem by which one can simplify complicated mathematical expressions. The approach has been already applied to plate and half-space structures to obtain the closed-form solutions of scattered amplitude. However, results for the case of cylindrical structures have not been reported yet. In this paper, the scattering of torsional waves, which is widely used in commercial applications, is explored by the reciprocity theorem approach. Obtaining closed-form solutions of the amplitudes of propagating waves is much simplified by using the reciprocal relation. The scattered amplitudes for elliptical and rectangular defect shapes are calculated with respect to defect depth and width, at frequencies between 0 and 500 kHz. The amplitude shows the periodic result as a function of frequency. The derived closed-form solutions can play a significant role in quantitative signal interpretation

  1. A Study on Scattered Wave Amplitude Closed-Form Solution Calculation of Torsional Wave Mode by Reciprocity Theorem

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jaesun; Cho, Younho [Pusan National Univ., Pusan (Korea, Republic of); Achenbach, Jan D. [Northwestern Univ., Everston (United States)

    2016-07-15

    Guided waves can be used for the inspection of long range pipelines. Surface corrosion is often found as a major defect type in pipelines. The reciprocity relation is a well-established theorem by which one can simplify complicated mathematical expressions. The approach has been already applied to plate and half-space structures to obtain the closed-form solutions of scattered amplitude. However, results for the case of cylindrical structures have not been reported yet. In this paper, the scattering of torsional waves, which is widely used in commercial applications, is explored by the reciprocity theorem approach. Obtaining closed-form solutions of the amplitudes of propagating waves is much simplified by using the reciprocal relation. The scattered amplitudes for elliptical and rectangular defect shapes are calculated with respect to defect depth and width, at frequencies between 0 and 500 kHz. The amplitude shows the periodic result as a function of frequency. The derived closed-form solutions can play a significant role in quantitative signal interpretation.

  2. Space and time dependent boltzmann calculation in the forward backward scattering approximation

    International Nuclear Information System (INIS)

    Boeuf, J.P.; Marode, E.; Segur, P.

    1984-01-01

    The spatio-temporal evolution of an electron swarm under a uniform field has been simulated for a forward/backward scattering model, using a Mac Cormak numerical scheme. Using model cross-sections, the effect of attachment and ionization on the spatial variations of the swarm density and velocity distribution function and on the higher order transport coefficients has been analysed. It is shown that the non uniform spatial distribution of energy within the swarm can induce, for the electron number density, a large deviation from the Gaussian shape. This deviation is due mainly to the fact that ionization is more important in the front of the swarm while attachment prevails in the back of the swarm

  3. Albedo analytical method for multi-scattered neutron flux calculation in cavity

    International Nuclear Information System (INIS)

    Shin, Kazuo; Selvi, S.; Hyodo, Tomonori

    1986-01-01

    A simple formula which describes multi-scattered neutron flux in a spherical cavity was derived based on the albedo concept. The formura treats a neutron source which has an arbitrary energy-angle distribution and is placed at any point in the cavity. The derived formula was applied to the estimation of neutron fluxes in two cavities, i.e. a spherical concrete cell with a 14-MeV neutron source at the center and the ''YAYOI'' reactor cavity with a pencil beam of reactor neutrons. The results of the analytical formula agreed very well with the reference data in the both problems. It was concluded that the formula is applicable to estimate the neutron fluxes in a spherical cell except for special cases that tangential source neutrons are incident to the cavity wall. (author)

  4. ORNL-SAS: Versatile software for calculation of small-angle x-ray and neutron scattering intensity profiles from arbitrary structures

    International Nuclear Information System (INIS)

    Heller, William T; Tjioe, Elina

    2007-01-01

    ORNL-SAS is software for calculating solution small-angle scattering intensity profiles from any structure provided in the Protein Data Bank format and can also compare the results with experimental data

  5. Combining linear polarization spectroscopy and the Representative Layer Theory to measure the Beer-Lambert law absorbance of highly scattering materials.

    Science.gov (United States)

    Gobrecht, Alexia; Bendoula, Ryad; Roger, Jean-Michel; Bellon-Maurel, Véronique

    2015-01-01

    Visible and Near Infrared (Vis-NIR) Spectroscopy is a powerful non destructive analytical method used to analyze major compounds in bulk materials and products and requiring no sample preparation. It is widely used in routine analysis and also in-line in industries, in-vivo with biomedical applications or in-field for agricultural and environmental applications. However, highly scattering samples subvert Beer-Lambert law's linear relationship between spectral absorbance and the concentrations. Instead of spectral pre-processing, which is commonly used by Vis-NIR spectroscopists to mitigate the scattering effect, we put forward an optical method, based on Polarized Light Spectroscopy to improve the absorbance signal measurement on highly scattering samples. This method selects part of the signal which is less impacted by scattering. The resulted signal is combined in the Absorption/Remission function defined in Dahm's Representative Layer Theory to compute an absorbance signal fulfilling Beer-Lambert's law, i.e. being linearly related to concentration of the chemicals composing the sample. The underpinning theories have been experimentally evaluated on scattering samples in liquid form and in powdered form. The method produced more accurate spectra and the Pearson's coefficient assessing the linearity between the absorbance spectra and the concentration of the added dye improved from 0.94 to 0.99 for liquid samples and 0.84-0.97 for powdered samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. He atom scattering from ZnO surfaces: calculation of diffraction peak intensities using the close-coupling approach

    Energy Technology Data Exchange (ETDEWEB)

    MartInez-Casado, R [Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ (United Kingdom); Miret-Artes, S [Instituto de Fisica Fundamental, Consejo Superior de Investigaciones CientIficas, Serrano 123, 28006 Madrid (Spain); Meyer, B [Interdisziplinaeres Zentrum fuer Molekulare Materialien ICMM and Computer-Chemie-Centrum CCC, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Naegelsbachstrasse 25, 91052 Erlangen (Germany); Traeger, F [Lehrstuhl fuer Physikalische Chemie I, Ruhr-Universitaet Bochum, 44801 Bochum (Germany); Woell, Ch, E-mail: r.martinezcasado@imperial.ac.u [Institut fuer Funktionelle Grenzflaechen, Karlsruher Institut fuer Technologie KIT, Kaiserstrasse 12, 76131 Karlsruhe (Germany)

    2010-08-04

    Diffraction intensities of a molecular He beam scattered off the clean and water-covered ZnO(101-bar0) surface have been simulated using a new potential model in conjunction with the close-coupling formalism. The effective corrugation functions for the systems He-ZnO(101-bar0) and He-H{sub 2}O/ZnO(101-bar0) have been obtained from density functional theory calculations within the Esbjerg-Noerskov approximation. Using these data a potential model is constructed consisting of a corrugated Morse potential at small He-surface distances and a semiempiric attractive part at larger distances. The diffraction patterns obtained from close-coupling calculations agree with the experimental data within about 10%, which opens the possibility to simulate He diffraction from surfaces of any structural complexity and to verify surface and adsorbate structures proposed theoretically by employing this kind of analysis.

  7. A comparison of three time-dependent wave packet methods for calculating electron--atom elastic scattering cross sections

    International Nuclear Information System (INIS)

    Judson, R.S.; McGarrah, D.B.; Sharafeddin, O.A.; Kouri, D.J.; Hoffman, D.K.

    1991-01-01

    We compare three time-dependent wave packet methods for performing elastic scattering calculations from screened Coulomb potentials. The three methods are the time-dependent amplitude density method (TDADM), what we term a Cayley-transform method (CTM), and the Chebyshev propagation method of Tal-Ezer and Kosloff. Both the TDADM and the CTM are based on a time-dependent integral equation for the wave function. In the first, we propagate the time-dependent amplitude density, |ζ(t)right-angle=U|ψ(t)right-angle, where U is the interaction potential and |ψ(t)right-angle is the usual time-dependent wave function. In the other two, the wave function is propagated. As a numerical example, we calculate phase shifts and cross sections using a screened Coulomb, Yukawa type potential over the range 200--1000 eV. One of the major advantages of time-dependent methods such as these is that we get scattering information over this entire range of energies from one propagation. We find that in most cases, all three methods yield comparable accuracy and are about equally efficient computationally. However for l=0, where the Coulomb well is not screened by the centrifugal potential, the TDADM requires smaller grid spacings to maintain accuracy

  8. A screening-corrected additivity rule for the calculation of electron scattering from macro-molecules

    International Nuclear Information System (INIS)

    Blanco, F; Garcia, G

    2009-01-01

    A simplified form of the well-known screening-corrected additivity rule procedure for the calculation of electron-molecule cross sections is proposed for the treatment of some very large macro-molecules. While the comparison of the standard and simplified treatments for a DNA dodecamer reveals very similar results, the new treatment presents some important advantages for large molecules.

  9. Correlation functions for fully or partially state-resolved reactive scattering calculations

    International Nuclear Information System (INIS)

    Manthe, Uwe; Welsch, Ralph

    2014-01-01

    Flux correlation functions and the quantum transition state concept are important tools for the accurate description of polyatomic reaction processes. Combined with the multi-configurational time-dependent Hartree approach, they facilitate rigorous full-dimensional calculations of cumulative and initial-state selected reaction probabilities for six atom reactions. In recent work [R. Welsch, F. Huarte-Larrañaga, and U. Manthe, J. Chem. Phys. 136, 064117 (2012)], an approach which allows one to calculate also state-to-state reaction probabilities within the quantum transition state concept has been introduced. This article presents further developments. Alternative generalized flux correlation functions are introduced and discussed. Equations for the calculation of fully state-resolved differential cross section using arbitrary definitions of the body fixed frame are derived. An approach for the efficient calculation of partially state-resolved observables as a function of the collision energy is introduced. Finally, numerical test studying the D + H 2 reaction illustrate important aspects of the formalism

  10. Calculation of dipole polarizability derivatives of adamantane and their use in electron scattering computations

    DEFF Research Database (Denmark)

    Sauer, Stephan P. A.; Paidarová, Ivana; Čársky, Petr

    2016-01-01

    In this paper we present calculations of the static polarizability and its derivatives for the adamantane molecule carried out at the density functional theory level using the B3LYP exchange correlation functional and Sadlej’s polarized valence triple zeta basis set. It is shown...

  11. Calculation of HPGe Detector Response for NRF Photons Scattered from Threat Materials

    International Nuclear Information System (INIS)

    Park, B. G.; Choi, H. D.

    2009-01-01

    Nuclear Resonance Fluorescence (NRF) is a process of resonant nuclear absorption of photons, followed by deexcitation with emission of fluorescence photons. The cross section of NRF photons process is given by σ i max ≡ 2π(λ/2π) 2 2J+1/2J 0 +1 Γ 0 Γ i /Γ tot 2 , where λ is the wavelength of the photon, J 0 and J are the nuclear spins of the ground state and excited state, respectively, Γ 0 , Γ i and Γ tot are decay width for deexcitation to the ground state, to the i-th mode state and total decay width, respectively. NRF based security inspection technique uses the signatures of resonance energies of the fluorescence photon scattered from nuclides of the illicit materials in cargo container. NRF can be used to identify the material type, quantity and location. It is performed by measuring the fluorescence photon and the transmitted photon spectrum while irradiating Bremsstrahlung photon beam to the sample

  12. Structural reconstruction of the catalytic center of LiPDF through multiple scattering calculation with MXAN

    Science.gov (United States)

    Guo, Xiaoyun; Chu, Wangsheng; Ma, Sixuan; Gong, Weimin; Benfatto, Maurizio; Hu, Tiandou; Xie, Yaning; Wu, ZiYu

    2006-11-01

    Peptide deformylase (PDF, EC 3.5.1.27) is essential for the normal growth of eubacterium but not for mammalians. Recently, PDF has been studied as a target for new antibiotics. In this paper, X-ray absorption spectroscopy was employed to determine the local structure around the zinc ion of PDF from Leptospira Interrogans in dry powder, because it is very difficult to obtain the crystallized sample of LiPDF. We performed X-ray absorption near edge structure (XANES) calculation and reconstructed successfully the local geometry of the active center, and the results from calculations show that a water molecule (Wat1) has moved towards the zinc ion and lies in the distance range to coordinate with the zinc ion weakly. In addition, the sensitivity of theoretical spectra to the different ligand bodies was evaluated in terms of goodness-of-fit.

  13. Structural reconstruction of the catalytic center of LiPDF through multiple scattering calculation with MXAN

    Energy Technology Data Exchange (ETDEWEB)

    Guo Xiaoyun [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, 100049 Beijing (China); School of Life Science, Key Laboratory of Structural Biology, University of Science and Technology of China, 230026 Hefei, Anhui (China); Chu Wangsheng [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, 100049 Beijing (China); Department of Physics, University of Science and Technology of China, 230026 Hefei, Anhui (China); Ma Sixuan [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, 100049 Beijing (China); Gong Weimin [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing (China); Benfatto, Maurizio [Instituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, P.O. Box 13, 00044 Frascati (Italy); Hu Tiandou [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, 100049 Beijing (China); Xie Yaning [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, 100049 Beijing (China); Wu Ziyu [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, 100049 Beijing (China) and Instituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, P.O. Box 13, 00044 Frascati (Italy)]. E-mail: wuzy@mail.ihep.ac.cn

    2006-11-15

    Peptide deformylase (PDF, EC 3.5.1.27) is essential for the normal growth of eubacterium but not for mammalians. Recently, PDF has been studied as a target for new antibiotics. In this paper, X-ray absorption spectroscopy was employed to determine the local structure around the zinc ion of PDF from Leptospira Interrogans in dry powder, because it is very difficult to obtain the crystallized sample of LiPDF. We performed X-ray absorption near edge structure (XANES) calculation and reconstructed successfully the local geometry of the active center, and the results from calculations show that a water molecule (Wat1) has moved towards the zinc ion and lies in the distance range to coordinate with the zinc ion weakly. In addition, the sensitivity of theoretical spectra to the different ligand bodies was evaluated in terms of goodness-of-fit.

  14. Structural reconstruction of the catalytic center of LiPDF through multiple scattering calculation with MXAN

    International Nuclear Information System (INIS)

    Guo Xiaoyun; Chu Wangsheng; Ma Sixuan; Gong Weimin; Benfatto, Maurizio; Hu Tiandou; Xie Yaning; Wu Ziyu

    2006-01-01

    Peptide deformylase (PDF, EC 3.5.1.27) is essential for the normal growth of eubacterium but not for mammalians. Recently, PDF has been studied as a target for new antibiotics. In this paper, X-ray absorption spectroscopy was employed to determine the local structure around the zinc ion of PDF from Leptospira Interrogans in dry powder, because it is very difficult to obtain the crystallized sample of LiPDF. We performed X-ray absorption near edge structure (XANES) calculation and reconstructed successfully the local geometry of the active center, and the results from calculations show that a water molecule (Wat1) has moved towards the zinc ion and lies in the distance range to coordinate with the zinc ion weakly. In addition, the sensitivity of theoretical spectra to the different ligand bodies was evaluated in terms of goodness-of-fit

  15. Calculation of dipole polarizability derivatives of adamantane and their use in electron scattering computations

    Czech Academy of Sciences Publication Activity Database

    Sauer, S. P. A.; Paidarová, Ivana; Čársky, Petr; Čurík, Roman

    2016-01-01

    Roč. 70, č. 5 (2016), č. článku 105. ISSN 1434-6060 R&D Projects: GA MŠk LD14088 Grant - others:COST(XE) CM1301 Institutional support: RVO:61388955 Keywords : DENSITY-FUNCTIONAL- THEORY * COUPLED-CLUSTER CALCULATIONS * FREQUENCY-DEPENDENT POLARIZABILITIES Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.288, year: 2016

  16. Scattering in particle-hole space: simple approximations to nuclear RPA calculations in the continuum

    International Nuclear Information System (INIS)

    Toledo Piza, A.F.R. de.

    1987-01-01

    The Random Phase Approximation (RPA) treatment of nuclear small amplitude vibrations including particle-hole continua is handled in terms of previously developed techniques to treat single-particle resonances in a reaction theoretical framework. A hierarchy of interpretable approximations is derived and a simple working approximation is proposed which involves a numerical effort no larger than that involved in standard, discrete RPA calculations. (Author) [pt

  17. Microscopic calculations of elastic scattering between light nuclei based on a realistic nuclear interaction

    Energy Technology Data Exchange (ETDEWEB)

    Dohet-Eraly, Jeremy [F.R.S.-FNRS (Belgium); Sparenberg, Jean-Marc; Baye, Daniel, E-mail: jdoheter@ulb.ac.be, E-mail: jmspar@ulb.ac.be, E-mail: dbaye@ulb.ac.be [Physique Nucleaire et Physique Quantique, CP229, Universite Libre de Bruxelles (ULB), B-1050 Brussels (Belgium)

    2011-09-16

    The elastic phase shifts for the {alpha} + {alpha} and {alpha} + {sup 3}He collisions are calculated in a cluster approach by the Generator Coordinate Method coupled with the Microscopic R-matrix Method. Two interactions are derived from the realistic Argonne potentials AV8' and AV18 with the Unitary Correlation Operator Method. With a specific adjustment of correlations on the {alpha} + {alpha} collision, the phase shifts for the {alpha} + {alpha} and {alpha} + {sup 3}He collisions agree rather well with experimental data.

  18. Algorithm for calculations of asymptotic nuclear coefficients using phase-shift data for charged-particle scattering

    Science.gov (United States)

    Orlov, Yu. V.; Irgaziev, B. F.; Nabi, Jameel-Un

    2017-08-01

    A new algorithm for the asymptotic nuclear coefficients calculation, which we call the Δ method, is proved and developed. This method was proposed by Ramírez Suárez and Sparenberg (arXiv:1602.04082.) but no proof was given. We apply it to the bound state situated near the channel threshold when the Sommerfeld parameter is quite large within the experimental energy region. As a result, the value of the conventional effective-range function Kl(k2) is actually defined by the Coulomb term. One of the resulting effects is a wrong description of the energy behavior of the elastic scattering phase shift δl reproduced from the fitted total effective-range function Kl(k2) . This leads to an improper value of the asymptotic normalization coefficient (ANC) value. No such problem arises if we fit only the nuclear term. The difference between the total effective-range function and the Coulomb part at real energies is the same as the nuclear term. Then we can proceed using just this Δ method to calculate the pole position values and the ANC. We apply it to the vertices 4He+12C ↔16O and 3He+4He↔7Be . The calculated ANCs can be used to find the radiative capture reaction cross sections of the transfers to the 16O bound final states as well as to the 7Be.

  19. Insights inot the atomic many-particle dynamics of scattering processes by ab-initio calculations

    International Nuclear Information System (INIS)

    Zapukhlyak, Myroslav

    2008-01-01

    The present thesis gives a theoretical contribution to the understanding of the many-particle dynamics in inelastic ion-atom collisions. Many-electron dynamics in ion-helium collisions and proton-sodium collisions was theoretically studied. The description is based on the semiclassical approximation with the straight orbit for the projectile motion. The ion-atom collision problem is by this reduced to a time-dependent many-electron problem and in the non-relativistic approximation described by the time-dependent Schroedinger equation. The solution of the many-electron problem pursues in the framework of the time-dependent density functional theory. The time-dependent Schroedinger equation for the interacting many-electron problem is transformed to the system of the time-dependent Kohn-Sham equations and solved by the two-center-basis generator method. The unknown time-dependent exchange-correlation one-particle potential forces different approximation int he time-dependent Kohn-Shan scheme. In this thesis the model of the independent electrons was applied as basis model, in which the electron-electron correlation is consistently neglected in all parts and in all steps. Differential cross sections for different one- and two-electron processes were calculated in the so-called eikonal approximation for the collisional systems p-He, He 2+ -He, and Ar q+ -He (q=15-18) [de

  20. Calculation of X-ray scattering curves and electron distance distribution functions of biological macromolecules in solution using the PROTEIN DATA BANK

    International Nuclear Information System (INIS)

    Mueller, J.J.; Friedrichowicz, E.; Nothnagel, A.; Wunderlich, T.; Ziehlsdorf, E.; Damaschun, G.

    1983-01-01

    The wide angle X-ray scattering curve, the electron distance distribution function and the solvent excluded volume of a macromolecule in solution are calculated from the atomic coordinates contained in the PROTEIN DATA BANK. The structures and the projections of the excluded volumes are depicted using molecule graphic routines. The described computer programs are used to determine the three-dimensional structure of macromolecules in solution from wide angle X-ray scattering data. (author)

  1. Existence of a current price as a precondition for abstract method for calculating damages in international and Serbian sales law

    Directory of Open Access Journals (Sweden)

    Fišer-Šobot Sandra

    2014-01-01

    Full Text Available If the contract is avoided and there is a current price for the goods, the party claiming damages may recover the difference between the price fixed by the contract and the current price at specific time and at specific place. Abstract calculation of loss is possible only when the contract goods have current price. Current price is the price generally charged for such goods sold under comparable circumstances in the trade concerned. According to the CISG and Serbian Law of Obligations, for the determination of the current price is relevant time of avoidance. This general rule is not applicable in international sales law when the party claiming damages has avoided the contract after taking over the goods. In that case, the current price at the time of taking over shall be applicable instead of the current price at the time of avoidance. Current price rule contained in the Art. 76(2 of the CISG presupposes that the current price is the price prevailing at the place where the delivery of the goods should have been made, or if there is no current price at the place, the price at such other place as serves as a reasonable substitute, making due allowance for differences in the cost of transporting the goods. Pursuant to Art. 524(2 Of Serbian Law of Obligations, however, relevant is the price in the market of the place of effecting the transaction. Formulation place of effecting the transaction is unclear and vague and can create different problems. Therefore, this rule should be amended and the relevant place should be the place of delivery.

  2. Uncertain Henry's law constants compromise equilibrium partitioning calculations of atmospheric oxidation products

    Directory of Open Access Journals (Sweden)

    C. Wang

    2017-06-01

    Full Text Available Gas–particle partitioning governs the distribution, removal, and transport of organic compounds in the atmosphere and the formation of secondary organic aerosol (SOA. The large variety of atmospheric species and their wide range of properties make predicting this partitioning equilibrium challenging. Here we expand on earlier work and predict gas–organic and gas–aqueous phase partitioning coefficients for 3414 atmospherically relevant molecules using COSMOtherm, SPARC Performs Automated Reasoning in Chemistry (SPARC, and poly-parameter linear free-energy relationships. The Master Chemical Mechanism generated the structures by oxidizing primary emitted volatile organic compounds. Predictions for gas–organic phase partitioning coefficients (KWIOM/G by different methods are on average within 1 order of magnitude of each other, irrespective of the numbers of functional groups, except for predictions by COSMOtherm and SPARC for compounds with more than three functional groups, which have a slightly higher discrepancy. Discrepancies between predictions of gas–aqueous partitioning (KW/G are much larger and increase with the number of functional groups in the molecule. In particular, COSMOtherm often predicts much lower KW/G for highly functionalized compounds than the other methods. While the quantum-chemistry-based COSMOtherm accounts for the influence of intra-molecular interactions on conformation, highly functionalized molecules likely fall outside of the applicability domain of the other techniques, which at least in part rely on empirical data for calibration. Further analysis suggests that atmospheric phase distribution calculations are sensitive to the partitioning coefficient estimation method, in particular to the estimated value of KW/G. The large uncertainty in KW/G predictions for highly functionalized organic compounds needs to be resolved to improve the quantitative treatment of SOA formation.

  3. The effects of nuclear data library processing on Geant4 and MCNP simulations of the thermal neutron scattering law

    Science.gov (United States)

    Hartling, K.; Ciungu, B.; Li, G.; Bentoumi, G.; Sur, B.

    2018-05-01

    Monte Carlo codes such as MCNP and Geant4 rely on a combination of physics models and evaluated nuclear data files (ENDF) to simulate the transport of neutrons through various materials and geometries. The grid representation used to represent the final-state scattering energies and angles associated with neutron scattering interactions can significantly affect the predictions of these codes. In particular, the default thermal scattering libraries used by MCNP6.1 and Geant4.10.3 do not accurately reproduce the ENDF/B-VII.1 model in simulations of the double-differential cross section for thermal neutrons interacting with hydrogen nuclei in a thin layer of water. However, agreement between model and simulation can be achieved within the statistical error by re-processing ENDF/B-VII.I thermal scattering libraries with the NJOY code. The structure of the thermal scattering libraries and sampling algorithms in MCNP and Geant4 are also reviewed.

  4. The inclusion of long-range polarisation functions in calculations of low-energy e+-H2 scattering using the Kohn method

    International Nuclear Information System (INIS)

    Armour, E.A.G.; Plummer, M.

    1989-01-01

    An explanation is given of why it is necessary to include long-range polarisation functions in the trial function when carrying out Kohn calculations of low-energy positron (and electron) scattering by atoms and simple molecules. The asymptotic form of these functions in low-energy e + -H 2 scattering is deduced. Appropriate functions with this asymptotic form are used to represent the closed-channel part of the wavefunction in a Kohn calculation of the lowest partial wave of Σ u + symmetry in e + -H 2 scattering at very low energies. For k≤0.03a 0 -1 , the results obtained are in good agreement with those obtained using the Born approximation and the asymptotic forms of the static and polarisation potentials. The relationship is pointed out between this method of taking into account long-range polarisation and the polarised pseudostate method used in R-matrix calculations. (author)

  5. Calculation of the flux attenuation and multiple scattering correction factors in time of flight technique for double differential cross section measurements

    International Nuclear Information System (INIS)

    Martin, G.; Coca, M.; Capote, R.

    1996-01-01

    Using Monte Carlo method technique , a computer code which simulates the time of flight experiment to measure double differential cross section was developed. The correction factor for flux attenuation and multiple scattering, that make a deformation to the measured spectrum, were calculated. The energy dependence of the correction factor was determined and a comparison with other works is shown. Calculations for Fe 56 at two different scattering angles were made. We also reproduce the experiment performed at the Nuclear Analysis Laboratory for C 12 at 25 celsius degree and the calculated correction factor for the is measured is shown. We found a linear relation between the scatter size and the correction factor for flux attenuation

  6. Optical photon transport in powdered-phosphor scintillators. Part II. Calculation of single-scattering transport parameters

    Energy Technology Data Exchange (ETDEWEB)

    Poludniowski, Gavin G. [Joint Department of Physics, Division of Radiotherapy and Imaging, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT, United Kingdom and Centre for Vision Speech and Signal Processing (CVSSP), Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Evans, Philip M. [Centre for Vision Speech and Signal Processing (CVSSP), Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)

    2013-04-15

    Purpose: Monte Carlo methods based on the Boltzmann transport equation (BTE) have previously been used to model light transport in powdered-phosphor scintillator screens. Physically motivated guesses or, alternatively, the complexities of Mie theory have been used by some authors to provide the necessary inputs of transport parameters. The purpose of Part II of this work is to: (i) validate predictions of modulation transform function (MTF) using the BTE and calculated values of transport parameters, against experimental data published for two Gd{sub 2}O{sub 2}S:Tb screens; (ii) investigate the impact of size-distribution and emission spectrum on Mie predictions of transport parameters; (iii) suggest simpler and novel geometrical optics-based models for these parameters and compare to the predictions of Mie theory. A computer code package called phsphr is made available that allows the MTF predictions for the screens modeled to be reproduced and novel screens to be simulated. Methods: The transport parameters of interest are the scattering efficiency (Q{sub sct}), absorption efficiency (Q{sub abs}), and the scatter anisotropy (g). Calculations of these parameters are made using the analytic method of Mie theory, for spherical grains of radii 0.1-5.0 {mu}m. The sensitivity of the transport parameters to emission wavelength is investigated using an emission spectrum representative of that of Gd{sub 2}O{sub 2}S:Tb. The impact of a grain-size distribution in the screen on the parameters is investigated using a Gaussian size-distribution ({sigma}= 1%, 5%, or 10% of mean radius). Two simple and novel alternative models to Mie theory are suggested: a geometrical optics and diffraction model (GODM) and an extension of this (GODM+). Comparisons to measured MTF are made for two commercial screens: Lanex Fast Back and Lanex Fast Front (Eastman Kodak Company, Inc.). Results: The Mie theory predictions of transport parameters were shown to be highly sensitive to both grain size

  7. Calculation of the thermal neutron scattering kernel using the synthetic model. Pt. 2. Zero-order energy transfer kernel

    International Nuclear Information System (INIS)

    Drozdowicz, K.

    1995-01-01

    A comprehensive unified description of the application of Granada's Synthetic Model to the slow-neutron scattering by the molecular systems is continued. Detailed formulae for the zero-order energy transfer kernel are presented basing on the general formalism of the model. An explicit analytical formula for the total scattering cross section as a function of the incident neutron energy is also obtained. Expressions of the free gas model for the zero-order scattering kernel and for total scattering kernel are considered as a sub-case of the Synthetic Model. (author). 10 refs

  8. Neutron Elastic Scattering Cross Sections Experimental Data and Optical Model Cross Section Calculations. A Compilation of Neutron Data from the Studsvik Neutron Physics Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Holmqvist, B; Wiedling, T

    1969-06-15

    Neutron elastic scattering cross section measurements have been going on for a long period at the Studsvik Van de Graaff laboratory. The cross sections of a range of elements have been investigated in the energy interval 1.5 to 8 MeV. The experimental data have been compared with cross sections calculated with the optical model when using a local nuclear potential.

  9. User's manual for EXALPHA (a code for calculating electronic properties of molecules). [Muscatel code, multiply scattered electron approximation

    Energy Technology Data Exchange (ETDEWEB)

    Jones, H.D.

    1976-06-01

    The EXALPHA procedures provide a simplified method for running the MUSCATEL computer code, which in turn is used for calculating electronic properties of simple molecules and atomic clusters, based on the multiply scattered electron approximation for the wave equations. The use of the EXALPHA procedures to set up a run of MUSCATEL is described.

  10. Cold moderator scattering kernels

    International Nuclear Information System (INIS)

    MacFarlane, R.E.

    1989-01-01

    New thermal-scattering-law files in ENDF format have been developed for solid methane, liquid methane liquid ortho- and para-hydrogen, and liquid ortho- and para-deuterium using up-to-date models that include such effects as incoherent elastic scattering in the solid, diffusion and hindered vibration and rotations in the liquids, and spin correlations for the hydrogen and deuterium. These files were generated with the new LEAPR module of the NJOY Nuclear Data Processing System. Other modules of this system were used to produce cross sections for these moderators in the correct format for the continuous-energy Monte Carlo code (MCNP) being used for cold-moderator-design calculations at the Los Alamos Neutron Scattering Center (LANSCE). 20 refs., 14 figs

  11. On the application of the theory of the translational Brownian movement to the calculation of the differential cross-sections for the incoherent scattering of slow neutrons

    International Nuclear Information System (INIS)

    Coffey, W.T.

    1978-01-01

    It is shown how three models (based on the theory of the Brownian movement) for the translational motion of an atom in a fluid may be used to calculate explicitly the intermediate scattering functions and differential cross-sections for the incoherent scattering of slow neutrons. In the first model the translational motion of the atom is represented by the motion of a particle in space subjected to no forces other than those arising from the thermal motion of its surroundings. The differential scattering cross-section for this model is then obtained as a continued fraction similar to that given by Sack (Proc. Phys. Soc.; B70:402 and 414 (1957)) for the electric polarisability in his investigation of the role of inertial effects in dielectric relaxation. The second model is a corrected version of the itinerant oscillator model of Sears (Proc. Phys. Soc.; 86:953 (1965)). Here the differential cross-section is obtained in the form of a series and a closed-form expression is found for the intermediate scattering function. The last model to be considered is the harmonically bound particle where again a closed form expression is obtained for the intermediate scattering function. In each case the intermediate scattering function has a mathematical form which is similar to the after-effect function describing the decay of electric polarisation for the rotational versions of the models. (author)

  12. Program package for calculation of cross sections of neutron scattering on deformed nuclei by the coupled-channel method

    International Nuclear Information System (INIS)

    Kloss, Yu.Yu.

