WorldWideScience

Sample records for scattered disk objects

  1. WISE Views of Centaurs & Scattered Disk Objects

    Science.gov (United States)

    Bauer, J. M.; Walker, R.; Mainzer, A.; Blauvelt, E.; Masiero, J.; Grav, T.; Cutri, R.; Dailey, J.; Lisse, C. M.; Fernandez, Y. R.; hide

    2011-01-01

    The Wide Field Infrared Survey Explorer surveyed most of the sky in the Mid-Infrared From January through September of 2010. In addition to 120 comets, more than 30 Centaurs and Scattered Disc Objects (SDOs) were observed and discovered. We will present preliminary results from the analysis ofthese outer solar system bodies.

  2. WISE Observations of Comets, Centaurs, & Scattered Disk Objects

    Science.gov (United States)

    Bauer, J.; Walker, R.; Mainzer, A.; Masiero, J.; Grav, T.; Cutri, R.; Dailey, J.; McMillan, R.; Lisse, C. M.; Fernandez, Y. R.; hide

    2011-01-01

    The Wide-Field Infrared Survey Explorer (WISE) was luanched on December 14, 2009. WISE imaged more than 99% of the sky in the mid-infrared for a 9-month mission lifetome. In addition to its primary goals of detecting the most luminous infrared galaxies and the nearest brown dwarfs, WISE, detected over 155500 of solar system bodies, 33700 of which were previously unknown. Most of the new objects were main Belt asteriods, and particular emphasis was on the discovery of Near Earth Asteoids. Hundreds of Jupiter Trojans have been imaged by WISE as well. However a substantial number of Centaurs, Scattered Disc Objects (SDOs), & cometary objects, were observed and discovered.

  3. Compact objects and accretion disks

    NARCIS (Netherlands)

    Blandford, Roger; Agol, Eric; Broderick, Avery; Heyl, Jeremy; Koopmans, Leon; Lee, Hee-Won

    2002-01-01

    Recent developments in the spectropolarimetric study of compact objects, specifically black holes (stellar and massive) and neutron stars are reviewed. The lectures are organized around five topics: disks, jets, outflows, neutron stars and black holes. They emphasize physical mechanisms and are

  4. Protoplanetary disks and exoplanets in scattered light

    NARCIS (Netherlands)

    Stolker, T.

    2017-01-01

    High-contrast imaging facilitates the direct detection of protoplanetary disks in scattered light and self-luminous exoplanets on long-period orbits. The combined power of extreme adaptive optics and differential imaging techniques delivers high spatial resolution images of disk morphologies down to

  5. Colors of Inner Disk Classical Kuiper Belt Objects

    Science.gov (United States)

    Romanishin, W.; Tegler, S. C.; Consolmagno, G. J.

    2010-07-01

    We present new optical broadband colors, obtained with the Keck 1 and Vatican Advanced Technology telescopes, for six objects in the inner classical Kuiper Belt. Objects in the inner classical Kuiper Belt are of interest as they may represent the surviving members of the primordial Kuiper Belt that formed interior to the current position of the 3:2 resonance with Neptune, the current position of the plutinos, or, alternatively, they may be objects formed at a different heliocentric distance that were then moved to their present locations. The six new colors, combined with four previously published, show that the ten inner belt objects with known colors form a neutral clump and a reddish clump in B-R color. Nonparametric statistical tests show no significant difference between the B-R color distribution of the inner disk objects compared to the color distributions of Centaurs, plutinos, or scattered disk objects. However, the B-R color distribution of the inner classical Kuiper Belt Objects does differ significantly from the distribution of colors in the cold (low inclination) main classical Kuiper Belt. The cold main classical objects are predominately red, while the inner classical belt objects are a mixture of neutral and red. The color difference may reveal the existence of a gradient in the composition and/or surface processing history in the primordial Kuiper Belt, or indicate that the inner disk objects are not dynamically analogous to the cold main classical belt objects.

  6. COLORS OF INNER DISK CLASSICAL KUIPER BELT OBJECTS

    International Nuclear Information System (INIS)

    Romanishin, W.; Tegler, S. C.; Consolmagno, G. J.

    2010-01-01

    We present new optical broadband colors, obtained with the Keck 1 and Vatican Advanced Technology telescopes, for six objects in the inner classical Kuiper Belt. Objects in the inner classical Kuiper Belt are of interest as they may represent the surviving members of the primordial Kuiper Belt that formed interior to the current position of the 3:2 resonance with Neptune, the current position of the plutinos, or, alternatively, they may be objects formed at a different heliocentric distance that were then moved to their present locations. The six new colors, combined with four previously published, show that the ten inner belt objects with known colors form a neutral clump and a reddish clump in B-R color. Nonparametric statistical tests show no significant difference between the B-R color distribution of the inner disk objects compared to the color distributions of Centaurs, plutinos, or scattered disk objects. However, the B-R color distribution of the inner classical Kuiper Belt Objects does differ significantly from the distribution of colors in the cold (low inclination) main classical Kuiper Belt. The cold main classical objects are predominately red, while the inner classical belt objects are a mixture of neutral and red. The color difference may reveal the existence of a gradient in the composition and/or surface processing history in the primordial Kuiper Belt, or indicate that the inner disk objects are not dynamically analogous to the cold main classical belt objects.

  7. PLANET-PLANET SCATTERING IN PLANETESIMAL DISKS

    International Nuclear Information System (INIS)

    Raymond, Sean N.; Armitage, Philip J.; Gorelick, Noel

    2009-01-01

    We study the final architecture of planetary systems that evolve under the combined effects of planet-planet and planetesimal scattering. Using N-body simulations we investigate the dynamics of marginally unstable systems of gas and ice giants both in isolation and when the planets form interior to a planetesimal belt. The unstable isolated systems evolve under planet-planet scattering to yield an eccentricity distribution that matches that observed for extrasolar planets. When planetesimals are included the outcome depends upon the total mass of the planets. For M tot ∼> 1 M J the final eccentricity distribution remains broad, whereas for M tot ∼ J a combination of divergent orbital evolution and recircularization of scattered planets results in a preponderance of nearly circular final orbits. We also study the fate of marginally stable multiple planet systems in the presence of planetesimal disks, and find that for high planet masses the majority of such systems evolve into resonance. A significant fraction leads to resonant chains that are planetary analogs of Jupiter's Galilean satellites. We predict that a transition from eccentric to near-circular orbits will be observed once extrasolar planet surveys detect sub-Jovian mass planets at orbital radii of a ≅ 5-10 AU.

  8. Gravitational Instabilities in a Young Protoplanetary Disk with Embedded Objects

    Science.gov (United States)

    Desai, Karna M.; Steiman-Cameron, Thomas Y.; Durisen, Richard H.

    2018-01-01

    Gravitational Instabilities (GIs), a mechanism for angular momentum transport, are more prominent during the early phases of protoplanetary disk evolution when the disk is relatively massive. In my dissertation work, I performed radiative 3D hydrodynamics simulations (by employing the code, CHYMERA) and extensively studied GIs by inserting different objects in the ‘control disk’ (a 0.14 M⊙ protoplanetary disk around a 1 M⊙ star).Studying planetary migration helps us better constrain planet formation models. To study the migration of Jovian planets, in 9 separate simulations, each of the 0.3 MJ, 1 MJ, and 3 MJ planets was inserted near the Inner and Outer Lindblad Resonances and the Corotation Radius (CR) of the dominant GI-induced two-armed spiral density wave in the disk. I found the migration timescales to be longer in a GI-active disk when compared to laminar disks. The 3 MJ planet controls its own orbital evolution, while the migration of a 0.3 MJ planet is stochastic in nature. I defined a ‘critical mass’ as the mass of an arm of the dominant two-armed spiral density wave within the planet’s Hill diameter. Planets above this mass control their own destiny, and planets below this mass are scattered by the disk. This critical mass could provide a recipe for predicting the migration behavior of planets in GI-active disks.To understand the stochastic migration of low-mass planets, I performed a simulation of 240 zero-mass planet-tracers (hereafter, planets) by inserting these at a range of locations in the control disk (an equivalent of 240 simulations of Saturn-mass or lower-mass objects). I calculated a Diffusion Coefficient (3.6 AU2/ 1000 yr) to characterize the stochastic migration of planets. I analyzed the increase in the eccentricity dispersion and compared it with the observed exoplanet eccentricities. The diffusion of planets can be a slow process, resulting in the survival of small planetary cores. Stochastic migration of planets is

  9. Dust Evolution Can Produce Scattered Light Gaps in Protoplanetary Disks

    OpenAIRE

    Birnstiel, Tilman; Andrews, Sean M.; Pinilla, Paola; Kama, Mihkel

    2015-01-01

    Recent imaging of protoplanetary disks with high resolution and contrast have revealed a striking variety of substructure. Of particular interest are cases where near-infrared scattered light images show evidence for low-intensity annular "gaps." The origins of such structures are still uncertain, but the interaction of the gas disk with planets is a common interpretation. We study the impact that the evolution of the solid material can have on the observable properties of disks in a simple s...

  10. Debris Disks in Aggregate: Using Hubble Space Telescope Coronagraphic Imagery to Understand the Scattered-Light Disk Detection Rate

    Science.gov (United States)

    Grady, Carol A.

    2011-01-01

    Despite more than a decade of coronagraphic imaging of debris disk candidate stars, only 16 have been imaged in scattered light. Since imaged disks provide our best insight into processes which sculpt disks, and can provide signposts of the presence of giant planets at distances which would elude radial velocity and transit surveys, we need to understand under what conditions we detect the disks in scattered light, how these disks differ from the majority of debris disks, and how to increase the yield of disks which are imaged with 0.1" angular resolution. In this talk, I will review what we have learned from a shallow HSTINICMOS NIR survey of debris disks, and present first results from our on-going HST /STIS optical imaging of bright scattered-light disks.

  11. Electromagnetic scattering from buried objects

    International Nuclear Information System (INIS)

    Brock, B.C.; Sorensen, K.W.

    1994-10-01

    Radar imaging and detection of objects buried in soil has potentially important applications in the areas of nonproliferation of weapons, environmental monitoring, hazardous-waste site location and assessment, and even archeology. In order to understand and exploit this potential, it is first necessary to understand how the soil responds to an electromagnetic wave, and how targets buried within the soil scatter the electromagnetic wave. We examine the response of the soil to a short pulse, and illustrate the roll of the complex dielectric permittivity of the soil in determining radar range resolution. This leads to a concept of an optimum frequency and bandwidth for imaging in a particular soil. We then propose a new definition for radar cross section which is consistent with the modified radar equation for use with buried targets. This radar cross section plays the same roll in the modified radar equation as the traditional radar cross section does in the free-space radar equation, and is directly comparable to it. The radar cross section of several canonical objects in lossy media is derived, and examples are given for several object/soil combinations

  12. Torques Induced by Scattered Pebble-flow in Protoplanetary Disks

    Science.gov (United States)

    Benítez-Llambay, Pablo; Pessah, Martin E.

    2018-03-01

    Fast inward migration of planetary cores is a common problem in the current planet formation paradigm. Even though dust is ubiquitous in protoplanetary disks, its dynamical role in the migration history of planetary embryos has not been assessed. In this Letter, we show that the scattered pebble-flow induced by a low-mass planetary embryo leads to an asymmetric dust-density distribution that is able to exert a net torque. By analyzing a large suite of multifluid hydrodynamical simulations addressing the interaction between the disk and a low-mass planet on a fixed circular orbit, and neglecting dust feedback onto the gas, we identify two different regimes, gas- and gravity-dominated, where the scattered pebble-flow results in almost all cases in positive torques. We collect our measurements in a first torque map for dusty disks, which will enable the incorporation of the effect of dust dynamics on migration into population synthesis models. Depending on the dust drift speed, the dust-to-gas mass ratio/distribution, and the embryo mass, the dust-induced torque has the potential to halt inward migration or even induce fast outward migration of planetary cores. We thus anticipate that dust-driven migration could play a dominant role during the formation history of planets. Because dust torques scale with disk metallicity, we propose that dust-driven outward migration may enhance the occurrence of distant giant planets in higher-metallicity systems.

  13. Accretion disk emission from a BL Lacertae object

    International Nuclear Information System (INIS)

    Wandel, A.; Urry, C.M.

    1991-01-01

    It is suggested here that the UV and X-ray emission of BL Lac objects may originate in an accretion disk. Using detailed calculations of accretion disk spectra, the best-measured ultraviolet and soft X-ray spectra of the BL Lac object PKS 2155-304 are fitted, and the mass and accretion rate required is determined. The ultraviolet through soft X-ray continuum is well fitted by the spectrum of an accretion disk, but near-Eddington accretion rates are required to produce the soft X-ray excess. A hot disk or corona could Comptonize soft photons from the cool disk and produce the observed power-law spectrum in the 1-10 keV range. The dynamic time scale in the disk regions that contribute most of the observed ultraviolet and soft X-ray photons are consistent with the respective time scales for intensity variations observed in these two wave bands; the mass derived from fitting the continuum spectrum is consistent with the limit derived from the fastest hard X-ray variability. 37 refs

  14. Near-IR Polarized Scattered Light Imagery of the DoAr 28 Transitional Disk

    Science.gov (United States)

    Rich, Evan A.; Wisiniewski, John P.; Mayama, Satoshi; Brandt, Timothy D.; Hashimoto, Jun; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Espaillat, Catherine; Serabyn, Eugene; Grady, Carol A.; hide

    2015-01-01

    We present the first spatially resolved polarized scattered light H-band detection of the DoAr 28 transitional disk. Our two epochs of imagery detect the scattered light disk from our effective inner working angle of 0 double prime.10 (13 AU) out to 0double prime.50 (65 AU). This inner working angle is interior to the location of the system's gap inferred by previous studies using spectral energy distribution modeling (15 AU). We detected a candidate point source companion 1 double prime.08 northwest of the system; however, our second epoch of imagery strongly suggests that this object is a background star. We constructed a grid of Monte Carlo Radiative Transfer models of the system, and our best fit models utilize a modestly inclined (50 degrees), 0.01 solar mass disk that has a partially depleted inner gap from the dust sublimation radius out to approximately 8 AU. Subtracting this best fit, axi-symmetric model from our polarized intensity data reveals evidence for two small asymmetries in the disk, which could be attributable to a variety of mechanisms.

  15. Do Cloaked Objects Really Scatter Less?

    Directory of Open Access Journals (Sweden)

    Francesco Monticone

    2013-10-01

    Full Text Available We discuss the global scattering response of invisibility cloaks over the entire electromagnetic spectrum, from static to very high frequencies. Based on linearity, causality, and energy conservation, we show that the total extinction and scattering, integrated over all wavelengths, of any linear, passive, causal, and nondiamagnetic cloak, necessarily increase compared to the uncloaked case. In light of this general principle, we provide a quantitative measure to compare the global performance of different cloaking techniques and we discuss solutions to minimize the global scattering signature of an object using thin, superconducting shells. Our results provide important physical insights on how invisibility cloaks operate and affect the global scattering of an object, suggesting ways to defeat countermeasures aimed at detecting cloaked objects using short impinging pulses.

  16. Phase object retrieval through scattering medium

    Science.gov (United States)

    Zhao, Ming; Zhao, Meijing; Wu, Houde; Xu, Wenhai

    2018-05-01

    Optical imaging through a scattering medium has been an interesting and important research topic, especially in the field of biomedical imaging. However, it is still a challenging task due to strong scattering. This paper proposes to recover the phase object behind the scattering medium from one single-shot speckle intensity image using calibrated transmission matrices (TMs). We construct the forward model as a non-linear mapping, since the intensity image loses the phase information, and then a generalized phase retrieval algorithm is employed to recover the hidden object. Moreover, we show that a phase object can be reconstructed with a small portion of the speckle image captured by the camera. The simulation is performed to demonstrate our scheme and test its performance. Finally, a real experiment is set up, we measure the TMs from the scattering medium, and then use it to reconstruct the hidden object. We show that a phase object of size 32 × 32 is retrieved from 150 × 150 speckle grains, which is only 1/50 of the speckles area. We believe our proposed method can benefit the community of imaging through the scattering medium.

  17. A LARGE, MASSIVE, ROTATING DISK AROUND AN ISOLATED YOUNG STELLAR OBJECT

    International Nuclear Information System (INIS)

    Quanz, Sascha P.; Beuther, Henrik; Steinacker, Juergen; Linz, Hendrik; Krause, Oliver; Henning, Thomas; Birkmann, Stephan M.; Zhang Qizhou

    2010-01-01

    and the molecules' abundances are similar to those found in other circumstellar disks. We furthermore detected C 2 H toward the objects and discuss this finding in the context of star formation. Finally, we have performed radiative transfer modeling of the K-band scattered light image varying a disk plus outflow two-dimensional density profile and the stellar properties. The model approximately reproduces extent and location of the dark lane, and the basic appearance of the outflow. We discuss our findings in the context of circumstellar disks across all mass regimes and conclude that our discovery is an ideal laboratory to study the early phases in the evolution of massive circumstellar disks surrounding young stellar objects.

  18. The scattered disk and hot belt, two sides of the same coin?

    Science.gov (United States)

    Kavelaars, J. J.; Petit, J.-M.; Gladman, B.; Jone, R. L.; Parker, J.; Taylor, M.

    2011-10-01

    The Canada-France Ecliptic Plane Survey (CFEPS) and High Latitude Extension (HILat)[] obtained characterized observations of nearly 800 sq.deg. of sky to depths in the range ˜23.5 - 24.4 AB mag, providing a database of nearly 200 trans-neptunian objects (TNOs) with high-precision dynamical classification and known discovery efficiency. Using this database, we find that the high-inclination component of the inner (a 47 AU) belt are well represented by a continuous density distribution coming from a constrained q range (35 < q < 40). This range of peri-center is similar to the range which some researchers associated with the scattered disk. In our modeling of the orbital phase space of the Kuiper belt we find that there is no need for two distinct components (ie. both a scattered disk and a hot component to the classical belt). The historical separation of the high-inclination component of the Kuiper belt into these two distinct structures appears to have been mis-guided.

  19. Disk

    NARCIS (Netherlands)

    P.A. Boncz (Peter); L. Liu (Lei); M. Tamer Özsu

    2008-01-01

    htmlabstractIn disk storage, data is recorded on planar, round and rotating surfaces (disks, discs, or platters). A disk drive is a peripheral device of a computer system, connected by some communication medium to a disk controller. The disk controller is a chip, typically connected to the CPU of

  20. Stationary radiation of objects with scattering media

    International Nuclear Information System (INIS)

    Vasil'eva, Inna A

    2001-01-01

    The radiation observed inside or outside a stationary radiator with a scattering medium is a sum of components, each being determined by, first, the primary radiation from some part of the radiator and, second, the probability of this radiation reaching the region where it is observed. In this review, general and rather simple relations between these components are discussed. These relations, unlike the components themselves, are independent of the specific optical characteristics of the object as well as of its geometry, inhomogeneity, etc. In deriving the relations, the situations in which geometrical optics is either applicable or inapplicable to radiation in a scattering medium are considered. For the case where geometrical optics does apply, stationary relations are derived from the probabilistic stationarity condition for radiation passing through the medium, i.e., from the fact that all radiation emitted in a stationary regime disappears with probability unity. Equilibrium relations are derived from the stationary relations in the particular case of a thermal radiator in an isothermal cavity. To derive the stationary relations in the geometrical optics approximation, we obtain general solutions of the linear equation of transfer using the Green function approach. If geometrical optics cannot be applied to a scattering and radiating medium, only relations for the components of outgoing thermal radiation are obtained, and the generalized Kirchhoff law, obtained by Levin and Rytov using statistical radio-physics methods, is employed. In this case, stationary relations are also derived from a probabilistic stationarity condition; the equilibrium relations follow from the stationary ones as well as from the equilibrium condition for radiation in the isothermal cavity. The quantities involved in all the relations obtained are a subject of experimental and computational spectroscopic studies. Examples of current and potential applications are given. The relations

  1. PANCHROMATIC IMAGING OF A TRANSITIONAL DISK: THE DISK OF GM AUR IN OPTICAL AND FUV SCATTERED LIGHT

    Energy Technology Data Exchange (ETDEWEB)

    Hornbeck, J. B.; Williger, G. M.; Lauroesch, J. T. [Department of Physics and Astronomy, University of Louisville, Louisville, KY 40292 (United States); Swearingen, J. R.; Sitko, M. L.; Champney, E. H. [Department of Physics, University of Cincinnati, 400 Geology/Physics Building, P.O. Box 210011, Cincinnati, OH 45221-0377 (United States); Grady, C. A. [Eureka Scientific, 2452 Delmer Street, Suite 100, Oakland, CA 96402 (United States); Brown, A. [CASA, University of Colorado, Boulder, CO 80309-0593 (United States); Wisniewski, J. P. [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks Street, Norman, OK 73019 (United States); Perrin, M. D.; Schneider, G. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Apai, D. [Department of Astronomy and Steward Observatory, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States); Brittain, S. [Department of Physics and Astronomy, Clemson University, 118 Kinard Laboratory, Clemson, SC 29634-0978 (United States); Brown, J. M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Hamaguchi, K. [Department of Physics, UMBC, Baltimore, MD 21250 (United States); Henning, Th. [Max-Planck-Institut Für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Lynch, D. K.; Russell, R. W. [The Aerospace Corporation, Los Angeles, CA 90009 (United States); Petre, R. [NASA’s Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Walter, F. M., E-mail: jeremy.hornbeck@louisville.edu, E-mail: gmwill06@louisville.edu, E-mail: carol.a.grady@nasa.gov [Department of Physics and Astronomy, Z = 3800, Stony Brook University, Stony Brook, NY 11794-3800 (United States); and others

    2016-10-01

    We have imaged GM Aurigae with the Hubble Space Telescope , detected its disk in scattered light at 1400 and 1650 Å, and compared these with observations at 3300 Å, 5550 Å, 1.1 μ m, and 1.6 μ m. The scattered light increases at shorter wavelengths. The radial surface brightness profile at 3300 Å shows no evidence of the 24 au radius cavity that has been previously observed in submillimeter observations. Comparison with dust grain opacity models indicates that the surface of the entire disk is populated with submicron grains. We have compiled a spectral energy distribution from 0.1 μ m to 1 mm and used it to constrain a model of the star + disk system that includes the submillimeter cavity using the Monte Carlo radiative transfer code by Barbara Whitney. The best-fit model image indicates that the cavity should be detectable in the F330W bandpass if the cavity has been cleared of both large and small dust grains, but we do not detect it. The lack of an observed cavity can be explained by the presence of submicron grains interior to the submillimeter cavity wall. We suggest one explanation for this that could be due to a planet of mass <9 M {sub J} interior to 24 au. A unique cylindrical structure is detected in the far-UV data from the Advanced Camera for Surveys/Solar Blind Channel. It is aligned along the system semiminor axis, but does not resemble an accretion-driven jet. The structure is limb brightened and extends 190 ± 35 au above the disk midplane. The inner radius of the limb brightening is 40 ± 10 au, just beyond the submillimeter cavity wall.

