WorldWideScience

Sample records for scatterers cylinder monte

  1. Application of the exact solution for scattering by an infinite cylinder to the estimation of scattering by a finite cylinder.

    Science.gov (United States)

    Wang, R T; van de Hulst, H C

    1995-05-20

    A new algorithm for cylindrical Bessel functions that is similar to the one for spherical Bessel functions allows us to compute scattering functions for infinitely long cylinders covering sizes ka = 2πa/λ up to 8000 through the use of only an eight-digit single-precision machine computation. The scattering function and complex extinction coefficient of a finite cylinder that is seen near perpendicular incidence are derived from those of an infinitely long cylinder by the use of Huygens's principle. The result, which contains no arbitrary normalization factor, agrees quite well with analog microwave measurements of both extinction and scattering for such cylinders, even for an aspect ratio p = l/(2a) as low as 2. Rainbows produced by cylinders are similar to those for spherical drops but are brighter and have a lower contrast.

  2. Scattering cross-section of an inhomogeneous plasma cylinder

    International Nuclear Information System (INIS)

    Jiaming Shi; Lijian Qiu; Ling, Y.

    1995-01-01

    Scattering of em waves by the plasma cylinder is of significance in radar target detection, plasma diagnosis, etc. This paper discusses the general method to calculate the scattering cross-section of em waves from a plasma cylinder which is radially inhomogeneous and infinitely long. Numerical results are also provided for several plasma density profiles. The effect of the electron density distribution on the scattering cross-section is investigated

  3. Evanescent wave scattering at off-axis incidence on multiple cylinders located near a surface

    International Nuclear Information System (INIS)

    Lee, Siu-Chun

    2015-01-01

    The scattering characteristics of an infinite cylinder are strongly influenced by the incidence angle relative to its axis. If the incident wave propagates in the plane normal to the axis of the cylinder, the polarization of the scattered wave remains unchanged and the scattered wave propagates in the same plan as the incident wave. At off-axis incidence such that the incident direction makes an oblique angle with the cylinder axis, the scattered wave is depolarized, and its spatial distribution becomes three-dimensional. This paper presents the scattering solution for oblique incidence on multiple parallel cylinders located near a planar interface by an evanescent wave that is generated by total internal reflection of the source wave propagating in the higher refractive index substrate. Hertz potentials are utilized to formulate the interaction of inhomogeneous waves with the cylinders, scattering at the substrate interface, and near field scattering between the cylinders. Analytic formulas are derived for the electromagnetic fields and Poynting vector of scattered radiation in the near-field and their asymptotic forms in the far-field. Numerical examples are shown to illustrate scattering of evanescent wave by multiple cylinders at off-axis incidence. - Highlights: • Developed an exact solution for off-axis incidence on multiple cylinders. • Included depolarization, near-field scattering, and Fresnel effect in theory. • Derived analytic formulas for scattered radiation in the far field. • Illustrated evanescent scattering at off-axis incidence by numerical data

  4. Formation of whispering gallery modes by scattering of an electromagnetic plane wave by two cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Abramov, Arnold, E-mail: qulaser@gmail.com [Kuang-Chi Institute of Advanced Technology, Shenzhen, 518057 (China); Kostikov, Alexander [Donbass State Engineering Academy, 84303, Kramatorsk, Donetsk (Ukraine)

    2017-03-26

    We report the effect of scattering of electromagnetic plane waves by two cylinders on whispering gallery mode (WGM) formation in a cylinder. WGM can occur because of the presence of additional cylinder scatterers at specific location, while WGMs can only form in a single cylinder for specific cylinder radius and/or wavelength values, the matching accuracy required would be much greater than that required in our model for the additional cylinders locations. Analysis of the general solution to the problem showed that the effect can be explained by the interference of waves scattered by additional cylinders and incident on the main cylinder. - Highlights: • We consider scattering of electromagnetic plane waves by two cylinders. • WGMs occur because of the presence of additional cylinder at specific location. • The accuracy for the locations is much less than required for specific values of single cylinder. • The interference of waves scattered by additional cylinders and incident on the main is responsible for the effect.

  5. Transverse magnetic scattering by parallel conducting elliptic cylinders

    Science.gov (United States)

    Sebak, A.

    1991-10-01

    A boundary value solution to the problem of transverse magnetic multiple scattering by M parallel perfectly conducting elliptic cylinders is presented. The solution is an exact one and based on the separation-of-variables technique and the addition theorem for Mathieu functions. It is expressed in terms of a system of simultaneous linear equations of infinite order, which is then truncated for numerical computations. Representative numerical results for the scattered field by two cylinders are then generated, for some selected sizes and orientations parameters, and presented.

  6. Rayleigh scattering of a cylindrical sound wave by an infinite cylinder.

    Science.gov (United States)

    Baynes, Alexander B; Godin, Oleg A

    2017-12-01

    Rayleigh scattering, in which the wavelength is large compared to the scattering object, is usually studied assuming plane incident waves. However, full Green's functions are required in a number of problems, e.g., when a scatterer is located close to the ocean surface or the seafloor. This paper considers the Green's function of the two-dimensional problem that corresponds to scattering of a cylindrical wave by an infinite cylinder embedded in a homogeneous fluid. Soft, hard, and impedance cylinders are considered. Exact solutions of the problem involve infinite series of products of Bessel functions. Here, simple, closed-form asymptotic solutions are derived, which are valid for arbitrary source and receiver locations outside the cylinder as long as its diameter is small relative to the wavelength. The scattered wave is given by the sum of fields of three linear image sources. The viability of the image source method was anticipated from known solutions of classical electrostatic problems involving a conducting cylinder. The asymptotic acoustic Green's functions are employed to investigate reception of low-frequency sound by sensors mounted on cylindrical bodies.

  7. DISCUS, Neutron Single to Double Scattering Ratio in Inelastic Scattering Experiment by Monte-Carlo

    International Nuclear Information System (INIS)

    Johnson, M.W.

    1993-01-01

    1 - Description of problem or function: DISCUS calculates the ratio of once-scattered to twice-scattered neutrons detected in an inelastic neutron scattering experiment. DISCUS also calculates the flux of once-scattered neutrons that would have been observed if there were no absorption in the sample and if, once scattered, the neutron would emerge without further re-scattering or absorption. Three types of sample geometry are used: an infinite flat plate, a finite flat plate or a finite length cylinder. (The infinite flat plate is included for comparison with other multiple scattering programs.) The program may be used for any sample for which the scattering law is of the form S(/Q/, omega). 2 - Method of solution: Monte Carlo with importance sampling is used. Neutrons are 'forced' both into useful angular trajectories, and useful energy bins. Biasing of the collision point according to the point of entry of the neutron into the sample is also utilised. The first and second order scattered neutron fluxes are calculated in independent histories. For twice-scattered neutron histories a square distribution in Q-omega space is used to sample the neutron coming from the first scattering event, whilst biasing is used for the second scattering event. (A square distribution is used so as to obtain reasonable inelastic-inelastic statistics.) 3 - Restrictions on the complexity of the problem: Unlimited number of detectors. Max. size of (Q, omega) matrix is 39*149. Max. number of points in momentum space for the scattering cross section is 199

  8. Monte Carlo simulations of neutron scattering instruments

    International Nuclear Information System (INIS)

    Aestrand, Per-Olof; Copenhagen Univ.; Lefmann, K.; Nielsen, K.

    2001-01-01

    A Monte Carlo simulation is an important computational tool used in many areas of science and engineering. The use of Monte Carlo techniques for simulating neutron scattering instruments is discussed. The basic ideas, techniques and approximations are presented. Since the construction of a neutron scattering instrument is very expensive, Monte Carlo software used for design of instruments have to be validated and tested extensively. The McStas software was designed with these aspects in mind and some of the basic principles of the McStas software will be discussed. Finally, some future prospects are discussed for using Monte Carlo simulations in optimizing neutron scattering experiments. (R.P.)

  9. On the solution of a few problems of multiple scattering by Monte Carlo method

    International Nuclear Information System (INIS)

    Bluet, J.C.

    1966-02-01

    Three problems of multiple scattering arising from neutron cross sections experiments, are reported here. The common hypothesis are: - Elastic scattering is the only possible process - Angular distributions are isotropic - Losses of particle energy are negligible in successive collisions. In the three cases practical results, corresponding to actual experiments are given. Moreover the results are shown in more general way, using dimensionless variable such as the ratio of geometrical dimensions to neutron mean free path. The FORTRAN codes are given together with to the corresponding flow charts, and lexicons of symbols. First problem: Measurement of sodium capture cross-section. A sodium sample of given geometry is submitted to a neutron flux. Induced activity is then measured by means of a sodium iodide cristal. The distribution of active nuclei in the sample, and the counter efficiency are calculated by Monte-Carlo method taking multiple scattering into account. Second problem: absolute measurement of a neutron flux using a glass scintillator. The scintillator is a use of lithium 6 loaded glass, submitted to neutron flux perpendicular to its plane faces. If the glass thickness is not negligible compared with scattering mean free path λ, the mean path e' of neutrons in the glass is different from the thickness. Monte-Carlo calculation are made to compute this path and a relative correction to efficiency equal to (e' - e)/e. Third problem: study of a neutron collimator. A neutron detector is placed at the bottom of a cylinder surrounded with water. A neutron source is placed on the cylinder axis, in front of the water shield. The number of neutron tracks going directly and indirectly through the water from the source to the detector are counted. (author) [fr

  10. Acoustic scattering by multiple elliptical cylinders using collocation multipole method

    International Nuclear Information System (INIS)

    Lee, Wei-Ming

    2012-01-01

    This paper presents the collocation multipole method for the acoustic scattering induced by multiple elliptical cylinders subjected to an incident plane sound wave. To satisfy the Helmholtz equation in the elliptical coordinate system, the scattered acoustic field is formulated in terms of angular and radial Mathieu functions which also satisfy the radiation condition at infinity. The sound-soft or sound-hard boundary condition is satisfied by uniformly collocating points on the boundaries. For the sound-hard or Neumann conditions, the normal derivative of the acoustic pressure is determined by using the appropriate directional derivative without requiring the addition theorem of Mathieu functions. By truncating the multipole expansion, a finite linear algebraic system is derived and the scattered field can then be determined according to the given incident acoustic wave. Once the total field is calculated as the sum of the incident field and the scattered field, the near field acoustic pressure along the scatterers and the far field scattering pattern can be determined. For the acoustic scattering of one elliptical cylinder, the proposed results match well with the analytical solutions. The proposed scattered fields induced by two and three elliptical–cylindrical scatterers are critically compared with those provided by the boundary element method to validate the present method. Finally, the effects of the convexity of an elliptical scatterer, the separation between scatterers and the incident wave number and angle on the acoustic scattering are investigated.

  11. Acoustic scattering by arbitrary distributions of disjoint, homogeneous cylinders or spheres.

    Science.gov (United States)

    Hesford, Andrew J; Astheimer, Jeffrey P; Waag, Robert C

    2010-05-01

    A T-matrix formulation is presented to compute acoustic scattering from arbitrary, disjoint distributions of cylinders or spheres, each with arbitrary, uniform acoustic properties. The generalized approach exploits the similarities in these scattering problems to present a single system of equations that is easily specialized to cylindrical or spherical scatterers. By employing field expansions based on orthogonal harmonic functions, continuity of pressure and normal particle velocity are directly enforced at each scatterer using diagonal, analytic expressions to eliminate the need for integral equations. The effect of a cylinder or sphere that encloses all other scatterers is simulated with an outer iterative procedure that decouples the inner-object solution from the effect of the enclosing object to improve computational efficiency when interactions among the interior objects are significant. Numerical results establish the validity and efficiency of the outer iteration procedure for nested objects. Two- and three-dimensional methods that employ this outer iteration are used to measure and characterize the accuracy of two-dimensional approximations to three-dimensional scattering of elevation-focused beams.

  12. Scattering by multiple parallel radially stratified infinite cylinders buried in a lossy half space.

    Science.gov (United States)

    Lee, Siu-Chun

    2013-07-01

    The theoretical solution for scattering by an arbitrary configuration of closely spaced parallel infinite cylinders buried in a lossy half space is presented in this paper. The refractive index and permeability of the half space and cylinders are complex in general. Each cylinder is radially stratified with a distinct complex refractive index and permeability. The incident radiation is an arbitrarily polarized plane wave propagating in the plane normal to the axes of the cylinders. Analytic solutions are derived for the electric and magnetic fields and the Poynting vector of backscattered radiation emerging from the half space. Numerical examples are presented to illustrate the application of the scattering solution to calculate backscattering from a lossy half space containing multiple homogeneous and radially stratified cylinders at various depths and different angles of incidence.

  13. Scattering-matrix elements of coated infinite-length cylinders

    International Nuclear Information System (INIS)

    Manickavasagam, S.; Menguec, M.P.

    1998-01-01

    The angular variations of scattering-matrix elements of coated cylindrical particles are presented. The sensitivity of different elements for a number of physical parameters are discussed, including size parameter, real and imaginary parts of the refractive index of the outer coat, and the inner core. The numerical predictions are presented for typical index-of-refraction values of cotton fibers. These results show that the physical structure of coated cylinders can be determined from carefully conducted light-scattering experiments. copyright 1998 Optical Society of America

  14. SU-G-206-06: Analytic Dose Function for CT Scans in Infinite Cylinders as a Function of Scan Length and Cylinder Radius

    Energy Technology Data Exchange (ETDEWEB)

    Bakalyar, D [Henry Ford Health System, Detroit, MI (United States); Feng, W [New York Presbyterian Hospital, Tenafly, NJ (United States); McKenney, S [Children’s National Medical Center, Washington, DC (United States)

    2016-06-15

    Purpose: The radiation dose absorbed at a particular radius ρ within the central plane of a long cylinder following a CT scan is a function of the length of the scan L and the cylinder radius R along with kVp and cylinder composition. An analytic function was created that that not only expresses these dependencies but is integrable in closed form over the area of the central plane. This feature facilitates explicit calculation of the planar average dose. The “approach to equilibrium” h(L) discussed in the TG111 report is seamlessly included in this function. Methods: For a cylindrically symmetric radiation field, Monte Carlo calculations were performed to compute the dose distribution to long polyethylene cylinders for scans of varying L for cylinders ranging in radius from 5 to 20 cm. The function was developed from the resultant Monte Carlo data. In addition, the function was successfully fit to data taken from measurements on the 30 cm diameter ICRU/TG200 phantom using a real-time dosimeter. Results: Symmetry and continuity dictate a local extremum at the center which is a minimum for the larger sizes. There are competing effects as the beam penetrates the cylinder from the outside: attenuation, resulting in a decrease; scatter, abruptly increasing at the circumference. This competition may result in an absolute maximum between the center and outer edge leading to a “gull wing” shape for the radial dependence. For the smallest cylinders, scatter may dominate to the extent that there is an absolute maximum at the center. Conclusion: An integrable, analytic function has been developed that provides the radial dependency of dose for the central plane of a scan of length L for cylinders of varying diameter. Equivalently, we have developed h(L,R,ρ).

  15. Investigation of scattered radiation in 3D whole-body positron emission tomography using Monte Carlo simulations

    International Nuclear Information System (INIS)

    Adam, L.-E.; Brix, G.

    1999-01-01

    The correction of scattered radiation is one of the most challenging tasks in 3D positron emission tomography (PET) and knowledge about the amount of scatter and its distribution is a prerequisite for performing an accurate correction. One concern in 3D PET in contrast to 2D PET is the scatter contribution from activity outside the field-of-view (FOV) and multiple scatter. Using Monte Carlo simulations, we examined the scatter distribution for various phantoms. The simulations were performed for a whole-body PET system (ECAT EXACT HR + , Siemens/CTI) with an axial FOV of 15.5 cm and a ring diameter of 82.7 cm. With (without) interplane septa, up to one (two) out of three detected events are scattered (for a centred point source in a water-filled cylinder that nearly fills out the patient port), whereby the relative scatter fraction varies significantly with the axial position. Our results show that for an accurate scatter correction, activity as well as scattering media outside the FOV have to be taken into account. Furthermore it could be shown that there is a considerable amount of multiple scatter which has a different spatial distribution from single scatter. This means that multiple scatter cannot be corrected by simply rescaling the single scatter component. (author)

  16. On uniqueness of an inverse problem in electromagnetic obstacle scattering for an impedance cylinder

    International Nuclear Information System (INIS)

    Nakamura, Gen; Wang, Haibing; Sleeman, Brian D

    2012-01-01

    We consider an inverse problem for the scattering of an obliquely incident electromagnetic wave by an impedance cylinder. In previous work, we have shown that the direct scattering problem is governed by a pair of Helmholtz equations subject to coupled oblique boundary conditions, where the wave number depends on the frequency and the incident angle with respect to the axis of the cylinder. In this paper, we are concerned with the inverse problem of uniquely identifying the cross-section of an unknown cylinder and the impedance function from the far-field patterns at fixed frequency and a range of incident angles. A uniqueness result for such an inverse scattering problem is established. Our method is based on the analyticity of solution to the direct scattering problem, which is justified by using the Lax–Phillips method together with the perturbation theory of Fredholm operators. (paper)

  17. Monte Carlo simulation of neutron scattering instruments

    International Nuclear Information System (INIS)

    Seeger, P.A.

    1995-01-01

    A library of Monte Carlo subroutines has been developed for the purpose of design of neutron scattering instruments. Using small-angle scattering as an example, the philosophy and structure of the library are described and the programs are used to compare instruments at continuous wave (CW) and long-pulse spallation source (LPSS) neutron facilities. The Monte Carlo results give a count-rate gain of a factor between 2 and 4 using time-of-flight analysis. This is comparable to scaling arguments based on the ratio of wavelength bandwidth to resolution width

  18. Scattering from a Buried Circular Cylinder Illuminated by a Three-Dimensional Source

    DEFF Research Database (Denmark)

    Hansen, T.B.; Meincke, Peter

    2002-01-01

    We employ plane and cylindrical wave expansions with the fast Fourier transform to solve scattering problems involving a circular cylinder buried in soil. The illumination is provided by a three-dimensional source located in air above ground. Plane wave expansions describe transmitted and reflect...... commonly used transmitter-receiver configuration for ground-penetrating radar (GPR). Numerical simulations involving time domain fields and fixed-offset configurations determine the radar responses of various types of pipes and conductive soils encountered in GPR.......We employ plane and cylindrical wave expansions with the fast Fourier transform to solve scattering problems involving a circular cylinder buried in soil. The illumination is provided by a three-dimensional source located in air above ground. Plane wave expansions describe transmitted and reflected...

  19. A Monte Carlo evaluation of analytical multiple scattering corrections for unpolarised neutron scattering and polarisation analysis data

    International Nuclear Information System (INIS)

    Mayers, J.; Cywinski, R.

    1985-03-01

    Some of the approximations commonly used for the analytical estimation of multiple scattering corrections to thermal neutron elastic scattering data from cylindrical and plane slab samples have been tested using a Monte Carlo program. It is shown that the approximations are accurate for a wide range of sample geometries and scattering cross-sections. Neutron polarisation analysis provides the most stringent test of multiple scattering calculations as multiply scattered neutrons may be redistributed not only geometrically but also between the spin flip and non spin flip scattering channels. A very simple analytical technique for correcting for multiple scattering in neutron polarisation analysis has been tested using the Monte Carlo program and has been shown to work remarkably well in most circumstances. (author)

  20. Modeling single-scattering properties of small cirrus particles by use of a size-shape distribution of ice spheroids and cylinders

    International Nuclear Information System (INIS)

    Liu Li; Mishchenko, Michael I.; Cairns, Brian; Carlson, Barbara E.; Travis, Larry D.

    2006-01-01

    In this study, we model single-scattering properties of small cirrus crystals using mixtures of polydisperse, randomly oriented spheroids and cylinders with varying aspect ratios and with a refractive index representative of water ice at a wavelength of 1.88 μm. The Stokes scattering matrix elements averaged over wide shape distributions of spheroids and cylinders are compared with those computed for polydisperse surface-equivalent spheres. The shape-averaged phase function for a mixture of oblate and prolate spheroids is smooth, featureless, and nearly flat at side-scattering angles and closely resembles those typically measured for cirrus. Compared with the ensemble-averaged phase function for spheroids, that for a shape distribution of cylinders shows a relatively deeper minimum at side-scattering angles. This may indicate that light scattering from realistic cirrus crystals can be better represented by a shape mixture of ice spheroids. Interestingly, the single-scattering properties of shape-averaged oblate and prolate cylinders are very similar to those of compact cylinders with a diameter-to-length ratio of unity. The differences in the optical cross sections, single-scattering albedo, and asymmetry parameter between the spherical and the nonspherical particles studied appear to be relatively small. This may suggest that for a given optical thickness, the influence of particle shape on the radiative forcing caused by a cloud composed of small ice crystals can be negligible

  1. Scattering of electromagnetic waves by a graphene-coated thin cylinder of left-handed metamaterial

    Science.gov (United States)

    Pashaeiadl, Hamid; Naserpour, Mahin; Zapata-Rodríguez, Carlos J.

    2018-04-01

    In this paper we explored the scattering behavior of thin cylinders made of LHM and coated by a monoatomic graphene layer. A spectral tunability of the resonance peaks is evidenced by altering the chemical potential of the graphene coating, a fact that occurs at any state of polarization of the incident plane wave in opposition to the case of scatterers of dielectric core. On the contrary, no invisibility condition can be satisfied for dielectric environments. A singular performance is also found for cylinders with permittivity and permeability near zero. Practical implementations of our results can be carried out in sensing and wave manipulation driven by metamaterials.

  2. Forward scattering from square cylinders in the resonance region with application to aperture blockage

    DEFF Research Database (Denmark)

    Rusch, W.; Appel-Hansen, Jørgen; Klein, C

    1976-01-01

    The relationship between the induced field ratio (IFR) of a cylinder and aperture blocking of a constant-phase aperture by cylindrical struts is discussed. An analytical technique is presented whereby the IFR of rectangular cylinders can be calculated using the method-of-moments with internal...... constraint points. An experimental technique using a forward-scattering range is used to measure the IFR's of square and circular cylinders in an anechoic chamber. These experimental results are compared with the theory, and their implications on aperture blocking losses and boresight cross polarization...

  3. Broadband computation of the scattering coefficients of infinite arbitrary cylinders.

    Science.gov (United States)

    Blanchard, Cédric; Guizal, Brahim; Felbacq, Didier

    2012-07-01

    We employ a time-domain method to compute the near field on a contour enclosing infinitely long cylinders of arbitrary cross section and constitution. We therefore recover the cylindrical Hankel coefficients of the expansion of the field outside the circumscribed circle of the structure. The recovered coefficients enable the wideband analysis of complex systems, e.g., the determination of the radar cross section becomes straightforward. The prescription for constructing such a numerical tool is provided in great detail. The method is validated by computing the scattering coefficients for a homogeneous circular cylinder illuminated by a plane wave, a problem for which an analytical solution exists. Finally, some radiation properties of an optical antenna are examined by employing the proposed technique.

  4. Scattering by cavity-backed antennas on a circular cylinder

    Science.gov (United States)

    Kempel, Leo C.; Volakis, John L.

    1994-01-01

    Conformal arrays are popular antennas for aircraft, spacecraft, and land vehicle platforms due to their inherent low weight and drag properties. However, to date there has been a dearth of rigorous analytical or numerical solutions to aid the designer. In fact, it has been common practice to use limited measurements and planar approximations in designing such non-planar antennas. The finite element-boundary integral method is extended to scattering by cavity-backed structures in an infinite, metallic cylinder. In particular, the formulation specifics such as weight functions, dyadic Green's function, implementation details and particular difficulties inherent to cylindrical structures are discussed. Special care is taken to ensure that the resulting computer program has low memory demand and minimal computational requirements. Scattering results are presented and validated as much as possible.

  5. Biasing anisotropic scattering kernels for deep-penetration Monte Carlo calculations

    International Nuclear Information System (INIS)

    Carter, L.L.; Hendricks, J.S.

    1983-01-01

    The exponential transform is often used to improve the efficiency of deep-penetration Monte Carlo calculations. This technique is usually implemented by biasing the distance-to-collision kernel of the transport equation, but leaving the scattering kernel unchanged. Dwivedi obtained significant improvements in efficiency by biasing an isotropic scattering kernel as well as the distance-to-collision kernel. This idea is extended to anisotropic scattering, particularly the highly forward Klein-Nishina scattering of gamma rays

  6. SPANDY: a Monte Carlo program for gas target scattering geometry

    International Nuclear Information System (INIS)

    Jarmie, N.; Jett, J.H.; Niethammer, A.C.

    1977-02-01

    A Monte Carlo computer program is presented that simulates a two-slit gas target scattering geometry. The program is useful in estimating effects due to finite geometry and multiple scattering in the target foil. Details of the program are presented and experience with a specific example is discussed

  7. GPU acceleration of Monte Carlo simulations for polarized photon scattering in anisotropic turbid media.

    Science.gov (United States)

    Li, Pengcheng; Liu, Celong; Li, Xianpeng; He, Honghui; Ma, Hui

    2016-09-20

    In earlier studies, we developed scattering models and the corresponding CPU-based Monte Carlo simulation programs to study the behavior of polarized photons as they propagate through complex biological tissues. Studying the simulation results in high degrees of freedom that created a demand for massive simulation tasks. In this paper, we report a parallel implementation of the simulation program based on the compute unified device architecture running on a graphics processing unit (GPU). Different schemes for sphere-only simulations and sphere-cylinder mixture simulations were developed. Diverse optimizing methods were employed to achieve the best acceleration. The final-version GPU program is hundreds of times faster than the CPU version. Dependence of the performance on input parameters and precision were also studied. It is shown that using single precision in the GPU simulations results in very limited losses in accuracy. Consumer-level graphics cards, even those in laptop computers, are more cost-effective than scientific graphics cards for single-precision computation.

  8. Detailed Monte Carlo simulation of electron elastic scattering

    International Nuclear Information System (INIS)

    Chakarova, R.

    1994-04-01

    A detailed Monte Carlo model is described which simulates the transport of electrons penetrating a medium without energy loss. The trajectory of each electron is constructed as a series of successive interaction events - elastic or inelastic scattering. Differential elastic scattering cross sections, elastic and inelastic mean free paths are used to describe the interaction process. It is presumed that the cross sections data are available and the Monte Carlo algorithm does not include their evaluation. Electrons suffering successive elastic collisions are followed until they escape from the medium or (if the absorption is negligible) their path length exceeds a certain value. The inelastic events are thus treated as absorption. The medium geometry is a layered infinite slab. The electron source could be an incident electron beam or electrons created inside the material. The objective is to obtain the angular distribution, the path length and depth distribution and the collision number distribution of electrons emitted through the surface of the medium. The model is applied successfully to electrons with energy between 0.4 and 20 keV reflected from semi-infinite homogeneous materials with different scattering properties. 16 refs, 9 figs

  9. An Analytical Method of Auxiliary Sources Solution for Plane Wave Scattering by Impedance Cylinders

    DEFF Research Database (Denmark)

    Larsen, Niels Vesterdal; Breinbjerg, Olav

    2004-01-01

    Analytical Method of Auxiliary Sources solutions for plane wave scattering by circular impedance cylinders are derived by transformation of the exact eigenfunction series solutions employing the Hankel function wave transformation. The analytical Method of Auxiliary Sources solution thus obtained...

  10. Verification of Compton scattering spectrum of a 662 keV photon beam scattered on a cylindrical steel target using MCNP5 code

    International Nuclear Information System (INIS)

    Thanh, Tran Thien; Nguyen, Vo Hoang; Chuong, Huynh Dinh; Tran, Le Bao; Tam, Hoang Duc; Binh, Nguyen Thi; Tao, Chau Van

    2015-01-01

    This article focuses on the possible application of a "1"3"7Cs low-radioactive source (5 mCi) and a NaI(Tl) detector for measuring the saturation thickness of solid cylindrical steel targets. In order to increase the reliability of the obtained experimental results and to verify the detector response function of Compton scattering spectrum, simulation using Monte Carlo N-particle (MCNP5) code is performed. The obtained results are in good agreement with the response functions of the simulation scattering and experimental scattering spectra. On the basis of such spectra, the saturation depth of a steel cylinder is determined by experiment and simulation at about 27 mm using gamma energy of 662 keV ("1"3"7Cs) at a scattering angle of 120°. This study aims at measuring the diameter of solid cylindrical objects by gamma-scattering technique. - Highlights: • This study aims a possible application a "1"3"7Cs low-radioactive source (5 mCi) and a NaI(Tl) detector for measuring the saturation thickness of solid cylindrical steel targets by gamma-scattering technique. • Monte Carlo N-particle (MCNP5) code is performed to verify on the detector response function of Compton scattering spectrum. • The results show a good agreement in response function of the experimental and simulation scattering spectra. • The saturation depth of a steel cylinder is determined by experiment and simulation at about 27 mm using gamma energy of 662 keV ("1"3"7Cs) at a scattering angle of 120°.

  11. Evaluation of a scatter correlation technique for single photon transmission measurements in PET by means of Monte Carlo simulations

    International Nuclear Information System (INIS)

    Wegmann, K.; Brix, G.

    2000-01-01

    Purpose: Single photon transmission (SPT) measurements offer a new approach for the determination of attenuation correction factors (ACF) in PET. It was the aim of the present work, to evaluate a scatter correction alogrithm proposed by C. Watson by means of Monte Carlo simulations. Methods: SPT measurements with a Cs-137 point source were simulated for a whole-body PET scanner (ECAT EXACT HR + ) in both the 2D and 3D mode. To examine the scatter fraction (SF) in the transmission data, the detected photons were classified as unscattered or scattered. The simulated data were used to determine (i) the spatial distribution of the SFs, (ii) an ACF sinogram from all detected events (ACF tot ) and (iii) from the unscattered events only (ACF unscattered ), and (iv) an ACF cor =(ACF tot ) 1+Κ sinogram corrected according to the Watson algorithm. In addition, density images were reconstructed in order to quantitatively evaluate linear attenuation coefficients. Results: A high correlation was found between the SF and the ACF tot sinograms. For the cylinder and the EEC phantom, similar correction factors Κ were estimated. The determined values resulted in an accurate scatter correction in both the 2D and 3D mode. (orig.) [de

  12. Numerical studies of time-independent and time-dependent scattering by several elliptical cylinders

    Science.gov (United States)

    Nigsch, Martin

    2007-07-01

    A numerical solution to the problem of time-dependent scattering by an array of elliptical cylinders with parallel axes is presented. The solution is an exact one, based on the separation-of-variables technique in the elliptical coordinate system, the addition theorem for Mathieu functions, and numerical integration. Time-independent solutions are described by a system of linear equations of infinite order which are truncated for numerical computations. Time-dependent solutions are obtained by numerical integration involving a large number of these solutions. First results of a software package generating these solutions are presented: wave propagation around three impenetrable elliptical scatterers. As far as we know, this method described has never been used for time-dependent multiple scattering.

  13. Hybrid Monte Carlo-Diffusion Method For Light Propagation in Tissue With a Low-Scattering Region

    Science.gov (United States)

    Hayashi, Toshiyuki; Kashio, Yoshihiko; Okada, Eiji

    2003-06-01

    The heterogeneity of the tissues in a head, especially the low-scattering cerebrospinal fluid (CSF) layer surrounding the brain has previously been shown to strongly affect light propagation in the brain. The radiosity-diffusion method, in which the light propagation in the CSF layer is assumed to obey the radiosity theory, has been employed to predict the light propagation in head models. Although the CSF layer is assumed to be a nonscattering region in the radiosity-diffusion method, fine arachnoid trabeculae cause faint scattering in the CSF layer in real heads. A novel approach, the hybrid Monte Carlo-diffusion method, is proposed to calculate the head models, including the low-scattering region in which the light propagation does not obey neither the diffusion approximation nor the radiosity theory. The light propagation in the high-scattering region is calculated by means of the diffusion approximation solved by the finite-element method and that in the low-scattering region is predicted by the Monte Carlo method. The intensity and mean time of flight of the detected light for the head model with a low-scattering CSF layer calculated by the hybrid method agreed well with those by the Monte Carlo method, whereas the results calculated by means of the diffusion approximation included considerable error caused by the effect of the CSF layer. In the hybrid method, the time-consuming Monte Carlo calculation is employed only for the thin CSF layer, and hence, the computation time of the hybrid method is dramatically shorter than that of the Monte Carlo method.

  14. An empirical formula for scattered neutron components in fast neutron radiography

    International Nuclear Information System (INIS)

    Dou Haifeng; Tang Bin

    2011-01-01

    Scattering neutrons are one of the key factors that may affect the images of fast neutron radiography. In this paper, a mathematical model for scattered neutrons is developed on a cylinder sample, and an empirical formula for scattered neutrons is obtained. According to the results given by Monte Carlo methods, the parameters in the empirical formula are obtained with curve fitting, which confirms the logicality of the empirical formula. The curve-fitted parameters of common materials such as 6 LiD are given. (authors)

  15. Scattering by an infinite homogenous anisotropic elliptic cylinder in terms of Mathieu functions and Fourier series.

    Science.gov (United States)

    Mao, Shi-Chun; Wu, Zhen-Sen

    2008-12-01

    An exact solution to the two-dimensional scattering properties of an anisotropic elliptic cylinder for transverse electric polarization is presented. The internal field in an anisotropic elliptic cylinder is expressed as integral representations of Mathieu functions and Fourier series. The coefficients of the series expansion are obtained by imposing boundary conditions on the anisotropic-free-space interface. A matrix is developed to solve the nonorthogonality properties of Mathieu functions at the interface between two different media. Numerical results are given for the bistatic radar cross section and the amplitude of the total magnetic field along the x and y axes. The result is in agreement with that available as expected when an elliptic cylinder degenerates to a circular one.

  16. Scattering by a slab containing randomly located cylinders: comparison between radiative transfer and electromagnetic simulation.

    Science.gov (United States)

    Roux, L; Mareschal, P; Vukadinovic, N; Thibaud, J B; Greffet, J J

    2001-02-01

    This study is devoted to the examination of scattering of waves by a slab containing randomly located cylinders. For the first time to our knowledge, the complete transmission problem has been solved numerically. We have compared the radiative transfer theory with a numerical solution of the wave equation. We discuss the coherent effects, such as forward-scattering dip and backscattering enhancement. It is seen that the radiative transfer equation can be used with great accuracy even for optically thin systems whose geometric thickness is comparable with the wavelength. We have also shown the presence of dependent scattering.

  17. Radiation and scattering by cavity-backed antennas on a circular cylinder

    Science.gov (United States)

    Kempel, Leo C.; Volakis, John L.

    1993-01-01

    Conformal arrays are popular antennas for aircraft and missile platforms due to their inherent low weight and drag properties. However, to date there has been a dearth of rigorous analytical or numerical solutions to aid the designer. In fact, it has been common practice to use limited measurements and planar approximations in designing such non-planar antennas. The finite element-boundary integral method is extended to scattering and radiation by cavity-backed structures in an infinite, metallic cylinder. In particular, the formulation specifics such as weight functions, dyadic Green's function, implementation details, and particular difficulties inherent to cylindrical structures are discussed. Special care is taken to ensure that the resulting computer program has low memory demand and minimal computational requirements. Both scattering and radiation parameters are computed and validated as much as possible.

  18. Effects of admittance and gyrotropy on the scattering due to chiro-ferrite medium coated microstructured PMC cylinder

    Science.gov (United States)

    Iqbal, N.; Choudhury, P. K.

    2017-12-01

    The paper deals with scattering of electromagnetic (EM) waves by perfectly magnetic conducting (PMC) cylinder coated with chiro-ferrite medium under the assumption of oblique angle of incidence wave with perpendicular polarization (transverse electric; TE). An on-demand (in respect of orientation) kind of conducting sheath helix structure is assumed to exist at the outer surface of cylinder. The effects of sheath helix orientation, along with the material parameters, such as chirality admittance and gyrotropy, on the echo width as well as the magnitude and phase of the electric and magnetic fields are investigated. Control on the anisotropic property remains greatly useful in obtaining the required optical response from the scatterer - the feature which would find fabulous sensing related applications.

  19. CHARACTERISTIC FEATURES OF MUELLER MATRIX PATTERNS FOR POLARIZATION SCATTERING MODEL OF BIOLOGICAL TISSUES

    Directory of Open Access Journals (Sweden)

    E DU

    2014-01-01

    Full Text Available We developed a model to describe polarized photon scattering in biological tissues. In this model, tissues are simplified to a mixture of scatterers and surrounding medium. There are two types of scatterers in the model: solid spheres and infinitely long solid cylinders. Variables related to the scatterers include: the densities and sizes of the spheres and cylinders, the orientation and angular distribution of cylinders. Variables related to the surrounding medium include: the refractive index, absorption coefficient and birefringence. In this paper, as a development we introduce an optical activity effect to the model. By comparing experiments and Monte Carlo simulations, we analyze the backscattering Mueller matrix patterns of several tissue-like media, and summarize the different effects coming from anisotropic scattering and optical properties. In addition, we propose a possible method to extract the optical activity values for tissues. Both the experimental and simulated results show that, by analyzing the Mueller matrix patterns, the microstructure and optical properties of the medium can be obtained. The characteristic features of Mueller matrix patterns are potentially powerful tools for studying the contrast mechanisms of polarization imaging for medical diagnosis.

  20. Size, flexibility, and scattering functions of semiflexible polyelectrolytes with excluded volume effects: Monte Carlo simulations and neutron scattering experiments

    DEFF Research Database (Denmark)

    Cannavacciuolo, L.; Sommer, C.; Pedersen, J.S.

    2000-01-01

    outlined in the Odijk-Skolnick-Fixman theory, in which the behavior of charged polymers is described only in terms of increasing local rigidity and excluded volume effects. Moreover, the Monte Carlo data are found to be in very good agreement with experimental scattering measurements with equilibrium......We present a systematic Monte Carlo study of the scattering function S(q) of semiflexible polyelectrolytes at infinite dilution, in solutions with different concentrations of added salt. In the spirit of a theoretical description of polyelectrolytes in terms of the equivalent parameters, namely......, persistence length and excluded volume interactions, we used a modified wormlike chain model, in which the monomers are represented by charged hard spheres placed at distance a. The electrostatic interactions are approximated by a Debye-Huckel potential. We show that the scattering function is quantitatively...

  1. Study of the multiple scattering effect in TEBENE using the Monte Carlo method

    International Nuclear Information System (INIS)

    Singkarat, Somsorn.

    1990-01-01

    The neutron time-of-flight and energy spectra, from the TEBENE set-up, have been calculated by a computer program using the Monte Carlo method. The neutron multiple scattering within the polyethylene scatterer ring is closely investigated. The results show that multiple scattering has a significant effect on the detected neutron yield. They also indicate that the thickness of the scatterer ring has to be carefully chosen. (author)

  2. Monte Carlo simulations of neutron-scattering instruments using McStas

    DEFF Research Database (Denmark)

    Nielsen, K.; Lefmann, K.

    2000-01-01

    Monte Carlo simulations have become an essential tool for improving the performance of neutron-scattering instruments, since the level of sophistication in the design of instruments is defeating purely analytical methods. The program McStas, being developed at Rise National Laboratory, includes...

  3. Monte Carlo simulation of photon scattering in x-ray absorption imaging of high-intensity discharge lamps

    Energy Technology Data Exchange (ETDEWEB)

    Curry, J J, E-mail: jjcurry@nist.go [National Institute of Standards and Technology, Gaithersburg, MD 20899-8422 (United States)

    2010-06-16

    Coherent and incoherent scattering of x-rays during x-ray absorption imaging of high-intensity discharge lamps have been studied with Monte Carlo simulations developed specifically for this purpose. The Monte Carlo code is described and some initial results are discussed. Coherent scattering, because of its angular concentration in the forward direction, is found to be the most significant scattering mechanism. Incoherent scattering, although comparably strong, is not as significant because it results primarily in photons being scattered in the rearward direction and therefore out of the detector. Coherent scattering interferes with the detected absorption signal because the path of a scattered photon through the object to be imaged is unknown. Although scattering is usually a small effect, it can be significant in regions of high contrast. At the discharge/wall interface, as many as 50% of the detected photons are scattered photons. The effect of scattering on analysis of Hg distributions has not yet been quantified.

  4. Sample-size effects in fast-neutron gamma-ray production measurements: solid-cylinder samples

    International Nuclear Information System (INIS)

    Smith, D.L.

    1975-09-01

    The effects of geometry, absorption and multiple scattering in (n,Xγ) reaction measurements with solid-cylinder samples are investigated. Both analytical and Monte-Carlo methods are employed in the analysis. Geometric effects are shown to be relatively insignificant except in definition of the scattering angles. However, absorption and multiple-scattering effects are quite important; accurate microscopic differential cross sections can be extracted from experimental data only after a careful determination of corrections for these processes. The results of measurements performed using several natural iron samples (covering a wide range of sizes) confirm validity of the correction procedures described herein. It is concluded that these procedures are reliable whenever sufficiently accurate neutron and photon cross section and angular distribution information is available for the analysis. (13 figures, 5 tables) (auth)

  5. Optimization of loss and gain multilayers for reducing the scattering of a perfect conducting cylinder

    Science.gov (United States)

    Zhen-Zhong, Yu; Guo-Shu, Zhao; Gang, Sun; Hai-Fei, Si; Zhong, Yang

    2016-07-01

    Reduction of electromagnetic scattering from a conducting cylinder could be achieved by covering it with optimized multilayers of normal dielectric and plasmonic material. The plasmonic material with intrinsic losses could degrade the cloaking effect. Using a genetic algorithm, we present the optimized design of loss and gain multilayers for reduction of the scattering from a perfect conducting cylinder. This multilayered structure is theoretically and numerically analyzed when the plasmonic material with low loss and high loss respectively is considered. We demonstrate by full-wave simulation that the optimized nonmagnetic gain-loss design can greatly compensate the decreased cloaking effect caused by loss material, which facilitates the realization of practical electromagnetic cloaking, especially in the optical range. Project supported by the Research Foundation of Jinling Institute of Technology, China (Grant No. JIT-B-201426), the Jiangsu Modern Education and Technology Key Project, China (Grant No. 2014-R-31984), the Jiangsu 333 Project Funded Research Project, China (Grant No. BRA2010004), and the University Science Research Project of Jiangsu Province, China (Grant No. 15KJB520010).

  6. Scattering by a conducting elliptic cylinder with a multilayer dielectric coating

    Science.gov (United States)

    Caorsi, Salvatore; Pastorino, Matteo; Raffetto, Mirco

    1997-11-01

    A solution to the electromagnetic scattering of a transverse magnetic plane wave due to a perfectly conducting elliptic cylinder coated by a lossless, nonmagnetic, and elliptic multilayer dielectric is proposed. Despite the lack of orthogonality of the eigenfunctions of the field inside different layers, an efficient recursive procedure for the computation of the solution is devised. It is based on series expansions of the fields in terms of Mathieu functions and on a Galerkin approach. An outline of the procedure is given, and some numerical results, concerning both the field quantities and the radar cross section per unit length, are provided.

  7. A parallelizable compression scheme for Monte Carlo scatter system matrices in PET image reconstruction

    International Nuclear Information System (INIS)

    Rehfeld, Niklas; Alber, Markus

    2007-01-01

    Scatter correction techniques in iterative positron emission tomography (PET) reconstruction increasingly utilize Monte Carlo (MC) simulations which are very well suited to model scatter in the inhomogeneous patient. Due to memory constraints the results of these simulations are not stored in the system matrix, but added or subtracted as a constant term or recalculated in the projector at each iteration. This implies that scatter is not considered in the back-projector. The presented scheme provides a method to store the simulated Monte Carlo scatter in a compressed scatter system matrix. The compression is based on parametrization and B-spline approximation and allows the formation of the scatter matrix based on low statistics simulations. The compression as well as the retrieval of the matrix elements are parallelizable. It is shown that the proposed compression scheme provides sufficient compression so that the storage in memory of a scatter system matrix for a 3D scanner is feasible. Scatter matrices of two different 2D scanner geometries were compressed and used for reconstruction as a proof of concept. Compression ratios of 0.1% could be achieved and scatter induced artifacts in the images were successfully reduced by using the compressed matrices in the reconstruction algorithm

  8. Vector Monte Carlo simulations on atmospheric scattering of polarization qubits.

    Science.gov (United States)

    Li, Ming; Lu, Pengfei; Yu, Zhongyuan; Yan, Lei; Chen, Zhihui; Yang, Chuanghua; Luo, Xiao

    2013-03-01

    In this paper, a vector Monte Carlo (MC) method is proposed to study the influence of atmospheric scattering on polarization qubits for satellite-based quantum communication. The vector MC method utilizes a transmittance method to solve the photon free path for an inhomogeneous atmosphere and random number sampling to determine whether the type of scattering is aerosol scattering or molecule scattering. Simulations are performed for downlink and uplink. The degrees and the rotations of polarization are qualitatively and quantitatively obtained, which agree well with the measured results in the previous experiments. The results show that polarization qubits are well preserved in the downlink and uplink, while the number of received single photons is less than half of the total transmitted single photons for both links. Moreover, our vector MC method can be applied for the scattering of polarized light in other inhomogeneous random media.

  9. Investigation of Compton scattering correction methods in cardiac SPECT by Monte Carlo simulations

    International Nuclear Information System (INIS)

    Silva, A.M. Marques da; Furlan, A.M.; Robilotta, C.C.

    2001-01-01

    The goal of this work was the use of Monte Carlo simulations to investigate the effects of two scattering correction methods: dual energy window (DEW) and dual photopeak window (DPW), in quantitative cardiac SPECT reconstruction. MCAT torso-cardiac phantom, with 99m Tc and non-uniform attenuation map was simulated. Two different photopeak windows were evaluated in DEW method: 15% and 20%. Two 10% wide subwindows centered symmetrically within the photopeak were used in DPW method. Iterative ML-EM reconstruction with modified projector-backprojector for attenuation correction was applied. Results indicated that the choice of the scattering and photopeak windows determines the correction accuracy. For the 15% window, fitted scatter fraction gives better results than k = 0.5. For the 20% window, DPW is the best method, but it requires parameters estimation using Monte Carlo simulations. (author)

  10. A full-angle Monte-Carlo scattering technique including cumulative and single-event Rutherford scattering in plasmas

    Science.gov (United States)

    Higginson, Drew P.

    2017-11-01

    We describe and justify a full-angle scattering (FAS) method to faithfully reproduce the accumulated differential angular Rutherford scattering probability distribution function (pdf) of particles in a plasma. The FAS method splits the scattering events into two regions. At small angles it is described by cumulative scattering events resulting, via the central limit theorem, in a Gaussian-like pdf; at larger angles it is described by single-event scatters and retains a pdf that follows the form of the Rutherford differential cross-section. The FAS method is verified using discrete Monte-Carlo scattering simulations run at small timesteps to include each individual scattering event. We identify the FAS regime of interest as where the ratio of temporal/spatial scale-of-interest to slowing-down time/length is from 10-3 to 0.3-0.7; the upper limit corresponds to Coulomb logarithm of 20-2, respectively. Two test problems, high-velocity interpenetrating plasma flows and keV-temperature ion equilibration, are used to highlight systems where including FAS is important to capture relevant physics.

  11. Integral transform method for solving neutron transport problems with general anisotropic scattering in a cylinder of finite height

    International Nuclear Information System (INIS)

    Kumar, V.; Sahni, D.C.

    1983-01-01

    In this paper, the authors present the mathematical techniques that were developed for solving the integral transport equation for the criticality of a homogeneous cylinder of finite height with general anisotropic scattering. They present the integral transport equations for the Fourier transformed spherical harmonic moments of the angular flux. These moments are also represented by a series of products of spherical Bessel functions. The criticality problem is, then, posed by the matrix eigenvalue problem whose eigenvector is composed of the expansion coefficients mentioned above. An methodology of calculating the general matrix element is discussed by using the recursion relations derived in this paper. Finally, for the one-group criticality of finite cylinders, the benchmark results are generated when scattering is linearly anisotropic. Also, these benchmarks are solved and compared with the S/sub N/ method of TWOTRAN

  12. On the solution of a few problems of multiple scattering by Monte Carlo method; Sur la solution de quelques problemes de diffusions multiples par la methode de Monte-Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Bluet, J C [Commissariat a l' Energie Atomique, Cadarache (France)

    1966-02-01

    Three problems of multiple scattering arising from neutron cross sections experiments, are reported here. The common hypothesis are: - Elastic scattering is the only possible process - Angular distributions are isotropic - Losses of particle energy are negligible in successive collisions. In the three cases practical results, corresponding to actual experiments are given. Moreover the results are shown in more general way, using dimensionless variable such as the ratio of geometrical dimensions to neutron mean free path. The FORTRAN codes are given together with to the corresponding flow charts, and lexicons of symbols. First problem: Measurement of sodium capture cross-section. A sodium sample of given geometry is submitted to a neutron flux. Induced activity is then measured by means of a sodium iodide cristal. The distribution of active nuclei in the sample, and the counter efficiency are calculated by Monte-Carlo method taking multiple scattering into account. Second problem: absolute measurement of a neutron flux using a glass scintillator. The scintillator is a use of lithium 6 loaded glass, submitted to neutron flux perpendicular to its plane faces. If the glass thickness is not negligible compared with scattering mean free path {lambda}, the mean path e' of neutrons in the glass is different from the thickness. Monte-Carlo calculation are made to compute this path and a relative correction to efficiency equal to (e' - e)/e. Third problem: study of a neutron collimator. A neutron detector is placed at the bottom of a cylinder surrounded with water. A neutron source is placed on the cylinder axis, in front of the water shield. The number of neutron tracks going directly and indirectly through the water from the source to the detector are counted. (author) [French] On traite dans ce rapport de trois problemes avec les hypotheses communes suivantes: 1.- Le seul processus de collision possible est la diffusion electrique. 2.- La distribution angulaire est

  13. Ultrafast cone-beam CT scatter correction with GPU-based Monte Carlo simulation

    Directory of Open Access Journals (Sweden)

    Yuan Xu

    2014-03-01

    Full Text Available Purpose: Scatter artifacts severely degrade image quality of cone-beam CT (CBCT. We present an ultrafast scatter correction framework by using GPU-based Monte Carlo (MC simulation and prior patient CT image, aiming at automatically finish the whole process including both scatter correction and reconstruction within 30 seconds.Methods: The method consists of six steps: 1 FDK reconstruction using raw projection data; 2 Rigid Registration of planning CT to the FDK results; 3 MC scatter calculation at sparse view angles using the planning CT; 4 Interpolation of the calculated scatter signals to other angles; 5 Removal of scatter from the raw projections; 6 FDK reconstruction using the scatter-corrected projections. In addition to using GPU to accelerate MC photon simulations, we also use a small number of photons and a down-sampled CT image in simulation to further reduce computation time. A novel denoising algorithm is used to eliminate MC noise from the simulated scatter images caused by low photon numbers. The method is validated on one simulated head-and-neck case with 364 projection angles.Results: We have examined variation of the scatter signal among projection angles using Fourier analysis. It is found that scatter images at 31 angles are sufficient to restore those at all angles with < 0.1% error. For the simulated patient case with a resolution of 512 × 512 × 100, we simulated 5 × 106 photons per angle. The total computation time is 20.52 seconds on a Nvidia GTX Titan GPU, and the time at each step is 2.53, 0.64, 14.78, 0.13, 0.19, and 2.25 seconds, respectively. The scatter-induced shading/cupping artifacts are substantially reduced, and the average HU error of a region-of-interest is reduced from 75.9 to 19.0 HU.Conclusion: A practical ultrafast MC-based CBCT scatter correction scheme is developed. It accomplished the whole procedure of scatter correction and reconstruction within 30 seconds.----------------------------Cite this

  14. Monte Carlo simulations of multiple scattering effects in ERD measurements

    International Nuclear Information System (INIS)

    Doyle, Barney Lee; Arstila, Kai.; Nordlumd, K.; Knapp, James Arthur

    2003-01-01

    Multiple scattering effects in ERD measurements are studied by comparing two Monte Carlo simulation codes, representing different approaches to obtain acceptable statistics, to experimental spectra measured from a HfO 2 sample with a time-of-flight-ERD setup. The results show that both codes can reproduce the absolute detection yields and the energy distributions in an adequate way. The effect of the choice of the interatomic potential in multiple scattering effects is also studied. Finally the capabilities of the MC simulations in the design of new measurement setups are demonstrated by simulating the recoil energy spectra from a WC x N y sample with a low energy heavy ion beam.

  15. Monte Carlo Modelling of Single-Crystal Diffuse Scattering from Intermetallics

    Directory of Open Access Journals (Sweden)

    Darren J. Goossens

    2016-02-01

    Full Text Available Single-crystal diffuse scattering (SCDS reveals detailed structural insights into materials. In particular, it is sensitive to two-body correlations, whereas traditional Bragg peak-based methods are sensitive to single-body correlations. This means that diffuse scattering is sensitive to ordering that persists for just a few unit cells: nanoscale order, sometimes referred to as “local structure”, which is often crucial for understanding a material and its function. Metals and alloys were early candidates for SCDS studies because of the availability of large single crystals. While great progress has been made in areas like ab initio modelling and molecular dynamics, a place remains for Monte Carlo modelling of model crystals because of its ability to model very large systems; important when correlations are relatively long (though still finite in range. This paper briefly outlines, and gives examples of, some Monte Carlo methods appropriate for the modelling of SCDS from metallic compounds, and considers data collection as well as analysis. Even if the interest in the material is driven primarily by magnetism or transport behaviour, an understanding of the local structure can underpin such studies and give an indication of nanoscale inhomogeneity.

  16. Monte Carlo simulation of radiative transfer in scattering, emitting, absorbing slab with gradient index

    International Nuclear Information System (INIS)

    Huang Yong; Liang Xingang; Xia Xinlin

    2005-01-01

    The Monte Carlo method is used to simulate the thermal emission of absorbing-emitting-scattering slab with gradient index. Three Monte Carlo ray-tracing strategies are considered. The first strategy is keeping the real distribution of the refractive index and to trace bundles in a curve route. The second strategy is discretizing the slab into sub-layers, each having constant refractive index. The bundle is traced in a straight route in each sub-layer and the reflection at the inner interface is taken into account. The third strategy is similar to the second one but only the total reflection at the inner interface is computed. Little difference is observed among the results of apparent thermal emission by these three different Monte Carlo ray tracing strategies. The results also show that the apparent hemispherical emissivity non-monotonously varies with increasing optical thickness of the slab with strong scattering gradient index. Many parameters can influence the apparent thermal emission greatly

  17. Development and evaluation of attenuation and scatter correction techniques for SPECT using the Monte Carlo method

    International Nuclear Information System (INIS)

    Ljungberg, M.

    1990-05-01

    Quantitative scintigrafic images, obtained by NaI(Tl) scintillation cameras, are limited by photon attenuation and contribution from scattered photons. A Monte Carlo program was developed in order to evaluate these effects. Simple source-phantom geometries and more complex nonhomogeneous cases can be simulated. Comparisons with experimental data for both homogeneous and nonhomogeneous regions and with published results have shown good agreement. The usefulness for simulation of parameters in scintillation camera systems, stationary as well as in SPECT systems, has also been demonstrated. An attenuation correction method based on density maps and build-up functions has been developed. The maps were obtained from a transmission measurement using an external 57 Co flood source and the build-up was simulated by the Monte Carlo code. Two scatter correction methods, the dual-window method and the convolution-subtraction method, have been compared using the Monte Carlo method. The aim was to compare the estimated scatter with the true scatter in the photo-peak window. It was concluded that accurate depth-dependent scatter functions are essential for a proper scatter correction. A new scatter and attenuation correction method has been developed based on scatter line-spread functions (SLSF) obtained for different depths and lateral positions in the phantom. An emission image is used to determine the source location in order to estimate the scatter in the photo-peak window. Simulation studies of a clinically realistic source in different positions in cylindrical water phantoms were made for three photon energies. The SLSF-correction method was also evaluated by simulation studies for 1. a myocardial source, 2. uniform source in the lungs and 3. a tumour located in the lungs in a realistic, nonhomogeneous computer phantom. The results showed that quantitative images could be obtained in nonhomogeneous regions. (67 refs.)

  18. The integration of improved Monte Carlo compton scattering algorithms into the Integrated TIGER Series

    International Nuclear Information System (INIS)

    Quirk, Thomas J. IV

    2004-01-01

    The Integrated TIGER Series (ITS) is a software package that solves coupled electron-photon transport problems. ITS performs analog photon tracking for energies between 1 keV and 1 GeV. Unlike its deterministic counterpart, the Monte Carlo calculations of ITS do not require a memory-intensive meshing of phase space; however, its solutions carry statistical variations. Reducing these variations is heavily dependent on runtime. Monte Carlo simulations must therefore be both physically accurate and computationally efficient. Compton scattering is the dominant photon interaction above 100 keV and below 5-10 MeV, with higher cutoffs occurring in lighter atoms. In its current model of Compton scattering, ITS corrects the differential Klein-Nishina cross sections (which assumes a stationary, free electron) with the incoherent scattering function, a function dependent on both the momentum transfer and the atomic number of the scattering medium. While this technique accounts for binding effects on the scattering angle, it excludes the Doppler broadening the Compton line undergoes because of the momentum distribution in each bound state. To correct for these effects, Ribbefor's relativistic impulse approximation (IA) will be employed to create scattering cross section differential in both energy and angle for each element. Using the parameterizations suggested by Brusa et al., scattered photon energies and angle can be accurately sampled at a high efficiency with minimal physical data. Two-body kinematics then dictates the electron's scattered direction and energy. Finally, the atomic ionization is relaxed via Auger emission or fluorescence. Future work will extend these improvements in incoherent scattering to compounds and to adjoint calculations.

  19. Rayleigh scatter in kilovoltage x-ray imaging: is the independent atom approximation good enough?

    Science.gov (United States)

    Poludniowski, G.; Evans, P. M.; Webb, S.

    2009-11-01

    Monte Carlo simulation is the gold standard method for modelling scattering processes in medical x-ray imaging. General-purpose Monte Carlo codes, however, typically use the independent atom approximation (IAA). This is known to be inaccurate for Rayleigh scattering, for many materials, in the forward direction. This work addresses whether the IAA is sufficient for the typical modelling tasks in medical kilovoltage x-ray imaging. As a means of comparison, we incorporate a more realistic 'interference function' model into a custom-written Monte Carlo code. First, we conduct simulations of scatter from isolated voxels of soft tissue, adipose, cortical bone and spongiosa. Then, we simulate scatter profiles from a cylinder of water and from phantoms of a patient's head, thorax and pelvis, constructed from diagnostic-quality CT data sets. Lastly, we reconstruct CT numbers from simulated sets of projection images and investigate the quantitative effects of the approximation. We show that the IAA can produce errors of several per cent of the total scatter, across a projection image, for typical x-ray beams and patients. The errors in reconstructed CT number, however, for the phantoms simulated, were small (typically < 10 HU). The IAA can therefore be considered sufficient for the modelling of scatter correction in CT imaging. Where accurate quantitative estimates of scatter in individual projection images are required, however, the appropriate interference functions should be included.

  20. Monte Carlo simulation of radiative processes in electron-positron scattering

    International Nuclear Information System (INIS)

    Kleiss, R.H.P.

    1982-01-01

    The Monte Carlo simulation of scattering processes has turned out to be one of the most successful methods of translating theoretical predictions into experimentally meaningful quantities. It is the purpose of this thesis to describe how this approach can be applied to higher-order QED corrections to several fundamental processes. In chapter II a very brief overview of the currently interesting phenomena in e +- scattering is given. It is argued that accurate information on higher-order QED corrections is very important and that the Monte Carlo approach is one of the most flexible and general methods to obtain this information. In chapter III the author describes various techniques which are useful in this context, and makes a few remarks on the numerical aspects of the proposed method. In the following three chapters he applies this to the processes e + e - → μ + μ - (γ) and e + e - → qanti q(sigma). In chapter IV he motivates his choice of these processes in view of their experimental and theoretical relevance. The formulae necessary for a computer simulation of all quantities of interest, up to order α 3 , is given. Chapters V and VI describe how this simulation can be performed using the techniques mentioned in chapter III. In chapter VII it is shown how additional dynamical quantities, namely the polarization of the incoming and outgoing particles, can be incorporated in our treatment, and the relevant formulae for the example processes mentioned above are given. Finally, in chapter VIII the author presents some examples of the comparison between theoretical predictions based on Monte Carlo simulations as outlined here, and the results from actual experiments. (Auth.)

  1. Forward scattering of polarized light from a turbid slab: theory and Monte Carlo simulations.

    Science.gov (United States)

    Otsuki, Soichi

    2016-12-20

    It is proved that if reciprocity and mirror symmetry hold for single scattering by a particle, they also hold for multiple scattering in turbid slab media. Monte Carlo simulations generate a reduced effective Mueller matrix for forward scattering, which satisfies reciprocity and mirror symmetry, but satisfies only reciprocity if the medium contains chiral components. The scattering matrix was factorized by using the Lu-Chipman polar decomposition, which affords the polarization parameters as a function of the radial distance from the center. The depolarization coefficients decrease with increasing distance, whereas the scattering-induced linear diattenuation and retardance become larger in the middle-distance range. The optical rotation for a chiral medium increases with increasing distance.

  2. Monte carlo feasibility study of an active neutron assay technique for full-volume UF{sub 6} cylinder assay using a correlated interrogation source

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Karen A., E-mail: kamiller@lanl.gov [Los Alamos National Laboratory, Los Alamos, P.O. Box 1663 MS E540, NM 87545 (United States); Menlove, Howard O.; Swinhoe, Martyn T.; Marlow, Johnna B. [Los Alamos National Laboratory, Los Alamos, P.O. Box 1663 MS E540, NM 87545 (United States)

    2013-03-01

    Uranium cylinder assay plays an important role in the nuclear material accounting at gas centrifuge enrichment plants. The Passive Neutron Enrichment Meter (PNEM) was designed to determine uranium mass and enrichment in 30B and 48Y cylinders using total neutron and coincidence counting in the passive mode. 30B and 48Y cylinders are used to hold bulk UF{sub 6} feed, product, and tails at enrichment plants. In this paper, we report the results of a Monte-Carlo-based feasibility study for an active uranium cylinder assay system based on the PNEM design. There are many advantages of the active technique such as a shortened count time and a more direct measure of {sup 235}U content. The active system is based on a modified PNEM design and uses a {sup 252}Cf source as the correlated, active interrogation source. We show through comparison with a random AmLi source of equal strength how the use of a correlated driver significantly boosts the active signal and reduces the statistical uncertainty. We also discuss ways in which an active uranium cylinder assay system can be optimized to minimize background from {sup 238}U fast-neutron induced fission and direct counts from the interrogation source.

  3. Comparison of scattering experiments using synchrotron radiation with Monte Carlo simulations using Geant4

    International Nuclear Information System (INIS)

    Gerlach, M.; Krumrey, M.; Cibik, L.; Mueller, P.; Ulm, G.

    2009-01-01

    Monte Carlo techniques are powerful tools to simulate the interaction of electromagnetic radiation with matter. One of the most widespread simulation program packages is Geant4. Almost all physical interaction processes can be included. However, it is not evident what accuracy can be obtained by a simulation. In this work, results of scattering experiments using monochromatized synchrotron radiation in the X-ray regime are quantitatively compared to the results of simulations using Geant4. Experiments were performed for various scattering foils made of different materials such as copper and gold. For energy-dispersive measurements of the scattered radiation, a cadmium telluride detector was used. The detector was fully characterized and calibrated with calculable undispersed as well as monochromatized synchrotron radiation. The obtained quantum efficiency and the response functions are in very good agreement with the corresponding Geant4 simulations. At the electron storage ring BESSY II the number of incident photons in the scattering experiments was measured with a photodiode that had been calibrated against a cryogenic radiometer, so that a direct comparison of scattering experiments with Monte Carlo simulations using Geant4 was possible. It was shown that Geant4 describes the photoeffect, including fluorescence as well as the Compton and Rayleigh scattering, with high accuracy, resulting in a deviation of typically less than 20%. Even polarization effects are widely covered by Geant4, and for Doppler broadening of Compton-scattered radiation the extension G4LECS can be included, but the fact that both features cannot be combined is a limitation. For most polarization-dependent simulations, good agreement with the experimental results was found, except for some orientations where Rayleigh scattering was overestimated in the simulation.

  4. Comparison of scattering experiments using synchrotron radiation with Monte Carlo simulations using Geant4

    Science.gov (United States)

    Gerlach, M.; Krumrey, M.; Cibik, L.; Müller, P.; Ulm, G.

    2009-09-01

    Monte Carlo techniques are powerful tools to simulate the interaction of electromagnetic radiation with matter. One of the most widespread simulation program packages is Geant4. Almost all physical interaction processes can be included. However, it is not evident what accuracy can be obtained by a simulation. In this work, results of scattering experiments using monochromatized synchrotron radiation in the X-ray regime are quantitatively compared to the results of simulations using Geant4. Experiments were performed for various scattering foils made of different materials such as copper and gold. For energy-dispersive measurements of the scattered radiation, a cadmium telluride detector was used. The detector was fully characterized and calibrated with calculable undispersed as well as monochromatized synchrotron radiation. The obtained quantum efficiency and the response functions are in very good agreement with the corresponding Geant4 simulations. At the electron storage ring BESSY II the number of incident photons in the scattering experiments was measured with a photodiode that had been calibrated against a cryogenic radiometer, so that a direct comparison of scattering experiments with Monte Carlo simulations using Geant4 was possible. It was shown that Geant4 describes the photoeffect, including fluorescence as well as the Compton and Rayleigh scattering, with high accuracy, resulting in a deviation of typically less than 20%. Even polarization effects are widely covered by Geant4, and for Doppler broadening of Compton-scattered radiation the extension G4LECS can be included, but the fact that both features cannot be combined is a limitation. For most polarization-dependent simulations, good agreement with the experimental results was found, except for some orientations where Rayleigh scattering was overestimated in the simulation.