    1985-01-01

    Program package and numerical solution of the problem for a system of coupled equations used in optical model to solve a problem on low and mean energy neutron scattering on deformed nuclei, is considered. With these programs differnet scattering cross sections depending on the incident neutron energy on even-even and even-odd nuclei were obtained. The programm permits to obtain different scattering cross sections (elastic, inelastic), excitation cross sections of the first three energy levels of rotational band depending on the energy, angular distributions and neutron polarizations including excited channels. In the program there is possibility for accounting even-even nuclei octupole deformation

  13. Light scattering properties of bovine muscle tissue in vitro, a comparison of methods

    NARCIS (Netherlands)

    Zijp, J.R.; ten Bosch, JJ; Benaron, DA; Chance, B; Ferrari, M; Kohl, M

    1998-01-01

    We measured the light scattering properties of muscular tissue using several methods, and compared the obtained results. Calculation of the extinction coefficient by using collimated transmission measurements and applying Beer's law is not appropriate. Probably surface roughness of the sample

  14. Program POD; A computer code to calculate nuclear elastic scattering cross sections with the optical model and neutron inelastic scattering cross sections by the distorted-wave born approximation

    International Nuclear Information System (INIS)

    Ichihara, Akira; Kunieda, Satoshi; Chiba, Satoshi; Iwamoto, Osamu; Shibata, Keiichi; Nakagawa, Tsuneo; Fukahori, Tokio; Katakura, Jun-ichi

    2005-07-01

    The computer code, POD, was developed to calculate angle-differential cross sections and analyzing powers for shape-elastic scattering for collisions of neutron or light ions with target nucleus. The cross sections are computed with the optical model. Angle-differential cross sections for neutron inelastic scattering can also be calculated with the distorted-wave Born approximation. The optical model potential parameters are the most essential inputs for those model computations. In this program, the cross sections and analyzing powers are obtained by using the existing local or global parameters. The parameters can also be inputted by users. In this report, the theoretical formulas, the computational methods, and the input parameters are explained. The sample inputs and outputs are also presented. (author)

  15. Observations and calculations of two-dimensional angular optical scattering (TAOS) patterns of a single levitated cluster of two and four microspheres

    International Nuclear Information System (INIS)

    Krieger, U.K.; Meier, P.

    2011-01-01

    We use single bi-sphere particles levitated in an electrodynamic balance to record two-dimensional angular scattering patterns at different angles of the coordinate system of the aggregate relative to the incident laser beam. Due to Brownian motion the particle covers the whole set of possible angles with time and allows to select patterns with high symmetry for analysis. These are qualitatively compared to numerical calculations. A small cluster of four spheres shows complex scattering patterns, comparison with computations suggest a low compactness for these clusters. An experimental procedure is proposed for studying restructuring effects occurring in mixed particles upon evaporation. - Research highlights: → Single levitated bi-sphere particle. → Two-dimensional angular scattering pattern. → Comparison experiment with computations.

  16. Comparison of the ESTRO formalism for monitor unit calculation with a Clarkson based algorithm of a treatment planning system and a traditional ''full-scatter'' methodology

    International Nuclear Information System (INIS)

    Pirotta, M.; Aquilina, D.; Bhikha, T.; Georg, D.

    2005-01-01

    The ESTRO formalism for monitor unit (MU) calculations was evaluated and implemented to replace a previous methodology based on dosimetric data measured in a full-scatter phantom. This traditional method relies on data normalised at the depth of dose maximum (z m ), as well as on the utilisation of the BJR 25 table for the conversion of rectangular fields into equivalent square fields. The treatment planning system (TPS) was subsequently updated to reflect the new beam data normalised at a depth z R of 10 cm. Comparisons were then carried out between the ESTRO formalism, the Clarkson-based dose calculation algorithm on the TPS (with beam data normalised at z m and z R ), and the traditional ''full-scatter'' methodology. All methodologies, except for the ''full-scatter'' methodology, separated head-scatter from phantom-scatter effects and none of the methodologies; except for the ESTRO formalism, utilised wedge depth dose information for calculations. The accuracy of MU calculations was verified against measurements in a homogeneous phantom for square and rectangular open and wedged fields, as well as blocked open and wedged fields, at 5, 10, and 20 cm depths, under fixed SSD and isocentric geometries for 6 and 10 MV. Overall, the ESTRO Formalism showed the most accurate performance, with the root mean square (RMS) error with respect to measurements remaining below 1% even for the most complex beam set-ups investigated. The RMS error for the TPS deteriorated with the introduction of a wedge, with a worse RMS error for the beam data normalised at z m (4% at 6 MV and 1.6% at 10 MV) than at z R (1.9% at 6 MV and 1.1% at 10 MV). The further addition of blocking had only a marginal impact on the accuracy of this methodology. The ''full-scatter'' methodology showed a loss in accuracy for calculations involving either wedges or blocking, and performed worst for blocked wedged fields (RMS errors of 7.1% at 6 MV and 5% at 10 MV). The origins of these discrepancies were

  17. Rode's iterative calculation of surface optical phonon scattering limited electron mobility in N-polar GaN devices

    International Nuclear Information System (INIS)

    Ghosh, Krishnendu; Singisetti, Uttam

    2015-01-01

    N-polar GaN channel mobility is important for high frequency device applications. Here, we report theoretical calculations on the surface optical (SO) phonon scattering rate of two-dimensional electron gas (2DEG) in N-polar GaN quantum well channels with high-k dielectrics. Rode's iterative calculation is used to predict the scattering rate and mobility. Coupling of the GaN plasmon modes with the SO modes is taken into account and dynamic screening is employed under linear polarization response. The effect of SO phonons on 2DEG mobility was found to be small at >5 nm channel thickness. However, the SO mobility in 3 nm N-polar GaN channels with HfO 2 and ZrO 2 high-k dielectrics is low and limits the total mobility. The SO scattering for SiN dielectric on GaN was found to be negligible due to its high SO phonon energy. Using Al 2 O 3 , the SO phonon scattering does not affect mobility significantly only except the case when the channel is too thin with a low 2DEG density

  18. An EPID response calculation algorithm using spatial beam characteristics of primary, head scattered and MLC transmitted radiation

    International Nuclear Information System (INIS)

    Rosca, Florin; Zygmanski, Piotr

    2008-01-01

    We have developed an independent algorithm for the prediction of electronic portal imaging device (EPID) response. The algorithm uses a set of images [open beam, closed multileaf collimator (MLC), various fence and modified sweeping gap patterns] to separately characterize the primary and head-scatter contributions to EPID response. It also characterizes the relevant dosimetric properties of the MLC: Transmission, dosimetric gap, MLC scatter [P. Zygmansky et al., J. Appl. Clin. Med. Phys. 8(4) (2007)], inter-leaf leakage, and tongue and groove [F. Lorenz et al., Phys. Med. Biol. 52, 5985-5999 (2007)]. The primary radiation is modeled with a single Gaussian distribution defined at the target position, while the head-scatter radiation is modeled with a triple Gaussian distribution defined downstream of the target. The distances between the target and the head-scatter source, jaws, and MLC are model parameters. The scatter associated with the EPID is implicit in the model. Open beam images are predicted to within 1% of the maximum value across the image. Other MLC test patterns and intensity-modulated radiation therapy fluences are predicted to within 1.5% of the maximum value. The presented method was applied to the Varian aS500 EPID but is designed to work with any planar detector with sufficient spatial resolution

  19. Application of a generalisation of the Kohn variational method to the calculation of cross sections for low-energy positron-hydrogen-molecule scattering

    International Nuclear Information System (INIS)

    Armour, E.A.G.

    1984-01-01

    The phaseshift corresponding to the lowest partial wave and the associated approximation to the total cross section are calculated for low-energy positron-hydrogen-molecule scattering using a generalisation of the Kohn variational method. The trial wavefunction is expressed in terms of confocal elliptical coordinates. Except at incident positron energies below about 2 eV, reasonable agreement with experiment is obtained below the positronium formation threshold at 8.63 eV. (author)

  20. The calculation of the contributions to low energy e+H2 scattering from sigma u+ and pion u symmetries using the Kohn variational method

    International Nuclear Information System (INIS)

    Armour, E.A.G.; Baker, D.J.; Plummer, M.

    1990-01-01

    Above incident energies of about 2 eV, the contribution to the total cross section in positron+H2 scattering from the sigma g+ symmetry is insufficient to account for the experimental value. Calculations carried out of the lowest partial waves of sigma u+ symmetry and Pion u symmetry using the Kohn variational method are described. The contributions to the total cross section from the two equivalent partial waves of Pion u symmetry significantly reduce the discrepancy with experiment up to incident energies of 4 to 5 eV. Comparisons are made with recent R-matrix calculations performed by Danby and Tennyson

  1. The calculation of the contributions to low energy e+H2 scattering from sigma u+ and Pion u symmetries using the Kohn variational method

    Science.gov (United States)

    Armour, E. A. G.; Baker, D. J.; Plummer, M.

    1990-01-01

    Above incident energies of about 2 eV, the contribution to the total cross section in positron+H2 scattering from the sigma g+ symmetry is insufficient to account for the experimental value. Calculations carried out of the lowest partial waves of sigma u+ symmetry and Pion u symmetry using the Kohn variational method are described. The contributions to the total cross section from the two equivalent partial waves of Pion u symmetry significantly reduce the discrepancy with experiment up to incident energies of 4 to 5 eV. Comparisons are made with recent R-matrix calculations performed by Danby and Tennyson.

  2. Non-local coupled-channels optical calculation of electron scattering by atomic hydrogen at 54.42 eV

    International Nuclear Information System (INIS)

    Ratnavelu, K.; McCarthy, I.E.

    1990-01-01

    The present study incorporates the non-local optical potentials for the continuum within the coupled-channels optical framework to study electron scattering from atomic hydrogen at 54.42 eV. Nine-state coupled-channels calculations with non-local and local continuum optical potentials were performed. The results for differential, total and ionization cross sections as well as the 2p angular correlation parameters λ and R are comparable with other non-perturbative calculations. There are still discrepancies between theory and experiment, particularly for λ and R at larger angles. (author)

  3. Dose distribution around Ir192 brachytherapy source in non-full scattering conditions: comparison of in-phantom measurements and Nucletron-Oldelft plato system calculations

    International Nuclear Information System (INIS)

    Jastrzembski, Michal; Kabacinska, Renata; Makarewicz, Roman

    1996-01-01

    Introduction: Comparing the values of doses measured in vivo during gynaecological brachytherapy with those computed with the use of Nucletron-Oldelft brachytherapy treatment planning system a high level of uncertainty appears. In case of points located close to the media border this is also due to the lack of scattering in this region. The influence of the lack of scattering on dose distribution has been investigated. Measured data has been compared to those given by Nucletron-Oldelft BPS. Materials and methods: Profiles in a large water phantom (PTW MP3 system) has been measured in directions perpendicular to the long axis of the fixed source at varied water level and at varied source-to-detector distances. Normalization values for the curves has been acquired by absolute dose measurements. Obtained data has been compared to profiles calculated in the same axes by Nucletron-Oldelft BPS. Results: The lack of scattering in the region close to water surface (up to 8cm) results in significant drop in measured dose. The decrease depends both on the distance from the medium border and on the distance from the source. For source-to-detector distance of 6.5cm the difference between calculated and measured dose is 8% for 3cm and 21% for 1cm of water above the source. Profiles in this region become flattened and asymmetric according to the drop in dose level. Conclusions: The lack of scattering in the region close to the patient skin results in significant drop in dose which is not taken into account by Nucletron-Oldelft BPS. This means that dose distribution calculated in this region by the System is not correct

  4. On the use of flux limiters in the discrete ordinates method for 3D radiation calculations in absorbing and scattering media

    International Nuclear Information System (INIS)

    Godoy, William F.; DesJardin, Paul E.

    2010-01-01

    The application of flux limiters to the discrete ordinates method (DOM), S N , for radiative transfer calculations is discussed and analyzed for 3D enclosures for cases in which the intensities are strongly coupled to each other such as: radiative equilibrium and scattering media. A Newton-Krylov iterative method (GMRES) solves the final systems of linear equations along with a domain decomposition strategy for parallel computation using message passing libraries in a distributed memory system. Ray effects due to angular discretization and errors due to domain decomposition are minimized until small variations are introduced by these effects in order to focus on the influence of flux limiters on errors due to spatial discretization, known as numerical diffusion, smearing or false scattering. Results are presented for the DOM-integrated quantities such as heat flux, irradiation and emission. A variety of flux limiters are compared to 'exact' solutions available in the literature, such as the integral solution of the RTE for pure absorbing-emitting media and isotropic scattering cases and a Monte Carlo solution for a forward scattering case. Additionally, a non-homogeneous 3D enclosure is included to extend the use of flux limiters to more practical cases. The overall balance of convergence, accuracy, speed and stability using flux limiters is shown to be superior compared to step schemes for any test case.

  5. Application of laws of diagramic logic to calculation of middle coefficient of friction for turbulent boundary layer

    International Nuclear Information System (INIS)

    Denisov, A.S.

    1994-01-01

    Canonical formalization of an phenomenon of reasoning by images consists of eight laws of diagramic logic, providing an structural diagram of exploring object as main unit of operating. That laws are divided into three groups: (1) The first channel of application for structural diagrams is the deduction of necessary result from previous theorems of author. (2) The second channel of application for structural diagrams is the deduction of necessary result from parallel theorems of other author. (3) The third channel of application for structural diagrams is the deduction of necessary result by means of modification of nuclear theory

  6. Criticality calculations on pebble-bed HTR-PROTEUS configuration as a validation for the pseudo-scattering tracking method implemented in the MORET 5 Monte Carlo code

    Energy Technology Data Exchange (ETDEWEB)

    Forestier, Benoit; Miss, Joachim; Bernard, Franck; Dorval, Aurelien [Institut de Radioprotection et Surete Nucleaire, Fontenay aux Roses (France); Jacquet, Olivier [Independent consultant (France); Verboomen, Bernard [Belgian Nuclear Research Center - SCK-CEN (Belgium)

    2008-07-01

    The MORET code is a three dimensional Monte Carlo criticality code. It is designed to calculate the effective multiplication factor (k{sub eff}) of any geometrical configuration as well as the reaction rates in the various volumes and the neutron leakage out of the system. A recent development for the MORET code consists of the implementation of an alternate neutron tracking method, known as the pseudo-scattering tracking method. This method has been successfully implemented in the MORET code and its performances have been tested by mean of an extensive parametric study on very simple geometrical configurations. In this context, the goal of the present work is to validate the pseudo-scattering method against realistic configurations. In this perspective, pebble-bed cores are particularly well-adapted cases to model, as they exhibit large amount of volumes stochastically arranged on two different levels (the pebbles in the core and the TRISO particles inside each pebble). This paper will introduce the techniques and methods used to model pebble-bed cores in a realistic way. The results of the criticality calculations, as well as the pseudo-scattering tracking method performance in terms of computation time, will also be presented. (authors)

  7. Improvement of gamma-ray Sn transport calculations including coherent and incoherent scatterings and secondary sources of bremsstrahlung and fluorescence: Determination of gamma-ray buildup factors

    International Nuclear Information System (INIS)

    Kitsos, S.; Diop, C.M.; Assad, A.; Nimal, J.C.; Ridoux, P.

    1996-01-01

    Improvements of gamma-ray transport calculations in S n codes aim at taking into account the bound-electron effect of Compton scattering (incoherent), coherent scattering (Rayleigh), and secondary sources of bremsstrahlung and fluorescence. A computation scheme was developed to take into account these phenomena by modifying the angular and energy transfer matrices, and no modification in the transport code has been made. The incoherent and coherent scatterings as well as the fluorescence sources can be strictly treated by the transfer matrix change. For bremsstrahlung sources, this is possible if one can neglect the charged particles path as they pass through the matter (electrons and positrons) and is applicable for the energy range of interest for us (below 10 MeV). These improvements have been reported on the kernel attenuation codes by the calculation of new buildup factors. The gamma-ray buildup factors have been carried out for 25 natural elements up to 30 mean free paths in the energy range between 15 keV and 10 MeV

  8. Dose calculation in eye brachytherapy with Ir-192 threads using the Sievert integral and corrected by attenuation and scattering with the Meisberg polynomials

    International Nuclear Information System (INIS)

    Vivanco, M.G. Bernui de; Cardenas R, A.

    2006-01-01

    The ocular brachytherapy many times unique alternative to conserve the visual organ in patients of ocular cancer, one comes carrying out in the National Institute of Neoplastic Illnesses (INEN) using threads of Iridium 192; those which, they are placed in radial form on the interior surface of a spherical cap of gold of 18 K; the cap remains in the eye until reaching the prescribed dose by the doctor. The main objective of this work is to be able to calculate in a correct and practical way the one time that the treatment of ocular brachytherapy should last to reach the dose prescribed by the doctor. To reach this objective I use the Sievert integral corrected by attenuation effects and scattering (Meisberg polynomials); calculating it by the Simpson method. In the calculations by means of the Sievert integral doesn't take into account the scattering produced by the gold cap neither the variation of the constant of frequency of exposure with the distance. The calculations by means of Sievert integral are compared with those obtained using the Monte Carlo Penelope simulation code, where it is observed that they agree at distances of the surface of the cap greater or equal to 2mm. (Author)

  9. SU-E-T-59: Calculations of Collimator Scatter Factors (Sc) with and Without Custom-Made Build-Up Caps for CyberKnife

    Energy Technology Data Exchange (ETDEWEB)

    Wokoma, S; Yoon, J; Jung, J [East Carolina University, Greenville, NC (United States); Lee, S [Rhode Island Hospital / Warren Alpert Medical, Providence, RI (United States)

    2014-06-01

    Purpose: To investigate the impact of custom-made build-up caps for a diode detector in robotic radiosurgery radiation fields with variable collimator (IRIS) for collimator scatter factor (Sc) calculation. Methods: An acrylic cap was custom-made to fit our SFD (IBA Dosimetry, Germany) diode detector. The cap has thickness of 5 cm, corresponding to a depth beyond electron contamination. IAEA phase space data was used for beam modeling and DOSRZnrc code was used to model the detector. The detector was positioned at 80 cm source-to-detector distance. Calculations were performed with the SFD, with and without the build-up cap, for clinical IRIS settings ranging from 7.5 to 60 mm. Results: The collimator scatter factors were calculated with and without 5 cm build-up cap. They were agreed within 3% difference except 15 mm cone. The Sc factor for 15 mm cone without buildup was 13.2% lower than that with buildup. Conclusion: Sc data is a critical component in advanced algorithms for treatment planning in order to calculate the dose accurately. After incorporating build-up cap, we discovered differences of up to 13.2 % in Sc factors in the SFD detector, when compared against in-air measurements without build-up caps.

  10. Minimum critical values of uranyl and plutonium nitrate solutions calculated by various routes of the french criticality codes system CRISTAL using the new isopiestic nitrate density law

    International Nuclear Information System (INIS)

    Anno, Jacques; Rouyer, Veronique; Leclaire, Nicolas

    2003-01-01

    This paper provides for various cases of 235 U enrichment or Pu isotopic vectors, and different reflectors, new minimum critical values of uranyl nitrate and plutonium nitrate solutions (H + =0) obtained by the standard IRSN calculation route and the new isopiestic density laws. Comparisons are also made with other more accurate routes showing that the standard one's results are most often conservative and usable for criticality safety assessments. (author)

  11. Microscopic calculation of four-nucleon scattering observables in dd → dd and dd → p3H

    International Nuclear Information System (INIS)

    Fonseca, A.C.

    1998-01-01

    The four-body equations of Alt, Grassberger and Sandhas are solved for a system of four nucleons, using realistic NN interactions. The results of the calculations are compared with data for the reactions and dd → dd and dd → p 3 H. Preliminary calculations indicate that the nucleon-nucleon p-waves have a strong effect on 4N observables. (orig.)

  12. Electron scattering in graphene by defects in underlying h-BN layer: First-principles transport calculations

    Science.gov (United States)

    Kaneko, Tomoaki; Ohno, Takahisa

    2018-03-01

    We investigate the electronic structure and the transport properties of graphene adsorbed onto h-BN with carbon impurities or atomic vacancies using density functional theory and the non-equilibrium Green's function method. We find that the transport properties are degraded due to carrier doping and scattering off of localized defect states in h-BN. When graphene is doped by introducing defects in h-BN, the transmission spectra become asymmetric owing to the reduction of the electronic density of states, which contributes significantly to the degradation of graphene transport properties as compared with the effect of defect levels.

  13. Simple systematization of vibrational excitation cross-section calculations for resonant electron-molecule scattering in the boomerang and impulse models.

    Science.gov (United States)

    Sarma, Manabendra; Adhikari, S; Mishra, Manoj K

    2007-01-28

    Vibrational excitation (nu(f), where psi(nu(i))(R,t) approximately =e(-iH(A(2))-(R)t/h phi(nu(i))(R) with time evolution under the influence of the resonance anionic Hamiltonian H(A(2) (-))(A(2) (-)=N(2)(-)/H(2) (-)) implemented using Lanczos and fast Fourier transforms. The target (A(2)) vibrational eigenfunctions phi(nu(i))(R) and phi(nu(f))(R) are calculated using Fourier grid Hamiltonian method applied to potential energy (PE) curves of the neutral target. Application of this simple systematization to calculate vibrational structure in e-N(2) and e-H(2) scattering cross-sections provides mechanistic insights into features underlying presence/absence of structure in e-N(2) and e-H(2) scattering cross-sections. The results obtained with approximate PE curves are in reasonable agreement with experimental/calculated cross-section profiles, and cross correlation functions provide a simple demarcation between the boomerang and impulse models.

  14. DiSCaMB: a software library for aspherical atom model X-ray scattering factor calculations with CPUs and GPUs.

    Science.gov (United States)

    Chodkiewicz, Michał L; Migacz, Szymon; Rudnicki, Witold; Makal, Anna; Kalinowski, Jarosław A; Moriarty, Nigel W; Grosse-Kunstleve, Ralf W; Afonine, Pavel V; Adams, Paul D; Dominiak, Paulina Maria

    2018-02-01

    It has been recently established that the accuracy of structural parameters from X-ray refinement of crystal structures can be improved by using a bank of aspherical pseudoatoms instead of the classical spherical model of atomic form factors. This comes, however, at the cost of increased complexity of the underlying calculations. In order to facilitate the adoption of this more advanced electron density model by the broader community of crystallographers, a new software implementation called DiSCaMB , 'densities in structural chemistry and molecular biology', has been developed. It addresses the challenge of providing for high performance on modern computing architectures. With parallelization options for both multi-core processors and graphics processing units (using CUDA), the library features calculation of X-ray scattering factors and their derivatives with respect to structural parameters, gives access to intermediate steps of the scattering factor calculations (thus allowing for experimentation with modifications of the underlying electron density model), and provides tools for basic structural crystallographic operations. Permissively (MIT) licensed, DiSCaMB is an open-source C++ library that can be embedded in both academic and commercial tools for X-ray structure refinement.

  15. Resolution of the multigroup scattering equation in a one-dimensional geometry and subsidiary calculations: the MUDE code; Resolution de l'equation multigroupe de la diffusion dans une geometrie a une dimension et calculs annexes: code MUDE

    Energy Technology Data Exchange (ETDEWEB)

    Bore, C; Dandeu, Y; Saint-Amand, Ch [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    MUDE is a nuclear code written in FORTRAN II for IBM 7090-7094. It resolves a system of difference equations approximating to the one-dimensional multigroup neutron scattering problem. More precisely, this code makes it possible to: 1. Calculate the critical condition of a reactor (k{sub eff}, critical radius, critical composition) and the corresponding fluxes; 2. Calculate the associated fluxes and various subsidiary results; 3. Carry out perturbation calculations; 4. Study the propagation of fluxes at a distance; 5. Estimate the relative contributions of the cross sections (macroscopic or microscopic); 6. Study the changes with time of the composition of the reactor. (authors) [French] MUDE est un code nucleaire ecrit en FORTRAN II pour IBM 7090-7094. Il resout un systeme d'equations aux differences approchant le probleme de diffusion neutronique multigroupe a une dimension. Plus precisement ce code permet de: 1. Calculer la condition critique d'un reacteur (k{sub eff}, rayon critique, composition critique) et les flux correspondants; 2. Calculer les flux adjoints et divers resultats connexes; 3. Effectuer des calculs de perturbation; 4. Etudier la propagation des flux a longue distance; 5. Ponderer des sections efficaces (macroscopiques ou microscopiques); 6. Etudier l'evolution de la composition du reacteur au cours du temps. (auteurs)

  16. The dynamics of molecular dimers in the crystals of m-aminobenzoic acid studied by inelastic neutron scattering (INS), Raman, IR spectroscopy and DFT calculations

    Energy Technology Data Exchange (ETDEWEB)

    Pawlukojc, A.; Leciejewicz, J

    2004-03-29

    Inelastic neutron scattering, Raman and IR spectra were measured for m-aminobenzoic acid (MABA). Optimized geometries and observed frequencies were assigned using DFT calculation on the B3LYP/6-311G** level using Gaussian 98 and Gamess programs. Experimental structural and spectroscopic data are in good agreement with computations assuming the presence in the crystals of molecular dimers composed of two MABA molecules linked by a pair of O-H...O hydrogen bonds each provided by the carboxylic group. INS frequencies have been identified for the O-H (out of plane) mod0008.

  17. A conversion method of air kerma from the primary, scatter, and leakage radiations to effective dose for calculating x-ray shielding barriers in mammography

    International Nuclear Information System (INIS)

    Kharrati, Hedi

    2005-01-01

    In this study, a new approach has been introduced for derivation of the effective dose from air kerma to calculate shielding requirements in mammography facilities. This new approach has been used to compute the conversion coefficients relating air kerma to the effective dose for the mammography reference beam series of the Netherlands Metrology Institute Van Swinden Laboratorium, National Institute of Standards and Technology, and International Atomic Energy Agency laboratories. The results show that, in all cases, the effective dose in mammography energy range is less than 25% of the incident air kerma for the primary and the scatter radiations and does not exceed 75% for the leakage radiation

  18. Structure of 14C via elastic and inelastic neutron scattering from 13C: Measurement, R-matrix analysis, and shell model calculations

    International Nuclear Information System (INIS)

    Resler, D.A.

    1987-03-01

    The specific purpose of this work is to provide a better understanding of the 14 C level structure; the general purpose is to provide the details for using shell model calculations in R-matrix analyses. Using the TOF facilities of the Ohio University Accelerator Laboratory, the elastic and first 3 inelastic differential scattering cross sections for 13 C + n were measured at 69 energies for 4.5 ≤ E/sub n/ ≤ 11 MeV. A multiple scattering code was developed which provided a simulation of the experimental scattering process allowing accurate corrections to the small inelastic data. The integrated 13 C(n,α) 10 Be cross section is estimated. The sequential 2n-decay of 14 C states populated by 13 C + n was observed. A shell model code was developed. Normal and nonnormal parity calculations were made for the lithium isotopes using a new two-body interaction. The results for 5 Li predict the 2s/sub 1/2/ and 1d/sub 5/2/ single-particle states to be located below the 3/2 + state. Similar calculations were made for 13 C, 13 N, and 14 C. Results for 13 C and 13 N show for E/sub x/ 7 Li and 14 C, 2 h-barω calculations were done. Shell model calculations generated the R-matrix parameters for the elastic and first 3 inelastic channels of 13 C + n. After adjusting some energies, the predicted structure generally agrees with experiment for E/sub n/ 13 C + n data were refit to replace R 0 background terms by more realistic broad states and to get better agreement with model calculations. R-matrix fitting of the full data set produced new 14 C level information. For E/sub n/ > 4 MeV (E/sub x/ > 12 MeV), 5 states are given definite J/sup π/ assignments; 3, tentative assignments. 122 refs., 91 figs., 30 tabs

  19. Electronic structure and related properties of ferrocyanide ion calculated by the SCF Xα-scattered wave method

    International Nuclear Information System (INIS)

    Guenzburger, D.; Maffeo, B.; Siqueira, M.L. de

    1975-08-01

    The SCF-XαSW method is used to calculate the electronic structure of the ferrocyanide ion. Optical transitions and X-Ray photoelectron emission are obtained from the energy level scheme and compared with experimental results. The charge density in the Fe nucleus is also computed and the result is correlated with isomer shift measurements made on this and other Fe complexes for which theoretical calculations have been performed

  20. Reactive scattering of H2 from Cu(100): comparison of dynamics calculations based on the specific reaction parameter approach to density functional theory with experiment.

    Science.gov (United States)

    Sementa, L; Wijzenbroek, M; van Kolck, B J; Somers, M F; Al-Halabi, A; Busnengo, H F; Olsen, R A; Kroes, G J; Rutkowski, M; Thewes, C; Kleimeier, N F; Zacharias, H

    2013-01-28

    We present new experimental and theoretical results for reactive scattering of dihydrogen from Cu(100). In the new experiments, the associative desorption of H(2) is studied in a velocity resolved and final rovibrational state selected manner, using time-of-flight techniques in combination with resonance-enhanced multi-photon ionization laser detection. Average desorption energies and rotational quadrupole alignment parameters were obtained in this way for a number of (v = 0, 1) rotational states, v being the vibrational quantum number. Results of quantum dynamics calculations based on a potential energy surface computed with a specific reaction parameter (SRP) density functional, which was derived earlier for dihydrogen interacting with Cu(111), are compared with the results of the new experiments and with the results of previous molecular beam experiments on sticking of H(2) and on rovibrationally elastic and inelastic scattering of H(2) and D(2) from Cu(100). The calculations use the Born-Oppenheimer and static surface approximations. With the functional derived semi-empirically for dihydrogen + Cu(111), a chemically accurate description is obtained of the molecular beam experiments on sticking of H(2) on Cu(100), and a highly accurate description is obtained of rovibrationally elastic and inelastic scattering of D(2) from Cu(100) and of the orientational dependence of the reaction of (v = 1, j = 2 - 4) H(2) on Cu(100). This suggests that a SRP density functional derived for H(2) interacting with a specific low index face of a metal will yield accurate results for H(2) reactively scattering from another low index face of the same metal, and that it may also yield accurate results for H(2) interacting with a defected (e.g., stepped) surface of that same metal, in a system of catalytic interest. However, the description that was obtained of the average desorption energies, of rovibrationally elastic and inelastic scattering of H(2) from Cu(100), and of the

  1. New light on the Kr-(4p55s2) Feshbach resonances: high-resolution electron scattering experiments and B-spline R-matrix calculations

    International Nuclear Information System (INIS)

    Hoffmann, T H; Ruf, M-W; Hotop, H; Zatsarinny, O; Bartschat, K; Allan, M

    2010-01-01

    In a joint experimental and theoretical effort, we carried out a detailed study of electron scattering from Kr atoms in the energy range of the low-lying Kr - (4p 5 5s 2 ) Feshbach resonances. Absolute angle-differential cross sections for elastic electron scattering were measured over the energy range 9.3-10.3 eV with an energy width of about 13 meV at scattering angles between 10 deg. and 180 deg. Using several sets of elastic scattering phase shifts, a detailed analysis of the sharp Kr - (4p 5 5s 2 2 P 3/2 ) resonance was carried out, resulting in a resonance width of Γ 3/2 3.6(2) meV. By direct comparison with the position of the Ar - (3p 5 4s 2 2 P 3/2 ) resonance, the energy for the Kr - (4p 5 5s 2 2 P 3/2 ) resonance was determined as E 3/2 = 9.489(3) eV. A Fano-type fit of the higher lying Kr - (4p 5 5s 2 2 P 1/2 ) resonance yielded the resonance parameters Γ 1/2 = 33(5) meV and E 1/2 = 10.126(4) eV. In order to obtain additional insights, B-spline R-matrix calculations were performed for both the elastic and the inelastic cross sections above the threshold for 4p 5 5s excitation. They provide the total and angle-differential cross sections for excitation of long-lived and short-lived levels of the 4p 5 5s configuration in Kr and branching ratios for the decay of the Kr - (4p 5 5s 2 2 P 1/2 ) resonance into the three available exit channels. The results are compared with selected experimental data.

  2. DISCUS, Neutron Single to Double Scattering Ratio in Inelastic Scattering Experiment by Monte-Carlo

    International Nuclear Information System (INIS)

    Johnson, M.W.