  2. Predictions for shepherding planets in scattered light images of debris disks

    International Nuclear Information System (INIS)

    Rodigas, Timothy J.; Hinz, Philip M.; Malhotra, Renu

    2014-01-01

    Planets can affect debris disk structure by creating gaps, sharp edges, warps, and other potentially observable signatures. However, there is currently no simple way for observers to deduce a disk-shepherding planet's properties from the observed features of the disk. Here we present a single equation that relates a shepherding planet's maximum mass to the debris ring's observed width in scattered light, along with a procedure to estimate the planet's eccentricity and minimum semimajor axis. We accomplish this by performing dynamical N-body simulations of model systems containing a star, a single planet, and an exterior disk of parent bodies and dust grains to determine the resulting debris disk properties over a wide range of input parameters. We find that the relationship between planet mass and debris disk width is linear, with increasing planet mass producing broader debris rings. We apply our methods to five imaged debris rings to constrain the putative planet masses and orbits in each system. Observers can use our empirically derived equation as a guide for future direct imaging searches for planets in debris disk systems. In the fortuitous case of an imaged planet orbiting interior to an imaged disk, the planet's maximum mass can be estimated independent of atmospheric models.

  3. Electromagnetic wave scattering by aerial and ground radar objects

    CERN Document Server

    Sukharevsky, Oleg I

    2014-01-01

    Electromagnetic Wave Scattering by Aerial and Ground Radar Objects presents the theory, original calculation methods, and computational results of the scattering characteristics of different aerial and ground radar objects. This must-have book provides essential background for computing electromagnetic wave scattering in the presence of different kinds of irregularities, as well as Summarizes fundamental electromagnetic statements such as the Lorentz reciprocity theorem and the image principleContains integral field representations enabling the study of scattering from various layered structur

  4. DISK GALAXY SCALING RELATIONS IN THE SFI++: INTRINSIC SCATTER AND APPLICATIONS

    International Nuclear Information System (INIS)

    Saintonge, Amelie; Spekkens, Kristine

    2011-01-01

    We study the scaling relations between the luminosities, sizes, and rotation velocities of disk galaxies in the SFI++, with a focus on the size-luminosity (RL) and size-rotation velocity (RV) relations. Using isophotal radii instead of disk scale lengths as a size indicator, we find relations that are significantly tighter than previously reported: the correlation coefficients of the template RL and RV relations are r = 0.97 and r= 0.85, respectively, which rival that of the more widely studied LV (Tully-Fisher) relation. The scatter in the SFI++ RL relation is 2.5-4 times smaller than previously reported for various samples, which we attribute to the reliability of isophotal radii relative to disk scale lengths. After carefully accounting for all measurement errors, our scaling relation error budgets are consistent with a constant intrinsic scatter in the LV and RV relations for velocity widths log W ∼> 2.4, with evidence for increasing intrinsic scatter below this threshold. The scatter in the RL relation is consistent with constant intrinsic scatter that is biased by incompleteness at the low-L end. Possible applications of the unprecedentedly tight SFI++ RV and RL relations are investigated. Just like the Tully-Fisher relation, the RV relation can be used as a distance indicator: we derive distances to galaxies with primary Cepheid distances that are accurate to 25%, and reverse the problem to measure a Hubble constant H 0 = 72 ± 7 km s -1 Mpc -1 . Combining the small intrinsic scatter of our RL relation (ε int = 0.034 ± 0.001log [h -1 kpc]) with a simple model for disk galaxy formation, we find an upper limit in the range of disk spin parameters that is a factor of ∼7 smaller than that of the halo spin parameters predicted by cosmological simulations. This likely implies that the halos hosting Sc galaxies have a much narrower distribution of spin parameters than previously thought.

  5. MAPPING H-BAND SCATTERED LIGHT EMISSION IN THE MYSTERIOUS SR21 TRANSITIONAL DISK

    International Nuclear Information System (INIS)

    Follette, Katherine B.; Close, Laird; Tamura, Motohide; Hashimoto, Jun; Kwon, Jungmi; Kandori, Ryo; Whitney, Barbara; Grady, Carol; Andrews, Sean M.; Wisniewski, John; Brandt, Timothy D.; Dong, Ruobing; Mayama, Satoshi; Abe, Lyu; Brandner, Wolfgang; Feldt, Markus; Carson, Joseph; Currie, Thayne; Egner, Sebastian E.; Goto, Miwa

    2013-01-01

    We present the first near infrared (NIR) spatially resolved images of the circumstellar transitional disk around SR21. These images were obtained with the Subaru HiCIAO camera, adaptive optics, and the polarized differential imaging technique. We resolve the disk in scattered light at H-band for stellocentric 0.''1 ≤ r ≤ 0.''6 (12 ∼ –6 ) are inconsistent with our H-band images when they are assumed to carry over to small grains, suggesting that surface grains scattering in the NIR either survive or are generated by whatever mechanism is clearing the disk midplane. In fact, the radial polarized intensity profile of our H-band observations is smooth and steeply inwardly-increasing (r –3 ), with no evidence of a break at the 36 AU sub-mm cavity wall. We hypothesize that this profile is dominated by an optically thin disk envelope or atmosphere component. We also discuss the compatibility of our data with the previously postulated existence of a sub-stellar companion to SR21 at r ∼ 10-20 AU, and find that we can neither exclude nor verify this scenario. This study demonstrates the power of multiwavelength imaging of transitional disks to inform modeling efforts, including the debate over precisely what physical mechanism is responsible for clearing these disks of their large midplane grains.

  6. The 0.5-2.22 micrometer Scattered Light Spectrum of the Disk around TW Hya: Detection of a Partially Filled Disk Gap at 80 AU*

    Science.gov (United States)

    Debes, John H.; Jang-Condell, Hannah; Weinberger, Alycia J.; Roberge, Aki; Schneider, Glenn

    2013-01-01

    We present a 0.5-2.2 micrometer scattered light spectrum of the circumstellar disk around TW Hya from a combination of spatially resolved Hubble Space Telescope STIS spectroscopy and NICMOS coronagraphic images of the disk. We investigate the morphology of the disk at distances greater than 40 AU over this wide range of wavelengths, and identify the presence of a depression in surface brightness at approximately 80 AU that could be caused by a gap in the disk. Additionally, we quantify the surface brightness, azimuthal symmetry, and spectral character of the disk as a function of radius. Our analysis shows that the scattering efficiency of the dust is largely neutral to blue over the observed wavelengths. We model the disk as a steady a-disk with an ad hoc gap structure. The thermal properties of the disk are selfconsistently calculated using a three-dimensional radiative transfer code that uses ray tracing to model the heating of the disk interior and scattered light images. We find a good fit to the data over a wide range of distances from the star if we use a model disk with a partially filled gap of 30% depth at 80 AU and with a self-similar truncation knee at 100 AU. The origin of the gap is unclear, but it could arise from a transition in the nature of the disk's dust composition or the presence of a planetary companion. Based on scalings to previous hydrodynamic simulations of gap-opening criteria for embedded proto-planets, we estimate that a planetary companion forming the gap could have a mass between 6 and 28 solar mass.

  7. THE 0.5-2.22 μm SCATTERED LIGHT SPECTRUM OF THE DISK AROUND TW Hya: DETECTION OF A PARTIALLY FILLED DISK GAP AT 80 AU

    International Nuclear Information System (INIS)

    Debes, John H.; Jang-Condell, Hannah; Weinberger, Alycia J.; Roberge, Aki; Schneider, Glenn

    2013-01-01

    We present a 0.5-2.2 μm scattered light spectrum of the circumstellar disk around TW Hya from a combination of spatially resolved Hubble Space Telescope STIS spectroscopy and NICMOS coronagraphic images of the disk. We investigate the morphology of the disk at distances >40 AU over this wide range of wavelengths, and identify the presence of a depression in surface brightness at ∼80 AU that could be caused by a gap in the disk. Additionally, we quantify the surface brightness, azimuthal symmetry, and spectral character of the disk as a function of radius. Our analysis shows that the scattering efficiency of the dust is largely neutral to blue over the observed wavelengths. We model the disk as a steady α-disk with an ad hoc gap structure. The thermal properties of the disk are self-consistently calculated using a three-dimensional radiative transfer code that uses ray tracing to model the heating of the disk interior and scattered light images. We find a good fit to the data over a wide range of distances from the star if we use a model disk with a partially filled gap of 30% depth at 80 AU and with a self-similar truncation knee at 100 AU. The origin of the gap is unclear, but it could arise from a transition in the nature of the disk's dust composition or the presence of a planetary companion. Based on scalings to previous hydrodynamic simulations of gap-opening criteria for embedded proto-planets, we estimate that a planetary companion forming the gap could have a mass between 6 and 28 M ⊕ .

  8. The 0.5-2.22 μm Scattered Light Spectrum of the Disk around TW Hya: Detection of a Partially Filled Disk Gap at 80 AU

    Science.gov (United States)

    Debes, John H.; Jang-Condell, Hannah; Weinberger, Alycia J.; Roberge, Aki; Schneider, Glenn

    2013-07-01

    We present a 0.5-2.2 μm scattered light spectrum of the circumstellar disk around TW Hya from a combination of spatially resolved Hubble Space Telescope STIS spectroscopy and NICMOS coronagraphic images of the disk. We investigate the morphology of the disk at distances >40 AU over this wide range of wavelengths, and identify the presence of a depression in surface brightness at ~80 AU that could be caused by a gap in the disk. Additionally, we quantify the surface brightness, azimuthal symmetry, and spectral character of the disk as a function of radius. Our analysis shows that the scattering efficiency of the dust is largely neutral to blue over the observed wavelengths. We model the disk as a steady α-disk with an ad hoc gap structure. The thermal properties of the disk are self-consistently calculated using a three-dimensional radiative transfer code that uses ray tracing to model the heating of the disk interior and scattered light images. We find a good fit to the data over a wide range of distances from the star if we use a model disk with a partially filled gap of 30% depth at 80 AU and with a self-similar truncation knee at 100 AU. The origin of the gap is unclear, but it could arise from a transition in the nature of the disk's dust composition or the presence of a planetary companion. Based on scalings to previous hydrodynamic simulations of gap-opening criteria for embedded proto-planets, we estimate that a planetary companion forming the gap could have a mass between 6 and 28 M ⊕. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs 10167, 8624, 7226, and 7233.

  9. First Scattered-Light Images of the Gas-Rich Debris Disk Around 49 Ceti

    Science.gov (United States)

    Choquet, Elodie; Milli, Julien; Wahhaj, Zahed; Soummer, Remi; Roberge, Aki; Augereau, Jean-Charles; Booth, Mark; Absil, Olivier; Boccaletti, Anthony; Chen, Christine H.; hide

    2017-01-01

    We present the first scattered-light images of the debris disk around 49 Ceti, a approximately 40 Myr A1 main-sequence star at 59 pc, famous for hosting two massive dust belts as well as large quantities of atomic and molecular gas. The outer disk is revealed in reprocessed archival Hubble Space Telescope NICMOS-F110W images, as well as new coronagraphic H-band images from the Very Large Telescope SPHERE instrument. The disk extends from 1."1 (65 au) to 4." 6 (250 au) and is seen at an inclination of 73 deg, which refines previous measurements at lower angular resolution. We also report no companion detection larger than 3 MJup at projected separations beyond 20 au from the star (0." 34). Comparison between the F110W and H-band images is consistent with a gray color of 49 Ceti's dust, indicating grains larger than approximately greater than 2 micrometers. Our photometric measurements indicate a scattering efficiency/infrared excess ratio of 0.2-0.4, relatively low compared to other characterized debris disks. We find that 49 Ceti presents morphological and scattering properties very similar to the gas-rich HD 131835 system. From our constraint on the disk inclination we find that the atomic gas previously detected in absorption must extend to the inner disk, and that the latter must be depleted of CO gas. Building on previous studies, we propose a schematic view of the system describing the dust and gas structure around 49 Ceti and hypothetical scenarios for the gas nature and origin.

  10. First Scattered-light Images of the Gas-rich Debris Disk around 49 Ceti

    Energy Technology Data Exchange (ETDEWEB)

    Choquet, Élodie [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Milli, Julien; Wahhaj, Zahed [European Southern Observatory, Alonso de Còrdova 3107, Vitacura, Casilla 19001, Santiago (Chile); Soummer, Rémi; Chen, Christine H.; Debes, John H. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Roberge, Aki [Exoplanets and Stellar Astrophysics Laboratory, NASA Goddard Space Flight Center, Code 667, Greenbelt, MD 20771 (United States); Augereau, Jean-Charles [Univ. Grenoble Alpes, CNRS, IPAG, F-38000 Grenoble (France); Booth, Mark [Astrophysikalisches Institut und Universitätssternwarte, Friedrich-Schiller-Universität Jena, Schillergäßchen 2-3, D-07745 Jena (Germany); Absil, Olivier [Space sciences, Technologies and Astrophysics Research (STAR) Institute, Université de Liège, 19 Allée du Six Août, B-4000 Liège (Belgium); Boccaletti, Anthony [LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité, 5 place Jules Janssen, F-92195 Meudon (France); Burgo, Carlos del, E-mail: echoquet@jpl.nasa.gov [Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis Enrique Erro 1, Sta. Ma. Tonantzintla, Puebla (Mexico); and others

    2017-01-10

    We present the first scattered-light images of the debris disk around 49 Ceti, a ∼40 Myr A1 main-sequence star at 59 pc, famous for hosting two massive dust belts as well as large quantities of atomic and molecular gas. The outer disk is revealed in reprocessed archival Hubble Space Telescope NICMOS-F110W images, as well as new coronagraphic H-band images from the Very Large Telescope SPHERE instrument. The disk extends from 1.″1 (65 au) to 4.″6 (250 au) and is seen at an inclination of 73°, which refines previous measurements at lower angular resolution. We also report no companion detection larger than 3 M {sub Jup} at projected separations beyond 20 au from the star (0.″34). Comparison between the F110W and H-band images is consistent with a gray color of 49 Ceti’s dust, indicating grains larger than ≳2 μ m. Our photometric measurements indicate a scattering efficiency/infrared excess ratio of 0.2–0.4, relatively low compared to other characterized debris disks. We find that 49 Ceti presents morphological and scattering properties very similar to the gas-rich HD 131835 system. From our constraint on the disk inclination we find that the atomic gas previously detected in absorption must extend to the inner disk, and that the latter must be depleted of CO gas. Building on previous studies, we propose a schematic view of the system describing the dust and gas structure around 49 Ceti and hypothetical scenarios for the gas nature and origin.

  11. The 0.5 micrometer-2.2 micrometer Scattered Light Spectrum of the Disk Around TW Hya

    Science.gov (United States)

    Debes, John H.; Jang-Condell, Hannah; Weinberger, Alycia J.; Roberg, Aki; Schneider, Glenn

    2012-01-01

    We present a 0.5-2.2micron scattered light spectrum of the circumstellar disk around TW Hya from a combination of spatially resolved HST STIS spectroscopy and NICMOS coronagraphic images of the disk. \\Ve investigate the morphology at the disk at distances> 40 AU over this wide range of wavelengths. We measure the surface brightness, azimuthal symmetry, and spectral character of the disk as a function of radius. We find that the scattering efficiency of the dust is largely neutral to blue over the observed wavelengths. We find a good fit to the data over a wide range of distances from the star if we use a model disk with a partial gap of 30% depth at 80 AU and with steep disk truncation exterior to 100 AU. If the gap is caused by a planetary companion in the process of accreting disk gas, it must be less than 20 Solar mass.

  12. Scattering properties of vein induced localized surface plasmon resonances on a gold disk

    KAUST Repository

    Amin, Muhammad

    2011-12-01

    It is demonstrated via simulations that a gold nano-disk with a non-concentric cavity supports localized surface plasmon resonances over a frequency band that includes the visible and the near-infrared parts of the spectrum. The charge distribution on the disk indicates that the two distinct peaks in the scattering cross section are due to the (hybridized) higher-order plasmon modes; plasmon hybridization that involves the dipole modes of the disk and the cavity enforces the "coupling" of the plane-wave excitation to the originally-dark higher-order modes. It is further demonstrated that the resonance frequencies can be tuned by varying the radius of the embedded non-concentric cavity. The near-field enhancement observed at these two tunable resonance frequencies suggests that the proposed structure can be used as a substrate in surface enhanced spectroscopy applications. © 2011 IEEE.

  13. Tracking Objects with Networked Scattered Directional Sensors

    Science.gov (United States)

    Plarre, Kurt; Kumar, P. R.

    2007-12-01

    We study the problem of object tracking using highly directional sensors—sensors whose field of vision is a line or a line segment. A network of such sensors monitors a certain region of the plane. Sporadically, objects moving in straight lines and at a constant speed cross the region. A sensor detects an object when it crosses its line of sight, and records the time of the detection. No distance or angle measurements are available. The task of the sensors is to estimate the directions and speeds of the objects, and the sensor lines, which are unknown a priori. This estimation problem involves the minimization of a highly nonconvex cost function. To overcome this difficulty, we introduce an algorithm, which we call "adaptive basis algorithm." This algorithm is divided into three phases: in the first phase, the algorithm is initialized using data from six sensors and four objects; in the second phase, the estimates are updated as data from more sensors and objects are incorporated. The third phase is an optional coordinated transformation. The estimation is done in an "ad-hoc" coordinate system, which we call "adaptive coordinate system." When more information is available, for example, the location of six sensors, the estimates can be transformed to the "real-world" coordinate system. This constitutes the third phase.

  14. Speckle-learning-based object recognition through scattering media.

    Science.gov (United States)

    Ando, Takamasa; Horisaki, Ryoichi; Tanida, Jun

    2015-12-28

    We experimentally demonstrated object recognition through scattering media based on direct machine learning of a number of speckle intensity images. In the experiments, speckle intensity images of amplitude or phase objects on a spatial light modulator between scattering plates were captured by a camera. We used the support vector machine for binary classification of the captured speckle intensity images of face and non-face data. The experimental results showed that speckles are sufficient for machine learning.

  15. PLANET-PLANET SCATTERING IN PLANETESIMAL DISKS. II. PREDICTIONS FOR OUTER EXTRASOLAR PLANETARY SYSTEMS

    International Nuclear Information System (INIS)

    Raymond, Sean N.; Armitage, Philip J.; Gorelick, Noel

    2010-01-01

    We develop an idealized dynamical model to predict the typical properties of outer extrasolar planetary systems, at radii comparable to the Jupiter-to-Neptune region of the solar system. The model is based upon the hypothesis that dynamical evolution in outer planetary systems is controlled by a combination of planet-planet scattering and planetary interactions with an exterior disk of small bodies ('planetesimals'). Our results are based on 5000 long duration N-body simulations that follow the evolution of three planets from a few to 10 AU, together with a planetesimal disk containing 50 M + from 10 to 20 AU. For large planet masses (M ∼> M Sat ), the model recovers the observed eccentricity distribution of extrasolar planets. For lower-mass planets, the range of outcomes in models with disks is far greater than that which is seen in isolated planet-planet scattering. Common outcomes include strong scattering among massive planets, sudden jumps in eccentricity due to resonance crossings driven by divergent migration, and re-circularization of scattered low-mass planets in the outer disk. We present the distributions of the eccentricity and inclination that result, and discuss how they vary with planet mass and initial system architecture. In agreement with other studies, we find that the currently observed eccentricity distribution (derived primarily from planets at a ∼ -1 and periods in excess of 10 years will provide constraints on this regime. Finally, we present an analysis of the predicted separation of planets in two-planet systems, and of the population of planets in mean-motion resonances (MMRs). We show that, if there are systems with ∼ Jupiter-mass planets that avoid close encounters, the planetesimal disk acts as a damping mechanism and populates MMRs at a very high rate (50%-80%). In many cases, resonant chains (in particular the 4:2:1 Laplace resonance) are set up among all three planets. We expect such resonant chains to be common among massive

  16. SPATIALLY RESOLVING THE HK Tau B EDGE-ON DISK FROM 1.2 TO 4.7 μm: A UNIQUE SCATTERED LIGHT DISK

    International Nuclear Information System (INIS)

    McCabe, C.; Duchene, G.; Pinte, C.; Menard, F.; Stapelfeldt, K. R.; Ghez, A. M.

