WorldWideScience

Sample records for scattering cars imaging

  1. Coherent anti-stokes Raman scattering (CARS) microscopy: a novel technique for imaging the retina.

    Science.gov (United States)

    Masihzadeh, Omid; Ammar, David A; Kahook, Malik Y; Lei, Tim C

    2013-05-01

    To image the cellular and noncellular structures of the retina in an intact mouse eye without the application of exogenous fluorescent labels using noninvasive, nondestructive techniques. Freshly enucleated mouse eyes were imaged using two nonlinear optical techniques: coherent anti-Stokes Raman scattering (CARS) and two-photon autofluorescence (TPAF). Cross sectional transverse sections and sequential flat (en face) sagittal sections were collected from a region of sclera approximately midway between the limbus and optic nerve. Imaging proceeded from the surface of the sclera to a depth of ∼60 μm. The fluorescent signal from collagen fibers within the sclera was evident in the TPAF channel; the scleral collagen fibers showed no organization and appeared randomly packed. The sclera contained regions lacking TPAF and CARS fluorescence of ∼3 to 15 μm in diameter that could represent small vessels or scleral fibroblasts. Intense punctate CARS signals from the retinal pigment epithelial layer were of a size and shape of retinyl storage esters. Rod outer segments could be identified by the CARS signal from their lipid-rich plasma membranes. CARS microscopy can be used to image the outer regions of the mammalian retina without the use of a fluorescent dye or exogenously expressed recombinant protein. With technical advancements, CARS/TPAF may represent a new avenue for noninvasively imaging the retina and might complement modalities currently used in clinical practice.

  2. Coherent anti-Stokes Raman scattering microscopy (CARS): Instrumentation and applications

    International Nuclear Information System (INIS)

    Djaker, Nadia; Lenne, Pierre-Francois; Marguet, Didier; Colonna, Anne; Hadjur, Christophe; Rigneault, Herve

    2007-01-01

    Recent advances in laser physics have permitted the development of a new kind of microscopy based on stimulated Raman scattering. This new technique known as Coherent anti-Stokes Raman scattering (CARS) microscopy allows vibrational imaging with high sensitivity, high spectral resolution and three-dimensional sectioning capabilities. We review recent advances in CARS microscopy, with applications to chemical and biological systems. We also present an application of CARS microscopy with high optical resolution and spectral selectivity, in resolving structures in surface ex vivo stratum corneum by looking at the CH 2 stretching vibrational band. A strong CARS signal is backscattered from an intense forward generated CARS signal in thick samples. This makes noninvasive imaging of deep structures possible, without labeling or chemical treatments

  3. Femtosecond spectral phase shaping for CARS spectroscopy and imaging

    NARCIS (Netherlands)

    Postma, S.; van Rhijn, A.C.W.; Korterik, Jeroen P.; Herek, Jennifer Lynn; Offerhaus, Herman L.; Corkum, P.; de Silvestri, S.; Nelson, K.A.; Riedle, E.; Schoenlein, R.W.

    2009-01-01

    Coherent Anti-Stokes Raman Scattering (CARS) is a third-order non-linear optical process that provides label-free, chemically selective microscopy by probing the internal vibrational structure of molecules. Due to the resonant enhancement of the CARS process, faster imaging is possible compared to

  4. Nonlinear Optics Approaches Towards Subdiffraction Resolution in CARS Imaging

    NARCIS (Netherlands)

    Boller, Klaus J.; Beeker, W.P.; Cleff, C.; Kruse, K.; Lee, Christopher James; Gross, P.; Offerhaus, Herman L.; Fallnich, Carsten; Herek, Jennifer Lynn; Fornasiero, E.F.; Rizzoli, S.O.

    2014-01-01

    In theoretical investigations, we review several nonlinear optical approaches towards subdiffraction-limited resolution in label-free imaging via coherent anti-Stokes Raman scattering (CARS). Using a density matrix model and numerical integration, we investigate various level schemes and

  5. Hyperspectral and differential CARS microscopy for quantitative chemical imaging in human adipocytes

    Science.gov (United States)

    Di Napoli, Claudia; Pope, Iestyn; Masia, Francesco; Watson, Peter; Langbein, Wolfgang; Borri, Paola

    2014-01-01

    In this work, we demonstrate the applicability of coherent anti-Stokes Raman scattering (CARS) micro-spectroscopy for quantitative chemical imaging of saturated and unsaturated lipids in human stem-cell derived adipocytes. We compare dual-frequency/differential CARS (D-CARS), which enables rapid imaging and simple data analysis, with broadband hyperspectral CARS microscopy analyzed using an unsupervised phase-retrieval and factorization method recently developed by us for quantitative chemical image analysis. Measurements were taken in the vibrational fingerprint region (1200–2000/cm) and in the CH stretch region (2600–3300/cm) using a home-built CARS set-up which enables hyperspectral imaging with 10/cm resolution via spectral focussing from a single broadband 5 fs Ti:Sa laser source. Through a ratiometric analysis, both D-CARS and phase-retrieved hyperspectral CARS determine the concentration of unsaturated lipids with comparable accuracy in the fingerprint region, while in the CH stretch region D-CARS provides only a qualitative contrast owing to its non-linear behavior. When analyzing hyperspectral CARS images using the blind factorization into susceptibilities and concentrations of chemical components recently demonstrated by us, we are able to determine vol:vol concentrations of different lipid components and spatially resolve inhomogeneities in lipid composition with superior accuracy compared to state-of-the art ratiometric methods. PMID:24877002

  6. Multiplex CARS imaging with spectral notch shaped laser pulses delivered by optical fibers.

    Science.gov (United States)

    Oh, Seung Ryeol; Park, Joo Hyun; Kim, Kyung-Soo; Lee, Jae Yong; Kim, Soohyun

    2017-12-11

    We present an experimental demonstration of single-pulse coherent anti-Stokes Raman spectroscopy (CARS) using a spectrally shaped broadband laser that is delivered by an optical fiber to a sample at its distal end. The optical fiber consists of a fiber Bragg grating component to serve as a narrowband notch filter and a combined large-mode-area fiber to transmit such shaped ultrashort laser pulses without spectral distortion in a long distance. Experimentally, our implementation showed a capability to measure CARS spectra of various samples with molecular vibrations in the fingerprint region. Furthermore, CARS imaging of poly(methyl methacrylate) bead samples was carried out successfully under epi-CARS geometry in which backward-scattered CARS signals were collected into a multimode optical fiber. A compatibility of single-pulse CARS scheme with fiber optics, verified in this study, implies a potential for future realization of compact all-fiber CARS spectroscopic imaging systems.

  7. Evans blue dye-enhanced imaging of the brain microvessels using spectral focusing coherent anti-Stokes Raman scattering microscopy.

    Directory of Open Access Journals (Sweden)

    Bo-Ram Lee

    Full Text Available We performed dye-enhanced imaging of mouse brain microvessels using spectral focusing coherent anti-Stokes Raman scattering (SF-CARS microscopy. The resonant signals from C-H stretching in forward CARS usually show high background intensity in tissues, which makes CARS imaging of microvessels difficult. In this study, epi-detection of back-scattered SF-CARS signals showed a negligible background, but the overall intensity of resonant CARS signals was too low to observe the network of brain microvessels. Therefore, Evans blue (EB dye was used as contrasting agent to enhance the back-scattered SF-CARS signals. Breakdown of brain microvessels by inducing hemorrhage in a mouse was clearly visualized using backward SF-CARS signals, following intravenous injection of EB. The improved visualization of brain microvessels with EB enhanced the sensitivity of SF-CARS, detecting not only the blood vessels themselves but their integrity as well in the brain vasculature.

  8. Time of flight imaging through scattering environments (Conference Presentation)

    Science.gov (United States)

    Le, Toan H.; Breitbach, Eric C.; Jackson, Jonathan A.; Velten, Andreas

    2017-02-01

    Light scattering is a primary obstacle to imaging in many environments. On small scales in biomedical microscopy and diffuse tomography scenarios scattering is caused by tissue. On larger scales scattering from dust and fog provide challenges to vision systems for self driving cars and naval remote imaging systems. We are developing scale models for scattering environments and investigation methods for improved imaging particularly using time of flight transient information. With the emergence of Single Photon Avalanche Diode detectors and fast semiconductor lasers, illumination and capture on picosecond timescales are becoming possible in inexpensive, compact, and robust devices. This opens up opportunities for new computational imaging techniques that make use of photon time of flight. Time of flight or range information is used in remote imaging scenarios in gated viewing and in biomedical imaging in time resolved diffuse tomography. In addition spatial filtering is popular in biomedical scenarios with structured illumination and confocal microscopy. We are presenting a combination analytical, computational, and experimental models that allow us develop and test imaging methods across scattering scenarios and scales. This framework will be used for proof of concept experiments to evaluate new computational imaging methods.

  9. Label-free cellular imaging by broadband coherent anti-Stokes Raman scattering microscopy.

    Science.gov (United States)

    Parekh, Sapun H; Lee, Young Jong; Aamer, Khaled A; Cicerone, Marcus T

    2010-10-20

    Raman microspectroscopy can provide the chemical contrast needed to characterize the complex intracellular environment and macromolecular organization in cells without exogenous labels. It has shown a remarkable ability to detect chemical changes underlying cell differentiation and pathology-related chemical changes in tissues but has not been widely adopted for imaging, largely due to low signal levels. Broadband coherent anti-Stokes Raman scattering (B-CARS) offers the same inherent chemical contrast as spontaneous Raman but with increased acquisition rates. To date, however, only spectrally resolved signals from the strong CH-related vibrations have been used for CARS imaging. Here, we obtain Raman spectral images of single cells with a spectral range of 600-3200 cm⁻¹, including signatures from weakly scattering modes as well as CH vibrations. We also show that B-CARS imaging can be used to measure spectral signatures of individual cells at least fivefold faster than spontaneous Raman microspectroscopy and can be used to generate maps of biochemical species in cells. This improved spectral range and signal intensity opens the door for more widespread use of vibrational spectroscopic imaging in biology and clinical diagnostics. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  10. Label-free imaging of arterial cells and extracellular matrix using a multimodal CARS microscope

    Science.gov (United States)

    Wang, Han-Wei; Le, Thuc T.; Cheng, Ji-Xin

    2008-04-01

    A multimodal nonlinear optical imaging system that integrates coherent anti-Stokes Raman scattering (CARS), sum-frequency generation (SFG), and two-photon excitation fluorescence (TPEF) on the same platform was developed and applied to visualize single cells and extracellular matrix in fresh carotid arteries. CARS signals arising from CH 2-rich membranes allowed visualization of endothelial cells and smooth muscle cells of the arterial wall. Additionally, CARS microscopy allowed vibrational imaging of elastin and collagen fibrils which are also rich in CH 2 bonds. The extracellular matrix organization was further confirmed by TPEF signals arising from elastin's autofluorescence and SFG signals arising from collagen fibrils' non-centrosymmetric structure. Label-free imaging of significant components of arterial tissues suggests the potential application of multimodal nonlinear optical microscopy to monitor onset and progression of arterial diseases.

  11. Wide-Field Vibrational Phase Contrast Imaging Based on Coherent Anti-Stokes Raman Scattering Holography

    International Nuclear Information System (INIS)

    Lv Yong-Gang; Ji Zi-Heng; Dong Da-Shan; Gong Qi-Huang; Shi Ke-Bin

    2015-01-01

    We propose and implement a wide-field vibrational phase contrast detection to obtain imaging of imaginary components of third-order nonlinear susceptibility in a coherent anti-Stokes Raman scattering (CARS) microscope with full suppression of the non-resonant background. This technique is based on the unique ability of recovering the phase of the generated CARS signal based on holographic recording. By capturing the phase distributions of the generated CARS field from the sample and from the environment under resonant illumination, we demonstrate the retrieval of imaginary components in the CARS microscope and achieve background free coherent Raman imaging. (paper)

  12. Combining deep learning and coherent anti-Stokes Raman scattering imaging for automated differential diagnosis of lung cancer

    Science.gov (United States)

    Weng, Sheng; Xu, Xiaoyun; Li, Jiasong; Wong, Stephen T. C.

    2017-10-01

    Lung cancer is the most prevalent type of cancer and the leading cause of cancer-related deaths worldwide. Coherent anti-Stokes Raman scattering (CARS) is capable of providing cellular-level images and resolving pathologically related features on human lung tissues. However, conventional means of analyzing CARS images requires extensive image processing, feature engineering, and human intervention. This study demonstrates the feasibility of applying a deep learning algorithm to automatically differentiate normal and cancerous lung tissue images acquired by CARS. We leverage the features learned by pretrained deep neural networks and retrain the model using CARS images as the input. We achieve 89.2% accuracy in classifying normal, small-cell carcinoma, adenocarcinoma, and squamous cell carcinoma lung images. This computational method is a step toward on-the-spot diagnosis of lung cancer and can be further strengthened by the efforts aimed at miniaturizing the CARS technique for fiber-based microendoscopic imaging.

  13. Vibrational imaging and microspectroscopies based on coherent anti-Stokes Raman scattering microscopy

    International Nuclear Information System (INIS)

    Volkmer, Andreas

    2005-01-01

    For noninvasive characterization of chemical species or biological components within a complex heterogeneous system, their intrinsic molecular vibrational properties can be used in contrast mechanisms in optical microscopy. A series of recent advances have made coherent anti-Stokes Raman scattering (CARS) microscopy a powerful technique that allows vibrational imaging with high sensitivity, high spectral resolution and three-dimensional sectioning capability. In this review, we discuss theoretical and experimental aspects of CARS microscopy in a collinear excitation beam geometry. Particular attention is given to the underlying physical principles behind the new features of CARS signal generation under tight focusing conditions. We provide a brief overview of the instrumentation of CARS microscopy and its experimental characterization by means of imaging of model systems and live unstained cells. CARS microscopy offers the possibility of spatially resolved vibrational spectroscopy, providing chemical and physical structure information of molecular specimens on the sub-micrometre length scale. We review multiplex CARS microspectroscopy allowing fast acquisition of frequency-resolved CARS spectra, time-resolved CARS microspectroscopy recording ultrafast Raman free induction decays and CARS correlation spectroscopy probing dynamical processes with chemical selectivity. (topical review)

  14. Quantitative imaging of lipids in live mouse oocytes and early embryos using CARS microscopy

    Science.gov (United States)

    Bradley, Josephine; Pope, Iestyn; Masia, Francesco; Sanusi, Randa; Langbein, Wolfgang; Borri, Paola

    2016-01-01

    Mammalian oocytes contain lipid droplets that are a store of fatty acids, whose metabolism plays a substantial role in pre-implantation development. Fluorescent staining has previously been used to image lipid droplets in mammalian oocytes and embryos, but this method is not quantitative and often incompatible with live cell imaging and subsequent development. Here we have applied chemically specific, label-free coherent anti-Stokes Raman scattering (CARS) microscopy to mouse oocytes and pre-implantation embryos. We show that CARS imaging can quantify the size, number and spatial distribution of lipid droplets in living mouse oocytes and embryos up to the blastocyst stage. Notably, it can be used in a way that does not compromise oocyte maturation or embryo development. We have also correlated CARS with two-photon fluorescence microscopy simultaneously acquired using fluorescent lipid probes on fixed samples, and found only a partial degree of correlation, depending on the lipid probe, clearly exemplifying the limitation of lipid labelling. In addition, we show that differences in the chemical composition of lipid droplets in living oocytes matured in media supplemented with different saturated and unsaturated fatty acids can be detected using CARS hyperspectral imaging. These results demonstrate that CARS microscopy provides a novel non-invasive method of quantifying lipid content, type and spatial distribution with sub-micron resolution in living mammalian oocytes and embryos. PMID:27151947

  15. Studying time of flight imaging through scattering media across multiple size scales (Conference Presentation)

    Science.gov (United States)

    Velten, Andreas

    2017-05-01

    Light scattering is a primary obstacle to optical imaging in a variety of different environments and across many size and time scales. Scattering complicates imaging on large scales when imaging through the atmosphere when imaging from airborne or space borne platforms, through marine fog, or through fog and dust in vehicle navigation, for example in self driving cars. On smaller scales, scattering is the major obstacle when imaging through human tissue in biomedical applications. Despite the large variety of participating materials and size scales, light transport in all these environments is usually described with very similar scattering models that are defined by the same small set of parameters, including scattering and absorption length and phase function. We attempt a study of scattering and methods of imaging through scattering across different scales and media, particularly with respect to the use of time of flight information. We can show that using time of flight, in addition to spatial information, provides distinct advantages in scattering environments. By performing a comparative study of scattering across scales and media, we are able to suggest scale models for scattering environments to aid lab research. We also can transfer knowledge and methodology between different fields.

  16. Insights into Caco-2 cell culture structure using coherent anti-Stokes Raman scattering (CARS) microscopy.

    Science.gov (United States)

    Saarinen, Jukka; Sözeri, Erkan; Fraser-Miller, Sara J; Peltonen, Leena; Santos, Hélder A; Isomäki, Antti; Strachan, Clare J

    2017-05-15

    We have used coherent anti-Stokes Raman scattering (CARS) microscopy as a novel and rapid, label-free and non-destructive imaging method to gain structural insights into live intestinal epithelial cell cultures used for drug permeability testing. Specifically we have imaged live Caco-2 cells in (bio)pharmaceutically relevant conditions grown on membrane inserts. Imaging conditions were optimized, including evaluation of suitable membrane materials and media solutions, as well as tolerable laser powers for non-destructive imaging of the live cells. Lipid structures, in particular lipid droplets, were imaged within the cells on the insert membranes. The size of the individual lipid droplets increased substantially over the 21-day culturing period up to approximately 10% of the volume of the cross section of individual cells. Variation in lipid content has important implications for intestinal drug permeation testing during drug development but has received limited attention to date due to a lack of suitable analytical techniques. CARS microscopy was shown to be well suited for such analysis with the potential for in situ imaging of the same individual cell-cultures that are used for permeation studies. Overall, the method may be used to provide important information about cell monolayer structure to better understand drug permeation results. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. A novel clinical multimodal multiphoton tomograph for AF, SHG, CARS imaging, and FLIM

    Science.gov (United States)

    Weinigel, Martin; Breunig, Hans Georg; König, Karsten

    2014-02-01

    We report on a flexible nonlinear medical tomograph with multiple miniaturized detectors for simultaneous acquisition of two-photon autofluorescence (AF), second harmonic generation (SHG) and coherent anti-Stokes Raman scattering (CARS) images. The simultaneous visualization of the distribution of endogenous fluorophores NAD(P)H, melanin and elastin, SHG-active collagen and as well as non-fluorescent lipids within human skin in vivo is possible. Furthermore, fluorescence lifetime images (FLIM) can be generated using time-correlated single photon counting.

  18. Design of Wideband MIMO Car-to-Car Channel Models Based on the Geometrical Street Scattering Model

    Directory of Open Access Journals (Sweden)

    Nurilla Avazov

    2012-01-01

    Full Text Available We propose a wideband multiple-input multiple-output (MIMO car-to-car (C2C channel model based on the geometrical street scattering model. Starting from the geometrical model, a MIMO reference channel model is derived under the assumption of single-bounce scattering in line-of-sight (LOS and non-LOS (NLOS propagation environments. The proposed channel model assumes an infinite number of scatterers, which are uniformly distributed in two rectangular areas located on both sides of the street. Analytical solutions are presented for the space-time-frequency cross-correlation function (STF-CCF, the two-dimensional (2D space CCF, the time-frequency CCF (TF-CCF, the temporal autocorrelation function (ACF, and the frequency correlation function (FCF. An efficient sum-of-cisoids (SOCs channel simulator is derived from the reference model. It is shown that the temporal ACF and the FCF of the SOC channel simulator fit very well to the corresponding correlation functions of the reference model. To validate the proposed channel model, the mean Doppler shift and the Doppler spread of the reference model have been matched to real-world measurement data. The comparison results demonstrate an excellent agreement between theory and measurements, which confirms the validity of the derived reference model. The proposed geometry-based channel simulator allows us to study the effect of nearby street scatterers on the performance of C2C communication systems.

  19. Detection of chemical interfaces in coherent anti-Stokes Raman scattering microscopy: Dk-CARS. I. Axial interfaces.

    Science.gov (United States)

    Gachet, David; Rigneault, Hervé

    2011-12-01

    We develop a full vectorial theoretical investigation of the chemical interface detection in conventional coherent anti-Stokes Raman scattering (CARS) microscopy. In Part I, we focus on the detection of axial interfaces (i.e., parallel to the optical axis) following a recent experimental demonstration of the concept [Phys. Rev. Lett. 104, 213905 (2010)]. By revisiting the Young's double slit experiment, we show that background-free microscopy and spectroscopy is achievable through the angular analysis of the CARS far-field radiation pattern. This differential CARS in k space (Dk-CARS) technique is interesting for fast detection of interfaces between molecularly different media. It may be adapted to other coherent and resonant scattering processes.

  20. Surface-enhanced FAST CARS: en route to quantum nano-biophotonics

    Science.gov (United States)

    Voronine, Dmitri V.; Zhang, Zhenrong; Sokolov, Alexei V.; Scully, Marlan O.

    2018-02-01

    Quantum nano-biophotonics as the science of nanoscale light-matter interactions in biological systems requires developing new spectroscopic tools for addressing the challenges of detecting and disentangling weak congested optical signals. Nanoscale bio-imaging addresses the challenge of the detection of weak resonant signals from a few target biomolecules in the presence of the nonresonant background from many undesired molecules. In addition, the imaging must be performed rapidly to capture the dynamics of biological processes in living cells and tissues. Label-free non-invasive spectroscopic techniques are required to minimize the external perturbation effects on biological systems. Various approaches were developed to satisfy these requirements by increasing the selectivity and sensitivity of biomolecular detection. Coherent anti-Stokes Raman scattering (CARS) and surface-enhanced Raman scattering (SERS) spectroscopies provide many orders of magnitude enhancement of chemically specific Raman signals. Femtosecond adaptive spectroscopic techniques for CARS (FAST CARS) were developed to suppress the nonresonant background and optimize the efficiency of the coherent optical signals. This perspective focuses on the application of these techniques to nanoscale bio-imaging, discussing their advantages and limitations as well as the promising opportunities and challenges of the combined coherence and surface enhancements in surface-enhanced coherent anti-Stokes Raman scattering (SECARS) and tip-enhanced coherent anti-Stokes Raman scattering (TECARS) and the corresponding surface-enhanced FAST CARS techniques. Laser pulse shaping of near-field excitations plays an important role in achieving these goals and increasing the signal enhancement.

  1. Surface-enhanced FAST CARS: en route to quantum nano-biophotonics

    Directory of Open Access Journals (Sweden)

    Voronine Dmitri V.

    2018-02-01

    Full Text Available Quantum nano-biophotonics as the science of nanoscale light-matter interactions in biological systems requires developing new spectroscopic tools for addressing the challenges of detecting and disentangling weak congested optical signals. Nanoscale bio-imaging addresses the challenge of the detection of weak resonant signals from a few target biomolecules in the presence of the nonresonant background from many undesired molecules. In addition, the imaging must be performed rapidly to capture the dynamics of biological processes in living cells and tissues. Label-free non-invasive spectroscopic techniques are required to minimize the external perturbation effects on biological systems. Various approaches were developed to satisfy these requirements by increasing the selectivity and sensitivity of biomolecular detection. Coherent anti-Stokes Raman scattering (CARS and surface-enhanced Raman scattering (SERS spectroscopies provide many orders of magnitude enhancement of chemically specific Raman signals. Femtosecond adaptive spectroscopic techniques for CARS (FAST CARS were developed to suppress the nonresonant background and optimize the efficiency of the coherent optical signals. This perspective focuses on the application of these techniques to nanoscale bio-imaging, discussing their advantages and limitations as well as the promising opportunities and challenges of the combined coherence and surface enhancements in surface-enhanced coherent anti-Stokes Raman scattering (SECARS and tip-enhanced coherent anti-Stokes Raman scattering (TECARS and the corresponding surface-enhanced FAST CARS techniques. Laser pulse shaping of near-field excitations plays an important role in achieving these goals and increasing the signal enhancement.

  2. Vibrational Imaging with High Sensitivity via Epidetected Coherent Anti-Stokes Raman Scattering Microscopy

    International Nuclear Information System (INIS)

    Volkmer, Andreas; Cheng, Ji-Xin; Sunney Xie, X.

    2001-01-01

    We demonstrate theoretically and experimentally a novel epidetection scheme for coherent anti-Stokes Raman scattering (CARS) microscopy that significantly improves the detection sensitivity. Calculations show that epidetected CARS (E-CARS) signals are present for scatterers smaller than the wavelength of light, whereas the large background signals from the surrounding bulk solvent are suppressed by destructive interference. E-CARS microscopy is capable of revealing small intracellular features that are otherwise buried by the strong water CARS signal

  3. Gravity Chromatic Imaging of the Eta Car's Core

    Science.gov (United States)

    Sanchez-Bermudez, Joel

    2018-04-01

    Eta Car is one of the most massive, and intriguing, Luminous Blue Variables known. In its core resides a binary with a 5.54 years orbital period. Visible, infrared, and X-raobservations suggest that the primary star exhibits a very dense wind with a terminal velocity of about 420 km/s, while the secondary shows a much faster and less dense wind with a terminal velocity of 3000 km/s. The wind-wind collision zone at the core of Eta Car is thus a complex region that deserves a detailed study to understand the effect of the binary interaction in the evolution of the system. Here, we will present a unique imaging campaign with GRAVITY/VLTI of the Eta Car's core. The superb quality of our interferometric data, together with state-of-the-art image reconstruction techniques, allowed us to obtain, with milliarcsecond resolution, continuum and chromatic images cross the BrG and HeI lines in the Eta Car K-band spectrum (R 4000). These new data together with models of the primary wind of Eta Car has letting us to characterize the spatial distribution of the dust and gas in the inner 40 AU wind-wind collision zone of the target.

  4. CARS hyperspectral imaging of cartilage aiming for state discrimination of cell

    Science.gov (United States)

    Shiozawa, Manabu; Shirai, Masataka; Izumisawa, Junko; Tanabe, Maiko; Watanabe, Koichi

    2016-03-01

    Non-invasive cell analyses are increasingly important for medical field. A CARS microscope is one of the non-invasive imaging equipments and enables to obtain images indicating molecular distribution. Some studies on discrimination of cell state by using CARS images of lipid are reported. However, due to low signal intensity, it is still challenging to obtain images of the fingerprint region (800~1800 cm-1), in which many spectrum peaks correspond to compositions of a cell. Here, to identify cell differentiation by using multiplex CARS, we investigated hyperspectral imaging of fingerprint region of living cells. To perform multiplex CARS, we used a prototype of a compact light source, which consists of a microchip laser, a single-mode fiber, and a photonic crystal fiber to generate supercontinuum light. Assuming application to regenerative medicine, we chose a cartilage cell, whose differentiation is difficult to be identified by change of the cell morphology. Because one of the major components of cartilage is collagen, we focused on distribution of proline, which accounts for approximately 20% of collagen in general. The spectrum quality was improved by optical adjustments about power branching ratio and divergence of broadband Stokes light. Hyperspectral images were successfully obtained by the improvement. Periphery of a cartilage cell was highlighted in CARS image of proline, and this result suggests correspondence with collagen generated as extracellular matrix. A possibility of cell analyses by using CARS hyperspectral imaging was indicated.

  5. Dynamic imaging for CAR-T-cell therapy.

    Science.gov (United States)

    Emami-Shahri, Nia; Papa, Sophie

    2016-04-15

    Chimaeric antigen receptor (CAR) therapy is entering the mainstream for the treatment of CD19(+)cancers. As is does we learn more about resistance to therapy and the role, risks and management of toxicity. In solid tumour CAR therapy research the route to the clinic is less smooth with a wealth of challenges facing translating this, potentially hugely valuable, therapeutic option for patients. As we strive to understand our successes, and navigate the challenges, having a clear understanding of how adoptively transferred CAR-T-cells behavein vivoand in human trials is invaluable. Harnessing reporter gene imaging to enable detection and tracking of small numbers of CAR-T-cells after adoptive transfer is one way by which we can accomplish this. The compatibility of certain reporter gene systems with tracers available routinely in the clinic makes this approach highly useful for future appraisal of CAR-T-cell success in humans. © 2016 Authors; published by Portland Press Limited.

  6. Three-pulse multiplex coherent anti-Stokes/Stokes Raman scattering (CARS/CSRS) microspectroscopy using a white-light laser source

    International Nuclear Information System (INIS)

    Bito, Kotatsu; Okuno, Masanari; Kano, Hideaki; Leproux, Philippe; Couderc, Vincent; Hamaguchi, Hiro-o

    2013-01-01

    Highlights: ► We have developed a simultaneous measurement system of CARS and CSRS. ► We can obtain information on the electronic resonance effect with the measurement. ► The simultaneous measurement provides us with more reliable spectral information. - Abstract: We have developed a three-pulse non-degenerate multiplex coherent Raman microspectroscopic system using a white-light laser source. The fundamental output (1064 nm) of a Nd:YAG laser is used for the pump radiation with the white-light laser output (1100–1700 nm) for the Stokes radiation to achieve broadband multiplex excitations of vibrational coherences. The second harmonic (532 nm) of the same Nd:YAG laser is used for the probe radiation. Thanks to the large wavelength difference between the pump and probe radiations, coherent anti-Stokes Raman scattering (CARS) and coherent Stokes Raman scattering (CSRS) can be detected simultaneously. Simultaneous detection of CARS and CSRS enables us to obtain information on the electronic resonance effect that affects differently the CARS and CSRS signals. Simultaneous analysis of the CARS and CSRS signals provides us the imaginary part of χ (3) without introducing any arbitrary parameter in the maximum entropy method (MEM)

  7. Coherent Raman scattering microscopy for label-free imaging of live amphioxus

    Science.gov (United States)

    Yu, Zhilong; Chen, Tao; Zhang, Xiannian; Shen, Jie; Chen, Junyuan; Huang, Yanyi

    2012-03-01

    The existence of notochord distinguishes chordates from other phyla. Amphioxus is the only animal that keeps notochord during the whole life. Notochord is a unique organ for amphioxus, with its vertically arranged muscular notochordal plates, which is different from notochords in embryos of other chordates. We use stimulated Raman scattering (SRS) microscopy as a non-invasive technique to image the chemical components in amphioxus notochord. SRS provides chemical specificity as spontaneous Raman does and offers a higher sensitivity for fast acquisition. Unlike coherent anti- Stokes Raman scattering (CARS) microscopy, SRS microscopy doesn't have non-resonant background and can better differentiate different components in the specimen. We verify that the notochord is a protein-rich organ, which agrees well with the result of conventional staining methods. Detailed structures in notochordal plates and notochordal sheath are revealed by SRS microscopy with diffraction limited resolution. Our experiment shows that SRS microscopy is an excellent imaging tool for biochemical research with its intrinsic chemical selectivity, high spatiotemporal resolution and native 3D optical sectioning ability.

  8. Shedding new light on lipid functions with CARS and SRS microscopy

    Science.gov (United States)

    Yu, Yong; Ramachandran, Prasanna V.; Wang, Meng C.

    2014-01-01

    Modern optical microscopy has granted biomedical scientists unprecedented access to the inner workings of a cell, and revolutionized our understanding of the molecular mechanisms underlying physiological and disease states. In spite of these advances, however, visualization of certain classes of molecules (e.g. lipids) at the sub-cellular level has remained elusive. Recently developed chemical imaging modalities – Coherent Anti-Stokes Raman Scattering (CARS) microscopy and Stimulated Raman Scattering (SRS) microscopy – have helped bridge this gap. By selectively imaging the vibration of a specific chemical group, these non-invasive techniques allow high-resolution imaging of individual molecules in vivo, and circumvent the need for potentially perturbative extrinsic labels. These tools have already been applied to the study of fat metabolism, helping uncover novel regulators of lipid storage. Here we review the underlying principle of CARS and SRS microscopy, and discuss the advantages and caveats of each technique. We also review recent applications of these tools in the study of lipids as well as other biomolecules, and conclude with a brief guide for interested researchers to build and use CARS/SRS systems for their own research. PMID:24576891

  9. Dual CARS and SHG image acquisition scheme that combines single central fiber and multimode fiber bundle to collect and differentiate backward and forward generated photons

    Science.gov (United States)

    Weng, Sheng; Chen, Xu; Xu, Xiaoyun; Wong, Kelvin K.; Wong, Stephen T. C.

    2016-01-01

    In coherent anti-Stokes Raman scattering (CARS) and second harmonic generation (SHG) imaging, backward and forward generated photons exhibit different image patterns and thus capture salient intrinsic information of tissues from different perspectives. However, they are often mixed in collection using traditional image acquisition methods and thus are hard to interpret. We developed a multimodal scheme using a single central fiber and multimode fiber bundle to simultaneously collect and differentiate images formed by these two types of photons and evaluated the scheme in an endomicroscopy prototype. The ratio of these photons collected was calculated for the characterization of tissue regions with strong or weak epi-photon generation while different image patterns of these photons at different tissue depths were revealed. This scheme provides a new approach to extract and integrate information captured by backward and forward generated photons in dual CARS/SHG imaging synergistically for biomedical applications. PMID:27375938

  10. Real-time CARS imaging reveals a calpain-dependent pathway for paranodal myelin retraction during high-frequency stimulation.

    Directory of Open Access Journals (Sweden)

    Terry B Huff

    2011-03-01

    Full Text Available High-frequency electrical stimulation is becoming a promising therapy for neurological disorders, however the response of the central nervous system to stimulation remains poorly understood. The current work investigates the response of myelin to electrical stimulation by laser-scanning coherent anti-Stokes Raman scattering (CARS imaging of myelin in live spinal tissues in real time. Paranodal myelin retraction at the nodes of Ranvier was observed during 200 Hz electrical stimulation. Retraction was seen to begin minutes after the onset of stimulation and continue for up to 10 min after stimulation was ceased, but was found to reverse after a 2 h recovery period. The myelin retraction resulted in exposure of Kv 1.2 potassium channels visualized by immunofluorescence. Accordingly, treating the stimulated tissue with a potassium channel blocker, 4-aminopyridine, led to the appearance of a shoulder peak in the compound action potential curve. Label-free CARS imaging of myelin coupled with multiphoton fluorescence imaging of immuno-labeled proteins at the nodes of Ranvier revealed that high-frequency stimulation induced paranodal myelin retraction via pathologic calcium influx into axons, calpain activation, and cytoskeleton degradation through spectrin break-down.

  11. Femtosecond Coherent Anti-Stokes Raman Spectroscopy (CARS) As Next Generation Nonlinear LIDAR Spectroscopy and Microscopy

    International Nuclear Information System (INIS)

    Ooi, C. H. Raymond

    2009-01-01

    Nonlinear spectroscopy using coherent anti-Stokes Raman scattering and femtosecond laser pulses has been successfully developed as powerful tools for chemical analysis and biological imaging. Recent developments show promising possibilities of incorporating CARS into LIDAR system for remote detection of molecular species in airborne particles. The corresponding theory is being developed to describe nonlinear scattering of a mesoscopic particle composed of complex molecules by laser pulses with arbitrary shape and spectral content. Microscopic many-body transform theory is used to compute the third order susceptibility for CARS in molecules with known absorption spectrum and vibrational modes. The theory is combined with an integral scattering formula and Mie-Lorentz formulae, giving a rigorous formalism which provides powerful numerical experimentation of CARS spectra, particularly on the variations with the laser parameters and the direction of detection.

  12. Temperature Measurements in Reacting Flows Using Time-Resolved Femtosecond Coherent Anti-Stokes Raman Scattering (fs-CARS) Spectroscopy (Postprint)

    National Research Council Canada - National Science Library

    Roy, Sukesh; Kinnius, Paul J; Lucht, Robert P; Gord, James R

    2007-01-01

    Time-resolved femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy of the nitrogen molecule is used for the measurement of temperature in atmospheric-pressure, near-adiabatic, hydrogen-air diffusion flames...

  13. Quantitative assessment of spinal cord injury using circularly polarized coherent anti-Stokes Raman scattering microscopy

    Science.gov (United States)

    Bae, Kideog; Zheng, Wei; Huang, Zhiwei

    2017-08-01

    We report the quantitative assessment of spinal cord injury using the circularly polarized coherent anti-Stokes Raman scattering (CP-CARS) technique together with Stokes parameters in the Poincaré sphere. The pump and Stokes excitation beams are circularly polarized to suppress both the linear polarization-dependent artifacts and the nonresonant background of tissue CARS imaging, enabling quantitative CP-CARS image analysis. This study shows that CP-CARS imaging uncovers significantly increased phase retardance of injured spinal cord tissue as compared to normal tissue, suggesting that CP-CARS is an appealing label-free imaging tool for determining the degree of tissue phase retardance, which could serve as a unique diagnostic parameter associated with nervous tissue injury.

  14. Tunable optical setup with high flexibility for spectrally resolved coherent anti-Stokes Raman scattering microscopy

    International Nuclear Information System (INIS)

    Bergner, G; Akimov, D; Bartelt, H; Dietzek, B; Popp, J; Schlücker, S

    2011-01-01

    A simplified setup for coherent anti-Stokes Raman scattering (CARS) microscopy is introduced, which allows for recording CARS images with 30 cm -1 excitation bandwidth for probing Raman bands between 500 and 900 cm -1 with minimal requirements for alignment. The experimental arrangement is based on electronic switching between CARS images recorded at different Raman resonances by combining a photonic crystal fiber (PCF) as broadband light source and an acousto-optical programmable dispersive filter (AOPDF) as tunable wavelength filter. Such spatial light modulator enables selection of a narrow-band spectrum to yield high vibrational contrast and hence chemical contrast in the resultant CARS images. Furthermore, an experimental approach to reconstruct spectral information from CARS image contrast is introduced

  15. Density and temperature measurement using CARS spectroscopy

    International Nuclear Information System (INIS)

    Hirth, A.; Vollrath, K.

    1979-01-01

    Coherent Anti Stokes Raman Scattering (CARS) a technique derived from nonlinear optics offers two major advantages compared with the spontaneous Raman method: improved scattering efficiency and spatial coherence of the scattered signal. The theory of the coherent mixing in resonant media serves as a quantitative background of the CARS technique. A review of several applications on plasma physics and gasdynamics is given, which permits to consider the CARS spectroscopy as a potential method for nonintrusive measurement of local concentration and temperature in gas flows and reactive media. (Auth.)

  16. Coherent anti-Stokes Raman scattering and spontaneous Raman scattering diagnostics of nonequilibrium plasmas and flows

    Science.gov (United States)

    Lempert, Walter R.; Adamovich, Igor V.

    2014-10-01

    The paper provides an overview of the use of coherent anti-Stokes Raman scattering (CARS) and spontaneous Raman scattering for diagnostics of low-temperature nonequilibrium plasmas and nonequilibrium high-enthalpy flows. A brief review of the theoretical background of CARS, four-wave mixing and Raman scattering, as well as a discussion of experimental techniques and data reduction, are included. The experimental results reviewed include measurements of vibrational level populations, rotational/translational temperature, electric fields in a quasi-steady-state and transient molecular plasmas and afterglow, in nonequilibrium expansion flows, and behind strong shock waves. Insight into the kinetics of vibrational energy transfer, energy thermalization mechanisms and dynamics of the pulse discharge development, provided by these experiments, is discussed. Availability of short pulse duration, high peak power lasers, as well as broadband dye lasers, makes possible the use of these diagnostics at relatively low pressures, potentially with a sub-nanosecond time resolution, as well as obtaining single laser shot, high signal-to-noise spectra at higher pressures. Possibilities for the development of single-shot 2D CARS imaging and spectroscopy, using picosecond and femtosecond lasers, as well as novel phase matching and detection techniques, are discussed.

  17. Bistatic Forward Scattering Radar Detection and Imaging

    Directory of Open Access Journals (Sweden)

    Hu Cheng

    2016-06-01

    Full Text Available Forward Scattering Radar (FSR is a special type of bistatic radar that can implement image detection, imaging, and identification using the forward scattering signals provided by the moving targets that cross the baseline between the transmitter and receiver. Because the forward scattering effect has a vital significance in increasing the targets’ Radar Cross Section (RCS, FSR is quite advantageous for use in counter stealth detection. This paper first introduces the front line technology used in forward scattering RCS, FSR detection, and Shadow Inverse Synthetic Aperture Radar (SISAR imaging and key problems such as the statistical characteristics of forward scattering clutter, accurate parameter estimation, and multitarget discrimination are then analyzed. Subsequently, the current research progress in FSR detection and SISAR imaging are described in detail, including the theories and experiments. In addition, with reference to the BeiDou navigation satellite, the results of forward scattering experiments in civil aircraft detection are shown. Finally, this paper considers future developments in FSR target detection and imaging and presents a new, promising technique for stealth target detection.

  18. Healing X-ray scattering images

    Directory of Open Access Journals (Sweden)

    Jiliang Liu

    2017-07-01

    Full Text Available X-ray scattering images contain numerous gaps and defects arising from detector limitations and experimental configuration. We present a method to heal X-ray scattering images, filling gaps in the data and removing defects in a physically meaningful manner. Unlike generic inpainting methods, this method is closely tuned to the expected structure of reciprocal-space data. In particular, we exploit statistical tests and symmetry analysis to identify the structure of an image; we then copy, average and interpolate measured data into gaps in a way that respects the identified structure and symmetry. Importantly, the underlying analysis methods provide useful characterization of structures present in the image, including the identification of diffuse versus sharp features, anisotropy and symmetry. The presented method leverages known characteristics of reciprocal space, enabling physically reasonable reconstruction even with large image gaps. The method will correspondingly fail for images that violate these underlying assumptions. The method assumes point symmetry and is thus applicable to small-angle X-ray scattering (SAXS data, but only to a subset of wide-angle data. Our method succeeds in filling gaps and healing defects in experimental images, including extending data beyond the original detector borders.

  19. In situ dissolution analysis of pharmaceutical dosage forms using coherent anti-Stokes Raman scattering (CARS) microscopy

    NARCIS (Netherlands)

    Fussell, A. L.; Garbacik, E. T.; Löbmann, K.; Offerhaus, H. L.; Kleinebudde, P.; Strachan, Clare J.

    2014-01-01

    A custom-built intrinsic flow-through dissolution setup was developed and incorporated into a home-built CARS microscope consisting of a synchronously pumped optical parametric oscillator (OPO) and an inverted microscope with a 20X/0.5NA objective. CARS dissolution images (512×512 pixels) were

  20. Coherent anti-Stokes Raman scattering rigid endoscope toward robot-assisted surgery.

    Science.gov (United States)

    Hirose, K; Aoki, T; Furukawa, T; Fukushima, S; Niioka, H; Deguchi, S; Hashimoto, M

    2018-02-01

    Label-free visualization of nerves and nervous plexuses will improve the preservation of neurological functions in nerve-sparing robot-assisted surgery. We have developed a coherent anti-Stokes Raman scattering (CARS) rigid endoscope to distinguish nerves from other tissues during surgery. The developed endoscope, which has a tube with a diameter of 12 mm and a length of 270 mm, achieved 0.91% image distortion and 8.6% non-uniformity of CARS intensity in the whole field of view (650 μm diameter). We demonstrated CARS imaging of a rat sciatic nerve and visualization of the fine structure of nerve fibers.

  1. Prior image constrained scatter correction in cone-beam computed tomography image-guided radiation therapy.

    Science.gov (United States)

    Brunner, Stephen; Nett, Brian E; Tolakanahalli, Ranjini; Chen, Guang-Hong

    2011-02-21

    X-ray scatter is a significant problem in cone-beam computed tomography when thicker objects and larger cone angles are used, as scattered radiation can lead to reduced contrast and CT number inaccuracy. Advances have been made in x-ray computed tomography (CT) by incorporating a high quality prior image into the image reconstruction process. In this paper, we extend this idea to correct scatter-induced shading artifacts in cone-beam CT image-guided radiation therapy. Specifically, this paper presents a new scatter correction algorithm which uses a prior image with low scatter artifacts to reduce shading artifacts in cone-beam CT images acquired under conditions of high scatter. The proposed correction algorithm begins with an empirical hypothesis that the target image can be written as a weighted summation of a series of basis images that are generated by raising the raw cone-beam projection data to different powers, and then, reconstructing using the standard filtered backprojection algorithm. The weight for each basis image is calculated by minimizing the difference between the target image and the prior image. The performance of the scatter correction algorithm is qualitatively and quantitatively evaluated through phantom studies using a Varian 2100 EX System with an on-board imager. Results show that the proposed scatter correction algorithm using a prior image with low scatter artifacts can substantially mitigate scatter-induced shading artifacts in both full-fan and half-fan modes.

  2. Compton scatter correction for planner scintigraphic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Vaan Steelandt, E; Dobbeleir, A; Vanregemorter, J [Algemeen Ziekenhuis Middelheim, Antwerp (Belgium). Dept. of Nuclear Medicine and Radiotherapy

    1995-12-01

    A major problem in nuclear medicine is the image degradation due to Compton scatter in the patient. Photons emitted by the radioactive tracer scatter in collision with electrons of the surrounding tissue. Due to the resulting loss of energy and change in direction, the scattered photons induce an object dependant background on the images. This results in a degradation of the contrast of warm and cold lesions. Although theoretically interesting, most of the techniques proposed in literature like the use of symmetrical photopeaks can not be implemented on the commonly used gamma camera due to the energy/linearity/sensitivity corrections applied in the detector. A method for a single energy isotope based on existing methods with adjustments towards daily practice and clinical situations is proposed. It is assumed that the scatter image, recorded from photons collected within a scatter window adjacent to the photo peak, is a reasonable close approximation of the true scatter component of the image reconstructed from the photo peak window. A fraction `k` of the image using the scatter window is subtracted from the image recorded in the photo peak window to produce the compensated image. The principal matter of the method is the right value for the factor `k`, which is determined in a mathematical way and confirmed by experiments. To determine `k`, different kinds of scatter media are used and are positioned in different ways in order to simulate a clinical situation. For a secondary energy window from 100 to 124 keV below a photo peak window from 126 to 154 keV, a value of 0.7 is found. This value has been verified using both an antropomorph thyroid phantom and the Rollo contrast phantom.

  3. Scattered radiation in fan beam imaging systems

    International Nuclear Information System (INIS)

    Johns, P.C.; Yaffe, M.

    1982-01-01

    Scatter-to-primary energy fluence ratios (S/P) have been studied for fan x-ray beams as used in CT scanners and slit projection radiography systems. The dependence of S/P on phantom diameter, distance from phantom to image receptor, and kilovoltage is presented. An empirical equation is given that predicts S/P over a wide range of fan beam imaging configurations. For CT body scans on a 4th-generation machine, S/P is approximately 5%. Scattered radiation can produce a significant cupping artefact in CT images which is similar to that due to beam hardening. When multiple slices are used in scanned slit radiography, they can be arranged such that the increase in S/P is negligible. Calculations of scatter-to-primary ratios for first order scattering showed that for fan beams the contribution of coherent scatter is comparable to or greater than that of incoherent first scatter

  4. Scattered Radiation Emission Imaging: Principles and Applications

    Directory of Open Access Journals (Sweden)

    M. K. Nguyen

    2011-01-01

    Full Text Available Imaging processes built on the Compton scattering effect have been under continuing investigation since it was first suggested in the 50s. However, despite many innovative contributions, there are still formidable theoretical and technical challenges to overcome. In this paper, we review the state-of-the-art principles of the so-called scattered radiation emission imaging. Basically, it consists of using the cleverly collected scattered radiation from a radiating object to reconstruct its inner structure. Image formation is based on the mathematical concept of compounded conical projection. It entails a Radon transform defined on circular cone surfaces in order to express the scattered radiation flux density on a detecting pixel. We discuss in particular invertible cases of such conical Radon transforms which form a mathematical basis for image reconstruction methods. Numerical simulations performed in two and three space dimensions speak in favor of the viability of this imaging principle and its potential applications in various fields.

  5. Scattering Correction For Image Reconstruction In Flash Radiography

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Liangzhi; Wang, Mengqi; Wu, Hongchun; Liu, Zhouyu; Cheng, Yuxiong; Zhang, Hongbo [Xi' an Jiaotong Univ., Xi' an (China)

    2013-08-15

    Scattered photons cause blurring and distortions in flash radiography, reducing the accuracy of image reconstruction significantly. The effect of the scattered photons is taken into account and an iterative deduction of the scattered photons is proposed to amend the scattering effect for image restoration. In order to deduct the scattering contribution, the flux of scattered photons is estimated as the sum of two components. The single scattered component is calculated accurately together with the uncollided flux along the characteristic ray, while the multiple scattered component is evaluated using correction coefficients pre-obtained from Monte Carlo simulations.The arbitrary geometry pretreatment and ray tracing are carried out based on the customization of AutoCAD. With the above model, an Iterative Procedure for image restORation code, IPOR, is developed. Numerical results demonstrate that the IPOR code is much more accurate than the direct reconstruction solution without scattering correction and it has a very high computational efficiency.

  6. Scattering Correction For Image Reconstruction In Flash Radiography

    International Nuclear Information System (INIS)

    Cao, Liangzhi; Wang, Mengqi; Wu, Hongchun; Liu, Zhouyu; Cheng, Yuxiong; Zhang, Hongbo

    2013-01-01

    Scattered photons cause blurring and distortions in flash radiography, reducing the accuracy of image reconstruction significantly. The effect of the scattered photons is taken into account and an iterative deduction of the scattered photons is proposed to amend the scattering effect for image restoration. In order to deduct the scattering contribution, the flux of scattered photons is estimated as the sum of two components. The single scattered component is calculated accurately together with the uncollided flux along the characteristic ray, while the multiple scattered component is evaluated using correction coefficients pre-obtained from Monte Carlo simulations.The arbitrary geometry pretreatment and ray tracing are carried out based on the customization of AutoCAD. With the above model, an Iterative Procedure for image restORation code, IPOR, is developed. Numerical results demonstrate that the IPOR code is much more accurate than the direct reconstruction solution without scattering correction and it has a very high computational efficiency

  7. Coherent anti-Stokes Raman scattering spectroscope/microscope based on a widely tunable laser source

    Science.gov (United States)

    Dementjev, A.; Gulbinas, V.; Serbenta, A.; Kaucikas, M.; Niaura, G.

    2010-03-01

    We present a coherent anti-Stokes Raman scattering (CARS) microscope based on a robust and simple laser source. A picosecond laser operating in a cavity dumping regime at the 1 MHz repetition rate was used to pump a traveling wave optical parametric generator, which serves as a two-color excitation light source for the CARS microscope. We demonstrate the ability of the presented CARS microscope to measure CARS spectra and images by using several detection schemes.

  8. Numerical simulation of scattering wave imaging in a goaf

    Institute of Scientific and Technical Information of China (English)

    Li Juanjuan; Pan Dongming; Liao Taiping; Hu Mingshun; Wang Linlin

    2011-01-01

    Goafs are threats to safe mining. Their imaging effects or those of other complex geological bodies are often poor in conventional reflected wave images. Hence, accurate detection of goals has become an important problem, to be solved with a sense of urgency. Based on scattering theory, we used an equivalent offset method to extract Common Scattering Point gathers, in order to analyze different scattering wave characteristics between Common Scattering Point and Common Mid Point gathers and to compare stack and migration imaging effects. Our research results show that the scattering wave imaging method is more efficient than the conventional imaging method and is therefore a more effective imaging method for detecting goats and other complex geological bodies. It has important implications for safe mining procedures and infrastructures.

  9. Laser bistatic two-dimensional scattering imaging simulation of lambert cone

    Science.gov (United States)

    Gong, Yanjun; Zhu, Chongyue; Wang, Mingjun; Gong, Lei

    2015-11-01

    This paper deals with the laser bistatic two-dimensional scattering imaging simulation of lambert cone. Two-dimensional imaging is called as planar imaging. It can reflect the shape of the target and material properties. Two-dimensional imaging has important significance for target recognition. The expression of bistatic laser scattering intensity of lambert cone is obtained based on laser radar eauqtion. The scattering intensity of a micro-element on the target could be obtained. The intensity is related to local angle of incidence, local angle of scattering and the infinitesimal area on the cone. According to the incident direction of laser, scattering direction and normal of infinitesimal area, the local incidence angle and scattering angle can be calculated. Through surface integration and the introduction of the rectangular function, we can get the intensity of imaging unit on the imaging surface, and then get Lambert cone bistatic laser two-dimensional scattering imaging simulation model. We analyze the effect of distinguishability, incident direction, observed direction and target size on the imaging. From the results, we can see that the scattering imaging simulation results of the lambert cone bistatic laser is correct.

  10. TH-CD-207A-08: Simulated Real-Time Image Guidance for Lung SBRT Patients Using Scatter Imaging

    International Nuclear Information System (INIS)

    Redler, G; Cifter, G; Templeton, A; Lee, C; Bernard, D; Liao, Y; Zhen, H; Turian, J; Chu, J

    2016-01-01

    Purpose: To develop a comprehensive Monte Carlo-based model for the acquisition of scatter images of patient anatomy in real-time, during lung SBRT treatment. Methods: During SBRT treatment, images of patient anatomy can be acquired from scattered radiation. To rigorously examine the utility of scatter images for image guidance, a model is developed using MCNP code to simulate scatter images of phantoms and lung cancer patients. The model is validated by comparing experimental and simulated images of phantoms of different complexity. The differentiation between tissue types is investigated by imaging objects of known compositions (water, lung, and bone equivalent). A lung tumor phantom, simulating materials and geometry encountered during lung SBRT treatments, is used to investigate image noise properties for various quantities of delivered radiation (monitor units(MU)). Patient scatter images are simulated using the validated simulation model. 4DCT patient data is converted to an MCNP input geometry accounting for different tissue composition and densities. Lung tumor phantom images acquired with decreasing imaging time (decreasing MU) are used to model the expected noise amplitude in patient scatter images, producing realistic simulated patient scatter images with varying temporal resolution. Results: Image intensity in simulated and experimental scatter images of tissue equivalent objects (water, lung, bone) match within the uncertainty (∼3%). Lung tumor phantom images agree as well. Specifically, tumor-to-lung contrast matches within the uncertainty. The addition of random noise approximating quantum noise in experimental images to simulated patient images shows that scatter images of lung tumors can provide images in as fast as 0.5 seconds with CNR∼2.7. Conclusions: A scatter imaging simulation model is developed and validated using experimental phantom scatter images. Following validation, lung cancer patient scatter images are simulated. These simulated

  11. TH-CD-207A-08: Simulated Real-Time Image Guidance for Lung SBRT Patients Using Scatter Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Redler, G; Cifter, G; Templeton, A; Lee, C; Bernard, D; Liao, Y; Zhen, H; Turian, J; Chu, J [Rush University Medical Center, Chicago, IL (United States)

    2016-06-15

    Purpose: To develop a comprehensive Monte Carlo-based model for the acquisition of scatter images of patient anatomy in real-time, during lung SBRT treatment. Methods: During SBRT treatment, images of patient anatomy can be acquired from scattered radiation. To rigorously examine the utility of scatter images for image guidance, a model is developed using MCNP code to simulate scatter images of phantoms and lung cancer patients. The model is validated by comparing experimental and simulated images of phantoms of different complexity. The differentiation between tissue types is investigated by imaging objects of known compositions (water, lung, and bone equivalent). A lung tumor phantom, simulating materials and geometry encountered during lung SBRT treatments, is used to investigate image noise properties for various quantities of delivered radiation (monitor units(MU)). Patient scatter images are simulated using the validated simulation model. 4DCT patient data is converted to an MCNP input geometry accounting for different tissue composition and densities. Lung tumor phantom images acquired with decreasing imaging time (decreasing MU) are used to model the expected noise amplitude in patient scatter images, producing realistic simulated patient scatter images with varying temporal resolution. Results: Image intensity in simulated and experimental scatter images of tissue equivalent objects (water, lung, bone) match within the uncertainty (∼3%). Lung tumor phantom images agree as well. Specifically, tumor-to-lung contrast matches within the uncertainty. The addition of random noise approximating quantum noise in experimental images to simulated patient images shows that scatter images of lung tumors can provide images in as fast as 0.5 seconds with CNR∼2.7. Conclusions: A scatter imaging simulation model is developed and validated using experimental phantom scatter images. Following validation, lung cancer patient scatter images are simulated. These simulated

  12. Fundamentals and applications of neutron imaging. Application part 3. Application of neutron imaging in aircraft, space rocket, car and gunpowder industries

    International Nuclear Information System (INIS)

    Ikeda, Yasushi

    2007-01-01

    Neutron imaging is applied to nondestructive test. Four neutron imaging facilities are used in Japan. The application examples of industries are listed in the table: space rocket, aircraft, car, liquid metal, and works of art. Neutron imaging of transportation equipments are illustrated as an application to industry. X-ray radiography testing (XRT) image and neutron radiography testing (NRT) image of turbine blade of aircraft engine, honeycomb structure of aircraft, helicopter rotor blade, trigger tube, separation nut of space rocket, carburetor of car, BMW engine, fireworks and ammunitions are illustrated. (S.Y.)

  13. Relevant Scatterers Characterization in SAR Images

    Science.gov (United States)

    Chaabouni, Houda; Datcu, Mihai

    2006-11-01

    Recognizing scenes in a single look meter resolution Synthetic Aperture Radar (SAR) images, requires the capability to identify relevant signal signatures in condition of variable image acquisition geometry, arbitrary objects poses and configurations. Among the methods to detect relevant scatterers in SAR images, we can mention the internal coherence. The SAR spectrum splitted in azimuth generates a series of images which preserve high coherence only for particular object scattering. The detection of relevant scatterers can be done by correlation study or Independent Component Analysis (ICA) methods. The present article deals with the state of the art for SAR internal correlation analysis and proposes further extensions using elements of inference based on information theory applied to complex valued signals. The set of azimuth looks images is analyzed using mutual information measures and an equivalent channel capacity is derived. The localization of the "target" requires analysis in a small image window, thus resulting in imprecise estimation of the second order statistics of the signal. For a better precision, a Hausdorff measure is introduced. The method is applied to detect and characterize relevant objects in urban areas.

  14. An Effective Surface Modeling Method for Car Styling from a Side-View Image

    Institute of Scientific and Technical Information of China (English)

    LIBao-jun; ZHANGXue-fang; LVZhang-quan; QIYi-chao

    2014-01-01

    We introduce an almost-automatic technique for generating 3D car styling surface models based on a single side-view image. Our approach combines the prior knowledge of car styling and deformable curve network model to obtain an automatic modeling process. Firstly, we define the consistent parameterized curve template for 2D and 3D case respectivelyby analyzingthe characteristic lines for car styling. Then, a semi-automatic extraction from a side-view car image is adopted. Thirdly, statistic morphable model of 3D curve network isused to get the initial solution with sparse point constraints.Withonly afew post-processing operations, the optimized curve network models for creating surfaces are obtained. Finally, the styling surfaces are automatically generated using template-based parametric surface modeling method. More than 50 3D curve network models are constructed as the morphable database. We show that this intelligent modeling toolsimplifiesthe exhausted modeling task, and also demonstratemeaningful results of our approach.

  15. THE EFFECT OF TRUST AND BRAND IMAGE ON PURCHASE DECISION (TOYOTA CAR SURVEY IN JAKARTA REGION

    Directory of Open Access Journals (Sweden)

    Setyo Ferry Wibowo

    2017-09-01

    Full Text Available The purpose of this research is to know: 1 influence of confidence to Toyota Agya car purchase decision in Jakarta area, and 2 influence of brand image to Toyota Agya car purchase decision in Jakarta area. The object of this research is 200 respondents of Toyota Agya car users in Jakarta area. Methods of data collection using survey method. Data analysis using SPSS 22. Descriptive test results explain that there is still a lack of trust and brand image in Toyota Agya car in the Jakarta area causing the lack of consumer response to make purchasing decisions. The result of hypothesis testing shows: 1 existence of positive and significant influence of trust toward purchasing decision, 2 existence of positive and significant influence from brand image to purchasing decision.

  16. Methods and apparatus for transparent display using scattering nanoparticles

    Science.gov (United States)

    Hsu, Chia Wei; Qiu, Wenjun; Zhen, Bo; Shapira, Ofer; Soljacic, Marin

    2016-05-10

    Transparent displays enable many useful applications, including heads-up displays for cars and aircraft as well as displays on eyeglasses and glass windows. Unfortunately, transparent displays made of organic light-emitting diodes are typically expensive and opaque. Heads-up displays often require fixed light sources and have limited viewing angles. And transparent displays that use frequency conversion are typically energy inefficient. Conversely, the present transparent displays operate by scattering visible light from resonant nanoparticles with narrowband scattering cross sections and small absorption cross sections. More specifically, projecting an image onto a transparent screen doped with nanoparticles that selectively scatter light at the image wavelength(s) yields an image on the screen visible to an observer. Because the nanoparticles scatter light at only certain wavelengths, the screen is practically transparent under ambient light. Exemplary transparent scattering displays can be simple, inexpensive, scalable to large sizes, viewable over wide angular ranges, energy efficient, and transparent simultaneously.

  17. Compton scatter imaging: A tool for historical exploration

    International Nuclear Information System (INIS)

    Harding, G.; Harding, E.

    2010-01-01

    This review discusses the principles and technological realisation of a technique, termed Compton scatter imaging (CSI), which is based on spatially resolved detection of Compton scattered X-rays. The applicational focus of this review is to objects of historical interest. Following a historical survey of CSI, a description is given of the major characteristics of Compton X-ray scatter. In particular back-scattered X-rays allow massive objects to be imaged, which would otherwise be too absorbing for the conventional transmission X-ray technique. The ComScan (an acronym for Compton scatter scanner) is a commercially available backscatter imaging system, which is discussed here in some detail. ComScan images from some artefacts of historical interest, namely a fresco, an Egyptian mummy and a mediaeval clasp are presented and their use in historical analysis is indicated. The utility of scientific and technical advance for not only exploring history, but also restoring it, is briefly discussed.

  18. Background free CARS imaging by phase sensitive heterodyne CARS

    NARCIS (Netherlands)

    Jurna, M.; Korterik, Jeroen P.; Otto, Cornelis; Herek, Jennifer Lynn; Offerhaus, Herman L.

    2008-01-01

    In this article we show that heterodyne CARS, based on a controlled and stable phase-preserving chain, can be used to measure amplitude and phase information of molecular vibration modes. The technique is validated by a comparison of the imaginary part of the heterodyne CARS spectrum to the

  19. Compton scatter imaging: A promising modality for image guidance in lung stereotactic body radiation therapy.

    Science.gov (United States)

    Redler, Gage; Jones, Kevin C; Templeton, Alistair; Bernard, Damian; Turian, Julius; Chu, James C H

    2018-03-01

    Lung stereotactic body radiation therapy (SBRT) requires delivering large radiation doses with millimeter accuracy, making image guidance essential. An approach to forming images of patient anatomy from Compton-scattered photons during lung SBRT is presented. To investigate the potential of scatter imaging, a pinhole collimator and flat-panel detector are used for spatial localization and detection of photons scattered during external beam therapy using lung SBRT treatment conditions (6 MV FFF beam). MCNP Monte Carlo software is used to develop a model to simulate scatter images. This model is validated by comparing experimental and simulated phantom images. Patient scatter images are then simulated from 4DCT data. Experimental lung tumor phantom images have sufficient contrast-to-noise to visualize the tumor with as few as 10 MU (0.5 s temporal resolution). The relative signal intensity from objects of different composition as well as lung tumor contrast for simulated phantom images agree quantitatively with experimental images, thus validating the Monte Carlo model. Scatter images are shown to display high contrast between different materials (lung, water, bone). Simulated patient images show superior (~double) tumor contrast compared to MV transmission images. Compton scatter imaging is a promising modality for directly imaging patient anatomy during treatment without additional radiation, and it has the potential to complement existing technologies and aid tumor tracking and lung SBRT image guidance. © 2018 American Association of Physicists in Medicine.

  20. Clinical coherent anti-Stokes Raman scattering and multiphoton tomography of human skin with a femtosecond laser and photonic crystal fiber

    International Nuclear Information System (INIS)

    Breunig, Hans Georg; Weinigel, Martin; Bückle, Rainer; Kellner-Höfer, Marcel; König, Karsten; Lademann, Jürgen; Darvin, Maxim E; Sterry, Wolfram

    2013-01-01

    We report on in vivo coherent anti-Stokes Raman scattering spectroscopy (CARS), two-photon fluorescence and second-harmonic-generation imaging on human skin with a novel multimodal clinical CARS/multiphoton tomograph. CARS imaging is realized by a combination of femtosecond pulses with broadband continuum pulses generated by a photonic crystal fiber. The images reveal the microscopic distribution of (i) non-fluorescent lipids, (ii) endogenous fluorophores and (iii) the collagen network inside the human skin in vivo with subcellular resolution. Examples of healthy as well as cancer-affected skin are presented. (letter)

  1. Clinical coherent anti-Stokes Raman scattering and multiphoton tomography of human skin with a femtosecond laser and photonic crystal fiber

    Science.gov (United States)

    Breunig, Hans Georg; Weinigel, Martin; Bückle, Rainer; Kellner-Höfer, Marcel; Lademann, Jürgen; Darvin, Maxim E.; Sterry, Wolfram; König, Karsten

    2013-02-01

    We report on in vivo coherent anti-Stokes Raman scattering spectroscopy (CARS), two-photon fluorescence and second-harmonic-generation imaging on human skin with a novel multimodal clinical CARS/multiphoton tomograph. CARS imaging is realized by a combination of femtosecond pulses with broadband continuum pulses generated by a photonic crystal fiber. The images reveal the microscopic distribution of (i) non-fluorescent lipids, (ii) endogenous fluorophores and (iii) the collagen network inside the human skin in vivo with subcellular resolution. Examples of healthy as well as cancer-affected skin are presented.

  2. Listening to light scattering in turbid media: quantitative optical scattering imaging using photoacoustic measurements with one-wavelength illumination

    International Nuclear Information System (INIS)

    Yuan, Zhen; Li, Xiaoqi; Xi, Lei

    2014-01-01

    Biomedical photoacoustic tomography (PAT), as a potential imaging modality, can visualize tissue structure and function with high spatial resolution and excellent optical contrast. It is widely recognized that the ability of quantitatively imaging optical absorption and scattering coefficients from photoacoustic measurements is essential before PAT can become a powerful imaging modality. Existing quantitative PAT (qPAT), while successful, has been focused on recovering absorption coefficient only by assuming scattering coefficient a constant. An effective method for photoacoustically recovering optical scattering coefficient is presently not available. Here we propose and experimentally validate such a method for quantitative scattering coefficient imaging using photoacoustic data from one-wavelength illumination. The reconstruction method developed combines conventional PAT with the photon diffusion equation in a novel way to realize the recovery of scattering coefficient. We demonstrate the method using various objects having scattering contrast only or both absorption and scattering contrasts embedded in turbid media. The listening-to-light-scattering method described will be able to provide high resolution scattering imaging for various biomedical applications ranging from breast to brain imaging. (papers)

  3. Study of scattering in bi-dimensional neutron radiographic images

    International Nuclear Information System (INIS)

    Oliveira, K.A.M. de; Crispim, V.R.; Silva, F.C.

    2009-01-01

    The effect of neutron scattering frequently causes distortions in neutron radiographic images and, thus, reduces the quality. In this project, a type of filter, comprised of cadmium (a neutron absorber), was used in the form of a grid to correct this effect. This device generated image data in the discrete shadow bands of the absorber, components relative to neutron scattering on the test object and surroundings. Scattering image data processing, together with the original neutron radiographic image, resulted in a corrected image with improved edge delineation and, thus, greater definition in the neutron radiographic image of the test object. The objective of this study is to propose a theoretical/experimental methodology that is capable of eliminating the components relative to neutron scattering in neutron radiographic images, coming from the material that composes the test object and the materials that compose the surrounding area. (author)

  4. A theoretical investigation of super-resolution CARS imaging via coherent and incoherent saturation of transitions

    NARCIS (Netherlands)

    Beeker, W.P.; Beeker, Willem; Lee, Christopher James; Boller, Klaus J.; Gross, Petra; Gross, P.; Cleff, Carsten; Fallnich, Carsten; Offerhaus, Herman L.; Herek, Jennifer Lynn

    2011-01-01

    We review two approaches to achieving sub-diffraction-limited resolution coherent anti-Stokes Raman scattering (CARS) microscopy (Beeker et al., Opt. Express, 2009, 17, 22632 and Beeker et al., J. Herek, Phys. Rev. A, 2010, 81, 012507). We performed a numerical investigation, based on the density

  5. Study of ethanol and gasoline fuel sprays using mie-scatter and schlieren imaging

    Science.gov (United States)

    Bouchard, Lauren; Bittle, Joshua; Puzinauskas, Paul

    2016-11-01

    Many cars today are capable of running on both gasoline and ethanol, however it is not clear how well optimized the engines are for the multiple fuels. This experiment looks specifically at the fuel spray in a direct injection system. The length and angle of direct injection sprays were characterized and a comparison between ethanol and gasoline sprays was made. Fuels were tested using a modified diesel injector in a test chamber at variable ambient pressures and temperatures in order to simulate both high and low load combustion chamber conditions. Rainbow schlieren and mie-scatter imaging were both used to investigate the liquid and vapor portions of the sprays. The sprays behaved as expected with temperature and pressure changes. There was no noticeable fuel effect on the liquid portion of the spray (mie-scatter), though the gasoline vapor spray angles were wider than ethanol spray angles (possible a result of the distillation curves of the two fuels). Funding from NSF REU site Grant EEC 1358991 is greatly appreciated.