  5. Comparison of scattering experiments using synchrotron radiation with Monte Carlo simulations using Geant4

    Energy Technology Data Exchange (ETDEWEB)

    Gerlach, M. [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany); Krumrey, M. [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany)], E-mail: Michael.Krumrey@ptb.de; Cibik, L.; Mueller, P.; Ulm, G. [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany)

    2009-09-11

    Monte Carlo techniques are powerful tools to simulate the interaction of electromagnetic radiation with matter. One of the most widespread simulation program packages is Geant4. Almost all physical interaction processes can be included. However, it is not evident what accuracy can be obtained by a simulation. In this work, results of scattering experiments using monochromatized synchrotron radiation in the X-ray regime are quantitatively compared to the results of simulations using Geant4. Experiments were performed for various scattering foils made of different materials such as copper and gold. For energy-dispersive measurements of the scattered radiation, a cadmium telluride detector was used. The detector was fully characterized and calibrated with calculable undispersed as well as monochromatized synchrotron radiation. The obtained quantum efficiency and the response functions are in very good agreement with the corresponding Geant4 simulations. At the electron storage ring BESSY II the number of incident photons in the scattering experiments was measured with a photodiode that had been calibrated against a cryogenic radiometer, so that a direct comparison of scattering experiments with Monte Carlo simulations using Geant4 was possible. It was shown that Geant4 describes the photoeffect, including fluorescence as well as the Compton and Rayleigh scattering, with high accuracy, resulting in a deviation of typically less than 20%. Even polarization effects are widely covered by Geant4, and for Doppler broadening of Compton-scattered radiation the extension G4LECS can be included, but the fact that both features cannot be combined is a limitation. For most polarization-dependent simulations, good agreement with the experimental results was found, except for some orientations where Rayleigh scattering was overestimated in the simulation.

  6. On the representation of electron multiple elastic-scattering distributions for Monte Carlo calculations

    International Nuclear Information System (INIS)

    Kawrakow, I.; Bielajew, A.F.

    1998-01-01

    A new representation of elastic electron-nucleus (Coulomb) multiple-scattering distributions is developed. Using the screened Rutherford cross section with the Moliere screening parameter as an example, a simple analytic angular transformation of the Goudsmit-Saunderson multiple-scattering distribution accounts for most of the structure of the angular distribution leaving a residual 3-parameter (path-length, transformed angle and screening parameter) function that is reasonably slowly varying and suitable for rapid, accurate interpolation in a computer-intensive algorithm. The residual function is calculated numerically for a wide range of Moliere screening parameters and path-lengths suitable for use in a general-purpose condensed-history Monte Carlo code. Additionally, techniques are developed that allow the distributions to be scaled to account for energy loss. This new representation allows ''''on-the-fly'''' sampling of Goudsmit-Saunderson angular distributions in a screened Rutherford approximation suitable for class II condensed-history Monte Carlo codes. (orig.)

  7. Scattering theory on the lattice and with a Monte Carlo method

    International Nuclear Information System (INIS)

    Kroeger, H.; Moriarty, K.J.M.; Potvin, J.

    1990-01-01

    We present an alternative time-dependent method of calculating the S matrix in quantum systems governed by a Hamiltonian. In the first step one constructs a new Hamiltonian that describes the physics of scattering at energy E with a reduced number of degrees of freedom. Its matrix elements are computed with a Monte Carlo projector method. In the second step the scattering matrix is computed algebraically via diagonalization and exponentiation of the new Hamiltonian. Although we have in mind applications in many-body systems and quantum field theory, the method should be applicable and useful in such diverse areas as atomic and molecular physics, nuclear physics, high-energy physics and solid-state physics. As an illustration of the method, we compute s-wave scattering of two nucleons in a nonrelativistic potential model (Yamaguchi potential), for which the S matrix is known exactly

  8. A Monte Carlo simulation of scattering reduction in spectral x-ray computed tomography

    DEFF Research Database (Denmark)

    Busi, Matteo; Olsen, Ulrik Lund; Bergbäck Knudsen, Erik

    2017-01-01

    In X-ray computed tomography (CT), scattered radiation plays an important role in the accurate reconstruction of the inspected object, leading to a loss of contrast between the different materials in the reconstruction volume and cupping artifacts in the images. We present a Monte Carlo simulation...

  9. Monte Carlo simulation of neutron scattering instruments

    International Nuclear Information System (INIS)

    Seeger, P.A.; Daemen, L.L.; Hjelm, R.P. Jr.

    1998-01-01

    A code package consisting of the Monte Carlo Library MCLIB, the executing code MC RUN, the web application MC Web, and various ancillary codes is proposed as an open standard for simulation of neutron scattering instruments. The architecture of the package includes structures to define surfaces, regions, and optical elements contained in regions. A particle is defined by its vector position and velocity, its time of flight, its mass and charge, and a polarization vector. The MC RUN code handles neutron transport and bookkeeping, while the action on the neutron within any region is computed using algorithms that may be deterministic, probabilistic, or a combination. Complete versatility is possible because the existing library may be supplemented by any procedures a user is able to code. Some examples are shown

  10. Scattered dose to thyroid from prophylactic cranial irradiation during childhood: a Monte Carlo study

    International Nuclear Information System (INIS)

    Mazonakis, Michalis; Tzedakis, Antonis; Damilakis, John; Varveris, Haris; Kachris, Stefanos; Gourtsoyiannis, Nicholas

    2006-01-01

    The purpose of this study was to estimate the scattered dose to thyroid from prophylactic cranial irradiation during childhood. The MCNP transport code and mathematical phantoms representing the average individual at ages 3, 5, 10, 15 and 18 years old were employed to simulate cranial radiotherapy using two lateral opposed fields. The mean radiation dose received by the thyroid gland was calculated. A 10 cm thick lead block placed on the patient's couch to shield the thyroid was simulated by MCNP code. The Monte Carlo model was validated by measuring the scattered dose to the unshielded and shielded thyroid using three different humanoid phantoms and thermoluminescense dosimetry. For a cranial dose of 18 Gy, the thyroid dose obtained by Monte Carlo calculations varied from 47 to 79 cGy depending upon the age of the child. Appropriate placement of the couch block resulted in a thyroid dose reduction by 39 to 54%. Thyroid dose values at all possible positions of the radiosensitive gland with respect to the inferior field edge at five different patient ages were found. The mean difference between Monte Carlo results and thyroid dose measurements was 9.6%. (note)

  11. Monte Carlo simulation of the scattered component of neutron capture prompt gamma-ray analyzer responses

    International Nuclear Information System (INIS)

    Jin, Y.; Verghese, K.; Gardner, R.P.

    1986-01-01

    This paper describes a major part of our efforts to simulate the entire spectral response of the neutron capture prompt gamma-ray analyzer for bulk media (or conveyor belt) samples by the Monte Carlo method. This would allow one to use such a model to augment or, in most cases, essentially replace experiments in the calibration and optimum design of these analyzers. In previous work, we simulated the unscattered gamma-ray intensities, but would like to simulate the entire spectral response as we did with the energy-dispersive x-ray fluorescence analyzers. To accomplish this, one must account for the scattered gamma rays as well as the unscattered and one must have available the detector response function to translate the incident gamma-ray spectrum calculated by the Monte Carlo simulation into the detected pulse-height spectrum. We recently completed our work on the germanium detector response function, and the present paper describes our efforts to simulate the entire spectral response by using it with Monte Carlo predicted unscattered and scattered gamma rays

  12. Collision Probabilities for Finite Cylinders and Cuboids

    Energy Technology Data Exchange (ETDEWEB)

    Carlvik, I

    1967-05-15

    Analytical formulae have been derived for the collision probabilities of homogeneous finite cylinders and cuboids. The formula for the finite cylinder contains double integrals, and the formula for the cuboid only single integrals. Collision probabilities have been calculated by means of the formulae and compared with values obtained by other authors. It was found that the calculations using the analytical formulae are much quicker and give higher accuracy than Monte Carlo calculations.

  13. The MCLIB library: Monte Carlo simulation of neutron scattering instruments

    Energy Technology Data Exchange (ETDEWEB)

    Seeger, P.A.

    1995-09-01

    Monte Carlo is a method to integrate over a large number of variables. Random numbers are used to select a value for each variable, and the integrand is evaluated. The process is repeated a large number of times and the resulting values are averaged. For a neutron transport problem, first select a neutron from the source distribution, and project it through the instrument using either deterministic or probabilistic algorithms to describe its interaction whenever it hits something, and then (if it hits the detector) tally it in a histogram representing where and when it was detected. This is intended to simulate the process of running an actual experiment (but it is much slower). This report describes the philosophy and structure of MCLIB, a Fortran library of Monte Carlo subroutines which has been developed for design of neutron scattering instruments. A pair of programs (LQDGEOM and MC{_}RUN) which use the library are shown as an example.

  14. The MCLIB library: Monte Carlo simulation of neutron scattering instruments

    International Nuclear Information System (INIS)

    Seeger, P.A.

    1995-01-01

    Monte Carlo is a method to integrate over a large number of variables. Random numbers are used to select a value for each variable, and the integrand is evaluated. The process is repeated a large number of times and the resulting values are averaged. For a neutron transport problem, first select a neutron from the source distribution, and project it through the instrument using either deterministic or probabilistic algorithms to describe its interaction whenever it hits something, and then (if it hits the detector) tally it in a histogram representing where and when it was detected. This is intended to simulate the process of running an actual experiment (but it is much slower). This report describes the philosophy and structure of MCLIB, a Fortran library of Monte Carlo subroutines which has been developed for design of neutron scattering instruments. A pair of programs (LQDGEOM and MC RUN) which use the library are shown as an example

  15. The Passive Neutron Enrichment Meter for Uranium Cylinder Assay

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Karen A.; Menlove, Howard O.; Swinhoe, Martyn T.; Marlow, Johanna B. [Safeguards Science and Technology Group (N-1), Los Alamos National Laboratory, Los Alamos (United States)

    2011-12-15

    As fuel cycle technology becomes more prevalent around the world, international safeguards have become increasingly important in verifying that nuclear materials have not been diverted. Uranium enrichment technology is a critical pathway to nuclear weapons development, making safeguards of enrichment facilities especially important. Independently-verifiable material accountancy is a fundamental measure in detecting diversion of nuclear materials. This paper is about a new instrument for uranium cylinder assay for enrichment plant safeguards called the Passive Neutron Enrichment Meter (PNEM). The measurement objective is to simultaneously verify uranium mass and enrichment in Uf6 cylinders. It can be used with feed, product, and tails cylinders. Here, we consider the enrichment range up to 5% {sup 235}U. The concept is to use the Doubles-to-Singles count rate to give a measure of the {sup 235}U enrichment and the Singles count rate to provide a measure of the total uranium mass. The cadmium ratio is an additional signature for the enrichment that is especially useful for feed and tails cylinders. PNEM is a {sup 3}He-based system that consists of two portable detector pods. Uranium enrichment in UF{sub 6} cylinders is typically determined using a gamma-ray-based method that only samples a tiny volume of the cylinder's content and requires knowledge of the cylinder wall thickness. The PNEM approach has several advantages over gamma-ray-based methods including a deeper penetration depth into the cylinder, meaning it can be used with heterogeneous isotopic mixtures of UF{sub 6}. In this paper, we describe a Monte Carlo modelling study where we have examined the sensitivity of the system to systematic uncertainties such as the distribution of UF{sub 6} within the cylinder. We also compare characterization measurements of the PNEM prototype to the expected measurements calculated with Monte Carlo simulations.

  16. CTmod—A toolkit for Monte Carlo simulation of projections including scatter in computed tomography

    Czech Academy of Sciences Publication Activity Database

    Malušek, Alexandr; Sandborg, M.; Alm Carlsson, G.

    2008-01-01

    Roč. 90, č. 2 (2008), s. 167-178 ISSN 0169-2607 Institutional research plan: CEZ:AV0Z10480505 Keywords : Monte Carlo * computed tomography * cone beam * scatter Subject RIV: JC - Computer Hardware ; Software Impact factor: 1.220, year: 2008 http://dx.doi.org/10.1016/j.cmpb.2007.12.005

  17. Monte Carlo evaluation of accuracy and noise properties of two scatter correction methods

    International Nuclear Information System (INIS)

    Narita, Y.; Eberl, S.; Nakamura, T.

    1996-01-01

    Two independent scatter correction techniques, transmission dependent convolution subtraction (TDCS) and triple-energy window (TEW) method, were evaluated in terms of quantitative accuracy and noise properties using Monte Carlo simulation (EGS4). Emission projections (primary, scatter and scatter plus primary) were simulated for 99m Tc and 201 Tl for numerical chest phantoms. Data were reconstructed with ordered-subset ML-EM algorithm including attenuation correction using the transmission data. In the chest phantom simulation, TDCS provided better S/N than TEW, and better accuracy, i.e., 1.0% vs -7.2% in myocardium, and -3.7% vs -30.1% in the ventricular chamber for 99m Tc with TDCS and TEW, respectively. For 201 Tl, TDCS provided good visual and quantitative agreement with simulated true primary image without noticeably increasing the noise after scatter correction. Overall TDCS proved to be more accurate and less noisy than TEW, facilitating quantitative assessment of physiological functions with SPECT

  18. Dynamic measurement of forward scattering

    DEFF Research Database (Denmark)

    Appel-Hansen, Jørgen; Rusch, W.

    1975-01-01

    A dynamic method for the measurement of forward scattering in a radio anechoic chamber is described. The quantity determined is the induced-field-ratio (IFR) of conducting cylinders. The determination of the IFR is highly sensitive to 1) multiple scattering between the cylinder and the obpring...

  19. Monte Carlo simulation of scatter in non-uniform symmetrical attenuating media for point and distributed sources

    International Nuclear Information System (INIS)

    Henry, L.J.; Rosenthal, M.S.

    1992-01-01

    We report results of scatter simulations for both point and distributed sources of 99m Tc in symmetrical non-uniform attenuating media. The simulations utilized Monte Carlo techniques and were tested against experimental phantoms. Both point and ring sources were used inside a 10.5 cm radius acrylic phantom. Attenuating media consisted of combinations of water, ground beef (to simulate muscle mass), air and bone meal (to simulate bone mass). We estimated/measured energy spectra, detector efficiencies and peak height ratios for all cases. In all cases, the simulated spectra agree with the experimentally measured spectra within 2 SD. Detector efficiencies and peak height ratios also are in agreement. The Monte Carlo code is able to properly model the non-uniform attenuating media used in this project. With verification of the simulations, it is possible to perform initial evaluation studies of scatter correction algorithms by evaluating the mechanisms of action of the correction algorithm on the simulated spectra where the magnitude and sources of scatter are known. (author)

  20. Nonideal ultrathin mantle cloak for electrically large conducting cylinders.

    Science.gov (United States)

    Liu, Shuo; Zhang, Hao Chi; Xu, He-Xiu; Cui, Tie Jun

    2014-09-01

    Based on the concept of the scattering cancellation technique, we propose a nonideal ultrathin mantle cloak that can efficiently suppress the total scattering cross sections of an electrically large conducting cylinder (over one free-space wavelength). The cloaking mechanism is investigated in depth based on the Mie scattering theory and is simultaneously interpreted from the perspective of far-field bistatic scattering and near-field distributions. We remark that, unlike the perfect transformation-optics-based cloak, this nonideal cloaking technique is mainly designed to minimize simultaneously several scattering multipoles of a relatively large geometry around considerably broad bandwidth. Numerical simulations and experimental results show that the antiscattering ability of the metasurface gives rise to excellent total scattering reduction of the electrically large cylinder and remarkable electric-field restoration around the cloak. The outstanding cloaking performance together with the good features of and ultralow profile, flexibility, and easy fabrication predict promising applications in the microwave frequencies.

  1. Monte Carlo study of electron-plasmon scattering effects on hot electron transport in GaAs

    International Nuclear Information System (INIS)

    Popov, V.V.; Bagaeva, T.Yu.; Solodkaya, T.I.

    1994-07-01

    It is shown using Monte Carlo simulation that electron-plasmon scattering affects substantially the hot-electron energy distribution function and transport properties in bulk GaAs. However, this effect is found to be much less than that predicted in earlier paper of other authors. (author). 5 refs, 7 figs

  2. Stability analysis and time-step limits for a Monte Carlo Compton-scattering method

    International Nuclear Information System (INIS)

    Densmore, Jeffery D.; Warsa, James S.; Lowrie, Robert B.

    2010-01-01

    A Monte Carlo method for simulating Compton scattering in high energy density applications has been presented that models the photon-electron collision kinematics exactly [E. Canfield, W.M. Howard, E.P. Liang, Inverse Comptonization by one-dimensional relativistic electrons, Astrophys. J. 323 (1987) 565]. However, implementing this technique typically requires an explicit evaluation of the material temperature, which can lead to unstable and oscillatory solutions. In this paper, we perform a stability analysis of this Monte Carlo method and develop two time-step limits that avoid undesirable behavior. The first time-step limit prevents instabilities, while the second, more restrictive time-step limit avoids both instabilities and nonphysical oscillations. With a set of numerical examples, we demonstrate the efficacy of these time-step limits.

  3. Monte Carlo estimation of the influence of elastic scattering anisotropy on the neutron flux in a nuclear reactor cell; Monte Carlo procena uticaja anizotropije elasticnog rasejanja na vrednost neutronskog fluksa u celiji nuklearnog reaktora

    Energy Technology Data Exchange (ETDEWEB)

    Kocic, A [Institute of nuclear sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1974-07-01

    Anisotropy of neutron elastic scattering is a problem of special importance in solving the Boltzmann transport equation numerically. This is not the case when Monte Carlo method is applied. Estimation of the influence of elastic scattering anisotropy on the neutron flux is treated in order to justify the application of Monte Carlo method which is computer time consuming. Correlation procedure was applied for the study of this influence. One group case was used as an example to enable comparison of other methods.

  4. A Monte-Carlo simulation of the behaviour of electron swarms in hydrogen using an anisotropic scattering model

    International Nuclear Information System (INIS)

    Blevin, H.A.; Fletcher, J.; Hunter, S.R.

    1978-05-01

    In a recent paper, a Monte-Carlo simulation of electron swarms in hydrogen using an isotropic scattering model was reported. In this previous work discrepancies between the predicted and measured electron transport parameters were observed. In this paper a far more realistic anisotropic scattering model is used. Good agreement between predicted and experimental data is observed and the simulation code has been used to calculate various parameters which are not directly measurable

  5. RMCSANS-modelling the inter-particle term of small angle scattering data via the reverse Monte Carlo method

    International Nuclear Information System (INIS)

    Gereben, O; Pusztai, L; McGreevy, R L

    2010-01-01

    A new reverse Monte Carlo (RMC) method has been developed for creating three-dimensional structures in agreement with small angle scattering data. Extensive tests, using computer generated quasi-experimental data for aggregation processes via constrained RMC and Langevin molecular dynamics, were performed. The software is capable of fitting several consecutive time frames of scattering data, and movie-like visualization of the structure (and its evolution) either during or after the simulation is also possible.

  6. Proton therapy Monte Carlo SRNA-VOX code

    Directory of Open Access Journals (Sweden)

    Ilić Radovan D.

    2012-01-01

    Full Text Available The most powerful feature of the Monte Carlo method is the possibility of simulating all individual particle interactions in three dimensions and performing numerical experiments with a preset error. These facts were the motivation behind the development of a general-purpose Monte Carlo SRNA program for proton transport simulation in technical systems described by standard geometrical forms (plane, sphere, cone, cylinder, cube. Some of the possible applications of the SRNA program are: (a a general code for proton transport modeling, (b design of accelerator-driven systems, (c simulation of proton scattering and degrading shapes and composition, (d research on proton detectors; and (e radiation protection at accelerator installations. This wide range of possible applications of the program demands the development of various versions of SRNA-VOX codes for proton transport modeling in voxelized geometries and has, finally, resulted in the ISTAR package for the calculation of deposited energy distribution in patients on the basis of CT data in radiotherapy. All of the said codes are capable of using 3-D proton sources with an arbitrary energy spectrum in an interval of 100 keV to 250 MeV.

  7. Prediction of the number of 14 MeV neutron elastically scattered from large sample of aluminium using Monte Carlo simulation method

    International Nuclear Information System (INIS)

    Husin Wagiran; Wan Mohd Nasir Wan Kadir

    1997-01-01

    In neutron scattering processes, the effect of multiple scattering is to cause an effective increase in the measured cross-sections due to increase on the probability of neutron scattering interactions in the sample. Analysis of how the effective cross-section varies with thickness is very complicated due to complicated sample geometries and the variations of scattering cross-section with energy. Monte Carlo method is one of the possible method for treating the multiple scattering processes in the extended sample. In this method a lot of approximations have to be made and the accurate data of microscopic cross-sections are needed at various angles. In the present work, a Monte Carlo simulation programme suitable for a small computer was developed. The programme was capable to predict the number of neutrons scattered from various thickness of aluminium samples at all possible angles between 00 to 36011 with 100 increments. In order to make the the programme not too complicated and capable of being run on microcomputer with reasonable time, the calculations was done in two dimension coordinate system. The number of neutrons predicted from this model show in good agreement with previous experimental results

  8. SU-F-18C-11: Diameter Dependency of the Radial Dose Distribution in a Long Polyethylene Cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Bakalyar, D; McKenney, S [Henry Ford Health System, Detroit, MI (United States); Feng, W [New York Presbyterian Hospital, Tenafly, NJ (United States)

    2014-06-15

    Purpose: The radial dose distribution in the central plane of a long cylinder following a long CT scan depends upon the diameter and composition of the cylinder. An understanding of this behavior is required for determining the spatial average of the dose in the central plane. Polyethylene, the material for construction of the TG200/ICRU phantom (30 cm in diameter) was used for this study. Size effects are germane to the principles incorporated in size specific dose estimates (SSDE); thus diameter dependency was explored as well. Method: ssuming a uniform cylinder and cylindrically symmetric conditions of irradiation, the dose distribution can be described using a radial function. This function must be an even function of the radial distance due to the conditions of symmetry. Two effects are accounted for: The direct beam makes its weakest contribution at the center while the contribution due to scatter is strongest at the center and drops off abruptly at the outer radius. An analytic function incorporating these features was fit to Monte Carlo results determined for infinite polyethylene cylinders of various diameters. A further feature of this function is that it is integrable. Results: Symmetry and continuity dictate a local extremum at the center which is a minimum for the larger sizes. The competing effects described above can Resultin an absolute maximum occurring between the center and outer edge of the cylinders. For the smallest cylinders, the maximum dose may occur at the center. Conclusion: An integrable, analytic function can be used to characterize the radial dependency of dose for cylindrical CT phantoms of various sizes. One use for this is to help determine average dose distribution over the central cylinder plane when equilibrium dose has been reached.

  9. Monte Carlo evaluation of scattering correction methods in 131I studies using pinhole collimator

    International Nuclear Information System (INIS)

    López Díaz, Adlin; San Pedro, Aley Palau; Martín Escuela, Juan Miguel; Rodríguez Pérez, Sunay; Díaz García, Angelina

    2017-01-01

    Scattering is quite important for image activity quantification. In order to study the scattering factors and the efficacy of 3 multiple window energy scatter correction methods during 131 I thyroid studies with a pinhole collimator (5 mm hole) a Monte Carlo simulation (MC) was developed. The GAMOS MC code was used to model the gamma camera and the thyroid source geometry. First, to validate the MC gamma camera pinhole-source model, sensibility in air and water of the simulated and measured thyroid phantom geometries were compared. Next, simulations to investigate scattering and the result of triple energy (TEW), Double energy (DW) and Reduced double (RDW) energy windows correction methods were performed for different thyroid sizes and depth thicknesses. The relative discrepancies to MC real event were evaluated. Results: The accuracy of the GAMOS MC model was verified and validated. The image’s scattering contribution was significant, between 27-40 %. The discrepancies between 3 multiple window energy correction method results were significant (between 9-86 %). The Reduce Double Window methods (15%) provide discrepancies of 9-16 %. Conclusions: For the simulated thyroid geometry with pinhole, the RDW (15 %) was the most effective. (author)

  10. Monte Carlo and experimental evaluation of accuracy and noise properties of two scatter correction methods for SPECT

    International Nuclear Information System (INIS)

    Narita, Y.; Eberl, S.; Bautovich, G.; Iida, H.; Hutton, B.F.; Braun, M.; Nakamura, T.

    1996-01-01

    Scatter correction is a prerequisite for quantitative SPECT, but potentially increases noise. Monte Carlo simulations (EGS4) and physical phantom measurements were used to compare accuracy and noise properties of two scatter correction techniques: the triple-energy window (TEW), and the transmission dependent convolution subtraction (TDCS) techniques. Two scatter functions were investigated for TDCS: (i) the originally proposed mono-exponential function (TDCS mono ) and (ii) an exponential plus Gaussian scatter function (TDCS Gauss ) demonstrated to be superior from our Monte Carlo simulations. Signal to noise ratio (S/N) and accuracy were investigated in cylindrical phantoms and a chest phantom. Results from each method were compared to the true primary counts (simulations), or known activity concentrations (phantom studies). 99m Tc was used in all cases. The optimized TDCS Gauss method overall performed best, with an accuracy of better than 4% for all simulations and physical phantom studies. Maximum errors for TEW and TDCS mono of -30 and -22%, respectively, were observed in the heart chamber of the simulated chest phantom. TEW had the worst S/N ratio of the three techniques. The S/N ratios of the two TDCS methods were similar and only slightly lower than those of simulated true primary data. Thus, accurate quantitation can be obtained with TDCS Gauss , with a relatively small reduction in S/N ratio. (author)

  11. SU-F-I-53: Coded Aperture Coherent Scatter Spectral Imaging of the Breast: A Monte Carlo Evaluation of Absorbed Dose

    Energy Technology Data Exchange (ETDEWEB)

    Morris, R [Durham, NC (United States); Lakshmanan, M; Fong, G; Kapadia, A [Carl E Ravin Advanced Imaging Laboratories, Durham, NC (United States); Greenberg, J [Duke University, Durham, NC (United States)

    2016-06-15

    Purpose: Coherent scatter based imaging has shown improved contrast and molecular specificity over conventional digital mammography however the biological risks have not been quantified due to a lack of accurate information on absorbed dose. This study intends to characterize the dose distribution and average glandular dose from coded aperture coherent scatter spectral imaging of the breast. The dose deposited in the breast from this new diagnostic imaging modality has not yet been quantitatively evaluated. Here, various digitized anthropomorphic phantoms are tested in a Monte Carlo simulation to evaluate the absorbed dose distribution and average glandular dose using clinically feasible scan protocols. Methods: Geant4 Monte Carlo radiation transport simulation software is used to replicate the coded aperture coherent scatter spectral imaging system. Energy sensitive, photon counting detectors are used to characterize the x-ray beam spectra for various imaging protocols. This input spectra is cross-validated with the results from XSPECT, a commercially available application that yields x-ray tube specific spectra for the operating parameters employed. XSPECT is also used to determine the appropriate number of photons emitted per mAs of tube current at a given kVp tube potential. With the implementation of the XCAT digital anthropomorphic breast phantom library, a variety of breast sizes with differing anatomical structure are evaluated. Simulations were performed with and without compression of the breast for dose comparison. Results: Through the Monte Carlo evaluation of a diverse population of breast types imaged under real-world scan conditions, a clinically relevant average glandular dose for this new imaging modality is extrapolated. Conclusion: With access to the physical coherent scatter imaging system used in the simulation, the results of this Monte Carlo study may be used to directly influence the future development of the modality to keep breast dose to

  12. Patient-specific scatter correction in clinical cone beam computed tomography imaging made possible by the combination of Monte Carlo simulations and a ray tracing algorithm

    DEFF Research Database (Denmark)

    Slot Thing, Rune; Bernchou, Uffe; Mainegra-Hing, Ernesto

    2013-01-01

    Abstract Purpose. Cone beam computed tomography (CBCT) image quality is limited by scattered photons. Monte Carlo (MC) simulations provide the ability of predicting the patient-specific scatter contamination in clinical CBCT imaging. Lengthy simulations prevent MC-based scatter correction from...

  13. Efficient SPECT scatter calculation in non-uniform media using correlated Monte Carlo simulation

    International Nuclear Information System (INIS)

    Beekman, F.J.

    1999-01-01

    Accurate simulation of scatter in projection data of single photon emission computed tomography (SPECT) is computationally extremely demanding for activity distribution in non-uniform dense media. This paper suggests how the computation time and memory requirements can be significantly reduced. First the scatter projection of a uniform dense object (P SDSE ) is calculated using a previously developed accurate and fast method which includes all orders of scatter (slab-derived scatter estimation), and then P SDSE is transformed towards the desired projection P which is based on the non-uniform object. The transform of P SDSE is based on two first-order Compton scatter Monte Carlo (MC) simulated projections. One is based on the uniform object (P u ) and the other on the object with non-uniformities (P ν ). P is estimated by P-tilde=P SDSE P ν /P u . A tremendous decrease in noise in P-tilde is achieved by tracking photon paths for P ν identical to those which were tracked for the calculation of P u and by using analytical rather than stochastic modelling of the collimator. The method was validated by comparing the results with standard MC-simulated scatter projections (P) of 99m Tc and 201 Tl point sources in a digital thorax phantom. After correction, excellent agreement was obtained between P-tilde and P. The total computation time required to calculate an accurate scatter projection of an extended distribution in a thorax phantom on a PC is a only few tens of seconds per projection, which makes the method attractive for application in accurate scatter correction in clinical SPECT. Furthermore, the method removes the need of excessive computer memory involved with previously proposed 3D model-based scatter correction methods. (author)

  14. Optimized dose distribution of a high dose rate vaginal cylinder

    International Nuclear Information System (INIS)

    Li Zuofeng; Liu, Chihray; Palta, Jatinder R.

    1998-01-01

    Purpose: To present a comparison of optimized dose distributions for a set of high-dose-rate (HDR) vaginal cylinders calculated by a commercial treatment-planning system with benchmark calculations using Monte-Carlo-calculated dosimetry data. Methods and Materials: Optimized dose distributions using both an isotropic and an anisotropic dose calculation model were obtained for a set of HDR vaginal cylinders. Mathematical optimization techniques available in the computer treatment-planning system were used to calculate dwell times and positions. These dose distributions were compared with benchmark calculations with TG43 formalism and using Monte-Carlo-calculated data. The same dwell times and positions were used for a quantitative comparison of dose calculated with three dose models. Results: The isotropic dose calculation model can result in discrepancies as high as 50%. The anisotropic dose calculation model compared better with benchmark calculations. The differences were more significant at the apex of the vaginal cylinder, which is typically used as the prescription point. Conclusion: Dose calculation models available in a computer treatment-planning system must be evaluated carefully to ensure their correct application. It should also be noted that when optimized dose distribution at a distance from the cylinder surface is calculated using an accurate dose calculation model, the vaginal mucosa dose becomes significantly higher, and therefore should be carefully monitored

  15. Symmetry relationships for multiple scattering of polarized light in turbid spherical samples: theory and a Monte Carlo simulation.

    Science.gov (United States)

    Otsuki, Soichi

    2016-02-01

    This paper presents a theory describing totally incoherent multiple scattering of turbid spherical samples. It is proved that if reciprocity and mirror symmetry hold for single scattering by a particle, they also hold for multiple scattering in spherical samples. Monte Carlo simulations generate a reduced effective scattering Mueller matrix, which virtually satisfies reciprocity and mirror symmetry. The scattering matrix was factorized by using the symmetric decomposition in a predefined form, as well as the Lu-Chipman polar decomposition, approximately into a product of a pure depolarizer and vertically oriented linear retarding diattenuators. The parameters of these components were calculated as a function of the polar angle. While the turbid spherical sample is a pure depolarizer at low polar angles, it obtains more functions of the retarding diattenuator with increasing polar angle.

  16. A numerical investigation of sub-wavelength resonances in polygonal metamaterial cylinders

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Breinbjerg, Olav

    2009-01-01

    The sub-wavelength resonances, known to exist in metamaterial radiators and scatterers of circular cylindrical shape, are investigated with the aim of determining if these resonances also exist for polygonal cylinders and, if so, how they are affected by the shape of the polygon. To this end, a set...... of polygonal cylinders excited by a nearby electric line current is analyzed numerically and it is shown, through detailed analysis of the near-field distribution and radiation resistance, that these polygonal cylinders do indeed support sub-wavelength resonances similar to those of the circular cylinders...

  17. A Monte Carlo study of the acceptance to scattered events in a depth encoding PET camera

    International Nuclear Information System (INIS)

    Moisan, C.; Tupper, P.; Rogers, J.G.; DeJong, J.K.

    1995-10-01

    We present a Monte Carlo study of acceptance to scattered events in a Depth Encoding Large Aperture Camera (DELAC), a hypothetical PET scanner with the capacity to encode the depth-of-interaction (DOI) of incident γ-rays. The simulation is initially validated against the measured energy resolution and scatter fraction of the ECAT-953B scanner. It is then used to assess the response to scattered events in a PET camera made of position encoding blocks of the EXACT HR PLUS type, modified to have DOI resolution through a variation in the photopeak pulse height. The detection efficiency for 511 keV γ-rays, as well as for those that scattered in the object or left only part of their energy in the block, is studied for several combinations of DOI sensitivities and block thicknesses. The scatter fraction predicted by the simulation for DELACs of various ring radii is compared to that of the ECAT-953B as a function of the energy threshold. The results indicate that the poorer discrimination of object scatters with depth sensitive blocks does not lead to a dramatic increase of the scatter fraction. (author). 10 refs., 1 tab., 5 figs

  18. KENO, Multigroup P1 Scattering Monte-Carlo Transport Calculation for Criticality, Keff, Flux in 3-D. KENO-5, SCALE-1 Module with Pn Scattering, Super-grouping, Diffusion Albedo Reflection

    International Nuclear Information System (INIS)

    Petrie, L.M.; Landers, N.F.

    2001-01-01

    1 - Description of problem or function: KENO is a multigroup, Monte Carlo criticality code containing a special geometry package which allows easy description of systems composed of cylinders, spheres, and cuboids (rectangular parallelepipeds) arranged in any order with only one restriction. They cannot be rotated or translated. Each geometrical region must be described as completely enclosing all regions interior to it. For systems not describable using this special geometry package, the program can use the generalized geometry package (GEOM) developed for the O5R Monte Carlo code. It allows any system that can be described by a collection of planes and/or quadratic surfaces, arbitrarily oriented and intersecting in arbitrary fashion. The entire problem can be mocked up in generalized geometry, or one generalized geometry unit or box type can be used alone or in combination with standard KENO units or box types. Rectangular arrays of fissile units are allowed with or without external reflector regions. Output from KENO consists of k eff for the system plus an estimate of its standard deviation and the leakage, absorption, and fissions for each energy group plus the totals for all groups. Flux as a function of energy group and region and fission densities as a function of region are optional output. KENO-4: Added features include a neutron balance edit, PICTURE routines to check the input geometry, and a random number sequencing subroutine written in FORTRAN-4. 2 - Method of solution: The scattering treatment used in KENO assumes that the differential neutron scattering cross section can be represented by a P1 Legendre polynomial. Absorption of neutrons in KENO is not allowed. Instead, at each collision point of a neutron tracking history the weight of the neutron is reduced by the absorption probability. When the neutron weight has been reduced below a specified point for the region in which the collision occurs, Russian roulette is played to determine if the

  19. Coupling an analytical description of anti-scatter grids with simulation software of radiographic systems using Monte Carlo code

    International Nuclear Information System (INIS)

    Rinkel, J.; Dinten, J.M.; Tabary, J.

    2004-01-01

    The use of focused anti-scatter grids on digital radiographic systems with two-dimensional detectors produces acquisitions with a decreased scatter to primary ratio and thus improved contrast and resolution. Simulation software is of great interest in optimizing grid configuration according to a specific application. Classical simulators are based on complete detailed geometric descriptions of the grid. They are accurate but very time consuming since they use Monte Carlo code to simulate scatter within the high-frequency grids. We propose a new practical method which couples an analytical simulation of the grid interaction with a radiographic system simulation program. First, a two dimensional matrix of probability depending on the grid is created offline, in which the first dimension represents the angle of impact with respect to the normal to the grid lines and the other the energy of the photon. This matrix of probability is then used by the Monte Carlo simulation software in order to provide the final scattered flux image. To evaluate the gain of CPU time, we define the increasing factor as the increase of CPU time of the simulation with as opposed to without the grid. Increasing factors were calculated with the new model and with classical methods representing the grid with its CAD model as part of the object. With the new method, increasing factors are shorter by one to two orders of magnitude compared with the second one. These results were obtained with a difference in calculated scatter of less than five percent between the new and the classical method. (authors)

  20. Evaluation and characterization of X-ray scattering in tissues and mammographic simulators using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Oliveira, Monica G. Nunes; Braz, Delson; Silva, Regina Cely B. da S.

    2005-01-01

    The computer simulation has been widely used in physical researches by both the viability of the codes and the growth of the power of computers in the last decades. The Monte Carlo simulation program, EGS4 code is a simulation program used in the area of radiation transport. The simulators, surrogate tissues, phantoms are objects used to perform studies on dosimetric quantities and quality testing of images. The simulators have characteristics of scattering and absorption of radiation similar to tissues that make up the body. The aim of this work is to translate the effects of radiation interactions in a real healthy breast tissues, sick and on simulators using the EGS4 Monte Carlo simulation code

  1. Analysis of an indirect neutron signature for enhanced UF_6 cylinder verification

    International Nuclear Information System (INIS)

    Kulisek, J.A.; McDonald, B.S.; Smith, L.E.; Zalavadia, M.A.; Webster, J.B.

    2017-01-01

    The International Atomic Energy Agency (IAEA) currently uses handheld gamma-ray spectrometers combined with ultrasonic wall-thickness gauges to verify the declared enrichment of uranium hexafluoride (UF_6) cylinders. The current method provides relatively low accuracy for the assay of "2"3"5U enrichment, especially for natural and depleted UF_6. Furthermore, the current method provides no capability to assay the absolute mass of "2"3"5U in the cylinder due to the localized instrument geometry and limited penetration of the 186-keV gamma-ray signature from "2"3"5U. Also, the current verification process is a time-consuming component of on-site inspections at uranium enrichment plants. Toward the goal of a more-capable cylinder assay method, the Pacific Northwest National Laboratory has developed the hybrid enrichment verification array (HEVA). HEVA measures both the traditional 186-keV direct signature and a non-traditional, high-energy neutron-induced signature (HEVA_N_T). HEVA_N_T enables full-volume assay of UF_6 cylinders by exploiting the relatively larger mean free paths of the neutrons emitted from the UF_6. In this work, Monte Carlo modeling is used as the basis for characterizing HEVA_N_T in terms of the individual contributions to HEVA_N_T from nuclides and hardware components. Monte Carlo modeling is also used to quantify the intrinsic efficiency of HEVA for neutron detection in a cylinder-assay geometry. Modeling predictions are validated against neutron-induced gamma-ray spectra from laboratory measurements and a relatively large population of Type 30B cylinders spanning a range of enrichments. Implications of the analysis and findings on the viability of HEVA for cylinder verification are discussed, such as the resistance of the HEVA_N_T signature to manipulation by the nearby placement of neutron-conversion materials.

  2. Monte Carlo calculation of scattered radiation from applicators in low energy clinical electron beams

    International Nuclear Information System (INIS)

    Jabbari, N.; Hashemi-Malayeri, B.; Farajollahi, A. R.; Kazemnejad, A.

    2007-01-01

    In radiotherapy with electron beams, scattered radiation from an electron applicator influences the dose distribution in the patient. The contribution of this radiation to the patient dose is significant, even in modern accelerators. In most of radiotherapy treatment planning systems, this component is not explicitly included. In addition, the scattered radiation produced by applicators varies based on the applicator design as well as the field size and distance from the applicators. The aim of this study was to calculate the amount of scattered dose contribution from applicators. We also tried to provide an extensive set of calculated data that could be used as input or benchmark data for advanced treatment planning systems that use Monte Carlo algorithms for dose distribution calculations. Electron beams produced by a NEPTUN 10PC medical linac were modeled using the BEAMnrc system. Central axis depth dose curves of the electron beams were measured and calculated, with and without the applicators in place, for different field sizes and energies. The scattered radiation from the applicators was determined by subtracting the central axis depth dose curves obtained without the applicators from that with the applicator. The results of this study indicated that the scattered radiation from the electron applicators of the NEPTUN 10PC is significant and cannot be neglected in advanced treatment planning systems. Furthermore, our results showed that the scattered radiation depends on the field size and decreases almost linearly with depth. (author)

  3. Raman Monte Carlo simulation for light propagation for tissue with embedded objects

    Science.gov (United States)

    Periyasamy, Vijitha; Jaafar, Humaira Bte; Pramanik, Manojit

    2018-02-01

    Monte Carlo (MC) stimulation is one of the prominent simulation technique and is rapidly becoming the model of choice to study light-tissue interaction. Monte Carlo simulation for light transport in multi-layered tissue (MCML) is adapted and modelled with different geometry by integrating embedded objects of various shapes (i.e., sphere, cylinder, cuboid and ellipsoid) into the multi-layered structure. These geometries would be useful in providing a realistic tissue structure such as modelling for lymph nodes, tumors, blood vessels, head and other simulation medium. MC simulations were performed on various geometric medium. Simulation of MCML with embedded object (MCML-EO) was improvised for propagation of the photon in the defined medium with Raman scattering. The location of Raman photon generation is recorded. Simulations were experimented on a modelled breast tissue with tumor (spherical and ellipsoidal) and blood vessels (cylindrical). Results were presented in both A-line and B-line scans for embedded objects to determine spatial location where Raman photons were generated. Studies were done for different Raman probabilities.

  4. Monte Carlo simulation of the scattering foil for EB food processing facility

    International Nuclear Information System (INIS)

    Petwal, V.C.; Pramod, R.; Soni, H.C.

    2003-01-01

    The electron beam coming out from accelerator window has diameter of few mm, and posses Gaussian distribution of electrons within its envelope. When such electron beam with 10 MeV energy and 1 kW average power passes through a vacuum isolating window and is allowed to fall on a product, the dose distribution of each beam pulse in side the product is very narrow. At 10 cm away from window the FWHM of dose profile is few cm with peak dose rate of the order kGy/pulse. In order to use this beam to process onion and potato in accordance with the stipulated requirement of total delivered dose and dose uniformity, the dose profile from each pulse must be modified. In present study the modification/flattening of the dose profile of each pulse is achieved by introducing scattering foil in the path of electron beam. The optimization of the scattering foil and resulting dose distributions simulated with MCNP (Monte Carlo Code for N Particle) is presented in the paper. (author)

  5. Monte Carlo simulation and scatter correction of the GE Advance PET scanner with SimSET and Geant4

    International Nuclear Information System (INIS)

    Barret, Olivier; Carpenter, T Adrian; Clark, John C; Ansorge, Richard E; Fryer, Tim D

    2005-01-01

    For Monte Carlo simulations to be used as an alternative solution to perform scatter correction, accurate modelling of the scanner as well as speed is paramount. General-purpose Monte Carlo packages (Geant4, EGS, MCNP) allow a detailed description of the scanner but are not efficient at simulating voxel-based geometries (patient images). On the other hand, dedicated codes (SimSET, PETSIM) will perform well for voxel-based objects but will be poor in their capacity of simulating complex geometries such as a PET scanner. The approach adopted in this work was to couple a dedicated code (SimSET) with a general-purpose package (Geant4) to have the efficiency of the former and the capabilities of the latter. The combined SimSET+Geant4 code (SimG4) was assessed on the GE Advance PET scanner and compared to the use of SimSET only. A better description of the resolution and sensitivity of the scanner and of the scatter fraction was obtained with SimG4. The accuracy of scatter correction performed with SimG4 and SimSET was also assessed from data acquired with the 20 cm NEMA phantom. SimG4 was found to outperform SimSET and to give slightly better results than the GE scatter correction methods installed on the Advance scanner (curve fitting and scatter modelling for the 300-650 keV and 375-650 keV energy windows, respectively). In the presence of a hot source close to the edge of the field of view (as found in oxygen scans), the GE curve-fitting method was found to fail whereas SimG4 maintained its performance

  6. Analysis of an indirect neutron signature for enhanced UF{sub 6} cylinder verification

    Energy Technology Data Exchange (ETDEWEB)

    Kulisek, J.A., E-mail: Jonathan.Kulisek@pnnl.gov; McDonald, B.S.; Smith, L.E.; Zalavadia, M.A.; Webster, J.B.

    2017-02-21

    The International Atomic Energy Agency (IAEA) currently uses handheld gamma-ray spectrometers combined with ultrasonic wall-thickness gauges to verify the declared enrichment of uranium hexafluoride (UF{sub 6}) cylinders. The current method provides relatively low accuracy for the assay of {sup 235}U enrichment, especially for natural and depleted UF{sub 6}. Furthermore, the current method provides no capability to assay the absolute mass of {sup 235}U in the cylinder due to the localized instrument geometry and limited penetration of the 186-keV gamma-ray signature from {sup 235}U. Also, the current verification process is a time-consuming component of on-site inspections at uranium enrichment plants. Toward the goal of a more-capable cylinder assay method, the Pacific Northwest National Laboratory has developed the hybrid enrichment verification array (HEVA). HEVA measures both the traditional 186-keV direct signature and a non-traditional, high-energy neutron-induced signature (HEVA{sub NT}). HEVA{sub NT} enables full-volume assay of UF{sub 6} cylinders by exploiting the relatively larger mean free paths of the neutrons emitted from the UF{sub 6}. In this work, Monte Carlo modeling is used as the basis for characterizing HEVA{sub NT} in terms of the individual contributions to HEVA{sub NT} from nuclides and hardware components. Monte Carlo modeling is also used to quantify the intrinsic efficiency of HEVA for neutron detection in a cylinder-assay geometry. Modeling predictions are validated against neutron-induced gamma-ray spectra from laboratory measurements and a relatively large population of Type 30B cylinders spanning a range of enrichments. Implications of the analysis and findings on the viability of HEVA for cylinder verification are discussed, such as the resistance of the HEVA{sub NT} signature to manipulation by the nearby placement of neutron-conversion materials.

  7. Manipulation of plasmonic resonances in graphene coated dielectric cylinders

    KAUST Repository

    Ge, Lixin

    2016-11-16

    Graphene sheets can support surface plasmon as the Dirac electrons oscillate collectively with electromagnetic waves. Compared with the surface plasmon in conventional metal (e.g., Ag and Au), graphene plasmonic owns many remarkable merits especially in Terahertz and far infrared frequencies, such as deep sub-wavelength, low loss, and high tunability. For graphene coated dielectric nano-scatters, localized surface plasmon (LSP)exist and can be excited under specific conditions. The LSPs are associated with the Mie resonance modes, leading to extraordinary large scattering and absorption cross section. In this work, we study systematically the optical scattering properties for graphene coated dielectric cylinders. It is found that the LSP can be manipulated by geometrical parameters and external electric gating. Generally, the resonance frequencies for different resonance modes are not the same. However, under proper design, we show that different resonance modes (e.g., dipole mode, quadruple mode etc.) can be excited at the same frequency. Thus, the scattering and absorption by graphene coated dielectric cylinders can indeed overcome the single channel limit. Our finding may open up new avenues in applications for the graphene-based THz optoelectronic devices.

  8. Evaluation of the scatter-to-primary ratio in mammography and performance of anti-scatter grids by Monte Carlo simulations

    International Nuclear Information System (INIS)

    Cunha, Diego M.; Tomal, Alessandra; Poletti, Martin E.

    2009-01-01

    In this work, a computational code was developed for the study of image quality in screen-film mammography through Monte Carlo (MC) simulations. The code includes implementation of interference and energy broadening effects, for the elastic and inelastic scattered photons, respectively. The contribution of scattered photons to the mammographic image was evaluated through the ratio between the energy deposited in the image receptor by scattered and primary photons (S/P ratio). The spatial distribution of the S1P ratio on the receptor was obtained for breasts of different thickness, between 2 and 8cm, considering a 50% adipose-SO% glandular breast. Different tube voltages were evaluated, for a Mo/Mo anode-filter combination. The S/P ratio was a/so obtained considering two different grids: a linear grid (grid ratio of 5:1) and a cellular grid (grid ratio of 3.8:1). Grid performance was computed through the contrast improvement factor (CIF) and Bucky factor (BF). Results showed that the S/P ratio increases linearly with breast thickness, and, for a given thickness, it showed considerably spatial variations on the image receptor. On the other hand, little dependence of the S/P ratio on the tube voltage was observed. Grid comparison showed that the cellular grid has better performance than the linear one, since it provides a greater CIF, with smaller values of BF. (author)

  9. The structure of the muscle protein complex 4Ca2+. Tronponin C*troponin: A Monte Carlo modeling analysis of small-angle X-ray and neutron scattering data

    International Nuclear Information System (INIS)

    Olah, G.A.; Trewhella, J.

    1995-01-01

    Analysis of scattering data based on a Monte Carlo integration method was used to obtain a low resolution model of the 4Ca2+.troponin c.troponin I complex. This modeling method allows rapid testing of plausible structures where the best fit model can be ascertained by a comparison between model structure scattering profiles and measured scattering data. In the best fit model, troponin I appears as a spiral structure that wraps about 4CA2+.trophonin C which adopts an extended dumbell conformation similar to that observed in the crystal structures of troponin C. The Monte Carlo modeling method can be applied to other biological systems in which detailed structural information is lacking

  10. Monte Carlo simulation of the dose distribution around the 125I model 6711 seed as function of radius of the silver cylinder using the Penelope code

    International Nuclear Information System (INIS)

    Nerio, U.; Chica, L.; Paul, A.

    2004-01-01

    The Monte Carlo method is applied to find the dose rates distribution in tissue around 125 I seeds model 6711 as a function of the silver cylinder radius, R sc (0.017, 0.021, 0.025, 0.029 and 0.033) cm are used as radius values. It is found here that the dose rate at any point within the tissue decreases as R sc increases. The relative difference of dose rate that produced by the standard R sc seed, is less than 5%, for seeds with Rsc between 0.017 and 0.033 cm. (author)

  11. Evaluation of penetration and scattering components in conventional pinhole SPECT: phantom studies using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Deloar, Hossain M; Watabe, Hiroshi; Aoi, Toshiyuki; Iida, Hidehiro

    2003-01-01

    In quantitative pinhole SPECT, photon penetration through the collimator edges (penetration), and photon scattering by the object (object scatter) and collimator (collimator scatter) have not been investigated rigorously. Monte Carlo simulation was used to evaluate these three physical processes for different tungsten knife-edge pinhole collimators using uniform, hotspot and donut phantoms filled with 201 Tl, 99m Tc, 123 I and 131 I solutions. For the hotspot phantom, the penetration levels with respect to total counts for a 1 mm pinhole aperture were 78%, 28% and 23% for 131 I, 123 I and 99m Tc, respectively. For a 2 mm aperture, these values were 65% for 131 I, 16% for 123 I and 12% for 99m Tc. For all pinholes, 201 Tl penetration was less than 4%. The evaluated scatter (from object and collimator) with a hotspot phantom for the 1 mm pinhole was 24%, 16%, 18% and 13% for 201 Tl, 99m Tc, 123 I and 131 I, respectively. Summation of the object and collimator scatter for the uniform phantom was approximately 20% higher than that for the hotspot phantom. Significant counts due to penetration and object and collimator scatter in the reconstructed image were observed inside the core of the donut phantom. The collimator scatter can be neglected for all isotopes used in this study except for 131 I. Object scatter correction for all radionuclides used in this study is necessary and correction for the penetration contribution is necessary for all radionuclides but 201 Tl

  12. PEPSI: a Monte Carlo generator for polarized leptoproduction

    International Nuclear Information System (INIS)

    Mankiewicz, L.

    1992-01-01

    We describe PEPSI (Polarized Electron Proton Scattering Interactions) a Monte Carlo program for the polarized deep inelastic leptoproduction mediated by electromagnetic interaction. The code is a modification of the LEPTO 4.3 Lund Monte Carlo for unpolarized scattering and requires the standard polarization-independent JETSET routines to perform fragmentation into final hadrons. (orig.)

  13. Influences of 3D PET scanner components on increased scatter evaluated by a Monte Carlo simulation

    Science.gov (United States)

    Hirano, Yoshiyuki; Koshino, Kazuhiro; Iida, Hidehiro

    2017-05-01

    Monte Carlo simulation is widely applied to evaluate the performance of three-dimensional positron emission tomography (3D-PET). For accurate scatter simulations, all components that generate scatter need to be taken into account. The aim of this work was to identify the components that influence scatter. The simulated geometries of a PET scanner were: a precisely reproduced configuration including all of the components; a configuration with the bed, the tunnel and shields; a configuration with the bed and shields; and the simplest geometry with only the bed. We measured and simulated the scatter fraction using two different set-ups: (1) as prescribed by NEMA-NU 2007 and (2) a similar set-up but with a shorter line source, so that all activity was contained only inside the field-of-view (FOV), in order to reduce influences of components outside the FOV. The scatter fractions for the two experimental set-ups were, respectively, 45% and 38%. Regarding the geometrical configurations, the former two configurations gave simulation results in good agreement with the experimental results, but simulation results of the simplest geometry were significantly different at the edge of the FOV. From the simulation of the precise configuration, the object (scatter phantom) was the source of more than 90% of the scatter. This was also confirmed by visualization of photon trajectories. Then, the bed and the tunnel were mainly the sources of the rest of the scatter. From the simulation results, we concluded that the precise construction was not needed; the shields, the tunnel, the bed and the object were sufficient for accurate scatter simulations.

  14. PEPSI - a Monte Carlo generator for polarized leptoproduction

    International Nuclear Information System (INIS)

    Mankiewicz, L.

    1992-01-01

    We describe PEPSI (Polarized Electron Proton Scattering Interactions) a Monte Carlo program for polarized deep inelastic leptoproduction mediated by electromagnetic interaction, and explain how to use it. The code is a modification of the Lepto 4.3 Lund Monte Carlo for unpolarized scattering. The hard virtual gamma-parton scattering is generated according to the polarization-dependent QCD cross-section of the first order in α S . PEPSI requires the standard polarization-independent JETSET routines to simulate the fragmentation into final hadrons. (orig.)

  15. A didactic experiment showing the Compton scattering by means of a clinical gamma camera.

    Science.gov (United States)

    Amato, Ernesto; Auditore, Lucrezia; Campennì, Alfredo; Minutoli, Fabio; Cucinotta, Mariapaola; Sindoni, Alessandro; Baldari, Sergio

    2017-06-01

    We describe a didactic approach aimed to explain the effect of Compton scattering in nuclear medicine imaging, exploiting the comparison of a didactic experiment with a gamma camera with the outcomes from a Monte Carlo simulation of the same experimental apparatus. We employed a 99m Tc source emitting 140.5keV photons, collimated in the upper direction through two pinholes, shielded by 6mm of lead. An aluminium cylinder was placed on the source at 50mm of distance. The energy of the scattered photons was measured on the spectra acquired by the gamma camera. We observed that the gamma ray energy measured at each step of rotation gradually decreased from the characteristic energy of 140.5keV at 0° to 102.5keV at 120°. A comparison between the obtained data and the expected results from the Compton formula and from the Monte Carlo simulation revealed a full agreement within the experimental error (relative errors between -0.56% and 1.19%), given by the energy resolution of the gamma camera. Also the electron rest mass has been evaluated satisfactorily. The experiment was found useful in explaining nuclear medicine residents the phenomenology of the Compton scattering and its importance in the nuclear medicine imaging, and it can be profitably proposed during the training of medical physics residents as well. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  16. Monte Carlo and analytical model predictions of leakage neutron exposures from passively scattered proton therapy

    International Nuclear Information System (INIS)

    Pérez-Andújar, Angélica; Zhang, Rui; Newhauser, Wayne

    2013-01-01

    Purpose: Stray neutron radiation is of concern after radiation therapy, especially in children, because of the high risk it might carry for secondary cancers. Several previous studies predicted the stray neutron exposure from proton therapy, mostly using Monte Carlo simulations. Promising attempts to develop analytical models have also been reported, but these were limited to only a few proton beam energies. The purpose of this study was to develop an analytical model to predict leakage neutron equivalent dose from passively scattered proton beams in the 100-250-MeV interval.Methods: To develop and validate the analytical model, the authors used values of equivalent dose per therapeutic absorbed dose (H/D) predicted with Monte Carlo simulations. The authors also characterized the behavior of the mean neutron radiation-weighting factor, w R , as a function of depth in a water phantom and distance from the beam central axis.Results: The simulated and analytical predictions agreed well. On average, the percentage difference between the analytical model and the Monte Carlo simulations was 10% for the energies and positions studied. The authors found that w R was highest at the shallowest depth and decreased with depth until around 10 cm, where it started to increase slowly with depth. This was consistent among all energies.Conclusion: Simple analytical methods are promising alternatives to complex and slow Monte Carlo simulations to predict H/D values. The authors' results also provide improved understanding of the behavior of w R which strongly depends on depth, but is nearly independent of lateral distance from the beam central axis

  17. Improved quantitative 90 Y bremsstrahlung SPECT/CT reconstruction with Monte Carlo scatter modeling.

    Science.gov (United States)

    Dewaraja, Yuni K; Chun, Se Young; Srinivasa, Ravi N; Kaza, Ravi K; Cuneo, Kyle C; Majdalany, Bill S; Novelli, Paula M; Ljungberg, Michael; Fessler, Jeffrey A

    2017-12-01

    In 90 Y microsphere radioembolization (RE), accurate post-therapy imaging-based dosimetry is important for establishing absorbed dose versus outcome relationships for developing future treatment planning strategies. Additionally, accurately assessing microsphere distributions is important because of concerns for unexpected activity deposition outside the liver. Quantitative 90 Y imaging by either SPECT or PET is challenging. In 90 Y SPECT model based methods are necessary for scatter correction because energy window-based methods are not feasible with the continuous bremsstrahlung energy spectrum. The objective of this work was to implement and evaluate a scatter estimation method for accurate 90 Y bremsstrahlung SPECT/CT imaging. Since a fully Monte Carlo (MC) approach to 90 Y SPECT reconstruction is computationally very demanding, in the present study the scatter estimate generated by a MC simulator was combined with an analytical projector in the 3D OS-EM reconstruction model. A single window (105 to 195-keV) was used for both the acquisition and the projector modeling. A liver/lung torso phantom with intrahepatic lesions and low-uptake extrahepatic objects was imaged to evaluate SPECT/CT reconstruction without and with scatter correction. Clinical application was demonstrated by applying the reconstruction approach to five patients treated with RE to determine lesion and normal liver activity concentrations using a (liver) relative calibration. There was convergence of the scatter estimate after just two updates, greatly reducing computational requirements. In the phantom study, compared with reconstruction without scatter correction, with MC scatter modeling there was substantial improvement in activity recovery in intrahepatic lesions (from > 55% to > 86%), normal liver (from 113% to 104%), and lungs (from 227% to 104%) with only a small degradation in noise (13% vs. 17%). Similarly, with scatter modeling contrast improved substantially both visually and in

  18. Effects of internal and external scatter on the build-up characteristics of Monte Carlo calculated absorbed dose for electron irradiation

    International Nuclear Information System (INIS)

    Lin, H.; Wu, DS.; Wu, AD.

    2005-01-01

    The effects of internal and external scatter on surface, build-up and depth dose characteristics simulated by Monte Carlo code EGSnrc for varying field size and SSD for a 10 MeV monoenergetic electron beam with and without an accelerator model are extensively studied in this paper. In particular, sub-millimetre surface PDD was investigated. The percentage depth doses affected significantly by the external scatter show a larger build-up dose. A forward shifted Dmax depth and a sharper fall-off region compared to PDDs with only internal scatter considered. The surface dose with both internal and external scatter shows a marked decrease at 110 cm SSD, and then slight further changes with the increasing SSD since few external scattered particles from accelerator model can reach the phantom for large SSDs. The sharp PDD increase for the 5 cm x 5 cm field compared to other fields seen when only internal scatter is considered is significantly less when external scatter is also present. The effect of external scatter on surface PDD is more pronounced for large fields than small fields (5 cm x 5 cm field)

  19. Detection of Buried Inhomogeneous Elliptic Cylinders by a Memetic Algorithm

    OpenAIRE

    Caorsi, Salvatore; Massa, Andrea; Pastorino, Matteo; Raffetto, Mirco; Randazzo, Andrea

    2003-01-01

    The application of a global optimization procedure to the detection of buried inhomogeneities is studied in the present paper. The object inhomogeneities are schematized as multilayer infinite dielectric cylinders with elliptic cross sections. An efficient recursive analytical procedure is used for the forward scattering computation. A functional is constructed in which the field is expressed in series solution of Mathieu functions. Starting by the input scattered data, the iterative minimiza...

  20. Efficient scatter distribution estimation and correction in CBCT using concurrent Monte Carlo fitting

    Energy Technology Data Exchange (ETDEWEB)

    Bootsma, G. J., E-mail: Gregory.Bootsma@rmp.uhn.on.ca [Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario M5G 2M9 (Canada); Verhaegen, F. [Department of Radiation Oncology - MAASTRO, GROW—School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands); Medical Physics Unit, Department of Oncology, McGill University, Montreal, Quebec H3G 1A4 (Canada); Jaffray, D. A. [Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario M5G 2M9 (Canada); Ontario Cancer Institute, Princess Margaret Cancer Centre, Toronto, Ontario M5G 2M9 (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5G 2M9 (Canada)

    2015-01-15

    Purpose: X-ray scatter is a significant impediment to image quality improvements in cone-beam CT (CBCT). The authors present and demonstrate a novel scatter correction algorithm using a scatter estimation method that simultaneously combines multiple Monte Carlo (MC) CBCT simulations through the use of a concurrently evaluated fitting function, referred to as concurrent MC fitting (CMCF). Methods: The CMCF method uses concurrently run MC CBCT scatter projection simulations that are a subset of the projection angles used in the projection set, P, to be corrected. The scattered photons reaching the detector in each MC simulation are simultaneously aggregated by an algorithm which computes the scatter detector response, S{sub MC}. S{sub MC} is fit to a function, S{sub F}, and if the fit of S{sub F} is within a specified goodness of fit (GOF), the simulations are terminated. The fit, S{sub F}, is then used to interpolate the scatter distribution over all pixel locations for every projection angle in the set P. The CMCF algorithm was tested using a frequency limited sum of sines and cosines as the fitting function on both simulated and measured data. The simulated data consisted of an anthropomorphic head and a pelvis phantom created from CT data, simulated with and without the use of a compensator. The measured data were a pelvis scan of a phantom and patient taken on an Elekta Synergy platform. The simulated data were used to evaluate various GOF metrics as well as determine a suitable fitness value. The simulated data were also used to quantitatively evaluate the image quality improvements provided by the CMCF method. A qualitative analysis was performed on the measured data by comparing the CMCF scatter corrected reconstruction to the original uncorrected and corrected by a constant scatter correction reconstruction, as well as a reconstruction created using a set of projections taken with a small cone angle. Results: Pearson’s correlation, r, proved to be a

  1. Fast analytical scatter estimation using graphics processing units.

    Science.gov (United States)

    Ingleby, Harry; Lippuner, Jonas; Rickey, Daniel W; Li, Yue; Elbakri, Idris

    2015-01-01

    To develop a fast patient-specific analytical estimator of first-order Compton and Rayleigh scatter in cone-beam computed tomography, implemented using graphics processing units. The authors developed an analytical estimator for first-order Compton and Rayleigh scatter in a cone-beam computed tomography geometry. The estimator was coded using NVIDIA's CUDA environment for execution on an NVIDIA graphics processing unit. Performance of the analytical estimator was validated by comparison with high-count Monte Carlo simulations for two different numerical phantoms. Monoenergetic analytical simulations were compared with monoenergetic and polyenergetic Monte Carlo simulations. Analytical and Monte Carlo scatter estimates were compared both qualitatively, from visual inspection of images and profiles, and quantitatively, using a scaled root-mean-square difference metric. Reconstruction of simulated cone-beam projection data of an anthropomorphic breast phantom illustrated the potential of this method as a component of a scatter correction algorithm. The monoenergetic analytical and Monte Carlo scatter estimates showed very good agreement. The monoenergetic analytical estimates showed good agreement for Compton single scatter and reasonable agreement for Rayleigh single scatter when compared with polyenergetic Monte Carlo estimates. For a voxelized phantom with dimensions 128 × 128 × 128 voxels and a detector with 256 × 256 pixels, the analytical estimator required 669 seconds for a single projection, using a single NVIDIA 9800 GX2 video card. Accounting for first order scatter in cone-beam image reconstruction improves the contrast to noise ratio of the reconstructed images. The analytical scatter estimator, implemented using graphics processing units, provides rapid and accurate estimates of single scatter and with further acceleration and a method to account for multiple scatter may be useful for practical scatter correction schemes.

  2. Benchmarking a first-principles thermal neutron scattering law for water ice with a diffusion experiment

    Directory of Open Access Journals (Sweden)

    Holmes Jesse

    2017-01-01

    Full Text Available The neutron scattering properties of water ice are of interest to the nuclear criticality safety community for the transport and storage of nuclear materials in cold environments. The common hexagonal phase ice Ih has locally ordered, but globally disordered, H2O molecular orientations. A 96-molecule supercell is modeled using the VASP ab initio density functional theory code and PHONON lattice dynamics code to calculate the phonon vibrational spectra of H and O in ice Ih. These spectra are supplied to the LEAPR module of the NJOY2012 nuclear data processing code to generate thermal neutron scattering laws for H and O in ice Ih in the incoherent approximation. The predicted vibrational spectra are optimized to be representative of the globally averaged ice Ih structure by comparing theoretically calculated and experimentally measured total cross sections and inelastic neutron scattering spectra. The resulting scattering kernel is then supplied to the MC21 Monte Carlo transport code to calculate time eigenvalues for the fundamental mode decay in ice cylinders at various temperatures. Results are compared to experimental flux decay measurements for a pulsed-neutron die-away diffusion benchmark.

  3. On the inverse Magnus effect for flow past a rotating cylinder

    Science.gov (United States)

    John, Benzi; Gu, Xiao-Jun; Barber, Robert W.; Emerson, David R.