    2011-01-01

    We present spatially resolved scattered light images of the circumstellar disk around HK Tau B at 3.8 and 4.7 μm taken with the Keck Telescope Laser Guide Star Adaptive Optics (AO) system, and 1.6-2.12 μm images taken with the Very Large Telescope/NACO AO system. Combined with previously published optical Hubble Space Telescope data, we investigate the spatially resolved scattered light properties of this edge-on circumstellar disk and probe for the presence of large grains. The 0.6-3.8 μm scattered light observations reveal strong, and in some cases, unusual, wavelength dependencies in the observed disk morphology. The separation between the two scattered light nebulae, which is directly proportional to the disk-mass-opacity product, decreases by 30% between 0.6 and 3.8 μm. Over the same wavelength range, the FWHM of the disk nebulosity declines by a factor of two, while the flux ratio between the two nebulae increases by a factor of ∼8. No other disk known to date shows a flux ratio that increases with wavelength. Both the FWHM and nebula flux ratio are affected by the scattering phase function and the observed behavior can most readily be explained by a phase function that becomes more forward throwing with wavelength. The multi-wavelength scattered light observations also confirm the asymmetric nature of the disk and show that the level of asymmetry is a function of wavelength. We use the MCFOST radiative transfer code to model the disk at four wavelengths, corresponding to the I, H, Ks, and L' bandpasses. A single power-law grain size distribution can recreate the observed disk properties simultaneously at all four wavelengths. Bayesian analysis of the dust parameters finds a 99% probability that the maximum grain size is 5.5 μm or larger. We also find that the grain size distribution is steep, with a 99% probability of a power-law index of 4.2 or larger, suggesting that these large grains are a small fraction of the overall dust population. The best

  17. Numerical Computational Technique for Scattering from Underwater Objects

    OpenAIRE

    T. Ratna Mani; Raj Kumar; Odamapally Vijay Kumar

    2013-01-01

    This paper presents a computational technique for mono-static and bi-static scattering from underwater objects of different shape such as submarines. The scatter has been computed using finite element time domain (FETD) method, based on the superposition of reflections, from the different elements reaching the receiver at a particular instant in time. The results calculated by this method has been verified with the published results based on ramp response technique. An in-depth parametric s...

  18. FIRST SCATTERED-LIGHT IMAGE OF THE DEBRIS DISK AROUND HD 131835 WITH THE GEMINI PLANET IMAGER

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Li-Wei; Arriaga, Pauline; Fitzgerald, Michael P.; Esposito, Thomas M. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Duchêne, Gaspard; Kalas, Paul G.; De Rosa, Robert J.; Graham, James R. [Astronomy Department, University of California, Berkeley CA 94720-3411 (United States); Maire, Jérôme; Chilcote, Jeffrey K. [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); Marois, Christian [National Research Council of Canada Herzberg, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Millar-Blanchaer, Maxwell A. [Department of Astronomy and Astrophysics, University of Toronto, Toronto ON M5S 3H4 (Canada); Bruzzone, Sebastian [Department of Physics and Astronomy, Centre for Planetary and Space Exploration, University of Western Ontario, London, ON N6A 3K7 (Canada); Rajan, Abhijith [School of Earth and Space Exploration, Arizona State University, P.O. Box 871404, Tempe, AZ 85287 (United States); Pueyo, Laurent; Wolff, Schuyler G.; Chen, Christine H. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Konopacky, Quinn [Center for Astrophysics and Space Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (United States); Ammons, S. Mark [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94040 (United States); Draper, Zachary H. [University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2 (Canada); and others

    2015-12-10

    We present the first scattered-light image of the debris disk around HD 131835 in the H band using the Gemini Planet Imager. HD 131835 is a ∼15 Myr old A2IV star at a distance of ∼120 pc in the Sco-Cen OB association. We detect the disk only in polarized light and place an upper limit on the peak total intensity. No point sources resembling exoplanets were identified. Compared to its mid-infrared thermal emission,  in scattered light the disk shows similar orientation but different morphology. The scattered-light disk extends from ∼75 to ∼210 AU in the disk plane with roughly flat surface density. Our Monte Carlo radiative transfer model can describe the observations with a model disk composed of a mixture of silicates and amorphous carbon. In addition to the obvious brightness asymmetry due to stronger forward scattering, we discover a weak brightness asymmetry along the major axis, with the northeast side being 1.3 times brighter than the southwest side at a 3σ level.

  19. Underwater object classification using scattering transform of sonar signals

    Science.gov (United States)

    Saito, Naoki; Weber, David S.

    2017-08-01

    In this paper, we apply the scattering transform (ST)-a nonlinear map based off of a convolutional neural network (CNN)-to classification of underwater objects using sonar signals. The ST formalizes the observation that the filters learned by a CNN have wavelet-like structure. We achieve effective binary classification both on a real dataset of Unexploded Ordinance (UXOs), as well as synthetically generated examples. We also explore the effects on the waveforms with respect to changes in the object domain (e.g., translation, rotation, and acoustic impedance, etc.), and examine the consequences coming from theoretical results for the scattering transform. We show that the scattering transform is capable of excellent classification on both the synthetic and real problems, thanks to having more quasi-invariance properties that are well-suited to translation and rotation of the object.

  20. Discovery of Scattering Polarization in the Hydrogen Ly α Line of the Solar Disk Radiation

    International Nuclear Information System (INIS)

    Kano, R.; Narukage, N.; Ishikawa, R.; Bando, T.; Katsukawa, Y.; Kubo, M.; Giono, G.; Hara, H.; Suematsu, Y.; Bueno, J. Trujillo; Winebarger, A.; Kobayashi, K.; Auchère, F.; Ishikawa, S.; Shimizu, T.; Sakao, T.; Tsuneta, S.; Ichimoto, K.; Goto, M.; Belluzzi, L.

    2017-01-01

    There is a thin transition region (TR) in the solar atmosphere where the temperature rises from 10,000 K in the chromosphere to millions of degrees in the corona. Little is known about the mechanisms that dominate this enigmatic region other than the magnetic field plays a key role. The magnetism of the TR can only be detected by polarimetric measurements of a few ultraviolet (UV) spectral lines, the Ly α line of neutral hydrogen at 121.6 nm (the strongest line of the solar UV spectrum) being of particular interest given its sensitivity to the Hanle effect (the magnetic-field-induced modification of the scattering line polarization). We report the discovery of linear polarization produced by scattering processes in the Ly α line, obtained with the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) rocket experiment. The Stokes profiles observed by CLASP in quiet regions of the solar disk show that the Q / I and U / I linear polarization signals are of the order of 0.1% in the line core and up to a few percent in the nearby wings, and that both have conspicuous spatial variations with scales of ∼10 arcsec. These observations help constrain theoretical models of the chromosphere–corona TR and extrapolations of the magnetic field from photospheric magnetograms. In fact, the observed spatial variation from disk to limb of polarization at the line core and wings already challenge the predictions from three-dimensional magnetohydrodynamical models of the upper solar chromosphere.

  1. Discovery of Scattering Polarization in the Hydrogen Ly α Line of the Solar Disk Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kano, R.; Narukage, N.; Ishikawa, R.; Bando, T.; Katsukawa, Y.; Kubo, M.; Giono, G.; Hara, H.; Suematsu, Y. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Bueno, J. Trujillo [Instituto de Astrofísica de Canarias, La Laguna, Tenerife, E-38205 (Spain); Winebarger, A.; Kobayashi, K. [Marshall Space Flight Center, National Aeronautics and Space Administration (NASA), Huntsville, AL 35812 (United States); Auchère, F. [Institut d’Astrophysique Spatiale, Université Paris Sud, Batiment 121, F-91405 Orsay (France); Ishikawa, S.; Shimizu, T.; Sakao, T.; Tsuneta, S. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo, Sagamihara, Kanagawa 252-5210 (Japan); Ichimoto, K. [Hida Observatory, Kyoto University, Takayama, Gifu 506-1314 (Japan); Goto, M. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Belluzzi, L., E-mail: ryouhei.kano@nao.ac.jp [Istituto Ricerche Solari Locarno, CH-6605 Locarno Monti (Switzerland); and others

    2017-04-10

    There is a thin transition region (TR) in the solar atmosphere where the temperature rises from 10,000 K in the chromosphere to millions of degrees in the corona. Little is known about the mechanisms that dominate this enigmatic region other than the magnetic field plays a key role. The magnetism of the TR can only be detected by polarimetric measurements of a few ultraviolet (UV) spectral lines, the Ly α line of neutral hydrogen at 121.6 nm (the strongest line of the solar UV spectrum) being of particular interest given its sensitivity to the Hanle effect (the magnetic-field-induced modification of the scattering line polarization). We report the discovery of linear polarization produced by scattering processes in the Ly α line, obtained with the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) rocket experiment. The Stokes profiles observed by CLASP in quiet regions of the solar disk show that the Q / I and U / I linear polarization signals are of the order of 0.1% in the line core and up to a few percent in the nearby wings, and that both have conspicuous spatial variations with scales of ∼10 arcsec. These observations help constrain theoretical models of the chromosphere–corona TR and extrapolations of the magnetic field from photospheric magnetograms. In fact, the observed spatial variation from disk to limb of polarization at the line core and wings already challenge the predictions from three-dimensional magnetohydrodynamical models of the upper solar chromosphere.

  2. Buoyancy limits on magnetic viscosity stress-law scalings in quasi stellar object accretion disk models

    International Nuclear Information System (INIS)

    Sakimoto, P.J.

    1985-01-01

    Quasi-Stellar Objects (QSOs) are apparently the excessively bright nuclei of distant galaxies. They are thought to be powered by accretion disks surrounding supermassive black holes: however, proof of this presumption is hampered by major uncertainties in the viscous stress necessary for accretion to occur. Models generally assume an and hoc stress law which scales the stress with the total pressure. Near the black hole, radiation pressure dominates gas pressure; scaling the stress with the radiation pressure results in disk models that are thermally unstable and optically thin. This dissertation shows that a radiation pressure scaling for the stress is not possible if the viscosity is due to turbulent magnetic Maxwell stresses. The argument is one of internal self-consistency. First, four model accretion disks that bound the reasonably expected ranges of viscous stress scalings and vertical structures are constructed. Magnetic flux tubes of various initial field strengths are then placed within these models, nd their buoyancy is modeled numerically. In disks using the radiation pressure stress law scaling, low opacities allow rapid heat flow into the flux tubes: the tubes are extremely buoyant, and magnetic fields strong enough to provide the required stress cannot be retained. If an alternative gas pressure scaling for the stress is assumed, then the disks are optically thick; flux tubes have corresponding lower buoyancy, and magnetic fields strong enough to provide the stress can be retained for dynamically significant time periods

  3. Scattering from objects and surfaces in room acoustical simulations

    DEFF Research Database (Denmark)

    Marbjerg, Gerd Høy; Brunskog, Jonas; Jeong, Cheol-Ho

    2016-01-01

    been implemented in the simulation tool PARISM (Phased Acoustical Radiosity and Image Source Method). Scattering from objects and surfaces is likely to be strongly frequency dependent and the frequency dependence can depend on their sizes, shapes and structure. The importance of the frequency...

  4. Imaging moving objects from multiply scattered waves and multiple sensors

    International Nuclear Information System (INIS)

    Miranda, Analee; Cheney, Margaret

    2013-01-01

    In this paper, we develop a linearized imaging theory that combines the spatial, temporal and spectral components of multiply scattered waves as they scatter from moving objects. In particular, we consider the case of multiple fixed sensors transmitting and receiving information from multiply scattered waves. We use a priori information about the multipath background. We use a simple model for multiple scattering, namely scattering from a fixed, perfectly reflecting (mirror) plane. We base our image reconstruction and velocity estimation technique on a modification of a filtered backprojection method that produces a phase-space image. We plot examples of point-spread functions for different geometries and waveforms, and from these plots, we estimate the resolution in space and velocity. Through this analysis, we are able to identify how the imaging system depends on parameters such as bandwidth and number of sensors. We ultimately show that enhanced phase-space resolution for a distribution of moving and stationary targets in a multipath environment may be achieved using multiple sensors. (paper)

  5. Size-dependent magnetization dynamics in individual Ni80Fe20 disk using micro-focused Brillouin Light Scattering spectroscopy

    Directory of Open Access Journals (Sweden)

    G. Shimon

    2015-09-01

    Full Text Available A direct and systematic investigation of the magnetization dynamics in individual circular Ni80Fe20 disk of diameter (D in the range from 300 nm to 1 μm measured using micro-focused Brillouin Light Scattering (μ-BLS spectroscopy is presented. At high field, when the disks are in a single domain state, the resonance frequency of the uniform center mode is observed to reduce with reducing disk’s diameter. For D = 300 nm, additional edge and end-domains resonant modes are observed due to size effects. At low field, when the disks are in a vortex state, a systematic increase of resonant frequency of magnetostatic modes in a vortex state with the square root of the disks’ aspect ratio (thickness divided by radius is observed. Such dependence diminishes for disks with larger aspect ratio due to an increasing exchange energy contribution. Micromagnetic simulations are in excellent agreement with the experiments.

  6. Sources of scattering in vegetarian and other surfaces and objects

    Science.gov (United States)

    Moore, R. K.

    1988-01-01

    The sources of scattering in vegetation and other surfaces and objects were studied. A special radar, SOURCESCAT, that could resolve a cylindrical volume 18 cm in diameter and 11 cm long was built. This system provided the first really fine-resolution measurements of radar backscatter from vegetation. The measurements showed that many of the assumptions used previously in modeling vegetation backscatter were false. Vegetation studied included various field crops, prairie grass, and various trees. Major differences were found in the roles of leaves, branches, stems, and trunks for different species. An artificial tree was studied in the laboratory using the systems. The most significant findings were that the average radar volume scattering coefficient is independent of azimuth, and that slanting of the polarization vector can give useful information not available with ordinary vertical and horizontal polarization. A model for scattering from a single leaf was developed. This model, for the first time, took into account the presence of veins in leaves. The pattern of scatter from a leaf was shown quite different from that for which the veins are ignored. A list of publications and presentations resulting from this project are attached.

  7. ABSENCE OF SIGNIFICANT COOL DISKS IN YOUNG STELLAR OBJECTS EXHIBITING REPETITIVE OPTICAL OUTBURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hauyu Baobab; Hirano, Naomi; Takami, Michihiro; Dong, Ruobing [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 106, Taiwan (China); Galván-Madrid, Roberto; Rodríguez, Luis F.; Carrasco-González, Carlos [Instituto de Radioastronomía y Astrofísica, UNAM, A.P. 3-72, Xangari, Morelia, 58089 (Mexico); Vorobyov, Eduard I. [Department of Astrophysics, University of Vienna, Tuerkenschanzstrasse 17, A-1180, Vienna (Austria); Kóspál, Ágnes [Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, P.O. Box 67, 1525 Budapest (Hungary); Dunham, Michael M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS 78, Cambridge, MA 02138 (United States); Henning, Thomas [Max-Planck-Institut für Astronomie Königstuhl, 17 D-69117 Heidelberg (Germany); Hashimoto, Jun [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 Japan (Japan); Hasegawa, Yasuhiro, E-mail: baobabyoo@gmail.com [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2016-01-10

    We report Submillimeter Array 1.3 mm high angular resolution observations toward the four EXor-type outbursting young stellar objects VY Tau, V1118 Ori, V1143 Ori, and NY Ori. The data mostly show low dust masses M{sub dust} in the associated circumstellar disks. Among the sources, NY Ori possesses a relatively massive disk with M{sub dust} ∼ 9 × 10{sup −4}M{sub ⊙}. V1118 Ori has a marginal detection equivalent to M{sub dust} ∼ 6 × 10{sup −5}M{sub ⊙}. V1143 Ori has a non-detection also equivalent to M{sub dust} < 6 × 10{sup −5}M{sub ⊙}. For the nearest source, VY Tau, we get a surprising non-detection that provides a stringent upper limit M{sub dust} < 6 × 10{sup −6}M{sub ⊙}. We interpret our findings as suggesting that the gas and dust reservoirs that feed the short-duration, repetitive optical outbursts seen in some EXors may be limited to the small-scale, innermost region of their circumstellar disks. This hot dust may have escaped our detection limits. Follow-up, more sensitive millimeter observations are needed to improve our understanding of the triggering mechanisms of EXor-type outbursts.

  8. Scattering Manipulation and Camouflage of Electrically Small Objects through Metasurfaces

    Science.gov (United States)

    Vellucci, S.; Monti, A.; Toscano, A.; Bilotti, F.

    2017-03-01

    In this paper, we discuss the intriguing possibility of tailoring the scattering response of an electrically small object for camouflage and illusion applications using metasurfaces. As a significant example, we focus our attention on the cylindrical geometry and derive the analytical conditions needed to camouflage the geometrical and electrical characteristics of dielectric and metallic cylinders coated with ideal metasurfaces. A closed-form expression of the camouflaging metasurface depending on the cylinder's characteristics is derived. Furthermore, the frequency behavior and the limitations of this technique are discussed with the aid of relevant examples. In order to overcome these limitations, a solution based on the use of lossy metasurfaces is proposed.

  9. A CANDIDATE PLANETARY-MASS OBJECT WITH A PHOTOEVAPORATING DISK IN ORION

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Min; Kim, Jinyoung Serena; Apai, Dániel [Department of Astronomy, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Pascucci, Ilaria [Department of Planetary Sciences, University of Arizona, 1629 East University Boulevard, Tucson, AZ 85721 (United States); Manara, Carlo Felice [Scientific Support Office, Directorate of Science, European Space Research and Technology Centre (ESA/ESTEC), Keplerlaan 1, 2201 AZ Noordwijk (Netherlands)

    2016-12-20

    In this work, we report the discovery of a candidate planetary-mass object with a photoevaporating protoplanetary disk, Proplyd 133-353, which is near the massive star θ {sup 1} Ori C at the center of the Orion Nebula Cluster (ONC). The object was known to have extended emission pointing away from θ {sup 1} Ori C, indicating ongoing external photoevaporation. Our near-infrared spectroscopic data and the location on the H–R diagram suggest that the central source of Proplyd 133-353 is substellar (∼M9.5) and has a mass probably less than 13 Jupiter mass and an age younger than 0.5 Myr. Proplyd 133-353 shows a similar ratio of X-ray luminosity to stellar luminosity to other young stars in the ONC with a similar stellar luminosity and has a similar proper motion to the mean one of confirmed ONC members. We propose that Proplyd 133-353 formed in a very low-mass dusty cloud or an evaporating gas globule near θ {sup 1} Ori C as a second generation of star formation, which can explain both its young age and the presence of its disk.

  10. HOW SPIRALS AND GAPS DRIVEN BY COMPANIONS IN PROTOPLANETARY DISKS APPEAR IN SCATTERED LIGHT AT ARBITRARY VIEWING ANGLES

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Ruobing [Nuclear Science Division, Lawrence Berkeley National Lab, Berkeley, CA 94720 (United States); Fung, Jeffrey; Chiang, Eugene, E-mail: rdong2013@berkeley.edu [Department of Astronomy, University of California at Berkeley, Berkeley, CA 94720 (United States)

    2016-07-20

    Direct imaging observations of protoplanetary disks at near-infrared (NIR) wavelengths have revealed structures of potentially planetary origin. Investigations of observational signatures from planet-induced features have so far focused on disks viewed face-on. Combining 3D hydrodynamics and radiative transfer simulations, we study how the appearance of the spiral arms and the gap produced in a disk by a companion varies with inclination and position angle in NIR scattered light. We compare the cases of a 3 M {sub J} and a 0.1 M {sub ⊙} companion, and make predictions suitable for testing with Gemini/GPI, Very Large Telescope/NACO/SPHERE, and Subaru/HiCIAO/SCExAO. We find that the two trailing arms produced by an external perturber can have a variety of morphologies in inclined systems—they may appear as one trailing arm; two trailing arms on the same side of the disk; or two arms winding in opposite directions. The disk ring outside a planetary gap may also mimic spiral arms when viewed at high inclinations. We suggest potential explanations for the features observed in HH 30, HD 141569 A, AK Sco, HD 100546, and AB Aur. We emphasize that inclined views of companion-induced features cannot be converted into face-on views using simple and commonly practiced image deprojections.

  11. HOW SPIRALS AND GAPS DRIVEN BY COMPANIONS IN PROTOPLANETARY DISKS APPEAR IN SCATTERED LIGHT AT ARBITRARY VIEWING ANGLES

    International Nuclear Information System (INIS)

    Dong, Ruobing; Fung, Jeffrey; Chiang, Eugene

    2016-01-01

    Direct imaging observations of protoplanetary disks at near-infrared (NIR) wavelengths have revealed structures of potentially planetary origin. Investigations of observational signatures from planet-induced features have so far focused on disks viewed face-on. Combining 3D hydrodynamics and radiative transfer simulations, we study how the appearance of the spiral arms and the gap produced in a disk by a companion varies with inclination and position angle in NIR scattered light. We compare the cases of a 3 M J and a 0.1 M ⊙ companion, and make predictions suitable for testing with Gemini/GPI, Very Large Telescope/NACO/SPHERE, and Subaru/HiCIAO/SCExAO. We find that the two trailing arms produced by an external perturber can have a variety of morphologies in inclined systems—they may appear as one trailing arm; two trailing arms on the same side of the disk; or two arms winding in opposite directions. The disk ring outside a planetary gap may also mimic spiral arms when viewed at high inclinations. We suggest potential explanations for the features observed in HH 30, HD 141569 A, AK Sco, HD 100546, and AB Aur. We emphasize that inclined views of companion-induced features cannot be converted into face-on views using simple and commonly practiced image deprojections.

  12. Radiation pressure in galactic disks: stability, turbulence, and winds in the single-scattering limit

    Science.gov (United States)

    Wibking, Benjamin D.; Thompson, Todd A.; Krumholz, Mark R.