    1993-01-01

    1 - Description of problem or function: DISCUS calculates the ratio of once-scattered to twice-scattered neutrons detected in an inelastic neutron scattering experiment. DISCUS also calculates the flux of once-scattered neutrons that would have been observed if there were no absorption in the sample and if, once scattered, the neutron would emerge without further re-scattering or absorption. Three types of sample geometry are used: an infinite flat plate, a finite flat plate or a finite length cylinder. (The infinite flat plate is included for comparison with other multiple scattering programs.) The program may be used for any sample for which the scattering law is of the form S(/Q/, omega). 2 - Method of solution: Monte Carlo with importance sampling is used. Neutrons are 'forced' both into useful angular trajectories, and useful energy bins. Biasing of the collision point according to the point of entry of the neutron into the sample is also utilised. The first and second order scattered neutron fluxes are calculated in independent histories. For twice-scattered neutron histories a square distribution in Q-omega space is used to sample the neutron coming from the first scattering event, whilst biasing is used for the second scattering event. (A square distribution is used so as to obtain reasonable inelastic-inelastic statistics.) 3 - Restrictions on the complexity of the problem: Unlimited number of detectors. Max. size of (Q, omega) matrix is 39*149. Max. number of points in momentum space for the scattering cross section is 199

  3. Definition and calculation of bottom quark cross-sections in deep-inelastic scattering at HERA and De termination of their uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Carli, T. E-mail: tancredi.carli@cern.ch; Chiochia, V.; Klimek, K

    2003-09-01

    The uncertainties involved in the calculation of bottom quark cross-sections in deep-inelastic scattering at HERA are studied in different phase space regions. Besides the inclusive bottom quark cross-section, definitions closer to the detector acceptance requiring at least one high energetic muon from the semi-leptonic bottom quark decay or a jet with high transverse energy are investigated. For each case the uncertainties due to the choice of the renormalisation and factorisation scale as well as the bottom quark mass are estimated in the perturbative NLO QCD calculation and furthermore uncertainties in the fragmentation of the bottom quark to a B-meson and in its semi-leptonic decay are discussed. (author)

  4. Definition and calculation of bottom quark cross-sections in deep-inelastic scattering at HERA and determination of their uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Carli, T.; Chiochia, V. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[Hamburg Univ. (Germany). Inst. fuer Experimentalphysik; Klimek, K. [Hamburg Univ. (Germany). Inst. fuer Experimentalphysik

    2003-05-01

    The uncertainties involved in the calculation of bottom quark (b-quark) cross-sections in deep-inelastic scattering at HERA are studied in different phase space regions. Besides the inclusive b-quark cross-section, definitions closer to the detector acceptance requiring at least one high energetic muon from the semi-leptonic b-quark decay or a jet with high transverse energy are investigated. For each case the uncertainties due to the choice of the renormalisation and factorisation scale as well as the b-quark mass are estimated in the perturbative NLO QCD calculation and furthermore uncertainties in the fragmentation of the b-quark to a B-meson and in its semi-leptonic decay are discussed. (orig.)

  5. Improved adiabatic calculation of muonic-hydrogen-atom cross sections. I. Isotopic exchange and elastic scattering in asymmetric collisions

    International Nuclear Information System (INIS)

    Cohen, J.S.; Struensee, M.C.

    1991-01-01

    The improved adiabatic representation is used in calculations of elastic and isotopic-exchange cross sections for asymmetric collisions of pμ, dμ, and tμ with bare p, d, and t nuclei and with H, D, and T atoms. This formulation dissociates properly, correcting a well-known deficiency of the standard adiabatic method for muonic-atom collisions, and includes some effects at zeroth order that are normally considered nonadiabatic. The electronic screening is calculated directly and precisely within the improved adiabatic description; it is found to be about 30% smaller in magnitude than the previously used value at large internuclear distances and to deviate considerably from the asymptotic form at small distances. The reactance matrices, needed for calculations of molecular-target effects, are given in tables

  6. Comparisons of vector analyzing-power data and calculations for neutron-deuteron elastic scattering from 10 to 14 MeV

    International Nuclear Information System (INIS)

    Howell, C.R.; Tornow, W.; Murphy, K.; Pfuetzner, H.G.; Roberts, M.L.; Li, A.; Felsher, P.D.; Walter, R.L.; Slaus, I.; Treado, P.A.; Koike, Y.

    1987-01-01

    High-accuracy analyzing-power A y (θ) data for n-d elastic scattering at 12 MeV have been measured using the polarized-neutron facilities at the Triangle Universities Nuclear Laboratory (TUNL). The present data have been combined with previous n-d measurements at 10, 12, and 14.1 MeV to form the highest-accuracy A y (θ) data set for n-d elastic scattering below 20 MeV. These data are compared to recent Faddeev-based neutron-deuteron (n-d) calculations which use the Paris and Bonn equivalent separable potentials PEST and BEST, as well as Doleschall's representation of the P- and D-wave nucleon-nucleon interactions. None of these models adequately describe the data in the angular region around the maximum of A y (θ). Possible reasons for the discrepancies are discussed. The sensitivity of the present Faddeev-based calculations to various angular momentum components of the nucleon-nucleon interaction are examined. (Auth.)

  7. Calculation of radiative corrections to virtual compton scattering - absolute measurement of the energy of Jefferson Lab. electron beam (hall A) by a magnetic method: arc project

    International Nuclear Information System (INIS)

    Marchand, D.

    1998-11-01

    This thesis presents the radiative corrections to the virtual compton scattering and the magnetic method adopted in the Hall A at Jefferson Laboratory, to measure the electrons beam energy with an accuracy of 10 4 . The virtual compton scattering experiments allow the access to the generalised polarizabilities of the protons. The extraction of these polarizabilities is obtained by the experimental and theoretical cross sections comparison. That's why the systematic errors and the radiative effects of the experiments have to be controlled very seriously. In this scope, a whole calculation of the internal radiative corrections has been realised in the framework of the quantum electrodynamic. The method of the dimensional regularisation has been used to the treatment of the ultraviolet and infra-red divergences. The absolute measure method of the energy, takes into account the magnetic deviation, made up of eight identical dipoles. The energy is determined from the deviation angle calculation of the beam and the measure of the magnetic field integral along the deviation

  8. Design calculations for a xenon plasma x-ray shield to protect the NIF optical Thomson scattering diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Swadling, G. F.; Ross, J. S.; Datte, P.; Moody, J.; Divol, L.; Jones, O.; Landen, O. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2016-11-15

    An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. This diagnostic is designed to make measurements of the hohlraum plasma parameters, such as the electron temperature and the density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature, hohlraums produce intense soft x-ray emission, which can cause “blanking” (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimated to be ∼8 J cm{sup −2}. This is significantly above the expected threshold for the onset of “blanking” effects. A novel xenon plasma x-ray shield is proposed to protect the blast shield from x-rays and mitigate “blanking.” Estimates suggest that an areal density of 10{sup 19} cm{sup −2} Xe atoms will be sufficient to absorb 99.5% of the soft x-ray flux. Two potential designs for this shield are presented.

  9. Design calculations for a xenon plasma x-ray shield to protect the NIF optical Thomson scattering diagnostic.

    Science.gov (United States)

    Swadling, G F; Ross, J S; Datte, P; Moody, J; Divol, L; Jones, O; Landen, O

    2016-11-01

    An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. This diagnostic is designed to make measurements of the hohlraum plasma parameters, such as the electron temperature and the density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature, hohlraums produce intense soft x-ray emission, which can cause "blanking" (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimated to be ∼8 J cm -2 . This is significantly above the expected threshold for the onset of "blanking" effects. A novel xenon plasma x-ray shield is proposed to protect the blast shield from x-rays and mitigate "blanking." Estimates suggest that an areal density of 10 19 cm -2 Xe atoms will be sufficient to absorb 99.5% of the soft x-ray flux. Two potential designs for this shield are presented.

  10. New approximations for the interference term applied to the calculation of scattering cross section of the {sup 238} U isotope

    Energy Technology Data Exchange (ETDEWEB)

    Palma, Daniel Artur Pinheiro [Centro Federal de Educacao Tecnologica de Quimica de Nilopolis, RJ (Brazil)]. E-mails: dpalma@cefeteq.br; Martinez, Aquilino Senra; Goncalves, Alessandro C. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE). Programa de Engenharia Nuclear]. E-mail: agoncalves@con.ufrj.br; aquilino@lmp.ufrj.br

    2008-07-01

    The calculation of the Doppler broadening function and the interference term are very important in the generation of nuclear data. Recent papers have proposed analytical formulations for both functions and, despite their being simple and precise, they contain the error function with a complex argument. With the intention of simplifying the mathematical treatment two approximations are proposed in this paper. The first one consists of using an expansion in the form of series to treat the error function. The other approximation is based on simplifications in the differential equations that govern the Doppler broadening function. For validation purpose the result obtained is compared to the one obtained in the calculation of the cross sections for isotope {sup 238}U for different resonances. Results obtained have proved satisfactory from the standpoint of accuracy. (author)

  11. New approximations for the interference term applied to the calculation of scattering cross section of the 238 U isotope

    International Nuclear Information System (INIS)

    Palma, Daniel Artur Pinheiro; Martinez, Aquilino Senra; Goncalves, Alessandro C.

    2008-01-01

    The calculation of the Doppler broadening function and the interference term are very important in the generation of nuclear data. Recent papers have proposed analytical formulations for both functions and, despite their being simple and precise, they contain the error function with a complex argument. With the intention of simplifying the mathematical treatment two approximations are proposed in this paper. The first one consists of using an expansion in the form of series to treat the error function. The other approximation is based on simplifications in the differential equations that govern the Doppler broadening function. For validation purpose the result obtained is compared to the one obtained in the calculation of the cross sections for isotope 238 U for different resonances. Results obtained have proved satisfactory from the standpoint of accuracy. (author)

  12. Comparison of two screening corrections to the additivity rule for the calculation of electron scattering from polyatomic molecules

    International Nuclear Information System (INIS)

    Blanco, F.; Rosado, J.; Illana, A.; Garcia, G.

    2010-01-01

    The SCAR and EGAR procedures have been proposed in order to extend to lower energies the applicability of the additivity rule for calculation of electron-molecule total cross sections. Both those approximate treatments arise after considering geometrical screening corrections due to partial overlapping of atoms in the molecule, as seen by the incident electrons. The main features, results and limitations of both treatments are put here in comparison by means of their application to some different sized species.

  13. Towards efficient ab initio calculations of electron scattering by polyatomic molecules: III. Modelling correlation-polarization interactions

    Czech Academy of Sciences Publication Activity Database

    Čurík, Roman; Šulc, M.

    2010-01-01

    Roč. 43, č. 17 (2010), s. 175205 ISSN 0953-4075 R&D Projects: GA MŠk(CZ) OC10046; GA MŠk OC09079; GA AV ČR KJB400400803; GA ČR GA202/08/0631 Institutional research plan: CEZ:AV0Z40400503 Keywords : Ab initio calculations * Commonly used * DFT potential Subject RIV: CF - Physical ; The oretical Chemistry Impact factor: 1.902, year: 2010

  14. Comparison of the uncertainties calculated for the results of radiochemical determinations using the law of propagation of uncertainty and a Monte Carlo simulation

    International Nuclear Information System (INIS)

    Berne, A.

    2001-01-01

    Quantitative determinations of many radioactive analytes in environmental samples are based on a process in which several independent measurements of different properties are taken. The final results that are calculated using the data have to be evaluated for accuracy and precision. The estimate of the standard deviation, s, also called the combined standard uncertainty (CSU) associated with the result of this combined measurement can be used to evaluate the precision of the result. The CSU can be calculated by applying the law of propagation of uncertainty, which is based on the Taylor series expansion of the equation used to calculate the analytical result. The estimate of s can also be obtained from a Monte Carlo simulation. The data used in this simulation includes the values resulting from the individual measurements, the estimate of the variance of each value, including the type of distribution, and the equation used to calculate the analytical result. A comparison is made between these two methods of estimating the uncertainty of the calculated result. (author)

  15. A conversion method of air-kerma from the primary, scatter and leakage radiations to ambient dose equivalent for calculating the mamography x-ray shielding barrier

    International Nuclear Information System (INIS)

    Kharrati, H.

    2005-01-01

    The primary, scatter, and leakage doses(in Gy), which constitute the data base for calculating shielding requirements for x-ray facilities, are often converted to the equivalent dose (in sievert) by using a constant of conversion of 1.145Sv/Gy. This constant is used for diagnostic radiology as well as for mammography spectra, and is derived by considering an exposure of 1 R corresponds to an air kerma of 8.73 m Gy, which renders by tradition an equivalent dose of 10 mSv. However, this conversion does not take into account the energy dependence of the conversion coefficients relating air kerma to the equivalent dose as described in ICRU report. Moreover, current radiation protection standards propose the use of the quantity ambient dose equivalent in order to qualify the efficiently of given radiation shielding. Therefore, in this study, a new approach has been introduced for derivation ambient dose equivalent from air kerma to calculate shielding requirements in mammography facilities. This new approach has been used to compute the conversion coefficients relating air kerma to ambient dose equivalent for mammography reference beam series of the Netherlands Metrology Institute Van Swinden Laboratorium (NMi), National Institute of Standards and Technology (NIST), and International Atomic Energy Agency (AIEA) laboratories. The calculation has been performed by the means of two methods which show a maximum deviation less than 10%2 for the primary, scatter, and leakage radiations. The results show that the conversion coefficients vary from 0.242 Sv/ Gy to 0.692 Sv/Gy with an average value of 0.436 Sv/Gy for the primary and the scatter radiations, and form 0.156 Sv/Gy to 1.329 Sv/Gy with an average value of 0.98 Sv/Gy for the leakage radiation. Simpkin et al. using an empirical approach propose a conversion value of 0.50 Sv/Gy for the mammography x-ray spectra. This value approximately coincides with the average conversion value of 0.436 Sv/Gy obtained in this work for

  16. Calculation for shielding based on the new law in the nuclear medicine facilities. Calculation methods of effective dose concerning the external and internal exposures and of radioisotope concentration concerning the exhaust gas drainage

    International Nuclear Information System (INIS)

    Ohba, Hisateru; Takeda, Hiromitsu; Asanuma, Osamu

    2001-01-01

    Following the revision of the law which incorporated the ICRP 1990 Recommendation, the medical law enforcement rule and related notices are also revised and enforced from April 1, 2001. Revised points related with the nuclear medicine facilities involve the reported items (addition of the scheduled maximum amount to be used in the next 3 months), change of dose limits at the boundary of the controlled area (from 300 μSv/w to 1.3 mSv/3 m), change of density limits in air, exhausted air and drainage, change of evaluation of radioisotope density in air (from average density during 8 hr to 1 week), change of exposure dose limits in medical workers and change of calculation method of effective dose due to internal exposure. This paper concerns the calculation methods for above and their concepts in nuclear medicine facilities in Hokkaido area. Numerical data for shielding and conditions of the facilities for clinical practice including diagnostic nuclide are taken into consideration and the actual paper forms for these items are also shown. (K.H.)

  17. Lattice dynamics at high pressure: application of inelastic X-ray scattering and ab-initio calculations -MgO at 35 GPa

    International Nuclear Information System (INIS)

    Ghose, Subrata

    2006-01-01

    Full text: Until recently, inelastic neutron scattering (INS) has been extensively used to study the phonon dispersion throughout the Brillouin zone and phonon density of states in crystalline materials. The weak interaction of neutrons with matter and the typical size of the neutron beams require the use of cm-size single crystals that puts an upper limit to the measurement of phonon dispersion at high pressure to about 10-15 Gpa by INS. Inelastic X-ray scattering (IXS) using third generation synchrotron sources now makes it possible to measure the phonon dispersion at high pressures up to 50 GP A in crystals tens of microns in size mounted in a diamond-anvil cell, usually using He as the pressure transmitting medium. We have used this technique to measure the longitudinal acoustic and optic phonon branches of MgO along the Γ-X direction at 35 Gpa. The experimentally observed phonon-branches are in remarkable agreement with ab-initio quantum mechanical calculations using the density-functional perturbation theory. The derived thermodynamic properties, such as specific heat and the entropy are in very good agreement with values obtained from a thermodynamically assessed data set

  18. Adjoint Monte-Carlo method with fictitious scattering in deep penetration and long-distance detector calculations

    International Nuclear Information System (INIS)

    Andreucci, N.

    1985-04-01

    Deep penetration transport problems in complex systems joint to heterogeneous source (Q) sampling give rise to some difficulties in evaluating leakage and fluxes on a detector point. To overcome these difficulties we have solved both the adjoint Boltzmann flux (phi*) equation and following scalar-dual equation: ∫Qphi* dP - ∫Q*phi dP = ∫phiphi* Ω . n dΣ dΩ dE dt + ∫ [phiphi*]sub(0)sup(T)/v dr dΩ dE D = (phase space). With a suitable choice for the domain D, for Q* and for the boundary conditions, an adjoint flux calculation allows us to obtain simultaneously the Q-source contribution and the detection (or leakage) spectrum. Compared to direct methods with importance sampling, the adjoint methods give very low-cost and faithful results

  19. Measurement of the double differential dijet rate in deep inelastic scattering at HERA and comparison to NLO QCD calculations

    International Nuclear Information System (INIS)

    Poeschl, R.

    2000-12-01

    The analysis presented the measurement of the dijet rate R 2 , the fraction of dijet events in all DIS events, as a function of the kinematic variables x B and Q 2 in the range of 5 2 2 and 10 -4 B -2 . The analysis is based on data collected with the H1 detector in the years 1996/97. The large amount of integrated luminosity (21.9 pb -1 ) available for this analysis allowed for the first time a double differential measurement of R 2 as a function of both x B and Q 2 . The single differential dijet rate, R 2 (x B ) and R 2 (Q 2 ), increases for increasing Q 2 as well as for increasing x B . The double differential dijet rate R 2 (x B , Q 2 ) is more sensitive to the x B dependence of dijet production since it shows a strong increase towards small values of x B if Q 2 is kept fixed. The double differential dijet rate has been compared to predictions of NLO QCD calculations. For the comparison it is required that at least one of the jets has a transverse energy 5 + Δ GeV where Δ = 2 GeV was chosen to be the central cut scenario. The dijet rate is well described by NLO calculations when μ r 2 = Q 2 is chosen as the renormalization scale albeit at the cost of large scale uncertainties. If, however, μ r 2 = Q 2 + E t 2 is chosen, which considerable reduces the scale uncertainties, substantial contributions from other sources of dijet production are needed. (orig.)

  20. Hindered rotational energy barriers of BH4- tetrahedra in β-Mg(BH4)2 from quasielastic neutron scattering and DFT calculations

    DEFF Research Database (Denmark)

    Blanchard, Didier; Maronsson, Jon Bergmann; Riktor, M.D.

    2012-01-01

    , around the 2-fold (C2) and 3-fold (C3) axes were observed at temperatures from 120 to 440 K. The experimentally obtained activation energies (EaC2 = 39 and 76 meV and EaC3 = 214 meV) and mean residence times between reorientational jumps are comparable with the energy barriers obtained from DFT......In this work, hindered rotations of the BH4- tetrahedra in Mg(BH4)2 were studied by quasielastic neutron scattering, using two instruments with different energy resolution, in combination with density functional theory (DFT) calculations. Two thermally activated reorientations of the BH4- units...... calculations. A linear dependency of the energy barriers for rotations around the C2 axis parallel to the Mg-Mg axis with the distance between these two axes was revealed by the DFT calculations. At the lowest temperature (120 K) only 15% of the BH4- units undergo rotational motion and from comparison with DFT...

  1. Calculation of the RPA response function of nuclei to quasi-elastic electron scattering with a density-dependent NN interaction

    International Nuclear Information System (INIS)

    Caillon, J-C.; Labarsouque, J.

    1997-01-01

    So far, the non-relativistic longitudinal and transverse functions in electron quasi-elastic scattering on the nuclei failed in reproducing satisfactorily the existent experimental data. The calculations including relativistic RPA correlations utilize until now the relativistic Hartree approximation to describe the nuclear matter. But, this provides an incompressibility module two times higher than its experimental value what is an important drawback for the calculation of realistic relativistic RPA correlations. Hence, we have determined the RPA response functions of nuclei by utilising a description of the relativistic nuclear matter leading to an incompressibility module in agreement with the empirical value. To do that we have utilized an interaction in the relativistic Hartree approximation in which we have determined the coupling constants σ-N and ω-N as a function of the density in order to reproduce the saturation curve obtained by a Dirac-Brueckner calculation. The results which we have obtained show that the longitudinal response function and the Coulomb sum generally overestimated when one utilizes the pure relativistic Hartree approximation, are here in good agreement with the experimental data for several nuclei

  2. The dc electrical conductivity calculation purely from the dissipative component of the ac conductivity II. formula for conductors with static scatterers

    International Nuclear Information System (INIS)

    Milinski, Nikola; Milinski, Eduard

    2001-01-01

    While the first part of this work was devoted to the conceptual and most crucial questions of the dc electrical conductivity σ, the present second part is devoted to the technical questions of the theory, to elaboration of the concept to the particular systems. The conducting system to be investigated has been defined here by five suppositions (postulates), rather general to include the systems of practical interest, like metals in solid and liquid phase are, and the amorphous conductors, like the alloys and conducting glasses are. A formula for dc conductivity calculation has been derived, which gives σ in terms of the matrix elements / k +g/F/Ψ k >/ 2 , where F is scattering force, and Ψ k +g, Ψ k , are the Bloch functions. For the case when Bloch functions are approximated by plane waves, an approximate formula for σ has been obtained in a more tractable form. Specific to our concept is the inclusion of an equation constitutive to σ calculation, which also has been elaborated for the considered system, to the stage suitable for practical application, σ calculation in conjunction with the mentioned constitutive equation is the most important innovative element of our concept, and we expect it will lead to substantial advance in research of this subject. (authors)

  3. Oxygen-metal bonding in Ti-bearing compounds from O 1s spectra and ab initio full multiple-scattering calculations

    International Nuclear Information System (INIS)

    Ziyu Wu; Paris, E.; Langenhorst, F.; Seifert, F.

    2002-01-01

    The O K-edge spectra of a series of Ti-bearing compounds with Ti in diffrent structural and chemical environments have been measured using electron energy-loss spectroscopy and analyzed using ab initio full multiple-scattering (MS) calculations. The near-edge structures arise mainly from covalency by direct and/or indirect interaction between O and metal atoms and between O and Si atoms. The coordination number of the cation and the site symmetry also influence the spectral shape and structures. Using different size clusters around the excited atom in the full MS simulation, it is possible to interpret and assign the features present in the spectra of each compund to its specific atomic arrangement and electronic structure. (au)

  4. Transport dynamics calculated under the full Mie scattering theory for micron and submicron lunar ejecta in selenocentric, cislunar, and geocentric space

    Science.gov (United States)

    Hyde, T. W.; Alexander, W. M.

    1989-01-01

    In 1967, Lunar Explorer 35 was launched from the earth and placed into a stable orbit around the moon. The data from the dust particle experiment on this spacecraft were essentially continuous over a 5-yr period from the time of insertion in lunar orbit. Analysis of this data has been interpreted to show that micron-sized lunar ejecta leave the moon and traverse through selenocentric and cislunar space and obtain either interplanetary/heliocentric orbits or intercept the earth's magnetosphere and move into geocentric orbits. Extensive studies of the orbital trajectories of lunar particles in this size range have now been conducted that include a calculation of the solar radiation force using the full Mie scattering theory. A significant flux of particles with radii less than 0.1 micron are found to intercept the earth's magnetopause surface. This flux is shown to be strongly dependent upon both the particle's density and its index of refraction.

  5. A calculational method of photon dose equivalent based on the revised technical standards of radiological protection law

    International Nuclear Information System (INIS)

    Tanaka, Shun-ichi; Suzuki, Tomoo

    1991-03-01

    The effective conversion factor for photons from 0.03 to 10 MeV were calculated to convert the absorbed dose in air to the 1 cm, 3 mm, and 70 μm depth dose equivalents behind iron, lead, concrete, and water shields up to 30 mfp thickness. The effective conversion factor changes slightly with thickness of the shields and becomes nearly constant at 5 to 10 mfp. The difference of the effective conversion factor was less than 2% between plane normal and point isotropic geometries. It is suggested that the present method, making the data base of the exposure buildup factors useful, would be very effective as compared to a new evaluation of the dose equivalent buildup factors. 5 refs., 7 figs., 22 tabs

  6. The fortran programme for the calculation of the absorption and double scattering corrections in cross-section measurements with fast neutrons using the monte Carlo method (1963); Programme fortran pour le calcul des corrections d'absorption et de double diffusion dans les mesures de sections efficaces pour les neutrons rapides par la methode de monte-carlo (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, B [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-07-01

    A calculation for double scattering and absorption corrections in fast neutron scattering experiments using Monte-Carlo method is given. Application to cylindrical target is presented in FORTRAN symbolic language. (author) [French] Un calcul des corrections de double diffusion et d'absorption dans les experiences de diffusion de neutrons rapides par la methode de Monte-Carlo est presente. L'application au cas d'une cible cylindrique est traitee en langage symbolique FORTRAN. (auteur)

  7. The effect of, within the sphere confined, particle diffusion on the line shape of incoherent cold neutron scattering spectra

    International Nuclear Information System (INIS)

    Cvikl, B.; Dahlborg, U.; Calvo-Dahlborg, M.

    1999-01-01

    Based upon the model of particles diffusion within the sphere of partially absorbing boundaries, the possibilities of the detection, by the incoherent cold neutron scattering method, of particle precipitation on the boundary walls, has been investigated. The calculated scattering law as a function of the boundary absorption properties exhibits distinct characteristic which might, under favorable conditions, make such an experimental attempt feasible.(author)

  8. Calculation of electron transport in Ar/N2 and He/Kr gas mixtures emdash implications for validity of the Blanc close-quote s law method

    International Nuclear Information System (INIS)

    Wang, Y.; Van Brunt, R.J.

    1997-01-01

    The electron drift velocities and corresponding mean energies have been calculated numerically using an approximate two-term solution of the Boltzmann transport equation for Ar/N 2 gas mixtures at electric field-to-gas density ratios (E/N) below 2.0x10 -20 Vm 2 (20 Td) and for He/Kr mixtures at E/N below 5.0x10 -21 Vm 2 (5.0 Td). The results are compared with predictions obtained from a method proposed by Chiflikian based on an open-quotes analog of Blanc close-quote s lawclose quotes [Phys. Plasmas 2, 3902 (1995)]. Large differences are found between the results derived from the Blanc close-quote s law method and those found here from solutions of the transport equation that indicate serious errors and limitations associated with use of the Blanc close-quote s law method to compute drift velocities in gas mixtures. copyright 1997 American Institute of Physics

  9. Charge-transfer energy in the water-hydrogen molecular aggregate revealed by molecular-beam scattering experiments, charge displacement analysis, and ab initio calculations.

    Science.gov (United States)

    Belpassi, Leonardo; Reca, Michael L; Tarantelli, Francesco; Roncaratti, Luiz F; Pirani, Fernando; Cappelletti, David; Faure, Alexandre; Scribano, Yohann

    2010-09-22

    Integral cross-section measurements for the system water-H(2) in molecular-beam scattering experiments are reported. Their analysis demonstrates that the average attractive component of the water-H(2) intermolecular potential in the well region is about 30% stronger than dispersion and induction forces would imply. An extensive and detailed theoretical analysis of the electron charge displacement accompanying the interaction, over several crucial sections of the potential energy surface (PES), shows that water-H(2) interaction is accompanied by charge transfer (CT) and that the observed stabilization energy correlates quantitatively with CT magnitude at all distances. Based on the experimentally determined potential and the calculated CT, a general theoretical model is devised which reproduces very accurately PES sections obtained at the CCSD(T) level with large basis sets. The energy stabilization associated with CT is calculated to be 2.5 eV per electron transferred. Thus, CT is shown to be a significant, strongly stereospecific component of the interaction, with water functioning as electron donor or acceptor in different orientations. The general relevance of these findings for water's chemistry is discussed.

  10. Influence of thermal history on the photostructural changes in glassy As15S85 studied by Raman scattering and ab initio calculations

    International Nuclear Information System (INIS)

    Kolar, J.; Strizik, L.; Kohoutek, T.; Wagner, T.; Voyiatzis, G. A.; Chrissanthopoulos, A.; Yannopoulos, S. N.

    2013-01-01

    Photostructural changes—the hallmark of non-crystalline chalcogenides—are in essence the basis of a number of photoinduced effects, i.e., changes of their physical properties, which are exploited in a variety of applications, especially in photonics and optoelectronics. Despite the vast number of investigations of photostructural changes, there is currently lack of systematic studies on how the thermal history, which affects glass structure, modifies the extent of photostructural changes. In this article, we study the role of thermal history on photostructural changes in glassy As 15 S 85 . This particular sulfur-rich composition has been chosen based on the colossal photostructural response it exhibits under near-band gap light irradiation, which inherently originates from its nanoscale phase-separated nature. To control the thermal history, the glass was quenched to various temperatures and each of these quenched products was annealed under four different conditions. Off-resonant Raman scattering was used to study the equilibrium study of each product. Structural changes of interest involve changes of the sulfur atoms participating into S 8 rings and S n chains. Their ratio was found to depend on quenching/annealing conditions. Near-band gap light was used to perturb the rings-to-chain ratio and at the same time to record these changes through Raman scattering, revealing an intricate behavior of photostructural changes. Ab initio calculations were employed to determine the stability of various sulfur clusters/molecules thus aiding the correlation of the particular photo-response of glassy As 15 S 85 with its structural constituents

  11. Concentric layered Hermite scatterers

    Science.gov (United States)

    Astheimer, Jeffrey P.; Parker, Kevin J.

    2018-05-01

    The long wavelength limit of scattering from spheres has a rich history in optics, electromagnetics, and acoustics. Recently it was shown that a common integral kernel pertains to formulations of weak spherical scatterers in both acoustics and electromagnetic regimes. Furthermore, the relationship between backscattered amplitude and wavenumber k was shown to follow power laws higher than the Rayleigh scattering k2 power law, when the inhomogeneity had a material composition that conformed to a Gaussian weighted Hermite polynomial. Although this class of scatterers, called Hermite scatterers, are plausible, it may be simpler to manufacture scatterers with a core surrounded by one or more layers. In this case the inhomogeneous material property conforms to a piecewise continuous constant function. We demonstrate that the necessary and sufficient conditions for supra-Rayleigh scattering power laws in this case can be stated simply by considering moments of the inhomogeneous function and its spatial transform. This development opens an additional path for construction of, and use of scatterers with unique power law behavior.

  12. Development of a golden beam data set for the commissioning of a proton double-scattering system in a pencil-beam dose calculation algorithm

    International Nuclear Information System (INIS)

    Slopsema, R. L.; Flampouri, S.; Yeung, D.; Li, Z.; Lin, L.; McDonough, J. E.; Palta, J.