    2016-11-01

    Flow past a rotating cylinder has been investigated using the direct simulation Monte Carlo method. The study focuses on the occurrence of the inverse Magnus effect under subsonic flow conditions. In particular, the variations in the coefficients of lift and drag have been investigated as a function of the Knudsen and Reynolds numbers. Additionally, a temperature sensitivity study has been carried out to assess the influence of the wall temperature on the computed aerodynamic coefficients. It has been found that both the Reynolds number and the cylinder wall temperature significantly affect the drag as well as the onset of lift inversion in the transition flow regime.

  4. Simplified models for the Monte Carlo simulation of energy distributions of keV electrons transmitted or back-scattered in various solids

    International Nuclear Information System (INIS)

    Liljequist, D.

    1978-01-01

    Simplified models, based on stopping power, transport mean free path and classical straggling, are shown to give results in rather good agreement with experiment and comparable with the results of more detailed, direct Monte Carlo procedure hitherto constructed. The small effects of features such as large-angle scattering and the interaction between straggling and scattering are studied. A description based on the near linearity of the transport mean free path is used to obtain empirical corrections in some cases of the total transmission and back-scattering simulation and empirical estimates of the (Bethe) range and the transport mean free path. The estimates of the range are consistent with a rough calculation of the effect of large binding energies. (author)

  5. Scatter correction using a primary modulator for dual energy digital radiography: A Monte Carlo simulation study

    Science.gov (United States)

    Jo, Byung-Du; Lee, Young-Jin; Kim, Dae-Hong; Kim, Hee-Joung

    2014-08-01

    In conventional digital radiography (DR) using a dual energy subtraction technique, a significant fraction of the detected photons are scattered within the body, making up the scatter component. Scattered radiation can significantly deteriorate image quality in diagnostic X-ray imaging systems. Various methods of scatter correction, including both measurement- and non-measurement-based methods, have been proposed in the past. Both methods can reduce scatter artifacts in images. However, non-measurement-based methods require a homogeneous object and have insufficient scatter component correction. Therefore, we employed a measurement-based method to correct for the scatter component of inhomogeneous objects from dual energy DR (DEDR) images. We performed a simulation study using a Monte Carlo simulation with a primary modulator, which is a measurement-based method for the DEDR system. The primary modulator, which has a checkerboard pattern, was used to modulate the primary radiation. Cylindrical phantoms of variable size were used to quantify the imaging performance. For scatter estimates, we used discrete Fourier transform filtering, e.g., a Gaussian low-high pass filter with a cut-off frequency. The primary modulation method was evaluated using a cylindrical phantom in the DEDR system. The scatter components were accurately removed using a primary modulator. When the results acquired with scatter correction and without scatter correction were compared, the average contrast-to-noise ratio (CNR) with the correction was 1.35 times higher than that obtained without the correction, and the average root mean square error (RMSE) with the correction was 38.00% better than that without the correction. In the subtraction study, the average CNR with the correction was 2.04 (aluminum subtraction) and 1.38 (polymethyl methacrylate (PMMA) subtraction) times higher than that obtained without the correction. The analysis demonstrated the accuracy of the scatter correction and the

  6. Monte Carlo Calculation of Thermal Neutron Inelastic Scattering Cross Section Uncertainties by Sampling Perturbed Phonon Spectra

    Science.gov (United States)

    Holmes, Jesse Curtis

    established that depends on uncertainties in the physics models and methodology employed to produce the DOS. Through Monte Carlo sampling of perturbations from the reference phonon spectrum, an S(alpha, beta) covariance matrix may be generated. In this work, density functional theory and lattice dynamics in the harmonic approximation are used to calculate the phonon DOS for hexagonal crystalline graphite. This form of graphite is used as an example material for the purpose of demonstrating procedures for analyzing, calculating and processing thermal neutron inelastic scattering uncertainty information. Several sources of uncertainty in thermal neutron inelastic scattering calculations are examined, including sources which cannot be directly characterized through a description of the phonon DOS uncertainty, and their impacts are evaluated. Covariances for hexagonal crystalline graphite S(alpha, beta) data are quantified by coupling the standard methodology of LEAPR with a Monte Carlo sampling process. The mechanics of efficiently representing and processing this covariance information is also examined. Finally, with appropriate sensitivity information, it is shown that an S(alpha, beta) covariance matrix can be propagated to generate covariance data for integrated cross sections, secondary energy distributions, and coupled energy-angle distributions. This approach enables a complete description of thermal neutron inelastic scattering cross section uncertainties which may be employed to improve the simulation of nuclear systems.

  7. TH-A-18C-04: Ultrafast Cone-Beam CT Scatter Correction with GPU-Based Monte Carlo Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Y [UT Southwestern Medical Center, Dallas, TX (United States); Southern Medical University, Guangzhou (China); Bai, T [UT Southwestern Medical Center, Dallas, TX (United States); Xi' an Jiaotong University, Xi' an (China); Yan, H; Ouyang, L; Wang, J; Pompos, A; Jiang, S; Jia, X [UT Southwestern Medical Center, Dallas, TX (United States); Zhou, L [Southern Medical University, Guangzhou (China)

    2014-06-15

    Purpose: Scatter artifacts severely degrade image quality of cone-beam CT (CBCT). We present an ultrafast scatter correction framework by using GPU-based Monte Carlo (MC) simulation and prior patient CT image, aiming at automatically finish the whole process including both scatter correction and reconstructions within 30 seconds. Methods: The method consists of six steps: 1) FDK reconstruction using raw projection data; 2) Rigid Registration of planning CT to the FDK results; 3) MC scatter calculation at sparse view angles using the planning CT; 4) Interpolation of the calculated scatter signals to other angles; 5) Removal of scatter from the raw projections; 6) FDK reconstruction using the scatter-corrected projections. In addition to using GPU to accelerate MC photon simulations, we also use a small number of photons and a down-sampled CT image in simulation to further reduce computation time. A novel denoising algorithm is used to eliminate MC scatter noise caused by low photon numbers. The method is validated on head-and-neck cases with simulated and clinical data. Results: We have studied impacts of photo histories, volume down sampling factors on the accuracy of scatter estimation. The Fourier analysis was conducted to show that scatter images calculated at 31 angles are sufficient to restore those at all angles with <0.1% error. For the simulated case with a resolution of 512×512×100, we simulated 10M photons per angle. The total computation time is 23.77 seconds on a Nvidia GTX Titan GPU. The scatter-induced shading/cupping artifacts are substantially reduced, and the average HU error of a region-of-interest is reduced from 75.9 to 19.0 HU. Similar results were found for a real patient case. Conclusion: A practical ultrafast MC-based CBCT scatter correction scheme is developed. The whole process of scatter correction and reconstruction is accomplished within 30 seconds. This study is supported in part by NIH (1R01CA154747-01), The Core Technology Research

  8. Application of gamma radiation backscattering in determining density and Zsub(eff) of scattering material Monte Carlo optimization of configuration

    International Nuclear Information System (INIS)

    Cechak, T.

    1982-01-01

    Applying Gardner's method of double evaluation one detector should be positioned such that its response should be independent of the material density and the second detector should be positioned so as to maximize changes in response due to density changes. The experimental scanning for optimal energy is extremely time demanding. A program was written based on the Monte Carlo method which solves the problem of error magnitude in case the computation of gamma radiation backscattering neglects multiply scattered photons, the problem of how this error depends on the atomic number of the scattering material as well as the problem of whether the representation of individual scatterings in the spectrum of backscattered photons depends on the positioning of the detector. 42 detectors, 8 types of material and 10 different density values were considered. The computed dependences are given graphically. (M.D.)

  9. ROBUST CYLINDER FITTING IN THREE-DIMENSIONAL POINT CLOUD DATA

    Directory of Open Access Journals (Sweden)

    A. Nurunnabi

    2017-05-01

    Full Text Available This paper investigates the problems of cylinder fitting in laser scanning three-dimensional Point Cloud Data (PCD. Most existing methods require full cylinder data, do not study the presence of outliers, and are not statistically robust. But especially mobile laser scanning often has incomplete data, as street poles for example are only scanned from the road. Moreover, existence of outliers is common. Outliers may occur as random or systematic errors, and may be scattered and/or clustered. In this paper, we present a statistically robust cylinder fitting algorithm for PCD that combines Robust Principal Component Analysis (RPCA with robust regression. Robust principal components as obtained by RPCA allow estimating cylinder directions more accurately, and an existing efficient circle fitting algorithm following robust regression principles, properly fit cylinder. We demonstrate the performance of the proposed method on artificial and real PCD. Results show that the proposed method provides more accurate and robust results: (i in the presence of noise and high percentage of outliers, (ii for incomplete as well as complete data, (iii for small and large number of points, and (iv for different sizes of radius. On 1000 simulated quarter cylinders of 1m radius with 10% outliers a PCA based method fit cylinders with a radius of on average 3.63 meter (m; the proposed method on the other hand fit cylinders of on average 1.02 m radius. The algorithm has potential in applications such as fitting cylindrical (e.g., light and traffic poles, diameter at breast height estimation for trees, and building and bridge information modelling.

  10. A Monte Carlo study of the energy spectra and transmission characteristics of scattered radiation from x-ray computed tomography.

    Science.gov (United States)

    Platten, David John

    2014-06-01

    Existing data used to calculate the barrier transmission of scattered radiation from computed tomography (CT) are based on primary beam CT energy spectra. This study uses the EGSnrc Monte Carlo system and Epp user code to determine the energy spectra of CT scatter from four different primary CT beams passing through an ICRP 110 male reference phantom. Each scatter spectrum was used as a broad-beam x-ray source in transmission simulations through seventeen thicknesses of lead (0.00-3.50 mm). A fit of transmission data to lead thickness was performed to obtain α, β and γ parameters for each spectrum. The mean energy of the scatter spectra were up to 12.3 keV lower than that of the primary spectrum. For 120 kVp scatter beams the transmission through lead was at least 50% less than predicted by existing data for thicknesses of 1.5 mm and greater; at least 30% less transmission was seen for 140 kVp scatter beams. This work has shown that the mean energy and half-value layer of CT scatter spectra are lower than those of the corresponding primary beam. The transmission of CT scatter radiation through lead is lower than that calculated with currently available data. Using the data from this work will result in less lead shielding being required for CT scanner installations.

  11. PEPSI — a Monte Carlo generator for polarized leptoproduction

    Science.gov (United States)

    Mankiewicz, L.; Schäfer, A.; Veltri, M.

    1992-09-01

    We describe PEPSI (Polarized Electron Proton Scattering Interactions), a Monte Carlo program for polarized deep inelastic leptoproduction mediated by electromagnetic interaction, and explain how to use it. The code is a modification of the LEPTO 4.3 Lund Monte Carlo for unpolarized scattering. The hard virtual gamma-parton scattering is generated according to the polarization-dependent QCD cross-section of the first order in α S. PEPSI requires the standard polarization-independent JETSET routines to simulate the fragmentation into final hadrons.

  12. Resonances and dipole moments in dielectric, magnetic, and magnetodielectric cylinders

    DEFF Research Database (Denmark)

    Dirksen, A.; Arslanagic, Samel; Breinbjerg, Olav

    2011-01-01

    An eigenfunction solution to the problem of plane wave scattering by dielectric, magnetic, and magnetodielectric cylinders is used for a systematic investigation of their resonances. An overview of the resonances with electric and magnetic dipole moments, needed in, e.g., the synthesis...

  13. Real-time, ray casting-based scatter dose estimation for c-arm x-ray system.

    Science.gov (United States)

    Alnewaini, Zaid; Langer, Eric; Schaber, Philipp; David, Matthias; Kretz, Dominik; Steil, Volker; Hesser, Jürgen

    2017-03-01

    usually detected was mainly from primary scattering (photons), whereas percentage differences between 2.8-20% are found on the side opposite to the x-ray source, where the lowest doses were detected. Dose calculation time of our approach was 0.85 seconds. The proposed approach yields a fast scatter dose estimation where we could run the Monte Carlo simulation only once for each x-ray tube angulation to get the Phase Space Files (PSF) for being used later by our ray casting approach to calculate the dose from only photons which will hit an movable elliptical cylinder shaped phantom and getting an output file for the positions of those hits to be used for visualizing the scatter dose propagation on the phantom surface. With dose calculation times of less than one second, we are saving much time compared to using a Monte Carlo simulation instead. With our approach, larger deviations occur only in regions with very low doses, whereas it provides a high precision in high-dose regions. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  14. Primary and scattering contributions to beta scaled dose point kernels by means of Monte Carlo simulations

    International Nuclear Information System (INIS)

    Valente, Mauro; Botta, Francesca; Pedroli, Guido

    2012-01-01

    Beta-emitters have proved to be appropriate for radioimmunotherapy. The dosimetric characterization of each radionuclide has to be carefully investigated. One usual and practical dosimetric approach is the calculation of dose distribution from a unit point source emitting particles according to any radionuclide of interest, which is known as dose point kernel. Absorbed dose distributions are due to primary and radiation scattering contributions. This work presented a method capable of performing dose distributions for nuclear medicine dosimetry by means of Monte Carlo methods. Dedicated subroutines have been developed in order to separately compute primary and scattering contributions to the total absorbed dose, performing particle transport up to 1 keV or least. Preliminarily, the suitability of the calculation method has been satisfactory, being tested for monoenergetic sources, and it was further applied to the characterization of different beta-minus radionuclides of nuclear medicine interests for radioimmunotherapy. (author)

  15. Mapping local anisotropy axis for scattering media using backscattering Mueller matrix imaging

    Science.gov (United States)

    He, Honghui; Sun, Minghao; Zeng, Nan; Du, E.; Guo, Yihong; He, Yonghong; Ma, Hui

    2014-03-01

    Mueller matrix imaging techniques can be used to detect the micro-structure variations of superficial biological tissues, including the sizes and shapes of cells, the structures in cells, and the densities of the organelles. Many tissues contain anisotropic fibrous micro-structures, such as collagen fibers, elastin fibers, and muscle fibers. Changes of these fibrous structures are potentially good indicators for some pathological variations. In this paper, we propose a quantitative analysis technique based on Mueller matrix for mapping local anisotropy axis of scattering media. By conducting both experiments on silk sample and Monte Carlo simulation based on the sphere-cylinder scattering model (SCSM), we extract anisotropy axis parameters from different backscattering Mueller matrix elements. Moreover, we testify the possible applications of these parameters for biological tissues. The preliminary experimental results of human cancerous samples show that, these parameters are capable to map the local axis of fibers. Since many pathological changes including early stage cancers affect the well aligned structures for tissues, the experimental results indicate that these parameters can be used as potential tools in clinical applications for biomedical diagnosis purposes.

  16. Experimental validation of the TOPAS Monte Carlo system for passive scattering proton therapy

    International Nuclear Information System (INIS)

    Testa, M.; Schümann, J.; Lu, H.-M.; Paganetti, H.; Shin, J.; Faddegon, B.; Perl, J.

    2013-01-01

    Purpose: TOPAS (TOol for PArticle Simulation) is a particle simulation code recently developed with the specific aim of making Monte Carlo simulations user-friendly for research and clinical physicists in the particle therapy community. The authors present a thorough and extensive experimental validation of Monte Carlo simulations performed with TOPAS in a variety of setups relevant for proton therapy applications. The set of validation measurements performed in this work represents an overall end-to-end testing strategy recommended for all clinical centers planning to rely on TOPAS for quality assurance or patient dose calculation and, more generally, for all the institutions using passive-scattering proton therapy systems. Methods: The authors systematically compared TOPAS simulations with measurements that are performed routinely within the quality assurance (QA) program in our institution as well as experiments specifically designed for this validation study. First, the authors compared TOPAS simulations with measurements of depth-dose curves for spread-out Bragg peak (SOBP) fields. Second, absolute dosimetry simulations were benchmarked against measured machine output factors (OFs). Third, the authors simulated and measured 2D dose profiles and analyzed the differences in terms of field flatness and symmetry and usable field size. Fourth, the authors designed a simple experiment using a half-beam shifter to assess the effects of multiple Coulomb scattering, beam divergence, and inverse square attenuation on lateral and longitudinal dose profiles measured and simulated in a water phantom. Fifth, TOPAS’ capabilities to simulate time dependent beam delivery was benchmarked against dose rate functions (i.e., dose per unit time vs time) measured at different depths inside an SOBP field. Sixth, simulations of the charge deposited by protons fully stopping in two different types of multilayer Faraday cups (MLFCs) were compared with measurements to benchmark the

  17. Aspects of perturbative QCD in Monte Carlo shower models

    International Nuclear Information System (INIS)

    Gottschalk, T.D.

    1986-01-01

    The perturbative QCD content of Monte Carlo models for high energy hadron-hadron scattering is examined. Particular attention is given to the recently developed backwards evolution formalism for initial state parton showers, and the merging of parton shower evolution with hard scattering cross sections. Shower estimates of K-factors are discussed, and a simple scheme is presented for incorporating 2 → QCD cross sections into shower model calculations without double counting. Additional issues in the development of hard scattering Monte Carlo models are summarized. 69 references, 20 figures

  18. Multiple scattering of MeV ions: Comparison between the analytical theory and Monte-Carlo and molecular dynamics simulations

    International Nuclear Information System (INIS)

    Mayer, M.; Arstila, K.; Nordlund, K.; Edelmann, E.; Keinonen, J.

    2006-01-01

    Angular and energy distributions due to multiple small angle scattering were calculated with different models, namely from the analytical Szilagyi theory, the Monte-Carlo code MCERD in binary collision approximation and the molecular dynamics code MDRANGE, for 2 MeV 4 He in Au at backscattering geometry and for 20 MeV 127 I recoil analysis of carbon. The widths and detailed shapes of the distributions are compared, and reasons for deviations between the different models are discussed

  19. Numerical computation of discrete differential scattering cross sections for Monte Carlo charged particle transport

    International Nuclear Information System (INIS)

    Walsh, Jonathan A.; Palmer, Todd S.; Urbatsch, Todd J.

    2015-01-01

    Highlights: • Generation of discrete differential scattering angle and energy loss cross sections. • Gauss–Radau quadrature utilizing numerically computed cross section moments. • Development of a charged particle transport capability in the Milagro IMC code. • Integration of cross section generation and charged particle transport capabilities. - Abstract: We investigate a method for numerically generating discrete scattering cross sections for use in charged particle transport simulations. We describe the cross section generation procedure and compare it to existing methods used to obtain discrete cross sections. The numerical approach presented here is generalized to allow greater flexibility in choosing a cross section model from which to derive discrete values. Cross section data computed with this method compare favorably with discrete data generated with an existing method. Additionally, a charged particle transport capability is demonstrated in the time-dependent Implicit Monte Carlo radiative transfer code, Milagro. We verify the implementation of charged particle transport in Milagro with analytic test problems and we compare calculated electron depth–dose profiles with another particle transport code that has a validated electron transport capability. Finally, we investigate the integration of the new discrete cross section generation method with the charged particle transport capability in Milagro.

  20. Monte Carlo simulation of Touschek effect

    Directory of Open Access Journals (Sweden)

    Aimin Xiao

    2010-07-01

    Full Text Available We present a Monte Carlo method implementation in the code elegant for simulating Touschek scattering effects in a linac beam. The local scattering rate and the distribution of scattered electrons can be obtained from the code either for a Gaussian-distributed beam or for a general beam whose distribution function is given. In addition, scattered electrons can be tracked through the beam line and the local beam-loss rate and beam halo information recorded.

  1. A kinetic theory for nonanalog Monte Carlo particle transport algorithms: Exponential transform with angular biasing in planar-geometry anisotropically scattering media

    International Nuclear Information System (INIS)

    Ueki, T.; Larsen, E.W.

    1998-01-01

    The authors show that Monte Carlo simulations of neutral particle transport in planargeometry anisotropically scattering media, using the exponential transform with angular biasing as a variance reduction device, are governed by a new Boltzman Monte Carlo (BMC) equation, which includes particle weight as an extra independent variable. The weight moments of the solution of the BMC equation determine the moments of the score and the mean number of collisions per history in the nonanalog Monte Carlo simulations. Therefore, the solution of the BMC equation predicts the variance of the score and the figure of merit in the simulation. Also, by (1) using an angular biasing function that is closely related to the ''asymptotic'' solution of the linear Boltzman equation and (2) requiring isotropic weight changes as collisions, they derive a new angular biasing scheme. Using the BMC equation, they propose a universal ''safe'' upper limit of the transform parameter, valid for any type of exponential transform. In numerical calculations, they demonstrate that the behavior of the Monte Carlo simulations and the performance predicted by deterministically solving the BMC equation agree well, and that the new angular biasing scheme is always advantageous

  2. Comparative evaluation of scatter correction techniques in 3D positron emission tomography

    CERN Document Server

    Zaidi, H

    2000-01-01

    Much research and development has been concentrated on the scatter compensation required for quantitative 3D PET. Increasingly sophisticated scatter correction procedures are under investigation, particularly those based on accurate scatter models, and iterative reconstruction-based scatter compensation approaches. The main difference among the correction methods is the way in which the scatter component in the selected energy window is estimated. Monte Carlo methods give further insight and might in themselves offer a possible correction procedure. Methods: Five scatter correction methods are compared in this paper where applicable. The dual-energy window (DEW) technique, the convolution-subtraction (CVS) method, two variants of the Monte Carlo-based scatter correction technique (MCBSC1 and MCBSC2) and our newly developed statistical reconstruction-based scatter correction (SRBSC) method. These scatter correction techniques are evaluated using Monte Carlo simulation studies, experimental phantom measurements...

  3. Model of the buildup effect on the photon flux over a cylinder

    International Nuclear Information System (INIS)

    Mangussi, J.

    2011-01-01

    In this work, the photon flux over a cylinder surrounded by an homogeneous and isotropic medium is studied; the gamma field is produced by a radioactive point source. A model for the photon flux that reach the cylinder calculation is developed. The model is applied when the medium is vacuum and when the medium is water. The model includes the secondary photons generated by Compton scattering in the water. The model reliable and it is verified by experimental data. The high dependence on the geometry conditions of the build up flux is corroborated. (author) [es

  4. The fortran programme for the calculation of the absorption and double scattering corrections in cross-section measurements with fast neutrons using the monte Carlo method (1963); Programme fortran pour le calcul des corrections d'absorption et de double diffusion dans les mesures de sections efficaces pour les neutrons rapides par la methode de monte-carlo (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, B [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-07-01

    A calculation for double scattering and absorption corrections in fast neutron scattering experiments using Monte-Carlo method is given. Application to cylindrical target is presented in FORTRAN symbolic language. (author) [French] Un calcul des corrections de double diffusion et d'absorption dans les experiences de diffusion de neutrons rapides par la methode de Monte-Carlo est presente. L'application au cas d'une cible cylindrique est traitee en langage symbolique FORTRAN. (auteur)

  5. Monte Carlo simulations of the pulsed thermal neutron flux in two-region hydrogenous systems (using standard MCNP data libraries)

    International Nuclear Information System (INIS)

    Wiacek, U.; Krynicka, E.

    2005-02-01

    Monte Carlo simulations of the pulsed neutron experiment in two- region systems (two concentric spheres and two coaxial finite cylinders) are presented. The MCNP code is used. Aqueous solutions of H 3 BO 3 or KCl are used in the inner region. The outer region is the moderator of Plexiglas. Standard data libraries of the thermal neutron scattering cross-sections of hydrogen in hydrogenous substances are used. The time-dependent thermal neutron transport is simulated when the inner region has a constant size and the external size of the surrounding outer region is variable. The time decay constant of the thermal neutron flux in the system is found in each simulation. The results of the simulations are compared with results of real pulsed neutron experiments on the corresponding systems. (author)

  6. Finite-Geometry and Polarized Multiple-Scattering Corrections of Experimental Fast- Neutron Polarization Data by Means of Monte Carlo Methods

    Energy Technology Data Exchange (ETDEWEB)

    Aspelund, O; Gustafsson, B

    1967-05-15

    After an introductory discussion of various methods for correction of experimental left-right ratios for polarized multiple-scattering and finite-geometry effects necessary and sufficient formulas for consistent tracking of polarization effects in successive scattering orders are derived. The simplifying assumptions are then made that the scattering is purely elastic and nuclear, and that in the description of the kinematics of the arbitrary Scattering {mu}, only one triple-parameter - the so-called spin rotation parameter {beta}{sup ({mu})} - is required. Based upon these formulas a general discussion of the importance of the correct inclusion of polarization effects in any scattering order is presented. Special attention is then paid to the question of depolarization of an already polarized beam. Subsequently, the afore-mentioned formulas are incorporated in the comprehensive Monte Carlo program MULTPOL, which has been designed so as to correctly account for finite-geometry effects in the sense that both the scattering sample and the detectors (both having cylindrical shapes) are objects of finite dimensions located at finite distances from each other and from the source of polarized fast-neutrons. A special feature of MULTPOL is the application of the method of correlated sampling for reduction of the standard deviations .of the results of the simulated experiment. Typical data of performance of MULTPOL have been obtained by the application of this program to the correction of experimental polarization data observed in n + '{sup 12}C elastic scattering between 1 and 2 MeV. Finally, in the concluding remarks the possible modification of MULTPOL to other experimental geometries is briefly discussed.

  7. The effective differential cross section for elastic scattering of electrons by atoms and its use for Monte Carlo simulation of electron passage through matter

    International Nuclear Information System (INIS)

    Sheikin, E G

    2010-01-01

    The effective differential cross section (DCS) for elastic scattering of electrons by atoms is proposed that reproduces known energy dependences for the first and second transport cross sections but provides a total elastic cross section that is significantly small compared with the known energy dependences. The number of elastic collisions of electrons in matter when using the effective DCS in Monte Carlo simulations is significantly lower than that when using the real DCS. The results of our Monte Carlo simulation of electron propagation in aluminium using the proposed DCS are in good agreement with experimental data.

  8. X-ray scattering in X-ray fluorescence spectra with X-ray tube excitation - Modelling, experiment, and Monte-Carlo simulation

    International Nuclear Information System (INIS)

    Hodoroaba, V.-D.; Radtke, M.; Vincze, L.; Rackwitz, V.; Reuter, D.

    2010-01-01

    X-ray scattering may contribute significantly to the spectral background of X-ray fluorescence (XRF) spectra. Based on metrological measurements carried out with a scanning electron microscope (SEM) having attached a well characterised X-ray source (polychromatic X-ray tube) and a calibrated energy dispersive X-ray spectrometer (EDS) the accuracy of a physical model for X-ray scattering is systematically evaluated for representative samples. The knowledge of the X-ray spectrometer efficiency, but also of the spectrometer response functions makes it possible to define a physical spectral background of XRF spectra. Background subtraction relying on purely mathematical procedures is state-of-the-art. The results produced by the analytical model are at least as reliable as those obtained by Monte-Carlo simulations, even without considering the very challenging contribution of multiple scattering. Special attention has been paid to Compton broadening. Relevant applications of the implementation of the analytical model presented in this paper are the prediction of the limits of detection for particular cases or the determination of the transmission of X-ray polycapillary lenses.

  9. Monte Carlo simulation of laser beam propagation in a plane layer of the erythrocyte suspension: comparison of contributions from different scattering orders to the angular distribution of light intensity

    International Nuclear Information System (INIS)

    Kirillin, M Yu; Priezzhev, A V

    2002-01-01

    The scattering phase functions of light are obtained for a layer of the erythrocyte suspension by the Monte Carlo method. At the erythrocyte concentration corresponding to a whole blood, these functions substantially differ from the phase function of a single erythrocyte. Contributions from the low-order and multiple scattering to the light intensity measured at different angles are compared. It is shown that scattering of light from a suspension layer of thickness of about 100 μm to the forward half-plane is mainly determined by the low-order scattering (by snake photons), whereas scattering to the back half-plane is mainly determined by multiple scattering. The possibility of using the diffuse approximation for the theoretical description of scattering is analysed.

  10. Flow around a cylinder surrounded by a permeable cylinder in shallow water

    Energy Technology Data Exchange (ETDEWEB)

    Ozkan, Gokturk M.; Akilli, Huseyin; Sahin, Besir [Cukurova University, Department of Mechanical Engineering, Faculty of Engineering and Architecture, Adana (Turkey); Oruc, Vedat [Dicle University, Department of Mechanical Engineering, Diyarbakir (Turkey)

    2012-12-15

    The change in flow characteristics downstream of a circular cylinder (inner cylinder) surrounded by an outer permeable cylinder was investigated in shallow water using particle image velocimetry technique. The diameter of the inner cylinder and the water height were kept constant during the experiments as d=50 mm and h{sub w}=25 mm, respectively. The depth-averaged free-stream velocity was also kept constant as U=170 mm/s which corresponded to a Reynolds number of Re{sub d}=8,500 based on the inner cylinder diameter. In order to examine the effect of diameter and porosity of the outer cylinder on flow characteristics of the inner cylinder, five different outer cylinder diameters (D=60, 70, 80, 90 and 100 mm) and four different porosities ({beta}=0.4, 0.5, 0.6 and 0.7) were used. It was shown that both porosity and outer cylinder diameter had a substantial effect on the flow characteristics downstream of the circular cylinder. Turbulent statistics clearly demonstrated that in comparison with the bare cylinder (natural case), turbulent kinetic energy and Reynolds stresses decreased remarkably when an outer cylinder was placed around the inner cylinder. Thereby, the interaction of shear layers of the inner cylinder has been successfully prevented by the presence of outer cylinder. It was suggested by referring to the results that the outer cylinder having 1.6{<=}D/d{<=}2.0 and 0.4{<=}D/d{<=}0.6 should be preferred to have a better flow control in the near wake since the peak magnitude of turbulent kinetic energy was considerably low in comparison with the natural case and it was nearly constant for these mentioned porosities {beta}, and outer cylinder to inner cylinder diameter ratios D/d. (orig.)

  11. Toward a new polyethylene scattering law determined using inelastic neutron scattering

    International Nuclear Information System (INIS)

    Lavelle, C.M.; Liu, C.-Y.; Stone, M.B.

    2013-01-01

    Monte Carlo neutron transport codes such as MCNP rely on accurate data for nuclear physics cross-sections to produce accurate results. At low energy, this takes the form of scattering laws based on the dynamic structure factor, S(Q,E). High density polyethylene (HDPE) is frequently employed as a neutron moderator at both high and low temperatures, however the only cross-sections available are for ambient temperatures (∼300K), and the evaluation has not been updated in quite some time. In this paper we describe inelastic neutron scattering measurements on HDPE at 5 and 294 K which are used to improve the scattering law for HDPE. We review some of the past HDPE scattering laws, describe the experimental methods, and compare computations using these models to the measured S(Q,E). The total cross-section is compared to available data, and the treatment of the carbon secondary scatterer as a free gas is assessed. We also discuss the use of the measurement itself as a scattering law via the one phonon approximation. We show that a scattering law computed using a more detailed model for the Generalized Density of States (GDOS) compares more favorably to this experiment, suggesting that inelastic neutron scattering can play an important role in both the development and validation of new scattering laws for Monte Carlo work. -- Highlights: ► Polyethylene at 5 K and 300 K is measured using inelastic neutron scattering (INS). ► Measurements conducted at the Wide Angular-Range Chopper Spectrometer at SNS. ► Several models for Polyethylene are compared to measurements. ► Improvements to existing models for the polyethylene scattering law are suggested. ► INS is shown to be highly valuable tool for scattering law development

  12. Improving the Ar I and II branching ratio calibration method: Monte Carlo simulations of effects from photon scattering/reflecting in hollow cathodes

    Science.gov (United States)

    Lawler, J. E.; Den Hartog, E. A.

    2018-03-01

    The Ar I and II branching ratio calibration method is discussed with the goal of improving the technique. This method of establishing a relative radiometric calibration is important in ongoing research to improve atomic transition probabilities for quantitative spectroscopy in astrophysics and other fields. Specific suggestions are presented along with Monte Carlo simulations of wavelength dependent effects from scattering/reflecting of photons in a hollow cathode.

  13. Monte Carlo generator ELRADGEN 2.0 for simulation of radiative events in elastic ep-scattering of polarized particles

    Science.gov (United States)

    Akushevich, I.; Filoti, O. F.; Ilyichev, A.; Shumeiko, N.

    2012-07-01

    The structure and algorithms of the Monte Carlo generator ELRADGEN 2.0 designed to simulate radiative events in polarized ep-scattering are presented. The full set of analytical expressions for the QED radiative corrections is presented and discussed in detail. Algorithmic improvements implemented to provide faster simulation of hard real photon events are described. Numerical tests show high quality of generation of photonic variables and radiatively corrected cross section. The comparison of the elastic radiative tail simulated within the kinematical conditions of the BLAST experiment at MIT BATES shows a good agreement with experimental data. Catalogue identifier: AELO_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AELO_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 1299 No. of bytes in distributed program, including test data, etc.: 11 348 Distribution format: tar.gz Programming language: FORTRAN 77 Computer: All Operating system: Any RAM: 1 MB Classification: 11.2, 11.4 Nature of problem: Simulation of radiative events in polarized ep-scattering. Solution method: Monte Carlo simulation according to the distributions of the real photon kinematic variables that are calculated by the covariant method of QED radiative correction estimation. The approach provides rather fast and accurate generation. Running time: The simulation of 108 radiative events for itest:=1 takes up to 52 seconds on Pentium(R) Dual-Core 2.00 GHz processor.

  14. An efficient cost function for the optimization of an n-layered isotropic cloaked cylinder

    International Nuclear Information System (INIS)

    Paul, Jason V; Collins, Peter J; Coutu, Ronald A Jr

    2013-01-01

    In this paper, we present an efficient cost function for optimizing n-layered isotropic cloaked cylinders. Cost function efficiency is achieved by extracting the expression for the angle independent scatterer contribution of an associated Green's function. Therefore, since this cost function is not a function of angle, accounting for every bistatic angle is not necessary and thus more efficient than other cost functions. With this general and efficient cost function, isotropic cloaked cylinders can be optimized for many layers and material parameters. To demonstrate this, optimized cloaked cylinders made of 10, 20 and 30 equal thickness layers are presented for TE and TM incidence. Furthermore, we study the effect layer thickness has on optimized cloaks by optimizing a 10 layer cloaked cylinder over the material parameters and individual layer thicknesses. The optimized material parameters in this effort do not exhibit the dual nature that is evident in the ideal transformation optics design. This indicates that the inevitable field penetration and subsequent PEC boundary condition at the cylinder must be taken into account for an optimal cloaked cylinder design. Furthermore, a more effective cloaked cylinder can be designed by optimizing both layer thickness and material parameters than by additional layers alone. (paper)

  15. Polarimetric signatures of a canopy of dielectric cylinders based on first and second order vector radiative transfer theory

    Science.gov (United States)

    Tsang, Leung; Chan, Chi Hou; Kong, Jin AU; Joseph, James

    1992-01-01

    Complete polarimetric signatures of a canopy of dielectric cylinders overlying a homogeneous half space are studied with the first and second order solutions of the vector radiative transfer theory. The vector radiative transfer equations contain a general nondiagonal extinction matrix and a phase matrix. The energy conservation issue is addressed by calculating the elements of the extinction matrix and the elements of the phase matrix in a manner that is consistent with energy conservation. Two methods are used. In the first method, the surface fields and the internal fields of the dielectric cylinder are calculated by using the fields of an infinite cylinder. The phase matrix is calculated and the extinction matrix is calculated by summing the absorption and scattering to ensure energy conservation. In the second method, the method of moments is used to calculate the elements of the extinction and phase matrices. The Mueller matrix based on the first order and second order multiple scattering solutions of the vector radiative transfer equation are calculated. Results from the two methods are compared. The vector radiative transfer equations, combined with the solution based on method of moments, obey both energy conservation and reciprocity. The polarimetric signatures, copolarized and depolarized return, degree of polarization, and phase differences are studied as a function of the orientation, sizes, and dielectric properties of the cylinders. It is shown that second order scattering is generally important for vegetation canopy at C band and can be important at L band for some cases.

  16. Quantitative analysis of optical properties of flowing blood using a photon-cell interactive Monte Carlo code: effects of red blood cells' orientation on light scattering.

    Science.gov (United States)

    Sakota, Daisuke; Takatani, Setsuo

    2012-05-01

    Optical properties of flowing blood were analyzed using a photon-cell interactive Monte Carlo (pciMC) model with the physical properties of the flowing red blood cells (RBCs) such as cell size, shape, refractive index, distribution, and orientation as the parameters. The scattering of light by flowing blood at the He-Ne laser wavelength of 632.8 nm was significantly affected by the shear rate. The light was scattered more in the direction of flow as the flow rate increased. Therefore, the light intensity transmitted forward in the direction perpendicular to flow axis decreased. The pciMC model can duplicate the changes in the photon propagation due to moving RBCs with various orientations. The resulting RBC's orientation that best simulated the experimental results was with their long axis perpendicular to the direction of blood flow. Moreover, the scattering probability was dependent on the orientation of the RBCs. Finally, the pciMC code was used to predict the hematocrit of flowing blood with accuracy of approximately 1.0 HCT%. The photon-cell interactive Monte Carlo (pciMC) model can provide optical properties of flowing blood and will facilitate the development of the non-invasive monitoring of blood in extra corporeal circulatory systems.

  17. Evaluation of the scatter-to-primary ratio in mammography and performance of anti-scatter grids by Monte Carlo simulations;Avaliacao da razao espalhamento/primario e do desempenho de grades anti-espalhamento em mamografia atraves de simulacoes Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Diego M.; Tomal, Alessandra; Poletti, Martin E. [Universidade de Sao Paulo (DFM/FFCLRP/USP), Ribeirao Preto, SP (Brazil). Faculdade de Filosofia, Ciencias e Letras. Dept. de Fisica e Matematica

    2009-07-01

    In this work, a computational code was developed for the study of image quality in screen-film mammography through Monte Carlo (MC) simulations. The code includes implementation of interference and energy broadening effects, for the elastic and inelastic scattered photons, respectively. The contribution of scattered photons to the mammographic image was evaluated through the ratio between the energy deposited in the image receptor by scattered and primary photons (S/P ratio). The spatial distribution of the S1P ratio on the receptor was obtained for breasts of different thickness, between 2 and 8cm, considering a 50% adipose-SO% glandular breast. Different tube voltages were evaluated, for a Mo/Mo anode-filter combination. The S/P ratio was a/so obtained considering two different grids: a linear grid (grid ratio of 5:1) and a cellular grid (grid ratio of 3.8:1). Grid performance was computed through the contrast improvement factor (CIF) and Bucky factor (BF). Results showed that the S/P ratio increases linearly with breast thickness, and, for a given thickness, it showed considerably spatial variations on the image receptor. On the other hand, little dependence of the S/P ratio on the tube voltage was observed. Grid comparison showed that the cellular grid has better performance than the linear one, since it provides a greater CIF, with smaller values of BF. (author)

  18. Monte Carlo approaches to light nuclei

    International Nuclear Information System (INIS)

    Carlson, J.

    1990-01-01

    Significant progress has been made recently in the application of Monte Carlo methods to the study of light nuclei. We review new Green's function Monte Carlo results for the alpha particle, Variational Monte Carlo studies of 16 O, and methods for low-energy scattering and transitions. Through these calculations, a coherent picture of the structure and electromagnetic properties of light nuclei has arisen. In particular, we examine the effect of the three-nucleon interaction and the importance of exchange currents in a variety of experimentally measured properties, including form factors and capture cross sections. 29 refs., 7 figs

  19. Monte Carlo approaches to light nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, J.

    1990-01-01

    Significant progress has been made recently in the application of Monte Carlo methods to the study of light nuclei. We review new Green's function Monte Carlo results for the alpha particle, Variational Monte Carlo studies of {sup 16}O, and methods for low-energy scattering and transitions. Through these calculations, a coherent picture of the structure and electromagnetic properties of light nuclei has arisen. In particular, we examine the effect of the three-nucleon interaction and the importance of exchange currents in a variety of experimentally measured properties, including form factors and capture cross sections. 29 refs., 7 figs.

  20. Cylinder monitoring program

    Energy Technology Data Exchange (ETDEWEB)

    Alderson, J.H. [Martin Marietta Energy Systems, Inc., Paducah, KY (United States)

    1991-12-31

    Cylinders containing depleted uranium hexafluoride (UF{sub 6}) in storage at the Department of Energy (DOE) gaseous diffusion plants, managed by Martin Marietta Energy Systems, Inc., are being evaluated to determine their expected storage life. Cylinders evaluated recently have been in storage service for 30 to 40 years. In the present environment, the remaining life for these storage cylinders is estimated to be 30 years or greater. The group of cylinders involved in recent tests will continue to be monitored on a periodic basis, and other storage cylinders will be observed as on a statistical sample population. The program has been extended to all types of large capacity UF{sub 6} cylinders.

  1. A Monte Carlo Sampling Technique for Multi-phonon Processes

    Energy Technology Data Exchange (ETDEWEB)

    Hoegberg, Thure

    1961-12-15

    A sampling technique for selecting scattering angle and energy gain in Monte Carlo calculations of neutron thermalization is described. It is supposed that the scattering is separated into processes involving different numbers of phonons. The number of phonons involved is first determined. Scattering angle and energy gain are then chosen by using special properties of the multi-phonon term.

  2. A novel radiation detector for removing scattered radiation in chest radiography: Monte Carlo simulation-based performance evaluation

    Science.gov (United States)

    Roh, Y. H.; Yoon, Y.; Kim, K.; Kim, J.; Kim, J.; Morishita, J.

    2016-10-01

    Scattered radiation is the main reason for the degradation of image quality and the increased patient exposure dose in diagnostic radiology. In an effort to reduce scattered radiation, a novel structure of an indirect flat panel detector has been proposed. In this study, a performance evaluation of the novel system in terms of image contrast as well as an estimation of the number of photons incident on the detector and the grid exposure factor were conducted using Monte Carlo simulations. The image contrast of the proposed system was superior to that of the no-grid system but slightly inferior to that of the parallel-grid system. The number of photons incident on the detector and the grid exposure factor of the novel system were higher than those of the parallel-grid system but lower than those of the no-grid system. The proposed system exhibited the potential for reduced exposure dose without image quality degradation; additionally, can be further improved by a structural optimization considering the manufacturer's specifications of its lead contents.

  3. BACKWARD AND FORWARD MONTE CARLO METHOD IN POLARIZED RADIATIVE TRANSFER

    Energy Technology Data Exchange (ETDEWEB)

    Yong, Huang; Guo-Dong, Shi; Ke-Yong, Zhu, E-mail: huangy_zl@263.net [School of Aeronautical Science and Engineering, Beihang University, Beijing 100191 (China)

    2016-03-20

    In general, the Stocks vector cannot be calculated in reverse in the vector radiative transfer. This paper presents a novel backward and forward Monte Carlo simulation strategy to study the vector radiative transfer in the participated medium. A backward Monte Carlo process is used to calculate the ray trajectory and the endpoint of the ray. The Stocks vector is carried out by a forward Monte Carlo process. A one-dimensional graded index semi-transparent medium was presented as the physical model and the thermal emission consideration of polarization was studied in the medium. The solution process to non-scattering, isotropic scattering, and the anisotropic scattering medium, respectively, is discussed. The influence of the optical thickness and albedo on the Stocks vector are studied. The results show that the U, V-components of the apparent Stocks vector are very small, but the Q-component of the apparent Stocks vector is relatively larger, which cannot be ignored.

  4. Diffuse scattering in Ih ice

    International Nuclear Information System (INIS)

    Wehinger, Björn; Krisch, Michael; Bosak, Alexeï; Chernyshov, Dmitry; Bulat, Sergey; Ezhov, Victor

    2014-01-01

    Single crystals of ice Ih, extracted from the subglacial Lake Vostok accretion ice layer (3621 m depth) were investigated by means of diffuse x-ray scattering and inelastic x-ray scattering. The diffuse scattering was identified as mainly inelastic and rationalized in the frame of ab initio calculations for the ordered ice XI approximant. Together with Monte-Carlo modelling, our data allowed reconsidering previously available neutron diffuse scattering data of heavy ice as the sum of thermal diffuse scattering and static disorder contribution. (paper)

  5. WE-EF-207-06: Dedicated Cone-Beam Breast CT with Laterally-Shifted Detector: Monte Carlo Evaluation of X-Ray Scatter Distribution and Scatter-To-Primary Ratio

    International Nuclear Information System (INIS)

    Shi, L; Vedantham, S; Karellas, A

    2015-01-01

    Purpose: To determine the spatial distribution of x-ray scatter and scatter-to-primary ratio (SPR) in projections during cone-beam breast CT (CBBCT) with laterally-shifted detector that results in coronal (fan-angle) truncation. Methods: We hypothesized that CBBCT with coronal truncation would lower SPR due to reduction in irradiated breast volume, and that the location of maximum x-ray scatter fluence (scatter-peak) in the detector plane can be determined from the ratio of irradiated-to-total breast volume, breast dimensions and system geometry. Monte Carlo simulations (GEANT4) reflecting a prototype CBBCT system were used to record the position-dependent primary and scatter x-ray photon fluence incident on the detector without coronal truncation (full fan-angle, 2f=24-degrees) and with coronal truncation (fan-angle, f+ f=12+2.7-degrees). Semi-ellipsoidal breasts (10/14/18-cm diameter, chest-wall to nipple length: 0.75xdiameter, 2%/14%/100% fibroglandular content) aligned with the axis-of-rotation (AOR) were modeled. Mono-energy photons were simulated and weighted for 2 spectra (49kVp, 1.4-mm Al HVL; 60kVp, 3.76-mm Al HVL). In addition to SPR, the scatter maps were analyzed to identify the location of the scatter-peak. Results: For CBBCT without fan-angle truncation, the scatter-peaks were aligned with the projection of the AOR onto the detector for all breasts. With truncated fan-beam, the scatter-peaks were laterally-shifted from the projection of the AOR along the fan-angle direction by 14/38/70-pixels for 10/14/18-cm diameter breasts. The corresponding theoretical shifts were 14.8/39.7/68-pixels (p=0.47, 2-tailed paired-ratio t-test). Along the cone-angle, the shift in scatter-peaks between truncated and full-fan angle CBBCT were 2/2/4 -pixels for 10/14/18-cm diameter breasts. CBBCT with fan-angle truncation reduced SPR by 14/22/28% for 10/14/18-cm diameter breasts. 60kVp reduced SPR by 21–25% compared to 49kVp. Peak SPR for CBBCT with fan-angle truncation

  6. Multiple scattering and attenuation corrections in Deep Inelastic Neutron Scattering experiments

    International Nuclear Information System (INIS)

    Dawidowski, J; Blostein, J J; Granada, J R

    2006-01-01

    Multiple scattering and attenuation corrections in Deep Inelastic Neutron Scattering experiments are analyzed. The theoretical basis of the method is stated, and a Monte Carlo procedure to perform the calculation is presented. The results are compared with experimental data. The importance of the accuracy in the description of the experimental parameters is tested, and the implications of the present results on the data analysis procedures is examined

  7. Evaluation of six scatter correction methods based on spectral analysis in 99m Tc SPECT imaging using SIMIND Monte Carlo simulation

    Directory of Open Access Journals (Sweden)

    Mahsa Noori Asl

    2013-01-01

    Full Text Available Compton-scattered photons included within the photopeak pulse-height window result in the degradation of SPECT images both qualitatively and quantitatively. The purpose of this study is to evaluate and compare six scatter correction methods based on setting the energy windows in 99m Tc spectrum. SIMIND Monte Carlo simulation is used to generate the projection images from a cold-sphere hot-background phantom. For evaluation of different scatter correction methods, three assessment criteria including image contrast, signal-to-noise ratio (SNR and relative noise of the background (RNB are considered. Except for the dual-photopeak window (DPW method, the image contrast of the five cold spheres is improved in the range of 2.7-26%. Among methods considered, two methods show a nonuniform correction performance. The RNB for all of the scatter correction methods is ranged from minimum 0.03 for DPW method to maximum 0.0727 for the three energy window (TEW method using trapezoidal approximation. The TEW method using triangular approximation because of ease of implementation, good improvement of the image contrast and the SNR for the five cold spheres, and the low noise level is proposed as most appropriate correction method.

  8. Variational Variance Reduction for Monte Carlo Criticality Calculations

    International Nuclear Information System (INIS)

    Densmore, Jeffery D.; Larsen, Edward W.

    2001-01-01

    A new variational variance reduction (VVR) method for Monte Carlo criticality calculations was developed. This method employs (a) a variational functional that is more accurate than the standard direct functional, (b) a representation of the deterministically obtained adjoint flux that is especially accurate for optically thick problems with high scattering ratios, and (c) estimates of the forward flux obtained by Monte Carlo. The VVR method requires no nonanalog Monte Carlo biasing, but it may be used in conjunction with Monte Carlo biasing schemes. Some results are presented from a class of criticality calculations involving alternating arrays of fuel and moderator regions

  9. The structure of liquid water by polarized neutron diffraction and reverse Monte Carlo modelling.

    Science.gov (United States)

    Temleitner, László; Pusztai, László; Schweika, Werner

    2007-08-22

    The coherent static structure factor of water has been investigated by polarized neutron diffraction. Polarization analysis allows us to separate the huge incoherent scattering background from hydrogen and to obtain high quality data of the coherent scattering from four different mixtures of liquid H(2)O and D(2)O. The information obtained by the variation of the scattering contrast confines the configurational space of water and is used by the reverse Monte Carlo technique to model the total structure factors. Structural characteristics have been calculated directly from the resulting sets of particle coordinates. Consistency with existing partial pair correlation functions, derived without the application of polarized neutrons, was checked by incorporating them into our reverse Monte Carlo calculations. We also performed Monte Carlo simulations of a hard sphere system, which provides an accurate estimate of the information content of the measured data. It is shown that the present combination of polarized neutron scattering and reverse Monte Carlo structural modelling is a promising approach towards a detailed understanding of the microscopic structure of water.

  10. Describing Compton scattering and two-quanta positron annihilation based on Compton profiles: Two models suited for the Monte Carlo method

    CERN Document Server

    Bohlen, TT; Patera, V; Sala, P R

    2012-01-01

    An accurate description of the basic physics processes of Compton scattering and positron annihilation in matter requires the consideration of atomic shell structure effects and, in specific, the momentum distributions of the atomic electrons. Two algorithms which model Compton scattering and two-quanta positron annihilation at rest accounting for shell structure effects are proposed. Two-quanta positron annihilation is a physics process which is of particular importance for applications such as positron emission tomography (PET). Both models use a detailed description of the processes which incorporate consistently Doppler broadening and binding effects. This together with the relatively low level of complexity of the models makes them particularly suited to be employed by fast sampling methods for Monte Carlo particle transport. Momentum distributions of shell electrons are obtained from parametrized one-electron Compton profiles. For conduction electrons, momentum distributions are derived in the framework...

  11. The theory behind the full scattering profile

    Science.gov (United States)

    Feder, Idit; Duadi, Hamootal; Fixler, Dror

    2018-02-01

    Optical methods for extracting properties of tissues are commonly used. These methods are non-invasive, cause no harm to the patient and are characterized by high speed. The human tissue is a turbid media hence it poses a challenge for different optical methods. In addition the analysis of the emitted light requires calibration for achieving accuracy information. Most of the methods analyze the reflected light based on their phase and amplitude or the transmitted light. We suggest a new optical method for extracting optical properties of cylindrical tissues based on their full scattering profile (FSP), which means the angular distribution of the reemitted light. The FSP of cylindrical tissues is relevant for biomedical measurement of fingers, earlobes or pinched tissues. We found the iso-pathlength (IPL) point, a point on the surface of the cylinder medium where the light intensity remains constant and does not depend on the reduced scattering coefficient of the medium, but rather depends on the spatial structure and the cylindrical geometry. However, a similar behavior was also previously reported in reflection from a semi-infinite medium. Moreover, we presented a linear dependency between the radius of the tissue and the point's location. This point can be used as a self-calibration point and thus improve the accuracy of optical tissue measurements. This natural phenomenon has not been investigated before. We show this phenomenon theoretically, based on the diffusion theory, which is supported by our simulation results using Monte Carlo simulation.

  12. Semi-analytical solution to arbitrarily shaped beam scattering

    Science.gov (United States)

    Wang, Wenjie; Zhang, Huayong; Sun, Yufa

    2017-07-01

    Based on the field expansions in terms of appropriate spherical vector wave functions and the method of moments scheme, an exact semi-analytical solution to the scattering of an arbitrarily shaped beam is given. For incidence of a Gaussian beam, zero-order Bessel beam and Hertzian electric dipole radiation, numerical results of the normalized differential scattering cross section are presented to a spheroid and a circular cylinder of finite length, and the scattering properties are analyzed concisely.

  13. Monte-Carlo simulations in a gas centrifuge

    International Nuclear Information System (INIS)

    Roblin, Ph.; Doneddu, F.

    2000-01-01

    This paper is associated with the centrifugation process for isotope separation, using the principle of a cylinder rotating at high speed in a vacuum casing. As in the most widely used configuration, the gas containing the isotope mixture is introduced by a fixed axial feed pipe and expands in the cylinder. It is subjected to high centrifugal acceleration, undergoes rigid body rotation and stratifies radially according to a barometric-type pressure law. By pressure diffusion, the heavier isotopes migrate to the cylinder wall and the lighter to the center. A temperature gradient on the wall and the presence of a scoop in the fluid, produce a vertical countercurrent which transforms the radial separation effect into an axial effect. The scoop extracts the gas depleted in light isotopes, called W, and another is used to recover the gas enriched in light isotopes, called P. Practically all the gas is governed by the Navier-Stokes equations in 2D axial symmetry. Due to the strong pressure stratification, continuous fluid equations are not valid in the whole cylinder, with or without linearization of the model. Consequently, an internal boundary separates the continuum domain from a rarefied domain in which the feed gas expands. The radial position of this cut-off then approaches the cylinder wall with increasing rotation speeds. In the rarefied domain, the Boltzmann equation is solved and a well suited numerical method is the Monte-Carlo method. A complete simulation of feed gas expansion and interaction with rotating gas, presented here with the DSMC (Direct Simulation Monte-Carlo) code, provides realistic boundary conditions for fluid flow calculations. The reference centrifuge is a hypothetical machine enabling the scientific community to compare results obtained for the optimization of separation performance. Its radius a is 6 cm, and its peripheral speed a is 600 m/s. The selected gas, containing the isotopes, is UF 6 . The gas pressure p(a) at the cylinder wall is

  14. Doses determination in UCCA treatments with LDR brachytherapy using Monte Carlo methods; Determinacion de dosis en tratamientos de CaCU con braquiterapia LDR usando metodos Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Benites R, J. L. [Centro Estatal de Cancerologia de Nayarit, Comite de Investigacion, Calz. de la Cruz 118 sur, 63000 Tepic, Nayarit (Mexico); Vega C, H. R., E-mail: neutronesrapidos@gmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico)

    2017-10-15

    Using Monte Carlo methods, with the code MCNP5, a gynecological mannequin and a vaginal cylinder were modeled. The spatial distribution of absorbed dose rate in uterine cervical cancer (UCCA) treatments was determined under the modality of manual brachytherapy of low dose rate (B-LDR). The design of the model included the gynecological liquid water mannequin, a vaginal cylinder applicator of Lucite (PMMA) with hemisphere termination. The applicator was formed by a vaginal cylinder 10.3 cm long and 2 cm in diameter. This cylinder was mounted on a stainless steel tube 15.2 cm long by 0.6 cm in diameter. A linear array of four radioactive sources of Cesium 137 was inserted into the tube. 13 water cells of 0.5 cm in diameter were modeled around the vaginal cylinder and the absorbed dose was calculated in these. The distribution of the fluence of gamma photons in the mesh was calculated. It was found that the distribution of the absorbed dose is symmetric for cells located in the upper and lower part of the vaginal cylinder. The values of the absorbed dose rate were estimated for the date of manufacture of the sources. This result allows the use of the law of radioactive decay to determine the dose rate at any date of a gynecological treatment of B-LDR. (Author)

  15. Monte Carlo theory and practice

    International Nuclear Information System (INIS)

    James, F.

    1987-01-01

    Historically, the first large-scale calculations to make use of the Monte Carlo method were studies of neutron scattering and absorption, random processes for which it is quite natural to employ random numbers. Such calculations, a subset of Monte Carlo calculations, are known as direct simulation, since the 'hypothetical population' of the narrower definition above corresponds directly to the real population being studied. The Monte Carlo method may be applied wherever it is possible to establish equivalence between the desired result and the expected behaviour of a stochastic system. The problem to be solved may already be of a probabilistic or statistical nature, in which case its Monte Carlo formulation will usually be a straightforward simulation, or it may be of a deterministic or analytic nature, in which case an appropriate Monte Carlo formulation may require some imagination and may appear contrived or artificial. In any case, the suitability of the method chosen will depend on its mathematical properties and not on its superficial resemblance to the problem to be solved. The authors show how Monte Carlo techniques may be compared with other methods of solution of the same physical problem

  16. Monte Carlo techniques for analyzing deep-penetration problems

    International Nuclear Information System (INIS)

    Cramer, S.N.; Gonnord, J.; Hendricks, J.S.

    1986-01-01

    Current methods and difficulties in Monte Carlo deep-penetration calculations are reviewed, including statistical uncertainty and recent adjoint optimization of splitting, Russian roulette, and exponential transformation biasing. Other aspects of the random walk and estimation processes are covered, including the relatively new DXANG angular biasing technique. Specific items summarized are albedo scattering, Monte Carlo coupling techniques with discrete ordinates and other methods, adjoint solutions, and multigroup Monte Carlo. The topic of code-generated biasing parameters is presented, including the creation of adjoint importance functions from forward calculations. Finally, current and future work in the area of computer learning and artificial intelligence is discussed in connection with Monte Carlo applications

  17. Analysis of Order Formation in Block Copolymer Thin Films UsingResonant Soft X-Ray Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Virgili, Justin M.; Tao, Yuefei; Kortright, Jeffrey B.; Balsara,Nitash P.; Segalman, Rachel A.

    2006-11-27

    The lateral order of poly(styrene-block-isoprene) copolymer(PS-b-PI) thin films is characterized by the emerging technique ofresonant soft X-ray scattering (RSOXS) at the carbon K edge and comparedto ordering in bulk samples of the same materials measured usingconventional small-angle X-ray scattering. We show resonance using theoryand experiment that the loss of scattering intensity expected with adecrease in sample volume in the case of thin films can be overcome bytuning X-rays to the pi* resonance of PS or PI. Using RSOXS, we study themicrophase ordering of cylinder- and phere-forming PS-b-PI thin films andcompare these results to position space data obtained by atomic forcemicroscopy. Our ability to examine large sample areas (~;9000 mu m2) byRSOXS enables unambiguous identification of the lateral lattice structurein the thin films. In the case of the sphere-forming copolymer thin film,where the spheres are hexagonally arranged, the average sphere-to-spherespacing is between the bulk (body-centered cubic) nearest neighbor andbulk unit cell spacings. In the case of the cylinder-forming copolymerthin film, the cylinder-to-cylinder spacing is within experimental errorof that obtained in the bulk.

  18. Continuous energy Monte Carlo method based lattice homogeinzation

    International Nuclear Information System (INIS)

    Li Mancang; Yao Dong; Wang Kan

    2014-01-01

    Based on the Monte Carlo code MCNP, the continuous energy Monte Carlo multi-group constants generation code MCMC has been developed. The track length scheme has been used as the foundation of cross section generation. The scattering matrix and Legendre components require special techniques, and the scattering event method has been proposed to solve this problem. Three methods have been developed to calculate the diffusion coefficients for diffusion reactor core codes and the Legendre method has been applied in MCMC. To the satisfaction of the equivalence theory, the general equivalence theory (GET) and the superhomogenization method (SPH) have been applied to the Monte Carlo method based group constants. The super equivalence method (SPE) has been proposed to improve the equivalence. GET, SPH and SPE have been implemented into MCMC. The numerical results showed that generating the homogenization multi-group constants via Monte Carlo method overcomes the difficulties in geometry and treats energy in continuum, thus provides more accuracy parameters. Besides, the same code and data library can be used for a wide range of applications due to the versatility. The MCMC scheme can be seen as a potential alternative to the widely used deterministic lattice codes. (authors)

  19. Simulating polarized light scattering in terrestrial snow based on bicontinuous random medium and Monte Carlo ray tracing

    International Nuclear Information System (INIS)

    Xiong, Chuan; Shi, Jiancheng

    2014-01-01

    To date, the light scattering models of snow consider very little about the real snow microstructures. The ideal spherical or other single shaped particle assumptions in previous snow light scattering models can cause error in light scattering modeling of snow and further cause errors in remote sensing inversion algorithms. This paper tries to build up a snow polarized reflectance model based on bicontinuous medium, with which the real snow microstructure is considered. The accurate specific surface area of bicontinuous medium can be analytically derived. The polarized Monte Carlo ray tracing technique is applied to the computer generated bicontinuous medium. With proper algorithms, the snow surface albedo, bidirectional reflectance distribution function (BRDF) and polarized BRDF can be simulated. The validation of model predicted spectral albedo and bidirectional reflectance factor (BRF) using experiment data shows good results. The relationship between snow surface albedo and snow specific surface area (SSA) were predicted, and this relationship can be used for future improvement of snow specific surface area (SSA) inversion algorithms. The model predicted polarized reflectance is validated and proved accurate, which can be further applied in polarized remote sensing. -- Highlights: • Bicontinuous random medium were used for real snow microstructure modeling. • Photon tracing technique with polarization status tracking ability was applied. • SSA–albedo relationship of snow is close to that of sphere based medium. • Validation of albedo and BRDF showed good results. • Validation of polarized reflectance showed good agreement with experiment data

  20. Coupling an analytical description of anti-scatter grids with simulation software of radiographic systems using Monte Carlo code; Couplage d'une methode de description analytique de grilles anti diffusantes avec un logiciel de simulation de systemes radiographiques base sur un code Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Rinkel, J.; Dinten, J.M.; Tabary, J

    2004-07-01

    The use of focused anti-scatter grids on digital radiographic systems with two-dimensional detectors produces acquisitions with a decreased scatter to primary ratio and thus improved contrast and resolution. Simulation software is of great interest in optimizing grid configuration according to a specific application. Classical simulators are based on complete detailed geometric descriptions of the grid. They are accurate but very time consuming since they use Monte Carlo code to simulate scatter within the high-frequency grids. We propose a new practical method which couples an analytical simulation of the grid interaction with a radiographic system simulation program. First, a two dimensional matrix of probability depending on the grid is created offline, in which the first dimension represents the angle of impact with respect to the normal to the grid lines and the other the energy of the photon. This matrix of probability is then used by the Monte Carlo simulation software in order to provide the final scattered flux image. To evaluate the gain of CPU time, we define the increasing factor as the increase of CPU time of the simulation with as opposed to without the grid. Increasing factors were calculated with the new model and with classical methods representing the grid with its CAD model as part of the object. With the new method, increasing factors are shorter by one to two orders of magnitude compared with the second one. These results were obtained with a difference in calculated scatter of less than five percent between the new and the classical method. (authors)

  1. Experience with the Monte Carlo Method

    Energy Technology Data Exchange (ETDEWEB)

    Hussein, E M.A. [Department of Mechanical Engineering University of New Brunswick, Fredericton, N.B., (Canada)

    2007-06-15

    Monte Carlo simulation of radiation transport provides a powerful research and design tool that resembles in many aspects laboratory experiments. Moreover, Monte Carlo simulations can provide an insight not attainable in the laboratory. However, the Monte Carlo method has its limitations, which if not taken into account can result in misleading conclusions. This paper will present the experience of this author, over almost three decades, in the use of the Monte Carlo method for a variety of applications. Examples will be shown on how the method was used to explore new ideas, as a parametric study and design optimization tool, and to analyze experimental data. The consequences of not accounting in detail for detector response and the scattering of radiation by surrounding structures are two of the examples that will be presented to demonstrate the pitfall of condensed.

  2. Experience with the Monte Carlo Method

    International Nuclear Information System (INIS)

    Hussein, E.M.A.

    2007-01-01

    Monte Carlo simulation of radiation transport provides a powerful research and design tool that resembles in many aspects laboratory experiments. Moreover, Monte Carlo simulations can provide an insight not attainable in the laboratory. However, the Monte Carlo method has its limitations, which if not taken into account can result in misleading conclusions. This paper will present the experience of this author, over almost three decades, in the use of the Monte Carlo method for a variety of applications. Examples will be shown on how the method was used to explore new ideas, as a parametric study and design optimization tool, and to analyze experimental data. The consequences of not accounting in detail for detector response and the scattering of radiation by surrounding structures are two of the examples that will be presented to demonstrate the pitfall of condensed

  3. Extreme control of impulse transmission by cylinder-based nonlinear phononic crystals

    Science.gov (United States)

    Chaunsali, Rajesh; Toles, Matthew; Yang, Jinkyu; Kim, Eunho

    2017-10-01

    We present a novel device that can offer two extremes of elastic wave propagation - nearly complete transmission and strong attenuation under impulse excitation. The mechanism of this highly tunable device relies on intermixing effects of dispersion and nonlinearity. The device consists of identical cylinders arranged in a chain, which interact with each other as per nonlinear Hertz contact law. For a 'dimer' configuration, i.e., two different contact angles alternating in the chain, we analytically, numerically, and experimentally show that impulse excitation can either propagate as a localized wave, or it can travel as a highly dispersive wave. Remarkably, these extremes can be achieved in this periodic arrangement simply by in-situ control of contact angles between cylinders. We close the discussion by highlighting the key characteristics of the mechanisms that facilitate strong attenuation of incident impulse. These include low-to-high frequency scattering, and turbulence-like cascading in a periodic system. We thus envision that these adaptive, cylinder-based nonlinear phononic crystals, in conjunction with conventional impact mitigation mechanisms, could be used to design highly tunable and efficient impact manipulation devices.

  4. Direct simulation Monte Carlo ray tracing model of light scattering by a class of real particles and comparison with PROGRA2 experimental results

    International Nuclear Information System (INIS)

    Mikrenska, M.; Koulev, P.; Renard, J.-B.; Hadamcik, E.; Worms, J.-C.