    2018-04-01

    The radiation force on dust grains may be dynamically important in driving turbulence and outflows in rapidly star-forming galaxies. Recent studies focus on the highly optically-thick limit relevant to the densest ultra-luminous galaxies and super star clusters, where reprocessed infrared photons provide the dominant source of electromagnetic momentum. However, even among starburst galaxies, the great majority instead lie in the so-called "single-scattering" limit, where the system is optically-thick to the incident starlight, but optically-thin to the re-radiated infrared. In this paper we present a stability analysis and multidimensional radiation-hydrodynamic simulations exploring the stability and dynamics of isothermal dusty gas columns in this regime. We describe our algorithm for full angle-dependent radiation transport based on the discontinuous Galerkin finite element method. For a range of near-Eddington fluxes, we show that the medium is unstable, producing convective-like motions in a turbulent atmosphere with a scale height significantly inflated compared to the gas pressure scale height and mass-weighted turbulent energy densities of ˜0.01 - 0.1 of the midplane radiation energy density, corresponding to mass-weighted velocity dispersions of Mach number ˜0.5 - 2. Extrapolation of our results to optical depths of 103 implies maximum turbulent Mach numbers of ˜20. Comparing our results to galaxy-averaged observations, and subject to the approximations of our calculations, we find that radiation pressure does not contribute significantly to the effective supersonic pressure support in star-forming disks, which in general are substantially sub-Eddington. We further examine the time-averaged vertical density profiles in dynamical equilibrium and comment on implications for radiation-pressure-driven galactic winds.

  13. Evolution of protoplanetary disks from their taxonomy in scattered light: Group I vs. Group II

    NARCIS (Netherlands)

    Garufi, A.; Meeus, G.; Benisty, M.; Quanz, S.P.; Banzatti, A.; Kama, M.; Canovas, H.; Eiroa, C.; Schmid, H.M.; Stolker, T.; Pohl, A.; Rigliaco, E.; Ménard, F.; Meyer, M.R.; van Boekel, R.; Dominik, C.

    Context. High-resolution imaging reveals a large morphological variety of protoplanetary disks. To date, no constraints on their global evolution have been found from this census. An evolutionary classification of disks was proposed based on their IR spectral energy distribution, with the Group I

  14. The SEEDS Direct Imaging Survey for Planets and Scattered Dust Emission in Debris Disk Systems

    NARCIS (Netherlands)

    Janson, M.; et al., [Unknown; Thalmann, C.

    2013-01-01

    Debris disks around young main-sequence stars often have gaps and cavities which for a long time have been interpreted as possibly being caused by planets. In recent years, several giant planet discoveries have been made in systems hosting disks of precisely this nature, further implying that

  15. THE SEEDS DIRECT IMAGING SURVEY FOR PLANETS AND SCATTERED DUST EMISSION IN DEBRIS DISK SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Janson, Markus; Brandt, Timothy D. [Department of Astrophysical Sciences, Princeton University, NJ 08544 (United States); Moro-Martin, Amaya [Department of Astrophysics, CAB (INTA-CSIC), Instituto Nacional de Tecnica Aerospacial, Torrejonde Ardoz, E-28850 Madrid (Spain); Usuda, Tomonori; Kudo, Tomoyuki; Egner, Sebastian [Subaru Telescope, 650 North Aohoku Place, Hilo, HI 96720 (United States); Thalmann, Christian [Astronomical Institute ' ' Anton Pannekoek' ' , University of Amsterdam, Science Park 904, 1098-XH Amsterdam (Netherlands); Carson, Joseph C. [Department of Physics and Astronomy, College of Charleston, 58 Coming Street, Charleston, SC 29424 (United States); Goto, Miwa [Universitaets-Sternwarte Muenchen, Ludwig-Maximilians-Universitaet, Scheinerstr. 1, D-81679 Munich (Germany); Currie, Thayne [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, M5S 3H4 Toronto, ON (Canada); McElwain, M. W. [Exoplanets and Stellar Astrophysics Laboratory, Code 667, Goddard Space Flight Center, Greenbelt, MD 2071 (United States); Itoh, Yoichi [Nishi-Harima Astronomical Observatory, Center for Astronomy, University of Hyogo, 407-2 Nishigaichi, Sayo, Hyogo 679-5313 (Japan); Fukagawa, Misato [Department of Earth and Space Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Crepp, Justin [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Kuzuhara, Masayuki; Hashimoto, Jun; Kusakabe, Nobuhiko [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Abe, Lyu [Laboratoire Lagrange, UMR7239, University of Nice-Sophia Antipolis, CNRS, Observatoire de la Cote d' Azur, F-06300 Nice (France); Brandner, Wolfgang; Feldt, Markus, E-mail: janson@astro.princeton.edu [Max Planck Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany); and others

    2013-08-10

    Debris disks around young main-sequence stars often have gaps and cavities which for a long time have been interpreted as possibly being caused by planets. In recent years, several giant planet discoveries have been made in systems hosting disks of precisely this nature, further implying that interactions with planets could be a common cause of such disk structures. As part of the SEEDS high-contrast imaging survey, we are surveying a population of debris-disk-hosting stars with gaps and cavities implied by their spectral energy distributions, in order to attempt to spatially resolve the disk as well as to detect any planets that may be responsible for the disk structure. Here, we report on intermediate results from this survey. Five debris disks have been spatially resolved, and a number of faint point sources have been discovered, most of which have been tested for common proper motion, which in each case has excluded physical companionship with the target stars. From the detection limits of the 50 targets that have been observed, we find that {beta} Pic b-like planets ({approx}10 M{sub jup} planets around G-A-type stars) near the gap edges are less frequent than 15%-30%, implying that if giant planets are the dominant cause of these wide (27 AU on average) gaps, they are generally less massive than {beta} Pic b.

  16. Hydrodynamic ejection of bipolar flows from objects undergoing disk accretion: T Tauri stars, massive pre-main-sequence objects, and cataclysmic variables

    International Nuclear Information System (INIS)

    Torbett, M.V.

    1984-01-01

    A general mechanism is presented for generating pressure-driven winds that are intrinsically bipolar from objects undergoing disk accretion. The energy librated in a boundary layer shock as the disk matter impacts the central object is shown to be sufficient to eject a fraction βapprox.10 -2 to 10 -3 of the accreted mass. These winds are driven by a mechanism that accelerates the flow perpendicular to the plane of the disk and can therefore account for the bipolar geometry of the mass loss observed near young stars. The mass loss contained in these winds is comparable to that inferred for young stars. Thus, disk accretion-driven winds may constitute the T Tauri phase of stellar evolution. This mechanism is generally applicable, and thus massive pre-main-sequence objects as well as cataclysmic variables at times of enhanced accretion are predicted to eject bipolar outflows as well. Unmagnetized accreting neutron stas are also expected to eject bipolar flows. Since this mechanism requires stellar surfaces, however, it will not operate in disk accretion onto black holes

  17. Accretion-Ejection Instability in magnetized accretion disk around compact objects

    International Nuclear Information System (INIS)

    Varniere, Peggy

    2002-01-01

    The major problem in accretion physics come from the origin of angular momentum transfer in the disk. My PhD deal with a mechanism (the Accretion-Ejection Instability, AEI) able to explain and link together accretion in the inner region of the disk and ejection. This instability occurs in magnetized accretion disk near equipartition with gas pressure. We first study the impact of some relativistic effects on the instability, particularly on the m = 1 mode. And compared the results with the Quasi-Periodic Oscillation (QPO) observed in micro-quasars. In the second part we study analytically and numerically the Alfven wave emission mechanism which re-emit the angular momentum and energy taken from the inner region of the disk into the corona. The last part deals with MHD numerical simulation. First of all a 2D non-linear disk simulation which contribute to QPO modelization. The last chapter is about a beginning collaboration on 3D simulation in order to study the Alfven wave emission in the corona. (author) [fr

  18. A computer graphics based model for scattering from objects of arbitrary shapes in the optical region

    Science.gov (United States)

    Goel, Narendra S.; Rozehnal, Ivan; Thompson, Richard L.

    1991-01-01

    A computer-graphics-based model, named DIANA, is presented for generation of objects of arbitrary shape and for calculating bidirectional reflectances and scattering from them, in the visible and infrared region. The computer generation is based on a modified Lindenmayer system approach which makes it possible to generate objects of arbitrary shapes and to simulate their growth, dynamics, and movement. Rendering techniques are used to display an object on a computer screen with appropriate shading and shadowing and to calculate the scattering and reflectance from the object. The technique is illustrated with scattering from canopies of simulated corn plants.

  19. Efficient light scattering through thin semi-transparent objects

    DEFF Research Database (Denmark)

    Frisvad, Jeppe Revall; Christensen, Niels Jørgen; Falster, Peter

    2005-01-01

    This paper concerns real-time rendering of thin semi-transparent objects. An object in this category could be a piece of cloth, eg. a curtain. Semi-transparent objects are visualized most correctly using volume rendering techniques. In general such techniques are, however, intractable for real-ti...... in this new area gives far better results than what is obtainable with a traditional real-time rendering scheme using a constant factor for alpha blending....

  20. Time-domain single-source integral equations for analyzing scattering from homogeneous penetrable objects

    KAUST Repository

    Valdé s, Felipe; Andriulli, Francesco P.; Bagci, Hakan; Michielssen, Eric

    2013-01-01

    Single-source time-domain electric-and magnetic-field integral equations for analyzing scattering from homogeneous penetrable objects are presented. Their temporal discretization is effected by using shifted piecewise polynomial temporal basis

  1. DGTD Analysis of Electromagnetic Scattering from Penetrable Conductive Objects with IBC

    KAUST Repository

    Li, Ping; Shi, Yifei; Jiang, Li; Bagci, Hakan

    2015-01-01

    To avoid straightforward volumetric discretization, a discontinuous Galerkin time-domain (DGTD) method integrated with the impedance boundary condition (IBC) is presented in this paper to analyze the scattering from objects with finite conductivity

  2. Small angle neutron scattering measurements of magnetic cluster sizes in magnetic recorging disks

    CERN Document Server

    Toney, M

    2003-01-01

    We describe Small Angle Neutron Scattering measurements of the magnetic cluster size distributions for several longitudinal magnetic recording media. We find that the average magnetic cluster size is slightly larger than the average physical grain size, that there is a broad distribution of cluster sizes, and that the cluster size is inversely correlated to the media signal-to-noise ratio. These results show that intergranular magnetic coupling in these media is small and they provide empirical data for the cluster-size distribution that can be incorporated into models of magnetic recording.

  3. Estimation of scattering object characteristics for image reconstruction using a nonzero background.

    Science.gov (United States)

    Jin, Jing; Astheimer, Jeffrey; Waag, Robert

    2010-06-01

    Two methods are described to estimate the boundary of a 2-D penetrable object and the average sound speed in the object. One method is for circular objects centered in the coordinate system of the scattering observation. This method uses an orthogonal function expansion for the scattering. The other method is for noncircular, essentially convex objects. This method uses cross correlation to obtain time differences that determine a family of parabolas whose envelope is the boundary of the object. A curve-fitting method and a phase-based method are described to estimate and correct the offset of an uncentered radial or elliptical object. A method based on the extinction theorem is described to estimate absorption in the object. The methods are applied to calculated scattering from a circular object with an offset and to measured scattering from an offset noncircular object. The results show that the estimated boundaries, sound speeds, and absorption slopes agree very well with independently measured or true values when the assumptions of the methods are reasonably satisfied.

  4. Subsurface Scattering-Based Object Rendering Techniques for Real-Time Smartphone Games

    Directory of Open Access Journals (Sweden)

    Won-Sun Lee

    2014-01-01

    Full Text Available Subsurface scattering that simulates the path of a light through the material in a scene is one of the advanced rendering techniques in the field of computer graphics society. Since it takes a number of long operations, it cannot be easily implemented in real-time smartphone games. In this paper, we propose a subsurface scattering-based object rendering technique that is optimized for smartphone games. We employ our subsurface scattering method that is utilized for a real-time smartphone game. And an example game is designed to validate how the proposed method can be operated seamlessly in real time. Finally, we show the comparison results between bidirectional reflectance distribution function, bidirectional scattering distribution function, and our proposed subsurface scattering method on a smartphone game.

  5. Scattering properties of electromagnetic waves from metal object in the lower terahertz region

    Science.gov (United States)

    Chen, Gang; Dang, H. X.; Hu, T. Y.; Su, Xiang; Lv, R. C.; Li, Hao; Tan, X. M.; Cui, T. J.

    2018-01-01

    An efficient hybrid algorithm is proposed to analyze the electromagnetic scattering properties of metal objects in the lower terahertz (THz) frequency. The metal object can be viewed as perfectly electrical conducting object with a slightly rough surface in the lower THz region. Hence the THz scattered field from metal object can be divided into coherent and incoherent parts. The physical optics and truncated-wedge incremental-length diffraction coefficients methods are combined to compute the coherent part; while the small perturbation method is used for the incoherent part. With the MonteCarlo method, the radar cross section of the rough metal surface is computed by the multilevel fast multipole algorithm and the proposed hybrid algorithm, respectively. The numerical results show that the proposed algorithm has good accuracy to simulate the scattering properties rapidly in the lower THz region.

  6. A Numerical Method for Analyzing Electromagnetic Scattering Properties of a Moving Conducting Object

    Directory of Open Access Journals (Sweden)

    Lei Kuang

    2014-01-01

    Full Text Available A novel numerical approach is developed to analyze electromagnetic scattering properties of a moving conducting object based on the finite-difference time-domain (FDTD algorithm. Relativistic boundary conditions are implemented into the FDTD algorithm to calculate the electromagnetic field on the moving boundary. An improved technique is proposed to solve the scattered field in order to improve the computational efficiency and stability of solutions. The time-harmonic scattered field from a one-dimensional moving conducting surface is first simulated by the proposed approach. Numerical results show that the amplitude and frequency of the scattered field suffer a modulation shift. Then the transient scattered field is calculated, and broadband electromagnetic scattering properties of the moving conducting surface are obtained by the fast Fourier transform (FFT. Finally, the scattered field from a two-dimensional moving square cylinder is analyzed. The numerical results demonstrate the Doppler effect of a moving conducting object. The simulated results agree well with analytical results.

  7. Phase retrieval with the reverse projection method in the presence of object's scattering

    International Nuclear Information System (INIS)

    Wang, Zhili; Gao, Kun; Wang, Dajiang

    2017-01-01

    X-ray grating interferometry can provide substantially increased contrast over traditional attenuation-based techniques in biomedical applications, and therefore novel and complementary information. Recently, special attention has been paid to quantitative phase retrieval in X-ray grating interferometry, which is mandatory to perform phase tomography, to achieve material identification, etc. An innovative approach, dubbed “Reverse Projection” (RP), has been developed for quantitative phase retrieval. The RP method abandons grating scanning completely, and is thus advantageous in terms of higher efficiency and reduced radiation damage. Therefore, it is expected that this novel method would find its potential in preclinical and clinical implementations. Strictly speaking, the reverse projection method is applicable for objects exhibiting only absorption and refraction. In this contribution, we discuss the phase retrieval with the reverse projection method for general objects with absorption, refraction and scattering simultaneously. Especially, we investigate the influence of the object's scattering on the retrieved refraction signal. Both theoretical analysis and numerical experiments are performed. The results show that the retrieved refraction signal is the product of object's refraction and scattering signals for small values. In the case of a strong scattering, the reverse projection method cannot provide reliable phase retrieval. Those presented results will guide the use of the reverse projection method for future practical applications, and help to explain some possible artifacts in the retrieved images and/or reconstructed slices. - Highlights: • Accurate phase retrieval by the reverse projection method without object's scattering. • Retrieved refraction signal contaminated by the object's scattering. • Refraction signal underestimated by the reverse projection method. • Guide the use of the reverse projection method for

  8. Electromagnetic imaging of multiple-scattering small objects: non-iterative analytical approach

    International Nuclear Information System (INIS)

    Chen, X; Zhong, Y

    2008-01-01

    Multiple signal classification (MUSIC) imaging method and the least squares method are applied to solve the electromagnetic inverse scattering problem of determining the locations and polarization tensors of a collection of small objects embedded in a known background medium. Based on the analysis of induced electric and magnetic dipoles, the proposed MUSIC method is able to deal with some special scenarios, due to the shapes and materials of objects, to which the standard MUSIC doesn't apply. After the locations of objects are obtained, the nonlinear inverse problem of determining the polarization tensors of objects accounting for multiple scattering between objects is solved by a non-iterative analytical approach based on the least squares method

  9. Three-dimensional reciprocal space x-ray coherent scattering tomography of two-dimensional object.

    Science.gov (United States)

    Zhu, Zheyuan; Pang, Shuo

    2018-04-01

    X-ray coherent scattering tomography is a powerful tool in discriminating biological tissues and bio-compatible materials. Conventional x-ray scattering tomography framework can only resolve isotropic scattering profile under the assumption that the material is amorphous or in powder form, which is not true especially for biological samples with orientation-dependent structure. Previous tomography schemes based on x-ray coherent scattering failed to preserve the scattering pattern from samples with preferred orientations, or required elaborated data acquisition scheme, which could limit its application in practical settings. Here, we demonstrate a simple imaging modality to preserve the anisotropic scattering signal in three-dimensional reciprocal (momentum transfer) space of a two-dimensional sample layer. By incorporating detector movement along the direction of x-ray beam, combined with a tomographic data acquisition scheme, we match the five dimensions of the measurements with the five dimensions (three in momentum transfer domain, and two in spatial domain) of the object. We employed a collimated pencil beam of a table-top copper-anode x-ray tube, along with a panel detector to investigate the feasibility of our method. We have demonstrated x-ray coherent scattering tomographic imaging at a spatial resolution ~2 mm and momentum transfer resolution 0.01 Å -1 for the rotation-invariant scattering direction. For any arbitrary, non-rotation-invariant direction, the same spatial and momentum transfer resolution can be achieved based on the spatial information from the rotation-invariant direction. The reconstructed scattering profile of each pixel from the experiment is consistent with the x-ray diffraction profile of each material. The three-dimensional scattering pattern recovered from the measurement reveals the partially ordered molecular structure of Teflon wrap in our sample. We extend the applicability of conventional x-ray coherent scattering tomography to

  10. New developments in analytical calculation of first order scattering for 3D complex objects

    International Nuclear Information System (INIS)

    Duvauchelle, Philippe; Berthier, Jerome

    2007-01-01

    The principle of the analytical calculation of first order scattering used in our simulation code named VXI (Virtual X-ray Imaging) is based on a double ray-tracing. The first step consists in realizing a ray-tracing from the X-ray source point to each point of the object (an elementary volume in practice) including attenuation effect in the primary beam. This calculation gives the number of photons and their direction arriving on each voxel. A voxel acts as a secondary source which properties accord to the physics of X-ray scattering (Compton and Rayleigh). The second step of the ray-tracing is then done from each voxel of the object in the direction of each pixel of the detector, taking into account the attenuation along the scattering path. To simulate a 3D complex object, the first problem consists in realizing an automatic 3D sampling of the object. This is done by using an octree-based method optimized for deterministic scattering computation. The basic octree method consists in dividing recursively the volume of the object in decreasing-size voxels until each of them is completely included under the surface of the sample. The object volume is then always under evaluated. This is a problem because the scattering phenomenon strongly depends on the real volume of the object. The second problem is that artefacts due to sampling effects can occur in synthesis images. These two particular aspects are taken into account in our simulation code and an optimized octree-based method has been specially developed for this application. To respond to the first problem, our 3D sampling algorithm may accept voxels on the surface of the sample under conditions defined by the user. The second problem is treated in generating a random sampling instead of a regular one. The algorithm developed for 3D sampling is easily configurable, fast (about a few seconds maximum), robust and can be applied to all object shapes (thin, massive). The sampling time depends on the number of

  11. Electromagnetic Scattering Characteristics of Fractal Rough Coated Objects in the Terahertz Range

    Directory of Open Access Journals (Sweden)

    Zhao Hua

    2018-02-01

    Full Text Available Based on the physical optics method, the scattering characteristics of fractal rough surface coated objects are studied in the terahertz (THz range herein. A blunt model based on fractal rough surfaces is built. The surface current is calculated according to the Fresnel reflection coefficient, and the Radar Cross Section (RCS of the rough coated target is obtained. The RCS of rough and smooth surface targets are compared. Numerical results for a rough coated blunt cone model are provided, and discussed from the perspective of different frequencies and coating thickness values. The results show that the surface roughness of the target has a significant effect on scattering in the terahertz range.

  12. PSR B0329+54: Statistics of Substructure Discovered within the Scattering Disk on RadioAstron Baselines of up to 235,000 km

    Science.gov (United States)

    Gwinn, C. R.; Popov, M. V.; Bartel, N.; Andrianov, A. S.; Johnson, M. D.; Joshi, B. C.; Kardashev, N. S.; Karuppusamy, R.; Kovalev, Y. Y.; Kramer, M.; Rudnitskii, A. G.; Safutdinov, E. R.; Shishov, V. I.; Smirnova, T. V.; Soglasnov, V. A.; Steinmassl, S. F.; Zensus, J. A.; Zhuravlev, V. I.

    2016-05-01

    We discovered fine-scale structure within the scattering disk of PSR B0329+54 in observations with the RadioAstron ground-space radio interferometer. Here we describe this phenomenon, characterize it with averages and correlation functions, and interpret it as the result of decorrelation of the impulse-response function of interstellar scattering between the widely separated antennas. This instrument included the 10 m Space Radio Telescope, the 110 m Green Bank Telescope, the 14 × 25 m Westerbork Synthesis Radio Telescope, and the 64 m Kalyazin Radio Telescope. The observations were performed at 324 MHz on baselines of up to 235,000 km in 2012 November and 2014 January. In the delay domain, on long baselines the interferometric visibility consists of many discrete spikes within a limited range of delays. On short baselines it consists of a sharp spike surrounded by lower spikes. The average envelope of correlations of the visibility function shows two exponential scales, with characteristic delays of {τ }1=4.1+/- 0.3 μ {{s}} and {τ }2=23+/- 3 μ {{s}}, indicating the presence of two scales of scattering in the interstellar medium. These two scales are present in the pulse-broadening function. The longer scale contains 0.38 times the scattered power of the shorter one. We suggest that the longer tail arises from highly scattered paths, possibly from anisotropic scattering or from substructure at large angles.