  6. Pseudo-HE images derived from CARS/TPEF/SHG multimodal imaging in combination with Raman-spectroscopy as a pathological screening tool

    International Nuclear Information System (INIS)

    Bocklitz, Thomas W.; Salah, Firas Subhi; Vogler, Nadine; Heuke, Sandro; Chernavskaia, Olga; Schmidt, Carsten; Waldner, Maximilian J.; Greten, Florian R.; Bräuer, Rolf; Schmitt, Michael; Stallmach, Andreas; Petersen, Iver; Popp, Jürgen

    2016-01-01

    Due to the steadily increasing number of cancer patients worldwide the early diagnosis and treatment of cancer is a major field of research. The diagnosis of cancer is mostly performed by an experienced pathologist via the visual inspection of histo-pathological stained tissue sections. To save valuable time, low quality cryosections are frequently analyzed with diagnostic accuracies that are below those of high quality embedded tissue sections. Thus, alternative means have to be found that enable for fast and accurate diagnosis as the basis of following clinical decision making. In this contribution we will show that the combination of the three label-free non-linear imaging modalities CARS (coherent anti-Stokes Raman-scattering), TPEF (two-photon excited autofluorescence) and SHG (second harmonic generation) yields information that can be translated into computational hematoxylin and eosin (HE) images by multivariate statistics. Thereby, a computational HE stain is generated resulting in pseudo-HE overview images that allow for identification of suspicious regions. The latter are analyzed further by Raman-spectroscopy retrieving the tissue’s molecular fingerprint. The results suggest that the combination of non-linear multimodal imaging and Raman-spectroscopy possesses the potential as a precise and fast tool in routine histopathology. As the key advantage, both optical methods are non-invasive enabling for further pathological investigations of the same tissue section, e.g. a direct comparison with the current pathological gold-standard

  7. Coherent scattering X-ray imaging at the Brazilian National Synchrotron Laboratory: Preliminary breast images

    Energy Technology Data Exchange (ETDEWEB)

    Castro, C.R.F. [Nuclear Instrumentation Laboratory-COPPE/UFRJ, P.O. Box 68509, Rio de Janeiro 21945-970 (Brazil); Barroso, R.C. [Physics Institute-University of Rio de Janeiro State, Rio de Janeiro 20559-900 (Brazil)]. E-mail: cely@uerij.br; Oliveira, L.F. de [Physics Institute-University of Rio de Janeiro State, Rio de Janeiro 20559-900 (Brazil); Lopes, R.T. [Nuclear Instrumentation Laboratory-COPPE/UFRJ, P.O. Box 68509, Rio de Janeiro 21945-970 (Brazil)

    2005-08-11

    The angular distribution of coherent scatter (low-momentum transfer) carries information about atomic structures, resulting in a pattern, which can be used to reconstruct a series of images. Coherent-scatter computed tomography is a novel imaging method developed to produce cross-sectional images based on the X-ray diffraction properties of an object. A different approach to coherent X-ray imaging is possible by fixing the detector at a given scatter angle {theta}, which produces an interference peak and then, carried out a tomography in the standard way. The cross-sectional images obtained allow determining the spatial dependence of coherent scatter cross-section of selected volume elements of inhomogeneous, extend objects for a single predetermined value of {theta} of interest, leading to a simplification of the data processing and the complexity of the apparatus. This work presents preliminary coherent scattering images carried out at the X-ray Diffraction beamline of the National Synchrotron Light Laboratory in Campinas, Brazil. The specimens were excised human breast tissues fixed in formaline. No frozen procedure was used in order to minimize preferred orientation during sample preparation. About 1mm thick slices cut from each of the fresh samples were mounted in frames without windows and placed on a translator to allow acquisition of scattering spectra. Cylinders containing healthy and cancerous (infiltrating ductal carcinoma) breast tissues were imagined at the characteristic angle for adipose tissue. Transmission and coherent scatter images are compared.

  8. Rear-facing car seat (image)

    Science.gov (United States)

    A rear-facing car seat position is recommended for a child who is very young. Extreme injury can occur in an accident because ... child. In a frontal crash a rear-facing car seat is best, because it cradles the head, ...

  9. Marchenko imaging below an overburden with random scatterers

    NARCIS (Netherlands)

    Wapenaar, C.P.A.; Thorbecke, J.W.; Van der Neut, J.R.; Vasconcelos, I.; Slob, E.C.

    2014-01-01

    Marchenko imaging is a new way to deal with internal multiple scattering in migration. It has been designed for layered media with smooth interfaces. Here we analyze the performance of the Marchenko scheme for a medium with many point scatterers. Although the conditions for Marchenko imaging are

  10. POLARIZATION IMAGING AND SCATTERING MODEL OF CANCEROUS LIVER TISSUES

    Directory of Open Access Journals (Sweden)

    DONGZHI LI

    2013-07-01

    Full Text Available We apply different polarization imaging techniques for cancerous liver tissues, and compare the relative contrasts for difference polarization imaging (DPI, degree of polarization imaging (DOPI and rotating linear polarization imaging (RLPI. Experimental results show that a number of polarization imaging parameters are capable of differentiating cancerous cells in isotropic liver tissues. To analyze the contrast mechanism of the cancer-sensitive polarization imaging parameters, we propose a scattering model containing two types of spherical scatterers and carry on Monte Carlo simulations based on this bi-component model. Both the experimental and Monte Carlo simulated results show that the RLPI technique can provide a good imaging contrast of cancerous tissues. The bi-component scattering model provides a useful tool to analyze the contrast mechanism of polarization imaging of cancerous tissues.

  11. Linearized least-square imaging of internally scattered data

    KAUST Repository

    Aldawood, Ali; Hoteit, Ibrahim; Turkiyyah, George M.; Zuberi, M. A H; Alkhalifah, Tariq Ali

    2014-01-01

    Internal multiples deteriorate the quality of the migrated image obtained conventionally by imaging single scattering energy. However, imaging internal multiples properly has the potential to enhance the migrated image because they illuminate zones in the subsurface that are poorly illuminated by single-scattering energy such as nearly vertical faults. Standard migration of these multiples provide subsurface reflectivity distributions with low spatial resolution and migration artifacts due to the limited recording aperture, coarse sources and receivers sampling, and the band-limited nature of the source wavelet. Hence, we apply a linearized least-square inversion scheme to mitigate the effect of the migration artifacts, enhance the spatial resolution, and provide more accurate amplitude information when imaging internal multiples. Application to synthetic data demonstrated the effectiveness of the proposed inversion in imaging a reflector that is poorly illuminated by single-scattering energy. The least-square inversion of doublescattered data helped delineate that reflector with minimal acquisition fingerprint.

  12. Deconvolution of shift-variant broadening for Compton scatter imaging

    International Nuclear Information System (INIS)

    Evans, Brian L.; Martin, Jeffrey B.; Roggemann, Michael C.

    1999-01-01

    A technique is presented for deconvolving shift-variant Doppler broadening of singly Compton scattered gamma rays from their recorded energy distribution. Doppler broadening is important in Compton scatter imaging techniques employing gamma rays with energies below roughly 100 keV. The deconvolution unfolds an approximation to the angular distribution of scattered photons from their recorded energy distribution in the presence of statistical noise and background counts. Two unfolding methods are presented, one based on a least-squares algorithm and one based on a maximum likelihood algorithm. Angular distributions unfolded from measurements made on small scattering targets show less evidence of Compton broadening. This deconvolution is shown to improve the quality of filtered backprojection images in multiplexed Compton scatter tomography. Improved sharpness and contrast are evident in the images constructed from unfolded signals

  13. MO-AB-BRA-02: A Novel Scatter Imaging Modality for Real-Time Image Guidance During Lung SBRT

    International Nuclear Information System (INIS)

    Redler, G; Bernard, D; Templeton, A; Chu, J; Nair, C Kumaran; Turian, J

    2015-01-01

    Purpose: A novel scatter imaging modality is developed and its feasibility for image-guided radiation therapy (IGRT) during stereotactic body radiation therapy (SBRT) for lung cancer patients is assessed using analytic and Monte Carlo models as well as experimental testing. Methods: During treatment, incident radiation interacts and scatters from within the patient. The presented methodology forms an image of patient anatomy from the scattered radiation for real-time localization of the treatment target. A radiographic flat panel-based pinhole camera provides spatial information regarding the origin of detected scattered radiation. An analytical model is developed, which provides a mathematical formalism for describing the scatter imaging system. Experimental scatter images are acquired by irradiating an object using a Varian TrueBeam accelerator. The differentiation between tissue types is investigated by imaging simple objects of known compositions (water, lung, and cortical bone equivalent). A lung tumor phantom, simulating materials and geometry encountered during lung SBRT treatments, is fabricated and imaged to investigate image quality for various quantities of delivered radiation. Monte Carlo N-Particle (MCNP) code is used for validation and testing by simulating scatter image formation using the experimental pinhole camera setup. Results: Analytical calculations, MCNP simulations, and experimental results when imaging the water, lung, and cortical bone equivalent objects show close agreement, thus validating the proposed models and demonstrating that scatter imaging differentiates these materials well. Lung tumor phantom images have sufficient contrast-to-noise ratio (CNR) to clearly distinguish tumor from surrounding lung tissue. CNR=4.1 and CNR=29.1 for 10MU and 5000MU images (equivalent to 0.5 and 250 second images), respectively. Conclusion: Lung SBRT provides favorable treatment outcomes, but depends on accurate target localization. A comprehensive

  14. MO-AB-BRA-02: A Novel Scatter Imaging Modality for Real-Time Image Guidance During Lung SBRT

    Energy Technology Data Exchange (ETDEWEB)

    Redler, G; Bernard, D; Templeton, A; Chu, J [Rush University Medical Center, Chicago, IL (United States); Nair, C Kumaran [University of Chicago, Chicago, IL (United States); Turian, J [Rush University Medical Center, Chicago, IL (United States); Rush Radiosurgery LLC, Chicago, IL (United States)

    2015-06-15

    Purpose: A novel scatter imaging modality is developed and its feasibility for image-guided radiation therapy (IGRT) during stereotactic body radiation therapy (SBRT) for lung cancer patients is assessed using analytic and Monte Carlo models as well as experimental testing. Methods: During treatment, incident radiation interacts and scatters from within the patient. The presented methodology forms an image of patient anatomy from the scattered radiation for real-time localization of the treatment target. A radiographic flat panel-based pinhole camera provides spatial information regarding the origin of detected scattered radiation. An analytical model is developed, which provides a mathematical formalism for describing the scatter imaging system. Experimental scatter images are acquired by irradiating an object using a Varian TrueBeam accelerator. The differentiation between tissue types is investigated by imaging simple objects of known compositions (water, lung, and cortical bone equivalent). A lung tumor phantom, simulating materials and geometry encountered during lung SBRT treatments, is fabricated and imaged to investigate image quality for various quantities of delivered radiation. Monte Carlo N-Particle (MCNP) code is used for validation and testing by simulating scatter image formation using the experimental pinhole camera setup. Results: Analytical calculations, MCNP simulations, and experimental results when imaging the water, lung, and cortical bone equivalent objects show close agreement, thus validating the proposed models and demonstrating that scatter imaging differentiates these materials well. Lung tumor phantom images have sufficient contrast-to-noise ratio (CNR) to clearly distinguish tumor from surrounding lung tissue. CNR=4.1 and CNR=29.1 for 10MU and 5000MU images (equivalent to 0.5 and 250 second images), respectively. Conclusion: Lung SBRT provides favorable treatment outcomes, but depends on accurate target localization. A comprehensive

  15. Incoherent imaging using dynamically scattered coherent electrons

    International Nuclear Information System (INIS)

    Nellist, P.D.; Pennycook, S.J.

    1999-01-01

    We use a Bloch wave approach to show that, even for coherent dynamical scattering from a stationary lattice with no absorption, annular dark-field imaging in a scanning transmission electron microscope gives a direct incoherent structure image of the atomic-column positions of a zone-axis-aligned crystal. Although many Bloch waves may be excited by the probe, the detector provides a filtering effect so that the 1s-type bound states are found to dominate the image contrast for typical experimental conditions. We also find that the column intensity is related to the transverse kinetic energy of the 1s states, which gives atomic number, Z, contrast. The additional effects of phonon scattering are discussed, in particular the reasons why phonon scattering is not a prerequisite for transverse incoherence. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  16. STOCHASTIC OPTICS: A SCATTERING MITIGATION FRAMEWORK FOR RADIO INTERFEROMETRIC IMAGING

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Michael D., E-mail: mjohnson@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2016-12-10

    Just as turbulence in the Earth’s atmosphere can severely limit the angular resolution of optical telescopes, turbulence in the ionized interstellar medium fundamentally limits the resolution of radio telescopes. We present a scattering mitigation framework for radio imaging with very long baseline interferometry (VLBI) that partially overcomes this limitation. Our framework, “stochastic optics,” derives from a simplification of strong interstellar scattering to separate small-scale (“diffractive”) effects from large-scale (“refractive”) effects, thereby separating deterministic and random contributions to the scattering. Stochastic optics extends traditional synthesis imaging by simultaneously reconstructing an unscattered image and its refractive perturbations. Its advantages over direct imaging come from utilizing the many deterministic properties of the scattering—such as the time-averaged “blurring,” polarization independence, and the deterministic evolution in frequency and time—while still accounting for the stochastic image distortions on large scales. These distortions are identified in the image reconstructions through regularization by their time-averaged power spectrum. Using synthetic data, we show that this framework effectively removes the blurring from diffractive scattering while reducing the spurious image features from refractive scattering. Stochastic optics can provide significant improvements over existing scattering mitigation strategies and is especially promising for imaging the Galactic Center supermassive black hole, Sagittarius A*, with the Global mm-VLBI Array and with the Event Horizon Telescope.

  17. STOCHASTIC OPTICS: A SCATTERING MITIGATION FRAMEWORK FOR RADIO INTERFEROMETRIC IMAGING

    International Nuclear Information System (INIS)

    Johnson, Michael D.

    2016-01-01

    Just as turbulence in the Earth’s atmosphere can severely limit the angular resolution of optical telescopes, turbulence in the ionized interstellar medium fundamentally limits the resolution of radio telescopes. We present a scattering mitigation framework for radio imaging with very long baseline interferometry (VLBI) that partially overcomes this limitation. Our framework, “stochastic optics,” derives from a simplification of strong interstellar scattering to separate small-scale (“diffractive”) effects from large-scale (“refractive”) effects, thereby separating deterministic and random contributions to the scattering. Stochastic optics extends traditional synthesis imaging by simultaneously reconstructing an unscattered image and its refractive perturbations. Its advantages over direct imaging come from utilizing the many deterministic properties of the scattering—such as the time-averaged “blurring,” polarization independence, and the deterministic evolution in frequency and time—while still accounting for the stochastic image distortions on large scales. These distortions are identified in the image reconstructions through regularization by their time-averaged power spectrum. Using synthetic data, we show that this framework effectively removes the blurring from diffractive scattering while reducing the spurious image features from refractive scattering. Stochastic optics can provide significant improvements over existing scattering mitigation strategies and is especially promising for imaging the Galactic Center supermassive black hole, Sagittarius A*, with the Global mm-VLBI Array and with the Event Horizon Telescope.

  18. Temporal overlap estimation based on interference spectrum in CARS microscopy

    Science.gov (United States)

    Zhang, Yongning; Jiang, Junfeng; Liu, Kun; Huang, Can; Wang, Shuang; Zhang, Xuezhi; Liu, Tiegen

    2018-01-01

    Coherent Anti-Stokes Raman Scattering (CARS) microscopy has attracted lots of attention because of the advantages, such as noninvasive, label-free, chemical specificity, intrinsic three-dimension spatial resolution and so on. However, the temporal overlap of pump and Stokes has not been solved owing to the ultrafast optical pulse used in CARS microscopy. We combine interference spectrum of residual pump in Stokes path and nonlinear Schrodinger equation (NLSE) to realize the temporal overlap of pump pulse and Stokes pulse. At first, based on the interference spectrum of pump pulse and residual pump in Stokes path, the optical delay is defined when optical path difference between pump path and Stokes path is zero. Then the relative optical delay between Stokes pulse and residual pump in PCF can be calculated by NLSE. According to the spectrum interference and NLSE, temporal overlap of pump pulse and Stokes pulse will be realized easily and the imaging speed will be improved in CARS microscopy.

  19. Imaging moving objects from multiply scattered waves and multiple sensors

    International Nuclear Information System (INIS)

    Miranda, Analee; Cheney, Margaret

    2013-01-01

    In this paper, we develop a linearized imaging theory that combines the spatial, temporal and spectral components of multiply scattered waves as they scatter from moving objects. In particular, we consider the case of multiple fixed sensors transmitting and receiving information from multiply scattered waves. We use a priori information about the multipath background. We use a simple model for multiple scattering, namely scattering from a fixed, perfectly reflecting (mirror) plane. We base our image reconstruction and velocity estimation technique on a modification of a filtered backprojection method that produces a phase-space image. We plot examples of point-spread functions for different geometries and waveforms, and from these plots, we estimate the resolution in space and velocity. Through this analysis, we are able to identify how the imaging system depends on parameters such as bandwidth and number of sensors. We ultimately show that enhanced phase-space resolution for a distribution of moving and stationary targets in a multipath environment may be achieved using multiple sensors. (paper)

  20. THEORY AND SIMULATIONS OF REFRACTIVE SUBSTRUCTURE IN RESOLVED SCATTER-BROADENED IMAGES

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Michael D. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Gwinn, Carl R., E-mail: mjohnson@cfa.harvard.edu [Department of Physics, University of California, Santa Barbara, CA 93106 (United States)

    2015-06-01

    At radio wavelengths, scattering in the interstellar medium distorts the appearance of astronomical sources. Averaged over a scattering ensemble, the result is a blurred image of the source. However, Narayan and Goodman and Goodman and Narayan showed that for an incomplete average, scattering introduces refractive substructure in the image of a point source that is both persistent and wideband. We show that this substructure is quenched but not smoothed by an extended source. As a result, when the scatter-broadening is comparable to or exceeds the unscattered source size, the scattering can introduce spurious compact features into images. In addition, we derive efficient strategies to numerically compute realistic scattered images, and we present characteristic examples from simulations. Our results show that refractive substructure is an important consideration for ongoing missions at the highest angular resolutions, and we discuss specific implications for RadioAstron and the Event Horizon Telescope.

  1. Lensless ghost imaging through the strongly scattering medium

    International Nuclear Information System (INIS)

    Yang Zhe; Zhao Xueliang; Li Junlin; Zhao Lianjie; Qin Wei

    2016-01-01

    Lensless ghost imaging has attracted much interest in recent years due to its profound physics and potential applications. In this paper we report studies of the robust properties of the lensless ghost imaging system with a pseudo-thermal light source in a strongly scattering medium. The effects of the positions of the strong medium on the ghost imaging are investigated. In the lensless ghost imaging system, a pseudo-thermal light is split into two correlated beams by a beam splitter. One beam goes to a charge-coupled detector camera, labeled as CCD2. The other beam goes to an object and then is collected in another charge-coupled detector camera, labeled as CCD1, which serves as a bucket detector. When the strong medium, a pane of ground glass disk, is placed between the object and CCD1, the bucket detector, the quality of ghost imaging is barely affected and a good image could still be obtained. The quality of the ghost imaging can also be maintained, even when the ground glass is rotating, which is the strongest scattering medium so far. However, when the strongly scattering medium is present in the optical path from the light source to CCD2 or the object, the lensless ghost imaging system hardly retrieves the image of the object. A theoretical analysis in terms of the second-order correlation function is also provided. (paper)

  2. Modelling of classical ghost images obtained using scattered light

    International Nuclear Information System (INIS)

    Crosby, S; Castelletto, S; Aruldoss, C; Scholten, R E; Roberts, A

    2007-01-01

    The images obtained in ghost imaging with pseudo-thermal light sources are highly dependent on the spatial coherence properties of the incident light. Pseudo-thermal light is often created by reducing the coherence length of a coherent source by passing it through a turbid mixture of scattering spheres. We describe a model for simulating ghost images obtained with such partially coherent light, using a wave-transport model to calculate the influence of the scattering on initially coherent light. The model is able to predict important properties of the pseudo-thermal source, such as the coherence length and the amplitude of the residual unscattered component of the light which influence the resolution and visibility of the final ghost image. We show that the residual ballistic component introduces an additional background in the reconstructed image, and the spatial resolution obtainable depends on the size of the scattering spheres

  3. Modelling of classical ghost images obtained using scattered light

    Energy Technology Data Exchange (ETDEWEB)

    Crosby, S; Castelletto, S; Aruldoss, C; Scholten, R E; Roberts, A [School of Physics, University of Melbourne, Victoria, 3010 (Australia)

    2007-08-15

    The images obtained in ghost imaging with pseudo-thermal light sources are highly dependent on the spatial coherence properties of the incident light. Pseudo-thermal light is often created by reducing the coherence length of a coherent source by passing it through a turbid mixture of scattering spheres. We describe a model for simulating ghost images obtained with such partially coherent light, using a wave-transport model to calculate the influence of the scattering on initially coherent light. The model is able to predict important properties of the pseudo-thermal source, such as the coherence length and the amplitude of the residual unscattered component of the light which influence the resolution and visibility of the final ghost image. We show that the residual ballistic component introduces an additional background in the reconstructed image, and the spatial resolution obtainable depends on the size of the scattering spheres.

  4. Imaging back scattered and near back scattered light in ignition scale plasmas

    International Nuclear Information System (INIS)

    Kirkwood, R.K.; Back, C.A.; Glenzer, S.H.; Moody, J.D.

    1996-01-01

    Diagnostics have been developed and fielded at the Nova laser facility that image scattered light in the vicinity of the final laser focusing lens. The absolute calibration of optical components exposed to the target debris have been achieved by a combination of routine in situ calibration and maintenance. The scattering observed from plasmas relevant to ignition experiments indicates that light scattered just outside the lens can be larger than that collected by the lens, and is a significant factor in the energy balance when the f number is high

  5. Fluence-compensated down-scattered neutron imaging using the neutron imaging system at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Casey, D. T., E-mail: casey21@llnl.gov; Munro, D. H.; Grim, G. P.; Landen, O. L.; Spears, B. K.; Fittinghoff, D. N.; Field, J. E.; Smalyuk, V. A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Volegov, P. L.; Merrill, F. E. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2016-11-15

    The Neutron Imaging System at the National Ignition Facility is used to observe the primary ∼14 MeV neutrons from the hotspot and down-scattered neutrons (6-12 MeV) from the assembled shell. Due to the strong spatial dependence of the primary neutron fluence through the dense shell, the down-scattered image is convolved with the primary-neutron fluence much like a backlighter profile. Using a characteristic scattering angle assumption, we estimate the primary neutron fluence and compensate the down-scattered image, which reveals information about asymmetry that is otherwise difficult to extract without invoking complicated models.

  6. Improved scatter correction with factor analysis for planar and SPECT imaging

    Science.gov (United States)

    Knoll, Peter; Rahmim, Arman; Gültekin, Selma; Šámal, Martin; Ljungberg, Michael; Mirzaei, Siroos; Segars, Paul; Szczupak, Boguslaw

    2017-09-01

    Quantitative nuclear medicine imaging is an increasingly important frontier. In order to achieve quantitative imaging, various interactions of photons with matter have to be modeled and compensated. Although correction for photon attenuation has been addressed by including x-ray CT scans (accurate), correction for Compton scatter remains an open issue. The inclusion of scattered photons within the energy window used for planar or SPECT data acquisition decreases the contrast of the image. While a number of methods for scatter correction have been proposed in the past, in this work, we propose and assess a novel, user-independent framework applying factor analysis (FA). Extensive Monte Carlo simulations for planar and tomographic imaging were performed using the SIMIND software. Furthermore, planar acquisition of two Petri dishes filled with 99mTc solutions and a Jaszczak phantom study (Data Spectrum Corporation, Durham, NC, USA) using a dual head gamma camera were performed. In order to use FA for scatter correction, we subdivided the applied energy window into a number of sub-windows, serving as input data. FA results in two factor images (photo-peak, scatter) and two corresponding factor curves (energy spectra). Planar and tomographic Jaszczak phantom gamma camera measurements were recorded. The tomographic data (simulations and measurements) were processed for each angular position resulting in a photo-peak and a scatter data set. The reconstructed transaxial slices of the Jaszczak phantom were quantified using an ImageJ plugin. The data obtained by FA showed good agreement with the energy spectra, photo-peak, and scatter images obtained in all Monte Carlo simulated data sets. For comparison, the standard dual-energy window (DEW) approach was additionally applied for scatter correction. FA in comparison with the DEW method results in significant improvements in image accuracy for both planar and tomographic data sets. FA can be used as a user

  7. Coherent Raman scattering: Applications in imaging and sensing

    Science.gov (United States)

    Cui, Meng

    In this thesis, I discuss the theory, implementation and applications of coherent Raman scattering to imaging and sensing. A time domain interferometric method has been developed to collect high resolution shot-noise-limited Raman spectra over the Raman fingerprint regime and completely remove the electronic background signal in coherent Raman scattering. Compared with other existing coherent Raman microscopy methods, this time domain approach is proved to be simpler and more robust in rejecting background signal. We apply this method to image polymers and biological samples and demonstrate that the same setup can be used to collect two photon fluorescence and self phase modulation signals. A signal to noise ratio analysis is performed to show that this time domain method has a comparable signal to noise ratio to spectral domain methods, which we confirm experimentally. The coherent Raman method is also compared with spontaneous Raman scattering. The conditions under which coherent methods provide signal enhancement are discussed and experiments are performed to compare coherent Raman scattering with spontaneous Raman scattering under typical biological imaging conditions. A critical power, above which coherent Raman scattering is more sensitive than spontaneous Raman scattering, is experimentally determined to be ˜1mW in samples of high molecule concentration with a 75MHz laser system. This finding is contrary to claims that coherent methods provide many orders of magnitude enhancement under comparable conditions. In addition to the far field applications, I also discuss the combination of our time domain coherent Raman method with near field enhancement to explore the possibility of sensing and near field imaging. We report the first direct time-resolved coherent Raman measurement performed on a nanostructured substrate for molecule sensing. The preliminary results demonstrate that sub 20 fs pulses can be used to obtain coherent Raman spectra from a small number

  8. Imaging partons in exclusive scattering processes

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, Markus

    2012-06-15

    The spatial distribution of partons in the proton can be probed in suitable exclusive scattering processes. I report on recent performance estimates for parton imaging at a proposed Electron-Ion Collider.

  9. TH-AB-209-10: Breast Cancer Identification Through X-Ray Coherent Scatter Spectral Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kapadia, A; Morris, R; Albanese, K; Spencer, J; McCall, S; Greenberg, J [Duke University, Durham, NC (United States)

    2016-06-15

    Purpose: We have previously described the development and testing of a coherent-scatter spectral imaging system for identification of cancer. Our prior evaluations were performed using either tissue surrogate phantoms or formalin-fixed tissue obtained from pathology. Here we present the first results from a scatter imaging study using fresh breast tumor tissues obtained through surgical excision. Methods: A coherent-scatter imaging system was built using a clinical X-ray tube, photon counting detectors, and custom-designed coded-apertures. System performance was characterized using calibration phantoms of biological materials. Fresh breast tumors were obtained from patients undergoing mastectomy and lumpectomy surgeries for breast cancer. Each specimen was vacuum-sealed, scanned using the scatter imaging system, and then sent to pathology for histological workup. Scatter images were generated separately for each tissue specimen and analyzed to identify voxels containing malignant tissue. The images were compared against histological analysis (H&E + pathologist identification of tumors) to assess the match between scatter-based and histological diagnosis. Results: In all specimens scanned, the scatter images showed the location of cancerous regions within the specimen. The detection and classification was performed through automated spectral matching without the need for manual intervention. The scatter spectra corresponding to cancer tissue were found to be in agreement with those reported in literature. Inter-patient variability was found to be within limits reported in literature. The scatter images showed agreement with pathologist-identified regions of cancer. Spatial resolution for this configuration of the scanner was determined to be 2–3 mm, and the total scan time for each specimen was under 15 minutes. Conclusion: This work demonstrates the utility of coherent scatter imaging in identifying cancer based on the scatter properties of the tissue. It

  10. Mitigating the effect of optical back-scatter in multispectral underwater imaging

    International Nuclear Information System (INIS)

    Mortazavi, Halleh; Oakley, John P; Barkat, Braham

    2013-01-01

    Multispectral imaging is a very useful technique for extracting information from the underwater world. However, optical back-scatter changes the intensity value in each spectral band and this distorts the estimated spectrum. In this work, a filter is used to detect the level of optical back-scatter in each spectral band from a set of multispectral images. Extraction of underwater object spectra can be done by subtracting the estimated level of optical back-scatter and scaling the remainder in each spectral band from the captured image in the corresponding band. An experiment has been designed to show the performance of the proposed filter for correcting the set of multispectral underwater images and recovering the pixel spectra. The multispectral images are captured by a B/W CCD digital camera with a fast tunable liquid-crystal filter in 33 narrow spectral bands in clear and different levels of turbid water. Reference estimates for the optical back-scatter spectra are found by comparing a clear and a degraded set of multispectral images. The accuracy and consistency of the proposed method, the extended Oakley–Bu cost function, is examined by comparing the estimated values with the reference level of an optical back-scatter spectrum. The same comparison is made for the simple estimation approach. The results show that the simple method is not reliable and fail to estimate the level of optical back-scatter spectrum accurately. The results from processing experimental images in turbid water show that the effect of optical back-scatter can be mitigated in the image of each spectral band and, as a result, the spectra of the object can be recovered. However, for a very high level of turbid water the recovery is limited because of the effect of extinction. (paper)

  11. Significance of multiple scattering in imaging through turbid media

    International Nuclear Information System (INIS)

    Zardecki, A.; Gerstl, S.A.W.

    1986-01-01

    The degradation of image quality in a turbid medium is analyzed within the framework of the small-angle approximation, the diffusion approximation, and a rigorous two-dimensional radiative transfer equation. These three approaches allow us to emphasize different aspects of the imaging problem when multiple scattering effects are important. For a medium with a forward-peaked phase function, the separation of multiple scattering into a series of scatterings of various order provides a fruitful technique. The use of the diffusion approximation and transport theory extends the determination of the modulation transfer function to a turbid medium with an arbitrary degree of anisotropy

  12. Discrimination of skin diseases using the multimodal imaging approach

    Science.gov (United States)

    Vogler, N.; Heuke, S.; Akimov, D.; Latka, I.; Kluschke, F.; Röwert-Huber, H.-J.; Lademann, J.; Dietzek, B.; Popp, J.

    2012-06-01

    Optical microspectroscopic tools reveal great potential for dermatologic diagnostics in the clinical day-to-day routine. To enhance the diagnostic value of individual nonlinear optical imaging modalities such as coherent anti-Stokes Raman scattering (CARS), second harmonic generation (SHG) or two-photon excited fluorescence (TPF), the approach of multimodal imaging has recently been developed. Here, we present an application of nonlinear optical multimodal imaging with Raman-scattering microscopy to study sizable human-tissue cross-sections. The samples investigated contain both healthy tissue and various skin tumors. This contribution details the rich information content, which can be obtained from the multimodal approach: While CARS microscopy, which - in contrast to spontaneous Raman-scattering microscopy - is not hampered by single-photon excited fluorescence, is used to monitor the lipid and protein distribution in the samples, SHG imaging selectively highlights the distribution of collagen structures within the tissue. This is due to the fact, that SHG is only generated in structures which lack inversion geometry. Finally, TPF reveals the distribution of autofluorophores in tissue. The combination of these techniques, i.e. multimodal imaging, allows for recording chemical images of large area samples and is - as this contribution will highlight - of high clinically diagnostic value.

  13. Imaging an event horizon: mitigation of scattering toward Sagittarius A*

    Energy Technology Data Exchange (ETDEWEB)

    Fish, Vincent L.; Lu, Ru-Sen; Doeleman, Sheperd S.; Pankratius, Victor [Massachusetts Institute of Technology, Haystack Observatory, Route 40, Westford, MA 01886 (United States); Johnson, Michael D.; Narayan, Ramesh; Vertatschitsch, Laura E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Bouman, Katherine L.; Zoran, Daniel; Freeman, William T. [Massachusetts Institute of Technology, Computer Science and Artificial Intelligence Laboratory, 32 Vassar Street, Cambridge, MA 02139 (United States); Psaltis, Dimitrios [Astronomy and Physics Departments, University of Arizona, 933 North Cherry Street, Tucson, AZ 85721 (United States); Broderick, Avery E. [Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, ON N2L 2Y5 (Canada); Gwinn, Carl R., E-mail: vfish@haystack.mit.edu [Department of Physics, University of California, Santa Barbara, CA 93106 (United States)

    2014-11-10

    The image of the emission surrounding the black hole in the center of the Milky Way is predicted to exhibit the imprint of general relativistic (GR) effects, including the existence of a shadow feature and a photon ring of diameter ∼50 μas. Structure on these scales can be resolved by millimeter-wavelength very long baseline interferometry. However, strong-field GR features of interest will be blurred at λ ≥ 1.3 mm due to scattering by interstellar electrons. The scattering properties are well understood over most of the relevant range of baseline lengths, suggesting that the scattering may be (mostly) invertible. We simulate observations of a model image of Sgr A* and demonstrate that the effects of scattering can indeed be mitigated by correcting the visibilities before reconstructing the image. This technique is also applicable to Sgr A* at longer wavelengths.

  14. Road Extraction and Car Detection from Aerial Image Using Intensity and Color

    Directory of Open Access Journals (Sweden)

    Vahid Ghods

    2011-07-01

    Full Text Available In this paper a new automatic approach to road extraction from aerial images is proposed. The initialization strategies are based on the intensity, color, and Hough transform. After road elements extraction, chain codes are calculated. In the last step, using shadow, cars on the roads are detected. We implemented our method on the 25 images from "Google Earth" database. The experiments show an increase in both the completeness and the quality indexes for the extracted road.

  15. Forward scattering effects on muon imaging

    Science.gov (United States)

    Gómez, H.; Gibert, D.; Goy, C.; Jourde, K.; Karyotakis, Y.; Katsanevas, S.; Marteau, J.; Rosas-Carbajal, M.; Tonazzo, A.

    2017-12-01

    Muon imaging is one of the most promising non-invasive techniques for density structure scanning, specially for large objects reaching the kilometre scale. It has already interesting applications in different fields like geophysics or nuclear safety and has been proposed for some others like engineering or archaeology. One of the approaches of this technique is based on the well-known radiography principle, by reconstructing the incident direction of the detected muons after crossing the studied objects. In this case, muons detected after a previous forward scattering on the object surface represent an irreducible background noise, leading to a bias on the measurement and consequently on the reconstruction of the object mean density. Therefore, a prior characterization of this effect represents valuable information to conveniently correct the obtained results. Although the muon scattering process has been already theoretically described, a general study of this process has been carried out based on Monte Carlo simulations, resulting in a versatile tool to evaluate this effect for different object geometries and compositions. As an example, these simulations have been used to evaluate the impact of forward scattered muons on two different applications of muon imaging: archaeology and volcanology, revealing a significant impact on the latter case. The general way in which all the tools used have been developed can allow to make equivalent studies in the future for other muon imaging applications following the same procedure.

  16. The time resolved SBS and SRS research in heavy water and its application in CARS

    Science.gov (United States)

    Liu, Jinbo; Gai, Baodong; Yuan, Hong; Sun, Jianfeng; Zhou, Xin; Liu, Di; Xia, Xusheng; Wang, Pengyuan; Hu, Shu; Chen, Ying; Guo, Jingwei; Jin, Yuqi; Sang, Fengting

    2018-05-01

    We present the time-resolved character of stimulated Brillouin scattering (SBS) and backward stimulated Raman scattering (BSRS) in heavy water and its application in Coherent Anti-Stokes Raman Scattering (CARS) technique. A nanosecond laser from a frequency-doubled Nd: YAG laser is introduced into a heavy water cell, to generate SBS and BSRS beams. The SBS and BSRS beams are collinear, and their time resolved characters are studied by a streak camera, experiment show that they are ideal source for an alignment-free CARS system, and the time resolved property of SBS and BSRS beams could affect the CARS efficiency significantly. By inserting a Dye cuvette to the collinear beams, the time-overlapping of SBS and BSRS could be improved, and finally the CARS efficiency is increased, even though the SBS energy is decreased. Possible methods to improve the efficiency of this CARS system are discussed too.

  17. ViCAR: An Adaptive and Landmark-Free Registration of Time Lapse Image Data from Microfluidics Experiments

    Directory of Open Access Journals (Sweden)

    Georges Hattab

    2017-05-01

    Full Text Available In order to understand gene function in bacterial life cycles, time lapse bioimaging is applied in combination with different marker protocols in so called microfluidics chambers (i.e., a multi-well plate. In one experiment, a series of T images is recorded for one visual field, with a pixel resolution of 60 nm/px. Any (semi-automatic analysis of the data is hampered by a strong image noise, low contrast and, last but not least, considerable irregular shifts during the acquisition. Image registration corrects such shifts enabling next steps of the analysis (e.g., feature extraction or tracking. Image alignment faces two obstacles in this microscopic context: (a highly dynamic structural changes in the sample (i.e., colony growth and (b an individual data set-specific sample environment which makes the application of landmarks-based alignments almost impossible. We present a computational image registration solution, we refer to as ViCAR: (Visual (Cues based (Adaptive (Registration, for such microfluidics experiments, consisting of (1 the detection of particular polygons (outlined and segmented ones, referred to as visual cues, (2 the adaptive retrieval of three coordinates throughout different sets of frames, and finally (3 an image registration based on the relation of these points correcting both rotation and translation. We tested ViCAR with different data sets and have found that it provides an effective spatial alignment thereby paving the way to extract temporal features pertinent to each resulting bacterial colony. By using ViCAR, we achieved an image registration with 99.9% of image closeness, based on the average rmsd of 4.10−2 pixels, and superior results compared to a state of the art algorithm.

  18. Simulation of an IXS imaging analyzer with an extended scattering source

    Energy Technology Data Exchange (ETDEWEB)

    Suvorov, Alexey [Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source II; Cai, Yong Q. [Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source II

    2016-09-15

    A concept of an inelastic x-ray scattering (IXS) spectrograph with an imaging analyzer was proposed recently and discussed in a number of publications (see e.g. Ref.1). The imaging analyzer as proposed combines x-ray lenses with highly dispersive crystal optics. It allows conversion of the x-ray energy spectrum into a spatial image with very high energy resolution. However, the presented theoretical analysis of the spectrograph did not take into account details of the scattered radiation source, i.e. sample, and its impact on the spectrograph performance. Using numerical simulations we investigated the influence of the finite sample thickness, the scattering angle and the incident energy detuning on the analyzer image and the ultimate resolution.

  19. Characterizing the behavior of scattered radiation in multi-energy x-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sossin, Artur, E-mail: artur.sossin@gmail.com [CEA-LETI MINATEC Grenoble, F-38054 Grenoble (France); Rebuffel, V.; Tabary, J. [CEA-LETI MINATEC Grenoble, F-38054 Grenoble (France); Létang, J.M.; Freud, N. [Univ Lyon, INSA-Lyon, Université Lyon 1, UJM-Saint Etienne, CNRS, Inserm, Centre Léon Bérard, CREATIS UMR 5220 U1206, F-69373 Lyon (France); Verger, L. [CEA-LETI MINATEC Grenoble, F-38054 Grenoble (France)

    2017-04-01

    Scattered radiation results in various undesirable effects in medical diagnostics, non-destructive testing (NDT) and security x-ray imaging. Despite numerous studies characterizing this phenomenon and its effects, the knowledge of its behavior in the energy domain remains limited. The present study aims at summarizing some key insights on scattered radiation originating from the inspected object. In addition, various simulations and experiments with limited collimation on both simplified and realistic phantoms were conducted in order to study scatter behavior in multi-energy x-ray imaging. Results showed that the spectrum shape of the scatter component can be considered preserved in the first approximation across the image plane for various acquisition geometries and phantoms. The variations exhibited by the scatter spectrum were below 10% for most examined cases. Furthermore, the corresponding spectrum shape proved to be also relatively invariant for different experimental angular projections of one of the examined phantoms. The observed property of scattered radiation can potentially lead to the decoupling of spatial and energy scatter components, which can in turn enable speed ups in scatter simulations and reduce the complexity of scatter correction.

  20. Ex vivo and in vivo coherent Raman imaging of the peripheral and central nervous system

    Science.gov (United States)

    Huff, Terry Brandon

    A hallmark of nervous system disorders is damage or degradation of the myelin sheath. Unraveling the mechanisms underlying myelin degeneration and repair represent one of the great challenges in medicine. This thesis work details the development and utilization of advanced optical imaging methods to gain insight into the structure and function of myelin in both healthy and diseased states in the in vivo environment. This first part of this thesis discusses ex vivo studies of the effects of high-frequency stimulation of spinal tissues on the structure of the node of Ranvier as investigated by coherent anti-Stokes Raman scattering (CARS) imaging (manuscript submitted to Journal of Neurosciece). Reversible paranodal myelin retraction at the nodes of Ranvier was observed during 200 Hz electrical stimulation, beginning minutes after the onset and continuing for up to 10 min after stimulation was ceased. A mechanistic study revealed a Ca2+ dependent pathway: high-frequency stimulation induced paranodal myelin retraction via pathologic calcium influx into axons, calpain activation, and cytoskeleton degradation through spectrin break-down. Also, the construction of dual-scanning CARS microscope for large area mapping of CNS tissues is detailed (Optics Express, 2008, 16:19396-193409). A confocal scanning head equipped with a rotating polygon mirror provides high speed, high resolution imaging and is coupled with a motorized sample stage to generate high-resolution large-area images of mouse brain coronal section and guinea pig spinal cord cross section. The polygon mirror decreases the mosaic acquisition time significantly without reducing the resolution of individual images. The ex vivo studies are then extended to in vivo imaging of mouse sciatic nerve tissue by CARS and second harmonic generation (SHG) imaging (Journal of Microscopy, 2007, 225: 175-182). Following a minimally invasive surgery to open the skin, CARS imaging of myelinated axons and SHG imaging of the

  1. Scattering features for lung cancer detection in fibered confocal fluorescence microscopy images.

    Science.gov (United States)

    Rakotomamonjy, Alain; Petitjean, Caroline; Salaün, Mathieu; Thiberville, Luc

    2014-06-01

    To assess the feasibility of lung cancer diagnosis using fibered confocal fluorescence microscopy (FCFM) imaging technique and scattering features for pattern recognition. FCFM imaging technique is a new medical imaging technique for which interest has yet to be established for diagnosis. This paper addresses the problem of lung cancer detection using FCFM images and, as a first contribution, assesses the feasibility of computer-aided diagnosis through these images. Towards this aim, we have built a pattern recognition scheme which involves a feature extraction stage and a classification stage. The second contribution relies on the features used for discrimination. Indeed, we have employed the so-called scattering transform for extracting discriminative features, which are robust to small deformations in the images. We have also compared and combined these features with classical yet powerful features like local binary patterns (LBP) and their variants denoted as local quinary patterns (LQP). We show that scattering features yielded to better recognition performances than classical features like LBP and their LQP variants for the FCFM image classification problems. Another finding is that LBP-based and scattering-based features provide complementary discriminative information and, in some situations, we empirically establish that performance can be improved when jointly using LBP, LQP and scattering features. In this work we analyze the joint capability of FCFM images and scattering features for lung cancer diagnosis. The proposed method achieves a good recognition rate for such a diagnosis problem. It also performs well when used in conjunction with other features for other classical medical imaging classification problems. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. The analysis and correction of neutron scattering effects in neutron imaging

    International Nuclear Information System (INIS)

    Raine, D.A.; Brenizer, J.S.

    1997-01-01

    A method of correcting for the scattering effects present in neutron radiographic and computed tomographic imaging has been developed. Prior work has shown that beam, object, and imaging system geometry factors, such as the L/D ratio and angular divergence, are the primary sources contributing to the degradation of neutron images. With objects smaller than 20--40 mm in width, a parallel beam approximation can be made where the effects from geometry are negligible. Factors which remain important in the image formation process are the pixel size of the imaging system, neutron scattering, the size of the object, the conversion material, and the beam energy spectrum. The Monte Carlo N-Particle transport code, version 4A (MCNP4A), was used to separate and evaluate the effect that each of these parameters has on neutron image data. The simulations were used to develop a correction algorithm which is easy to implement and requires no a priori knowledge of the object. The correction algorithm is based on the determination of the object scatter function (OSF) using available data outside the object to estimate the shape and magnitude of the OSF based on a Gaussian functional form. For objects smaller than 1 mm (0.04 in.) in width, the correction function can be well approximated by a constant function. Errors in the determination and correction of the MCNP simulated neutron scattering component were under 5% and larger errors were only noted in objects which were at the extreme high end of the range of object sizes simulated. The Monte Carlo data also indicated that scattering does not play a significant role in the blurring of neutron radiographic and tomographic images. The effect of neutron scattering on computed tomography is shown to be minimal at best, with the most serious effect resulting when the basic backprojection method is used

  3. Scattering influence in mammographic image

    International Nuclear Information System (INIS)

    Poletti, Martin Eduardo; Almeida, Adelaide de

    1996-01-01

    The quantification of mammographic images affected by scattered radiation is studied. The average glandular dose as a function of kVp and breast thickness for breast composition 50/50% is also evaluated. The results show that the contrast decreases with increasing of kVp and breast thickness, and the average glandular dose increase with increasing breast thickness and decreases with increasing kVp

  4. Coherent anti-Stokes Raman scattering microscopy of single nanodiamonds

    Science.gov (United States)

    Pope, Iestyn; Payne, Lukas; Zoriniants, George; Thomas, Evan; Williams, Oliver; Watson, Peter; Langbein, Wolfgang; Borri, Paola

    2014-11-01

    Nanoparticles have attracted enormous attention for biomedical applications as optical labels, drug-delivery vehicles and contrast agents in vivo. In the quest for superior photostability and biocompatibility, nanodiamonds are considered one of the best choices due to their unique structural, chemical, mechanical and optical properties. So far, mainly fluorescent nanodiamonds have been utilized for cell imaging. However, their use is limited by the efficiency and costs in reliably producing fluorescent defect centres with stable optical properties. Here, we show that single non-fluorescing nanodiamonds exhibit strong coherent anti-Stokes Raman scattering (CARS) at the sp3 vibrational resonance of diamond. Using correlative light and electron microscopy, the relationship between CARS signal strength and nanodiamond size is quantified. The calibrated CARS signal in turn enables the analysis of the number and size of nanodiamonds internalized in living cells in situ, which opens the exciting prospect of following complex cellular trafficking pathways quantitatively.

  5. Coherent anti-Stokes Raman scattering microscopy of single nanodiamonds.

    Science.gov (United States)

    Pope, Iestyn; Payne, Lukas; Zoriniants, George; Thomas, Evan; Williams, Oliver; Watson, Peter; Langbein, Wolfgang; Borri, Paola

    2014-11-01

    Nanoparticles have attracted enormous attention for biomedical applications as optical labels, drug-delivery vehicles and contrast agents in vivo. In the quest for superior photostability and biocompatibility, nanodiamonds are considered one of the best choices due to their unique structural, chemical, mechanical and optical properties. So far, mainly fluorescent nanodiamonds have been utilized for cell imaging. However, their use is limited by the efficiency and costs in reliably producing fluorescent defect centres with stable optical properties. Here, we show that single non-fluorescing nanodiamonds exhibit strong coherent anti-Stokes Raman scattering (CARS) at the sp(3) vibrational resonance of diamond. Using correlative light and electron microscopy, the relationship between CARS signal strength and nanodiamond size is quantified. The calibrated CARS signal in turn enables the analysis of the number and size of nanodiamonds internalized in living cells in situ, which opens the exciting prospect of following complex cellular trafficking pathways quantitatively.

  6. Live-cell stimulated Raman scattering imaging of alkyne-tagged biomolecules.

    Science.gov (United States)

    Hong, Senlian; Chen, Tao; Zhu, Yuntao; Li, Ang; Huang, Yanyi; Chen, Xing

    2014-06-02

    Alkynes can be metabolically incorporated into biomolecules including nucleic acids, proteins, lipids, and glycans. In addition to the clickable chemical reactivity, alkynes possess a unique Raman scattering within the Raman-silent region of a cell. Coupling this spectroscopic signature with Raman microscopy yields a new imaging modality beyond fluorescence and label-free microscopies. The bioorthogonal Raman imaging of various biomolecules tagged with an alkyne by a state-of-the-art Raman imaging technique, stimulated Raman scattering (SRS) microscopy, is reported. This imaging method affords non-invasiveness, high sensitivity, and molecular specificity and therefore should find broad applications in live-cell imaging. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Non-linear optical imaging – Introduction and pharmaceutical applications

    NARCIS (Netherlands)

    Fussell, A.L.; Isomaki, Antti; Strachan, Clare J.

    2013-01-01

    Nonlinear optical imaging is an emerging technology with much potential in pharmaceutical analysis. The technique encompasses a range of optical phenomena, including coherent anti-Stokes Raman scattering (CARS), second harmonic generation (SHG), and twophoton excited fluorescence (TPEF). The

  8. Computer assisted radiology and surgery. CARS 2010

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    The conference proceedings include contributions to the following topics: (1) CARS Clinical Day: minimally invasive spiral surgery, interventional radiology; (2) CARS - computer assisted radiology and surgery: ophthalmology, stimulation methods, new approaches to diagnosis and therapy; (3) Computer assisted radiology 24th International congress and exhibition: computer tomography and magnetic resonance, digital angiographic imaging, digital radiography, ultrasound, computer assisted radiation therapy, medical workstations, image processing and display; (4) 14th Annual conference of the International Society for computer aided surgery; ENT-CMF head and neck surgery computer-assisted neurosurgery, cardiovascular surgery, image guided liver surgery, abdominal and laparoscopic surgery, computer-assisted orthopedic surgery, image processing and visualization, surgical robotics and instrumentation, surgical modeling, simulation and education; (5) 28th International EuroPACS meeting: image distribution and integration strategies, planning and evaluation, telemedicine and standards, workflow and data flow in radiology; (6) 11th CARS/SPIE/EuroPACS joint workshop on surgical PACS and the digital operating, management and assessment of OR systems and integration; (7) 12th International workshop on computer-aided diagnosis: special session on breast CAD, special session on thoracic CAD, special session on abdominal brain, lumbar spine CAD; (8) 16th computed Maxillofacial imaging congress: computed maxillofacial imaging in dental implantology, orthodontics and dentofacial orthopedics; approaches to 3D maxillofacial imaging; surgical navigation; (9) 2nd EuroNOTES/CARS workshop on NOTES: an interdisciplinary challenge; (10) 2nd EPMA/CARS workshop on personalized medicine and ICT.; (11)poster sessions.

  9. Computer assisted radiology and surgery. CARS 2010

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2010-06-15

    The conference proceedings include contributions to the following topics: (1) CARS Clinical Day: minimally invasive spiral surgery, interventional radiology; (2) CARS - computer assisted radiology and surgery: ophthalmology, stimulation methods, new approaches to diagnosis and therapy; (3) Computer assisted radiology 24th International congress and exhibition: computer tomography and magnetic resonance, digital angiographic imaging, digital radiography, ultrasound, computer assisted radiation therapy, medical workstations, image processing and display; (4) 14th Annual conference of the International Society for computer aided surgery; ENT-CMF head and neck surgery computer-assisted neurosurgery, cardiovascular surgery, image guided liver surgery, abdominal and laparoscopic surgery, computer-assisted orthopedic surgery, image processing and visualization, surgical robotics and instrumentation, surgical modeling, simulation and education; (5) 28th International EuroPACS meeting: image distribution and integration strategies, planning and evaluation, telemedicine and standards, workflow and data flow in radiology; (6) 11th CARS/SPIE/EuroPACS joint workshop on surgical PACS and the digital operating, management and assessment of OR systems and integration; (7) 12th International workshop on computer-aided diagnosis: special session on breast CAD, special session on thoracic CAD, special session on abdominal brain, lumbar spine CAD; (8) 16th computed Maxillofacial imaging congress: computed maxillofacial imaging in dental implantology, orthodontics and dentofacial orthopedics; approaches to 3D maxillofacial imaging; surgical navigation; (9) 2nd EuroNOTES/CARS workshop on NOTES: an interdisciplinary challenge; (10) 2nd EPMA/CARS workshop on personalized medicine and ICT.; (11)poster sessions.

  10. Hybrid fs/ps CARS for Sooting and Particle-laden Flames

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmeister, Kathryn N. Gabet; Guildenbecher, Daniel Robert; Kearney, Sean P.

    2015-12-01

    We report the application of ultrafast rotational coherent anti-Stokes Raman scattering (CARS) for temperature and relative oxygen concentration measurements in the plume emanating from a burning aluminized ammonium perchlorate propellant strand. Combustion of these metal-based propellants is a particularly hostile environment for laserbased diagnostics, with intense background luminosity, scattering and beam obstruction from hot metal particles that can be as large as several hundred microns in diameter. CARS spectra that were previously obtained using nanosecond pulsed lasers in an aluminumparticle- seeded flame are examined and are determined to be severely impacted by nonresonant background, presumably as a result of the plasma formed by particulateenhanced laser-induced breakdown. Introduction of fs/ps laser pulses enables CARS detection at reduced pulse energies, decreasing the likelihood of breakdown, while simultaneously providing time-gated elimination of any nonresonant background interference. Temperature probability densities and temperature/oxygen correlations were constructed from ensembles of several thousand single-laser-shot measurements from the fs/ps rotational CARS measurement volume positioned within 3 mm or less of the burning propellant surface. Preliminary results in canonical flames are presented using a hybrid fs/ps vibrational CARS system to demonstrate our progress towards acquiring vibrational CARS measurements for more accurate temperatures in the very high temperature propellant burns.

  11. Beamstop-based low-background ptychography to image weakly scattering objects

    Energy Technology Data Exchange (ETDEWEB)

    Reinhardt, Juliane, E-mail: juliane.reinhardt@desy.de [Deutsches Elektronen-Synchrotron DESY, D-22607 Hamburg (Germany); Hoppe, Robert [Institute of Structural Physics, Technische Universität Dresden, D-01062 Dresden (Germany); Hofmann, Georg [Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, D-76131 Karlsruhe (Germany); Damsgaard, Christian D. [Center for Electron Nanoscopy and Department of Physics, Technical University of Denmark, DK-2800 Lyngby (Denmark); Patommel, Jens; Baumbach, Christoph [Institute of Structural Physics, Technische Universität Dresden, D-01062 Dresden (Germany); Baier, Sina; Rochet, Amélie; Grunwaldt, Jan-Dierk [Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, D-76131 Karlsruhe (Germany); Falkenberg, Gerald [Deutsches Elektronen-Synchrotron DESY, D-22607 Hamburg (Germany); Schroer, Christian G. [Deutsches Elektronen-Synchrotron DESY, D-22607 Hamburg (Germany); Department Physik, Universität Hamburg, Luruper Chaussee 149, D-22761 Hamburg (Germany)

    2017-02-15

    In recent years, X-ray ptychography has been established as a valuable tool for high-resolution imaging. Nevertheless, the spatial resolution and sensitivity in coherent diffraction imaging are limited by the signal that is detected over noise and over background scattering. Especially, coherent imaging of weakly scattering specimens suffers from incoherent background that is generated by the interaction of the central beam with matter along its propagation path in particular close to and inside of the detector. Common countermeasures entail evacuated flight tubes or detector-side beamstops, which improve the experimental setup in terms of background reduction or better coverage of high dynamic range in the diffraction patterns. Here, we discuss an alternative approach: we combine two ptychographic scans with and without beamstop and reconstruct them simultaneously taking advantage of the complementary information contained in the two scans. We experimentally demonstrate the potential of this scheme for hard X-ray ptychography by imaging a weakly scattering object composed of catalytic nanoparticles and provide the analysis of the signal-to-background ratio in the diffraction patterns. - Highlights: • An opaque beamstop far-upstream of the detector reduces background scattering. • Increased signal-to-background ratio in the diffraction patterns. • Simultaneous ptychographic reconstruction of two data sets with and without beamstop. • Result shows high spatial resolution of 13 nm of a weakly scattering catalyst sample. • High sensitivity to less than 10{sup 5} atoms.

  12. Scatter kernel estimation with an edge-spread function method for cone-beam computed tomography imaging

    International Nuclear Information System (INIS)

    Li Heng; Mohan, Radhe; Zhu, X Ronald

    2008-01-01

    The clinical applications of kilovoltage x-ray cone-beam computed tomography (CBCT) have been compromised by the limited quality of CBCT images, which typically is due to a substantial scatter component in the projection data. In this paper, we describe an experimental method of deriving the scatter kernel of a CBCT imaging system. The estimated scatter kernel can be used to remove the scatter component from the CBCT projection images, thus improving the quality of the reconstructed image. The scattered radiation was approximated as depth-dependent, pencil-beam kernels, which were derived using an edge-spread function (ESF) method. The ESF geometry was achieved with a half-beam block created by a 3 mm thick lead sheet placed on a stack of slab solid-water phantoms. Measurements for ten water-equivalent thicknesses (WET) ranging from 0 cm to 41 cm were taken with (half-blocked) and without (unblocked) the lead sheet, and corresponding pencil-beam scatter kernels or point-spread functions (PSFs) were then derived without assuming any empirical trial function. The derived scatter kernels were verified with phantom studies. Scatter correction was then incorporated into the reconstruction process to improve image quality. For a 32 cm diameter cylinder phantom, the flatness of the reconstructed image was improved from 22% to 5%. When the method was applied to CBCT images for patients undergoing image-guided therapy of the pelvis and lung, the variation in selected regions of interest (ROIs) was reduced from >300 HU to <100 HU. We conclude that the scatter reduction technique utilizing the scatter kernel effectively suppresses the artifact caused by scatter in CBCT.

  13. New neutron imaging techniques to close the gap to scattering applications

    International Nuclear Information System (INIS)

    Lehmann, Eberhard H.; Peetermans, S.; Trtik, P.; Betz, B.; Grünzweig, C.

    2017-01-01

    Neutron scattering and neutron imaging are activities at the strong neutron sources which have been developed rather independently. However, there are similarities and overlaps in the research topics to which both methods can contribute and thus useful synergies can be found. In particular, the spatial resolution of neutron imaging has improved recently, which - together with the enhancement of the efficiency in data acquisition- can be exploited to narrow the energy band and to implement more sophisticated methods like neutron grating interferometry. This paper provides a report about the current options in neutron imaging and describes how the gap to neutron scattering data can be closed in the future, e.g. by diffractive imaging, the use of polarized neutrons and the dark-field imagining of relevant materials. This overview is focused onto the interaction between neutron imaging and neutron scattering with the aim of synergy. It reflects mainly the authors’ experiences at their PSI facilities without ignoring the activities at the different other labs world-wide. (paper)

  14. New neutron imaging techniques to close the gap to scattering applications

    Science.gov (United States)

    Lehmann, Eberhard H.; Peetermans, S.; Trtik, P.; Betz, B.; Grünzweig, C.

    2017-01-01

    Neutron scattering and neutron imaging are activities at the strong neutron sources which have been developed rather independently. However, there are similarities and overlaps in the research topics to which both methods can contribute and thus useful synergies can be found. In particular, the spatial resolution of neutron imaging has improved recently, which - together with the enhancement of the efficiency in data acquisition- can be exploited to narrow the energy band and to implement more sophisticated methods like neutron grating interferometry. This paper provides a report about the current options in neutron imaging and describes how the gap to neutron scattering data can be closed in the future, e.g. by diffractive imaging, the use of polarized neutrons and the dark-field imagining of relevant materials. This overview is focused onto the interaction between neutron imaging and neutron scattering with the aim of synergy. It reflects mainly the authors’ experiences at their PSI facilities without ignoring the activities at the different other labs world-wide.

  15. Label-free evaluation of hepatic microvesicular steatosis with multimodal coherent anti-Stokes Raman scattering microscopy.

    Directory of Open Access Journals (Sweden)

    Thuc T Le

    Full Text Available Hepatic microvesicular steatosis is a hallmark of drug-induced hepatotoxicity and early-stage fatty liver disease. Current histopathology techniques are inadequate for the clinical evaluation of hepatic microvesicular steatosis. In this paper, we explore the use of multimodal coherent anti-Stokes Raman scattering (CARS microscopy for the detection and characterization of hepatic microvesicular steatosis. We show that CARS microscopy is more sensitive than Oil Red O histology for the detection of microvesicular steatosis. Computer-assisted analysis of liver lipid level based on CARS signal intensity is consistent with triglyceride measurement using a standard biochemical assay. Most importantly, in a single measurement procedure on unprocessed and unstained liver tissues, multimodal CARS imaging provides a wealth of critical information including the detection of microvesicular steatosis and quantitation of liver lipid content, number and size of lipid droplets, and lipid unsaturation and packing order of lipid droplets. Such information can only be assessed by multiple different methods on processed and stained liver tissues or tissue extracts using current standard analytical techniques. Multimodal CARS microscopy also permits label-free identification of lipid-rich non-parenchymal cells. In addition, label-free and non-perturbative CARS imaging allow rapid screening of mitochondrial toxins-induced microvesicular steatosis in primary hepatocyte cultures. With its sensitivity and versatility, multimodal CARS microscopy should be a powerful tool for the clinical evaluation of hepatic microvesicular steatosis.

  16. The effect of Compton scattering on quantitative SPECT imaging

    International Nuclear Information System (INIS)

    Beck, J.W.; Jaszczak, R.J.; Starmer, C.F.

    1982-01-01

    A Monte Carlo code has been developed to simulate the response of a SPECT system. The accuracy of the code has been verified and has been used in this research to study and illustrate the effects of Compton scatter on quantitative SPECT measurements. The effects of Compton scattered radiation on gamma camera response have been discussed by several authors, and will be extended to rotating gamma camera SPECT systems. The unique feature of this research includes the pictorial illustration of the Compton scattered and the unscattered components of the photopeak data on SPECT imaging by simulating phantom studies with and without Compton scatter

  17. Local scattering property scales flow speed estimation in laser speckle contrast imaging

    International Nuclear Information System (INIS)

    Miao, Peng; Chao, Zhen; Feng, Shihan; Ji, Yuanyuan; Yu, Hang; Thakor, Nitish V; Li, Nan

    2015-01-01

    Laser speckle contrast imaging (LSCI) has been widely used in in vivo blood flow imaging. However, the effect of local scattering property (scattering coefficient µ s ) on blood flow speed estimation has not been well investigated. In this study, such an effect was quantified and involved in relation between speckle autocorrelation time τ c and flow speed v based on simulation flow experiments. For in vivo blood flow imaging, an improved estimation strategy was developed to eliminate the estimation bias due to the inhomogeneous distribution of the scattering property. Compared to traditional LSCI, a new estimation method significantly suppressed the imaging noise and improves the imaging contrast of vasculatures. Furthermore, the new method successfully captured the blood flow changes and vascular constriction patterns in rats’ cerebral cortex from normothermia to mild and moderate hypothermia. (letter)

  18. Efficient scatter model for simulation of ultrasound images from computed tomography data

    Science.gov (United States)

    D'Amato, J. P.; Lo Vercio, L.; Rubi, P.; Fernandez Vera, E.; Barbuzza, R.; Del Fresno, M.; Larrabide, I.

    2015-12-01

    Background and motivation: Real-time ultrasound simulation refers to the process of computationally creating fully synthetic ultrasound images instantly. Due to the high value of specialized low cost training for healthcare professionals, there is a growing interest in the use of this technology and the development of high fidelity systems that simulate the acquisitions of echographic images. The objective is to create an efficient and reproducible simulator that can run either on notebooks or desktops using low cost devices. Materials and methods: We present an interactive ultrasound simulator based on CT data. This simulator is based on ray-casting and provides real-time interaction capabilities. The simulation of scattering that is coherent with the transducer position in real time is also introduced. Such noise is produced using a simplified model of multiplicative noise and convolution with point spread functions (PSF) tailored for this purpose. Results: The computational efficiency of scattering maps generation was revised with an improved performance. This allowed a more efficient simulation of coherent scattering in the synthetic echographic images while providing highly realistic result. We describe some quality and performance metrics to validate these results, where a performance of up to 55fps was achieved. Conclusion: The proposed technique for real-time scattering modeling provides realistic yet computationally efficient scatter distributions. The error between the original image and the simulated scattering image was compared for the proposed method and the state-of-the-art, showing negligible differences in its distribution.

  19. Cars, Cars, Cars

    Science.gov (United States)

    McIntosh, Phyllis

    2013-01-01

    Cars are the focus of this feature article, which explores such topics as the history of cars in the United States, the national highway system, safety and pollution concerns, mobility and freedom for women, classic car shows, and the road trip in American literature and film. Also included are links to the websites of Automobile in American Life…

  20. Rayleigh scatter in kilovoltage x-ray imaging: is the independent atom approximation good enough?

    Science.gov (United States)

    Poludniowski, G.; Evans, P. M.; Webb, S.

    2009-11-01

    Monte Carlo simulation is the gold standard method for modelling scattering processes in medical x-ray imaging. General-purpose Monte Carlo codes, however, typically use the independent atom approximation (IAA). This is known to be inaccurate for Rayleigh scattering, for many materials, in the forward direction. This work addresses whether the IAA is sufficient for the typical modelling tasks in medical kilovoltage x-ray imaging. As a means of comparison, we incorporate a more realistic 'interference function' model into a custom-written Monte Carlo code. First, we conduct simulations of scatter from isolated voxels of soft tissue, adipose, cortical bone and spongiosa. Then, we simulate scatter profiles from a cylinder of water and from phantoms of a patient's head, thorax and pelvis, constructed from diagnostic-quality CT data sets. Lastly, we reconstruct CT numbers from simulated sets of projection images and investigate the quantitative effects of the approximation. We show that the IAA can produce errors of several per cent of the total scatter, across a projection image, for typical x-ray beams and patients. The errors in reconstructed CT number, however, for the phantoms simulated, were small (typically < 10 HU). The IAA can therefore be considered sufficient for the modelling of scatter correction in CT imaging. Where accurate quantitative estimates of scatter in individual projection images are required, however, the appropriate interference functions should be included.

  1. Photoacoustic imaging in scattering media by combining a correlation matrix filter with a time reversal operator.

    Science.gov (United States)

    Rui, Wei; Tao, Chao; Liu, Xiaojun

    2017-09-18

    Acoustic scattering medium is a fundamental challenge for photoacoustic imaging. In this study, we reveal the different coherent properties of the scattering photoacoustic waves and the direct photoacoustic waves in a matrix form. Direct waves show a particular coherence on the antidiagonals of the matrix, whereas scattering waves do not. Based on this property, a correlation matrix filter combining with a time reversal operator is proposed to preserve the direct waves and recover the image behind a scattering layer. Both numerical simulations and photoacoustic imaging experiments demonstrate that the proposed approach effectively increases the image contrast and decreases the background speckles in a scattering medium. This study might improve the quality of photoacoustic imaging in an acoustic scattering environment and extend its applications.

  2. Scattering calculation and image reconstruction using elevation-focused beams.

    Science.gov (United States)

    Duncan, David P; Astheimer, Jeffrey P; Waag, Robert C

    2009-05-01

    Pressure scattered by cylindrical and spherical objects with elevation-focused illumination and reception has been analytically calculated, and corresponding cross sections have been reconstructed with a two-dimensional algorithm. Elevation focusing was used to elucidate constraints on quantitative imaging of three-dimensional objects with two-dimensional algorithms. Focused illumination and reception are represented by angular spectra of plane waves that were efficiently computed using a Fourier interpolation method to maintain the same angles for all temporal frequencies. Reconstructions were formed using an eigenfunction method with multiple frequencies, phase compensation, and iteration. The results show that the scattered pressure reduces to a two-dimensional expression, and two-dimensional algorithms are applicable when the region of a three-dimensional object within an elevation-focused beam is approximately constant in elevation. The results also show that energy scattered out of the reception aperture by objects contained within the focused beam can result in the reconstructed values of attenuation slope being greater than true values at the boundary of the object. Reconstructed sound speed images, however, appear to be relatively unaffected by the loss in scattered energy. The broad conclusion that can be drawn from these results is that two-dimensional reconstructions require compensation to account for uncaptured three-dimensional scattering.

  3. Development of a practical image-based scatter correction method for brain perfusion SPECT: comparison with the TEW method

    International Nuclear Information System (INIS)

    Shidahara, Miho; Kato, Takashi; Kawatsu, Shoji; Yoshimura, Kumiko; Ito, Kengo; Watabe, Hiroshi; Kim, Kyeong Min; Iida, Hidehiro; Kato, Rikio

    2005-01-01

    An image-based scatter correction (IBSC) method was developed to convert scatter-uncorrected into scatter-corrected SPECT images. The purpose of this study was to validate this method by means of phantom simulations and human studies with 99m Tc-labeled tracers, based on comparison with the conventional triple energy window (TEW) method. The IBSC method corrects scatter on the reconstructed image I AC μb with Chang's attenuation correction factor. The scatter component image is estimated by convolving I AC μb with a scatter function followed by multiplication with an image-based scatter fraction function. The IBSC method was evaluated with Monte Carlo simulations and 99m Tc-ethyl cysteinate dimer SPECT human brain perfusion studies obtained from five volunteers. The image counts and contrast of the scatter-corrected images obtained by the IBSC and TEW methods were compared. Using data obtained from the simulations, the image counts and contrast of the scatter-corrected images obtained by the IBSC and TEW methods were found to be nearly identical for both gray and white matter. In human brain images, no significant differences in image contrast were observed between the IBSC and TEW methods. The IBSC method is a simple scatter correction technique feasible for use in clinical routine. (orig.)