    2006-01-01

    The Direct Simulation Monte Carlo (DSMC) model is presented for three-dimensional single scattering of natural light by suspended, randomly oriented, optically homogeneous and isotropic, rounded and stochastically rough cubic particles. The modelled particles have large size parameter that allows geometric optics approximation to be used. The proposed computational model is simple and flexible. It is tested by comparison with known geometric optics solution for a perfect cube and Lorenz-Mie solution for a sphere, as extreme cases of the class of rounded cubes. Scattering and polarization properties of particles with various geometrical and optical characteristics are examined. The experimental study of real NaCl crystals with new Progra 2 instrument in microgravity conditions is conducted. The experimental and computed polarization and brightness phase curves are compared

  5. Doses determination in UCCA treatments with LDR brachytherapy using Monte Carlo methods

    International Nuclear Information System (INIS)

    Benites R, J. L.; Vega C, H. R.

    2017-10-01

    Using Monte Carlo methods, with the code MCNP5, a gynecological mannequin and a vaginal cylinder were modeled. The spatial distribution of absorbed dose rate in uterine cervical cancer (UCCA) treatments was determined under the modality of manual brachytherapy of low dose rate (B-LDR). The design of the model included the gynecological liquid water mannequin, a vaginal cylinder applicator of Lucite (PMMA) with hemisphere termination. The applicator was formed by a vaginal cylinder 10.3 cm long and 2 cm in diameter. This cylinder was mounted on a stainless steel tube 15.2 cm long by 0.6 cm in diameter. A linear array of four radioactive sources of Cesium 137 was inserted into the tube. 13 water cells of 0.5 cm in diameter were modeled around the vaginal cylinder and the absorbed dose was calculated in these. The distribution of the fluence of gamma photons in the mesh was calculated. It was found that the distribution of the absorbed dose is symmetric for cells located in the upper and lower part of the vaginal cylinder. The values of the absorbed dose rate were estimated for the date of manufacture of the sources. This result allows the use of the law of radioactive decay to determine the dose rate at any date of a gynecological treatment of B-LDR. (Author)

  6. Quasi-Monte Carlo methods: applications to modeling of light transport in tissue

    Science.gov (United States)

    Schafer, Steven A.

    1996-05-01

    Monte Carlo modeling of light propagation can accurately predict the distribution of light in scattering materials. A drawback of Monte Carlo methods is that they converge inversely with the square root of the number of iterations. Theoretical considerations suggest that convergence which scales inversely with the first power of the number of iterations is possible. We have previously shown that one can obtain at least a portion of that improvement by using van der Corput sequences in place of a conventional pseudo-random number generator. Here, we present our further analysis, and show that quasi-Monte Carlo methods do have limited applicability to light scattering problems. We also discuss potential improvements which may increase the applicability.

  7. Engine Cylinder Temperature Control

    Science.gov (United States)

    Kilkenny, Jonathan Patrick; Duffy, Kevin Patrick

    2005-09-27

    A method and apparatus for controlling a temperature in a combustion cylinder in an internal combustion engine. The cylinder is fluidly connected to an intake manifold and an exhaust manifold. The method and apparatus includes increasing a back pressure associated with the exhaust manifold to a level sufficient to maintain a desired quantity of residual exhaust gas in the cylinder, and varying operation of an intake valve located between the intake manifold and the cylinder to an open duration sufficient to maintain a desired quantity of fresh air from the intake manifold to the cylinder, wherein controlling the quantities of residual exhaust gas and fresh air are performed to maintain the temperature in the cylinder at a desired level.

  8. Delamination of Composite Cylinders

    Science.gov (United States)

    Davies, Peter; Carlsson, Leif A.

    The delamination resistance of filament wound glass/epoxy cylinders has been characterized for a range of winding angles and fracture mode ratios using beam fracture specimens. The results reveal that the delamination fracture resistance increases with increasing winding angle and mode II (shear) fraction (GΠ/G). It was also found that interlaced fiber bundles in the filament wound cylinder wall acted as effective crack arresters in mode I loading. To examine the sensitivity of delamina-tion damage on the strength of the cylinders, external pressure tests were performed on filament-wound glass/epoxy composite cylinders with artificial defects and impact damage. The results revealed that the cylinder strength was insensitive to the presence of single delaminations but impact damage caused reductions in failure pressure. The insensitivity of the failure pressure to a single delamination is attributed to the absence of buckling of the delaminated sublaminates before the cylinder wall collapsed. The impacted cylinders contained multiple delaminations, which caused local reduction in the compressive load capability and reduction in failure pressure. The response of glass/epoxy cylinders was compared to impacted carbon reinforced cylinders. Carbon/epoxy is more sensitive to damage but retains higher implosion resistance while carbon/PEEK shows the opposite trend.

  9. Monte Carlo techniques for analyzing deep penetration problems

    International Nuclear Information System (INIS)

    Cramer, S.N.; Gonnord, J.; Hendricks, J.S.

    1985-01-01

    A review of current methods and difficulties in Monte Carlo deep-penetration calculations is presented. Statistical uncertainty is discussed, and recent adjoint optimization of splitting, Russian roulette, and exponential transformation biasing is reviewed. Other aspects of the random walk and estimation processes are covered, including the relatively new DXANG angular biasing technique. Specific items summarized are albedo scattering, Monte Carlo coupling techniques with discrete ordinates and other methods, adjoint solutions, and multi-group Monte Carlo. The topic of code-generated biasing parameters is presented, including the creation of adjoint importance functions from forward calculations. Finally, current and future work in the area of computer learning and artificial intelligence is discussed in connection with Monte Carlo applications

  10. Monte Carlo techniques for analyzing deep penetration problems

    International Nuclear Information System (INIS)

    Cramer, S.N.; Gonnord, J.; Hendricks, J.S.

    1985-01-01

    A review of current methods and difficulties in Monte Carlo deep-penetration calculations is presented. Statistical uncertainty is discussed, and recent adjoint optimization of splitting, Russian roulette, and exponential transformation biasing is reviewed. Other aspects of the random walk and estimation processes are covered, including the relatively new DXANG angular biasing technique. Specific items summarized are albedo scattering, Monte Carlo coupling techniques with discrete ordinates and other methods, adjoint solutions, and multi-group Monte Carlo. The topic of code-generated biasing parameters is presented, including the creation of adjoint importance functions from forward calculations. Finally, current and future work in the area of computer learning and artificial intelligence is discussed in connection with Monte Carlo applications. 29 refs

  11. Interparticle interactions and structure in nonideal solutions of human serum albumin studied by small-angle neutron scattering and Monte Carlo simulation

    DEFF Research Database (Denmark)

    Sjöberg, B.; Mortensen, K.

    1994-01-01

    of human serum albumin (HSA) up to a concentration of 0.26 g/cm(3) in 1.08 M NaCl. In order to obtain a model for the interactions we have combined the SANS data with results obtained by Monte Carlo simulations where we calculate the structure factor S(Q) and the pair correlation function g......Moderately or highly concentrated nonideal solutions of macromolecules are very important systems e.g. in biology and in many technical processes. In this work we have used the small-angle neutron scattering technique (SANS) to study the interactions and interparticle structure in solutions......(r). The advantage of using the Monte Carlo method is that completely general models for the particle shape and the interactions can be considered. It is found that the SANS data can be explained by a model where the shape of the HSA molecule is approximated by an ellipsoid of revolution with semiaxes a = 6.8 nm...

  12. Internal combustion engine cylinder-to-cylinder balancing with balanced air-fuel ratios

    Science.gov (United States)

    Harris, Ralph E.; Bourn, Gary D.; Smalley, Anthony J.

    2006-01-03

    A method of balancing combustion among cylinders of an internal combustion engine. For each cylinder, a normalized peak firing pressure is calculated as the ratio of its peak firing pressure to its combustion pressure. Each cylinder's normalized peak firing pressure is compared to a target value for normalized peak firing pressure. The fuel flow is adjusted to any cylinder whose normalized peak firing pressure is not substantially equal to the target value.

  13. Monte Carlo-based dose reconstruction in a rat model for scattered ionizing radiation investigations.

    Science.gov (United States)

    Kirkby, Charles; Ghasroddashti, Esmaeel; Kovalchuk, Anna; Kolb, Bryan; Kovalchuk, Olga

    2013-09-01

    In radiation biology, rats are often irradiated, but the precise dose distributions are often lacking, particularly in areas that receive scatter radiation. We used a non-dedicated set of resources to calculate detailed dose distributions, including doses to peripheral organs well outside of the primary field, in common rat exposure settings. We conducted a detailed dose reconstruction in a rat through an analog to the conventional human treatment planning process. The process consisted of: (i) Characterizing source properties of an X-ray irradiator system, (ii) acquiring a computed tomography (CT) scan of a rat model, and (iii) using a Monte Carlo (MC) dose calculation engine to generate the dose distribution within the rat model. We considered cranial and liver irradiation scenarios where the rest of the body was protected by a lead shield. Organs of interest were the brain, liver and gonads. The study also included paired scenarios where the dose to adjacent, shielded rats was determined as a potential control for analysis of bystander effects. We established the precise doses and dose distributions delivered to the peripheral organs in single and paired rats. Mean doses to non-targeted organs in irradiated rats ranged from 0.03-0.1% of the reference platform dose. Mean doses to the adjacent rat peripheral organs were consistent to within 10% those of the directly irradiated rat. This work provided details of dose distributions in rat models under common irradiation conditions and established an effective scenario for delivering only scattered radiation consistent with that in a directly irradiated rat.

  14. Unfolding neutron spectrum with Markov Chain Monte Carlo at MIT research Reactor with He-3 Neutral Current Detectors

    Science.gov (United States)

    Leder, A.; Anderson, A. J.; Billard, J.; Figueroa-Feliciano, E.; Formaggio, J. A.; Hasselkus, C.; Newman, E.; Palladino, K.; Phuthi, M.; Winslow, L.; Zhang, L.

    2018-02-01

    The Ricochet experiment seeks to measure Coherent (neutral-current) Elastic Neutrino-Nucleus Scattering (CEνNS) using dark-matter-style detectors with sub-keV thresholds placed near a neutrino source, such as the MIT (research) Reactor (MITR), which operates at 5.5 MW generating approximately 2.2 × 1018 ν/second in its core. Currently, Ricochet is characterizing the backgrounds at MITR, the main component of which comes in the form of neutrons emitted from the core simultaneous with the neutrino signal. To characterize this background, we wrapped Bonner cylinders around a 32He thermal neutron detector, whose data was then unfolded via a Markov Chain Monte Carlo (MCMC) to produce a neutron energy spectrum across several orders of magnitude. We discuss the resulting spectrum and its implications for deploying Ricochet at the MITR site as well as the feasibility of reducing this background level via the addition of polyethylene shielding around the detector setup.

  15. Monte Carlo modeling of the net effects of coma scattering and thermal reradiation on the energy input to cometary nucleus

    International Nuclear Information System (INIS)

    Salo, H.

    1988-01-01

    A Monte Carlo simulation method is presented that can, to an accuracy of a few percent, calculate the effects of a dusty coma on the total energy input to the cometary nucleus. This method treats nonconservative nonisotropic scattering, as well as the reflection from the nucleus surface. Results are presented as a function of the optical thickness of the dust column in the sun-comet axis. The total energy input to the nucleus appears to be only weakly dependent on the opacity of the coma, the radial distribution of the dust, or the details of the extinction processes. 18 references

  16. Fully iterative scatter corrected digital breast tomosynthesis using GPU-based fast Monte Carlo simulation and composition ratio update

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyungsang; Ye, Jong Chul, E-mail: jong.ye@kaist.ac.kr [Bio Imaging and Signal Processing Laboratory, Department of Bio and Brain Engineering, KAIST 291, Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Lee, Taewon; Cho, Seungryong [Medical Imaging and Radiotherapeutics Laboratory, Department of Nuclear and Quantum Engineering, KAIST 291, Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Seong, Younghun; Lee, Jongha; Jang, Kwang Eun [Samsung Advanced Institute of Technology, Samsung Electronics, 130, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 443-803 (Korea, Republic of); Choi, Jaegu; Choi, Young Wook [Korea Electrotechnology Research Institute (KERI), 111, Hanggaul-ro, Sangnok-gu, Ansan-si, Gyeonggi-do, 426-170 (Korea, Republic of); Kim, Hak Hee; Shin, Hee Jung; Cha, Joo Hee [Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro, 43-gil, Songpa-gu, Seoul, 138-736 (Korea, Republic of)

    2015-09-15

    Purpose: In digital breast tomosynthesis (DBT), scatter correction is highly desirable, as it improves image quality at low doses. Because the DBT detector panel is typically stationary during the source rotation, antiscatter grids are not generally compatible with DBT; thus, a software-based scatter correction is required. This work proposes a fully iterative scatter correction method that uses a novel fast Monte Carlo simulation (MCS) with a tissue-composition ratio estimation technique for DBT imaging. Methods: To apply MCS to scatter estimation, the material composition in each voxel should be known. To overcome the lack of prior accurate knowledge of tissue composition for DBT, a tissue-composition ratio is estimated based on the observation that the breast tissues are principally composed of adipose and glandular tissues. Using this approximation, the composition ratio can be estimated from the reconstructed attenuation coefficients, and the scatter distribution can then be estimated by MCS using the composition ratio. The scatter estimation and image reconstruction procedures can be performed iteratively until an acceptable accuracy is achieved. For practical use, (i) the authors have implemented a fast MCS using a graphics processing unit (GPU), (ii) the MCS is simplified to transport only x-rays in the energy range of 10–50 keV, modeling Rayleigh and Compton scattering and the photoelectric effect using the tissue-composition ratio of adipose and glandular tissues, and (iii) downsampling is used because the scatter distribution varies rather smoothly. Results: The authors have demonstrated that the proposed method can accurately estimate the scatter distribution, and that the contrast-to-noise ratio of the final reconstructed image is significantly improved. The authors validated the performance of the MCS by changing the tissue thickness, composition ratio, and x-ray energy. The authors confirmed that the tissue-composition ratio estimation was quite

  17. Scattering of obliquely incident standing wave by a rotating transversely isotropic cylinder

    CSIR Research Space (South Africa)

    Shatalov, MY

    2006-05-01

    Full Text Available stream_source_info Shatalov2_2006.pdf.txt stream_content_type text/plain stream_size 15905 Content-Encoding UTF-8 stream_name Shatalov2_2006.pdf.txt Content-Type text/plain; charset=UTF-8 1 CSIR Material Science..., Tshwane University of Technology, South Africa. 2 CSIR Material Science and Manufacturing Abstract It is known that vibrating patterns of an isotropic cylinder, subjected to inertial rotation over the symmetry axis, precess in the direction...

  18. Electromagnetic Scattering Analysis of Coated Conductors With Edges Using the Method of Auxiliary Sources (MAS) in Conjunction With the Standard Impedance Boundary Condition (SIBC)

    DEFF Research Database (Denmark)

    Anastassiu, H.T.; D.I.Kaklamani, H.T.; Economou, D.P.

    2002-01-01

    A novel combination of the method of auxiliary sources (MAS) and the standard impedance boundary condition (SIBC) is employed in the analysis of transverse magnetic (TM) plane wave scattering from infinite, coated, perfectly conducting cylinders with square cross sections. The scatterer is initia......A novel combination of the method of auxiliary sources (MAS) and the standard impedance boundary condition (SIBC) is employed in the analysis of transverse magnetic (TM) plane wave scattering from infinite, coated, perfectly conducting cylinders with square cross sections. The scatterer...

  19. Monte Carlo simulations for plasma physics

    International Nuclear Information System (INIS)

    Okamoto, M.; Murakami, S.; Nakajima, N.; Wang, W.X.

    2000-07-01

    Plasma behaviours are very complicated and the analyses are generally difficult. However, when the collisional processes play an important role in the plasma behaviour, the Monte Carlo method is often employed as a useful tool. For examples, in neutral particle injection heating (NBI heating), electron or ion cyclotron heating, and alpha heating, Coulomb collisions slow down high energetic particles and pitch angle scatter them. These processes are often studied by the Monte Carlo technique and good agreements can be obtained with the experimental results. Recently, Monte Carlo Method has been developed to study fast particle transports associated with heating and generating the radial electric field. Further it is applied to investigating the neoclassical transport in the plasma with steep gradients of density and temperatures which is beyong the conventional neoclassical theory. In this report, we briefly summarize the researches done by the present authors utilizing the Monte Carlo method. (author)

  20. Evaluation and comparison of quantitative and qualitative effects of scattering in air and water media in planar and SPECT imaging

    International Nuclear Information System (INIS)

    Saeed Sarkar; Akram Abehesht

    2004-01-01

    In this research the scatter fraction (%SF) in air and water media in both planar and tomographic imaging was evaluated in order to find the differences and assist the nuclear medicine specialists in interpreting the images.Two small Perspex cylinders of equal dimensions, diameter = 5 cm and height = 5 cm, with an angle of 1200 relative to each other was fixed at the bottom of a 22 cm diameter and 26 cm height Perspex cylinder to make a scattering phantom. One of the cylinders was filled with water representing soft tissue while the other one was left empty (air). The big cylinder was filled with water up to the upper level of small cylinders. 2.5 mCi of 99m Tc was mixed uniformly with the water in the big cylinder. Both planar and tomographic images of the phantom were obtained by a single head SPECT system with %20 energy windows. %SF is defined as %SF = (cold/hot) where, cold and hot are the number of counts in ROIs of each small cold cylinder and big hot cylinder respectively. ROIs selected around the image of each cylinder were equal to the exact size of the objects. In planar image the %SF was found to be %3.24±0.03 and % 3.23±0.03 in air and water respectively. On the other hand the %SF in SPECT images were %6.12±0.05 and %4.47±0.04 in air and water respectively. In planar image no difference is seen in %SF between small cylinders containing air and water whereas in SPECT image the %SF in air cylinder is %27 more than the water cylinder. This has caused more blurred edges for the image of air cylinder. Lower %SF in the small water cylinder may be caused by absorption of scattered events in the water medium. The %SF in SPECT is almost twice the planar imaging for water medium, whereas on the average the %SF in planar imaging is almost %60 of the SPECT. These differences account for better contrast and sharper edges of small cold cylinders in planar imaging. (authors)

  1. Acoustic resonances of fluid-immersed elastic cylinders and spheroids: Theory and experiment

    Science.gov (United States)

    Niemiec, Jan; Überall, Herbert; Bao, X. L.

    2002-05-01

    Frequency resonances in the scattering of acoustic waves from a target object are caused by the phase matching of surface waves repeatedly encircling the object. This is exemplified here by considering elastic finite cylinders and spheroids, and the phase-matching condition provides a means of calculating the complex resonance frequencies of such objects. Tank experiments carried out at Catholic University, or at the University of Le Havre, France by G. Maze and J. Ripoche, have been interpreted using this approach. The experiments employed sound pulses to measure arrival times, which allowed identification of the surface paths taken by the surface waves, thus giving rise to resonances in the scattering amplitude. A calculation of the resonance frequencies using the T-matrix approach showed satisfactory agreement with the experimental resonance frequencies that were either measured directly (as at Le Havre), or that were obtained by the interpretation of measured arrival times (at Catholic University) using calculated surface wave paths, and the extraction of resonance frequencies therefrom, on the basis of the phase-matching condition. Results for hemispherically endcapped, evacuated steel cylinders obtained in a lake experiment carried out by the NSWC were interpreted in the same fashion.

  2. IB: A Monte Carlo simulation tool for neutron scattering instrument design under PVM and MPI

    International Nuclear Information System (INIS)

    Zhao Jinkui

    2011-01-01

    Design of modern neutron scattering instruments relies heavily on Monte Carlo simulation tools for optimization. IB is one such tool written in C++ and implemented under Parallel Virtual Machine and the Message Passing Interface. The program was initially written for the design and optimization of the EQ-SANS instrument at the Spallation Neutron Source. One of its features is the ability to group simple instrument components into more complex ones at the user input level, e.g. grouping neutron mirrors into neutron guides and curved benders. The simulation engine manages the grouped components such that neutrons entering a group are properly operated upon by all components, multiple times if needed, before exiting the group. Thus, only a few basic optical modules are needed at the programming level. For simulations that require higher computer speeds, the program can be compiled and run in parallel modes using either the PVM or the MPI architectures.

  3. Monte Carlo simulation of reflection spectra of random multilayer media strongly scattering and absorbing light

    International Nuclear Information System (INIS)

    Meglinskii, I V

    2001-01-01

    The reflection spectra of a multilayer random medium - the human skin - strongly scattering and absorbing light are numerically simulated. The propagation of light in the medium and the absorption spectra are simulated by the stochastic Monte Carlo method, which combines schemes for calculations of real photon trajectories and the statistical weight method. The model takes into account the inhomogeneous spatial distribution of blood vessels, water, and melanin, the degree of blood oxygenation, and the hematocrit index. The attenuation of the incident radiation caused by reflection and refraction at Fresnel boundaries of layers inside the medium is also considered. The simulated reflection spectra are compared with the experimental reflection spectra of the human skin. It is shown that a set of parameters that was used to describe the optical properties of skin layers and their possible variations, despite being far from complete, is nevertheless sufficient for the simulation of the reflection spectra of the human skin and their quantitative analysis. (laser applications and other topics in quantum electronics)

  4. Dual scattering foil design for poly-energetic electron beams

    International Nuclear Information System (INIS)

    Kainz, K K; Antolak, J A; Almond, P R; Bloch, C D; Hogstrom, K R

    2005-01-01

    The laser wakefield acceleration (LWFA) mechanism can accelerate electrons to energies within the 6-20 MeV range desired for therapy application. However, the energy spectrum of LWFA-generated electrons is broad, on the order of tens of MeV. Using existing laser technology, the therapeutic beam might require a significant energy spread to achieve clinically acceptable dose rates. The purpose of this work was to test the assumption that a scattering foil system designed for a mono-energetic beam would be suitable for a poly-energetic beam with a significant energy spread. Dual scattering foil systems were designed for mono-energetic beams using an existing analytical formalism based on Gaussian multiple-Coulomb scattering theory. The design criterion was to create a flat beam that would be suitable for fields up to 25 x 25 cm 2 at 100 cm from the primary scattering foil. Radial planar fluence profiles for poly-energetic beams with energy spreads ranging from 0.5 MeV to 6.5 MeV were calculated using two methods: (a) analytically by summing beam profiles for a range of mono-energetic beams through the scattering foil system, and (b) by Monte Carlo using the EGS/BEAM code. The analytic calculations facilitated fine adjustments to the foil design, and the Monte Carlo calculations enabled us to verify the results of the analytic calculation and to determine the phase-space characteristics of the broadened beam. Results showed that the flatness of the scattered beam is fairly insensitive to the width of the input energy spectrum. Also, results showed that dose calculated by the analytical and Monte Carlo methods agreed very well in the central portion of the beam. Outside the useable field area, the differences between the analytical and Monte Carlo results were small but significant, possibly due to the small angle approximation. However, these did not affect the conclusion that a scattering foil system designed for a mono-energetic beam will be suitable for a poly

  5. ZZ SAIL, Albedo Scattering Data Library for 3-D Monte-Carlo Radiation Transport in LWR Pressure Vessel

    International Nuclear Information System (INIS)

    1982-01-01

    1 - Description of problem or function: Format: SAIL format; Number of groups: 23 neutron / 17 gamma-ray; Nuclides: Type 04 Concrete and Low Carbon Steel (A533B). Origin: Science Applications, Inc (SAI); Weighting spectrum: yes. SAIL is a library of albedo scattering data to be used in three-dimensional Monte Carlo codes to solve radiation transport problems specific to the reactor pressure vessel cavity region of a LWR. The library contains data for Type 04 Concrete and Low Carbon Steel (A533B). 2 - Method of solution: The calculation of the albedo data was perform- ed with a version of the discrete ordinates transport code DOT which treats the transport of neutrons, secondary gamma-rays and gamma- rays in one dimension, while maintaining the complete two-dimension- al treatment of the angular dependence

  6. Inverse Monte Carlo: a unified reconstruction algorithm for SPECT

    International Nuclear Information System (INIS)

    Floyd, C.E.; Coleman, R.E.; Jaszczak, R.J.

    1985-01-01

    Inverse Monte Carlo (IMOC) is presented as a unified reconstruction algorithm for Emission Computed Tomography (ECT) providing simultaneous compensation for scatter, attenuation, and the variation of collimator resolution with depth. The technique of inverse Monte Carlo is used to find an inverse solution to the photon transport equation (an integral equation for photon flux from a specified source) for a parameterized source and specific boundary conditions. The system of linear equations so formed is solved to yield the source activity distribution for a set of acquired projections. For the studies presented here, the equations are solved using the EM (Maximum Likelihood) algorithm although other solution algorithms, such as Least Squares, could be employed. While the present results specifically consider the reconstruction of camera-based Single Photon Emission Computed Tomographic (SPECT) images, the technique is equally valid for Positron Emission Tomography (PET) if a Monte Carlo model of such a system is used. As a preliminary evaluation, experimentally acquired SPECT phantom studies for imaging Tc-99m (140 keV) are presented which demonstrate the quantitative compensation for scatter and attenuation for a two dimensional (single slice) reconstruction. The algorithm may be expanded in a straight forward manner to full three dimensional reconstruction including compensation for out of plane scatter

  7. Experimental validation of the DPM Monte Carlo code using minimally scattered electron beams in heterogeneous media

    International Nuclear Information System (INIS)

    Chetty, Indrin J.; Moran, Jean M.; Nurushev, Teamor S.; McShan, Daniel L.; Fraass, Benedick A.; Wilderman, Scott J.; Bielajew, Alex F.

    2002-01-01

    A comprehensive set of measurements and calculations has been conducted to investigate the accuracy of the Dose Planning Method (DPM) Monte Carlo code for electron beam dose calculations in heterogeneous media. Measurements were made using 10 MeV and 50 MeV minimally scattered, uncollimated electron beams from a racetrack microtron. Source distributions for the Monte Carlo calculations were reconstructed from in-air ion chamber scans and then benchmarked against measurements in a homogeneous water phantom. The in-air spatial distributions were found to have FWHM of 4.7 cm and 1.3 cm, at 100 cm from the source, for the 10 MeV and 50 MeV beams respectively. Energy spectra for the electron beams were determined by simulating the components of the microtron treatment head using the code MCNP4B. Profile measurements were made using an ion chamber in a water phantom with slabs of lung or bone-equivalent materials submerged at various depths. DPM calculations are, on average, within 2% agreement with measurement for all geometries except for the 50 MeV incident on a 6 cm lung-equivalent slab. Measurements using approximately monoenergetic, 50 MeV, 'pencil-beam'-type electrons in heterogeneous media provide conditions for maximum electronic disequilibrium and hence present a stringent test of the code's electron transport physics; the agreement noted between calculation and measurement illustrates that the DPM code is capable of accurate dose calculation even under such conditions. (author)

  8. Evaluation of coverage of enriched UF6 cylinder storage lots by existing criticality accident alarms

    International Nuclear Information System (INIS)

    Lee, B.L. Jr.; Dobelbower, M.C.; Woollard, J.E.; Sutherland, P.J.; Tayloe, R.W. Jr.

    1995-03-01

    The Portsmouth Gaseous Diffusion Plant (PORTS) is leased from the US Department of Energy (DOE) by the United States Enrichment Corporation (USEC), a government corporation formed in 1993. PORTS is in transition from regulation by DOE to regulation by the Nuclear Regulatory Commission (NRC). One regulation is 10 CFR Part 76.89, which requires that criticality alarm systems be provided for the site. PORTS originally installed criticality accident alarm systems in all building for which nuclear criticality accidents were credible. Currently, however, alarm systems are not installed in the enriched uranium hexafluoride (UF 6 ) cylinder storage lots. This report analyzes and documents the extent to which enriched UF 6 cylinder storage lots at PORTS are covered by criticality detectors and alarms currently installed in adjacent buildings. Monte Carlo calculations are performed on simplified models of the cylinder storage lots and adjacent buildings. The storage lots modelled are X-745B, X-745C, X745D, X-745E, and X-745F. The criticality detectors modelled are located in building X-343, the building X-344A/X-342A complex, and portions of building X-330 (see Figures 1 and 2). These criticality detectors are those located closest to the cylinder storage lots. Results of this analysis indicate that the existing criticality detectors currently installed at PORTS are largely ineffective in detecting neutron radiation from criticality accidents in most of the cylinder storage lots at PORTS, except sometimes along portions of their peripheries

  9. Scattering theory approach to electrodynamic Casimir forces

    International Nuclear Information System (INIS)

    Rahi, Sahand Jamal; Kardar, Mehran; Emig, Thorsten; Graham, Noah; Jaffe, Robert L.

    2009-01-01

    We give a comprehensive presentation of methods for calculating the Casimir force to arbitrary accuracy, for any number of objects, arbitrary shapes, susceptibility functions, and separations. The technique is applicable to objects immersed in media other than vacuum, nonzero temperatures, and spatial arrangements in which one object is enclosed in another. Our method combines each object's classical electromagnetic scattering amplitude with universal translation matrices, which convert between the bases used to calculate scattering for each object, but are otherwise independent of the details of the individual objects. The method is illustrated by rederiving the Lifshitz formula for infinite half-spaces, by demonstrating the Casimir-Polder to van der Waals crossover, and by computing the Casimir interaction energy of two infinite, parallel, perfect metal cylinders either inside or outside one another. Furthermore, it is used to obtain new results, namely, the Casimir energies of a sphere or a cylinder opposite a plate, all with finite permittivity and permeability, to leading order at large separation.

  10. Monte Carlo simulation for scanning technique with scattering foil free electron beam: A proof of concept study.

    Directory of Open Access Journals (Sweden)

    Wonmo Sung

    Full Text Available This study investigated the potential of a newly proposed scattering foil free (SFF electron beam scanning technique for the treatment of skin cancer on the irregular patient surfaces using Monte Carlo (MC simulation. After benchmarking of the MC simulations, we removed the scattering foil to generate SFF electron beams. Cylindrical and spherical phantoms with 1 cm boluses were generated and the target volume was defined from the surface to 5 mm depth. The SFF scanning technique with 6 MeV electrons was simulated using those phantoms. For comparison, volumetric modulated arc therapy (VMAT plans were also generated with two full arcs and 6 MV photon beams. When the scanning resolution resulted in a larger separation between beams than the field size, the plan qualities were worsened. In the cylindrical phantom with a radius of 10 cm, the conformity indices, homogeneity indices and body mean doses of the SFF plans (scanning resolution = 1° vs. VMAT plans were 1.04 vs. 1.54, 1.10 vs. 1.12 and 5 Gy vs. 14 Gy, respectively. Those of the spherical phantom were 1.04 vs. 1.83, 1.08 vs. 1.09 and 7 Gy vs. 26 Gy, respectively. The proposed SFF plans showed superior dose distributions compared to the VMAT plans.

  11. Monte Carlo simulation for scanning technique with scattering foil free electron beam: A proof of concept study.

    Science.gov (United States)

    Sung, Wonmo; Park, Jong In; Kim, Jung-In; Carlson, Joel; Ye, Sung-Joon; Park, Jong Min

    2017-01-01

    This study investigated the potential of a newly proposed scattering foil free (SFF) electron beam scanning technique for the treatment of skin cancer on the irregular patient surfaces using Monte Carlo (MC) simulation. After benchmarking of the MC simulations, we removed the scattering foil to generate SFF electron beams. Cylindrical and spherical phantoms with 1 cm boluses were generated and the target volume was defined from the surface to 5 mm depth. The SFF scanning technique with 6 MeV electrons was simulated using those phantoms. For comparison, volumetric modulated arc therapy (VMAT) plans were also generated with two full arcs and 6 MV photon beams. When the scanning resolution resulted in a larger separation between beams than the field size, the plan qualities were worsened. In the cylindrical phantom with a radius of 10 cm, the conformity indices, homogeneity indices and body mean doses of the SFF plans (scanning resolution = 1°) vs. VMAT plans were 1.04 vs. 1.54, 1.10 vs. 1.12 and 5 Gy vs. 14 Gy, respectively. Those of the spherical phantom were 1.04 vs. 1.83, 1.08 vs. 1.09 and 7 Gy vs. 26 Gy, respectively. The proposed SFF plans showed superior dose distributions compared to the VMAT plans.

  12. Response matrix Monte Carlo based on a general geometry local calculation for electron transport

    International Nuclear Information System (INIS)

    Ballinger, C.T.; Rathkopf, J.A.; Martin, W.R.

    1991-01-01

    A Response Matrix Monte Carlo (RMMC) method has been developed for solving electron transport problems. This method was born of the need to have a reliable, computationally efficient transport method for low energy electrons (below a few hundred keV) in all materials. Today, condensed history methods are used which reduce the computation time by modeling the combined effect of many collisions but fail at low energy because of the assumptions required to characterize the electron scattering. Analog Monte Carlo simulations are prohibitively expensive since electrons undergo coulombic scattering with little state change after a collision. The RMMC method attempts to combine the accuracy of an analog Monte Carlo simulation with the speed of the condensed history methods. Like condensed history, the RMMC method uses probability distributions functions (PDFs) to describe the energy and direction of the electron after several collisions. However, unlike the condensed history method the PDFs are based on an analog Monte Carlo simulation over a small region. Condensed history theories require assumptions about the electron scattering to derive the PDFs for direction and energy. Thus the RMMC method samples from PDFs which more accurately represent the electron random walk. Results show good agreement between the RMMC method and analog Monte Carlo. 13 refs., 8 figs

  13. Vector boson scattering at CLIC

    Energy Technology Data Exchange (ETDEWEB)

    Kilian, Wolfgang; Fleper, Christian [Department Physik, Universitaet Siegen, 57068 Siegen (Germany); Reuter, Juergen [DESY Theory Group, 22603 Hamburg (Germany); Sekulla, Marco [Institut fuer Theoretische Physik, Karlsruher Institut fuer Technologie, 76131 Karlsruhe (Germany)

    2016-07-01

    Linear colliders operating in a range of multiple TeV are able to investigate the details of vector boson scattering and electroweak symmetry breaking. We calculate cross sections with the Monte Carlo generator WHIZARD for vector boson scattering processes at the future linear e{sup +} e{sup -} collider CLIC. By finding suitable cuts, the vector boson scattering signal processes are isolated from the background. Finally, we are able to determine exclusion sensitivities on the non-Standard Model parameters of the relevant dimension eight operators.

  14. Markov chain solution of photon multiple scattering through turbid slabs.

    Science.gov (United States)

    Lin, Ying; Northrop, William F; Li, Xuesong

    2016-11-14

    This work introduces a Markov Chain solution to model photon multiple scattering through turbid slabs via anisotropic scattering process, i.e., Mie scattering. Results show that the proposed Markov Chain model agree with commonly used Monte Carlo simulation for various mediums such as medium with non-uniform phase functions and absorbing medium. The proposed Markov Chain solution method successfully converts the complex multiple scattering problem with practical phase functions into a matrix form and solves transmitted/reflected photon angular distributions by matrix multiplications. Such characteristics would potentially allow practical inversions by matrix manipulation or stochastic algorithms where widely applied stochastic methods such as Monte Carlo simulations usually fail, and thus enable practical diagnostics reconstructions such as medical diagnosis, spray analysis, and atmosphere sciences.

  15. Time-resolved diode dosimetry calibration through Monte Carlo modeling for in vivo passive scattered proton therapy range verification.

    Science.gov (United States)

    Toltz, Allison; Hoesl, Michaela; Schuemann, Jan; Seuntjens, Jan; Lu, Hsiao-Ming; Paganetti, Harald

    2017-11-01

    Our group previously introduced an in vivo proton range verification methodology in which a silicon diode array system is used to correlate the dose rate profile per range modulation wheel cycle of the detector signal to the water-equivalent path length (WEPL) for passively scattered proton beam delivery. The implementation of this system requires a set of calibration data to establish a beam-specific response to WEPL fit for the selected 'scout' beam (a 1 cm overshoot of the predicted detector depth with a dose of 4 cGy) in water-equivalent plastic. This necessitates a separate set of measurements for every 'scout' beam that may be appropriate to the clinical case. The current study demonstrates the use of Monte Carlo simulations for calibration of the time-resolved diode dosimetry technique. Measurements for three 'scout' beams were compared against simulated detector response with Monte Carlo methods using the Tool for Particle Simulation (TOPAS). The 'scout' beams were then applied in the simulation environment to simulated water-equivalent plastic, a CT of water-equivalent plastic, and a patient CT data set to assess uncertainty. Simulated detector response in water-equivalent plastic was validated against measurements for 'scout' spread out Bragg peaks of range 10 cm, 15 cm, and 21 cm (168 MeV, 177 MeV, and 210 MeV) to within 3.4 mm for all beams, and to within 1 mm in the region where the detector is expected to lie. Feasibility has been shown for performing the calibration of the detector response for three 'scout' beams through simulation for the time-resolved diode dosimetry technique in passive scattered proton delivery. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  16. Primary and scattering contributions to beta scaled dose point kernels by means of Monte Carlo simulations; Contribuicoes primaria e espalhada para dosimetria beta calculadas pelo dose point kernels empregando simulacoes pelo Metodo Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Valente, Mauro [CONICET - Consejo Nacional de Investigaciones Cientificas y Tecnicas de La Republica Argentina (Conicet), Buenos Aires, AR (Brazil); Botta, Francesca; Pedroli, Guido [European Institute of Oncology, Milan (Italy). Medical Physics Department; Perez, Pedro, E-mail: valente@famaf.unc.edu.ar [Universidad Nacional de Cordoba, Cordoba (Argentina). Fac. de Matematica, Astronomia y Fisica (FaMAF)

    2012-07-01

    Beta-emitters have proved to be appropriate for radioimmunotherapy. The dosimetric characterization of each radionuclide has to be carefully investigated. One usual and practical dosimetric approach is the calculation of dose distribution from a unit point source emitting particles according to any radionuclide of interest, which is known as dose point kernel. Absorbed dose distributions are due to primary and radiation scattering contributions. This work presented a method capable of performing dose distributions for nuclear medicine dosimetry by means of Monte Carlo methods. Dedicated subroutines have been developed in order to separately compute primary and scattering contributions to the total absorbed dose, performing particle transport up to 1 keV or least. Preliminarily, the suitability of the calculation method has been satisfactory, being tested for monoenergetic sources, and it was further applied to the characterization of different beta-minus radionuclides of nuclear medicine interests for radioimmunotherapy. (author)

  17. Monte Carlo study of electron relaxation in graphene with spin polarized, degenerate electron gas in presence of electron-electron scattering

    Science.gov (United States)

    Borowik, Piotr; Thobel, Jean-Luc; Adamowicz, Leszek

    2017-12-01

    The Monte Carlo simulation method is applied to study the relaxation of excited electrons in monolayer graphene. The presence of spin polarized background electrons population, with density corresponding to highly degenerate conditions is assumed. Formulas of electron-electron scattering rates, which properly account for electrons presence in two energetically degenerate, inequivalent valleys in this material are presented. The electron relaxation process can be divided into two phases: thermalization and cooling, which can be clearly distinguished when examining the standard deviation of electron energy distribution. The influence of the exchange effect in interactions between electrons with parallel spins is shown to be important only in transient conditions, especially during the thermalization phase.

  18. Spatial distribution of reflected gamma rays by Monte Carlo simulation

    International Nuclear Information System (INIS)

    Jehouani, A.; Merzouki, A.; Boutadghart, F.; Ghassoun, J.

    2007-01-01

    In nuclear facilities, the reflection of gamma rays of the walls and metals constitutes an unknown origin of radiation. These reflected gamma rays must be estimated and determined. This study concerns reflected gamma rays on metal slabs. We evaluated the spatial distribution of the reflected gamma rays spectra by using the Monte Carlo method. An appropriate estimator for the double differential albedo is used to determine the energy spectra and the angular distribution of reflected gamma rays by slabs of iron and aluminium. We took into the account the principal interactions of gamma rays with matter: photoelectric, coherent scattering (Rayleigh), incoherent scattering (Compton) and pair creation. The Klein-Nishina differential cross section was used to select direction and energy of scattered photons after each Compton scattering. The obtained spectra show peaks at 0.511 * MeV for higher source energy. The Results are in good agreement with those obtained by the TRIPOLI code [J.C. Nimal et al., TRIPOLI02: Programme de Monte Carlo Polycinsetique a Trois dimensions, CEA Rapport, Commissariat a l'Energie Atomique.

  19. Monte Carlo code for neutron radiography

    International Nuclear Information System (INIS)

    Milczarek, Jacek J.; Trzcinski, Andrzej; El-Ghany El Abd, Abd; Czachor, Andrzej

    2005-01-01

    The concise Monte Carlo code, MSX, for simulation of neutron radiography images of non-uniform objects is presented. The possibility of modeling the images of objects with continuous spatial distribution of specific isotopes is included. The code can be used for assessment of the scattered neutron component in neutron radiograms

  20. Monte Carlo code for neutron radiography

    Energy Technology Data Exchange (ETDEWEB)

    Milczarek, Jacek J. [Institute of Atomic Energy, Swierk, 05-400 Otwock (Poland)]. E-mail: jjmilcz@cyf.gov.pl; Trzcinski, Andrzej [Institute for Nuclear Studies, Swierk, 05-400 Otwock (Poland); El-Ghany El Abd, Abd [Institute of Atomic Energy, Swierk, 05-400 Otwock (Poland); Nuclear Research Center, PC 13759, Cairo (Egypt); Czachor, Andrzej [Institute of Atomic Energy, Swierk, 05-400 Otwock (Poland)

    2005-04-21

    The concise Monte Carlo code, MSX, for simulation of neutron radiography images of non-uniform objects is presented. The possibility of modeling the images of objects with continuous spatial distribution of specific isotopes is included. The code can be used for assessment of the scattered neutron component in neutron radiograms.

  1. Reconstruction of Kinematic Surfaces from Scattered Data

    DEFF Research Database (Denmark)

    Randrup, Thomas; Pottmann, Helmut; Lee, I.-K.

    1998-01-01

    Given a surface in 3-space or scattered points from a surface, we present algorithms for fitting the data by a surface which can be generated by a one--parameter subgroup of the group of similarities. These surfaces are general cones and cylinders, surfaces of revolution, helical surfaces and spi...

  2. Gas Cylinder Safety, Course 9518

    Energy Technology Data Exchange (ETDEWEB)

    Glass, George [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-27

    This course, Gas Cylinder Safety (#9518), presents an overview of the hazards and controls associated with handling, storing, using, and transporting gas cylinders. Standard components and markings of gas cylinders are also presented, as well as the process for the procurement, delivery, and return of gas cylinders at Los Alamos National Laboratory (LANL).

  3. Monte Carlo-based investigation of water-equivalence of solid phantoms at 137Cs energy

    International Nuclear Information System (INIS)

    Vishwakarma, Ramkrushna S.; Palani Selvam, T.; Sahoo, Sridhar; Mishra, Subhalaxmi; Chourasiya, Ghanshyam

    2013-01-01

    Investigation of solid phantom materials such as solid water, virtual water, plastic water, RW1, polystyrene, and polymethylmethacrylate (PMMA) for their equivalence to liquid water at 137 Cs energy (photon energy of 662 keV) under full scatter conditions is carried out using the EGSnrc Monte Carlo code system. Monte Carlo-based EGSnrc code system was used in the work to calculate distance-dependent phantom scatter corrections. The study also includes separation of primary and scattered dose components. Monte Carlo simulations are carried out using primary particle histories up to 5 x 10 9 to attain less than 0.3% statistical uncertainties in the estimation of dose. Water equivalence of various solid phantoms such as solid water, virtual water, RW1, PMMA, polystyrene, and plastic water materials are investigated at 137 Cs energy under full scatter conditions. The investigation reveals that solid water, virtual water, and RW1 phantoms are water equivalent up to 15 cm from the source. Phantom materials such as plastic water, PMMA, and polystyrene phantom materials are water equivalent up to 10 cm. At 15 cm from the source, the phantom scatter corrections are 1.035, 1.050, and 0.949 for the phantoms PMMA, plastic water, and polystyrene, respectively. (author)

  4. Determination of the optical properties of turbid media from a single Monte Carlo simulation

    International Nuclear Information System (INIS)

    Kienle, A.; Patterson, M.S.

    1996-01-01

    We describe a fast, accurate method for determination of the optical coefficients of 'semi-infinite' and 'infinite' turbid media. For the particular case of time-resolved reflectance from a biological medium, we show that a single Monte Carlo simulation can be used to fit the data and to derive the absorption and reduced scattering coefficients. Tests with independent Monte Carlo simulations showed that the errors in the deduced absorption and reduced scattering coefficients are smaller than 1% and 2%, respectively. (author)

  5. Scattering of Electromagnetic Waves by Many Nano-Wires

    Directory of Open Access Journals (Sweden)

    Alexander G. Ramm

    2013-07-01

    Full Text Available Electromagnetic wave scattering by many parallel to the z−axis, thin, impedance, parallel, infinite cylinders is studied asymptotically as a → 0. Let Dm be the cross-section of the m−th cylinder, a be its radius and xˆm = (xm1, xm2 be its center, 1 ≤ m ≤ M , M =   M (a. It is assumed that the points, xˆm, are distributed, so that N (∆  = (1 / 2πa * ∫∆ N (xˆdxˆ[1 + o(1], where N (∆ is the number of points, xˆm, in an arbitrary open subset, ∆, of the plane, xoy. The function, N (xˆ ≥ 0, is a continuous function, which an experimentalist can choose. An equation for the self-consistent (effective field is derived as a → 0. A formula is derived for the refraction coefficient in the medium in which many thin impedance cylinders are distributed. These cylinders may model nano-wires embedded in the medium. One can produce a desired refraction coefficient of the new medium by choosing a suitable boundary impedance of the thin cylinders and their distribution law.

  6. A hybrid approach to simulate multiple photon scattering in X-ray imaging

    International Nuclear Information System (INIS)

    Freud, N.; Letang, J.-M.; Babot, D.

    2005-01-01

    A hybrid simulation approach is proposed to compute the contribution of scattered radiation in X- or γ-ray imaging. This approach takes advantage of the complementarity between the deterministic and probabilistic simulation methods. The proposed hybrid method consists of two stages. Firstly, a set of scattering events occurring in the inspected object is determined by means of classical Monte Carlo simulation. Secondly, this set of scattering events is used as a starting point to compute the energy imparted to the detector, with a deterministic algorithm based on a 'forced detection' scheme. For each scattering event, the probability for the scattered photon to reach each pixel of the detector is calculated using well-known physical models (form factor and incoherent scattering function approximations, in the case of Rayleigh and Compton scattering respectively). The results of the proposed hybrid approach are compared to those obtained with the Monte Carlo method alone (Geant4 code) and found to be in excellent agreement. The convergence of the results when the number of scattering events increases is studied. The proposed hybrid approach makes it possible to simulate the contribution of each type (Compton or Rayleigh) and order of scattering, separately or together, with a single PC, within reasonable computation times (from minutes to hours, depending on the number of pixels of the detector). This constitutes a substantial benefit, compared to classical simulation methods (Monte Carlo or deterministic approaches), which usually requires a parallel computing architecture to obtain comparable results

  7. A hybrid approach to simulate multiple photon scattering in X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Freud, N. [CNDRI, Laboratory of Nondestructive Testing using Ionizing Radiations, INSA-Lyon Scientific and Technical University, Bat. Antoine de Saint-Exupery, 20, avenue Albert Einstein, 69621 Villeurbanne Cedex (France)]. E-mail: nicolas.freud@insa-lyon.fr; Letang, J.-M. [CNDRI, Laboratory of Nondestructive Testing using Ionizing Radiations, INSA-Lyon Scientific and Technical University, Bat. Antoine de Saint-Exupery, 20, avenue Albert Einstein, 69621 Villeurbanne Cedex (France); Babot, D. [CNDRI, Laboratory of Nondestructive Testing using Ionizing Radiations, INSA-Lyon Scientific and Technical University, Bat. Antoine de Saint-Exupery, 20, avenue Albert Einstein, 69621 Villeurbanne Cedex (France)

    2005-01-01

    A hybrid simulation approach is proposed to compute the contribution of scattered radiation in X- or {gamma}-ray imaging. This approach takes advantage of the complementarity between the deterministic and probabilistic simulation methods. The proposed hybrid method consists of two stages. Firstly, a set of scattering events occurring in the inspected object is determined by means of classical Monte Carlo simulation. Secondly, this set of scattering events is used as a starting point to compute the energy imparted to the detector, with a deterministic algorithm based on a 'forced detection' scheme. For each scattering event, the probability for the scattered photon to reach each pixel of the detector is calculated using well-known physical models (form factor and incoherent scattering function approximations, in the case of Rayleigh and Compton scattering respectively). The results of the proposed hybrid approach are compared to those obtained with the Monte Carlo method alone (Geant4 code) and found to be in excellent agreement. The convergence of the results when the number of scattering events increases is studied. The proposed hybrid approach makes it possible to simulate the contribution of each type (Compton or Rayleigh) and order of scattering, separately or together, with a single PC, within reasonable computation times (from minutes to hours, depending on the number of pixels of the detector). This constitutes a substantial benefit, compared to classical simulation methods (Monte Carlo or deterministic approaches), which usually requires a parallel computing architecture to obtain comparable results.

  8. Fiber Tracking Cylinder Nesting

    International Nuclear Information System (INIS)

    Stredde, H.

    1999-01-01

    The fiber tracker consists of 8 concentric carbon fiber cylinders of varying diameters, from 399mm to 1032.2mm and two different lengths. 1.66 and 2.52 meters. Each completed cylinder is covered over the entire o.d. with scintillating fiber ribbons with a connector on each ribbon. These ribbons are axial (parallel to the beam line) at one end and stereo (at 3 deg. to the beam line) at the other. The ribbon connectors have dowel pins which are used to match with the connectors on the wave guide ribbons. These dowel pins are also used during the nesting operation, locating and positioning measurements. The nesting operation is the insertion of one cylinder into another, aligning them with one another and fastening them together into a homogeneous assembly. For ease of assembly. the nesting operation is accomplished working from largest diameter to smallest. Although the completed assembly of all 8 cylinders glued and bolted together is very stiff. individual cylinders are relatively flexible. Therefore. during this operation, No.8 must be supported in a manner which maintains its integrity and yet allows the insertion of No.7. This is accomplished by essentially building a set of dummy end plates which replicate a No.9 cylinder. These end plates are mounted on a wheeled cart that becomes the nesting cart. Provisions for a protective cover fastened to these rings has been made and will be incorporated in finished product. These covers can be easily removed for access to No.8 and/or the connection of No.8 to No.9. Another wheeled cart, transfer cart, is used to push a completed cylinder into the cylinder(s) already mounted in the nesting cart.

  9. Monte Carlo simulation of a mammographic test phantom

    International Nuclear Information System (INIS)

    Hunt, R. A.; Dance, D. R.; Pachoud, M.; Carlsson, G. A.; Sandborg, M.; Ullman, G.

    2005-01-01

    A test phantom, including a wide range of mammographic tissue equivalent materials and test details, was imaged on a digital mammographic system. In order to quantify the effect of scatter on the contrast obtained for the test details, calculations of the scatter-to-primary ratio (S/P) have been made using a Monte Carlo simulation of the digital mammographic imaging chain, grid and test phantom. The results show that the S/P values corresponding to the imaging conditions used were in the range 0.084-0.126. Calculated and measured pixel values in different regions of the image were compared as a validation of the model and showed excellent agreement. The results indicate the potential of Monte Carlo methods in the image quality-patient dose process optimisation, especially in the assessment of imaging conditions not available on standard mammographic units. (authors)

  10. Monte Carlo Methods in ICF

    Science.gov (United States)

    Zimmerman, George B.

    Monte Carlo methods appropriate to simulate the transport of x-rays, neutrons, ions and electrons in Inertial Confinement Fusion targets are described and analyzed. The Implicit Monte Carlo method of x-ray transport handles symmetry within indirect drive ICF hohlraums well, but can be improved 50X in efficiency by angular biasing the x-rays towards the fuel capsule. Accurate simulation of thermonuclear burn and burn diagnostics involves detailed particle source spectra, charged particle ranges, inflight reaction kinematics, corrections for bulk and thermal Doppler effects and variance reduction to obtain adequate statistics for rare events. It is found that the effects of angular Coulomb scattering must be included in models of charged particle transport through heterogeneous materials.

  11. Monte Carlo methods in ICF

    International Nuclear Information System (INIS)

    Zimmerman, George B.

    1997-01-01

    Monte Carlo methods appropriate to simulate the transport of x-rays, neutrons, ions and electrons in Inertial Confinement Fusion targets are described and analyzed. The Implicit Monte Carlo method of x-ray transport handles symmetry within indirect drive ICF hohlraums well, but can be improved 50X in efficiency by angular biasing the x-rays towards the fuel capsule. Accurate simulation of thermonuclear burn and burn diagnostics involves detailed particle source spectra, charged particle ranges, inflight reaction kinematics, corrections for bulk and thermal Doppler effects and variance reduction to obtain adequate statistics for rare events. It is found that the effects of angular Coulomb scattering must be included in models of charged particle transport through heterogeneous materials

  12. Monte Carlo simulation of virtual compton scattering at MAMI

    International Nuclear Information System (INIS)

    D'Hose, N.; Ducret, J.E.; Gousset, TH.; Guichon, P.A.M.; Kerhoas, S.; Lhuillier, D.; Marchand, C.; Marchand, D.; Martino, J.; Mougey, J.; Roche, J.; Vanderhaeghen, M.; Vernin, P.; Bohm, H.; Distler, M.; Edelhoff, R.; Friedrich, J.M.; Geiges, R.; Jennewein, P.; Kahrau, M.; Korn, M.; Kramer, H.; Krygier, K.W.; Kunde, V.; Liesenfeld, A.; Merkel, H.; Merle, K.; Neuhausen, R.; Pospischil, TH.; Rosner, G.; Sauer, P.; Schmieden, H.; Schardt, S.; Tamas, G.; Wagner, A.; Walcher, TH.; Wolf, S.; Hyde-Wright, CH.; Boeglin, W.U.; Van de Wiele, J.

    1996-01-01

    The Monte Carlo simulation developed specially for the VCS experiments taking place at MAMI in fully described. This simulation can generate events according to the Bethe-Heitler + Born cross section behaviour and takes into account resolution deteriorating effects. It is used to determine solid angles for the various experimental settings. (authors)

  13. Acoustic backscattering and radiation force on a rigid elliptical cylinder in plane progressive waves.

    Science.gov (United States)

    Mitri, F G

    2016-03-01

    This work proposes a formal analytical theory using the partial-wave series expansion (PWSE) method in cylindrical coordinates, to calculate the acoustic backscattering form function as well as the radiation force-per-length on an infinitely long elliptical (non-circular) cylinder in plane progressive waves. The major (or minor) semi-axis of the ellipse coincides with the direction of the incident waves. The scattering coefficients for the rigid elliptical cylinder are determined by imposing the Neumann boundary condition for an immovable surface and solving a resulting system of linear equations by matrix inversion. The present method, which utilizes standard cylindrical (Bessel and Hankel) wave functions, presents an advantage over the solution for the scattering that is ordinarily expressed in a basis of elliptical Mathieu functions (which are generally non-orthogonal). Furthermore, an integral equation showing the direct connection of the radiation force function with the square of the scattering form function in the far-field from the scatterer (applicable for plane waves only), is noted and discussed. An important application of this integral equation is the adequate evaluation of the radiation force function from a bistatic measurement (i.e., in the polar plane) of the far-field scattering from any 2D object of arbitrary shape. Numerical predictions are evaluated for the acoustic backscattering form function and the radiation force function, which is the radiation force per unit length, per characteristic energy density, and per unit cross-sectional surface of the ellipse, with particular emphasis on the aspect ratio a/b, where a and b are the semi-axes, as well as the dimensionless size parameter kb, without the restriction to a particular range of frequencies. The results are particularly relevant in acoustic levitation, acousto-fluidics and particle dynamics applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Antennas on circular cylinders

    DEFF Research Database (Denmark)

    Knudsen, H. L.

    1959-01-01

    On the basis of the results obtained by Silver and Saunders [4] for the field radiated from an arbitrary slot in a perfectly conducting circular cylinder, expressions have been derived for the field radiated by a narrow helical slot, with an arbitrary aperture field distribution, in a circular...... antenna in a circular cylinder. By a procedure similar to the one used by Silver and Saunders, expressions have been derived for the field radiated from an arbitrary surface current distribution on a cylinder surface coaxial with a perfectly conducting cylinder. The cases where the space between the two...

  15. Certain theories of multiple scattering in random media of discrete scatterers

    International Nuclear Information System (INIS)

    Olsen, R.L.; Kharadly, M.M.Z.; Corr, D.G.

    1976-01-01

    New information is presented on the accuracy of the heuristic approximations in two important theories of multiple scattering in random media of discrete scatterers: Twersky's ''free-space'' and ''two-space scatterer'' formalisms. Two complementary approaches, based primarily on a one-dimensional model and the one-dimensional forms of the theories, are used. For scatterer distributions of low average density, the ''heuristic'' asymptotic forms for the coherent field and the incoherent intensity are compared with asymptotic forms derived from a systematic analysis of the multiple scattering processes. For distributions of higher density, both in the average number of scatterers per wavelength and in the degree of packing of finite-size scatterers, the analysis is carried out ''experimentally'' by means of a Monte Carlo computer simulation. Approximate series expressions based on the systematic approach are numerically evaluated along with the heuristic expressions. The comparison (for both forward- and back-scattered field moments) is made for the worst-case conditions of strong multiple scattering for which the theories have not previously been evaluated. Several significant conclusions are drawn which have certain practical implications: in application of the theories to describe some of the scattering phenomena which occur in the troposphere, and in the further evaluation of the theories using experiments on physical models

  16. Monte Carlo determination of heteroepitaxial misfit structures

    DEFF Research Database (Denmark)

    Baker, J.; Lindgård, Per-Anker

    1996-01-01

    We use Monte Carlo simulations to determine the structure of KBr overlayers on a NaCl(001) substrate, a system with large (17%) heteroepitaxial misfit. The equilibrium relaxation structure is determined for films of 2-6 ML, for which extensive helium-atom scattering data exist for comparison...

  17. Wake flow behaviour behind a smaller cylinder oscillating in the wake of an upstream stationary cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yangyang; Sun, Zhilin [Ocean College, Zhejiang University, Hangzhou 310058 (China); Tan, Danielle S [Maritime Research Centre, Nanyang Technological University, Singapore 639798 (Singapore); Yu, Dingyong [College of Engineering, Ocean University of China, 266100 (China); Tan, Soon Keat, E-mail: yygao@zju.edu.cn [Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 639798 (Singapore)

    2014-04-01

    The flow patterns around a cylinder oscillating freely in the wake of a larger cylinder upstream were investigated using the particle image velocimetry technique. The upstream cylinder was fixed at both ends while the downstream smaller cylinder was held by springs such that it was free to oscillate in the transverse direction. The flow patterns, amplitudes of oscillation and vortex shedding frequencies were compared with those of a single cylinder. In the presence of the upstream cylinder, the three parameters characterizing the oscillation response of the smaller cylinder—amplitude of oscillation, vortex shedding frequency and Reynolds stresses—were greatly reduced. While their magnitude increased with gap ratio, these three parameters were still smaller than the corresponding magnitudes for a single oscillating cylinder. The peak values of turbulence statistics such as Reynolds shear stress and normal stress behind the oscillating downstream cylinder were similarly reduced, and increased with gap ratios. (paper)

  18. Heuristic geometric ''eigenvalue universality'' in a one-dimensional neutron transport problem with anisotropic scattering

    International Nuclear Information System (INIS)

    Goncalves, G.A.; Vilhena, M.T. de; Bodmann, B.E.J.

    2010-01-01

    In the present work we propose a heuristic construction of a transport equation for neutrons with anisotropic scattering considering only the radial cylinder dimension. The eigenvalues of the solutions of the equation correspond to the positive values for the one dimensional case. The central idea of the procedure is the application of the S N method for the discretisation of the angular variable followed by the application of the zero order Hankel transformation. The basis the construction of the scattering terms in form of an integro-differential equation for stationary transport resides in the hypothesis that the eigenvalues that compose the elementary solutions are independent of geometry for a homogeneous medium. We compare the solutions for the cartesian one dimensional problem for an infinite cylinder with azimuthal symmetry and linear anisotropic scattering for two cases. (orig.)

  19. Monte Carlo study of the effective Sherman function for electron polarimetry

    International Nuclear Information System (INIS)

    Drągowski, M.; Włodarczyk, M.; Weber, G.; Ciborowski, J.; Enders, J.; Fritzsche, Y.; Poliszczuk, A.

    2016-01-01

    The PEBSI Monte Carlo simulation was upgraded towards usefulness for electron Mott polarimetry. The description of Mott scattering was improved and polarisation transfer in Møller scattering was included in the code. An improved agreement was achieved between the simulation and available experimental data for a 100 keV polarised electron beam scattering off gold foils of various thicknesses. The dependence of the effective Sherman function on scattering angle and target thickness, as well as the method of finding optimal conditions for Mott polarimetry measurements were analysed.

  20. Propagation of liquid surface waves over finite graphene structured arrays of cylinders

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Based on the multiple scattering method,this paper investigates a benchmark problem of the propagation of liquid surface waves over finite graphene (or honeycomb) structured arrays of cylinders.Comparing the graphene structured array with the square structured and with triangle structured arrays,it finds that the finite graphene structure can produce more complete band gaps than the other finite structures,and the finite graphene structure has less localized ability than the other finite structures.

  1. Monte Carlo simulation for radiographic applications

    International Nuclear Information System (INIS)

    Tillack, G.R.; Bellon, C.

    2003-01-01

    Standard radiography simulators are based on the attenuation law complemented by built-up-factors (BUF) to describe the interaction of radiation with material. The assumption of BUF implies that scattered radiation reduces only the contrast in radiographic images. This simplification holds for a wide range of applications like weld inspection as known from practical experience. But only a detailed description of the different underlying interaction mechanisms is capable to explain effects like mottling or others that every radiographer has experienced in practice. The application of Monte Carlo models is capable to handle primary and secondary interaction mechanisms contributing to the image formation process like photon interactions (absorption, incoherent and coherent scattering including electron-binding effects, pair production) and electron interactions (electron tracing including X-Ray fluorescence and Bremsstrahlung production). It opens up possibilities like the separation of influencing factors and the understanding of the functioning of intensifying screen used in film radiography. The paper discusses the opportunities in applying the Monte Carlo method to investigate special features in radiography in terms of selected examples. (orig.) [de

  2. Patient-specific scatter correction in clinical cone beam computed tomography imaging made possible by the combination of Monte Carlo simulations and a ray tracing algorithm

    International Nuclear Information System (INIS)

    Thing, Rune S.; Bernchou, Uffe; Brink, Carsten; Mainegra-Hing, Ernesto

    2013-01-01

    Purpose: Cone beam computed tomography (CBCT) image quality is limited by scattered photons. Monte Carlo (MC) simulations provide the ability of predicting the patient-specific scatter contamination in clinical CBCT imaging. Lengthy simulations prevent MC-based scatter correction from being fully implemented in a clinical setting. This study investigates the combination of using fast MC simulations to predict scatter distributions with a ray tracing algorithm to allow calibration between simulated and clinical CBCT images. Material and methods: An EGSnrc-based user code (egs c bct), was used to perform MC simulations of an Elekta XVI CBCT imaging system. A 60keV x-ray source was used, and air kerma scored at the detector plane. Several variance reduction techniques (VRTs) were used to increase the scatter calculation efficiency. Three patient phantoms based on CT scans were simulated, namely a brain, a thorax and a pelvis scan. A ray tracing algorithm was used to calculate the detector signal due to primary photons. A total of 288 projections were simulated, one for each thread on the computer cluster used for the investigation. Results: Scatter distributions for the brain, thorax and pelvis scan were simulated within 2 % statistical uncertainty in two hours per scan. Within the same time, the ray tracing algorithm provided the primary signal for each of the projections. Thus, all the data needed for MC-based scatter correction in clinical CBCT imaging was obtained within two hours per patient, using a full simulation of the clinical CBCT geometry. Conclusions: This study shows that use of MC-based scatter corrections in CBCT imaging has a great potential to improve CBCT image quality. By use of powerful VRTs to predict scatter distributions and a ray tracing algorithm to calculate the primary signal, it is possible to obtain the necessary data for patient specific MC scatter correction within two hours per patient

  3. Problems in radiation shielding calculations with Monte Carlo methods

    International Nuclear Information System (INIS)

    Ueki, Kohtaro

    1985-01-01

    The Monte Carlo method is a very useful tool for solving a large class of radiation transport problem. In contrast with deterministic method, geometric complexity is a much less significant problem for Monte Carlo calculations. However, the accuracy of Monte Carlo calculations is of course, limited by statistical error of the quantities to be estimated. In this report, we point out some typical problems to solve a large shielding system including radiation streaming. The Monte Carlo coupling technique was developed to settle such a shielding problem accurately. However, the variance of the Monte Carlo results using the coupling technique of which detectors were located outside the radiation streaming, was still not enough. So as to bring on more accurate results for the detectors located outside the streaming and also for a multi-legged-duct streaming problem, a practicable way of ''Prism Scattering technique'' is proposed in the study. (author)

  4. Wave bandgap formation and its evolution in two-dimensional phononic crystals composed of rubber matrix with periodic steel quarter-cylinders

    Science.gov (United States)

    Li, Peng; Wang, Guan; Luo, Dong; Cao, Xiaoshan

    2018-02-01

    The band structure of a two-dimensional phononic crystal, which is composed of four homogenous steel quarter-cylinders immersed in rubber matrix, is investigated and compared with the traditional steel/rubber crystal by the finite element method (FEM). It is revealed that the frequency can then be tuned by changing the distance between adjacent quarter-cylinders. When the distance is relatively small, the integrality of scatterers makes the inner region inside them almost motionless, so that they can be viewed as a whole at high-frequencies. In the case of relatively larger distance, the interaction between each quarter-cylinder and rubber will introduce some new bandgaps at relatively low-frequencies. Lastly, the point defect states induced by the four quarter-cylinders are revealed. These results will be helpful in fabricating devices, such as vibration insulators and acoustic/elastic filters, whose band frequencies can be manipulated artificially.