  13. A POSSIBLE DIVOT IN THE SIZE DISTRIBUTION OF THE KUIPER BELT'S SCATTERING OBJECTS

    Energy Technology Data Exchange (ETDEWEB)

    Shankman, C.; Gladman, B. J. [Department of Physics and Astronomy, University of British Columbia, 6224 Agriculture Road, Vancouver, BC V6T 1Z1 (Canada); Kaib, N. [Department of Physics and Astronomy, Queens University (Canada); Kavelaars, J. J. [National Research Council of Canada, Victoria, BC V9E 2E7 (Canada); Petit, J. M. [Institut UTINAM, CNRS-Universite de Franche-Comte, Besancon (France)

    2013-02-10

    Via joint analysis of a calibrated telescopic survey, which found scattering Kuiper Belt objects, and models of their expected orbital distribution, we explore the scattering-object (SO) size distribution. Although for D > 100 km the number of objects quickly rise as diameters decrease, we find a relative lack of smaller objects, ruling out a single power law at greater than 99% confidence. After studying traditional ''knees'' in the size distribution, we explore other formulations and find that, surprisingly, our analysis is consistent with a very sudden decrease (a divot) in the number distribution as diameters decrease below 100 km, which then rises again as a power law. Motivated by other dynamically hot populations and the Centaurs, we argue for a divot size distribution where the number of smaller objects rises again as expected via collisional equilibrium. Extrapolation yields enough kilometer-scale SOs to supply the nearby Jupiter-family comets. Our interpretation is that this divot feature is a preserved relic of the size distribution made by planetesimal formation, now ''frozen in'' to portions of the Kuiper Belt sharing a ''hot'' orbital inclination distribution, explaining several puzzles in Kuiper Belt science. Additionally, we show that to match today's SO inclination distribution, the supply source that was scattered outward must have already been vertically heated to the of order 10 Degree-Sign .

  14. A Scalable Parallel PWTD-Accelerated SIE Solver for Analyzing Transient Scattering from Electrically Large Objects

    KAUST Repository

    Liu, Yang

    2015-12-17

    A scalable parallel plane-wave time-domain (PWTD) algorithm for efficient and accurate analysis of transient scattering from electrically large objects is presented. The algorithm produces scalable communication patterns on very large numbers of processors by leveraging two mechanisms: (i) a hierarchical parallelization strategy to evenly distribute the computation and memory loads at all levels of the PWTD tree among processors, and (ii) a novel asynchronous communication scheme to reduce the cost and memory requirement of the communications between the processors. The efficiency and accuracy of the algorithm are demonstrated through its applications to the analysis of transient scattering from a perfect electrically conducting (PEC) sphere with a diameter of 70 wavelengths and a PEC square plate with a dimension of 160 wavelengths. Furthermore, the proposed algorithm is used to analyze transient fields scattered from realistic airplane and helicopter models under high frequency excitation.

  15. Beamstop-based low-background ptychography to image weakly scattering objects

    Energy Technology Data Exchange (ETDEWEB)

    Reinhardt, Juliane, E-mail: juliane.reinhardt@desy.de [Deutsches Elektronen-Synchrotron DESY, D-22607 Hamburg (Germany); Hoppe, Robert [Institute of Structural Physics, Technische Universität Dresden, D-01062 Dresden (Germany); Hofmann, Georg [Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, D-76131 Karlsruhe (Germany); Damsgaard, Christian D. [Center for Electron Nanoscopy and Department of Physics, Technical University of Denmark, DK-2800 Lyngby (Denmark); Patommel, Jens; Baumbach, Christoph [Institute of Structural Physics, Technische Universität Dresden, D-01062 Dresden (Germany); Baier, Sina; Rochet, Amélie; Grunwaldt, Jan-Dierk [Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, D-76131 Karlsruhe (Germany); Falkenberg, Gerald [Deutsches Elektronen-Synchrotron DESY, D-22607 Hamburg (Germany); Schroer, Christian G. [Deutsches Elektronen-Synchrotron DESY, D-22607 Hamburg (Germany); Department Physik, Universität Hamburg, Luruper Chaussee 149, D-22761 Hamburg (Germany)

    2017-02-15

    In recent years, X-ray ptychography has been established as a valuable tool for high-resolution imaging. Nevertheless, the spatial resolution and sensitivity in coherent diffraction imaging are limited by the signal that is detected over noise and over background scattering. Especially, coherent imaging of weakly scattering specimens suffers from incoherent background that is generated by the interaction of the central beam with matter along its propagation path in particular close to and inside of the detector. Common countermeasures entail evacuated flight tubes or detector-side beamstops, which improve the experimental setup in terms of background reduction or better coverage of high dynamic range in the diffraction patterns. Here, we discuss an alternative approach: we combine two ptychographic scans with and without beamstop and reconstruct them simultaneously taking advantage of the complementary information contained in the two scans. We experimentally demonstrate the potential of this scheme for hard X-ray ptychography by imaging a weakly scattering object composed of catalytic nanoparticles and provide the analysis of the signal-to-background ratio in the diffraction patterns. - Highlights: • An opaque beamstop far-upstream of the detector reduces background scattering. • Increased signal-to-background ratio in the diffraction patterns. • Simultaneous ptychographic reconstruction of two data sets with and without beamstop. • Result shows high spatial resolution of 13 nm of a weakly scattering catalyst sample. • High sensitivity to less than 10{sup 5} atoms.

  16. On Shocks Driven by High-mass Planets in Radiatively Inefficient Disks. III. Observational Signatures in Thermal Emission and Scattered Light

    Science.gov (United States)

    Hord, Blake; Lyra, Wladimir; Flock, Mario; Turner, Neal J.; Mac Low, Mordecai-Mark

    2017-11-01

    Recent observations of the protoplanetary disk around the Herbig Be star HD 100546 show two bright features in infrared (H and {L}{\\prime } bands) at about 50 au,with one so far unexplained. We explore the observational signatures of a high-mass planet causing shock heating in order to determine if it could be the source of the unexplained infrared feature in HD 100546. More fundamentally, we identify and characterize planetary shocks as an extra, hitherto ignored, source of luminosity in transition disks. The RADMC-3D code is used to perform dust radiative transfer calculations on the hydrodynamical disk models, including volumetric heating. A stronger shock heating rate by a factor of 20 would be necessary to qualitatively reproduce the morphology of the second infrared source. Instead, we find that the outer edge of the gap carved by the planet heats up by about 50% relative to the initial reference temperature, which leads to an increase in the scale height. The bulge is illuminated by the central star, producing a lopsided feature in scattered light, as the outer gap edge shows an asymmetry in density and temperature attributable to a secondary spiral arm launched not from the Lindblad resonances but from the 2:1 resonance. We conclude that high-mass planets lead to shocks in disks that may be directly observed, particularly at wavelengths of 10 μm or longer, but that they are more likely to reveal their presence in scattered light by puffing up their outer gap edges and exciting multiple spiral arms.

  17. MIGRATION TRAPS IN DISKS AROUND SUPERMASSIVE BLACK HOLES

    International Nuclear Information System (INIS)

    Bellovary, Jillian M.; Low, Mordecai-Mark Mac; McKernan, Barry; Ford, K. E. Saavik

    2016-01-01

    Accretion disks around supermassive black holes (SMBHs) in active galactic nuclei (AGNs) contain stars, stellar mass black holes, and other stellar remnants, which perturb the disk gas gravitationally. The resulting density perturbations exert torques on the embedded masses causing them to migrate through the disk in a manner analogous to planets in protoplanetary disks. We determine the strength and direction of these torques using an empirical analytic description dependent on local disk gradients, applied to two different analytic, steady-state disk models of SMBH accretion disks. We find that there are radii in such disks where the gas torque changes sign, trapping migrating objects. Our analysis shows that major migration traps generally occur where the disk surface density gradient changes sign from positive to negative, around 20–300R g , where R g  = 2GM/c 2 is the Schwarzschild radius. At these traps, massive objects in the AGN disk can accumulate, collide, scatter, and accrete. Intermediate mass black hole formation is likely in these disk locations, which may lead to preferential gap and cavity creation at these radii. Our model thus has significant implications for SMBH growth as well as gravitational wave source populations

  18. MIGRATION TRAPS IN DISKS AROUND SUPERMASSIVE BLACK HOLES

    Energy Technology Data Exchange (ETDEWEB)

    Bellovary, Jillian M.; Low, Mordecai-Mark Mac; McKernan, Barry; Ford, K. E. Saavik [Department of Astrophysics, American Museum of Natural History, Central Park West at 79th Street, NY 10024 (United States)

    2016-03-10

    Accretion disks around supermassive black holes (SMBHs) in active galactic nuclei (AGNs) contain stars, stellar mass black holes, and other stellar remnants, which perturb the disk gas gravitationally. The resulting density perturbations exert torques on the embedded masses causing them to migrate through the disk in a manner analogous to planets in protoplanetary disks. We determine the strength and direction of these torques using an empirical analytic description dependent on local disk gradients, applied to two different analytic, steady-state disk models of SMBH accretion disks. We find that there are radii in such disks where the gas torque changes sign, trapping migrating objects. Our analysis shows that major migration traps generally occur where the disk surface density gradient changes sign from positive to negative, around 20–300R{sub g}, where R{sub g} = 2GM/c{sup 2} is the Schwarzschild radius. At these traps, massive objects in the AGN disk can accumulate, collide, scatter, and accrete. Intermediate mass black hole formation is likely in these disk locations, which may lead to preferential gap and cavity creation at these radii. Our model thus has significant implications for SMBH growth as well as gravitational wave source populations.

  19. Three-dimensional imaging of flat natural and cultural heritage objects by a Compton scattering modality

    Science.gov (United States)

    Guerrero Prado, Patricio; Nguyen, Mai K.; Dumas, Laurent; Cohen, Serge X.

    2017-01-01

    Characterization and interpretation of flat ancient material objects, such as those found in archaeology, paleoenvironments, paleontology, and cultural heritage, have remained a challenging task to perform by means of conventional x-ray tomography methods due to their anisotropic morphology and flattened geometry. To overcome the limitations of the mentioned methodologies for such samples, an imaging modality based on Compton scattering is proposed in this work. Classical x-ray tomography treats Compton scattering data as noise in the image formation process, while in Compton scattering tomography the conditions are set such that Compton data become the principal image contrasting agent. Under these conditions, we are able, first, to avoid relative rotations between the sample and the imaging setup, and second, to obtain three-dimensional data even when the object is supported by a dense material by exploiting backscattered photons. Mathematically this problem is addressed by means of a conical Radon transform and its inversion. The image formation process and object reconstruction model are presented. The feasibility of this methodology is supported by numerical simulations.

  20. FastScatTM: An Object-Oriented Program for Fast Scattering Computation

    Directory of Open Access Journals (Sweden)

    Lisa Hamilton

    1993-01-01

    Full Text Available FastScat is a state-of-the-art program for computing electromagnetic scattering and radiation. Its purpose is to support the study of recent algorithmic advancements, such as the fast multipole method, that promise speed-ups of several orders of magnitude over conventional algorithms. The complexity of these algorithms and their associated data structures led us to adopt an object-oriented methodology for FastScat. We discuss the program's design and several lessons learned from its C++ implementation including the appropriate level for object-orientedness in numeric software, maintainability benefits, interfacing to Fortran libraries such as LAPACK, and performance issues.

  1. Dark-field hyperlens: Super-resolution imaging of weakly scattering objects

    DEFF Research Database (Denmark)

    Repän, Taavi; Lavrinenko, Andrei; Zhukovsky, Sergei

    2015-01-01

    : We propose a device for subwavelength optical imaging based on a metal-dielectric multilayer hyperlens designed in such a way that only large-wavevector (evanescent) waves are transmitted while all propagating (small-wavevector) waves from the object area are blocked by the hyperlens. We...... numerically demonstrate that as the result of such filtering, the image plane only contains scattered light from subwavelength features of the objects and is completely free from background illumination. Similar in spirit to conventional dark-field microscopy, the proposed dark-field hyperlens is shown...

  2. Computation of Electromagnetic Fields Scattered From Dielectric Objects of Uncertain Shapes Using MLMC Center for Uncertainty

    KAUST Repository

    Litvinenko, Alexander

    2015-01-05

    Simulators capable of computing scattered fields from objects of uncertain shapes are highly useful in electromagnetics and photonics, where device designs are typically subject to fabrication tolerances. Knowledge of statistical variations in scattered fields is useful in ensuring error-free functioning of devices. Oftentimes such simulators use a Monte Carlo (MC) scheme to sample the random domain, where the variables parameterize the uncertainties in the geometry. At each sample, which corresponds to a realization of the geometry, a deterministic electromagnetic solver is executed to compute the scattered fields. However, to obtain accurate statistics of the scattered fields, the number of MC samples has to be large. This significantly increases the total execution time. In this work, to address this challenge, the Multilevel MC (MLMC) scheme is used together with a (deterministic) surface integral equation solver. The MLMC achieves a higher efficiency by “balancing” the statistical errors due to sampling of the random domain and the numerical errors due to discretization of the geometry at each of these samples. Error balancing results in a smaller number of samples requiring coarser discretizations. Consequently, total execution time is significantly shortened.

  3. Computation of Electromagnetic Fields Scattered From Dielectric Objects of Uncertain Shapes Using MLMC

    KAUST Repository

    Litvinenko, Alexander

    2016-01-06

    Simulators capable of computing scattered fields from objects of uncertain shapes are highly useful in electromagnetics and photonics, where device designs are typically subject to fabrication tolerances. Knowledge of statistical variations in scattered fields is useful in ensuring error-free functioning of devices. Oftentimes such simulators use a Monte Carlo (MC) scheme to sample the random domain, where the variables parameterize the uncertainties in the geometry. At each sample, which corresponds to a realization of the geometry, a deterministic electromagnetic solver is executed to compute the scattered fields. However, to obtain accurate statistics of the scattered fields, the number of MC samples has to be large. This significantly increases the total execution time. In this work, to address this challenge, the Multilevel MC (MLMC [1]) scheme is used together with a (deterministic) surface integral equation solver. The MLMC achieves a higher efficiency by balancing the statistical errors due to sampling of the random domain and the numerical errors due to discretization of the geometry at each of these samples. Error balancing results in a smaller number of samples requiring coarser discretizations. Consequently, total execution time is significantly shortened.

  4. Computation of Electromagnetic Fields Scattered From Dielectric Objects of Uncertain Shapes Using MLMC

    KAUST Repository

    Litvinenko, Alexander

    2015-01-07

    Simulators capable of computing scattered fields from objects of uncertain shapes are highly useful in electromagnetics and photonics, where device designs are typically subject to fabrication tolerances. Knowledge of statistical variations in scattered fields is useful in ensuring error-free functioning of devices. Oftentimes such simulators use a Monte Carlo (MC) scheme to sample the random domain, where the variables parameterize the uncertainties in the geometry. At each sample, which corresponds to a realization of the geometry, a deterministic electromagnetic solver is executed to compute the scattered fields. However, to obtain accurate statistics of the scattered fields, the number of MC samples has to be large. This significantly increases the total execution time. In this work, to address this challenge, the Multilevel MC (MLMC [1]) scheme is used together with a (deterministic) surface integral equation solver. The MLMC achieves a higher efficiency by “balancing” the statistical errors due to sampling of the random domain and the numerical errors due to discretization of the geometry at each of these samples. Error balancing results in a smaller number of samples requiring coarser discretizations. Consequently, total execution time is significantly shortened.

  5. Spectroscopy of scattered light for the characterization of micro and nanoscale objects in biology and medicine.

    Science.gov (United States)

    Turzhitsky, Vladimir; Qiu, Le; Itzkan, Irving; Novikov, Andrei A; Kotelev, Mikhail S; Getmanskiy, Michael; Vinokurov, Vladimir A; Muradov, Alexander V; Perelman, Lev T

    2014-01-01

    The biomedical uses for the spectroscopy of scattered light by micro and nanoscale objects can broadly be classified into two areas. The first, often called light scattering spectroscopy (LSS), deals with light scattered by dielectric particles, such as cellular and sub-cellular organelles, and is employed to measure their size or other physical characteristics. Examples include the use of LSS to measure the size distributions of nuclei or mitochondria. The native contrast that is achieved with LSS can serve as a non-invasive diagnostic and scientific tool. The other area for the use of the spectroscopy of scattered light in biology and medicine involves using conducting metal nanoparticles to obtain either contrast or electric field enhancement through the effect of the surface plasmon resonance (SPR). Gold and silver metal nanoparticles are non-toxic, they do not photobleach, are relatively inexpensive, are wavelength-tunable, and can be labeled with antibodies. This makes them very promising candidates for spectrally encoded molecular imaging. Metal nanoparticles can also serve as electric field enhancers of Raman signals. Surface enhanced Raman spectroscopy (SERS) is a powerful method for detecting and identifying molecules down to single molecule concentrations. In this review, we will concentrate on the common physical principles, which allow one to understand these apparently different areas using similar physical and mathematical approaches. We will also describe the major advancements in each of these areas, as well as some of the exciting recent developments.

  6. Electromagnetic Scattering by a Morphologically Complex Object: Fundamental Concepts and Common Misconceptions

    Science.gov (United States)

    Mischenko, Michael I.; Travis, Larry D.; Cairns, Brian; Tishkovets, Victor P.; Dlugach, Janna M.; Rosenbush, Vera K.; Kiselev, Nikolai N.

    2011-01-01

    Following Keller(Proc Symp Appl Math 1962;13:227:46), we classify all theoretical treatments of electromagnetic scattering by a morphologically complex object into first- principle (or "honest" in Keller s terminology) and phenomenological (or "dishonest") categories. This helps us identify, analyze, and dispel several profound misconceptions widespread in the discipline of electromagnetic scattering by solitary particles and discrete random media. Our goal is not to call for a complete renunciation of phenomenological approaches but rather to encourage a critical and careful evaluation of their actual origin, virtues, and limitations. In other words, we do not intend to deter creative thinking in terms of phenomenological short-cuts, but we do want to raise awareness when we stray (often for practical reasons) from the fundamentals. The main results and conclusions are illustrated by numerically-exact data based on direct numerical solutions of the macroscopic Maxwell equations.

  7. Multiple scattering modeling pipeline for spectroscopy and photometry of airless Solar System objects

    Science.gov (United States)

    Penttilä, Antti; Väisänen, Timo; Markkanen, Johannes; Martikainen, Julia; Gritsevich, Maria; Muinonen, Karri

    2017-10-01

    We combine numerical tools to analyze the reflectance spectra of granular materials. Our motivation comes from the lack of tools when it comes to intimate mixing of materials and modeling space-weathering effects with nano- or micron-sized inclusions. The current practice is to apply a semi-physical models such as the Hapke models (e.g., Icarus 195, 2008). These are expressed in a closed form so that they are fast to apply. The problem is that the validity of the model is not guaranteed, and the derived properties related to particle scattering can be unrealistic (JQSRT 113, 2012).Our pipeline consists of individual scattering simulation codes and a main program that chains them together. The chain for analyzing a macroscopic target with space-weathered mineral would go as: (1) Scattering properties of small inclusions inside a host matrix are derived using exact Maxwell equation solvers. From the scattering properties, we use the so-called incoherent fields and Mueller matrices as input for the next step; (2) Scattering by a regolith grain is solved using a geometrical optics method with surface reflections, internal absorption, and internal diffuse scattering; (3) The radiative transfer simulation is executed inputting the regolith grains from the previous step as the scatterers in a macroscopic planar volume element.For the most realistic asteroid reflectance model, the chain would produce the properties of a planar surface element. Then, a shadowing simulation over the surface elements would be considered, and finally the asteroid phase function would be solved by integrating the bidirectional reflectance distribution function of the planar element over the object's realistic shape model.The tools in the proposed chain already exist, and practical task for us is to tie these together into an easy-to-use public pipeline. We plan to open the pipeline as a web-based open service a dedicated server, using Django application server and Python environment for the

  8. Oscillations of disks

    CERN Document Server

    Kato, Shoji

    2016-01-01

    This book presents the current state of research on disk oscillation theory, focusing on relativistic disks and tidally deformed disks. Since the launch of the Rossi X-ray Timing Explorer (RXTE) in 1996, many high-frequency quasiperiodic oscillations (HFQPOs) have been observed in X-ray binaries. Subsequently, similar quasi-periodic oscillations have been found in such relativistic objects as microquasars, ultra-luminous X-ray sources, and galactic nuclei. One of the most promising explanations of their origin is based on oscillations in relativistic disks, and a new field called discoseismology is currently developing. After reviewing observational aspects, the book presents the basic characteristics of disk oscillations, especially focusing on those in relativistic disks. Relativistic disks are essentially different from Newtonian disks in terms of several basic characteristics of their disk oscillations, including the radial distributions of epicyclic frequencies. In order to understand the basic processes...

  9. Analysis of Scattering by Inhomogeneous Dielectric Objects Using Higher-Order Hierarchical MoM

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Jørgensen, Erik; Meincke, Peter

    2003-01-01

    An efficient technique for the analysis of electromagnetic scattering by arbitrary shaped inhomogeneous dielectric objects is presented. The technique is based on a higher-order method of moments (MoM) solution of the volume integral equation. This higher-order MoM solution comprises recently...... that the condition number of the resulting MoM matrix is reduced by several orders of magnitude in comparison to existing higher-order hierarchical basis functions and, consequently, an iterative solver can be applied even for high expansion orders. Numerical results demonstrate excellent agreement...