  4. Development of a practical image-based scatter correction method for brain perfusion SPECT: comparison with the TEW method.

    Science.gov (United States)

    Shidahara, Miho; Watabe, Hiroshi; Kim, Kyeong Min; Kato, Takashi; Kawatsu, Shoji; Kato, Rikio; Yoshimura, Kumiko; Iida, Hidehiro; Ito, Kengo

    2005-10-01

    An image-based scatter correction (IBSC) method was developed to convert scatter-uncorrected into scatter-corrected SPECT images. The purpose of this study was to validate this method by means of phantom simulations and human studies with 99mTc-labeled tracers, based on comparison with the conventional triple energy window (TEW) method. The IBSC method corrects scatter on the reconstructed image I(mub)AC with Chang's attenuation correction factor. The scatter component image is estimated by convolving I(mub)AC with a scatter function followed by multiplication with an image-based scatter fraction function. The IBSC method was evaluated with Monte Carlo simulations and 99mTc-ethyl cysteinate dimer SPECT human brain perfusion studies obtained from five volunteers. The image counts and contrast of the scatter-corrected images obtained by the IBSC and TEW methods were compared. Using data obtained from the simulations, the image counts and contrast of the scatter-corrected images obtained by the IBSC and TEW methods were found to be nearly identical for both gray and white matter. In human brain images, no significant differences in image contrast were observed between the IBSC and TEW methods. The IBSC method is a simple scatter correction technique feasible for use in clinical routine.

  5. Simultaneous acquisition of pure rotational and vibrational nitrogen spectra using three-laser CARS

    International Nuclear Information System (INIS)

    Lucht, R.P.; Maris, M.A.

    1987-01-01

    The author used three-laser coherent anti-Stokes Raman scattering to acquire simultaneously the pure rotational and vibrational spectra from the nitrogen molecule. The energy level schematic for the three-laser CARS process is shown in this paper. Frequency-doubled Nd:YAG laser radiation at frequency ω/sub 1/ is used to pump a broadband dye laser which lasers at a range of frequencies ω/sub s/ and a narrowband dye laser with frequency ω/sub 2/. The three-beams are focused to a common CARS probe volume using a three-dimensional phase-matching geometry. A CARS polarization is established when the frequency difference ω/sub 1/ - ω/sub s/ corresponds to a vibrational Raman resonance. The vibrational polarization scatters the incident ω/sub 2/ beam to produce anti-Stokes radiation at frequency ω/sub 1/ - ω/sub s/ + ω/sub 2/. In a similar fashion, a CARS polarization is also established when the frequency difference ω/sub 2/ - ω/sub s/ is equal to a pure rotational Raman resonance. The pure rotational polarization scatters the Nd:YAG laser radiation at ω/sub 1/ to produce anti-Stokes radiation at ω/sub 2/ - ω/sub s/ + ω/sub 1/

  6. The Particle Habit Imaging and Polar Scattering probe PHIPS: First Stereo-Imaging and Polar Scattering Function Measurements of Ice Particles

    Science.gov (United States)

    Abdelmonem, A.; Schnaiter, M.; Schön, R.; Leisner, T.

    2009-04-01

    Cirrus clouds impact climate by their influence on the water vapour distribution in the upper troposphere. Moreover, they directly affect the radiative balance of the Earth's atmosphere by the scattering of incoming solar radiation and the absorption of outgoing thermal emission. The link between the microphysical properties of ice cloud particles and the radiative forcing of the clouds is not as yet well understood and the influence of the shapes of ice crystals on the radiative budget of cirrus clouds is currently under debate. PHIPS is a new experimental device for the stereo-imaging of individual cloud particles and the simultaneous measurement of the polar scattering function of the same particle. PHIPS uses an automated particle event triggering system that ensures that only those particles are captured which are located in the field of view - depth of field volume of the microscope unit. Efforts were made to improve the resolution power of the microscope unit down to about 3 µm and to facilitate a 3D morphology impression of the ice crystals. This is realised by a stereo-imaging set up composed of two identical microscopes which image the same particle under an angular viewing distance of 30°. The scattering part of PHIPS enables the measurement of the polar light scattering function of cloud particles with an angular resolution of 1° for forward scattering directions (from 1° to 10°) and 8° for side and backscattering directions (from 18° to 170°). For each particle the light scattering pulse per channel is stored either as integrated intensity or as time resolved intensity function which opens a new category of data analysis concerning details of the particle movement. PHIPS is the first step to PHIPS-HALO which is one of the in situ ice particle and water vapour instruments that are currently under development for the new German research aircraft HALO. The instrument was tested in the ice cloud characterisation campaign HALO-02 which was conducted

  7. Development of a practical image-based scatter correction method for brain perfusion SPECT: comparison with the TEW method

    Energy Technology Data Exchange (ETDEWEB)

    Shidahara, Miho; Kato, Takashi; Kawatsu, Shoji; Yoshimura, Kumiko; Ito, Kengo [National Center for Geriatrics and Gerontology Research Institute, Department of Brain Science and Molecular Imaging, Obu, Aichi (Japan); Watabe, Hiroshi; Kim, Kyeong Min; Iida, Hidehiro [National Cardiovascular Center Research Institute, Department of Investigative Radiology, Suita (Japan); Kato, Rikio [National Center for Geriatrics and Gerontology, Department of Radiology, Obu (Japan)

    2005-10-01

    An image-based scatter correction (IBSC) method was developed to convert scatter-uncorrected into scatter-corrected SPECT images. The purpose of this study was to validate this method by means of phantom simulations and human studies with {sup 99m}Tc-labeled tracers, based on comparison with the conventional triple energy window (TEW) method. The IBSC method corrects scatter on the reconstructed image I{sub AC}{sup {mu}}{sup b} with Chang's attenuation correction factor. The scatter component image is estimated by convolving I{sub AC}{sup {mu}}{sup b} with a scatter function followed by multiplication with an image-based scatter fraction function. The IBSC method was evaluated with Monte Carlo simulations and {sup 99m}Tc-ethyl cysteinate dimer SPECT human brain perfusion studies obtained from five volunteers. The image counts and contrast of the scatter-corrected images obtained by the IBSC and TEW methods were compared. Using data obtained from the simulations, the image counts and contrast of the scatter-corrected images obtained by the IBSC and TEW methods were found to be nearly identical for both gray and white matter. In human brain images, no significant differences in image contrast were observed between the IBSC and TEW methods. The IBSC method is a simple scatter correction technique feasible for use in clinical routine. (orig.)

  8. Tissue Equivalent Phantom Design for Characterization of a Coherent Scatter X-ray Imaging System

    Science.gov (United States)

    Albanese, Kathryn Elizabeth

    Scatter in medical imaging is typically cast off as image-related noise that detracts from meaningful diagnosis. It is therefore typically rejected or removed from medical images. However, it has been found that every material, including cancerous tissue, has a unique X-ray coherent scatter signature that can be used to identify the material or tissue. Such scatter-based tissue-identification provides the advantage of locating and identifying particular materials over conventional anatomical imaging through X-ray radiography. A coded aperture X-ray coherent scatter spectral imaging system has been developed in our group to classify different tissue types based on their unique scatter signatures. Previous experiments using our prototype have demonstrated that the depth-resolved coherent scatter spectral imaging system (CACSSI) can discriminate healthy and cancerous tissue present in the path of a non-destructive x-ray beam. A key to the successful optimization of CACSSI as a clinical imaging method is to obtain anatomically accurate phantoms of the human body. This thesis describes the development and fabrication of 3D printed anatomical scatter phantoms of the breast and lung. The purpose of this work is to accurately model different breast geometries using a tissue equivalent phantom, and to classify these tissues in a coherent x-ray scatter imaging system. Tissue-equivalent anatomical phantoms were designed to assess the capability of the CACSSI system to classify different types of breast tissue (adipose, fibroglandular, malignant). These phantoms were 3D printed based on DICOM data obtained from CT scans of prone breasts. The phantoms were tested through comparison of measured scatter signatures with those of adipose and fibroglandular tissue from literature. Tumors in the phantom were modeled using a variety of biological tissue including actual surgically excised benign and malignant tissue specimens. Lung based phantoms have also been printed for future

  9. Transfection and imaging of diamond nanocrystals as scattering optical labels

    International Nuclear Information System (INIS)

    Smith, Bradley R.; Niebert, Marcus; Plakhotnik, Taras; Zvyagin, Andrei V.

    2007-01-01

    We report on the first demonstration of nanodiamond (ND) as a scattering optical label in a biological environment. NDs were efficiently transfected into cells using cationic liposomes, and imaged using differential interference and Hoffman modulation 'space' contrast microscopy techniques. We have shown that 55 nm NDs are biologically inert and produce a bright signal compared to the cell background. ND as a scattering label presents the possibility for extended biological imaging with relatively little thermal or biochemical perturbations due to the optical transparency and biologically inert nature of diamond

  10. DETERMINATION OF STEERING WHEEL ANGLES DURING CAR ALIGNMENT BY IMAGE ANALYSIS METHODS

    Directory of Open Access Journals (Sweden)

    M. Mueller

    2016-06-01

    Full Text Available Optical systems for automatic visual inspections are of increasing importance in the field of automation in the industrial domain. A new application is the determination of steering wheel angles during wheel track setting of the final inspection of car manufacturing. The camera has to be positioned outside the car to avoid interruptions of the processes and therefore, oblique images of the steering wheel must be acquired. Three different approaches of computer vision are considered in this paper, i.e. a 2D shape-based matching (by means of a plane to plane rectification of the oblique images and detection of a shape model with a particular rotation, a 3D shape-based matching approach (by means of a series of different perspectives of the spatial shape of the steering wheel derived from a CAD design model and a point-to-point matching (by means of the extraction of significant elements (e.g. multifunctional buttons of a steering wheel and a pairwise connection of these points to straight lines. The HALCON system (HALCON, 2016 was used for all software developments and necessary adaptions. As reference a mechanical balance with an accuracy of 0.1° was used. The quality assessment was based on two different approaches, a laboratory test and a test during production process. In the laboratory a standard deviation of ±0.035° (2D shape-based matching, ±0.12° (3D approach and ±0.029° (point-to-point matching could be obtained. The field test of 291 measurements (27 cars with varying poses and angles of the steering wheel results in a detection rate of 100% and ±0.48° (2D matching and ±0.24° (point-to-point matching. Both methods also fulfil the request of real time processing (three measurements per second.

  11. Hybrid fs/ps CARS for Sooting and Particle-laden Flames [PowerPoint

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmeister, Kathryn N. Gabet; Guildenbecher, Daniel Robert; Kearney, Sean P.

    2016-01-01

    We report the application of ultrafast rotational coherent anti-Stokes Raman scattering (CARS) for temperature and relative oxygen concentration measurements in the plume emanating from a burning aluminized ammonium perchlorate propellant strand. Combustion of these metal-based propellants is a particularly hostile environment for laserbased diagnostics, with intense background luminosity, scattering and beam obstruction from hot metal particles that can be as large as several hundred microns in diameter. CARS spectra that were previously obtained using nanosecond pulsed lasers in an aluminumparticle- seeded flame are examined and are determined to be severely impacted by nonresonant background, presumably as a result of the plasma formed by particulateenhanced laser-induced breakdown. Introduction of fs/ps laser pulses enables CARS detection at reduced pulse energies, decreasing the likelihood of breakdown, while simultaneously providing time-gated elimination of any nonresonant background interference. Temperature probability densities and temperature/oxygen correlations were constructed from ensembles of several thousand single-laser-shot measurements from the fs/ps rotational CARS measurement volume positioned within 3 mm or less of the burning propellant surface. Preliminary results in canonical flames are presented using a hybrid fs/ps vibrational CARS system to demonstrate our progress towards acquiring vibrational CARS measurements for more accurate temperatures in the very high temperature propellant burns.

  12. Influence of X-ray scatter radiation on image quality in Digital Breast Tomosynthesis (DBT)

    International Nuclear Information System (INIS)

    Rodrigues, M.J.; Di Maria, S.; Baptista, M.; Belchior, A.; Afonso, J.; Venâncio, J.; Vaz, P.

    2017-01-01

    Digital breast tomosynthesis (DBT) is a quasi-three-dimensional imaging technique that was developed to solve the principal limitation of mammography, namely the overlapping tissue effect. This issue in standard mammography (SM) leads to two main problems: low sensitivity (difficulty to detect lesions) and low specificity (non-negligible percentage of false positives). Although DBT is now being introduced in clinical practice the features of this technique have not yet been fully and accurately assessed. Consequently, optimization studies in terms of choosing the most suitable parameters which maximize image quality according to the known limits of breast dosimetry are currently performing. In DBT, scatter radiation can lead to a loss of contrast and to an increase of image noise by reducing the signal-to-difference-noise ratio (SDNR) of a lesion. Moreover the use of an anti-scatter grid is a concern due to the low exposure of the photon flux available per projection. For this reason the main aim of this study was to analyze the influence of the scatter radiation on image quality and the dose delivered to the breast. In particular a detailed analysis of the scatter radiation on the optimal energy that maximizes the SDNR was performed for different monochromatic energies and voltages. To reach this objective the PenEasy Monte Carlo (MC) simulation tool imbedded in the general-purpose main program PENELOPE, was used. After a successful validation of the MC model with measurements, 2D projection images of primary, coherent and incoherent photons were obtained. For that, a homogeneous breast phantom (2, 4, 6, 8 cm) with 25%, 50% and 75% glandular compositions was used, including a 5 mm thick tumor. The images were generated for each monochromatic X-ray energies in the range from 16 keV to 32 keV. For each angular projection considered (25 angular projections covering an arc of 50°) the scatter-to-primary ratio (SPR), the mean glandular dose (MGD) and the signal

  13. Compton scatter correction in case of multiple crosstalks in SPECT imaging.

    Science.gov (United States)

    Sychra, J J; Blend, M J; Jobe, T H

    1996-02-01

    A strategy for Compton scatter correction in brain SPECT images was proposed recently. It assumes that two radioisotopes are used and that a significant portion of photons of one radioisotope (for example, Tc99m) spills over into the low energy acquisition window of the other radioisotope (for example, Tl201). We are extending this approach to cases of several radioisotopes with mutual, multiple and significant photon spillover. In the example above, one may correct not only the Tl201 image but also the Tc99m image corrupted by the Compton scatter originating from the small component of high energy Tl201 photons. The proposed extension is applicable to other anatomical domains (cardiac imaging).

  14. Simultaneous rotational and vibrational CARS generation through a multiple-frequency combination technique

    International Nuclear Information System (INIS)

    Alden, M.; Bengtsson, P.E.; Edner, H.

    1987-01-01

    One most promising laser technique for probing combustion processes is coherent anti-Stokes Raman scattering (CARS), which due to its coherent nature and signal strength is applied in several real-world applications. Until today almost all CARS experiments are based on probing the population of molecular vibrational energy levels. However, there are several reasons rotational CARS, i.e. probing of rotational energy levels, may provide a complement to or even a better choice than vibrational CARS. Recently an alternative way to produce rotational CARS spectra is proposed, which is based on a multiple-frequency combination technique. The energy-level diagram for this process is presented. Two dye laser beams at ω/sub r/, and one fix frequency laser beam at ω/sub g/ are employed. ω/sub r,1/ and ω/sub r,2/ are two frequencies of many possible pairs with a frequency difference matching a rotational transition in a molecule. The excitation induced by ω/sub r,1/ and ω/sub r,2/ is then scattered by the narrowband ω/sub g/ beam resulting in a CARS beam ω/sub g/ at ω/sub g/ + ω/sub r,1/ - ω/sub r,2/. An interesting feature with this technique is that it is possible to generate simultaneously a rotational and vibrational CARS spectrum by using a double-folded boxcars phase matching approach. The authors believe that the proposed technique for producing rotational and vibration CARS spectra could be of interest, e.g., when measuring in highly turbulent flows. In this case the rotational CARS spectra could use for temperature measurements in the cooler parts, whereas vibrational CARS are to be preferred when measuring in the hotter parts

  15. Imaging of Scattered Wavefields in Passive and Controlled-source Seismology

    KAUST Repository

    AlTheyab, Abdullah

    2015-12-01

    Seismic waves are used to study the Earth, exploit its hydrocarbon resources, and understand its hazards. Extracting information from seismic waves about the Earth’s subsurface, however, is becoming more challenging as our questions become more complex and our demands for higher resolution increase. This dissertation introduces two new methods that use scattered waves for improving the resolution of subsurface images: natural migration of passive seismic data and convergent full-waveform inversion. In the first part of this dissertation, I describe a method where the recorded seismic data are used to image subsurface heterogeneities like fault planes. This method, denoted as natural migration of backscattered surface waves, provides higher resolution images for near-surface faults that is complementary to surface-wave tomography images. Our proposed method differ from contemporary methods in that it does not (1) require a velocity model of the earth, (2) assumes weak scattering, or (3) have a high computational cost. This method is applied to ambient noise recorded by the US-Array to map regional faults across the American continent. Natural migration can be formulated as a least-squares inversion to furtherer enhance the resolution and the quality of the fault images. This inversion is applied to ambient noise recorded in Long Beach, California to reveal a matrix of shallow subsurface faults. The second part of this dissertation describes a convergent full waveform inversion method for controlled source data. A controlled source excites waves that scatter from subsurface reflectors. The scattered waves are recorded by a large array of geophones. These recorded waves can be inverted for a high-resolution image of the subsurface by FWI, which is typically convergent for transmitted arrivals but often does not converge for deep reflected events. I propose a preconditioning approach that extends the ability of FWI to image deep parts of the velocity model, which

  16. A model-based radiography restoration method based on simple scatter-degradation scheme for improving image visibility

    Science.gov (United States)

    Kim, K.; Kang, S.; Cho, H.; Kang, W.; Seo, C.; Park, C.; Lee, D.; Lim, H.; Lee, H.; Kim, G.; Park, S.; Park, J.; Kim, W.; Jeon, D.; Woo, T.; Oh, J.

    2018-02-01

    In conventional planar radiography, image visibility is often limited mainly due to the superimposition of the object structure under investigation and the artifacts caused by scattered x-rays and noise. Several methods, including computed tomography (CT) as a multiplanar imaging modality, air-gap and grid techniques for the reduction of scatters, phase-contrast imaging as another image-contrast modality, etc., have extensively been investigated in attempt to overcome these difficulties. However, those methods typically require higher x-ray doses or special equipment. In this work, as another approach, we propose a new model-based radiography restoration method based on simple scatter-degradation scheme where the intensity of scattered x-rays and the transmission function of a given object are estimated from a single x-ray image to restore the original degraded image. We implemented the proposed algorithm and performed an experiment to demonstrate its viability. Our results indicate that the degradation of image characteristics by scattered x-rays and noise was effectively recovered by using the proposed method, which improves the image visibility in radiography considerably.

  17. Multimodal Nonlinear Optical Imaging for Sensitive Detection of Multiple Pharmaceutical Solid-State Forms and Surface Transformations.

    Science.gov (United States)

    Novakovic, Dunja; Saarinen, Jukka; Rojalin, Tatu; Antikainen, Osmo; Fraser-Miller, Sara J; Laaksonen, Timo; Peltonen, Leena; Isomäki, Antti; Strachan, Clare J

    2017-11-07

    Two nonlinear imaging modalities, coherent anti-Stokes Raman scattering (CARS) and sum-frequency generation (SFG), were successfully combined for sensitive multimodal imaging of multiple solid-state forms and their changes on drug tablet surfaces. Two imaging approaches were used and compared: (i) hyperspectral CARS combined with principal component analysis (PCA) and SFG imaging and (ii) simultaneous narrowband CARS and SFG imaging. Three different solid-state forms of indomethacin-the crystalline gamma and alpha forms, as well as the amorphous form-were clearly distinguished using both approaches. Simultaneous narrowband CARS and SFG imaging was faster, but hyperspectral CARS and SFG imaging has the potential to be applied to a wider variety of more complex samples. These methodologies were further used to follow crystallization of indomethacin on tablet surfaces under two storage conditions: 30 °C/23% RH and 30 °C/75% RH. Imaging with (sub)micron resolution showed that the approach allowed detection of very early stage surface crystallization. The surfaces progressively crystallized to predominantly (but not exclusively) the gamma form at lower humidity and the alpha form at higher humidity. Overall, this study suggests that multimodal nonlinear imaging is a highly sensitive, solid-state (and chemically) specific, rapid, and versatile imaging technique for understanding and hence controlling (surface) solid-state forms and their complex changes in pharmaceuticals.

  18. Epp: A C++ EGSnrc user code for x-ray imaging and scattering simulations

    International Nuclear Information System (INIS)

    Lippuner, Jonas; Elbakri, Idris A.; Cui Congwu; Ingleby, Harry R.

    2011-01-01

    Purpose: Easy particle propagation (Epp) is a user code for the EGSnrc code package based on the C++ class library egspp. A main feature of egspp (and Epp) is the ability to use analytical objects to construct simulation geometries. The authors developed Epp to facilitate the simulation of x-ray imaging geometries, especially in the case of scatter studies. While direct use of egspp requires knowledge of C++, Epp requires no programming experience. Methods: Epp's features include calculation of dose deposited in a voxelized phantom and photon propagation to a user-defined imaging plane. Projection images of primary, single Rayleigh scattered, single Compton scattered, and multiple scattered photons may be generated. Epp input files can be nested, allowing for the construction of complex simulation geometries from more basic components. To demonstrate the imaging features of Epp, the authors simulate 38 keV x rays from a point source propagating through a water cylinder 12 cm in diameter, using both analytical and voxelized representations of the cylinder. The simulation generates projection images of primary and scattered photons at a user-defined imaging plane. The authors also simulate dose scoring in the voxelized version of the phantom in both Epp and DOSXYZnrc and examine the accuracy of Epp using the Kawrakow-Fippel test. Results: The results of the imaging simulations with Epp using voxelized and analytical descriptions of the water cylinder agree within 1%. The results of the Kawrakow-Fippel test suggest good agreement between Epp and DOSXYZnrc. Conclusions: Epp provides the user with useful features, including the ability to build complex geometries from simpler ones and the ability to generate images of scattered and primary photons. There is no inherent computational time saving arising from Epp, except for those arising from egspp's ability to use analytical representations of simulation geometries. Epp agrees with DOSXYZnrc in dose calculation, since

  19. Imaging in scattering media using correlation image sensors and sparse convolutional coding

    KAUST Repository

    Heide, Felix; Xiao, Lei; Kolb, Andreas; Hullin, Matthias B.; Heidrich, Wolfgang

    2014-01-01

    Correlation image sensors have recently become popular low-cost devices for time-of-flight, or range cameras. They usually operate under the assumption of a single light path contributing to each pixel. We show that a more thorough analysis of the sensor data from correlation sensors can be used can be used to analyze the light transport in much more complex environments, including applications for imaging through scattering and turbid media. The key of our method is a new convolutional sparse coding approach for recovering transient (light-in-flight) images from correlation image sensors. This approach is enabled by an analysis of sparsity in complex transient images, and the derivation of a new physically-motivated model for transient images with drastically improved sparsity.

  20. Imaging in scattering media using correlation image sensors and sparse convolutional coding

    KAUST Repository

    Heide, Felix

    2014-10-17

    Correlation image sensors have recently become popular low-cost devices for time-of-flight, or range cameras. They usually operate under the assumption of a single light path contributing to each pixel. We show that a more thorough analysis of the sensor data from correlation sensors can be used can be used to analyze the light transport in much more complex environments, including applications for imaging through scattering and turbid media. The key of our method is a new convolutional sparse coding approach for recovering transient (light-in-flight) images from correlation image sensors. This approach is enabled by an analysis of sparsity in complex transient images, and the derivation of a new physically-motivated model for transient images with drastically improved sparsity.

  1. Colleges Drive Research on Electric Cars

    Science.gov (United States)

    Basken, Paul

    2009-01-01

    As the General Motors Corporation shuts assembly plants and veers toward bankruptcy, the lonely remnants of one of its top technological achievements--the first modern mass-produced electric car--lie scattered across a few dozen American college campuses. GM produced and leased to customers more than 1,000 "EV1" automobiles beginning in 1996. In…

  2. An engineered CARS substrate with giant field enhancement in crisscross dimer nanostructure.

    Science.gov (United States)

    Zhang, Jia; Chen, Shu; Wang, Junqiao; Mu, Kaijun; Fan, Chunzhen; Liang, Erjun; Ding, Pei

    2018-01-15

    We theoretically investigate the optical properties of a nanostructure consisting of the two identical and symmetrically arranged crisscrosses. A plasmonic Fano resonance is induced by a strong interplay between bright mode and dark modes, where the bright mode is due to electric dipole resonance while dark modes originate from the magnetic dipole induced by LC resonances. In this article, we find that the electric field "hotspots" corresponding to three different wavelengths can be positioned at the same spatial position, and its spectral tunability is achieved by changing geometric parameters. The crisscrosses system can be designed as a plasmonic substrate for enhancing Coherent Anti-Stokes Raman Scattering (CARS) signal. This discovery provides a new method to achieve single molecule detection. At the same time, it also has many important applications for multi-photon imaging and other nonlinear optical processes, such as four-wave mixing and stimulated Raman scattering.

  3. Are all types of expertise created equal? Car experts use different spatial frequency scales for subordinate categorization of cars and faces.

    Science.gov (United States)

    Harel, Assaf; Bentin, Shlomo

    2013-01-01

    A much-debated question in object recognition is whether expertise for faces and expertise for non-face objects utilize common perceptual information. We investigated this issue by assessing the diagnostic information required for different types of expertise. Specifically, we asked whether face categorization and expert car categorization at the subordinate level relies on the same spatial frequency (SF) scales. Fifteen car experts and fifteen novices performed a category verification task with spatially filtered images of faces, cars, and airplanes. Images were categorized based on their basic (e.g. "car") and subordinate level (e.g. "Japanese car") identity. The effect of expertise was not evident when objects were categorized at the basic level. However, when the car experts categorized faces and cars at the subordinate level, the two types of expertise required different kinds of SF information. Subordinate categorization of faces relied on low SFs more than on high SFs, whereas subordinate expert car categorization relied on high SFs more than on low SFs. These findings suggest that expertise in the recognition of objects and faces do not utilize the same type of information. Rather, different types of expertise require different types of diagnostic visual information.

  4. Beamstop-based low-background ptychography to image weakly scattering objects

    DEFF Research Database (Denmark)

    Reinhardt, Juliane; Hoppe, Robert; Hofmann, Georg

    2017-01-01

    In recent years, X-ray ptychography has been established as a valuable tool for high-resolution imaging. Nevertheless, the spatial resolution and sensitivity in coherent diffraction imaging are limited by the signal that is detected over noise and over background scattering. Especially, coherent ...

  5. Proton dose calculation on scatter-corrected CBCT image: Feasibility study for adaptive proton therapy

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yang-Kyun, E-mail: ykpark@mgh.harvard.edu; Sharp, Gregory C.; Phillips, Justin; Winey, Brian A. [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 (United States)

    2015-08-15

    Purpose: To demonstrate the feasibility of proton dose calculation on scatter-corrected cone-beam computed tomographic (CBCT) images for the purpose of adaptive proton therapy. Methods: CBCT projection images were acquired from anthropomorphic phantoms and a prostate patient using an on-board imaging system of an Elekta infinity linear accelerator. Two previously introduced techniques were used to correct the scattered x-rays in the raw projection images: uniform scatter correction (CBCT{sub us}) and a priori CT-based scatter correction (CBCT{sub ap}). CBCT images were reconstructed using a standard FDK algorithm and GPU-based reconstruction toolkit. Soft tissue ROI-based HU shifting was used to improve HU accuracy of the uncorrected CBCT images and CBCT{sub us}, while no HU change was applied to the CBCT{sub ap}. The degree of equivalence of the corrected CBCT images with respect to the reference CT image (CT{sub ref}) was evaluated by using angular profiles of water equivalent path length (WEPL) and passively scattered proton treatment plans. The CBCT{sub ap} was further evaluated in more realistic scenarios such as rectal filling and weight loss to assess the effect of mismatched prior information on the corrected images. Results: The uncorrected CBCT and CBCT{sub us} images demonstrated substantial WEPL discrepancies (7.3 ± 5.3 mm and 11.1 ± 6.6 mm, respectively) with respect to the CT{sub ref}, while the CBCT{sub ap} images showed substantially reduced WEPL errors (2.4 ± 2.0 mm). Similarly, the CBCT{sub ap}-based treatment plans demonstrated a high pass rate (96.0% ± 2.5% in 2 mm/2% criteria) in a 3D gamma analysis. Conclusions: A priori CT-based scatter correction technique was shown to be promising for adaptive proton therapy, as it achieved equivalent proton dose distributions and water equivalent path lengths compared to those of a reference CT in a selection of anthropomorphic phantoms.

  6. Epi-detected quadruple-modal nonlinear optical microscopy for label-free imaging of the tooth

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zi; Zheng, Wei; Huang, Zhiwei, E-mail: biehzw@nus.edu.sg [Optical Bioimaging Laboratory, Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576 (Singapore); Stephen Hsu, Chin-Ying [Department of Dentistry, Faculty of Dentistry, National University of Singapore and National University Health System, Singapore 119083 (Singapore)

    2015-01-19

    We present an epi-detected quadruple-modal nonlinear optical microscopic imaging technique (i.e., coherent anti-Stokes Raman scattering (CARS), second-harmonic generation (SHG), third-harmonic generation (THG), and two-photon excited fluorescence (TPEF)) based on a picosecond (ps) laser-pumped optical parametric oscillator system for label-free imaging of the tooth. We demonstrate that high contrast ps-CARS images covering both the fingerprint (500–1800 cm{sup −1}) and high-wavenumber (2500–3800 cm{sup −1}) regions can be acquired to uncover the distributions of mineral and organic biomaterials in the tooth, while high quality TPEF, SHG, and THG images of the tooth can also be acquired under ps laser excitation without damaging the samples. The quadruple-modal nonlinear microscopic images (CARS/SHG/THG/TPEF) acquired provide better understanding of morphological structures and biochemical/biomolecular distributions in the dentin, enamel, and the dentin-enamel junction of the tooth without labeling, facilitating optical diagnosis and characterization of the tooth in dentistry.

  7. Multiplexing and de-multiplexing with scattering media for large field of view and multispectral imaging

    Science.gov (United States)

    Sahoo, Sujit Kumar; Tang, Dongliang; Dang, Cuong

    2018-02-01

    Large field of view multispectral imaging through scattering medium is a fundamental quest in optics community. It has gained special attention from researchers in recent years for its wide range of potential applications. However, the main bottlenecks of the current imaging systems are the requirements on specific illumination, poor image quality and limited field of view. In this work, we demonstrated a single-shot high-resolution colour-imaging through scattering media using a monochromatic camera. This novel imaging technique is enabled by the spatial, spectral decorrelation property and the optical memory effect of the scattering media. Moreover the use of deconvolution image processing further annihilate above-mentioned drawbacks arise due iterative refocusing, scanning or phase retrieval procedures.

  8. Optimizing Nanoscale Quantitative Optical Imaging of Subfield Scattering Targets

    Science.gov (United States)

    Henn, Mark-Alexander; Barnes, Bryan M.; Zhou, Hui; Sohn, Martin; Silver, Richard M.

    2016-01-01

    The full 3-D scattered field above finite sets of features has been shown to contain a continuum of spatial frequency information, and with novel optical microscopy techniques and electromagnetic modeling, deep-subwavelength geometrical parameters can be determined. Similarly, by using simulations, scattering geometries and experimental conditions can be established to tailor scattered fields that yield lower parametric uncertainties while decreasing the number of measurements and the area of such finite sets of features. Such optimized conditions are reported through quantitative optical imaging in 193 nm scatterfield microscopy using feature sets up to four times smaller in area than state-of-the-art critical dimension targets. PMID:27805660

  9. A novel scatter separation method for multi-energy x-ray imaging

    Science.gov (United States)

    Sossin, A.; Rebuffel, V.; Tabary, J.; Létang, J. M.; Freud, N.; Verger, L.

    2016-06-01

    X-ray imaging coupled with recently emerged energy-resolved photon counting detectors provides the ability to differentiate material components and to estimate their respective thicknesses. However, such techniques require highly accurate images. The presence of scattered radiation leads to a loss of spatial contrast and, more importantly, a bias in radiographic material imaging and artefacts in computed tomography (CT). The aim of the present study was to introduce and evaluate a partial attenuation spectral scatter separation approach (PASSSA) adapted for multi-energy imaging. This evaluation was carried out with the aid of numerical simulations provided by an internal simulation tool, Sindbad-SFFD. A simplified numerical thorax phantom placed in a CT geometry was used. The attenuation images and CT slices obtained from corrected data showed a remarkable increase in local contrast and internal structure detectability when compared to uncorrected images. Scatter induced bias was also substantially decreased. In terms of quantitative performance, the developed approach proved to be quite accurate as well. The average normalized root-mean-square error between the uncorrected projections and the reference primary projections was around 23%. The application of PASSSA reduced this error to around 5%. Finally, in terms of voxel value accuracy, an increase by a factor  >10 was observed for most inspected volumes-of-interest, when comparing the corrected and uncorrected total volumes.

  10. Imaging arterial cells, atherosclerosis, and restenosis by multimodal nonlinear optical microscopy

    Science.gov (United States)

    Wang, Han-Wei; Simianu, Vlad; Locker, Matthew J.; Sturek, Michael; Cheng, Ji-Xin

    2008-02-01

    By integrating sum-frequency generation (SFG), and two-photon excitation fluorescence (TPEF) on a coherent anti-Stokes Raman scattering (CARS) microscope platform, multimodal nonlinear optical (NLO) imaging of arteries and atherosclerotic lesions was demonstrated. CARS signals arising from CH II-rich membranes allowed visualization of endothelial cells and smooth muscle cells in a carotid artery. Additionally, CARS microscopy allowed vibrational imaging of elastin and collagen fibrils which are rich in CH II bonds in their cross-linking residues. The extracellular matrix organization was further confirmed by TPEF signals arising from elastin's autofluorescence and SFG signals arising from collagen fibrils' non-centrosymmetric structure. The system is capable of identifying different atherosclerotic lesion stages with sub-cellular resolution. The stages of atherosclerosis, such as macrophage infiltration, lipid-laden foam cell accumulation, extracellular lipid distribution, fibrous tissue deposition, plaque establishment, and formation of other complicated lesions could be viewed by our multimodal CARS microscope. Collagen percentages in the region adjacent to coronary artery stents were resolved. High correlation between NLO and histology imaging evidenced the validity of the NLO imaging. The capability of imaging significant components of an arterial wall and distinctive stages of atherosclerosis in a label-free manner suggests the potential application of multimodal nonlinear optical microscopy to monitor the onset and progression of arterial diseases.

  11. Multiphoton Microscopy for Ophthalmic Imaging

    Directory of Open Access Journals (Sweden)

    Emily A. Gibson

    2011-01-01

    Full Text Available We review multiphoton microscopy (MPM including two-photon autofluorescence (2PAF, second harmonic generation (SHG, third harmonic generation (THG, fluorescence lifetime (FLIM, and coherent anti-Stokes Raman Scattering (CARS with relevance to clinical applications in ophthalmology. The different imaging modalities are discussed highlighting the particular strength that each has for functional tissue imaging. MPM is compared with current clinical ophthalmological imaging techniques such as reflectance confocal microscopy, optical coherence tomography, and fluorescence imaging. In addition, we discuss the future prospects for MPM in disease detection and clinical monitoring of disease progression, understanding fundamental disease mechanisms, and real-time monitoring of drug delivery.

  12. Pseudo colour visualization of fused multispectral laser scattering images for optical diagnosis of rheumatoid arthritis

    Science.gov (United States)

    Zabarylo, U.; Minet, O.

    2010-01-01

    Investigations on the application of optical procedures for the diagnosis of rheumatism using scattered light images are only at the beginning both in terms of new image-processing methods and subsequent clinical application. For semi-automatic diagnosis using laser light, the multispectral scattered light images are registered and overlapped to pseudo-coloured images, which depict diagnostically essential contents by visually highlighting pathological changes.

  13. Peran Promotional Mix dalam Membentuk Brand Image Produk City Car di Kota Pekanbaru (Studi Kasus pada Honda Brio)

    OpenAIRE

    Musfar, Tengku Firli; Nursanti, Aida; Karlina, Monina Selfi

    2014-01-01

    The purpose of this research is to examine the role of promotional mix variables which consist of advertising, personal selling, sales promotion, public relations, and direct marketing towards brand image of Honda Brio car in Pekanbaru. Sample€™s selection that used with the method of non-probability sampling. Selected sample is consumer who uses Honda Brio car, specifically who lives in Pekanbaru city, ever been involved in Honda Brio€™s promotional mix activity, and the consumer that consid...

  14. Deterministic simulation of first-order scattering in virtual X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Freud, N. E-mail: nicolas.freud@insa-lyon.fr; Duvauchelle, P.; Pistrui-Maximean, S.A.; Letang, J.-M.; Babot, D

    2004-07-01

    A deterministic algorithm is proposed to compute the contribution of first-order Compton- and Rayleigh-scattered radiation in X-ray imaging. This algorithm has been implemented in a simulation code named virtual X-ray imaging. The physical models chosen to account for photon scattering are the well-known form factor and incoherent scattering function approximations, which are recalled in this paper and whose limits of validity are briefly discussed. The proposed algorithm, based on a voxel discretization of the inspected object, is presented in detail, as well as its results in simple configurations, which are shown to converge when the sampling steps are chosen sufficiently small. Simple criteria for choosing correct sampling steps (voxel and pixel size) are established. The order of magnitude of the computation time necessary to simulate first-order scattering images amounts to hours with a PC architecture and can even be decreased down to minutes, if only a profile is computed (along a linear detector). Finally, the results obtained with the proposed algorithm are compared to the ones given by the Monte Carlo code Geant4 and found to be in excellent accordance, which constitutes a validation of our algorithm. The advantages and drawbacks of the proposed deterministic method versus the Monte Carlo method are briefly discussed.

  15. Car Tourism in Xinjiang: The Mediation Effect of Perceived Value and Tourist Satisfaction on the Relationship between Destination Image and Loyalty

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2016-12-01

    Full Text Available This study aims to test a model linking destination image, perceived value, tourist satisfaction, and tourist loyalty. Based on a sample of 300 tourists travelling by car from the World Natural Heritage Site of Tianchi, China, a new model of destination image was explored and data were analysed using partial least squares structural equation modelling (PLS-SEM. The results show that perceived value and satisfaction are direct antecedents of destination loyalty. Above all, perceived value and tourist satisfaction mediate the relationship between destination image and loyalty. Finally, this study discusses the theoretical and management implications of the findings in order to boost the tourism industry in the context of car trips.

  16. Perceptions and attitudes of car owners on innovative automobiles

    International Nuclear Information System (INIS)

    Pol, M.; Brunsting, S.

    2012-01-01

    To abate the detrimental effects of transport a transition is foreseen from the conventional fossil cars to energy-sustainable cars. A successful transition requires a major behavioral change of car consumers who need to make choices about new options for transport with uncertain costs and benefits compared to their current car. This paper examines consumers' perceptions about innovative cars and considerations for buying or not buying innovative cars (hybrid, electric, plug-in electric, hydrogen, flexifuel). In this study an on-line questionnaire on attitudes, interests and social norms regarding innovative cars was conducted among 339 Dutch respondents who recently bought a new car. To obtain in-depth understanding of the answers, a follow-up study was conducted consisting of two focus groups with a sample of survey participants. These focus groups respectively concentrated on respondents' perceptions of innovative cars, and on the personality traits of the 'typical' innovative car driver. The results of the survey shows that the attitude towards innovative cars are strongly influenced by affective aspects (such as comfort and pleasant) and to a (much) smaller extent by environmental considerations. The results of the focus groups confirm these findings. According to the participants the price of the car is decisive whereby environmental concerns play no role. The design and image of the car are important. In addition, it appears that the familiarity with (and thus the knowledge about) the innovative cars is still very limited (with the exception of the hybrid car). This point of view stresses the importance of the way in which innovative cars are positioned thereby affecting the image (social norms) people will have regarding these cars. [nl

  17. Scattered image artifacts from cone beam computed tomography and its clinical potential in bone mineral density estimation.

    Science.gov (United States)

    Ko, Hoon; Jeong, Kwanmoon; Lee, Chang-Hoon; Jun, Hong Young; Jeong, Changwon; Lee, Myeung Su; Nam, Yunyoung; Yoon, Kwon-Ha; Lee, Jinseok

    2016-01-01

    Image artifacts affect the quality of medical images and may obscure anatomic structure and pathology. Numerous methods for suppression and correction of scattered image artifacts have been suggested in the past three decades. In this paper, we assessed the feasibility of use of information on scattered artifacts for estimation of bone mineral density (BMD) without dual-energy X-ray absorptiometry (DXA) or quantitative computed tomographic imaging (QCT). To investigate the relationship between scattered image artifacts and BMD, we first used a forearm phantom and cone-beam computed tomography. In the phantom, we considered two regions of interest-bone-equivalent solid material containing 50 mg HA per cm(-3) and water-to represent low- and high-density trabecular bone, respectively. We compared the scattered image artifacts in the high-density material with those in the low-density material. The technique was then applied to osteoporosis patients and healthy subjects to assess its feasibility for BMD estimation. The high-density material produced a greater number of scattered image artifacts than the low-density material. Moreover, the radius and ulna of healthy subjects produced a greater number of scattered image artifacts than those from osteoporosis patients. Although other parameters, such as bone thickness and X-ray incidence, should be considered, our technique facilitated BMD estimation directly without DXA or QCT. We believe that BMD estimation based on assessment of scattered image artifacts may benefit the prevention, early treatment and management of osteoporosis.

  18. Theoretical study of the influence of small angle scattering on diffraction enhanced imaging

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Peiping [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China)], E-mail: zhupp@ihep.ac.cn; Huang Wanxia; Yuan, Qingxi [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China); Wang Junyue; Shu Hang [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China); Graduate School of the Chinese Academy of Sciences, 100864 Beijing (China); Chen Bo [Department of Physics, University of Science and Technology of China, Hefei 230026 (China); Wu Ziyu [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China)], E-mail: wuzy@ihep.ac.cn

    2007-07-15

    Small angle scattering plays an important role in diffraction enhanced imaging (DEI). The DEI equation proposed by Chapman is accepted and widely used by many applications in medical, biological and material researches. However, in this framework the contribution of the small angle scattering determined by the crystal analyzer is neglected and the extinction contrast caused by the rejection of the small angle scattering by the analyzer is not explicitly expressed. In this contribution we introduce two additional terms in the DEI equation that describe the additional background introduced by the small angle scattering collected by the analyzer crystal and the extinction contrast associated to the rejection of the small angle scattering by the analyzer crystal, respectively. Four kinds of images of the DEI method were considered by using these revised equations and results were presented and discussed.

  19. Theoretical study of the influence of small angle scattering on diffraction enhanced imaging

    International Nuclear Information System (INIS)

    Zhu Peiping; Huang Wanxia; Yuan, Qingxi; Wang Junyue; Shu Hang; Chen Bo; Wu Ziyu

    2007-01-01

    Small angle scattering plays an important role in diffraction enhanced imaging (DEI). The DEI equation proposed by Chapman is accepted and widely used by many applications in medical, biological and material researches. However, in this framework the contribution of the small angle scattering determined by the crystal analyzer is neglected and the extinction contrast caused by the rejection of the small angle scattering by the analyzer is not explicitly expressed. In this contribution we introduce two additional terms in the DEI equation that describe the additional background introduced by the small angle scattering collected by the analyzer crystal and the extinction contrast associated to the rejection of the small angle scattering by the analyzer crystal, respectively. Four kinds of images of the DEI method were considered by using these revised equations and results were presented and discussed

  20. A New Method to Extract CSP Gather of Topography for Scattered Wave Imaging

    Directory of Open Access Journals (Sweden)

    Zhao Pan

    2017-01-01

    Full Text Available The seismic method is one of the major geophysical tools to study the structure of the earth. The extraction of the common scatter point (CSP gather is a critical step to accomplish the seismic imaging with a scattered wave. Conventionally, the CSP gather is obtained with the assumption that the earth surface is horizontal. However, errors are introduced to the final imaging result if the seismic traces obtained at the rugged surface are processed using the conventional method. Hence, we propose the method of the extraction of the CSP gather for the seismic data collected at the rugged surface. The proposed method is validated by two numerical examples and expected to reduce the effect of the topography on the scattered wave imaging.

  1. Imaging chemical interfaces perpendicular to the optical axis with focus-engineered coherent anti-Stokes Raman scattering microscopy

    International Nuclear Information System (INIS)

    Krishnamachari, Vishnu Vardhan; Potma, Eric Olaf

    2007-01-01

    In vibrational microscopy, it is often necessary to distinguish between chemically distinct microscopic objects and to highlight the 'chemical interfaces' present in the sample under investigation. Here we apply the concept of focus engineering to enhance the sensitivity of coherent anti-Stokes Raman scattering (CARS) microscopy to these interfaces. Based on detailed numerical simulations, we show that using a focused Stokes field with a sharp phase jump along the longitudinal direction leads to the suppression of the signal from bulk regions and improves the signal contrast from vibrational resonant interfaces oriented perpendicular to the axis of beam propagation. We also demonstrate that the CARS spectral response from chemical interfaces exhibits a clean, Raman-like band-shape with such a phase-shaped excitation. This phenomenon of interface highlighting is a consequence of the coherent nature of CARS signal generation and it involves a complex interplay of the spectral phase of the sample and the spatial phase of the excitation fields

  2. Effect of scatter media on small gamma camera imaging characteristics

    International Nuclear Information System (INIS)

    Ser, H. K.; Choi, Y.; Yim, K. C.

    2001-01-01

    Effect of scatter media materials and thickness, located between radioactivity and small gamma camera, on imaging characteristics was evaluated. The small gamma camera developed for breast imaging was consisted of collimator, NaI(TI) crystal (60x60x6 mm 3 ). PSPMT (position sensitive photomultiplier tube), NIMs and personal computer. Monte Carlo simulation was performed to evaluate the system sensitivity with different scatter media thickness (0∼8 cm) and materials (air and acrylie) with parallel hole collimator and diverging collimator. The sensitivity and spatial resolution was measured using the small gamma camera with the same condition applied to the simulation. Counts was decreased by 10% (air) and 54% (acrylic) with the parallel hole collimator and by 35% (air) and 63% (acrylic) with the diverging collimator. Spatial resolution was decreased as increasing the thickness of scatter media. This study substantiate the importance of a gamma camera positioning and the minimization of the distance between detector and target lesion in the clinical application of a gamma camera

  3. Far-field superresolution by imaging of resonance scattering

    KAUST Repository

    Schuster, Gerard T.

    2014-10-31

    We show that superresolution imaging in the far-field region of the sources and receivers is theoretically and practically possible if migration of resonant multiples is employed. A resonant multiple is one that bounces back and forth between two scattering points; it can also be the multiple between two smoothly varying interfaces as long as the reflection wave paths partially overlap and reflect from the same Fresnel zone. For a source with frequency f, compared to a one-way trip, N round trips in propagating between two scatterers increase the effective frequency by 2N × f and decrease the effective wavelength by λ/(2N). Thus, multiples can, in principle, be used as high-frequency probes to estimate detailed properties of layers. Tests with both synthetic and field data validate this claim. Improved resolution by multiple imaging is not only feasible for crustal reflections, but might be applicable to mantle and core reverberations recorded by earthquake seismologists.

  4. CARS 2009. Computer assisted radiology and surgery. Proceedings

    International Nuclear Information System (INIS)

    Anon.

    2009-01-01

    The CARS 2009 proceedings include contributions and poster sessions concerning different conferences and workshops: computer assisted radiology, 23rd international congress and exhibition, CARS clinical day, 13th annual conference of the international society for computer aided surgery, 10th CARS/SPIE/EuroPACS joint workshop on surgical PACS and the digital operating, 11th international workshop on computer-aided diagnosis, 15th computed maxillofacial imaging congress, CARS - computer assisted radiology and surgery, 1st EPMA/CARS workshop on personalized medicine and ICT, JICARS - Japanese institutes of CARS, 1st EuroNotes/CTAC/CARS workshop on NOTES: an interdisciplinary challenge, 13th annual conference for computer aided surgery, 27th international EuroPACS meeting.

  5. FIRST SCATTERED-LIGHT IMAGE OF THE DEBRIS DISK AROUND HD 131835 WITH THE GEMINI PLANET IMAGER

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Li-Wei; Arriaga, Pauline; Fitzgerald, Michael P.; Esposito, Thomas M. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Duchêne, Gaspard; Kalas, Paul G.; De Rosa, Robert J.; Graham, James R. [Astronomy Department, University of California, Berkeley CA 94720-3411 (United States); Maire, Jérôme; Chilcote, Jeffrey K. [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); Marois, Christian [National Research Council of Canada Herzberg, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Millar-Blanchaer, Maxwell A. [Department of Astronomy and Astrophysics, University of Toronto, Toronto ON M5S 3H4 (Canada); Bruzzone, Sebastian [Department of Physics and Astronomy, Centre for Planetary and Space Exploration, University of Western Ontario, London, ON N6A 3K7 (Canada); Rajan, Abhijith [School of Earth and Space Exploration, Arizona State University, P.O. Box 871404, Tempe, AZ 85287 (United States); Pueyo, Laurent; Wolff, Schuyler G.; Chen, Christine H. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Konopacky, Quinn [Center for Astrophysics and Space Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (United States); Ammons, S. Mark [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94040 (United States); Draper, Zachary H. [University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2 (Canada); and others

    2015-12-10

    We present the first scattered-light image of the debris disk around HD 131835 in the H band using the Gemini Planet Imager. HD 131835 is a ∼15 Myr old A2IV star at a distance of ∼120 pc in the Sco-Cen OB association. We detect the disk only in polarized light and place an upper limit on the peak total intensity. No point sources resembling exoplanets were identified. Compared to its mid-infrared thermal emission,  in scattered light the disk shows similar orientation but different morphology. The scattered-light disk extends from ∼75 to ∼210 AU in the disk plane with roughly flat surface density. Our Monte Carlo radiative transfer model can describe the observations with a model disk composed of a mixture of silicates and amorphous carbon. In addition to the obvious brightness asymmetry due to stronger forward scattering, we discover a weak brightness asymmetry along the major axis, with the northeast side being 1.3 times brighter than the southwest side at a 3σ level.

  6. Photon migration in non-scattering tissue and the effects on image reconstruction

    Science.gov (United States)

    Dehghani, H.; Delpy, D. T.; Arridge, S. R.

    1999-12-01

    Photon propagation in tissue can be calculated using the relationship described by the transport equation. For scattering tissue this relationship is often simplified and expressed in terms of the diffusion approximation. This approximation, however, is not valid for non-scattering regions, for example cerebrospinal fluid (CSF) below the skull. This study looks at the effects of a thin clear layer in a simple model representing the head and examines its effect on image reconstruction. Specifically, boundary photon intensities (total number of photons exiting at a point on the boundary due to a source input at another point on the boundary) are calculated using the transport equation and compared with data calculated using the diffusion approximation for both non-scattering and scattering regions. The effect of non-scattering regions on the calculated boundary photon intensities is presented together with the advantages and restrictions of the transport code used. Reconstructed images are then presented where the forward problem is solved using the transport equation for a simple two-dimensional system containing a non-scattering ring and the inverse problem is solved using the diffusion approximation to the transport equation.

  7. Photon migration in non-scattering tissue and the effects on image reconstruction

    International Nuclear Information System (INIS)

    Dehghani, H.; Delpy, D.T.; Arridge, S.R.

    1999-01-01

    Photon propagation in tissue can be calculated using the relationship described by the transport equation. For scattering tissue this relationship is often simplified and expressed in terms of the diffusion approximation. This approximation, however, is not valid for non-scattering regions, for example cerebrospinal fluid (CSF) below the skull. This study looks at the effects of a thin clear layer in a simple model representing the head and examines its effect on image reconstruction. Specifically, boundary photon intensities (total number of photons exiting at a point on the boundary due to a source input at another point on the boundary) are calculated using the transport equation and compared with data calculated using the diffusion approximation for both non-scattering and scattering regions. The effect of non-scattering regions on the calculated boundary photon intensities is presented together with the advantages and restrictions of the transport code used. Reconstructed images are then presented where the forward problem is solved using the transport equation for a simple two-dimensional system containing a non-scattering ring and the inverse problem is solved using the diffusion approximation to the transport equation. (author)

  8. Robust inverse scattering full waveform seismic tomography for imaging complex structure

    International Nuclear Information System (INIS)

    Nurhandoko, Bagus Endar B.; Sukmana, Indriani; Wibowo, Satryo; Deny, Agus; Kurniadi, Rizal; Widowati, Sri; Mubarok, Syahrul; Susilowati; Kaswandhi

    2012-01-01

    Seismic tomography becomes important tool recently for imaging complex subsurface. It is well known that imaging complex rich fault zone is difficult. In this paper, The application of time domain inverse scattering wave tomography to image the complex fault zone would be shown on this paper, especially an efficient time domain inverse scattering tomography and their run in cluster parallel computer which has been developed. This algorithm is purely based on scattering theory through solving Lippmann Schwienger integral by using Born's approximation. In this paper, it is shown the robustness of this algorithm especially in avoiding the inversion trapped in local minimum to reach global minimum. A large data are solved by windowing and blocking technique of memory as well as computation. Parameter of windowing computation is based on shot gather's aperture. This windowing technique reduces memory as well as computation significantly. This parallel algorithm is done by means cluster system of 120 processors from 20 nodes of AMD Phenom II. Benchmarking of this algorithm is done by means Marmoussi model which can be representative of complex rich fault area. It is shown that the proposed method can image clearly the rich fault and complex zone in Marmoussi model even though the initial model is quite far from the true model. Therefore, this method can be as one of solution to image the very complex mode.

  9. Robust inverse scattering full waveform seismic tomography for imaging complex structure

    Energy Technology Data Exchange (ETDEWEB)

    Nurhandoko, Bagus Endar B.; Sukmana, Indriani; Wibowo, Satryo; Deny, Agus; Kurniadi, Rizal; Widowati, Sri; Mubarok, Syahrul; Susilowati; Kaswandhi [Wave Inversion and Subsurface Fluid Imaging Research (WISFIR) Lab., Complex System Research Division, Physics Department, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung. and Rock Fluid Imaging Lab., Rock Physics and Cluster C (Indonesia); Rock Fluid Imaging Lab., Rock Physics and Cluster Computing Center, Bandung (Indonesia); Physics Department of Institut Teknologi Bandung (Indonesia); Rock Fluid Imaging Lab., Rock Physics and Cluster Computing Center, Bandung, Indonesia and Institut Teknologi Telkom, Bandung (Indonesia); Rock Fluid Imaging Lab., Rock Physics and Cluster Computing Center, Bandung (Indonesia)

    2012-06-20

    Seismic tomography becomes important tool recently for imaging complex subsurface. It is well known that imaging complex rich fault zone is difficult. In this paper, The application of time domain inverse scattering wave tomography to image the complex fault zone would be shown on this paper, especially an efficient time domain inverse scattering tomography and their run in cluster parallel computer which has been developed. This algorithm is purely based on scattering theory through solving Lippmann Schwienger integral by using Born's approximation. In this paper, it is shown the robustness of this algorithm especially in avoiding the inversion trapped in local minimum to reach global minimum. A large data are solved by windowing and blocking technique of memory as well as computation. Parameter of windowing computation is based on shot gather's aperture. This windowing technique reduces memory as well as computation significantly. This parallel algorithm is done by means cluster system of 120 processors from 20 nodes of AMD Phenom II. Benchmarking of this algorithm is done by means Marmoussi model which can be representative of complex rich fault area. It is shown that the proposed method can image clearly the rich fault and complex zone in Marmoussi model even though the initial model is quite far from the true model. Therefore, this method can be as one of solution to image the very complex mode.

  10. IMPLEMENTATION OF IMAGE PROCESSING IN REAL TIME CAR PARKING SYSTEM

    OpenAIRE

    SAYANTI BANERJEE,; PALLAVI CHOUDEKAR,; M.K.MUJU

    2011-01-01

    Car parking lots are an important object class in many traffic and civilian applications. With the problems of increasing urban trafficcongestion and the ever increasing shortage of space, these car parking lots are needed to be well equipped with automatic parkingInformation and Guidance systems. Goals of intelligent parking lot management include counting the number of parked cars, and identifyingthe available location. This work proposes a new system for providing parking information and g...

  11. The Development of a Parameterized Scatter Removal Algorithm for Nuclear Materials Identification System Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Grogan, Brandon Robert [Univ. of Tennessee, Knoxville, TN (United States)

    2010-03-01

    This dissertation presents a novel method for removing scattering effects from Nuclear Materials Identification System (NMIS) imaging. The NMIS uses fast neutron radiography to generate images of the internal structure of objects non-intrusively. If the correct attenuation through the object is measured, the positions and macroscopic cross-sections of features inside the object can be determined. The cross sections can then be used to identify the materials and a 3D map of the interior of the object can be reconstructed. Unfortunately, the measured attenuation values are always too low because scattered neutrons contribute to the unattenuated neutron signal. Previous efforts to remove the scatter from NMIS imaging have focused on minimizing the fraction of scattered neutrons which are misidentified as directly transmitted by electronically collimating and time tagging the source neutrons. The parameterized scatter removal algorithm (PSRA) approaches the problem from an entirely new direction by using Monte Carlo simulations to estimate the point scatter functions (PScFs) produced by neutrons scattering in the object. PScFs have been used to remove scattering successfully in other applications, but only with simple 2D detector models. This work represents the first time PScFs have ever been applied to an imaging detector geometry as complicated as the NMIS. By fitting the PScFs using a Gaussian function, they can be parameterized and the proper scatter for a given problem can be removed without the need for rerunning the simulations each time. In order to model the PScFs, an entirely new method for simulating NMIS measurements was developed for this work. The development of the new models and the codes required to simulate them are presented in detail. The PSRA was used on several simulated and experimental measurements and chi-squared goodness of fit tests were used to compare the corrected values to the ideal values that would be expected with no scattering. Using

  12. THE DEVELOPMENT OF A PARAMETERIZED SCATTER REMOVAL ALGORITHM FOR NUCLEAR MATERIALS IDENTIFICATION SYSTEM IMAGING

    Energy Technology Data Exchange (ETDEWEB)

    Grogan, Brandon R [ORNL

    2010-05-01

    This report presents a novel method for removing scattering effects from Nuclear Materials Identification System (NMIS) imaging. The NMIS uses fast neutron radiography to generate images of the internal structure of objects nonintrusively. If the correct attenuation through the object is measured, the positions and macroscopic cross sections of features inside the object can be determined. The cross sections can then be used to identify the materials, and a 3D map of the interior of the object can be reconstructed. Unfortunately, the measured attenuation values are always too low because scattered neutrons contribute to the unattenuated neutron signal. Previous efforts to remove the scatter from NMIS imaging have focused on minimizing the fraction of scattered neutrons that are misidentified as directly transmitted by electronically collimating and time tagging the source neutrons. The parameterized scatter removal algorithm (PSRA) approaches the problem from an entirely new direction by using Monte Carlo simulations to estimate the point scatter functions (PScFs) produced by neutrons scattering in the object. PScFs have been used to remove scattering successfully in other applications, but only with simple 2D detector models. This work represents the first time PScFs have ever been applied to an imaging detector geometry as complicated as the NMIS. By fitting the PScFs using a Gaussian function, they can be parameterized, and the proper scatter for a given problem can be removed without the need for rerunning the simulations each time. In order to model the PScFs, an entirely new method for simulating NMIS measurements was developed for this work. The development of the new models and the codes required to simulate them are presented in detail. The PSRA was used on several simulated and experimental measurements, and chi-squared goodness of fit tests were used to compare the corrected values to the ideal values that would be expected with no scattering. Using the

  13. RECOGNITION DESIGN OF LICENSE PLATE AND CAR TYPE USING TESSERACT OCR AND EmguCV

    Directory of Open Access Journals (Sweden)

    Antonius Herusutopo

    2012-10-01

    Full Text Available The goal of the research is to design and implement software that can recognize license plates and car types from images. The method used for the research is soft computing using library of EmguCV. There are four phases in creating the software, i.e., input image process, pre-processing, training processing and recognition. Firstly, user enters the car image. Then, the program reads and does pre-processing the image from bitmap form into vector. The next process is training process, which is learning phase in order the system to be able recognize an object (in this case license plate and car type, and in the end is the recognition process itself. The result is data about the car types and the license plates that have been entered. Using simulation, this software successfully recognized license plate by 80.223% accurate and car type 75% accurate.Keywords: Image; Pre-Processing; License plate and Car Type Recognition, Training

  14. Investigations on image improvement in radiodiagnosis under special consideration of reducing scattered radiation

    International Nuclear Information System (INIS)

    Becker, R.

    1976-10-01

    In the study, image improvement is proposed for scintiscanning, X-ray and neutron diagnosis as well as computer axial tomography. In order to reduce the scattered radiation, mainly two-dimensional radiation transport calculations are carried out, and the imaging properties are studied by simulation on a large computer. It was found, among other things, that in contrast to X-ray techniques, in diagnosis with fast neutrons the image quality can hardly be improved by screens for scattered radiation. Here the problem of scattered radiation can only be solved by using scanners with narrow beams. The new method of neutron diagnosis resulting from this is especially suited for representing structures behind bones or for the localization of bone tumors invisible to X-rays, but not for representing fatty tissue. For large depths of irradiation, the scattered radiation with neutron sources below 1 MeV gets so intensive that diagnosis becomes impossible. When fast neutrons are used are used, the method is applicable for computer axial tomography because of the narrow beams. (ORU) [de

  15. High-resolution narrowband CARS spectroscopy in the spectral fingerprint region

    NARCIS (Netherlands)

    Chimento, P.F.; Jurna, M.; Bouwmans, H.S.P.; Garbacik, E.T.; Garbacik, E.T.; Hartsuiker, Liesbeth; Otto, Cornelis; Herek, Jennifer Lynn; Offerhaus, Herman L.

    2010-01-01

    Coherent anti-Stokes Raman scattering (CARS) spectroscopy is an important technique for spectroscopy and chemically selective microscopy, but wider implementation requires dedicated versatile tunable sources. We describe an optical parametric oscillator (OPO) based on a magnesium oxide-doped

  16. Quantum imaging with incoherently scattered light from a free-electron laser

    Science.gov (United States)

    Schneider, Raimund; Mehringer, Thomas; Mercurio, Giuseppe; Wenthaus, Lukas; Classen, Anton; Brenner, Günter; Gorobtsov, Oleg; Benz, Adrian; Bhatti, Daniel; Bocklage, Lars; Fischer, Birgit; Lazarev, Sergey; Obukhov, Yuri; Schlage, Kai; Skopintsev, Petr; Wagner, Jochen; Waldmann, Felix; Willing, Svenja; Zaluzhnyy, Ivan; Wurth, Wilfried; Vartanyants, Ivan A.; Röhlsberger, Ralf; von Zanthier, Joachim

    2018-02-01

    The advent of accelerator-driven free-electron lasers (FEL) has opened new avenues for high-resolution structure determination via diffraction methods that go far beyond conventional X-ray crystallography methods. These techniques rely on coherent scattering processes that require the maintenance of first-order coherence of the radiation field throughout the imaging procedure. Here we show that higher-order degrees of coherence, displayed in the intensity correlations of incoherently scattered X-rays from an FEL, can be used to image two-dimensional objects with a spatial resolution close to or even below the Abbe limit. This constitutes a new approach towards structure determination based on incoherent processes, including fluorescence emission or wavefront distortions, generally considered detrimental for imaging applications. Our method is an extension of the landmark intensity correlation measurements of Hanbury Brown and Twiss to higher than second order, paving the way towards determination of structure and dynamics of matter in regimes where coherent imaging methods have intrinsic limitations.

  17. Monte Carlo simulation of photon scattering in x-ray absorption imaging of high-intensity discharge lamps

    Energy Technology Data Exchange (ETDEWEB)

    Curry, J J, E-mail: jjcurry@nist.go [National Institute of Standards and Technology, Gaithersburg, MD 20899-8422 (United States)

    2010-06-16

    Coherent and incoherent scattering of x-rays during x-ray absorption imaging of high-intensity discharge lamps have been studied with Monte Carlo simulations developed specifically for this purpose. The Monte Carlo code is described and some initial results are discussed. Coherent scattering, because of its angular concentration in the forward direction, is found to be the most significant scattering mechanism. Incoherent scattering, although comparably strong, is not as significant because it results primarily in photons being scattered in the rearward direction and therefore out of the detector. Coherent scattering interferes with the detected absorption signal because the path of a scattered photon through the object to be imaged is unknown. Although scattering is usually a small effect, it can be significant in regions of high contrast. At the discharge/wall interface, as many as 50% of the detected photons are scattered photons. The effect of scattering on analysis of Hg distributions has not yet been quantified.

  18. Imaging through scattering media by Fourier filtering and single-pixel detection

    Science.gov (United States)

    Jauregui-Sánchez, Y.; Clemente, P.; Lancis, J.; Tajahuerce, E.

    2018-02-01

    We present a novel imaging system that combines the principles of Fourier spatial filtering and single-pixel imaging in order to recover images of an object hidden behind a turbid medium by transillumination. We compare the performance of our single-pixel imaging setup with that of a conventional system. We conclude that the introduction of Fourier gating improves the contrast of images in both cases. Furthermore, we show that the combination of single-pixel imaging and Fourier spatial filtering techniques is particularly well adapted to provide images of objects transmitted through scattering media.

  19. Femtosecond-Laser-Pulse Characterization and Optimization for CARS Microscopy.

    Directory of Open Access Journals (Sweden)

    Vincenzo Piazza

    Full Text Available We present a simple method and its experimental implementation to determine the pulse durations and linear chirps of the pump-and-probe pulse and the Stokes pulse in a coherent anti-Stokes Raman scattering microscope at sample level without additional autocorrelators. Our approach exploits the delay line, ubiquitous in such microscopes, to perform a convolution of the pump-and-probe and Stokes pulses as a function of their relative delay and it is based on the detection of the photons emitted from an appropriate non-linear sample. The analysis of the non-resonant four-wave-mixing and sum-frequency-generation signals allows for the direct retrieval of the pulse duration on the sample and the linear chirp of each pulse. This knowledge is crucial in maximizing the spectral-resolution and contrast in CARS imaging.

  20. Imaging through scattering microfluidic channels by digital holography for information recovery in lab on chip.

    Science.gov (United States)

    Bianco, V; Paturzo, M; Gennari, O; Finizio, A; Ferraro, P

    2013-10-07

    We tackle the problem of information recovery and imaging through scattering microfluidic chips by means of digital holography (DH). In many cases the chip can become opalescent due to residual deposits settling down the inner channel faces, biofilm formation, scattering particle uptake by the channel cladding or its damaging by corrosive substances, or even by condensing effect on the exterior channels walls. In these cases white-light imaging is severely degraded and no information is obtainable at all about the flowing samples. Here we investigate the problem of counting and estimating velocity of cells flowing inside a scattering chip. Moreover we propose and test a method based on the recording of multiple digital holograms to retrieve improved phase-contrast images despite the strong scattering effect. This method helps, thanks to DH, to recover information which, otherwise, would be completely lost.

  1. Study of Six Energy-Window Settings for Scatter Correction in Quantitative 111In Imaging: Comparative analysis Using SIMIND

    International Nuclear Information System (INIS)

    Gomez Facenda, A.; Castillo Lopez, J. P.; Torres Aroche, L. A.; Coca Perez, M. A.

    2013-01-01

    Activity quantification in nuclear medicine imaging is highly desirable, particularly for dosimetry and biodistribution studies of radiopharmaceuticals. Quantitative 111 In imaging is increasingly important with the current interest in therapy using 90 Y-radiolabeled compounds. Photons scattered in the patient are one of the major problems in quantification, which leads to degradation of image quality. The aim of this work was to assess the configuration of energy windows and the best weight factor for the scatter correction in 111 In images. All images were obtained using the Monte Carlo simulation code, Simind, configured to emulate the gamma camera Nucline SPIRIT DH-V. Simulations were validated by a positive agreement between experimental and simulated line-spread functions (LSF) of 99 mTc. It was examined the sensitivity, the scatter-to-total ratio, the contrast and the spatial resolution for scatter-compensated images obtained from six different multi-windows scatter corrections. Taking into consideration the results, the best energy-window setting was two 20% windows centered at 171 and 245keV, together with a 10% scatter window located between the photo peaks at 209keV. (Author)

  2. Imaging of Scattered Wavefields in Passive and Controlled-source Seismology

    KAUST Repository

    AlTheyab, Abdullah

    2015-01-01

    complex and our demands for higher resolution increase. This dissertation introduces two new methods that use scattered waves for improving the resolution of subsurface images: natural migration of passive seismic data and convergent full

  3. Plasma turbulence imaging using high-power laser Thomson scattering

    Science.gov (United States)

    Zweben, S. J.; Caird, J.; Davis, W.; Johnson, D. W.; Le Blanc, B. P.