  5. POLARIZATION IMAGING AND SCATTERING MODEL OF CANCEROUS LIVER TISSUES

    Directory of Open Access Journals (Sweden)

    DONGZHI LI

    2013-07-01

    Full Text Available We apply different polarization imaging techniques for cancerous liver tissues, and compare the relative contrasts for difference polarization imaging (DPI, degree of polarization imaging (DOPI and rotating linear polarization imaging (RLPI. Experimental results show that a number of polarization imaging parameters are capable of differentiating cancerous cells in isotropic liver tissues. To analyze the contrast mechanism of the cancer-sensitive polarization imaging parameters, we propose a scattering model containing two types of spherical scatterers and carry on Monte Carlo simulations based on this bi-component model. Both the experimental and Monte Carlo simulated results show that the RLPI technique can provide a good imaging contrast of cancerous tissues. The bi-component scattering model provides a useful tool to analyze the contrast mechanism of polarization imaging of cancerous tissues.

  6. Recent developments of JAEA's Monte Carlo Code MVP for reactor physics applications

    International Nuclear Information System (INIS)

    Nagaya, Y.; Okumura, K.; Mori, T.

    2013-01-01

    MVP is a general-purpose continuous-energy Monte Carlo code for neutron and photon transport calculations that has been developed since the late 1980's at Japan Atomic Energy Agency (JAEA, formerly JAERI). The MVP code is designed for nuclear reactor applications such as reactor core design/analysis, criticality safety and reactor shielding. This paper describes the MVP code and present its latest developments. Among the new capabilities of MVP we find: -) the perturbation method has been implemented for the change in k(eff); -) the eigenvalue calculations can be performed with an explicit treatment of delayed neutrons in which their fission spectra are taken into account; -) the capability of tallying the scattering matrix (group-to-group scattering cross sections); -) the implementation of an exact model for resonance elastic scattering; and -) a Monte Carlo perturbation technique is used to calculate reactor kinetics parameters

  7. Algorithm simulating the atom displacement processes induced by the gamma rays on the base of Monte Carlo method

    International Nuclear Information System (INIS)

    Cruz, C. M.; Pinera, I; Abreu, Y.; Leyva, A.

    2007-01-01

    Present work concerns with the implementation of a Monte Carlo based calculation algorithm describing particularly the occurrence of Atom Displacements induced by the Gamma Radiation interactions at a given target material. The Atom Displacement processes were considered only on the basis of single elastic scattering interactions among fast secondary electrons with matrix atoms, which are ejected from their crystalline sites at recoil energies higher than a given threshold energy. The secondary electron transport was described assuming typical approaches on this matter, where consecutive small angle scattering and very low energy transfer events behave as a continuously cuasi-classical electron state changes along a given path length delimited by two discrete high scattering angle and electron energy losses events happening on a random way. A limiting scattering angle was introduced and calculated according Moliere-Bethe-Goudsmit-Saunderson Electron Multiple Scattering, which allows splitting away secondary electrons single scattering processes from multiple one, according which a modified McKinley-Feshbach electron elastic scattering cross section arises. This distribution was statistically sampled and simulated in the framework of the Monte Carlo Method to perform discrete single electron scattering processes, particularly those leading to Atom Displacement events. The possibility of adding this algorithm to present existing open Monte Carlo code systems is analyze, in order to improve their capabilities. (Author)

  8. Monte Carlo simulation of the dose distribution around the {sup 125}I model 6711 seed as function of radius of the silver cylinder using the Penelope code; Simulacion por el Metodo de Monte Carlo de la distribucion de dosis alrededor de la semilla de {sup 125}I modelo 6711 en funcion del radio del cilindro de plata usando el codigo Penelope

    Energy Technology Data Exchange (ETDEWEB)

    Nerio, U. [Universidad de Cordoba, Monteria (Colombia); Instituto Nacional de Cancerologia, Bogota (Colombia); Chica, L. [Universidad Nacional de Colombia, Bogota (Colombia); Paul, A. [Universite de la Mediterranee, Marseille (France)

    2004-07-01

    The Monte Carlo method is applied to find the dose rates distribution in tissue around {sup 125} I seeds model 6711 as a function of the silver cylinder radius, R{sub sc} (0.017, 0.021, 0.025, 0.029 and 0.033) cm are used as radius values. It is found here that the dose rate at any point within the tissue decreases as R{sub sc} increases. The relative difference of dose rate that produced by the standard R{sub sc} seed, is less than 5%, for seeds with Rsc between 0.017 and 0.033 cm. (author)

  9. Monte Carlo methods in ICF

    International Nuclear Information System (INIS)

    Zimmerman, G.B.

    1997-01-01

    Monte Carlo methods appropriate to simulate the transport of x-rays, neutrons, ions and electrons in Inertial Confinement Fusion targets are described and analyzed. The Implicit Monte Carlo method of x-ray transport handles symmetry within indirect drive ICF hohlraums well, but can be improved 50X in efficiency by angular biasing the x-rays towards the fuel capsule. Accurate simulation of thermonuclear burn and burn diagnostics involves detailed particle source spectra, charged particle ranges, inflight reaction kinematics, corrections for bulk and thermal Doppler effects and variance reduction to obtain adequate statistics for rare events. It is found that the effects of angular Coulomb scattering must be included in models of charged particle transport through heterogeneous materials. copyright 1997 American Institute of Physics

  10. MONTE CARLO SIMULATION MODEL OF ENERGETIC PROTON TRANSPORT THROUGH SELF-GENERATED ALFVEN WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Afanasiev, A.; Vainio, R., E-mail: alexandr.afanasiev@helsinki.fi [Department of Physics, University of Helsinki (Finland)

    2013-08-15

    A new Monte Carlo simulation model for the transport of energetic protons through self-generated Alfven waves is presented. The key point of the model is that, unlike the previous ones, it employs the full form (i.e., includes the dependence on the pitch-angle cosine) of the resonance condition governing the scattering of particles off Alfven waves-the process that approximates the wave-particle interactions in the framework of quasilinear theory. This allows us to model the wave-particle interactions in weak turbulence more adequately, in particular, to implement anisotropic particle scattering instead of isotropic scattering, which the previous Monte Carlo models were based on. The developed model is applied to study the transport of flare-accelerated protons in an open magnetic flux tube. Simulation results for the transport of monoenergetic protons through the spectrum of Alfven waves reveal that the anisotropic scattering leads to spatially more distributed wave growth than isotropic scattering. This result can have important implications for diffusive shock acceleration, e.g., affect the scattering mean free path of the accelerated particles in and the size of the foreshock region.

  11. Effect of longitudinal and transverse vibrations of an upstream square cylinder on vortex shedding behind two inline square cylinders

    International Nuclear Information System (INIS)

    Patil, Pratish P; Tiwari, Shaligram

    2009-01-01

    The characteristics of unsteady wakes behind a stationary square cylinder and another upstream vibrating square cylinder have been investigated numerically with the help of a developed computational code. The effect of longitudinal as well as transverse vibrations of the upstream cylinder is studied on the coupled wake between the two cylinders, which is found to control the vortex shedding behavior behind the downstream stationary cylinder. Computations are carried out for a fixed value of Reynolds number (Re = 200) and three different values of excitation frequencies of the upstream cylinder, namely less than, equal to and greater than the natural frequency of vortex shedding corresponding to flow past a stationary square cylinder. The vortex shedding characteristics of the unsteady wakes behind the vibrating and stationary cylinders are found to differ significantly for longitudinal and transverse modes of vibration of the upstream cylinder. The wake of the downstream stationary cylinder is found to depict a synchronization behavior with the upstream cylinder vibration. The spacing between the two cylinders has been identified to be the key parameter influencing the synchronization phenomenon. The effect of cylinder spacing on the wake synchronization and the hydrodynamic forces has been examined. In addition, a comparison of the drag forces for flow past transversely vibrating square and circular cylinders for similar amplitudes and frequencies of cylinder vibration has been presented while employing the tested computational code.

  12. Testing results of Monte Carlo sampling processes in MCSAD

    International Nuclear Information System (INIS)

    Pinnera, I.; Cruz, C.; Abreu, Y.; Leyva, A.; Correa, C.; Demydenko, C.

    2009-01-01

    The Monte Carlo Simulation of Atom Displacements (MCSAD) is a code implemented by the authors to simulate the complete process of atom displacement (AD) formation. This code makes use of the Monte Carlo (MC) method to sample all the processes involved in the gamma and electronic radiation transport through matter. The kernel of the calculations applied to this code relies on a model based on an algorithm developed by the authors, which firstly splits out multiple electron elastic scattering events from those single ones at higher scattering angles and then, from the last one, sampling those leading to AD at high transferred atomic recoil energies. Some tests have been developed to check the sampling algorithms with the help of the corresponding theoretical distribution functions. Satisfactory results have been obtained, which indicate the strength of the methods and subroutines used in the code. (Author)

  13. Monte Carlo simulation of fast neutron scattering experiments including DD-breakup neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, D.; Siebert, B.R.L.

    1993-06-01

    The computational simulation of the deuteron breakup in a scattering experiment has been investigated. Experimental breakup spectra measured at 16 deuteron energies and at 7 angles for each energy served as the data base. Analysis of these input data and of the conditions of the scattering experiment made it possible to reduce the input data. The use of one weighted breakup spectrum is sufficient to simulate the scattering spectra at one incident neutron energy. A number of tests were carried out to prove the validity of this result. The simulation of neutron scattering on carbon, including the breakup, was compared with measured spectra. Differences between calculated and measured spectra were for the most part within the experimental uncertainties. Certain significant deviations can be attributed to erroneous scattering cross sections taken from an evaluation and used in the simulation. Scattering on higher-lying states in [sup 12]C can be analyzed by subtracting the simulated breakup-scattering from the experimental spectra. (orig.)

  14. Monte Carlo simulation of fast neutron scattering experiments including DD-breakup neutrons

    International Nuclear Information System (INIS)

    Schmidt, D.; Siebert, B.R.L.

    1993-06-01

    The computational simulation of the deuteron breakup in a scattering experiment has been investigated. Experimental breakup spectra measured at 16 deuteron energies and at 7 angles for each energy served as the data base. Analysis of these input data and of the conditions of the scattering experiment made it possible to reduce the input data. The use of one weighted breakup spectrum is sufficient to simulate the scattering spectra at one incident neutron energy. A number of tests were carried out to prove the validity of this result. The simulation of neutron scattering on carbon, including the breakup, was compared with measured spectra. Differences between calculated and measured spectra were for the most part within the experimental uncertainties. Certain significant deviations can be attributed to erroneous scattering cross sections taken from an evaluation and used in the simulation. Scattering on higher-lying states in 12 C can be analyzed by subtracting the simulated breakup-scattering from the experimental spectra. (orig.)

  15. Dynamic Friction Performance of a Pneumatic Cylinder with Al2O3 Film on Cylinder Surface.

    Science.gov (United States)

    Chang, Ho; Lan, Chou-Wei; Wang, Hao-Xian

    2015-11-01

    A friction force system is proposed for accurately measuring friction force and motion properties produced by reciprocating motion of piston in a pneumatic cylinder. In this study, the proposed system is used to measure the effects of lubricating greases of different viscosities on the friction properties of pneumatic cylinder, and improvement of stick-slip motion for the cylinder bore by anodizing processes. A servo motor-driven ball screw is used to drive the pneumatic cylinder to be tested and to measure the change in friction force of the pneumatic cylinder. Experimental results show, that under similar test conditions, the lubricating grease with viscosity VG100 is best suited for measuring reciprocating motion of the piston of pneumatic cylinder. The wear experiment showed that, in the Al2O3 film obtained at a preset voltage 40 V in the anodic process, the friction coefficient and hardness decreased by 55% and increased by 274% respectively, thus achieving a good tribology and wear resistance. Additionally, the amplitude variation in the friction force of the pneumatic cylinder wall that received the anodizing treatment was substantially reduced. Additionally, the stick-slip motion of the pneumatic cylinder during low-speed motion was substantially improved.

  16. MCViNE – An object oriented Monte Carlo neutron ray tracing simulation package

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jiao Y.Y., E-mail: linjiao@ornl.gov [Caltech Center for Advanced Computing Research, California Institute of Technology (United States); Department of Applied Physics and Materials Science, California Institute of Technology (United States); Neutron Data Analysis and Visualization Division, Oak Ridge National Laboratory (United States); Smith, Hillary L. [Department of Applied Physics and Materials Science, California Institute of Technology (United States); Granroth, Garrett E., E-mail: granrothge@ornl.gov [Neutron Data Analysis and Visualization Division, Oak Ridge National Laboratory (United States); Abernathy, Douglas L.; Lumsden, Mark D.; Winn, Barry; Aczel, Adam A. [Quantum Condensed Matter Division, Oak Ridge National Laboratory (United States); Aivazis, Michael [Caltech Center for Advanced Computing Research, California Institute of Technology (United States); Fultz, Brent, E-mail: btf@caltech.edu [Department of Applied Physics and Materials Science, California Institute of Technology (United States)

    2016-02-21

    MCViNE (Monte-Carlo VIrtual Neutron Experiment) is an open-source Monte Carlo (MC) neutron ray-tracing software for performing computer modeling and simulations that mirror real neutron scattering experiments. We exploited the close similarity between how instrument components are designed and operated and how such components can be modeled in software. For example we used object oriented programming concepts for representing neutron scatterers and detector systems, and recursive algorithms for implementing multiple scattering. Combining these features together in MCViNE allows one to handle sophisticated neutron scattering problems in modern instruments, including, for example, neutron detection by complex detector systems, and single and multiple scattering events in a variety of samples and sample environments. In addition, MCViNE can use simulation components from linear-chain-based MC ray tracing packages which facilitates porting instrument models from those codes. Furthermore it allows for components written solely in Python, which expedites prototyping of new components. These developments have enabled detailed simulations of neutron scattering experiments, with non-trivial samples, for time-of-flight inelastic instruments at the Spallation Neutron Source. Examples of such simulations for powder and single-crystal samples with various scattering kernels, including kernels for phonon and magnon scattering, are presented. With simulations that closely reproduce experimental results, scattering mechanisms can be turned on and off to determine how they contribute to the measured scattering intensities, improving our understanding of the underlying physics.

  17. Scattering behaviour of Janus particles

    CERN Document Server

    Kaya, H

    2002-01-01

    Recent advances in polymer synthesis has produced so-called Janus micelles: tailor-made copolymer structures in which the blocks constitute separate moieties. We present expressions for the form factors, P(Q), and the radii of gyration, R sub g , of Janus particles with spherical and cylindrical morphology and check their validity by comparison to simulated scattering data, calculated from Monte Carlo generations of the pair-distance distribution function, p(r). The effect of block incompatibilities on the scattering is briefly discussed. (orig.)

  18. Calculation of toroidal fusion reactor blankets by Monte Carlo

    International Nuclear Information System (INIS)

    Macdonald, J.L.; Cashwell, E.D.; Everett, C.J.

    1977-01-01

    A brief description of the calculational method is given. The code calculates energy deposition in toroidal geometry, but is a continuous energy Monte Carlo code, treating the reaction cross sections as well as the angular scattering distributions in great detail

  19. Collimator scatter and 2D dosimetry in small proton beams

    NARCIS (Netherlands)

    van Luijk, P.; van 't Veld, A.A.; Zelle, H.D.; Schippers, J.M.

    Monte Carlo simulations have been performed to determine the influence of collimator-scattered protons from a 150 MeV proton beam on the dose distribution behind a collimator. Slit-shaped collimators with apertures between 2 and 20 mm have been simulated. The Monte Carlo code GEANT 3.21 has been

  20. 48 CFR 52.247-66 - Returnable Cylinders.

    Science.gov (United States)

    2010-10-01

    ... Cylinders (MAY 1994) (a) Cylinder, referred to in this clause, is a pressure vessel designed for pressures... clause. (c) For each cylinder lost or damaged beyond repair while in the Government's possession, the... associated replacement values.] These cylinders shall become Government property. (d) If any lost cylinder is...

  1. Practical model for the calculation of multiply scattered lidar returns

    International Nuclear Information System (INIS)

    Eloranta, E.W.

    1998-01-01

    An equation to predict the intensity of the multiply scattered lidar return is presented. Both the scattering cross section and the scattering phase function can be specified as a function of range. This equation applies when the cloud particles are larger than the lidar wavelength. This approximation considers photon trajectories with multiple small-angle forward-scattering events and one large-angle scattering that directs the photon back toward the receiver. Comparisons with Monte Carlo simulations, exact double-scatter calculations, and lidar data demonstrate that this model provides accurate results. copyright 1998 Optical Society of America

  2. Improving the resolution of beta scattering spectroscopy

    International Nuclear Information System (INIS)

    Celiktas, C.; Selvi, S.; Yegin, G.

    2004-01-01

    We have examined the performance of a modified beta-ray spectrometer using a pulse shape analyzer/timing single channel analyzer and related electronics, thereby preserving the low energy electron tail in measurement of the scattered electron spectra from an n-type Si wafer target. Comparison of measurements with the scattering spectra calculated by the Monte Carlo program EGS4 indicates good agreement across a significant part of the spectrum, an exception being for the energy region 30-100 keV. Re-evaluation of existing scattering cross-sections would be useful, as would possible geometrical effects of the scattering arrangement used herein. Present efforts seek to contribute to the evaluation of electron scattering cross-sections and improvement in theoretical models

  3. Cold moderator scattering kernels

    International Nuclear Information System (INIS)

    MacFarlane, R.E.

    1989-01-01

    New thermal-scattering-law files in ENDF format have been developed for solid methane, liquid methane liquid ortho- and para-hydrogen, and liquid ortho- and para-deuterium using up-to-date models that include such effects as incoherent elastic scattering in the solid, diffusion and hindered vibration and rotations in the liquids, and spin correlations for the hydrogen and deuterium. These files were generated with the new LEAPR module of the NJOY Nuclear Data Processing System. Other modules of this system were used to produce cross sections for these moderators in the correct format for the continuous-energy Monte Carlo code (MCNP) being used for cold-moderator-design calculations at the Los Alamos Neutron Scattering Center (LANSCE). 20 refs., 14 figs

  4. Determination of fast neutrons energy spectra by Monte-Carlo Method

    International Nuclear Information System (INIS)

    Chetaine, A.

    1986-01-01

    Two computation codes based on the Monte-Carlo method are established for studying the spectrometry of neutrons with 14 Mev as initial energy. The spectra are determined, on one hand, around a neutron generator Ti-T target and, on the other hand, in a big paraffin cylinder. One code allows to determine the spectrum of neutrons irradiating the sample at various distances from the Ti-T target versus accelerator parameters: high voltage, atomic or molecular nature of deuterons beam, target thickness and materials surrounding the target. The other code determines neutron spectra at various positions inside and outside the 30 x 30 cm paraffin cylinder. The validity of the procedure used in these codes is verified by determining the spectrum of neutrons crossing a big surface, using the procedure in question and using direct simulation method. The biasing procedure used in the two codes permits to have results with good statistics from a reduced number of drawings. 70 figs.; 62 refs.; 1 tab. (author)

  5. Monte Carlo modelling of large scale NORM sources using MCNP.

    Science.gov (United States)

    Wallace, J D

    2013-12-01

    The representative Monte Carlo modelling of large scale planar sources (for comparison to external environmental radiation fields) is undertaken using substantial diameter and thin profile planar cylindrical sources. The relative impact of source extent, soil thickness and sky-shine are investigated to guide decisions relating to representative geometries. In addition, the impact of source to detector distance on the nature of the detector response, for a range of source sizes, has been investigated. These investigations, using an MCNP based model, indicate a soil cylinder of greater than 20 m diameter and of no less than 50 cm depth/height, combined with a 20 m deep sky section above the soil cylinder, are needed to representatively model the semi-infinite plane of uniformly distributed NORM sources. Initial investigation of the effect of detector placement indicate that smaller source sizes may be used to achieve a representative response at shorter source to detector distances. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  6. Flow over an inline oscillating circular cylinder in the wake of a stationary circular cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yang; Zhu, Keqiang, E-mail: zhukeqiang@nbu.edu.cn [Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211 (China)

    2017-02-15

    Flow interference between an upstream stationary cylinder and an inline oscillating cylinder is studied with the lattice Boltzmann method. With a fixed Reynolds number Re  = 100 and pitch ratio L / D  = 4, the effects of oscillation amplitude A / D  = [0.25, 1] and frequency f {sub e}/ f {sub s} = [0.5, 2] are investigated. The wake response state is categorized into lock-in and non-lock-in. The lock-in zone in the bifurcation diagram of amplitude versus frequency is discontinuous. Response states of upstream and downstream wakes are similar under the conditions of small amplitude or low frequency. However, with large oscillating parameters, the two wakes are prone to be in different states as the flow field becomes irregular. Two distinct flow regimes have been identified, i.e., single-cylinder and two-cylinder shedding regimes. The presence of single-cylinder shedding regime is attributed to the low shedding frequency of the downstream cylinder at large amplitude. Hydrodynamic forces of the oscillating tandem system are discussed. The results reveal that forces on the two cylinders behave differently and that the absence of vortices in the gap flow significantly reduces the forces exerting on the tandem system. (paper)

  7. Characterization of parallel-hole collimator using Monte Carlo Simulation

    International Nuclear Information System (INIS)

    Pandey, Anil Kumar; Sharma, Sanjay Kumar; Karunanithi, Sellam; Kumar, Praveen; Bal, Chandrasekhar; Kumar, Rakesh

    2015-01-01

    Accuracy of in vivo activity quantification improves after the correction of penetrated and scattered photons. However, accurate assessment is not possible with physical experiment. We have used Monte Carlo Simulation to accurately assess the contribution of penetrated and scattered photons in the photopeak window. Simulations were performed with Simulation of Imaging Nuclear Detectors Monte Carlo Code. The simulations were set up in such a way that it provides geometric, penetration, and scatter components after each simulation and writes binary images to a data file. These components were analyzed graphically using Microsoft Excel (Microsoft Corporation, USA). Each binary image was imported in software (ImageJ) and logarithmic transformation was applied for visual assessment of image quality, plotting profile across the center of the images and calculating full width at half maximum (FWHM) in horizontal and vertical directions. The geometric, penetration, and scatter at 140 keV for low-energy general-purpose were 93.20%, 4.13%, 2.67% respectively. Similarly, geometric, penetration, and scatter at 140 keV for low-energy high-resolution (LEHR), medium-energy general-purpose (MEGP), and high-energy general-purpose (HEGP) collimator were (94.06%, 3.39%, 2.55%), (96.42%, 1.52%, 2.06%), and (96.70%, 1.45%, 1.85%), respectively. For MEGP collimator at 245 keV photon and for HEGP collimator at 364 keV were 89.10%, 7.08%, 3.82% and 67.78%, 18.63%, 13.59%, respectively. Low-energy general-purpose and LEHR collimator is best to image 140 keV photon. HEGP can be used for 245 keV and 364 keV; however, correction for penetration and scatter must be applied if one is interested to quantify the in vivo activity of energy 364 keV. Due to heavy penetration and scattering, 511 keV photons should not be imaged with HEGP collimator

  8. Swap your propane cylinder with SWOP

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    A very successful propane cylinder exchange program operated by South Western Ontario Propane (SWOP) Inc., was described. The company specializes in propane cylinder exchange and in the refurbishing and marketing of top quality domestic and commercial propane cylinders. The company, currently operating out of Bradford, Ontario, was started in 1991. It employs a staff of 25 in peak season. It has some 200 exchange outlets throughout Ontario and has accepted outdated tanks from as far west as Manitoba and as far east as Quebec. A typical transaction involves bringing an empty cylinder to the nearest SWOP location and exchanging it for a full SWOP cylinder. SWOP does about 50,000 to 60,000 exchanges a year. For the consumer, the program is said to be cheaper, safer and more convenient than getting refills. As far as dealers are concerned operating a SWOP exchange outlet can add extra profits, attract new customers, and build additional consumer loyalty without the need for extra staff or additional indoor space. SWOP delivers full cylinders to exchange outlets on a weekly basis when it also picks up the empty cylinders. At dealer locations, the cylinders (full or empty) are stored in company -designed vandal-proof metal cages. Major expansion of the network of outlets and the cylinder refurbishing and refilling facilities are planned for 1998

  9. Estimation of ex-core detector responses by adjoint Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Hoogenboom, J. E. [Delft Univ. of Technology, Mekelweg 15, 2629 JB Delft (Netherlands)

    2006-07-01

    Ex-core detector responses can be efficiently calculated by combining an adjoint Monte Carlo calculation with the converged source distribution of a forward Monte Carlo calculation. As the fission source distribution from a Monte Carlo calculation is given only as a collection of discrete space positions, the coupling requires a point flux estimator for each collision in the adjoint calculation. To avoid the infinite variance problems of the point flux estimator, a next-event finite-variance point flux estimator has been applied, witch is an energy dependent form for heterogeneous media of a finite-variance estimator known from the literature. To test the effects of this combined adjoint-forward calculation a simple geometry of a homogeneous core with a reflector was adopted with a small detector in the reflector. To demonstrate the potential of the method the continuous-energy adjoint Monte Carlo technique with anisotropic scattering was implemented with energy dependent absorption and fission cross sections and constant scattering cross section. A gain in efficiency over a completely forward calculation of the detector response was obtained, which is strongly dependent on the specific system and especially the size and position of the ex-core detector and the energy range considered. Further improvements are possible. The method works without problems for small detectors, even for a point detector and a small or even zero energy range. (authors)

  10. Continuous energy Monte Carlo method based homogenization multi-group constants calculation

    International Nuclear Information System (INIS)

    Li Mancang; Wang Kan; Yao Dong

    2012-01-01

    The efficiency of the standard two-step reactor physics calculation relies on the accuracy of multi-group constants from the assembly-level homogenization process. In contrast to the traditional deterministic methods, generating the homogenization cross sections via Monte Carlo method overcomes the difficulties in geometry and treats energy in continuum, thus provides more accuracy parameters. Besides, the same code and data bank can be used for a wide range of applications, resulting in the versatility using Monte Carlo codes for homogenization. As the first stage to realize Monte Carlo based lattice homogenization, the track length scheme is used as the foundation of cross section generation, which is straight forward. The scattering matrix and Legendre components, however, require special techniques. The Scattering Event method was proposed to solve the problem. There are no continuous energy counterparts in the Monte Carlo calculation for neutron diffusion coefficients. P 1 cross sections were used to calculate the diffusion coefficients for diffusion reactor simulator codes. B N theory is applied to take the leakage effect into account when the infinite lattice of identical symmetric motives is assumed. The MCMC code was developed and the code was applied in four assembly configurations to assess the accuracy and the applicability. At core-level, A PWR prototype core is examined. The results show that the Monte Carlo based multi-group constants behave well in average. The method could be applied to complicated configuration nuclear reactor core to gain higher accuracy. (authors)

  11. Fire testing of bare uranium hexafluoride cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Pryor, W.A. [PAI Corp., Oak Rige, TN (United States)

    1991-12-31

    In 1965, the Oak Ridge Gaseous Diffusion Plant (ORGDP), now the K-25 Site, conducted a series of tests in which bare cylinders of uranium hexafluoride (UF{sub 6}) were exposed to engulfing oil fires for the US Atomic Energy Commission (AEC), now the US Department of Energy (DOE). The tests are described and the results, conclusions, and observations are presented. Two each of the following types of cylinders were tested: 3.5-in.-diam {times} 7.5-in.-long cylinders of Monel (Harshaw), 5.0-in.-diam {times} 30-in.-long cylinders of Monel, and 8-in.-diam {times} 48-in.-long cylinders of nickel. The cylinders were filled approximately to the standard UF{sub 6} fill limits of 5, 55, and 250 lb, respectively, with a U-235 content of 0.22%. The 5-in.- and 8-in.-diam cylinders were tested individually with and without their metal valve covers. For the 3.5-in.-diam Harshaw cylinders and the 5.0-in.-diam cylinder without a valve cover the valves failed and UF{sub 6} was released. The remaining cylinders ruptured explosively in time intervals ranging from about 8.5 to 11 min.

  12. Fire testing of bare uranium hexafluoride cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Pryor, W.A. [PAI Corp., Oak Ridge, TN (United States)

    1991-12-31

    In 1965, the Oak Ridge Gaseous Diffusion Plant (ORGDP), now the K-25 Site, conducted a series of tests in which bare cylinders of uranium hexafluoride (UF{sub 6}) were exposed to engulfing oil fires for the US Atomic Energy Commission (AEC), now the US Department of Energy (DOE). The tests are described and the results, conclusions, and observations are presented. Two each of the following types of cylinders were tested: 3.5-in.-diam {times} 7.5-in.-long cylinders of Monel (Harshaw), 5.0-in.-diam {times} x 30-in.-long cylinders of Monel, and 8-in.-diam {times} 48-in.-long cylinders of nickel. The cylinders were filled approximately to the standard UF{sub 6} fill limits of 5, 55, and 250 lb, respectively, with a U-235 content of 0.22%. The 5-in.- and 8-in.-diam cylinders were tested individually with and without their metal valve covers. For the 3.5-in.-diam Harshaw cylinders and the 5.0-in.-diam cylinder without a valve cover, the valves failed and UF{sub 6} was released. The remaining 6 cylinders ruptured explosively in time intervals ranging from about 8.5 to 11 min.

  13. Epp: A C++ EGSnrc user code for x-ray imaging and scattering simulations

    International Nuclear Information System (INIS)

    Lippuner, Jonas; Elbakri, Idris A.; Cui Congwu; Ingleby, Harry R.

    2011-01-01

    Purpose: Easy particle propagation (Epp) is a user code for the EGSnrc code package based on the C++ class library egspp. A main feature of egspp (and Epp) is the ability to use analytical objects to construct simulation geometries. The authors developed Epp to facilitate the simulation of x-ray imaging geometries, especially in the case of scatter studies. While direct use of egspp requires knowledge of C++, Epp requires no programming experience. Methods: Epp's features include calculation of dose deposited in a voxelized phantom and photon propagation to a user-defined imaging plane. Projection images of primary, single Rayleigh scattered, single Compton scattered, and multiple scattered photons may be generated. Epp input files can be nested, allowing for the construction of complex simulation geometries from more basic components. To demonstrate the imaging features of Epp, the authors simulate 38 keV x rays from a point source propagating through a water cylinder 12 cm in diameter, using both analytical and voxelized representations of the cylinder. The simulation generates projection images of primary and scattered photons at a user-defined imaging plane. The authors also simulate dose scoring in the voxelized version of the phantom in both Epp and DOSXYZnrc and examine the accuracy of Epp using the Kawrakow-Fippel test. Results: The results of the imaging simulations with Epp using voxelized and analytical descriptions of the water cylinder agree within 1%. The results of the Kawrakow-Fippel test suggest good agreement between Epp and DOSXYZnrc. Conclusions: Epp provides the user with useful features, including the ability to build complex geometries from simpler ones and the ability to generate images of scattered and primary photons. There is no inherent computational time saving arising from Epp, except for those arising from egspp's ability to use analytical representations of simulation geometries. Epp agrees with DOSXYZnrc in dose calculation, since

  14. Variational Monte Carlo calculations of few-body nuclei

    International Nuclear Information System (INIS)

    Wiringa, R.B.

    1986-01-01

    The variational Monte Carlo method is described. Results for the binding energies, density distributions, momentum distributions, and static longitudinal structure functions of the 3 H, 3 He, and 4 He ground states, and for the energies of the low-lying scattering states in 4 He are presented. 25 refs., 3 figs

  15. An investigation of accelerator head scatter and output factor in air

    International Nuclear Information System (INIS)

    Ding, George X.

    2004-01-01

    Our purpose in this study was to investigate whether the Monte Carlo simulation can accurately predict output factors in air. Secondary goals were to study the head scatter components and investigate the collimator exchange effect. The Monte Carlo code, BEAMnrc, was used in the study. Photon beams of 6 and 18 MV were from a Varian Clinac 2100EX accelerator and the measurements were performed using an ionization chamber in a mini-phantom. The Monte Carlo calculated in air output factors was within 1% of measured values. The simulation provided information of the origin and the magnitude of the collimator exchange effect. It was shown that the collimator backscatter to the beam monitor chamber played a significant role in the beam output factors. However the magnitude of the scattered dose contributions from the collimator at the isocenter is negligible. The maximum scattered dose contribution from the collimators was about 0.15% and 0.4% of the total dose at the isocenter for a 6 and 18 MV beam, respectively. The scattered dose contributions from the flattening filter at the isocenter were about 0.9-3% and 0.2-6% of the total dose for field sizes of 4x4 cm 2 -40x40 cm 2 for the 6 and 18 MV beam, respectively. The study suggests that measurements of head scatter factors be done at large depth well beyond the depth of electron contamination. The insight information may have some implications for developing generalized empirical models to calculate the head scatter

  16. Source distribution dependent scatter correction for PVI

    International Nuclear Information System (INIS)

    Barney, J.S.; Harrop, R.; Dykstra, C.J.

    1993-01-01

    Source distribution dependent scatter correction methods which incorporate different amounts of information about the source position and material distribution have been developed and tested. The techniques use image to projection integral transformation incorporating varying degrees of information on the distribution of scattering material, or convolution subtraction methods, with some information about the scattering material included in one of the convolution methods. To test the techniques, the authors apply them to data generated by Monte Carlo simulations which use geometric shapes or a voxelized density map to model the scattering material. Source position and material distribution have been found to have some effect on scatter correction. An image to projection method which incorporates a density map produces accurate scatter correction but is computationally expensive. Simpler methods, both image to projection and convolution, can also provide effective scatter correction

  17. Comparative Dosimetric Estimates of a 25 keV Electron Micro-beam with three Monte Carlo Codes

    CERN Document Server

    Mainardi, E; Donahue, R J

    2002-01-01

    The calculations presented compare the different performances of the three Monte Carlo codes PENELOPE-1999, MCNP-4C and PITS, for the evaluation of Dose profiles from a 25 keV electron micro-beam traversing individual cells. The overall model of a cell is a water cylinder equivalent for the three codes but with a different internal scoring geometry: hollow cylinders for PENELOPE and MCNP, whereas spheres are used for the PITS code. A cylindrical cell geometry with scoring volumes with the shape of hollow cylinders was initially selected for PENELOPE and MCNP because of its superior simulation of the actual shape and dimensions of a cell and for its improved computer-time efficiency if compared to spherical internal volumes. Some of the transfer points and energy transfer that constitute a radiation track may actually fall in the space between spheres, that would be outside the spherical scoring volume. This internal geometry, along with the PENELOPE algorithm, drastically reduced the computer time when using ...

  18. Flow past a rotating cylinder

    Science.gov (United States)

    Mittal, Sanjay; Kumar, Bhaskar

    2003-02-01

    Flow past a spinning circular cylinder placed in a uniform stream is investigated via two-dimensional computations. A stabilized finite element method is utilized to solve the incompressible Navier Stokes equations in the primitive variables formulation. The Reynolds number based on the cylinder diameter and free-stream speed of the flow is 200. The non-dimensional rotation rate, [alpha] (ratio of the surface speed and freestream speed), is varied between 0 and 5. The time integration of the flow equations is carried out for very large dimensionless time. Vortex shedding is observed for [alpha] cylinder. The results from the stability analysis for the rotating cylinder are in very good agreement with those from direct numerical simulations. For large rotation rates, very large lift coefficients can be obtained via the Magnus effect. However, the power requirement for rotating the cylinder increases rapidly with rotation rate.

  19. The Monte Carlo simulation of the Ladon photon beam facility

    International Nuclear Information System (INIS)

    Strangio, C.

    1976-01-01

    The backward compton scattering of laser light against high energy electrons has been simulated with a Monte Carlo method. The main features of the produced photon beam are reported as well as a careful description of the numerical calculation

  20. Effect of the multiple scattering of electrons in Monte Carlo simulation of LINACS

    International Nuclear Information System (INIS)

    Vilches, Manuel; Garcia-Pareja, Salvador; Guerrero, Rafael; Anguiano, Marta; Lallena, Antonio M.

    2008-01-01

    Results obtained from Monte Carlo simulations of the transport of electrons in thin slabs of dense material media and air slabs with different widths are analyzed. Various general purpose Monte Carlo codes have been used: PENELOPE, GEANT3, GEANT4, EGSnrc, MCNPX. Non-negligible differences between the angular and radial distributions after the slabs have been found. The effects of these differences on the depth doses measured in water are also discussed

  1. Detecting a subsurface cylinder by a Time Reversal MUSIC like method

    Science.gov (United States)

    Solimene, Raffaele; Dell'Aversano, Angela; Leone, Giovanni

    2014-05-01

    In this contribution the problem of imaging a buried homogeneous circular cylinder is dealt with for a two-dimensional scalar geometry. Though the addressed geometry is extremely simple as compared to real world scenarios, it can be considered of interest for a classical GPR civil engineering applicative context: that is the subsurface prospecting of urban area in order to detect and locate buried utilities. A large body of methods for subsurface imaging have been presented in literature [1], ranging from migration algorithms to non-linear inverse scattering approaches. More recently, also spectral estimation methods, which benefit from sub-array data arrangement, have been proposed and compared in [2].Here a Time Reversal MUSIC (TRM) like method is employed. TRM has been initially conceived to detect point-like scatterers and then generalized to the case of extended scatterers [3]. In the latter case, no a priori information about the scatterers is exploited. However, utilities often can be schematized as circular cylinders. Here, we develop a TRM variant which use this information to properly tailor the steering vector while implementing TRM. Accordingly, instead of a spatial map [3], the imaging procedure returns the scatterer's parameters such as its center position, radius and dielectric permittivity. The study is developed by numerical simulations. First the free-space case is considered in order to more easily introduce the idea and the problem mathematical structure. Then the analysis is extended to the half-space case. In both situations a FDTD forward solver is used to generate the synthetic data. As usual in TRM, a multi-view/multi-static single-frequency configuration is considered and emphasis is put on the role played by the number of available sensors. Acknowledgement This work benefited from networking activities carried out within the EU funded COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar." [1] A. Randazzo and R

  2. Microwave single-scattering properties of randomly oriented soft-ice hydrometeors

    Directory of Open Access Journals (Sweden)

    D. Casella

    2008-11-01

    Full Text Available Large ice hydrometeors are usually present in intense convective clouds and may significantly affect the upwelling radiances that are measured by satellite-borne microwave radiometers – especially, at millimeter-wavelength frequencies. Thus, interpretation of these measurements (e.g., for precipitation retrieval requires knowledge of the single scattering properties of ice particles. On the other hand, shape and internal structure of these particles (especially, the larger ones is very complex and variable, and therefore it is necessary to resort to simplifying assumptions in order to compute their single-scattering parameters.

    In this study, we use the discrete dipole approximation (DDA to compute the absorption and scattering efficiencies and the asymmetry factor of two kinds of quasi-spherical and non-homogeneous soft-ice particles in the frequency range 50–183 GHz. Particles of the first kind are modeled as quasi-spherical ice particles having randomly distributed spherical air inclusions. Particles of the second kind are modeled as random aggregates of ice spheres having random radii. In both cases, particle densities and dimensions are coherent with the snow hydrometeor category that is utilized by the University of Wisconsin – Non-hydrostatic Modeling System (UW-NMS cloud-mesoscale model. Then, we compare our single-scattering results for randomly-oriented soft-ice hydrometeors with corresponding ones that make use of: a effective-medium equivalent spheres, b solid-ice equivalent spheres, and c randomly-oriented aggregates of ice cylinders. Finally, we extend to our particles the scattering formulas that have been developed by other authors for randomly-oriented aggregates of ice cylinders.

  3. Rayleigh scatter in kilovoltage x-ray imaging: is the independent atom approximation good enough?

    OpenAIRE

    Poludniowski, G; Evans, PM; Webb, S

    2009-01-01

    Monte Carlo simulation is the gold standard method for modelling scattering processes in medical x-ray imaging. General-purpose Monte Carlo codes, however, typically use the independent atom approximation (IAA). This is known to be inaccurate for Rayleigh scattering, for many materials, in the forward direction. This work addresses whether the IAA is sufficient for the typical modelling tasks in medical kilovoltage x-ray imaging. As a means of comparison, we incorporate a more realistic 'inte...

  4. Some aspects of Trim-algorithm modernization for Monte-Carlo method

    International Nuclear Information System (INIS)

    Dovnar, S.V.; Grigor'ev, V.V.; Kamyshan, M.A.; Leont'ev, A.V.; Yanusko, S.V.

    2001-01-01

    Some aspects of Trim-algorithm modernization in Monte-Carlo method are discussed. This modification permits to raise the universality of program work with various potentials of ion-atom interactions and to improve the calculation precision for scattering angle θ c

  5. Criticality calculations on pebble-bed HTR-PROTEUS configuration as a validation for the pseudo-scattering tracking method implemented in the MORET 5 Monte Carlo code

    Energy Technology Data Exchange (ETDEWEB)

    Forestier, Benoit; Miss, Joachim; Bernard, Franck; Dorval, Aurelien [Institut de Radioprotection et Surete Nucleaire, Fontenay aux Roses (France); Jacquet, Olivier [Independent consultant (France); Verboomen, Bernard [Belgian Nuclear Research Center - SCK-CEN (Belgium)

    2008-07-01

    The MORET code is a three dimensional Monte Carlo criticality code. It is designed to calculate the effective multiplication factor (k{sub eff}) of any geometrical configuration as well as the reaction rates in the various volumes and the neutron leakage out of the system. A recent development for the MORET code consists of the implementation of an alternate neutron tracking method, known as the pseudo-scattering tracking method. This method has been successfully implemented in the MORET code and its performances have been tested by mean of an extensive parametric study on very simple geometrical configurations. In this context, the goal of the present work is to validate the pseudo-scattering method against realistic configurations. In this perspective, pebble-bed cores are particularly well-adapted cases to model, as they exhibit large amount of volumes stochastically arranged on two different levels (the pebbles in the core and the TRISO particles inside each pebble). This paper will introduce the techniques and methods used to model pebble-bed cores in a realistic way. The results of the criticality calculations, as well as the pseudo-scattering tracking method performance in terms of computation time, will also be presented. (authors)

  6. Some Notes on Neutron Up-Scattering and the Doppler-Broadening of High-Z Scattering Resonances

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, Donald Kent [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-28

    When neutrons are scattered by target nuclei at elevated temperatures, it is entirely possible that the neutron will actually gain energy (i.e., up-scatter) from the interaction. This phenomenon is in addition to the more usual case of the neutron losing energy (i.e., down-scatter). Furthermore, the motion of the target nuclei can also cause extended neutron down-scattering, i.e., the neutrons can and do scatter to energies lower than predicted by the simple asymptotic models. In recent years, more attention has been given to temperature-dependent scattering cross sections for materials in neutron multiplying systems. This has led to the inclusion of neutron up-scatter in deterministic codes like Partisn and to free gas scattering models for material temperature effects in Monte Carlo codes like MCNP and cross section processing codes like NJOY. The free gas scattering models have the effect of Doppler Broadening the scattering cross section output spectra in energy and angle. The current state of Doppler-Broadening numerical techniques used at Los Alamos for scattering resonances will be reviewed, and suggestions will be made for further developments. The focus will be on the free gas scattering models currently in use and the development of new models to include high-Z resonance scattering effects. These models change the neutron up-scattering behavior.

  7. Monte Carlo method for polarized radiative transfer in gradient-index media

    International Nuclear Information System (INIS)

    Zhao, J.M.; Tan, J.Y.; Liu, L.H.

    2015-01-01

    Light transfer in gradient-index media generally follows curved ray trajectories, which will cause light beam to converge or diverge during transfer and induce the rotation of polarization ellipse even when the medium is transparent. Furthermore, the combined process of scattering and transfer along curved ray path makes the problem more complex. In this paper, a Monte Carlo method is presented to simulate polarized radiative transfer in gradient-index media that only support planar ray trajectories. The ray equation is solved to the second order to address the effect induced by curved ray trajectories. Three types of test cases are presented to verify the performance of the method, which include transparent medium, Mie scattering medium with assumed gradient index distribution, and Rayleigh scattering with realistic atmosphere refractive index profile. It is demonstrated that the atmospheric refraction has significant effect for long distance polarized light transfer. - Highlights: • A Monte Carlo method for polarized radiative transfer in gradient index media. • Effect of curved ray paths on polarized radiative transfer is considered. • Importance of atmospheric refraction for polarized light transfer is demonstrated

  8. Sub-wavelength resonances in polygonal metamaterial cylinders

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Breinbjerg, Olav

    2008-01-01

    It has been shown that the sub-wavelength resonances of circular MTM cylinders also occur for polygonal MTM cylinders. This is the case for lossless and non-dispersive cylinders as well as lossy and dispersive cylinders. The sub-wavelength resonances are thus not limited to structures of canonical...

  9. UF{sub 6} cylinder inspections at PGDP

    Energy Technology Data Exchange (ETDEWEB)

    Lamb, G.W.; Whinnery, W.N. [Martin Marietta Energy Systems, Inc., Paducah, KY (United States)

    1991-12-31

    Routine inspections of all UF{sub 6} cylinders at the Paducah Gaseous Diffusion Plant have been mandated by the Department of Energy. A specific UF{sub 6} cylinder inspection procedure for what items to inspect and training for the operators prior to inspection duty are described. The layout of the cylinder yards and the forms used in the inspections are shown. The large number of cylinders (>30,000) to inspect and the schedule for completion on the mandated time table are discussed. Results of the inspections and the actions to correct the deficiencies are explained. Future inspections and movement of cylinders for relocation of certain cylinder yards are defined.

  10. Multiple scattering effects in fast neutron polarization experiments using high-pressure helium-xenon gas scintillators as analyzers

    International Nuclear Information System (INIS)

    Tornow, W.; Mertens, G.

    1977-01-01

    In order to study multiple scattering effects both in the gas and particularly in the solid materials of high-pressure gas scintillators, two asymmetry experiments have been performed by scattering of 15.6 MeV polarized neutrons from helium contained in stainless steel vessels of different wall thicknesses. A monte Carlo computer code taking into account the polarization dependence of the differential scattering cross sections has been written to simulate the experiments and to calculate corrections for multiple scattering on helium, xenon and the gas containment materials. Besides the asymmetries for the various scattering processes involved, the code yields time-of-flight spectra of the scattered neutrons and pulse height spectra of the helium recoil nuclei in the gas scintillator. The agreement between experimental results and Monte Carlo calculations is satisfactory. (Auth.)

  11. Approximation by Cylinder Surfaces

    DEFF Research Database (Denmark)

    Randrup, Thomas

    1997-01-01

    We present a new method for approximation of a given surface by a cylinder surface. It is a constructive geometric method, leading to a monorail representation of the cylinder surface. By use of a weighted Gaussian image of the given surface, we determine a projection plane. In the orthogonal...

  12. Variational Monte Carlo calculations of few-body nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Wiringa, R.B.

    1986-01-01

    The variational Monte Carlo method is described. Results for the binding energies, density distributions, momentum distributions, and static longitudinal structure functions of the /sup 3/H, /sup 3/He, and /sup 4/He ground states, and for the energies of the low-lying scattering states in /sup 4/He are presented. 25 refs., 3 figs.

  13. Mosaic crystal algorithm for Monte Carlo simulations

    CERN Document Server

    Seeger, P A

    2002-01-01

    An algorithm is presented for calculating reflectivity, absorption, and scattering of mosaic crystals in Monte Carlo simulations of neutron instruments. The algorithm uses multi-step transport through the crystal with an exact solution of the Darwin equations at each step. It relies on the kinematical model for Bragg reflection (with parameters adjusted to reproduce experimental data). For computation of thermal effects (the Debye-Waller factor and coherent inelastic scattering), an expansion of the Debye integral as a rapidly converging series of exponential terms is also presented. Any crystal geometry and plane orientation may be treated. The algorithm has been incorporated into the neutron instrument simulation package NISP. (orig.)

  14. Laser plasma interaction on rugby hohlraum on the Omega Laser Facility: Comparisons between cylinder, rugby, and elliptical hohlraums

    Science.gov (United States)

    Masson-Laborde, P. E.; Monteil, M. C.; Tassin, V.; Philippe, F.; Gauthier, P.; Casner, A.; Depierreux, S.; Neuville, C.; Villette, B.; Laffite, S.; Seytor, P.; Fremerye, P.; Seka, W.; Teychenné, D.; Debayle, A.; Marion, D.; Loiseau, P.; Casanova, M.

    2016-02-01

    Gas-filled rugby-shaped hohlraums have demonstrated high performances compared to a classical similar diameter cylinder hohlraum with a nearly 40% increase of x-ray drive, 10% higher measured peak drive temperature, and an increase in neutron production. Experimental comparisons have been done between rugby, cylinder, and elliptical hohlraums. The impact of these geometry differences on the laser plasma instabilities is examined. Using comparisons with hydrodynamic simulations carried out with the code FCI2 and postprocessed by Piranah, we have been able to reproduce the stimulated Raman and Brillouin scattering spectrum of the different beams. Using a methodology based on a statistical analysis for the gain calculations, we show that the behavior of the laser plasma instabilities in rugby hohlraums can be reproduced. The efficiency of laser smoothing techniques to mitigate these instabilities are discussed, and we show that while rugby hohlraums exhibit more laser plasma instabilities than cylinder hohlraum, the latter can be mitigated in the case of an elliptical hohlraum.

  15. Scattering Manipulation and Camouflage of Electrically Small Objects through Metasurfaces

    Science.gov (United States)

    Vellucci, S.; Monti, A.; Toscano, A.; Bilotti, F.

    2017-03-01

    In this paper, we discuss the intriguing possibility of tailoring the scattering response of an electrically small object for camouflage and illusion applications using metasurfaces. As a significant example, we focus our attention on the cylindrical geometry and derive the analytical conditions needed to camouflage the geometrical and electrical characteristics of dielectric and metallic cylinders coated with ideal metasurfaces. A closed-form expression of the camouflaging metasurface depending on the cylinder's characteristics is derived. Furthermore, the frequency behavior and the limitations of this technique are discussed with the aid of relevant examples. In order to overcome these limitations, a solution based on the use of lossy metasurfaces is proposed.

  16. Theoretical and experimental stress analyses of ORNL thin-shell cylinder-to-cylinder model 2

    International Nuclear Information System (INIS)

    Gwaltney, R.C.; Bolt, S.E.; Bryson, J.W.

    1975-10-01

    Model 2 in a series of four thin-shell cylinder-to-cylinder models was tested, and the experimentally determined elastic stress distributions were compared with theoretical predictions obtained from a thin-shell finite-element analysis. Both the cylinder and the nozzle of model 2 had outside diameters of 10 in., giving a d 0 /D 0 ratio of 1.0, and both had outside diameter/thickness ratios of 100. Sixteen separate loading cases in which one end of the cylinder was rigidly held were analyzed. An internal pressure loading, three mutually perpendicular force components, and three mutually perpendicular moment components were individually applied at the free end of the cylinder and at the end of the nozzle. In addition to these 13 loadings, 3 additional loads were applied to the nozzle (in-plane bending moment, out-of-plane bending moment, and axial force) with the free end of the cylinder restrained. The experimental stress distributions for each of the 16 loadings were obtained using 152 three-gage strain rosettes located on the inner and outer surfaces. All the 16 loading cases were also analyzed theoretically using a finite-element shell analysis. The analysis used flat-plate elements and considered five degrees of freedom per node in the final assembled equations. The comparisons between theory and experiment show reasonably good general agreement, and it is felt that the analysis would be satisfactory for most engineering purposes. (auth)

  17. MCSAD: Improved algorithm for Monte Carlo Simulation of Atom Displacements in solid materials

    International Nuclear Information System (INIS)

    Correa-Alfonso, C. M.; Pinnera, I.; Cruz, C. M.; Abreu, Y.; Leyva, A.

    2011-01-01

    In order to directly simulate the stochastic occurrence of atom displacements (AD) formation processes during gamma and electron irradiation, an improved Monte Carlo calculation code is presented. In MCSAD, AD processes were considered only on the basis of single elastic scattering interactions among fast primary and/or secondary electrons with matrix atoms. The AD distribution was statistically sampled and simulated in the framework of the Monte Carlo Method to perform discrete single electron scattering processes (ES), particularly those leading to AD events. As study case, the high critical temperature superconducting material YBa 2 Cu 3 O 7-x (YBCO) is presented. The AD in-depth distributions at different incident photons kinetic energies were obtained. Furthermore, the AD contribution from each atomic species to total AD distribution was achieved. In addition the AD energy profiles with the scattered electron kinetic energies were carried out. A comparison with the theoretical expressions proposed by Oen-Holmes-Cahn [1,2] is presented and discussed. (Author)

  18. Comparative analysis of a fusion reactor blanket in cylindrical and toroidal geometry using Monte Carlo

    International Nuclear Information System (INIS)

    Chapin, D.L.

    1976-03-01

    Differences in neutron fluxes and nuclear reaction rates in a noncircular fusion reactor blanket when analyzed in cylindrical and toroidal geometry are studied using Monte Carlo. The investigation consists of three phases--a one-dimensional calculation using a circular approximation to a hexagonal shaped blanket; a two-dimensional calculation of a hexagonal blanket in an infinite cylinder; and a three-dimensional calculation of the blanket in tori of aspect ratios 3 and 5. The total blanket reaction rate in the two-dimensional model is found to be in good agreement with the circular model. The toroidal calculations reveal large variations in reaction rates at different blanket locations as compared to the hexagonal cylinder model, although the total reaction rate is nearly the same for both models. It is shown that the local perturbations in the toroidal blanket are due mainly to volumetric effects, and can be predicted by modifying the results of the infinite cylinder calculation by simple volume factors dependent on the blanket location and the torus major radius

  19. Pressure cylinders under fire condition

    Directory of Open Access Journals (Sweden)

    Jan Hora

    2016-03-01

    Full Text Available The presence of pressure cylinders under fire conditions significantly increases the risk rate for the intervening persons. It is considerably problematic to predict the pressure cylinders behaviour during heat exposition, its destruction progress and possible following explosion of the produced air–gas mixture because pressure cylinders and its environment generate a highly complicated dynamic system during an uncontrolled destruction. The large scale tests carried out by the Pilsen Fire and Rescue Department and the Rapid Response Unit of the Czech Republic Police in October 2012 and in May 2014 in the Military area Brdy and in the area of the former Lachema factory in Kaznějov had several objectives, namely, to record, qualify and quantify some of the aspects of an uncontrolled heat destruction procedure of an exposed pressure cylinder in an enclosed space and to qualify and describe the process of a controlled destruction of a pressure cylinder by shooting through it including basic tactical concepts. The article describes the experiments that were carried out.

  20. Scouting the feasibility of Monte Carlo reactor dynamics simulations

    International Nuclear Information System (INIS)

    Legrady, David; Hoogenboom, J. Eduard

    2008-01-01

    In this paper we present an overview of the methodological questions related to Monte Carlo simulation of time dependent power transients in nuclear reactors. Investigations using a small fictional 3D reactor with isotropic scattering and a single energy group we have performed direct Monte Carlo transient calculations with simulation of delayed neutrons and with and without thermal feedback. Using biased delayed neutron sampling and population control at time step boundaries calculation times were kept reasonably low. We have identified the initial source determination and the prompt chain simulations as key issues that require most attention. (authors)

  1. Scouting the feasibility of Monte Carlo reactor dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Legrady, David [Forschungszentrum Dresden-Rossendorf, Dresden (Germany); Hoogenboom, J. Eduard [Delft University of Technology, Delft (Netherlands)

    2008-07-01

    In this paper we present an overview of the methodological questions related to Monte Carlo simulation of time dependent power transients in nuclear reactors. Investigations using a small fictional 3D reactor with isotropic scattering and a single energy group we have performed direct Monte Carlo transient calculations with simulation of delayed neutrons and with and without thermal feedback. Using biased delayed neutron sampling and population control at time step boundaries calculation times were kept reasonably low. We have identified the initial source determination and the prompt chain simulations as key issues that require most attention. (authors)

  2. Alloy scattering dependence of electron transport in AlGaN

    International Nuclear Information System (INIS)

    Yarar, Z.; Ozdemir, M.

    2010-01-01

    The electron transport and velocity characteristics in AlGaN are examined using an ensemble Monte Carlo simulation method. A three valley band structure model where nonparabolicity effects are considered in all valleys is used for Monte Carlo calculations. All of the major electron scattering interactions like acoustic and optical phonon, intervaley, ionized impurity and alloy disorder scatterings are included in the calculations. The velocity-applied electric field characteristics are analyzed as a function of Al molar fraction and temperature in the ranges of x=0.1 to x=0.5 and 77 K to 500 K, respectively. The velocity overshoot is clearly observed and the population of valleys seems well-matched with the occupancy of valleys in AlGaN. The results of electron steady state velocity-field curves are found that the alloy disorder scattering has important effects on the electron transport characteristics of AlGaN.

  3. Compton-scatter tissue densitometry: calculation of single and multiple scatter photon fluences

    International Nuclear Information System (INIS)

    Battista, J.J.; Bronskill, M.J.

    1978-01-01

    The accurate measurement of in vivo electron densities by the Compton-scatter method is limited by attenuations and multiple scattering in the patient. Using analytic and Monte Carlo calculation methods, the Clarke tissue density scanner has been modelled for incident monoenergetic photon energies from 300 to 2000 keV and for mean scattering angles of 30 to 130 degrees. For a single detector focussed to a central position in a uniform water phantom (25 x 25 x 25 cm 3 ) it has been demonstrated that: (1) Multiple scatter contamination is an inherent limitation of the Compton-scatter method of densitometry which can be minimised, but not eliminated, by improving the energy resolution of the scattered radiation detector. (2) The choice of the incident photon energy is a compromise between the permissible radiation dose to the patient and the tolerable level of multiple scatter contamination. For a mean scattering angle of 40 degrees, the intrinsic multiple-single scatter ratio decreases from 64 to 35%, and the radiation dose (per measurement) increases from 1.0 to 4.1 rad, as the incident photon energy increases from 300 to 2000 keV. These doses apply to a sampled volume of approximately 0.3 cm 3 and an electron density precision of 0.5%. (3) The forward scatter densitometer configuration is optimum, minimising both the dose and the multiple scatter contamination. For an incident photon energy of 1250 keV, the intrinsic multiple-single scatter ratio reduces from 122 to 27%, and the dose reduces from 14.3 to 1.2 rad, as the mean scattering angle decreases from 130 to 30 degrees. These calculations have been confirmed by experimental measurements. (author)

  4. Sensitivity analysis for oblique incidence reflectometry using Monte Carlo simulations

    DEFF Research Database (Denmark)

    Kamran, Faisal; Andersen, Peter E.

    2015-01-01

    profiles. This article presents a sensitivity analysis of the technique in turbid media. Monte Carlo simulations are used to investigate the technique and its potential to distinguish the small changes between different levels of scattering. We present various regions of the dynamic range of optical...

  5. The effect of Compton scattering on quantitative SPECT imaging

    International Nuclear Information System (INIS)

    Beck, J.W.; Jaszczak, R.J.; Starmer, C.F.

    1982-01-01

    A Monte Carlo code has been developed to simulate the response of a SPECT system. The accuracy of the code has been verified and has been used in this research to study and illustrate the effects of Compton scatter on quantitative SPECT measurements. The effects of Compton scattered radiation on gamma camera response have been discussed by several authors, and will be extended to rotating gamma camera SPECT systems. The unique feature of this research includes the pictorial illustration of the Compton scattered and the unscattered components of the photopeak data on SPECT imaging by simulating phantom studies with and without Compton scatter

  6. Comparison of matrix methods for elastic wave scattering problems

    International Nuclear Information System (INIS)

    Tsao, S.J.; Varadan, V.K.; Varadan, V.V.

    1983-01-01

    This article briefly describes the T-matrix method and the MOOT (method of optimal truncation) of elastic wave scattering as they apply to A-D, SH- wave problems as well as 3-D elastic wave problems. Two methods are compared for scattering by elliptical cylinders as well as oblate spheroids of various eccentricity as a function of frequency. Convergence, and symmetry of the scattering cross section are also compared for ellipses and spheroidal cavities of different aspect ratios. Both the T-matrix approach and the MOOT were programmed on an AMDHL 470 computer using double precision arithmetic. Although the T-matrix method and MOOT are not always in agreement, it is in no way implied that any of the published results using MOOT are in error

  7. Fire exposure of empty 30B cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Ziehlke, K.T. [MJB Technical Associates, Inc., Knoxville, TN (United States)

    1991-12-31

    Cylinders for UF{sub 6} handling, transport, and storage are designed and built as unfired pressure vessels under ASME Boiler and Pressure Vessel Code criteria and standards. They are normally filled and emptied while UF{sub 6} is in its liquid phase. Transport cylinders such as the Model 30B are designed for service at 200 psi and 250{degrees}F, to sustain the process conditions which prevail during filling or emptying operations. While in transport, however, at ambient temperature the UF{sub 6} is solid, and the cylinder interior is well below atmospheric pressure. When the cylinders contain isotopically enriched product (above 1.0 percent U-235), they are transported in protective overpacks which function to guard the cylinders and their contents against thermal or mechanical damage in the event of possible transport accidents. Two bare Model 30B cylinders were accidentally exposed to a storage warehouse fire in which a considerable amount of damage was sustained by stored materials and the building structure, as well as by the cylinder valves and valve protectors. The cylinders were about six years old, and had been cleaned, inspected, hydrotested, and re-certified for service, but were still empty at the time of the fire. The privately-owned cylinders were transferred to DOE for testing and evaluation of the fire damage.

  8. Multiple Cylinder Free-Piston Stirling Machinery

    Science.gov (United States)

    Berchowitz, David M.; Kwon, Yong-Rak

    In order to improve the specific power of piston-cylinder type machinery, there is a point in capacity or power where an advantage accrues with increasing number of piston-cylinder assemblies. In the case of Stirling machinery where primary energy is transferred across the casing wall of the machine, this consideration is even more important. This is due primarily to the difference in scaling of basic power and the required heat transfer. Heat transfer is found to be progressively limited as the size of the machine increases. Multiple cylinder machines tend to preserve the surface area to volume ratio at more favorable levels. In addition, the spring effect of the working gas in the so-called alpha configuration is often sufficient to provide a high frequency resonance point that improves the specific power. There are a number of possible multiple cylinder configurations. The simplest is an opposed pair of piston-displacer machines (beta configuration). A three-cylinder machine requires stepped pistons to obtain proper volume phase relationships. Four to six cylinder configurations are also possible. A small demonstrator inline four cylinder alpha machine has been built to demonstrate both cooling operation and power generation. Data from this machine verifies theoretical expectations and is used to extrapolate the performance of future machines. Vibration levels are discussed and it is argued that some multiple cylinder machines have no linear component to the casing vibration but may have a nutating couple. Example applications are discussed ranging from general purpose coolers, computer cooling, exhaust heat power extraction and some high power engines.

  9. Natural convective heat transfer from square cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Novomestský, Marcel, E-mail: marcel.novomestsky@fstroj.uniza.sk; Smatanová, Helena, E-mail: helena.smatanova@fstroj.uniza.sk; Kapjor, Andrej, E-mail: andrej.kapjor@fstroj.uniza.sk [University of Žilina, Faculty of Mechanical Engineering, Department of Power Engineering, Univerzitná 1, 010 26 Žilina (Slovakia)

    2016-06-30

    This article is concerned with natural convective heat transfer from square cylinder mounted on a plane adiabatic base, the cylinders having an exposed cylinder surface according to different horizontal angle. The cylinder receives heat from a radiating heater which results in a buoyant flow. There are many industrial applications, including refrigeration, ventilation and the cooling of electrical components, for which the present study may be applicable.

  10. Investigation of breached depleted UF{sub 6} cylinders

    Energy Technology Data Exchange (ETDEWEB)

    DeVan, J.H. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States)

    1991-12-31

    In June 1990, during a three-site inspection of cylinders being used for long-term storage of solid depleted UF{sub 6}, two 14-ton cylinders at Portsmouth, Ohio, were discovered with holes in the barrel section of the cylinders. An investigation team was immediately formed to determine the cause of the failures and their impact on future storage procedures and to recommend corrective actions. Subsequent investigation showed that the failures most probably resulted from mechanical damage that occurred at the time that the cylinders had been placed in the storage yard. In both cylinders evidence pointed to the impact of a lifting lug of an adjacent cylinder near the front stiffening ring, where deflection of the cylinder could occur only by tearing the cylinder. The impacts appear to have punctured the cylinders and thereby set up corrosion processes that greatly extended the openings in the wall and obliterated the original crack. Fortunately, the reaction products formed by this process were relatively protective and prevented any large-scale loss of uranium. The main factors that precipitated the failures were inadequate spacing between cylinders and deviations in the orientations of lifting lugs from their intended horizontal position. After reviewing the causes and effects of the failures, the team`s principal recommendation for remedial action concerned improved cylinder handling and inspection procedures. Design modifications and supplementary mechanical tests were also recommended to improve the cylinder containment integrity during the stacking operation.

  11. Scattering Correction For Image Reconstruction In Flash Radiography

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Liangzhi; Wang, Mengqi; Wu, Hongchun; Liu, Zhouyu; Cheng, Yuxiong; Zhang, Hongbo [Xi' an Jiaotong Univ., Xi' an (China)

    2013-08-15

    Scattered photons cause blurring and distortions in flash radiography, reducing the accuracy of image reconstruction significantly. The effect of the scattered photons is taken into account and an iterative deduction of the scattered photons is proposed to amend the scattering effect for image restoration. In order to deduct the scattering contribution, the flux of scattered photons is estimated as the sum of two components. The single scattered component is calculated accurately together with the uncollided flux along the characteristic ray, while the multiple scattered component is evaluated using correction coefficients pre-obtained from Monte Carlo simulations.The arbitrary geometry pretreatment and ray tracing are carried out based on the customization of AutoCAD. With the above model, an Iterative Procedure for image restORation code, IPOR, is developed. Numerical results demonstrate that the IPOR code is much more accurate than the direct reconstruction solution without scattering correction and it has a very high computational efficiency.