    2014-01-01

    Purpose: The purpose of this investigation is to determine if a single set of beam data, described by a minimal set of equations and fitting variables, can be used to commission different installations of a proton double-scattering system in a commercial pencil-beam dose calculation algorithm. Methods: The beam model parameters required to commission the pencil-beam dose calculation algorithm (virtual and effective SAD, effective source size, and pristine-peak energy spread) are determined for a commercial double-scattering system. These parameters are measured in a first room and parameterized as function of proton energy and nozzle settings by fitting four analytical equations to the measured data. The combination of these equations and fitting values constitutes the golden beam data (GBD). To determine the variation in dose delivery between installations, the same dosimetric properties are measured in two additional rooms at the same facility, as well as in a single room at another facility. The difference between the room-specific measurements and the GBD is evaluated against tolerances that guarantee the 3D dose distribution in each of the rooms matches the GBD-based dose distribution within clinically reasonable limits. The pencil-beam treatment-planning algorithm is commissioned with the GBD. The three-dimensional dose distribution in water is evaluated in the four treatment rooms and compared to the treatment-planning calculated dose distribution. Results: The virtual and effective SAD measurements fall between 226 and 257 cm. The effective source size varies between 2.4 and 6.2 cm for the large-field options, and 1.0 and 2.0 cm for the small-field options. The pristine-peak energy spread decreases from 1.05% at the lowest range to 0.6% at the highest. The virtual SAD as well as the effective source size can be accurately described by a linear relationship as function of the inverse of the residual energy. An additional linear correction term as function of

  13. Development of a golden beam data set for the commissioning of a proton double-scattering system in a pencil-beam dose calculation algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Slopsema, R. L., E-mail: rslopsema@floridaproton.org; Flampouri, S.; Yeung, D.; Li, Z. [University of Florida Proton Therapy Institute, 2015 North Jefferson Street, Jacksonville, Florida 32205 (United States); Lin, L.; McDonough, J. E. [Department of Radiation Oncology, University of Pennsylvania, 3400 Civic Boulevard, 2326W TRC, PCAM, Philadelphia, Pennsylvania 19104 (United States); Palta, J. [VCU Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, Virginia 23298 (United States)

    2014-09-15

    Purpose: The purpose of this investigation is to determine if a single set of beam data, described by a minimal set of equations and fitting variables, can be used to commission different installations of a proton double-scattering system in a commercial pencil-beam dose calculation algorithm. Methods: The beam model parameters required to commission the pencil-beam dose calculation algorithm (virtual and effective SAD, effective source size, and pristine-peak energy spread) are determined for a commercial double-scattering system. These parameters are measured in a first room and parameterized as function of proton energy and nozzle settings by fitting four analytical equations to the measured data. The combination of these equations and fitting values constitutes the golden beam data (GBD). To determine the variation in dose delivery between installations, the same dosimetric properties are measured in two additional rooms at the same facility, as well as in a single room at another facility. The difference between the room-specific measurements and the GBD is evaluated against tolerances that guarantee the 3D dose distribution in each of the rooms matches the GBD-based dose distribution within clinically reasonable limits. The pencil-beam treatment-planning algorithm is commissioned with the GBD. The three-dimensional dose distribution in water is evaluated in the four treatment rooms and compared to the treatment-planning calculated dose distribution. Results: The virtual and effective SAD measurements fall between 226 and 257 cm. The effective source size varies between 2.4 and 6.2 cm for the large-field options, and 1.0 and 2.0 cm for the small-field options. The pristine-peak energy spread decreases from 1.05% at the lowest range to 0.6% at the highest. The virtual SAD as well as the effective source size can be accurately described by a linear relationship as function of the inverse of the residual energy. An additional linear correction term as function of

  14. On the violation of the exponential decay law in atomic physics: ab initio calculation of the time-dependence of the He-1s2p24P non-stationary state

    International Nuclear Information System (INIS)

    Nicolaides, C.A.; Mercouris, T.

    1996-01-01

    The detailed time dependence of the decay of a three-electron autoionizing state close to threshold has been obtained ab initio by solving the time-dependent Schrodinger equation (TDSE). The theory allows the definition and computation of energy-dependent matrix elements in terms of the appropriate N-electron wavefunctions, representing the localized initial state, Ψ O , the stationary scattering states of the continuous spectrum, U( e psilon ) , and the localized excited states, Ψ n , of the effective Hamiltonian QHQ, where Q ''ident to'' |Ψ O > O |. The time-dependent wavefunction is expanded over these states and the resulting coupled equations with time-dependent coefficients (in the thousands) are solved to all orders by a Taylor series expansion technique. The robustness of the method was verified by using a model interaction in analytic form and comparing the results from two different methods for integrating the TDSE (appendix B). For the physically relevant application, the chosen state was the He - 1s2p 24 P shape resonance, about which very accurate theoretical and experimental relevant information exists. Calculations using accurate wavefunctions and an energy grid of 20.000 points in the range 0.0-21.77 eV show that the effective interaction depends on energy in a state-specific manner, thereby leading to state-specific characteristics of non-exponential decay over about 6 x 10 4 au of time, from which a width of Γ = 5.2 meV and a lifetime of 1.26 x 10 -13 s is deduced. The results suggest that either in this state or in other autoionizing states close to threshold, NED may have sufficient presence to make the violation of the law of exponential decay observable. (Author)

  15. 3D local structure around copper site of rabbit prion-related protein: Quantitative determination by XANES spectroscopy combined with multiple-scattering calculations

    International Nuclear Information System (INIS)

    Cui, P.X.; Lian, F.L.; Wang, Y.; Wen, Yi; Chu, W.S.; Zhao, H.F.; Zhang, S.; Li, J.; Lin, D.H.; Wu, Z.Y.

    2014-01-01

    Prion-related protein (PrP), a cell-surface copper-binding glycoprotein, is considered to be responsible for a number of transmissible spongiform encephalopathies (TSEs). The structural conversion of PrP from the normal cellular isoform (PrP C ) to the post-translationally modified form (PrP Sc ) is thought to be relevant to Cu 2+ binding to histidine residues. Rabbits are one of the few mammalian species that appear to be resistant to TSEs, because of the structural characteristics of the rabbit prion protein (RaPrP C ) itself. Here we determined the three-dimensional local structure around the C-terminal high-affinity copper-binding sites using X-ray absorption near-edge structure combined with ab initio calculations in the framework of the multiple-scattering (MS) theory. Result shows that two amino acid resides, Gln97 and Met108, and two histidine residues, His95 and His110, are involved in binding this copper(II) ion. It might help us understand the roles of copper in prion conformation conversions, and the molecular mechanisms of prion-involved diseases. - Highlights: ► The first structure of the metal ion binding site in RaPrP fifth copper-binding site. ► Quantitative determination by XANES spectroscopy combined with ab initio calculations. ► Provide a proof of the roles of copper in prion conformation conversions. ► Provide a proof of the molecular mechanisms of prion-involved diseases

  16. Phonon spectra in the parent superconducting iron-tuned telluride F e1 +xTe from inelastic neutron scattering and ab initio calculations

    Science.gov (United States)

    Zbiri, Mohamed; Viennois, Romain

    2017-10-01

    We report inelastic neutron scattering measurements of phonon spectra in the parent superconductor iron-tuned chalcogenide F e1 +xTe for two different x contents (x ≤0.11 ) using neutron time-of-flight technique. Thermal neutron spectroscopy allowed the collection of the low-temperature Stokes spectra over an extended Q range at 2, 40, and 120 K, hence covering both the magnetic monoclinic and the paramagnetic tetragonal phases, whereas cold neutrons allowed the measurement of high-resolution anti-Stokes spectra at 140, 220, and 300 K, thus covering the tetragonal phase. Our results evidence a spin-phonon coupling behavior towards the observed noticeable temperature-dependent change of the Stokes spectra across the transition temperatures. On the other hand, the anti-Stokes spectra reveal a pronounced hardening of the low-energy, acoustic region of the phonon spectrum upon heating, indicating a strong anharmonicity and a subtle dependence of phonons on structural evolution within the tetragonal phase. Experimental results are accompanied by ab initio calculations of phonon spectra of the tetragonal stoichiometric phase for a comparison with the high-resolution anti-Stokes spectra. Calculations included different density functional methods. Spin polarization and van der Waals interaction were either considered or neglected, individually or concomitantly, in order to study their respective effect on lattice dynamics description. Our results suggest that including van der Waals interaction has only a slight effect on phonon dynamics; however, phonon spectra are better described when spin polarization is included in a cooperative way with van der Waals interactions.

  17. New Insight into the Local Structure of Hydrous Ferric Arsenate Using Full-Potential Multiple Scattering Analysis, Density Functional Theory Calculations, and Vibrational Spectroscopy.

    Science.gov (United States)

    Wang, Shaofeng; Ma, Xu; Zhang, Guoqing; Jia, Yongfeng; Hatada, Keisuke

    2016-11-15

    Hydrous ferric arsenate (HFA) is an important arsenic-bearing precipitate in the mining-impacted environment and hydrometallurgical tailings. However, there is no agreement on its local atomic structure. The local structure of HFA was reprobed by employing a full-potential multiple scattering (FPMS) analysis, density functional theory (DFT) calculations, and vibrational spectroscopy. The FPMS simulations indicated that the coordination number of the As-Fe, Fe-As, or both in HFA was approximately two. The DFT calculations constructed a structure of HFA with the formula of Fe(HAsO 4 ) x (H 2 AsO 4 ) 1-x (OH) y ·zH 2 O. The presence of protonated arsenate in HFA was also evidenced by vibrational spectroscopy. The As and Fe K-edge X-ray absorption near-edge structure spectra of HFA were accurately reproduced by FPMS simulations using the chain structure, which was also a reasonable model for extended X-Ray absorption fine structure fitting. The FPMS refinements indicated that the interatomic Fe-Fe distance was approximately 5.2 Å, consistent with that obtained by Mikutta et al. (Environ. Sci. Technol. 2013, 47 (7), 3122-3131) using wavelet analysis. All of the results suggested that HFA was more likely to occur as a chain with AsO 4 tetrahedra and FeO 6 octahedra connecting alternately in an isolated bidentate-type fashion. This finding is of significance for understanding the fate of arsenic and the formation of ferric arsenate minerals in an acidic environment.

  18. 3D local structure around copper site of rabbit prion-related protein: Quantitative determination by XANES spectroscopy combined with multiple-scattering calculations

    Science.gov (United States)

    Cui, P. X.; Lian, F. L.; Wang, Y.; Wen, Yi; Chu, W. S.; Zhao, H. F.; Zhang, S.; Li, J.; Lin, D. H.; Wu, Z. Y.

    2014-02-01

    Prion-related protein (PrP), a cell-surface copper-binding glycoprotein, is considered to be responsible for a number of transmissible spongiform encephalopathies (TSEs). The structural conversion of PrP from the normal cellular isoform (PrPC) to the post-translationally modified form (PrPSc) is thought to be relevant to Cu2+ binding to histidine residues. Rabbits are one of the few mammalian species that appear to be resistant to TSEs, because of the structural characteristics of the rabbit prion protein (RaPrPC) itself. Here we determined the three-dimensional local structure around the C-terminal high-affinity copper-binding sites using X-ray absorption near-edge structure combined with ab initio calculations in the framework of the multiple-scattering (MS) theory. Result shows that two amino acid resides, Gln97 and Met108, and two histidine residues, His95 and His110, are involved in binding this copper(II) ion. It might help us understand the roles of copper in prion conformation conversions, and the molecular mechanisms of prion-involved diseases.

  19. Self-assembled monolayer of ammonium pyrrolidine dithiocarbamate on copper detected using electrochemical methods, surface enhanced Raman scattering and quantum chemistry calculations

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Q.-Q., E-mail: liaoqq1971@yahoo.com.cn [Key Lab of Shanghai Colleges and Universities for Electric Power Corrosion Control and Applied Electrochemistry, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090 (China); Yue, Z.-W.; Yang, D. [Key Lab of Shanghai Colleges and Universities for Electric Power Corrosion Control and Applied Electrochemistry, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090 (China); Wang, Z.-H. [Department of Chemistry, Tongji University, Shanghai 200092 (China); Li, Z.-H. [Department of Chemistry, Fudan University, Shanghai 200433 (China); Ge, H.-H. [Key Lab of Shanghai Colleges and Universities for Electric Power Corrosion Control and Applied Electrochemistry, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090 (China); Li, Y.-J. [Department of Chemistry, Tongji University, Shanghai 200092 (China)

    2011-07-29

    Ammonium pyrrolidine dithiocarbamate (APDTC) monolayer was self-assembled on fresh copper surface obtained after oxidation-reduction cycle treatment in 0.1 mol L{sup -1} potassium chloride solution at ambient temperature. The APDTC self-assembled monolayer (SAM) on copper surface was investigated by surface enhanced Raman scattering spectroscopy and the results show that APDTC SAM is chemisorbed on copper surface by its sulfur atoms with perpendicular orientation. The optimum immersing period for SAM formation is 4 h at 0.01 mol L{sup -1} concentration of APDTC. The impedance results indicate that APDTC SAM has good corrosion inhibition effects for copper in 0.5 mol L{sup -1} hydrochloric acid solution and its maximum inhibition efficiency could reach 95%. Quantum chemical calculations show that APDTC has relatively small {Delta}E between the highest occupied molecular orbital and the lowest unoccupied molecular orbital and large negative charge in its two sulfur atoms, which facilitate formation of an insulating Cu/APDTC film on copper surface.

  20. Direct visual evidence of end-on adsorption geometry of pyridine on silver surface investigated by surface enhanced Raman scattering and density functional theory calculations.

    Science.gov (United States)

    Bhunia, Snehasis; Forster, Stefan; Vyas, Nidhi; Schmitt, Hans-Christian; Ojha, Animesh K

    2015-12-05

    Fourier transform Raman (FT-Raman) spectra of neat pyridine (Py) and surface enhanced Raman scattering (SERS) spectra of Py with silver nanoparticles (AgNPs) solution at different molar concentrations (X=1.5M, 1.0M, 0.50 M, 0.25 M, and 0.125 M) were recorded using 1064 nm excitation wavelength. The intensity of Raman bands at ∼1003 (ν11) and ∼1035 (ν21) cm(-1) of Py is enhanced in the SERS spectra. Two new Raman bands were observed at ∼1009 (ν12) and ∼1038 (ν22) cm(-1) in the SERS spectra. These bands correspond to the ring breathing vibrations of Py molecules adsorbed at the AgNPs surface. The value of intensity ratios (I12/I11) and (I21/I22) is increased with dilution and attains a maximum value at X=0.5M and upon further dilution (0.25 and 0.125 M) it drops gradually. The theoretically calculated Raman spectra were found to be in good agreement with experimentally observed Raman spectra. Both, experimental and theoretical investigations have confirmed that the Py interacts with AgNPs via the end-on geometry. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Calculation of neutron shielding using an unidimensional model of transportation in formulation of discrete ordinates with scattering linearly anisotropic and a speed

    International Nuclear Information System (INIS)

    Libotte, Rafael Barbosa; Alves Filho, Hermes; Oliva, Amaury Muñoz

    2017-01-01

    The physical phenomenon of transport of neutral particles in a host environment is of interest in various scientific applications, e.g., nuclear reactors, shielding calculations, radiological protection, nuclear medicine, agronomy, materials science, oil prospecting, etc. In all these areas there is a need for an accurate description of the transport of the particles in the host medium. In this class of applications are the neutron shielding problems, also referred to as 'fixed-source' problems, where the interaction of the particles with the medium does not produce new neutrons, i.e., non-multiplicative medium. In this context, the development of tools that model these problems is relevant and of a beneficial return to society. In this work, we propose the development of deterministic mathematical and computational modeling of neutron transport using the linearized equation of Boltzmann applied to neutron shielding problems. Here we present also the development of a spectro-nodal method (coarse mesh) considering the scattering phenomenon as being linearly anisotropic. We show the results using a computational application, developed in Java language, version 1.8.0 9 1

  2. Effects of internal and external scatter on the build-up characteristics of Monte Carlo calculated absorbed dose for electron irradiation

    International Nuclear Information System (INIS)

    Lin, H.; Wu, DS.; Wu, AD.

    2005-01-01

    The effects of internal and external scatter on surface, build-up and depth dose characteristics simulated by Monte Carlo code EGSnrc for varying field size and SSD for a 10 MeV monoenergetic electron beam with and without an accelerator model are extensively studied in this paper. In particular, sub-millimetre surface PDD was investigated. The percentage depth doses affected significantly by the external scatter show a larger build-up dose. A forward shifted Dmax depth and a sharper fall-off region compared to PDDs with only internal scatter considered. The surface dose with both internal and external scatter shows a marked decrease at 110 cm SSD, and then slight further changes with the increasing SSD since few external scattered particles from accelerator model can reach the phantom for large SSDs. The sharp PDD increase for the 5 cm x 5 cm field compared to other fields seen when only internal scatter is considered is significantly less when external scatter is also present. The effect of external scatter on surface PDD is more pronounced for large fields than small fields (5 cm x 5 cm field)

  3. Development of a module for taking remuneration under the Renewable Energy Law into account in a model for calculating the economic efficiency of smart electricity grids

    International Nuclear Information System (INIS)

    Ludwig, Maximilian Uwe; Toprani, Vipul; Witte, Frank

    2014-01-01

    The enactment of the Law Giving Priority to Renewable Energies (EEG) in 2000 laid the cornerstone for the transformation of the German electricity supply. Since then the proportion of renewable energy in electricity production has grown dramatically, confronting the German network infrastructure, which was initially designed for a centralised supply system, with new problems and challenges. In order to achieve optimal coordination between volatile energy infeeds, electricity storage plants and consumers it is necessary to bring all components involved together in a smart grid. A small-scale grid of this description is currently being operated and investigated on the EUREF Campus in Berlin Schoeneberg. The task of achieving optimal allocation of energy flows and getting the micro smart grid to run accordingly, i.e. at a profit, poses new challenges to all involved. To be able to determine the economic efficiency of smart grids a calculation model was developed which simulates the operation of production and storage plants and takes the behaviour of real consumers into account. The model rates the profitability of investments made in terms of their capital value. In its current version the model still disregards the legal regulations for the remuneration of electricity produced from a mix of renewable resources. These cannot be considered as physically separate in a smart grid. In the present study a module based on EEG provisions was developed which calculates remuneration rates as a function of production and demand at a given moment. This is one of several factors which influence the economic efficiency of smart grids. The study undertakes to identify these factors and describe their influence on the profitability of the total investment.

  4. Environmental law

    International Nuclear Information System (INIS)

    Bender, B.; Sparwasser, R.

    1988-01-01

    Environmental law is discussed exhaustively in this book. Legal and scientific fundamentals are taken into account, a systematic orientation is given, and hints for further information are presented. The book covers general environmental law, plan approval procedures, protection against nuisances, atomic law and radiation protection law, water protection law, waste management law, laws on chemical substances, conservation law. (HSCH) [de

  5. HECTOR 1.00. A program for the calculation of QED, QCD and electroweak corrections to ep and l±N deep inelastic neutral and charged current scattering

    International Nuclear Information System (INIS)

    Arbuzov, A.; Kalinovskaya, L.; Bardin, D.; Deutsches Elektronen-Synchrotron; Bluemlein, J.; Riemann, T.

    1995-11-01

    A description of the Fortran program HECTOR for a variety of semi-analytical calculations of radiative QED, QCD, and electroweak corrections to the double-differential cross sections of NC and CC deep inelastic charged lepton proton (or lepton deuteron) scattering is presented. HECTOR originates from the substantially improved and extended earlier programs HELIOS and TERAD91. It is mainly intended for applications at HERA or LEP x LHC, but may be used also for μN scattering in fixed target experiments. The QED corrections may be calculated in different sets of variables: leptonic, hadronic, mixed, Jaquet-Blondel, double angle etc. Besides the leading logarithmic approximation up to order O(α 2 ), exact O(α) corrections and inclusive soft photon exponentiation are taken into account. The photoproduction region is also covered. (orig.)

  6. Thermal neutron scattering cross sections of beryllium and magnesium oxides

    International Nuclear Information System (INIS)

    Al-Qasir, Iyad; Jisrawi, Najeh; Gillette, Victor; Qteish, Abdallah

    2016-01-01

    Highlights: • Neutron thermalization in BeO and MgO was studied using Ab initio lattice dynamics. • The BeO phonon density of states used to generate the current ENDF library has issues. • The BeO cross sections can provide a more accurate ENDF library than the current one. • For MgO an ENDF library is lacking: a new accurate one can be built from our results. • BeO is a better filter than MgO, especially when cooled down to 77 K. - Abstract: Alkaline-earth beryllium and magnesium oxides are fundamental materials in nuclear industry and thermal neutron scattering applications. The calculation of the thermal neutron scattering cross sections requires a detailed knowledge of the lattice dynamics of the scattering medium. The vibrational properties of BeO and MgO are studied using first-principles calculations within the frame work of the density functional perturbation theory. Excellent agreement between the calculated phonon dispersion relations and the experimental data have been obtained. The phonon densities of states are utilized to calculate the scattering laws using the incoherent approximation. For BeO, there are concerns about the accuracy of the phonon density of states used to generate the current ENDF/B-VII.1 libraries. These concerns are identified, and their influences on the scattering law and inelastic scattering cross section are analyzed. For MgO, no up to date thermal neutron scattering cross section ENDF library is available, and our results represent a potential one for use in different applications. Moreover, the BeO and MgO efficiencies as neutron filters at different temperatures are investigated. BeO is found to be a better filter than MgO, especially when cooled down, and cooling MgO below 77 K does not significantly improve the filter’s efficiency.

  7. TDHF calculations for heavy-ion collisions

    International Nuclear Information System (INIS)

    Dhar, A.K.

    1981-01-01

    In considering the TDHF theory for heavy-ion reaction calculations it is shown that this parameter-free approach spans a wide range of nuclear phenomena ranging from elastic scattering to fusion, including dissipative and collective processes, in a unified manner. The subject is considered under the headings: (1) TDHF equations, conservation laws, effective hamiltonian and initial conditions. (2) Symmetries and filling approximation. (3) Qualitative features of TDHF dynamics. (4) Comparison with experiment (fusion results, deep-inelastic reaction studies, particle emission from TDHF calculations). (U.K.)

  8. Features of light attenuation in crystals under violation of the Bouguer law

    International Nuclear Information System (INIS)

    Kolesnikov, A. I.; Kaplunov, I. A.; Talyzin, I. V.; Tret'yakov, S. A.; Gritsunova, O. V.; Vorontsova, E. Yu.

    2008-01-01

    A computer simulation and measurements of the light transmittance of germanium and paratellurite crystals of different thickness were used to show that, at scattering probabilities of photons comparable to their absorption probabilities, the standard methods for calculating light extinction coefficients on the basis of the Bouguer law lead to rough errors in estimation of the optical quality of a material.

  9. Business Law

    DEFF Research Database (Denmark)

    Föh, Kennet Fischer; Mandøe, Lene; Tinten, Bjarke

    Business Law is a translation of the 2nd edition of Erhvervsjura - videregående uddannelser. It is an educational textbook for the subject of business law. The textbook covers all important topic?s within business law such as the Legal System, Private International Law, Insolvency Law, Contract law......, Instruments of debt and other claims, Sale of Goods and real estate, Charges, mortgages and pledges, Guarantees, Credit agreements, Tort Law, Product liability and Insurance, Company law, Market law, Labour Law, Family Law and Law of Inheritance....

  10. Electron scattering in the presence of an intense electromagnetic field

    International Nuclear Information System (INIS)

    Mohan, M.; Chand, P.

    1977-03-01

    The general theory of electron scattering in the presence of an external electromagnetic field, provided by an intense laser beam, accompanied by absorption of n photons, each with energy hω, is discussed. The calculation leads to many summations over intermediate states. A general method for exactly evaluating several sums is described in detail. Numerical results show that the cross-section varies with intensity in a power law fashion

  11. A simple scaling law for the equation of state and the radial distribution functions calculated by density-functional theory molecular dynamics

    Science.gov (United States)

    Danel, J.-F.; Kazandjian, L.

    2018-06-01

    It is shown that the equation of state (EOS) and the radial distribution functions obtained by density-functional theory molecular dynamics (DFT-MD) obey a simple scaling law. At given temperature, the thermodynamic properties and the radial distribution functions given by a DFT-MD simulation remain unchanged if the mole fractions of nuclei of given charge and the average volume per atom remain unchanged. A practical interest of this scaling law is to obtain an EOS table for a fluid from that already obtained for another fluid if it has the right characteristics. Another practical interest of this result is that an asymmetric mixture made up of light and heavy atoms requiring very different time steps can be replaced by a mixture of atoms of equal mass, which facilitates the exploration of the configuration space in a DFT-MD simulation. The scaling law is illustrated by numerical results.

  12. Patterns of High energy Massive String Scatterings in the Regge Regime

    International Nuclear Information System (INIS)

    Lee Jen Chi

    2009-01-01

    We calculate high energy massive string scattering amplitudes of open bosonic string in the Regge regime (RR). We found that the number of high energy amplitudes for each fixed mass level in the RR is much more numerous than that of Gross regime (GR) calculated previously. Moreover, we discover that the leading order amplitudes in the RR can be expressed in terms of the Kummer function of the second kind. In particular, based on a summation algorithm for Stirling number identities developed recently, we discover that the ratios calculated previously among scattering amplitudes in the GR can be extracted from this Kummer function in the RR. We conjecture and give evidences that the existence of these GR ratios in the RR persists to sub-leading orders in the Regge expansion of all string scattering amplitudes. Finally, we demonstrate the universal power-law behavior for all massive string scattering amplitudes in the RR. (author)

  13. MO-FG-CAMPUS-JeP1-05: Water Equivalent Path Length Calculations Using Scatter-Corrected Head and Neck CBCT Images to Evaluate Patients for Adaptive Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J; Park, Y; Sharp, G; Winey, B [Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States)

    2016-06-15

    Purpose: To establish a method to evaluate the dosimetric impact of anatomic changes in head and neck patients during proton therapy by using scatter-corrected cone-beam CT (CBCT) images. Methods: The water equivalent path length (WEPL) was calculated to the distal edge of PTV contours by using tomographic images available for six head and neck patients received photon therapy. The proton range variation was measured by calculating the difference between the distal WEPLs calculated with the planning CT and weekly treatment CBCT images. By performing an automatic rigid registration, six degrees-of-freedom (DOF) correction was made to the CBCT images to account for the patient setup uncertainty. For accurate WEPL calculations, an existing CBCT scatter correction algorithm, whose performance was already proven for phantom images, was calibrated for head and neck patient images. Specifically, two different image similarity measures, mutual information (MI) and mean square error (MSE), were tested for the deformable image registration (DIR) in the CBCT scatter correction algorithm. Results: The impact of weight loss was reflected in the distal WEPL differences with the aid of the automatic rigid registration reducing the influence of patient setup uncertainty on the WEPL calculation results. The WEPL difference averaged over distal area was 2.9 ± 2.9 (mm) across all fractions of six patients and its maximum, mostly found at the last available fraction, was 6.2 ± 3.4 (mm). The MSE-based DIR successfully registered each treatment CBCT image to the planning CT image. On the other hand, the MI-based DIR deformed the skin voxels in the planning CT image to the immobilization mask in the treatment CBCT image, most of which was cropped out of the planning CT image. Conclusion: The dosimetric impact of anatomic changes was evaluated by calculating the distal WEPL difference with the existing scatter-correction algorithm appropriately calibrated. Jihun Kim, Yang-Kyun Park

  14. Scattering by bound nucleons

    International Nuclear Information System (INIS)

    Tezuka, Hirokazu.

    1984-10-01

    Scattering of a particle by bound nucleons is discussed. Effects of nucleons that are bound in a nucleus are taken as a structure function. The way how to calculate the structure function is given. (author)

  15. Ethanol as an Alternative Fuel for Automobiles: Using the First Law of Thermodynamics to Calculate the "Corn-Area-per-Car" Ratio

    Science.gov (United States)

    Pietro, William J.

    2009-01-01

    Students will use the first law of thermodynamics to determine the feasibility of using corn ethanol as an alternative to fossil fuels in automobiles. Energy flow is tracked from the Sun, to photosynthesized carbohydrate, to ethanol through fermentation, and finally to work in the combustion engine. Feasibility is gauged by estimating a…

  16. Scaling laws in (e,3e) processes

    International Nuclear Information System (INIS)

    Gasaneo, G; Rodriguez, K V; Ancarani, L U; Cappello, C Dal; Charpentier, I

    2009-01-01

    We study the double ionization of helium-like ions by impact of electrons with high incident energy. Within the isoelectronic sequence, an approximate scaling law for (e,3e) differential cross sections is proposed and confirmed by calculations. The latter are performed using 14-parameters Hylleraas-like wave functions to represent the bound electrons in the initial channel, plane waves for the fast incoming and scattered electrons, and a continuum distorted wave approach for the two ejected electrons in the final channel.

  17. The modified Beer-Lambert law revisited.

    Science.gov (United States)

    Kocsis, L; Herman, P; Eke, A

    2006-03-07

    The modified Beer-Lambert law (MBLL) is the basis of continuous-wave near-infrared tissue spectroscopy (cwNIRS). The differential form of MBLL (dMBLL) states that the change in light attenuation is proportional to the changes in the concentrations of tissue chromophores, mainly oxy- and deoxyhaemoglobin. If attenuation changes are measured at two or more wavelengths, concentration changes can be calculated. The dMBLL is based on two assumptions: (1) the absorption of the tissue changes homogeneously, and (2) the scattering loss is constant. It is known that absorption changes are usually inhomogeneous, and therefore dMBLL underestimates the changes in concentrations (partial volume effect) and every calculated value is influenced by the change in the concentration of other chromophores (cross-talk between chromophores). However, the error introduced by the second assumption (cross-talk of scattering changes) has not been assessed previously. An analytically treatable special case (semi-infinite, homogeneous medium, with optical properties of the cerebral cortex) is utilized here to estimate its order of magnitude. We show that the per cent change of the transport scattering coefficient and that of the absorption coefficient have an approximately equal effect on the changes of attenuation, and a 1% increase in scattering increases the estimated concentration changes by about 0.5 microM.

  18. New calculations of cross-sections and charge asymmetries for lepton pair production and wide angle Bhabha scattering in e+e- collisions near the Z-peak

    Science.gov (United States)

    Field, J. H.

    1994-03-01

    A new event generator for lepton pair production and wide angle Bhabha scattering, BHAGENE3, is presented. Both electroweak and higher order (beyond O(α) QED corrections are included. Comparisons are made with results from the programs, based on the structure function formalism, ALIBABA, TOPAZ0 and ZFITTER. For the case of the final states l+l-γγ ( l = e, μ, τ) BHAGENE3 results are compared with those of Monte Carlo generators that use the exact O( α2) amplitudes.

  19. A new modelling of the multigroup scattering cross section in deterministic codes for neutron transport

    International Nuclear Information System (INIS)

    Calloo, A.A.

    2012-01-01

    In reactor physics, calculation schemes with deterministic codes are validated with respect to a reference Monte Carlo code. The remaining biases are attributed to the approximations and models induced by the multigroup theory (self-shielding models and expansion of the scattering law using Legendre polynomials) to represent physical phenomena (resonant absorption and scattering anisotropy respectively). This work focuses on the relevance of a polynomial expansion to model the scattering law. Since the outset of reactor physics, the latter has been expanded on a truncated Legendre polynomial basis. However, the transfer cross sections are highly anisotropic, with non-zero values for a very small range of the cosine of the scattering angle. Besides, the finer the energy mesh and the lighter the scattering nucleus, the more exacerbated is the peaked shape of this cross section. As such, the Legendre expansion is less suited to represent the scattering law. Furthermore, this model induces negative values which are non-physical. In this work, various scattering laws are briefly described and the limitations of the existing model are pointed out. Hence, piecewise-constant functions have been used to represent the multigroup scattering cross section. This representation requires a different model for the diffusion source. The discrete ordinates method which is widely employed to solve the transport equation has been adapted. Thus, the finite volume method for angular discretization has been developed and implemented in Paris environment which hosts the S n solver, Snatch. The angular finite volume method has been compared to the collocation method with Legendre moments to ensure its proper performance. Moreover, unlike the latter, this method is adapted for both the Legendre moments and the piecewise-constant functions representations of the scattering cross section. This hybrid-source method has been validated for different cases: fuel cell in infinite lattice

  20. On determination of the dynamics of hydrocarbon molecules on catalyst's surfaces by means of neutron scattering

    International Nuclear Information System (INIS)

    Stockmeyer, R.

    1976-01-01

    The intensity distribution of slow neutrons scattered by adsorbed hydrocarbon molecules contains information on the dynamics of the molecules. In this paper the scattering law for incoherently scattering molecules is derived taking into account the very different mobility perpendicular and parallel to the surface. In contrast to the well known scattering law of threedimensionally diffusing particles the scattering law for twodimensional diffusion diverges logarithmically at zero energy transfer. Conclusions relevant to the interpretation of neutron scattering data are discussed. (orig.) [de

  1. Q-space analysis of scattering by particles: A review

    International Nuclear Information System (INIS)

    Sorensen, Christopher M.

    2013-01-01

    This review describes and demonstrates the Q-space analysis of light scattering by particles. This analysis involves plotting the scattered intensity versus the scattering wave vector q=(4π/λ)sin(θ/2) on a double log plot. The analysis uncovers power law descriptions of the scattering with length scale dependent crossovers between the power laws. It also systematically describes the magnitude of the scattering and the interference ripple structure that often underlies the power laws. It applies to scattering from dielectric spheres of arbitrary size and refractive index (Mie scattering), fractal aggregates and irregularly shaped particles such as dusts. The benefits of Q-space analysis are that it provides a simple and comprehensive description of scattering in terms of power laws with quantifiable exponents; it can be used to differentiate scattering by particles of different shapes, and it yields a physical understanding of scattering based on diffraction. -- Highlights: ► Angular scattering functions for spheres show power laws versus the wave vector q. ► The power laws uncover patterns involving length scales and functionalities. ► Similar power laws appear in scattering from aggregates and irregular particles. ► Power laws provide a comprehensive and quantitative description of scattering

  2. KENO, Multigroup P1 Scattering Monte-Carlo Transport Calculation for Criticality, Keff, Flux in 3-D. KENO-5, SCALE-1 Module with Pn Scattering, Super-grouping, Diffusion Albedo Reflection

    International Nuclear Information System (INIS)

    Petrie, L.M.; Landers, N.F.