    2001-01-01

    The two-dimensional (2D) structure of plasma density turbulence in a magnetically confined plasma can potentially be measured using a Thomson scattering system made from components of the Nova laser of Lawrence Livermore National Laboratory. For a plasma such as the National Spherical Torus Experiment at the Princeton Plasma Physics Laboratory, the laser would form an ≈10-cm-wide plane sheet beam passing vertically through the chamber across the magnetic field. The scattered light would be imaged by a charge coupled device camera viewing along the direction of the magnetic field. The laser energy required to make 2D images of density turbulence is in the range 1-3 kJ, which can potentially be obtained from a set of frequency-doubled Nd:glass amplifiers with diameters in the range of 208-315 mm. A laser pulse width of ⩽100 ns would be short enough to capture the highest frequency components of the expected density fluctuations.

  4. Dental caries imaging using hyperspectral stimulated Raman scattering microscopy

    Science.gov (United States)

    Wang, Zi; Zheng, Wei; Jian, Lin; Huang, Zhiwei

    2016-03-01

    We report the development of a polarization-resolved hyperspectral stimulated Raman scattering (SRS) imaging technique based on a picosecond (ps) laser-pumped optical parametric oscillator system for label-free imaging of dental caries. In our imaging system, hyperspectral SRS images (512×512 pixels) in both fingerprint region (800-1800 cm-1) and high-wavenumber region (2800-3600 cm-1) are acquired in minutes by scanning the wavelength of OPO output, which is a thousand times faster than conventional confocal micro Raman imaging. SRS spectra variations from normal enamel to caries obtained from the hyperspectral SRS images show the loss of phosphate and carbonate in the carious region. While polarization-resolved SRS images at 959 cm-1 demonstrate that the caries has higher depolarization ratio. Our results demonstrate that the polarization resolved-hyperspectral SRS imaging technique developed allows for rapid identification of the biochemical and structural changes of dental caries.

  5. Design and calibration of a digital Fourier holographic microscope for particle sizing via goniometry and optical scatter imaging in transmission.

    Science.gov (United States)

    Rossi, Vincent M; Jacques, Steven L

    2016-06-13

    Goniometry and optical scatter imaging have been used for optical determination of particle size based upon optical scattering. Polystyrene microspheres in suspension serve as a standard for system validation purposes. The design and calibration of a digital Fourier holographic microscope (DFHM) are reported. Of crucial importance is the appropriate scaling of scattering angle space in the conjugate Fourier plane. A detailed description of this calibration process is described. Spatial filtering of the acquired digital hologram to use photons scattered within a restricted angular range produces an image. A pair of images, one using photons narrowly scattered within 8 - 15° (LNA), and one using photons broadly scattered within 8 - 39° (HNA), are produced. An image based on the ratio of these two images, OSIR = HNA/LNA, following Boustany et al. (2002), yields a 2D Optical Scatter Image (OSI) whose contrast is based on the angular dependence of photon scattering and is sensitive to the microsphere size, especially in the 0.5-1.0µm range. Goniometric results are also given for polystyrene microspheres in suspension as additional proof of principle for particle sizing via the DFHM.

  6. Influence of X-ray scatter radiation on image quality in Digital Breast Tomosynthesis (DBT)

    Science.gov (United States)

    Rodrigues, M. J.; Di Maria, S.; Baptista, M.; Belchior, A.; Afonso, J.; Venâncio, J.; Vaz, P.

    2017-11-01

    Digital breast tomosynthesis (DBT) is a quasi-three-dimensional imaging technique that was developed to solve the principal limitation of mammography, namely the overlapping tissue effect. This issue in standard mammography (SM) leads to two main problems: low sensitivity (difficulty to detect lesions) and low specificity (non-negligible percentage of false positives). Although DBT is now being introduced in clinical practice the features of this technique have not yet been fully and accurately assessed. Consequently, optimization studies in terms of choosing the most suitable parameters which maximize image quality according to the known limits of breast dosimetry are currently performing. In DBT, scatter radiation can lead to a loss of contrast and to an increase of image noise by reducing the signal-to-difference-noise ratio (SDNR) of a lesion. Moreover the use of an anti-scatter grid is a concern due to the low exposure of the photon flux available per projection. For this reason the main aim of this study was to analyze the influence of the scatter radiation on image quality and the dose delivered to the breast. In particular a detailed analysis of the scatter radiation on the optimal energy that maximizes the SDNR was performed for different monochromatic energies and voltages. To reach this objective the PenEasy Monte Carlo (MC) simulation tool imbedded in the general-purpose main program PENELOPE, was used. After a successful validation of the MC model with measurements, 2D projection images of primary, coherent and incoherent photons were obtained. For that, a homogeneous breast phantom (2, 4, 6, 8 cm) with 25%, 50% and 75% glandular compositions was used, including a 5 mm thick tumor. The images were generated for each monochromatic X-ray energies in the range from 16 keV to 32 keV. For each angular projection considered (25 angular projections covering an arc of 50°) the scatter-to-primary ratio (SPR), the mean glandular dose (MGD) and the signal

  7. Fast scattering simulation tool for multi-energy x-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sossin, A., E-mail: artur.sossin@cea.fr [CEA-LETI MINATEC Grenoble, F-38054 Grenoble (France); Tabary, J.; Rebuffel, V. [CEA-LETI MINATEC Grenoble, F-38054 Grenoble (France); Létang, J.M.; Freud, N. [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard (France); Verger, L. [CEA-LETI MINATEC Grenoble, F-38054 Grenoble (France)

    2015-12-01

    A combination of Monte Carlo (MC) and deterministic approaches was employed as a means of creating a simulation tool capable of providing energy resolved x-ray primary and scatter images within a reasonable time interval. Libraries of Sindbad, a previously developed x-ray simulation software, were used in the development. The scatter simulation capabilities of the tool were validated through simulation with the aid of GATE and through experimentation by using a spectrometric CdTe detector. A simple cylindrical phantom with cavities and an aluminum insert was used. Cross-validation with GATE showed good agreement with a global spatial error of 1.5% and a maximum scatter spectrum error of around 6%. Experimental validation also supported the accuracy of the simulations obtained from the developed software with a global spatial error of 1.8% and a maximum error of around 8.5% in the scatter spectra.

  8. WE-AB-207A-08: BEST IN PHYSICS (IMAGING): Advanced Scatter Correction and Iterative Reconstruction for Improved Cone-Beam CT Imaging On the TrueBeam Radiotherapy Machine

    Energy Technology Data Exchange (ETDEWEB)

    Wang, A; Paysan, P; Brehm, M; Maslowski, A; Lehmann, M; Messmer, P; Munro, P; Yoon, S; Star-Lack, J; Seghers, D [Varian Medical Systems, Palo Alto, CA (United States)

    2016-06-15

    Purpose: To improve CBCT image quality for image-guided radiotherapy by applying advanced reconstruction algorithms to overcome scatter, noise, and artifact limitations Methods: CBCT is used extensively for patient setup in radiotherapy. However, image quality generally falls short of diagnostic CT, limiting soft-tissue based positioning and potential applications such as adaptive radiotherapy. The conventional TrueBeam CBCT reconstructor uses a basic scatter correction and FDK reconstruction, resulting in residual scatter artifacts, suboptimal image noise characteristics, and other artifacts like cone-beam artifacts. We have developed an advanced scatter correction that uses a finite-element solver (AcurosCTS) to model the behavior of photons as they pass (and scatter) through the object. Furthermore, iterative reconstruction is applied to the scatter-corrected projections, enforcing data consistency with statistical weighting and applying an edge-preserving image regularizer to reduce image noise. The combined algorithms have been implemented on a GPU. CBCT projections from clinically operating TrueBeam systems have been used to compare image quality between the conventional and improved reconstruction methods. Planning CT images of the same patients have also been compared. Results: The advanced scatter correction removes shading and inhomogeneity artifacts, reducing the scatter artifact from 99.5 HU to 13.7 HU in a typical pelvis case. Iterative reconstruction provides further benefit by reducing image noise and eliminating streak artifacts, thereby improving soft-tissue visualization. In a clinical head and pelvis CBCT, the noise was reduced by 43% and 48%, respectively, with no change in spatial resolution (assessed visually). Additional benefits include reduction of cone-beam artifacts and reduction of metal artifacts due to intrinsic downweighting of corrupted rays. Conclusion: The combination of an advanced scatter correction with iterative reconstruction

  9. UAV remote sensing atmospheric degradation image restoration based on multiple scattering APSF estimation

    Science.gov (United States)

    Qiu, Xiang; Dai, Ming; Yin, Chuan-li

    2017-09-01

    Unmanned aerial vehicle (UAV) remote imaging is affected by the bad weather, and the obtained images have the disadvantages of low contrast, complex texture and blurring. In this paper, we propose a blind deconvolution model based on multiple scattering atmosphere point spread function (APSF) estimation to recovery the remote sensing image. According to Narasimhan analytical theory, a new multiple scattering restoration model is established based on the improved dichromatic model. Then using the L0 norm sparse priors of gradient and dark channel to estimate APSF blur kernel, the fast Fourier transform is used to recover the original clear image by Wiener filtering. By comparing with other state-of-the-art methods, the proposed method can correctly estimate blur kernel, effectively remove the atmospheric degradation phenomena, preserve image detail information and increase the quality evaluation indexes.

  10. First correlated measurements of the shape and scattering properties of cloud particles using the new Particle Habit Imaging and Polar Scattering (PHIPS) probe

    Science.gov (United States)

    Abdelmonem, A.; Schnaiter, M.; Amsler, P.; Hesse, E.; Meyer, J.; Leisner, T.

    2011-05-01

    Studying the radiative impact of cirrus clouds requires the knowledge of the link between their microphysics and the single scattering properties of the cloud particles. Usually, this link is created by modeling the optical scattering properties from in situ measurements of ice crystal size distributions. The measured size distribution and the assumed particle shape might be erroneous in case of non-spherical ice particles. We present here a novel optical sensor (the Particle Habit Imaging and Polar Scattering probe, PHIPS) designed to measure the 3-D morphology and the corresponding optical and microphysical parameters of individual cloud particles, simultaneously. Clouds containing particles ranging in size from a few micrometers to about 800 μm diameter can be systematically characterized with an optical resolution power of 2 μm and polar scattering resolution of 1° for forward scattering directions (from 1° to 10°) and 8° for side and backscattering directions (from 18° to 170°). The maximum acquisition rates for scattering phase functions and images are 262 KHz and 10 Hz, respectively. Some preliminary results collected in two ice cloud campaigns which were conducted in the AIDA cloud simulation chamber are presented. PHIPS showed reliability in operation and produced comparable size distributions and images to those given by other certified cloud particles instruments. A 3-D model of a hexagonal ice plate is constructed and the corresponding scattering phase function is compared to that modeled using the Ray Tracing with Diffraction on Facets (RTDF) program. PHIPS is candidate to be a novel air borne optical sensor for studying the radiative impact of cirrus clouds and correlating the particle habit-scattering properties which will serve as a reference for other single, or multi-independent, measurements instruments.

  11. PC-based car license plate reader

    Science.gov (United States)

    Hwang, Chung-Mu; Shu, Shyh-Yeong; Chen, Wen-Yu; Chen, Yie-Wern; Wen, Kuang-Pu

    1992-11-01

    A car license plate reader (CLPR) using fuzzy inference and neural network algorithm has been developed in Industrial Technology Research Institute (ITRI) and installed in highway toll stations to identify stolen cars. It takes an average of 0.7 seconds to recognize a car license plate by using a PC with 80486-50 CPU. The recognition rate of the system is about 97%. The techniques of CLPR include vehicle sensing, image grab control, optic pre- processing, lighting, and optic character recognition (OCR). The CLPR can be used in vehicle flow statistics, the checking of stolen vehicles, automatic charging systems in parking lots or garage management, and so on.

  12. Investigation of protein distribution in solid lipid particles and its impact on protein release using coherent anti-Stokes Raman scattering microscopy

    DEFF Research Database (Denmark)

    Christophersen, Philip C.; Birch, Ditlev; Saarinen, Jukka

    2015-01-01

    The aim of this study was to gain new insights into protein distribution in solid lipid microparticles (SLMs) and subsequent release mechanisms using a novel label-free chemical imaging method, coherent anti-Stokes Raman scattering (CARS) microscopy. Lysozyme-loaded SLMs were prepared using...... in the solid lipid matrix, which required full lipolysis of the entire matrix to release lysozyme completely. Therefore, SLMs with lysozyme incorporated in an aqueous solution released lysozyme much faster than with lysozyme incorporated as a solid. In conclusion, CARS microscopy was an efficient and non......-destructive method for elucidating the distribution of lysozyme in SLMs. The interpretation of protein distribution and release during lipolysis enabled elucidation of protein release mechanisms. In future, CARS microscopy analysis could facilitate development of a wide range of protein-lipid matrices with tailor...

  13. CuseCar--community car-sharing program : car sharing lessons learned.

    Science.gov (United States)

    2011-08-01

    CuseCar of Syracuse launched services in December 2008 with 3 Toyota Prius Hybrids. CuseCar initially, due to : concerns about availability, limited membership to Origination Sponsor Locations, which in turn developed few : members. In 2009 CuseCar o...

  14. Possibility of single biomolecule imaging with coherent amplification of weak scattering x-ray photons.

    Science.gov (United States)

    Shintake, Tsumoru

    2008-10-01

    The number of photons produced by coherent x-ray scattering from a single biomolecule is very small because of its extremely small elastic-scattering cross section and low damage threshold. Even with a high x-ray flux of 3 x 10;{12} photons per 100-nm -diameter spot and an ultrashort pulse of 10 fs driven by a future x-ray free electron laser (x-ray FEL), it has been predicted that only a few 100 photons will be produced from the scattering of a single lysozyme molecule. In observations of scattered x rays on a detector, the transfer of energy from wave to matter is accompanied by the quantization of the photon energy. Unfortunately, x rays have a high photon energy of 12 keV at wavelengths of 1A , which is required for atomic resolution imaging. Therefore, the number of photoionization events is small, which limits the resolution of imaging of a single biomolecule. In this paper, I propose a method: instead of directly observing the photons scattered from the sample, we amplify the scattered waves by superimposing an intense coherent reference pump wave on it and record the resulting interference pattern on a planar x-ray detector. Using a nanosized gold particle as a reference pump wave source, we can collect 10;{4}-10;{5} photons in single shot imaging where the signal from a single biomolecule is amplified and recorded as two-dimensional diffraction intensity data. An iterative phase retrieval technique can be used to recover the phase information and reconstruct the image of the single biomolecule and the gold particle at the same time. In order to precisely reconstruct a faint image of the single biomolecule in Angstrom resolution, whose intensity is much lower than that of the bright gold particle, I propose a technique that combines iterative phase retrieval on the reference pump wave and the digital Fourier transform holography on the sample. By using a large number of holography data, the three-dimensional electron density map can be assembled.

  15. Fast implementations of reconstruction-based scatter compensation in fully 3D SPECT image reconstruction

    International Nuclear Information System (INIS)

    Kadrmas, Dan J.; Karimi, Seemeen S.; Frey, Eric C.; Tsui, Benjamin M.W.

    1998-01-01

    Accurate scatter compensation in SPECT can be performed by modelling the scatter response function during the reconstruction process. This method is called reconstruction-based scatter compensation (RBSC). It has been shown that RBSC has a number of advantages over other methods of compensating for scatter, but using RBSC for fully 3D compensation has resulted in prohibitively long reconstruction times. In this work we propose two new methods that can be used in conjunction with existing methods to achieve marked reductions in RBSC reconstruction times. The first method, coarse-grid scatter modelling, significantly accelerates the scatter model by exploiting the fact that scatter is dominated by low-frequency information. The second method, intermittent RBSC, further accelerates the reconstruction process by limiting the number of iterations during which scatter is modelled. The fast implementations were evaluated using a Monte Carlo simulated experiment of the 3D MCAT phantom with 99m Tc tracer, and also using experimentally acquired data with 201 Tl tracer. Results indicated that these fast methods can reconstruct, with fully 3D compensation, images very similar to those obtained using standard RBSC methods, and in reconstruction times that are an order of magnitude shorter. Using these methods, fully 3D iterative reconstruction with RBSC can be performed well within the realm of clinically realistic times (under 10 minutes for 64x64x24 image reconstruction). (author)

  16. Temperature measurements in a wall stabilized steady flame using CARS

    KAUST Repository

    Sesha Giri, Krishna; Lacoste, Deanna; Damazo, Jason; Kwon, Eddie; Roberts, William L.

    2017-01-01

    -Stokes Raman Scattering (CARS) thermometry as close as 275 μm to a convex wall cooled with water has been carried out. The standard deviation of mean temperatures is observed to be ~6.5% for high temperatures (>2000K) and ~14% in the lower range (<500K

  17. Rayleigh scatter in kilovoltage x-ray imaging: is the independent atom approximation good enough?

    OpenAIRE

    Poludniowski, G; Evans, PM; Webb, S

    2009-01-01

    Monte Carlo simulation is the gold standard method for modelling scattering processes in medical x-ray imaging. General-purpose Monte Carlo codes, however, typically use the independent atom approximation (IAA). This is known to be inaccurate for Rayleigh scattering, for many materials, in the forward direction. This work addresses whether the IAA is sufficient for the typical modelling tasks in medical kilovoltage x-ray imaging. As a means of comparison, we incorporate a more realistic 'inte...

  18. First correlated measurements of the shape and light scattering properties of cloud particles using the new Particle Habit Imaging and Polar Scattering (PHIPS probe

    Directory of Open Access Journals (Sweden)

    A. Abdelmonem

    2011-10-01

    Full Text Available Studying the radiative impact of cirrus clouds requires knowledge of the relationship between their microphysics and the single scattering properties of cloud particles. Usually, this relationship is obtained by modeling the optical scattering properties from in situ measurements of ice crystal size distributions. The measured size distribution and the assumed particle shape might be erroneous in case of non-spherical ice particles. We present here a novel optical sensor (the Particle Habit Imaging and Polar Scattering probe, PHIPS designed to measure simultaneously the 3-D morphology and the corresponding optical and microphysical parameters of individual cloud particles. Clouds containing particles ranging from a few micrometers to about 800 μm diameter in size can be characterized systematically with an optical resolution power of 2 μm and polar scattering resolution of 1° for forward scattering directions (from 1° to 10° and 8° for side and backscattering directions (from 18° to 170°. The maximum acquisition rates for scattering phase functions and images are 262 KHz and 10 Hz, respectively. Some preliminary results collected in two ice cloud campaigns conducted in the AIDA cloud simulation chamber are presented. PHIPS showed reliability in operation and produced size distributions and images comparable to those given by other certified cloud particles instruments. A 3-D model of a hexagonal ice plate is constructed and the corresponding scattering phase function is compared to that modeled using the Ray Tracing with Diffraction on Facets (RTDF program. PHIPS is a highly promising novel airborne optical sensor for studying the radiative impact of cirrus clouds and correlating the particle habit-scattering properties which will serve as a reference for other single, or multi-independent, measurement instruments.

  19. First correlated measurements of the shape and light scattering properties of cloud particles using the new Particle Habit Imaging and Polar Scattering (PHIPS) probe

    Science.gov (United States)

    Abdelmonem, A.; Schnaiter, M.; Amsler, P.; Hesse, E.; Meyer, J.; Leisner, T.

    2011-10-01

    Studying the radiative impact of cirrus clouds requires knowledge of the relationship between their microphysics and the single scattering properties of cloud particles. Usually, this relationship is obtained by modeling the optical scattering properties from in situ measurements of ice crystal size distributions. The measured size distribution and the assumed particle shape might be erroneous in case of non-spherical ice particles. We present here a novel optical sensor (the Particle Habit Imaging and Polar Scattering probe, PHIPS) designed to measure simultaneously the 3-D morphology and the corresponding optical and microphysical parameters of individual cloud particles. Clouds containing particles ranging from a few micrometers to about 800 μm diameter in size can be characterized systematically with an optical resolution power of 2 μm and polar scattering resolution of 1° for forward scattering directions (from 1° to 10°) and 8° for side and backscattering directions (from 18° to 170°). The maximum acquisition rates for scattering phase functions and images are 262 KHz and 10 Hz, respectively. Some preliminary results collected in two ice cloud campaigns conducted in the AIDA cloud simulation chamber are presented. PHIPS showed reliability in operation and produced size distributions and images comparable to those given by other certified cloud particles instruments. A 3-D model of a hexagonal ice plate is constructed and the corresponding scattering phase function is compared to that modeled using the Ray Tracing with Diffraction on Facets (RTDF) program. PHIPS is a highly promising novel airborne optical sensor for studying the radiative impact of cirrus clouds and correlating the particle habit-scattering properties which will serve as a reference for other single, or multi-independent, measurement instruments.

  20. Development of a micromirror-scanned multimodal CARS miniaturized microscope for the in vivo study of spinal cord disorders

    Science.gov (United States)

    Murugkar, Sangeeta; Smith, Brett; Naji, Majid; Brideau, Craig; Stys, Peter; Anis, Hanan

    2011-03-01

    We discuss the design and implementation of a novel multimodal coherent anti-Stokes Raman scattering (CARS) miniaturized microscope for imaging of injured and recovering spinal cords in a single living animal. We demonstrate for the first time, the use of a biaxial microelectromechanical system (MEMS) mirror for scanning and diffraction limited multiple lens miniaturized objective for exciting a CARS signal. The miniaturized microscope design includes light delivery using a large mode area photonic crystal fiber (PCF), and multimode fiber for collection of the nonlinear optical signal. The basic design concept, major engineering challenges, solutions, and preliminary results are presented. We demonstrate CARS and two photon excitation fluorescence microscopy in a benchtop setup with the miniaturized optics and MEMS scanning. The light source is based on a single femtosecond laser (pump beam) and a supercontinuum generated in a nonlinear PCF (Stokes beam). This is coupled using free space optics onto the surface of a resonantly driven two dimensional scanning MEMS mirror that scans the excitation light in a Lissajous pattern. The novel design of the miniaturized microscope is expected to provide significant new information on the pathogenesis of demyelinating diseases such as Multiple Sclerosis and Spinal Cord Injury.

  1. Three-dimensional imaging of flat natural and cultural heritage objects by a Compton scattering modality

    Science.gov (United States)

    Guerrero Prado, Patricio; Nguyen, Mai K.; Dumas, Laurent; Cohen, Serge X.

    2017-01-01

    Characterization and interpretation of flat ancient material objects, such as those found in archaeology, paleoenvironments, paleontology, and cultural heritage, have remained a challenging task to perform by means of conventional x-ray tomography methods due to their anisotropic morphology and flattened geometry. To overcome the limitations of the mentioned methodologies for such samples, an imaging modality based on Compton scattering is proposed in this work. Classical x-ray tomography treats Compton scattering data as noise in the image formation process, while in Compton scattering tomography the conditions are set such that Compton data become the principal image contrasting agent. Under these conditions, we are able, first, to avoid relative rotations between the sample and the imaging setup, and second, to obtain three-dimensional data even when the object is supported by a dense material by exploiting backscattered photons. Mathematically this problem is addressed by means of a conical Radon transform and its inversion. The image formation process and object reconstruction model are presented. The feasibility of this methodology is supported by numerical simulations.

  2. Dual-energy digital mammography for calcification imaging: Scatter and nonuniformity corrections

    International Nuclear Information System (INIS)

    Kappadath, S. Cheenu; Shaw, Chris C.

    2005-01-01

    Mammographic images of small calcifications, which are often the earliest signs of breast cancer, can be obscured by overlapping fibroglandular tissue. We have developed and implemented a dual-energy digital mammography (DEDM) technique for calcification imaging under full-field imaging conditions using a commercially available aSi:H/CsI:Tl flat-panel based digital mammography system. The low- and high-energy images were combined using a nonlinear mapping function to cancel the tissue structures and generate the dual-energy (DE) calcification images. The total entrance-skin exposure and mean-glandular dose from the low- and high-energy images were constrained so that they were similar to screening-examination levels. To evaluate the DE calcification image, we designed a phantom using calcium carbonate crystals to simulate calcifications of various sizes (212-425 μm) overlaid with breast-tissue-equivalent material 5 cm thick with a continuously varying glandular-tissue ratio from 0% to 100%. We report on the effects of scatter radiation and nonuniformity in x-ray intensity and detector response on the DE calcification images. The nonuniformity was corrected by normalizing the low- and high-energy images with full-field reference images. Correction of scatter in the low- and high-energy images significantly reduced the background signal in the DE calcification image. Under the current implementation of DEDM, utilizing the mammography system and dose level tested, calcifications in the 300-355 μm size range were clearly visible in DE calcification images. Calcification threshold sizes decreased to the 250-280 μm size range when the visibility criteria were lowered to barely visible. Calcifications smaller than ∼250 μm were usually not visible in most cases. The visibility of calcifications with our DEDM imaging technique was limited by quantum noise, not system noise

  3. Effects of tube potential and scatter rejection on image quality and effective dose in digital chest X-ray examination: An anthropomorphic phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, D.J., E-mail: daniel.shaw@christie.nhs.uk [Diagnostic Radiology, Department of Medical Physics and Engineering, Leeds Teaching Hospitals, Leeds General Infirmary, Great George Street, Leeds LS1 3EX (United Kingdom); Crawshaw, I. [Diagnostic X-ray Department, York Teaching Hospital NHS Foundation Trust, The York Hospital, Wigginton Road, York YO31 8HE (United Kingdom); Rimmer, S. D. [Diagnostic Radiology, Department of Medical Physics and Engineering, Leeds Teaching Hospitals, Leeds General Infirmary, Great George Street, Leeds LS1 3EX (United Kingdom)

    2013-11-15

    Objectives: The purpose of this study was to investigate the effects of tube potential and scatter rejection techniques on image quality of digital posteroanterior (PA) chest radiographs. Methods: An anthropomorphic phantom was imaged using a range of tube potentials (81–125 kV{sub p}) without scatter rejection, with an anti-scatter grid, and using a 10 cm air gap. Images were anonymised and randomised before being evaluated using a visual graded analysis (VGA) method. Results: The effects of tube potential on image quality were found to be negligible (p > 0.63) for the flat panel detector (FPD). Decreased image quality (p = 0.031) was noted for 125 kV{sub p} relative to 109 kV{sub p}, though no difference was noted for any of the other potentials (p > 0.398) for computed radiography (CR). Both scatter rejection techniques improved image quality (p < 0.01). For FPD imaging the anti-scatter grid offered slightly improved image quality relative to the air gap (p = 0.038) but this was not seen for CR (p = 0.404). Conclusions: For FPD chest imaging of the anthropomorphic phantom there was no dependence of image quality on tube potential. Scatter rejection improved image quality, with the anti-scatter grid giving greater improvements than an air-gap, but at the expense of increased effective dose. CR imaging of the chest phantom demonstrated negligible dependence on tube potential except at 125 kV{sub p}. Scatter rejection improved image quality, but with no difference found between techniques. The air-gap resulted in a smaller increase in effective dose than the anti-scatter grid and would be the preferred scatter rejection technique.

  4. Compton scatter in germanium and its effect on imaging with gamma-ray position-sensitive detectors

    International Nuclear Information System (INIS)

    Sherman, I.S.; Strauss, M.G.; Brenner, R.

    1978-01-01

    The spatial spread due to Compton scatter in Ge was measured to study the reduction in image contrast and signal-to-noise ratio (S/N) resulting from erroneous readout in Ge position-sensitive detectors. The step response revealing this spread was obtained by scanning with a 122 keV γ-ray beam across a boundary of two sectors of a slotted coaxial Ge(Li) detector that is 40 mm diameter by 22 mm long. The derived line-spread function at 140 keV (/sup 99m/Tc) exhibits much shorter but thicker tails than those due to scatter in tissue as observed with a NaI detector through 5.5 cm of scattering material. Convolutions of rectangular profiles of voids with the Ge(Li) line-spread function show marked deterioration in contrast for voids less than 10 mm across, which in turn results in even greater deterioration of the S/N. As a result, the contrast for voids in Ge images is only 20 to 30 percent higher than that in NaI and the S/N is only comparable for equal detector areas. The degradation in image contrast due to scatter in Ge detectors can be greatly reduced by either using thin detectors (approximately 5 mm), where scatter virtually does not exist, or by using thicker detectors and rejecting scatter electronically. To reduce the effects of scatter on the S/N as well as on contrast, the erroneous position readouts must actually be corrected. A more realizable approach to achieving the ultimate potential of Ge detectors may be a scanning array of discrete detectors (not position sensitive) in which readout is not affected by scatter

  5. Femtosecond Time-Resolved Resonance-Enhanced CARS of Gaseous Iodine at Room Temperature

    International Nuclear Information System (INIS)

    He Ping; Fan Rong-Wei; Xia Yuan-Qin; Yu Xin; Chen De-Ying; Yao Yong

    2011-01-01

    Time-resolved resonance-enhanced coherent anti-Stokes Raman scattering (CARS) is applied to investigate molecular dynamics in gaseous iodine. 40 fs laser pulses are applied to create and monitor the high vibrational states of iodine at room temperature (corresponding to a vapor pressure as low as about 35 Pa) by femtosecond time-resolved CARS. Depending on the time delay between the probe pulse and the pump/Stokes pulse pairs, the high vibrational states both on the electronically ground states and the excited states can be detected as oscillations in the CARS transient signal. It is proved that the femtosecond time-resolved CARS technique is a promising candidate for investigating the molecular dynamics of a low concentration system and can be applied to environmental and atmospheric monitoring measurements. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  6. Abnormal anti-Stokes Raman emission as a coherent anti-Stokes Raman scattering-like process in disordered media

    International Nuclear Information System (INIS)

    Baltog, Ioan; Baibarac, Mihaela; Smaranda, Ion; Lefrant, Serge

    2011-01-01

    In this paper, we demonstrate that, by continuous single beam excitation, one can generate an abnormal anti-Stokes Raman emission (AASRE) whose properties are similar to a coherent anti-Stokes Raman scattering (CARS). The effect has been observed in materials which possess intrinsically nonlinear properties (LiNbO 3 and CdS), which have the electric susceptibility of third order different from zero, χ (3) ≠ 0, as well as in materials that become nonlinear under resonant optical excitation. In the latter case, we used poly-3,4-ethylendioxythiophene (PEDOT) in its undoped state deposited electrochemically on Au support. Raman studies corroborated with images of optical microscopy demonstrate that the production of AASRE is conditioned by the existence of a particular morphology of the sample able to ensure efficient transport of the light inside the sample through a multiple light scattering mechanism. In this context, it was found that LiNbO 3 and CdS in powder form as well as the PEDOT films layered on a rough Au substrate are suitable morphological forms. We explain AASRE as resulting from a wave-mixing mechanism of the incident laser light ω l with a Stokes-shifted Raman light ω S produced by a spontaneous Raman light scattering process, both strongly scattered inside the sample. As a CARS process, AASRE is conditioned by the achievement of phase-matching requirements, which makes the difference between the wave vectors of mixing light close to zero, Δk =/2k l - k S - k CARS /∼ 0. In condensed media, the small dispersion of the refractive index makes Δk ∼ 0 so that the formation of a favourable phase-matching geometry may be accomplished even at a crossing angle θ of travelling scattered light ω l and ω S . For tightly focused beams, the requirement of phase matching relaxes; it is no longer sensitive to the Raman shift, so that a wide intense anti-Stokes Raman spectrum is observed at an angle larger than the Stokes Raman spectrum.

  7. Research of the system response of neutron double scatter imaging for MLEM reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, M., E-mail: wyj2013@163.com [Northwest Institute of Nuclear Technology, Xi’an 710024 (China); State Key Laboratory of Intense Pulsed Radiation-Simulation and Effect, Xi’an 710024 (China); Peng, B.D.; Sheng, L.; Li, K.N.; Zhang, X.P.; Li, Y.; Li, B.K.; Yuan, Y.; Wang, P.W.; Zhang, X.D.; Li, C.H. [Northwest Institute of Nuclear Technology, Xi’an 710024 (China); State Key Laboratory of Intense Pulsed Radiation-Simulation and Effect, Xi’an 710024 (China)

    2015-03-01

    A Maximum Likelihood image reconstruction technique has been applied to neutron scatter imaging. The response function of the imaging system can be obtained by Monte Carlo simulation, which is very time-consuming if the number of image pixels and particles is large. In this work, to improve time efficiency, an analytical approach based on the probability of neutron interaction and transport in the detector is developed to calculate the system response function. The response function was applied to calculate the relative efficiency of the neutron scatter imaging system as a function of the incident neutron energy. The calculated results agreed with simulations by the MCNP5 software. Then the maximum likelihood expectation maximization (MLEM) reconstruction method with the system response function was used to reconstruct data simulated by Monte Carlo method. The results showed that there was good consistency between the reconstruction position and true position. Compared with back-projection reconstruction, the improvement in image quality was obvious, and the locations could be discerned easily for multiple radiation point sources.

  8. Stimulated-emission pumping enabling sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy

    NARCIS (Netherlands)

    Cleff, C.; Gross, P.; Fallnich, C.; Offerhaus, Herman L.; Herek, Jennifer Lynn; Kruse, K.; Beeker, W.P.; Lee, Christopher James; Boller, Klaus J.

    2013-01-01

    We present a theoretical investigation of stimulated emission pumping to achieve sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering (CARS) microscopy. A pair of control light fields is used to prepopulate the Raman state involved in the CARS process prior to the CARS

  9. Poster – 02: Positron Emission Tomography (PET) Imaging Reconstruction using higher order Scattered Photon Coincidences

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Hongwei; Pistorius, Stephen [Department of Physics and Astronomy, University of Manitoba, CancerCare, Manitoba (Canada)

    2016-08-15

    PET images are affected by the presence of scattered photons. Incorrect scatter-correction may cause artifacts, particularly in 3D PET systems. Current scatter reconstruction methods do not distinguish between single and higher order scattered photons. A dual-scattered reconstruction method (GDS-MLEM) that is independent of the number of Compton scattering interactions and less sensitive to the need for high energy resolution detectors, is proposed. To avoid overcorrecting for scattered coincidences, the attenuation coefficient was calculated by integrating the differential Klein-Nishina cross-section over a restricted energy range, accounting only for scattered photons that were not detected. The optimum image can be selected by choosing an energy threshold which is the upper energy limit for the calculation of the cross-section and the lower limit for scattered photons in the reconstruction. Data was simulated using the GATE platform. 500,000 multiple scattered photon coincidences with perfect energy resolution were reconstructed using various methods. The GDS-MLEM algorithm had the highest confidence (98%) in locating the annihilation position and was capable of reconstructing the two largest hot regions. 100,000 photon coincidences, with a scatter fraction of 40%, were used to test the energy resolution dependence of different algorithms. With a 350–650 keV energy window and the restricted attenuation correction model, the GDS-MLEM algorithm was able to improve contrast recovery and reduce the noise by 7.56%–13.24% and 12.4%–24.03%, respectively. This approach is less sensitive to the energy resolution and shows promise if detector energy resolutions of 12% can be achieved.

  10. Window selection for dual photopeak window scatter correction in Tc-99m imaging

    International Nuclear Information System (INIS)

    Vries, D.J. de; King, M.A.

    1994-01-01

    The width and placement of the windows for the dual photopeak window (DPW) scatter subtraction method for Tc-99m imaging is investigated in order to obtain a method that is stable on a multihead detector system for single photon emission computed tomography (SPECT) and is capable of providing a good scatter estimate for extended objects. For various window pairs, stability and noise were examined with experiments using a SPECT system, while Monte Carlo simulations were used to predict the accuracy of scatter estimates for a variety of objects and to guide the development of regression relations for various window pairs. The DPW method that resulted from this study was implemented with a symmetric 20% photopeak window composed of a 15% asymmetric photopeak window and a 5% lower window abutted at 7 keV below the peak. A power function regression was used to relate the scatter-to-total ratio to the lower window-to-total ratio at each pixel, from which an estimated scatter image was calculated. DPW demonstrated good stability, achieved by abutting the two windows away from the peak. Performance was assessed and compared with Compton window subtraction (CWS). For simulated extended objects, DPW generally produced a less biased scatter estimate than the commonly used CWS method with k = 0.5. In acquisitions of a clinical SPECT phantom, contrast recovery was comparable for both DPW and CWS; however, DPW showed greater visual contrast in clinical SPECT bone studies

  11. The Mathematical Foundations of 3D Compton Scatter Emission Imaging

    Directory of Open Access Journals (Sweden)

    T. T. Truong

    2007-01-01

    Full Text Available The mathematical principles of tomographic imaging using detected (unscattered X- or gamma-rays are based on the two-dimensional Radon transform and many of its variants. In this paper, we show that two new generalizations, called conical Radon transforms, are related to three-dimensional imaging processes based on detected Compton scattered radiation. The first class of conical Radon transform has been introduced recently to support imaging principles of collimated detector systems. The second class is new and is closely related to the Compton camera imaging principles and invertible under special conditions. As they are poised to play a major role in future designs of biomedical imaging systems, we present an account of their most important properties which may be relevant for active researchers in the field.

  12. Scatter and crosstalk corrections for 99mTc/123I dual-radionuclide imaging using a CZT SPECT system with pinhole collimators

    International Nuclear Information System (INIS)

    Fan, Peng; Hutton, Brian F.; Holstensson, Maria; Ljungberg, Michael; Hendrik Pretorius, P.; Prasad, Rameshwar; Liu, Chi; Ma, Tianyu; Liu, Yaqiang; Wang, Shi; Thorn, Stephanie L.; Stacy, Mitchel R.; Sinusas, Albert J.

    2015-01-01

    Purpose: The energy spectrum for a cadmium zinc telluride (CZT) detector has a low energy tail due to incomplete charge collection and intercrystal scattering. Due to these solid-state detector effects, scatter would be overestimated if the conventional triple-energy window (TEW) method is used for scatter and crosstalk corrections in CZT-based imaging systems. The objective of this work is to develop a scatter and crosstalk correction method for 99m Tc/ 123 I dual-radionuclide imaging for a CZT-based dedicated cardiac SPECT system with pinhole collimators (GE Discovery NM 530c/570c). Methods: A tailing model was developed to account for the low energy tail effects of the CZT detector. The parameters of the model were obtained using 99m Tc and 123 I point source measurements. A scatter model was defined to characterize the relationship between down-scatter and self-scatter projections. The parameters for this model were obtained from Monte Carlo simulation using SIMIND. The tailing and scatter models were further incorporated into a projection count model, and the primary and self-scatter projections of each radionuclide were determined with a maximum likelihood expectation maximization (MLEM) iterative estimation approach. The extracted scatter and crosstalk projections were then incorporated into MLEM image reconstruction as an additive term in forward projection to obtain scatter- and crosstalk-corrected images. The proposed method was validated using Monte Carlo simulation, line source experiment, anthropomorphic torso phantom studies, and patient studies. The performance of the proposed method was also compared to that obtained with the conventional TEW method. Results: Monte Carlo simulations and line source experiment demonstrated that the TEW method overestimated scatter while their proposed method provided more accurate scatter estimation by considering the low energy tail effect. In the phantom study, improved defect contrasts were observed with both

  13. Effects of tube potential and scatter rejection on image quality and effective dose in digital chest X-ray examination: An anthropomorphic phantom study

    International Nuclear Information System (INIS)

    Shaw, D.J.; Crawshaw, I.; Rimmer, S.D.

    2013-01-01

    Objectives: The purpose of this study was to investigate the effects of tube potential and scatter rejection techniques on image quality of digital posteroanterior (PA) chest radiographs. Methods: An anthropomorphic phantom was imaged using a range of tube potentials (81–125 kV p ) without scatter rejection, with an anti-scatter grid, and using a 10 cm air gap. Images were anonymised and randomised before being evaluated using a visual graded analysis (VGA) method. Results: The effects of tube potential on image quality were found to be negligible (p > 0.63) for the flat panel detector (FPD). Decreased image quality (p = 0.031) was noted for 125 kV p relative to 109 kV p , though no difference was noted for any of the other potentials (p > 0.398) for computed radiography (CR). Both scatter rejection techniques improved image quality (p p . Scatter rejection improved image quality, but with no difference found between techniques. The air-gap resulted in a smaller increase in effective dose than the anti-scatter grid and would be the preferred scatter rejection technique

  14. Radar Echo Scattering Modeling and Image Simulations of Full-scale Convex Rough Targets at Terahertz Frequencies

    Directory of Open Access Journals (Sweden)

    Gao Jingkun

    2018-02-01

    Full Text Available Echo simulation is a precondition for developing radar imaging systems, algorithms, and subsequent applications. Electromagnetic scattering modeling of the target is key to echo simulation. At terahertz (THz frequencies, targets are usually of ultra-large electrical size that makes applying classical electromagnetic calculation methods unpractical. In contrast, the short wavelength makes the surface roughness of targets a factor that cannot be ignored, and this makes the traditional echo simulation methods based on point scattering hypothesis in applicable. Modeling the scattering characteristics of targets and efficiently generating its radar echoes in THz bands has become a problem that must be solved. In this paper, a hierarchical semi-deterministic modeling method is proposed. A full-wave algorithm of rough surfaces is used to calculate the scattered field of facets. Then, the scattered fields of all facets are transformed into the target coordinate system and coherently summed. Finally, the radar echo containing phase information can be obtained. Using small-scale rough models, our method is compared with the standard high-frequency numerical method, which verifies the effectiveness of the proposed method. Imaging results of a full-scale cone-shape target is presented, and the scattering model and echo generation problem of the full-scale convex targets with rough surfaces in THz bands are preliminary solved; this lays the foundation for future research on imaging regimes and algorithms.

  15. Multicomponent chemical imaging of pharmaceutical solid dosage forms with broadband CARS microscopy.

    Science.gov (United States)

    Hartshorn, Christopher M; Lee, Young Jong; Camp, Charles H; Liu, Zhen; Heddleston, John; Canfield, Nicole; Rhodes, Timothy A; Hight Walker, Angela R; Marsac, Patrick J; Cicerone, Marcus T

    2013-09-03

    We compare a coherent Raman imaging modality, broadband coherent anti-Stokes Raman scattering (BCARS) microscopy, with spontaneous Raman microscopy for quantitative and qualitative assessment of multicomponent pharmaceuticals. Indomethacin was used as a model active pharmaceutical ingredient (API) and was analyzed in a tabulated solid dosage form, embedded within commonly used excipients. In comparison with wide-field spontaneous Raman chemical imaging, BCARS acquired images 10× faster, at higher spatiochemical resolution and with spectra of much higher SNR, eliminating the need for multivariate methods to identify chemical components. The significant increase in spatiochemical resolution allowed identification of an unanticipated API phase that was missed by the spontaneous wide-field method and bulk Raman spectroscopy. We confirmed the presence of the unanticipated API phase using confocal spontaneous Raman, which provided spatiochemical resolution similar to BCARS but at 100× slower acquisition times.

  16. Experimental study on the location of energy windows for scatter correction by the TEW method in 201Tl imaging

    International Nuclear Information System (INIS)

    Kojima, Akihiro; Matsumoto, Masanori; Ohyama, Yoichi; Tomiguchi, Seiji; Kira, Mitsuko; Takahashi, Mutsumasa.

    1997-01-01

    To investigate validity of scatter correction by the TEW method in 201 Tl imaging, we performed an experimental study using the gamma camera with the capability to perform the TEW method and a plate source with a defect. Images were acquired with the triple energy window which is recommended by the gamma camera manufacturer. The result of the energy spectrum showed that backscattered photons were included within the lower sub-energy window and main energy window, and the spectral shapes in the upper half region of the photopeak (70 keV) were not changed greatly by the source shape and the thickness of scattering materials. The scatter fraction calculated using energy spectra and, visual observation and the contrast values measured at the defect using planar images also showed that substantial primary photons were included in the upper sub-energy window. In TEW method (for scatter correction), two sub-energy windows are expected to be defined on the part of energy region in which total counts mainly consist of scattered photons. Therefore, it is necessary to investigate the use of the upper sub-energy window on scatter correction by the TEW method in 201 Tl imaging. (author)

  17. Microwave imaging for conducting scatterers by hybrid particle swarm optimization with simulated annealing

    International Nuclear Information System (INIS)

    Mhamdi, B.; Grayaa, K.; Aguili, T.

    2011-01-01

    In this paper, a microwave imaging technique for reconstructing the shape of two-dimensional perfectly conducting scatterers by means of a stochastic optimization approach is investigated. Based on the boundary condition and the measured scattered field derived by transverse magnetic illuminations, a set of nonlinear integral equations is obtained and the imaging problem is reformulated in to an optimization problem. A hybrid approximation algorithm, called PSO-SA, is developed in this work to solve the scattering inverse problem. In the hybrid algorithm, particle swarm optimization (PSO) combines global search and local search for finding the optimal results assignment with reasonable time and simulated annealing (SA) uses certain probability to avoid being trapped in a local optimum. The hybrid approach elegantly combines the exploration ability of PSO with the exploitation ability of SA. Reconstruction results are compared with exact shapes of some conducting cylinders; and good agreements with the original shapes are observed.

  18. Imaging electrical conductivity, permeability, and/or permittivity contrasts using the Born Scattering Inversion (BSI)

    Science.gov (United States)

    Darrh, A.; Downs, C. M.; Poppeliers, C.

    2017-12-01

    Born Scattering Inversion (BSI) of electromagnetic (EM) data is a geophysical imaging methodology for mapping weak conductivity, permeability, and/or permittivity contrasts in the subsurface. The high computational cost of full waveform inversion is reduced by adopting the First Born Approximation for scattered EM fields. This linearizes the inverse problem in terms of Born scattering amplitudes for a set of effective EM body sources within a 3D imaging volume. Estimation of scatterer amplitudes is subsequently achieved by solving the normal equations. Our present BSI numerical experiments entail Fourier transforming real-valued synthetic EM data to the frequency-domain, and minimizing the L2 residual between complex-valued observed and predicted data. We are testing the ability of BSI to resolve simple scattering models. For our initial experiments, synthetic data are acquired by three-component (3C) electric field receivers distributed on a plane above a single point electric dipole within a homogeneous and isotropic wholespace. To suppress artifacts, candidate Born scatterer locations are confined to a volume beneath the receiver array. Also, we explore two different numerical linear algebra algorithms for solving the normal equations: Damped Least Squares (DLS), and Non-Negative Least Squares (NNLS). Results from NNLS accurately recover the source location only for a large dense 3C receiver array, but fail when the array is decimated, or is restricted to horizontal component data. Using all receiver stations and all components per station, NNLS results are relatively insensitive to a sub-sampled frequency spectrum, suggesting that coarse frequency-domain sampling may be adequate for good target resolution. Results from DLS are insensitive to diminishing array density, but contain spatially oscillatory structure. DLS-generated images are consistently centered at the known point source location, despite an abundance of surrounding structure.

  19. Robust imaging of localized scatterers using the singular value decomposition and ℓ1 minimization

    International Nuclear Information System (INIS)

    Chai, A; Moscoso, M; Papanicolaou, G

    2013-01-01

    We consider narrow band, active array imaging of localized scatterers in a homogeneous medium with and without additive noise. We consider both single and multiple illuminations and study ℓ 1 minimization-based imaging methods. We show that for large arrays, with array diameter comparable to range, and when scatterers are sparse and well separated, ℓ 1 minimization using a single illumination and without additive noise can recover the location and reflectivity of the scatterers exactly. For multiple illuminations, we introduce a hybrid method which combines the singular value decomposition and ℓ 1 minimization. This method can be used when the essential singular vectors of the array response matrix are available. We show that with this hybrid method we can recover the location and reflectivity of the scatterers exactly when there is no noise in the data. Numerical simulations indicate that the hybrid method is, in addition, robust to noise in the data. We also compare the ℓ 1 minimization-based methods with others including Kirchhoff migration, ℓ 2 minimization and multiple signal classification. (paper)

  20. X-ray scatter signatures for enhanced breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kidane, Ghirmay; Speller, Robert; Royle, Gary [Medical Physics and Bioengineering Department, University College Landon, 11-20 Capper Street, London WC1E 6JA (United Kingdom)

    1999-12-31

    Conventional mammographic imaging suffers from a low specificity. The main cause is the small difference in the x-ray attenuation properties of healthy and diseased tissue leading to poor contrast in the image. It has been observed that additional information on breast tissue type can be obtained from x-ray diffraction effects. A study of excised normal and neoplastic breast tissue samples using x-ray diffraction apparatus has been observed that significant differences exist in the measured spectra between carcinoma and healthy tissue adjacent to the carcinoma. Such a difference allows tissue type to be characterised according to is diseased state. Furthermore the information can be applied to improve diagnosis. It is proposed that collection and analysis of the scattered x-rays present during a mammographic procedure can supply the additional information and be used to improve the image contrast. The ultimate aim of the project is to improve the specificity of x-ray mammography. (authors) 10 refs., 3 figs.

  1. Dark-field hyperlens: Super-resolution imaging of weakly scattering objects

    DEFF Research Database (Denmark)

    Repän, Taavi; Lavrinenko, Andrei; Zhukovsky, Sergei

    2015-01-01

    : We propose a device for subwavelength optical imaging based on a metal-dielectric multilayer hyperlens designed in such a way that only large-wavevector (evanescent) waves are transmitted while all propagating (small-wavevector) waves from the object area are blocked by the hyperlens. We...... numerically demonstrate that as the result of such filtering, the image plane only contains scattered light from subwavelength features of the objects and is completely free from background illumination. Similar in spirit to conventional dark-field microscopy, the proposed dark-field hyperlens is shown...

  2. Image combination enhancement method for X-ray compton back-scattering security inspection body scanner

    International Nuclear Information System (INIS)

    Wang Huaiying; Zhang Yujin; Yang Lirui; Li Dong

    2011-01-01

    As for X-ray Compton Back-Scattering (CBS) body scanner, image clearness is very important for the performance of detecting the contraband hidden on the body. A new image combination enhancement method is provided based on characteristics of CBS body images and points of human vision. After processed by this method, the CBS image will be obviously improved with clear levels, distinct outline and uniform background. (authors)

  3. Small angle X-ray scattering experiments with three-dimensional imaging gas detectors

    International Nuclear Information System (INIS)

    La Monaca, A.; Iannuzzi, M.; Messi, R.

    1985-01-01

    Measurements of small angle X-ray scattering of lupolen - R, dry collagen and dry cornea are presented. The experiments have been performed with synchrotron radiation and a new three-dimensional imaging drif-chamber gas detector

  4. A hybrid approach to simulate multiple photon scattering in X-ray imaging

    International Nuclear Information System (INIS)

    Freud, N.; Letang, J.-M.; Babot, D.

    2005-01-01

    A hybrid simulation approach is proposed to compute the contribution of scattered radiation in X- or γ-ray imaging. This approach takes advantage of the complementarity between the deterministic and probabilistic simulation methods. The proposed hybrid method consists of two stages. Firstly, a set of scattering events occurring in the inspected object is determined by means of classical Monte Carlo simulation. Secondly, this set of scattering events is used as a starting point to compute the energy imparted to the detector, with a deterministic algorithm based on a 'forced detection' scheme. For each scattering event, the probability for the scattered photon to reach each pixel of the detector is calculated using well-known physical models (form factor and incoherent scattering function approximations, in the case of Rayleigh and Compton scattering respectively). The results of the proposed hybrid approach are compared to those obtained with the Monte Carlo method alone (Geant4 code) and found to be in excellent agreement. The convergence of the results when the number of scattering events increases is studied. The proposed hybrid approach makes it possible to simulate the contribution of each type (Compton or Rayleigh) and order of scattering, separately or together, with a single PC, within reasonable computation times (from minutes to hours, depending on the number of pixels of the detector). This constitutes a substantial benefit, compared to classical simulation methods (Monte Carlo or deterministic approaches), which usually requires a parallel computing architecture to obtain comparable results

  5. A hybrid approach to simulate multiple photon scattering in X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Freud, N. [CNDRI, Laboratory of Nondestructive Testing using Ionizing Radiations, INSA-Lyon Scientific and Technical University, Bat. Antoine de Saint-Exupery, 20, avenue Albert Einstein, 69621 Villeurbanne Cedex (France)]. E-mail: nicolas.freud@insa-lyon.fr; Letang, J.-M. [CNDRI, Laboratory of Nondestructive Testing using Ionizing Radiations, INSA-Lyon Scientific and Technical University, Bat. Antoine de Saint-Exupery, 20, avenue Albert Einstein, 69621 Villeurbanne Cedex (France); Babot, D. [CNDRI, Laboratory of Nondestructive Testing using Ionizing Radiations, INSA-Lyon Scientific and Technical University, Bat. Antoine de Saint-Exupery, 20, avenue Albert Einstein, 69621 Villeurbanne Cedex (France)

    2005-01-01

    A hybrid simulation approach is proposed to compute the contribution of scattered radiation in X- or {gamma}-ray imaging. This approach takes advantage of the complementarity between the deterministic and probabilistic simulation methods. The proposed hybrid method consists of two stages. Firstly, a set of scattering events occurring in the inspected object is determined by means of classical Monte Carlo simulation. Secondly, this set of scattering events is used as a starting point to compute the energy imparted to the detector, with a deterministic algorithm based on a 'forced detection' scheme. For each scattering event, the probability for the scattered photon to reach each pixel of the detector is calculated using well-known physical models (form factor and incoherent scattering function approximations, in the case of Rayleigh and Compton scattering respectively). The results of the proposed hybrid approach are compared to those obtained with the Monte Carlo method alone (Geant4 code) and found to be in excellent agreement. The convergence of the results when the number of scattering events increases is studied. The proposed hybrid approach makes it possible to simulate the contribution of each type (Compton or Rayleigh) and order of scattering, separately or together, with a single PC, within reasonable computation times (from minutes to hours, depending on the number of pixels of the detector). This constitutes a substantial benefit, compared to classical simulation methods (Monte Carlo or deterministic approaches), which usually requires a parallel computing architecture to obtain comparable results.

  6. An inter-crystal scatter correction method for DOI PET image reconstruction

    International Nuclear Information System (INIS)

    Lam, Chih Fung; Hagiwara, Naoki; Obi, Takashi; Yamaguchi, Masahiro; Yamaya, Taiga; Murayama, Hideo

    2006-01-01

    New positron emission tomography (PET) scanners utilize depth-of-interaction (DOI) information to improve image resolution, particularly at the edge of field-of-view while maintaining high detector sensitivity. However, the inter-crystal scatter (ICS) effect cannot be neglected in DOI scanners due to the use of smaller crystals. ICS is the phenomenon wherein there are multiple scintillations for irradiation of a gamma photon due to Compton scatter in detecting crystals. In the case of ICS, only one scintillation position is approximated for detectors with Anger-type logic calculation. This causes an error in position detection and ICS worsens the image contrast, particularly for smaller hotspots. In this study, we propose to model an ICS probability by using a Monte Carlo simulator. The probability is given as a statistical relationship between the gamma photon first interaction crystal pair and the detected crystal pair. It is then used to improve the system matrix of a statistical image reconstruction algorithm, such as maximum likehood expectation maximization (ML-EM) in order to correct for the position error caused by ICS. We apply the proposed method to simulated data of the jPET-D4, which is a four-layer DOI PET being developed at the National Institute of Radiological Sciences. Our computer simulations show that image contrast is recovered successfully by the proposed method. (author)

  7. Numerical correction of anti-symmetric aberrations in single HRTEM images of weakly scattering 2D-objects

    International Nuclear Information System (INIS)

    Lehtinen, Ossi; Geiger, Dorin; Lee, Zhongbo; Whitwick, Michael Brian; Chen, Ming-Wei; Kis, Andras; Kaiser, Ute

    2015-01-01

    Here, we present a numerical post-processing method for removing the effect of anti-symmetric residual aberrations in high-resolution transmission electron microscopy (HRTEM) images of weakly scattering 2D-objects. The method is based on applying the same aberrations with the opposite phase to the Fourier transform of the recorded image intensity and subsequently inverting the Fourier transform. We present the theoretical justification of the method, and its verification based on simulated images in the case of low-order anti-symmetric aberrations. Ultimately the method is applied to experimental hardware aberration-corrected HRTEM images of single-layer graphene and MoSe 2 resulting in images with strongly reduced residual low-order aberrations, and consequently improved interpretability. Alternatively, this method can be used to estimate by trial and error the residual anti-symmetric aberrations in HRTEM images of weakly scattering objects

  8. Resonance Polarization and Phase-Mismatched CARS of Pheophytin b Excited in the Qy Band

    NARCIS (Netherlands)

    de Boeij, W.P.; Lucassen, G.W.; Lucassen, Gerald; Otto, Cornelis; Greve, Jan

    1993-01-01

    Resonance polarization and phase-mismatched coherent anti-Stokes Raman scattering (CARS) measurements were performed on pheophytin b dissolved in acetone excited in the Qy absorption band, where strong broad fluorescence makes spontaneous Raman spectroscopy impossible. The phase-mismatching

  9. DISCOVERY OF SUBSTRUCTURE IN THE SCATTER-BROADENED IMAGE OF SGR A*

    Energy Technology Data Exchange (ETDEWEB)

    Gwinn, C. R. [Physics Department, Broida Hall, University of California, Santa Barbara, CA 93117 (United States); Kovalev, Y. Y.; Soglasnov, V. A. [Astro Space Center, Lebedev Physical Institute, Russian Academy of Sciences, Profsoyuznaya Str. 84/32, Moscow 117997 (Russian Federation); Johnson, M. D., E-mail: cgwinn@physics.ucsb.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2014-10-10

    We have detected substructure within the smooth scattering disk of the celebrated Galactic center radio source Sagittarius A* (Sgr A*). We observed this structure at 1.3 cm wavelength with the Very Long Baseline Array together with the Green Bank Telescope, on baselines of up to 3000 km, long enough to completely resolve the average scattering disk. Such structure is predicted theoretically as a consequence of refraction by large-scale plasma fluctuations in the interstellar medium. Along with the much-studied θ{sub d}∝λ{sup 2} scaling of angular broadening θ{sub d} with observing wavelength λ, our observations indicate that the spectrum of interstellar turbulence is shallow with an inner scale larger than 300 km. The substructure is consistent with an intrinsic size of about 1 mas at 1.3 cm wavelength, as inferred from deconvolution of the average scattering. Further observations of the substructure can set stronger constraints on the properties of scattering material and on the intrinsic size of Sgr A*. These constraints will guide our understanding of the effects of scatter broadening and the emission physics near the black hole in images with the Event Horizon Telescope at millimeter wavelengths.

  10. Corrections for the effects of accidental coincidences, Compton scatter, and object size in positron emission mammography (PEM) imaging

    Science.gov (United States)

    Raylman, R. R.; Majewski, S.; Wojcik, R.; Weisenberger, A. G.; Kross, B.; Popov, V.

    2001-06-01

    Positron emission mammography (PEM) has begun to show promise as an effective method for the detection of breast lesions. Due to its utilization of tumor-avid radiopharmaceuticals labeled with positron-emitting radionuclides, this technique may be especially useful in imaging of women with radiodense or fibrocystic breasts. While the use of these radiotracers affords PEM unique capabilities, it also introduces some limitations. Specifically, acceptance of accidental and Compton-scattered coincidence events can decrease lesion detectability. The authors studied the effect of accidental coincidence events on PEM images produced by the presence of /sup 18/F-Fluorodeoxyglucose in the organs of a subject using an anthropomorphic phantom. A delayed-coincidence technique was tested as a method for correcting PEM images for the occurrence of accidental events. Also, a Compton scatter correction algorithm designed specifically for PEM was developed and tested using a compressed breast phantom. Finally, the effect of object size on image counts and a correction for this effect were explored. The imager used in this study consisted of two PEM detector heads mounted 20 cm apart on a Lorad biopsy apparatus. The results demonstrated that a majority of the accidental coincidence events (/spl sim/80%) detected by this system were produced by radiotracer uptake in the adipose and muscle tissue of the torso. The presence of accidental coincidence events was shown to reduce lesion detectability. Much of this effect was eliminated by correction of the images utilizing estimates of accidental-coincidence contamination acquired with delayed coincidence circuitry built into the PEM system. The Compton scatter fraction for this system was /spl sim/14%. Utilization of a new scatter correction algorithm reduced the scatter fraction to /spl sim/1.5%. Finally, reduction of count recovery due to object size was measured and a correction to the data applied. Application of correction techniques

  11. Focused fluorescence excitation with time-reversed ultrasonically encoded light and imaging in thick scattering media

    International Nuclear Information System (INIS)

    Lai, Puxiang; Suzuki, Yuta; Xu, Xiao; Wang, Lihong V

    2013-01-01

    Scattering dominates light propagation in biological tissue, and therefore restricts both resolution and penetration depth in optical imaging within thick tissue. As photons travel into the diffusive regime, typically 1 mm beneath human skin, their trajectories transition from ballistic to diffusive due to the increased number of scattering events, which makes it impossible to focus, much less track, photon paths. Consequently, imaging methods that rely on controlled light illumination are ineffective in deep tissue. This problem has recently been addressed by a novel method capable of dynamically focusing light in thick scattering media via time reversal of ultrasonically encoded (TRUE) diffused light. Here, using photorefractive materials as phase conjugate mirrors, we show a direct visualization and dynamic control of optical focusing with this light delivery method, and demonstrate its application for focused fluorescence excitation and imaging in thick turbid media. These abilities are increasingly critical for understanding the dynamic interactions of light with biological matter and processes at different system levels, as well as their applications for biomedical diagnosis and therapy. (letter)

  12. Direct imaging of turbid media using long-time back-scattered photons, a numerical study

    International Nuclear Information System (INIS)

    Boulanger, Joan; Liu, Fengshan; El Akel, Azad; Charette, Andre

    2006-01-01

    Direct imaging is a convenient way to obtain information on the interior of a semi-transparent turbid material by non-invasive probing using laser beams. The major difficulty is linked to scattering which scrambles the directional information coming from the laser beam. It is found in this paper that the long-term multiple-scattered reflected photons may provide structural information on the inside of a material, which offers an interesting alternative to using information only from un-scattered or least-scattered photons as obtained from current direct imaging set-ups for thin media. Based on some observations on a non-homogeneous three layered 1-D slab irradiated by a laser pulse, a direct probing methodology making use of the long-term back-scattered photons is illustrated to recover inclusions positions in a turbid 2-D medium. First, the numerical model is presented. Second, an extended parametrical study is conducted on 1-D homogeneous and non-homogeneous slabs with different laser pulse durations. It is found that the reflected asymptotic logarithmic slope carries information about the presence of the inclusion and that short laser pulses are not necessary since only the decaying parts of the remanent optical signature is important. Longer laser pulses allow a higher level of energy injection and signal to noise ratio. Third, those observations are used for the probing of a 2-D non-homogeneous phantom. (author)

  13. Imaging Internal Structure of Long Bones Using Wave Scattering Theory.

    Science.gov (United States)

    Zheng, Rui; Le, Lawrence H; Sacchi, Mauricio D; Lou, Edmond

    2015-11-01

    An ultrasonic wavefield imaging method is developed to reconstruct the internal geometric properties of long bones using zero-offset data acquired axially on the bone surface. The imaging algorithm based on Born scattering theory is implemented with the conjugate gradient iterative method to reconstruct an optimal image. In the case of a multilayered velocity model, ray tracing through a smooth medium is used to calculate the traveled distance and traveling time. The method has been applied to simulated and real data. The results indicate that the interfaces of the top cortex are accurately imaged and correspond favorably to the original model. The reconstructed bottom cortex below the marrow is less accurate mainly because of the low signal-to-noise ratio. The current imaging method has successfully recovered the top cortical layer, providing a potential tool to investigate the internal structures of long bone cortex for osteoporosis assessment. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  14. Scatter and crosstalk corrections for {sup 99m}Tc/{sup 123}I dual-radionuclide imaging using a CZT SPECT system with pinhole collimators

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Peng [Department of Diagnostic Radiology, Yale University, New Haven, Connecticut 06520 and Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Hutton, Brian F. [Institute of Nuclear Medicine, University College London, London WC1E 6BT, United Kingdom and Centre for Medical Radiation Physics, University of Wollongong, New South Wales 2522 (Australia); Holstensson, Maria [Department of Nuclear Medicine, Karolinska University Hospital, Stockholm 14186 (Sweden); Ljungberg, Michael [Department of Medical Radiation Physics, Lund University, Lund 222 41 (Sweden); Hendrik Pretorius, P. [Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655 (United States); Prasad, Rameshwar; Liu, Chi, E-mail: chi.liu@yale.edu [Department of Diagnostic Radiology, Yale University, New Haven, Connecticut 06520 (United States); Ma, Tianyu; Liu, Yaqiang; Wang, Shi [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Thorn, Stephanie L.; Stacy, Mitchel R.; Sinusas, Albert J. [Department of Internal Medicine, Yale Translational Research Imaging Center, Yale University, New Haven, Connecticut 06520 (United States)

    2015-12-15

    Purpose: The energy spectrum for a cadmium zinc telluride (CZT) detector has a low energy tail due to incomplete charge collection and intercrystal scattering. Due to these solid-state detector effects, scatter would be overestimated if the conventional triple-energy window (TEW) method is used for scatter and crosstalk corrections in CZT-based imaging systems. The objective of this work is to develop a scatter and crosstalk correction method for {sup 99m}Tc/{sup 123}I dual-radionuclide imaging for a CZT-based dedicated cardiac SPECT system with pinhole collimators (GE Discovery NM 530c/570c). Methods: A tailing model was developed to account for the low energy tail effects of the CZT detector. The parameters of the model were obtained using {sup 99m}Tc and {sup 123}I point source measurements. A scatter model was defined to characterize the relationship between down-scatter and self-scatter projections. The parameters for this model were obtained from Monte Carlo simulation using SIMIND. The tailing and scatter models were further incorporated into a projection count model, and the primary and self-scatter projections of each radionuclide were determined with a maximum likelihood expectation maximization (MLEM) iterative estimation approach. The extracted scatter and crosstalk projections were then incorporated into MLEM image reconstruction as an additive term in forward projection to obtain scatter- and crosstalk-corrected images. The proposed method was validated using Monte Carlo simulation, line source experiment, anthropomorphic torso phantom studies, and patient studies. The performance of the proposed method was also compared to that obtained with the conventional TEW method. Results: Monte Carlo simulations and line source experiment demonstrated that the TEW method overestimated scatter while their proposed method provided more accurate scatter estimation by considering the low energy tail effect. In the phantom study, improved defect contrasts were

  15. Light scattering and transmission measurement using digital imaging for online analysis of constituents in milk

    Science.gov (United States)

    Jain, Pranay; Sarma, Sanjay E.

    2015-05-01

    Milk is an emulsion of fat globules and casein micelles dispersed in an aqueous medium with dissolved lactose, whey proteins and minerals. Quantification of constituents in milk is important in various stages of the dairy supply chain for proper process control and quality assurance. In field-level applications, spectrophotometric analysis is an economical option due to the low-cost of silicon photodetectors, sensitive to UV/Vis radiation with wavelengths between 300 - 1100 nm. Both absorption and scattering are witnessed as incident UV/Vis radiation interacts with dissolved and dispersed constituents in milk. These effects can in turn be used to characterize the chemical and physical composition of a milk sample. However, in order to simplify analysis, most existing instrument require dilution of samples to avoid effects of multiple scattering. The sample preparation steps are usually expensive, prone to human errors and unsuitable for field-level and online analysis. This paper introduces a novel digital imaging based method of online spectrophotometric measurements on raw milk without any sample preparation. Multiple LEDs of different emission spectra are used as discrete light sources and a digital CMOS camera is used as an image sensor. The extinction characteristic of samples is derived from captured images. The dependence of multiple scattering on power of incident radiation is exploited to quantify scattering. The method has been validated with experiments for response with varying fat concentrations and fat globule sizes. Despite of the presence of multiple scattering, the method is able to unequivocally quantify extinction of incident radiation and relate it to the fat concentrations and globule sizes of samples.

  16. First Scattered-Light Images of the Gas-Rich Debris Disk Around 49 Ceti

    Science.gov (United States)

    Choquet, Elodie; Milli, Julien; Wahhaj, Zahed; Soummer, Remi; Roberge, Aki; Augereau, Jean-Charles; Booth, Mark; Absil, Olivier; Boccaletti, Anthony; Chen, Christine H.; hide

    2017-01-01

    We present the first scattered-light images of the debris disk around 49 Ceti, a approximately 40 Myr A1 main-sequence star at 59 pc, famous for hosting two massive dust belts as well as large quantities of atomic and molecular gas. The outer disk is revealed in reprocessed archival Hubble Space Telescope NICMOS-F110W images, as well as new coronagraphic H-band images from the Very Large Telescope SPHERE instrument. The disk extends from 1."1 (65 au) to 4." 6 (250 au) and is seen at an inclination of 73 deg, which refines previous measurements at lower angular resolution. We also report no companion detection larger than 3 MJup at projected separations beyond 20 au from the star (0." 34). Comparison between the F110W and H-band images is consistent with a gray color of 49 Ceti's dust, indicating grains larger than approximately greater than 2 micrometers. Our photometric measurements indicate a scattering efficiency/infrared excess ratio of 0.2-0.4, relatively low compared to other characterized debris disks. We find that 49 Ceti presents morphological and scattering properties very similar to the gas-rich HD 131835 system. From our constraint on the disk inclination we find that the atomic gas previously detected in absorption must extend to the inner disk, and that the latter must be depleted of CO gas. Building on previous studies, we propose a schematic view of the system describing the dust and gas structure around 49 Ceti and hypothetical scenarios for the gas nature and origin.