  10. VIE-FG-FFT for Analyzing EM Scattering from Inhomogeneous Nonmagnetic Dielectric Objects

    Directory of Open Access Journals (Sweden)

    Shu-Wen Chen

    2014-01-01

    Full Text Available A new realization of the volume integral equation (VIE in combination with the fast Fourier transform (FFT is established by fitting Green’s function (FG onto the nodes of a uniform Cartesian grid for analyzing EM scattering from inhomogeneous nonmagnetic dielectric objects. The accuracy of the proposed method is the same as that of the P-FFT and higher than that of the AIM and the IE-FFT especially when increasing the grid spacing size. Besides, the preprocessing time of the proposed method is obviously less than that of the P-FFT for inhomogeneous nonmagnetic dielectric objects. Numerical examples are provided to demonstrate the accuracy and efficiency of the proposed method.

  11. Numerical computations of interior transmission eigenvalues for scattering objects with cavities

    International Nuclear Information System (INIS)

    Peters, Stefan; Kleefeld, Andreas

    2016-01-01

    In this article we extend the inside-outside duality for acoustic transmission eigenvalue problems by allowing scattering objects that may contain cavities. In this context we provide the functional analytical framework necessary to transfer the techniques that have been used in Kirsch and Lechleiter (2013 Inverse Problems, 29 104011) to derive the inside-outside duality. Additionally, extensive numerical results are presented to show that we are able to successfully detect interior transmission eigenvalues with the inside-outside duality approach for a variety of obstacles with and without cavities in three dimensions. In this context, we also discuss the advantages and disadvantages of the inside-outside duality approach from a numerical point of view. Furthermore we derive the integral equations necessary to extend the algorithm in Kleefeld (2013 Inverse Problems, 29 104012) to compute highly accurate interior transmission eigenvalues for scattering objects with cavities, which we will then use as reference values to examine the accuracy of the inside-outside duality algorithm. (paper)

  12. Blind source separation based on time-frequency morphological characteristics for rigid acoustic scattering by underwater objects

    Science.gov (United States)

    Yang, Yang; Li, Xiukun

    2016-06-01

    Separation of the components of rigid acoustic scattering by underwater objects is essential in obtaining the structural characteristics of such objects. To overcome the problem of rigid structures appearing to have the same spectral structure in the time domain, time-frequency Blind Source Separation (BSS) can be used in combination with image morphology to separate the rigid scattering components of different objects. Based on a highlight model, the separation of the rigid scattering structure of objects with time-frequency distribution is deduced. Using a morphological filter, different characteristics in a Wigner-Ville Distribution (WVD) observed for single auto term and cross terms can be simplified to remove any cross-term interference. By selecting time and frequency points of the auto terms signal, the accuracy of BSS can be improved. An experimental simulation has been used, with changes in the pulse width of the transmitted signal, the relative amplitude and the time delay parameter, in order to analyzing the feasibility of this new method. Simulation results show that the new method is not only able to separate rigid scattering components, but can also separate the components when elastic scattering and rigid scattering exist at the same time. Experimental results confirm that the new method can be used in separating the rigid scattering structure of underwater objects.

  13. The exact theory for scattering of waves by thick holes in a slab and other objects with non-separable geometries

    NARCIS (Netherlands)

    Hoenders, B. J.

    2011-01-01

    The theory for scattering of electromagnetic waves is developed for scattering objects for which the natural modes of the field inside the object do not couple one-to-one with those outside the scatterer. Key feature of the calculation of the scattered fields is the introduction of a new set of

  14. A calderón-preconditioned single source combined field integral equation for analyzing scattering from homogeneous penetrable objects

    KAUST Repository

    Valdé s, Felipe; Andriulli, Francesco P.; Bagci, Hakan; Michielssen, Eric

    2011-01-01

    A new regularized single source equation for analyzing scattering from homogeneous penetrable objects is presented. The proposed equation is a linear combination of a Calderón-preconditioned single source electric field integral equation and a

  15. High-Resolution Near-Infrared Polarimetry of a Circumstellar Disk around UX Tau A

    Science.gov (United States)

    Serabyn, G.; Grady, C. A.; Currie, T.

    2012-01-01

    We present H-band polarimetric imagery of UX Tau A taken with HiCIAO/AO188 on the Subaru Telescope. UX Tau A has been classified as a pre-transitional disk object, with a gap structure separating its inner and outer disks. Our imagery taken with the 0.15" (21 AU) radius coronagraphic mask has revealed a strongly polarized circumstellar disk surrounding UX Tau A which extends to 120 AU, at a spatial resolution of 0.1" (14 AU). It is inclined by 46 degrees plus or minus 2 degrees as the west side is nearest. Although SED modeling and sub-millimeter imagery suggested the presence of a gap in the disk, with the inner edge of the outer disk estimated to be located at 25 - 30 AU, we detect no evidence of a gap at the limit of our inner working angle (23AU) at the near-infrared wavelength. We attribute the observed strong polarization (up to 66 %) to light scattering by dust grains in the disk. However, neither polarization models of the circumstellar disk based on Rayleigh scattering nor Mie scattering approximations were consistent with the observed azimuthal profile of the polarization degrees of the disk. Instead, a geometric optics model of the disk with nonspherical grains with the radii of 30 micrometers is consistent with the observed profile. We suggest that the dust grains have experienced frequent collisional coagulations and have grown in the circumstellar disk of UX Tau A.

  16. [A study on the diagnostic value of tear film objective scatter index in dry eye].

    Science.gov (United States)

    Su, Y D; Liang, Q F; Wang, N L; Antoine, Labbè

    2017-09-11

    Objective: To study the sensitivity and specificity of tear film objective scatter index to the diagnosis dry eye disease (DED). Methods: A prospective case-controlled study. Fifty-three patients with DED and 32 healthy age- and sex-matched control subjects were included from July to October 2016. All subjects underwent the examinations sequentially as follows: evaluation of ocular surface disease symptoms using the Ocular Surface Disease Index, optical quality detection, lipid layer thickness, tear film breakup time and SchirmerⅠtest. With Optical Quality Analysis SystemⅡ, the values of modulation transfer function cut off, basic objective scatter index (OSI) and total OSI were measured. To eliminate the influence of other refractive media, the tear film OSI (TF-OSI) was calculated, and the difference in TF-OSI between two groups was analyzed with the independent-samples t test. Spearman's correlation analysis was used to detect the correlation of each parameter in the DED group. With the receiver operating characteristic curve and the area under the curve (AUC), the specificity and sensitivity of TF-OSI and other parameters were described to differentiate DED from normal eyes. Results: In the dry eye group, the value of modulation transfer function cut off (32.07±11.95) was significantly lower than the normal group (39.38±9.44, t=- 3.096, P= 0.003) , and the mean value and dispersion of TF-OSI (0.50±0.43, 0.52±0.81) were higher than the normal group (0.21±0.16, 0.12±0.01) ( t= 4.300, P= 0.000, t= 3.546, P= 0.001) . The mean value of TF-OSI had a positive correlation with lipid layer thickness ( r= 0.365, P= 0.007) and dispersion of TF-OSI ( r= 0.581, P= 0.000), and a negative correlation with MTF cut off ( r=- 0.368, P= 0.007). To the diagnostic value of DED, the mean value of TF-OSI had a sensitivity of 0.736, a specificity of 0.762, and the AUC was 0.764. The dispersion of TF-OSI had a sensitivity of 0.811 and a specificity of 0.810, and the AUC was 0

  17. Radio emission from quasars and BL Lac objects by coherent plasma oscillation and stimulated Compton scattering

    International Nuclear Information System (INIS)

    Colgate, S.A.; Petschek, A.G.

    1978-01-01

    The full radiation spectrum of quasars and BL Lac objects is interpreted as due to a dependent combination of a soft plasma oscillation source at 2ν/sub P/ and bremsstrahlung. Previous work of the plasma oscillation radiation is extended into the radio part of the spectrum and it is shown how the high brightness temperature observations of BL Lac objects [kT/sub b/ (100 MHz) approximate = 3 x 10 5 mc 2 ] are a reasonable consequence of a lower external plasma density and ejection as required for the observed lack of emission lines. Two extreme cases are considered, the one where the plasma oscillations are suddenly extinguished and only stimulated Compton scattering remains and a second case of a constant source of plasma oscillations but a graded surface density. The first case gives 1/100 of the required brightness temperature and the second gives 100 times too large a brightness temperature and also a x 10 too large a radius. It is believed reasonable to invoke a combination of both processes to explain the observed radio spectrum. This model circumvents the self-Compton x-ray flux difficulty of incoherent synchrotron emission

  18. DGTD Analysis of Electromagnetic Scattering from Penetrable Conductive Objects with IBC

    KAUST Repository

    Li, Ping

    2015-10-16

    To avoid straightforward volumetric discretization, a discontinuous Galerkin time-domain (DGTD) method integrated with the impedance boundary condition (IBC) is presented in this paper to analyze the scattering from objects with finite conductivity. Two situations are considered: i) the skin depth is smaller than the thickness of the conductive volume; ii) the skin depth is larger than the thickness of a thin conductive sheet. For the first situation, a surface impedance boundary condition (SIBC) is employed, wherein the surface impedance usually exhibits a complex relation with the frequency. To incorporate the SIBC into DGTD, the surface impedance is firstly approximated by rational functions in the Laplace domain using the fast relaxation vector-fitting (FRVF) technique. Via inverse Laplace transform, the time-domain DGTD matrix equations can be obtained conveniently in integral form with respect to time t. For the second situation, a transmission IBC (TIBC) is used to include the transparent effects of the fields. In the TIBC, the tangential magnetic field jump is related with the tangential electric field via the surface conductivity. In this work, a specifically designed DGTD algorithm with TIBC is developed to model the graphene up to the terahertz (THz) band. In order to incorporate the TIBC into DGTD without involving the time-domain convolution, an auxiliary surface polarization current governed by a first order differential equation is introduced over the graphene. For open-region scattering problems, the DGTD algorithm is further hybridized with the time-domain boundary integral (TDBI) method to rigorously truncate the computational domain. To demonstrate the accuracy and applicability of the proposed algorithm, several representative examples are provided.

  19. SOLAR SYSTEM ANALOGS AROUND IRAS-DISCOVERED DEBRIS DISKS

    International Nuclear Information System (INIS)

    Chen, Christine H.; Sheehan, Patrick; Watson, Dan M.; Manoj, P.; Najita, Joan R.

    2009-01-01

    We have rereduced Spitzer IRS spectra and reanalyzed the spectral energy distributions (SEDs) of three nearby debris disks: λ Boo, HD 139664, and HR 8799. We find that the thermal emission from these objects is well modeled using two single temperature black body components. For HR 8799 - with no silicate emission features despite a relatively hot inner dust component (T gr = 150 K) - we infer the presence of an asteroid belt interior to and a Kuiper Belt exterior to the recently discovered orbiting planets. For HD 139664, which has been imaged in scattered light, we infer the presence of strongly forward scattering grains, consistent with porous grains, if the cold, outer disk component generates both the observed scattered light and thermal emission. Finally, careful analysis of the λ Boo SED suggests that this system possesses a central clearing, indicating that selective accretion of solids onto the central star does not occur from a dusty disk.

  20. 2TB hard disk drive

    CERN Multimedia

    This particular object was used up until 2012 in the Data Centre. It slots into one of the Disk Server trays. Hard disks were invented in the 1950s. They started as large disks up to 20 inches in diameter holding just a few megabytes (link is external). They were originally called "fixed disks" or "Winchesters" (a code name used for a popular IBM product). They later became known as "hard disks" to distinguish them from "floppy disks (link is external)." Hard disks have a hard platter that holds the magnetic medium, as opposed to the flexible plastic film found in tapes and floppies.

  1. SCATTER

    International Nuclear Information System (INIS)

    Broome, J.

    1965-11-01

    The programme SCATTER is a KDF9 programme in the Egtran dialect of Fortran to generate normalized angular distributions for elastically scattered neutrons from data input as the coefficients of a Legendre polynomial series, or from differential cross-section data. Also, differential cross-section data may be analysed to produce Legendre polynomial coefficients. Output on cards punched in the format of the U.K. A. E. A. Nuclear Data Library is optional. (author)

  2. Time-domain single-source integral equations for analyzing scattering from homogeneous penetrable objects

    KAUST Repository

    Valdés, Felipe

    2013-03-01

    Single-source time-domain electric-and magnetic-field integral equations for analyzing scattering from homogeneous penetrable objects are presented. Their temporal discretization is effected by using shifted piecewise polynomial temporal basis functions and a collocation testing procedure, thus allowing for a marching-on-in-time (MOT) solution scheme. Unlike dual-source formulations, single-source equations involve space-time domain operator products, for which spatial discretization techniques developed for standalone operators do not apply. Here, the spatial discretization of the single-source time-domain integral equations is achieved by using the high-order divergence-conforming basis functions developed by Graglia alongside the high-order divergence-and quasi curl-conforming (DQCC) basis functions of Valdés The combination of these two sets allows for a well-conditioned mapping from div-to curl-conforming function spaces that fully respects the space-mapping properties of the space-time operators involved. Numerical results corroborate the fact that the proposed procedure guarantees accuracy and stability of the MOT scheme. © 2012 IEEE.

  3. THE OPTIMIZATION OF ELECTRODYNAMIC CONFIGURATION OBJECT WITH THE DESIRED CHARACTERISTICS OF SCATTERING.

    Directory of Open Access Journals (Sweden)

    A. P. Preobrazhensky

    2017-02-01

    Full Text Available This paper considers the problem of optimization of the characteristics of scattering of electromagnetic waves on periodic electrodynamic structure. The solution of the scattering problem is based on the method of integral equations, the optimization of the characteristics is based on the genetic algorithm. Recommendations on the parameters of the periodic structure under given angles are given.

  4. THE DYNAMICAL EVOLUTION OF LOW-MASS HYDROGEN-BURNING STARS, BROWN DWARFS, AND PLANETARY-MASS OBJECTS FORMED THROUGH DISK FRAGMENTATION

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yun; Kouwenhoven, M. B. N. [Department of Astronomy, School of Physics, Peking University, Yiheyuan Lu 5, Haidian Qu, Beijing 100871 (China); Stamatellos, D. [Jeremiah Horrocks Institute for Mathematics, Physics and Astronomy, University of Central Lancashire, Preston, PR1 2HE (United Kingdom); Goodwin, S. P., E-mail: yunli@pku.edu.cn [Department of Physics and Astronomy, The University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom)

    2015-06-01

    Theory and simulations suggest that it is possible to form low-mass hydrogen-burning stars, brown dwarfs (BDs), and planetary-mass objects (PMOs) via disk fragmentation. As disk fragmentation results in the formation of several bodies at comparable distances to the host star, their orbits are generally unstable. Here, we study the dynamical evolution of these objects. We set up the initial conditions based on the outcomes of the smoothed-particle hydrodynamics simulations of Stamatellos and Whitworth, and for comparison we also study the evolution of systems resulting from lower-mass fragmenting disks. We refer to these two sets of simulations as set 1 and set 2, respectively. At 10 Myr, approximately half of the host stars have one companion left, and approximately 22% (set 1) to 9.8% (set 2) of the host stars are single. Systems with multiple secondaries in relatively stable configurations are common (about 30% and 44%, respectively). The majority of the companions are ejected within 1 Myr with velocities mostly below 5 km s{sup −1}, with some runaway escapers with velocities over 30 km s{sup −1}. Roughly 6% (set 1) and 2% (set 2) of the companions pair up into very low-mass binary systems, resulting in respective binary fractions of 3.2% and 1.2%. The majority of these pairs escape as very low-mass binaries, while others remain bound to the host star in hierarchical configurations (often with retrograde inner orbits). Physical collisions with the host star (0.43 and 0.18 events per host star for set 1 and set 2, respectively) and between companions (0.08 and 0.04 events per host star for set 1 and set 2, respectively) are relatively common and their frequency increases with increasing disk mass. Our study predicts observable properties of very low-mass binaries, low-mass hierarchical systems, the BD desert, and free-floating BDs and PMOs in and near young stellar groupings, which can be used to distinguish between different formation scenarios of very low

  5. Electromagnetic scattering and emission by a fixed multi-particle object in local thermal equilibrium: General formalism.

    Science.gov (United States)

    Mishchenko, Michael I

    2017-10-01

    The majority of previous studies of the interaction of individual particles and multi-particle groups with electromagnetic field have focused on either elastic scattering in the presence of an external field or self-emission of electromagnetic radiation. In this paper we apply semi-classical fluctuational electrodynamics to address the ubiquitous scenario wherein a fixed particle or a fixed multi-particle group is exposed to an external quasi-polychromatic electromagnetic field as well as thermally emits its own electromagnetic radiation. We summarize the main relevant axioms of fluctuational electrodynamics, formulate in maximally rigorous mathematical terms the general scattering-emission problem for a fixed object, and derive such fundamental corollaries as the scattering-emission volume integral equation, the Lippmann-Schwinger equation for the dyadic transition operator, the multi-particle scattering-emission equations, and the far-field limit. We show that in the framework of fluctuational electrodynamics, the computation of the self-emitted component of the total field is completely separated from that of the elastically scattered field. The same is true of the computation of the emitted and elastically scattered components of quadratic/bilinear forms in the total electromagnetic field. These results pave the way to the practical computation of relevant optical observables.

  6. The Intermediate-mass Young Stellar Object 08576nr292: Discovery of A Disk-Jet System

    NARCIS (Netherlands)

    Ellerbroek, L.E.; Kaper, L.; Bik, A.; de Koter, A.; Horrobin, M.; Puga, E.; Sana, H.; Waters, L.B.F.M.

    2011-01-01

    We present observations of the embedded massive young stellar object (YSO) candidate 08576nr292, obtained with X-shooter and SINFONI on the ESO Very Large Telescope (VLT). The flux-calibrated, medium-resolution X-shooter spectrum (300–2500 nm) includes over 300 emission lines, but no (photospheric)

  7. The fate of scattered planets

    Energy Technology Data Exchange (ETDEWEB)

    Bromley, Benjamin C. [Department of Physics and Astronomy, University of Utah, 115 S 1400 E, Rm 201, Salt Lake City, UT 84112 (United States); Kenyon, Scott J., E-mail: bromley@physics.utah.edu, E-mail: skenyon@cfa.harvard.edu [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)

    2014-12-01

    As gas giant planets evolve, they may scatter other planets far from their original orbits to produce hot Jupiters or rogue planets that are not gravitationally bound to any star. Here, we consider planets cast out to large orbital distances on eccentric, bound orbits through a gaseous disk. With simple numerical models, we show that super-Earths can interact with the gas through dynamical friction to settle in the remote outer regions of a planetary system. Outcomes depend on planet mass, the initial scattered orbit, and the evolution of the time-dependent disk. Efficient orbital damping by dynamical friction requires planets at least as massive as the Earth. More massive, longer-lived disks damp eccentricities more efficiently than less massive, short-lived ones. Transition disks with an expanding inner cavity can circularize orbits at larger distances than disks that experience a global (homologous) decay in surface density. Thus, orbits of remote planets may reveal the evolutionary history of their primordial gas disks. A remote planet with an orbital distance ∼100 AU from the Sun is plausible and might explain correlations in the orbital parameters of several distant trans-Neptunian objects.

  8. Beamstop-based low-background ptychography to image weakly scattering objects

    DEFF Research Database (Denmark)

    Reinhardt, Juliane; Hoppe, Robert; Hofmann, Georg

    2017-01-01

    In recent years, X-ray ptychography has been established as a valuable tool for high-resolution imaging. Nevertheless, the spatial resolution and sensitivity in coherent diffraction imaging are limited by the signal that is detected over noise and over background scattering. Especially, coherent ...

  9. Numerical correction of anti-symmetric aberrations in single HRTEM images of weakly scattering 2D-objects

    International Nuclear Information System (INIS)

    Lehtinen, Ossi; Geiger, Dorin; Lee, Zhongbo; Whitwick, Michael Brian; Chen, Ming-Wei; Kis, Andras; Kaiser, Ute

    2015-01-01

    Here, we present a numerical post-processing method for removing the effect of anti-symmetric residual aberrations in high-resolution transmission electron microscopy (HRTEM) images of weakly scattering 2D-objects. The method is based on applying the same aberrations with the opposite phase to the Fourier transform of the recorded image intensity and subsequently inverting the Fourier transform. We present the theoretical justification of the method, and its verification based on simulated images in the case of low-order anti-symmetric aberrations. Ultimately the method is applied to experimental hardware aberration-corrected HRTEM images of single-layer graphene and MoSe 2 resulting in images with strongly reduced residual low-order aberrations, and consequently improved interpretability. Alternatively, this method can be used to estimate by trial and error the residual anti-symmetric aberrations in HRTEM images of weakly scattering objects

  10. Gamma radiation compton scattering effect from the Ukrytie Object on the radiation situation at the Chernobyl' NPP territory

    International Nuclear Information System (INIS)

    Alekseeva, E.A.; Volkovich, A.G.; Koba, G.I.; Liksonov, V.I.; Stepanov, V.E.; Tyurin, A.S.; Urutskoev, L.I.; Chesnokov, A.V.

    1989-01-01

    With the aim of determination of the angular distribution of the gamma-radiation (GR) exposure dose rate (EDR) around the Ukrytie Object (UO) are described the measurement results of GR EDR in July 1988 at the territory, adjoining to UO. The conclusion is made that the main contribution into EDR ensures GR, scattered as a result of the Compton effect on air molecules and that the contribution of the NPP territory is small. 10 figs.; 3 tabs

  11. Mapping of sound scattering objects in the northern part of the Barents Sea and their geological interpretation

    Science.gov (United States)

    Sokolov, S. Yu.; Moroz, E. A.; Abramova, A. S.; Zarayskaya, Yu. A.; Dobrolubova, K. O.