    2001-01-01

    1 - Description of problem or function: KENO is a multigroup, Monte Carlo criticality code containing a special geometry package which allows easy description of systems composed of cylinders, spheres, and cuboids (rectangular parallelepipeds) arranged in any order with only one restriction. They cannot be rotated or translated. Each geometrical region must be described as completely enclosing all regions interior to it. For systems not describable using this special geometry package, the program can use the generalized geometry package (GEOM) developed for the O5R Monte Carlo code. It allows any system that can be described by a collection of planes and/or quadratic surfaces, arbitrarily oriented and intersecting in arbitrary fashion. The entire problem can be mocked up in generalized geometry, or one generalized geometry unit or box type can be used alone or in combination with standard KENO units or box types. Rectangular arrays of fissile units are allowed with or without external reflector regions. Output from KENO consists of k eff for the system plus an estimate of its standard deviation and the leakage, absorption, and fissions for each energy group plus the totals for all groups. Flux as a function of energy group and region and fission densities as a function of region are optional output. KENO-4: Added features include a neutron balance edit, PICTURE routines to check the input geometry, and a random number sequencing subroutine written in FORTRAN-4. 2 - Method of solution: The scattering treatment used in KENO assumes that the differential neutron scattering cross section can be represented by a P1 Legendre polynomial. Absorption of neutrons in KENO is not allowed. Instead, at each collision point of a neutron tracking history the weight of the neutron is reduced by the absorption probability. When the neutron weight has been reduced below a specified point for the region in which the collision occurs, Russian roulette is played to determine if the

  3. Isomorphs in the phase diagram of a model liquid without inverse power law repulsion

    DEFF Research Database (Denmark)

    Veldhorst, Arnold Adriaan; Bøhling, Lasse; Dyre, J. C.

    2012-01-01

    scattering function are calculated. The results are shown to reflect a hidden scale invariance; despite its exponential repulsion the Buckingham potential is well approximated by an inverse power-law plus a linear term in the region of the first peak of the radial distribution function. As a consequence...... the dynamics of the viscous Buckingham liquid is mimicked by a corresponding model with purely repulsive inverse-power-law interactions. The results presented here closely resemble earlier results for Lennard-Jones type liquids, demonstrating that the existence of strong correlations and isomorphs does...... not depend critically on the mathematical form of the repulsion being an inverse power law....

  4. Environmental law

    International Nuclear Information System (INIS)

    Ketteler, G.; Kippels, K.

    1988-01-01

    In section I 'Basic principles' the following topics are considered: Constitutional-legal aspects of environmental protection, e.g. nuclear hazards and the remaining risk; European environmental law; international environmental law; administrative law, private law and criminal law relating to the environment; basic principles of environmental law, the instruments of public environmental law. Section II 'Special areas of law' is concerned with the law on water and waste, prevention of air pollution, nature conservation and care of the countryside. Legal decisions and literature up to June 1988 have been taken into consideration. (orig./RST) [de

  5. Civil law

    NARCIS (Netherlands)

    Hesselink, M.W.; Gibbons, M.T.

    2014-01-01

    The concept of civil law has two distinct meanings. that is, disputes between private parties (individuals, corporations), as opposed to other branches of the law, such as administrative law or criminal law, which relate to disputes between individuals and the state. Second, the term civil law is

  6. Ab initio calculations of scattering cross sections of the three-body system (p ¯,e+,e- ) between the e-+H ¯(n =2 ) and e-+H ¯(n =3 ) thresholds

    Science.gov (United States)

    Valdes, Mateo; Dufour, Marianne; Lazauskas, Rimantas; Hervieux, Paul-Antoine

    2018-01-01

    The ab initio method based on the Faddeev-Merkuriev equations is used to calculate cross sections involving the (p ¯,e+,e-) three-body system, with an emphasis on antihydrogen formation (H ¯) via antiproton (p ¯) scattering on positronium. This system is studied in the energy range between the e-+H ¯(n =2 ) and the e-+H ¯(n =3 ) thresholds, where precisely calculated cross sections can be useful for future experiments (GBAR, AEGIS, etc.) aiming to produce antihydrogen atoms. A special treatment is developed to take into account the long-range charge-dipole interaction effect on the wave function. Emphasis is placed on the impact of Feshbach resonances and Gailitis-Damburg oscillations appearing in the vicinity of the p ¯+Ps (n =2 ) threshold.

  7. Effect of multiple scattering on lidar measurements

    International Nuclear Information System (INIS)

    Cohen, A.

    1977-01-01

    The lidar equation in its standard form involves the assumption that the scattered irradiance reaching the lidar receiver has been only singly scattered. However, in the cases of scattering from clouds and thick aerosol layers, it is shown that multiple scattering cannot be neglected. An experimental method for the detection of multiple scattering by depolarization measurement techniques is discussed. One method of theoretical calculations of double-scattering is presented and discussed

  8. Criminal Law

    DEFF Research Database (Denmark)

    Langsted, Lars Bo; Garde, Peter; Greve, Vagn

    <> book contains a thorough description of Danish substantive criminal law, criminal procedure and execution of sanctions. The book was originally published as a monograph in the International Encyclopaedia of Laws/Criminal Law....... book contains a thorough description of Danish substantive criminal law, criminal procedure and execution of sanctions. The book was originally published as a monograph in the International Encyclopaedia of Laws/Criminal Law....

  9. Li-ion conduction in the LiBH4:LiI system from Density Functional Theory calculations and Quasi-Elastic Neutron Scattering

    DEFF Research Database (Denmark)

    Myrdal, Jon Steinar Gardarsson; Blanchard, Didier; Sveinbjörnsson, Dadi Þorsteinn

    2013-01-01

    The hexagonal high-temperature polymorph of LiBH4 is stabilized by solid solution with LiI to exhibit superionic Li+ ionic conductivity at room temperature. Herein, the mechanisms for the Li+ diffusion are investigated for the first time by density functional theory (DFT) calculations coupled...

  10. World law

    Directory of Open Access Journals (Sweden)

    Harold J. Berman

    1999-03-01

    Full Text Available In the third millennium of the Christian era, which is characterised by the emergence of a world economy and eventually a world society, the concept of world law is needed to embrace not only the traditional disciplines of public international law, and comparative law, but also the common underlying legal principles applicable in world trade, world finance, transnational transfer of technology and other fields of world economic law, as well as in such emerging fields as the protection of the world's environment and the protection of universal human rights. World law combines inter-state law with the common law of humanity and the customary law of various world communities.

  11. Comparison between the Gauss' law method and the zero current method to calculate multi-species ionic diffusion in saturated uncharged porous materials

    DEFF Research Database (Denmark)

    Johannesson, Björn

    2010-01-01

    There exist, mainly, two different continuum approaches to calculate transient multi species ionic diffusion. One of them is based on explicitly assuming a zero current in the diffusing mixture together with an introduction of a streaming electrical potential in the constitutive equations...... of the coupled set of equation in favor of the staggering approach. A one step truly implicit time stepping scheme is adopted together with an implementation of a modified Newton-Raphson iterational scheme for search of equilibrium at each considered time step calculation. Results from the zero current case...... difference of the two types of potentials, that is, the streaming electrical potential and the electrical field is carefully examined. A novel numerical method based on the finite element approach is established for the zero current method case. The proposed numerical method uses the direct calculation...

  12. Calculation of the Inelastic Scattering of Neutrons from Polyethylene and Water; Calcul de la diffusion inelastique des neutrons par le polyethylene et l'eau; Raschet neuprugogo rasseyaniya nejtronov poliehtilenom i vodoj; Calculo de la dispersion inelastica de neutrones por polietileno y agua

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, D T; Federighi, F D [Knolls Atomic Power Laboratory, General Electric Company, Schenectady, NY (United States)

    1963-01-15

    A model for the calculation of the scattering of thermal neutrons from chemical system was proposed by Nelkin. This model considered the actual dynamics of the scattering system as composed of a set of oscillatory motions, each describable by a Hamiltonian which commuted with each of the others. It was then possible to express the differential scattering cross-section in closed form. This model has been used to calculate the scattering of neutrons by water. Some care must be taken in performing the numerical integration over angle and energy. The scattering model has been extended to the calculation of neutron scattering from polyethylene C{sub n}H{sub 2n}. Analogous levels of polyethylene can be noted at 0.089 eV, 0.182 eV, 0.354 eV, and 0.533 eV. The differential and total cross-sections have been calculated for the scattering and the latter has been seen to be in reasonable agreement with experiment at room temperature. Scattering kernels have been calculated for a number of temperatures and where possible the results have been compared with experiment. In addition, neutron flux spectra and diffusion lengths have been calculated using the equations of reactor physics. Comparison of these Results with experimental data indicates that such integral measurements are indicative of at least the gross features of the scattering system and should be analysed in conduction with the detailed differential cross-section results. (author) [French] Nelkin a propose un modele pour calculer la diffusion de neutrons thermiques dans des systemes chimiques. Dans ce mod and le on considere que la dynamique reelle du systeme de diffusion se compose d'un ensemble de mouvements oscillatoires, chaque mouvement pouvant 6tre decrit par un hamiltonien commutant avec chacun des autres. Il est alors possible d'exprimer la section efficace differentielle de diffusion sous une forme fermee. Les auteurs ont employe ce modele pour calculer la diffusion des neutrons par l'eau. Il faut prendre

  13. Analyzing-power measurements for 2H(n/sub pol/,n)2H scattering at 10 MeV compared to few-nucleon calculations and data for 2H(p/sub pol/,p)2H scattering

    International Nuclear Information System (INIS)

    Tornow, W.; Howell, C.R.; Byrd, R.C.; Pedroni, R.S.; Walter, R.L.

    1982-01-01

    The analyzing power A/sub y/(theta) for scattering of neutrons from deuterons at 10 MeV for 30 0 to 145 0 (c.m.) was measured to an accuracy better than +- 0.005. The results are compared to published p-d data at 10 MeV, and convincing differences are noted for the first time. These differences provide a sensitive test both of calculations for the three-nucleon system and, more importantly, of the fundamental nucleon-nucleon interaction

  14. Magnetic Compton scattering study of Laves phase ZrFe2 and Sc doped ZrFe2: Experiment and Green function based relativistic calculations

    Science.gov (United States)

    Bhatt, Samir; Mund, H. S.; Kumar, Kishor; Bapna, Komal; Dashora, Alpa; Itou, M.; Sakurai, Y.; Ahuja, B. L.

    2018-05-01

    Spin momentum densities of ferromagnetic ZrFe2 and Zr0.8Sc0.2Fe2 have been measured using magnetic Compton scattering with 182.65 keV circularly polarized synchrotron radiations. Site specific spin moments, which are responsible for the formation of total spin moment, have been deduced from Compton line shapes. At room temperature, the computed spin moment of ZrFe2 is found to be slightly higher than that of Sc doped ZrFe2 which is in consensus with the magnetization data. To compare the experimental data, we have also computed magnetic Compton profiles (MCPs), total and partial spin projected density of states (DOS) and the site specific spin moments using spin-polarized relativistic Korringa-Kohn-Rostoker method. It is observed that the spin moment at Fe site is aligned antiparallel to that of Zr site in both ZrFe2 and Zr0.8Sc0.2Fe2. The MCP results when compared with vibrating sample magnetometer based magnetization data, show a very small contribution of orbital moment in the formation of total magnetic moments in both the compounds. The DOS of ferromagnetic ground state of ZrFe2 and Zr0.8Sc0.2Fe2 are interpreted on the basis of a covalent magnetic model beyond the Stoner rigid band model. It appears that on alloying between a magnetic and a non-magnetic partner (with low valence), a polarization develops on the non-magnetic atom which is anti-parallel to that of the magnetic atom.

  15. Quasiparticles in Raman scattering of an electromagnetic wave by an atomic condensate

    International Nuclear Information System (INIS)

    Il’ichev, L. V.

    2011-01-01

    Raman scattering of an intense electromagnetic wave by a free atomic Bose condensate is considered. In a system of atoms and photons, a subsystem is separated whose dynamics can be naturally described in terms of quasiparticles: quasi-atoms and quasi-photons. The dispersion laws of quasiparticles are interrupted by the instability interval. The introduction of quasiparticles within this interval is impossible, while dispersion laws that are continued formally acquire imaginary components. The dynamic scattering model is generalized by including dissipative annihilation processes of scattered photons and uncondensed atoms. A stationary solution of the corresponding quantum control equation is found, allowing the calculation of momentum distributions of real particles and quasiparticles. The outlook for the experimental detection of quasiparticles is discussed.

  16. Electron-longitudinal-acoustic-phonon scattering in double-quantum-dot based quantum gates

    International Nuclear Information System (INIS)

    Zhao Peiji; Woolard, Dwight L.

    2008-01-01

    We propose a nanostructure design which can significantly suppress longitudinal-acoustic-phonon-electron scattering in double-quantum-dot based quantum gates for quantum computing. The calculated relaxation rates vs. bias voltage exhibit a double-peak feature with a minimum approaching 10 5 s -1 . In this matter, the energy conservation law prohibits scattering contributions from phonons with large momenta; furthermore, increasing the barrier height between the double quantum dots reduces coupling strength between the dots. Hence, the joint action of the energy conservation law and the decoupling greatly reduces the scattering rates. The degrading effects of temperatures can be reduced simply by increasing the height of the barrier between the dots

  17. A practical method to calculate head scatter factors in wedged rectangular and irregular MLC shaped beams for external and internal wedges

    International Nuclear Information System (INIS)

    Georg, Dietmar; Olofsson, Joergen; Kuenzler, Thomas; Aiginger, Hannes; Karlsson, Mikael

    2004-01-01

    Factor based methods for absorbed dose or monitor unit calculations are often based on separate data sets for open and wedged beams. The determination of basic beam parameters can be rather time consuming, unless equivalent square methods are applied. When considering irregular wedged beams shaped with a multileaf collimator, parametrization methods for dosimetric quantities, e.g. output ratios or wedge factors as a function of field size and shape, become even more important. A practical method is presented to derive wedged output ratios in air (S c,w ) for any rectangular field and for any irregular MLC shaped beam. This method was based on open field output ratios in air (S c ) for a field with the same collimator setting, and a relation f w between S c,w and S c . The relation f w can be determined from measured output ratios in air for a few open and wedged fields including the maximum wedged field size. The function f w and its parametrization were dependent on wedge angle and treatment head design, i.e. they were different for internal and external wedges. The proposed method was tested for rectangular wedged fields on three accelerators with internal wedges (GE, Elekta, BBC) and two accelerators with external wedges (Varian). For symmetric regular beams the average deviation between calculated and measured S c,w /S c ratios was 0.3% for external wedges and about 0.6% for internal wedges. Maximum deviations of 1.8% were obtained for elongated rectangular fields on the GE and ELEKTA linacs with an internal wedge. The same accuracy was achieved for irregular MLC shaped wedged beams on the accelerators with MLC and internal wedges (GE and Elekta), with an average deviation <1% for the fields tested. The proposed method to determine output ratios in air for wedged beams from output ratios of open beams, combined with equivalent square approaches, can be easily integrated in empirical or semi-empirical methods for monitor unit calculations

  18. Diffuse scattering in Ih ice

    International Nuclear Information System (INIS)

    Wehinger, Björn; Krisch, Michael; Bosak, Alexeï; Chernyshov, Dmitry; Bulat, Sergey; Ezhov, Victor

    2014-01-01

    Single crystals of ice Ih, extracted from the subglacial Lake Vostok accretion ice layer (3621 m depth) were investigated by means of diffuse x-ray scattering and inelastic x-ray scattering. The diffuse scattering was identified as mainly inelastic and rationalized in the frame of ab initio calculations for the ordered ice XI approximant. Together with Monte-Carlo modelling, our data allowed reconsidering previously available neutron diffuse scattering data of heavy ice as the sum of thermal diffuse scattering and static disorder contribution. (paper)

  19. Law Studies

    Directory of Open Access Journals (Sweden)

    G. P. Tolstopiatenko

    2014-01-01

    Full Text Available At the origin of the International Law Department were such eminent scientists, diplomats and teachers as V.N. Durdenevsky, S.B. Krylov and F.I. Kozhevnikov. International law studies in USSR and Russia during the second half of the XX century was largely shaped by the lawyers of MGIMO. They had a large influence on the education in the international law in the whole USSR, and since 1990s in Russia and other CIS countries. The prominence of the research of MGIMO international lawyers was due to the close connections with the international practice, involving international negotiations in the United Nations and other international fora, diplomatic conferences and international scientific conferences. This experience is represented in the MGIMO handbooks on international law, which are still in demand. The Faculty of International Law at MGIMO consists of seven departments: Department of International Law, Department of Private International and Comparative Law; Department of European Law; Department of Comparative Constitutional Law; Department of Administrative and Financial Law; Department of Criminal Law, Department Criminal Procedure and Criminalistics. Many Russian lawyers famous at home and abroad work at the Faculty, contributing to domestic and international law studies. In 1947 the Academy of Sciences of the USSR published "International Law" textbook which was the first textbook on the subject in USSR. S.B. Krylov and V.N. Durdenevsky were the authors and editors of the textbook. First generations of MGIMO students studied international law according to this textbook. All subsequent books on international law, published in the USSR, were based on the approach to the teaching of international law, developed in the textbook by S.B. Krylov and V.N. Durdenevsky. The first textbook of international law with the stamp of MGIMO, edited by F.I. Kozhevnikov, was published in 1964. This textbook later went through five editions in 1966, 1972

  20. On possible contribution of standing wave like spacer dynamics in polymer liquid crystals to quasi-elastic cold neutron scattering spectra

    International Nuclear Information System (INIS)

    Jecl, R.; Cvikl, B.

    1998-01-01

    The quasi-elastic cold neutron incoherent scattering law, QNS, for the assumed case of transversal standing wave type of motion of the linear chain a spacer-of the polyacrylate polymer liquid crystal, based upon the random walk of the particle between two perfectly potential barriers, is derived. The spacer protons are taken to vibrate (within the stationary plane) transversely to the line joining the oxygen atoms in a way where they are all simultaneously displaced in the same direction with amplitudes of the standing wave fundamental mode of the vibration excited. The calculated relevant incoherent scattering law is found to be a non-distinct function of the scattering vector Q, in the sense that the postulated dynamical effect of the spacer protons causes the peak value of the calculated incoherent scattering law, S(Q,ω), to remain constant throughout the experimentally accessible range of the scattering vector Q. It appears that, when the experimental resolution broadening effects is taken into account, the contribution of the postulated dynamical behavior to the measured QNS spectra might be small, particularly so, if dome additional motion of the scatters is present, and consequently the standing wave like spacer dynamics in polymer liquid crystals will be very difficult to be identified uniquely in the quasielastic neutron scattering experiments.(author)

  1. SU-E-T-499: Comparison of Measured Tissue Phantom Ratios (TPR) Against Calculated From Percent Depth Doses (PDD) with and Without Peak Scatter Factor (PSF) in 6MV Open Beam

    International Nuclear Information System (INIS)

    Narayanasamy, G; Cruz, W; Gutierrez, Alonso; Mavroidis, Panayiotis; Papanikolaou, N; Stathakis, S; Breton, C

    2014-01-01

    Purpose: To examine the accuracy of measured tissue phantom ratios (TPR) values with TPR calculated from percentage depth dose (PDD) with and without peak scatter fraction (PSF) correction. Methods: For 6MV open beam, TPR and PDD values were measured using PTW Semiflex (31010) ionization field and reference chambers (0.125cc volume) in a PTW MP3-M water tank. PDD curves were measured at SSD of 100cm for 7 square fields from 3cm to 30cm. The TPR values were measured up to 22cm depth for the same fields by continuous water draining method with ionization chamber static at 100cm from source. A comparison study was performed between the (a) measured TPR, (b) TPR calculated from PDD without PSF, (c) TPR calculated from PDD with PSF and (d) clinical TPR from RadCalc (ver 6.2, Sun Nuclear Corp). Results: There is a field size, depth dependence on TPR values. For 10cmx10cm, the differences in surface dose (DDs), dose at 10cm depth (DD10) <0.5%; differences in dmax (Ddmax) <2mm for the 4 methods. The corresponding values for 30cmx30cm are DDs, DD10 <0.2% and Ddmax<3mm. Even though for 3cmx3cm field, DDs and DD10 <1% and Ddmax<1mm, the calculated TPR values with and without PSF correction differed by 2% at >20cm depth. In all field sizes at depths>28cm, (d) clinical TPR values are larger than that from (b) and (c) by >3%. Conclusion: Measured TPR in method (a) differ from calculated TPR in methods (b) and (c) to within 1% for depths < 28cm in all 7 fields in open 6MV beam. The dmax values are within 3mm of each other. The largest deviation of >3% was observed in clinical TPR values in method (d) for all fields at depths < 28cm

  2. The Scattering Law for Room Temperature Light Water; Loi de diffusion dans l'eau legere a la temperature ambiante; Zakon rasseyaniya nejtronov legkoj vodoj komnatnoj temperatury; Ley de dispersion del agua ligera a temperatura ambiente

    Energy Technology Data Exchange (ETDEWEB)

    Kottwitz, D A; Leonard, Jr, B R [Hanford Laboratories, General Electric Company, Richland, WA (United States)

    1963-01-15

    The Hanford triple-axis crystal spectrometer has been used to measure the Egelstaff scattering law for light water at 22{sup o}C for neutron wave vector changes up to 14A{sup -1} and energy transfers in the range 0.05 to 0.25 eV. The values of initial neutron energy were 0.15, 0.20, 0.30, and 0.40 eV, and scattering angles ranged from 4{sup o}to 72{sup o}. Scattering by a vanadium sample at 77{sup o}K served to establish the spectrometer resolution and efficiency functions. The scattering law S({alpha},{beta}) and the generalized frequency distribution p({beta}) derived from it are in substantial agreement in the overlap region with results obtained by Haywood and Thorson at Chalk River. The function p(6) has been extended to {beta} {approx} 10 to include the region occupied by the lowest molecular vibration level near {beta}= 8 . In this region the measured p({beta}) has a low sloping plateau, indicating that the vibrational peak has been smeared out by broad instrumental resolution. The normalization integral of the measured p({beta}) is higher than its theoretical value. (author) [French] Les auteurs ont employe le spectrometre a cristal triaxial de Hanford pour mesurer la loi de diffusion d'Egelstaff dans l'eau legere a la temperature de 22{sup o}, pour un vecteur d'ondes neutroniques pouvant atteindre 14A''-''1 et pour des transferts d'energie compris entre 0,05 et 0,25 eV. L'energie neutronique initiale etait de 0,15, 0,20, 0,30 et 0,40 eV et lesjtngles de diffusion etaieni compris entre 4{sup o} et 72{sup o} La diffusion par un echantillon de vanadium a 77{sup o}K a permis d'etablir la resolution du spectrometre ainsi que les fonctions d'efficacite. La loi de diffusion S({alpha},{beta}) et la distribution des frequences generalisee p(6) qui en derive concordent bien dans la region de recouvrement avec les resultats obtenus par Haywood et Thorson, a Chalk River. La fonction p({beta}) a ete etendue a {beta} {approx} 10 de maniere a englober la region occupee

  3. International law

    CERN Document Server

    Shaw, Malcolm N

    2017-01-01

    International Law is the definitive and authoritative text on the subject, offering Shaw's unbeatable combination of clarity of expression and academic rigour and ensuring both understanding and critical analysis in an engaging and authoritative style. Encompassing the leading principles, practice and cases, and retaining and developing the detailed references which encourage and assist the reader in further study, this new edition motivates and challenges students and professionals while remaining accessible and engaging. Fully updated to reflect recent case law and treaty developments, this edition contains an expanded treatment of the relationship between international and domestic law, the principles of international humanitarian law, and international criminal law alongside additional material on international economic law.

  4. Environmental law

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    This pocketbook contains major federal regulations on environmental protection. They serve to protect and cultivate mankind's natural foundations of life, to preserve the environment. The environmental law is devided as follows: Constitutional law on the environment, common administrative law on the environment, special administrative law on the environment including conservation of nature and preservation of rural amenities, protection of waters, waste management, protection against nuisances, nuclear energy and radiation protection, energy conservation, protection against dangerous substances, private law relating to the environment, criminal law relating to the environment. (HSCH) [de

  5. Exact and approximate multiple diffraction calculations

    International Nuclear Information System (INIS)

    Alexander, Y.; Wallace, S.J.; Sparrow, D.A.

    1976-08-01

    A three-body potential scattering problem is solved in the fixed scatterer model exactly and approximately to test the validity of commonly used assumptions of multiple scattering calculations. The model problem involves two-body amplitudes that show diffraction-like differential scattering similar to high energy hadron-nucleon amplitudes. The exact fixed scatterer calculations are compared to Glauber approximation, eikonal-expansion results and a noneikonal approximation

  6. Insights inot the atomic many-particle dynamics of scattering processes by ab-initio calculations; Einblicke in die atomare Vielteilchendynamik von Streuprozessen durch ab-initio-Rechnungen

    Energy Technology Data Exchange (ETDEWEB)

    Zapukhlyak, Myroslav

    2008-12-05

    The present thesis gives a theoretical contribution to the understanding of the many-particle dynamics in inelastic ion-atom collisions. Many-electron dynamics in ion-helium collisions and proton-sodium collisions was theoretically studied. The description is based on the semiclassical approximation with the straight orbit for the projectile motion. The ion-atom collision problem is by this reduced to a time-dependent many-electron problem and in the non-relativistic approximation described by the time-dependent Schroedinger equation. The solution of the many-electron problem pursues in the framework of the time-dependent density functional theory. The time-dependent Schroedinger equation for the interacting many-electron problem is transformed to the system of the time-dependent Kohn-Sham equations and solved by the two-center-basis generator method. The unknown time-dependent exchange-correlation one-particle potential forces different approximation in the time-dependent Kohn-Shan scheme. In this thesis the model of the independent electrons was applied as basis model, in which the electron-electron correlation is consistently neglected in all parts and in all steps. Differential cross sections for different one- and two-electron processes were calculated in the so-called eikonal approximation for the collisional systems p-He, He{sup 2+}-He, and Ar{sup q+}-He (q=15-18). [German] Die vorliegende Arbeit leistet einen theoretischen Beitrag zum Verstaendnis der Vielteilchendynamik in inelastischen Ion-Atom-Stoessen. Vielelektronendynamik in Ion-Helium-Stoessen und Proton-Natrium-Stoessen wurde theoretisch untersucht. Die Beschreibung basiert auf der semiklassischen Naeherung mit der geraden Bahn fuer die Projektilbewegung. Das Ion-Atom- Stossproblem wird damit auf ein zeitabhaengiges Vielelektronenproblem reduziert und in der nichtrelativistischen Naeherung mit der zeitabhaengigen Schroedinger-Gleichung beschrieben. Die Loesung des Vielelektronenproblems erfolgt im

  7. Theory of Multiple Coulomb Scattering from Extended Nuclei

    Science.gov (United States)

    Cooper, L. N.; Rainwater, J.

    1954-08-01

    Two independent methods are described for calculating the multiple scattering distribution for projected angle scattering resulting when very high energy charged particles traverse a thick scatterer. The results are compared with the theories of Moliere and Olbert.

  8. Weak Deeply Virtual Compton Scattering

    International Nuclear Information System (INIS)

    Ales Psaker; Wolodymyr Melnitchouk; Anatoly Radyushkin

    2006-01-01

    We extend the analysis of the deeply virtual Compton scattering process to the weak interaction sector in the generalized Bjorken limit. The virtual Compton scattering amplitudes for the weak neutral and charged currents are calculated at the leading twist within the framework of the nonlocal light-cone expansion via coordinate space QCD string operators. Using a simple model, we estimate cross sections for neutrino scattering off the nucleon, relevant for future high intensity neutrino beam facilities

  9. Elementary derivation of Kepler's laws

    International Nuclear Information System (INIS)

    Vogt, E.

    1995-02-01

    A simple derivation of all three so-called Kepler Laws is presented in which the orbits, bound and unbound, follow directly and immediately from conservation of energy and angular momentum. The intent is to make this crowning achievement of Newtonian Mechanics easily accessible to students in introductory physics courses. The method is also extended to simplify the derivation of the Rutherford Scattering Law. (author). 4 refs., 3 figs

  10. Quasiresonant scattering

    International Nuclear Information System (INIS)

    Hategan, Cornel; Comisel, Horia; Ionescu, Remus A.

    2004-01-01

    The quasiresonant scattering consists from a single channel resonance coupled by direct interaction transitions to some competing reaction channels. A description of quasiresonant Scattering, in terms of generalized reduced K-, R- and S- Matrix, is developed in this work. The quasiresonance's decay width is, due to channels coupling, smaller than the width of the ancestral single channel resonance (resonance's direct compression). (author)

  11. Thomson Scattering

    NARCIS (Netherlands)

    Donne, A. J. H.

    1994-01-01

    Thomson scattering is a very powerful diagnostic which is applied at nearly every magnetic confinement device. Depending on the experimental conditions different plasma parameters can be diagnosed. When the wave vector is much larger than the plasma Debye length, the total scattered power is

  12. Contributions to atomic microdynamics study in some liquid metals by means of soft neutrons scattering

    International Nuclear Information System (INIS)

    Rotarescu, G.

    1981-01-01

    Measurements of inelastic scattering of soft neutrons on Bi and liquid Pb, applying all the necessary corrections in view of obtaining the dYnamic structure factor S(Q,ω) were performed. The F(Q,t) function of intermediate scattering was obtained by means of the Fourier transformation of S(Q,ω). Special attention was devoted to one multiple scattering correction, especially at small scattering angles, taking into account its influence on the results. A comparison of the experimental results with three recent theoretical models has shown a good agreement in the range of intermediate and high Q values. Measurements of neutron inelastic scattering on liquid sodium at a temperature of 233 Cdeg within a momentum transfer range of 1 A -1 -1 were performed. The scattering law S(α,β) that was compared to a series of theoretical models has been determined from the experimental data. The validity of the theoretical models for different ranges of energy and momenta was thoroughly checked. S(α,β) was calculated for each type of scattering since sodium proves a mixed, coherent and incoherent scattering agent. A study on the influence of the even interaction potential upon the S(Q,ω) dynamic structure factor, the fourth order momentum ω 4 (Q) and uoon the spectral function C(Q,ω) of longitudinal current correlations was performed. For this purpose, four potentials with oscillations at great distances and a Lennard-Jones type potential were used. (author)

  13. Status of thermal neutron scattering data for graphite

    International Nuclear Information System (INIS)

    Mattes, M.; Keinert, J.

    2005-07-01

    At thermal neutron energies, the binding of the scattering nucleus in a solid, liquid, or gas affects the cross sections and the angular and energy distributions of the scattered neutrons. These effects are described in the thermal sub-library of evaluated files in File 7 of the ENDF-6 format. A re-evaluation of thermal neutron scattering data for carbon bound in graphite has been performed to investigate the impact of models (e.g., generalised frequency distributions) based on different experimental and theoretical data for the generation of scattering law data files S(α,β,T) and coherent elastic scattering data. Two phonon frequency distributions of graphite published in 2002 and 2004 were considered and the results compared with those based on the phonon spectra from Koppel et al. (published in 1968), on which the evaluations of ENDF/B-VI and JEFF-3.1 are based. The new frequency distributions were partly derived from ab initio simulations. Detailed comparisons with measurements of differential and integral neutron cross sections and other relevant data are reported. In addition, thermal MCNP data sets for use in the continuous Monte Carlo codes MCNP and MCNPX were generated from these evaluations for different temperatures. Calculated neutron spectra were found to be in good agreement with the measurements. (author)

  14. Electron scattering by hydrogen atoms

    International Nuclear Information System (INIS)

    Fujii, D.H.