  17. Coherent anti-Stokes Raman scattering (CARS) detection or hot atom reaction product internal energy distributions

    International Nuclear Information System (INIS)

    Quick, C.R. Jr.; Moore, D.S.

    1983-01-01

    Coherent anti-Stokes Raman spectroscopy (CARS) is being utilized to investigate the rovibrational energy distributions produced by reactive and nonreactive collisions of translationally hot atoms with simple molecules. Translationally hot H atoms are produced by ArF laser photolysis of HBr. Using CARS we have monitored, in a state-specific and time-resolved manner, rotational excitation of HBr (v = 0), vibrational excitation of HBr and H 2 , rovibrational excitation of H 2 produced by the reaction H + HBr → H 2 + Br, and Br atom production by photolysis of HBr

  18. Size-dependent endocytosis of gold nanoparticles studied by three-dimensional mapping of plasmonic scattering images

    Directory of Open Access Journals (Sweden)

    Lee Chia-Wei

    2010-12-01

    Full Text Available Abstract Background Understanding the endocytosis process of gold nanoparticles (AuNPs is important for the drug delivery and photodynamic therapy applications. The endocytosis in living cells is usually studied by fluorescent microscopy. The fluorescent labeling suffers from photobleaching. Besides, quantitative estimation of the cellular uptake is not easy. In this paper, the size-dependent endocytosis of AuNPs was investigated by using plasmonic scattering images without any labeling. Results The scattering images of AuNPs and the vesicles were mapped by using an optical sectioning microscopy with dark-field illumination. AuNPs have large optical scatterings at 550-600 nm wavelengths due to localized surface plasmon resonances. Using an enhanced contrast between yellow and blue CCD images, AuNPs can be well distinguished from cellular organelles. The tracking of AuNPs coated with aptamers for surface mucin glycoprotein shows that AuNPs attached to extracellular matrix and moved towards center of the cell. Most 75-nm-AuNPs moved to the top of cells, while many 45-nm-AuNPs entered cells through endocytosis and accumulated in endocytic vesicles. The amounts of cellular uptake decreased with the increase of particle size. Conclusions We quantitatively studied the endocytosis of AuNPs with different sizes in various cancer cells. The plasmonic scattering images confirm the size-dependent endocytosis of AuNPs. The 45-nm-AuNP is better for drug delivery due to its higher uptake rate. On the other hand, large AuNPs are immobilized on the cell membrane. They can be used to reconstruct the cell morphology.

  19. Incoherent-scatter computed tomography with monochromatic synchrotron x ray: feasibility of multi-CT imaging system for simultaneous measurement-of fluorescent and incoherent scatter x rays

    Science.gov (United States)

    Yuasa, T.; Akiba, M.; Takeda, T.; Kazama, M.; Hoshino, A.; Watanabe, Y.; Hyodo, K.; Dilmanian, F. A.; Akatsuka, T.; Itai, Y.

    1997-10-01

    We describe a new system of incoherent scatter computed tomography (ISCT) using monochromatic synchrotron X rays, and we discuss its potential to be used in in vivo imaging for medical use. The system operates on the basis of computed tomography (CT) of the first generation. The reconstruction method for ISCT uses the least squares method with singular value decomposition. The research was carried out at the BLNE-5A bending magnet beam line of the Tristan Accumulation Ring in KEK, Japan. An acrylic cylindrical phantom of 20-mm diameter containing a cross-shaped channel was imaged. The channel was filled with a diluted iodine solution with a concentration of 200 /spl mu/gI/ml. Spectra obtained with the system's high purity germanium (HPGe) detector separated the incoherent X-ray line from the other notable peaks, i.e., the iK/sub /spl alpha// and K/sub /spl beta/1/ X-ray fluorescent lines and the coherent scattering peak. CT images were reconstructed from projections generated by integrating the counts In the energy window centering around the incoherent scattering peak and whose width was approximately 2 keV. The reconstruction routine employed an X-ray attenuation correction algorithm. The resulting image showed more homogeneity than one without the attenuation correction.

  20. Ultrasound-mediated Optical Imaging and Focusing in Scattering Media

    Science.gov (United States)

    Suzuki, Yuta

    Because of its non-ionizing and molecular sensing nature, light has been an attractive tool in biomedicine. Scanning an optical focus allows not only high-resolution imaging but also manipulation and therapy. However, due to multiple photon scattering events, conventional optical focusing using an ordinary lens is limited to shallow depths of one transport mean free path (lt'), which corresponds to approximately 1 mm in human tissue. To overcome this limitation, ultrasonic modulation (or encoding ) of diffuse light inside scattering media has enabled us to develop both deep-tissue optical imaging and focusing techniques, namely, ultrasound-modulated optical tomography (UOT) and time-reversed ultrasonically encoded (TRUE) optical focusing. While UOT measures the power of the encoded light to obtain an image, TRUE focusing generates a time-reversed (or phase-conjugated) copy of the encoded light, using a phase-conjugate mirror to focus light inside scattering media beyond 1 lt'. However, despite extensive progress in both UOT and TRUE focusing, the low signal-to-noise ratio in encoded-light detection remains a challenge to meeting both the speed and depth requirements for in vivo applications. This dissertation describes technological advancements of both UOT and TRUE focusing, in terms of their signal detection sensitivities, operational depths, and operational speeds. The first part of this dissertation describes sensitivity improvements of encoded-light detection in UOT, achieved by using a large area (˜5 cm x 5 cm) photorefractive polymer. The photorefractive polymer allowed us to improve the detection etendue by more than 10 times that of previous detection schemes. It has enabled us to resolve absorbing objects embedded inside diffused media thicker than 80 lt', using moderate light power and short ultrasound pulses. The second part of this dissertation describes energy enhancement and fluorescent excitation using TRUE focusing in turbid media, using

  1. Optical scatter imaging of cellular and mitochondrial swelling in brain tissue models of stroke

    Science.gov (United States)

    Johnson, Lee James

    2001-08-01

    The severity of brain edema resulting from a stroke can determine a patient's survival and the extent of their recovery. Cellular swelling is the microscopic source of a significant part of brain edema. Mitochondrial swelling also appears to be a determining event in the death or survival of the cells that are injured during a stroke. Therapies for reducing brain edema are not effective in many cases and current treatments of stroke do not address mitochondrial swelling at all. This dissertation is motivated by the lack of a complete understanding of cellular swelling resulting from stroke and the lack of a good method to begin to study mitochondrial swelling resulting from stroke in living brain tissue. In this dissertation, a novel method of detecting mitochondrial and cellular swelling in living hippocampal slices is developed and validated. The system is used to obtain spatial and temporal information about cellular and mitochondrial swelling resulting from various models of stroke. The effect of changes in water content on light scatter and absorption are examined in two models of brain edema. The results of this study demonstrate that optical techniques can be used to detect changes in water content. Mie scatter theory, the theoretical basis of the dual- angle scatter ratio imaging system, is presented. Computer simulations based on Mie scatter theory are used to determine the optimal angles for imaging. A detailed account of the early systems is presented to explain the motivations for the system design, especially polarization, wavelength and light path. Mitochondrial sized latex particles are used to determine the system response to changes in scattering particle size and concentration. The dual-angle scatter ratio imaging system is used to distinguish between osmotic and excitotoxic models of stroke injury. Such distinction cannot be achieved using the current techniques to study cellular swelling in hippocampal slices. The change in the scatter ratio is

  2. Quantitative multiphoton imaging

    Science.gov (United States)

    König, Karsten; Weinigel, Martin; Breunig, Hans Georg; Uchugonova, Aisada

    2014-02-01

    Certified clinical multiphoton tomographs for label-free multidimensional high-resolution in vivo imaging have been introduced to the market several years ago. Novel tomographs include a flexible 360° scan head attached to a mechanooptical arm for autofluorescence and SHG imaging as well as a CARS module. Non-fluorescent lipids and water, mitochondrial fluorescent NAD(P)H, fluorescent elastin, keratin, and melanin as well as SHG-active collagen can be imaged in vivo with submicron resolution in human skin. Sensitive and rapid detectors allow single photon counting and the construction of 3D maps where the number of detected photons per voxel is depicted. Intratissue concentration profiles from endogenous as well exogenous substances can be generated when the number of detected photons can be correlated with the number of molecules with respect to binding and scattering behavior. Furthermore, the skin ageing index SAAID based on the ratio elastin/collagen as well as the epidermis depth based on the onset of SHG generation can be determined.

  3. The market for gasoline cars and diesel cars

    International Nuclear Information System (INIS)

    Verboven, F.

    1999-01-01

    In Europe the tax tariff is much lower for diesel fuel than for gasoline. This benefit is used by manufacturers to increase the price of diesel-fueled cars, which limits the possibility to control the use of diesel cars by means of a fiscal policy (tax incidence). Attention is paid to the impact of fiscal advantages for diesel cars on the purchasing behavior of the consumer and the pricing policy (price discrimination) of the car manufacturers. 1 ref

  4. Adaptation Model for Corporate Car Sharing in the Car Rental Industry

    OpenAIRE

    Matthes, Martin

    2016-01-01

    The focus of this thesis was on developing an adaption model for implementing a corporate car sharing service within the existing infrastructure of a car rental company. The investigated case companies were a leading Finnish car rental franchisee and an international car sharing subsidiary, largely owned by the car rental franchisor, which offers corporate car sharing solutions in major European countries. Adapting this new service in Finland will help the car rental franchisee to assert its ...

  5. A parallelizable compression scheme for Monte Carlo scatter system matrices in PET image reconstruction

    International Nuclear Information System (INIS)

    Rehfeld, Niklas; Alber, Markus

    2007-01-01

    Scatter correction techniques in iterative positron emission tomography (PET) reconstruction increasingly utilize Monte Carlo (MC) simulations which are very well suited to model scatter in the inhomogeneous patient. Due to memory constraints the results of these simulations are not stored in the system matrix, but added or subtracted as a constant term or recalculated in the projector at each iteration. This implies that scatter is not considered in the back-projector. The presented scheme provides a method to store the simulated Monte Carlo scatter in a compressed scatter system matrix. The compression is based on parametrization and B-spline approximation and allows the formation of the scatter matrix based on low statistics simulations. The compression as well as the retrieval of the matrix elements are parallelizable. It is shown that the proposed compression scheme provides sufficient compression so that the storage in memory of a scatter system matrix for a 3D scanner is feasible. Scatter matrices of two different 2D scanner geometries were compressed and used for reconstruction as a proof of concept. Compression ratios of 0.1% could be achieved and scatter induced artifacts in the images were successfully reduced by using the compressed matrices in the reconstruction algorithm

  6. Distortionary company car taxation: deadweight losses through increased car ownership

    NARCIS (Netherlands)

    van Ommeren, J.N.; Gutierrez Puigarnau, E.

    2013-01-01

    We analyse the effects of distortionary company car taxation through increased household car consumption for the Netherlands. We use several identification strategies and demonstrate that for about 20 % of households company car possession increases car ownership. The annual welfare loss of

  7. An energy-subtraction Compton scatter camera design for in vivo medical imaging of radiopharmaceuticals

    International Nuclear Information System (INIS)

    Rohe, R.C.; Valentine, J.D.

    1996-01-01

    A Compton scatter camera (CSC) design is proposed for imaging radioisotopes used as biotracers. A clinical version may increase sensitivity by a factor of over 100, while maintaining or improving spatial resolution, as compared with existing Anger cameras that use lead collimators. This novel approach is based on using energy subtraction (ΔE = E 0 - E SC , where E 0 , ΔE, and E SC are the energy of the emitted gamma ray, the energy deposited by the initial Compton scatter, and the energy of the Compton scattered photon) to determine the amount of energy deposited in the primary system. The energy subtraction approach allows the requirement of high energy resolution to be placed on a secondary detector system instead of the primary detector system. Requiring primary system high energy resolution has significantly limited previous CSC designs for medical imaging applications. Furthermore, this approach is dependent on optimizing the camera design for data acquisition of gamma rays that undergo only one Compton scatter in a low-Z primary detector system followed by a total absorption of the Compton scattered photon in a high-Z secondary detector system. The proposed approach allows for a more compact primary detector system, a more simplified pulse processing interface, and a much less complicated detector cooling scheme as compared with previous CSC designs. Analytical calculations and Monte Carlo simulation results for some specific detector materials and geometries are presented

  8. Electromagnetic imaging of multiple-scattering small objects: non-iterative analytical approach

    International Nuclear Information System (INIS)

    Chen, X; Zhong, Y

    2008-01-01

    Multiple signal classification (MUSIC) imaging method and the least squares method are applied to solve the electromagnetic inverse scattering problem of determining the locations and polarization tensors of a collection of small objects embedded in a known background medium. Based on the analysis of induced electric and magnetic dipoles, the proposed MUSIC method is able to deal with some special scenarios, due to the shapes and materials of objects, to which the standard MUSIC doesn't apply. After the locations of objects are obtained, the nonlinear inverse problem of determining the polarization tensors of objects accounting for multiple scattering between objects is solved by a non-iterative analytical approach based on the least squares method

  9. First Scattered-light Images of the Gas-rich Debris Disk around 49 Ceti

    Energy Technology Data Exchange (ETDEWEB)

    Choquet, Élodie [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Milli, Julien; Wahhaj, Zahed [European Southern Observatory, Alonso de Còrdova 3107, Vitacura, Casilla 19001, Santiago (Chile); Soummer, Rémi; Chen, Christine H.; Debes, John H. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Roberge, Aki [Exoplanets and Stellar Astrophysics Laboratory, NASA Goddard Space Flight Center, Code 667, Greenbelt, MD 20771 (United States); Augereau, Jean-Charles [Univ. Grenoble Alpes, CNRS, IPAG, F-38000 Grenoble (France); Booth, Mark [Astrophysikalisches Institut und Universitätssternwarte, Friedrich-Schiller-Universität Jena, Schillergäßchen 2-3, D-07745 Jena (Germany); Absil, Olivier [Space sciences, Technologies and Astrophysics Research (STAR) Institute, Université de Liège, 19 Allée du Six Août, B-4000 Liège (Belgium); Boccaletti, Anthony [LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité, 5 place Jules Janssen, F-92195 Meudon (France); Burgo, Carlos del, E-mail: echoquet@jpl.nasa.gov [Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis Enrique Erro 1, Sta. Ma. Tonantzintla, Puebla (Mexico); and others

    2017-01-10

    We present the first scattered-light images of the debris disk around 49 Ceti, a ∼40 Myr A1 main-sequence star at 59 pc, famous for hosting two massive dust belts as well as large quantities of atomic and molecular gas. The outer disk is revealed in reprocessed archival Hubble Space Telescope NICMOS-F110W images, as well as new coronagraphic H-band images from the Very Large Telescope SPHERE instrument. The disk extends from 1.″1 (65 au) to 4.″6 (250 au) and is seen at an inclination of 73°, which refines previous measurements at lower angular resolution. We also report no companion detection larger than 3 M {sub Jup} at projected separations beyond 20 au from the star (0.″34). Comparison between the F110W and H-band images is consistent with a gray color of 49 Ceti’s dust, indicating grains larger than ≳2 μ m. Our photometric measurements indicate a scattering efficiency/infrared excess ratio of 0.2–0.4, relatively low compared to other characterized debris disks. We find that 49 Ceti presents morphological and scattering properties very similar to the gas-rich HD 131835 system. From our constraint on the disk inclination we find that the atomic gas previously detected in absorption must extend to the inner disk, and that the latter must be depleted of CO gas. Building on previous studies, we propose a schematic view of the system describing the dust and gas structure around 49 Ceti and hypothetical scenarios for the gas nature and origin.

  10. Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media

    Science.gov (United States)

    Edrei, Eitan; Scarcelli, Giuliano

    2016-09-01

    High-resolution imaging through turbid media is a fundamental challenge of optical sciences that has attracted a lot of attention in recent years for its wide range of potential applications. Here, we demonstrate that the resolution of imaging systems looking behind a highly scattering medium can be improved below the diffraction-limit. To achieve this, we demonstrate a novel microscopy technique enabled by the optical memory effect that uses a deconvolution image processing and thus it does not require iterative focusing, scanning or phase retrieval procedures. We show that this newly established ability of direct imaging through turbid media provides fundamental and practical advantages such as three-dimensional refocusing and unambiguous object reconstruction.

  11. An improved car-following model accounting for the preceding car's taillight

    Science.gov (United States)

    Zhang, Jian; Tang, Tie-Qiao; Yu, Shao-Wei

    2018-02-01

    During the deceleration process, the preceding car's taillight may have influences on its following car's driving behavior. In this paper, we propose an extended car-following model with consideration of the preceding car's taillight. Two typical situations are used to simulate each car's movement and study the effects of the preceding car's taillight on the driving behavior. Meanwhile, sensitivity analysis of the model parameter is in detail discussed. The numerical results show that the proposed model can improve the stability of traffic flow and the traffic safety can be enhanced without a decrease of efficiency especially when cars pass through a signalized intersection.

  12. 49 CFR 1247.1 - Annual Report of Cars Loaded and Cars Terminated.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Annual Report of Cars Loaded and Cars Terminated... TRANSPORTATION BOARD, DEPARTMENT OF TRANSPORTATION (CONTINUED) ACCOUNTS, RECORDS AND REPORTS REPORT OF CARS LOADED AND CARS TERMINATED § 1247.1 Annual Report of Cars Loaded and Cars Terminated. Beginning with the...

  13. Label-free and live cell imaging by interferometric scattering microscopy.

    Science.gov (United States)

    Park, Jin-Sung; Lee, Il-Buem; Moon, Hyeon-Min; Joo, Jong-Hyeon; Kim, Kyoung-Hoon; Hong, Seok-Cheol; Cho, Minhaeng

    2018-03-14

    Despite recent remarkable advances in microscopic techniques, it still remains very challenging to directly observe the complex structure of cytoplasmic organelles in live cells without a fluorescent label. Here we report label-free and live-cell imaging of mammalian cell, Escherischia coli , and yeast, using interferometric scattering microscopy, which reveals the underlying structures of a variety of cytoplasmic organelles as well as the underside structure of the cells. The contact areas of the cells attached onto a glass substrate, e.g. , focal adhesions and filopodia, are clearly discernible. We also found a variety of fringe-like features in the cytoplasmic area, which may reflect the folded structures of cytoplasmic organelles. We thus anticipate that the label-free interferometric scattering microscopy can be used as a powerful tool to shed interferometric light on in vivo structures and dynamics of various intracellular phenomena.

  14. Inelastic neutron scattering and lattice dynamics of GaPO4

    Indian Academy of Sciences (India)

    The measurements in low-cristobalite phase of GaPO4 are car- ried out using high-resolution ... energy transfer range 0–160 meV. Semiempirical interatomic ... Inelastic neutron scattering; phonons; thermal expansion. PACS Nos 78.70.

  15. Scattered X-ray beam nondestructive testing

    International Nuclear Information System (INIS)

    Harding, G.; Kosanetzky, J.

    1988-01-01

    X-ray scatter interactions generally dominate the linear attenuation coefficient at the photon energies typical of medical and industrial radiography. Specific advantages of X-ray scatter imaging, including a flexible choice of measurement geometry, direct 3D-imaging capability (tomography) and improved information for material characterization, are illustrated with results from Compton and coherent scatter devices. Applications of a Compton backscatter scanner (ComScan) in the aerospace industry and coherent scatter imaging in security screening are briefly considered [pt

  16. The practical implementation of a scatter model for portal imaging at 10

    International Nuclear Information System (INIS)

    Partridge, Mike; Evans, Philip M.

    1998-01-01

    A detailed validation of a physical model for scattered radiation in portal images at 10 MV is presented. The ratio of the signal due to scattered radiation to the signal due to primary radiation (SPR) in an electronic portal image is defined. A simple physical model for SPR on the central axis (SPR*) was presented by Swindell and Evans for 6 MV and validated for field sizes up to 320 cm 2 . In this paper, the model is extended to 10 MV and validated for field sizes up to 625 cm 2 . The model is first compared with Monte Carlo modelled data for field areas A from 40 to 320 cm 2 , scatterer thicknesses d of 5 to 35 cm water and scatterer to detector distances L 2 of 40 to 100 cm. The physical model has one free parameter, which is fitted empirically using these data. Second, experimental measurements are performed with A from 40 to 625 cm 2 , d from 4.6 to 27.4 cm and L 2 fixed at 100 cm. The root mean square (rms) difference between the physical model and the Monte Carlo calculations was less than 0.001 for all L 2 greater than 60 cm. Agreement between experimentally measured and physically modelled data amounts to a radiological thickness error of at best 0.7 mm in 273.6 mm and at worst 0.4 in 45.6 mm. The model performs equally well at all field sizes tested. This study shows that the Swindell and Evans SPR* model is accurate at 10 MV for L 2 greater than 60 cm for all A up to 625 cm 2 . (author)

  17. Study of morphological changes in scattering and optically anisotropic medium through correlation images

    Science.gov (United States)

    Jain, Neha; Shukla, Prashant; Singh, Jai

    2018-05-01

    Correlation images are very useful in determining the morphological changes. We have investigated the correlation image analysis on depolarization and retardance matrices of polystyrene and gelatine samples respectively. We observed that that correlation images have a potential to show a significant variation with change in the concentration of samples (polystyrene and gelatine). For polystyrene microspheres the correlation value decreases with increasing scattering coefficient. In gelatine samples the correlation also decreases with sample concentration. This variation in correlation for retardance shows the change in a birefringence property of gelatine solution.

  18. TH-AB-209-12: Tissue Equivalent Phantom with Excised Human Tissue for Assessing Clinical Capabilities of Coherent Scatter Imaging Applications

    Energy Technology Data Exchange (ETDEWEB)

    Albanese, K; Morris, R; Spencer, J [Medical Physics Graduate Program, Duke University, Durham, NC (United States); Greenberg, J [Dept. of Electrical and Computer Engineering, Duke University, Durham, NC (United States); Kapadia, A [Carl E Ravin Advanced Imaging Laboratories, Durham, NC (United States)

    2016-06-15

    Purpose: Previously we reported the development of anthropomorphic tissue-equivalent scatter phantoms of the human breast. Here we present the first results from the scatter imaging of the tissue equivalent breast phantoms for breast cancer diagnosis. Methods: A breast phantom was designed to assess the capability of coded aperture coherent x-ray scatter imaging to classify different types of breast tissue (adipose, fibroglandular, tumor). The phantom geometry was obtained from a prone breast geometry scanned on a dedicated breast CT system. The phantom was 3D printed using the segmented DICOM breast CT data. The 3D breast phantom was filled with lard (as a surrogate for adipose tissue) and scanned in different geometries alongside excised human breast tissues (obtained from lumpectomy and mastectomy procedures). The raw data were reconstructed using a model-based reconstruction algorithm and yielded the location and form factor (i.e., momentum transfer (q) spectrum) of the materials that were imaged. The measured material form factors were then compared to the ground truth measurements acquired by x-ray diffraction (XRD) imaging. Results: Our scatter imaging system was able to define the location and composition of the various materials and tissues within the phantom. Cancerous breast tissue was detected and classified through automated spectral matching and an 86% correlation threshold. The total scan time for the sample was approximately 10 minutes and approaches workflow times for clinical use in intra-operative or other diagnostic tasks. Conclusion: This work demonstrates the first results from an anthropomorphic tissue equivalent scatter phantom to characterize a coherent scatter imaging system. The functionality of the system shows promise in applications such as intra-operative margin detection or virtual biopsy in the diagnosis of breast cancer. Future work includes using additional patient-derived tissues (e.g., human fat), and modeling additional organs

  19. Importance of Doppler broadening in Compton scatter imaging techniques

    Science.gov (United States)

    Rao, Donepudi V.; Takeda, Tohoru; Itai, Yuji; Seltzer, S. M.; Hubbell, John H.; Zeniya, Tsutomu; Akatsuka, Takao; Cesareo, Roberto; Brunetti, Antonio; Gigante, Giovanni E.

    2001-12-01

    Compton scattering is a potential tool for the determination of bone mineral content or tissue density for dose planning purposes, and requires knowledge of the energy distribution of the X-rays through biological materials of medical interest in the X-ray and (gamma) -ray region. The energy distribution is utilized in a number of ways in diagnostic radiology, for example, in determining primary photon spectra, electron densities in separate volumes, and in tomography and imaging. The choice of the X-ray energy is more related to X-ray absorption, where as that of the scattering angle is more related to geometry. The evaluation of all the contributions are mandatory in Compton profile measurements and is important in X-ray imaging systems in order to achieve good results. In view of this, Compton profile cross-sections for few biological materials are estimated at nineteen K(alpha) X-ray energies and 60 keV (Am-241) photons. Energy broadening, geometrical broadening from 1 to 180 degree(s), FWHM of J(Pz) and FWHM of Compton energy broadening has been evaluated at various incident photon energies. These values are estimated around the centroid of the Compton profile with an energy interval of 0.1 keV and 1.0 keV for 60 keV photons. The interaction cross sections for the above materials are estimated using fractions-by-weight of the constituent elements. Input data for these tables are purely theoretical.

  20. 49 CFR 172.330 - Tank cars and multi-unit tank car tanks.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Tank cars and multi-unit tank car tanks. 172.330..., TRAINING REQUIREMENTS, AND SECURITY PLANS Marking § 172.330 Tank cars and multi-unit tank car tanks. (a... material— (1) In a tank car unless the following conditions are met: (i) The tank car must be marked on...

  1. Real-time pedestrian detection with the videos of car camera

    Directory of Open Access Journals (Sweden)

    Yunling Zhang

    2015-12-01

    Full Text Available Pedestrians in the vehicle path are in danger of being hit, thus causing severe injury to pedestrians and vehicle occupants. Therefore, real-time pedestrian detection with the video of vehicle-mounted camera is of great significance to vehicle–pedestrian collision warning and traffic safety of self-driving car. In this article, a real-time scheme was proposed based on integral channel features and graphics processing unit. The proposed method does not need to resize the input image. Moreover, the computationally expensive convolution of the detectors and the input image was converted into the dot product of two larger matrixes, which can be computed effectively using a graphics processing unit. The experiments showed that the proposed method could be employed to detect pedestrians in the video of car camera at 20+ frames per second with acceptable error rates. Thus, it can be applied in real-time detection tasks with the videos of car camera.

  2. Influence of light refraction on the image reconstruction in transmission optical tomography of scattering media

    International Nuclear Information System (INIS)

    Tereshchenko, Sergei A; Potapov, D A; Podgaetskii, Vitalii M; Smirnov, A V

    2002-01-01

    A distorting influence of light refraction at the boundaries of scattering media on the results of tomographic reconstruction of images of radially symmetric objects is investigated. The methods for the correction of such refraction-caused distortions are described. The results of the image reconstruction for two model cylindrical objects are presented.

  3. Deep Learning Approach for Car Detection in UAV Imagery

    Directory of Open Access Journals (Sweden)

    Nassim Ammour

    2017-03-01

    Full Text Available This paper presents an automatic solution to the problem of detecting and counting cars in unmanned aerial vehicle (UAV images. This is a challenging task given the very high spatial resolution of UAV images (on the order of a few centimetres and the extremely high level of detail, which require suitable automatic analysis methods. Our proposed method begins by segmenting the input image into small homogeneous regions, which can be used as candidate locations for car detection. Next, a window is extracted around each region, and deep learning is used to mine highly descriptive features from these windows. We use a deep convolutional neural network (CNN system that is already pre-trained on huge auxiliary data as a feature extraction tool, combined with a linear support vector machine (SVM classifier to classify regions into “car” and “no-car” classes. The final step is devoted to a fine-tuning procedure which performs morphological dilation to smooth the detected regions and fill any holes. In addition, small isolated regions are analysed further using a few sliding rectangular windows to locate cars more accurately and remove false positives. To evaluate our method, experiments were conducted on a challenging set of real UAV images acquired over an urban area. The experimental results have proven that the proposed method outperforms the state-of-the-art methods, both in terms of accuracy and computational time.

  4. Extraction of optical scattering parameters and attenuation compensation in optical coherence tomography images of multi-layered tissue structures

    DEFF Research Database (Denmark)

    Thrane, Lars; Frosz, Michael Henoch; Tycho, Andreas

    2004-01-01

    A recently developed analytical optical coherence tomography (OCT) model [Thrane et al., J. Opt. Soc. Am. A 17, 484 (2000)] allows the extraction of optical scattering parameters from OCT images, thereby permitting attenuation compensation in those images. By expanding this theoretical model, we...... have developed a new method for extracting optical scattering parameters from multilayered tissue structures in vivo. To verify this, we used a Monte Carlo (MC) OCT model as a numerical phantom to simulate the OCT signal for het-erogeneous multilayered tissue. Excellent agreement between the extracted......, and the results hold promise for expanding the functional imaging capabilities of OCT....

  5. Patient-specific scatter correction in clinical cone beam computed tomography imaging made possible by the combination of Monte Carlo simulations and a ray tracing algorithm

    DEFF Research Database (Denmark)

    Slot Thing, Rune; Bernchou, Uffe; Mainegra-Hing, Ernesto

    2013-01-01

    Abstract Purpose. Cone beam computed tomography (CBCT) image quality is limited by scattered photons. Monte Carlo (MC) simulations provide the ability of predicting the patient-specific scatter contamination in clinical CBCT imaging. Lengthy simulations prevent MC-based scatter correction from...

  6. A high-resolution two-pulse coherent anti-Stokes Raman scattering spectrum using a spectral amplitude modulation

    International Nuclear Information System (INIS)

    Lu, Chenhui; Zhang, Shian; Wu, Meizhen; Jia, Tianqing; Sun, Zhenrong; Qiu, Jianrong

    2013-01-01

    Femtosecond coherent anti-Stokes Raman scattering (CARS) spectra suffer from low spectral resolution because of the broadband laser spectrum. In this paper, we propose a feasible scheme to achieve a high-resolution two-pulse CARS spectrum by shaping both the pump and probe pulses using rectangular amplitude modulation. We show that a narrowband hole in the CARS spectrum can be created by the amplitude-shaped laser pulse, the position of which is correlated with the Raman resonant frequency of the molecule. Thus, by observing holes in the CARS spectrum, we are able to obtain a high-resolution CARS spectrum and the energy-level diagram of the molecule. (paper)

  7. A novel phantom design for emission tomography enabling scatter- and attenuation-''free'' single-photon emission tomography imaging

    International Nuclear Information System (INIS)

    Larsson, S.A.; Johansson, L.; Jonsson, C.; Pagani, M.; Jacobsson, H.

    2000-01-01

    A newly designed technique for experimental single-photon emission tomography (SPET) and positron emission tomography (PET) data acquisition with minor disturbing effects from scatter and attenuation has been developed. In principle, the method is based on discrete sampling of the radioactivity distribution in 3D objects by means of equidistant 2D planes. The starting point is a set of digitised 2D sections representing the radioactivity distribution of the 3D object. Having a radioactivity-related grey scale, the 2D images are printed on paper sheets using radioactive ink. The radioactive sheets can be shaped to the outline of the object and stacked into a 3D structure with air or some arbitrary dense material in between. For this work, equidistantly spaced transverse images of a uniform cylindrical phantom and of the digitised Hoffman rCBF phantom were selected and printed out on paper sheets. The uniform radioactivity sheets were imaged on the surface of a low-energy ultra-high-resolution collimator (4 mm full-width at half-maximum) of a three-headed SPET camera. The reproducibility was 0.7% and the uniformity was 1.2%. Each rCBF sheet, containing between 8.3 and 80 MBq of 99m TcO 4 - depending on size, was first imaged on the collimator and then stacked into a 3D structure with constant 12 mm air spacing between the slices. SPET was performed with the sheets perpendicular to the central axis of the camera. The total weight of the stacked rCBF phantom in air was 63 g, giving a scatter contribution comparable to that of a point source in air. The overall attenuation losses were <20%. A second SPET study was performed with 12-mm polystyrene plates in between the radioactive sheets. With polystyrene plates, the total phantom weight was 2300 g, giving a scatter and attenuation magnitude similar to that of a patient study. With the proposed technique, it is possible to obtain ''ideal'' experimental images (essentially built up by primary photons) for comparison with

  8. Patient-specific scatter correction in clinical cone beam computed tomography imaging made possible by the combination of Monte Carlo simulations and a ray tracing algorithm

    International Nuclear Information System (INIS)

    Thing, Rune S.; Bernchou, Uffe; Brink, Carsten; Mainegra-Hing, Ernesto

    2013-01-01

    Purpose: Cone beam computed tomography (CBCT) image quality is limited by scattered photons. Monte Carlo (MC) simulations provide the ability of predicting the patient-specific scatter contamination in clinical CBCT imaging. Lengthy simulations prevent MC-based scatter correction from being fully implemented in a clinical setting. This study investigates the combination of using fast MC simulations to predict scatter distributions with a ray tracing algorithm to allow calibration between simulated and clinical CBCT images. Material and methods: An EGSnrc-based user code (egs c bct), was used to perform MC simulations of an Elekta XVI CBCT imaging system. A 60keV x-ray source was used, and air kerma scored at the detector plane. Several variance reduction techniques (VRTs) were used to increase the scatter calculation efficiency. Three patient phantoms based on CT scans were simulated, namely a brain, a thorax and a pelvis scan. A ray tracing algorithm was used to calculate the detector signal due to primary photons. A total of 288 projections were simulated, one for each thread on the computer cluster used for the investigation. Results: Scatter distributions for the brain, thorax and pelvis scan were simulated within 2 % statistical uncertainty in two hours per scan. Within the same time, the ray tracing algorithm provided the primary signal for each of the projections. Thus, all the data needed for MC-based scatter correction in clinical CBCT imaging was obtained within two hours per patient, using a full simulation of the clinical CBCT geometry. Conclusions: This study shows that use of MC-based scatter corrections in CBCT imaging has a great potential to improve CBCT image quality. By use of powerful VRTs to predict scatter distributions and a ray tracing algorithm to calculate the primary signal, it is possible to obtain the necessary data for patient specific MC scatter correction within two hours per patient

  9. X-ray scatter removal by deconvolution

    International Nuclear Information System (INIS)

    Seibert, J.A.; Boone, J.M.

    1988-01-01

    The distribution of scattered x rays detected in a two-dimensional projection radiograph at diagnostic x-ray energies is measured as a function of field size and object thickness at a fixed x-ray potential and air gap. An image intensifier-TV based imaging system is used for image acquisition, manipulation, and analysis. A scatter point spread function (PSF) with an assumed linear, spatially invariant response is modeled as a modified Gaussian distribution, and is characterized by two parameters describing the width of the distribution and the fraction of scattered events detected. The PSF parameters are determined from analysis of images obtained with radio-opaque lead disks centrally placed on the source side of a homogeneous phantom. Analytical methods are used to convert the PSF into the frequency domain. Numerical inversion provides an inverse filter that operates on frequency transformed, scatter degraded images. Resultant inverse transformed images demonstrate the nonarbitrary removal of scatter, increased radiographic contrast, and improved quantitative accuracy. The use of the deconvolution method appears to be clinically applicable to a variety of digital projection images

  10. Light scattering reviews 8 radiative transfer and light scattering

    CERN Document Server

    Kokhanovsky, Alexander A

    2013-01-01

    Light scattering review (vol 8) is aimed at the presentation of recent advances in radiative transfer and light scattering optics. The topics to be covered include: scattering of light by irregularly shaped particles suspended in atmosphere (dust, ice crystals), light scattering by particles much larger as compared the wavelength of incident radiation, atmospheric radiative forcing, astrophysical radiative transfer, radiative transfer and optical imaging in biological media, radiative transfer of polarized light, numerical aspects of radiative transfer.

  11. Evaluation of attenuation and scatter correction requirements in small animal PET and SPECT imaging

    Science.gov (United States)

    Konik, Arda Bekir

    Positron emission tomography (PET) and single photon emission tomography (SPECT) are two nuclear emission-imaging modalities that rely on the detection of high-energy photons emitted from radiotracers administered to the subject. The majority of these photons are attenuated (absorbed or scattered) in the body, resulting in count losses or deviations from true detection, which in turn degrades the accuracy of images. In clinical emission tomography, sophisticated correction methods are often required employing additional x-ray CT or radionuclide transmission scans. Having proven their potential in both clinical and research areas, both PET and SPECT are being adapted for small animal imaging. However, despite the growing interest in small animal emission tomography, little scientific information exists about the accuracy of these correction methods on smaller size objects, and what level of correction is required. The purpose of this work is to determine the role of attenuation and scatter corrections as a function of object size through simulations. The simulations were performed using Interactive Data Language (IDL) and a Monte Carlo based package, Geant4 application for emission tomography (GATE). In IDL simulations, PET and SPECT data acquisition were modeled in the presence of attenuation. A mathematical emission and attenuation phantom approximating a thorax slice and slices from real PET/CT data were scaled to 5 different sizes (i.e., human, dog, rabbit, rat and mouse). The simulated emission data collected from these objects were reconstructed. The reconstructed images, with and without attenuation correction, were compared to the ideal (i.e., non-attenuated) reconstruction. Next, using GATE, scatter fraction values (the ratio of the scatter counts to the total counts) of PET and SPECT scanners were measured for various sizes of NEMA (cylindrical phantoms representing small animals and human), MOBY (realistic mouse/rat model) and XCAT (realistic human model

  12. Unexpected attraction of polarotactic water-leaving insects to matt black car surfaces: mattness of paintwork cannot eliminate the polarized light pollution of black cars.

    Directory of Open Access Journals (Sweden)

    Miklos Blaho

    Full Text Available The horizontally polarizing surface parts of shiny black cars (the reflection-polarization characteristics of which are similar to those of water surfaces attract water-leaving polarotactic insects. Thus, shiny black cars are typical sources of polarized light pollution endangering water-leaving insects. A new fashion fad is to make car-bodies matt black or grey. Since rough (matt surfaces depolarize the reflected light, one of the ways of reducing polarized light pollution is to make matt the concerned surface. Consequently, matt black/grey cars may not induce polarized light pollution, which would be an advantageous feature for environmental protection. To test this idea, we performed field experiments with horizontal shiny and matt black car-body surfaces laid on the ground. Using imaging polarimetry, in multiple-choice field experiments we investigated the attractiveness of these test surfaces to various water-leaving polarotactic insects and obtained the following results: (i The attractiveness of black car-bodies to polarotactic insects depends in complex manner on the surface roughness (shiny, matt and species (mayflies, dolichopodids, tabanids. (ii Non-expectedly, the matt dark grey car finish is much more attractive to mayflies (being endangered and protected in many countries than matt black finish. (iii The polarized light pollution of shiny black cars usually cannot be reduced with the use of matt painting. On the basis of these, our two novel findings are that (a matt car-paints are highly polarization reflecting, and (b these matt paints are not suitable to repel polarotactic insects. Hence, the recent technology used to make matt the car-bodies cannot eliminate or even can enhance the attractiveness of black/grey cars to water-leaving insects. Thus, changing shiny black car painting to matt one is a disadvantageous fashion fad concerning the reduction of polarized light pollution of black vehicles.

  13. Unexpected attraction of polarotactic water-leaving insects to matt black car surfaces: mattness of paintwork cannot eliminate the polarized light pollution of black cars.

    Science.gov (United States)

    Blaho, Miklos; Herczeg, Tamas; Kriska, Gyorgy; Egri, Adam; Szaz, Denes; Farkas, Alexandra; Tarjanyi, Nikolett; Czinke, Laszlo; Barta, Andras; Horvath, Gabor

    2014-01-01

    The horizontally polarizing surface parts of shiny black cars (the reflection-polarization characteristics of which are similar to those of water surfaces) attract water-leaving polarotactic insects. Thus, shiny black cars are typical sources of polarized light pollution endangering water-leaving insects. A new fashion fad is to make car-bodies matt black or grey. Since rough (matt) surfaces depolarize the reflected light, one of the ways of reducing polarized light pollution is to make matt the concerned surface. Consequently, matt black/grey cars may not induce polarized light pollution, which would be an advantageous feature for environmental protection. To test this idea, we performed field experiments with horizontal shiny and matt black car-body surfaces laid on the ground. Using imaging polarimetry, in multiple-choice field experiments we investigated the attractiveness of these test surfaces to various water-leaving polarotactic insects and obtained the following results: (i) The attractiveness of black car-bodies to polarotactic insects depends in complex manner on the surface roughness (shiny, matt) and species (mayflies, dolichopodids, tabanids). (ii) Non-expectedly, the matt dark grey car finish is much more attractive to mayflies (being endangered and protected in many countries) than matt black finish. (iii) The polarized light pollution of shiny black cars usually cannot be reduced with the use of matt painting. On the basis of these, our two novel findings are that (a) matt car-paints are highly polarization reflecting, and (b) these matt paints are not suitable to repel polarotactic insects. Hence, the recent technology used to make matt the car-bodies cannot eliminate or even can enhance the attractiveness of black/grey cars to water-leaving insects. Thus, changing shiny black car painting to matt one is a disadvantageous fashion fad concerning the reduction of polarized light pollution of black vehicles.

  14. Shuttle Imaging Radar - Physical controls on signal penetration and subsurface scattering in the Eastern Sahara

    Science.gov (United States)

    Schaber, G. G.; Mccauley, J. F.; Breed, C. S.; Olhoeft, G. R.

    1986-01-01

    Interpretation of Shuttle Imaging Radar-A (SIR-A) images by McCauley et al. (1982) dramatically changed previous concepts of the role that fluvial processes have played over the past 10,000 to 30 million years in shaping this now extremely flat, featureless, and hyperarid landscape. In the present paper, the near-surface stratigraphy, the electrical properties of materials, and the types of radar interfaces found to be responsible for different classes of SIR-A tonal response are summarized. The dominant factors related to efficient microwave signal penetration into the sediment blanket include (1) favorable distribution of particle sizes, (2) extremely low moisture content and (3) reduced geometric scattering at the SIR-A frequency (1.3 GHz). The depth of signal penetration that results in a recorded backscatter, here called 'radar imaging depth', was documented in the field to be a maximum of 1.5 m, or 0.25 of the calculated 'skin depth', for the sediment blanket. Radar imaging depth is estimated to be between 2 and 3 m for active sand dune materials. Diverse permittivity interfaces and volume scatterers within the shallow subsurface are responsible for most of the observed backscatter not directly attributable to grazing outcrops. Calcium carbonate nodules and rhizoliths concentrated in sandy alluvium of Pleistocene age south of Safsaf oasis in south Egypt provide effective contrast in premittivity and thus act as volume scatterers that enhance SIR-A portrayal of younger inset stream channels.

  15. Gamma camera scatter suppression unit WAM

    International Nuclear Information System (INIS)

    Kishi, Haruo; Shibahara, Noriyuki; Hirose, Yoshiharu; Shimonishi, Yoshihiro; Oumura, Masahiro; Ikeda, Hozumi; Hamada, Kunio; Ochi, Hironobu; Itagane, Hiroshi.

    1990-01-01

    In gamma camera imaging, scattered radiation is one of big factors to decrease image contrast. Simply, scatter suppression makes signal to noise ratio larger, but it makes statistics error because of radionuclide injection limit to the human body. EWA is a new method that suppresses scattered radiation and improves image contrast. In this article, WAM which is commercialized EWA method by Siemens Gammasonics Inc. is presented. (author)

  16. Neural network scatter correction technique for digital radiography

    International Nuclear Information System (INIS)

    Boone, J.M.

    1990-01-01

    This paper presents a scatter correction technique based on artificial neural networks. The technique utilizes the acquisition of a conventional digital radiographic image, coupled with the acquisition of a multiple pencil beam (micro-aperture) digital image. Image subtraction results in a sparsely sampled estimate of the scatter component in the image. The neural network is trained to develop a causal relationship between image data on the low-pass filtered open field image and the sparsely sampled scatter image, and then the trained network is used to correct the entire image (pixel by pixel) in a manner which is operationally similar to but potentially more powerful than convolution. The technique is described and is illustrated using clinical primary component images combined with scatter component images that are realistically simulated using the results from previously reported Monte Carlo investigations. The results indicate that an accurate scatter correction can be realized using this technique

  17. Evaluation of six scatter correction methods based on spectral analysis in 99m Tc SPECT imaging using SIMIND Monte Carlo simulation

    Directory of Open Access Journals (Sweden)

    Mahsa Noori Asl

    2013-01-01

    Full Text Available Compton-scattered photons included within the photopeak pulse-height window result in the degradation of SPECT images both qualitatively and quantitatively. The purpose of this study is to evaluate and compare six scatter correction methods based on setting the energy windows in 99m Tc spectrum. SIMIND Monte Carlo simulation is used to generate the projection images from a cold-sphere hot-background phantom. For evaluation of different scatter correction methods, three assessment criteria including image contrast, signal-to-noise ratio (SNR and relative noise of the background (RNB are considered. Except for the dual-photopeak window (DPW method, the image contrast of the five cold spheres is improved in the range of 2.7-26%. Among methods considered, two methods show a nonuniform correction performance. The RNB for all of the scatter correction methods is ranged from minimum 0.03 for DPW method to maximum 0.0727 for the three energy window (TEW method using trapezoidal approximation. The TEW method using triangular approximation because of ease of implementation, good improvement of the image contrast and the SNR for the five cold spheres, and the low noise level is proposed as most appropriate correction method.

  18. Deep and optically resolved imaging through scattering media by space-reversed propagation.

    Science.gov (United States)

    Glastre, W; Jacquin, O; Hugon, O; Guillet de Chatellus, H; Lacot, E

    2012-12-01

    We propose a novel technique of microscopy to overcome the effects of both scattering and limitation of the accessible depth due to the objective working distance. By combining laser optical feedback imaging with acoustic photon tagging and synthetic aperture refocusing we demonstrate an ultimate shot noise sensitivity at low power (required to preserve the tissues) and a high resolution beyond the microscope working distance. More precisely, with a laser power of 10 mW, we obtain images with a micrometric resolution over approximately eight transport mean free paths, corresponding to 1.3 times the microscope working distance. Various applications such as biomedical diagnosis and research and development of new drugs and therapies can benefit from our imaging setup.

  19. Positive and negative spillover effects from electric car purchase to car use

    OpenAIRE

    Kløckner, Christian; Nayum, Alim; Mehmetoglu, Mehmet

    2013-01-01

    This study reports the results of two online surveys conducted on buyers of conventional combustion engine cars compared to those of electric vehicles in Norway. The results show that electric cars are generally purchased as additional cars, do not contribute to a decrease in annual mileage if the old car is not substituted, and that electric car buyers use the car more often for their everyday mobility. Psychological determinants derived from the theory of planned behavior and the norm-activ...

  20. Electric Car Special

    Energy Technology Data Exchange (ETDEWEB)

    Zoethout, T.; Belin, H.; Verwijs, H.; Nicola, S.; De Saint Jacob, Y.; Gatermann, R.

    2009-09-15

    In six articles, two columns and two interviews a part of this issue is dedicated to electric car developments: about winners and losers in the electric car race; a unique business model to rolling out the electric car by the electric battery company Better Place and the automobile industry Renault Nissan; interview with entrepreneur Shai Agassi of the Indian company Better Place; the development of electric cars in Germany; interview with Jean-Jacques Chanaron, an economist specialising in innovation management and a firm believer in electric cars; start of mass production of electric vehicles at the Japanese Nissan automobile industry; the constraints in Sweden in developing fuel-efficient automobiles; plans for 1 million electric or hybrid cars by 2025 in the Netherlands.

  1. Bone-composition imaging using coherent-scatter computed tomography: Assessing bone health beyond bone mineral density

    International Nuclear Information System (INIS)

    Batchelar, Deidre L.; Davidson, Melanie T.M.; Dabrowski, Waldemar; Cunningham, Ian A.

    2006-01-01

    Quantitative analysis of bone composition is necessary for the accurate diagnosis and monitoring of metabolic bone diseases. Accurate assessment of the bone mineralization state is the first requirement for a comprehensive analysis. In diagnostic imaging, x-ray coherent scatter depends upon the molecular structure of tissues. Coherent-scatter computed tomography (CSCT) exploits this feature to identify tissue types in composite biological specimens. We have used CSCT to map the distributions of tissues relevant to bone disease (fat, soft tissue, collagen, and mineral) within bone-tissue phantoms and an excised cadaveric bone sample. Using a purpose-built scanner, we have measured hydroxyapatite (bone mineral) concentrations based on coherent-scatter patterns from a series of samples with varying hydroxyapatite content. The measured scatter intensity is proportional to mineral density in true g/cm 3 . Repeated measurements of the hydroxyapatite concentration in each sample were within, at most, 2% of each other, revealing an excellent precision in determining hydroxyapatite concentration. All measurements were also found to be accurate to within 3% of the known values. Phantoms simulating normal, over-, and under-mineralized bone were created by mixing known masses of pure collagen and hydroxyapatite. An analysis of the composite scatter patterns gave the density of each material. For each composite, the densities were within 2% of the known values. Collagen and hydroxyapatite concentrations were also examined in a bone-mimicking phantom, incorporating other bone constituents (fat, soft tissue). Tomographic maps of the coherent-scatter properties of each specimen were reconstructed, from which material-specific images were generated. Each tissue was clearly distinguished and the collagen-mineral ratio determined from this phantom was also within 2% of the known value. Existing bone analysis techniques cannot determine the collagen-mineral ratio in intact specimens

  2. FDTD parallel computational analysis of grid-type scattering filter characteristics for medical X-ray image diagnosis

    International Nuclear Information System (INIS)

    Takahashi, Koichi; Miyazaki, Yasumitsu; Goto, Nobuo

    2007-01-01

    X-ray diagnosis depends on the intensity of transmitted and scattered waves in X-ray propagation in biomedical media. X-ray is scattered and absorbed by tissues, such as fat, bone and internal organs. However, image processing for medical diagnosis, based on the scattering and absorption characteristics of these tissues in X-ray spectrum is not so much studied. To obtain precise information of tissues in a living body, the accurate characteristics of scattering and absorption are required. In this paper, X-ray scattering and absorption in biomedical media are studied using 2-dimensional finite difference time domain (FDTD) method. In FDTD method, the size of analysis space is very limited by the performance of available computers. To overcome this limitation, parallel and successive FDTD method is introduced. As a result of computer simulation, the amplitude of transmitted and scattered waves are presented numerically. The fundamental filtering characteristics of grid-type filter are also shown numerically. (author)

  3. M-CARS and EFISHG study of the influence of a static electric field on a non-polar molecule

    Science.gov (United States)

    Capitaine, E.; Louot, C.; Ould-Moussa, N.; Lefort, C.; Kaneyasu, J. F.; Kano, H.; Pagnoux, D.; Couderc, V.; Leproux, P.

    2016-03-01

    The influence of a static electric field on a non-polar molecule has been studied by means of multiplex coherent anti-Stokes Raman scattering (M-CARS). A parallel measurement of electric field induced second harmonic generation (EFISHG) has also been led. Both techniques suggest a reorientation of the molecule due to the presence of an electric field. This phenomenon can be used to increase the chemical selectivity and the signal to non-resonant background ratio, namely, the sensitivity of the M-CARS spectroscopy.

  4. Scatter correction, intermediate view estimation and dose characterization in megavoltage cone-beam CT imaging

    Science.gov (United States)

    Sramek, Benjamin Koerner

    The ability to deliver conformal dose distributions in radiation therapy through intensity modulation and the potential for tumor dose escalation to improve treatment outcome has necessitated an increase in localization accuracy of inter- and intra-fractional patient geometry. Megavoltage cone-beam CT imaging using the treatment beam and onboard electronic portal imaging device is one option currently being studied for implementation in image-guided radiation therapy. However, routine clinical use is predicated upon continued improvements in image quality and patient dose delivered during acquisition. The formal statement of hypothesis for this investigation was that the conformity of planned to delivered dose distributions in image-guided radiation therapy could be further enhanced through the application of kilovoltage scatter correction and intermediate view estimation techniques to megavoltage cone-beam CT imaging, and that normalized dose measurements could be acquired and inter-compared between multiple imaging geometries. The specific aims of this investigation were to: (1) incorporate the Feldkamp, Davis and Kress filtered backprojection algorithm into a program to reconstruct a voxelized linear attenuation coefficient dataset from a set of acquired megavoltage cone-beam CT projections, (2) characterize the effects on megavoltage cone-beam CT image quality resulting from the application of Intermediate View Interpolation and Intermediate View Reprojection techniques to limited-projection datasets, (3) incorporate the Scatter and Primary Estimation from Collimator Shadows (SPECS) algorithm into megavoltage cone-beam CT image reconstruction and determine the set of SPECS parameters which maximize image quality and quantitative accuracy, and (4) evaluate the normalized axial dose distributions received during megavoltage cone-beam CT image acquisition using radiochromic film and thermoluminescent dosimeter measurements in anthropomorphic pelvic and head and

  5. CAR models: next-generation CAR modifications for enhanced T-cell function

    Directory of Open Access Journals (Sweden)

    Daniel Abate-Daga

    2016-01-01

    Full Text Available T cells genetically targeted with a chimeric antigen receptor (CAR to B-cell malignancies have demonstrated tremendous clinical outcomes. With the proof in principle for CAR T cells as a therapy for B-cell malignancies being established, current and future research is being focused on adapting CAR technology to other cancers, as well as enhancing its efficacy and/or safety. The modular nature of the CAR, extracellular antigen-binding domain fused to a transmembrane domain and intracellular T-cell signaling domains, allows for optimization by replacement of the various components. These modifications are creating a whole new class of therapeutic CARs. In this review, we discuss the recent major advances in CAR design and how these modifications will impact its clinical application.

  6. The development of CAR design for tumor CAR-T cell therapy.

    Science.gov (United States)

    Xu, Dandan; Jin, Guoliang; Chai, Dafei; Zhou, Xiaowan; Gu, Weiyu; Chong, Yanyun; Song, Jingyuan; Zheng, Junnian

    2018-03-02

    In recent years, the chimeric antigen receptor modified T cells (Chimeric antigen receptor T cells, CAR-T) immunotherapy has developed rapidly, which has been considered the most promising therapy. Efforts to enhance the efficacy of CAR-based anti-tumor therapy have been made, such as the improvement of structures of CAR-T cells, including the development of extracellular antigen recognition receptors, intracellular co-stimulatory molecules and the combination application of CARs and synthetic small molecules. In addition, effects on the function of the CAR-T cells that the space distance between the antigen binding domains and tumor targets and the length of the spacer domains have are also being investigated. Given the fast-moving nature of this field, it is necessary to make a summary of the development of CAR-T cells. In this review, we mainly focus on the present design strategies of CAR-T cells with the hope that they can provide insights to increase the anti-tumor efficacy and safety.

  7. Transit Car Performance Comparison, State-of-the-Art Car vs. PATCO Transit Car, NYCTA R-46, MBTA Silverbirds

    Science.gov (United States)

    1978-02-01

    The first phase of this contract authorized the design, development, and demonstration of two State-Of-The-Art Cars (SOAC). This document reports on the gathering of comparative test data on existing in-service transit cars. The three transit cars se...

  8. A moving blocker-based strategy for simultaneous megavoltage and kilovoltage scatter correction in cone-beam computed tomography image acquired during volumetric modulated arc therapy

    International Nuclear Information System (INIS)

    Ouyang, Luo; Lee, Huichen Pam; Wang, Jing

    2015-01-01

    Purpose: To evaluate a moving blocker-based approach in estimating and correcting megavoltage (MV) and kilovoltage (kV) scatter contamination in kV cone-beam computed tomography (CBCT) acquired during volumetric modulated arc therapy (VMAT). Methods and materials: During the concurrent CBCT/VMAT acquisition, a physical attenuator (i.e., “blocker”) consisting of equally spaced lead strips was mounted and moved constantly between the CBCT source and patient. Both kV and MV scatter signals were estimated from the blocked region of the imaging panel, and interpolated into the unblocked region. A scatter corrected CBCT was then reconstructed from the unblocked projections after scatter subtraction using an iterative image reconstruction algorithm based on constraint optimization. Experimental studies were performed on a Catphan® phantom and an anthropomorphic pelvis phantom to demonstrate the feasibility of using a moving blocker for kV–MV scatter correction. Results: Scatter induced cupping artifacts were substantially reduced in the moving blocker corrected CBCT images. Quantitatively, the root mean square error of Hounsfield units (HU) in seven density inserts of the Catphan phantom was reduced from 395 to 40. Conclusions: The proposed moving blocker strategy greatly improves the image quality of CBCT acquired with concurrent VMAT by reducing the kV–MV scatter induced HU inaccuracy and cupping artifacts

  9. Compton scatter tomography in TOF-PET

    Science.gov (United States)

    Hemmati, Hamidreza; Kamali-Asl, Alireza; Ay, Mohammadreza; Ghafarian, Pardis

    2017-10-01

    Scatter coincidences contain hidden information about the activity distribution on the positron emission tomography (PET) imaging system. However, in conventional reconstruction, the scattered data cause the blurring of images and thus are estimated and subtracted from detected coincidences. List mode format provides a new aspect to use time of flight (TOF) and energy information of each coincidence in the reconstruction process. In this study, a novel approach is proposed to reconstruct activity distribution using the scattered data in the PET system. For each single scattering coincidence, a scattering angle can be determined by the recorded energy of the detected photons, and then possible locations of scattering can be calculated based on the scattering angle. Geometry equations show that these sites lie on two arcs in 2D mode or the surface of a prolate spheroid in 3D mode, passing through the pair of detector elements. The proposed method uses a novel and flexible technique to estimate source origin locations from the possible scattering locations, using the TOF information. Evaluations were based on a Monte-Carlo simulation of uniform and non-uniform phantoms at different resolutions of time and detector energy. The results show that although the energy uncertainties deteriorate the image spatial resolution in the proposed method, the time resolution has more impact on image quality than the energy resolution. With progress of the TOF system, the reconstruction using the scattered data can be used in a complementary manner, or to improve image quality in the next generation of PET systems.

  10. Car Seat Safety

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Car Seat Safety KidsHealth / For Parents / Car Seat Safety ... certified child passenger safety technician.) Guidelines for Choosing Car Seats Choose a seat with a label that ...

  11. SU-F-I-53: Coded Aperture Coherent Scatter Spectral Imaging of the Breast: A Monte Carlo Evaluation of Absorbed Dose

    Energy Technology Data Exchange (ETDEWEB)

    Morris, R [Durham, NC (United States); Lakshmanan, M; Fong, G; Kapadia, A [Carl E Ravin Advanced Imaging Laboratories, Durham, NC (United States); Greenberg, J [Duke University, Durham, NC (United States)

    2016-06-15

    Purpose: Coherent scatter based imaging has shown improved contrast and molecular specificity over conventional digital mammography however the biological risks have not been quantified due to a lack of accurate information on absorbed dose. This study intends to characterize the dose distribution and average glandular dose from coded aperture coherent scatter spectral imaging of the breast. The dose deposited in the breast from this new diagnostic imaging modality has not yet been quantitatively evaluated. Here, various digitized anthropomorphic phantoms are tested in a Monte Carlo simulation to evaluate the absorbed dose distribution and average glandular dose using clinically feasible scan protocols. Methods: Geant4 Monte Carlo radiation transport simulation software is used to replicate the coded aperture coherent scatter spectral imaging system. Energy sensitive, photon counting detectors are used to characterize the x-ray beam spectra for various imaging protocols. This input spectra is cross-validated with the results from XSPECT, a commercially available application that yields x-ray tube specific spectra for the operating parameters employed. XSPECT is also used to determine the appropriate number of photons emitted per mAs of tube current at a given kVp tube potential. With the implementation of the XCAT digital anthropomorphic breast phantom library, a variety of breast sizes with differing anatomical structure are evaluated. Simulations were performed with and without compression of the breast for dose comparison. Results: Through the Monte Carlo evaluation of a diverse population of breast types imaged under real-world scan conditions, a clinically relevant average glandular dose for this new imaging modality is extrapolated. Conclusion: With access to the physical coherent scatter imaging system used in the simulation, the results of this Monte Carlo study may be used to directly influence the future development of the modality to keep breast dose to

  12. Experimental cross-correlation nitrogen Q-branch CARS thermometry in a spark ignition engine

    Science.gov (United States)

    Lockett, R. D.; Ball, D.; Robertson, G. N.

    2013-07-01

    A purely experimental technique was employed to derive temperatures from nitrogen Q-branch Coherent Anti-Stokes Raman Scattering (CARS) spectra, obtained in a high pressure, high temperature environment (spark ignition Otto engine). This was in order to obviate any errors arising from deficiencies in the spectral scaling laws which are commonly used to represent nitrogen Q-branch CARS spectra at high pressure. The spectra obtained in the engine were compared with spectra obtained in a calibrated high pressure, high temperature cell, using direct cross-correlation in place of the minimisation of sums of squares of residuals. The technique is demonstrated through the measurement of air temperature as a function of crankshaft angle inside the cylinder of a motored single-cylinder Ricardo E6 research engine, followed by the measurement of fuel-air mixture temperatures obtained during the compression stroke in a knocking Ricardo E6 engine. A standard CARS programme (SANDIA's CARSFIT) was employed to calibrate the altered non-resonant background contribution to the CARS spectra that was caused by the alteration to the mole fraction of nitrogen in the unburned fuel-air mixture. The compression temperature profiles were extrapolated in order to predict the auto-ignition temperatures.

  13. Analysis of several ways to minimize the scatter contribution in radiographic digital images of offshore pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Edmilson M.; Silva, Ademir X.; Lopes, Ricardo T., E-mail: emonteiro@nuclear.ufrj.b, E-mail: ademir@nuclear.ufrj.b, E-mail: Ricardo@lin.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Correa, Samanda C.A., E-mail: scorrea@cnen.gov.b [Comissao Nacional de Energia Nuclear (DIAPI/CGMI/CNEN), Rio de Janeiro, RJ (Brazil). Coordenacao Geral de Instalacoes Medicas e Industriais. Div. de Aplicacoes Industriais

    2011-07-01

    The aim of this work is to evaluate, through MCNPX simulations, several ways to minimize the scatter contribution in radiographic digital images of offshore pipelines. The influence of liquid inside the pipes and water surrounded the pipelines in the scatter contribution will be analyzed. The use of lead screen behind the detector to reduce the backscattered radiation and filter between the radiation source and the pipes will be discussed. (author)

  14. Analysis of several ways to minimize the scatter contribution in radiographic digital images of offshore pipelines

    International Nuclear Information System (INIS)

    Souza, Edmilson M.; Silva, Ademir X.; Lopes, Ricardo T.; Correa, Samanda C.A.

    2011-01-01

    The aim of this work is to evaluate, through MCNPX simulations, several ways to minimize the scatter contribution in radiographic digital images of offshore pipelines. The influence of liquid inside the pipes and water surrounded the pipelines in the scatter contribution will be analyzed. The use of lead screen behind the detector to reduce the backscattered radiation and filter between the radiation source and the pipes will be discussed. (author)

  15. Scatter Correction with Combined Single-Scatter Simulation and Monte Carlo Simulation Scaling Improved the Visual Artifacts and Quantification in 3-Dimensional Brain PET/CT Imaging with 15O-Gas Inhalation.

    Science.gov (United States)

    Magota, Keiichi; Shiga, Tohru; Asano, Yukari; Shinyama, Daiki; Ye, Jinghan; Perkins, Amy E; Maniawski, Piotr J; Toyonaga, Takuya; Kobayashi, Kentaro; Hirata, Kenji; Katoh, Chietsugu; Hattori, Naoya; Tamaki, Nagara

    2017-12-01

    In 3-dimensional PET/CT imaging of the brain with 15 O-gas inhalation, high radioactivity in the face mask creates cold artifacts and affects the quantitative accuracy when scatter is corrected by conventional methods (e.g., single-scatter simulation [SSS] with tail-fitting scaling [TFS-SSS]). Here we examined the validity of a newly developed scatter-correction method that combines SSS with a scaling factor calculated by Monte Carlo simulation (MCS-SSS). Methods: We performed phantom experiments and patient studies. In the phantom experiments, a plastic bottle simulating a face mask was attached to a cylindric phantom simulating the brain. The cylindric phantom was filled with 18 F-FDG solution (3.8-7.0 kBq/mL). The bottle was filled with nonradioactive air or various levels of 18 F-FDG (0-170 kBq/mL). Images were corrected either by TFS-SSS or MCS-SSS using the CT data of the bottle filled with nonradioactive air. We compared the image activity concentration in the cylindric phantom with the true activity concentration. We also performed 15 O-gas brain PET based on the steady-state method on patients with cerebrovascular disease to obtain quantitative images of cerebral blood flow and oxygen metabolism. Results: In the phantom experiments, a cold artifact was observed immediately next to the bottle on TFS-SSS images, where the image activity concentrations in the cylindric phantom were underestimated by 18%, 36%, and 70% at the bottle radioactivity levels of 2.4, 5.1, and 9.7 kBq/mL, respectively. At higher bottle radioactivity, the image activity concentrations in the cylindric phantom were greater than 98% underestimated. For the MCS-SSS, in contrast, the error was within 5% at each bottle radioactivity level, although the image generated slight high-activity artifacts around the bottle when the bottle contained significantly high radioactivity. In the patient imaging with 15 O 2 and C 15 O 2 inhalation, cold artifacts were observed on TFS-SSS images, whereas

  16. Car Sickness

    Science.gov (United States)

    ... Preventable Diseases Healthy Children > Health Issues > Conditions > Head Neck & Nervous System > Car Sickness Health Issues Listen Español Text Size Email Print Share Car Sickness Page Content ...

  17. Phase object retrieval through scattering medium

    Science.gov (United States)

    Zhao, Ming; Zhao, Meijing; Wu, Houde; Xu, Wenhai

    2018-05-01

    Optical imaging through a scattering medium has been an interesting and important research topic, especially in the field of biomedical imaging. However, it is still a challenging task due to strong scattering. This paper proposes to recover the phase object behind the scattering medium from one single-shot speckle intensity image using calibrated transmission matrices (TMs). We construct the forward model as a non-linear mapping, since the intensity image loses the phase information, and then a generalized phase retrieval algorithm is employed to recover the hidden object. Moreover, we show that a phase object can be reconstructed with a small portion of the speckle image captured by the camera. The simulation is performed to demonstrate our scheme and test its performance. Finally, a real experiment is set up, we measure the TMs from the scattering medium, and then use it to reconstruct the hidden object. We show that a phase object of size 32 × 32 is retrieved from 150 × 150 speckle grains, which is only 1/50 of the speckles area. We believe our proposed method can benefit the community of imaging through the scattering medium.

  18. Rapid-scan Fourier-transform coherent anti-Stokes Raman scattering spectroscopy with heterodyne detection.

    Science.gov (United States)

    Hiramatsu, Kotaro; Luo, Yizhi; Ideguchi, Takuro; Goda, Keisuke

    2017-11-01

    High-speed Raman spectroscopy has become increasingly important for analyzing chemical dynamics in real time. To address the need, rapid-scan Fourier-transform coherent anti-Stokes Raman scattering (FT-CARS) spectroscopy has been developed to realize broadband CARS measurements at a scan rate of more than 20,000 scans/s. However, the detection sensitivity of FT-CARS spectroscopy is inherently low due to the limited number of photons detected during each scan. In this Letter, we show our experimental demonstration of enhanced sensitivity in rapid-scan FT-CARS spectroscopy by heterodyne detection. Specifically, we implemented heterodyne detection by superposing the CARS electric field with an external local oscillator (LO) for their interference. The CARS signal was amplified by simply increasing the power of the LO without the need for increasing the incident power onto the sample. Consequently, we achieved enhancement in signal intensity and the signal-to-noise ratio by factors of 39 and 5, respectively, compared to FT-CARS spectroscopy with homodyne detection. The sensitivity-improved rapid-scan FT-CARS spectroscopy is expected to enable the sensitive real-time observation of chemical dynamics in a broad range of settings, such as combustion engines and live biological cells.

  19. Perancangan dan Implementasi Kontroler PID untuk Pengaturan Autonomous Car-Following Car

    Directory of Open Access Journals (Sweden)

    Andreas Parluhutan Bonor Sinaga

    2014-03-01

    Full Text Available Pengiriman logistik ke daerah-daerah rawan bencana merupakan hal yang sangat sulit dilakukan, tentunya diperlukan pengetahuan mengenai kondisi medan jalan. Salah satu dampak yang utama adalah sulitnya melakukan manuver dalam pengendalian performansi  truk logistik yang pada umumnya berupa truk-truk gandeng. Untuk membantu pengemudi truk dalam berkendara pada kondisi tersebut, dirancang sebuah prototype mobil mandiri (Autonomous Car yang mampu melakukan manuver-manuver pergerakan secara sendirinya, salah satu manuver tersebut ialah Following Car.  Dalam Tugas Akhir ini perancangan sistem yang akan dilakukan dengan  memodelkan  dua buah kendaraan mobil RC (remote control yang bertindak sebagai  follower dan leader car. Pengoperasian dari  following car dilakukan dengan memodifikasi dari kendaraan RC-1, sedangkan RC-2 bertindak sebagai leader car yang dikondisikan secara manual. Dengan penerapan kontroler PID pada implementasi sistem didapatkan penurunan time settling menjadi 2,7 Detik dan peningkatan error steady state sebesar 2,44%. Pada implementasi diberikan kecepatan leader secara acak, dengan implementasi kontroler PID, kondisi jarak antara autonomous car dengan leader car masih dalam range keadaan ideal pada set point.