    2017-07-01

    On cruises 25 (2007) and 28 (2011) of the R/V Akademik Nikolai Strakhov in the northern part of the Barents Sea, the Geological Institute, Russian Academy of Sciences, conducted comprehensive research on the bottom relief and upper part of the sedimentary cover profile under the auspices of the International Polar Year program. One of the instrument components was the SeaBat 8111 shallow-water multibeam echo sounder, which can map the acoustic field similarly to a side scan sonar, which records the response both from the bottom and from the water column. In the operations area, intense sound scattering objects produced by the discharge of deep fluid flows are detected in the water column. The sound scattering objects and pockmarks in the bottom relief are related to anomalies in hydrocarbon gas concentrations in bottom sediments. The sound scattering objects are localized over Triassic sequences outcropping from the bottom. The most intense degassing processes manifest themselves near the contact of the Triassic sequences and Jurassic clay deposits, as well as over deep depressions in a field of Bouguer anomalies related to the basement of the Jurassic-Cretaceous rift system

  12. Scattered colorimetry and multivariate data processing as an objective tool for liquid mapping (Invited Paper)

    Science.gov (United States)

    Mignani, A. G.; Ciaccheri, L.; Smith, P. R.; Cimato, A.; Attilio, C.; Huertas, R.; Melgosa Latorre, Manuel; Bertho, A. C.; O'Rourke, B.; McMillan, N. D.

    2005-05-01

    Scattered colorimetry, i.e., multi-angle and multi-wavelength absorption spectroscopy performed in the visible spectral range, was used to map three kinds of liquids: extra virgin olive oils, frying oils, and detergents in water. By multivariate processing of the spectral data, the liquids could be classified according to their intrinisic characteristics: geographic area of extra virgin olive oils, degradation of frying oils, and surfactant types and mixtures in water.

  13. Transient analysis of scattering from ferromagnetic objects using Landau-Lifshitz-Gilbert and volume integral equations

    KAUST Repository

    Sayed, Sadeed Bin

    2016-11-02

    An explicit marching on-in-time scheme for analyzing transient electromagnetic wave interactions on ferromagnetic scatterers is described. The proposed method solves a coupled system of time domain magnetic field volume integral and Landau-Lifshitz-Gilbert (LLG) equations. The unknown fluxes and fields are discretized using full and half Schaubert-Wilton-Glisson functions in space and bandlimited temporal interpolation functions in time. The coupled system is cast in the form of an ordinary differential equation and integrated in time using a PE(CE)m type linear multistep method to obtain the unknown expansion coefficients. Numerical results demonstrating the stability and accuracy of the proposed scheme are presented.

  14. Transient analysis of scattering from ferromagnetic objects using Landau-Lifshitz-Gilbert and volume integral equations

    KAUST Repository

    Sayed, Sadeed Bin; Ulku, Huseyin Arda; Bagci, Hakan

    2016-01-01

    An explicit marching on-in-time scheme for analyzing transient electromagnetic wave interactions on ferromagnetic scatterers is described. The proposed method solves a coupled system of time domain magnetic field volume integral and Landau-Lifshitz-Gilbert (LLG) equations. The unknown fluxes and fields are discretized using full and half Schaubert-Wilton-Glisson functions in space and bandlimited temporal interpolation functions in time. The coupled system is cast in the form of an ordinary differential equation and integrated in time using a PE(CE)m type linear multistep method to obtain the unknown expansion coefficients. Numerical results demonstrating the stability and accuracy of the proposed scheme are presented.

  15. Brown dwarf disks with ALMA

    Energy Technology Data Exchange (ETDEWEB)

    Ricci, L.; Isella, A. [Department of Astronomy, California Institute of Technology, MC 249-17, Pasadena, CA 91125 (United States); Testi, L.; De Gregorio-Monsalvo, I. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Natta, A. [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy); Scholz, A., E-mail: lricci@astro.caltech.edu [School of Cosmic Physics, Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland)

    2014-08-10

    We present Atacama Large Millimeter/submillimeter Array continuum and spectral line data at 0.89 mm and 3.2 mm for three disks surrounding young brown dwarfs and very low mass stars in the Taurus star forming region. Dust thermal emission is detected and spatially resolved for all the three disks, while CO(J = 3-2) emission is seen in two disks. We analyze the continuum visibilities and constrain the disks' physical structure in dust. The results of our analysis show that the disks are relatively large; the smallest one has an outer radius of about 70 AU. The inferred disk radii, radial profiles of the dust surface density, and disk to central object mass ratios lie within the ranges found for disks around more massive young stars. We derive from our observations the wavelength dependence of the millimeter dust opacity. In all the three disks, data are consistent with the presence of grains with at least millimeter sizes, as also found for disks around young stars, and confirm that the early stages of the solid growth toward planetesimals occur also around very low-mass objects. We discuss the implications of our findings on models of solids evolution in protoplanetary disks, the main mechanisms proposed for the formation of brown dwarfs and very low-mass stars, as well as the potential of finding rocky and giant planets around very low-mass objects.

  16. Corrections for the effects of accidental coincidences, Compton scatter, and object size in positron emission mammography (PEM) imaging

    Science.gov (United States)

    Raylman, R. R.; Majewski, S.; Wojcik, R.; Weisenberger, A. G.; Kross, B.; Popov, V.

    2001-06-01

    Positron emission mammography (PEM) has begun to show promise as an effective method for the detection of breast lesions. Due to its utilization of tumor-avid radiopharmaceuticals labeled with positron-emitting radionuclides, this technique may be especially useful in imaging of women with radiodense or fibrocystic breasts. While the use of these radiotracers affords PEM unique capabilities, it also introduces some limitations. Specifically, acceptance of accidental and Compton-scattered coincidence events can decrease lesion detectability. The authors studied the effect of accidental coincidence events on PEM images produced by the presence of /sup 18/F-Fluorodeoxyglucose in the organs of a subject using an anthropomorphic phantom. A delayed-coincidence technique was tested as a method for correcting PEM images for the occurrence of accidental events. Also, a Compton scatter correction algorithm designed specifically for PEM was developed and tested using a compressed breast phantom. Finally, the effect of object size on image counts and a correction for this effect were explored. The imager used in this study consisted of two PEM detector heads mounted 20 cm apart on a Lorad biopsy apparatus. The results demonstrated that a majority of the accidental coincidence events (/spl sim/80%) detected by this system were produced by radiotracer uptake in the adipose and muscle tissue of the torso. The presence of accidental coincidence events was shown to reduce lesion detectability. Much of this effect was eliminated by correction of the images utilizing estimates of accidental-coincidence contamination acquired with delayed coincidence circuitry built into the PEM system. The Compton scatter fraction for this system was /spl sim/14%. Utilization of a new scatter correction algorithm reduced the scatter fraction to /spl sim/1.5%. Finally, reduction of count recovery due to object size was measured and a correction to the data applied. Application of correction techniques

  17. Grading nuclear, cortical and posterior subcapsular cataracts using an objective scatter index measured with a double-pass system.

    Science.gov (United States)

    Vilaseca, Meritxell; Romero, Maria José; Arjona, Montserrat; Luque, Sergio Oscar; Ondategui, Juan Carlos; Salvador, Antoni; Güell, José L; Artal, Pablo; Pujol, Jaume

    2012-09-01

    To evaluate objectively intraocular scattering in eyes with nuclear, cortical and posterior subcapsular cataracts by means of an objective scatter index (OSI) obtained from double-pass images. To compare the results with those obtained using clinical conventional procedures. In this prospective, observational, cross-sectional, non-consecutive case series study, 188 eyes with cataracts of 136 patients were analysed (123 eyes had nuclear, 41 eyes had cortical and 24 eyes had posterior subcapsular cataracts). The control group consisted of 117 eyes of 68 healthy patients. Patient examination included subjective refraction, best spectacle-corrected visual acuity (BSCVA), cataract grade using the lens opacities classification system III (LOCS III) and OSI. We found a decrease in the BSCVA and an increase in the OSI with increasing cataract grade. Statistically significant differences were observed when the OSI of eyes without cataracts and those with different LOCS III were compared. The comparison between the OSI and LOCS III reported good percentages of agreement regarding the number of eyes classified in equivalent levels: 72.4% (nuclear cataracts), 86.6% (cortical cataracts) and 84.3% (posterior subcapsular cataracts). A non-linear regression model was applied between OSI and BSCVA, which resulted in the following multiple correlation coefficients: r=0.878 (nuclear), r=0.843 (cortical) and r=0.844 (posterior subcapsular). The results of the study showed that OSI is a useful parameter for evaluating large amounts of intraocular scattering that can be used, in combination with other conventional procedures, as a valuable tool in clinical practice to grade cataracts objectively.

  18. NEAR-INFRARED SPECTROSCOPY OF LOW-MASS X-RAY BINARIES: ACCRETION DISK CONTAMINATION AND COMPACT OBJECT MASS DETERMINATION IN V404 Cyg AND Cen X-4

    International Nuclear Information System (INIS)

    Khargharia, Juthika; Froning, Cynthia S.; Robinson, Edward L.

    2010-01-01

    We present near-infrared (NIR) broadband (0.80-2.42 μm) spectroscopy of two low-mass X-ray binaries: V404 Cyg and Cen X-4. One important parameter required in the determination of the mass of the compact objects in these systems is the binary inclination. We can determine the inclination by modeling the ellipsoidal modulations of the Roche-lobe filling donor star, but the contamination of the donor star light from other components of the binary, particularly the accretion disk, must be taken into account. To this end, we determined the donor star contribution to the infrared flux by comparing the spectra of V404 Cyg and Cen X-4 to those of various field K-stars of known spectral type. For V404 Cyg, we determined that the donor star has a spectral type of K3 III. We determined the fractional donor contribution to the NIR flux in the H and K bands as 0.98 ± 0.05 and 0.97 ± 0.09, respectively. We remodeled the H-band light curve from Sanwal et al. after correcting for the donor star contribution to obtain a new value for the binary inclination. From this, we determined the mass of the black hole in V404 Cyg to be M BH = 9.0 +0.2 -0.6 M sun . We performed the same spectral analysis for Cen X-4 and found the spectral type of the donor star to be in the range K5-M1 V. The donor star contribution in Cen X-4 is 0.94 ± 0.14 in the H band while in the K band, the accretion disk can contribute up to 10% of the infrared flux. We remodeled the H-band light curve from Shahbaz et al., again correcting for the fractional contribution of the donor star to obtain the inclination. From this, we determined the mass of the neutron star as M NS = 1.5 +0.1 -0.4 M sun . However, the masses obtained for both systems should be viewed with some caution since contemporaneous light curve and spectral data are required to obtain definitive masses.

  19. Fast method to compute scattering by a buried object under a randomly rough surface: PILE combined with FB-SA.

    Science.gov (United States)

    Bourlier, Christophe; Kubické, Gildas; Déchamps, Nicolas

    2008-04-01

    A fast, exact numerical method based on the method of moments (MM) is developed to calculate the scattering from an object below a randomly rough surface. Déchamps et al. [J. Opt. Soc. Am. A23, 359 (2006)] have recently developed the PILE (propagation-inside-layer expansion) method for a stack of two one-dimensional rough interfaces separating homogeneous media. From the inversion of the impedance matrix by block (in which two impedance matrices of each interface and two coupling matrices are involved), this method allows one to calculate separately and exactly the multiple-scattering contributions inside the layer in which the inverses of the impedance matrices of each interface are involved. Our purpose here is to apply this method for an object below a rough surface. In addition, to invert a matrix of large size, the forward-backward spectral acceleration (FB-SA) approach of complexity O(N) (N is the number of unknowns on the interface) proposed by Chou and Johnson [Radio Sci.33, 1277 (1998)] is applied. The new method, PILE combined with FB-SA, is tested on perfectly conducting circular and elliptic cylinders located below a dielectric rough interface obeying a Gaussian process with Gaussian and exponential height autocorrelation functions.

  20. The Evolution of Spiral Disks

    Science.gov (United States)

    Bershady, Matthew A.; Andersen, David R.

    We report on aspects of an observational study to probe the mass assembly of large galaxy disks. In this contribution we focus on a new survey of integral-field Hα velocity-maps of nearby, face on disks. Preliminary results yield disk asymmetry amplitudes consistent with estimates based on the scatter in the local Tully-Fisher relation. We also show how the high quality of integral-field echelle spectroscopy enables determinations of kinematic inclinations to i ~20 °. This holds the promise that nearly-face-on galaxies can be included in the Tully-Fisher relation. Finally, we discuss the prospects for measuring dynamical asymmetries of distant galaxies.

  1. Detection of High-Z Objects using Multiple Scattering of Cosmic Ray Muons

    International Nuclear Information System (INIS)

    Hogan, Gary E.; Borozdin, Konstantin N.; Gomez, John; Morris, Christopher; Priedhorsky, William C.; Saunders, Alexander; Schultz, Larry J.; Teasdale, Margaret E.

    2004-01-01

    Detection of high-Z material hidden inside a large volume of ordinary cargo is an important and timely task given the danger associated with illegal transport of uranium and heavier elements. Existing radiography techniques are inefficient for shielded material, often expensive and involve radiation hazards, real and perceived. We recently demonstrated that radiographs can be formed using cosmic-ray muons. Here, we show that compact, high-Z objects can be detected and located in 3 dimensions with muon radiography. The natural flux of cosmic-ray muons, approximately 10,000 m-2min-1, can generate a reliable detection signal in a fraction of a minute, using large-area muon detectors as used in particle and nuclear physics

  2. Giant Planets Can Act as Stabilizing Agents on Debris Disks

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz-Gutiérrez, M. A.; Pichardo, B.; Peimbert, A., E-mail: mmunoz.astro@gmail.com [Instituto de Astronomía, Universidad Nacional Autónoma de México, Apdo. postal 70-264 Ciudad Universitaria, México (Mexico)

    2017-07-01

    We have explored the evolution of a cold debris disk under the gravitational influence of dwarf-planet-sized objects (DPs), both in the presence and absence of an interior giant planet. Through detailed long-term numerical simulations, we demonstrate that when the giant planet is not present, DPs can stir the eccentricities and inclinations of disk particles, in linear proportion to the total mass of the DPs; on the other hand, when the giant planet is included in the simulations, the stirring is approximately proportional to the mass squared. This creates two regimes: below a disk mass threshold (defined by the total mass of DPs), the giant planet acts as a stabilizing agent of the orbits of cometary nuclei, diminishing the effect of the scatterers; above the threshold, the giant contributes to the dispersion of the particles.

  3. Objectivity

    CERN Document Server

    Daston, Lorraine

    2010-01-01

    Objectivity has a history, and it is full of surprises. In Objectivity, Lorraine Daston and Peter Galison chart the emergence of objectivity in the mid-nineteenth-century sciences--and show how the concept differs from its alternatives, truth-to-nature and trained judgment. This is a story of lofty epistemic ideals fused with workaday practices in the making of scientific images. From the eighteenth through the early twenty-first centuries, the images that reveal the deepest commitments of the empirical sciences--from anatomy to crystallography--are those featured in scientific atlases, the compendia that teach practitioners what is worth looking at and how to look at it. Galison and Daston use atlas images to uncover a hidden history of scientific objectivity and its rivals. Whether an atlas maker idealizes an image to capture the essentials in the name of truth-to-nature or refuses to erase even the most incidental detail in the name of objectivity or highlights patterns in the name of trained judgment is a...

  4. A calderón-preconditioned single source combined field integral equation for analyzing scattering from homogeneous penetrable objects

    KAUST Repository

    Valdés, Felipe

    2011-06-01

    A new regularized single source equation for analyzing scattering from homogeneous penetrable objects is presented. The proposed equation is a linear combination of a Calderón-preconditioned single source electric field integral equation and a single source magnetic field integral equation. The equation is immune to low-frequency and dense-mesh breakdown, and free from spurious resonances. Unlike dual source formulations, this equation involves operator products that cannot be discretized using standard procedures for discretizing standalone electric, magnetic, and combined field operators. Instead, the single source equation proposed here is discretized using a recently developed technique that achieves a well-conditioned mapping from div- to curl-conforming function spaces, thereby fully respecting the space mapping properties of the operators involved, and guaranteeing accuracy and stability. Numerical results show that the proposed equation and discretization technique give rise to rapidly convergent solutions. They also validate the equation\\'s resonant free character. © 2006 IEEE.

  5. Multiple spiral patterns in the transitional disk of HD 100546

    Science.gov (United States)

    Boccaletti, A.; Pantin, E.; Lagrange, A.-M.; Augereau, J.-C.; Meheut, H.; Quanz, S. P.

    2013-12-01

    Context. Protoplanetary disks around young stars harbor many structures related to planetary formation. Of particular interest, spiral patterns were discovered among several of these disks and are expected to be the sign of gravitational instabilities leading to giant planet formation or gravitational perturbations caused by already existing planets. In this context, the star HD 100546 presents some specific characteristics with a complex gaseous and dusty disk that includes spirals, as well as a possible planet in formation. Aims: The objective of this study is to analyze high-contrast and high angular resolution images of this emblematic system to shed light on critical steps in planet formation. Methods: We retrieved archival images obtained at Gemini in the near IR (Ks band) with the instrument NICI and processed the data using an advanced high contrast imaging technique that takes advantage of the angular differential imaging. Results: These new images reveal the spiral pattern previously identified with Hubble Space Telescope (HST) with an unprecedented resolution, while the large-scale structure of the disk is mostly cancelled by the data processing. The single pattern to the southeast in HST images is now resolved into a multi-armed spiral pattern. Using two models of a gravitational perturber orbiting in a gaseous disk, we attempted to constrain the characteristics of this perturber, assuming that each spiral is independent, and drew qualitative conclusions. The non-detection of the northeast spiral pattern observed in HST allows putting a lower limit on the intensity ratio between the two sides of the disk, which if interpreted as forward scattering, yields a larger anisotropic scattering than is derived in the visible. Also, we find that the spirals are likely to be spatially resolved with a thickness of about 5-10 AU. Finally, we did not detect the candidate planet in formation recently discovered in the Lp band, with a mass upper limit of 16-18 MJ

  6. Circumstellar and circumplanetary disks

    Science.gov (United States)

    Chiang, Eugene

    2000-11-01

    This thesis studies disks in three astrophysical contexts: (1)protoplanetary disks; (2)the Edgeworth-Kuiper Belt; and (3)planetary rings. We derive hydrostatic, radiative equilibrium models of passive protoplanetary disks surrounding T Tauri and Herbig Ae/Be stars. Each disk is encased by an optically thin layer of superheated dust grains. This layer is responsible for up to ~70% of the disk luminosity at wavelengths between ~5 and 60 μm. The heated disk flares and absorbs more stellar radiation at a given stellocentric distance than a flat disk would. Spectral energy distributions are computed and found to compare favorably with the observed flattish infrared excesses of several young stellar objects. Spectral features from dust grains in the superheated layer appear in emission if the disk is viewed nearly face-on. We present the results of a pencil-beam survey of the Kuiper Belt using the Keck 10-m telescope. Two new objects are discovered. Data from all surveys are pooled to construct the luminosity function from mR = 20 to 27. The cumulative number of objects per square degree, Σ(surface area but the largest bodies contain most of the mass. To order-of-magnitude, 0.2 M⊕ and 1 × 1010 comet progenitors lie between 30 and 50 AU. The classical Kuiper Belt appears truncated at a distance of 50 AU. We propose that rigid precession of narrow eccentric planetary rings surrounding Uranus and Saturn is maintained by a balance of forces due to ring self- gravity, planetary oblateness, and interparticle collisions. Collisional impulses play an especially dramatic role near ring edges. Pressure-induced accelerations are maximal near edges because there (1)velocity dispersions are enhanced by resonant satellite perturbations, and (2)the surface density declines steeply. Remarkably, collisional forces felt by material in the last ~100 m of a ~10 km wide ring can increase equilibrium masses up to a factor of ~100. New ring surface densities are derived which accord with

  7. Thermal Comptonization in standard accretion disks

    International Nuclear Information System (INIS)

    Maraschi, L.; Molendi, S.

    1990-01-01

    Using the theory of geometrically thin accretion disks (where the effects of viscosity are parametrized in terms of the total pressure, viscosity parameter, α) equations are presented for the innermost region of the disk (where the pressure is due to radiation, and the main source of opacity is Thompson scattering). It is important to stress that the four equations can be solved without making use of an equation for the temperature. This is not true for the other regions of the disk. An equation given is used to determine the temperature, assuming that the disk is homogeneous and isothermal in the vertical direction. (author)

  8. Bistatic scattering from a three-dimensional object above a two-dimensional randomly rough surface modeled with the parallel FDTD approach.

    Science.gov (United States)

    Guo, L-X; Li, J; Zeng, H

    2009-11-01

    We present an investigation of the electromagnetic scattering from a three-dimensional (3-D) object above a two-dimensional (2-D) randomly rough surface. A Message Passing Interface-based parallel finite-difference time-domain (FDTD) approach is used, and the uniaxial perfectly matched layer (UPML) medium is adopted for truncation of the FDTD lattices, in which the finite-difference equations can be used for the total computation domain by properly choosing the uniaxial parameters. This makes the parallel FDTD algorithm easier to implement. The parallel performance with different number of processors is illustrated for one rough surface realization and shows that the computation time of our parallel FDTD algorithm is dramatically reduced relative to a single-processor implementation. Finally, the composite scattering coefficients versus scattered and azimuthal angle are presented and analyzed for different conditions, including the surface roughness, the dielectric constants, the polarization, and the size of the 3-D object.