  12. Scattering Correction For Image Reconstruction In Flash Radiography

    International Nuclear Information System (INIS)

    Cao, Liangzhi; Wang, Mengqi; Wu, Hongchun; Liu, Zhouyu; Cheng, Yuxiong; Zhang, Hongbo

    2013-01-01

    Scattered photons cause blurring and distortions in flash radiography, reducing the accuracy of image reconstruction significantly. The effect of the scattered photons is taken into account and an iterative deduction of the scattered photons is proposed to amend the scattering effect for image restoration. In order to deduct the scattering contribution, the flux of scattered photons is estimated as the sum of two components. The single scattered component is calculated accurately together with the uncollided flux along the characteristic ray, while the multiple scattered component is evaluated using correction coefficients pre-obtained from Monte Carlo simulations.The arbitrary geometry pretreatment and ray tracing are carried out based on the customization of AutoCAD. With the above model, an Iterative Procedure for image restORation code, IPOR, is developed. Numerical results demonstrate that the IPOR code is much more accurate than the direct reconstruction solution without scattering correction and it has a very high computational efficiency

  13. Radiation levels on empty cylinders containing heel material

    Energy Technology Data Exchange (ETDEWEB)

    Shockley, C.W. [Martin Marietta Energy Systems, Inc., Paducah, KY (United States)

    1991-12-31

    Empty UF{sub 6} cylinders containing heel material were found to emit radiation levels in excess of 200 mr/hr, the maximum amount stated in ORO-651. The radiation levels were as high as 335 mr/hr for thick wall (48X and 48Y) cylinders and 1050 mr/hr for thin wall (48G and 48H) cylinders. The high readings were found only on the bottom of the cylinders. These radiation levels exceeded the maximum levels established in DOT 49 CFR, Part 173.441 for shipment of cylinders. Holding periods of four weeks for thick-wall cylinders and ten weeks for thin-wall cylinders were established to allow the radiation levels to decay prior to shipment.

  14. A Monte Carlo reflectance model for soil surfaces with three-dimensional structure

    Science.gov (United States)

    Cooper, K. D.; Smith, J. A.

    1985-01-01

    A Monte Carlo soil reflectance model has been developed to study the effect of macroscopic surface irregularities larger than the wavelength of incident flux. The model treats incoherent multiple scattering from Lambertian facets distributed on a periodic surface. Resulting bidirectional reflectance distribution functions are non-Lambertian and compare well with experimental trends reported in the literature. Examples showing the coupling of the Monte Carlo soil model to an adding bidirectional canopy of reflectance model are also given.

  15. Stress analysis of cylinder to cylinder intersections

    International Nuclear Information System (INIS)

    Revesz, Z.

    1983-01-01

    Cylinder to cylinder intersections have numerous applications in the power industry from different piping junctions to pressure vessel nozzles. A specific purpose computer program has been installed at the author's establishment for finite element analysis of such geometries. Some of the experiences are presented giving a short overview of the analysis of unreinforced man-holes, demonstrating how a more economical design has been verified by analysis. The program installed has linear-elastic and elasto-plastic capabilities. Further, it is prepared for heat transfer analysis with subsequent thermal stress computation. An efficient pre- and post-processor has also been installed and enhanced by the author. The software used is at its present stage capable for problem definition with input data such as outside/ inside diameters, length and number of subdivisions. Similarly simple is the load definition and the graphic representation of the full output. (author)

  16. Counts-in-Cylinders in the Sloan Digital Sky Survey with Comparisons to N-Body

    Energy Technology Data Exchange (ETDEWEB)

    Berrier, Heather D.; Barton, Elizabeth J.; /UC, Irvine; Berrier, Joel C.; /Arkansas U.; Bullock, James S.; /UC, Irvine; Zentner, Andrew R.; /Pittsburgh U.; Wechsler, Risa H. /KIPAC, Menlo Park /SLAC

    2010-12-16

    Environmental statistics provide a necessary means of comparing the properties of galaxies in different environments and a vital test of models of galaxy formation within the prevailing, hierarchical cosmological model. We explore counts-in-cylinders, a common statistic defined as the number of companions of a particular galaxy found within a given projected radius and redshift interval. Galaxy distributions with the same two-point correlation functions do not necessarily have the same companion count distributions. We use this statistic to examine the environments of galaxies in the Sloan Digital Sky Survey, Data Release 4. We also make preliminary comparisons to four models for the spatial distributions of galaxies, based on N-body simulations, and data from SDSS DR4 to study the utility of the counts-in-cylinders statistic. There is a very large scatter between the number of companions a galaxy has and the mass of its parent dark matter halo and the halo occupation, limiting the utility of this statistic for certain kinds of environmental studies. We also show that prevalent, empirical models of galaxy clustering that match observed two- and three-point clustering statistics well fail to reproduce some aspects of the observed distribution of counts-in-cylinders on 1, 3 and 6-h{sup -1}Mpc scales. All models that we explore underpredict the fraction of galaxies with few or no companions in 3 and 6-h{sup -1} Mpc cylinders. Roughly 7% of galaxies in the real universe are significantly more isolated within a 6 h{sup -1} Mpc cylinder than the galaxies in any of the models we use. Simple, phenomenological models that map galaxies to dark matter halos fail to reproduce high-order clustering statistics in low-density environments.

  17. The underlying event in hard scattering processes

    International Nuclear Information System (INIS)

    Field, R.

    2002-01-01

    The authors study the behavior of the underlying event in hard scattering proton-antiproton collisions at 1.8 TeV and compare with the QCD Monte-Carlo models. The underlying event is everything except the two outgoing hard scattered jets and receives contributions from the beam-beam remnants plus initial and final-state radiation. The data indicate that neither ISAJET or HERWIG produce enough charged particles (with p T > 0.5 GeV/c) from the beam-beam remnant component and that ISAJET produces too many charged particles from initial-state radiation. PYTHIA which uses multiple parton scattering to enhance the underlying event does the best job describing the data

  18. Lecture 1. Monte Carlo basics. Lecture 2. Adjoint Monte Carlo. Lecture 3. Coupled Forward-Adjoint calculations

    Energy Technology Data Exchange (ETDEWEB)

    Hoogenboom, J.E. [Delft University of Technology, Interfaculty Reactor Institute, Delft (Netherlands)

    2000-07-01

    The Monte Carlo method is a statistical method to solve mathematical and physical problems using random numbers. The principle of the methods will be demonstrated for a simple mathematical problem and for neutron transport. Various types of estimators will be discussed, as well as generally applied variance reduction methods like splitting, Russian roulette and importance biasing. The theoretical formulation for solving eigenvalue problems for multiplying systems will be shown. Some reflections will be given about the applicability of the Monte Carlo method, its limitations and its future prospects for reactor physics calculations. Adjoint Monte Carlo is a Monte Carlo game to solve the adjoint neutron (or photon) transport equation. The adjoint transport equation can be interpreted in terms of simulating histories of artificial particles, which show properties of neutrons that move backwards in history. These particles will start their history at the detector from which the response must be estimated and give a contribution to the estimated quantity when they hit or pass through the neutron source. Application to multigroup transport formulation will be demonstrated Possible implementation for the continuous energy case will be outlined. The inherent advantages and disadvantages of the method will be discussed. The Midway Monte Carlo method will be presented for calculating a detector response due to a (neutron or photon) source. A derivation will be given of the basic formula for the Midway Monte Carlo method The black absorber technique, allowing for a cutoff of particle histories when reaching the midway surface in one of the calculations will be derived. An extension of the theory to coupled neutron-photon problems is given. The method will be demonstrated for an oil well logging problem, comprising a neutron source in a borehole and photon detectors to register the photons generated by inelastic neutron scattering. (author)

  19. Lecture 1. Monte Carlo basics. Lecture 2. Adjoint Monte Carlo. Lecture 3. Coupled Forward-Adjoint calculations

    International Nuclear Information System (INIS)

    Hoogenboom, J.E.

    2000-01-01

    The Monte Carlo method is a statistical method to solve mathematical and physical problems using random numbers. The principle of the methods will be demonstrated for a simple mathematical problem and for neutron transport. Various types of estimators will be discussed, as well as generally applied variance reduction methods like splitting, Russian roulette and importance biasing. The theoretical formulation for solving eigenvalue problems for multiplying systems will be shown. Some reflections will be given about the applicability of the Monte Carlo method, its limitations and its future prospects for reactor physics calculations. Adjoint Monte Carlo is a Monte Carlo game to solve the adjoint neutron (or photon) transport equation. The adjoint transport equation can be interpreted in terms of simulating histories of artificial particles, which show properties of neutrons that move backwards in history. These particles will start their history at the detector from which the response must be estimated and give a contribution to the estimated quantity when they hit or pass through the neutron source. Application to multigroup transport formulation will be demonstrated Possible implementation for the continuous energy case will be outlined. The inherent advantages and disadvantages of the method will be discussed. The Midway Monte Carlo method will be presented for calculating a detector response due to a (neutron or photon) source. A derivation will be given of the basic formula for the Midway Monte Carlo method The black absorber technique, allowing for a cutoff of particle histories when reaching the midway surface in one of the calculations will be derived. An extension of the theory to coupled neutron-photon problems is given. The method will be demonstrated for an oil well logging problem, comprising a neutron source in a borehole and photon detectors to register the photons generated by inelastic neutron scattering. (author)

  20. Stabilization of flow past a rounded cylinder

    Science.gov (United States)

    Samtaney, Ravi; Zhang, Wei

    2016-11-01

    We perform global linear stability analysis on low-Re flow past a rounded cylinder. The cylinder corners are rounded with a radius R, normalized as R+ = R / D where D is the cylinder diameter, and its effect on the flow stability characteristics is investigated. We compute the critical Reynolds number (Recr) for the onset of first instability, and quantify the perturbation growth rate for the super-critical flows. It is found that the flow can be stabilized by partially rounding the cylinder. Compared with the square and circular cylinders, the partially rounded cylinder has a higher Recr , attaining a maximum at around R+ = 0 . 30 , and the perturbation growth rate of the super-critical flows is reduced for Re R+ -> 0 . 00), while only the near-wake backflow is crucial for circular-like cylinders (R+ -> 0 . 50). The stability analysis results are also verified with those of the direct simulations and very good agreement is achieved. Supported by the KAUST Office of Competitive Research Funds under Award No. URF/1/1394-01. The supercomputer Shaheen at KAUST was utilized for the simulations.

  1. PENELOPE, and algorithm and computer code for Monte Carlo simulation of electron-photon showers

    Energy Technology Data Exchange (ETDEWEB)

    Salvat, F.; Fernandez-Varea, J.M.; Baro, J.; Sempau, J.

    1996-10-01

    The FORTRAN 77 subroutine package PENELOPE performs Monte Carlo simulation of electron-photon showers in arbitrary for a wide energy range, from similar{sub t}o 1 KeV to several hundred MeV. Photon transport is simulated by means of the standard, detailed simulation scheme. Electron and positron histories are generated on the basis of a mixed procedure, which combines detailed simulation of hard events with condensed simulation of soft interactions. A simple geometry package permits the generation of random electron-photon showers in material systems consisting of homogeneous bodies limited by quadric surfaces, i.e. planes, spheres cylinders, etc. This report is intended not only to serve as a manual of the simulation package, but also to provide the user with the necessary information to understand the details of the Monte Carlo algorithm.

  2. PENELOPE, an algorithm and computer code for Monte Carlo simulation of electron-photon showers

    Energy Technology Data Exchange (ETDEWEB)

    Salvat, F; Fernandez-Varea, J M; Baro, J; Sempau, J

    1996-07-01

    The FORTRAN 77 subroutine package PENELOPE performs Monte Carlo simulation of electron-photon showers in arbitrary for a wide energy range, from 1 keV to several hundred MeV. Photon transport is simulated by means of the standard, detailed simulation scheme. Electron and positron histories are generated on the basis of a mixed procedure, which combines detailed simulation of hard events with condensed simulation of soft interactions. A simple geometry package permits the generation of random electron-photon showers in material systems consisting of homogeneous bodies limited by quadric surfaces, i.e. planes, spheres, cylinders, etc. This report is intended not only to serve as a manual of the simulation package, but also to provide the user with the necessary information to understand the details of the Monte Carlo algorithm. (Author) 108 refs.

  3. Monte Carlo Methods in ICF (LIRPP Vol. 13)

    Science.gov (United States)

    Zimmerman, George B.

    2016-10-01

    Monte Carlo methods appropriate to simulate the transport of x-rays, neutrons, ions and electrons in Inertial Confinement Fusion targets are described and analyzed. The Implicit Monte Carlo method of x-ray transport handles symmetry within indirect drive ICF hohlraums well, but can be improved SOX in efficiency by angular biasing the x-rays towards the fuel capsule. Accurate simulation of thermonuclear burn and burn diagnostics involves detailed particle source spectra, charged particle ranges, inflight reaction kinematics, corrections for bulk and thermal Doppler effects and variance reduction to obtain adequate statistics for rare events. It is found that the effects of angular Coulomb scattering must be included in models of charged particle transport through heterogeneous materials.

  4. Overseas shipments of 48Y cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, R.T.; Furlan, A.S. [Cameco Corp., Port Hope, Ontario (Canada)

    1991-12-31

    This paper describes experiences with two incidents of overseas shipments of uranium hexafluoride (UF{sub 6}) cylinders. The first incident involved nine empty UF{sub 6} cylinders in enclosed sea containers. Three UF{sub 6} cylinders broke free from their tie-downs and damaged and contaminated several sea containers. This paper describes briefly how decontamination was carried out. The second incident involved a shipment of 14 full UF{sub 6} cylinders. Although the incident did not cause an accident, the potential hazard was significant. The investigation of the cause of the near accident is recounted. Recommendations to alleviate future similar incidents for both cases are presented.

  5. Microwave imaging of dielectric cylinder using level set method and conjugate gradient algorithm

    International Nuclear Information System (INIS)

    Grayaa, K.; Bouzidi, A.; Aguili, T.

    2011-01-01

    In this paper, we propose a computational method for microwave imaging cylinder and dielectric object, based on combining level set technique and the conjugate gradient algorithm. By measuring the scattered field, we tried to retrieve the shape, localisation and the permittivity of the object. The forward problem is solved by the moment method, while the inverse problem is reformulate in an optimization one and is solved by the proposed scheme. It found that the proposed method is able to give good reconstruction quality in terms of the reconstructed shape and permittivity.

  6. Improved method for estimating particle scattering probabilities to finite detectors for Monte Carlo simulation

    International Nuclear Information System (INIS)

    Mickael, M.; Gardner, R.P.; Verghese, K.

    1988-01-01

    An improved method for calculating the total probability of particle scattering within the solid angle subtended by finite detectors is developed, presented, and tested. The limiting polar and azimuthal angles subtended by the detector are measured from the direction that most simplifies their calculation rather than from the incident particle direction. A transformation of the particle scattering probability distribution function (pdf) is made to match the transformation of the direction from which the limiting angles are measured. The particle scattering probability to the detector is estimated by evaluating the integral of the transformed pdf over the range of the limiting angles measured from the preferred direction. A general formula for transforming the particle scattering pdf is derived from basic principles and applied to four important scattering pdf's; namely, isotropic scattering in the Lab system, isotropic neutron scattering in the center-of-mass system, thermal neutron scattering by the free gas model, and gamma-ray Klein-Nishina scattering. Some approximations have been made to these pdf's to enable analytical evaluations of the final integrals. These approximations are shown to be valid over a wide range of energies and for most elements. The particle scattering probability to spherical, planar circular, and right circular cylindrical detectors has been calculated using the new and previously reported direct approach. Results indicate that the new approach is valid and is computationally faster by orders of magnitude

  7. Research building gamma Compton scattering measurement system and related exercises for training nuclear human resources

    International Nuclear Information System (INIS)

    Mai Xuan Phong; Nguyen Van Hung; Pham Xuan Hai; Le Van Ngoc; Nguyen Xuan Hai; Dang Lanh; Tran Quoc Duong

    2013-01-01

    In this subject we have designed and manufactured Compton scattering gamma measurement system based on the calculated optimal configuration as well as the conditions of protect radiation by using Monte-Carlo simulation program and fabrication with the optimal conditions were selected. Monte-Carlo simulation calculation of Compton scattering gamma follow different angles on copper, surveying gamma radiation attenuation characteristics of materials: lead, iron, aluminum, and compared with the experimental results performed on the same measurement system has been built and given for evaluation, comments. (author)

  8. Quantum Monte Carlo calculation of neutral-current ν -12C inclusive quasielastic scattering

    Science.gov (United States)

    Lovato, A.; Gandolfi, S.; Carlson, J.; Lusk, Ewing; Pieper, Steven C.; Schiavilla, R.

    2018-02-01

    Quasielastic neutrino scattering is an important aspect of the experimental program to study fundamental neutrino properties including neutrino masses, mixing angles, mass hierarchy, and charge-conjugation parity (CP)- violating phase. Proper interpretation of the experiments requires reliable theoretical calculations of neutrino-nucleus scattering. In this paper we present calculations of response functions and cross sections by neutral-current scattering of neutrinos off 12C. These calculations are based on realistic treatments of nuclear interactions and currents, the latter including the axial, vector, and vector-axial interference terms crucial for determining the difference between neutrino and antineutrino scattering and the CP-violating phase. We find that the strength and energy dependence of two-nucleon processes induced by correlation effects and interaction currents are crucial in providing the most accurate description of neutrino-nucleus scattering in the quasielastic regime.

  9. A methodology to identify the intake charge cylinder-to-cylinder distribution in turbocharged direct injection Diesel engines

    Science.gov (United States)

    Luján, José M.; Galindo, José; Serrano, José R.; Pla, Benjamín

    2008-06-01

    Exhaust gas recirculation (EGR) is currently the most important NOx emission control system. During the last few years the EGR rate has increased progressively as pollutant emission regulations have become more restrictive. High EGR rate levels have given the effect of the unsuitable EGR and air distribution between cylinders away, which causes undesirable engine behavior. In this sense, the study of the EGR distribution between cylinders achieves high importance. However, despite the fact that the EGR is continuously under study, not many studies have been undertaken to approach its distribution between cylinders. In concordance with the aspects outlined before, the aim of this paper is to propose a methodology that permits us to identify the EGR cylinder-to-cylinder dispersion in a commercial engine. In order to achieve this objective, experimental tests have been combined with both one-dimensional and three-dimensional fluid dynamic models.

  10. Robust cylinder pressure estimation in heavy-duty diesel engines

    NARCIS (Netherlands)

    Kulah, S.; Forrai, A.; Rentmeester, F.; Donkers, T.; Willems, F.P.T.

    2017-01-01

    The robustness of a new single-cylinder pressure sensor concept is experimentally demonstrated on a six-cylinder heavy-duty diesel engine. Using a single-cylinder pressure sensor and a crank angle sensor, this single-cylinder pressure sensor concept estimates the in-cylinder pressure traces in the

  11. Improvement of the Magnetic Shielding Effects by the Superposition of a Multi-Layered Ferromagnetic Cylinder over an HTS Cylinder: Relationship Between the Shielding Effects and the Layer Number of the Ferromagnetic Cylinder

    International Nuclear Information System (INIS)

    Yasui, K; Tarui, Y; Itoh, M

    2006-01-01

    The idealized magnetic shielded vessel can be realized by making use of a high-critical temperature superconductor (HTS). It is difficult for practical applications, however, to fabricate a shielding vessel that has a high value of the maximum shielded magnetic flux density B s0 . The present authors have improved the value of B s0 for the Bi-Pb-Sr-Ca-Cu-O (BPSCCO) cylinder used as the shielding vessel, by the superposition of a four-layered softiron cylinder over the BPSCCO cylinder, termed the four-layered superimposed cylinder. The B s4 value of 610 x 10 -4 T for the four-layered superimposed cylinder, is found to be about 4 times larger than that of a single-BPSCCO cylinder, and is theoretically analyzed by use of a new analysis method. The experimental values of the maximum shielded magnetic flux density B sn of n-layered superimposed cylinders are found to agree well with those of the theoretical analysis. Experimental results revealed several characteristics of the magnetic shielding within the n-layered superimposed cylinders. Also discussed is the new analysis method for the relationship between the n and B sn

  12. Use of implicit Monte Carlo radiation transport with hydrodynamics and compton scattering

    International Nuclear Information System (INIS)

    Fleck, J.A. Jr.

    1971-03-01

    It is shown that the combination of implicit radiation transport and hydrodynamics, Compton scattering, and any other energy transport can be simply carried out by a ''splitting'' procedure. Contributions to material energy exchange can be reckoned separately for hydrodynamics, radiation transport without scattering, Compton scattering, plus any other possible energy exchange mechanism. The radiation transport phase of the calculation would be implicit, but the hydrodynamics and Compton portions would not, leading to possible time step controls. The time step restrictions which occur on radiation transfer due to large Planck mean absorption cross-sections would not occur

  13. Modeling X-Ray Scattering Process and Applications of the Scattering Model

    Science.gov (United States)

    Al-Jundi, Taher Lutfi

    1995-01-01

    Computer modeling of nondestructive inspections with x-rays is proving to be a very useful tool for enhancing the performance of these techniques. Two x-ray based inspection techniques are considered in this study. The first is "Radiographic Inspection", where an existing simulation model has been improved to account for scattered radiation effects. The second technique is "Inspection with Compton backscattering", where a new simulation model has been developed. The effect of scattered radiation on a simulated radiographic image can be insignificant, equally important, or more important than the effect of the uncollided flux. Techniques to account for the scattered radiation effects include Monte Carlo techniques, and solving the particle transport equation for photons. However, these two techniques although accurate, are computationally expensive and hence inappropriate for use in computer simulation of radiography. A less accurate approach but computationally efficient is the principle of buildup factors. Traditionally, buildup factors are defined for monoenergetic photons of energies typical of a nuclear reactor. In this work I have expanded the definition of buildup factors to include a bremsstrahlung spectrum of photons with energies typically used in radiography (keV's instead of MeV's). This expansion of the definition relies on an intensive experimental work to measure buildup factors for a white spectrum of x-rays. I have also developed a monte carlo code to reproduce the measured buildup factors. The code was then converted to a parallel code and distributed on a network of workstations to reduce the execution time. The second inspection technique is based on Compton backscattering, where photons are scattered at large angles, more than 90 degrees. The importance of this technique arises when the inspected object is very large, or when access is limited to only one side of the specimen. The downside of detecting photons from backscattering is the low

  14. Plane-dependent ML scatter scaling: 3D extension of the 2D simulated single scatter (SSS) estimate

    Science.gov (United States)

    Rezaei, Ahmadreza; Salvo, Koen; Vahle, Thomas; Panin, Vladimir; Casey, Michael; Boada, Fernando; Defrise, Michel; Nuyts, Johan

    2017-08-01

    Scatter correction is typically done using a simulation of the single scatter, which is then scaled to account for multiple scatters and other possible model mismatches. This scaling factor is determined by fitting the simulated scatter sinogram to the measured sinogram, using only counts measured along LORs that do not intersect the patient body, i.e. ‘scatter-tails’. Extending previous work, we propose to scale the scatter with a plane dependent factor, which is determined as an additional unknown in the maximum likelihood (ML) reconstructions, using counts in the entire sinogram rather than only the ‘scatter-tails’. The ML-scaled scatter estimates are validated using a Monte-Carlo simulation of a NEMA-like phantom, a phantom scan with typical contrast ratios of a 68Ga-PSMA scan, and 23 whole-body 18F-FDG patient scans. On average, we observe a 12.2% change in the total amount of tracer activity of the MLEM reconstructions of our whole-body patient database when the proposed ML scatter scales are used. Furthermore, reconstructions using the ML-scaled scatter estimates are found to eliminate the typical ‘halo’ artifacts that are often observed in the vicinity of high focal uptake regions.

  15. Reliability assessment of hydraulic cylinders considering service loads and flaw distribution

    International Nuclear Information System (INIS)

    Altamura, Alessandra; Beretta, Stefano

    2012-01-01

    Manufacturing process, service conditions and material properties are all necessary requirements to a good design of tubular mechanical components subjected to fatigue. The most common approach to this design is usually deterministic, where a fixed NDT threshold, related to flaw acceptance limit, is set. However many uncertainties are left aside, i.e. the failure probability related to the fatigue strength under applied loads. This paper addresses the reliability evaluation of tubular mechanical components carrying some flaws and subjected to cyclic internal pressure variation. The aim is comparing the probability of failure obtained under several assumptions. A reliability assessment model, based on a random variable approach, has been implemented by using the Monte Carlo method. The analysis of the results, from a case study based on load spectra measurements of hydraulic cylinders of earth moving machines, has consented to evaluate the most important factors influencing the fatigue life prediction of these components. Highlights: ► Reliability evaluation of tubular components subjected to variable internal pressure. ► The dispersion of the threshold controls the stochasticity of crack growth. ► A random variable model has been developed using Monte Carlo. ► Initial crack size and spectrum shape are key factors in reliability evaluation.

  16. Aerodynamic loading on a cylinder behind an airfoil

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H.J.; Huang, L.; Zhou, Y. [Hong Kong Polytechnic University, Department of Mechanical Engineering, Kowloon (Hong Kong)

    2005-05-01

    The interaction between the wake of a rotor blade and a downstream cylinder holds the key to the understanding and control of electronic cooling fan noise. In this paper, the aerodynamic characteristics of a circular cylinder are experimentally studied in the presence of an upstream NACA 4412 airfoil for the cylinder-diameter-based Reynolds numbers of Re{sub d}=2,100-20,000, and the airfoil chord-length-based Reynolds numbers of Re{sub c}=14,700-140,000. Lift and drag fluctuations on the cylinder, and the longitudinal velocity fluctuations of the flow behind the cylinder were measured simultaneously using a load cell and two hot wires, respectively. Data analysis shows that unsteady forces on the cylinder increase significantly in the presence of the airfoil wake. The dependence of the forces on two parameters is investigated, that is, the lateral distance (T) between the airfoil and the cylinder, and the Reynolds number. The forces decline quickly as Tincreases. For Re{sub c}<60,000, the vortices shed from the upstream airfoil make a major contribution to the unsteady forces on the cylinder compared to the vortex shedding from the cylinder itself. For Re{sub c}>60,000, no vortices are generated from the airfoil, and the fluctuating forces on the cylinder are caused by its own vortex shedding. (orig.)

  17. Monte Carlo Calculation of Sensitivities to Secondary Angular Distributions. Theory and Validation

    International Nuclear Information System (INIS)

    Perell, R. L.

    2002-01-01

    The basic methods for solution of the transport equation that are in practical use today are the discrete ordinates (SN) method, and the Monte Carlo (Monte Carlo) method. While the SN method is typically less computation time consuming, the Monte Carlo method is often preferred for detailed and general description of three-dimensional geometries, and for calculations using cross sections that are point-wise energy dependent. For analysis of experimental and calculated results, sensitivities are needed. Sensitivities to material parameters in general, and to the angular distribution of the secondary (scattered) neutrons in particular, can be calculated by well known SN methods, using the fluxes obtained from solution of the direct and the adjoint transport equations. Algorithms to calculate sensitivities to cross-sections with Monte Carlo methods have been known for quite a time. However, only just recently we have developed a general Monte Carlo algorithm for the calculation of sensitivities to the angular distribution of the secondary neutrons

  18. Inner cylinder of the CMS vacuum tank.

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    The vacuum tank of the CMS magnet system consists of inner and outer stainless-steel cylinders and houses the superconducting coil. The inner cylinder contains all the barrel sub-detectors, which it supports via a system of horizontal rails. The cylinder is pictured here in the vertical position on a yellow platform mounted on the ferris-wheel support structure. This will allow it to be pivoted and inserted into the outer cylinder already attached to the innermost ring of the barrel yoke.

  19. UF{sub 6} pressure excursions during cylinder heating

    Energy Technology Data Exchange (ETDEWEB)

    Brown, P.G. [Martin Marietta Energy Systems, Inc., Paducah, KY (United States)

    1991-12-31

    As liquid UF{sub 6} inside a cylinder changes from a liquid to a solid, it forms a porous solid which occupies approximately the same volume as that of the liquid before cooling. Simultaneously as the liquid cools, UF{sub 6} vapor in the cylinder ullage above the liquid desublimes on the upper region of the inner cylinder wall. This solid is a dense, glass-like material which can accumulate to a significant thickness. The thickness of the solid coating on the upper cylinder wall and directly behind the cylinder valve area will vary depending on the conditions during the cooling stage. The amount of time lapsed between UF{sub 6} solidification and UF{sub 6} liquefaction can also affect the UF{sub 6} coating. This is due to the daily ambient heat cycle causing the coating to sublime from the cylinder wall to cooler areas, thus decreasing the thickness. Structural weakening of the dense UF{sub 6} layer also occurs due to cylinder transport vibration and thermal expansion. During cylinder heating, the UF{sub 6} nearest the cylinder wall will liquefy first. As the solid coating behind the cylinder valve begins to liquefy, it results in increased pressure depending upon the available volume for expansion. At the Paducah Gaseous Diffusion Plant (PGDP) during the liquefaction of the UF{sub 6} in cylinders in the UF{sub 6} feed and sampling autoclaves, this pressure increase has resulted in the activation of the systems rupture discs which are rated at 100 pounds per square inch differential.

  20. Numerical Study of Shock-Cylinder Banks Interactions

    International Nuclear Information System (INIS)

    Wang, S.P.; Anderson, M.H.; Oakley, J.G.; Bonazza, R.

    2003-01-01

    A numerical parametric study of shock-cylinder banks interactions is presented using a high resolution Euler solver. Staggered cylinder banks of five rows are chosen with the purpose of modeling IFE reactor cooling tube banks. The effect of the aspect ratio of the intercylinder pitch to the distance between successive cylinder rows on the vertical pressure forces acting on the cylinders with different geometries is investigated. Preliminary results show that the largest vertical force develops on the cylinders of the second or third row. This peak pressure force increases with decreasing values of the aspect ratio. It is shown that an increasing second force peak also appears on the successive rows, starting with the second one, with decreasing aspect ratio. It is also observed that the force on the last-row cylinders basically decreases to the level of that on the first row. The results are useful for the optimal design of the cooling tubes system of IFE reactors

  1. Methodology of Continuous-Energy Adjoint Monte Carlo for Neutron, Photon, and Coupled Neutron-Photon Transport

    International Nuclear Information System (INIS)

    Hoogenboom, J. Eduard

    2003-01-01

    Adjoint Monte Carlo may be a useful alternative to regular Monte Carlo calculations in cases where a small detector inhibits an efficient Monte Carlo calculation as only very few particle histories will cross the detector. However, in general purpose Monte Carlo codes, normally only the multigroup form of adjoint Monte Carlo is implemented. In this article the general methodology for continuous-energy adjoint Monte Carlo neutron transport is reviewed and extended for photon and coupled neutron-photon transport. In the latter cases the discrete photons generated by annihilation or by neutron capture or inelastic scattering prevent a direct application of the general methodology. Two successive reaction events must be combined in the selection process to accommodate the adjoint analog of a reaction resulting in a photon with a discrete energy. Numerical examples illustrate the application of the theory for some simplified problems

  2. Theoretical and experimental stress analyses of ORNL thin-shell cylinder-to-cylinder model 3

    International Nuclear Information System (INIS)

    Gwaltney, R.C.; Bolt, S.E.; Corum, J.M.; Bryson, J.W.

    1975-06-01

    The third in a series of four thin-shell cylinder-to-cylinder models was tested, and the experimentally determined elastic stress distributions were compared with theoretical predictions obtained from a thin-shell finite-element analysis. The models are idealized thin-shell structures consisting of two circular cylindrical shells that intersect at right angles. There are no transitions, reinforcements, or fillets in the junction region. This series of model tests serves two basic purposes: the experimental data provide design information directly applicable to nozzles in cylindrical vessels; and the idealized models provide test results for use in developing and evaluating theoretical analyses applicable to nozzles in cylindrical vessels and to thin piping tees. The cylinder of model 3 had a 10 in. OD and the nozzle had a 1.29 in. OD, giving a d 0 /D 0 ratio of 0.129. The OD/thickness ratios for the cylinder and the nozzle were 50 and 7.68 respectively. Thirteen separate loading cases were analyzed. In each, one end of the cylinder was rigidly held. In addition to an internal pressure loading, three mutually perpendicular force components and three mutually perpendicular moment components were individually applied at the free end of the cylinder and at the end of the nozzle. The experimental stress distributions for all the loadings were obtained using 158 three-gage strain rosettes located on the inner and outer surfaces. The loading cases were also analyzed theoretically using a finite-element shell analysis developed at the University of California, Berkeley. The analysis used flat-plate elements and considered five degrees of freedom per node in the final assembled equations. The comparisons between theory and experiment show reasonably good agreement for this model. (U.S.)

  3. Theoretical and experimental stress analyses of ORNL thin-shell cylinder-to-cylinder model 4

    International Nuclear Information System (INIS)

    Gwaltney, R.C.; Bolt, S.E.; Bryson, J.W.

    1975-06-01

    The last in a series of four thin-shell cylinder-to-cylinder models was tested, and the experimentally determined elastic stress distributions were compared with theoretical predictions obtained from a thin-shell finite-element analysis. The models in the series are idealized thin-shell structures consisting of two circular cylindrical shells that intersect at right angles. There are no transitions, reinforcements, or fillets in the junction region. This series of model tests serves two basic purposes: (1) the experimental data provide design information directly applicable to nozzles in cylindrical vessels, and (2) the idealized models provide test results for use in developing and evaluating theoretical analyses applicable to nozzles in cylindrical vessels and to thin piping tees. The cylinder of model 4 had an outside diameter of 10 in., and the nozzle had an outside diameter of 1.29 in., giving a d 0 /D 0 ratio of 0.129. The OD/thickness ratios were 50 and 20.2 for the cylinder and nozzle respectively. Thirteen separate loading cases were analyzed. For each loading condition one end of the cylinder was rigidly held. In addition to an internal pressure loading, three mutually perpendicular force components and three mutually perpendicular moment components were individually applied at the free end of the cylinder and at the end of the nozzle. The experimental stress distributions for each of the 13 loadings were obtained using 157 three-gage strain rosettes located on the inner and outer surfaces. Each of the 13 loading cases was also analyzed theoretically using a finite-element shell analysis developed at the University of California, Berkeley. The analysis used flat-plate elements and considered five degrees of freedom per node in the final assembled equations. The comparisons between theory and experiment show reasonably good agreement for this model. (U.S.)

  4. Cracking investigation of Monju emergency generator C unit cylinder liner. Cylinder liner soundness confirmation by a fall cause of the materials strength of the cylinder liner and the supersonic wave speed

    International Nuclear Information System (INIS)

    Kobayashi, Takanori; Sakon, Miyoji; Takada, Osamu; Hatori, Masakazu; Sakamoto, Tsutomu; Sato, Toshiyuki; Kazama, Akihito; Ishizawa, Yoshihiro; Igawa, Katsuhisa; Nakae, Hideo

    2012-02-01

    I confirmed a leak of the effluent gas from cylinder part during a load examination after the check of the emergency generator C unit on December 28, 2010 of the facilities check average and confirmed crack in No.8 cylinder liner part. As a result, because it was not performed oil pressure management properly without attaching an oil pressure gauge when I removed cylinder liner about the cause, crack occurred by having been able to write excessive stress for the cylinder liner and reached damage. By a process of this investigation, a fall of the materials strength of some cylinder liner was confirmed, but because a lead ingredient got mixed with materials by a casting process at the time of the production of the cylinder liner, as for this, Widmannstaetten graphite occurred, and it became clear that materials strength fell. In addition, I performed inspection by the supersonic wave velocity measurement as technique to distinguish this Widmannstaetten graphite easily and confirmed that I was effective. Because this report was the knowledge that there were little inspection contents which modified soundness confirmation technique of the cylinder liner with the possibility of materials strength fall of the cylinder liner by the Widmannstaetten graphite outbreak and the mixture of lead for a report example in the field of cast iron, I gathered it in this report. (author)

  5. Approximation of Surfaces by Cylinders

    DEFF Research Database (Denmark)

    Randrup, Thomas

    1998-01-01

    We present a new method for approximation of a given surface by a cylinder surface. It is a constructive geometric method, leading to a monorail representation of the cylinder surface. By use of a weighted Gaussian image of the given surface, we determine a projection plane. In the orthogonal...

  6. COUNTS-IN-CYLINDERS IN THE SLOAN DIGITAL SKY SURVEY WITH COMPARISONS TO N-BODY SIMULATIONS

    International Nuclear Information System (INIS)

    Berrier, Heather D.; Barton, Elizabeth J.; Bullock, James S.; Berrier, Joel C.; Zentner, Andrew R.; Wechsler, Risa H.

    2011-01-01

    Environmental statistics provide a necessary means of comparing the properties of galaxies in different environments, and a vital test of models of galaxy formation within the prevailing hierarchical cosmological model. We explore counts-in-cylinders, a common statistic defined as the number of companions of a particular galaxy found within a given projected radius and redshift interval. Galaxy distributions with the same two-point correlation functions do not necessarily have the same companion count distributions. We use this statistic to examine the environments of galaxies in the Sloan Digital Sky Survey Data Release 4 (SDSS DR4). We also make preliminary comparisons to four models for the spatial distributions of galaxies, based on N-body simulations and data from SDSS DR4, to study the utility of the counts-in-cylinders statistic. There is a very large scatter between the number of companions a galaxy has and the mass of its parent dark matter halo and the halo occupation, limiting the utility of this statistic for certain kinds of environmental studies. We also show that prevalent empirical models of galaxy clustering, that match observed two- and three-point clustering statistics well, fail to reproduce some aspects of the observed distribution of counts-in-cylinders on 1, 3, and 6 h -1 Mpc scales. All models that we explore underpredict the fraction of galaxies with few or no companions in 3 and 6 h -1 Mpc cylinders. Roughly 7% of galaxies in the real universe are significantly more isolated within a 6 h -1 Mpc cylinder than the galaxies in any of the models we use. Simple phenomenological models that map galaxies to dark matter halos fail to reproduce high-order clustering statistics in low-density environments.

  7. UF{sub 6} cylinder fire test

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.H. [Oak Ridge K-25 Site, Oak Ridge, TN (United States)

    1991-12-31

    With the increasing number of nuclear reactors for power generation, there is a comparable increase in the amount of UF{sub 6} being transported. Likewise, the probability of having an accident involving UF{sub 6}-filled cylinders also increases. Accident scenarios which have been difficult to assess are those involving a filled UF{sub 6} cylinder subjected to fire. A study is underway at the Oak Ridge K-25 Site, as part of the US DOE Enrichment Program, to provide empirical data and a computer model that can be used to evaluate various cylinder-in-fire scenarios. It is expected that the results will provide information leading to better handling of possible fire accidents as well as show whether changes should be made to provide different physical protection during shipment. The computer model being developed will be capable of predicting the rupture of various cylinder sizes and designs as well as the amount of UF{sub 6}, its distribution in the cylinder, and the conditions of the fire.

  8. Monte Carlo method for array criticality calculations

    International Nuclear Information System (INIS)

    Dickinson, D.; Whitesides, G.E.

    1976-01-01

    The Monte Carlo method for solving neutron transport problems consists of mathematically tracing paths of individual neutrons collision by collision until they are lost by absorption or leakage. The fate of the neutron after each collision is determined by the probability distribution functions that are formed from the neutron cross-section data. These distributions are sampled statistically to establish the successive steps in the neutron's path. The resulting data, accumulated from following a large number of batches, are analyzed to give estimates of k/sub eff/ and other collision-related quantities. The use of electronic computers to produce the simulated neutron histories, initiated at Los Alamos Scientific Laboratory, made the use of the Monte Carlo method practical for many applications. In analog Monte Carlo simulation, the calculation follows the physical events of neutron scattering, absorption, and leakage. To increase calculational efficiency, modifications such as the use of statistical weights are introduced. The Monte Carlo method permits the use of a three-dimensional geometry description and a detailed cross-section representation. Some of the problems in using the method are the selection of the spatial distribution for the initial batch, the preparation of the geometry description for complex units, and the calculation of error estimates for region-dependent quantities such as fluxes. The Monte Carlo method is especially appropriate for criticality safety calculations since it permits an accurate representation of interacting units of fissile material. Dissimilar units, units of complex shape, moderators between units, and reflected arrays may be calculated. Monte Carlo results must be correlated with relevant experimental data, and caution must be used to ensure that a representative set of neutron histories is produced

  9. An efficient method of randomly sampling the coherent angular scatter distribution

    International Nuclear Information System (INIS)

    Williamson, J.F.; Morin, R.L.

    1983-01-01

    Monte Carlo simulations of photon transport phenomena require random selection of an interaction process at each collision site along the photon track. Possible choices are usually limited to photoelectric absorption and incoherent scatter as approximated by the Klein-Nishina distribution. A technique is described for sampling the coherent angular scatter distribution, for the benefit of workers in medical physics. (U.K.)

  10. Scatter fractions from linear accelerators with x-ray energies from 6 to 24 MV.

    Science.gov (United States)

    Taylor, P L; Rodgers, J E; Shobe, J

    1999-08-01

    Computation of shielding requirements for a linear accelerator must take into account the amount of radiation scattered from the patient to areas outside the primary beam. Currently, the most frequently used data are from NCRP 49 that only includes data for x-ray energies up to 6 MV and angles from 30 degrees to 135 degrees. In this work we have determined by Monte Carlo simulation the scattered fractions of dose for a wide range of energies and angles of clinical significance including 6, 10, 18, and 24 MV and scattering angles from 10 degrees to 150 degrees. Calculations were made for a 400 cm2 circular field size impinging onto a spherical phantom. Scattered fractions of dose were determined at 1 m from the phantom. Angles from 10 degrees to 30 degrees are of concern for higher energies where the scatter is primarily in the forward direction. An error in scatter fraction may result in too little secondary shielding near the junction with the primary barrier. The Monte Carlo code ITS (Version 3.0) developed at Sandia National Laboratory and NIST was used to simulate scatter from the patient to the barrier. Of significance was the variation of calculated scattered dose with depth of measurement within the barrier indicating that accurate values may be difficult to obtain. Mean energies of scatter x-ray spectra are presented.

  11. Three-dimensional vortex flow near the endwall of a short cylinder in crossflow: Uniform-diameter circular cylinder

    International Nuclear Information System (INIS)

    Chen, S.B.; Sanitjai, S.; Ghosh, K.; Goldstein, R.J.

    2012-01-01

    Flow characteristics, around a short uniform-diameter circular cylinder in crossflow, are investigated experimentally. Extensive flow visualization using oil-lampblack and smoke-wire methods have been performed. Near-wake velocity measurements have been performed using a hotwire anemometer. Complex secondary flows are observed on and around the cylinder in crossflow. Multiple vortices are observed in the horseshoe vortex system near the cylinder–endwall junction. Based on this flow visualization and local mass transfer measurement results, a six-vortex secondary flow model has been proposed. - Highlights: ► Flow visualizations and velocity measurements for a short circular cylinder. ► Six vortices in the horseshoe vortex system upstream of the base of the cylinder. ► Cross-stream turbulence intensity profiles show a similarity in their shape.

  12. Simulation of inverse Compton scattering and its implications on the scattered linewidth

    Science.gov (United States)

    Ranjan, N.; Terzić, B.; Krafft, G. A.; Petrillo, V.; Drebot, I.; Serafini, L.

    2018-03-01

    Rising interest in inverse Compton sources has increased the need for efficient models that properly quantify the behavior of scattered radiation given a set of interaction parameters. The current state-of-the-art simulations rely on Monte Carlo-based methods, which, while properly expressing scattering behavior in high-probability regions of the produced spectra, may not correctly simulate such behavior in low-probability regions (e.g. tails of spectra). Moreover, sampling may take an inordinate amount of time for the desired accuracy to be achieved. In this paper, we present an analytic derivation of the expression describing the scattered radiation linewidth and propose a model to describe the effects of horizontal and vertical emittance on the properties of the scattered radiation. We also present an improved version of the code initially reported in Krafft et al. [Phys. Rev. Accel. Beams 19, 121302 (2016), 10.1103/PhysRevAccelBeams.19.121302], that can perform the same simulations as those present in cain and give accurate results in low-probability regions by integrating over the emissions of the electrons. Finally, we use these codes to carry out simulations that closely verify the behavior predicted by the analytically derived scaling law.

  13. Observations of non-collective x-ray scattering in warm dense carbon plasma

    International Nuclear Information System (INIS)

    Bao Lihua; Zhang Jiyan; Zhao Yang; Ding Yongkun; Zhang Xiaoding

    2012-01-01

    An experiment for observing the spectrally resolved non-collective x-ray scattering in warm dense carbon plasma is presented in this paper. The experiment used Ta M-band x-rays to heat a foamed carbon cylinder sample isochorically and measured the scattering spectrum with a HOPG crystal spectrometer. The spectrum was compared with the calculation results using a Born-Mermin-approximation model. The best fitting was found at an electron temperature of T e =34 eV and an electron density of n e =1.6×10 23 cm −3 .

  14. Prediction of External Corrosion for Steel Cylinders--2004 Report

    International Nuclear Information System (INIS)

    Schmoyer, RLS

    2004-01-01

    Depleted uranium hexafluoride (UF 6 ) is stored in over 60,000 steel cylinders at the East Tennessee Technology Park (ETTP) in Oak Ridge, Tennessee, at the Paducah Gaseous Diffusion Plant (PGDP) in Paducah, Kentucky, and at the Portsmouth Gaseous Diffusion Plant (PORTS) in Portsmouth, Ohio. The cylinders range in age from 4 to 53 years. Although when new the cylinders had wall thicknesses specified to within manufacturing tolerances, over the years corrosion has reduced their actual wall thicknesses. The UF 6 Cylinder Project is managed by the United States Department of Energy (DOE) to safely maintain the UF 6 and the cylinders containing it. This report documents activities that address UF 6 Cylinder Project requirements and actions involving forecasting cylinder wall thicknesses. These requirements are delineated in the System Requirements Document (LMES 1997a), and the actions needed to fulfill them are specified in the System Engineering Management Plan (LMES 1997b). The report documents cylinder wall thickness projections based on models fit to ultrasonic thickness (UT) measurement data. UT data is collected at various locations on randomly sampled cylinders. For each cylinder sampled, the minimum UT measurement approximates the actual minimum thickness of the cylinder. Projections of numbers of cylinders expected to fail various thickness criteria are computed from corrosion models relating minimum wall thickness to cylinder age, initial thickness estimates, and cylinder subpopulations defined in terms of plant site, yard, top or bottom storage positions, nominal thickness, etc. In this report, UT data collected during FY03 is combined with UT data collected in earlier years (FY94-FY02), and all of the data is inventoried chronologically and by various subpopulations. The UT data is used to fit models of maximum pit depth and minimum thickness, and the fitted models are used to extrapolate minimum thickness estimates into the future and in turn to compute

  15. SANDYL, 3-D Time-Dependent and Space-Dependent Gamma Electron Cascade Transport by Monte-Carlo

    International Nuclear Information System (INIS)

    Haggmark, L.G.

    1980-01-01

    1 - Description of problem or function: SANDYL performs three- dimensional, time and space dependent Monte Carlo transport calculations for photon-electron cascades in complex systems. 2 - Method of solution: The problem geometry is divided into zones of homogeneous atomic composition bounded by sections of planes and quadrics. The material of each zone is a specified element or combination of elements. For a photon history, the trajectory is generated by following the photon from scattering to scattering using the various probability distributions to find distances between collisions, types of collisions, types of secondaries, and their energies and scattering angles. The photon interactions are photoelectric absorption (atomic ionization), coherent scattering, incoherent scattering, and pair production. The secondary photons which are followed include Bremsstrahlung, fluorescence photons, and positron-electron annihilation radiation. The condensed-history Monte Carlo method is used for the electron transport. In a history, the spatial steps taken by an electron are pre-computed and may include the effects of a number of collisions. The corresponding scattering angle and energy loss in the step are found from the multiple scattering distributions of these quantities. Atomic ionization and secondary particles are generated with the step according to the probabilities for their occurrence. Electron energy loss is through inelastic electron-electron collisions, Bremsstrahlung generation, and polarization of the medium (density effect). Included in the loss is the fluctuation due to the variation in the number of energy-loss collisions in a given Monte Carlo step (straggling). Scattering angular distributions are determined from elastic nuclear-collision cross sections corrected for electron-electron interactions. The secondary electrons which are followed included knock-on, pair, Auger (through atomic ionizations), Compton, and photoelectric electrons. 3

  16. Burnup calculations using Monte Carlo method

    International Nuclear Information System (INIS)

    Ghosh, Biplab; Degweker, S.B.

    2009-01-01

    In the recent years, interest in burnup calculations using Monte Carlo methods has gained momentum. Previous burn up codes have used multigroup transport theory based calculations followed by diffusion theory based core calculations for the neutronic portion of codes. The transport theory methods invariably make approximations with regard to treatment of the energy and angle variables involved in scattering, besides approximations related to geometry simplification. Cell homogenisation to produce diffusion, theory parameters adds to these approximations. Moreover, while diffusion theory works for most reactors, it does not produce accurate results in systems that have strong gradients, strong absorbers or large voids. Also, diffusion theory codes are geometry limited (rectangular, hexagonal, cylindrical, and spherical coordinates). Monte Carlo methods are ideal to solve very heterogeneous reactors and/or lattices/assemblies in which considerable burnable poisons are used. The key feature of this approach is that Monte Carlo methods permit essentially 'exact' modeling of all geometrical detail, without resort to ene and spatial homogenization of neutron cross sections. Monte Carlo method would also be better for in Accelerator Driven Systems (ADS) which could have strong gradients due to the external source and a sub-critical assembly. To meet the demand for an accurate burnup code, we have developed a Monte Carlo burnup calculation code system in which Monte Carlo neutron transport code is coupled with a versatile code (McBurn) for calculating the buildup and decay of nuclides in nuclear materials. McBurn is developed from scratch by the authors. In this article we will discuss our effort in developing the continuous energy Monte Carlo burn-up code, McBurn. McBurn is intended for entire reactor core as well as for unit cells and assemblies. Generally, McBurn can do burnup of any geometrical system which can be handled by the underlying Monte Carlo transport code

  17. Development of a computer model using the EGS4 simulation code to calculate scattered X-rays through some materials

    International Nuclear Information System (INIS)

    Al-Ghorabie, F.H.H.

    2003-01-01

    In this paper a computer model based on the use of the well-known Monte Carlo simulation code EGS4 was developed to simulate the scattering of polyenergetic X-ray beams through some materials. These materials are: lucite, polyethylene, polypropylene and aluminium. In particular, the ratio of the scattered to total X-ray fluence (scatter fraction) has been calculated for X-ray beams in the energy region 30-120 keV. In addition scatter fractions have been determined experimentally using a polyenergetic superficial X-ray unit. Comparison of the measured and the calculated results has been performed. The Monte Carlo calculations have also been carried out for water, bakelite and bone to examine the dependence of scatter fraction on the density of the scatterer. Good agreement (estimated statistical error < 5%) was obtained between the measured and the calculated values of the scatter fractions for materials with Z < 20 that were studied in this paper. Copyright (2003) Australasian College of Physical Scientists and Engineers in Medicine

  18. Monte Carlo based treatment planning for modulated electron beam radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Michael C. [Radiation Physics Division, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States)]. E-mail: mclee@reyes.stanford.edu; Deng Jun; Li Jinsheng; Jiang, Steve B.; Ma, C.-M. [Radiation Physics Division, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States)

    2001-08-01

    A Monte Carlo based treatment planning system for modulated electron radiation therapy (MERT) is presented. This new variation of intensity modulated radiation therapy (IMRT) utilizes an electron multileaf collimator (eMLC) to deliver non-uniform intensity maps at several electron energies. In this way, conformal dose distributions are delivered to irregular targets located a few centimetres below the surface while sparing deeper-lying normal anatomy. Planning for MERT begins with Monte Carlo generation of electron beamlets. Electrons are transported with proper in-air scattering and the dose is tallied in the phantom for each beamlet. An optimized beamlet plan may be calculated using inverse-planning methods. Step-and-shoot leaf sequences are generated for the intensity maps and dose distributions recalculated using Monte Carlo simulations. Here, scatter and leakage from the leaves are properly accounted for by transporting electrons through the eMLC geometry. The weights for the segments of the plan are re-optimized with the leaf positions fixed and bremsstrahlung leakage and electron scatter doses included. This optimization gives the final optimized plan. It is shown that a significant portion of the calculation time is spent transporting particles in the leaves. However, this is necessary since optimizing segment weights based on a model in which leaf transport is ignored results in an improperly optimized plan with overdosing of target and critical structures. A method of rapidly calculating the bremsstrahlung contribution is presented and shown to be an efficient solution to this problem. A homogeneous model target and a 2D breast plan are presented. The potential use of this tool in clinical planning is discussed. (author)

  19. Optimization and improvement of Halbach cylinder design

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Bahl, Christian Robert Haffenden; Smith, Anders

    2008-01-01

    possible volume of magnets with a given mean flux density in the cylinder bore. The volume of the cylinder bore could also be significantly increased by only slightly increasing the volume of the magnets, for a fixed mean flux density. Placing additional blocks of magnets on the end faces of the Halbach...... that this parameter was optimal for long Halbach cylinders with small rex. Using the previously mentioned additional blocks of magnets can improve the parameter by as much as 15% as well as improve the homogeneity of the field in the cylinder bore. ©2008 American Institute of Physics...

  20. A Numerical Method for Analyzing Electromagnetic Scattering Properties of a Moving Conducting Object

    Directory of Open Access Journals (Sweden)

    Lei Kuang

    2014-01-01

    Full Text Available A novel numerical approach is developed to analyze electromagnetic scattering properties of a moving conducting object based on the finite-difference time-domain (FDTD algorithm. Relativistic boundary conditions are implemented into the FDTD algorithm to calculate the electromagnetic field on the moving boundary. An improved technique is proposed to solve the scattered field in order to improve the computational efficiency and stability of solutions. The time-harmonic scattered field from a one-dimensional moving conducting surface is first simulated by the proposed approach. Numerical results show that the amplitude and frequency of the scattered field suffer a modulation shift. Then the transient scattered field is calculated, and broadband electromagnetic scattering properties of the moving conducting surface are obtained by the fast Fourier transform (FFT. Finally, the scattered field from a two-dimensional moving square cylinder is analyzed. The numerical results demonstrate the Doppler effect of a moving conducting object. The simulated results agree well with analytical results.

  1. A nuclear criticality safety assessment of the loss of moderation control in 2 1/2 and 10-ton cylinders containing enriched UF6

    International Nuclear Information System (INIS)

    Newvahner, R.L.; Pryor, W.A.

    1991-01-01

    Moderation control for maintaining nuclear criticality safety in 2-1/2-ton, 10-ton, and 14-ton cylinders containing enriched uranium hexafluoride (UF 6 ) has been used safely within the nuclear industry for over thirty years, and is dependent on cylinder integrity and containment. This assessment evaluates the loss of moderation control by the breaching of containment and entry of water into the cylinders. The first objective of this study was to estimate the required amounts of water entering these large UF 6 cylinders to react with, and to moderate the uranium compounds sufficiently to cause criticality. Hypothetical accident situations were modeled as a uranyl fluoride (UO 2 F 2 ) slab above a UF 6 hemicylinder, and a UO 2 sphere centered within a UF 6 hemicylinder. These situations were investigated by computational analyses utilizing the KENO V.a Monte Carlo Computer Code. The results were used to estimate both the masses of water required for criticality, and the limiting masses of water that could be considered safe. The second objective of the assessment was to calculate the time available for emergency control actions before a criticality would occur, i.e., a ''safetime,'' for various sources of water and different size openings in a breached cylinder. In the situations considered, except the case for a fire hose, the safetime appears adequate for emergency control actions. The assessment shows that current practices for handling moderation controlled cylinders of low enriched UF 6 , along with the continuation of established personnel training programs, ensure nuclear criticality safety for routine and emergency operations. 2 refs., 5 figs., 1 tab

  2. MKENO-DAR: a direct angular representation Monte Carlo code for criticality safety analysis

    International Nuclear Information System (INIS)

    Naito, Yoshitaka; Komuro, Yuichi; Tsunoo, Yukiyasu; Nakayama, Mitsuo.

    1984-03-01

    Improving the Monte Carlo code MULTI-KENO, the MKENO-DAR (Direct Angular Representation) code has been developed for criticality safety analysis in detail. A function was added to MULTI-KENO for representing anisotropic scattering strictly. With this function, the scattering angle of neutron is determined not by the average scattering angle μ-bar of the Pl Legendre polynomial but by the random work operation using probability distribution function produced with the higher order Legendre polynomials. This code is avilable for the FACOM-M380 computer. This report is a computer code manual for MKENO-DAR. (author)

  3. Prediction of External Corrosion for Steel Cylinders--2007 Report

    Energy Technology Data Exchange (ETDEWEB)

    Schmoyer, Richard L [ORNL

    2008-01-01

    Depleted uranium hexafluoride (DUF{sub 6}) is stored in over 62,000 containment cylinders at the Paducah Gaseous Diffusion Plant (PGDP) in Paducah, Kentucky, and at the Portsmouth Gaseous Diffusion Plant (PORTS) in Portsmouth, Ohio. Over 4,800 of the cylinders at Portsmouth were recently moved there from the East Tennessee Technology Park (ETTP) in Oak Ridge, Tennessee. The cylinders range in age up to 56 years and come in various models, but most are 48-inch diameter 'thin-wall'(312.5 mil) and 'thick-wall' (625 mil) cylinders and 30-inch diameter '30A' (including '30B') cylinders with 1/2-inch (500 mil) walls. Most of the cylinders are carbon steel, and they are subject to corrosion. The United States Department of Energy (DOE) manages the cylinders to maintain them and the DUF{sub 6} they contain. Cylinder management requirements are specified in the System Requirements Document (LMES 1997a), and the activities to fulfill them are specified in the System Engineering Management Plan (LMES 1997b). This report documents activities that address DUF{sub 6} cylinder management requirements involving measuring and forecasting cylinder wall thicknesses. As part of these activities, ultrasonic thickness (UT) measurements are made on samples of cylinders. For each sampled cylinder, multiple measurements are made in an attempt to find, approximately, the minimum wall thickness. Some cylinders have a skirt, which is an extension of the cylinder wall to protect the head (end) and valve. The head/skirt interface crevice is thought to be particularly vulnerable to corrosion, and for some skirted cylinders, in addition to the main body UT measurements, a separate suite of measurements is also made at the head/skirt interface. The main-body and head/skirt minimum thickness data are used to fit models relating minimum thickness to cylinder age, nominal thicknesses, and cylinder functional groups defined in terms of plant site, storage yard

  4. Continuous energy adjoint Monte Carlo for coupled neutron-photon transport

    Energy Technology Data Exchange (ETDEWEB)

    Hoogenboom, J.E. [Delft Univ. of Technology (Netherlands). Interfaculty Reactor Inst.

    2001-07-01

    Although the theory for adjoint Monte Carlo calculations with continuous energy treatment for neutrons as well as for photons is known, coupled neutron-photon transport problems present fundamental difficulties because of the discrete energies of the photons produced by neutron reactions. This problem was solved by forcing the energy of the adjoint photon to the required discrete value by an adjoint Compton scattering reaction or an adjoint pair production reaction. A mathematical derivation shows the exact procedures to follow for the generation of an adjoint neutron and its statistical weight. A numerical example demonstrates that correct detector responses are obtained compared to a standard forward Monte Carlo calculation. (orig.)

  5. A general framework and review of scatter correction methods in cone beam CT. Part 2: Scatter estimation approaches

    International Nuclear Information System (INIS)

    Ruehrnschopf and, Ernst-Peter; Klingenbeck, Klaus

    2011-01-01

    The main components of scatter correction procedures are scatter estimation and a scatter compensation algorithm. This paper completes a previous paper where a general framework for scatter compensation was presented under the prerequisite that a scatter estimation method is already available. In the current paper, the authors give a systematic review of the variety of scatter estimation approaches. Scatter estimation methods are based on measurements, mathematical-physical models, or combinations of both. For completeness they present an overview of measurement-based methods, but the main topic is the theoretically more demanding models, as analytical, Monte-Carlo, and hybrid models. Further classifications are 3D image-based and 2D projection-based approaches. The authors present a system-theoretic framework, which allows to proceed top-down from a general 3D formulation, by successive approximations, to efficient 2D approaches. A widely useful method is the beam-scatter-kernel superposition approach. Together with the review of standard methods, the authors discuss their limitations and how to take into account the issues of object dependency, spatial variance, deformation of scatter kernels, external and internal absorbers. Open questions for further investigations are indicated. Finally, the authors refer on some special issues and applications, such as bow-tie filter, offset detector, truncated data, and dual-source CT.

  6. Dynamic Monte Carlo simulations of radiatively accelerated GRB fireballs

    Science.gov (United States)

    Chhotray, Atul; Lazzati, Davide

    2018-05-01

    We present a novel Dynamic Monte Carlo code (DynaMo code) that self-consistently simulates the Compton-scattering-driven dynamic evolution of a plasma. We use the DynaMo code to investigate the time-dependent expansion and acceleration of dissipationless gamma-ray burst fireballs by varying their initial opacities and baryonic content. We study the opacity and energy density evolution of an initially optically thick, radiation-dominated fireball across its entire phase space - in particular during the Rph matter-dominated fireballs due to Thomson scattering. We quantify the new phases by providing analytical expressions of Lorentz factor evolution, which will be useful for deriving jet parameters.

  7. 700 bar hydrogen cylinder design, testing and certification

    International Nuclear Information System (INIS)

    Duncan, M.

    2004-01-01

    'Full text:' Light weight and high pressure cylinders for compressed hydrogen storage are essential components for fuel cell vehicles. Storage volume and mass are two key considerations. Current on-board hydrogen storage systems are based on a maximum pressure of 350 bar. While 350 bar systems are excellent solutions for many applications, some situations required higher storage densities due to space restrictions. As a result significant research and development work has been expended by cylinder manufacturers, systems providers, testing agencies and automotive manufacturers to develop 700 bar systems to reduce storage volume. Dynetek Industries Ltd has proactively developed a range of 700 bar storage cylinders based on a seamless aluminum liner over wrapped with a carbon fiber composite. This paper presents the challenges and processes involved in the design, testing and certification of the Dynetek Industries Ltd 700 bar cylinder. The paper also provides reasoning for further volume and mass optimization of compressed hydrogen cylinders by incorporating realistic cylinder usage parameters into standards. In particular the overly conservative fill life requirement for cylinders will be examined. (author)

  8. Cylinder Position Servo Control Based on Fuzzy PID

    Directory of Open Access Journals (Sweden)

    Shibo Cai

    2013-01-01

    Full Text Available The arbitrary position control of cylinder has always been the hard challenge in pneumatic system. We try to develop a cylinder position servo control method by combining fuzzy PID with the theoretical model of the proportional valve-controlled cylinder system. The pressure differential equation of cylinder, pressure-flow equation of proportional valve, and moment equilibrium equation of cylinder are established. And the mathematical models of the cylinder driving system are linearized. Then fuzzy PID control algorithm is designed for the cylinder position control, including the detail analysis of fuzzy variables and domain, fuzzy logic rules, and defuzzification. The stability of the proposed fuzzy PID controller is theoretically proved according to the small gain theorem. Experiments for targets position of 250 mm, 300 mm, and 350 mm were done and the results showed that the absolute error of the position control is less than 0.25 mm. And comparative experiment between fuzzy PID and classical PID verified the advantage of the proposed algorithm.

  9. Breached cylinder incident at the Portsmouth gaseous diffusion plant

    Energy Technology Data Exchange (ETDEWEB)

    Boelens, R.A. [Martin Marietta Energy Systems, Inc., Piketon, OH (United States)

    1991-12-31

    On June 16, 1990, during an inspection of valves on partially depleted product storage cylinders, a 14-ton partially depleted product cylinder was discovered breached. The cylinder had been placed in long-term storage in 1977 on the top row of Portsmouth`s (two rows high) storage area. The breach was observed when an inspector noticed a pile of green material along side of the cylinder. The breach was estimated to be approximately 8- inches wide and 16-inches long, and ran under the first stiffening ring of the cylinder. During the continuing inspection of the storage area, a second 14-ton product cylinder was discovered breached. This cylinder was stacked on the bottom row in the storage area in 1986. This breach was also located adjacent to a stiffening ring. This paper will discuss the contributing factors of the breaching of the cylinders, the immediate response, subsequent actions in support of the investigation, and corrective actions.

  10. Small-angle scattering of swift electrons and positrons in a crystal

    International Nuclear Information System (INIS)

    Kudrin, V.V.; Vorobiev, S.A.

    1975-01-01

    Features of small-angle scattering of charged particles by the crystal structure and two-dimensional angular distribution are studied on the basis of Monte-Carlo calculations of 20 MeV electron and positron transmission through a MgO single crystal. An accurate method for calculation of the charged particle scattering in a heterogeneous electron gas in the crystal is proposed. The analytical conditions under which the string-effect influences the small-angle scattering are derived and comparison is carried out with well-known experimental data. (author)

  11. Prediction of External Corrosion for Steel Cylinders--2004 Report

    Energy Technology Data Exchange (ETDEWEB)

    Schmoyer, RLS

    2004-07-07

    Depleted uranium hexafluoride (UF{sub 6}) is stored in over 60,000 steel cylinders at the East Tennessee Technology Park (ETTP) in Oak Ridge, Tennessee, at the Paducah Gaseous Diffusion Plant (PGDP) in Paducah, Kentucky, and at the Portsmouth Gaseous Diffusion Plant (PORTS) in Portsmouth, Ohio. The cylinders range in age from 4 to 53 years. Although when new the cylinders had wall thicknesses specified to within manufacturing tolerances, over the years corrosion has reduced their actual wall thicknesses. The UF{sub 6} Cylinder Project is managed by the United States Department of Energy (DOE) to safely maintain the UF{sub 6} and the cylinders containing it. This report documents activities that address UF{sub 6} Cylinder Project requirements and actions involving forecasting cylinder wall thicknesses. These requirements are delineated in the System Requirements Document (LMES 1997a), and the actions needed to fulfill them are specified in the System Engineering Management Plan (LMES 1997b). The report documents cylinder wall thickness projections based on models fit to ultrasonic thickness (UT) measurement data. UT data is collected at various locations on randomly sampled cylinders. For each cylinder sampled, the minimum UT measurement approximates the actual minimum thickness of the cylinder. Projections of numbers of cylinders expected to fail various thickness criteria are computed from corrosion models relating minimum wall thickness to cylinder age, initial thickness estimates, and cylinder subpopulations defined in terms of plant site, yard, top or bottom storage positions, nominal thickness, etc. In this report, UT data collected during FY03 is combined with UT data collected in earlier years (FY94-FY02), and all of the data is inventoried chronologically and by various subpopulations. The UT data is used to fit models of maximum pit depth and minimum thickness, and the fitted models are used to extrapolate minimum thickness estimates into the future and in

  12. Optimized Dose Distribution of Gammamed Plus Vaginal Cylinders

    International Nuclear Information System (INIS)

    Supe, Sanjay S.; Bijina, T.K.; Varatharaj, C.; Shwetha, B.; Arunkumar, T.; Sathiyan, S.; Ganesh, K.M.; Ravikumar, M.