  20. Impact on dose and image quality of a software-based scatter correction in mammography.

    Science.gov (United States)

    Monserrat, Teresa; Prieto, Elena; Barbés, Benigno; Pina, Luis; Elizalde, Arlette; Fernández, Belén

    2017-01-01

    Background In 2014, Siemens developed a new software-based scatter correction (Progressive Reconstruction Intelligently Minimizing Exposure [PRIME]), enabling grid-less digital mammography. Purpose To compare doses and image quality between PRIME (grid-less) and standard (with anti-scatter grid) modes. Material and Methods Contrast-to-noise ratio (CNR) was measured for various polymethylmethacrylate (PMMA) thicknesses and dose values provided by the mammograph were recorded. CDMAM phantom images were acquired for various PMMA thicknesses and inverse Image Quality Figure (IQF inv ) was calculated. Values of incident entrance surface air kerma (ESAK) and average glandular dose (AGD) were obtained from the DICOM header for a total of 1088 pairs of clinical cases. Two experienced radiologists compared subjectively the image quality of a total of 149 pairs of clinical cases. Results CNR values were higher and doses were lower in PRIME mode for all thicknesses. IQF inv values in PRIME mode were lower for all thicknesses except for 40 mm of PMMA equivalent, in which IQF inv was slightly greater in PRIME mode. A mean reduction of 10% in ESAK and 12% in AGD in PRIME mode with respect to standard mode was obtained. The clinical image quality in PRIME and standard acquisitions resulted to be similar in most of the cases (84% for the first radiologist and 67% for the second one). Conclusion The use of PRIME software reduces, in average, the dose of radiation to the breast without affecting image quality. This reduction is greater for thinner and denser breasts.

  1. Analysis of high resolution scatter images from laser damage experiments performed on KDP

    International Nuclear Information System (INIS)

    Runkel, M.; Woods, B.; Yan, M.

    1996-01-01

    Interest in producing high damage threshold KH 2 PO 4 (KDP) and (D x H 1-x ) 2 PO 4 (KD*P, DKDP) for optical switching and frequency conversion applications is being driven by the system requirements for the National Ignition Facility (NIF) at Lawrence Livermore National Lab (LLNL). Historically, the path to achieving higher damage thresholds has been to improve the purity of crystal growth solutions. Application of advanced filtration technology has increased the damage threshold, but gives little insight into the actual mechanisms of laser damage. We have developed a laser scatter diagnostic to better study bulk defects and laser damage mechanisms in KDP and KD*P crystals. This diagnostic consists of a cavity doubled, kilohertz class, Nd:YLF laser (527 nm) and high dynamic range CCD camera which allows imaging of bulk scatter signals. With it, we have performed damage tests at 355 nm on four different open-quotes vintagesclose quotes of KDP crystals, concentrating on crystals produced via fast growth methods. We compare the diagnostic's resolution to LLNL's standard damage detection method of 100X darkfield microscopy and discuss its impact on damage threshold determination. We have observed the disappearance of scatter sites upon exposure to subthreshold irradiation. In contrast, we have seen scatterers appear where none previously existed. This includes isolated, large (high signal) sites as well as multiple small scatter sites which appear at fluences above 7 J/cm 2 (fine tracking). However, we have not observed a strong correlation of preexisting scatter sites and laser damage sites. We speculate on the connection between the laser-induced disappearance of scatter sites and the observed increase in damage threshold with laser conditioning

  2. Source distribution dependent scatter correction for PVI

    International Nuclear Information System (INIS)

    Barney, J.S.; Harrop, R.; Dykstra, C.J.

    1993-01-01

    Source distribution dependent scatter correction methods which incorporate different amounts of information about the source position and material distribution have been developed and tested. The techniques use image to projection integral transformation incorporating varying degrees of information on the distribution of scattering material, or convolution subtraction methods, with some information about the scattering material included in one of the convolution methods. To test the techniques, the authors apply them to data generated by Monte Carlo simulations which use geometric shapes or a voxelized density map to model the scattering material. Source position and material distribution have been found to have some effect on scatter correction. An image to projection method which incorporates a density map produces accurate scatter correction but is computationally expensive. Simpler methods, both image to projection and convolution, can also provide effective scatter correction

  3. Coherent Raman Imaging of Live Muscle Sarcomeres Assisted by SFG Microscopy.

    Science.gov (United States)

    Kim, Hyunmin; Kim, Do-Young; Joo, Kyung-Il; Kim, Jung-Hye; Jeong, Soon Moon; Lee, Eun Seong; Hahm, Jeong-Hoon; Kim, Kyuhyung; Moon, Dae Woon

    2017-08-23

    In this study, we used spectrally focused coherent anti-Stokes Raman scattering (spCARS) microscopy assisted by sum-frequency generation (SFG) to monitor the variations in the structural morphology and molecular vibrations of a live muscle of Caenorhabditis elegans. The subunits of the muscle sarcomeres, such as the M-line, myosin, dense body, and α-actinin, were alternatively observed using spCARS microscopy for different sample orientations, with the guidance of a myosin positional marker captured by SFG microscopy. Interestingly enough, the beam polarization dependence of the spCARS contrasts for two parallel subunits (dense body and myosin) showed a ~90° phase difference. The chemically sensitive spCARS spectra induced by the time-varying overlap of two pulses allowed (after a robust subtraction of the non-resonant background using a modified Kramers-Krönig transformation method) high-fidelity detection of various genetically modified muscle sarcomeres tuned to the C-H vibration (2800-3100 cm -1 ). Conversely, SFG image mapping assisted by phase-retrieved spCARS spectra also facilitated label-free monitoring of the changes in the muscle content of C. elegans that are associated with aging, based on the hypothesis that the C-H vibrational modes could serve as qualitative chemical markers sensitive to the amount and/or structural modulation of the muscle.

  4. Concept Car Design and Ability Training

    Science.gov (United States)

    Lv, Jiefeng; Lu, Hairong

    The concept design as a symbol of creative design thinking, reflecting on the future design of exploratory and prospective, as a vehicle to explore the notion of future car design, design inspiration and creativity is not only a bold display, more through demonstrate the concept, reflects the company's technological strength and technological progress, and thus enhance their brand image. Present Chinese automobile design also has a very big disparity with world level, through cultivating students' concept design ability, to establish native design features and self-reliant brand image is practical and effective ways, also be necessary and pressing.

  5. Moisture measurements in iron ores, in freight cars, through nuclear techniques

    International Nuclear Information System (INIS)

    Castagnet, A.C.; Said, M.; Duarte, U.

    1975-01-01

    The possibility and the advantages of using a nuclear technique for measuring on the spot (in the freight cars) and the moisture content of iron ores are described. The measurements included the determination of the volumetric moisture content and the density. From this values, the moisture content in percentage by weight was calculated. Nuclear Chicago d/M Combination Density-Moisture Probe with a 5 mCi Ra/Be source, and a digital portable scaler, were used. The investigated techniques give good results when the measurements are made directly on the ore surface, and has economical advantages over the gravimetric method by sampling. The probable reasons for both, the aleatory scattering of points and the lack of linear correlation between the values of both methods, when the nuclear measurement is made across the car walls are analized

  6. CARS microscopy of Alzheimer's diseased brain tissue

    Science.gov (United States)

    Enejder, Annika; Kiskis, Juris; Fink, Helen; Nyberg, Lena; Thyr, Jakob; Li, Jia-Yi

    2014-02-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder currently without cure, characterized by the presence of extracellular plaques surrounded by dystrophic neurites. In an effort to understand the underlying mechanisms, biochemical analysis (protein immunoblot) of plaque extracts reveals that they consist of amyloid-beta (Aβ) peptides assembled as oligomers, protofibrils and aggregates. Their spatial distribution has been confirmed by Thioflavin-S or immuno-staining with fluorescence microscopy. However, it is increasingly understood that the protein aggregation is only one of several mechanism that causes neuronal dysfunction and death. This raises the need for a more complete biochemical analysis. In this study, we have complemented 2-photon fluorescence microscopy of Thioflavin-S and Aβ immuno-stained human AD plaques with CARS microscopy. We show that the chemical build-up of AD plaques is more complex and that Aβ staining does not provide the complete picture of the spatial distribution or the molecular composition of AD plaques. CARS images provide important complementary information to that obtained by fluorescence microscopy, motivating a broader introduction of CARS microscopy in the AD research field.

  7. Exploiting the speckle-correlation scattering matrix for a compact reference-free holographic image sensor.

    Science.gov (United States)

    Lee, KyeoReh; Park, YongKeun

    2016-10-31

    The word 'holography' means a drawing that contains all of the information for light-both amplitude and wavefront. However, because of the insufficient bandwidth of current electronics, the direct measurement of the wavefront of light has not yet been achieved. Though reference-field-assisted interferometric methods have been utilized in numerous applications, introducing a reference field raises several fundamental and practical issues. Here we demonstrate a reference-free holographic image sensor. To achieve this, we propose a speckle-correlation scattering matrix approach; light-field information passing through a thin disordered layer is recorded and retrieved from a single-shot recording of speckle intensity patterns. Self-interference via diffusive scattering enables access to impinging light-field information, when light transport in the diffusive layer is precisely calibrated. As a proof-of-concept, we demonstrate direct holographic measurements of three-dimensional optical fields using a compact device consisting of a regular image sensor and a diffusor.

  8. Effect of static scatterers in laser speckle contrast imaging: an experimental study on correlation and contrast

    Science.gov (United States)

    Vaz, Pedro G.; Humeau-Heurtier, Anne; Figueiras, Edite; Correia, Carlos; Cardoso, João

    2018-01-01

    Laser speckle contrast imaging (LSCI) is a non-invasive microvascular blood flow assessment technique with good temporal and spatial resolution. Most LSCI systems, including commercial devices, can perform only qualitative blood flow evaluation, which is a major limitation of this technique. There are several factors that prevent the utilization of LSCI as a quantitative technique. Among these factors, we can highlight the effect of static scatterers. The goal of this work was to study the influence of differences in static and dynamic scatterer concentration on laser speckle correlation and contrast. In order to achieve this, a laser speckle prototype was developed and tested using an optical phantom with various concentrations of static and dynamic scatterers. It was found that the laser speckle correlation could be used to estimate the relative concentration of static/dynamic scatterers within a sample. Moreover, the speckle correlation proved to be independent of the dynamic scatterer velocity, which is a fundamental characteristic to be used in contrast correction.

  9. Real-time biochemical sensor based on Raman scattering with CMOS contact imaging.

    Science.gov (United States)

    Muyun Cao; Yuhua Li; Yadid-Pecht, Orly

    2015-08-01

    This work presents a biochemical sensor based on Raman scattering with Complementary metal-oxide-semiconductor (CMOS) contact imaging. This biochemical optical sensor is designed for detecting the concentration of solutions. The system is built with a laser diode, an optical filter, a sample holder and a commercial CMOS sensor. The output of the system is analyzed by an image processing program. The system provides instant measurements with a resolution of 0.2 to 0.4 Mol. This low cost and easy-operated small scale system is useful in chemical, biomedical and environmental labs for quantitative bio-chemical concentration detection with results reported comparable to a highly cost commercial spectrometer.

  10. AFFECTIVE COMPUTING AND AUGMENTED REALITY FOR CAR DRIVING SIMULATORS

    Directory of Open Access Journals (Sweden)

    Dragoș Datcu

    2017-12-01

    Full Text Available Car simulators are essential for training and for analyzing the behavior, the responses and the performance of the driver. Augmented Reality (AR is the technology that enables virtual images to be overlaid on views of the real world. Affective Computing (AC is the technology that helps reading emotions by means of computer systems, by analyzing body gestures, facial expressions, speech and physiological signals. The key aspect of the research relies on investigating novel interfaces that help building situational awareness and emotional awareness, to enable affect-driven remote collaboration in AR for car driving simulators. The problem addressed relates to the question about how to build situational awareness (using AR technology and emotional awareness (by AC technology, and how to integrate these two distinct technologies [4], into a unique affective framework for training, in a car driving simulator.

  11. Coherent anti-Stokes Raman scattering (CARS) spectroscopy in Caenorhabditis elegans and Globodera pallida: evidence for an ivermectin-activated decrease in lipid stores.

    Science.gov (United States)

    Smus, Justyna P; Ludlow, Elizabeth; Dallière, Nicolas; Luedtke, Sarah; Monfort, Tual; Lilley, Catherine; Urwin, Peter; Walker, Robert J; O'Connor, Vincent; Holden-Dye, Lindy; Mahajan, Sumeet

    2017-12-01

    Macrocyclic lactones are arguably the most successful chemical class with efficacy against parasitic nematodes. Here we investigated the effect of the macrocyclic lactone ivermectin on lipid homeostasis in the plant parasitic nematode Globodera pallida and provide new insight into its mode of action. A non-invasive, non-destructive, label-free and chemically selective technique called Coherent anti-Stokes Raman scattering (CARS) spectroscopy was used to study lipid stores in G. pallida. We optimised the protocol using the free-living nematode Caenorhabditis elegans and then used CARS to quantify lipid stores in the pre-parasitic, non-feeding J2 stage of G. pallida. This revealed a concentration of lipid stores in the posterior region of J2 s within 24 h of hatching which decreased to undetectable levels over the course of 28 days. We tested the effect of ivermectin on J2 viability and lipid stores. Within 24 h, ivermectin paralysed J2 s. Counterintuitively, over the same time-course ivermectin increased the rate of depletion of J2 lipid, suggesting that in ivermectin-treated J2 s there is a disconnection between the energy requirements for motility and metabolic rate. This decrease in lipid stores would be predicted to negatively impact on J2 infective potential. These data suggest that the benefit of macrocyclic lactones as seed treatments may be underpinned by a multilevel effect involving both neuromuscular inhibition and acceleration of lipid metabolism. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  12. PIV Analysis Comparing Aerodynamic Downforce Devices on Race Car in Water Tunnel

    Science.gov (United States)

    Hellman, Sam; Tkacik, Peter; Uddin, Mesbah; Kelly, Scott

    2010-11-01

    There have been claims that the rear wing on the NASCAR Car of Tomorrow (COT) race car causes lift in the condition where the car spins during a crash and is traveling backwards down the track at a high rate of speed. When enough lift is generated, the race car can lose control and even fly off of the track surface completely. To address this concern, a new rear spoiler was designed by NASCAR to replace the wing and prevent this dangerous condition. Flow characteristics of both the rear wing and the new spoiler are qualitatively analyzed using particle image velocimetry (PIV). The experiment is done in a continuous flow water tunnel using a simplified 10% scale model COT. Flow structures are identified and compared for both the wing and spoiler. The same conditions are also reviewed when the car is traveling backwards as it might during a crash. The cause of the lift generated by the rear wing when in reverse is shown.

  13. Anti-scatter grids, applied in diagnostic radiology

    International Nuclear Information System (INIS)

    Porubszky, T.

    2012-01-01

    During imaging in diagnostic radiology, X-ray beam is scattered on all media between X-ray source and X-ray image receptor. The most important one from these is the patient itself. Scattered radiation, reaching X-ray image receptor - which may be even 5-6 times more intensive than X-ray pattern, in case of pelvis of a corpulent patient - reduces image contrast, impairs detail visibility and, moreover - in case of examinations during which staff stays in the controlled area, it causes radiation exposure of the staff. For diminishing scattered radiation, in principle, there are two possibilities. One of them is the so-called air gap, i.e. increasing the distance between the patient and the X-ray image receptor; however, because of the geometric magnification it is not always applicable or appropriate. The other way is application of anti-scatter grids directly in front of the X-ray image receptor. Interest of the patient is firstly the image, appropriate for diagnosis, and only after it the possible lowest radiation exposure. In most cases radiation exposure is optimized if image quality impairing effect of scattered radiation is decreased, although entrance skin dose and so radiation exposure of the patient may increase then by a factor of 2 to 5. Examinations of babies and small children as well as extremities, however, are exceptions: in these cases antiscatter grids are to be removed from the beam as amount of scattered radiation is very small, therefore optimizing radiation exposure in these cases reached by examination without grid. The presentation deals with the most important characteristics of anti-scatter grids as new edition of their international standard will be published next year. (author)

  14. a Fuzzy Automatic CAR Detection Method Based on High Resolution Satellite Imagery and Geodesic Morphology

    Science.gov (United States)

    Zarrinpanjeh, N.; Dadrassjavan, F.

    2017-09-01

    Automatic car detection and recognition from aerial and satellite images is mostly practiced for the purpose of easy and fast traffic monitoring in cities and rural areas where direct approaches are proved to be costly and inefficient. Towards the goal of automatic car detection and in parallel with many other published solutions, in this paper, morphological operators and specifically Geodesic dilation are studied and applied on GeoEye-1 images to extract car items in accordance with available vector maps. The results of Geodesic dilation are then segmented and labeled to generate primitive car items to be introduced to a fuzzy decision making system, to be verified. The verification is performed inspecting major and minor axes of each region and the orientations of the cars with respect to the road direction. The proposed method is implemented and tested using GeoEye-1 pansharpen imagery. Generating the results it is observed that the proposed method is successful according to overall accuracy of 83%. It is also concluded that the results are sensitive to the quality of available vector map and to overcome the shortcomings of this method, it is recommended to consider spectral information in the process of hypothesis verification.

  15. Ex Vivo Perfusion-Simulation Measurements of Microbubbles as a Scattering Contrast Agent for Grating-Based X-Ray Dark-Field Imaging.

    Directory of Open Access Journals (Sweden)

    Astrid Velroyen

    Full Text Available The investigation of dedicated contrast agents for x-ray dark-field imaging, which exploits small-angle scattering at microstructures for contrast generation, is of strong interest in analogy to the common clinical use of high-atomic number contrast media in conventional attenuation-based imaging, since dark-field imaging has proven to provide complementary information. Therefore, agents consisting of gas bubbles, as used in ultrasound imaging for example, are of particular interest. In this work, we investigate an experimental contrast agent based on microbubbles consisting of a polyvinyl-alcohol shell with an iron oxide coating, which was originally developed for multimodal imaging and drug delivery. Its performance as a possible contrast medium for small-animal angiography was examined using a mouse carcass to realistically consider attenuating and scattering background signal. Subtraction images of dark field, phase contrast and attenuation were acquired for a concentration series of 100%, 10% and 1.3% to mimic different stages of dilution in the contrast agent in the blood vessel system. The images were compared to the gold-standard iodine-based contrast agent Solutrast, showing a good contrast improvement by microbubbles in dark-field imaging. This study proves the feasibility of microbubble-based dark-field contrast-enhancement in presence of scattering and attenuating mouse body structures like bone and fur. Therefore, it suggests a strong potential of the use of polymer-based microbubbles for small-animal dark-field angiography.

  16. CAR2 - Czech Database of Car Speech

    Directory of Open Access Journals (Sweden)

    P. Sovka

    1999-12-01

    Full Text Available This paper presents new Czech language two-channel (stereo speech database recorded in car environment. The created database was designed for experiments with speech enhancement for communication purposes and for the study and the design of a robust speech recognition systems. Tools for automated phoneme labelling based on Baum-Welch re-estimation were realised. The noise analysis of the car background environment was done.

  17. CAR2 - Czech Database of Car Speech

    OpenAIRE

    Pollak, P.; Vopicka, J.; Hanzl, V.; Sovka, Pavel

    1999-01-01

    This paper presents new Czech language two-channel (stereo) speech database recorded in car environment. The created database was designed for experiments with speech enhancement for communication purposes and for the study and the design of a robust speech recognition systems. Tools for automated phoneme labelling based on Baum-Welch re-estimation were realised. The noise analysis of the car background environment was done.

  18. Bilateral hippocampal hyperintensities: a new finding in MR imaging of heat stroke

    Energy Technology Data Exchange (ETDEWEB)

    Janaki Sudhakar, Praharaju; Al-Hashimi, Hakima [Salmaniya Medical Complex, Department of Radiology, Manama (Bahrain)

    2007-12-15

    We present a child aged 2 years 3 months who suffered heat stroke after being accidentally locked in a car during summer. She was unconscious with hyperthermia on admission and later showed biochemical evidence of liver, cardiac and muscle injury and associated electrolyte imbalance. Her level of consciousness gradually improved, but she showed evidence of cortical blindness, which had improved on follow-up. MR imaging on the 5th day revealed bilateral hippocampal hyperintensities along with hyperintensities in the cerebellum and in the cerebral cortex. Previous case reports of imaging in heat stroke revealed involvement of the cerebellum, thalami, basal ganglia and scattered cerebral involvement. We report this unique finding of hippocampal hyperintensities due to heat stroke. (orig.)

  19. Bilateral hippocampal hyperintensities: a new finding in MR imaging of heat stroke

    International Nuclear Information System (INIS)

    Janaki Sudhakar, Praharaju; Al-Hashimi, Hakima

    2007-01-01

    We present a child aged 2 years 3 months who suffered heat stroke after being accidentally locked in a car during summer. She was unconscious with hyperthermia on admission and later showed biochemical evidence of liver, cardiac and muscle injury and associated electrolyte imbalance. Her level of consciousness gradually improved, but she showed evidence of cortical blindness, which had improved on follow-up. MR imaging on the 5th day revealed bilateral hippocampal hyperintensities along with hyperintensities in the cerebellum and in the cerebral cortex. Previous case reports of imaging in heat stroke revealed involvement of the cerebellum, thalami, basal ganglia and scattered cerebral involvement. We report this unique finding of hippocampal hyperintensities due to heat stroke. (orig.)

  20. The Green City Car. A holistic approach for NVH abatement of city cars

    OpenAIRE

    Bein, Thilo; Mayer, Dirk; Elliott, Steve; Ferrali, Leonardo; Casella, Mauro; Saemann, Ernst-Ulrich; Kropp, Wolfgang; Nielsen, Finn Kryger; Meschke, Jens; Pisano, Emanuel

    2014-01-01

    Pursuing the different passive and active concepts in a holistic approach, the FP7 project Green City Car demonstrates the feasibility of applying active systems to NVH-related problems light city cars from a system point-of view. During the project, a city car equipped with a small engine has been considered equipped with the latest technology in terms of safety aspects related to pedestrian’s impact and car-to-car compatibility, which are of major importance in an urban environment. The noi...

  1. UV exposure in cars.

    Science.gov (United States)

    Moehrle, Matthias; Soballa, Martin; Korn, Manfred

    2003-08-01

    There is increasing knowledge about the hazards of solar and ultraviolet (UV) radiation to humans. Although people spend a significant time in cars, data on UV exposure during traveling are lacking. The aim of this study was to obtain basic information on personal UV exposure in cars. UV transmission of car glass samples, windscreen, side and back windows and sunroof, was determined. UV exposure of passengers was evaluated in seven German middle-class cars, fitted with three different types of car windows. UV doses were measured with open or closed windows/sunroof of Mercedes-Benz E 220 T, E 320, and S 500, and in an open convertible car (Mercedes-Benz CLK). Bacillus subtilis spore film dosimeters (Viospor) were attached to the front, vertex, cheeks, upper arms, forearms and thighs of 'adult' and 'child' dummies. UV wavelengths longer than >335 nm were transmitted through car windows, and UV irradiation >380 nm was transmitted through compound glass windscreens. There was some variation in the spectral transmission of side windows according to the type of glass. On the arms, UV exposure was 3-4% of ambient radiation when the car windows were shut, and 25-31% of ambient radiation when the windows were open. In the open convertible car, the relative personal doses reached 62% of ambient radiation. The car glass types examined offer substantial protection against short-wave UV radiation. Professional drivers should keep car windows closed on sunny days to reduce occupational UV exposure. In individuals with polymorphic light eruption, produced by long-wave UVA, additional protection by plastic films, clothes or sunscreens appears necessary.

  2. Evaluation of scatter limitation correction: a new method of correcting photopenic artifacts caused by patient motion during whole-body PET/CT imaging.

    Science.gov (United States)

    Miwa, Kenta; Umeda, Takuro; Murata, Taisuke; Wagatsuma, Kei; Miyaji, Noriaki; Terauchi, Takashi; Koizumi, Mitsuru; Sasaki, Masayuki

    2016-02-01

    Overcorrection of scatter caused by patient motion during whole-body PET/computed tomography (CT) imaging can induce the appearance of photopenic artifacts in the PET images. The present study aimed to quantify the accuracy of scatter limitation correction (SLC) for eliminating photopenic artifacts. This study analyzed photopenic artifacts in (18)F-fluorodeoxyglucose ((18)F-FDG) PET/CT images acquired from 12 patients and from a National Electrical Manufacturers Association phantom with two peripheral plastic bottles that simulated the human body and arms, respectively. The phantom comprised a sphere (diameter, 10 or 37 mm) containing fluorine-18 solutions with target-to-background ratios of 2, 4, and 8. The plastic bottles were moved 10 cm posteriorly between CT and PET acquisitions. All PET data were reconstructed using model-based scatter correction (SC), no scatter correction (NSC), and SLC, and the presence or absence of artifacts on the PET images was visually evaluated. The SC and SLC images were also semiquantitatively evaluated using standardized uptake values (SUVs). Photopenic artifacts were not recognizable in any NSC and SLC image from all 12 patients in the clinical study. The SUVmax of mismatched SLC PET/CT images were almost equal to those of matched SC and SLC PET/CT images. Applying NSC and SLC substantially eliminated the photopenic artifacts on SC PET images in the phantom study. SLC improved the activity concentration of the sphere for all target-to-background ratios. The highest %errors of the 10 and 37-mm spheres were 93.3 and 58.3%, respectively, for mismatched SC, and 73.2 and 22.0%, respectively, for mismatched SLC. Photopenic artifacts caused by SC error induced by CT and PET image misalignment were corrected using SLC, indicating that this method is useful and practical for clinical qualitative and quantitative PET/CT assessment.

  3. Polarization recovery through scattering media.

    Science.gov (United States)

    de Aguiar, Hilton B; Gigan, Sylvain; Brasselet, Sophie

    2017-09-01

    The control and use of light polarization in optical sciences and engineering are widespread. Despite remarkable developments in polarization-resolved imaging for life sciences, their transposition to strongly scattering media is currently not possible, because of the inherent depolarization effects arising from multiple scattering. We show an unprecedented phenomenon that opens new possibilities for polarization-resolved microscopy in strongly scattering media: polarization recovery via broadband wavefront shaping. We demonstrate focusing and recovery of the original injected polarization state without using any polarizing optics at the detection. To enable molecular-level structural imaging, an arbitrary rotation of the input polarization does not degrade the quality of the focus. We further exploit the robustness of polarization recovery for structural imaging of biological tissues through scattering media. We retrieve molecular-level organization information of collagen fibers by polarization-resolved second harmonic generation, a topic of wide interest for diagnosis in biomedical optics. Ultimately, the observation of this new phenomenon paves the way for extending current polarization-based methods to strongly scattering environments.

  4. Pulse sliced picosecond Ballistic Imaging and two planar elastic scattering: Development of the techniques and their application to diesel sprays

    Science.gov (United States)

    Duran, Sean Patrick Hynes

    A line of sight imaging technique was developed which utilized pulse slicing of laser pulses to shorten the duration of the parent laser pulse, thereby making time gating more effective at removing multiple scattered light. This included the development of an optical train which utilized a Kerr cell to selectively pass the initial part of the laser pulse while rejecting photons contained later within the pulse. This line of sight ballistic imaging technique was applied to image high-pressure fuel sprays injected into conditions typically encountered in a diesel combustion chamber. Varying the environmental conditions into which the fuel was injected revealed trends in spray behavior which depend on both temperature and pressure. Different fuel types were also studied in this experiment which demonstrated remarkably different shedding structures from one another. Additional experiments were performed to characterize the imaging technique at ambient conditions. The technique was modified to use two wavelengths to allow further rejection of scattered light. The roles of spatial, temporal and polarization filtration were examined by imaging an USAF 1951 line-pair target through a highly scattering field of polystyrene micro-spheres. The optical density of the scattering field was varied by both the optical path length and number densities of the spheres. The equal optical density, but with variable path length results demonstrated the need for an aggressively shorter pulse length to effectively image the distance scales typical encountered in the primary breakup regions of diesel sprays. Results indicate that the system performance improved via the use of two wavelengths. A final investigation was undertaken to image coherent light which has elastically scattered orthogonal to the direction of the laser pulse. Two wavelengths were focused into ˜150 micron sheets via a cylindrical lens and passed under the injector nozzle. The two sheets were adjustable spatially to

  5. Car use within the household

    DEFF Research Database (Denmark)

    de Borger, Bruno; Mulalic, Ismir; Rouwendal, Jan

    2013-01-01

    In this paper we study the demand for car kilometres in two-car households, focusing on the substitution between cars in response to fuel price changes. We use a large sample of detailed Danish data on two-car households to estimate—for each car owned by the household—own and cross-price effects...... of increases in fuel costs per kilometre. The empirical results show that failure to capture substitution between cars within the household can result in substantial misspecification biases. Ignoring substitution, we estimate fuel price elasticities of –0.81 and -0.65 for the primary and secondary cars...... efficient car, finding partial support for the underlying hypothesis. More importantly, the results of this extended model emphasize the importance of behavioural differences related to the position of the most fuel efficient car in the household, suggesting that households’ fuel efficiency choices...

  6. Tank car leaks gasoline

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    On January 27, 1994, a Canadian National (CN) tank car loaded with gasoline began to leak from a crack in the tank shell on the end of the car near the stub sill. The tank car had been damaged from impact switching. A part of the tank car was sent for laboratory analysis which concluded that: (1) the fracture originated in two locations in welds, (2) the cracks propagated in a symmetrical manner and progressed into the tank plate, (3) the fracture surface revealed inadequate weld fusion. A stress analysis of the tank car was conducted to determine the coupling force necessary to cause the crack. It was noted that over the last decade several problems have occurred pertaining to stub sill areas of tank cars that have resulted in hazardous material spills. An advisory was sent to Transport Canada outlining many examples where tank cars containing serious defects had passed CN inspections that were specifically designed to identify such defects. 4 figs

  7. Visualizing redox orbitals and their potentials in advanced lithium-ion battery materials using high-resolution x-ray Compton scattering.

    Science.gov (United States)

    Hafiz, Hasnain; Suzuki, Kosuke; Barbiellini, Bernardo; Orikasa, Yuki; Callewaert, Vincent; Kaprzyk, Staszek; Itou, Masayoshi; Yamamoto, Kentaro; Yamada, Ryota; Uchimoto, Yoshiharu; Sakurai, Yoshiharu; Sakurai, Hiroshi; Bansil, Arun

    2017-08-01

    Reduction-oxidation (redox) reactions are the key processes that underlie the batteries powering smartphones, laptops, and electric cars. A redox process involves transfer of electrons between two species. For example, in a lithium-ion battery, current is generated when conduction electrons from the lithium anode are transferred to the redox orbitals of the cathode material. The ability to visualize or image the redox orbitals and how these orbitals evolve under lithiation and delithiation processes is thus of great fundamental and practical interest for understanding the workings of battery materials. We show that inelastic scattering spectroscopy using high-energy x-ray photons (Compton scattering) can yield faithful momentum space images of the redox orbitals by considering lithium iron phosphate (LiFePO 4 or LFP) as an exemplar cathode battery material. Our analysis reveals a new link between voltage and the localization of transition metal 3d orbitals and provides insight into the puzzling mechanism of potential shift and how it is connected to the modification of the bond between the transition metal and oxygen atoms. Our study thus opens a novel spectroscopic pathway for improving the performance of battery materials.

  8. In vivo imaging of cerebral hemodynamics and tissue scattering in rat brain using a surgical microscope camera system

    Science.gov (United States)

    Nishidate, Izumi; Kanie, Takuya; Mustari, Afrina; Kawauchi, Satoko; Sato, Shunichi; Sato, Manabu; Kokubo, Yasuaki

    2018-02-01

    We investigated a rapid imaging method to monitor the spatial distribution of total hemoglobin concentration (CHbT), the tissue oxygen saturation (StO2), and the scattering power b in the expression of musp=a(lambda)^-b as the scattering parameters in cerebral cortex using a digital red-green-blue camera. In the method, Monte Carlo simulation (MCS) for light transport in brain tissue is used to specify a relation among the RGB-values and the concentration of oxygenated hemoglobin (CHbO), that of deoxygenated hemoglobin (CHbR), and the scattering power b. In the present study, we performed sequential recordings of RGB images of in vivo exposed brain of rats while changing the fraction of inspired oxygen (FiO2), using a surgical microscope camera system. The time courses of CHbO, CHbR, CHbT, and StO2 indicated the well-known physiological responses in cerebral cortex. On the other hand, a fast decrease in the scattering power b was observed immediately after the respiratory arrest, which is similar to the negative deflection of the extracellular DC potential so-called anoxic depolarization. It is said that the DC shift coincident with a rise in extracellular potassium and can evoke cell deformation generated by water movement between intracellular and extracellular compartments, and hence the light scattering by tissue. Therefore, the decrease in the scattering power b after the respiratory arrest is indicative of changes in light scattering by tissue. The results in this study indicate potential of the method to evaluate the pathophysiological conditions and loss of tissue viability in brain tissue.

  9. Car allocation between household heads in car deficient households : A decision model

    NARCIS (Netherlands)

    Anggraini, Renni; Arentze, Theo A.; Timmermans, Harry J P

    2008-01-01

    This paper considers car allocation choice behaviour in car-deficient households explicitly in the context of an activity-scheduling process, focusing on work activities. A decision tree induction method is applied to derive a decision tree for the car allocation decision in automobile deficient

  10. First results from car-to-car and car-to-infrastructure radio channel measurements at 5.2GHZ

    OpenAIRE

    Paier, Alexander; Kåredal, Johan; Czink, Nicolai; Hofstetter, Helmut; Dumard, Charlotte; Zemen, Thomas; Tufvesson, Fredrik; Mecklenbräuker, Christoph; Molisch, Andreas

    2007-01-01

    Car-to-car and car-to-infrastructure (henceforth called C2X) communications are constantly gaining importance for road-safety and other applications. In order to design efficient C2X systems, an understanding of realistic C2X propagation channels is required, but currently, only few measurements have been published. This paper presents a description of an extensive measurement campaign recently conducted in an urban scenario, a rural scenario, and on a highway. We focused on 4 ÿ 4 multiple-in...

  11. Magnesium-made door frame for passenger cars; Pkw-Tuerrahmen aus Magnesium

    Energy Technology Data Exchange (ETDEWEB)

    Tikal, F.; Vollmer, C. [Kassel Univ. (Gesamthochschule) (Germany). Inst. fuer Produktionstechnik und Logistik

    1997-11-01

    One of the most complicated parts of a car is the door. An so it will be in the future. More and more parts will be integrated in a car`s door, especially safety and comfort related parts as well as a big number of functional elements. The car industry tries intensively to bring about a growing safety image to its buyers. At the Institute for Technical Production and Logistics (IPL) of the University of Kassel (GhK) a passenger door construction out of magnesium has been developed on the base of a foregoing construction. With the new practice orientated model the time of production could be essentially reduced while at the same time the weight could be decreased. (orig.) [Deutsch] Am Institut fuer Produktionstechnik und Logistik (ipl) der Universitaet Gesamthochschule Kassel wurde ein optimierter Magnesium-Druckguss-Rahmen fuer eine Pkw-Tuer, basierend auf einer vorangegangenen Arbeit, entwickelt. Mit dem neuen praxisnahen Modell konnte die Montagezeit erheblich reduziert und Gewicht eingespart werden. (orig.)

  12. Corrections for the effects of accidental coincidences, Compton scatter, and object size in positron emission mammography (PEM) imaging

    Energy Technology Data Exchange (ETDEWEB)

    Raymond Raylman; Stanislaw Majewski; Randolph Wojcik; Andrew Weisenberger; Brian Kross; Vladimir Popov

    2001-06-01

    Positron emission mammography (PEM) has begun to show promise as an effective method for the detection of breast lesions. Due to its utilization of tumor-avid radiopharmaceuticals labeled with positron-emitting radionuclides, this technique may be especially useful in imaging of women with radiodense or fibrocystic breasts. While the use of these radiotracers affords PEM unique capabilities, it also introduces some limitations. Specifically, acceptance of accidental and Compton-scattered coincidence events can decrease lesion detectability. The authors studied the effect of accidental coincidence events on PEM images produced by the presence of 18F-Fluorodeoxyglucose in the organs of a subject using an anthropomorphic phantom. A delayed-coincidence technique was tested as a method for correcting PEM images for the occurrence of accidental events. Also, a Compton scatter correction algorithm designed specifically for PEM was developed and tested using a compressed breast phantom.

  13. Corrections for the effects of accidental coincidences, Compton scatter, and object size in positron emission mammography (PEM) imaging

    International Nuclear Information System (INIS)

    Raymond Raylman; Stanislaw Majewski; Randolph Wojcik; Andrew Weisenberger; Brian Kross; Vladimir Popov

    2001-01-01

    Positron emission mammography (PEM) has begun to show promise as an effective method for the detection of breast lesions. Due to its utilization of tumor-avid radiopharmaceuticals labeled with positron-emitting radionuclides, this technique may be especially useful in imaging of women with radiodense or fibrocystic breasts. While the use of these radiotracers affords PEM unique capabilities, it also introduces some limitations. Specifically, acceptance of accidental and Compton-scattered coincidence events can decrease lesion detectability. The authors studied the effect of accidental coincidence events on PEM images produced by the presence of 18F-Fluorodeoxyglucose in the organs of a subject using an anthropomorphic phantom. A delayed-coincidence technique was tested as a method for correcting PEM images for the occurrence of accidental events. Also, a Compton scatter correction algorithm designed specifically for PEM was developed and tested using a compressed breast phantom

  14. New X-ray beam position monitors with submicron resolution utilizing imaging of scattered X-rays at CHESS

    International Nuclear Information System (INIS)

    Revesz, Peter; Temnykh, Alexander B.; Pauling, Alan K.

    2011-01-01

    At CHESS' A, F and G wiggler beam lines three new video beam position monitors (VBPMs) have been commissioned. These new VBPMs utilize X-rays scattered from the graphite filter (A and F line) or from a beryllium window (G-line) as the white wiggler beam passes through them. As the X-rays scatter in all directions from the scattering medium, a slit camera creates an image of the beam's footprint on a fluorescent screen. This image is then viewed by a CCD camera and analyzed using a computer program to calculate the intensity centroid, the beam profile and integrated intensity. These data are delivered to the CHESS signal archiving system for storage and display. The new systems employ digital cameras. These cameras are free of the noise inherent to the analog systems with long video signal connections. As a result, the beam position data delivered by the new systems are more reliable and accurate as shown by beam position traces using different beam position monitors on the same beam line.

  15. New X-ray beam position monitors with submicron resolution utilizing imaging of scattered X-rays at CHESS

    Energy Technology Data Exchange (ETDEWEB)

    Revesz, Peter, E-mail: pr20@cornell.edu [Cornell University, Cornell High Energy Synchrotron Source, Ithaca 14850, NY (United States); Temnykh, Alexander B. [Cornell University, Laboratory for Elem-Particle Physics, Ithaca 14850, NY (United States); Pauling, Alan K. [Cornell University, Cornell High Energy Synchrotron Source, Ithaca 14850, NY (United States)

    2011-09-01

    At CHESS' A, F and G wiggler beam lines three new video beam position monitors (VBPMs) have been commissioned. These new VBPMs utilize X-rays scattered from the graphite filter (A and F line) or from a beryllium window (G-line) as the white wiggler beam passes through them. As the X-rays scatter in all directions from the scattering medium, a slit camera creates an image of the beam's footprint on a fluorescent screen. This image is then viewed by a CCD camera and analyzed using a computer program to calculate the intensity centroid, the beam profile and integrated intensity. These data are delivered to the CHESS signal archiving system for storage and display. The new systems employ digital cameras. These cameras are free of the noise inherent to the analog systems with long video signal connections. As a result, the beam position data delivered by the new systems are more reliable and accurate as shown by beam position traces using different beam position monitors on the same beam line.

  16. Dual-pump CARS of Air in a Heated Pressure Vessel up to 55 Bar and 1300 K

    Science.gov (United States)

    Cantu, Luca; Gallo, Emanuela; Cutler, Andrew D.; Danehy, Paul M.

    2014-01-01

    Dual-pump Coherent anti-Stokes Raman scattering (CARS) measurements have been performed in a heated pressure vessel at NASA Langley Research Center. Each measurement, consisting of 500 single shot spectra, was recorded at a fixed location in dry air at various pressures and temperatures, in a range of 0.03-55×10(exp 5) Pa and 300-1373 K, where the temperature was varied using an electric heater. The maximum output power of the electric heater limited the combinations of pressures and temperatures that could be obtained. Charts of CARS signal versus temperature (at constant pressure) and signal versus pressure (at constant temperature) are presented and fit with an empirical model to validate the range of capability of the dual-pump CARS technique; averaged spectra at different conditions of pressure and temperature are also shown.

  17. Quantum effets in nonresonant X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Slowik, Jan Malte

    2015-11-15

    Due to their versatile properties, X rays are a unique tool to investigate the structure and dynamics of matter. X-ray scattering is the fundamental principle of many imaging techniques. Examples are X-ray crystallography, which recently celebrated one hundred years and is currently the leading method in structure determination of proteins, as well as X-ray phase contrast imaging (PCI), which is an imaging technique with countless applications in biology, medicine, etc. The technological development of X-ray free electron lasers (XFEL) has brought X-ray imaging at the edge of a new scientific revolution. XFELs offer ultrashort X-ray pulses with unprecedented high X-ray fluence and excellent spatial coherence properties. These properties make them an outstanding radiation source for X-ray scattering experiments, providing ultrafast temporal resolution as well as atomic spatial resolution. However, the radiation-matter interaction in XFEL experiments also advances into a novel regime. This demands a sound theoretical fundament to describe and explore the new experimental possibilities. This dissertation is dedicated to the theoretical study of nonresonant X-ray scattering. As the first topic, I consider the near-field imaging by propagation based X-ray phase contrast imaging (PCI). I devise a novel theory of PCI, in which radiation and matter are quantized. Remarkably, the crucial interference term automatically excludes contributions from inelastic scattering. This explains the success of the classical description thus far. The second topic of the thesis is the X-ray imaging of coherent electronic motion, where quantum effects become particularly apparent. The electron density of coherent electronic wave packets - important in charge transfer and bond breaking - varies in time, typically on femto- or attosecond time scales. In the near future, XFELs are envisaged to provide attosecond X-ray pulses, opening the possibility for time-resolved ultrafast X-ray scattering

  18. Quantum effets in nonresonant X-ray scattering

    International Nuclear Information System (INIS)

    Slowik, Jan Malte

    2015-11-01

    Due to their versatile properties, X rays are a unique tool to investigate the structure and dynamics of matter. X-ray scattering is the fundamental principle of many imaging techniques. Examples are X-ray crystallography, which recently celebrated one hundred years and is currently the leading method in structure determination of proteins, as well as X-ray phase contrast imaging (PCI), which is an imaging technique with countless applications in biology, medicine, etc. The technological development of X-ray free electron lasers (XFEL) has brought X-ray imaging at the edge of a new scientific revolution. XFELs offer ultrashort X-ray pulses with unprecedented high X-ray fluence and excellent spatial coherence properties. These properties make them an outstanding radiation source for X-ray scattering experiments, providing ultrafast temporal resolution as well as atomic spatial resolution. However, the radiation-matter interaction in XFEL experiments also advances into a novel regime. This demands a sound theoretical fundament to describe and explore the new experimental possibilities. This dissertation is dedicated to the theoretical study of nonresonant X-ray scattering. As the first topic, I consider the near-field imaging by propagation based X-ray phase contrast imaging (PCI). I devise a novel theory of PCI, in which radiation and matter are quantized. Remarkably, the crucial interference term automatically excludes contributions from inelastic scattering. This explains the success of the classical description thus far. The second topic of the thesis is the X-ray imaging of coherent electronic motion, where quantum effects become particularly apparent. The electron density of coherent electronic wave packets - important in charge transfer and bond breaking - varies in time, typically on femto- or attosecond time scales. In the near future, XFELs are envisaged to provide attosecond X-ray pulses, opening the possibility for time-resolved ultrafast X-ray scattering

  19. Jet Car Track Site

    Data.gov (United States)

    Federal Laboratory Consortium — Located in Lakehurst, New Jersey, the Jet Car Track Site supports jet cars with J57 engines and has a maximum jet car thrust of 42,000 pounds with a maximum speed of...

  20. Report on electric cars and plug-in hybrid cars; Redegoerelse - elbiler og plug-in hybridbiler

    Energy Technology Data Exchange (ETDEWEB)

    Elkjaer Toennesen, A.; Winther, K.; Noerregaard, K. (Teknologisk Institut, Taastrup (Denmark)); Larsen, Esben; Christensen, Linda; Kveiborg, O. (Danmarks Teknologiske Univ., Kgs. Lyngby (DTU) (Denmark))

    2010-04-15

    The Center for Green Transport at the Danish Transport Authority has prepared this statement in order to uncover driving technical aspects, user expectations and needs, and the environmental consequences of using electric and plug-in hybrid cars. An electric car is defined as a car driven by an electric motor that has a battery that can be charged with power from the grid. A plug-in hybrid car is defined as a car that combines gasoline or diesel engine with an electric motor with a battery which can be recharged with power from the grid. From an overall consideration related to the transport sector electric cars and plug-in hybrid cars have the major advantage that negative impacts on environment and climate from traffic can be reduced while the high mobility is maintained. Through an increased use of electric cars and plug-in hybrid cars, the many advantages attached to the car as an individual transportation form is maintained, while CO{sub 2} emissions etc. are reduced. Electric cars and plug-in hybrid cars is one of the technologies that are considered to have particularly great prospects in the medium term when it comes to promoting new technologies in transport. Another advantage of using electric vehicles is the power supply factor. An increased use of electricity in transport will reduce the need for and dependence on fossil fuels in the sector. Both electric cars and plug-in hybrid cars are expected to be used for storage of wind power, a possibility which is hardly available today. The plug-in hybrid car could meet some of the challenges facing the pure electric car, because it also can use conventional fuel. The report presents analyses based on three focus areas: a) Users' needs, expectations and economics in relation to vehicles; b) The technology - and hence the manufacturers' opportunities and challenges; c) Connection to the power grid. (ln)

  1. A FUZZY AUTOMATIC CAR DETECTION METHOD BASED ON HIGH RESOLUTION SATELLITE IMAGERY AND GEODESIC MORPHOLOGY

    Directory of Open Access Journals (Sweden)

    N. Zarrinpanjeh

    2017-09-01

    Full Text Available Automatic car detection and recognition from aerial and satellite images is mostly practiced for the purpose of easy and fast traffic monitoring in cities and rural areas where direct approaches are proved to be costly and inefficient. Towards the goal of automatic car detection and in parallel with many other published solutions, in this paper, morphological operators and specifically Geodesic dilation are studied and applied on GeoEye-1 images to extract car items in accordance with available vector maps. The results of Geodesic dilation are then segmented and labeled to generate primitive car items to be introduced to a fuzzy decision making system, to be verified. The verification is performed inspecting major and minor axes of each region and the orientations of the cars with respect to the road direction. The proposed method is implemented and tested using GeoEye-1 pansharpen imagery. Generating the results it is observed that the proposed method is successful according to overall accuracy of 83%. It is also concluded that the results are sensitive to the quality of available vector map and to overcome the shortcomings of this method, it is recommended to consider spectral information in the process of hypothesis verification.

  2. Broadband multiplex coherent anti-Stokes Raman scattering microscopy employing photonic-crystal fibers

    DEFF Research Database (Denmark)

    Andresen, Esben Ravn; Paulsen, Henrik Nørgaard; Birkedal, Victoria

    2006-01-01

    We demonstrate spectral multiplex coherent anti-Stokes Raman scattering (CARS) spectroscopy and microscopy based on a single Ti:sapphire oscillator and a nonlinear photonic-crystal fiber (PCF). The Stokes pulse is generated by spectral conversion of the laser pulse in a PCF. The pump pulse is eit...

  3. Supercontinuum generation for coherent anti- Stokes Raman scattering microscopy with photonic crystal fibers

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Isomäki, Antti; Hansen, Kim P.

    2011-01-01

    Photonic crystal fiber (PCF) designs with two zero-dispersion wavelengths (ZDWs) are experimentally investigated in order to suggest a novel PCF for coherent anti-Stokes Raman scattering (CARS) microscopy. From our investigation, we select the optimum PCF design and demonstrate a tailored spectru...

  4. Automatic Detection of Vehicles Using Intensity Laser and Anaglyph Image

    Directory of Open Access Journals (Sweden)

    Hideo Araki

    2006-12-01

    Full Text Available In this work is presented a methodology to automatic car detection motion presents in digital aerial image on urban area using intensity, anaglyph and subtracting images. The anaglyph image is used to identify the motion cars on the expose take, because the cars provide red color due the not homology between objects. An implicit model was developed to provide a digital pixel value that has the specific propriety presented early, using the ratio between the RGB color of car object in the anaglyph image. The intensity image is used to decrease the false positive and to do the processing to work into roads and streets. The subtracting image is applied to decrease the false positives obtained due the markings road. The goal of this paper is automatically detect motion cars presents in digital aerial image in urban areas. The algorithm implemented applies normalization on the left and right images and later form the anaglyph with using the translation. The results show the applicability of proposed method and it potentiality on the automatic car detection and presented the performance of proposed methodology.

  5. Breaking car use habits

    DEFF Research Database (Denmark)

    Thøgersen, John; Møller, Berit Thorup

    2008-01-01

    Based on calls for innovative ways of reducing car traffic and research indicating that car driving is often the result of habitual decision-making and choice processes, this paper reports on a field experiment designed to test a tool aimed to entice drivers to skip the habitual choice of the car...... and consider using-or at least trying-public transport instead. About 1,000 car drivers participated in the experiment either as experimental subjects, receiving a free one-month travelcard, or as control subjects. As predicted, the intervention had a significant impact on drivers' use of public transport...... and it also neutralized the impact of car driving habits on mode choice. However, in the longer run (i.e., four months after the experiment) experimental subjects did not use public transport more than control subjects. Hence, it seems that although many car drivers choose travel mode habitually, their final...

  6. High-speed instrumentation complex for car crash testing

    Science.gov (United States)

    Baranov, S. V.; Gorin, I. M.; Drozhbin, Yu. A.; Kuznetsov, A. A.; Ponomaryov, A. M.; Semyonov, V. B.; Udalov, V. V.

    1993-01-01

    One of the most important car checking problems consists in safety testing which includes trials for different types of collision, e.g., frontal and lateral. This allows us to study deformations of the automobile and its parts during the impact. To obtain reliable data on overloading, acceleration, deformation, force load on the car's body as well as on the anthropomorphic dummies inside it, use is made of rather a great number of different techniques. Highly informative among them is high-speed cine recording which allows us to register variations that occur during a fraction of a second, and then to reproduce with variable rate the frame images obtained. This makes it possible to study the impact parameters variations much more accurately.

  7. Design of an intelligent car

    Science.gov (United States)

    Na, Yongyi

    2017-03-01

    The design of simple intelligent car, using AT89S52 single chip microcomputer as the car detection and control core; The metal sensor TL - Q5MC induction to iron, to detect the way to send feedback to the signal of single chip microcomputer, make SCM according to the scheduled work mode to control the car in the area according to the predetermined speed, and the operation mode of the microcontroller choose different also can control the car driving along s-shaped iron; Use A44E hall element to detect the car speeds; Adopts 1602 LCD display time of car driving, driving the car to stop, take turns to show the car driving time, distance, average speed and the speed of time. This design has simple structure and is easy to implement, but are highly intelligent, humane, to a certain extent reflects the intelligence.

  8. Misuse of car safety seats.

    Science.gov (United States)

    Bull, M J; Stroup, K B; Gerhart, S

    1988-01-01

    Correct use of car seats for small children is essential to prevent serious injuries and death from automotive accidents. Failure to use a car seat properly can contribute to serious injury or death of a child. A case study in which misuse of a car seat occurred is reported. The infant died of hemorrhage and shock secondary to liver laceration which resulted from excessive pressure over the abdomen sustained on impact. Surveys of car seat use for small children prior to and following a child restraint law are also reported. Observers noted types of car seats and specific forms of misuse. Survey results suggest that parents are more likely to misuse car seats for infants than toddlers. Medical professionals can reinforce the importance of proper car seat use by incorporating specific car seat use questions into the patient interview and by providing educational materials.

  9. MO-F-CAMPUS-I-04: Characterization of Fan Beam Coded Aperture Coherent Scatter Spectral Imaging Methods for Differentiation of Normal and Neoplastic Breast Structures

    Energy Technology Data Exchange (ETDEWEB)

    Morris, R; Albanese, K; Lakshmanan, M; Greenberg, J; Kapadia, A [Duke University Medical Center, Durham, NC, Carl E Ravin Advanced Imaging Laboratories, Durham, NC (United States)

    2015-06-15

    Purpose: This study intends to characterize the spectral and spatial resolution limits of various fan beam geometries for differentiation of normal and neoplastic breast structures via coded aperture coherent scatter spectral imaging techniques. In previous studies, pencil beam raster scanning methods using coherent scatter computed tomography and selected volume tomography have yielded excellent results for tumor discrimination. However, these methods don’t readily conform to clinical constraints; primarily prolonged scan times and excessive dose to the patient. Here, we refine a fan beam coded aperture coherent scatter imaging system to characterize the tradeoffs between dose, scan time and image quality for breast tumor discrimination. Methods: An X-ray tube (125kVp, 400mAs) illuminated the sample with collimated fan beams of varying widths (3mm to 25mm). Scatter data was collected via two linear-array energy-sensitive detectors oriented parallel and perpendicular to the beam plane. An iterative reconstruction algorithm yields images of the sample’s spatial distribution and respective spectral data for each location. To model in-vivo tumor analysis, surgically resected breast tumor samples were used in conjunction with lard, which has a form factor comparable to adipose (fat). Results: Quantitative analysis with current setup geometry indicated optimal performance for beams up to 10mm wide, with wider beams producing poorer spatial resolution. Scan time for a fixed volume was reduced by a factor of 6 when scanned with a 10mm fan beam compared to a 1.5mm pencil beam. Conclusion: The study demonstrates the utility of fan beam coherent scatter spectral imaging for differentiation of normal and neoplastic breast tissues has successfully reduced dose and scan times whilst sufficiently preserving spectral and spatial resolution. Future work to alter the coded aperture and detector geometries could potentially allow the use of even wider fans, thereby making coded

  10. Imaging, scattering, and spectroscopic systems for biomedical optics: Tools for bench top and clinical applications

    Science.gov (United States)

    Cottrell, William J.

    Optical advances have had a profound impact on biology and medicine. The capabilities range from sensing biological analytes to whole animal and subcellular imaging and clinical therapies. The work presented in this thesis describes three independent and multifunctional optical systems, which explore clinical therapy at the tissue level, biological structure at the cell/organelle level, and the function of underlying fundamental cellular processes. First, we present a portable clinical instrument for delivering delta-aminolevulinic acid photodynamic therapy (ALA-PDT) while performing noninvasive spectroscopic monitoring in vivo. Using an off-surface probe, the instrument delivered the treatment beam to a user-defined field on the skin and performed reflectance and fluorescence spectroscopies at two regions within this field. The instrument was used to monitor photosensitizer fluorescence photobleaching, fluorescent photoproduct kinetics, and blood oxygen saturation during a clinical ALA-PDT trial on superficial basal cell carcinoma (sBCC). Protoporphyrin IX and photoproduct fluorescence excited by the 632.8 nm PDT treatment laser was collected between 665 and 775 nm. During a series of brief treatment interruptions at programmable time points, white-light reflectance spectra between 475 and 775 nm were acquired. Fluorescence spectra were corrected for the effects of absorption and scattering, informed by the reflectance measurements, and then decomposed into known fluorophore contributions in real time using a robust singular-value decomposition fitting routine. Reflectance spectra additionally provided information on hemoglobin oxygen saturation. We next describe the incorporation of this instrument into clinical trials at Roswell Park Cancer Institute (Buffalo, NY). In this trial we examined the effects of light irradiance on photodynamic efficiency and pain. The rate of singlet-oxygen production depends on the product of irradiance and photosensitizer and oxygen

  11. Car-use habits

    DEFF Research Database (Denmark)

    Møller, Berit Thorup; Thøgersen, John

    2008-01-01

    It is often claimed that many drivers use their private car rather habitually. The claim gains credibility from the fact that travelling to many everyday destinations fulfils all the prerequisites for habit formation: it is recurring, performed under stable circumstances and produces rewarding...... consequences. Since the decision is made quite automatically and only one choice alternative is considered (the habitually chosen one), behaviour guided by habit is difficult to change. The implications of car use habits for converting drivers to commuters using public transportation is analysed based...... to do so, car use habit, and the interaction between the two, confirms the theory-derived hypothesis that car use habits act as an obstacle to the transformation of intentions to commute by public transportation into action....

  12. Focusing of light energy inside a scattering medium by controlling the time-gated multiple light scattering

    Science.gov (United States)

    Jeong, Seungwon; Lee, Ye-Ryoung; Choi, Wonjun; Kang, Sungsam; Hong, Jin Hee; Park, Jin-Sung; Lim, Yong-Sik; Park, Hong-Gyu; Choi, Wonshik

    2018-05-01

    The efficient delivery of light energy is a prerequisite for the non-invasive imaging and stimulating of target objects embedded deep within a scattering medium. However, the injected waves experience random diffusion by multiple light scattering, and only a small fraction reaches the target object. Here, we present a method to counteract wave diffusion and to focus multiple-scattered waves at the deeply embedded target. To realize this, we experimentally inject light into the reflection eigenchannels of a specific flight time to preferably enhance the intensity of those multiple-scattered waves that have interacted with the target object. For targets that are too deep to be visible by optical imaging, we demonstrate a more than tenfold enhancement in light energy delivery in comparison with ordinary wave diffusion cases. This work will lay a foundation to enhance the working depth of imaging, sensing and light stimulation.

  13. Correction of motion artefacts and pseudo colour visualization of multispectral light scattering images for optical diagnosis of rheumatoid arthritis

    Science.gov (United States)

    Minet, Olaf; Scheibe, Patrick; Beuthan, Jürgen; Zabarylo, Urszula

    2010-02-01

    State-of-the-art image processing methods offer new possibilities for diagnosing diseases using scattered light. The optical diagnosis of rheumatism is taken as an example to show that the diagnostic sensitivity can be improved using overlapped pseudo-coloured images of different wavelengths, provided that multispectral images are recorded to compensate for any motion related artefacts which occur during examination.

  14. 49 CFR 1037.2 - Cars.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 8 2010-10-01 2010-10-01 false Cars. 1037.2 Section 1037.2 Transportation Other... GENERAL RULES AND REGULATIONS BULK GRAIN AND GRAIN PRODUCTS-LOSS AND DAMAGE CLAIMS § 1037.2 Cars. A car is... railroad-leased cars. [57 FR 54334, Nov. 18, 1992] ...

  15. Measurement of pressure ridges in SAR images of sea ice - Preliminary results on scattering theory

    Science.gov (United States)

    Vesecky, J. F.; Smith, M. P.; Daida, J. M.; Samadani, R.; Camiso, J. C.

    1992-01-01

    Sea ice ridges and keels (hummocks and bummocks) are important in sea ice research for both scientific and practical reasons. A long-term objective is to make quantitative measurements of sea ice ridges using synthetic aperture radar (SAR) images. The preliminary results of a scattering model for sea ice ridge are reported. The approach is through the ridge height variance spectrum Psi(K), where K is the spatial wavenumber, and the two-scale scattering model. The height spectrum model is constructed to mimic height statistics observed with an airborne optical laser. The spectrum model is used to drive a two-scale scattering model. Model results for ridges observed at C- and X-band yield normalized radar cross sections that are 10 to 15 dB larger than the observed cross sections of multiyear ice over the range of angles of incidence from 10 to 70 deg.

  16. Passive 3D imaging of nuclear waste containers with Muon Scattering Tomography

    Science.gov (United States)

    Thomay, C.; Velthuis, J.; Poffley, T.; Baesso, P.; Cussans, D.; Frazão, L.

    2016-03-01

    The non-invasive imaging of dense objects is of particular interest in the context of nuclear waste management, where it is important to know the contents of waste containers without opening them. Using Muon Scattering Tomography (MST), it is possible to obtain a detailed 3D image of the contents of a waste container on reasonable timescales, showing both the high and low density materials inside. We show the performance of such a method on a Monte Carlo simulation of a dummy waste drum object containing objects of different shapes and materials. The simulation has been tuned with our MST prototype detector performance. In particular, we show that both a tungsten penny of 2 cm radius and 1 cm thickness, and a uranium sheet of 0.5 cm thickness can be clearly identified. We also show the performance of a novel edge finding technique, by which the edges of embedded objects can be identified more precisely than by solely using the imaging method.

  17. Gasoline cars produce more carbonaceous particulate matter than modern filter-equipped diesel cars.

    Science.gov (United States)

    Platt, S M; El Haddad, I; Pieber, S M; Zardini, A A; Suarez-Bertoa, R; Clairotte, M; Daellenbach, K R; Huang, R-J; Slowik, J G; Hellebust, S; Temime-Roussel, B; Marchand, N; de Gouw, J; Jimenez, J L; Hayes, P L; Robinson, A L; Baltensperger, U; Astorga, C; Prévôt, A S H

    2017-07-13

    Carbonaceous particulate matter (PM), comprising black carbon (BC), primary organic aerosol (POA) and secondary organic aerosol (SOA, from atmospheric aging of precursors), is a highly toxic vehicle exhaust component. Therefore, understanding vehicle pollution requires knowledge of both primary emissions, and how these emissions age in the atmosphere. We provide a systematic examination of carbonaceous PM emissions and parameterisation of SOA formation from modern diesel and gasoline cars at different temperatures (22, -7 °C) during controlled laboratory experiments. Carbonaceous PM emission and SOA formation is markedly higher from gasoline than diesel particle filter (DPF) and catalyst-equipped diesel cars, more so at -7 °C, contrasting with nitrogen oxides (NO X ). Higher SOA formation from gasoline cars and primary emission reductions for diesels implies gasoline cars will increasingly dominate vehicular total carbonaceous PM, though older non-DPF-equipped diesels will continue to dominate the primary fraction for some time. Supported by state-of-the-art source apportionment of ambient fossil fuel derived PM, our results show that whether gasoline or diesel cars are more polluting depends on the pollutant in question, i.e. that diesel cars are not necessarily worse polluters than gasoline cars.

  18. Gasoline-powered series hybrid cars cause lower life cycle carbon emissions than battery cars

    Science.gov (United States)

    Meinrenken, Christoph; Lackner, Klaus S.

    2012-02-01

    Battery cars powered by grid electricity promise reduced life cycle green house gas (GHG) emissions from the automotive sector. Such scenarios usually point to the much higher emissions from conventional, internal combustion engine cars. However, today's commercially available series hybrid technology achieves the well known efficiency gains in electric drivetrains (regenerative breaking, lack of gearbox) even if the electricity is generated onboard, from conventional fuels. Here, we analyze life cycle GHG emissions for commercially available, state-of the-art plug-in battery cars (e.g. Nissan Leaf) and those of commercially available series hybrid cars (e.g., GM Volt, at same size and performance). Crucially, we find that series hybrid cars driven on (fossil) gasoline cause fewer emissions (126g CO2eq per km) than battery cars driven on current US grid electricity (142g CO2eq per km). We attribute this novel finding to the significant incremental emissions from plug-in battery cars due to losses during grid transmission and battery dis-/charging, and manufacturing larger batteries. We discuss crucial implications for strategic policy decisions towards a low carbon automotive sector as well as relative land intensity when powering cars by biofuel vs. bioelectricity.

  19. Gasoline-powered serial hybrid cars cause lower life cycle carbon emissions than battery cars

    Science.gov (United States)

    Meinrenken, Christoph J.; Lackner, Klaus S.

    2011-04-01

    Battery cars powered by grid electricity promise reduced life cycle green house gas (GHG) emissions from the automotive sector. Such scenarios usually point to the much higher emissions from conventional, internal combustion engine cars. However, today's commercially available serial hybrid technology achieves the well known efficiency gains from regenerative breaking, lack of gearbox, and light weighting - even if the electricity is generated onboard, from conventional fuels. Here, we analyze emissions for commercially available, state-of the-art battery cars (e.g. Nissan Leaf) and those of commercially available serial hybrid cars (e.g., GM Volt, at same size and performance). Crucially, we find that serial hybrid cars driven on (fossil) gasoline cause fewer life cycle GHG emissions (126g CO2e per km) than battery cars driven on current US grid electricity (142g CO2e per km). We attribute this novel finding to the significant incremental life cycle emissions from battery cars from losses during grid transmission, battery dis-/charging, and larger batteries. We discuss crucial implications for strategic policy decisions towards a low carbon automotive sector as well as relative land intensity when powering cars by biofuel vs. bioelectricity.

  20. NREL Model Car Competitions | NREL

    Science.gov (United States)

    work together building cars with guidance from a parent, teacher, or coach to compete in race and Solar and Lithium Ion model car races in Colorado. Building solar- and battery-powered cars requires listPDF for Junior Solar Sprint and Lithium-Ion Battery model cars. Junior Solar Sprint Solar Made Pitsco

  1. Label-free imaging of acanthamoeba using multimodal nonlinear optical microscopy

    Science.gov (United States)

    Kobayashi, Tsubasa; Cha, Yu-Rok; Kaji, Yuichi; Oshika, Tetsuro; Leproux, Philippe; Couderc, Vincent; Kano, Hideaki

    2018-02-01

    Acanthamoeba keratitis is a disease in which amoebae named Acanthamoeba invade the cornea of an eye. To diagnose this disease before it becomes serious, it is important to detect the cyst state of Acanthamoeba in the early stage of infection. In the present study, we explored spectroscopic signitures of the cyst state of Acanthamoeba using multimodal nonlinear optical microscopy with the channels of multiplex coherent anti-Stokes Raman scattering (CARS), second harmonic generation (SHG), and third harmonic generation (THG). A sharp band at around 1603 cm-1 in the CARS (Im[χ(3)]) spectrum was found at the cyst state of Acanthamoeba, which possibly originates from ergosterol and/or 7-dehydrostigmasterol. It can be used as a maker band of Acanthamoeba for medical treatment. Keyword: Acanthamoeba keratitis, coherent anti-Stokes Raman scattering, CARS, second harmonic generation, SHG, microspectroscopy, multiphoton microscopy

  2. Time-resolved diffusion tomographic 2D and 3D imaging in highly scattering turbid media

    Science.gov (United States)

    Alfano, Robert R. (Inventor); Cai, Wei (Inventor); Gayen, Swapan K. (Inventor)

    2000-01-01

    A method for imaging objects in highly scattering turbid media. According to one embodiment of the invention, the method involves using a plurality of intersecting source/detectors sets and time-resolving equipment to generate a plurality of time-resolved intensity curves for the diffusive component of light emergent from the medium. For each of the curves, the intensities at a plurality of times are then inputted into the following inverse reconstruction algorithm to form an image of the medium: wherein W is a matrix relating output at source and detector positions r.sub.s and r.sub.d, at time t, to position r, .LAMBDA. is a regularization matrix, chosen for convenience to be diagonal, but selected in a way related to the ratio of the noise, to fluctuations in the absorption (or diffusion) X.sub.j that we are trying to determine: .LAMBDA..sub.ij =.lambda..sub.j .delta..sub.ij with .lambda..sub.j =/ Y is the data collected at the detectors, and X.sup.k is the kth iterate toward the desired absorption information. An algorithm, which combines a two dimensional (2D) matrix inversion with a one-dimensional (1D) Fourier transform inversion is used to obtain images of three dimensional hidden objects in turbid scattering media.

  3. Increase of child car seat temperature in cars parked in the outpatient parking lot.

    Science.gov (United States)

    Sugimura, Tetsu; Suzue, Junji; Kamada, Makoto; Ozaki, Yukiko; Tananari, Yoshifumi; Maeno, Yasuki; Ito, Shinichi; Nishino, Hiroshi; Kakimoto, Noriko; Yamakawa, Rumi

    2011-12-01

    A guideline for the safe use of child car seats (CS) was published by the Japan Pediatric Society in 2008. There have been few studies of the increase of temperature of a CS in parked cars. The aim of this study was to determine the change in the temperature of the CS in cars parked in full sun. The temperature of CS was measured during summer (July and August) in 2006, 2007, and 2008. The CS used in this study (n= 50) were for children (≤ 6 years old) who were taken by car to Sugimura Children's Medical Clinic. Temperatures were only measured on sunny days. Measurements were performed from 09.00 to 17.00 hours. Thermochron (Thermochron i-Button: G type, Maxim Integrated Products, CA, USA) was used to measure the temperatures. The maximum temperatures of CS were compared in time at the clinic, taking into consideration seat colors, and car colors. Of the 50 cars, three cars were excluded due to being in the shade while the temperature was measured. A total of 47 cars were used for this study. The temperature of the CS ranged from 38.0 to 65.5°C (47.8 ± 5.8°C). Eighteen CS (38.3%) reached a temperature of 50°C or above. The maximum temperature of the 13.00-15.00-hours group was significantly higher than that of the 09.00-11.00-hours group (P= 0.035). The CS temperatures in the black car group were significantly higher than those of the white car group (P= 0.013). CS may become very hot while a car is parked in sun, especially if the car and the CS are black, so the CS should be cooled before a young child is placed in it. Guardians of small children should be aware of this risk. © 2011 The Authors. Pediatrics International © 2011 Japan Pediatric Society.