    1981-02-01

    A variational method to calculate the differential cross section of the electron-hydrogen atom scattering process is presented. The second Born approximation is calculated, through a variational calculation using the energy and electronic charge simultaneously as parameters, in order to calculate the differential cross section which is written in a fractional form according to the Schwinger variational principle. Effects due to the electron change are included in the calculations. (L.C.) [pt

  15. Environmental law

    International Nuclear Information System (INIS)

    Kloepfer, M.

    1989-01-01

    This comprehensive reference book on environmental law and practice also is a valuable textbook for students specializing in the field. The entire law on pollution control and environmental protection is presented in an intelligent system, covering the latest developments in the Federal and Land legislation, public environmental law, and the related provisions in the fields of civil law and criminal law. The national survey is rounded up by information concerning the international environmental law, environmental law of the European Communities, and of other foreign countries as e.g. Austria and Switzerland. The author also reviews conditions in neighbouring fields such as technology and labour law, environmental economy, environmental policy. Special attention is given to current topics, as e.g. relating to genetic engineering, disused landfills or industrial sites, soil protection, transport of hazardous goods, liability for damage to forests, atomic energy law, and radiation protection law. The latest publishing dates of literature and court decisions considered in the book are in the first months of 1989. (RST) [de

  16. Disadvantage factor for anisotropic scattering

    International Nuclear Information System (INIS)

    Saad, E.A.; Abdel Krim, M.S.; EL-Dimerdash, A.A.

    1990-01-01

    The invariant embedding method is used to solve the problem for a two region reactor with anisotropic scattering and to compute the disadvantage factor necessary for calculating some reactor parameters

  17. Bibliography for thermal neutron scattering

    International Nuclear Information System (INIS)

    Sakamoto, M.; Chihara, J.; Nakahara, Y.; Kadotani, H.; Sekiya, T.

    1976-12-01

    It contains bibliographical references to measurements, calculations, reviews and basic studies on thermal neutron scatterings and dynamical properties of condensed matter. About 2,700 documents up to the end of 1975 are covered. (auth.)

  18. SU-E-T-287: Robustness Study of Passive-Scattering Proton Therapy in Lung: Is Range and Setup Uncertainty Calculation On the Initial CT Enough to Predict the Plan Robustness?

    Energy Technology Data Exchange (ETDEWEB)

    Ding, X; Dormer, J; Kenton, O; Liu, H; Simone, C; Solberg, T; Lin, L [University of Pennsylvania, Philadelphia, PA (United States)

    2014-06-01

    Purpose: Plan robustness of the passive-scattering proton therapy treatment of lung tumors has been studied previously using combined uncertainties of 3.5% in CT number and 3 mm geometric shifts. In this study, we investigate whether this method is sufficient to predict proton plan robustness by comparing to plans performed on weekly verification CT scans. Methods: Ten lung cancer patients treated with passive-scattering proton therapy were randomly selected. All plans were prescribed 6660cGy in 37 fractions. Each initial plan was calculated using +/− 3.5% range and +/− 0.3cm setup uncertainty in x, y and z directions in Eclipse TPS(Method-A). Throughout the treatment course, patients received weekly verification CT scans to assess the daily treatment variation(Method-B). After contours and imaging registrations are verified by the physician, the initial plan with the same beamline and compensator was mapped into the verification CT. Dose volume histograms (DVH) were evaluated for robustness study. Results: Differences are observed between method A and B in terms of iCTV coverage and lung dose. Method-A shows all the iCTV D95 are within +/− 1% difference, while 20% of cases fall outside +/−1% range in Method-B. In the worst case scenario(WCS), the iCTV D95 is reduced by 2.5%. All lung V5 and V20 are within +/−5% in Method-A while 15% of V5 and 10% of V20 fall outside of +/−5% in Method-B. In the WCS, Lung V5 increased by 15% and V20 increased by 9%. Method A and B show good agreement with regard to cord maximum and Esophagus mean dose. Conclusion: This study suggests that using range and setup uncertainty calculation (+/−3.5% and +/−3mm) may not be sufficient to predict the WCS. In the absence of regular verification scans, expanding the conventional uncertainty parameters(e.g., to +/−3.5% and +/−4mm) may be needed to better reflect plan actual robustness.

  19. Theoretical calculations for electron proton scattering

    International Nuclear Information System (INIS)

    Horst, M. van der

    1990-01-01

    Within an extension of the Higgs structure of the standard model the production of charged Higgs bosons at the ep collider HERA is possible. However it is found that the total production rates are very small. For example, if a mass of 15 GeV is assumed , at most 10 events can be observed at HERA. Therefore it will be clear that the actual performance of HERA must be monitored accurately. This thesis is concerned with the computation of the cross section of e - p → γe - p reaction which has been proposed to be a luminosity monitor for HERA. In ch. 3 the pro-cess is computed at lowest order. Ch. 4 presents the computation of radiative corrections to the process which consist of the virtual corrections and the corrections due to Bremsstrahlung photons. This amounts to computing the cross section of the process e - p → γγ e - p, and must be included to cancel infrared divergent terms in the virtual corrections in the usual way. In ch. 5 a concise expression for the trace of gamma matrices in four dimensions is presented. This expression can be useful in writing a matrix element (at tree level) in terms of contractions of two different tensors. The expression found can be useful in an algebraic manipulation programme. An example is given how the results can be used in a physical process. (H.W.).55 refs.; 11 figs

  20. Scattering theory

    International Nuclear Information System (INIS)

    Sitenko, A.

    1991-01-01

    This book emerged out of graduate lectures given by the author at the University of Kiev and is intended as a graduate text. The fundamentals of non-relativistic quantum scattering theory are covered, including some topics, such as the phase-function formalism, separable potentials, and inverse scattering, which are not always coverded in textbooks on scattering theory. Criticisms of the text are minor, but the reviewer feels an inadequate index is provided and the citing of references in the Russian language is a hindrance in a graduate text

  1. Pollution law

    International Nuclear Information System (INIS)

    Triffterer, O.

    1980-01-01

    In the draft proposed by the legal advisory board the law for the controlling of environmental criminality was promulgated on 28th March 1980. The present commentary therefore - as seen from the results - corresponds in essential to the original assessment of the governmental draft. However, an introduction into the problems of environmental law precedes this commentary for the better unterstanding of all those not acquainted with pollution law and the whole legal matter. (orig./HP) [de

  2. Lindy's Law

    Science.gov (United States)

    Eliazar, Iddo

    2017-11-01

    Aging means that as things grow old their remaining expected lifetimes lessen. Either faster or slower, most of the things we encounter in our everyday lives age with time. However, there are things that do quite the opposite - they anti-age: as they grow old their remaining expected lifetimes increase rather than decrease. A quantitative formulation of anti-aging is given by the so-called ;Lindy's Law;. In this paper we explore Lindy's Law and its connections to Pareto's Law, to Zipf's Law, and to socioeconomic inequality.

  3. Critical scattering

    International Nuclear Information System (INIS)

    Stirling, W.G.; Perry, S.C.

    1996-01-01

    We outline the theoretical and experimental background to neutron scattering studies of critical phenomena at magnetic and structural phase transitions. The displacive phase transition of SrTiO 3 is discussed, along with examples from recent work on magnetic materials from the rare-earth (Ho, Dy) and actinide (NpAs, NpSb, USb) classes. The impact of synchrotron X-ray scattering is discussed in conclusion. (author) 13 figs., 18 refs

  4. X-ray M4,5 Resonant Raman Scattering from La metal with final 4p hole: Calculations with 4p-4d-4f configuration interaction in the final state and comparison with the experiment

    International Nuclear Information System (INIS)

    Taguchi, M.; Braicovich, L.; Tagliaferri, A.; Dallera, C.; Giarda, K.; Ghiringhelli, G.; Brookes, N.B.; Borgatti, F.

    2001-03-01

    We consider the X-Ray Resonant Raman Scattering (RRS) in La in the whole M 4,5 region ending with a state with a 4p hole, along the sequence 3d 10 4f 0 →3d 9 4f 1 →3d 10 4p 5 4f 1 . The final state configuration mixes with that with two 4d holes i.e. 3d 10 4d 8 4f n+2 having almost the same energy. Thus RRS must be described by introducing final state Configuration Interaction (CI) between states with one 4p hole and with two 4d holes. This approach allows detailed experimental data on La-metal to be interpreted on the basis of a purely ionic approach. It is shown that the inclusion of CI is crucial and has very clear effects. The calculations with the Kramers-Heisenberg formula describe all measured spectral features appearing in the strict Raman regime i.e. dispersing with the incident photon energy. In the experiment also a nondispersive component is present when the excitation energy is greater than about 2 eV above the M 5 peak. The shape and position of this component is well accounted for by a model based on all possible partitions of the excitation energy between localised and extended states. However, the intensity of the nondispersive component is greater in the measurements, suggesting a rearrangement in the intermediate excited state. The comparison of ionic calculations with the metal measurements is legitimate, as shown by the comparison between the measurements on La-metal and on LaF 3 with M 5 excitation, giving the same spectrum within the experimental accuracy. Moreover, the experiment shows that the final lifetime broadening is much greater in the final states corresponding to lower outgoing photon energies than in the states corresponding to higher outgoing photon energies. (author)

  5. Frequency shifts in stimulated Raman scattering

    International Nuclear Information System (INIS)

    Zinth, W.; Kaiser, W.

    1980-01-01

    The nonresonant contributions to the nonlinear susceptibility chisup(()3) produce a frequency chirp during stimulated Raman scattering. In the case of transient stimulated Raman scattering, the spectrum of the generated Stokes pulse is found at higher frequencies than expected from spontaneous Raman data. The frequency difference can be calculated from the theory of stimulated Raman scattering. (orig.)

  6. Intermediate energy nucleon-deuteron scattering theory.

    Science.gov (United States)

    Wilson, J. W.

    1973-01-01

    Sloan's conclusion (1969) that terms of the multiple-scattering series beyond single scattering contribute only to S- and P-wave amplitudes in an S-wave separable model is examined. A comparison of experiments with the calculation at 146 MeV shows that the conclusion is valid in nucleon-deuteron scattering applications.

  7. Photons emission processes in electron scattering

    International Nuclear Information System (INIS)

    Soto Vargas, C.W.

    1996-01-01

    The investigations involving the scattering sections arising in virtual an real photon emission processes of electron and positron scattering by an atomic nucleus, have the need for thorough and complete calculations of the virtual photon spectrum and then introduce the distorted wave formulation, which is mathematically involved an numerically elaborated, but accessible to its use in experimental electron scattering facilities. (author) [es

  8. Case law

    International Nuclear Information System (INIS)

    2016-01-01

    This section treats of the following case laws: 1 - Case Law France: Conseil d'etat decision, 22 February 2016, EDF v. Republic and Canton of Geneva relative to the Bugey nuclear power plant (No. 373516); United States: Brodsky v. US Nuclear Regulatory Commission, 650 Fed. Appx. 804 (2. Cir. 2016)

  9. Law 302.

    Science.gov (United States)

    Manitoba Dept. of Education, Winnipeg.

    This publication outlines a law course intended as part of a business education program in the secondary schools of Manitoba, Canada. The one credit course of study should be taught over a period of 110-120 hours of instruction. It provides students with an introduction to the principles, practices, and consequences of law with regard to torts,…

  10. Evidence of universal inverse-third power law for the shielding-induced fractional decrease in apex field enhancement factor at large spacings: a response via accurate Laplace-type calculations

    Science.gov (United States)

    de Assis, Thiago A.; Dall’Agnol, Fernando F.

    2018-05-01

    Numerical simulations are important when assessing the many characteristics of field emission related phenomena. In small simulation domains, the electrostatic effect from the boundaries is known to influence the calculated apex field enhancement factor (FEF) of the emitter, but no established dependence has been reported at present. In this work, we report the dependence of the lateral size, L, and the height, H, of the simulation domain on the apex-FEF of a single conducting ellipsoidal emitter. Firstly, we analyze the error, ε, in the calculation of the apex-FEF as a function of H and L. Importantly, our results show that the effects of H and L on ε are scale invariant, allowing one to predict ε for ratios L/h and H/h, where h is the height of the emitter. Next, we analyze the fractional change of the apex-FEF, δ, from a single emitter, , and a pair, . We show that small relative errors in (i.e. ), due to the finite domain size, are sufficient to alter the functional dependence , where c is the distance from the emitters in the pair. We show that obeys a recently proposed power law decay (Forbes 2016 J. Appl. Phys. 120 054302), at sufficiently large distances in the limit of infinite domain size (, say), which is not observed when using a long time established exponential decay (Bonard et al 2001 Adv. Mater. 13 184) or a more sophisticated fitting formula proposed recently by Harris et al (2015 AIP Adv. 5 087182). We show that the inverse-third power law functional dependence is respected for various systems like infinity arrays and small clusters of emitters with different shapes. Thus, , with m  =  3, is suggested to be a universal signature of the charge-blunting effect in small clusters or arrays, at sufficient large distances between emitters with any shape. These results improve the physical understanding of the field electron emission theory to accurately characterize emitters in small clusters or arrays.

  11. Calculating Quenching Weights

    CERN Document Server

    Salgado, C A; Salgado, Carlos A.; Wiedemann, Urs Achim

    2003-01-01

    We calculate the probability (``quenching weight'') that a hard parton radiates an additional energy fraction due to scattering in spatially extended QCD matter. This study is based on an exact treatment of finite in-medium path length, it includes the case of a dynamically expanding medium, and it extends to the angular dependence of the medium-induced gluon radiation pattern. All calculations are done in the multiple soft scattering approximation (Baier-Dokshitzer-Mueller-Peign\\'e-Schiff--Zakharov ``BDMPS-Z''-formalism) and in the single hard scattering approximation (N=1 opacity approximation). By comparison, we establish a simple relation between transport coefficient, Debye screening mass and opacity, for which both approximations lead to comparable results. Together with this paper, a CPU-inexpensive numerical subroutine for calculating quenching weights is provided electronically. To illustrate its applications, we discuss the suppression of hadronic transverse momentum spectra in nucleus-nucleus colli...

  12. Ginsparg-Wilson pions scattering in a sea of staggered quarks

    International Nuclear Information System (INIS)

    Chen, J.-W.; O'Connell, Donal; Van de Water, Ruth; Walker-Loud, Andre

    2006-01-01

    We calculate isospin 2 pion-pion scattering in chiral perturbation theory for a partially quenched, mixed action theory with Ginsparg-Wilson valence quarks and staggered sea quarks. We point out that for some scattering channels, the power-law volume dependence of two-pion states in nonunitary theories such as partially quenched or mixed action QCD is identical to that of QCD. Thus one can extract infinite-volume scattering parameters from mixed action simulations. We then determine the scattering length for both 2 and 2+1 sea quarks in the isospin limit. The scattering length, when expressed in terms of the pion mass and the decay constant measured on the lattice, has no contributions from mixed valence-sea mesons, thus it does not depend upon the parameter, C Mix , that appears in the chiral Lagrangian of the mixed theory. In addition, the contributions which nominally arise from operators appearing in the mixed action O(a 2 m q ) Lagrangian exactly cancel when the scattering length is written in this form. This is in contrast to the scattering length expressed in terms of the bare parameters of the chiral Lagrangian, which explicitly exhibits all the sicknesses and lattice spacing dependence allowed by a partially quenched mixed action theory. These results hold for both 2 and 2+1 flavors of sea quarks

  13. Case - Case-Law - Law

    DEFF Research Database (Denmark)

    Sadl, Urska

    2013-01-01

    Reasoning of the Court of Justice of the European Union – Constr uction of arguments in the case-law of the Court – Citation technique – The use of formulas to transform case-law into ‘law’ – ‘Formulaic style’ – European citizenship as a fundamental status – Ruiz Zambrano – Reasoning from...

  14. Nuclear Law

    International Nuclear Information System (INIS)

    Pascal, Maurice.

    1979-01-01

    This book on nuclear law is the first of a series of analytical studies to be published by the French Energy Commission (CEA) concerning all the various nuclear activities. It describes national and international legislation applicable in France covering the following main sectors: the licensing procedure for nuclear installations, the law of the sea and nuclear law, the legal system governing radioisotopes, the transport of radioactive materials, third party liability and insurance and radiation protection. In each chapter, the overall analysis is supplemented by the relevant regulatory texts and by organisation charts in annex. (NEA) [fr

  15. Compton scattering

    International Nuclear Information System (INIS)

    Botto, D.J.; Pratt, R.H.

    1979-05-01

    The current status of Compton scattering, both experimental observations and the theoretical predictions, is examined. Classes of experiments are distinguished and the results obtained are summarized. The validity of the incoherent scattering function approximation and the impulse approximation is discussed. These simple theoretical approaches are compared with predictions of the nonrelativistic dipole formula of Gavrila and with the relativistic results of Whittingham. It is noted that the A -2 based approximations fail to predict resonances and an infrared divergence, both of which have been observed. It appears that at present the various available theoretical approaches differ significantly in their predictions and that further and more systematic work is required

  16. Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Botto, D.J.; Pratt, R.H.

    1979-05-01

    The current status of Compton scattering, both experimental observations and the theoretical predictions, is examined. Classes of experiments are distinguished and the results obtained are summarized. The validity of the incoherent scattering function approximation and the impulse approximation is discussed. These simple theoretical approaches are compared with predictions of the nonrelativistic dipole formula of Gavrila and with the relativistic results of Whittingham. It is noted that the A/sup -2/ based approximations fail to predict resonances and an infrared divergence, both of which have been observed. It appears that at present the various available theoretical approaches differ significantly in their predictions and that further and more systematic work is required.

  17. Ideal gas scattering kernel for energy dependent cross-sections

    International Nuclear Information System (INIS)

    Rothenstein, W.; Dagan, R.

    1998-01-01

    A third, and final, paper on the calculation of the joint kernel for neutron scattering by an ideal gas in thermal agitation is presented, when the scattering cross-section is energy dependent. The kernel is a function of the neutron energy after scattering, and of the cosine of the scattering angle, as in the case of the ideal gas kernel for a constant bound atom scattering cross-section. The final expression is suitable for numerical calculations

  18. Density fluctuations measured by ISEE 1-2 in the Earth's magnetosheath and the resultant scattering of radio waves

    Directory of Open Access Journals (Sweden)

    C. Lacombe

    1997-04-01

    Full Text Available Radio waves undergo angular scattering when they propagate through a plasma with fluctuating density. We show how the angular scattering coefficient can be calculated as a function of the frequency spectrum of the local density fluctuations. In the Earth's magnetosheath, the ISEE 1-2 propagation experiment measured the spectral power of the density fluctuations for periods in the range 300 to 1 s, which produce most of the scattering. The resultant local angular scattering coefficient can then be calculated for the first time with realistic density fluctuation spectra, which are neither Gaussian nor power laws. We present results on the variation of the local angular scattering coefficient during two crossings of the dayside magnetosheath, from the quasi-perpendicular bow shock to the magnetopause. For a radio wave at twice the local electron plasma frequency, the scattering coefficient in the major part of the magnetosheath is b(2fp ≃ 0.5 – 4 × 10–9 rad2/m. The scattering coefficient is about ten times stronger in a thin sheet (0.1 to1RE just downstream of the shock ramp, and close to the magnetopause.

  19. Investigation of collective excitations in fluid neon by coherent neutron scattering at small scattering vectors

    International Nuclear Information System (INIS)

    Bell, H.G.

    1976-07-01

    The energy spectra of Ne studied under different temperatures and pressures with the aid of inelastic, coherent neutron scattering can be described by a scattering law derived from the basic hydrodynamic equations. The Brillouin lines found with very small momentum transfer 0.06 A -1 -1 are interpreted as collective, adiabatic pressure fluctuations. (orig./WL) [de

  20. Islamic Law

    OpenAIRE

    Doranda Maracineanu

    2009-01-01

    The law system of a State represents the body of rules passed or recognized by that State inorder to regulate the social relationships, rules that must be freely obeyed by their recipients, otherwisethe State intervening with its coercive power. Throughout the development of the society, pedants havebeen particularly interested in the issue of law systems, each supporting various classifications; theclassification that has remained is the one distinguishing between the Anglo-Saxon, the Roman-...

  1. Inelastic scattering of neutrons

    International Nuclear Information System (INIS)

    Sal'nikov, O.A.

    1984-06-01

    The paper reviews the main problems concerning the mechanism of the inelastic scatterings of neutrons by nuclei, concentrating on the different models which calculate the angular distributions. In the region of overlapping levels, both the compound nucleus mechanism and the preequilibrium Griffin (exciton) model are discussed, and their contribution relative to that of a direct mechanism is considered. The parametrization of the level density and of the nuclear moment of inertia are also discussed. The excitation functions of discrete levels are also presented, and the importance of elucidating their five structure (for practical calculations, such as for shielding) is pointed out

  2. Delbrueck scattering of monoenergetic photons

    International Nuclear Information System (INIS)

    Kahane, S.

    1978-05-01

    The Delbrueck effect was experimentally investigated in high Z nuclei with monoenergetic photons in the range 6.8-11.4 MeV. Two different methods were used for measurements of the differential scattering cross-section, in the 25-140 deg range and in the forward direction (theta = 1.5 deg), respectively. The known Compton scattering cross-section was used in a new and unique way for the determination of the elastic scattering cross-section. Isolation of the contribution of the real Delbrueck amplitudes to the cross-section was crried out successfully. Experimental confirmation of the theoretical calculations of Papatzacos and Mork and measurement, for the first time, of the Rayleigh scattering in the 10 MeV region are also reported. One of the most interesting findings is the presence of Coulomb corrections in Delbrueck scattering at these energies. More theoretical effort is needed in this last direction. (author)

  3. Evolution of the transfer function characterization of surface scatter phenomena

    Science.gov (United States)

    Harvey, James E.; Pfisterer, Richard N.

    2016-09-01

    Based upon the empirical observation that BRDF measurements of smooth optical surfaces exhibited shift-invariant behavior when plotted versus    o , the original Harvey-Shack (OHS) surface scatter theory was developed as a scalar linear systems formulation in which scattered light behavior was characterized by a surface transfer function (STF) reminiscent of the optical transfer function (OTF) of modern image formation theory (1976). This shift-invariant behavior combined with the inverse power law behavior when plotting log BRDF versus log   o was quickly incorporated into several optical analysis software packages. Although there was no explicit smooth-surface approximation in the OHS theory, there was a limitation on both the incident and scattering angles. In 1988 the modified Harvey-Shack (MHS) theory removed the limitation on the angle of incidence; however, a moderate-angle scattering limitation remained. Clearly for large incident angles the BRDF was no longer shift-invariant as a different STF was now required for each incident angle. In 2011 the generalized Harvey-Shack (GHS) surface scatter theory, characterized by a two-parameter family of STFs, evolved into a practical modeling tool to calculate BRDFs from optical surface metrology data for situations that violate the smooth surface approximation inherent in the Rayleigh-Rice theory and/or the moderate-angle limitation of the Beckmann-Kirchhoff theory. And finally, the STF can be multiplied by the classical OTF to provide a complete linear systems formulation of image quality as degraded by diffraction, geometrical aberrations and surface scatter effects from residual optical fabrication errors.

  4. Vector boson scattering at CLIC

    Energy Technology Data Exchange (ETDEWEB)

    Kilian, Wolfgang; Fleper, Christian [Department Physik, Universitaet Siegen, 57068 Siegen (Germany); Reuter, Juergen [DESY Theory Group, 22603 Hamburg (Germany); Sekulla, Marco [Institut fuer Theoretische Physik, Karlsruher Institut fuer Technologie, 76131 Karlsruhe (Germany)

    2016-07-01

    Linear colliders operating in a range of multiple TeV are able to investigate the details of vector boson scattering and electroweak symmetry breaking. We calculate cross sections with the Monte Carlo generator WHIZARD for vector boson scattering processes at the future linear e{sup +} e{sup -} collider CLIC. By finding suitable cuts, the vector boson scattering signal processes are isolated from the background. Finally, we are able to determine exclusion sensitivities on the non-Standard Model parameters of the relevant dimension eight operators.

  5. Output factors and scatter ratios

    Energy Technology Data Exchange (ETDEWEB)

    Shrivastava, P N; Summers, R E; Samulski, T V; Baird, L C [Allegheny General Hospital, Pittsburgh, PA (USA); Ahuja, A S; Dubuque, G L; Hendee, W R; Chhabra, A S

    1979-07-01

    Reference is made to a previous publication on output factors and scatter ratios for radiotherapy units in which it was suggested that the output factor should be included in the definitions of scatter-air ratio and tissue-maximum ratio. In the present correspondence from other authors and from the authors of the previous publication, the original definitions and the proposed changes are discussed. Radiation scatter from source and collimator degradation of beam energy and calculation of dose in tissue are considered in relation to the objective of accurate dosimetry.

  6. Effects of multiple scattering on radiative properties of soot fractal aggregates

    International Nuclear Information System (INIS)

    Yon, Jérôme; Liu, Fengshan; Bescond, Alexandre; Caumont-Prim, Chloé; Rozé, Claude; Ouf, François-Xavier; Coppalle, Alexis

    2014-01-01

    The in situ optical characterization of smokes composed of soot particles relies on light extinction, angular static light scattering (SLS), or laser induced incandescence (LII). These measurements are usually interpreted by using the Rayleigh–Debye–Gans theory for Fractal Aggregates (RDG-FA). RDG-FA is simple to use but it completely neglects the impact of multiple scattering (MS) within soot aggregates. In this paper, based on a scaling approach that takes into account MS effects, an extended form of the RDG-FA theory is proposed in order to take into account these effects. The parameters of this extended theory and their dependency on the number of primary sphere inside the aggregate (1 p <1006) and on the wavelength (266nm<λ<1064nm) are evaluated thanks to rigorous calculations based on discrete dipole approximation (DDA) and generalized multi-sphere Mie-solution (GMM) calculations. This study shows that size determination by SLS is not distorted by MS effect. On the contrary, it is shown that fractal dimension can be misinterpreted by light scattering experiments, especially at short wavelengths. MS effects should be taken into account for the interpretation of absorption measurements that are involved in LII or extinction measurements. -- Highlights: • We incorporate multiple scattering effects in a scaling approach for fractal aggregates. • A generalized structure factor is introduced for implementation in RDG-FA theory. • Forward scattering is affected by multiple scattering as well as power law regime. • Absorption cross sections are affected by multiple scattering. • Absorption cross sections are 11% higher than that for forward scattering

  7. Elastic scattering

    International Nuclear Information System (INIS)

    Leader, Elliot

    1991-01-01

    With very few unexplained results to challenge conventional ideas, physicists have to look hard to search for gaps in understanding. An area of physics which offers a lot more than meets the eye is elastic and diffractive scattering where particles either 'bounce' off each other, emerging unscathed, or just graze past, emerging relatively unscathed. The 'Blois' workshops provide a regular focus for this unspectacular, but compelling physics, attracting highly motivated devotees

  8. Private law

    DEFF Research Database (Denmark)

    working and researching in the key areas of law, security and privacy in IT, international trade and private law. Now, in 2010 and some seven conferences later, the event moves to Barcelona and embraces for the first time the three conference tracks just described. The papers in this work have all been...... blind reviewed and edited for quality. They represent the contributions of leading academics, early career researchers and others from an increasing number of countries, universities and institutions around the world. They set a benchmark for discussion of the current issues arising in the subject area...... and continue to offer an informed and relevant contribution to the policy making agenda. As Chair of the Conference Committee, I am once more very proud to endorse this work "Private Law: Rights, Duties & Conflicts" to all those seeking an up to date and informed evaluation of the leading issues. This work...

  9. Neutron scattering

    International Nuclear Information System (INIS)

    1991-02-01

    The annual report on hand gives an overview of the research work carried out in the Laboratory for Neutron Scattering (LNS) of the ETH Zuerich in 1990. Using the method of neutron scattering, it is possible to examine in detail the static and dynamic properties of the condensed material. In accordance with the multidisciplined character of the method, the LNS has for years maintained a system of intensive co-operation with numerous institutes in the areas of biology, chemistry, solid-state physics, crystallography and materials research. In 1990 over 100 scientists from more than 40 research groups both at home and abroad took part in the experiments. It was again a pleasure to see the number of graduate students present, who were studying for a doctorate and who could be introduced into the neutron scattering during their stay at the LNS and thus were in the position to touch on central ways of looking at a problem in their dissertation using this modern experimental method of solid-state research. In addition to the numerous and interesting ways of formulating the questions to explain the structure, nowadays the scientific programme increasingly includes particularly topical studies in connection with high temperature-supraconductors and materials research

  10. Scattering theory

    CERN Document Server

    Friedrich, Harald

    2016-01-01

    This corrected and updated second edition of "Scattering Theory" presents a concise and modern coverage of the subject. In the present treatment, special attention is given to the role played by the long-range behaviour of the projectile-target interaction, and a theory is developed, which is well suited to describe near-threshold bound and continuum states in realistic binary systems such as diatomic molecules or molecular ions. It is motivated by the fact that experimental advances have shifted and broadened the scope of applications where concepts from scattering theory are used, e.g. to the field of ultracold atoms and molecules, which has been experiencing enormous growth in recent years, largely triggered by the successful realization of Bose-Einstein condensates of dilute atomic gases in 1995. The book contains sections on special topics such as near-threshold quantization, quantum reflection, Feshbach resonances and the quantum description of scattering in two dimensions. The level of abstraction is k...

  11. Superradiative scattering magnons

    International Nuclear Information System (INIS)

    Shrivastava, K.N.

    1980-01-01

    A magnon-photon interaction for the magnetic vector of the electromagnetic wave perpendicular to the direction of magnetization in a ferromagnet is constructed. The magnon part of the interaction is reduced with the use of Bogoliubov transformation. The resulting magnon-photon interaction is found to contain several interesting new radiation effects. The self energy of the magnon is calculated and life times arising from the radiation scattering are predicted. The magnon frequency shift due to the radiation field is found. One of the terms arising from the one-magnon one-photon scattering gives a line width in reasonable agreement with the experimentally measured value of ferromagnetic resonance line width in yttrium iron garnet. Surface magnon scattering is indicated and the contribution of this type of scattering to the radiative line width is discussed. The problem of magnetic superradiance is indicated and it is shown that in anisotropic ferromagnets the emission is proportional to the sqare of the number of magnons and the divergence is considerably minimized. Accordingly the magnetic superradiance emerges as a hyperradiance with much more radiation intensity than in the case of disordered atomic superradiance. (author)

  12. Diffractive scattering on nuclei in multiple scattering theory with inelastic screening

    International Nuclear Information System (INIS)

    Zoller, V.R.

    1988-01-01

    The cross sections for the diffractive scattering of hadrons on nuclei are calculated in the two-channel approximation of multiple scattering theory. In contrast to the standard Glauber approach, it is not assumed that the nucleon scattering profile is a Gaussian or that the Regge radius of the hadron is small compared to the nuclear radius. The AGK Reggeon diagrammatic technique is used to calculate the topological cross sections and the cross sections for coherent and incoherent diffractive dissociation and quasielastic scattering. The features of hadron-nucleus scattering at superhigh energies are discussed

  13. Recent publications on environmental law

    International Nuclear Information System (INIS)

    Lohse, S.

    1991-01-01

    The bibliography contains references to publications covering the following subject fields: General environmental law; environmental law in relation to constitutional law, administrative law, procedural law, revenue law, criminal law, private law, industrial law; law of regional development; nature conservation law; law on water protection; waste management law; law on protection against harmful effects on the environment; atomic energy law and radiation protection law; law of the power industry and the mining industry; laws and regulations on hazardous material and environmental hygiene. (orig.) [de

  14. Case law

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    This paper gives and analyses three examples of case law: decision rejecting application to close down Tomari nuclear power plant (Japan); judgement by the Supreme Administrative Court on the closing of Barsebaeck (Sweden); litigation relating to the Department of Energy's obligations under the Nuclear Waste Policy Act to accept spent nuclear fuel and high-level radioactive waste (United States). (A.L.B.)

  15. Case law

    International Nuclear Information System (INIS)

    2015-01-01

    This section treats of the two following case laws: Slovak Republic: Further developments in cases related to the challenge by Greenpeace Slovakia to the Mochovce nuclear power plant; United States: Judgment of the Nuclear Regulatory Commission denying requests from petitioners to suspend final reactor licensing decisions pending the issuance of a final determination of reasonable assurance of permanent disposal of spent fuel

  16. Business Law

    OpenAIRE

    Marson, James; Ferris, Katy

    2016-01-01

    Marson & Ferris provide a thorough account of the subject for students. Essential topics are introduced by exploring current and pertinent examples and the relevance of the law in a business environment is considered throughout. This pack includes a supplement which considers the effects of the Consumer Rights Act 2015.