    2009-01-01

    Endometrial carcinoma is the most common malignancy arising in the female genital tract. Intracavitary vaginal cuff irradiation may be given alone or with external beam irradiation in patients determined to be at risk for locoregional recurrence. Vaginal cylinders are often used to deliver a brachytherapy dose to the vaginal apex and upper vagina or the entire vaginal surface in the management of postoperative endometrial cancer or cervical cancer. The dose distributions of HDR vaginal cylinders must be evaluated carefully, so that clinical experiences with LDR techniques can be used in guiding optimal use of HDR techniques. The aim of this study was to optimize dose distribution for Gammamed plus vaginal cylinders. Placement of dose optimization points was evaluated for its effect on optimized dose distributions. Two different dose optimization point models were used in this study, namely non-apex (dose optimization points only on periphery of cylinder) and apex (dose optimization points on periphery and along the curvature including the apex points). Thirteen dwell positions were used for the HDR dosimetry to obtain a 6-cm active length. Thus 13 optimization points were available at the periphery of the cylinder. The coordinates of the points along the curvature depended on the cylinder diameters and were chosen for each cylinder so that four points were distributed evenly in the curvature portion of the cylinder. Diameter of vaginal cylinders varied from 2.0 to 4.0 cm. Iterative optimization routine was utilized for all optimizations. The effects of various optimization routines (iterative, geometric, equal times) was studied for the 3.0-cm diameter vaginal cylinder. The effect of source travel step size on the optimized dose distributions for vaginal cylinders was also evaluated. All optimizations in this study were carried for dose of 6 Gy at dose optimization points. For both non-apex and apex models of vaginal cylinders, doses for apex point and three dome

  13. Analytical calculations of multiple scattering for high energy photons and neutrons

    International Nuclear Information System (INIS)

    Thoe, R.S.

    1994-04-01

    Radiography of large dense objects often require the use of highly penetrating radiation. For example, a couple of centimeters of steel attenuates 50 keV x-rays by a factor of approximately 10 -14 whereas this same amount of steel would attenuate a 500 keV photon beam by only a factor of about 0.25. However, this increase in penetrating power comes with a price. In the case of x-radiation there are two bills to pay: (1) For projection radiography, this increase in penetration directly causes a corresponding decrease in resolution. (2) This increase in penetration occurs in a region where the interaction of radiation and matter is changing from absorption to scattering. In the above example the fraction of scattering goes from about 0.1 at 50 keV to over 0.99 at 500 keV. These scattered photons can significantly degrade contrast. In order to overcome some of these difficulties, radiography using scattered photons has been studied by myself and numerous other authors. In all the above cases, calculation of the intensity of scattered radiation is of primary importance. In cases where scattering is probable, multiple scattering can also be probable. Calculations of multiple scattering are generally very difficult and usually require the use of extremely sophisticated Monte Carlo simulations. It is not unusual for these calculations to require several hours of CPU time on some of the worlds largest and fastest supercomputers. In this paper I will present an alternative approach. I will present an analytical solution to the equations of double scattering, and show how this solution can extended to the case of higher order scattering. Finally, I will give numerical examples of these solutions and compare them to solutions obtained by Monte Carlo simulations

  14. Monte Carlo simulations of increased/decreased scattering inclusions inside a turbid slab

    International Nuclear Information System (INIS)

    Dagdug, Leonardo; Chernomordik, Victor; Weiss, George H; Gandjbakhche, Amir H

    2005-01-01

    We analyse the effect on scattered photons of anomalous optical inclusions in a turbid slab with otherwise uniform properties. Our motivation for doing so is that inclusions affect scattering contrast used to quantify optical properties found from transmitted light intensity measured in transillumination experiments. The analysis is based on a lattice random walk formalism which takes into account effects of both positive and negative deviations of the scattering coefficient from that of the bulk. Our simulations indicate the existence of a qualitative difference between the effects of these two types of perturbations. In the case of positive perturbations the time delay is found to be proportional to the square of the size of the inclusion while for negative perturbations the time delay is a linear function of its volume

  15. KAMCCO, a reactor physics Monte Carlo neutron transport code

    International Nuclear Information System (INIS)

    Arnecke, G.; Borgwaldt, H.; Brandl, V.; Lalovic, M.

    1976-06-01

    KAMCCO is a 3-dimensional reactor Monte Carlo code for fast neutron physics problems. Two options are available for the solution of 1) the inhomogeneous time-dependent neutron transport equation (census time scheme), and 2) the homogeneous static neutron transport equation (generation cycle scheme). The user defines the desired output, e.g. estimates of reaction rates or neutron flux integrated over specified volumes in phase space and time intervals. Such primary quantities can be arbitrarily combined, also ratios of these quantities can be estimated with their errors. The Monte Carlo techniques are mostly analogue (exceptions: Importance sampling for collision processes, ELP/MELP, Russian roulette and splitting). Estimates are obtained from the collision and track length estimators. Elastic scattering takes into account first order anisotropy in the center of mass system. Inelastic scattering is processed via the evaporation model or via the excitation of discrete levels. For the calculation of cross sections, the energy is treated as a continuous variable. They are computed by a) linear interpolation, b) from optionally Doppler broadened single level Breit-Wigner resonances or c) from probability tables (in the region of statistically distributed resonances). (orig.) [de

  16. An update on corrosion monitoring in cylinder storage yards

    Energy Technology Data Exchange (ETDEWEB)

    Henson, H.M.; Newman, V.S.; Frazier, J.L. [Oak Ridge K-25 Site, TN (United States)

    1991-12-31

    Depleted uranium, from US uranium isotope enrichment activities, is stored in the form of solid uranium hexafluoride (UF{sub 6}) in A285 and A516 steel cylinders designed and manufactured to ASME Boiler and Pressure Vessel Code criteria. In general, storage facilities are open areas adjacent to the enrichment plants where the cylinders are exposed to weather. This paper describes the Oak Ridge program to determine the general corrosion behavior of UF{sub 6} cylinders, to determine cylinder yard conditions which are likely to affect long term storage of this material, and to assess cylinder storage yards against these criteria. This program is targeted at conditions specific to the Oak Ridge cylinder yards. Based on (a) determination of the current cylinder yard conditions, (b) determination of rusting behavior in regions of the cylinders showing accelerated attack, (c) monitoring of corrosion rates through periodic measurement of test coupons placed within the cylinder yards, and (d) establishment of a computer base to incorporate and retain these data, the technical division is working with the enrichment sites to implement an upgraded system for storage of this material until such time as it is used or converted.

  17. Three component particle velocimetry using laser sheets for cycle-resolved, in-cylinder measurements; Laser sheet ho ni yoru cylinder nai nagare no sanjigen sokutei

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, K.; Urata, Y.; Yoshida, K.; Ono, T. [Honda Motor Co. Ltd., Tokyo (Japan)

    1996-01-25

    Analysis of the cycle-by-cycle variation of combustion in an internal combustion engine can be aided by the cycle-resolved measurement of the in-cylinder gas velocity. This paper describes the principle and operation of, and results obtained from, a particle coded-pulse velocimeter (PCPV) which measured the three components of velocity within normal planes to the axis of cylinder. The PCPV was applied to a 1.5 litre lean-burn engine in order to record the flow pattern. The intake air was seeded with light microcapsules of approximately 50{mu}m diameter which scattered light from a system of up to two sets of three plane laser sheets, distinguished by colour and thickness and pulsed by acousto-optic modulators, illuminating planes in the bore of the engine. The magnitudes of the axial and cross bore components of the velocity vector were found from the measured lengths and the duration of the particle tracks. The results from the PCPV measurements are time-resolved and instantaneously three-dimensional and thus the PCPV is capable of identifying the transition from a disordered flow, such as the intake process, to well-ordered flows such as occur during a compression process. The derived swirl and tumble ratios were relatively in good agreement with those measured by an impulse swirl meter. 6 refs., 8 figs., 1 tabs.

  18. Measurement of the primary and scatter dose in high energy photon beams

    Energy Technology Data Exchange (ETDEWEB)

    Van der Linden, P M [Catharina Ziekenhuis, Eindhoven (Netherlands). Radiotherapy Dept.; Tiourina, T B; Dries, W

    1995-12-01

    A method is presented to measure the primary and scatter components separately in a water tank using a small cylindrical absorber. Results from this experiment are compared with Monte Carlo calculations. The measurement setup consists of a small cylindrical absorber placed on a central axis of the beam a few centimetres above the radiation detector. Both absorber and detector move along the central axis while absorbed dose is registered. As the primary radiation is fully blocked, only scatter component is measured when a cylindrical absorber is used. Measurements in open fields result in the total absorbed dose being the sum of primary and scatter components. The primary dose component can be derived by substraction. Absorbers with different diameters are used. With decreasing dimensions the relative contribution of the dose due to scatter radiation increases. A steep increase is observed when the range of laterally scattered electrons becomes comparable with the radius of the absorber. Two different Monte Carlo simulations have been performed: with and without secondary electron transport. The data obtained for the former case perfectly agrees with the experiment. The situation where the secondary electron is assumed zero (i.e. local energy deposition) simulates the Cunningham model. Our results show that the Cunningham model predicts lower scatter component under the block edge which can be important for these applications.

  19. Scattering phase functions of horizontally oriented hexagonal ice crystals

    International Nuclear Information System (INIS)

    Chen Guang; Yang Ping; Kattawar, George W.; Mishchenko, Michael I.

    2006-01-01

    Finite-difference time domain (FDTD) solutions are first compared with the corresponding T-matrix results for light scattering by circular cylinders with specific orientations. The FDTD method is then utilized to study the scattering properties of horizontally oriented hexagonal ice plates at two wavelengths, 0.55 and 12 μm. The phase functions of horizontally oriented ice plates deviate substantially from their counterparts obtained for randomly oriented particles. Furthermore, we compute the phase functions of horizontally oriented ice crystal columns by using the FDTD method along with two schemes for averaging over the particle orientations. It is shown that the phase functions of hexagonal ice columns with horizontal orientations are not sensitive to the rotation about the principal axes of the particles. Moreover, hexagonal ice crystals and circular cylindrical ice particles have similar optical properties, particularly, at a strongly absorbing wavelength, if the two particle geometries have the same length and aspect ratio defined as the ratio of the radius or semi-width of the cross section of a particle to its length. The phase functions for the two particle geometries are slightly different in the case of weakly absorbing plates with large aspect ratios. However, the solutions for circular cylinders agree well with their counterparts for hexagonal columns

  20. Calculation of angular distribution of 662 keV gamma rays by Monte Carlo method in copper medium

    International Nuclear Information System (INIS)

    Kahraman, A.; Ozmutlu, E.N.; Gurler, O.; Yalcin, S.; Kaynak, G.; Gundogdu, O.

    2009-01-01

    This paper presents results on the angular distribution of Compton scattering of 662 keV gamma photons in both forward and backward hemispheres in copper medium. The number of scattered events graph has been determined for scattered gamma photons in both the forward and backward hemispheres and theoretical saturation thicknesses have been obtained using these results. Furthermore, response function of a 51x51 mm NaI(Tl) detector at 60 deg. angle with incoming photons scattered from a 10 mm thick copper layer has been determined using Monte Carlo method.

  1. Calculation of angular distribution of 662 keV gamma rays by Monte Carlo method in copper medium

    Energy Technology Data Exchange (ETDEWEB)

    Kahraman, A.; Ozmutlu, E.N. [Physics Department, Faculty of Arts and Sciences, Uludag University, Gorukle Campus, 16059 Bursa (Turkey); Gurler, O. [Physics Department, Faculty of Arts and Sciences, Uludag University, Gorukle Campus, 16059 Bursa (Turkey)], E-mail: ogurler@uludag.edu.tr; Yalcin, S. [Kastamonu University, Education Faculty, 37200 Kastamonu (Turkey); Kaynak, G. [Physics Department, Faculty of Arts and Sciences, Uludag University, Gorukle Campus, 16059 Bursa (Turkey); Gundogdu, O. [NCCPM, Medical Physics, Royal Surrey County, Hospital, GU2 7XX (United Kingdom); University of Kocaeli, Umuttepe Campus, 41100 Kocaeli (Turkey)

    2009-12-15

    This paper presents results on the angular distribution of Compton scattering of 662 keV gamma photons in both forward and backward hemispheres in copper medium. The number of scattered events graph has been determined for scattered gamma photons in both the forward and backward hemispheres and theoretical saturation thicknesses have been obtained using these results. Furthermore, response function of a 51x51 mm NaI(Tl) detector at 60 deg. angle with incoming photons scattered from a 10 mm thick copper layer has been determined using Monte Carlo method.

  2. Role of electron-electron scattering on spin transport in single layer graphene

    Directory of Open Access Journals (Sweden)

    Bahniman Ghosh

    2014-01-01

    Full Text Available In this work, the effect of electron-electron scattering on spin transport in single layer graphene is studied using semi-classical Monte Carlo simulation. The D’yakonov-P’erel mechanism is considered for spin relaxation. It is found that electron-electron scattering causes spin relaxation length to decrease by 35% at 300 K. The reason for this decrease in spin relaxation length is that the ensemble spin is modified upon an e-e collision and also e-e scattering rate is greater than phonon scattering rate at room temperature, which causes change in spin relaxation profile due to electron-electron scattering.

  3. NGSI: Function Requirements for a Cylinder Tracking System

    International Nuclear Information System (INIS)

    Branney, S.

    2012-01-01

    While nuclear suppliers currently track uranium hexafluoride (UF 6 ) cylinders in various ways, for their own purposes, industry practices vary significantly. The NNSA Office of Nonproliferation and International Security's Next Generation Safeguards Initiative (NGSI) has begun a 5-year program to investigate the concept of a global monitoring scheme that uniquely identifies and tracks UF 6 cylinders. As part of this effort, NGSI's multi-laboratory team has documented the 'life of a UF 6 cylinder' and reviewed IAEA practices related to UF 6 cylinders. Based on this foundation, this paper examines the functional requirements of a system that would uniquely identify and track UF 6 cylinders. There are many considerations for establishing a potential tracking system. Some of these factors include the environmental conditions a cylinder may be expected to be exposed to, where cylinders may be particularly vulnerable to diversion, how such a system may be integrated into the existing flow of commerce, how proprietary data generated in the process may be protected, what a system may require in terms of the existing standard for UF 6 cylinder manufacture or modifications to it and what the limiting technology factors may be. It is desirable that a tracking system should provide benefit to industry while imposing as few additional constraints as possible and still meeting IAEA safeguards objectives. This paper includes recommendations for this system and the analysis that generated them.

  4. Neural network scatter correction technique for digital radiography

    International Nuclear Information System (INIS)

    Boone, J.M.

    1990-01-01

    This paper presents a scatter correction technique based on artificial neural networks. The technique utilizes the acquisition of a conventional digital radiographic image, coupled with the acquisition of a multiple pencil beam (micro-aperture) digital image. Image subtraction results in a sparsely sampled estimate of the scatter component in the image. The neural network is trained to develop a causal relationship between image data on the low-pass filtered open field image and the sparsely sampled scatter image, and then the trained network is used to correct the entire image (pixel by pixel) in a manner which is operationally similar to but potentially more powerful than convolution. The technique is described and is illustrated using clinical primary component images combined with scatter component images that are realistically simulated using the results from previously reported Monte Carlo investigations. The results indicate that an accurate scatter correction can be realized using this technique

  5. A nuclear criticality safety assessment of the loss of moderation control in 2 1/2 and 10-ton cylinders containing enriched UF{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Newvahner, R.L. [Martin Marietta Energy Systems, Inc., Piketon, OH (United States); Pryor, W.A. [PAI Corp., Oak Ridge, TN (United States)

    1991-12-31

    Moderation control for maintaining nuclear criticality safety in 2 {1/2}-ton, 10-ton, and 14-ton cylinders containing enriched uranium hexafluoride (UF{sub 6}) has been used safely within the nuclear industry for over thirty years, and is dependent on cylinder integrity and containment. This assessment evaluates the loss of moderation control by the breaching of containment and entry of water into the cylinders. The first objective of this study was to estimate the required amounts of water entering these large UF{sub 6} cylinders to react with, and to moderate the uranium compounds sufficiently to cause criticality. Hypothetical accident situations were modeled as a uranyl fluoride (UO{sub 2}F{sub 2}) slab above a UF{sub 6} hemicylinder, and a UO{sub 2}F{sub 2} sphere centered within a UF{sub 6} hemicylinder. These situations were investigated by computational analyses utilizing the KENO V.a Monte Carlo Computer Code. The results were used to estimate both the masses of water required for criticality, and the limiting masses of water that could be considered safe. The second objective of the assessment was to calculate the time available for emergency control actions before a criticality would occur, i.e., a {open_quotes}safetime{close_quotes}, for various sources of water and different size openings in a breached cylinder. In the situations considered, except the case for a fire hose, the safetime appears adequate for emergency control actions. The assessment shows that current practices for handling moderation controlled cylinders of low enriched UF{sub 6}, along with the continuation of established personnel training programs, ensure nuclear criticality safety for routine and emergency operations.

  6. An Algorithm for Computing Screened Coulomb Scattering in Geant4

    OpenAIRE

    Mendenhall, Marcus H.; Weller, Robert A.

    2004-01-01

    An algorithm has been developed for the Geant4 Monte-Carlo package for the efficient computation of screened Coulomb interatomic scattering. It explicitly integrates the classical equations of motion for scattering events, resulting in precise tracking of both the projectile and the recoil target nucleus. The algorithm permits the user to plug in an arbitrary screening function, such as Lens-Jensen screening, which is good for backscattering calculations, or Ziegler-Biersack-Littmark screenin...

  7. Monte Carlo radiative transfer simulation of a cavity solar reactor for the reduction of cerium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Villafan-Vidales, H.I.; Arancibia-Bulnes, C.A.; Dehesa-Carrasco, U. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Privada Xochicalco s/n, Col. Centro, A.P. 34, Temixco, Morelos 62580 (Mexico); Romero-Paredes, H. [Departamento de Ingenieria de Procesos e Hidraulica, Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No.186, Col. Vicentina, A.P. 55-534, Mexico D.F 09340 (Mexico)

    2009-01-15

    Radiative heat transfer in a solar thermochemical reactor for the thermal reduction of cerium oxide is simulated with the Monte Carlo method. The directional characteristics and the power distribution of the concentrated solar radiation that enters the cavity is obtained by carrying out a Monte Carlo ray tracing of a paraboloidal concentrator. It is considered that the reactor contains a gas/particle suspension directly exposed to concentrated solar radiation. The suspension is treated as a non-isothermal, non-gray, absorbing, emitting, and anisotropically scattering medium. The transport coefficients of the particles are obtained from Mie-scattering theory by using the optical properties of cerium oxide. From the simulations, the aperture radius and the particle concentration were optimized to match the characteristics of the considered concentrator. (author)

  8. a Proposed Benchmark Problem for Scatter Calculations in Radiographic Modelling

    Science.gov (United States)

    Jaenisch, G.-R.; Bellon, C.; Schumm, A.; Tabary, J.; Duvauchelle, Ph.

    2009-03-01

    Code Validation is a permanent concern in computer modelling, and has been addressed repeatedly in eddy current and ultrasonic modeling. A good benchmark problem is sufficiently simple to be taken into account by various codes without strong requirements on geometry representation capabilities, focuses on few or even a single aspect of the problem at hand to facilitate interpretation and to avoid that compound errors compensate themselves, yields a quantitative result and is experimentally accessible. In this paper we attempt to address code validation for one aspect of radiographic modeling, the scattered radiation prediction. Many NDT applications can not neglect scattered radiation, and the scatter calculation thus is important to faithfully simulate the inspection situation. Our benchmark problem covers the wall thickness range of 10 to 50 mm for single wall inspections, with energies ranging from 100 to 500 keV in the first stage, and up to 1 MeV with wall thicknesses up to 70 mm in the extended stage. A simple plate geometry is sufficient for this purpose, and the scatter data is compared on a photon level, without a film model, which allows for comparisons with reference codes like MCNP. We compare results of three Monte Carlo codes (McRay, Sindbad and Moderato) as well as an analytical first order scattering code (VXI), and confront them to results obtained with MCNP. The comparison with an analytical scatter model provides insights into the application domain where this kind of approach can successfully replace Monte-Carlo calculations.

  9. Theory of interacting dislocations on cylinders.

    Science.gov (United States)

    Amir, Ariel; Paulose, Jayson; Nelson, David R

    2013-04-01

    We study the mechanics and statistical physics of dislocations interacting on cylinders, motivated by the elongation of rod-shaped bacterial cell walls and cylindrical assemblies of colloidal particles subject to external stresses. The interaction energy and forces between dislocations are solved analytically, and analyzed asymptotically. The results of continuum elastic theory agree well with numerical simulations on finite lattices even for relatively small systems. Isolated dislocations on a cylinder act like grain boundaries. With colloidal crystals in mind, we show that saddle points are created by a Peach-Koehler force on the dislocations in the circumferential direction, causing dislocation pairs to unbind. The thermal nucleation rate of dislocation unbinding is calculated, for an arbitrary mobility tensor and external stress, including the case of a twist-induced Peach-Koehler force along the cylinder axis. Surprisingly rich phenomena arise for dislocations on cylinders, despite their vanishing Gaussian curvature.

  10. Monte Carlo studies of high-transverse-energy hadronic interactions

    International Nuclear Information System (INIS)

    Corcoran, M.D.

    1985-01-01

    A four-jet Monte Carlo calculation has been used to simulate hadron-hadron interactions which deposit high transverse energy into a large-solid-angle calorimeter and limited solid-angle regions of the calorimeter. The calculation uses first-order QCD cross sections to generate two scattered jets and also produces beam and target jets. Field-Feynman fragmentation has been used in the hadronization. The sensitivity of the results to a few features of the Monte Carlo program has been studied. The results are found to be very sensitive to the method used to ensure overall energy conservation after the fragmentation of the four jets is complete. Results are also sensitive to the minimum momentum transfer in the QCD subprocesses and to the distribution of p/sub T/ to the jet axis and the multiplicities in the fragmentation. With reasonable choices of these features of the Monte Carlo program, good agreement with data at Fermilab/CERN SPS energies is obtained, comparable to the agreement achieved with more sophisticated parton-shower models. With other choices, however, the calculation gives qualitatively different results which are in strong disagreement with the data. These results have important implications for extracting physics conclusions from Monte Carlo calculations. It is not possible to test the validity of a particular model or distinguish between different models unless the Monte Carlo results are unambiguous and different models exhibit clearly different behavior

  11. New Monte Carlo approach to the adjoint Boltzmann equation

    International Nuclear Information System (INIS)

    De Matteis, A.; Simonini, R.

    1978-01-01

    A class of stochastic models for the Monte Carlo integration of the adjoint neutron transport equation is described. Some current general methods are brought within this class, thus preparing the ground for subsequent comparisons. Monte Carlo integration of the adjoint Boltzmann equation can be seen as a simulation of the transport of mathematical particles with reaction kernels not normalized to unity. This last feature is a source of difficulty: It can influence the variance of the result negatively and also often leads to preparation of special ''libraries'' consisting of tables of normalization factors as functions of energy, presently used by several methods. These are the two main points that are discussed and that are taken into account to devise a nonmultigroup method of solution for a certain class of problems. Reactions considered in detail are radiative capture, elastic scattering, discrete levels and continuum inelastic scattering, for which the need for tables has been almost completely eliminated. The basic policy pursued to avoid a source of statistical fluctuations is to try to make the statistical weight of the traveling particle dependent only on its starting and current energies, at least in simple cases. The effectiveness of the sampling schemes proposed is supported by numerical comparison with other more general adjoint Monte Carlo methods. Computation of neutron flux at a point by means of an adjoint formulation is the problem taken as a test for numerical experiments. Very good results have been obtained in the difficult case of resonant cross sections

  12. Low-Re flow past an isolated cylinder with rounded corners

    KAUST Repository

    Zhang, Wei

    2016-06-29

    Direct numerical simulation is performed for flow past an isolated cylinder at Re=1,000. The corners of the cylinder are rounded at different radii, with the non-dimensional radius of curvature varying from R+=R/D=0.000 (square cylinder with sharp corners) to 0.500 (circular cylinder), in which R is the corner radius and D is the cylinder diameter. Our objective is to investigate the effect of the rounded corners on the development of the separated and transitional flow past the cylinder in terms of time-averaged statistics, time-dependent behavior, turbulent statistics and three-dimensional flow patterns. Numerical results reveal that the rounding of the corners significantly reduces the time-averaged drag and the force fluctuations. The wake flow downstream of the square cylinder recovers the slowest and has the largest wake width. However, the statistical quantities do not monotonically vary with the corner radius, but exhibit drastic variations between the cases of square cylinder and partially rounded cylinders, and between the latter and the circular cylinder. The free shear layer separated from the R+=0.125 cylinder is the most stable in which the first roll up of the wake vortex occurs furthest from the cylinder and results in the largest recirculation bubble, whose size reduces as R+ further increases. The coherent and incoherent Reynolds stresses are most pronounced in the near-wake close to the reattachment point, while also being noticeable in the shear layer for the square and R+=0.125 cylinders. The wake vortices translate in the streamwise direction with a convection velocity that is almost constant at approximately 80% of the incoming flow velocity. These vortices exhibit nearly the same trajectory for the rounded cylinders and are furthest away from the wake centerline for the square one. The flow past the square cylinder is strongly three-dimensional as indicated by the significant primary and secondary enstrophy, while it is dominated by the

  13. Monte Carlo study of electron irradiation effect on YBCO dpa profiles

    International Nuclear Information System (INIS)

    Pinnera, I.; Cruz, C.; Abreu, Y.; Leyva, A.; Van Espen, P.

    2011-01-01

    The Monte Carlo assisted Classical Method (MCCM) consists on a calculation procedure for determining the displacements per atom (dpa) distribution in solid materials. This algorithm allows studying the gamma and electron irradiation damage in different materials. It is based on the electrons elastic scattering classic theories and the use of Monte Carlo simulation for the physical processes involved. The present study deals with the Monte Carlo simulation of electron irradiation effects on YBa 2 Cu 3 O 7-x (YBCO) slabs using the MCNPX code system. Displacements per atom distributions are obtained through the MCCM for electron irradiation up to 10 MeV. In-depth dpa profiles for electrons and positrons are obtained and analyzed. Also, for each atomic species in the material, the dpa distributions are calculated. All the results are discussed in the present contribution. (Author)

  14. McStas 1.1: A tool for building neutron Monte Carlo simulations

    DEFF Research Database (Denmark)

    Lefmann, K.; Nielsen, K.; Tennant, D.A.

    2000-01-01

    McStas is a project to develop general tools for the creation of simulations of neutron scattering experiments. In this paper, we briefly introduce McStas and describe a particular application of the program: the Monte Carlo calculation of the resolution function of a standard triple-axis neutron...

  15. Self-accelerating parabolic cylinder waves in 1-D

    Energy Technology Data Exchange (ETDEWEB)

    Yuce, C., E-mail: cyuce@anadolu.edu.tr

    2016-11-25

    Highlights: • We find a new class of self-accelerating waves. • We show that parabolic cylinder waves self-accelerates in a parabolic potential. • We discuss that truncated parabolic cylinder waves propagates large distance without almost being non-diffracted in free space. - Abstract: We introduce a new self-accelerating wave packet solution of the Schrodinger equation in one dimension. We obtain an exact analytical parabolic cylinder wave for the inverted harmonic potential. We show that truncated parabolic cylinder waves exhibits their accelerating feature.

  16. Observation of Jet Photoproduction and Comparison to Monte Carlo Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Lincoln, Donald W. [Rice Univ., Houston, TX (United States)

    1994-01-01

    The photon is the carrier of the electromagnetic force. However in addition to its well known nature, the theories of QCD and quantum mechanics would indicate that the photon can also for brief periods of time split into a $q\\bar{q}$ pair (an extended photon.) How these constituents share energy and momentum is an interesting question and such a measurement was investigated by scattering photons off protons. The post collision kinematics should reveal pre-collision information. Unfortunately, when these constituents exit the collision point, they undergo subsequent interactions (gluon radiation, fragmentation, etc.) which scramble their kinematics. An algorithm was explored which was shown via Monte Carlo techniques to partially disentangle these post collision interactions and reveal the collision kinematics. The presence or absence of large transverse momenta internal ($k_\\perp$) to the photon has a significant impact on the ability to reconstruct the kinematics of the leading order calculation hard scatter system. Reconstruction of the next to leading order high $E_\\perp$ partons is more straightforward. Since the photon exhibits this unusual behavior only part of the time, many of the collisions recorded will be with a non-extended (or direct) photon. Unless a method for culling only the extended photons out can be invented, this contamination of direct photons must be accounted for. No such culling method is currently known, and so any measurement will necessarily contain both photon types. Theoretical predictions using Monte Carlo methods are compared with the data and are found to reproduce many experimentally measured distributions quite well. Overall the LUND Monte Carlo reproduces the data better than the HERWIG Monte Carlo. As expected at low jet $E_\\perp$, the data set seems to be dominated by extended photons, with the mix becoming nearly equal at jet $E_\\perp > 4$ GeV. The existence of a large photon $k_\\perp$ appears to be favored.

  17. Monte Carlo program for the cold neutron beam guide

    International Nuclear Information System (INIS)

    Yoshiki, H.

    1985-02-01

    A Monte Carlo program for the transport of cold neutrons through beam guides has been developed assuming that the neutrons follow the specular reflections. Cold neutron beam guides are normally used to transport cold neutrons (4 ∼ 10 Angstrom) to experimental equipments such as small angle scattering apparatus, TOF measuring devices, polarized neutron spectrometers, and ultra cold neutron generators, etc. The beam guide is about tens of meters in length and is composed from a meter long guide elements made up from four pieces of Ni coated rectangular optical glass. This report describes mathematics and algorithm employed in the Monte Carlo program together with the display of the results. The source program and input data listings are also attached. (Aoki, K.)

  18. grmonty: A MONTE CARLO CODE FOR RELATIVISTIC RADIATIVE TRANSPORT

    International Nuclear Information System (INIS)

    Dolence, Joshua C.; Gammie, Charles F.; Leung, Po Kin; Moscibrodzka, Monika

    2009-01-01

    We describe a Monte Carlo radiative transport code intended for calculating spectra of hot, optically thin plasmas in full general relativity. The version we describe here is designed to model hot accretion flows in the Kerr metric and therefore incorporates synchrotron emission and absorption, and Compton scattering. The code can be readily generalized, however, to account for other radiative processes and an arbitrary spacetime. We describe a suite of test problems, and demonstrate the expected N -1/2 convergence rate, where N is the number of Monte Carlo samples. Finally, we illustrate the capabilities of the code with a model calculation, a spectrum of the slowly accreting black hole Sgr A* based on data provided by a numerical general relativistic MHD model of the accreting plasma.

  19. Monte Carlo Transverse Emittance Study on Cs2Te

    CERN Document Server

    Banfi, F; Galimberti, P G; Giannetti, C; Pagliara, S; Parmigiani, F; Pedersoli, E

    2005-01-01

    A Monte Carlo study of electron transport in Cs2Te films is performed to investigate the transverse emittance epsilon at the cathode surface. We find the photoemitted electron angular distribution and explain the physical mechanism involved in the process, a mechanism hindered by the statistical nature of the Monte Carlo method. The effects of electron-phonon scattering are discussed. The transverse emittance is calculated for different radiation wavelengths and a laser spot size of 1.5*10(-3) m. For a laser radiation at 265 nm we find epsilon = 0.56 mm-mrad. The dependence of epsilon and the quantum yield on the electron affinity Ea is also investigated. The data shows the importance of aging/contamination on the material.

  20. Simulating measures of wood density through the surface by Compton scattering

    International Nuclear Information System (INIS)

    Penna, Rodrigo; Oliveira, Arno H.; Braga, Mario R.M.S.S.; Vasconcelos, Danilo C.; Carneiro, Clemente J.G.; Penna, Ariane G.C.

    2009-01-01

    Monte Carlo code (MCNP-4C) was used to simulate a nuclear densimeter for measuring wood densities nondestructively. An Americium source (E = 60 keV) and a NaI (Tl) detector were placed on a wood block surface. Results from MCNP shown that scattered photon fluxes may be used to determining wood densities. Linear regressions between scattered photons fluxes and wood density were calculated and shown correlation coefficients near unity. (author)

  1. Monte Carlo codes and Monte Carlo simulator program

    International Nuclear Information System (INIS)

    Higuchi, Kenji; Asai, Kiyoshi; Suganuma, Masayuki.

    1990-03-01

    Four typical Monte Carlo codes KENO-IV, MORSE, MCNP and VIM have been vectorized on VP-100 at Computing Center, JAERI. The problems in vector processing of Monte Carlo codes on vector processors have become clear through the work. As the result, it is recognized that these are difficulties to obtain good performance in vector processing of Monte Carlo codes. A Monte Carlo computing machine, which processes the Monte Carlo codes with high performances is being developed at our Computing Center since 1987. The concept of Monte Carlo computing machine and its performance have been investigated and estimated by using a software simulator. In this report the problems in vectorization of Monte Carlo codes, Monte Carlo pipelines proposed to mitigate these difficulties and the results of the performance estimation of the Monte Carlo computing machine by the simulator are described. (author)

  2. COG10, Multiparticle Monte Carlo Code System for Shielding and Criticality Use

    International Nuclear Information System (INIS)

    2007-01-01

    1 - Description of program or function: COG is a modern, full-featured Monte Carlo radiation transport code which provides accurate answers to complex shielding, criticality, and activation problems. COG was written to be state-of-the-art and free of physics approximations and compromises found in earlier codes. COG is fully 3-D, uses point-wise cross sections and exact angular scattering, and allows a full range of biasing options to speed up solutions for deep penetration problems. Additionally, a criticality option is available for computing Keff for assemblies of fissile materials. ENDL or ENDFB cross section libraries may be used. COG home page: http://www-phys.llnl.gov/N_Div/COG/. Cross section libraries are included in the package. COG can use either the LLNL ENDL-90 cross section set or the ENDFB/VI set. Analytic surfaces are used to describe geometric boundaries. Parts (volumes) are described by a method of Constructive Solid Geometry. Surface types include surfaces of up to fourth order, and pseudo-surfaces such as boxes, finite cylinders, and figures of revolution. Repeated assemblies need be defined only once. Parts are visualized in cross-section and perspective picture views. Source and random-walk biasing techniques may be selected to improve solution statistics. These include source angular biasing, importance weighting, particle splitting and Russian roulette, path-length stretching, point detectors, scattered direction biasing, and forced collisions. Criticality - For a fissioning system, COG will compute Keff by transporting batches of neutrons through the system. Activation - COG can compute gamma-ray doses due to neutron-activated materials, starting with just a neutron source. Coupled Problems - COG can solve coupled problems involving neutrons, photons, and electrons. 2 - Methods:COG uses Monte Carlo methods to solve the Boltzmann transport equation for particles traveling through arbitrary 3-dimensional geometries. Neutrons, photons

  3. COLLI-PTB, Neutron Fluence Spectra for 3-D Collimator System by Monte-Carlo

    International Nuclear Information System (INIS)

    Schlegel-Bickmann, Dietrich

    1995-01-01

    1 - Description of program or function: For optimizing collimator systems (shieldings) for fast neutrons with energies between 10 KeV and 20 MeV. Only elastic and inelastic neutron scattering processes are involved. Isotropic angular distribution for inelastic scattering in the center of mass system is assumed. 2 - Method of solution: The Monte Carlo method with importance sampling technique, splitting and Russian Roulette is used. The neutron attenuation and scattering kinematics is taken into account. 3 - Restrictions on the complexity of the problem: Energy range from 10 KeV to 20 MeV. For the output spectra any bin width is possible. The output spectra are confined to 40 equidistant channels

  4. Monte Carlo calculations of neutron thermalization in a heterogeneous system

    Energy Technology Data Exchange (ETDEWEB)

    Hoegberg, T

    1959-07-15

    The slowing down of neutrons in a heterogeneous system (a slab geometry) of uranium and heavy water has been investigated by Monte Carlo methods. Effects on the neutron spectrum due to the thermal motions of the scattering and absorbing atoms are taken into account. It has been assumed that the speed distribution of the moderator atoms are Maxwell-Boltzmann in character.

  5. 46 CFR 58.30-30 - Fluid power cylinders.

    Science.gov (United States)

    2010-10-01

    ... all pneumatic power transmission systems. (b) Fluid power cylinders consisting of a container and a... 46 Shipping 2 2010-10-01 2010-10-01 false Fluid power cylinders. 58.30-30 Section 58.30-30... MACHINERY AND RELATED SYSTEMS Fluid Power and Control Systems § 58.30-30 Fluid power cylinders. (a) The...

  6. Depth distribution of multiple order X-ray scatter

    International Nuclear Information System (INIS)

    Yao Weiguang; Leszczynski, Konrad

    2008-01-01

    Scatter can significantly affect quality of projectional X-ray radiographs and tomographic reconstructions. With this in mind, we examined some of the physical properties of multiple orders of scatter of X-ray photons traversing through a layer of scattering media such as water. Using Monte Carlo techniques, we investigated depth distributions of interactions between incident X-ray photons and water before the resulting scattered photons reach the detector plane. Effects of factors such as radiation field size, air gap, thickness of the layer of scattering medium and X-ray energy, on the scatter were included in the scope of this study. The following scatter characteristics were observed: (1) for a layer of scattering material corresponding to the typical subject thickness in medical imaging, frequency distribution of locations of the last scattering interaction increases approximately exponentially with depth, and the higher the order of scatter or the energy of the incident photon, the narrower is the distribution; (2) for the second order scatter, the distribution of locations of the first interaction is more uniform than that of the last interaction and is dependent on the energy of the primary photons. Theoretical proofs for some of these properties are given. These properties are important to better understanding of effects of scatter on the radiographic and tomographic imaging process and to developing effective methods for scatter correction

  7. An analytical model for backscattered luminance in fog: comparisons with Monte Carlo computations and experimental results

    International Nuclear Information System (INIS)

    Taillade, Frédéric; Dumont, Eric; Belin, Etienne

    2008-01-01

    We propose an analytical model for backscattered luminance in fog and derive an expression for the visibility signal-to-noise ratio as a function of meteorological visibility distance. The model uses single scattering processes. It is based on the Mie theory and the geometry of the optical device (emitter and receiver). In particular, we present an overlap function and take the phase function of fog into account. The results of the backscattered luminance obtained with our analytical model are compared to simulations made using the Monte Carlo method based on multiple scattering processes. An excellent agreement is found in that the discrepancy between the results is smaller than the Monte Carlo standard uncertainties. If we take no account of the geometry of the optical device, the results of the model-estimated backscattered luminance differ from the simulations by a factor 20. We also conclude that the signal-to-noise ratio computed with the Monte Carlo method and our analytical model is in good agreement with experimental results since the mean difference between the calculations and experimental measurements is smaller than the experimental uncertainty

  8. Nonlinear bending and collapse analysis of a poked cylinder and other point-loaded cylinders

    International Nuclear Information System (INIS)

    Sobel, L.H.

    1983-06-01

    This paper analyzes the geometrically nonlinear bending and collapse behavior of an elastic, simply supported cylindrical shell subjected to an inward-directed point load applied at midlength. The large displacement analysis results for this thin (R/t = 638) poked cylinder were obtained from the STAGSC-1 finite element computer program. STAGSC-1 results are also presented for two other point-loaded shell problems: a pinched cylinder (R/t = 100), and a venetian blind (R/t = 250)

  9. Radio-analysis of hydrogenous material using neutron back-scattering technique

    International Nuclear Information System (INIS)

    Holly, Wiam Ahmed Alteghany

    2014-10-01

    In this work, we have explored the possibility of using neutron back-scattering technique in performing radio analysis for samples of hydrogenous materials such as explosives, drugs, crude oil and water, looking for different signals that may be used to discriminate these samples. Monte Carlo simulations were carried out to model the detection system and select the optimal geometry as well. The results were determined in terms of the energy spectra of the back-scattered neutrons.(Author)

  10. On the thermal scattering law data for reactor lattice calculations

    International Nuclear Information System (INIS)

    Trkov, A.; Mattes, M.

    2004-01-01

    Thermal scattering law data for hydrogen bound in water, hydrogen bound in zirconium hydride and deuterium bound in heavy water have been re-evaluated. The influence of the thermal scattering law data on critical lattices has been studied with detailed Monte Carlo calculations and a summary of results is presented for a numerical benchmark and for the TRIGA reactor benchmark. Systematics for a large sequence of benchmarks analysed with the WIMS-D lattice code are also presented. (author)

  11. Experimental seismic test of fluid coupled co-axial cylinders

    International Nuclear Information System (INIS)

    Chu, M.L.; Brown, S.J.; Lestingi, J.F.

    1979-01-01

    The dynamic response of fluid coupled coaxial cylindrical shells is of interest to the nuclear industry with respect to the seismic design of the reactor vessel and thermal liner. The experiments described present a series of tests which investigate the effect of the annular clearance between the cylinders (gap) on natural frequency, damping, and seismic response of both the inner and outer cylinders. The seismic input is a time history base load to the flexible fluid filled coaxial cylinders. The outer cylinder is elastically supported at both ends while the inner cylinder is supported only at the base (lower) end

  12. Estimate of the melanin content in human hairs by the inverse Monte-Carlo method using a system for digital image analysis

    International Nuclear Information System (INIS)

    Bashkatov, A N; Genina, Elina A; Kochubei, V I; Tuchin, Valerii V

    2006-01-01

    Based on the digital image analysis and inverse Monte-Carlo method, the proximate analysis method is deve-loped and the optical properties of hairs of different types are estimated in three spectral ranges corresponding to three colour components. The scattering and absorption properties of hairs are separated for the first time by using the inverse Monte-Carlo method. The content of different types of melanin in hairs is estimated from the absorption coefficient. It is shown that the dominating type of melanin in dark hairs is eumelanin, whereas in light hairs pheomelanin dominates. (special issue devoted to multiple radiation scattering in random media)

  13. Monte Carlo simulation of the spear reflectometer at LANSCE

    International Nuclear Information System (INIS)

    Smith, G.S.

    1995-01-01

    The Monte Carlo instrument simulation code, MCLIB, contains elements to represent several components found in neutron spectrometers including slits, choppers, detectors, sources and various samples. Using these elements to represent the components of a neutron scattering instrument, one can simulate, for example, an inelastic spectrometer, a small angle scattering machine, or a reflectometer. In order to benchmark the code, we chose to compare simulated data from the MCLIB code with an actual experiment performed on the SPEAR reflectometer at LANSCE. This was done by first fitting an actual SPEAR data set to obtain the model scattering-length-density profile, Β(z), for the sample and the substrate. Then these parameters were used as input values for the sample scattering function. A simplified model of SPEAR was chosen which contained all of the essential components of the instrument. A code containing the MCLIB subroutines was then written to simulate this simplified instrument. The resulting data was then fit and compared to the actual data set in terms of the statistics, resolution and accuracy

  14. Results of ultrasonic testing evaluations on UF6 storage cylinders

    International Nuclear Information System (INIS)

    Lykins, M.L.

    1997-02-01

    The three site cylinder management program is responsible for the safe storage of the DOE owned UF 6 storage cylinders at PORTS, PGDP and at the K-25 site. To ensure the safe storage of the UF 6 in the cylinders, the structural integrity of the cylinders must be evaluated. This report represents the latest cylinder integrity investigation that utilized wall thickness evaluations to identify thinning due to atmospheric exposure

  15. Direct observation and theory of trajectory-dependent electronic energy losses in medium-energy ion scattering.

    Science.gov (United States)

    Hentz, A; Parkinson, G S; Quinn, P D; Muñoz-Márquez, M A; Woodruff, D P; Grande, P L; Schiwietz, G; Bailey, P; Noakes, T C Q

    2009-03-06

    The energy spectrum associated with scattering of 100 keV H+ ions from the outermost few atomic layers of Cu(111) in different scattering geometries provides direct evidence of trajectory-dependent electronic energy loss. Theoretical simulations, combining standard Monte Carlo calculations of the elastic scattering trajectories with coupled-channel calculations to describe inner-shell ionization and excitation as a function of impact parameter, reproduce the effects well and provide a means for far more complete analysis of medium-energy ion scattering data.

  16. Deterministic simulation of first-order scattering in virtual X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Freud, N. E-mail: nicolas.freud@insa-lyon.fr; Duvauchelle, P.; Pistrui-Maximean, S.A.; Letang, J.-M.; Babot, D

    2004-07-01

    A deterministic algorithm is proposed to compute the contribution of first-order Compton- and Rayleigh-scattered radiation in X-ray imaging. This algorithm has been implemented in a simulation code named virtual X-ray imaging. The physical models chosen to account for photon scattering are the well-known form factor and incoherent scattering function approximations, which are recalled in this paper and whose limits of validity are briefly discussed. The proposed algorithm, based on a voxel discretization of the inspected object, is presented in detail, as well as its results in simple configurations, which are shown to converge when the sampling steps are chosen sufficiently small. Simple criteria for choosing correct sampling steps (voxel and pixel size) are established. The order of magnitude of the computation time necessary to simulate first-order scattering images amounts to hours with a PC architecture and can even be decreased down to minutes, if only a profile is computed (along a linear detector). Finally, the results obtained with the proposed algorithm are compared to the ones given by the Monte Carlo code Geant4 and found to be in excellent accordance, which constitutes a validation of our algorithm. The advantages and drawbacks of the proposed deterministic method versus the Monte Carlo method are briefly discussed.

  17. X-ray scatter data for diagnostic radiology

    International Nuclear Information System (INIS)

    Dick, C.E.; Soares, C.G.; Motz, J.W.

    1978-01-01

    The ratio of the scattered to the total X-ray fluence (scatter fraction) at the centre of the image plane for X-rays transmitted through polystyrene phantoms has been measured for X-ray energies of 32 and 69 keV, X-ray beam diameters from 4 to 40 cm, phantom thicknesses from 5 to 30 cm and phantom-to-image-plane separations from 0.3 to 40 cm. The experimental values for this ratio have less than a 10% variation for these two X-ray energies and the experimental data show good agreement with Monte Carlo calculations and available experimental results for low atomic number materials. Based on these results, simple curves are generated which give estimates (+ - 10%) of the scatter fraction for all combinations of the geometric parameters encountered in diagnostic radiology. (author)

  18. Evaluation of an electron Monte Carlo dose calculation algorithm for treatment planning.

    Science.gov (United States)

    Chamberland, Eve; Beaulieu, Luc; Lachance, Bernard

    2015-05-08

    The purpose of this study is to evaluate the accuracy of the electron Monte Carlo (eMC) dose calculation algorithm included in a commercial treatment planning system and compare its performance against an electron pencil beam algorithm. Several tests were performed to explore the system's behavior in simple geometries and in configurations encountered in clinical practice. The first series of tests were executed in a homogeneous water phantom, where experimental measurements and eMC-calculated dose distributions were compared for various combinations of energy and applicator. More specifically, we compared beam profiles and depth-dose curves at different source-to-surface distances (SSDs) and gantry angles, by using dose difference and distance to agreement. Also, we compared output factors, we studied the effects of algorithm input parameters, which are the random number generator seed, as well as the calculation grid size, and we performed a calculation time evaluation. Three different inhomogeneous solid phantoms were built, using high- and low-density materials inserts, to clinically simulate relevant heterogeneity conditions: a small air cylinder within a homogeneous phantom, a lung phantom, and a chest wall phantom. We also used an anthropomorphic phantom to perform comparison of eMC calculations to measurements. Finally, we proceeded with an evaluation of the eMC algorithm on a clinical case of nose cancer. In all mentioned cases, measurements, carried out by means of XV-2 films, radiographic films or EBT2 Gafchromic films. were used to compare eMC calculations with dose distributions obtained from an electron pencil beam algorithm. eMC calculations in the water phantom were accurate. Discrepancies for depth-dose curves and beam profiles were under 2.5% and 2 mm. Dose calculations with eMC for the small air cylinder and the lung phantom agreed within 2% and 4%, respectively. eMC calculations for the chest wall phantom and the anthropomorphic phantom also

  19. Low-Re flow past an isolated cylinder with rounded corners

    KAUST Repository

    Zhang, Wei; Samtaney, Ravi

    2016-01-01

    rounded cylinders, and between the latter and the circular cylinder. The free shear layer separated from the R+=0.125 cylinder is the most stable in which the first roll up of the wake vortex occurs furthest from the cylinder and results in the largest

  20. Scattering of light by nonspherical particles

    International Nuclear Information System (INIS)

    Coulson, K.L.

    1985-12-01

    Methods of computing scattering by non-spherical particles are reviewed for the Mie theory, the Rayleigh-Gans approximation, the geometric optics method, the extended boundary condition method, the anamalous diffraction, the suppression of resonances, the statistical approach, the expansion of vector wave equations in spheroidal coordinates, and the semi-emperical theory of Pollack and Cuzzi. The results of computations for nonspherical particles are compared for prolate and oblate spheroids, homogeneous sphere with holes, rough particles made of stacked cylinders, irregular particles of various shapes, and particles of carbonaceous smokes. Conclusions are presented in the context of nuclear winter

  1. Scatter Correction with Combined Single-Scatter Simulation and Monte Carlo Simulation Scaling Improved the Visual Artifacts and Quantification in 3-Dimensional Brain PET/CT Imaging with 15O-Gas Inhalation.

    Science.gov (United States)

    Magota, Keiichi; Shiga, Tohru; Asano, Yukari; Shinyama, Daiki; Ye, Jinghan; Perkins, Amy E; Maniawski, Piotr J; Toyonaga, Takuya; Kobayashi, Kentaro; Hirata, Kenji; Katoh, Chietsugu; Hattori, Naoya; Tamaki, Nagara

    2017-12-01

    In 3-dimensional PET/CT imaging of the brain with 15 O-gas inhalation, high radioactivity in the face mask creates cold artifacts and affects the quantitative accuracy when scatter is corrected by conventional methods (e.g., single-scatter simulation [SSS] with tail-fitting scaling [TFS-SSS]). Here we examined the validity of a newly developed scatter-correction method that combines SSS with a scaling factor calculated by Monte Carlo simulation (MCS-SSS). Methods: We performed phantom experiments and patient studies. In the phantom experiments, a plastic bottle simulating a face mask was attached to a cylindric phantom simulating the brain. The cylindric phantom was filled with 18 F-FDG solution (3.8-7.0 kBq/mL). The bottle was filled with nonradioactive air or various levels of 18 F-FDG (0-170 kBq/mL). Images were corrected either by TFS-SSS or MCS-SSS using the CT data of the bottle filled with nonradioactive air. We compared the image activity concentration in the cylindric phantom with the true activity concentration. We also performed 15 O-gas brain PET based on the steady-state method on patients with cerebrovascular disease to obtain quantitative images of cerebral blood flow and oxygen metabolism. Results: In the phantom experiments, a cold artifact was observed immediately next to the bottle on TFS-SSS images, where the image activity concentrations in the cylindric phantom were underestimated by 18%, 36%, and 70% at the bottle radioactivity levels of 2.4, 5.1, and 9.7 kBq/mL, respectively. At higher bottle radioactivity, the image activity concentrations in the cylindric phantom were greater than 98% underestimated. For the MCS-SSS, in contrast, the error was within 5% at each bottle radioactivity level, although the image generated slight high-activity artifacts around the bottle when the bottle contained significantly high radioactivity. In the patient imaging with 15 O 2 and C 15 O 2 inhalation, cold artifacts were observed on TFS-SSS images, whereas

  2. Label inspection of approximate cylinder based on adverse cylinder panorama

    Science.gov (United States)

    Lin, Jianping; Liao, Qingmin; He, Bei; Shi, Chenbo

    2013-12-01

    This paper presents a machine vision system for automated label inspection, with the goal to reduce labor cost and ensure consistent product quality. Firstly, the images captured from each single-camera are distorted, since the inspection object is approximate cylindrical. Therefore, this paper proposes an algorithm based on adverse cylinder projection, where label images are rectified by distortion compensation. Secondly, to overcome the limited field of viewing for each single-camera, our method novelly combines images of all single-cameras and build a panorama for label inspection. Thirdly, considering the shake of production lines and error of electronic signal, we design the real-time image registration to calculate offsets between the template and inspected images. Experimental results demonstrate that our system is accurate, real-time and can be applied for numerous real- time inspections of approximate cylinders.

  3. Multiple scattering of polarized light: comparison of Maxwell theory and radiative transfer theory.

    Science.gov (United States)

    Voit, Florian; Hohmann, Ansgar; Schäfer, Jan; Kienle, Alwin

    2012-04-01

    For many research areas in biomedical optics, information about scattering of polarized light in turbid media is of increasing importance. Scattering simulations within this field are mainly performed on the basis of radiative transfer theory. In this study a polarization sensitive Monte Carlo solution of radiative transfer theory is compared to exact Maxwell solutions for all elements of the scattering Müller matrix. Different scatterer volume concentrations are modeled as a multitude of monodisperse nonabsorbing spheres randomly positioned in a cubic simulation volume which is irradiated with monochromatic incident light. For all Müller matrix elements effects due to dependent scattering and multiple scattering are analysed. The results are in overall good agreement between the two methods with deviations related to dependent scattering being prominent for high volume concentrations and high scattering angles.

  4. A Study of Gas Economizing Pneumatic Cylinder

    International Nuclear Information System (INIS)

    Li, T C; Wu, H W; Kuo, M J

    2006-01-01

    The pneumatic cylinder is the most typical actuator in the pneumatic equipment, and its mechanism is so simple that it is often used to operate point to point driving without the feedback loop in various automatic machines. But, the energy efficiency of pneumatic system is very poor compared with electrical systems and hydraulic systems. So, it is very important to discuss the energy saving for the pneumatic cylinder systems. In this thesis, we proposed three methods to apply the reduction in the air consumed for pneumatic cylinder systems. An air charge accumulator is used to absorb the exhausted compress air and a boost valve boosted the air to the higher pressure for used again. From the experiments, the direct used cylinder exhaust air may save about 40% of compress air

  5. The effects of low-energy scattering on positron implantation

    Energy Technology Data Exchange (ETDEWEB)

    Ritley, K.A. (Dept. of Physics and Materials Research Laboratory, Univ. of Illinois, Urbana, IL (United States)); Lynn, K.G.; Ghosh, V.; Welch, D.O. (Brookhaven National Lab., Upton, NY (United States))

    1992-01-01

    Existing Monte Carlo models are capable of simulating the behavior of positrons incident at keV energies, then following the energy loss process to arbitrary final kinetic energies of from 20 eV to 100 eV. This work describes a Monte Carlo simulation of the final stages of positron thermalization in Al, from 25 eV to thermal energies, via the mechanisms of conduction-electron and longitudinal acoustic phonon scattering. The latter stages of thermalization can have important effects on the stopping profiles and mean depth. A novel way to obtain information about positron energy loss by considering the time-evolution of a point-concentration (delta-function distribution) of positrons is described. The effects of a positive positron work function are examined for the first time in the context of a positron Monte Carlo calculation. Finally, some issues relating to the agreement of Monte Carlo calculations with experimental data are discussed. 6 figs., 16 refs.

  6. The effects of low-energy scattering on positron implantation

    Energy Technology Data Exchange (ETDEWEB)

    Ritley, K.A. [Dept. of Physics and Materials Research Laboratory, Univ. of Illinois, Urbana, IL (United States); Lynn, K.G.; Ghosh, V.; Welch, D.O. [Brookhaven National Lab., Upton, NY (United States)

    1992-12-31

    Existing Monte Carlo models are capable of simulating the behavior of positrons incident at keV energies, then following the energy loss process to arbitrary final kinetic energies of from 20 eV to 100 eV. This work describes a Monte Carlo simulation of the final stages of positron thermalization in Al, from 25 eV to thermal energies, via the mechanisms of conduction-electron and longitudinal acoustic phonon scattering. The latter stages of thermalization can have important effects on the stopping profiles and mean depth. A novel way to obtain information about positron energy loss by considering the time-evolution of a point-concentration (delta-function distribution) of positrons is described. The effects of a positive positron work function are examined for the first time in the context of a positron Monte Carlo calculation. Finally, some issues relating to the agreement of Monte Carlo calculations with experimental data are discussed. 6 figs., 16 refs.

  7. Enrichment Assay Methods Development for the Integrated Cylinder Verification System

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Leon E.; Misner, Alex C.; Hatchell, Brian K.; Curtis, Michael M.

    2009-10-22

    International Atomic Energy Agency (IAEA) inspectors currently perform periodic inspections at uranium enrichment plants to verify UF6 cylinder enrichment declarations. Measurements are typically performed with handheld high-resolution sensors on a sampling of cylinders taken to be representative of the facility's entire product-cylinder inventory. Pacific Northwest National Laboratory (PNNL) is developing a concept to automate the verification of enrichment plant cylinders to enable 100 percent product-cylinder verification and potentially, mass-balance calculations on the facility as a whole (by also measuring feed and tails cylinders). The Integrated Cylinder Verification System (ICVS) could be located at key measurement points to positively identify each cylinder, measure its mass and enrichment, store the collected data in a secure database, and maintain continuity of knowledge on measured cylinders until IAEA inspector arrival. The three main objectives of this FY09 project are summarized here and described in more detail in the report: (1) Develop a preliminary design for a prototype NDA system, (2) Refine PNNL's MCNP models of the NDA system, and (3) Procure and test key pulse-processing components. Progress against these tasks to date, and next steps, are discussed.

  8. Enrichment Assay Methods Development for the Integrated Cylinder Verification System

    International Nuclear Information System (INIS)

    Smith, Leon E.; Misner, Alex C.; Hatchell, Brian K.; Curtis, Michael M.

    2009-01-01

    International Atomic Energy Agency (IAEA) inspectors currently perform periodic inspections at uranium enrichment plants to verify UF6 cylinder enrichment declarations. Measurements are typically performed with handheld high-resolution sensors on a sampling of cylinders taken to be representative of the facility's entire product-cylinder inventory. Pacific Northwest National Laboratory (PNNL) is developing a concept to automate the verification of enrichment plant cylinders to enable 100 percent product-cylinder verification and potentially, mass-balance calculations on the facility as a whole (by also measuring feed and tails cylinders). The Integrated Cylinder Verification System (ICVS) could be located at key measurement points to positively identify each cylinder, measure its mass and enrichment, store the collected data in a secure database, and maintain continuity of knowledge on measured cylinders until IAEA inspector arrival. The three main objectives of this FY09 project are summarized here and described in more detail in the report: (1) Develop a preliminary design for a prototype NDA system, (2) Refine PNNL's MCNP models of the NDA system, and (3) Procure and test key pulse-processing components. Progress against these tasks to date, and next steps, are discussed.

  9. Sub-wavelength metamaterial cylinders with multiple dipole resonances

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Breinbjerg, Olav

    2009-01-01

    It has been shown that the sub-wavelength resonances of the individual MTM cylinders also occur for electrically small configurations combining 2 or 4 cylinders. For the 2-and 4-cylinder configurations the overall size is 1/20 and 1/12.5 of the smallest wavelength, respectively. These MTM...... configuration thus offer the possibility for multi-resonant electrically small configurations....

  10. Energy Absorption of Monolithic and Fibre Reinforced Aluminium Cylinders

    NARCIS (Netherlands)

    De Kanter, J.L.C.G.

    2006-01-01

    Summary accompanying the thesis: Energy Absorption of Monolithic and Fibre Reinforced Aluminium Cylinders by Jens de Kanter This thesis presents the investigation of the crush behaviour of both monolithic aluminium cylinders and externally fibre reinforced aluminium cylinders. The research is based

  11. Simulation tools for scattering corrections in spectrally resolved x-ray computed tomography using McXtrace

    Science.gov (United States)

    Busi, Matteo; Olsen, Ulrik L.; Knudsen, Erik B.; Frisvad, Jeppe R.; Kehres, Jan; Dreier, Erik S.; Khalil, Mohamad; Haldrup, Kristoffer

    2018-03-01

    Spectral computed tomography is an emerging imaging method that involves using recently developed energy discriminating photon-counting detectors (PCDs). This technique enables measurements at isolated high-energy ranges, in which the dominating undergoing interaction between the x-ray and the sample is the incoherent scattering. The scattered radiation causes a loss of contrast in the results, and its correction has proven to be a complex problem, due to its dependence on energy, material composition, and geometry. Monte Carlo simulations can utilize a physical model to estimate the scattering contribution to the signal, at the cost of high computational time. We present a fast Monte Carlo simulation tool, based on McXtrace, to predict the energy resolved radiation being scattered and absorbed by objects of complex shapes. We validate the tool through measurements using a CdTe single PCD (Multix ME-100) and use it for scattering correction in a simulation of a spectral CT. We found the correction to account for up to 7% relative amplification in the reconstructed linear attenuation. It is a useful tool for x-ray CT to obtain a more accurate material discrimination, especially in the high-energy range, where the incoherent scattering interactions become prevailing (>50 keV).

  12. Condensed history Monte Carlo methods for photon transport problems

    International Nuclear Information System (INIS)

    Bhan, Katherine; Spanier, Jerome

    2007-01-01

    We study methods for accelerating Monte Carlo simulations that retain most of the accuracy of conventional Monte Carlo algorithms. These methods - called Condensed History (CH) methods - have been very successfully used to model the transport of ionizing radiation in turbid systems. Our primary objective is to determine whether or not such methods might apply equally well to the transport of photons in biological tissue. In an attempt to unify the derivations, we invoke results obtained first by Lewis, Goudsmit and Saunderson and later improved by Larsen and Tolar. We outline how two of the most promising of the CH models - one based on satisfying certain similarity relations and the second making use of a scattering phase function that permits only discrete directional changes - can be developed using these approaches. The main idea is to exploit the connection between the space-angle moments of the radiance and the angular moments of the scattering phase function. We compare the results obtained when the two CH models studied are used to simulate an idealized tissue transport problem. The numerical results support our findings based on the theoretical derivations and suggest that CH models should play a useful role in modeling light-tissue interactions

  13. MONOMIALS AND BASIN CYLINDERS FOR NETWORK DYNAMICS.

    Science.gov (United States)

    Austin, Daniel; Dinwoodie, Ian H

    We describe methods to identify cylinder sets inside a basin of attraction for Boolean dynamics of biological networks. Such sets are used for designing regulatory interventions that make the system evolve towards a chosen attractor, for example initiating apoptosis in a cancer cell. We describe two algebraic methods for identifying cylinders inside a basin of attraction, one based on the Groebner fan that finds monomials that define cylinders and the other on primary decomposition. Both methods are applied to current examples of gene networks.

  14. Penelope-2006: a code system for Monte Carlo simulation of electron and photon transport

    International Nuclear Information System (INIS)

    2006-01-01

    The computer code system PENELOPE (version 2006) performs Monte Carlo simulation of coupled electron-photon transport in arbitrary materials for a wide energy range, from a few hundred eV to about 1 GeV. Photon transport is simulated by means of the standard, detailed simulation scheme. Electron and positron histories are generated on the basis of a mixed procedure, which combines detailed simulation of hard events with condensed simulation of soft interactions. A geometry package called PENGEOM permits the generation of random electron-photon showers in material systems consisting of homogeneous bodies limited by quadric surfaces, i.e. planes, spheres, cylinders, etc. This report is intended not only to serve as a manual of the PENELOPE code system, but also to provide the user with the necessary information to understand the details of the Monte Carlo algorithm. These proceedings contain the corresponding manual and teaching notes of the PENELOPE-2006 workshop and training course, held on 4-7 July 2006 in Barcelona, Spain. (author)

  15. Application of SN and Monte Carlo codes to the SHEBA critical assemblies

    International Nuclear Information System (INIS)

    O'Dell, R.D.

    1993-01-01

    The Solution High-Energy Burst Assembly (SHEBA) at Los Alamos is a low-enriched (4.95 wt. %) aqueous uranyl fluoride solution critical assembly. There are two SHEBA configurations, both consisting of right circular cylinders with a central control rod. The first configuration, hereafter called the old SHEBA, had a fuel solution diameter of 54.6 cm and a measured critical solution height of 36.5 cm. An improved modification, hereafter called the new SHEBA, has a fuel solution diameter of 48.9 cm but since it is not yet operational, the critical solution height has not yet been measured. In this presentation the application of the discrete-ordinates (S N ) code TWODANT using Hansen-Roach cross sections and the MCNP Monte Carlo code using continuous-energy cross sections for calculating the critical solution heights for both the old and new SHEBA assemblies is described. The code's predictions are compared and it is shown that a single calculation with a standard computer code may yield misleading results, especially when using a Monte Carlo code

  16. Evaluating the scattered radiation intensity in CBCT

    Science.gov (United States)

    Gonçalves, O. D.; Boldt, S.; Nadaes, M.; Devito, K. L.

    2018-03-01

    In this work we calculate the ratio between scattered and transmitted photons (STRR) by a water cylinder reaching a detector matrix element (DME) in a flat array of detectors, similar to the used in cone beam tomography (CBCT), as a function of the field of view (FOV) and the irradiated volume of the scanned object. We perform the calculation by obtaining an equation to determine the scattered and transmitted radiation and building a computer code in order to calculate the contribution of all voxels of the sample. We compare calculated results with the shades of gray in a central slice of a tomography obtained from a cylindrical glass container filled with distilled water. The tomography was performed with an I-CAT tomograph (Imaging Science International), from the Department of Dental Clinic - Oral Radiology, Universidade Federal de Juiz de Fora. The shade of gray (voxel gray value - VGV) was obtained using the software provided with the I-CAT. The experimental results show a general behavior compatible with theoretical previsions attesting the validity of the method used to calculate the scattering contributions from simple scattering theories in cone beam tomography. The results also attest to the impossibility of obtaining Hounsfield values from a CBCT.