  4. 基于CMOS摄像头的智能车图像处理%On Image Processing of Smart Car Based on CMOS Camera

    Institute of Scientific and Technical Information of China (English)

    张淑珍; 李泽元; 赵培; 袁小龙

    2017-01-01

    Based on the 11th NXP Cup National University Students Intelligent Car Race, a research was conducted on processing images of the smart car.Taking the MC9SXS128 single chip microcomputer as the smart car controller and the CMOS camera as the image information acquisition module, this research proposed the solutions of using the adaptive median filtering algorithm to denoise and using the automatic threshold algorithm to reduce the influence of light intensity on the threshold value calculation;And with the help of the MATLAB software, the threshold value under different light intensity was simulated and calculated.Due to the line discarding at the boundary line of the curve, the method of adjusting the fixed track width was used to add line to the boundary line.Through the experiment, it is observed that the smart car can run forward smoothly and rapidly without jitter, which verifies the rationality of the algorithm and the method used.%以第十一届全国大学生"恩智浦"杯智能汽车比赛为背景,对智能车的图像处理进行研究.以MC9SXS128型单片机作为智能车控制器,CMOS摄像头作为图像信息采集模块,提出了自适应中值滤波算法去噪、自动阈值算法解决光照强度对阈值计算的影响,采用并借助MATLAB软件仿真计算不同光照强度下的阈值.应用在弯道处边界线存在丢线,研究了加减固定赛道宽度的方法对边界线进行补线.通过小车实验,观察到小智能车能够平稳、无抖动、快速的前行,验证所使用的算法和方法的合理性.

  5. Car stickers for 2012

    CERN Multimedia

    GS Department

    2011-01-01

    The 2012 car stickers are now available. Holders of blue car stickers will receive by internal mail their 2012 car stickers as of 5 December. Holders of red car stickers are kindly requested to come to the Registration Service (Building 55,1st floor) to renew their 2011 stickers. This service is open from Monday to Friday from 7.30 am to 5.30 pm non-stop. Documents related to the vehicles concerned are mandatory. Reception and Access Control Service – GS/IS/SIS General Infrastructure Services Department

  6. Car stickers for 2011

    CERN Multimedia

    GS Department

    2010-01-01

    The 2011 car stickers are now available. Holders of blue car stickers will receive their 2011 car stickers by internal mail as of 15 December.   Holders of red car stickers are kindly requested to come to the Registration Service (Building 55,1st floor) to renew their 2011 stickers. This service is open from Monday to Friday from 7.30 am to 5.30 pm non-stop. Documents for the vehicles concerned must be presented. Reception and Access Control Service – GS/ISG/SIS General Infrastructure Services Department

  7. Predictions for shepherding planets in scattered light images of debris disks

    International Nuclear Information System (INIS)

    Rodigas, Timothy J.; Hinz, Philip M.; Malhotra, Renu

    2014-01-01

    Planets can affect debris disk structure by creating gaps, sharp edges, warps, and other potentially observable signatures. However, there is currently no simple way for observers to deduce a disk-shepherding planet's properties from the observed features of the disk. Here we present a single equation that relates a shepherding planet's maximum mass to the debris ring's observed width in scattered light, along with a procedure to estimate the planet's eccentricity and minimum semimajor axis. We accomplish this by performing dynamical N-body simulations of model systems containing a star, a single planet, and an exterior disk of parent bodies and dust grains to determine the resulting debris disk properties over a wide range of input parameters. We find that the relationship between planet mass and debris disk width is linear, with increasing planet mass producing broader debris rings. We apply our methods to five imaged debris rings to constrain the putative planet masses and orbits in each system. Observers can use our empirically derived equation as a guide for future direct imaging searches for planets in debris disk systems. In the fortuitous case of an imaged planet orbiting interior to an imaged disk, the planet's maximum mass can be estimated independent of atmospheric models.

  8. Quantitative imaging of epithelial cell scattering identifies specific inhibitors of cell motility and cell-cell dissociation

    NARCIS (Netherlands)

    Loerke, D.; le Duc, Q.; Blonk, I.; Kerstens, A.; Spanjaard, E.; Machacek, M.; Danuser, G.; de Rooij, J.

    2012-01-01

    The scattering of cultured epithelial cells in response to hepatocyte growth factor (HGF) is a model system that recapitulates key features of metastatic cell behavior in vitro, including disruption of cell-cell adhesions and induction of cell migration. We have developed image analysis tools that

  9. Pc-based car license plate reading

    Science.gov (United States)

    Tanabe, Katsuyoshi; Marubayashi, Eisaku; Kawashima, Harumi; Nakanishi, Tadashi; Shio, Akio

    1994-03-01

    A PC-based car license plate recognition system has been developed. The system recognizes Chinese characters and Japanese phonetic hiragana characters as well as six digits on Japanese license plates. The system consists of a CCD camera, vehicle sensors, a strobe unit, a monitoring center, and an i486-based PC. The PC includes in its extension slots: a vehicle detector board, a strobe emitter board, and an image grabber board. When a passing vehicle is detected by the vehicle sensors, the strobe emits a pulse of light. The light pulse is synchronized with the time the vehicle image is frozen on an image grabber board. The recognition process is composed of three steps: image thresholding, character region extraction, and matching-based character recognition. The recognition software can handle obscured characters. Experimental results for hundreds of outdoor images showed high recognition performance within relatively short performance times. The results confirmed that the system is applicable to a wide variety of applications such as automatic vehicle identification and travel time measurement.

  10. The Socialist Car

    DEFF Research Database (Denmark)

    Christensen, Lars K.

    2013-01-01

    Review of L.H. Siegelbaum (ed.) The Socialist Car. Automobility in the Eastern Block. Cornell University Press, 2011.......Review of L.H. Siegelbaum (ed.) The Socialist Car. Automobility in the Eastern Block. Cornell University Press, 2011....

  11. Temperature measurements in a wall stabilized steady flame using CARS

    KAUST Repository

    Sesha Giri, Krishna

    2017-01-05

    Flame quenching by heat loss to a surface continues to be an active area of combustion research. Close wall temperature measurements in an isothermal wall-stabilized flame are reported in this work. Conventional N-vibrational Coherent Anti-Stokes Raman Scattering (CARS) thermometry as close as 275 μm to a convex wall cooled with water has been carried out. The standard deviation of mean temperatures is observed to be ~6.5% for high temperatures (>2000K) and ~14% in the lower range (<500K). Methane/air and ethylene/air stoichiometric flames for various global strain rates based on exit bulk velocities are plotted and compared. CH* chemiluminescence is employed to determine the flame location relative to the wall. Flame locations are shown to move closer to the wall with increasing strain rates in addition to higher near-wall temperatures. Peak temperatures for ethylene are considerably higher (~250-300K) than peak temperatures for methane. Preheat zone profiles are similar for different strain rates across fuels. This work demonstrates close wall precise temperature measurments using CARS.

  12. Generalized internal multiple imaging

    KAUST Repository

    Zuberi, M. A. H.

    2014-08-05

    Internal multiples deteriorate the image when the imaging procedure assumes only single scattering, especially if the velocity model does not have sharp contrasts to reproduce such scattering in the Green’s function through forward modeling. If properly imaged, internal multiples (internally scattered energy) can enhance the seismic image. Conventionally, to image internal multiples, accurate, sharp contrasts in the velocity model are required to construct a Green’s function with all the scattered energy. As an alternative, we have developed a generalized internal multiple imaging procedure that images any order internal scattering using the background Green’s function (from the surface to each image point), constructed from a smooth velocity model, usually used for conventional imaging. For the first-order internal multiples, the approach consisted of three steps, in which we first back propagated the recorded surface seismic data using the background Green’s function, then crosscorrelated the back-propagated data with the recorded data, and finally crosscorrelated the result with the original background Green’s function. This procedure images the contribution of the recorded first-order internal multiples, and it is almost free of the single-scattering recorded energy. The cost includes one additional crosscorrelation over the conventional single-scattering imaging application. We generalized this method to image internal multiples of any order separately. The resulting images can be added to the conventional single-scattering image, obtained, e.g., from Kirchhoff or reverse-time migration, to enhance the image. Application to synthetic data with reflectors illuminated by multiple scattering (double scattering) demonstrated the effectiveness of the approach.

  13. Generation of forming limit bands for ultra-high-strength steels in car body structures

    Science.gov (United States)

    Bayat, Hamid Reza; Sarkar, Sayantan; Italiano, Francesco; Bach, Aleksandar; Wulfinghoff, Stephan; Reese, Stefanie

    2018-05-01

    The application of ultra-high-strength steels in safety-related automotive components has led to higher safety levels as well as weight reduction. Nevertheless, this class of advanced high-strength steels (AHSS) show material scatter due to its manufacturing processes. To address this problem in advance, it is of significance not only to model the failure of the sheet metal but also to specify a band for the necking regime. The former is described by a forming limit curve (FLC), whereas a forming limit band (FLB) introduces the upper and lower bounds for the permissible strains. The objective of the present work is to generate a robust prediction of the strain-based failure of the sheet metal during a car crash. The FLCs are generated numerically applying a modified Marciniak-Kuczynski (MK) model, where the existence of an angled groove is mandatory. This assures to obtain the maximum admissible strain. In addition, a zero extension angle is utilized for the left hand side of the FLC (tension-compression). The material scatter is captured in experiments and applied in the hardening relations. Necking strains are recorded experimentally by a digital image correlation based system (ARAMIS). Later, they are fit into the FLC based on an inhomogeneity parameter fi from the MK model. In order to generate a theoretical FLB, first a statistical approach is exploited to take the experimental data into consideration. Eventually, the forming limit band distinguishes between safe, necking and failed regions.

  14. Substitution between Cars within the Household

    DEFF Research Database (Denmark)

    de Borger, Bruno; Mulalic, Ismir; Rouwendal, Jan

    In this paper we study the demand for car kilometres in two-car households, focusing on the substitution between cars in response to fuel price changes. We use a large sample of detailed Danish data on two-car households to estimate—for each car owned by the household—own and cross-price effects...... of increases in fuel costs per kilometre. The empirical results show that failure to capture substitution between cars within the household can result in substantial misspecification biases. Ignoring substitution, we estimate fuel price elasticities of –0.81 and -0.65 for the primary and secondary cars...... efficient car, finding partial support for the underlying hypothesis. More importantly, the results of this extended model emphasize the importance of behavioural differences related to the position of the most fuel efficient car in the household, suggesting that households’ fuel efficiency choices...

  15. Cars, Cycles, and Consumers.

    Science.gov (United States)

    Idleman, Hillis K. Ed.

    The purpose of this consumer education module is to provide information and skills, and the ability to raise questions and find answers, while seeking the best automobile or motorcycle buy available for the money. The module may be used for a full or part semester course. The five sections (cars and the consumer, renting and leasing cars, cars and…

  16. Research of scatter correction on industry computed tomography

    International Nuclear Information System (INIS)

    Sun Shaohua; Gao Wenhuan; Zhang Li; Chen Zhiqiang

    2002-01-01

    In the scanning process of industry computer tomography, scatter blurs the reconstructed image. The grey values of pixels in the reconstructed image are away from what is true and such effect need to be corrected. If the authors use the conventional method of deconvolution, many steps of iteration are needed and the computing time is not satisfactory. The author discusses a method combining Ordered Subsets Convex algorithm and scatter model to implement scatter correction and promising results are obtained in both speed and image quality

  17. Experiment and application of soft x-ray grazing incidence optical scattering phenomena

    Science.gov (United States)

    Chen, Shuyan; Li, Cheng; Zhang, Yang; Su, Liping; Geng, Tao; Li, Kun

    2017-08-01

    For short wavelength imaging systems,surface scattering effects is one of important factors degrading imaging performance. Study of non-intuitive surface scatter effects resulting from practical optical fabrication tolerances is a necessary work for optical performance evaluation of high resolution short wavelength imaging systems. In this paper, Soft X-ray optical scattering distribution is measured by a soft X-ray reflectometer installed by my lab, for different sample mirrors、wavelength and grazing angle. Then aim at space solar telescope, combining these scattered light distributions, and surface scattering numerical model of grazing incidence imaging system, PSF and encircled energy of optical system of space solar telescope are computed. We can conclude that surface scattering severely degrade imaging performance of grazing incidence systems through analysis and computation.

  18. Combined application of dynamic light scattering imaging and fluorescence intravital microscopy in vascular biology

    International Nuclear Information System (INIS)

    Kalchenko, V; Harmelin, A; Ziv, K; Addadi, Y; Madar-Balakirski, N; Neeman, M; Meglinski, I

    2010-01-01

    The dynamic light scattering imaging (DLSI) system combined with the conventional fluorescence intravital microscope (FIM) has been applied for the examination of blood and lymph vessels in the mouse ear in vivo. While the CCD camera can be shared by both techniques the combined application of DLSI and FIM allows rapid switching between the modalities. In current study temporal speckles fluctuations are used for rendering blood vessels structure and monitoring blood perfusion with the higher spatial resolution, whereas FIM provides the images of lymphatic vessels. The results clearly demonstrate that combined application of DLSI and FIM approaches provides synchronic in vivo images of blood and lymph vessels with higher contrast and specificity. The use of this new dual-modal diagnostic system is particularly important and has a great potential to significantly expand the capabilities of vascular diagnostics providing synchronic in vivo images of blood and lymph vessels

  19. Ortho-aminoazotoluene activates mouse constitutive androstane receptor (mCAR) and increases expression of mCAR target genes

    International Nuclear Information System (INIS)

    Smetanina, Mariya A.; Pakharukova, Mariya Y.; Kurinna, Svitlana M.; Dong, Bingning; Hernandez, Juan P.; Moore, David D.; Merkulova, Tatyana I.

    2011-01-01

    2'-3-dimethyl-4-aminoazobenzene (ortho-aminoazotoluene, OAT) is an azo dye and a rodent carcinogen that has been evaluated by the International Agency for Research on Cancer (IARC) as a possible (class 2B) human carcinogen. Its mechanism of action remains unclear. We examined the role of the xenobiotic receptor Constitutive Androstane Receptor (CAR, NR1I3) as a mediator of the effects of OAT. We found that OAT increases mouse CAR (mCAR) transactivation in a dose-dependent manner. This effect is specific because another closely related azo dye, 3'-methyl-4-dimethyl-aminoazobenzene (3'MeDAB), did not activate mCAR. Real-time Q-PCR analysis in wild-type C57BL/6 mice revealed that OAT induces the hepatic mRNA expression of the following CAR target genes: Cyp2b10, Cyp2c29, Cyp3a11, Ugt1a1, Mrp4, Mrp2 and c-Myc. CAR-null (Car -/- ) mice showed no increased expression of these genes following OAT treatment, demonstrating that CAR is required for their OAT dependent induction. The OAT-induced CAR-dependent increase of Cyp2b10 and c-Myc expression was confirmed by Western blotting. Immunohistochemistry analysis of wild-type and Car -/- livers showed that OAT did not acutely induce hepatocyte proliferation, but at much later time points showed an unexpected CAR-dependent proliferative response. These studies demonstrate that mCAR is an OAT xenosensor, and indicate that at least some of the biological effects of this compound are mediated by this nuclear receptor. - Highlights: → The azo dye and mouse carcinogen OAT is a very effective mCAR activator. → OAT increases mCAR transactivation in a dose-dependent manner. → OAT CAR-dependently increases the expression of a specific subset of CAR target genes. → OAT induces an unexpectedly deferred, but CAR-dependent hepatocyte proliferation.

  20. A single-sided homogeneous Green's function representation for holographic imaging, inverse scattering, time-reversal acoustics and interferometric Green's function retrieval

    Science.gov (United States)

    Wapenaar, Kees; Thorbecke, Jan; van der Neut, Joost

    2016-04-01

    Green's theorem plays a fundamental role in a diverse range of wavefield imaging applications, such as holographic imaging, inverse scattering, time-reversal acoustics and interferometric Green's function retrieval. In many of those applications, the homogeneous Green's function (i.e. the Green's function of the wave equation without a singularity on the right-hand side) is represented by a closed boundary integral. In practical applications, sources and/or receivers are usually present only on an open surface, which implies that a significant part of the closed boundary integral is by necessity ignored. Here we derive a homogeneous Green's function representation for the common situation that sources and/or receivers are present on an open surface only. We modify the integrand in such a way that it vanishes on the part of the boundary where no sources and receivers are present. As a consequence, the remaining integral along the open surface is an accurate single-sided representation of the homogeneous Green's function. This single-sided representation accounts for all orders of multiple scattering. The new representation significantly improves the aforementioned wavefield imaging applications, particularly in situations where the first-order scattering approximation breaks down.

  1. Crash protection of stock car racing drivers--application of biomechanical analysis of Indy car crash research.

    Science.gov (United States)

    Melvin, John W; Begeman, Paul C; Faller, Ronald K; Sicking, Dean L; McClellan, Scott B; Maynard, Edwin; Donegan, Michael W; Mallott, Annette M; Gideon, Thomas W

    2006-11-01

    Biomechanical analysis of Indy car crashes using on-board impact recorders (Melvin et al. 1998, Melvin et al. 2001) indicates that Indy car driver protection in high-energy crashes can be achieved in frontal, side, and rear crashes with severities in the range of 100 to 135 G peak deceleration and velocity changes in the range of 50 to 70 mph. These crashes were predominantly single-car impacts with the rigid concrete walls of oval tracks. This impressive level of protection was found to be due to the unique combination of a very supportive and tight-fitting cockpit-seating package, a six-point belt restraint system, and effective head padding with an extremely strong chassis that defines the seat and cockpit of a modern Indy car. In 2000 and 2001, a series of fatal crashes in stock car racing created great concern for improving the crash protection for drivers in those racecars. Unlike the Indy car, the typical racing stock car features a more spacious driver cockpit due to its resemblance to the shape of a passenger car. The typical racing seat used in stock cars did not have the same configuration or support characteristics of the Indy car seat, and five-point belt restraints were used. The tubular steel space frame chassis of a stock car also differs from an Indy car's composite chassis structure in both form and mechanical behavior. This paper describes the application of results of the biomechanical analysis of the Indy car crash studies to the unique requirements of stock car racing driver crash protection. Sled test and full-scale crash test data using both Hybrid III frontal crash anthropomorphic test devices (ATDs) and BioSID side crash ATDs for the purpose of evaluating countermeasures involving restraint systems, seats and head/neck restraints has been instrumental in guiding these developments. In addition, the development of deformable walls for oval tracks (the SAFER Barrier) is described as an adjunct to improved occupant restraint through control

  2. ProCarDB: a database of bacterial carotenoids.

    Science.gov (United States)

    Nupur, L N U; Vats, Asheema; Dhanda, Sandeep Kumar; Raghava, Gajendra P S; Pinnaka, Anil Kumar; Kumar, Ashwani

    2016-05-26

    Carotenoids have important functions in bacteria, ranging from harvesting light energy to neutralizing oxidants and acting as virulence factors. However, information pertaining to the carotenoids is scattered throughout the literature. Furthermore, information about the genes/proteins involved in the biosynthesis of carotenoids has tremendously increased in the post-genomic era. A web server providing the information about microbial carotenoids in a structured manner is required and will be a valuable resource for the scientific community working with microbial carotenoids. Here, we have created a manually curated, open access, comprehensive compilation of bacterial carotenoids named as ProCarDB- Prokaryotic Carotenoid Database. ProCarDB includes 304 unique carotenoids arising from 50 biosynthetic pathways distributed among 611 prokaryotes. ProCarDB provides important information on carotenoids, such as 2D and 3D structures, molecular weight, molecular formula, SMILES, InChI, InChIKey, IUPAC name, KEGG Id, PubChem Id, and ChEBI Id. The database also provides NMR data, UV-vis absorption data, IR data, MS data and HPLC data that play key roles in the identification of carotenoids. An important feature of this database is the extension of biosynthetic pathways from the literature and through the presence of the genes/enzymes in different organisms. The information contained in the database was mined from published literature and databases such as KEGG, PubChem, ChEBI, LipidBank, LPSN, and Uniprot. The database integrates user-friendly browsing and searching with carotenoid analysis tools to help the user. We believe that this database will serve as a major information centre for researchers working on bacterial carotenoids.

  3. Time gating for energy selection and scatter rejection: High-energy pulsed neutron imaging at LANSCE

    Science.gov (United States)

    Swift, Alicia; Schirato, Richard; McKigney, Edward; Hunter, James; Temple, Brian

    2015-09-01

    The Los Alamos Neutron Science Center (LANSCE) is a linear accelerator in Los Alamos, New Mexico that accelerates a proton beam to 800 MeV, which then produces spallation neutron beams. Flight path FP15R uses a tungsten target to generate neutrons of energy ranging from several hundred keV to ~600 MeV. The beam structure has micropulses of sub-ns width and period of 1.784 ns, and macropulses of 625 μs width and frequency of either 50 Hz or 100 Hz. This corresponds to 347 micropulses per macropulse, or 1.74 x 104 micropulses per second when operating at 50 Hz. Using a very fast, cooled ICCD camera (Princeton Instruments PI-Max 4), gated images of various objects were obtained on FP15R in January 2015. Objects imaged included blocks of lead and borated polyethylene; a tungsten sphere; and a tungsten, polyethylene, and steel cylinder. Images were obtained in 36 min or less, with some in as little as 6 min. This is novel because the gate widths (some as narrow as 10 ns) were selected to reject scatter and other signal not of interest (e.g. the gamma flash that precedes the neutron pulse), which has not been demonstrated at energies above 14 MeV. This proof-of-principle experiment shows that time gating is possible above 14MeV and is useful for selecting neutron energy and reducing scatter, thus forming clearer images. Future work (simulation and experimental) is being undertaken to improve camera shielding and system design and to precisely determine optical properties of the imaging system.

  4. Modelling and optimization of car-to-car compatibility - Modellierung und optimierung von pkw-pkw-kompatibilität

    NARCIS (Netherlands)

    Mooi, H.G.; Nastic, T.; Huibers, J.H.A.M.

    1999-01-01

    In this paper simple and more detailed MADYMO multibody models were used to simulate the car structure for improving the car-to-car compatibility of the whole car fleet. As a first step, survey studies were performed to develop a method for the optimization of car design with respect to frontal and

  5. Car Covers | Outdoor Covers Canada

    OpenAIRE

    Covers, Outdoor

    2018-01-01

    Protect your car from the elements with Ultimate Touch Car Cover. The multi-layer non-woven fabric is soft on the finish and offers 4 seasons all weather protection.https://outdoorcovers.ca/car-covers/

  6. Image processing methods for noise reduction in the TJ-II Thomson Scattering diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Dormido-Canto, S., E-mail: sebas@dia.uned.es [Departamento de Informatica y Automatica, UNED, Madrid 28040 (Spain); Farias, G. [Pontificia Universidad Catolica de Valparaiso, Valparaiso (Chile); Vega, J.; Pastor, I. [Asociacion EURATOM/CIEMAT para Fusion, Madrid 28040 (Spain)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer We describe an approach in order to reduce or mitigate the stray-light on the images and show the exceptional results. Black-Right-Pointing-Pointer We analyze the parameters to take account in the proposed process. Black-Right-Pointing-Pointer We report a simplified exampled in order to explain the proposed process. - Abstract: The Thomsom Scattering diagnostic of the TJ-II stellarator provides temperature and density profiles. The CCD camera acquires images corrupted with noise that, in some cases, can produce unreliable profiles. The main source of noise is the so-called stray-light. In this paper we describe an approach that allows mitigation of the effects that stray-light has on the images: extraction regions with connected-components. In addition, the robustness and effectiveness of the noise reduction technique is validated in two ways: (1) supervised classification and (2) comparison of electron temperature profiles.

  7. Experimental and numerical study of the flow field around a small car

    Directory of Open Access Journals (Sweden)

    Dobrev Ivan

    2017-01-01

    Full Text Available This paper presents the aerodynamic study of a small car, which participated in Shell Ecomarathon Europe competition in the Urban Concept Hydrogen class. The goal is to understand the flow field around the vehicle. First, the flow is studied numerically using computational aerodynamics. The numerical simulation is carried out by means of CFD Fluent in order to obtain the drag force experienced by the vehicle and also the flow field. Then the flow field around the car is studied in a wind tunnel by means of particle image velocimetry (PIV. The comparison of the flow fields obtained numerically and experimentally shows good correspondence. The obtained results are very helpful for future car development and permit to improve the drag and to obtain a good stability.

  8. Physics Model-Based Scatter Correction in Multi-Source Interior Computed Tomography.

    Science.gov (United States)

    Gong, Hao; Li, Bin; Jia, Xun; Cao, Guohua

    2018-02-01

    Multi-source interior computed tomography (CT) has a great potential to provide ultra-fast and organ-oriented imaging at low radiation dose. However, X-ray cross scattering from multiple simultaneously activated X-ray imaging chains compromises imaging quality. Previously, we published two hardware-based scatter correction methods for multi-source interior CT. Here, we propose a software-based scatter correction method, with the benefit of no need for hardware modifications. The new method is based on a physics model and an iterative framework. The physics model was derived analytically, and was used to calculate X-ray scattering signals in both forward direction and cross directions in multi-source interior CT. The physics model was integrated to an iterative scatter correction framework to reduce scatter artifacts. The method was applied to phantom data from both Monte Carlo simulations and physical experimentation that were designed to emulate the image acquisition in a multi-source interior CT architecture recently proposed by our team. The proposed scatter correction method reduced scatter artifacts significantly, even with only one iteration. Within a few iterations, the reconstructed images fast converged toward the "scatter-free" reference images. After applying the scatter correction method, the maximum CT number error at the region-of-interests (ROIs) was reduced to 46 HU in numerical phantom dataset and 48 HU in physical phantom dataset respectively, and the contrast-noise-ratio at those ROIs increased by up to 44.3% and up to 19.7%, respectively. The proposed physics model-based iterative scatter correction method could be useful for scatter correction in dual-source or multi-source CT.

  9. Linear image reconstruction for a diffuse optical mammography system in a noncompressed geometry using scattering fluid

    International Nuclear Information System (INIS)

    Nielsen, Tim; Brendel, Bernhard; Ziegler, Ronny; Beek, Michiel van; Uhlemann, Falk; Bontus, Claas; Koehler, Thomas

    2009-01-01

    Diffuse optical tomography (DOT) is a potential new imaging modality to detect or monitor breast lesions. Recently, Philips developed a new DOT system capable of transmission and fluorescence imaging, where the investigated breast is hanging freely into the measurement cup containing scattering fluid. We present a fast and robust image reconstruction algorithm that is used for the transmission measurements. The algorithm is based on the Rytov approximation. We show that this algorithm can be used over a wide range of tissue optical properties if the reconstruction is adapted to each patient. We use estimates of the breast shape and average tissue optical properties to initialize the reconstruction, which improves the image quality significantly. We demonstrate the capability of the measurement system and reconstruction to image breast lesions by clinical examples

  10. Determination of the spectral dependence of reduced scattering and quantitative second-harmonic generation imaging for detection of fibrillary changes in ovarian cancer

    Science.gov (United States)

    Campbell, Kirby R.; Tilbury, Karissa B.; Campagnola, Paul J.

    2015-03-01

    Here, we examine ovarian cancer extracellular matrix (ECM) modification by measuring the wavelength dependence of optical scattering measurements and quantitative second-harmonic generation (SHG) imaging metrics in the range of 800-1100 nm in order to determine fibrillary changes in ex vivo normal ovary, type I, and type II ovarian cancer. Mass fractals of the collagen fiber structure is analyzed based on a power law correlation function using spectral dependence measurements of the reduced scattering coefficient μs' where the mass fractal dimension is related to the power. Values of μs' are measured using independent methods of determining the values of μs and g by on-axis attenuation measurements using the Beer-Lambert Law and by fitting the angular distribution of scattering to the Henyey-Greenstein phase function, respectively. Quantitativespectral SHG imaging on the same tissues determines FSHG/BSHG creation ratios related to size and harmonophore distributions. Both techniques probe fibril packing order, but the optical scattering probes structures of sizes from about 50-2000 nm where SHG imaging - although only able to resolve individual fibers - builds contrast from the assembly of fibrils. Our findings suggest that type I ovarian tumor structure has the most ordered collagen fibers followed by normal ovary then type II tumors showing the least order.

  11. Nanobody Based Dual Specific CARs

    Directory of Open Access Journals (Sweden)

    Stijn De Munter

    2018-01-01

    Full Text Available Recent clinical trials have shown that adoptive chimeric antigen receptor (CAR T cell therapy is a very potent and possibly curative option in the treatment of B cell leukemias and lymphomas. However, targeting a single antigen may not be sufficient, and relapse due to the emergence of antigen negative leukemic cells may occur. A potential strategy to counter the outgrowth of antigen escape variants is to broaden the specificity of the CAR by incorporation of multiple antigen recognition domains in tandem. As a proof of concept, we here describe a bispecific CAR in which the single chain variable fragment (scFv is replaced by a tandem of two single-antibody domains or nanobodies (nanoCAR. High membrane nanoCAR expression levels are observed in retrovirally transduced T cells. NanoCARs specific for CD20 and HER2 induce T cell activation, cytokine production and tumor lysis upon incubation with transgenic Jurkat cells expressing either antigen or both antigens simultaneously. The use of nanobody technology allows for the production of compact CARs with dual specificity and predefined affinity.

  12. Nanobody Based Dual Specific CARs.

    Science.gov (United States)

    De Munter, Stijn; Ingels, Joline; Goetgeluk, Glenn; Bonte, Sarah; Pille, Melissa; Weening, Karin; Kerre, Tessa; Abken, Hinrich; Vandekerckhove, Bart

    2018-01-30

    Recent clinical trials have shown that adoptive chimeric antigen receptor (CAR) T cell therapy is a very potent and possibly curative option in the treatment of B cell leukemias and lymphomas. However, targeting a single antigen may not be sufficient, and relapse due to the emergence of antigen negative leukemic cells may occur. A potential strategy to counter the outgrowth of antigen escape variants is to broaden the specificity of the CAR by incorporation of multiple antigen recognition domains in tandem. As a proof of concept, we here describe a bispecific CAR in which the single chain variable fragment (scFv) is replaced by a tandem of two single-antibody domains or nanobodies (nanoCAR). High membrane nanoCAR expression levels are observed in retrovirally transduced T cells. NanoCARs specific for CD20 and HER2 induce T cell activation, cytokine production and tumor lysis upon incubation with transgenic Jurkat cells expressing either antigen or both antigens simultaneously. The use of nanobody technology allows for the production of compact CARs with dual specificity and predefined affinity.

  13. A novel full-angle scanning light scattering profiler to quantitatively evaluate forward and backward light scattering from intraocular lenses

    International Nuclear Information System (INIS)

    Walker, Bennett N.; James, Robert H.; Ilev, Ilko K.; Calogero, Don

    2015-01-01

    Glare, glistenings, optical defects, dysphotopsia, and poor image quality are a few of the known deficiencies of intraocular lenses (IOLs). All of these optical phenomena are related to light scatter. However, the specific direction that light scatters makes a critical difference between debilitating glare and a slightly noticeable decrease in image quality. Consequently, quantifying the magnitude and direction of scattered light is essential to appropriately evaluate the safety and efficacy of IOLs. In this study, we introduce a full-angle scanning light scattering profiler (SLSP) as a novel approach capable of quantitatively evaluating the light scattering from IOLs with a nearly 360° view. The SLSP method can simulate in situ conditions by controlling the parameters of the light source including angle of incidence. This testing strategy will provide a more effective nonclinical approach for the evaluation of IOL light scatter

  14. A novel full-angle scanning light scattering profiler to quantitatively evaluate forward and backward light scattering from intraocular lenses

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Bennett N., E-mail: bennett.walker@fda.hhs.gov [Optical Therapeutics and Medical Nanophotonics Laboratory, Office of Science and Engineering Laboratories, U.S. Food and Drug Administration, Silver Spring, Maryland 20993 (United States); Office of Device Evaluation, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland 20993 (United States); James, Robert H.; Ilev, Ilko K. [Optical Therapeutics and Medical Nanophotonics Laboratory, Office of Science and Engineering Laboratories, U.S. Food and Drug Administration, Silver Spring, Maryland 20993 (United States); Calogero, Don [Office of Device Evaluation, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland 20993 (United States)

    2015-09-15

    Glare, glistenings, optical defects, dysphotopsia, and poor image quality are a few of the known deficiencies of intraocular lenses (IOLs). All of these optical phenomena are related to light scatter. However, the specific direction that light scatters makes a critical difference between debilitating glare and a slightly noticeable decrease in image quality. Consequently, quantifying the magnitude and direction of scattered light is essential to appropriately evaluate the safety and efficacy of IOLs. In this study, we introduce a full-angle scanning light scattering profiler (SLSP) as a novel approach capable of quantitatively evaluating the light scattering from IOLs with a nearly 360° view. The SLSP method can simulate in situ conditions by controlling the parameters of the light source including angle of incidence. This testing strategy will provide a more effective nonclinical approach for the evaluation of IOL light scatter.

  15. Interaction of the phosphorylated DNA-binding domain in nuclear receptor CAR with its ligand-binding domain regulates CAR activation.

    Science.gov (United States)

    Shizu, Ryota; Min, Jungki; Sobhany, Mack; Pedersen, Lars C; Mutoh, Shingo; Negishi, Masahiko

    2018-01-05

    The nuclear protein constitutive active/androstane receptor (CAR or NR1I3) regulates several liver functions such as drug and energy metabolism and cell growth or death, which are often involved in the development of diseases such as diabetes and hepatocellular carcinoma. CAR undergoes a conversion from inactive homodimers to active heterodimers with retinoid X receptor α (RXRα), and phosphorylation of the DNA-binding domain (DBD) at Thr-38 in CAR regulates this conversion. Here, we uncovered the molecular mechanism by which this phosphorylation regulates the intramolecular interaction between CAR's DBD and ligand-binding domain (LBD), enabling the homodimer-heterodimer conversion. Phosphomimetic substitution of Thr-38 with Asp increased co-immunoprecipitation of the CAR DBD with CAR LBD in Huh-7 cells. Isothermal titration calorimetry assays also revealed that recombinant CAR DBD-T38D, but not nonphosphorylated CAR DBD, bound the CAR LBD peptide. This DBD-LBD interaction masked CAR's dimer interface, preventing CAR homodimer formation. Of note, EGF signaling weakened the interaction of CAR DBD T38D with CAR LBD, converting CAR to the homodimer form. The DBD-T38D-LBD interaction also prevented CAR from forming a heterodimer with RXRα. However, this interaction opened up a CAR surface, allowing interaction with protein phosphatase 2A. Thr-38 dephosphorylation then dissociated the DBD-LBD interaction, allowing CAR heterodimer formation with RXRα. We conclude that the intramolecular interaction of phosphorylated DBD with the LBD enables CAR to adapt a transient monomer configuration that can be converted to either the inactive homodimer or the active heterodimer.

  16. A scatter-corrected list-mode reconstruction and a practical scatter/random approximation technique for dynamic PET imaging

    International Nuclear Information System (INIS)

    Cheng, J-C; Rahmim, Arman; Blinder, Stephan; Camborde, Marie-Laure; Raywood, Kelvin; Sossi, Vesna

    2007-01-01

    We describe an ordinary Poisson list-mode expectation maximization (OP-LMEM) algorithm with a sinogram-based scatter correction method based on the single scatter simulation (SSS) technique and a random correction method based on the variance-reduced delayed-coincidence technique. We also describe a practical approximate scatter and random-estimation approach for dynamic PET studies based on a time-averaged scatter and random estimate followed by scaling according to the global numbers of true coincidences and randoms for each temporal frame. The quantitative accuracy achieved using OP-LMEM was compared to that obtained using the histogram-mode 3D ordinary Poisson ordered subset expectation maximization (3D-OP) algorithm with similar scatter and random correction methods, and they showed excellent agreement. The accuracy of the approximated scatter and random estimates was tested by comparing time activity curves (TACs) as well as the spatial scatter distribution from dynamic non-human primate studies obtained from the conventional (frame-based) approach and those obtained from the approximate approach. An excellent agreement was found, and the time required for the calculation of scatter and random estimates in the dynamic studies became much less dependent on the number of frames (we achieved a nearly four times faster performance on the scatter and random estimates by applying the proposed method). The precision of the scatter fraction was also demonstrated for the conventional and the approximate approach using phantom studies

  17. CARS microscopy for imaging

    International Nuclear Information System (INIS)

    Arzumanyan Grigory; Voskanyan Karine

    2013-01-01

    Optical microscopy grows in its importance with the development of modern nanotechnology, biotechnology, methods of diagnostics and treatment of most dangerous diseases for mankind. There are several important goals of optical microscopy for biomedical studies among which the next three may be distinguished: fast imaging with high lateral spatial resolution, 3-D sectioning capability and high contrast for chemical selectivity. To meet these specific requirements, various types of both linear and nonlinear optical microscopy were elaborated. (authors)

  18. Mobile CARS - IRS Instrument for Simultaneous Spectroscopic Measurement of Multiple Properties in Gaseous Flows

    Science.gov (United States)

    Bivolaru, Daniel; Lee, Joseph W.; Jones, Stephen B.; Tedder, Sarah A.; Danehy, Paul M.; Weikl, M. C.; Magnotti, G.; Cutler, Andrew D.

    2007-01-01

    This paper describes a measurement system based on the dual-pump coherent anti-Stokes Raman spectroscopy (CARS) and interferometric Rayleigh scattering (IRS) methods. The IRS measurement is performed simultaneously with the CARS measurement using a common green laser beam as a narrow-band light source. The mobile CARS-IRS instrument is designed for the use both in laboratories as well as in ground-based combustion test facilities. Furthermore, it is designed to be easily transported between laboratory and test facility. It performs single-point spatially and temporally resolved simultaneous measurements of temperature, species mole fraction of N2, O2, and H2, and two-components of velocity. A mobile laser system can be placed inside or outside the test facility, while a beam receiving and monitoring system is placed near the measurement location. Measurements in a laboratory small-scale Mach 1.6 H2-air combustion-heated supersonic jet were performed to test the capability of the system. Final setup and pretests of a larger scale reacting jet are ongoing at NASA Langley Research Center s Direct Connect Supersonic Combustor Test Facility (DCSCTF).

  19. Alzheimer's disease imaging biomarkers using small-angle x-ray scattering

    Science.gov (United States)

    Choi, Mina; Alam, Nadia; Dahal, Eshan; Ghammraoui, Bahaa; Badano, Aldo

    2016-03-01

    There is a need for novel imaging techniques for the earlier detection of Alzheimer's disease (AD). Two hallmarks of AD are amyloid beta (Aβ) plaques and tau tangles that are formed in the brain. Well-characterized x-ray cross sections of Aβ and tau proteins in a variety of structural states could potentially be used as AD biomarkers for small-angle x-ray scattering (SAXS) imaging without the need for injectable probes or contrast agents. First, however, the protein structures must be controlled and measured to determine accurate biomarkers for SAXS imaging. Here we report SAXS measurements of Aβ42 and tau352 in a 50% dimethyl sulfoxide (DMSO) solution in which these proteins are believed to remain monomeric because of the stabilizing interaction of DMSO solution. Our SAXS analysis showed the aggregation of both proteins. In particular, we found that the aggregation of Aβ42 slowly progresses with time in comparison to tau352 that aggregates at a faster rate and reaches a steady-state. Furthermore, the measured signals were compared to the theoretical SAXS profiles of Aβ42 monomer, Aβ42 fibril, and tau352 that were computed from their respective protein data bank structures. We have begun the work to systematically control the structural states of these proteins in vitro using various solvent conditions. Our future work is to utilize the distinct SAXS profiles of various structural states of Aβ and tau to build a library of signals of interest for SAXS imaging in brain tissue.

  20. External exposure dose of car mechanics during the maintenance of the cars from the risk cautionary area

    International Nuclear Information System (INIS)

    Kawakami, Hiroto; Yamada, Norikazu; Sasaki, Satoru; Kawasaki, Satoru

    2011-12-01

    At the request of the Local Nuclear Emergency Response Headquarters, JNES has estimated the effective external exposure dose of car mechanics during the maintenance of the cars from the risk cautionary area. JNES investigated the contamination of the cars from the risk cautionary area and of the average cars at Fukushima city cooperated by the Japan Automobile Dealers Association. Data of screed cars by the Local Nuclear Emergency Response Headquarters is also considered in. Effective external exposure dose of car mechanics treating the cars screened with the emergency situation screening level is estimated to be less than 1 mSv/y under the conservative conditions. This result shows that particular health concern isn't necessary for them. (author)

  1. 49 CFR 215.121 - Defective car body.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Defective car body. 215.121 Section 215.121..., DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Freight Car Components Car Bodies § 215.121 Defective car body. A railroad may not place or continue in service a car, if: (a) Any portion of...

  2. Engineering CAR-T cells.

    Science.gov (United States)

    Zhang, Cheng; Liu, Jun; Zhong, Jiang F; Zhang, Xi

    2017-01-01

    Chimeric antigen receptor redirected T cells (CAR-T cells) have achieved inspiring outcomes in patients with B cell malignancies, and are now being investigated in other hematologic malignancies and solid tumors. CAR-T cells are generated by the T cells from patients' or donors' blood. After the T cells are expanded and genetically modified, they are reinfused into the patients. However, many challenges still need to be resolved in order for this technology to gain widespread adoption. In this review, we first discuss the structure and evolution of chimeric antigen receptors. We then report on the tools used for production of CAR-T cells. Finally, we address the challenges posed by CAR-T cells.

  3. Car sick.

    Science.gov (United States)

    Renner, M G

    1988-01-01

    The automobile is currently seen as the most desirable mode of transportation. However, this view needs to be changed since the proliferation of the automobile worldwide is leading to the poisoning of the environment and people. In the US the number of passenger cars grew 51% between 1971-86 and in the noncommunist industrialized community that figure is 71%. The gasoline and diesel fuel used to power the overwhelming majority of cars creates a variety of problems. The pollution is estimated to have a hidden cost of US $.80/gallon. Others estimate that the pollution causes 30,000 premature deaths annually just in the US. 75% of the carbon monoxide (CO), 48% of nitrogen oxides (NO2), 13% of particulates (P), and 3% of sulfur (S) emissions come from cars in the countries of the Organization for Economic Cooperation and Development (OECD), which includes the US, Canada, Western Europe, Japan, Australia, and New Zealand. 17% of all worldwide carbon dioxide (CO2) emission comes from the production and use of fossil fuels for cars. The single biggest problem associated with cars is the photochemical smog they create in urban areas. In 1986 75 million Americans lived in areas that failed to meet national air quality standards for CO, P, and ozone (03). The only area of major improvement has been the removal of lead from gasoline. It was known to cause problems from the beginning of its use in the 1920s, but remained for 50 years because of auto and oil company pressure. Ground 03 is estimated by the US government to cost US $4 billion in annual losses, just for corn, wheat, soybeans, and peanuts. Acid rain is the other major problem associated with cars, and its damage is estimated at US $5 billion annually. Both these problems are shortterm, their effects occur immediately; the longterm disadvantage is the build up of CO2 and its contribution to the greenhouse effect. While the US is at the forefront of regulation and many other countries are modeling their emission

  4. Development of RaRaII solar car. Solar car RaRaII no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, M [Toyota Motor Corp., Aichi (Japan)

    1991-05-31

    A solar car was developed to be able to travel, by utilizing solar energy, as a guiding car for the marathon race in the public road. That car is 210kg in weight, 1 in number of riding persons and 4.8m in smallest rotating radius. Its traveling performance is 44km h in highest speed, 10{degree} in hill-climbing ability and 0.6m s{sup 2} in acceleration. Those principal particulars satisfied the required condition of guiding car for the marathon race. That car was equipped with a polycrystalline silicon type solar cell, 6m{sup 2} in area to generate 870Wp power. A silver oxide-zinc battery, used as a secondary battery to secure traveling in case of rain, is of a performance to travel twice the marathon race road through. To satisfy the public road traveling in safety standard, that car was equipped with head lamps, wiper, direction winkers, rear-view mirrors, etc. As material of the body, aramid fiber and carbon fiber were adopted for securing the rigidity to cover the lightening in weight. That car, as used at an opportunity of intercollegiate marathon relay race, traveled a distance of about 30km which was its entire public road portion of course. 2 figs., 2 tabs.

  5. Evaluation and comparison of quantitative and qualitative effects of scattering in air and water media in planar and SPECT imaging

    International Nuclear Information System (INIS)

    Saeed Sarkar; Akram Abehesht

    2004-01-01

    In this research the scatter fraction (%SF) in air and water media in both planar and tomographic imaging was evaluated in order to find the differences and assist the nuclear medicine specialists in interpreting the images.Two small Perspex cylinders of equal dimensions, diameter = 5 cm and height = 5 cm, with an angle of 1200 relative to each other was fixed at the bottom of a 22 cm diameter and 26 cm height Perspex cylinder to make a scattering phantom. One of the cylinders was filled with water representing soft tissue while the other one was left empty (air). The big cylinder was filled with water up to the upper level of small cylinders. 2.5 mCi of 99m Tc was mixed uniformly with the water in the big cylinder. Both planar and tomographic images of the phantom were obtained by a single head SPECT system with %20 energy windows. %SF is defined as %SF = (cold/hot) where, cold and hot are the number of counts in ROIs of each small cold cylinder and big hot cylinder respectively. ROIs selected around the image of each cylinder were equal to the exact size of the objects. In planar image the %SF was found to be %3.24±0.03 and % 3.23±0.03 in air and water respectively. On the other hand the %SF in SPECT images were %6.12±0.05 and %4.47±0.04 in air and water respectively. In planar image no difference is seen in %SF between small cylinders containing air and water whereas in SPECT image the %SF in air cylinder is %27 more than the water cylinder. This has caused more blurred edges for the image of air cylinder. Lower %SF in the small water cylinder may be caused by absorption of scattered events in the water medium. The %SF in SPECT is almost twice the planar imaging for water medium, whereas on the average the %SF in planar imaging is almost %60 of the SPECT. These differences account for better contrast and sharper edges of small cold cylinders in planar imaging. (authors)

  6. Mapping local anisotropy axis for scattering media using backscattering Mueller matrix imaging

    Science.gov (United States)

    He, Honghui; Sun, Minghao; Zeng, Nan; Du, E.; Guo, Yihong; He, Yonghong; Ma, Hui

    2014-03-01

    Mueller matrix imaging techniques can be used to detect the micro-structure variations of superficial biological tissues, including the sizes and shapes of cells, the structures in cells, and the densities of the organelles. Many tissues contain anisotropic fibrous micro-structures, such as collagen fibers, elastin fibers, and muscle fibers. Changes of these fibrous structures are potentially good indicators for some pathological variations. In this paper, we propose a quantitative analysis technique based on Mueller matrix for mapping local anisotropy axis of scattering media. By conducting both experiments on silk sample and Monte Carlo simulation based on the sphere-cylinder scattering model (SCSM), we extract anisotropy axis parameters from different backscattering Mueller matrix elements. Moreover, we testify the possible applications of these parameters for biological tissues. The preliminary experimental results of human cancerous samples show that, these parameters are capable to map the local axis of fibers. Since many pathological changes including early stage cancers affect the well aligned structures for tissues, the experimental results indicate that these parameters can be used as potential tools in clinical applications for biomedical diagnosis purposes.

  7. Upgrade of the automatic analysis system in the TJ-II Thomson Scattering diagnostic: New image recognition classifier and fault condition detection

    NARCIS (Netherlands)

    Makili, L.; Vega, J.; Dormido-Canto, S.; Pastor, I.; Pereira, A.; Farias, G.; Portas, A.; Perez-Risco, D.; Rodriguez-Fernandez, M. C.; Busch, P.

    2010-01-01

    An automatic image classification system based on support vector machines (SVM) has been in operation for years in the TJ-II Thomson Scattering diagnostic. It recognizes five different types of images: CCD camera background, measurement of stray light without plasma or in a collapsed discharge,

  8. Engineering an Affordable Self-Driving Car

    KAUST Repository

    Budisteanu, Alexandru Ionut

    2018-01-01

    for affordable self-driving cars and he designed a low-cost self-driving car. The car's roof has cameras and low-resolution 3D LiDAR equipment to detect traffic lanes, other cars, curbs and obstacles, such as people crossing by. To process this dizzying amount

  9. Testing the Feasibility of Using PERM to Apply Scattering-Angle Filtering in the Image-Domain for FWI Applications

    KAUST Repository

    Alzahrani, Hani Ataiq

    2014-09-01

    ABSTRACT Testing the Feasibility of Using PERM to Apply Scattering-Angle Filtering in the Image-Domain for FWI Applications Hani Ataiq Alzahrani Full Waveform Inversion (FWI) is a non-linear optimization problem aimed to estimating subsurface parameters by minimizing the mis t between modeled and recorded seismic data using gradient descent methods, which are the only practical choice because of the size of the problem. Due to the high non-linearity of the problem, gradient methods will converge to a local minimum if the starting model is not close to the true one. The accuracy of the long-wavelength components of the initial model controls the level of non-linearity of the inversion. In order for FWI to converge to the global minimum, we have to obtain the long wavelength components of the model before inverting for the short wavelengths. Ultra-low temporal frequencies are sensitive to the smooth (long wavelength) part of the model, and can be utilized by waveform inversion to resolve that part. Un- fortunately, frequencies in this range are normally missing in eld data due to data- acquisition limitations. The lack of low frequencies can be compensated for by uti- lizing wide-aperture data, as they include arrivals that are especially sensitive to the long wavelength components of the model. The higher the scattering angle of a 5 recorded event, the higher the model wavelength it can resolve. Based on this prop- erty, a scattering-angle ltering algorithm is proposed to start the inversion process with events corresponding to the highest scattering angle available in the data, and then include lower scattering angles progressively. The large scattering angles will resolve the smooth part of the model and reduce the non-linearity of the problem, then the lower ones will enhance the resolution of the model. Recorded data is rst migrated using Pre-stack Exploding Re ector Migration (PERM), then the resulting pre-stack image is transformed into angle gathers to which

  10. 49 CFR 215.203 - Restricted cars.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Restricted cars. 215.203 Section 215.203..., DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Restricted Equipment § 215.203 Restricted cars. (a) This section restricts the operation of any railroad freight car that is— (1) More than 50...

  11. Real-time scatter measurement and correction in film radiography

    International Nuclear Information System (INIS)

    Shaw, C.G.

    1987-01-01

    A technique for real-time scatter measurement and correction in scanning film radiography is described. With this technique, collimated x-ray fan beams are used to partially reject scattered radiation. Photodiodes are attached to the aft-collimator for sampled scatter measurement. Such measurement allows the scatter distribution to be reconstructed and subtracted from digitized film image data for accurate transmission measurement. In this presentation the authors discuss the physical and technical considerations of this scatter correction technique. Examples are shown that demonstrate the feasibility of the technique. Improved x-ray transmission measurement and dual-energy subtraction imaging are demonstrated with phantoms

  12. Our Car as Power Plant

    NARCIS (Netherlands)

    Van Wijk, A.J.M.; Verhoef, L.

    2014-01-01

    Fuel cell cars can provide more efficient and cleaner transportation. However, we use our cars for transportation only 5% of the time. When parked, the fuel cell in the car can produce electricity from hydrogen, which is cleaner and more efficient than the current electricity system, generating

  13. Cross plane scattering correction

    International Nuclear Information System (INIS)

    Shao, L.; Karp, J.S.

    1990-01-01

    Most previous scattering correction techniques for PET are based on assumptions made for a single transaxial plane and are independent of axial variations. These techniques will incorrectly estimate the scattering fraction for volumetric PET imaging systems since they do not take the cross-plane scattering into account. In this paper, the authors propose a new point source scattering deconvolution method (2-D). The cross-plane scattering is incorporated into the algorithm by modeling a scattering point source function. In the model, the scattering dependence both on axial and transaxial directions is reflected in the exponential fitting parameters and these parameters are directly estimated from a limited number of measured point response functions. The authors' results comparing the standard in-plane point source deconvolution to the authors' cross-plane source deconvolution show that for a small source, the former technique overestimates the scatter fraction in the plane of the source and underestimate the scatter fraction in adjacent planes. In addition, the authors also propose a simple approximation technique for deconvolution

  14. Driving CAR T-cells forward

    Science.gov (United States)

    Jackson, Hollie J.; Rafiq, Sarwish; Brentjens, Renier J.

    2017-01-01

    The engineered expression of chimeric antigen receptors (CARs) on the surface of T cells enables the redirection of T-cell specificity. Early clinical trials using CAR T cells for the treatment of patients with cancer showed modest results, but the impressive outcomes of several trials of CD19-targeted CAR T cells in the treatment of patients with B-cell malignancies have generated an increased enthusiasm for this approach. Important lessons have been derived from clinical trials of CD19-specific CAR T cells, and ongoing clinical trials are testing CAR designs directed at novel targets involved in haematological and solid malignancies. In this Review, we discuss these trials and present strategies that can increase the antitumour efficacy and safety of CAR T-cell therapy. Given the fast-moving nature of this field, we only discuss studies with direct translational application currently or soon-to-be tested in the clinical setting. PMID:27000958

  15. Substitution between cars within the household

    DEFF Research Database (Denmark)

    De Borger, Bruno; Mulalic, Ismir; Rouwendal, Jan

    The purpose of this paper is to study to what extent two-car households substitute the use of their less fuel efficient car by the use of their more fuel efficient car after an increase in fuel prices. Based on a simple theoretical framework we use a large sample of detailed Danish data on two-car...... households to estimate, for each car owned by the household, own and cross-price effects of increases in fuel costs per kilometer. The empirical results point at important substitution effects, so that models that estimate responses to fuel prices on the implicit or explicit assumption of one car per...

  16. ASHI: An All Sky Heliospheric Imager for Viewing Thomson-Scattered Light

    Science.gov (United States)

    Buffington, A.; Jackson, B. V.; Yu, H. S.; Hick, P. P.; Bisi, M. M.

    2017-12-01

    We have developed, and are now making a detailed design for an All-Sky Heliospheric Imager (ASHI), to fly on future deep-space missions. ASHI's principal long-term objective is acquisition of a precision photometric map of the inner heliosphere as viewed from deep space. Photometers on the twin Helios spacecraft, the Solar Mass Ejection Imager (SMEI) upon the Coriolis satellite, and the Heliospheric Imagers (HIs) upon the Solar-TErrestrial RElations Observatory (STEREO) twin spacecraft, all indicate an optimum instrument design for visible-light Thomson-scattering observations. This design views a hemisphere of sky starting a few degrees from the Sun. Two imagers can cover almost all of the whole sky. A key photometric specification for ASHI is 0.1% differential photometry: this enables the three dimensional reconstruction of density starting from near the Sun and extending outward. SMEI analyses have demonstrated the success of this technique: when employed by ASHI, this will provide an order of magnitude better resolution in 3-D density over time. We augment this analysis to include velocity, and these imagers deployed in deep space can thus provide high-resolution comparisons both of direct in-situ density and velocity measurements to remote observations of solar wind structures. In practice we find that the 3-D velocity determinations provide the best tomographic timing depiction of heliospheric structures. We discuss the simple concept behind this, and present recent progress in the instrument design, and its expected performance specifications. A preliminary balloon flight of an ASHI prototype is planned to take place next Summer.

  17. 49 CFR 174.615 - Cleaning cars.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Cleaning cars. 174.615 Section 174.615... Requirements for Division 6.1 (Poisonous) Materials § 174.615 Cleaning cars. (a) [Reserved] (b) After Division 6.1 (poisonous) materials are unloaded from a rail car, that car must be thoroughly cleaned unless...

  18. Scattering from black holes

    International Nuclear Information System (INIS)

    Futterman, J.A.H.; Handler, F.A.; Matzner, R.A.

    1987-01-01

    This book provides a comprehensive treatment of the propagation of waves in the presence of black holes. While emphasizing intuitive physical thinking in their treatment of the techniques of analysis of scattering, the authors also include chapters on the rigorous mathematical development of the subject. Introducing the concepts of scattering by considering the simplest, scalar wave case of scattering by a spherical (Schwarzschild) black hole, the book then develops the formalism of spin weighted spheroidal harmonics and of plane wave representations for neutrino, electromagnetic, and gravitational scattering. Details and results of numerical computations are given. The techniques involved have important applications (references are given) in acoustical and radar imaging

  19. Alternative Fuels Data Center: How Do All-Electric Cars Work?

    Science.gov (United States)

    battery pack to power the electric motor and must be plugged in to a charging station or wall outlet to the typical liquid fuel components, such as a fuel pump, fuel line, or fuel tank. Learn more about electric vehicles. All electric sedan image Key Components of an All-Electric Car Battery (auxiliary): In

  20. Proton - Malaysia's national car project

    DEFF Research Database (Denmark)

    Fleming, Daniel; Søborg, Henrik

    2017-01-01

    The rise and development of the Malaysian national car project. How this project has become an esential part of the industrial development in Malaysia and how it has underpinned a growing middle class consumption culture with house and car as it pivotal goods.......The rise and development of the Malaysian national car project. How this project has become an esential part of the industrial development in Malaysia and how it has underpinned a growing middle class consumption culture with house and car as it pivotal goods....

  1. Time-resolved diffusion tomographic imaging in highly scattering turbid media

    Science.gov (United States)

    Alfano, Robert R. (Inventor); Cai, Wei (Inventor); Liu, Feng (Inventor); Lax, Melvin (Inventor); Das, Bidyut B. (Inventor)

    1998-01-01

    A method for imaging objects in highly scattering turbid media. According to one embodiment of the invention, the method involves using a plurality of intersecting source/detectors sets and time-resolving equipment to generate a plurality of time-resolved intensity curves for the diffusive component of light emergent from the medium. For each of the curves, the intensities at a plurality of times are then inputted into the following inverse reconstruction algorithm to form an image of the medium: X.sup.(k+1).spsp.T =?Y.sup.T W+X.sup.(k).spsp.T .LAMBDA.!?W.sup.T W+.LAMBDA.!.sup.-1 wherein W is a matrix relating output at detector position r.sub.d, at time t, to source at position r.sub.s, .LAMBDA. is a regularization matrix, chosen for convenience to be diagonal, but selected in a way related to the ratio of the noise, to fluctuations in the absorption (or diffusion) X.sub.j that we are trying to determine: .LAMBDA..sub.ij =.lambda..sub.j .delta..sub.ij with .lambda..sub.j =/ Here Y is the data collected at the detectors, and X.sup.k is the kth iterate toward the desired absoption information.

  2. Demand for mini cars and large cars; decay effects, and gasoline demand in Japan

    International Nuclear Information System (INIS)

    Bonilla, David; Schmitz, Klaus E.; Akisawa, Atsushi

    2012-01-01

    This article explains why: (a) consumers underinvest in new car fuel economy by opting to buy large vehicles; (b) macro shifts in vehicle classes have occurred in the last decades; and how (c) the effects of vehicle fuel economy and shifts in vehicle type influence the growth path of gasoline demand, which is the key to designing effective energy efficiency goals for transport. From 2008, 1.9 EXJ (Exajoules) of energy were consumed in Japan by private vehicles producing 124 MtCO 2 emissions. For the period 1980 to 2008, we estimated: (1) gasoline demand for three vehicle sizes; (2) vehicle sales; (3) new car fuel economy changes (the ‘real’ technical change); and (4) vehicle stocks. Using a data sample for 1980–2008 we found that: (a) in the short term consumers buy fuel economy, that is sales of mini and small cars increase, but this is not sustained in the long term: and (b) consumers increasingly traded in their cars for larger cars. A further finding was that gasoline demand is projected to increase to 2.3 EXJ by 2035, even with a growing number of mini cars. The policy implication is clear: Japan’s policy to reduce oil dependency to 80% by 2030 is in peril as long as buyers prefer larger cars and drive ever longer distances.

  3. Scatter measurement and correction method for cone-beam CT based on single grating scan

    Science.gov (United States)

    Huang, Kuidong; Shi, Wenlong; Wang, Xinyu; Dong, Yin; Chang, Taoqi; Zhang, Hua; Zhang, Dinghua

    2017-06-01

    In cone-beam computed tomography (CBCT) systems based on flat-panel detector imaging, the presence of scatter significantly reduces the quality of slices. Based on the concept of collimation, this paper presents a scatter measurement and correction method based on single grating scan. First, according to the characteristics of CBCT imaging, the scan method using single grating and the design requirements of the grating are analyzed and figured out. Second, by analyzing the composition of object projection images and object-and-grating projection images, the processing method for the scatter image at single projection angle is proposed. In addition, to avoid additional scan, this paper proposes an angle interpolation method of scatter images to reduce scan cost. Finally, the experimental results show that the scatter images obtained by this method are accurate and reliable, and the effect of scatter correction is obvious. When the additional object-and-grating projection images are collected and interpolated at intervals of 30 deg, the scatter correction error of slices can still be controlled within 3%.

  4. Are weeds hitchhiking a ride on your car? A systematic review of seed dispersal on cars.

    Directory of Open Access Journals (Sweden)

    Michael Ansong

    Full Text Available When traveling in cars, we can unintentionally carry and disperse weed seed; but which species, and where are they a problem? To answer these questions, we systematically searched the scientific literature to identify all original research studies that assess seed transported by cars and listed the species with seed on/in cars. From the 13 studies that fit these criteria, we found 626 species from 75 families that have seed that can be dispersed by cars. Of these, 599 are listed as weeds in some part of the world, with 439 listed as invasive or naturalized alien species in one or more European countries, 248 are invasive/noxious weeds in North America, 370 are naturalized alien species in Australia, 167 are alien species in India, 77 are invasive species in China and 23 are declared weeds/invaders in South Africa. One hundred and one are classified as internationally important environmental weeds. Although most (487 were only recorded once, some species such as Chenopodium album, Poa pratensis and Trifolium repens were common among studies. Perennial graminoids seem to be favoured over annual graminoids while annual forbs are favoured over perennial forbs. Species characteristics including seed size and morphology and where the plants grew affected the probability that their seed was transported by cars. Seeds can be found in many different places on cars including under the chassis, front and rear bumpers, wheel wells and rims, front and back mudguards, wheel arches, tyres and on interior floor mats. With increasing numbers of cars and expanding road networks in many regions, these results highlight the importance of cars as a dispersal mechanism, and how it may favour invasions by some species over others. Strategies to reduce the risk of seed dispersal by cars include reducing seed on cars by mowing road verges and cleaning cars.

  5. SODA-IIoT4ConnectedCars: Spread updates between cars with limited Internet access

    OpenAIRE

    Boudguiga , Aymen; Quesnel , Flavien; Bouzerna , Nabil

    2017-01-01

    International audience; A blockchain infrastructure, combined with cryptographic signatures, can improve availability and accountability for the deployment of IoT updates.However, cars with limited or intermittent Internet access may have difficulties in downloading full updates fromthe blockchain. Therefore, we allow cars that successfully downloaded updates to share them with other cars by means of a Peer-to-Peer (P2P) mechanism.

  6. GLYCAN-DIRECTED CAR-T CELLS.

    Science.gov (United States)

    Steentoft, Catharina; Migliorini, Denis; King, Tiffany R; Mandel, Ulla; June, Carl H; Posey, Avery D

    2018-01-23

    Cancer immunotherapy is rapidly advancing in the treatment of a variety of hematopoietic cancers, including pediatric acute lymphoblastic leukemia and diffuse large B cell lymphoma, with chimeric antigen receptor (CAR)-T cells. CARs are genetically encoded artificial T cell receptors that combine the antigen specificity of an antibody with the machinery of T cell activation. However, implementation of CAR technology in the treatment of solid tumors has been progressing much slower. Solid tumors are characterized by a number of challenges that need to be overcome, including cellular heterogeneity, immunosuppressive tumor microenvironment (TME), and, in particular, few known cancer-specific targets. Post-translational modifications that differentially occur in malignant cells generate valid cell surface, cancer-specific targets for CAR-T cells. We previously demonstrated that CAR-T cells targeting an aberrant O-glycosylation of MUC1, a common cancer marker associated with changes in cell adhesion, tumor growth, and poor prognosis, could control malignant growth in mouse models. Here, we discuss the field of glycan-directed CAR-T cells and review the different classes of antibodies specific for glycan-targeting, including the generation of high affinity O-glycopeptide antibodies. Finally, we discuss historic and recently investigated glycan targets for CAR-T cells and provide our perspective on how targeting the tumor glycoproteome and/or glycome will improve CAR-T immunotherapy. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Fast analytical scatter estimation using graphics processing units.

    Science.gov (United States)

    Ingleby, Harry; Lippuner, Jonas; Rickey, Daniel W; Li, Yue; Elbakri, Idris

    2015-01-01

    To develop a fast patient-specific analytical estimator of first-order Compton and Rayleigh scatter in cone-beam computed tomography, implemented using graphics processing units. The authors developed an analytical estimator for first-order Compton and Rayleigh scatter in a cone-beam computed tomography geometry. The estimator was coded using NVIDIA's CUDA environment for execution on an NVIDIA graphics processing unit. Performance of the analytical estimator was validated by comparison with high-count Monte Carlo simulations for two different numerical phantoms. Monoenergetic analytical simulations were compared with monoenergetic and polyenergetic Monte Carlo simulations. Analytical and Monte Carlo scatter estimates were compared both qualitatively, from visual inspection of images and profiles, and quantitatively, using a scaled root-mean-square difference metric. Reconstruction of simulated cone-beam projection data of an anthropomorphic breast phantom illustrated the potential of this method as a component of a scatter correction algorithm. The monoenergetic analytical and Monte Carlo scatter estimates showed very good agreement. The monoenergetic analytical estimates showed good agreement for Compton single scatter and reasonable agreement for Rayleigh single scatter when compared with polyenergetic Monte Carlo estimates. For a voxelized phantom with dimensions 128 × 128 × 128 voxels and a detector with 256 × 256 pixels, the analytical estimator required 669 seconds for a single projection, using a single NVIDIA 9800 GX2 video card. Accounting for first order scatter in cone-beam image reconstruction improves the contrast to noise ratio of the reconstructed images. The analytical scatter estimator, implemented using graphics processing units, provides rapid and accurate estimates of single scatter and with further acceleration and a method to account for multiple scatter may be useful for practical scatter correction schemes.

  8. 49 CFR 231.6 - Flat cars.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Flat cars. 231.6 Section 231.6 Transportation... TRANSPORTATION RAILROAD SAFETY APPLIANCE STANDARDS § 231.6 Flat cars. (Cars with sides 12 inches or less above the floor may be equipped the same as flat cars.) (a) Hand brakes—(1) Number. Same as specified for...

  9. KEPERCAYAAN SEBAGAI MEDIASI HUBUNGAN CORPORATE IMAGE TERHADAP LOYALITAS PELANGGAN MOBIL LOW MPV

    Directory of Open Access Journals (Sweden)

    Iva Nurdiana Nurfarida

    2017-01-01

    Full Text Available The program's cost environmentally friendly cars or Low MPV (LCGC issued by the Indonesian government to bring the impact of the availability of consumer choices Indonesia to buy a car at a bargain price. The challenge is whether consumers have confidence that the car MPV although low cost but still quality. Nearly all car manufacturers to get the car with this type so that competition in the automotive business has become very competitive. This study aims to determine causality corporate image to build customer trust and customer loyalty Low MPV car. The study was conducted on customers of Toyota cars, with the number of respondents 150, using accidental sampling and technique using path analysis. The results that the corporate image has a direct influence on the increase in customer loyalty, as well as striving indirectly through increased customer confidence LCGC Toyota. Manufacturer Toyota has the advantage of the corporate image of the customer against Toyota is high, so the products LCGC Toyota produced can be accepted by consumers for consumers / customers have a loyalty to Toyota, meaning that the high corporate image car customers LCGC Toyota lead to customer loyalty. Another result of this study that the corporate image is also able to increase customer confidence LCGC Toyota subsequent impact on improving customer loyalty, meaning that belief becomes a mediation of the causal relationship of corporate image on customer loyalty.

  10. Coherent Raman scattering in high-pressure/high-temperature fluids: An overview

    International Nuclear Information System (INIS)

    Schmidt, S.C.; Moore, D.S.