  17. Review of the particle scattering theory in rocket technique application

    International Nuclear Information System (INIS)

    Wang Fuheng; Ma Fang

    1990-01-01

    Three calculation methods of scattering cross section have been discussed. Particle scattering theory and its concrete calculation, existing problems and further development have been also studied. The developement of theoretical aspects of particles scattering in rocket exhaust plume was concerned in this paper

  18. The LAW library

    International Nuclear Information System (INIS)

    Green, N.M.; Parks, C.V.; Arwood, J.W.

    1989-01-01

    The 238 group LAW library is a new multigroup library based on ENDF/B-V data. It contains data for 302 materials and will be distributed by the Radiation Shielding Information Center, located at Oak Ridge National Laboratory. It was generated for use in neutronics calculations required in radioactive waste analyses, though it has equal utility in any study requiring multigroup neutron cross sections

  19. Pion nucleus scattering lengths

    International Nuclear Information System (INIS)

    Huang, W.T.; Levinson, C.A.; Banerjee, M.K.

    1971-09-01

    Soft pion theory and the Fubini-Furlan mass dispersion relations have been used to analyze the pion nucleon scattering lengths and obtain a value for the sigma commutator term. With this value and using the same principles, scattering lengths have been predicted for nuclei with mass number ranging from 6 to 23. Agreement with experiment is very good. For those who believe in the Gell-Mann-Levy sigma model, the evaluation of the commutator yields the value 0.26(m/sub σ//m/sub π/) 2 for the sigma nucleon coupling constant. The large dispersive corrections for the isosymmetric case implies that the basic idea behind many of the soft pion calculations, namely, slow variation of matrix elements from the soft pion limit to the physical pion mass, is not correct. 11 refs., 1 fig., 3 tabs

  20. Nuclear Energy Law and Arbo Law/Safety Law

    International Nuclear Information System (INIS)

    Eijnde, J.G. van den

    1986-01-01

    The legal aspects of radiation protection in the Netherlands are described. Radiation protection is regulated mainly in the Nuclear Energy Law. The Arbo Law also has some sections about radiation protection. The interaction between both laws is discussed. (Auth.)

  1. Methodology for obtaining a solution for the three-dimensional Boltzmann transport equation and an expression for the calculation of the total doses considering Compton scattering simulated by Klein-Nishina

    International Nuclear Information System (INIS)

    Rodriguez, Barbara A.; Borges, Volnei; Vilhena, Marco Tullio

    2005-01-01

    In this work we would like to obtain a formulation of an analytic method for the solution of the three dimensional transport equation considering Compton scattering and an expression for total doses due to gamma radiation, where the deposited energy by the free electron will be considered. For that, we will work with two equations: the first one for the photon transport, considering the Klein-Nishina kernel and energy multigroup model, and the second one considering the free electron with the screened Rutherford scattering. (author)

  2. Diffractive scattering

    CERN Document Server

    De Wolf, E.A.

    2002-01-01

    We discuss basic concepts and properties of diffractive phenomena in soft hadron collisions and in deep-inelastic scattering at low Bjorken-x. The paper is not a review of the rapidly developing field but presents an attempt to show in simple terms the close inter-relationship between the dynamics of high-energy hadronic and deep-inelastic diffraction. Using the saturation model of Golec-Biernat and Wusthoff as an example, a simple explanation of geometrical scaling is presented. The relation between the QCD anomalous multiplicity dimension and the Pomeron intercept is discussed.

  3. Diffractive Scattering

    International Nuclear Information System (INIS)

    Wolf, E.A. de

    2002-01-01

    We discuss basic concepts and properties of diffractive phenomena in soft hadron collisions and in deep-inelastic scattering at low Bjorken - x. The paper is not a review of the rapidly developing field but presents an attempt to show in simple terms the close inter-relationship between the dynamics of high-energy hadronic and deep-inelastic diffraction. Using the saturation model of Golec-Biernat and Wuesthoff as an example, a simple explanation of geometrical scaling is presented. The relation between the QCD anomalous multiplicity dimension and the Pomeron intercept is discussed. (author)

  4. Hard scattering and gauge/string duality

    International Nuclear Information System (INIS)

    Polchinski, Joseph; Strassler, Matthew J.

    2002-01-01

    We consider high-energy fixed-angle scattering of glueballs in confining gauge theories that have supergravity duals. Although the effective description is in terms of the scattering of strings, we find that the amplitudes are hard (power law). This is a consequence of the warped geometry of the dual theory, which has the effect that in an inertial frame the string process is never in the soft regime. At small angle we find hard and Regge behaviors in different kinematic regions

  5. Islamic Law

    Directory of Open Access Journals (Sweden)

    Doranda Maracineanu

    2009-06-01

    Full Text Available The law system of a State represents the body of rules passed or recognized by that State inorder to regulate the social relationships, rules that must be freely obeyed by their recipients, otherwisethe State intervening with its coercive power. Throughout the development of the society, pedants havebeen particularly interested in the issue of law systems, each supporting various classifications; theclassification that has remained is the one distinguishing between the Anglo-Saxon, the Roman-German,the religious and respectively the communist law systems. The third main international law system is theMuslim one, founded on the Muslim religion – the Islam. The Islam promotes the idea that Allah createdthe law and therefore it must be preserved and observed as such. Etymologically, the Arabian word“Islam” means “to be wanted, to obey” implying the fact that this law system promotes total andunconditioned submission to Allah. The Islamic law is not built on somebody of laws or leading cases,but has as source. The Islam is meant as a universal religion, the Koran promoting the idea of the unityof mankind; thus, one of the precepts in the Koran asserts that “all men are equal (…, there is nodifference between a white man and a black man, between one who is Arabian and one who is not,except for the measure in which they fear God.” The Koran is founded mainly on the Talmud, Hebrewsource of inspiration, and only on very few Christian sources. The Islam does not forward ideas whichcannot be materialized; on the contrary its ideas are purely practical, easy to be observed by the commonman, ideas subordinated to the principle of monotheism. The uncertainties and gaps of the Koran, whichhave been felt along the years, imposed the need for another set of rules, meant to supplement it – that isSunna. Sunna represents a body of laws and, consequently, the second source of the Koran. Sunnanarrates the life of the prophet Mohamed, the model to

  6. Archie's law - a reappraisal

    Science.gov (United States)

    Glover, Paul W. J.

    2016-07-01

    When scientists apply Archie's first law they often include an extra parameter a, which was introduced about 10 years after the equation's first publication by Winsauer et al. (1952), and which is sometimes called the "tortuosity" or "lithology" parameter. This parameter is not, however, theoretically justified. Paradoxically, the Winsauer et al. (1952) form of Archie's law often performs better than the original, more theoretically correct version. The difference in the cementation exponent calculated from these two forms of Archie's law is important, and can lead to a misestimation of reserves by at least 20 % for typical reservoir parameter values. We have examined the apparent paradox, and conclude that while the theoretical form of the law is correct, the data that we have been analysing with Archie's law have been in error. There are at least three types of systematic error that are present in most measurements: (i) a porosity error, (ii) a pore fluid salinity error, and (iii) a temperature error. Each of these systematic errors is sufficient to ensure that a non-unity value of the parameter a is required in order to fit the electrical data well. Fortunately, the inclusion of this parameter in the fit has compensated for the presence of the systematic errors in the electrical and porosity data, leading to a value of cementation exponent that is correct. The exceptions are those cementation exponents that have been calculated for individual core plugs. We make a number of recommendations for reducing the systematic errors that contribute to the problem and suggest that the value of the parameter a may now be used as an indication of data quality.

  7. Criminal law

    International Nuclear Information System (INIS)

    Silva, J.M. da.

    1979-01-01

    Facts concerning the application of atomic energy are presented and those aspects which should be under tutelage, the nature and guilt of the nuclear offenses and the agent's peril are presented. The need of a specific chapter in criminal law with adequate legislation concerning the principles of atomic energy is inferred. The basis for the future elaboration this legislation are fixed. (A.L.S.L.) [pt

  8. Resonantly scattering crystals and surfaces

    International Nuclear Information System (INIS)

    Gunn, J.M.F.; Mahon, P.J.

    1990-12-01

    We examine coherence effects from forming a crystal of resonant scatterers by generalising the Fano model for autoionising resonances in electron scattering from atoms to a lattice of such scatterers. (We have in mind the case of neutron scattering from nuclei.) We solve this problem to yield two branches to the dispersion relation for the neutron in general and three when the resonance coincides with a Brillouin Zone boundary. The 'width' of the resonance is enhanced over the isolated nucleus, the best candidate for observation being the 2eV 185 Re resonance near the Bragg condition. We use these results to calculate the reflection coefficient from a surface, revealing total external reflection near resonance. We discuss experimental feasibility in both the neutron and electron cases. (author)

  9. Superscaling analyses, lepton scattering and nucleon momentum distribution in nuclei

    International Nuclear Information System (INIS)

    Antonov, A.; Ivanov, M.; Gaidarov, M.; Caballero, J.A.; Barbaro, M.; Moya de Guerra, E.

    2009-01-01

    In this paper the following items have been presented: 1) Nucleon momentum distribution from the superscaling analyses of the QE scattering of electrons; 2) CDFM scaling functions in the QE- and _-regions; 3) Charge-changing neutrino scattering from nuclei in the QE- and –region and 4) Neutral current neutrino scattering from nuclei in the QE-region. At the end the following conclusions have been made: 1) 1 It is pointed out that f (ψ') for ψ' < -1 depends on the particular form of the power-law asymptotics of n(k) at large k and thus, is informative for the in-medium NN forces around the core. 2) The total f(ψ), the longitudinal f_L(ψ) and the transverse f_T(ψ) scaling functions are calculated within a new, more general approach within the Coherent Density Fluctuation Model (CDFM_I_I) by taking as starting point the hadronic tensor and the L- and T- response functions in the RFG model. 3) The approach leads to a slight violation of the zero-kind scaling [f_L(ψ)≠f_T(ψ)] in contrast with the situation in the RFG and CDFM_I models. It is found that the ratio f_L(ψ)/f_T(ψ) in the CDFM_I_I has similarities with that from the RPWIA approach (with Lorentz gauge) for positive ψ. 4) At q≳0:7 GeV/c the CDFM_I_I scaling function exhibits scaling of first kind and has a saturation of its asymptotic behavior. 5) The CDFM scaling functions are applied to calculate cross sections of inclusive electron scattering in the quasielastic and Δ-regions for nuclei with 12≤A≤208 at different energies and angles. The results are in agreement with available experimental data, especially in the QE region. 6) The CDFM scaling functions are applied to calculate charge-changing neutrino (antineutrino) scattering and also QE scattering via the weak neutral current on "1"2C at 1÷2 GeV incident energy.

  10. Efficient Fixed-Offset GPR Scattering Analysis

    DEFF Research Database (Denmark)

    Meincke, Peter; Chen, Xianyao

    2004-01-01

    The electromagnetic scattering by buried three-dimensional penetrable objects, as involved in the analysis of ground penetrating radar systems, is calculated using the extended Born approximation. The involved scattering tensor is calculated using fast Fourier transforms (FFT's). We incorporate...... in the scattering calculation the correct radiation patterns of the ground penetrating radar antennas by using their plane-wave transmitting and receiving spectra. Finally, we derive an efficient FFT-based method to analyze a fixed-offset configuration in which the location of the transmitting antenna is different...

  11. Across-horizon scattering and information transfer

    Science.gov (United States)

    Emelyanov, V. A.; Klinkhamer, F. R.

    2018-06-01

    We address the question whether or not two electrically charged elementary particles can Coulomb scatter if one of these particles is inside the Schwarzschild black-hole horizon and the other outside. It can be shown that the quantum process is consistent with the local energy–momentum conservation law. This result implies that across-horizon scattering is a physical effect, relevant to astrophysical black holes. We propose a Gedankenexperiment which uses the quantum scattering process to transfer information from inside the black-hole horizon to outside.

  12. Optical theorem for heavy-ion scattering

    International Nuclear Information System (INIS)

    Schwarzschild, A.Z.; Auerbach, E.H.; Fuller, R.C.; Kahana, S.

    1976-01-01

    An heuristic derivation is given of an equivalent of the optical theorem stated in the charged situation with the remainder or nuclear elastic scattering amplitude defined as a difference of elastic and Coulomb amplitudes. To test the detailed behavior of this elastic scattering amplitude and the cross section, calculations were performed for elastic scattering of 18 O + 58 Ni, 136 Xe + 209 Bi, 84 Kr + 208 Pb, and 11 B + 26 Mg at 63.42 to 114 MeV

  13. Operational Law Handbook,2007

    National Research Council Canada - National Science Library

    2007-01-01

    ...), human rights, rules of engagement, emergency essential civilians supporting military operations, contingency contractor personnel, foreign and deployment, criminal law, environmental law, fiscal law...

  14. Pion deuteron scattering at intermediate energies

    International Nuclear Information System (INIS)

    Ferreira, E.M.

    1978-09-01

    A comparison is made of results of calculations of πd elastic scattering cross section using multiple scattering and three-body equations, in relation to their ability to reproduce the experimental data at intermediate energies. It is shown that the two methods of theoretical calculation give quite similar curves for the elastic differential cross sections, and that both fail in reproducing backward scattering data above 200MeV. The new accurate experimental data on πd total cross section as a function of the energy are confronted with the theoretical values obtained from the multiple scattering calculation through the optical theorem. Comparison is made between the values of the real part of the forward amplitude evaluated using dispersion relations and using the multiple scattering method [pt

  15. Kerr scattering coefficients via isomonodromy

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Bruno Carneiro da [Departamento de Física, Universidade Federal de Pernambuco,50670-901, Recife, Pernambuco (Brazil); Novaes, Fábio [International Institute of Physics, Federal University of Rio Grande do Norte,Av. Odilon Gomes de Lima 1722, Capim Macio, Natal-RN 59078-400 (Brazil)

    2015-11-23

    We study the scattering of a massless scalar field in a generic Kerr background. Using a particular gauge choice based on the current conservation of the radial equation, we give a generic formula for the scattering coefficient in terms of the composite monodromy parameter σ between the inner and the outer horizons. Using the isomonodromy flow, we calculate σ exactly in terms of the Painlevé V τ-function. We also show that the eigenvalue problem for the angular equation (spheroidal harmonics) can be calculated using the same techniques. We use recent developments relating the Painlevé V τ-function to Liouville irregular conformal blocks to claim that this scattering problem is solved in the combinatorial sense, with known expressions for the τ-function near the critical points.

  16. Research on the FDTD method of scattering effects of obliquely incident electromagnetic waves in time-varying plasma sheath on collision and plasma frequencies

    Science.gov (United States)

    Chen, Wei; Guo, Li-xin; Li, Jiang-ting

    2017-04-01

    This study analyzes the scattering characteristics of obliquely incident electromagnetic (EM) waves in a time-varying plasma sheath. The finite-difference time-domain algorithm is applied. According to the empirical formula of the collision frequency in a plasma sheath, the plasma frequency, temperature, and pressure are assumed to vary with time in the form of exponential rise. Some scattering problems of EM waves are discussed by calculating the radar cross section (RCS) of the time-varying plasma. The laws of the RCS varying with time are summarized at the L and S wave bands.

  17. Nuclear law

    International Nuclear Information System (INIS)

    Bringuier, P.

    2009-01-01

    The object of this report is to present the evolution of the nuclear law during the period from 2006 to 2008, period that was characterized in France by a real rewriting from the implementation of a control authority. The prescriptive backing of nuclear activities has been deeply changed by numerous texts. In this first part are presented: (1) the institutional aspects, (2) openness and public information, (7) radioactive wastes and (9) liability and insurance. In a next publication will be treated: (3) safety and radiation protection; (4) nuclear matter, inspection, physical protection; (5) transports; (6) trade, non-proliferation; (8) radiological accidents. (N.C.)

  18. Case law

    International Nuclear Information System (INIS)

    2016-01-01

    This section treats of the following case laws: 1 - Canada: Decision of the Canadian Federal Court of Appeal dismissing an appeal related to an environmental assessment of a project to refurbish and extend the life of an Ontario nuclear power plant; 2 - Poland: Decision of the Masovian Voivod of 28 December 2015 concerning the legality of the resolution on holding a local referendum in the Commune of Rozan regarding a new radioactive waste repository (2015); 3 - United States: Commission authorises issuance of construction permit for the Shine Medical Isotope Facility in Janesville, Wisconsin; 4 - United States: Commission authorises issuance of combined licences for the South Texas Project site in Matagorda County, Texas

  19. Case law

    International Nuclear Information System (INIS)

    2012-01-01

    This section gathers the following case laws: 1 - Canada: Judicial review of Darlington new nuclear power plant project; Appeal decision upholding criminal convictions related to attempt to export nuclear-related dual-use items to Iran: Her Majesty the Queen V. Yadegari; 2 - European Commission: Greenland cases; 3 - France: Chernobyl accident - decision of dismissal of the Court of Appeal of Paris; 4 - Slovak Republic: Aarhus Convention compliance update; 5 - United States: Judgement of a US court of appeals upholding the NRC's dismissal of challenges to the renewal of the operating licence for Oyster Creek Nuclear Generating Station; reexamination of the project of high-level waste disposal site at Yucca Mountain

  20. Neutron scattering. Lectures

    International Nuclear Information System (INIS)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2012-01-01

    The following topics are dealt with: Neutron scattering in contemporary research, neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)

  1. Dose calculation in eye brachytherapy with Ir-192 threads using the Sievert integral and corrected by attenuation and scattering with the Meisberg polynomials; Calculo de dosis en braquiterapia ocular con hilos de Ir-192 utilizando la integral de Sievert y cooregida por atenuacion y dispersion con los polinomios de Meisberg

    Energy Technology Data Exchange (ETDEWEB)

    Vivanco, M.G. Bernui de; Cardenas R, A. [Instituto Nacional de Enfermedades Neoplasicas, Universidad Nacional de Ingenieria, Av. Angamos No. 2520, Surquillo, Lima (Peru)]. e-mail: gisellebdv@hotmail.com

    2006-07-01

    The ocular brachytherapy many times unique alternative to conserve the visual organ in patients of ocular cancer, one comes carrying out in the National Institute of Neoplastic Illnesses (INEN) using threads of Iridium 192; those which, they are placed in radial form on the interior surface of a spherical cap of gold of 18 K; the cap remains in the eye until reaching the prescribed dose by the doctor. The main objective of this work is to be able to calculate in a correct and practical way the one time that the treatment of ocular brachytherapy should last to reach the dose prescribed by the doctor. To reach this objective I use the Sievert integral corrected by attenuation effects and scattering (Meisberg polynomials); calculating it by the Simpson method. In the calculations by means of the Sievert integral doesn't take into account the scattering produced by the gold cap neither the variation of the constant of frequency of exposure with the distance. The calculations by means of Sievert integral are compared with those obtained using the Monte Carlo Penelope simulation code, where it is observed that they agree at distances of the surface of the cap greater or equal to 2mm. (Author)

  2. Nuclear matter and electron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Sick, I [Dept. fuer Physik und Astronomie, Univ. Basel (Switzerland)

    1998-06-01

    We show that inclusive electron scattering at large momentum transfer allows a measurement of short-range properties of nuclear matter. This provides a very valuable constraint in selecting the calculations appropriate for predicting nuclear matter properties at the densities of astrophysical interest. (orig.)

  3. Bibliography for thermal neutron scattering

    International Nuclear Information System (INIS)

    Sakamoto, Masanobu; Chihara, Junzo; Gotoh, Yorio; Kadotani, Hiroyuki; Sekiya, Tamotsu.

    1979-09-01

    Bibliographic references are given for measurements, calculations, reviews and basic studies of thermal neutron scattering and dynamical properties of condensed matter. This is the sixth edition covering 3,326 articles collected up to 1978. The edition being the final issue of the present bibliography series, a forthcoming edition will be published in a new form of bibliography. (author)

  4. On the K+-nucleus elastic scattering

    International Nuclear Information System (INIS)

    Ning, P.; Men, D.

    1991-01-01

    In this paper conventional and unconventional nuclear medium effects in the K + scattering are briefly reviewed. Microscopic calculations of the K + elastic scattering on 4 He, 12 C, 40 Ca, 120 Sn at 800 MeV/c are performed and then possible swellings of nucleons in nuclei are discussed

  5. SCATTERING OF SPIN WAVES BY MAGNETIC DEFECTS

    Energy Technology Data Exchange (ETDEWEB)

    Callaway, Joseph

    1962-12-15

    The scattering of spin waves by magnetic point defects is considered using a Green's function method. A partial wave expansion for the scattering amplitude is derived. An expression for the cross section is determined that includes the effect of resonant states. Application is made to the calculation of the thermal conductivity of an insulating ferromagnet. (auth)

  6. Heavy ion elastic scattering of code : OPTHI

    International Nuclear Information System (INIS)

    Ismail, M.; Divatia, A.S.

    1982-01-01

    A computer code, OPTHI has been designed to calculate nuclear optical model elastic cross sections for the scattering of heavy ions. The program has been designed to be utilitarian rather than capable of giving an exact description of elastic scattering. Input format is described and the program listing is given. (M.G.B.)

  7. Bremsstrahlung in electron-positronium scattering

    International Nuclear Information System (INIS)

    Amusia, M.Ya.; Korol, A.V.; Solovyov, A.V.

    1986-01-01

    The spectrum of radiation formed in the fast nonrelativistic electron scattering on positronium is calculated. It is shown that all the radiation proceeds via virtual positronium deformations during the collision. An essential difference of bremsstrahlung spectra in electron on positronium and electron on hydrogen scattering is demonstrated. (orig.)

  8. Calculation of projected ranges

    International Nuclear Information System (INIS)

    Biersack, J.P.

    1980-09-01

    The concept of multiple scattering is reconsidered for obtaining the directional spreading of ion motion as a function of energy loss. From this the mean projection of each pathlength element of the ion trajectory is derived which - upon summation or integration - leads to the desired mean projected range. In special cases, the calculation can be carried out analytically, otherwise a simple general algorithm is derived which is suitable even for the smallest programmable calculators. Necessary input for the present treatment consists only of generally accessable stopping power and straggling formulas. The procedure does not rely on scattering cross sections, e.g. power potential or f(t 1 sup(/) 2 ) approximations. The present approach lends itself easily to include electronic straggling or to treat composed target materials, or even to account for the so-called time integral. (orig.)

  9. Molecular-beam scattering

    International Nuclear Information System (INIS)

    Vernon, M.F.

    1983-07-01

    The molecular-beam technique has been used in three different experimental arrangements to study a wide range of inter-atomic and molecular forces. Chapter 1 reports results of a low-energy (0.2 kcal/mole) elastic-scattering study of the He-Ar pair potential. The purpose of the study was to accurately characterize the shape of the potential in the well region, by scattering slow He atoms produced by expanding a mixture of He in N 2 from a cooled nozzle. Chapter 2 contains measurements of the vibrational predissociation spectra and product translational energy for clusters of water, benzene, and ammonia. The experiments show that most of the product energy remains in the internal molecular motions. Chapter 3 presents measurements of the reaction Na + HCl → NaCl + H at collision energies of 5.38 and 19.4 kcal/mole. This is the first study to resolve both scattering angle and velocity for the reaction of a short lived (16 nsec) electronic excited state. Descriptions are given of computer programs written to analyze molecular-beam expansions to extract information characterizing their velocity distributions, and to calculate accurate laboratory elastic-scattering differential cross sections accounting for the finite apparatus resolution. Experimental results which attempted to determine the efficiency of optically pumping the Li(2 2 P/sub 3/2/) and Na(3 2 P/sub 3/2/) excited states are given. A simple three-level model for predicting the steady-state fraction of atoms in the excited state is included

  10. Case law

    International Nuclear Information System (INIS)

    Anon.

    2002-01-01

    Several judgements are carried: Supreme Administrative Court Judgement rejecting an application to prevent construction of a new nuclear power plant (Finland); judgement of the Council of State specifying the law applicable to storage facilities for depleted uranium (France); Supreme Court Decision overturning for foreign spent fuel (Russian federation); Court of Appeal Judgement on government decision to allow the start up of a MOX fuel plant ( United Kingdom); judgement on lawfulness of authorizations granted by the Environment Agency: Marchiori v. the Environment Agency; (U.K.); Kennedy v. Southern California Edison Co. (U.S.A); Judgement concerning Ireland ' s application to prevent operation of BNFL ' s MOX facility at Sellafield: Ireland v. United Kingdom; At the European Court of Human Rights Balmer-Schafroth and others have complained v. Switzerland. Parliamentary decision rescinding the shutdown date for Barseback - 2 (Sweden); Decision of the International trade Commission regarding imposition of countervailing and anti-dumping duties on imports of low enriched uranium from the European Union, Yucca Mountain site recommendation (USA). (N.C.)

  11. Stimulated Thomson scattering

    International Nuclear Information System (INIS)

    Spencer, R.L.

    1979-03-01

    The theory of stimulated Thomson scattering is investigated both quantum mechanically and classically. Two monochromatic electromagnetic waves of like polarization travelling in opposite directions are allowed to interact for a time tau with the electrons in a collisionless plasma. The electromagnetic waves have frequencies well above the plasma frequency, and their difference frequency is allowed to range upward from the plasma frequency. With the difference frequency well above the plasma frequency, the rate at which energy is transferred from one wave to the other is calculated quantum mechanically, classically from a fluid theory, and classically from an independent electron theory. The rate is calculated in both the homogeneously broadened limit, and in the inhomogeneously broadened limit

  12. The Bateman method for multichannel scattering theory

    International Nuclear Information System (INIS)

    Kim, Y. E.; Kim, Y. J.; Zubarev, A. L.

    1997-01-01

    Accuracy and convergence of the Bateman method are investigated for calculating the transition amplitude in multichannel scattering theory. This approximation method is applied to the calculation of elastic amplitude. The calculated results are remarkably accurate compared with those of exactly solvable multichannel model

  13. Elastic and quasielastic scattering of light nuclei in the theory of multiple scattering

    International Nuclear Information System (INIS)

    Ismatov, E.I.; Kuterbekov, K.A.; Dzhuraev, Sh.Kh.; Ehsaniyazov, Sh.P.; Zholdasova, S.M.

    2005-01-01

    In the work the calculation method for diffraction scattering amplitudes of light nuclei by heavy nuclei is developed. For A 1 A 2 -scattering effects of pair-, three-fold, and four-fold screenings are estimated. It is shown, that in amplitude calculations for A 1 A 2 elastic scattering it is enough come to nothing more than accounting of total screenings in the first order. Analysis of nucleus-nucleus scattering sensitive characteristics to choice of single-particle nuclear densities parametrization is carried out

  14. Elastic scattering of slow positrons by helium

    International Nuclear Information System (INIS)

    Amusia, M.Ya.; Cherepkov, N.A.; Chernysheva, L.V.; Shapiro, S.G.

    1976-01-01

    The s-, p-, d- and f-wave phaseshifts for elastic scattering of slow positrons by He are calculated using a simplified version of the random phase approximation with exchange, with virtual positronium formation effect taken into account. (author)

  15. Finite energy sum rules in potential scattering

    International Nuclear Information System (INIS)

    Graham, N.; Jaffe, R.L.; Quandt, M.; Weige, H.

    2001-01-01

    We study scattering theory identities previously obtained as consistency conditions in the context of one-loop quantum field theory calculations. We prove the identities using Jost function techniques and study applications

  16. Absorption in multiple scattering systems of coated spheres: design applications

    International Nuclear Information System (INIS)

    Stout, Brian; Andraud, Christine; Stout, Sophie; Lafait, Jacques

    2003-01-01

    We illustrate the utility of some recently derived transfer matrix methods for electromagnetic scattering calculations in systems composed of coated spherical scatterers. Any of the spherical coatings, cores, or host media may be composed of absorbing materials. Our formulae permit the calculation of local absorption in either orientation fixed or orientation averaged situations. We introduce methods for estimating the macroscopic transport properties of such media, and show how our scattering calculations can permit 'design' optimization of macroscopic properties

  17. Scattering of photons from atomic electrons

    International Nuclear Information System (INIS)

    Pratt, R.H.; Zhou, B.; Bergstrom, P.M. Jr.; Pisk, K.; Suric, T.

    1990-01-01

    Validity of simpler approaches for elastic and inelastic photon scattering by atoms and ions is assessed by comparison with second-order S-matrix predictions. A simple scheme for elastic scattering based on angle-independent anomalous scattering factors has been found to give useful predictions near and below photoeffect thresholds. In inelastic scattering, major deviations are found from A 2 -based calculations. Extension of free-atom and free-ion cross sections to the dense plasma regime is discussed. 20 refs., 6 figs

  18. Nuclear Law

    International Nuclear Information System (INIS)

    Wiesbauer, Bruno

    1978-01-01

    This book is the first attempt of a comprehensive compilation of national Austrian Nuclear Law (Nuclear Liability Act; Radiation protection Act, Radiation Protection Ordinance, Security Control Act, Act on the uses of Nuclear Energy - Zwentendorf Nuclear Power Plant) and the most important international agreements to which Austria is a party. Furthermore, the book contains the most important Nuclear Liability Conventions to which Austria is not yet a party, but which are applicable in neighbouring; the Paris Convention served as a model for the national Nuclear Liability Act and may be used for its interpretation. The author has translated a number of international instruments into German, such as the Expose des Motifs of the Paris Convention. (NEA) [fr

  19. Case law

    International Nuclear Information System (INIS)

    2014-01-01

    This section of the Bulletin brings together the texts of the following case laws: Canada: - Judgment of the Federal Court of Canada sending back to a joint review panel for reconsideration the environmental assessment of a proposed new nuclear power plant in Ontario. France : - Conseil d'etat, 24 March 2014 (Request No. 358882); - Conseil d'etat, 24 March 2014 (Request No. 362001). Slovak Republic: - Further developments in cases related to the challenge by Greenpeace Slovakia to the Mochovce nuclear power plant; - Developments in relation to the disclosure of information concerning the Mochovce nuclear power plant. United States: - Initial Decision of the Atomic Safety and Licensing Board Ruling in Favour of Nuclear Innovation North America, LLC (NINA) Regarding Foreign Ownership, Control or Domination

  20. Case law

    International Nuclear Information System (INIS)

    2017-01-01

    This section treats of the following case laws (United States): 1 - Virginia Uranium, Inc. v. Warren, 848 F.3d 590 (4. Cir. 2017): In the United States District Court for the Western District of Virginia, the plaintiffs, a collection of uranium mining companies and owners of land containing uranium deposits, challenged a Commonwealth of Virginia moratorium on conventional uranium mining. The plaintiffs alleged that the state moratorium was preempted by federal law under the Supremacy Clause of the US Constitution.; 2 - United States v. Energy Solutions, Inc.; Rockwell Holdco, Inc.; Andrews County; Holdings, Inc.; and Waste Control Specialists, LLC. (D. Del. June 21, 2017): In 2016, the United States, acting through the US Department of Justice, commenced an action in United States District Court in Delaware seeking to enjoin the acquisition of Waste Control Specialists, LLC (WCS) and its parent company by Energy Solutions, Inc., and its parent. WCS and Energy Solutions are competitors in the market for the disposal of low-level radioactive waste (LLRW) produced by commercial generators of such material. The United States alleged that the proposed acquisition was unlawful. 3 - Cooper v. Tokyo Electric Power Company, No. 15-56426 (9. Cir. 2017): The plaintiffs are US Navy service members who were deployed off the Japanese coast as part of the US effort to provide earthquake relief after the 9.0 earthquake and tsunami that struck Japan on 11 March 2011. Plaintiffs sued alleging 'that TEPCO was negligent in operating the Fukushima Daiichi Nuclear Power Plant and in reporting the extent of the radiation leak

  1. Bidirectional optical scattering facility

    Data.gov (United States)

    Federal Laboratory Consortium — Goniometric optical scatter instrument (GOSI)The bidirectional reflectance distribution function (BRDF) quantifies the angular distribution of light scattered from a...