  17. Analysis of a neutron scattering integral experiment on iron for neutron energies from 1 to 15 MeV

    International Nuclear Information System (INIS)

    Cramer, S.N.; Oblow, E.M.

    1976-11-01

    Monte Carlo calculations were made to analyze the results of an integral experiment with an iron sample to determine the adequacy of neutron scattering cross section data for iron. The experimental results analyzed included energy-dependent NE-213 detector count rates at a scattering angle of 90 deg and pulse-height spectra for scattered neutrons produced in an iron ring pulsed with a 1- to 20-MeV neutron source. The pulse-height data were unfolded to generate secondary neutron spectra at 90 deg as a function of incident neutron energy. Multigroup Monte Carlo calculations using the MORSE code and ENDF/B-IV cross sections were made to analyze all reported results. Discrepancies between calculated and measured responses were found for inelastic scattering reactions in the range from 1 to 4 MeV. These results were related to deficiencies in ENDF/B-IV iron cross section data

  18. Imperfection effects on the buckling of hydrostatically loaded cylinders

    DEFF Research Database (Denmark)

    Pinna, Rodney; Madsen, Søren

    2015-01-01

    imperfection sensitivity. Work on cylinders with other loading conditions, such as hydrostatic loading, is more limited. Similarly, there is limited work on cylinders with boundary conditions other than simply-supported ends. This paper looks at the case of cylinders under hydrostatic load, which is often...

  19. Effects of curvature on rarefied gas flows between rotating concentric cylinders

    Science.gov (United States)

    Dongari, Nishanth; White, Craig; Scanlon, Thomas J.; Zhang, Yonghao; Reese, Jason M.

    2013-05-01

    The gas flow between two concentric rotating cylinders is considered in order to investigate non-equilibrium effects associated with the Knudsen layers over curved surfaces. We investigate the nonlinear flow physics in the near-wall regions using a new power-law (PL) wall-scaling approach. This PL model incorporates Knudsen layer effects in near-wall regions by taking into account the boundary limiting effects on the molecular free paths. We also report new direct simulation Monte Carlo results covering a wide range of Knudsen numbers and accommodation coefficients, and for various outer-to-inner cylinder radius ratios. Our simulation data are compared with both the classical slip flow theory and the PL model, and we find that non-equilibrium effects are not only dependent on Knudsen number and accommodation coefficient but are also significantly affected by the surface curvature. The relative merits and limitations of both theoretical models are explored with respect to rarefaction and curvature effects. The PL model is able to capture some of the nonlinear trends associated with Knudsen layers up to the early transition flow regime. The present study also illuminates the limitations of classical slip flow theory even in the early slip flow regime for higher curvature test cases, although the model does exhibit good agreement throughout the slip flow regime for lower curvature cases. Torque and velocity profile comparisons also convey that a good prediction of integral flow properties does not necessarily guarantee the accuracy of the theoretical model used, and it is important to demonstrate that field variables are also predicted satisfactorily.

  20. Dynamic Measurement of Extra Long Stroke Cylinder in the Pneumatic System

    International Nuclear Information System (INIS)

    Chang Ho; Lan Chouwei; Chen, L-C

    2006-01-01

    This paper sets up the measure and control system of the dynamic characteristics of the extra long stroke cylinder. In the different types of the control conditions (e.g. different control law, operating pressure and direct control valves), using the measure and control system to measure the relation between the pressure and the velocity of the motion of the long stroke cylinder and to observe the stick slip phenomenon of the motion of the long stroke cylinder. In the innovate measurement system, two pressure sensors are set on the long stroke cylinder to measure the difference of the pressure between the inlet and the exhaust of the long stroke cylinder. In additions, a draw line encoder is set on the system to measure the position and the velocity of the motion of the long stroke cylinder. The measuring data of the measure system is transferred to the computer via A/D interface card and counter card, and Home-made program of Haptic Interface Device is used to control the system, saving the data of the motion of the long stroke cylinder. The system uses different types of direction control valve to control the motion of the long stroke cylinder and compares the difference of the motion of the long stroke cylinder. The results show that the motion of the cylinder that pauses in the middle of the cylinder stroke and causes the stick slip phenomenon is more violent than the stick slip phenomenon in other position. When the length of the pause time reaches the some range, the acceleration of the motion of the cylinder will be rised substantially. This paper not only focuses on the testing method of the dynamic characteristics of the motion of the long stroke cylinder, but also includes the analysis of the dynamic characteristics of the motion of the long stroke cylinder. It provides the data of the dynamic characteristics of the motion of the long stroke cylinder to improve and design the pneumatic system of the long stroke cylinder

  1. Inner and outer cylinders of the CMS vacuum tank.

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    The vacuum tank of the CMS magnet system consists of inner and outer stainless-steel cylinders and houses the superconducting coil. The inner cylinder contains all the barrel sub-detectors, which it supports via a system of horizontal rails. The cylinder is pictured here in the vertical position on a yellow platform mounted on the ferris-wheel support structure. This will allow it to be pivoted and inserted into the already installed outer cylinder, through which this photo was taken.

  2. Efficient sampling algorithms for Monte Carlo based treatment planning

    International Nuclear Information System (INIS)

    DeMarco, J.J.; Solberg, T.D.; Chetty, I.; Smathers, J.B.

    1998-01-01

    Efficient sampling algorithms are necessary for producing a fast Monte Carlo based treatment planning code. This study evaluates several aspects of a photon-based tracking scheme and the effect of optimal sampling algorithms on the efficiency of the code. Four areas were tested: pseudo-random number generation, generalized sampling of a discrete distribution, sampling from the exponential distribution, and delta scattering as applied to photon transport through a heterogeneous simulation geometry. Generalized sampling of a discrete distribution using the cutpoint method can produce speedup gains of one order of magnitude versus conventional sequential sampling. Photon transport modifications based upon the delta scattering method were implemented and compared with a conventional boundary and collision checking algorithm. The delta scattering algorithm is faster by a factor of six versus the conventional algorithm for a boundary size of 5 mm within a heterogeneous geometry. A comparison of portable pseudo-random number algorithms and exponential sampling techniques is also discussed

  3. Flow past two tandem square cylinders vibrating transversely in phase

    International Nuclear Information System (INIS)

    Mithun, M G; Tiwari, Shaligram

    2014-01-01

    Numerical investigations have been carried out to study the wake characteristics of flow past two tandem square cylinders vibrating in phase. Both the cylinders vibrate in a transverse direction, i.e., perpendicular to the incoming flow with the same frequency and amplitude. The frequency of vibration of the cylinders and the inter-cylinder spacing are varied for fixed values of the Reynolds number (Re = 100) and the amplitude ratio (A/D = 0.4). The synchronous or lock-in regime for the oscillatory wake of the vibrating cylinders has been identified by varying the frequency of the vibration from f e  = 0.4 f 0 to 1.6 f 0 (f 0 being the frequency of vortex shedding behind a stationary square cylinder). The characteristics of lift and drag and the mechanism of vortex shedding are studied by varying the excitation frequency within the lock-in range for each value of inter-cylinder spacing. The complex interaction of flow between the cylinders gives rise to a variety of characteristically different shedding patterns in their wake. For values of inter-cylinder spacing equal to 2D and 3D, periodic, as well as quasi-periodic, lock-in behaviors are observed in the synchronous range. (paper)

  4. Radiative corrections and Monte Carlo generators for physics at flavor factories

    Directory of Open Access Journals (Sweden)

    Montagna Guido

    2016-01-01

    Full Text Available I review the state of the art of precision calculations and related Monte Carlo generators used in physics at flavor factories. The review describes the tools relevant for the measurement of the hadron production cross section (via radiative return, energy scan and in γγ scattering, luminosity monitoring, searches for new physics and physics of the τ lepton.

  5. 76 FR 38697 - High Pressure Steel Cylinders From China

    Science.gov (United States)

    2011-07-01

    ... imports from China of high pressure steel cylinders, provided for in subheading 7311.00.00 of the... threatened with material injury by reason of LTFV and subsidized imports of high pressure steel cylinders... contained in USITC Publication 4241 (July 2011), entitled High Pressure Steel Cylinders from China...

  6. Experiments of flow-induced in-line oscillation of a circular cylinder in a water tunnel. 2. Influence of the aspect ratio of a cantilevered circular cylinder

    International Nuclear Information System (INIS)

    Nakamura, Akira; Okajima, Atsushi; Kosugi, Takashi

    2001-01-01

    The flow-induced in-line oscillation of a cantilevered circular cylinder was experimentally studied through free-oscillation tests in a water tunnel. The response displacement amplitude at a circular cylinder tip was measured at reduced velocity from 1.0 to 4.0. A cantilevered cylinder was supported by a plate spring mounted on the water tunnel wall. The cylinder aspect ratio was varied from 5 to 21 to investigate the effect of aspect ratio on the response displacement. It is found that cylinders with aspect ratios of 5 and 10 have one excitation region, while cylinders with aspect ratios of 14 and 21 have two excitation regions. The aspect ratio, therefore, affects the amplitude of the excitation regions. The influence of end-effect was also investigated using cylinders with an end plate attached to the free end. Since the cylinders with an end plate show two excitation regions, even at an aspect ratio of 5, the flow around the free end of a cantilevered cylinder causes the end-effect. The mechanism of vibration was investigated using a cylinder with a splitter plate in wake to prevent alternate vortices. The amplitude is greater than those of a normal cylinder without a splitter plate, especially at V r =2.3 to 3.0, where a cylinder with an end plate shows the second excitation region. In order words, the alternate vortices suppress the amplitude in this range. The maximum amplitude of each excitation region decreases in proportion to C n and the amplitude of the first excitation is more sensitive to C n . (author)

  7. Monte Carlo and Quasi-Monte Carlo Sampling

    CERN Document Server

    Lemieux, Christiane

    2009-01-01

    Presents essential tools for using quasi-Monte Carlo sampling in practice. This book focuses on issues related to Monte Carlo methods - uniform and non-uniform random number generation, variance reduction techniques. It covers several aspects of quasi-Monte Carlo methods.

  8. Location of alien bodies in a media according to the data of scattering gamma radiation

    International Nuclear Information System (INIS)

    Vasil'ev, M.B.; Chuvashov, N.F.; Skuchaev, Yu.K.; Markov, V.I.

    1995-01-01

    Locations of alien bodies in a medium are studied by the method of model experiment using scattering γ-radiation. 60 Co and 137 Cs were used as radiation sources. The scattering bodies were made in the form of aluminium, iron and lead cylinders of different diameters inserted inside hollow cylindrical water, aluminium and iron media. The cases are reviewed when the alien bodies are in the center of cylindrical media. The obtained data are presented in the graphical form and in the form of tables. 4 refs., 4 figs. 1 tab

  9. One phonon resonant Raman scattering in semiconductor quantum wires: Magnetic field effect

    Energy Technology Data Exchange (ETDEWEB)

    Betancourt-Riera, Re., E-mail: rbriera@posgrado.cifus.uson.mx [Instituto Tecnologico de Hermosillo, Avenida Tecnologico S/N, Colonia Sahuaro, C.P. 83170, Hermosillo, Sonor, (Mexico); Departamento de Investigacion en Fisica, Universidad de Sonora, Apartado Postal 5-088, C.P. 83190, Hermosillo, Sonora (Mexico); Betancourt-Riera, Ri. [Instituto Tecnologico de Hermosillo, Avenida Tecnologico S/N, Colonia Sahuaro, C.P. 83170, Hermosillo, Sonora (Mexico); Nieto Jalil, J.M. [Tecnologico de Monterrey-Campus Sonora Norte, Bulevar Enrique Mazon Lopez No. 965, C.P. 83000, Hermosillo, Sonora (Mexico); Riera, R. [Departamento de Investigacion en Fisica, Universidad de Sonora, Apartado Postal 5-088, C.P. 83190, Hermosillo, Sonora (Mexico)

    2013-02-01

    We have developed a theory of one phonon resonant Raman scattering in a semiconductor quantum wire of cylindrical geometry in the presence of an external magnetic field distribution, parallel to the cylinder axis. The effect of the magnetic field in the electron and hole states, and in the Raman scattering efficiency, is determinate. We consider the electron-phonon interaction using a Froehlich-type Hamiltonian, deduced for the case of complete confinement phonon modes by Comas and his collaborators. We also assume T=0 K, a single parabolic conduction and valence bands. The spectra are discussed for different magnetic field values and the selection rules for the processes are also studied.

  10. Elastic scattering of polarized neutrons by 3He at low energy

    International Nuclear Information System (INIS)

    Drigo, L.; Tornielli, G.; Zannoni, G.

    1982-01-01

    Elastic scattering by 3 He for 1.67, 2.43, 3.0, 3.4 and 7.8 MeV neutron beams of known polarization was measured at seven angles from 25 0 to 155 0 using a high pressure gas scintillation counter. The geometrical and multiple scattering effects were accounted for by the Monte Carlo technique. The corrected results were compared with previous experimental data and with the existing predictions based on microscopic calculations and phenomenological analyses. (author)

  11. Modeling flow for modified concentric cylinder rheometer geometry

    Science.gov (United States)

    Ekeruche, Karen; Connelly, Kelly; Kavehpour, H. Pirouz

    2016-11-01

    Rheology experiments on biological fluids can be difficult when samples are limited in volume, sensitive to degradation, and delicate to extract from tissues. A probe-like geometry has been developed to perform shear creep experiments on biological fluids and to use the creep response to characterize fluid material properties. This probe geometry is a modified concentric cylinder setup, where the gap is large and we assume the inner cylinder rotates in an infinite fluid. To validate this assumption we perform shear creep tests with the designed probe on Newtonian and non-Newtonian fluids and vary the outer cylinder container diameter. We have also created a numerical model based on the probe geometry setup to compare with experimental results at different outer cylinder diameters. A creep test is modeled by applying rotation to the inner cylinder and solving for the deformation of the fluid throughout the gap. Steady state viscosity values are calculated from creep compliance curves and compared between experimental and numerical results.

  12. MC 93 - Proceedings of the International Conference on Monte Carlo Simulation in High Energy and Nuclear Physics

    Science.gov (United States)

    Dragovitsch, Peter; Linn, Stephan L.; Burbank, Mimi

    1994-01-01

    The Table of Contents for the book is as follows: * Preface * Heavy Fragment Production for Hadronic Cascade Codes * Monte Carlo Simulations of Space Radiation Environments * Merging Parton Showers with Higher Order QCD Monte Carlos * An Order-αs Two-Photon Background Study for the Intermediate Mass Higgs Boson * GEANT Simulation of Hall C Detector at CEBAF * Monte Carlo Simulations in Radioecology: Chernobyl Experience * UNIMOD2: Monte Carlo Code for Simulation of High Energy Physics Experiments; Some Special Features * Geometrical Efficiency Analysis for the Gamma-Neutron and Gamma-Proton Reactions * GISMO: An Object-Oriented Approach to Particle Transport and Detector Modeling * Role of MPP Granularity in Optimizing Monte Carlo Programming * Status and Future Trends of the GEANT System * The Binary Sectioning Geometry for Monte Carlo Detector Simulation * A Combined HETC-FLUKA Intranuclear Cascade Event Generator * The HARP Nucleon Polarimeter * Simulation and Data Analysis Software for CLAS * TRAP -- An Optical Ray Tracing Program * Solutions of Inverse and Optimization Problems in High Energy and Nuclear Physics Using Inverse Monte Carlo * FLUKA: Hadronic Benchmarks and Applications * Electron-Photon Transport: Always so Good as We Think? Experience with FLUKA * Simulation of Nuclear Effects in High Energy Hadron-Nucleus Collisions * Monte Carlo Simulations of Medium Energy Detectors at COSY Jülich * Complex-Valued Monte Carlo Method and Path Integrals in the Quantum Theory of Localization in Disordered Systems of Scatterers * Radiation Levels at the SSCL Experimental Halls as Obtained Using the CLOR89 Code System * Overview of Matrix Element Methods in Event Generation * Fast Electromagnetic Showers * GEANT Simulation of the RMC Detector at TRIUMF and Neutrino Beams for KAON * Event Display for the CLAS Detector * Monte Carlo Simulation of High Energy Electrons in Toroidal Geometry * GEANT 3.14 vs. EGS4: A Comparison Using the DØ Uranium/Liquid Argon

  13. Compton scatter tomography in TOF-PET

    Science.gov (United States)

    Hemmati, Hamidreza; Kamali-Asl, Alireza; Ay, Mohammadreza; Ghafarian, Pardis

    2017-10-01

    Scatter coincidences contain hidden information about the activity distribution on the positron emission tomography (PET) imaging system. However, in conventional reconstruction, the scattered data cause the blurring of images and thus are estimated and subtracted from detected coincidences. List mode format provides a new aspect to use time of flight (TOF) and energy information of each coincidence in the reconstruction process. In this study, a novel approach is proposed to reconstruct activity distribution using the scattered data in the PET system. For each single scattering coincidence, a scattering angle can be determined by the recorded energy of the detected photons, and then possible locations of scattering can be calculated based on the scattering angle. Geometry equations show that these sites lie on two arcs in 2D mode or the surface of a prolate spheroid in 3D mode, passing through the pair of detector elements. The proposed method uses a novel and flexible technique to estimate source origin locations from the possible scattering locations, using the TOF information. Evaluations were based on a Monte-Carlo simulation of uniform and non-uniform phantoms at different resolutions of time and detector energy. The results show that although the energy uncertainties deteriorate the image spatial resolution in the proposed method, the time resolution has more impact on image quality than the energy resolution. With progress of the TOF system, the reconstruction using the scattered data can be used in a complementary manner, or to improve image quality in the next generation of PET systems.

  14. Natural convection heat transfer on two horizontal cylinders in liquid sodium

    Energy Technology Data Exchange (ETDEWEB)

    Hata, K.; Shiotsu, M.; Takeuchi, Y. [Institute of Atomic Energy, Kyoto Univ. (Japan)] [and others

    1995-09-01

    Natural convection heat transfer on two horizontal 7.6 mm diameter test cylinders assembled with the ratio of the distance between each cylinder axis to the cylinder diameter, S/D, of 2 in liquid sodium was studied experimentally and theoretically. The heat transfer coefficients on the cylinder surface due to the same heat inputs ranging from 1.0 X 10{sup 7} to 1.0 x 10{sup 9} W/m{sup 3} were obtained experimentally for various setting angeles, {gamma}, between vertical direction and the plane including both of these cylinder axis over the range of zero to 90{degrees}. Theoretical equations for laminar natural convection heat transfer from the two horizontal cylinders were numerically solved for the same conditions as the experimental ones considering the temperature dependence of thermophysical properties concerned. The average Nusselt numbers, Nu, values on the Nu versus modified Rayleigh number, R{sub f}, graph. The experimental values of Nu for the upper cylinder are about 20% lower than those for the lower cylinder at {gamma} = 0{degrees} for the range of R{sub f} tested here. The value of Nu for the upper cylinder becomes higher and approaches that for the lower cylinder with the increase in {gamma} over range of 0 to 90{degrees}. The values of Nu for the lower cylinder at each {gamma} are almost in agreement with those for a single cylinder. The theoretical values of Nu on two cylinders except those for R{sub f}<4 at {gamma} = 0{degrees} are in agreement with the experimental data at each {gamma} with the deviations less than 15%. Correlations for Nu on the upper and lower cylinders were obtained as functions of S/D and {gamma} based n the theoretical solutions for the S/D ranged over 1.5 to 4.0.

  15. Carbon fiber reinforced hierarchical orthogrid stiffened cylinder: Fabrication and testing

    Science.gov (United States)

    Wu, Hao; Lai, Changlian; Sun, Fangfang; Li, Ming; Ji, Bin; Wei, Weiyi; Liu, Debo; Zhang, Xi; Fan, Hualin

    2018-04-01

    To get strong, stiff and light cylindrical shell, carbon fiber reinforced hierarchical orthogrid stiffened cylinders are designed and fabricated. The cylinder is stiffened by two-scale orthogrid. The primary orthogrid has thick and high ribs and contains several sub-orthogrid cells whose rib is much thinner and lower. The primary orthogrid stiffens the bending rigidity of the cylinder to resist the global instability while the sub-orthogrid stiffens the bending rigidity of the skin enclosed by the primary orthogrid to resist local buckling. The cylinder is fabricated by filament winding method based on a silicone rubber mandrel with hierarchical grooves. Axial compression tests are performed to reveal the failure modes. With hierarchical stiffeners, the cylinder fails at skin fracture and has high specific strength. The cylinder will fail at end crushing if the end of the cylinder is not thickened. Global instability and local buckling are well restricted by the hierarchical stiffeners.

  16. A characteristic analysis of the fluidic muscle cylinder

    Science.gov (United States)

    Kim, Dong-Soo; Bae, Sang-Kyu; Hong, Sung-In

    2005-12-01

    The fluidic muscle cylinder consists of an air bellows tube, flanges and lock nuts. It's features are softness of material and motion, simplicity of structure, low production cost and high power efficiency. Recently, unlikely the pneumatic cylinder, the fluidic muscle cylinder without air leakage, stick slip, friction, and seal was developed as a new concept actuator. It has the characteristics such as light weight, low price, high response, durable design, long life, high power, high contraction, which is innovative product fulfilling RT(Robot Technology) which is one of the nation-leading next generation strategy technologies 6T as well as cleanness technology. The application fields of the fluidic muscle cylinder are so various like fatigue tester, brake, accelerator, high technology testing device such as driving simulator, precise position, velocity, intelligent servo actuator under special environment such as load controlling system, and intelligent robot. In this study, we carried out the finite element modeling and analysis about the main design variables such as contraction ration and force, diameter increment of fluidic muscle cylinder. On the basis of finite element analysis, the prototype of fluidic muscle cylinder was manufactured and tested. Finally, we compared the results between the test and the finite element analysis.

  17. Thermal transport in nanocrystalline Si and SiGe by ab initio based Monte Carlo simulation.

    Science.gov (United States)

    Yang, Lina; Minnich, Austin J

    2017-03-14

    Nanocrystalline thermoelectric materials based on Si have long been of interest because Si is earth-abundant, inexpensive, and non-toxic. However, a poor understanding of phonon grain boundary scattering and its effect on thermal conductivity has impeded efforts to improve the thermoelectric figure of merit. Here, we report an ab-initio based computational study of thermal transport in nanocrystalline Si-based materials using a variance-reduced Monte Carlo method with the full phonon dispersion and intrinsic lifetimes from first-principles as input. By fitting the transmission profile of grain boundaries, we obtain excellent agreement with experimental thermal conductivity of nanocrystalline Si [Wang et al. Nano Letters 11, 2206 (2011)]. Based on these calculations, we examine phonon transport in nanocrystalline SiGe alloys with ab-initio electron-phonon scattering rates. Our calculations show that low energy phonons still transport substantial amounts of heat in these materials, despite scattering by electron-phonon interactions, due to the high transmission of phonons at grain boundaries, and thus improvements in ZT are still possible by disrupting these modes. This work demonstrates the important insights into phonon transport that can be obtained using ab-initio based Monte Carlo simulations in complex nanostructured materials.

  18. Academic Training - The use of Monte Carlo radiation transport codes in radiation physics and dosimetry

    CERN Multimedia

    Françoise Benz

    2006-01-01

    2005-2006 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 27, 28, 29 June 11:00-12:00 - TH Conference Room, bldg. 4 The use of Monte Carlo radiation transport codes in radiation physics and dosimetry F. Salvat Gavalda,Univ. de Barcelona, A. FERRARI, CERN-AB, M. SILARI, CERN-SC Lecture 1. Transport and interaction of electromagnetic radiation F. Salvat Gavalda,Univ. de Barcelona Interaction models and simulation schemes implemented in modern Monte Carlo codes for the simulation of coupled electron-photon transport will be briefly reviewed. Different schemes for simulating electron transport will be discussed. Condensed algorithms, which rely on multiple-scattering theories, are comparatively fast, but less accurate than mixed algorithms, in which hard interactions (with energy loss or angular deflection larger than certain cut-off values) are simulated individually. The reliability, and limitations, of electron-interaction models and multiple-scattering theories will be analyzed. Benchmark comparisons of simu...

  19. Image analysis of moving seeds in an indented cylinder

    DEFF Research Database (Denmark)

    Buus, Ole; Jørgensen, Johannes Ravn

    2010-01-01

    inspection in seed cleaning equipment. A prototype of an indented cylinder will be constructed. To make it more dynamic, the cylinder itself will be manufactured using 3D printing technology. The input will come either from 3D scans of existing cylinders or by defining their topology using parametric B...

  20. Beating motion of a circular cylinder in vortex-induced vibrations

    Science.gov (United States)

    Shen, Linwei; Chan, Eng-Soon; Wei, Yan

    2018-04-01

    In this paper, beating phenomenon of a circular cylinder in vortex-induced vibration is studied by numerical simulations in a systematic manner. The cylinder mass coefficients of 2 and 10 are considered, and the Reynolds number is 150. Two distinctive frequencies, namely cylinder oscillation and vortex shedding frequencies, are obtained from the harmonic analysis of the cylinder displacement. The result is consistent with that observed in laboratory experiments. It is found that the cylinder oscillation frequency changes with the natural frequency of the cylinder while the reduced velocity is varied. The added-mass coefficient of the cylinder in beating motion is therefore estimated. Meanwhile, the vortex shedding frequency does not change dramatically in the beating situations. In fact, it is very close to 0.2. Accordingly, the lift force coefficient has two main components associated with these two frequencies. Besides, higher harmonics of the cylinder oscillation frequency appear in the spectrum of the lift coefficient. Moreover, the vortex shedding timing is studied in the beating motion by examining the instantaneous flow fields in the wake, and two scenarios of the vortex formation are observed.

  1. Computation of bessel functions in light scattering studies.

    Science.gov (United States)

    Ross, W D

    1972-09-01

    Computations of light scattering require finding Bessel functions of a series of orders. These are found most easily by recurrence, but excessive rounding errors may accumulate. Satisfactory procedures for cylinder and sphere functions are described. If argument z is real, find Y(n)(z) by recurrence to high orders. From two high orders of Y(n)(z) estimate J(n)(z). Use backward recurrence to maximum J(n)(z). Correct by forward recurrence to maximum. If z is complex, estimate high orders of J(n)(z) without Y(n)(z) and use backward recurrence.

  2. Inflation of polymer melts into elliptic and circular cylinders

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Christensen, Jens Horslund; Gøttsche, Søren

    2000-01-01

    A thin sheet (membrane) of the polymeric material is clamped between a Teflon-coated thermostated plate and a thermostated aluminium cylinder. By applying thermostated air through the plate, the polymer membrane deforms into an elliptic or a circular cylinder. The position of the top of the infla......A thin sheet (membrane) of the polymeric material is clamped between a Teflon-coated thermostated plate and a thermostated aluminium cylinder. By applying thermostated air through the plate, the polymer membrane deforms into an elliptic or a circular cylinder. The position of the top...

  3. Electromagnetic forces on type-II superconducting rotating cylinders

    International Nuclear Information System (INIS)

    Saif, A.G.; Refai, T.F.; El-Sabagh, M.A.

    1995-01-01

    Analytical solutions of the electromagnetic fields are presented for a system composed of an infinitely long superconducting cylinder rotating about its axis and placed parallel to two infinitely long normal conducting wires. Both wires carry the same alternating current. From the obtained electromagnetic fields the electromagnetic power loss on the cylinder surface, electromagnetic forces due to induced currents, electromagnetic torque, and the work opposing the rotation of the cylinder are calculated. (orig.)

  4. Flow induced by a skewed vortex cylinder

    DEFF Research Database (Denmark)

    Branlard, Emmanuel Simon Pierre

    2017-01-01

    The velocity field induced by a skewed vortex cylinder of longitudinal and tangential vorticity is derived in this chapter by direct integration of the Biot– Savart law. The derivation steps are provided in details. The results of Castles and Durham for the skewed semi-infinite cylinder....... The content of this chapter is based on the publication of the author entitled "Cylindrical vortex wake model: skewed cylinder, application to yawed or tilted rotors" [1]. Results from this chapter are applied: in Chap. 21 to model a wind turbine (or rotor) in yaw, in Chap. 22 to derive a new yaw...

  5. Oscillatory Stokes Flow Past a Slip Cylinder

    Science.gov (United States)

    Palaniappan, D.

    2013-11-01

    Two-dimensional transient slow viscous flow past a circular cylinder with Navier slip boundary conditions is considered in the limit of low-Reynolds number. The oscillatory Stokes flow problem around a cylinder is solved using the stream function method leading to an analytic solution in terms of modified Bessel functions of the second kind. The corresponding steady-state behavior yields the familiar paradoxical result first detected by Stokes. It is noted that the two key parameters, viz., the frequency λ, and the slip coefficient ξ have a significant impact on the flow field in the vicinity of the cylinder contour. In the limit of very low frequency, the flow is dominated by a term containing a well-known biharmonic function found by Stokes that has a singular behavior at infinity. Local streamlines for small times show interesting flow patterns. Attached eddies due to flow separation - observed in the no-slip case - either get detached or pushed away from the cylinder surface as ξ is varied. Computed asymptotic results predict that the flow exhibits inviscid behavior far away from the cylinder in the frequency range 0 < λ << 1 . Although the frequency of oscillations is finite, our exact solutions reveal fairly rapid transitions in the flow domain. Research Enhancement grant, TAMUCC.

  6. Prediction of external corrosion for steel cylinders

    International Nuclear Information System (INIS)

    Lyon, B.F.

    1997-02-01

    The US Department of Energy (DOE) currently manages the UF 6 Cylinder Program (the program). The program was formed to address the depleted-uranium hexafluoride (UF 6 ) stored in approximately 50,000 carbon steel cylinders. The cylinders are located at three DOE sites: the K-25 site (K-25) at Oak Ridge, Tennessee; the Paducah Gaseous Diffusion Plant (PGDP) in Paducah, Kentucky, and the Portsmouth Gaseous Diffusion Plant (PORTS) in Portsmouth, Ohio. The System Requirements Document (SRD) (LMES 1996a) delineates the requirements of the program. The appropriate actions needed to fulfill these requirements are then specified within the System Engineering Management Plan (SEMP) (LMES 1996b). The report presented herein documents activities that in whole or in part satisfy specific requirements and actions stated in the UF 6 Cylinder Program SRD and SEMP with respect to forecasting cylinder conditions. The wall thickness projections made in this report are based on the assumption that the corrosion trends noted will continue. Some activities planned may substantially reduce the rate of corrosion, in which case the results presented here are conservative. The results presented here are intended to supersede those presented previously, as the quality of several of the datasets has improved

  7. Improved scatter correction with factor analysis for planar and SPECT imaging

    Science.gov (United States)

    Knoll, Peter; Rahmim, Arman; Gültekin, Selma; Šámal, Martin; Ljungberg, Michael; Mirzaei, Siroos; Segars, Paul; Szczupak, Boguslaw

    2017-09-01

    Quantitative nuclear medicine imaging is an increasingly important frontier. In order to achieve quantitative imaging, various interactions of photons with matter have to be modeled and compensated. Although correction for photon attenuation has been addressed by including x-ray CT scans (accurate), correction for Compton scatter remains an open issue. The inclusion of scattered photons within the energy window used for planar or SPECT data acquisition decreases the contrast of the image. While a number of methods for scatter correction have been proposed in the past, in this work, we propose and assess a novel, user-independent framework applying factor analysis (FA). Extensive Monte Carlo simulations for planar and tomographic imaging were performed using the SIMIND software. Furthermore, planar acquisition of two Petri dishes filled with 99mTc solutions and a Jaszczak phantom study (Data Spectrum Corporation, Durham, NC, USA) using a dual head gamma camera were performed. In order to use FA for scatter correction, we subdivided the applied energy window into a number of sub-windows, serving as input data. FA results in two factor images (photo-peak, scatter) and two corresponding factor curves (energy spectra). Planar and tomographic Jaszczak phantom gamma camera measurements were recorded. The tomographic data (simulations and measurements) were processed for each angular position resulting in a photo-peak and a scatter data set. The reconstructed transaxial slices of the Jaszczak phantom were quantified using an ImageJ plugin. The data obtained by FA showed good agreement with the energy spectra, photo-peak, and scatter images obtained in all Monte Carlo simulated data sets. For comparison, the standard dual-energy window (DEW) approach was additionally applied for scatter correction. FA in comparison with the DEW method results in significant improvements in image accuracy for both planar and tomographic data sets. FA can be used as a user

  8. Measurement of the Azimuthal Correlation between the most Forward Jet and the Scattered Positron in Deep-Inelastic Scattering at HERA

    CERN Document Server

    Aaron, F.D.; Andreev, V.; Backovic, S.; Baghdasaryan, A.; Baghdasaryan, S.; Barrelet, E.; Bartel, W.; Begzsuren, K.; Belousov, A.; Belov, P.; Bizot, J.C.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Britzger, D.; Bruncko, D.; Bunyatyan, A.; Bystritskaya, L.; Campbell, A.J.; Cantun Avila, K.B.; Ceccopieri, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Contreras, J.G.; Coughlan, J.A.; Cvach, J.; Dainton, J.B.; Daum, K.; Delcourt, B.; Delvax, J.; De Wolf, E.A.; Diaconu, C.; Dobre, M.; Dodonov, V.; Dossanov, A.; Dubak, A.; Eckerlin, G.; Egli, S.; Eliseev, A.; Elsen, E.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Fischer, D.J.; Fleischer, M.; Fomenko, A.; Gabathuler, E.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Goerlich, L.; Gogitidze, N.; Gouzevitch, M.; Grab, C.; Grebenyuk, A.; Greenshaw, T.; Grell, B.R.; Grindhammer, G.; Habib, S.; Haidt, D.; Helebrant, C.; Henderson, R.C.W.; Hennekemper, E.; Henschel, H.; Herbst, M.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hreus, T.; Huber, F.; Jacquet, M.; Janssen, X.; Jonsson, L.; Jung, H.; Kapichine, M.; Kenyon, I.R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Kluge, T.; Kogler, R.; Kostka, P.; Kraemer, M.; Kretzschmar, J.; Kruger, K.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Lendermann, V.; Levonian, S.; Lipka, K.; List, B.; List, J.; Lopez-Fernandez, R.; Lubimov, V.; Makankine, A.; Malinovski, E.; Marage, P.; Martyn, H.U.; Maxfield, S.J.; Mehta, A.; Meyer, A.B.; Meyer, H.; Meyer, J.; Mikocki, S.; Milcewicz-Mika, I.; Moreau, F.; Morozov, A.; Morris, J.V.; Mudrinic, M.; Muller, K.; Naumann, Th.; Newman, P.R.; Niebuhr, C.; Nikitin, D.; Nowak, G.; Nowak, K.; Olsson, J.E.; Ozerov, D.; Pahl, P.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, Th.; Pascaud, C.; Patel, G.D.; Perez, E.; Petrukhin, A.; Picuric, I.; Piec, S.; Pirumov, H.; Pitzl, D.; Placakyte, R.; Pokorny, B.; Polifka, R.; Povh, B.; Radescu, V.; Raicevic, N.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Ruiz Tabasco, J.E.; Rusakov, S.; Salek, D.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schmitt, S.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.C.; Sefkow, F.; Shtarkov, L.N.; Shushkevich, S.; Sloan, T.; Smiljanic, I.; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, A.; Staykova, Z.; Steder, M.; Stella, B.; Stoicea, G.; Straumann, U.; Sykora, T.; Thompson, P.D.; Tran, T.H.; Traynor, D.; Truol, P.; Tsakov, I.; Tseepeldorj, B.; Turnau, J.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vazdik, Y.; Wegener, D.; Wunsch, E.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zohrabyan, H.; Zomer, F.

    2012-03-06

    Deep-inelastic positron-proton scattering events at low photon virtuality Q^2 with a forward jet, produced at small angles with respect to the proton beam, are measured with the H1 detector at HERA. A subsample of events with an additional jet in the central region is also studied. For both samples differential cross sections and normalised distributions are measured as a function of the azimuthal angle difference, Delta phi, between the forward jet and the scattered positron. The sensitivity to QCD evolution mechanisms is tested by comparing the data to predictions of Monte Carlo generators based on different evolution approaches as well as to next-to-leading order calculations.

  9. Acquiring molecular interference functions of X-ray coherent scattering for breast tissues by combination of simulation and experimental methods

    International Nuclear Information System (INIS)

    Chaparian, A.; Oghabian, M. A.; Changizi, V.

    2009-01-01

    Recently, it has been indicated that X-ray coherent scatter from biological tissues can be used to access signature of tissue. Some scientists are interested in studying this effect to get early detection of breast cancer. Since experimental methods for optimization are time consuming and expensive, some scientists suggest using simulation. Monte Carlo codes are the best option for radiation simulation: however, one permanent defect with Monte Carlo codes has been the lack of a sufficient physical model for coherent (Rayleigh) scattering, including molecular interference effects. Materials and Methods: It was decided to obtain molecular interference functions of coherent X-ray scattering for normal breast tissues by combination of modeling and experimental methods. A Monte Carlo simulation program was written to simulate the angular distribution of scattered photons for the normal breast tissue samples. Moreover, experimental diffraction patterns of these tissues were measured by means of energy dispersive X-ray diffraction method. The simulation and experimental data were used to obtain a tabulation of molecular interference functions for breast tissues. Results: With this study a tabulation of molecular interference functions for normal breast tissues Was prepared to facilitate the simulation diffraction patterns of the tissues without any experimental. Conclusion: The method may lead to design new systems for early detection of breast cancer.

  10. Vortex structure behind highly heated two cylinders in parallel arrangements

    International Nuclear Information System (INIS)

    Kurita, Eiichirou; Yahagi, Yuji

    2008-01-01

    Vortex structures behind twin, highly heated cylinders in parallel arrangements have been investigated experimentally. The experiments were conducted under the following conditions: cylinder diameter, D=4 mm; mean flow velocity, U ∞ =1.0 m/s; Reynolds number, Re=250; cylinder clearance, S/D=0.5 - 1.4; and cylinder heat flux, q=0 - 72.6 kW/m 2 . For S/D > 1.2, the Karman vortex street is formed alternately behind each cylinder divided on the slit flow. The slit flow velocity increases with a decrease in S/D and decreases with increasing heat flux. For S/D 2 ). As a result, the increased local kinematic viscosity and S/D play a key role for the vortex structure and formation behind arrangements of two parallel cylinders. (author)

  11. Controlling chaos in a fluid flow past a movable cylinder

    International Nuclear Information System (INIS)

    Vallejo, Juan C.; Marino, Ines P.; Sanjuan, Miguel A.F.; Kurths, Juergen

    2003-01-01

    The model of a two-dimensional fluid flow past a cylinder is a relatively simple problem with a strong impact in many applied fields, such as aerodynamics or chemical sciences, although most of the involved physical mechanisms are not yet well known. This paper analyzes the fluid flow past a cylinder in a laminar regime with Reynolds number, Re, around 200, where two vortices appear behind the cylinder, by using an appropriate time-dependent stream function and applying non-linear dynamics techniques. The goal of the paper is to analyze under which circumstances the chaoticity in the wake of the cylinder might be modified, or even suppressed. And this has been achieved with the help of some indicators of the complexity of the trajectories for the cases of a rotating cylinder and an oscillating cylinder

  12. 76 FR 55736 - Safety Advisory: Unauthorized Marking of Compressed Gas Cylinders

    Science.gov (United States)

    2011-09-08

    ... certain of high- and low-pressure compressed gas cylinders, primarily fire extinguishers, by Atlas Fire...- pressure cylinders serviced by Atlas Fire Protection were marked and represented as requalified (visually... damage, serious personal injury, or death could result from the rupture of a cylinder. Cylinders not...

  13. TH-E-18A-01: Developments in Monte Carlo Methods for Medical Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Badal, A [U.S. Food and Drug Administration (CDRH/OSEL), Silver Spring, MD (United States); Zbijewski, W [Johns Hopkins University, Baltimore, MD (United States); Bolch, W [University of Florida, Gainesville, FL (United States); Sechopoulos, I [Emory University, Atlanta, GA (United States)

    2014-06-15

    Monte Carlo simulation methods are widely used in medical physics research and are starting to be implemented in clinical applications such as radiation therapy planning systems. Monte Carlo simulations offer the capability to accurately estimate quantities of interest that are challenging to measure experimentally while taking into account the realistic anatomy of an individual patient. Traditionally, practical application of Monte Carlo simulation codes in diagnostic imaging was limited by the need for large computational resources or long execution times. However, recent advancements in high-performance computing hardware, combined with a new generation of Monte Carlo simulation algorithms and novel postprocessing methods, are allowing for the computation of relevant imaging parameters of interest such as patient organ doses and scatter-to-primaryratios in radiographic projections in just a few seconds using affordable computational resources. Programmable Graphics Processing Units (GPUs), for example, provide a convenient, affordable platform for parallelized Monte Carlo executions that yield simulation times on the order of 10{sup 7} xray/ s. Even with GPU acceleration, however, Monte Carlo simulation times can be prohibitive for routine clinical practice. To reduce simulation times further, variance reduction techniques can be used to alter the probabilistic models underlying the x-ray tracking process, resulting in lower variance in the results without biasing the estimates. Other complementary strategies for further reductions in computation time are denoising of the Monte Carlo estimates and estimating (scoring) the quantity of interest at a sparse set of sampling locations (e.g. at a small number of detector pixels in a scatter simulation) followed by interpolation. Beyond reduction of the computational resources required for performing Monte Carlo simulations in medical imaging, the use of accurate representations of patient anatomy is crucial to the

  14. TH-E-18A-01: Developments in Monte Carlo Methods for Medical Imaging

    International Nuclear Information System (INIS)

    Badal, A; Zbijewski, W; Bolch, W; Sechopoulos, I

    2014-01-01

    Monte Carlo simulation methods are widely used in medical physics research and are starting to be implemented in clinical applications such as radiation therapy planning systems. Monte Carlo simulations offer the capability to accurately estimate quantities of interest that are challenging to measure experimentally while taking into account the realistic anatomy of an individual patient. Traditionally, practical application of Monte Carlo simulation codes in diagnostic imaging was limited by the need for large computational resources or long execution times. However, recent advancements in high-performance computing hardware, combined with a new generation of Monte Carlo simulation algorithms and novel postprocessing methods, are allowing for the computation of relevant imaging parameters of interest such as patient organ doses and scatter-to-primaryratios in radiographic projections in just a few seconds using affordable computational resources. Programmable Graphics Processing Units (GPUs), for example, provide a convenient, affordable platform for parallelized Monte Carlo executions that yield simulation times on the order of 10 7 xray/ s. Even with GPU acceleration, however, Monte Carlo simulation times can be prohibitive for routine clinical practice. To reduce simulation times further, variance reduction techniques can be used to alter the probabilistic models underlying the x-ray tracking process, resulting in lower variance in the results without biasing the estimates. Other complementary strategies for further reductions in computation time are denoising of the Monte Carlo estimates and estimating (scoring) the quantity of interest at a sparse set of sampling locations (e.g. at a small number of detector pixels in a scatter simulation) followed by interpolation. Beyond reduction of the computational resources required for performing Monte Carlo simulations in medical imaging, the use of accurate representations of patient anatomy is crucial to the virtual

  15. Steady particulate flows in a horizontal rotating cylinder

    Science.gov (United States)

    Yamane, K.; Nakagawa, M.; Altobelli, S. A.; Tanaka, T.; Tsuji, Y.

    1998-06-01

    Results of discrete element method (DEM) simulation and magnetic resonance imaging (MRI) experiments are compared for monodisperse granular materials flowing in a half-filled horizontal rotating cylinder. Because opacity is not a problem for MRI, a long cylinder with an aspect ratio ˜7 was used and the flow in a thin transverse slice near the center was studied. The particles were mustard seeds and the ratio of cylinder diameter to particle diameter was approximately 50. The parameters compared were dynamic angle of repose, velocity field in a plane perpendicular to the cylinder axis, and velocity fluctuations at rotation rates up to 30 rpm. The agreement between DEM and MRI was good when the friction coefficient and nonsphericity were adjusted in the simulation for the best fit.

  16. Monte Carlo Simulation of Electron Transport in 4H- and 6H-SiC

    International Nuclear Information System (INIS)

    Sun, C. C.; You, A. H.; Wong, E. K.

    2010-01-01

    The Monte Carlo (MC) simulation of electron transport properties at high electric field region in 4H- and 6H-SiC are presented. This MC model includes two non-parabolic conduction bands. Based on the material parameters, the electron scattering rates included polar optical phonon scattering, optical phonon scattering and acoustic phonon scattering are evaluated. The electron drift velocity, energy and free flight time are simulated as a function of applied electric field at an impurity concentration of 1x10 18 cm 3 in room temperature. The simulated drift velocity with electric field dependencies is in a good agreement with experimental results found in literature. The saturation velocities for both polytypes are close, but the scattering rates are much more pronounced for 6H-SiC. Our simulation model clearly shows complete electron transport properties in 4H- and 6H-SiC.

  17. Proximity functions for general right cylinders

    International Nuclear Information System (INIS)

    Kellerer, A.M.

    1981-01-01

    Distributions of distances between pairs of points within geometrical objects, or the closely related proximity functions and geometric reduction factors, have applications to dosimetric and microdosimetric calculations. For convex bodies these functions are linked to the chord-length distributions that result from random intersections by straight lines. A synopsis of the most important relations is given. The proximity functions and related functions are derived for right cylinders with arbitrary cross sections. The solution utilizes the fact that the squares of the distances between two random points are sums of independently distributed squares of distances parallel and perpendicular to the axis of the cylinder. Analogous formulas are derived for the proximity functions or geometric reduction factors for a cylinder relative to a point. This requires only a minor modification of the solution

  18. Incoherent quasielastic neutron scattering from plastic crystals

    International Nuclear Information System (INIS)

    Bee, M.; Amoureux, J.P.

    1980-01-01

    The aim of this paper is to present some applications of a method indicated by Sears in order to correct for multiple scattering. The calculations were performed in the particular case of slow neutron incoherent quasielastic scattering from organic plastic crystals. First, an exact calculation (up to second scattering) is compared with the results of a Monte Carlo simulation technique. Then, an approximation is developed on the basis of a rotational jump model which allows a further analytical treatment. The multiple scattering is expressed in terms of generalized structure factors (which can be regarded as self convolutions of first order structure factors taking into account the instrumental geometry) and lorentzian functions the widths of which are linear combinations of the jump rates. Three examples are given. Two of them correspond to powder samples while in the third we are concerned with the case of a single crystalline slab. In every case, this approximation is shown to be a good approach to the multiple scattering evaluation, its main advantage being the possibility of applying it without any preliminary knowledge of the correlation times for rotational jumps. (author)

  19. Spectral distortion due to scattered cold neutrons in beryllium filter

    International Nuclear Information System (INIS)

    Sakamoto, Yukio; Inoue, Kazuhiko

    1980-01-01

    Polycrystalline beryllium filters are used to discriminate the cold neutrons from the thermal neutrons with energies above Bragg cut-off energy. The cold neutron scattering cross section is very small, but the remaining cross section is not zero. Then the neutrons scattered once from the filter in the cold neutron energy region have chance of impinging on the outlet of filter. Those neutrons are almost upscattered and develop into thermal neutrons; thus the discriminated cold neutrons include a small spectral distortion due to the thermal neutrons. In the present work we have evaluated the effect on the cold neutron spectrum due to the repeatedly scattered and transmitted neutrons by using a Monte Carlo calculation method. (author)

  20. Monte Carlo simulation of light reflection from cosmetic powders on the skin

    Science.gov (United States)

    Okamoto, Takashi; Motoda, Masafumi; Igarashi, Takanori; Nakao, Keisuke

    2011-07-01

    The reflection and scattering properties of light incident on skin covered with powder particles have been investigated. A three-layer skin structure with a spot is modeled, and the propagation of light in the skin and the scattering of light by particles on the skin surface are simulated by means of a Monte Carlo method. Under the condition in which only single scattering of light occurs in the powder layer, the reflection spectra of light from the skin change dramatically with the size of powder particles. The color difference between normal skin and spots is found to diminish more when powder particles smaller than the wavelength of light are used. It is shown that particle polydispersity suppresses substantially the extreme spectral change caused by monodisperse particles with a size comparable to the light wavelength.

  1. Range uncertainties in proton therapy and the role of Monte Carlo simulations

    International Nuclear Information System (INIS)

    Paganetti, Harald

    2012-01-01

    The main advantages of proton therapy are the reduced total energy deposited in the patient as compared to photon techniques and the finite range of the proton beam. The latter adds an additional degree of freedom to treatment planning. The range in tissue is associated with considerable uncertainties caused by imaging, patient setup, beam delivery and dose calculation. Reducing the uncertainties would allow a reduction of the treatment volume and thus allow a better utilization of the advantages of protons. This paper summarizes the role of Monte Carlo simulations when aiming at a reduction of range uncertainties in proton therapy. Differences in dose calculation when comparing Monte Carlo with analytical algorithms are analyzed as well as range uncertainties due to material constants and CT conversion. Range uncertainties due to biological effects and the role of Monte Carlo for in vivo range verification are discussed. Furthermore, the current range uncertainty recipes used at several proton therapy facilities are revisited. We conclude that a significant impact of Monte Carlo dose calculation can be expected in complex geometries where local range uncertainties due to multiple Coulomb scattering will reduce the accuracy of analytical algorithms. In these cases Monte Carlo techniques might reduce the range uncertainty by several mm. (topical review)

  2. Compton scatter imaging: A promising modality for image guidance in lung stereotactic body radiation therapy.

    Science.gov (United States)

    Redler, Gage; Jones, Kevin C; Templeton, Alistair; Bernard, Damian; Turian, Julius; Chu, James C H

    2018-03-01

    Lung stereotactic body radiation therapy (SBRT) requires delivering large radiation doses with millimeter accuracy, making image guidance essential. An approach to forming images of patient anatomy from Compton-scattered photons during lung SBRT is presented. To investigate the potential of scatter imaging, a pinhole collimator and flat-panel detector are used for spatial localization and detection of photons scattered during external beam therapy using lung SBRT treatment conditions (6 MV FFF beam). MCNP Monte Carlo software is used to develop a model to simulate scatter images. This model is validated by comparing experimental and simulated phantom images. Patient scatter images are then simulated from 4DCT data. Experimental lung tumor phantom images have sufficient contrast-to-noise to visualize the tumor with as few as 10 MU (0.5 s temporal resolution). The relative signal intensity from objects of different composition as well as lung tumor contrast for simulated phantom images agree quantitatively with experimental images, thus validating the Monte Carlo model. Scatter images are shown to display high contrast between different materials (lung, water, bone). Simulated patient images show superior (~double) tumor contrast compared to MV transmission images. Compton scatter imaging is a promising modality for directly imaging patient anatomy during treatment without additional radiation, and it has the potential to complement existing technologies and aid tumor tracking and lung SBRT image guidance. © 2018 American Association of Physicists in Medicine.

  3. An experiments and characteristics analysis of the sealless cylinder

    International Nuclear Information System (INIS)

    Kim, Young Cheol; Kim, Dong Soo; Bae, Sang Kyu; Kim, Sung Jong

    2004-01-01

    This paper shows a performance analysis for conical type sealless cylinders and rod bearings. The pistons without seal have partly cylindrical and conical shapes. 2 dimensional Reynolds equation and FD(Finite Differential) numerical techniques are utilized for the performance analysis. The relationship among self-centering forces and leakage flows are investigated. Also, optimal design values for a sealless cylinder are presented. A prototype of sealless cylinder which had rod bearing with four pockets, five pockets, and six pockets was manufactured respectively. Leakage flow test is conducted to evaluate performance of piston and rod bearing in sealless cylinder

  4. Magnetic susceptibility in the edged topological disordered nanoscopic cylinder

    International Nuclear Information System (INIS)

    Faizabadi, Edris; Omidi, Mahboubeh

    2011-01-01

    The effects of edged topological disorder on magnetic susceptibility are investigated in a nanoscopic cylinder threaded by a magnetic flux. Persistent current versus even or odd number of electrons shows different signs in ordered and disordered cylinders and also in short or long ones. In addition, temperature-averaged susceptibility has only diamagnetic signs in strong regimes and it is associated with paramagnetic signs in ordered and weak disordered ones. Besides, in an edged topological disordered cylinder, the temperature-averaged susceptibility decreases by raising the temperature somewhat and then increasing initiates and finally at high temperature tends to zero as the ordered one. - Research highlights: → Magnetic susceptibility in one-dimensional topological disordered quantum ring. → Edged topological disorder effect on magnetic susceptibility in nanoscopic cylinder. → Edged topological disorder effect on temperature-averaged susceptibility in cylinder.

  5. Dynamical instability of a charged gaseous cylinder

    Science.gov (United States)

    Sharif, M.; Mumtaz, Saadia

    2017-10-01

    In this paper, we discuss dynamical instability of a charged dissipative cylinder under radial oscillations. For this purpose, we follow the Eulerian and Lagrangian approaches to evaluate linearized perturbed equation of motion. We formulate perturbed pressure in terms of adiabatic index by applying the conservation of baryon numbers. A variational principle is established to determine characteristic frequencies of oscillation which define stability criteria for a gaseous cylinder. We compute the ranges of radii as well as adiabatic index for both charged and uncharged cases in Newtonian and post-Newtonian limits. We conclude that dynamical instability occurs in the presence of charge if the gaseous cylinder contracts to the radius R*.

  6. Prediction model of velocity field around circular cylinder over various Reynolds numbers by fusion convolutional neural networks based on pressure on the cylinder

    Science.gov (United States)

    Jin, Xiaowei; Cheng, Peng; Chen, Wen-Li; Li, Hui

    2018-04-01

    A data-driven model is proposed for the prediction of the velocity field around a cylinder by fusion convolutional neural networks (CNNs) using measurements of the pressure field on the cylinder. The model is based on the close relationship between the Reynolds stresses in the wake, the wake formation length, and the base pressure. Numerical simulations of flow around a cylinder at various Reynolds numbers are carried out to establish a dataset capturing the effect of the Reynolds number on various flow properties. The time series of pressure fluctuations on the cylinder is converted into a grid-like spatial-temporal topology to be handled as the input of a CNN. A CNN architecture composed of a fusion of paths with and without a pooling layer is designed. This architecture can capture both accurate spatial-temporal information and the features that are invariant of small translations in the temporal dimension of pressure fluctuations on the cylinder. The CNN is trained using the computational fluid dynamics (CFD) dataset to establish the mapping relationship between the pressure fluctuations on the cylinder and the velocity field around the cylinder. Adam (adaptive moment estimation), an efficient method for processing large-scale and high-dimensional machine learning problems, is employed to implement the optimization algorithm. The trained model is then tested over various Reynolds numbers. The predictions of this model are found to agree well with the CFD results, and the data-driven model successfully learns the underlying flow regimes, i.e., the relationship between wake structure and pressure experienced on the surface of a cylinder is well established.

  7. Analytical results of variance reduction characteristics of biased Monte Carlo for deep-penetration problems

    International Nuclear Information System (INIS)

    Murthy, K.P.N.; Indira, R.

    1986-01-01

    An analytical formulation is presented for calculating the mean and variance of transmission for a model deep-penetration problem. With this formulation, the variance reduction characteristics of two biased Monte Carlo schemes are studied. The first is the usual exponential biasing wherein it is shown that the optimal biasing parameter depends sensitively on the scattering properties of the shielding medium. The second is a scheme that couples exponential biasing to the scattering angle biasing proposed recently. It is demonstrated that the coupled scheme performs better than exponential biasing

  8. Long-range correlations in deep-inelastic scattering

    International Nuclear Information System (INIS)

    Chekanov, S.V.

    1999-01-01

    Multiplicity correlations between the current and target regions of the Breit frame in deep-inelastic scattering processes are studied. It is shown that the correlations are sensitive to the first-order perturbative QCD effects and can be used to extract the behaviour of the boson-gluon fusion rates as a function of the Bjorken variable. The behaviour of the correlations is derived analytically and analyzed using a Monte Carlo simulation. (author)

  9. Monte-Carlo Simulation of 3H(γ, pnn and 3He(γ, ppn Experiments at HIγS★

    Directory of Open Access Journals (Sweden)

    Han Z.

    2016-01-01

    Full Text Available We are developing an experiment to measure the two and three-body (γ, p differential cross sections (DCS for 3H and 3He. These data will be used to determine the 1S0 nn scattering length (ann and np scattering length (anp respectively. This paper describes features of the Monte-Carlo (MC simulation that will aid in the optimization of the experimental design and the data analysis approach.

  10. Mechanical Integrity of Copper Canister Lid and Cylinder. Sensitivity study

    International Nuclear Information System (INIS)

    Karlsson, Marianne

    2002-08-01

    This report is part of a study of the mechanical integrity of canisters used for disposal of nuclear fuel waste. The overall objective is to determine and ensure the static and long-term strength of the copper canister lid and cylinder casing. The canisters used for disposal nuclear fuel waste of type BWR consists of an inner part (insert) of ductile cast iron and an outer part of copper. The copper canister is to provide a sealed barrier between the contents of the canister and the surroundings. The study in this report complements the finite element analyses performed in an earlier study. The analyses aim to evaluate the sensitivity of the canister to tolerances regarding the gap between the copper cylinder and the cast iron insert. Since great uncertainties regarding the material's long term creep properties prevail, analyses are also performed to evaluate the effect of different creep data on the resulting strain and stress state. The report analyses the mechanical response of the lid and flange of the copper canister when subjected to loads caused by pressure from swelling bentonite and from groundwater at a depth of 500 meter. The loads acting on the canister are somewhat uncertain and the cases investigated in this report are possible cases. Load cases analysed are: Pressure 15 MPa uniformly distributed on lid and 5 MPa uniformly distributed on cylinder; Pressure 5 MPa uniformly distributed on lid and 15 MPa uniformly distributed on cylinder; Pressure 20 MPa uniformly distributed on lid and cylinder; and Side pressures 10 MPa and 20 MPa uniformly distributed on part of the cylinder. Creep analyses are performed for two of the load cases. For all considered designs high principal stresses appear on the outside of the copper cylinder in the region from the weld down to the level of the lid lower edge. Altering the gap between lid and cylinder and/or between cylinder and insert only marginally affects the resulting stress state. Fitting the lid in the cylinder

  11. Evaluation of Concrete Cylinder Tests Using Finite Elements

    DEFF Research Database (Denmark)

    Saabye Ottosen, Niels

    1984-01-01

    Nonlinear axisymmetric finite element analyses are performed on the uniaxial compressive test of concrete cylinders. The models include thick steel loading plates, and cylinders with height‐to‐diameter ratios (h/d) ranging from 1‐3 are treated. A simple constitutive model of the concrete is emplo......Nonlinear axisymmetric finite element analyses are performed on the uniaxial compressive test of concrete cylinders. The models include thick steel loading plates, and cylinders with height‐to‐diameter ratios (h/d) ranging from 1‐3 are treated. A simple constitutive model of the concrete...... uniaxial strength the use of geometrically matched loading plates seems to be advantageous. Finally, it is observed that for variations of the element size within limits otherwise required to obtain a realistic analysis, the results are insensitive to the element size....

  12. Analysis of scattered radiation in an irradiated body by means of the monte carlo simulation

    International Nuclear Information System (INIS)

    Kato, Hideki; Nakamura, Masaru; Tsuiki, Saeko; Shimizu, Ikuo; Higashi, Naoki; Kamada, Takao

    1992-01-01

    Isodose charts for oblique incidence are simply obtained from normal isodose data of correcting methods such as the tissue-air ratio (TAR) method, the effective source-skin distance (SSD) method etc. Although, in these correcting methods, the depth dose data on the beam axis remained as the normal depth dose data, which were measured on the geometry of perpendicular incidence. In this paper, the primary and scattered dose on the beam axis for 60 Co gamma-ray oblique incidence were calculated by means of the Monthe Carlo simulation, and the variation of the percentage depth dose and scatter factor were evaluated for oblique incident angles. The scattered dose distribution was altered for change in the oblique incident angle. Also, for increasing the angle, percentage depth dose (PDD) was decreased and the scatter factor was increased. If the depth dose for oblique incidence was calculated using normal PDD data and normal scatter factors, the results become an underestimation of the shallow region up to several cm, and an overesitimation for the deep region. (author)

  13. Derivation of a Monte Carlo method for modeling heterodyne detection in optical coherence tomography systems

    DEFF Research Database (Denmark)

    Tycho, Andreas; Jørgensen, Thomas Martini; Andersen, Peter E.

    2002-01-01

    A Monte Carlo (MC) method for modeling optical coherence tomography (OCT) measurements of a diffusely reflecting discontinuity emb edded in a scattering medium is presented. For the first time to the authors' knowledge it is shown analytically that the applicability of an MC approach to this opti...

  14. The CCFM Monte Carlo generator CASCADE Version 2.2.03

    International Nuclear Information System (INIS)

    Jung, H.; Baranov, S.; Deak, M.; Grebenyuk, A.; Hentschinski, M.; Knutsson, A.; Kraemer, M.; Hautmann, F.; Kutak, K.; Lipatov, A.; Zotov, N.

    2010-01-01

    Cascade is a full hadron level Monte Carlo event generator for ep, γp and p anti p and pp processes, which uses the CCFM evolution equation for the initial state cascade in a backward evolution approach supplemented with off-shell matrix elements for the hard scattering. A detailed program description is given, with emphasis on parameters the user wants to change and common block variables which completely specify the generated events. (orig.)

  15. The CCFM Monte Carlo Generator CASCADE version 2.2.0

    Energy Technology Data Exchange (ETDEWEB)

    Jung, H. [DESY, Hamburg (Germany); Antwerp Univ. (Belgium); Baranov, S. [Lebedev Physics Inst. (Russian Federation); Deak, M. [Madrid Univ. (ES). Inst. de Fisica Teorica UAM/CSIC] (and others)

    2010-08-15

    CASCADE is a full hadron level Monte Carlo event generator for ep, {gamma}p and p anti p and pp processes, which uses the CCFM evolution equation for the initial state cascade in a backward evolution approach supplemented with off - shell matrix elements for the hard scattering. A detailed program description is given, with emphasis on parameters the user wants to change and common block variables which completely specify the generated events. (orig.)

  16. Image reconstruction using Monte Carlo simulation and artificial neural networks

    International Nuclear Information System (INIS)

    Emert, F.; Missimner, J.; Blass, W.; Rodriguez, A.

    1997-01-01

    PET data sets are subject to two types of distortions during acquisition: the imperfect response of the scanner and attenuation and scattering in the active distribution. In addition, the reconstruction of voxel images from the line projections composing a data set can introduce artifacts. Monte Carlo simulation provides a means for modeling the distortions and artificial neural networks a method for correcting for them as well as minimizing artifacts. (author) figs., tab., refs

  17. A numerical analysis of antithetic variates in Monte Carlo radiation transport with geometrical surface splitting

    International Nuclear Information System (INIS)

    Sarkar, P.K.; Prasad, M.A.

    1989-01-01

    A numerical study for effective implementation of the antithetic variates technique with geometric splitting/Russian roulette in Monte Carlo radiation transport calculations is presented. The study is based on the theory of Monte Carlo errors where a set of coupled integral equations are solved for the first and second moments of the score and for the expected number of flights per particle history. Numerical results are obtained for particle transmission through an infinite homogeneous slab shield composed of an isotropically scattering medium. Two types of antithetic transformations are considered. The results indicate that the antithetic transformations always lead to reduction in variance and increase in efficiency provided optimal antithetic parameters are chosen. A substantial gain in efficiency is obtained by incorporating antithetic transformations in rule of thumb splitting. The advantage gained for thick slabs (∼20 mfp) with low scattering probability (0.1-0.5) is attractively large . (author). 27 refs., 9 tabs

  18. A Convenient Storage Rack for Graduated Cylinders

    Science.gov (United States)

    Love, Brian

    2004-01-01

    An attempt is made to find a solution to the occasional problem of a need for storing large numbers of graduated cylinders in many teaching and research laboratories. A design, which involves the creation of a series of parallel channels that are used to suspend inverted graduated cylinders by their bases, is proposed.

  19. A constant-density Gurney approach to the Cylinder test

    Energy Technology Data Exchange (ETDEWEB)

    Reaugh, John E.; Souers, P. Clark [Energetic Materials Center, Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States)

    2004-04-01

    The previous analysis of the Cylinder test required the treatment of different wall thicknesses and wall materials separately. To fix this, the Gurney analysis is used, but this results in low values for full-wall standard, ideal explosives relative to CHEETAH analyses. A new constant metal-density model is suggested, which takes account of the thinning metal wall as the cylinder expands. With this model, the inner radius of the metal cylinder moves faster than the measured outer radius. Additional small corrections occur in all cylinders because of energy trapped in the copper walls. Also, the half-wall cylinders have a small correction because the relative volumes of the gas products are smaller at a given outside wall displacement. The Fabry-Perot and streak camera measurements are compared. The Fabry method is shown to equate to the constant density model. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  20. Estimation of scattered photons using a neural network in SPECT

    International Nuclear Information System (INIS)

    Hasegawa, Wataru; Ogawa, Koichi

    1994-01-01

    In single photon emission CT (SPECT), measured projection data involve scattered photons. This causes degradation of spatial resolution and contrast in reconstructed images. The purpose of this study is to estimate the scattered photons, and eliminate them from measured data. To estimate the scattered photons, we used an artificial neural network which consists of five input units, five hidden units, and two output units. The inputs of the network are the ratios of the counts acquired by five narrow energy windows and their sum. The outputs are the ratios of the count of scattered photons and that of primary photons to the total count. The neural network was trained with a back-propagation algorithm using count data obtained by a Monte Carlo simulation. The results of simulation showed improvement of contrast and spatial resolution in reconstructed images. (author)