    1990-01-01

    The present understanding of high-pressure/high-temperature dense-fluid behavior is derived almost exclusively from hydrodynamic and thermodynamic measurements. Such results average over the microscopic aspects of the materials and are, therefore, insufficient for a complete understanding of fluid behavior. At the present, dense-fluid models can be verified only to the extend that they agree with the macroscopic measurements. Recently, using stimulated Raman scattering, Raman induced Kerr effect scattering, and coherent anti-Stokes Raman scattering, we have been able to probe some of the microscopic phenomenology of these dense fluids. In this paper, we discuss primarily the use of CARS in conjunction with a two-stage light-gas gun to obtain vibrational spectra of shock-compressed liquid N 2 , O 2 , CO, their mixtures, CH 3 NO 2 , and N 2 O. These experimental spectra are compared to synthetic spectra calculated using a semiclassical model for CARS intensities and best fit vibrational frequencies, peak Raman susceptibilities, and Raman linewidths. For O 2 , the possibility of resonance enhancement from collision-induced absorption is addressed. Shifts in the vibrational frequencies reflect the influence of increased density and temperature on the intramolecular motion. The derived parameters suggest thermal equilibrium of the vibrational levels is established less than a few nanoseconds after shock passage. Vibrational temperatures are obtained that agree with those derived from equation-of-state calculations. Measured linewidths suggest that vibrational dephasing times have decreased to subpicosecond values at the highest shock pressures

  11. Engineering an Affordable Self-Driving Car

    KAUST Repository

    Budisteanu, Alexandru Ionut

    2018-01-17

    "More than a million people die in car accidents each year, and most of those accidents are the result of human errorヤ Alexandru Budisteanu is 23 years old and owns a group of startups including Autonomix, an Artificial Intelligence software for affordable self-driving cars and he designed a low-cost self-driving car. The car\\'s roof has cameras and low-resolution 3D LiDAR equipment to detect traffic lanes, other cars, curbs and obstacles, such as people crossing by. To process this dizzying amount of data, Alexandru employed Artificial Intelligence algorithms to extract information from the visual data and plot a safe route for the car. Then, he built a manufacturing facility in his garage from Romania to assembly affordable VisionBot Pick and Place robots that are used to produce electronics. During this lecture, Alexandru will talk about this autonomous self-driving car prototype, for which he received the grand prize of the Intel International Science and Engineering Fair, and was nominated by TIME magazine as one of the worldメs most influential teens of 2013.

  12. Extending the potential of x-ray free-electron lasers to industrial applications—an initiatory attempt at coherent diffractive imaging on car-related nanomaterials

    International Nuclear Information System (INIS)

    Yoshida, Rikiya; Kimura, Takashi; Kuramoto, Mayumi; Yu, Jian; Khakurel, Krishna; Nishino, Yoshinori; Yamashige, Hisao; Miura, Masahide; Joti, Yasumasa; Tono, Kensuke; Yabashi, Makina; Bessho, Yoshitaka; Ishikawa, Tetsuya

    2015-01-01

    Recent advances in x-ray free-electron lasers (XFELs) open up new pathways for contributing to industrial research-and-development activities. In this article, we describe our initiatory attempt at using the SPring-8 Ångström compact free-electron laser (SACLA) for industrial applications. The attempt was conducted by the authors through the industry-academia partnership program initiated by RIKEN, aimed at examining the potential of XFELs for the analysis of car-related nanomaterials. Using the infrastructures developed at SACLA, we performed single-shot coherent diffractive imaging experiments on automotive exhaust catalysts and succeeded in obtaining the reconstructed images. This effort has paved the way for the future use of XFELs in the research-and-development activity of automotive exhaust catalysts. (paper)

  13. CAR-T cells are serial killers.

    Science.gov (United States)

    Davenport, Alexander J; Jenkins, Misty R; Ritchie, David S; Prince, H Miles; Trapani, Joseph A; Kershaw, Michael H; Darcy, Phillip K; Neeson, Paul J

    2015-12-01

    Chimeric antigen receptor (CAR) T cells have enjoyed unprecedented clinical success against haematological malignancies in recent years. However, several aspects of CAR T cell biology remain unknown. We recently compared CAR and T cell receptor (TCR)-based killing in the same effector cell and showed that CAR T cells can not only efficiently kill single tumor targets, they can also kill multiple tumor targets in a sequential manner. Single and serial killing events were not sustained long term due to CAR down-regulation after 20 hours.

  14. The use of anatomical information for molecular image reconstruction algorithms: Attention/Scatter correction, motion compensation, and noise reduction

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Se Young [School of Electrical and Computer Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan (Korea, Republic of)

    2016-03-15

    PET and SPECT are important tools for providing valuable molecular information about patients to clinicians. Advances in nuclear medicine hardware technologies and statistical image reconstruction algorithms enabled significantly improved image quality. Sequentially or simultaneously acquired anatomical images such as CT and MRI from hybrid scanners are also important ingredients for improving the image quality of PET or SPECT further. High-quality anatomical information has been used and investigated for attenuation and scatter corrections, motion compensation, and noise reduction via post-reconstruction filtering and regularization in inverse problems. In this article, we will review works using anatomical information for molecular image reconstruction algorithms for better image quality by describing mathematical models, discussing sources of anatomical information for different cases, and showing some examples.

  15. Art Cars: Transformations of the Mundane

    Science.gov (United States)

    Stienecker, Dawn

    2010-01-01

    The automobile itself is often understood as an extension of oneself, where individuals may manipulate the interior and exterior of cars and trucks, decorating them through detailing, stickers, custom colors, and so on. Others go further and change their cars into unique works of art called art cars. Such cars break away from the banality of mass…

  16. Light Scatter in Optical Materials: Advanced Haze Modeling

    Science.gov (United States)

    2017-03-31

    contrast sensitivity with glare. This study measured angular scatter in the test articles , and showed that the cumulative (total) scatter beyond...Sample under laser illumination for angular scatter measurements ................................4  Figure 3: Scatter measurement system at a small...scatter effects image quality , visual performance and user acceptance. The purpose of the present effort was to develop a computational model that

  17. Observation of pressure ridges in SAR images of sea ice: Scattering theory and comparison with observations

    Science.gov (United States)

    Vesecky, J. F.; Daida, J. M.; Shuchman, R. A.; Onstott, R. H.; Camiso, J. C.

    1993-01-01

    Ridges and keels (hummocks and bummocks) in sea ice flows are important in sea ice research for both scientific and practical reasons. Sea ice movement and deformation is driven by internal and external stresses on the ice. Ridges and keels play important roles in both cases because they determine the external wind and current stresses via drag coefficients. For example, the drag coefficient over sea ice can vary by a factor of several depending on the fluid mechanical roughness length of the surface. This roughness length is thought to be strongly dependent on the ridge structures present. Thus, variations in ridge and keel structure can cause gradients in external stresses which must be balanced by internal stresses and possibly fracture of the ice. Ridging in sea ice is also a sign of fracture. In a practical sense, large ridges form the biggest impediment to surface travel over the ice or penetration through sea ice by ice-strengthened ships. Ridges also play an important role in the damage caused by sea ice to off-shore structures. Hence, observation and measurement of sea ice ridges is an important component of sea ice remote sensing. The research reported here builds on previous work, estimating the characteristics of ridges and leads in sea ice from SAR images. Our objective is to develop methods for quantitative measurement of sea ice ridges from SAR images. To make further progress, in particular, to estimate ridge height, a scattering model for ridges is needed. Our research approach for a ridge scattering model begins with a survey of the geometrical properties of ridges and a comparison with the characteristics of the surrounding ice. For this purpose we have used airborne optical laser (AOL) data collected during the 1987 Greenland Sea Experiment. These data were used to generate a spatial wavenumber spectrum for height variance for a typical ridge - the typical ridge is the average over 10 large ridges. Our first-order model radar scattering includes

  18. Substitution between cars within the household

    DEFF Research Database (Denmark)

    De Borger, Bruno; Mulalic, Ismir; Rouwendal, Jan

    2016-01-01

    In this paper we study the demand for car kilometres in two-car households, focusing on the substitution between cars of different fuel efficiency in response to fuel price changes. We use a large sample of detailed Danish data on two-car households to estimate – for each car owned by the household...... – own and cross-price effects of increases in fuel costs per kilometre. The empirical results show that failure to capture substitution between cars within the household can result in substantial misspecification biases. Ignoring substitution, the basic model yielded fuel price elasticities of 0.......98 and 1.41 for the primary and secondary cars, respectively. Accounting for substitution effects, these figures reduce to, respectively, 0.32 and 0.45. Consistent with substitution behaviour, we find that the fuel price elasticity of fuel demand exceeds the elasticity of kilometre demands with respect...

  19. 49 CFR 238.311 - Single car test.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Single car test. 238.311 Section 238.311... Requirements for Tier I Passenger Equipment § 238.311 Single car test. (a) Except for self-propelled passenger cars, single car tests of all passenger cars and all unpowered vehicles used in passenger trains shall...

  20. ADULTEROUS BEHAVIOUR WITHIN THE CAR-OWNER COUPLE

    Directory of Open Access Journals (Sweden)

    Francis PAPON

    2008-01-01

    Full Text Available The objective of this paper was to analyse two activities: who rents a car and why? Which households share the driving of their cars? In order to do that, the Parc-Auto (Car-Fleet database, built from annual postal surveys conducted with a panel of 10,000 French households, has been processed. Among approximately one hundred questions in the survey, two key questions have been crossed against many social, economic, demographic, geographic or time variables. KQ1: “During the last 12 months, did you — or another person from your home — rent a car in France for personal purposes?” KQ2: “Is this car occasionally used by other persons?” Here are the main findings. Renting households are mainly working, high income households, living in the core of big cities, and in particular in Paris. Most of them have two wage-sheets and two cars, one of which is generally a recent, high power, high quality car. Car rental is mainly an occasional practice. Yet for a minority of renters, it is a sustained habit. Households with more licence holders than cars share the most: about three quarters of them share their cars. On the contrary, single driver-single car households have less opportunity to share: only 15% share. Household car sharing shed light on the gender role within households: while 58% of the main users of the shared cars are male, 55% of secondary users are female. Household car sharing is mainly a regular practice. Finally, without diminishing the merits of innovative transport solutions proposed here and there, it is not a waste of time to give some insight on self established behaviour within households. This reveals that complex patterns have been built over time by the people themselves, to cope with diverse situations that cannot be easily handled by straightforward classifications. The car cannot be reduced to a personal object. Household car sharing also carries strong links with the issue of car dependency. Sifting car

  1. Clinical trials of CAR-T cells in China.

    Science.gov (United States)

    Liu, Bingshan; Song, Yongping; Liu, Delong

    2017-10-23

    Novel immunotherapeutic agents targeting tumor-site microenvironment are revolutionizing cancer therapy. Chimeric antigen receptor (CAR)-engineered T cells are widely studied for cancer immunotherapy. CD19-specific CAR-T cells, tisagenlecleucel, have been recently approved for clinical application. Ongoing clinical trials are testing CAR designs directed at novel targets involved in hematological and solid malignancies. In addition to trials of single-target CAR-T cells, simultaneous and sequential CAR-T cells are being studied for clinical applications. Multi-target CAR-engineered T cells are also entering clinical trials. T cell receptor-engineered CAR-T and universal CAR-T cells represent new frontiers in CAR-T cell development. In this study, we analyzed the characteristics of CAR constructs and registered clinical trials of CAR-T cells in China and provided a quick glimpse of the landscape of CAR-T studies in China.

  2. SU-F-P-48: The Quantitative Evaluation and Comparison of Image Distortion and Loss of X-Ray Images Between Anti-Scattered Grid and Moire Compensation Processing in Digital Radiography

    International Nuclear Information System (INIS)

    Chung, W; Jung, J; Kang, Y; Chung, W

    2016-01-01

    Purpose: To quantitatively analyze the influence image processing for Moire elimination has in digital radiography by comparing the image acquired from optimized anti-scattered grid only and the image acquired from software processing paired with misaligned low-frequency grid. Methods: Special phantom, which does not create scattered radiation, was used to acquire non-grid reference images and they were acquired without any grids. A set of images was acquired with optimized grid, aligned to pixel of a detector and other set of images was acquired with misaligned low-frequency grid paired with Moire elimination processing algorithm. X-ray technique used was based on consideration to Bucky factor derived from non-grid reference images. For evaluation, we analyze by comparing pixel intensity of acquired images with grids to that of reference images. Results: When compared to image acquired with optimized grid, images acquired with Moire elimination processing algorithm showed 10 to 50% lower mean contrast value of ROI. Severe distortion of images was found with when the object’s thickness was measured at 7 or less pixels. In this case, contrast value measured from images acquired with Moire elimination processing algorithm was under 30% of that taken from reference image. Conclusion: This study shows the potential risk of Moire compensation images in diagnosis. Images acquired with misaligned low-frequency grid results in Moire noise and Moire compensation processing algorithm used to remove this Moire noise actually caused an image distortion. As a result, fractures and/or calcifications which are presented in few pixels only may not be diagnosed properly. In future work, we plan to evaluate the images acquired without grid but based on 100% image processing and the potential risks it possesses.

  3. Selective interferometric imaging of internal multiples

    KAUST Repository

    Zuberi, M. A H

    2013-01-01

    Internal multiples deteriorate the image when the imaging procedure assumes only single scattering, especially if the velocity model does not reproduce such scattering in the Green’s function. If properly imaged, internal multiples (and internally-scattered energy) can enhance the seismic image and illuminate areas otherwise neglected or poorly imaged by conventional single-scattering approaches. Conventionally, in order to image internal multiples, accurate, sharp contrasts in the velocity model are required to construct a Green’s function with all the scattered energy. As an alternative, we develop a three-step procedure, which images the first-order internal scattering using the background Green’s function (from the surface to each image point), constructed from a smooth velocity model: We first back-propagate the recorded surface data using the background Green’s function, then cross-correlate the back-propagated data with the recorded data and finally cross-correlate the result with the original background Green’s function. This procedure images the contribution of the recorded first-order internal multiples and is almost free of the single-scattering recorded energy. This image can be added to the conventional single-scattering image, obtained e.g. from Kirchhoff migration, to enhance the image. Application to synthetic data with reflectors illuminated by multiple scattering only demonstrates the effectiveness of the approach.

  4. SU-E-I-07: An Improved Technique for Scatter Correction in PET

    International Nuclear Information System (INIS)

    Lin, S; Wang, Y; Lue, K; Lin, H; Chuang, K

    2014-01-01

    Purpose: In positron emission tomography (PET), the single scatter simulation (SSS) algorithm is widely used for scatter estimation in clinical scans. However, bias usually occurs at the essential steps of scaling the computed SSS distribution to real scatter amounts by employing the scatter-only projection tail. The bias can be amplified when the scatter-only projection tail is too small, resulting in incorrect scatter correction. To this end, we propose a novel scatter calibration technique to accurately estimate the amount of scatter using pre-determined scatter fraction (SF) function instead of the employment of scatter-only tail information. Methods: As the SF depends on the radioactivity distribution and the attenuating material of the patient, an accurate theoretical relation cannot be devised. Instead, we constructed an empirical transformation function between SFs and average attenuation coefficients based on a serious of phantom studies with different sizes and materials. From the average attenuation coefficient, the predicted SFs were calculated using empirical transformation function. Hence, real scatter amount can be obtained by scaling the SSS distribution with the predicted SFs. The simulation was conducted using the SimSET. The Siemens Biograph™ 6 PET scanner was modeled in this study. The Software for Tomographic Image Reconstruction (STIR) was employed to estimate the scatter and reconstruct images. The EEC phantom was adopted to evaluate the performance of our proposed technique. Results: The scatter-corrected image of our method demonstrated improved image contrast over that of SSS. For our technique and SSS of the reconstructed images, the normalized standard deviation were 0.053 and 0.182, respectively; the root mean squared errors were 11.852 and 13.767, respectively. Conclusion: We have proposed an alternative method to calibrate SSS (C-SSS) to the absolute scatter amounts using SF. This method can avoid the bias caused by the insufficient

  5. SU-E-I-07: An Improved Technique for Scatter Correction in PET

    Energy Technology Data Exchange (ETDEWEB)

    Lin, S; Wang, Y; Lue, K; Lin, H; Chuang, K [Chuang, National Tsing Hua University, Hsichu, Taiwan (China)

    2014-06-01

    Purpose: In positron emission tomography (PET), the single scatter simulation (SSS) algorithm is widely used for scatter estimation in clinical scans. However, bias usually occurs at the essential steps of scaling the computed SSS distribution to real scatter amounts by employing the scatter-only projection tail. The bias can be amplified when the scatter-only projection tail is too small, resulting in incorrect scatter correction. To this end, we propose a novel scatter calibration technique to accurately estimate the amount of scatter using pre-determined scatter fraction (SF) function instead of the employment of scatter-only tail information. Methods: As the SF depends on the radioactivity distribution and the attenuating material of the patient, an accurate theoretical relation cannot be devised. Instead, we constructed an empirical transformation function between SFs and average attenuation coefficients based on a serious of phantom studies with different sizes and materials. From the average attenuation coefficient, the predicted SFs were calculated using empirical transformation function. Hence, real scatter amount can be obtained by scaling the SSS distribution with the predicted SFs. The simulation was conducted using the SimSET. The Siemens Biograph™ 6 PET scanner was modeled in this study. The Software for Tomographic Image Reconstruction (STIR) was employed to estimate the scatter and reconstruct images. The EEC phantom was adopted to evaluate the performance of our proposed technique. Results: The scatter-corrected image of our method demonstrated improved image contrast over that of SSS. For our technique and SSS of the reconstructed images, the normalized standard deviation were 0.053 and 0.182, respectively; the root mean squared errors were 11.852 and 13.767, respectively. Conclusion: We have proposed an alternative method to calibrate SSS (C-SSS) to the absolute scatter amounts using SF. This method can avoid the bias caused by the insufficient

  6. Application of transmission scan-based attenuation compensation to scatter-corrected thallium-201 myocardial single-photon emission tomographic images

    International Nuclear Information System (INIS)

    Hashimoto, Jun; Kubo, Atsushi; Ogawa, Koichi; Ichihara, Takashi; Motomura, Nobutoku; Takayama, Takuzo; Iwanaga, Shiro; Mitamura, Hideo; Ogawa, Satoshi

    1998-01-01

    A practical method for scatter and attenuation compensation was employed in thallium-201 myocardial single-photon emission tomography (SPET or ECT) with the triple-energy-window (TEW) technique and an iterative attenuation correction method by using a measured attenuation map. The map was reconstructed from technetium-99m transmission CT (TCT) data. A dual-headed SPET gamma camera system equipped with parallel-hole collimators was used for ECT/TCT data acquisition and a new type of external source named ''sheet line source'' was designed for TCT data acquisition. This sheet line source was composed of a narrow long fluoroplastic tube embedded in a rectangular acrylic board. After injection of 99m Tc solution into the tube by an automatic injector, the board was attached in front of the collimator surface of one of the two detectors. After acquiring emission and transmission data separately or simultaneously, we eliminated scattered photons in the transmission and emission data with the TEW method, and reconstructed both images. Then, the effect of attenuation in the scatter-corrected ECT images was compensated with Chang's iterative method by using measured attenuation maps. Our method was validated by several phantom studies and clinical cardiac studies. The method offered improved homogeneity in distribution of myocardial activity and accurate measurements of myocardial tracer uptake. We conclude that the above correction method is feasible because a new type of 99m Tc external source may not produce truncation in TCT images and is cost-effective and easy to prepare in clinical situations. (orig.)

  7. Cycling environmental perception in Beijing – A study of residents' attitudes towards future cycling and car purchasing

    DEFF Research Database (Denmark)

    Zhao, Chunli; Nielsen, Thomas Alexander Sick; Olafsson, Anton Stahl

    2018-01-01

    distances up to 2 km are positively linked to future cycling prospects. Non-car owners' attitude to future car ownership is strongly linked to socio-demographic status - low education and low income level groups seems to be most unlikely to take up driving in the future. To encourage people to cycle more...... and drive less, policy should direct efforts to promoting the clarity of cycling space on the street and strengthen pro-cycling policies. Attention should also be given to stabilizing the current travel modes of non-car users, including promoting the image of cycling, improving the service of walking...

  8. Utilization of RFID data to evaluate characteristics of private car commuters in Middle East Technical University campus

    Directory of Open Access Journals (Sweden)

    Oruç ALTINTAŞI

    2016-06-01

    Full Text Available Analyzing travel behavior of Middle East Technical University (METU campus users via traditional survey approach requires great effort. However, using Radio Frequency IDentification (RFID system installed at all the campus entry gates provided a cheaper and an effective approach to determine basic characteristics of the campus private car commuters. The RFID data combined with traveler details enabled the study of the arrival and departure car-based commute behavior of academic personnel, administrative personnel and students, separately. The results revealed that campus car-based travel demand is mainly active between 07: 00 to 22: 00. While the majority of the private car commuters arrive during 08: 00-09: 00, the evening peak is distributed over a much longer period from 15: 00 to 19: 00. Administrative personnel have sharper evening departures between 17: 00-18: 00, while academic ones show a more scattered pattern lasting longer. Car-traveler students mostly arrive later during 09: 00-10: 00 and start leaving the campus as early as 15: 00 lasting until late evenings. Stay time of vehicles on campus revealed that 43% of all trips to campus lasted less than 15 minutes, especially during morning and evening peaks, suggesting that a high number of RFID card holders pass through the campus, possibly for pick-ups or drop-offs. A small reverse commute pattern occurred due to the trips generated by family members of those living in on-campus housing units.

  9. Clinical trials of CAR-T cells in China

    Directory of Open Access Journals (Sweden)

    Bingshan Liu

    2017-10-01

    Full Text Available Abstract Novel immunotherapeutic agents targeting tumor-site microenvironment are revolutionizing cancer therapy. Chimeric antigen receptor (CAR-engineered T cells are widely studied for cancer immunotherapy. CD19-specific CAR-T cells, tisagenlecleucel, have been recently approved for clinical application. Ongoing clinical trials are testing CAR designs directed at novel targets involved in hematological and solid malignancies. In addition to trials of single-target CAR-T cells, simultaneous and sequential CAR-T cells are being studied for clinical applications. Multi-target CAR-engineered T cells are also entering clinical trials. T cell receptor-engineered CAR-T and universal CAR-T cells represent new frontiers in CAR-T cell development. In this study, we analyzed the characteristics of CAR constructs and registered clinical trials of CAR-T cells in China and provided a quick glimpse of the landscape of CAR-T studies in China.

  10. Effects of moderate pump and Stokes chirp on chirped-probe pulse femtosecond coherent anti-Stokes Raman scattering thermometry

    KAUST Repository

    Gu, Mingming; Satija, Aman; Lucht, Robert P.

    2018-01-01

    The effects of moderate levels of chirp in the pump and Stokes pulses on chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering (CPP fs CARS) were investigated. The frequency chirp in the pump and Stokes pulses was introduced

  11. Attenuation and scatter correction in SPECT

    International Nuclear Information System (INIS)

    Pant, G.S.; Pandey, A.K.

    2000-01-01

    While passing through matter, photons undergo various types of interactions. In the process, some photons are completely absorbed, some are scattered in different directions with or without any change in their energy and some pass through unattenuated. These unattenuated photons carry the information with them. However, the image data gets corrupted with attenuation and scatter processes. This paper deals with the effect of these two processes in nuclear medicine images and suggests the methods to overcome them

  12. Dynamic light scattering optical coherence tomography.

    Science.gov (United States)

    Lee, Jonghwan; Wu, Weicheng; Jiang, James Y; Zhu, Bo; Boas, David A

    2012-09-24

    We introduce an integration of dynamic light scattering (DLS) and optical coherence tomography (OCT) for high-resolution 3D imaging of heterogeneous diffusion and flow. DLS analyzes fluctuations in light scattered by particles to measure diffusion or flow of the particles, and OCT uses coherence gating to collect light only scattered from a small volume for high-resolution structural imaging. Therefore, the integration of DLS and OCT enables high-resolution 3D imaging of diffusion and flow. We derived a theory under the assumption that static and moving particles are mixed within the OCT resolution volume and the moving particles can exhibit either diffusive or translational motion. Based on this theory, we developed a fitting algorithm to estimate dynamic parameters including the axial and transverse velocities and the diffusion coefficient. We validated DLS-OCT measurements of diffusion and flow through numerical simulations and phantom experiments. As an example application, we performed DLS-OCT imaging of the living animal brain, resulting in 3D maps of the absolute and axial velocities, the diffusion coefficient, and the coefficient of determination.

  13. Deep learning-based fine-grained car make/model classification for visual surveillance

    Science.gov (United States)

    Gundogdu, Erhan; Parıldı, Enes Sinan; Solmaz, Berkan; Yücesoy, Veysel; Koç, Aykut

    2017-10-01

    Fine-grained object recognition is a potential computer vision problem that has been recently addressed by utilizing deep Convolutional Neural Networks (CNNs). Nevertheless, the main disadvantage of classification methods relying on deep CNN models is the need for considerably large amount of data. In addition, there exists relatively less amount of annotated data for a real world application, such as the recognition of car models in a traffic surveillance system. To this end, we mainly concentrate on the classification of fine-grained car make and/or models for visual scenarios by the help of two different domains. First, a large-scale dataset including approximately 900K images is constructed from a website which includes fine-grained car models. According to their labels, a state-of-the-art CNN model is trained on the constructed dataset. The second domain that is dealt with is the set of images collected from a camera integrated to a traffic surveillance system. These images, which are over 260K, are gathered by a special license plate detection method on top of a motion detection algorithm. An appropriately selected size of the image is cropped from the region of interest provided by the detected license plate location. These sets of images and their provided labels for more than 30 classes are employed to fine-tune the CNN model which is already trained on the large scale dataset described above. To fine-tune the network, the last two fully-connected layers are randomly initialized and the remaining layers are fine-tuned in the second dataset. In this work, the transfer of a learned model on a large dataset to a smaller one has been successfully performed by utilizing both the limited annotated data of the traffic field and a large scale dataset with available annotations. Our experimental results both in the validation dataset and the real field show that the proposed methodology performs favorably against the training of the CNN model from scratch.

  14. AAP Updates Recommendations on Car Seats

    Science.gov (United States)

    ... Size Email Print Share AAP Updates Recommendations on Car Seats Page Content Article Body Children should ride ... of approved car safety seats. Healthy Children Radio: Car Seat Safety Dennis Durbin, MD, FAAP, lead author ...

  15. Music algorithm for imaging of a sound-hard arc in limited-view inverse scattering problem

    Science.gov (United States)

    Park, Won-Kwang

    2017-07-01

    MUltiple SIgnal Classification (MUSIC) algorithm for a non-iterative imaging of sound-hard arc in limited-view inverse scattering problem is considered. In order to discover mathematical structure of MUSIC, we derive a relationship between MUSIC and an infinite series of Bessel functions of integer order. This structure enables us to examine some properties of MUSIC in limited-view problem. Numerical simulations are performed to support the identified structure of MUSIC.

  16. A novel solution for car traffic control based on radiometric microwave devices

    Science.gov (United States)

    Soldovieri, Francesco; Denisov, Alexander; Speziale, Victor

    2014-05-01

    The significant problem of traffic in big cities, connected with huge and building up quantity of automobile cars, demands for novel strategies, based on nonconventional solutions, in order to improve system traffic control, especially at crossroads. As well known, the usual solution is based on the time relay, which requires the installation of a fixed traffic interval (signal light switching) at a crossroad; this solution is low cost, but does not account for the actual traffic conditions. Therefore, in the recent years, attention is towards to new designs, where the monitoring of the and control of traffic is carried out by using various methods including, optical, the infrared, magnetic, radar tracking, acoustical ones. In this work, we discuss the deployment of high sensitivity radiometric systems and radiometers(sensor) in the microwave range [1, 2]. In fact, the radiometer as "sensor" can provide an always updated information about the car traffic in any weather condition and in absence or low visibility conditions. In fact, the radiometric sensor detects the cars thanks to the different behavior of the car roofs which reflect the cold sky whereas the road asphalt is visible as warm object (at around outside temperature). [1] A. G. Denisov, V. P. Gorishnyak, S. E. Kuzmin et al., "Some experiments concerning resolution of 32 sensors passive 8mm wave imaging system," in Proceedings of the International Symposium on Space Terahertz Technology (ISSTT '09), Charlottesville, Va, USA, April 2009. [2] F. Soldovieri, A. Natale, V. Gorishnyak, A. Pavluchenko, A. Denisov, and L. Chen, "Radiometric Imaging for Monitoring and Surveillance Issues," International Journal of Antennas and Propagation, vol. 2013, Article ID 272561, 8 pages, 2013. doi:10.1155/2013/272561.

  17. Depth distribution of multiple order X-ray scatter

    International Nuclear Information System (INIS)

    Yao Weiguang; Leszczynski, Konrad

    2008-01-01

    Scatter can significantly affect quality of projectional X-ray radiographs and tomographic reconstructions. With this in mind, we examined some of the physical properties of multiple orders of scatter of X-ray photons traversing through a layer of scattering media such as water. Using Monte Carlo techniques, we investigated depth distributions of interactions between incident X-ray photons and water before the resulting scattered photons reach the detector plane. Effects of factors such as radiation field size, air gap, thickness of the layer of scattering medium and X-ray energy, on the scatter were included in the scope of this study. The following scatter characteristics were observed: (1) for a layer of scattering material corresponding to the typical subject thickness in medical imaging, frequency distribution of locations of the last scattering interaction increases approximately exponentially with depth, and the higher the order of scatter or the energy of the incident photon, the narrower is the distribution; (2) for the second order scatter, the distribution of locations of the first interaction is more uniform than that of the last interaction and is dependent on the energy of the primary photons. Theoretical proofs for some of these properties are given. These properties are important to better understanding of effects of scatter on the radiographic and tomographic imaging process and to developing effective methods for scatter correction

  18. Seatbelts in CAR therapy: How Safe Are CARS?

    Directory of Open Access Journals (Sweden)

    Kentaro Minagawa

    2015-05-01

    Full Text Available T-cells genetically redirected with a chimeric antigen receptor (CAR to recognize tumor antigens and kill tumor cells have been infused in several phase 1 clinical trials with success. Due to safety concerns related to on-target/off-tumor effects or cytokine release syndrome, however, strategies to prevent or abate serious adverse events are required. Pharmacologic therapies; suicide genes; or novel strategies to limit the cytotoxic effect only to malignant cells are under active investigations. In this review, we summarize results and toxicities of investigations employing CAR redirected T-cells, with a focus on published strategies to grant safety of this promising cellular application.

  19. Magnetism and magnetic materials probed with neutron scattering

    International Nuclear Information System (INIS)

    Velthuis, S.G.E. te; Pappas, C.

    2014-01-01

    Neutron scattering techniques are becoming increasingly accessible to a broader range of scientific communities, in part due to the onset of next-generation, high-power spallation sources, high-performance, sophisticated instruments and data analysis tools. These technical advances also advantageously impact research into magnetism and magnetic materials, where neutrons play a major role. In this Current Perspective series, the achievements and future prospects of elastic and inelastic neutron scattering, polarized neutron reflectometry, small angle neutron scattering, and neutron imaging, are highlighted as they apply to research into magnetic frustration, superconductivity and magnetism at the nanoscale. - Highlights: • Introduction to Current Perspective series titled Magnetism and Magnetic Materials probed with Neutron Scattering. • Elastic and inelastic neutron scattering in systems with magnetic frustration and superconductivity. • Small angle neutron scattering and polarized neutron reflectometry in studying magnetism at the nanoscale. • Imaging of magnetic fields and domains

  20. Magnetism and magnetic materials probed with neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Velthuis, S.G.E. te, E-mail: tevelthuis@anl.gov [Materials Science Division, Argonne National Laboratory, 9700 S Cass Ave, Argonne, IL 60439 (United States); Pappas, C. [Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, NL-2629JB Delft (Netherlands)

    2014-01-15

    Neutron scattering techniques are becoming increasingly accessible to a broader range of scientific communities, in part due to the onset of next-generation, high-power spallation sources, high-performance, sophisticated instruments and data analysis tools. These technical advances also advantageously impact research into magnetism and magnetic materials, where neutrons play a major role. In this Current Perspective series, the achievements and future prospects of elastic and inelastic neutron scattering, polarized neutron reflectometry, small angle neutron scattering, and neutron imaging, are highlighted as they apply to research into magnetic frustration, superconductivity and magnetism at the nanoscale. - Highlights: • Introduction to Current Perspective series titled Magnetism and Magnetic Materials probed with Neutron Scattering. • Elastic and inelastic neutron scattering in systems with magnetic frustration and superconductivity. • Small angle neutron scattering and polarized neutron reflectometry in studying magnetism at the nanoscale. • Imaging of magnetic fields and domains.

  1. ScatterJn: An ImageJ Plugin for Scatterplot-Matrix Analysis and Classification of Spatially Resolved Analytical Microscopy Data

    Directory of Open Access Journals (Sweden)

    Fabian Zeitvogel

    2016-02-01

    Full Text Available We present ScatterJn, an ImageJ (and Fiji plugin for scatterplot-based exploration and analysis of analytical microscopy data. In contrast to commonly used scatterplot tools, it handles more than two input images (or image stacks, respectively by creating a matrix of pairwise scatterplots. The tool offers the possibility to manually classify pixels by selecting regions of datapoints in the scatterplots as well as in the spatial domain. We demonstrate its functioning using a set of elemental maps acquired by SEM-EDX mapping of a soil sample. The plugin is available at https://savannah.nongnu.org/projects/scatterjn.

  2. DOES ELECTRIC CAR PRODUCE EMISSIONS?

    Directory of Open Access Journals (Sweden)

    Vladimír RIEVAJ

    2017-03-01

    Full Text Available This article focuses on the comparison of the amount of emissions produced by vehicles with a combustion engine and electric cars. The comparison, which is based on the LCA factor results, indicates that an electric car produces more emissions than a vehicle with combustion engine. The implementation of electric cars will lead to an increase in the production of greenhouse gases.

  3. Speckle-learning-based object recognition through scattering media.

    Science.gov (United States)

    Ando, Takamasa; Horisaki, Ryoichi; Tanida, Jun

    2015-12-28

    We experimentally demonstrated object recognition through scattering media based on direct machine learning of a number of speckle intensity images. In the experiments, speckle intensity images of amplitude or phase objects on a spatial light modulator between scattering plates were captured by a camera. We used the support vector machine for binary classification of the captured speckle intensity images of face and non-face data. The experimental results showed that speckles are sufficient for machine learning.

  4. Using Compton scattering for random coincidence rejection

    International Nuclear Information System (INIS)

    Kolstein, M.; Chmeissani, M.

    2016-01-01

    The Voxel Imaging PET (VIP) project presents a new approach for the design of nuclear medicine imaging devices by using highly segmented pixel CdTe sensors. CdTe detectors can achieve an energy resolution of ≈ 1% FWHM at 511 keV and can be easily segmented into submillimeter sized voxels for optimal spatial resolution. These features help in rejecting a large part of the scattered events from the PET coincidence sample in order to obtain high quality images. Another contribution to the background are random events, i.e., hits caused by two independent gammas without a common origin. Given that 60% of 511 keV photons undergo Compton scattering in CdTe (i.e. 84% of all coincidence events have at least one Compton scattering gamma), we present a simulation study on the possibility to use the Compton scattering information of at least one of the coincident gammas within the detector to reject random coincidences. The idea uses the fact that if a gamma undergoes Compton scattering in the detector, it will cause two hits in the pixel detectors. The first hit corresponds to the Compton scattering process. The second hit shall correspond to the photoelectric absorption of the remaining energy of the gamma. With the energy deposition of the first hit, one can calculate the Compton scattering angle. By measuring the hit location of the coincident gamma, we can construct the geometric angle, under the assumption that both gammas come from the same origin. Using the difference between the Compton scattering angle and the geometric angle, random events can be rejected.

  5. Parents smoking in their cars with children present.

    Science.gov (United States)

    Nabi-Burza, Emara; Regan, Susan; Drehmer, Jeremy; Ossip, Deborah; Rigotti, Nancy; Hipple, Bethany; Dempsey, Janelle; Hall, Nicole; Friebely, Joan; Weiley, Victoria; Winickoff, Jonathan P

    2012-12-01

    To determine prevalence and factors associated with strictly enforced smoke-free car policies among smoking parents. As part of a cluster, randomized controlled trial addressing parental smoking, exit interviews were conducted with parents whose children were seen in 10 control pediatric practices. Parents who smoked were asked about smoking behaviors in their car and receipt of smoke-free car advice at the visit. Parents were considered to have a "strictly enforced smoke-free car policy" if they reported having a smoke-free car policy and nobody had smoked in their car within the past 3 months. Of 981 smoking parents, 817 (83%) had a car; of these, 795 parents answered questions about their car smoking policy. Of these 795 parents, 29% reported having a smoke-free car policy, and 24% had a strictly enforced smoke-free car policy. Of the 562 parents without a smoke-free car policy, 48% reported that smoking occurred with children present. Few parents who smoke (12%) were advised to have a smoke-free car. Multivariable logistic regression controlling for parent age, gender, education, and race showed that having a younger child and smoking ≤10 cigarettes per day were associated with having a strictly enforced smoke-free car policy. The majority of smoking parents exposed their children to tobacco smoke in cars. Coupled with the finding of low rates of pediatricians addressing smoking in cars, this study highlights the need for improved pediatric interventions, public health campaigns, and policies regarding smoke-free car laws to protect children from tobacco smoke.

  6. Aerodynamics of Race Cars

    Science.gov (United States)

    Katz, Joseph

    2006-01-01

    Race car performance depends on elements such as the engine, tires, suspension, road, aerodynamics, and of course the driver. In recent years, however, vehicle aerodynamics gained increased attention, mainly due to the utilization of the negative lift (downforce) principle, yielding several important performance improvements. This review briefly explains the significance of the aerodynamic downforce and how it improves race car performance. After this short introduction various methods to generate downforce such as inverted wings, diffusers, and vortex generators are discussed. Due to the complex geometry of these vehicles, the aerodynamic interaction between the various body components is significant, resulting in vortex flows and lifting surface shapes unlike traditional airplane wings. Typical design tools such as wind tunnel testing, computational fluid dynamics, and track testing, and their relevance to race car development, are discussed as well. In spite of the tremendous progress of these design tools (due to better instrumentation, communication, and computational power), the fluid dynamic phenomenon is still highly nonlinear, and predicting the effect of a particular modification is not always trouble free. Several examples covering a wide range of vehicle shapes (e.g., from stock cars to open-wheel race cars) are presented to demonstrate this nonlinear nature of the flow field.

  7. Ground effect aerodynamics of racing cars

    OpenAIRE

    Zhang, Xin; Toet, Willem; Zerihan, Jonathan

    2006-01-01

    We review the progress made during the last thirty years on ground effect aerodynamics associated with race cars, in particular open wheel race cars. Ground effect aerodynamics of race cars is concerned with generating downforce, principally via low pressure on the surfaces nearest to the ground. The “ground effected” parts of an open wheeled car's aerodynamics are the most aerodynamically efficient and contribute less drag than that associated with, for example, an upper rear wing. Whilst dr...

  8. 49 CFR 210.9 - Movement of a noise defective locomotive, rail car, or consist of a locomotive and rail cars.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Movement of a noise defective locomotive, rail car, or consist of a locomotive and rail cars. 210.9 Section 210.9 Transportation Other Regulations... locomotive, rail car, or consist of a locomotive and rail cars. A locomotive, rail car, or consist of a...

  9. X-ray coherent scattering tomography of textured material (Conference Presentation)

    Science.gov (United States)

    Zhu, Zheyuan; Pang, Shuo

    2017-05-01

    Small-angle X-ray scattering (SAXS) measures the signature of angular-dependent coherently scattered X-rays, which contains richer information in material composition and structure compared to conventional absorption-based computed tomography. SAXS image reconstruction method of a 2 or 3 dimensional object based on computed tomography, termed as coherent scattering computed tomography (CSCT), enables the detection of spatially-resolved, material-specific isotropic scattering signature inside an extended object, and provides improved contrast for medical diagnosis, security screening, and material characterization applications. However, traditional CSCT methods assumes materials are fine powders or amorphous, and possess isotropic scattering profiles, which is not generally true for all materials. Anisotropic scatters cannot be captured using conventional CSCT method and result in reconstruction errors. To obtain correct information from the sample, we designed new imaging strategy which incorporates extra degree of detector motion into X-ray scattering tomography for the detection of anisotropic scattered photons from a series of two-dimensional intensity measurements. Using a table-top, narrow-band X-ray source and a panel detector, we demonstrate the anisotropic scattering profile captured from an extended object and the reconstruction of a three-dimensional object. For materials possessing a well-organized crystalline structure with certain symmetry, the scatter texture is more predictable. We will also discuss the compressive schemes and implementation of data acquisition to improve the collection efficiency and accelerate the imaging process.

  10. The kinematic advantage of electric cars

    Science.gov (United States)

    Meyn, Jan-Peter

    2015-11-01

    Acceleration of a common car with with a turbocharged diesel engine is compared to the same type with an electric motor in terms of kinematics. Starting from a state of rest, the electric car reaches a distant spot earlier than the diesel car, even though the latter has a better specification for engine power and average acceleration from 0 to 100 km h-1. A three phase model of acceleration as a function of time fits the data of the electric car accurately. The first phase is a quadratic growth of acceleration in time. It is shown that the tenfold higher coefficient for the first phase accounts for most of the kinematic advantage of the electric car.

  11. Active deceleration support in car following

    NARCIS (Netherlands)

    Mulder, M.; Pauwelussen, J.J.A.; Paassen, M.M. van; Mulder, M.; Abbink, D.A.

    2010-01-01

    A haptic gas pedal feedback system is developed that provides car-following information via haptic cues from the gas pedal. During normal car-following situations, the haptic feedback (HF) cues were sufficient to reduce control activity and improve car-following performance. However, in more

  12. C.A.R.S. monitor of fragmentation and secondary reactions during U.V. laser induced decomposition of benzene

    International Nuclear Information System (INIS)

    Fantoni, R.; Giorgi, M.; Moliterni, A.G.G.; Lipinska-Kalita, K.E.

    1992-01-01

    Among the different types of non-linear Raman spectroscopies, vibrational CARS (Coherent AntiStokes Raman Scattering, probing Raman active vibrational modes) has proved to be a valuable on-line technique in the study of laser induced processes involving gas phase reactants, such as the deposition of thin films or synthesis of ultrafine powders. The application of lasers in total decomposition (mineralisation) of gas-phase pollutants has been considered, and test experiments have been started on benzene as a precursor of a large family of aromatic pollutants. This paper reports on the use of a broad-band CARS to monitor, on-line, the laser induced dissociation of benzene at 266 nm. The electronically excited C 2 produced during the process was detected by RECARS (Resonantly Enhanced CARS) in the visible region. The laser induced primary decomposition and secondary reaction were studied under collisional conditions upon the addition of inert (N 2 ) and reactive (O 2 ) partners. Reaction intermediates produced in electronically excited states were detected by time resolved spontaneous emission spectroscopy performed with the same set-up in the absence of probe lasers

  13. X-ray scattering by interstellar dust

    International Nuclear Information System (INIS)

    Rolf, D.

    1980-10-01

    This thesis reports work carried out to make a first observation of x-rays scattered by interstellar dust grains. Data about the dust, obtained at wavelengths ranging from the infrared to ultra-violet spectral regions, are discussed in order to establish a useful description of the grains themselves. This is then used to estimate the magnitude and form of the expected x-ray scattering effect which is shown to manifest itself as a diffuse halo accompanying the image of a celestial x-ray source. Two x-ray imaging experiments are then discussed. The first, specifically proposed to look for this effect surrounding a point x-ray source, was the Skylark 1611 project, and comprised an imaging proportional counter coupled to an x-ray mirror. This is described up to its final calibration when the basis for a concise model of its point response function was established. The experiment was not carried out but its objective and the experience gained during its testing were transferred to the second of the x-ray imaging experiments, the Einstein Observatory. The new instrumental characteristics are described and a model for its point response function is developed. Using this, image data for the point x-ray source GX339-4 is shown to exhibit the sought after scattering phenomenon. (author)

  14. Passenger car fuel consumption survey

    Energy Technology Data Exchange (ETDEWEB)

    1984-03-01

    This survey originated from a proposal to monitor the fuel consumption and fuel economy of personal use passenger cars operated in Canada. Its purpose is to establish a data base which would contain information on total distance travelled, total amount of fuel consumed, average distance obtained per unit of fuel, total expenditures on fuel, and seasonal fluctuations in fuel consumption and in distance travelled. Among the needs served by this data base are the monitoring of passenger car fuel economy standards and the estimation of pasenger car fuel requirements in conditions involving fuel shortages. Survey methodology is by telephone interview to trace selected vehicles to the registered owners, at which time a fuel purchase diary is then mailed to the principal driver of the car. The results are tabulated on a quarterly basis and to be released as they become available in bulletins similar to this. Data are presented for each province and the total for Canada is given. During the fourth quarter of 1982, it is estimated that there were 7.3 million personal use passenger cars operated in Canada. These cars were driven 28 billion kilometers and consumed 4.3 billion litres of fuel. Their average litres/100 kilometres and the average fuel consumption was 590 litres. 8 tabs.

  15. Significance of matrix diagonalization in modelling inelastic electron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Z. [University of Ulm, Ulm 89081 (Germany); Hambach, R. [University of Ulm, Ulm 89081 (Germany); University of Jena, Jena 07743 (Germany); Kaiser, U.; Rose, H. [University of Ulm, Ulm 89081 (Germany)

    2017-04-15

    Electron scattering is always applied as one of the routines to investigate nanostructures. Nowadays the development of hardware offers more and more prospect for this technique. For example imaging nanostructures with inelastic scattered electrons may allow to produce component-sensitive images with atomic resolution. Modelling inelastic electron scattering is therefore essential for interpreting these images. The main obstacle to study inelastic scattering problem is its complexity. During inelastic scattering, incident electrons entangle with objects, and the description of this process involves a multidimensional array. Since the simulation usually involves fourdimensional Fourier transforms, the computation is highly inefficient. In this work we have offered one solution to handle the multidimensional problem. By transforming a high dimensional array into twodimensional array, we are able to perform matrix diagonalization and approximate the original multidimensional array with its twodimensional eigenvectors. Our procedure reduces the complicated multidimensional problem to a twodimensional problem. In addition, it minimizes the number of twodimensional problems. This method is very useful for studying multiple inelastic scattering. - Highlights: • 4D problems are involved in modelling inelastic electron scattering. • By means of matrix diagonalization, the 4D problems can be simplified as 2D problems. • The number of 2D problems is minimized by using this approach.

  16. CAR SECURITY ENHANCEMENT IN PARKING AREAS

    OpenAIRE

    NANYONGA BERINDA; AYESIGA LINDSEY PATRA; BYEKWASO FAISAL; NATULINDA LADAN

    2017-01-01

    Over time, car thefts have been reported within Kampala parking areas. This has been majorly due to inefficient security measures of the available parking systems which focus mainly on the car and not the driver, making parking management a challenge. The focus of this survey was to explore the requirements of a new system called Car to Driver Matching Security System to enhance security of cars in Kampala, in particular, from the experience of 15 people. The data collected was then analyzed ...

  17. 30 CFR 57.19079 - Blocking mine cars.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Blocking mine cars. 57.19079 Section 57.19079... Hoisting Procedures § 57.19079 Blocking mine cars. Where mine cars are hoisted by cage or skip, means for blocking cars shall be provided at all landings and also on the cage. ...

  18. 30 CFR 56.19079 - Blocking mine cars.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Blocking mine cars. 56.19079 Section 56.19079... Hoisting Procedures § 56.19079 Blocking mine cars. Where mine cars are hoisted by cage or skip, means for blocking cars shall be provided at all landings and also on the cage. ...

  19. Prediction of future car forms based on historical trends

    Directory of Open Access Journals (Sweden)

    Bijendra Kumar

    2016-09-01

    Full Text Available Cars are one of the most important products that affects our daily life. Manufacturers of cars are inclined to know factors that affect the sales of cars and how to influence them. Car is a very competitive product whose technology is already matured. Thus, purchase decisions of a car depend on factors such as, aesthetics, ergonomics, features available and price. Exterior form and colour of a car are the most important factors that influence likeness of the car. We did a case study on car aesthetics (form, colour, shape, and user focus with more than 500 car advertisements over the past 70 years, appearing in various car magazines. Results show that form of cars has changed from sharp to smooth over the years, and white colour cars are becoming more popular. Additionally, car size is becoming smaller and increasingly focused towards family. Thus, manufacturers are recommended to develop compact, efficient and hybrid cars.

  20. 49 CFR 174.57 - Cleaning cars.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Cleaning cars. 174.57 Section 174.57... and Loading Requirements § 174.57 Cleaning cars. All hazardous material which has leaked from a package in any rail car or on other railroad property must be carefully removed. ...

  1. Car Builder: Design, Construct and Test Your Own Cars. School Version with Lesson Plans. [CD-ROM].

    Science.gov (United States)

    Highsmith, Joni Bitman

    Car Builder is a scientific CD-ROM-based simulation program that lets students design, construct, modify, test, and compare their own cars. Students can design sedans, four-wheel-drive vehicles, vans, sport cars, and hot rods. They may select for aerodynamics, power, and racing ability, or economic and fuel efficiency. It is a program that teaches…

  2. CAN PUBLIC TRANSPORT COMPETE WITH THE PRIVATE CAR?

    Directory of Open Access Journals (Sweden)

    Linda STEG

    2003-01-01

    Full Text Available Public transport is often perceived to be a poor alternative for car use. This paper describes who may be open to use public transport more often, and how people might be persuaded to use it. A computerised questionnaire study was conducted among 1,803 Dutch respondents in May 2001. Results revealed that especially fervent car users disliked public transport. For them, the car outperformed public transport not only because of its instrumental function, but also because the car represents cultural and psychological values, e.g. the car is a symbol of freedom and independence, a status symbol and driving is pleasurable. So, for fervent car users, car use is connected with various important values in modern society. Infrequent car users judged less positively about the car and less negatively about public transport. Consequently, they may be open to use public transport more regularly. In contrast, many efforts are needed to stimulate fervent car users to travel by public transport, because in their view, public transport cannot compete with their private car. In this case, policies should be aimed at reducing the functional, psychological and cultural values of private cars, as well as increasing the performance of public transport and other (more environmentally sound modes of transport on these aspects.

  3. Scattering and absorption measurements of cervical tissues measures using low cost multi-spectral imaging

    Science.gov (United States)

    Bernat, Amir S.; Bar-Am, Kfir; Cataldo, Leigh; Bolton, Frank J.; Kahn, Bruce S.; Levitz, David

    2018-02-01

    Cervical cancer is a leading cause of death for women in low resource settings. In order to better detect cervical dysplasia, a low cost multi-spectral colposcope was developed utilizing low costs LEDs and an area scan camera. The device is capable of both traditional colposcopic imaging and multi-spectral image capture. Following initial bench testing, the device was deployed to a gynecology clinic where it was used to image patients in a colposcopy setting. Both traditional colposcopic images and spectral data from patients were uploaded to a cloud server for remote analysis. Multi-spectral imaging ( 30 second capture) took place before any clinical procedure; the standard of care was followed thereafter. If acetic acid was used in the standard of care, a post-acetowhitening colposcopic image was also captured. In analyzing the data, normal and abnormal regions were identified in the colposcopic images by an expert clinician. Spectral data were fit to a theoretical model based on diffusion theory, yielding information on scattering and absorption parameters. Data were grouped according to clinician labeling of the tissue, as well as any additional clinical test results available (Pap, HPV, biopsy). Altogether, N=20 patients were imaged in this study, with 9 of them abnormal. In comparing normal and abnormal regions of interest from patients, substantial differences were measured in blood content, while differences in oxygen saturation parameters were more subtle. These results suggest that optical measurements made using low cost spectral imaging systems can distinguish between normal and pathological tissues.

  4. Polarized X-ray excitation for scatter reduction in X-ray fluorescence computed tomography.

    Science.gov (United States)

    Vernekohl, Don; Tzoumas, Stratis; Zhao, Wei; Xing, Lei

    2018-05-25

    X-ray fluorescence computer tomography (XFCT) is a new molecular imaging modality which uses X-ray excitation to stimulate the emission of fluorescent photons in high atomic number contrast agents. Scatter contamination is one of the main challenges in XFCT imaging which limits the molecular sensitivity. When polarized X-rays are used, it is possible to reduce the scatter contamination significantly by placing detectors perpendicular to the polarization direction. This study quantifies scatter contamination for polarized and unpolarized X-ray excitation and determines the advantages of scatter reduction. The amount of scatter in preclinical XFCT is quantified in Monte Carlo simulations. The fluorescent X-rays are emitted isotropically, while scattered X-rays propagate in polarization direction. The magnitude of scatter contamination is studied in XFCT simulations of a mouse phantom. In this study, the contrast agent gold is examined as an example but a scatter reduction from polarized excitation is also expected for other elements. The scatter reduction capability is examined for different polarization intensities with a monoenergetic X-ray excitation energy of 82 keV. The study evaluates two different geometrical shapes of CZT detectors which are modeled with an energy resolution of 1 keV FWHM at an X-ray energy of 80 keV. Benefits of a detector placement perpendicular to the polarization direction are shown in iterative and analytic image reconstruction including scatter correction. The contrast to noise ratio (CNR) and the normalized mean square error (NMSE) are analyzed and compared for the reconstructed images. A substantial scatter reduction for common detector sizes was achieved for 100% and 80% linear polarization while lower polarization intensities provide a decreased scatter reduction. By placing the detector perpendicular to the polarization direction, a scatter reduction by factor up to 5.5 can be achieved for common detector sizes. The image

  5. Magnetic resonance imaging-guided attenuation and scatter corrections in three-dimensional brain positron emission tomography

    CERN Document Server

    Zaidi, H; Slosman, D O

    2003-01-01

    Reliable attenuation correction represents an essential component of the long chain of modules required for the reconstruction of artifact-free, quantitative brain positron emission tomography (PET) images. In this work we demonstrate the proof of principle of segmented magnetic resonance imaging (MRI)-guided attenuation and scatter corrections in 3D brain PET. We have developed a method for attenuation correction based on registered T1-weighted MRI, eliminating the need of an additional transmission (TX) scan. The MR images were realigned to preliminary reconstructions of PET data using an automatic algorithm and then segmented by means of a fuzzy clustering technique which identifies tissues of significantly different density and composition. The voxels belonging to different regions were classified into air, skull, brain tissue and nasal sinuses. These voxels were then assigned theoretical tissue-dependent attenuation coefficients as reported in the ICRU 44 report followed by Gaussian smoothing and additio...

  6. Solar Powered Heat Control System for Cars

    OpenAIRE

    Abin John; Jithin Thomas

    2014-01-01

    It takes times for an air-conditioner to effectively start cooling the passenger compartment in the car. So the passenger of the car will feel the heat in the car extremely before the air-conditioner fully cooling the interior of the car. Excessive heat can also damage an automobile's interior as well as personal property kept in the passenger compartment. So, a system to reduce this excessive heat by pumping out hot air and allowing cooler ambient air to enter the car by mean...

  7. Flying car design and testing

    OpenAIRE

    Klein, S.; Smrcek, L.

    2009-01-01

    This paper is primarily concerned with the inverted design process and manufacture of a flying car prototype which can overcome the problem of traffic management in the world today. A possible solution to the problem of overcrowded roads would be to design a flying or hovering car. Given technological advances in aircraft construction, navigation and operation, flying cars or personal aircraft are now a feasible proposition. The viability of such a concept was investigated in terms of produci...

  8. 49 CFR 180.507 - Qualification of tank cars.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Qualification of tank cars. 180.507 Section 180... QUALIFICATION AND MAINTENANCE OF PACKAGINGS Qualification and Maintenance of Tank Cars § 180.507 Qualification of tank cars. (a) Each tank car marked as meeting a “DOT” specification or any other tank car used...

  9. Car sharing à la carte

    CERN Multimedia

    Anaïs Schaeffer

    2012-01-01

    Do you want to make your commute to CERN easier, while saving money at the same time? Would you prefer not to spend a quarter of an hour crawling round the CERN car parks looking for a space? If so, read on: this article might well be of great interest to you.   We would like to draw your attention to a well established, albeit sadly under-used, method of transport: car sharing. To promote car-sharing, the GS Department has stepped in to call on the services of the Swiss firm Green Monkeys which specialises in this user-friendly and intelligent transport scheme. The company’s slogan is:  “Car-sharing as you want, when you want and as much as you want”. The principle is very straightforward. To use this car-sharing facility, you simply complete your free online registration with Green Monkeys, providing the following details: your journey, departure time, arrival time and days of the week, and indicating whether you are a passenger or driver or both. &a...

  10. Consumer Behavior towards Safer Car Purchasing Decisions

    Directory of Open Access Journals (Sweden)

    Khairil Anwar Abu Kassim

    2016-08-01

    Full Text Available In Malaysia, the car safety level has been elevated through regulations and a consumer-based approach, i.e. the New Car Assessment Program in Southeast Asian Countries (ASEAN NCAP. Nevertheless, the availability of information on consumers’ car purchasing decisions towards safety is still limited in Malaysia. Thus, this study was aimed at evaluating consumers’ purchasing decisions of their present cars and investigating their awareness of ASEAN NCAP. Self-administered questionnaires were distributed among consumers visiting different car showrooms and dealer shops. The findings suggest that safety was considered as one of the top three factors by the respondents when purchasing their present cars. Awareness of ASEAN NCAP has increased as compared to a previous study. This information is essential for policy makers, manufacturers and other stakeholders to assist in setting priorities with regard to the promotion of car safety in the country.

  11. Design and Implementation of Mobile Car with Wireless Video Monitoring System Based on STC89C52

    Directory of Open Access Journals (Sweden)

    Yang Hong

    2014-05-01

    Full Text Available With the rapid development of wireless networks and image acquisition technology, wireless video transmission technology has been widely applied in various communication systems. The traditional video monitoring technology is restricted by some conditions such as layout, environmental, the relatively large volume, cost, and so on. In view of this problem, this paper proposes a method that the mobile car can be equipped with wireless video monitoring system. The mobile car which has some functions such as detection, video acquisition and wireless data transmission is developed based on STC89C52 Micro Control Unit (MCU and WiFi router. Firstly, information such as image, temperature and humidity is processed by the MCU and communicated with the router, and then returned by the WiFi router to the host computer phone. Secondly, control information issued by the host computer phone is received by WiFi router and sent to the MCU, and then the MCU sends relevant instructions. Lastly, the wireless transmission of video images and the remote control of the car are realized. The results prove that the system has some features such as simple operation, high stability, fast response, low cost, strong flexibility, widely application, and so on. The system has certain practical value and popularization value.

  12. Stock-car racing makes intuitive physicists

    Science.gov (United States)

    Gwynne, Peter

    2008-03-01

    Formula One races involve cars festooned with gadgets and complex electronic devices, in which millions of dollars are spent refining a vehicle's aerodynamics and reducing its weight. But in events run by America's National Association of Stock Car Auto Racing (NASCAR), cars hurtle round an oval track at speeds of about 300 km h-1 without the help of the complex sensors that are employed in Formula One cars. To avoid crashing, drivers must make their own adjustments to track conditions, engine problems and the traffic around them.

  13. Shaping the light for the investigation of depth-extended scattering media

    Science.gov (United States)

    Osten, W.; Frenner, K.; Pedrini, G.; Singh, A. K.; Schindler, J.; Takeda, M.

    2018-02-01

    Scattering media are an ongoing challenge for all kind of imaging technologies including coherent and incoherent principles. Inspired by new approaches of computational imaging and supported by the availability of powerful computers, spatial light modulators, light sources and detectors, a variety of new methods ranging from holography to time-of-flight imaging, phase conjugation, phase recovery using iterative algorithms and correlation techniques have been introduced and applied to different types of objects. However, considering the obvious progress in this field, several problems are still matter of investigation and their solution could open new doors for the inspection and application of scattering media as well. In particular, these open questions include the possibility of extending the 2d-approach to the inspection of depth-extended objects, the direct use of a scattering media as a simple tool for imaging of complex objects and the improvement of coherent inspection techniques for the dimensional characterization of incoherently radiating spots embedded in scattering media. In this paper we show our recent findings in coping with these challenges. First we describe how to explore depth-extended objects by means of a scattering media. Afterwards, we extend this approach by implementing a new type of microscope making use of a simple scatter plate as a kind of flat and unconventional imaging lens. Finally, we introduce our shearing interferometer in combination with structured illumination for retrieving the axial position of fluorescent light emitting spots embedded in scattering media.

  14. Comparison of scatter rejection and low-contrast performance of scan equalization digital radiography (SEDR), slot-scan digital radiography, and full-field digital radiography systems for chest phantom imaging

    International Nuclear Information System (INIS)

    Liu Xinming; Shaw, Chris C.; Lai, Chao-Jen; Wang Tianpeng

    2011-01-01

    Purpose: To investigate and compare the scatter rejection properties and low-contrast performance of the scan equalization digital radiography (SEDR) technique to the slot-scan and conventional full-field digital radiography techniques for chest imaging. Methods: A prototype SEDR system was designed and constructed with an a-Se flat-panel (FP) detector to improve image quality in heavily attenuating regions of an anthropomorphic chest phantom. Slot-scanning geometry was used to reject scattered radiation without attenuating primary x rays. The readout scheme of the FP was modified to erase accumulated scatter signals prior to image readout. A 24-segment beam width modulator was developed to regulate x-ray exposures regionally and compensate for the low x-ray flux in heavily attenuating regions. To measure the scatter-to-primary ratios (SPRs), a 2 mm thick lead plate with a 2-D array of aperture holes was used to measure the primary signals, which were then subtracted from those obtained without the lead plate to determine scatter components. A 2-D array of aluminum beads (3 mm in diameter) was used as the low-contrast objects to measure the contrast ratios (CRs) and contrast-to-noise ratios (CNRs) for evaluating the low-contrast performance in chest phantom images. A set of two images acquired with the same techniques were subtracted from each other to measure the noise levels. SPRs, CRs, and CNRs of the SEDR images were measured in four anatomical regions of chest phantom images and compared to those of slot-scan images and full-field images acquired with and without antiscatter grid. Results: The percentage reduction of SPR (percentage of SPRs reduced with scatter removal/rejection methods relative to that for nongrid full-field imaging) averaged over four anatomical regions was measured to be 80%, 83%, and 71% for SEDR, slot-scan, and full-field with grid, respectively. The average CR over four regions was found to improve over that for nongrid full

  15. Comparison of scatter rejection and low-contrast performance of scan equalization digital radiography (SEDR), slot-scan digital radiography, and full-field digital radiography systems for chest phantom imaging

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xinming; Shaw, Chris C.; Lai, Chao-Jen; Wang Tianpeng [Department of Imaging Physics, Digital Imaging Research Laboratory, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030-4009 (United States)

    2011-01-15

    Purpose: To investigate and compare the scatter rejection properties and low-contrast performance of the scan equalization digital radiography (SEDR) technique to the slot-scan and conventional full-field digital radiography techniques for chest imaging. Methods: A prototype SEDR system was designed and constructed with an a-Se flat-panel (FP) detector to improve image quality in heavily attenuating regions of an anthropomorphic chest phantom. Slot-scanning geometry was used to reject scattered radiation without attenuating primary x rays. The readout scheme of the FP was modified to erase accumulated scatter signals prior to image readout. A 24-segment beam width modulator was developed to regulate x-ray exposures regionally and compensate for the low x-ray flux in heavily attenuating regions. To measure the scatter-to-primary ratios (SPRs), a 2 mm thick lead plate with a 2-D array of aperture holes was used to measure the primary signals, which were then subtracted from those obtained without the lead plate to determine scatter components. A 2-D array of aluminum beads (3 mm in diameter) was used as the low-contrast objects to measure the contrast ratios (CRs) and contrast-to-noise ratios (CNRs) for evaluating the low-contrast performance in chest phantom images. A set of two images acquired with the same techniques were subtracted from each other to measure the noise levels. SPRs, CRs, and CNRs of the SEDR images were measured in four anatomical regions of chest phantom images and compared to those of slot-scan images and full-field images acquired with and without antiscatter grid. Results: The percentage reduction of SPR (percentage of SPRs reduced with scatter removal/rejection methods relative to that for nongrid full-field imaging) averaged over four anatomical regions was measured to be 80%, 83%, and 71% for SEDR, slot-scan, and full-field with grid, respectively. The average CR over four regions was found to improve over that for nongrid full

  16. Memory effects in microscopic traffic models and wide scattering in flow-density data

    Science.gov (United States)

    Treiber, Martin; Helbing, Dirk

    2003-10-01

    By means of microscopic simulations we show that noninstantaneous adaptation of the driving behavior to the traffic situation together with the conventional method to measure flow-density data provides a possible explanation for the observed inverse-λ shape and the wide scattering of flow-density data in “synchronized” congested traffic. We model a memory effect in the response of drivers to the traffic situation for a wide class of car-following models by introducing an additional dynamical variable (the “subjective level of service”) describing the adaptation of drivers to the surrounding traffic situation during the past few minutes and couple this internal state to parameters of the underlying model that are related to the driving style. For illustration, we use the intelligent-driver model (IDM) as the underlying model, characterize the level of service solely by the velocity, and couple the internal variable to the IDM parameter “time gap” to model an increase of the time gap in congested traffic (“frustration effect”), which is supported by single-vehicle data. We simulate open systems with a bottleneck and obtain flow-density data by implementing “virtual detectors.” The shape, relative size, and apparent “stochasticity” of the region of the scattered data points agree nearly quantitatively with empirical data. Wide scattering is even observed for identical vehicles, although the proposed model is a time-continuous, deterministic, single-lane car-following model with a unique fundamental diagram.

  17. Electric Cars and Oil Prices

    OpenAIRE

    Azar, Jose

    2009-01-01

    This paper studies the joint dynamics of oil prices and interest in electric cars, measured as the volume of Google searches for related phrases. Not surprisingly, I find that oil price shocks predict increases in Google searches for electric cars. Much more surprisingly, I also find that an increase in Google searches predicts declines in oil prices. The high level of public interest in electric cars between April and August of 2008 can explain approximately half of the decline in oil prices...

  18. Inelastic neutron scattering experiments with the monochromatic imaging mode of the RITA-II spectrometer

    International Nuclear Information System (INIS)

    Bahl, C.R.H.; Lefmann, K.; Abrahamsen, A.B.; Ronnow, H.M.; Saxild, F.; Jensen, T.B.S.; Udby, L.; Andersen, N.H.; Christensen, N.B.; Jakobsen, H.S.; Larsen, T.; Haefliger, P.S.; Streule, S.; Niedermayer, Ch.

    2006-01-01

    Recently a monochromatic multiple data taking mode has been demonstrated for diffraction experiments using a RITA type cold neutron spectrometer with a multi-bladed analyser and a position-sensitive detector. Here, we show how this mode can be used in combination with a flexible radial collimator to perform real inelastic neutron scattering experiments. We present the results from inelastic powder, single crystal dispersion and single crystal constant energy mapping experiments. The advantages and complications of performing these experiments are discussed along with a comparison between the imaging mode and the traditional monochromatic focussing mode

  19. Inelastic neutron scattering experiments with the monochromatic imaging mode of the RITA-II spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Bahl, C.R.H. [Department of Materials Research, Riso National Laboratory, Building 227, Frederiksborgvej 399, DK-4000 Roskilde (Denmark) and Department of Physics, Technical University of Denmark, DK-2800 Lyngby (Denmark)]. E-mail: christian.bahl@risoe.dk; Lefmann, K. [Department of Materials Research, Riso National Laboratory, Building 227, Frederiksborgvej 399, DK-4000 Roskilde (Denmark)]. E-mail: kim.lefmann@risoe.dk; Abrahamsen, A.B. [Department of Materials Research, Riso National Laboratory, Building 227, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Ronnow, H.M. [Laboratory for Neutron Scattering, Paul Scherrer Institute, CH-5232 Villigen (Switzerland); Saxild, F. [Department of Materials Research, Riso National Laboratory, Building 227, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Jensen, T.B.S. [Department of Materials Research, Riso National Laboratory, Building 227, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Udby, L. [Department of Materials Research, Riso National Laboratory, Building 227, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Andersen, N.H. [Department of Materials Research, Riso National Laboratory, Building 227, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Christensen, N.B. [Department of Materials Research, Riso National Laboratory, Building 227, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Laboratory for Neutron Scattering, Paul Scherrer Institute, CH-5232 Villigen (Switzerland); Jakobsen, H.S. [Niels Bohr Institute for Astronomy, Physics and Geophysics, University of Copenhagen, DK-2100 Copenhagen (Denmark); Larsen, T. [Niels Bohr Institute for Astronomy, Physics and Geophysics, University of Copenhagen, DK-2100 Copenhagen (Denmark); Haefliger, P.S. [Laboratory for Neutron Scattering, Paul Scherrer Institute, CH-5232 Villigen (Switzerland); Streule, S.; Niedermayer, Ch. [Laboratory for Neutron Scattering, Paul Scherrer Institute, CH-5232 Villigen (Switzerland)

    2006-05-15

    Recently a monochromatic multiple data taking mode has been demonstrated for diffraction experiments using a RITA type cold neutron spectrometer with a multi-bladed analyser and a position-sensitive detector. Here, we show how this mode can be used in combination with a flexible radial collimator to perform real inelastic neutron scattering experiments. We present the results from inelastic powder, single crystal dispersion and single crystal constant energy mapping experiments. The advantages and complications of performing these experiments are discussed along with a comparison between the imaging mode and the traditional monochromatic focussing mode.

  20. Research of braking peculiarities of used cars

    Directory of Open Access Journals (Sweden)

    V. Mitunevičius

    2002-06-01

    Full Text Available This paper briefly describes some analysis of a car braking process - the peculiarities of car wheel-to-road adhesion, the influence of distribution of braking forces on car stability between front and rear axles. The requirements of EU Directive 71/320/EEC to braking force coefficients of car front and rear axles are exposed. Structural designs of braking systems are analyzed with respect to their meeting the EU standards. Experimental measurements of braking force coefficients for some models of cars which are used in Lithuania, are presented with the analysis how these coefficients meet the EU standards. The analysis of test results, suggestions for the ratio of braking forces of car front and rear axles are presented.