  2. Preliminary scattering kernels for ethane and triphenylmethane at cryogenic temperatures

    Science.gov (United States)

    Cantargi, F.; Granada, J. R.; Damián, J. I. Márquez

    2017-09-01

    Two potential cold moderator materials were studied: ethane and triphenylmethane. The first one, ethane (C2H6), is an organic compound which is very interesting from the neutronic point of view, in some respects better than liquid methane to produce subthermal neutrons, not only because it remains in liquid phase through a wider temperature range (Tf = 90.4 K, Tb = 184.6 K), but also because of its high protonic density together with its frequency spectrum with a low rotational energy band. Another material, Triphenylmethane is an hydrocarbon with formula C19H16 which has already been proposed as a good candidate for a cold moderator. Following one of the main research topics of the Neutron Physics Department of Centro Atómico Bariloche, we present here two ways to estimate the frequency spectrum which is needed to feed the NJOY nuclear data processing system in order to generate the scattering law of each desired material. For ethane, computer simulations of molecular dynamics were done, while for triphenylmethane existing experimental and calculated data were used to produce a new scattering kernel. With these models, cross section libraries were generated, and applied to neutron spectra calculation.

  3. Preliminary scattering kernels for ethane and triphenylmethane at cryogenic temperatures

    Directory of Open Access Journals (Sweden)

    Cantargi F.

    2017-01-01

    Full Text Available Two potential cold moderator materials were studied: ethane and triphenylmethane. The first one, ethane (C2H6, is an organic compound which is very interesting from the neutronic point of view, in some respects better than liquid methane to produce subthermal neutrons, not only because it remains in liquid phase through a wider temperature range (Tf = 90.4 K, Tb = 184.6 K, but also because of its high protonic density together with its frequency spectrum with a low rotational energy band. Another material, Triphenylmethane is an hydrocarbon with formula C19H16 which has already been proposed as a good candidate for a cold moderator. Following one of the main research topics of the Neutron Physics Department of Centro Atómico Bariloche, we present here two ways to estimate the frequency spectrum which is needed to feed the NJOY nuclear data processing system in order to generate the scattering law of each desired material. For ethane, computer simulations of molecular dynamics were done, while for triphenylmethane existing experimental and calculated data were used to produce a new scattering kernel. With these models, cross section libraries were generated, and applied to neutron spectra calculation.

  4. [Inelastic electron scattering from surfaces

    International Nuclear Information System (INIS)

    1993-01-01

    This program uses ab-initio and multiple scattering to study surface dynamical processes; high-resolution electron-energy loss spectroscopy is used in particular. Off-specular excitation cross sections are much larger if electron energies are in the LEED range (50--300 eV). The analyses have been extended to surfaces of ordered alloys. Phonon eigenvectors and eigenfrequencies were used as inputs to electron-energy-loss multiple scattering cross section calculations. Work on low-energy electron and positron holography is mentioned

  5. Scattering behaviour of Janus particles

    CERN Document Server

    Kaya, H

    2002-01-01

    Recent advances in polymer synthesis has produced so-called Janus micelles: tailor-made copolymer structures in which the blocks constitute separate moieties. We present expressions for the form factors, P(Q), and the radii of gyration, R sub g , of Janus particles with spherical and cylindrical morphology and check their validity by comparison to simulated scattering data, calculated from Monte Carlo generations of the pair-distance distribution function, p(r). The effect of block incompatibilities on the scattering is briefly discussed. (orig.)

  6. Conservation laws and nuclear transport models

    International Nuclear Information System (INIS)

    Gale, C.; Das Gupta, S.

    1990-01-01

    We discuss the consequences of energy and angular momentum conservation for nucleon-nucleon scattering in a nuclear environment during high-energy heavy-ion collisions. We describe algorithms that ensure stricter enforcement of such conservation laws within popular microscopic models of intermediate-energy heavy-ion collisions. We find that the net effects on global observables are small

  7. Scattered radiation in fan beam imaging systems

    International Nuclear Information System (INIS)

    Johns, P.C.; Yaffe, M.

    1982-01-01

    Scatter-to-primary energy fluence ratios (S/P) have been studied for fan x-ray beams as used in CT scanners and slit projection radiography systems. The dependence of S/P on phantom diameter, distance from phantom to image receptor, and kilovoltage is presented. An empirical equation is given that predicts S/P over a wide range of fan beam imaging configurations. For CT body scans on a 4th-generation machine, S/P is approximately 5%. Scattered radiation can produce a significant cupping artefact in CT images which is similar to that due to beam hardening. When multiple slices are used in scanned slit radiography, they can be arranged such that the increase in S/P is negligible. Calculations of scatter-to-primary ratios for first order scattering showed that for fan beams the contribution of coherent scatter is comparable to or greater than that of incoherent first scatter

  8. Case Law

    International Nuclear Information System (INIS)

    Anon.

    2009-01-01

    Different case law are presented in this part: By decision dated 17 july 2009, the Ontario Court of Appeal (Canada) has ruled on the scope of solicitor-client privilege and the protections that may be afforded to privileged investigations reports. The decision reaffirms the canadian court system view of the importance of the protection of solicitor-client privilege to the administration of justice; For United states here is a judgment of a U.S. court of Appeals on the design basis threat security rule (2009), this case concerns a challenge to the U.S. Nuclear regulatory commission (N.R.C.) revised design basis threat rule, which was adopted in 2007 (nuclear bulletin law no. 80). The petitioners public citizen, Inc., San Luis Obispo Mothers for Peace and the State of New York filed a lawsuit in the U.S. court of appeals for the Ninth circuit alleging that the N.R.C. acted arbitrarily and capriciously and in violation of law by refusing to include the treat of air attacks in its final revised design basis rule. On the 24. july 2009, a panel of three ninth circuit judges rules 2-1 that the N.R.C. acted reasonably in not including an air treat in its design basis rule. Secondly, judgment of a U.S. court of appeals on consideration of the environmental impact of terrorist attacks on nuclear facilities (2009), this case concerns the scope of the U.S. Nuclear regulatory commission environmental analysis during its review of applications to re-licence commercial nuclear power plants. New Jersey urged the N.R.C. to consider the environmental impact of an airborne terrorist attack on the power plant, arguing that such analysis was required by the national environmental policy act (N.E.P.A.). On 31. march 2009, a panel of three circuit judges declined to follow the ninth circuit opinion and affirmed NRC decision 3-0 ruling that NRC was not required to consider terrorism in its N.E.P.A. analysis because NRC re-licensing would not be a reasonably close cause of terrorism

  9. Case law

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    This chapter gathers three case laws, one concerning France and the two others concerning the United States. France - Decision of the Administrative Court in Strasbourg on the permanent shutdown of the Fessenheim nuclear power plant: On 9 March 2011, the administrative court in Strasbourg confirmed the government's rejection to immediately close the Fessenheim nuclear power plant, the first unit of which started operation on 1 January 1978. The court rejected the motion of the 'Association trinationale de protection nucleaire' (ATPN) filed against the decision of the Minister of Economy, Industry and Employment to refuse the final shutdown of the plant. The group, which brings together associations as well as French, German and Swiss municipalities, had taken legal action in December 2008. United States - Case law 1 - Judgment of a US Court of Appeals on public access to sensitive security information and consideration of the environmental impacts of terrorist attacks on nuclear facilities: This case concerns 1) the public's right to access classified and sensitive security information relied upon by the US Nuclear Regulatory Commission (NRC) in its environmental review; and 2) the sufficiency of the NRC's environmental review of the impacts of terrorist attacks for a proposed Independent Spent Fuel Storage Installation (ISFSI). In 2003, the NRC ruled that the National Environmental Policy Act (NEPA) did not require the NRC to consider the impacts of terrorist attacks in its environmental review for the proposed ISFSI at the Diablo Canyon Power Plant. ' NEPA mandates that all federal agencies must prepare a detailed statement on the environment impacts before undertaking a major federal action that significantly affects the human environment. In 2004, the San Luis Obispo Mothers for Peace, a group of individuals who live near the Diablo Canyon Power Plant, filed a petition in the US Court of Appeals for the Ninth Circuit challenging the NRC's 2003 decision. The

  10. Resistivity of strong-scattering alloys: Absence of localization and success of coherent-potential approximation confirmed by exact supercell calculations in V/sub 1-//sub x/Al/sub x/

    International Nuclear Information System (INIS)

    Brown, R.H.; Allen, P.B.; Nicholson, D.M.; Butler, W.H.

    1989-01-01

    A supercell procedure for exact evaluation of the one-electron Kubo-Greenwood formula is applied to the resistivity rho of V/sub 1-//sub x/Al/sub x/ alloys and compared with a Korringa-Kohn-Rostoker coherent-potential approximation calculation. The results of these calculations agree well, consistent with the observation of delocalized eigenstates, in spite of the very high resistivity, rho≅200 μΩ cm

  11. On the necessity of taking into account the contribution of multiphoton exchanges into electron-proton deep inelastic scattering

    International Nuclear Information System (INIS)

    Savrin, V.I.

    1979-01-01

    The hypothesis that the multiphoton exchanges give a substantial contribution to the electron-proton inclusive scattering is formulated. The hypothesis explains the observed violation of the Bjorken scaling law. As it is shown, the mechanism of such intensification of multiple exchanges may by connected with the properties of the processes of hadron multiproduction in the deep inelastic field. This results in the necessity to calculate the inclusive cross section in all electromagnetic coupling constant orders. This has been done in the framework of the density matrix method. As a result the deep inelastic scattering cross section calculated without application of the perturbation theory reveals a new property of the scaling invariance and leads to the natural relationship of structural functions with electromagnetic proton form-factors on the exclusive threshold

  12. Possible role of double scattering in electron-atom scattering in a laser field

    International Nuclear Information System (INIS)

    Rabadan, I.; Mendez, L.; Dickinson, A.S.

    1996-01-01

    By considering observations of double-scattering effects in the excitation of the 2 1 P level of He, gas density values estimated for the laser-assisted elastic scattering experiments of Wallbank and Holmes (1993, 1994a,b) for which the Kroll-Watson approximation appears to fail. Using comparable densities for He and lower densities for Ar, and assuming the Kroll-Watson approximation for single-scattering events, differential cross sections are calculated including double scattering for laser-assisted scattering for a range of energies and scattering angles. Comparison with the observed values shows that double-scattering effects can give a semi-quantitative explanation of the apparent breakdown of the Kroll-Watson approximation in both He and Ar. (author)

  13. Comparison of thermal scattering processing options for S(α,β) cards in MCNP

    International Nuclear Information System (INIS)

    Čerba, Štefan; Damian, Jose Ignacio Marquez; Lüley, Jakub; Vrban, Branislav; Farkas, Gabriel; Nečas, Vladimír; Haščík, Jan

    2013-01-01

    Highlights: ► Determination of MCNP calculation bias for WWER-440. ► Specific scattering law S(α,β). ► Benchmark cases investigated. ► Three methods to process material cards for hydrogen bound in light water. - Abstract: The MCNP distributions include sets of pre-calculated thermal scattering libraries but these libraries are available for several temperature steps only. In order to achieve reliable results it is suitable to process the cross section libraries for the desired temperature. In general, there are three methods to process these thermal scattering libraries for the desired temperatures. This paper deals with the comparison of these three methods on the basis of several benchmarks and on the basis of a thermal transient experiment of a WWER-440 reactor. The choice is up to the MCNP user but unfortunately very few studies concerning the comparison have been published so far. Therefore conclusions and results presented in this paper may help the user to choose the most appropriate method for his calculation

  14. Case law

    International Nuclear Information System (INIS)

    2013-01-01

    This section reports on 7 case laws from 4 countries: - France: Conseil d'Etat decision, 28 June 2013, refusing to suspend operation of the Fessenheim nuclear power plant; - Slovak Republic: New developments including the Supreme Court's judgment in a matter involving Greenpeace Slovakia's claims regarding the Mochovce nuclear power plant; New developments in the matter involving Greenpeace's demands for information under the Freedom of Information Act; - Switzerland: Judgment of the Federal Supreme Court in the matter of the Departement federal de l'environnement, des transports, de l'energie et de la communication (DETEC) against Ursula Balmer-Schafroth and others on consideration of admissibility of a request to withdraw the operating licence for the Muehleberg nuclear power plant; - United States: Judgment of the Court of Appeals for the District of Columbia Circuit granting petition for writ of mandamus ordering US Nuclear Regulatory Commission (NRC) to resume Yucca Mountain licensing; Judgment of the Court of Appeals for the Second Circuit invalidating two Vermont statutes as preempted by the Atomic Energy Act; Judgment of the NRC on transferring Shieldalloy site to New Jersey's jurisdiction

  15. Case Law

    International Nuclear Information System (INIS)

    2014-01-01

    This section treats of the following case laws sorted by country: 1 - Germany: Federal Administrative Court confirms the judgments of the Higher Administrative Court of the Land Hesse: The shutdown of nuclear power plant Biblis blocks A and B based on a 'moratorium' imposed by the Government was unlawful; List of lawsuits in the nuclear field. 2 - Slovak Republic: Further developments in cases related to the challenge by Greenpeace Slovakia to the Mochovce nuclear power plant; Developments in relation to the disclosure of information concerning the Mochovce nuclear power plant. 3 - United States: Judgment of the Nuclear Regulatory Commission resuming the licensing process for the Department of Energy's construction authorisation application for the Yucca Mountain high-level radioactive waste repository; Judgment of the Licensing Board in favour of Shaw AREVA MOX Services regarding the material control and accounting system at the proposed MOX Facility; Dismissal by US District Court Judge of lawsuit brought by US military personnel against Tokyo Electric Power Company (TEPCO) in connection with the Fukushima Daiichi nuclear power plant accident

  16. Case law

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    This article reviews the judgements and law decisions concerning nuclear activities throughout the world during the end of 1999 and the first semester 2000. In Belgium a judgement has allowed the return of nuclear waste from France. In France the Council of State confirmed the repeal of an authorization order of an installation dedicated to the storage of uranium sesquioxide, on the basis of an insufficient risk analysis. In France too, the criminal chamber of the French Supreme Court ruled that the production in excess of that authorized in the licence can be compared to carrying out operations without a licence. In Japan the Fukui district court rejected a lawsuit filed by local residents calling for the permanent closure, on safety grounds, of the Monju reactor. In the Netherlands, the Council of State ruled that the Dutch government had no legal basis for limiting in time the operating licence of the Borssele plant. In Usa a district court has rejected a request to ban MOX fuel shipment. (A.C.)

  17. Neutron scattering. Lectures

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner [eds.

    2010-07-01

    The following topics are dealt with: Neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)

  18. Neutron scattering. Lectures

    International Nuclear Information System (INIS)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2013-01-01

    The following topics are dealt with: Neutron sources, symmetry of crystals, nanostructures investigated by small-angle neutron scattering, structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic neutron scattering, strongly correlated electrons, polymer dynamics, applications of neutron scattering. (HSI)

  19. Neutron scattering. Lectures

    International Nuclear Information System (INIS)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2010-01-01

    The following topics are dealt with: Neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)

  20. Declination Calculator

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Declination is calculated using the current International Geomagnetic Reference Field (IGRF) model. Declination is calculated using the current World Magnetic Model...

  1. Quasi-elastic neutron scattering studies of the slow dynamics of supercooled and glassy aspirin

    International Nuclear Information System (INIS)

    Zhang Yang; Mamontov, Eugene; Tyagi, Madhusudan; Chen, Sow-Hsin

    2012-01-01

    Aspirin, also known as acetylsalicylic acid (ASA), is not only a wonderful drug, but also a good glass former. Therefore, it serves as an important molecular system to study the near-arrest and arrested phenomena. In this paper, a high-resolution quasi-elastic neutron scattering (QENS) technique is used to investigate the slow dynamics of supercooled liquid and glassy aspirin from 410 down to 350 K. The measured QENS spectra can be analyzed with a stretched exponential model. We find that (i) the stretched exponent β(Q) is independent of the wavevector transfer Q in the measured Q range and (ii) the structural relaxation time τ(Q) follows a power-law dependence on Q. Consequently, the Q-independent structural relaxation time τ 0 can be extracted for each temperature to characterize the slow dynamics of aspirin. The temperature dependence of τ 0 can be fitted with the mode-coupling power law, the Vogel-Fulcher-Tammann equation and a universal equation for fragile glass forming liquids recently proposed by Tokuyama in the measured temperature range. The calculated dynamic response function χ T (Q, t) using the experimentally determined self-intermediate scattering function of the hydrogen atoms of aspirin shows direct evidence of the enhanced dynamic fluctuations as the aspirin is increasingly supercooled, in agreement with the fixed-time mean squared displacement (x 2 ) and the non-Gaussian parameter α 2 extracted from the elastic scattering.

  2. Quasi-Elastic Neutron Scattering Studies of the Slow Dynamics of Supercooled and Glassy Aspirin

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yang [ORNL; Tyagi, M. [NCNR and University of Maryland; Mamontov, Eugene [ORNL; Chen, Sow-hsin H [ORNL

    2011-01-01

    Aspirin, also known as acetylsalicylic acid (ASA), is not only a wonderful drug, but also a good glass former. Therefore, it serves as an important molecular system to study the near-arrest and arrested phenomena. In this paper, a high-resolution quasi-elastic neutron scattering (QENS) technique is used to investigate the slow dynamics of supercooled liquid and glassy aspirin from 410 K down to 350 K. The measured QENS spectra can be analyzed with a stretched exponential model. We find that (i) the stretched exponent (Q) is independent of the wave vector transfer Q in the measured Q-range, and (ii) the structural relaxation time (Q) follows a power law dependence on Q. Consequently, the Q-independent structural relaxation time 0 can be extracted for each temperature to characterize the slow dynamics of aspirin. The temperature dependence of 0 can be fitted with the mode coupling power law, the Vogel-Fulcher-Tammann equation and a universal equation for fragile glass forming liquids recently proposed by M. Tokuyama in the measured temperature range. The calculated dynamic response function T(Q,t) using the experimentally determined self-intermediate scattering function of the hydrogen atoms of aspirin shows a direct evidence of the enhanced dynamic fluctuations as the aspirin is increasingly supercooled, in agreement with the fixed-time mean squared displacement x2 and non-Gaussian parameter 2 extracted from the elastic scattering.

  3. Quasi-elastic neutron scattering studies of the slow dynamics of supercooled and glassy aspirin

    Science.gov (United States)

    Zhang, Yang; Tyagi, Madhusudan; Mamontov, Eugene; Chen, Sow-Hsin

    2012-02-01

    Aspirin, also known as acetylsalicylic acid (ASA), is not only a wonderful drug, but also a good glass former. Therefore, it serves as an important molecular system to study the near-arrest and arrested phenomena. In this paper, a high-resolution quasi-elastic neutron scattering (QENS) technique is used to investigate the slow dynamics of supercooled liquid and glassy aspirin from 410 down to 350 K. The measured QENS spectra can be analyzed with a stretched exponential model. We find that (i) the stretched exponent β(Q) is independent of the wavevector transfer Q in the measured Q range and (ii) the structural relaxation time τ(Q) follows a power-law dependence on Q. Consequently, the Q-independent structural relaxation time τ0 can be extracted for each temperature to characterize the slow dynamics of aspirin. The temperature dependence of τ0 can be fitted with the mode-coupling power law, the Vogel-Fulcher-Tammann equation and a universal equation for fragile glass forming liquids recently proposed by Tokuyama in the measured temperature range. The calculated dynamic response function χT(Q, t) using the experimentally determined self-intermediate scattering function of the hydrogen atoms of aspirin shows direct evidence of the enhanced dynamic fluctuations as the aspirin is increasingly supercooled, in agreement with the fixed-time mean squared displacement langx2rang and the non-Gaussian parameter α2 extracted from the elastic scattering.

  4. Recent publications on environmental law

    International Nuclear Information System (INIS)

    Lohse, S.

    1988-01-01

    The bibliography contains 1235 references to publications covering the following subject fields: general environmental law; environmental law in relation to constitutional law, administrative law, procedural law, revenue law, criminal law, private law, industrial law; law of regional development; nature conservation law; law on water protection; waste management law; law on protection against harmful effects on the environment; atomic energy law and radiation protection law; law of the power industry and the mining industry; laws and regulations on hazardous material and environmental hygiene. (HP) [de

  5. Recent publications on environmental law

    International Nuclear Information System (INIS)

    Lohse, S.

    1989-01-01

    The bibliography contains 1160 references to publications covering the following subject fields: General environmental law; environmental law in relation to constitutional law, administrative law, procedural law, revenue law, criminal law, private law, industrial law; law of regional development; nature conservation law; law on water protection; waste management law; law on protection against harmful effects on the environment; atomic energy law and radiation protection law; law of the power industry and the mining industry; laws and regulations on hazardous material and environmental hygiene. (orig./HP) [de

  6. Analytic scattering kernels for neutron thermalization studies

    International Nuclear Information System (INIS)

    Sears, V.F.

    1990-01-01

    Current plans call for the inclusion of a liquid hydrogen or deuterium cold source in the NRU replacement vessel. This report is part of an ongoing study of neutron thermalization in such a cold source. Here, we develop a simple analytical model for the scattering kernel of monatomic and diatomic liquids. We also present the results of extensive numerical calculations based on this model for liquid hydrogen, liquid deuterium, and mixtures of the two. These calculations demonstrate the dependence of the scattering kernel on the incident and scattered-neutron energies, the behavior near rotational thresholds, the dependence on the centre-of-mass pair correlations, the dependence on the ortho concentration, and the dependence on the deuterium concentration in H 2 /D 2 mixtures. The total scattering cross sections are also calculated and compared with available experimental results

  7. Critical scattering of neutrons by Fe: study of the hydrodynamic and critical regions

    International Nuclear Information System (INIS)

    Parette, Georges

    1971-01-01

    In the present work we describe the latest experiments on the critical magnetic scattering of neutrons by iron just above the Curie temperature, performed at the Centre d'Etudes Nucleaires at Saclay. In these experiments we have tried to explore the 'hydrodynamical region' as defined by the 'scaling laws' and to determine the temperature dependence of the diffusion constant. These experiments yield a verification of the recent theoretical calculations made by P. Resibois and C. Piette. These calculations and several measurements which we have conducted show the existence of an intermediate region between the 'critical' and the 'hydrodynamical' regions, which we call the 'quasi-hydrodynamical' region. In the hydrodynamical region, whose borders are well defined by the calculations of Resibois and Piette, our results confirm the theoretical predictions concerning this region. (author) [fr

  8. Scattering of electromagnetic waves by a traversable wormhole

    Directory of Open Access Journals (Sweden)

    B. Nasr Esfahani

    2005-09-01

    Full Text Available   Replacing the wormhole geometry with an equivalent medium using the perturbation theory of scattering and the Born approximation, we have calculated the differential scattering cross section of electromagnetic waves by a traversable wormhole. It is shown that scattering at long wavelenghts can essentially distinguish wormhole from ordinary scattering object. Some of the zeros of the scattering cross section are determined which can be used for estimating the radius of the throat of wormholes. The known result that in this kind of scattering the linear polarization remains unchanged is verified here.

  9. Neutron scattering. Lectures

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2010-07-01

    The following topics are dealt with: Neutron sources, neutron properties and elastic scattering, correlation functions measured by scattering experiments, symmetry of crystals, applications of neutron scattering, polarized-neutron scattering and polarization analysis, structural analysis, magnetic and lattice excitation studied by inelastic neutron scattering, macromolecules and self-assembly, dynamics of macromolecules, correlated electrons in complex transition-metal oxides, surfaces, interfaces, and thin films investigated by neutron reflectometry, nanomagnetism. (HSI)

  10. Neutron scattering. Lectures

    International Nuclear Information System (INIS)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2010-01-01

    The following topics are dealt with: Neutron sources, neutron properties and elastic scattering, correlation functions measured by scattering experiments, symmetry of crystals, applications of neutron scattering, polarized-neutron scattering and polarization analysis, structural analysis, magnetic and lattice excitation studied by inelastic neutron scattering, macromolecules and self-assembly, dynamics of macromolecules, correlated electrons in complex transition-metal oxides, surfaces, interfaces, and thin films investigated by neutron reflectometry, nanomagnetism. (HSI)

  11. Case law

    International Nuclear Information System (INIS)

    2015-01-01

    This section treats of the following case laws: 1 - Canada: Decision of the Canadian Federal Court of Appeal overturning a decision to send back for reconsideration an environmental assessment of a proposed new nuclear power plant in Ontario; 2 - France: Council of State decision, 28 November 2014, Federation 'Reseau sortir du nucleaire' (Nuclear Phase-Out network) and others vs. Electricite de France (EDF), Request No. 367013 for the annulment of: - The resolution of the French Nuclear Safety Authority (ASN) dated 4 July 2011 specifying additional regulations for Electricite de France (EDF) designed to strengthen the reactor basemat of reactor No. 1 in the Fessenheim nuclear power plant, and - The resolution of ASN dated 19 December 2012 approving the start of work on reinforcing the reactor basemat in accordance with the dossier submitted by EDF; 3 - Germany: Judgment of the European Court of Justice on the nuclear fuel tax; 4 - India: Judgment of the High Court of Kerala in a public interest litigation challenging the constitutional validity of the Civil Liability for Nuclear Damage Act, 2010; 5 - Japan - District court decisions on lawsuits related to the restart of Sendai NPP and Takahama NPP; 6 - Poland: Decision of the Masovian Voivod concerning the legality of the resolution on holding a local referendum in the Commune of Rozan regarding a new radioactive waste repository; Certain provisions of the Regulation of the Minister of Health of 18 February 2011 on the conditions for safe use of ionising radiation for all types of medical exposure have been declared unconstitutional by a judgment pronounced by the Constitutional Tribunal; 7 - Slovak Republic: Developments in relation to the disclosure of information concerning the Mochovce nuclear power plant

  12. UNCLOS and International Law

    DEFF Research Database (Denmark)

    Martinez Romera, Beatriz; Coelho, Nelson F.

    2018-01-01

    , treaty law is only one of many sources of the law that governs international relations, the others being customary international law and principles of law. The main conclusion of this chapter is that states may have to wake up to the limitations of the UNCLOS and that this will require understanding...... the relative role of this treaty among other sources of international law....

  13. The French nuclear law

    International Nuclear Information System (INIS)

    Ito, Hiroshi

    2013-01-01

    The nuclear law had been out of the environmental law. The act on the transparency and the security of the nuclear matter was enacted in 2006 and set in the code of the environment in 2012. It means that the nuclear law is part of the environmental law and that it is advanced. I will report the French nuclear law. (author)

  14. Demonstrating the Gas Laws.

    Science.gov (United States)

    Holko, David A.

    1982-01-01

    Presents a complete computer program demonstrating the relationship between volume/pressure for Boyle's Law, volume/temperature for Charles' Law, and volume/moles of gas for Avagadro's Law. The programing reinforces students' application of gas laws and equates a simulated moving piston to theoretical values derived using the ideal gas law.…

  15. Note on some quasielastic neutron scattering analysis programs on the Rutherford Laboratory IBM 360/195

    International Nuclear Information System (INIS)

    Richardson, R.M.

    1979-12-01

    A suite of programs for analysing neutron scattering data from time-of-flight spectrometers has been implemented on the Rutherford Laboratory IBM 360/195 computer system. The programs are intended for near inelastic and quasielastic data and operate by convoluting the measured instrumental resolution function with a model scattering function before fitting to the measured sample scattering law. (author)

  16. Recent Advances in Development and Applications of the Mixed Quantum/Classical Theory for Inelastic Scattering.

    Science.gov (United States)

    Babikov, Dmitri; Semenov, Alexander

    2016-01-28

    A mixed quantum/classical approach to inelastic scattering (MQCT) is developed in which the relative motion of two collision partners is treated classically, and the rotational and vibrational motion of each molecule is treated quantum mechanically. The cases of molecule + atom and molecule + molecule are considered including diatomics, symmetric-top rotors, and asymmetric-top rotor molecules. Phase information is taken into consideration, permitting calculations of elastic and inelastic, total and differential cross sections for excitation and quenching. The method is numerically efficient and intrinsically parallel. The scaling law of MQCT is favorable, which enables calculations at high collision energies and for complicated molecules. Benchmark studies are carried out for several quite different molecular systems (N2 + Na, H2 + He, CO + He, CH3 + He, H2O + He, HCOOCH3 + He, and H2 + N2) in a broad range of collision energies, which demonstrates that MQCT is a viable approach to inelastic scattering. At higher collision energies it can confidently replace the computationally expensive full-quantum calculations. At low collision energies and for low-mass systems results of MQCT are less accurate but are still reasonable. A proposal is made for blending MQCT calculations at higher energies with full-quantum calculations at low energies.

  17. Non-eikonal effects in high-energy scattering IV. Inelastic scattering

    International Nuclear Information System (INIS)

    Gurvitz, S.A.; Kok, L.P.; Rinat, A.S.

    1978-01-01

    Amplitudes of inelastically scattered high-energy projections were calculated. In the scattering on 12 C(Tsub(P)=1 GeV) sizeable non-eikonal corrections in diffraction extrema even for relatively small q 2 are demonstrated. At least part of the anomaly in the 3 - distribution may be due to these non-eikonal effects. (B.G.)

  18. Electromagnetic wave scattering by aerial and ground radar objects

    CERN Document Server

    Sukharevsky, Oleg I

    2014-01-01

    Electromagnetic Wave Scattering by Aerial and Ground Radar Objects presents the theory, original calculation methods, and computational results of the scattering characteristics of different aerial and ground radar objects. This must-have book provides essential background for computing electromagnetic wave scattering in the presence of different kinds of irregularities, as well as Summarizes fundamental electromagnetic statements such as the Lorentz reciprocity theorem and the image principleContains integral field representations enabling the study of scattering from various layered structur

  19. WIMSD5, Deterministic Multigroup Reactor Lattice Calculations

    International Nuclear Information System (INIS)

    2004-01-01

    1 - Description of program or function: The Winfrith improved multigroup scheme (WIMS) is a general code for reactor lattice cell calculation on a wide range of reactor systems. In particular, the code will accept rod or plate fuel geometries in either regular arrays or in clusters and the energy group structure has been chosen primarily for thermal calculations. The basic library has been compiled with 14 fast groups, 13 resonance groups and 42 thermal groups, but the user is offered the choice of accurate solutions in many groups or rapid calculations in few groups. Temperature dependent thermal scattering matrices for a variety of scattering laws are included in the library for the principal moderators which include hydrogen, deuterium, graphite, beryllium and oxygen. WIMSD5 is a successor version of WIMS-D/4. 2 - Method of solution: The treatment of resonances is based on the use of equivalence theorems with a library of accurately evaluated resonance integrals for equivalent homogeneous systems at a variety of temperatures. The collision theory procedure gives accurate spectrum computations in the 69 groups of the library for the principal regions of the lattice using a simplified geometric representation of complicated lattice cells. The computed spectra are then used for the condensation of cross-sections to the number of groups selected for solution of the transport equation in detailed geometry. Solution of the transport equation is provided either by use of the Carlson DSN method or by collision probability methods. Leakage calculations including an allowance for streaming asymmetries may be made using either diffusion theory or the more elaborate B1-method. The output of the code provides Eigenvalues for the cases where a simple buckling mode is applicable or cell-averaged parameters for use in overall reactor calculations. Various reaction rate edits are provided for direct comparison with experimental measurements. 3 - Restrictions on the complexity of

  20. Scattering theory and orthogonal polynomials

    International Nuclear Information System (INIS)

    Geronimo, J.S.

    1977-01-01

    The application of the techniques of scattering theory to the study of polynomials orthogonal on the unit circle and a finite segment of the real line is considered. The starting point is the recurrence relations satisfied by the polynomials instead of the orthogonality condition. A set of two two terms recurrence relations for polynomials orthogonal on the real line is presented and used. These recurrence relations play roles analogous to those satisfied by polynomials orthogonal on unit circle. With these recurrence formulas a Wronskian theorem is proved and the Christoffel-Darboux formula is derived. In scattering theory a fundamental role is played by the Jost function. An analogy is deferred of this function and its analytic properties and the locations of its zeros investigated. The role of the analog Jost function in various properties of these orthogonal polynomials is investigated. The techniques of inverse scattering theory are also used. The discrete analogues of the Gelfand-Levitan and Marchenko equations are derived and solved. These techniques are used to calculate asymptotic formulas for the orthogonal polynomials. Finally Szego's theorem on toeplitz and Hankel determinants is proved using the recurrence formulas and some properties of the Jost function. The techniques of inverse scattering theory are used to calculate the correction terms