  9. Development of Powered Disk Type Sugar Cane Stubble Saver

    Directory of Open Access Journals (Sweden)

    Radite P.A.S.

    2009-04-01

    Full Text Available The objective of this research was to design, fabricate and test a prototype of sugar cane stubble saver based on powered disk mechanism. In this research, a heavy duty disk plow or disk harrow was used as a rotating knife to cut the sugarcane stubble. The parabolic disk was chosen because it is proven reliable as soil working tools and it is available in the market as spare part of disk plow or disk harrow unit. The prototype was mounted on the four wheel tractor’s three point hitch, and powered by PTO of the tractor. Two kinds of disks were used in these experiments, those were disk with regular edge or plain disk and disk with scalloped edge or scalloped disk. Both disks had diameter of 28 inch. Results of field test showed that powered disk mechanism could satisfy cut sugar cane’s stubble. However, scalloped disk type gave smoother stubble cuts compared to that of plain disk. Plain disk type gave broken stubble cut. Higher rotation (1000 rpm resulted better cuts as compared to lower rotation (500 rpm both either on plain disk and scalloped disk. The developed prototype could work below the soil surface at depth of 5 to 10 cm. With tilt angle setting 20O and disk angle 45O the width of cut was about 25 cm.

  10. The difference in backscatter factors of diagnostic X-rays by the difference in the scattering medium and in the objective dose

    International Nuclear Information System (INIS)

    Kato, Hideki; Sakai, Keita; Uchiyama, Mizuki; Suzuki, Kentaro

    2016-01-01

    The diagnostic reference levels (DRLs) of the general X-ray radiography are defined by the absorbed dose of air at the entrance surface with backscattered radiation from a scattering medium. Generally, the entrance surface dose of the general X-ray radiography is calculated from measured air kerma of primary X-ray multiplied by a backscatter factor (BSF). However, the BSF data employed at present used water for scattering medium, and was calculated based on the water-absorbed dose by incident primary photons and backscattered photons from the scattering medium. In the calculation of air dose at the entrance surface defined in DRLs, there are no theoretical consistencies for using BSF based on water dose, and this may be a cause of calculation error. In this paper, we verified the difference in BSF by the difference in the scattering medium and by the difference in the objective dose by means of the Monte Carlo simulation. In this calculation, the scattering medium was set as water and the soft-tissue, and the objective dose was set as air dose, water dose, soft-tissue dose, and skin dose. The difference in BSF calculated by the respective combination was at most about 1.3% and was less than 1% in most cases. In conclusion, even if the entrance surface dose defined by DRLs of general X-ray radiography is calculated using BSF, which set both the scattering medium and the object substance of the absorbed dose as water, a so big error doesn't show. (author)

  11. Disk tides and accretion runaway

    Science.gov (United States)

    Ward, William R.; Hahn, Joseph M.

    1995-01-01

    It is suggested that tidal interaction of an accreting planetary embryo with the gaseous preplanetary disk may provide a mechanism to breach the so-called runaway limit during the formation of the giant planet cores. The disk tidal torque converts a would-be shepherding object into a 'predator,' which can continue to cannibalize the planetesimal disk. This is more likely to occur in the giant planet region than in the terrestrial zone, providing a natural cause for Jupiter to predate the inner planets and form within the O(10(exp 7) yr) lifetime of the nebula.

  12. A COMMON SOURCE OF ACCRETION DISK TILT

    International Nuclear Information System (INIS)

    Montgomery, M. M.; Martin, E. L.

    2010-01-01

    Many different system types retrogradely precess, and retrograde precession could be from a tidal torque by the secondary on a misaligned accretion disk. However, a source that causes and maintains disk tilt is unknown. In this work, we show that accretion disks can tilt due to a force called lift. Lift results from differing gas stream supersonic speeds over and under an accretion disk. Because lift acts at the disk's center of pressure, a torque is applied around a rotation axis passing through the disk's center of mass. The disk responds to lift by pitching around the disk's line of nodes. If the gas stream flow ebbs, then lift also ebbs and the disk attempts to return to its original orientation. To first approximation, lift does not depend on magnetic fields or radiation sources but does depend on the mass and the surface area of the disk. Also, for disk tilt to be initiated, a minimum mass transfer rate must be exceeded. For example, a 10 -11 M sun disk around a 0.8 M sun compact central object requires a mass transfer rate greater than ∼ 8 x 10 -11 M sun yr -1 , a value well below the known mass transfer rates in cataclysmic variable dwarf novae systems that retrogradely precess and exhibit negative superhumps in their light curves and a value well below mass transfer rates in protostellar-forming systems.

  13. ON THE TRANSITIONAL DISK CLASS: LINKING OBSERVATIONS OF T TAURI STARS AND PHYSICAL DISK MODELS

    International Nuclear Information System (INIS)

    Espaillat, C.; Andrews, S.; Qi, C.; Wilner, D.; Ingleby, L.; Calvet, N.; Hernández, J.; Furlan, E.; D'Alessio, P.; Muzerolle, J.

    2012-01-01

    Two decades ago 'transitional disks' (TDs) described spectral energy distributions (SEDs) of T Tauri stars with small near-IR excesses, but significant mid- and far-IR excesses. Many inferred this indicated dust-free holes in disks possibly cleared by planets. Recently, this term has been applied disparately to objects whose Spitzer SEDs diverge from the expectations for a typical full disk (FD). Here, we use irradiated accretion disk models to fit the SEDs of 15 such disks in NGC 2068 and IC 348. One group has a 'dip' in infrared emission while the others' continuum emission decreases steadily at all wavelengths. We find that the former have an inner disk hole or gap at intermediate radii in the disk and we call these objects 'transitional disks' and 'pre-transitional disks' (PTDs), respectively. For the latter group, we can fit these SEDs with FD models and find that millimeter data are necessary to break the degeneracy between dust settling and disk mass. We suggest that the term 'transitional' only be applied to objects that display evidence for a radical change in the disk's radial structure. Using this definition, we find that TDs and PTDs tend to have lower mass accretion rates than FDs and that TDs have lower accretion rates than PTDs. These reduced accretion rates onto the star could be linked to forming planets. Future observations of TDs and PTDs will allow us to better quantify the signatures of planet formation in young disks.

  14. An efficient spatial spectral integral-equation method for EM scattering from finite objects in layered media

    NARCIS (Netherlands)

    Dilz, R.J.; van Beurden, M.C.

    2016-01-01

    We propose a mixed spatial spectral method aimed directly at aperiodic, finite scatterers in a layered medium. By using a Gabor frame to discretize the problem a straightforward and fast way to Fourier transform is available. The poles and branchcuts in the spectral-domain Green function can be

  15. Space-based Coronagraphic Imaging Polarimetry of the TW Hydrae Disk: Shedding New Light on Self-shadowing Effects

    Science.gov (United States)

    Poteet, Charles A.; Chen, Christine H.; Hines, Dean C.; Perrin, Marshall D.; Debes, John H.; Pueyo, Laurent; Schneider, Glenn; Mazoyer, Johan; Kolokolova, Ludmilla

    2018-06-01

    We present Hubble Space Telescope Near-Infrared Camera and Multi-Object Spectrometer coronagraphic imaging polarimetry of the TW Hydrae protoplanetary disk. These observations simultaneously measure the total and polarized intensity, allowing direct measurement of the polarization fraction across the disk. In accord with the self-shadowing hypothesis recently proposed by Debes et al., we find that the total and polarized intensity of the disk exhibits strong azimuthal asymmetries at projected distances consistent with the previously reported bright and dark ring-shaped structures (∼45–99 au). The sinusoidal-like variations possess a maximum brightness at position angles near ∼268°–300° and are up to ∼28% stronger in total intensity. Furthermore, significant radial and azimuthal variations are also detected in the polarization fraction of the disk. In particular, we find that regions of lower polarization fraction are associated with annuli of increased surface brightness, suggesting that the relative proportion of multiple-to-single scattering is greater along the ring and gap structures. Moreover, we find strong (∼20%) azimuthal variation in the polarization fraction along the shadowed region of the disk. Further investigation reveals that the azimuthal variation is not the result of disk flaring effects, but is instead from a decrease in the relative contribution of multiple-to-single scattering within the shadowed region. Employing a two-layer scattering surface, we hypothesize that the diminished contribution in multiple scattering may result from shadowing by an inclined inner disk, which prevents direct stellar light from reaching the optically thick underlying surface component.

  16. Corrections for the effects of accidental coincidences, Compton scatter, and object size in positron emission mammography (PEM) imaging

    Energy Technology Data Exchange (ETDEWEB)

    Raymond Raylman; Stanislaw Majewski; Randolph Wojcik; Andrew Weisenberger; Brian Kross; Vladimir Popov

    2001-06-01

    Positron emission mammography (PEM) has begun to show promise as an effective method for the detection of breast lesions. Due to its utilization of tumor-avid radiopharmaceuticals labeled with positron-emitting radionuclides, this technique may be especially useful in imaging of women with radiodense or fibrocystic breasts. While the use of these radiotracers affords PEM unique capabilities, it also introduces some limitations. Specifically, acceptance of accidental and Compton-scattered coincidence events can decrease lesion detectability. The authors studied the effect of accidental coincidence events on PEM images produced by the presence of 18F-Fluorodeoxyglucose in the organs of a subject using an anthropomorphic phantom. A delayed-coincidence technique was tested as a method for correcting PEM images for the occurrence of accidental events. Also, a Compton scatter correction algorithm designed specifically for PEM was developed and tested using a compressed breast phantom.

  17. Corrections for the effects of accidental coincidences, Compton scatter, and object size in positron emission mammography (PEM) imaging

    International Nuclear Information System (INIS)

    Raymond Raylman; Stanislaw Majewski; Randolph Wojcik; Andrew Weisenberger; Brian Kross; Vladimir Popov

    2001-01-01

    Positron emission mammography (PEM) has begun to show promise as an effective method for the detection of breast lesions. Due to its utilization of tumor-avid radiopharmaceuticals labeled with positron-emitting radionuclides, this technique may be especially useful in imaging of women with radiodense or fibrocystic breasts. While the use of these radiotracers affords PEM unique capabilities, it also introduces some limitations. Specifically, acceptance of accidental and Compton-scattered coincidence events can decrease lesion detectability. The authors studied the effect of accidental coincidence events on PEM images produced by the presence of 18F-Fluorodeoxyglucose in the organs of a subject using an anthropomorphic phantom. A delayed-coincidence technique was tested as a method for correcting PEM images for the occurrence of accidental events. Also, a Compton scatter correction algorithm designed specifically for PEM was developed and tested using a compressed breast phantom

  18. DOLIB: Distributed Object Library

    Energy Technology Data Exchange (ETDEWEB)

    D' Azevedo, E.F.

    1994-01-01

    This report describes the use and implementation of DOLIB (Distributed Object Library), a library of routines that emulates global or virtual shared memory on Intel multiprocessor systems. Access to a distributed global array is through explicit calls to gather and scatter. Advantages of using DOLIB include: dynamic allocation and freeing of huge (gigabyte) distributed arrays, both C and FORTRAN callable interfaces, and the ability to mix shared-memory and message-passing programming models for ease of use and optimal performance. DOLIB is independent of language and compiler extensions and requires no special operating system support. DOLIB also supports automatic caching of read-only data for high performance. The virtual shared memory support provided in DOLIB is well suited for implementing Lagrangian particle tracking techniques. We have also used DOLIB to create DONIO (Distributed Object Network I/O Library), which obtains over a 10-fold improvement in disk I/O performance on the Intel Paragon.

  19. DOLIB: Distributed Object Library

    Energy Technology Data Exchange (ETDEWEB)

    D`Azevedo, E.F.; Romine, C.H.

    1994-10-01

    This report describes the use and implementation of DOLIB (Distributed Object Library), a library of routines that emulates global or virtual shared memory on Intel multiprocessor systems. Access to a distributed global array is through explicit calls to gather and scatter. Advantages of using DOLIB include: dynamic allocation and freeing of huge (gigabyte) distributed arrays, both C and FORTRAN callable interfaces, and the ability to mix shared-memory and message-passing programming models for ease of use and optimal performance. DOLIB is independent of language and compiler extensions and requires no special operating system support. DOLIB also supports automatic caching of read-only data for high performance. The virtual shared memory support provided in DOLIB is well suited for implementing Lagrangian particle tracking techniques. We have also used DOLIB to create DONIO (Distributed Object Network I/O Library), which obtains over a 10-fold improvement in disk I/O performance on the Intel Paragon.

  20. Objective measurement of intraocular forward light scatter using Hartmann-Shack spot patterns from clinical aberrometers. Model-eye and human-eye study.

    Science.gov (United States)

    Cerviño, Alejandro; Bansal, Dheeraj; Hosking, Sarah L; Montés-Micó, Robert

    2008-07-01

    To apply software-based image-analysis tools to objectively determine intraocular scatter determined from clinically derived Hartmann-Shack patterns. Aston Academy of Life Sciences, Aston University, Birmingham, United Kingdom, and Department of Optics, University of Valencia, Valencia, Spain. Purpose-designed image-analysis software was used to quantify scatter from centroid patterns obtained using a clinical Hartmann-Shack analyzer (WASCA, Zeiss/Meditec). Three scatter values, as the maximum standard deviation within a lenslet for all lenslets in the pattern, were obtained in 6 model eyes and 10 human eyes. In the model-eye sample, patterns were obtained in 4 sessions: 2 without realigning between measurements, 1 with realignment, and 1 with an angular shift of 6 degrees from the instrument axis. Three measurements were made in the human eyes with the C-Quant straylight meter (Oculus) to obtain psychometric and objective measures of retinal straylight. Analysis of variance, intraclass correlation coefficients, coefficient of repeatability (CoR), and correlations were used to determine intrasession and intersession repeatability and the relationship between measures. No significant differences were found between the sessions in the model eye (P=.234). The mean CoR was less than 10% in all model- and human-eye sessions. After incomplete patterns were removed, good correlation was achieved between psychometric and objective scatter measurements despite the small sample size (n=6; r=-0.831; P=.040). The methodology was repeatable in model and human eyes, strong against realignment and misalignment, and sensitive. Clinical application would benefit from effective use of the sensor's dynamic range.

  1. On The Detachment of Massive Trans-Neptunian Objects

    Science.gov (United States)

    Fleisig, Jacob; Madigan, Ann-Marie; Zderic, Alexander

    2018-06-01

    Our Solar System contains a large population of icy bodies stretching well beyond the orbit of Neptune. These objects, known collectively as the Scattered Disk, are remnants from the early formation of the Solar System that were scattered outward from their birth location by Neptune. But not all fit the bill.Sedna, one particularly massive Trans-Neptunian Object (TNO), does not conform to the scattering pattern. Its orbital eccentricity (e) is much lower than expected for a scattered object. This means its perihelion distance (proportional to 1-e) is much larger than the orbit of Neptune, or that it is “detached” from the main Solar System. Many more TNOs share similarities with Sedna. These observations suggest that there is a large population of detached TNOs that have a dynamical history different than that of the objects scattered by Neptune.The physical mechanism by which these massive minor planets become detached is currently unknown. However, we have discovered a phenomenon, driven by differential precession between TNOs of different masses and mutual secular gravitational torques, that naturally detach massive minor planets. This mechanism could have notable consequences for the outer Solar System and may shed some light on the origin of the detached population of minor planets near the Scattered Disk.

  2. The Fabulous Four Debris Disks

    Science.gov (United States)

    Werner, Michael; Stapelfeldt, Karl

    2004-09-01

    This program is a comprehensive study of the four bright debris disks that were spatially resolved by IRAS: Beta Pictoris, Epsilon Eridani, Fomalhaut, and Vega. All SIRTF instruments and observing modes will be used. The program has three major objectives: (1) Study of the disk spatial structure from MIPS and IRAC imaging; (2) Study of the dust grain composition using the IRS and MIPS SED mode; and (3) companion searches using IRAC. The data from this program should lead to a detailed understanding of these four systems, and will provide a foundation for understanding all of the debris disks to be studied with SIRTF. Images and spectra will be compared with models for disk structure and dust properties. Dynamical features indicative of substellar companions' effects on the disks will be searched for. This program will require supporting observations of PSF stars, some of which have been included explicitly. In the majority of cases, the spectral observations require a preferred orientation to align the slits along the disk position angles. Detector saturation issues are still being worked for this program, and will lead to AOR modifications in subsequent submissions. The results from this program will be analyzed collaboratively by the IRAC, IRS, and MIPS teams and by general GTOs Jura and Werner.

  3. Gravitational Instabilities in Circumstellar Disks

    Science.gov (United States)

    Kratter, Kaitlin; Lodato, Giuseppe

    2016-09-01

    Star and planet formation are the complex outcomes of gravitational collapse and angular momentum transport mediated by protostellar and protoplanetary disks. In this review, we focus on the role of gravitational instability in this process. We begin with a brief overview of the observational evidence for massive disks that might be subject to gravitational instability and then highlight the diverse ways in which the instability manifests itself in protostellar and protoplanetary disks: the generation of spiral arms, small-scale turbulence-like density fluctuations, and fragmentation of the disk itself. We present the analytic theory that describes the linear growth phase of the instability supplemented with a survey of numerical simulations that aim to capture the nonlinear evolution. We emphasize the role of thermodynamics and large-scale infall in controlling the outcome of the instability. Despite apparent controversies in the literature, we show a remarkable level of agreement between analytic predictions and numerical results. In the next part of our review, we focus on the astrophysical consequences of the instability. We show that the disks most likely to be gravitationally unstable are young and relatively massive compared with their host star, Md/M*≥0.1. They will develop quasi-stable spiral arms that process infall from the background cloud. Although instability is less likely at later times, once infall becomes less important, the manifestations of the instability are more varied. In this regime, the disk thermodynamics, often regulated by stellar irradiation, dictates the development and evolution of the instability. In some cases the instability may lead to fragmentation into bound companions. These companions are more likely to be brown dwarfs or stars than planetary mass objects. Finally, we highlight open questions related to the development of a turbulent cascade in thin disks and the role of mode-mode coupling in setting the maximum angular

  4. Circumstellar disks around binary stars in Taurus

    International Nuclear Information System (INIS)

    Akeson, R. L.; Jensen, E. L. N.

    2014-01-01

    We have conducted a survey of 17 wide (>100 AU) young binary systems in Taurus with the Atacama Large Millimeter Array (ALMA) at two wavelengths. The observations were designed to measure the masses of circumstellar disks in these systems as an aid to understanding the role of multiplicity in star and planet formation. The ALMA observations had sufficient resolution to localize emission within the binary system. Disk emission was detected around all primaries and 10 secondaries, with disk masses as low as 10 –4 M ☉ . We compare the properties of our sample to the population of known disks in Taurus and find that the disks from this binary sample match the scaling between stellar mass and millimeter flux of F mm ∝M ∗ 1.5--2.0 to within the scatter found in previous studies. We also compare the properties of the primaries to those of the secondaries and find that the secondary/primary stellar and disk mass ratios are not correlated; in three systems, the circumsecondary disk is more massive than the circumprimary disk, counter to some theoretical predictions.

  5. Circumstellar disks around binary stars in Taurus

    Energy Technology Data Exchange (ETDEWEB)

    Akeson, R. L. [NASA Exoplanet Science Institute, IPAC/Caltech, Pasadena, CA 91125 (United States); Jensen, E. L. N. [Swarthmore College, Department of Physics and Astronomy, Swarthmore, PA 19081 (United States)

    2014-03-20

    We have conducted a survey of 17 wide (>100 AU) young binary systems in Taurus with the Atacama Large Millimeter Array (ALMA) at two wavelengths. The observations were designed to measure the masses of circumstellar disks in these systems as an aid to understanding the role of multiplicity in star and planet formation. The ALMA observations had sufficient resolution to localize emission within the binary system. Disk emission was detected around all primaries and 10 secondaries, with disk masses as low as 10{sup –4} M {sub ☉}. We compare the properties of our sample to the population of known disks in Taurus and find that the disks from this binary sample match the scaling between stellar mass and millimeter flux of F{sub mm}∝M{sub ∗}{sup 1.5--2.0} to within the scatter found in previous studies. We also compare the properties of the primaries to those of the secondaries and find that the secondary/primary stellar and disk mass ratios are not correlated; in three systems, the circumsecondary disk is more massive than the circumprimary disk, counter to some theoretical predictions.

  6. A PRIMER ON UNIFYING DEBRIS DISK MORPHOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eve J.; Chiang, Eugene, E-mail: evelee@berkeley.edu, E-mail: echiang@astro.berkeley.edu [Department of Astronomy, University of California Berkeley, Berkeley, CA 94720-3411 (United States)

    2016-08-20

    A “minimum model” for debris disks consists of a narrow ring of parent bodies, secularly forced by a single planet on a possibly eccentric orbit, colliding to produce dust grains that are perturbed by stellar radiation pressure. We demonstrate how this minimum model can reproduce a wide variety of disk morphologies imaged in scattered starlight. Five broad categories of disk shape can be captured: “rings,” “needles,” “ships-and-wakes,” “bars,” and “moths (a.k.a. fans),” depending on the viewing geometry. Moths can also sport “double wings.” We explain the origin of morphological features from first principles, exploring the dependence on planet eccentricity, disk inclination dispersion, and the parent body orbital phases at which dust grains are born. A key determinant in disk appearance is the degree to which dust grain orbits are apsidally aligned. Our study of a simple steady-state (secularly relaxed) disk should serve as a reference for more detailed models tailored to individual systems. We use the intuition gained from our guidebook of disk morphologies to interpret, informally, the images of a number of real-world debris disks. These interpretations suggest that the farthest reaches of planetary systems are perturbed by eccentric planets, possibly just a few Earth masses each.

  7. A PRIMER ON UNIFYING DEBRIS DISK MORPHOLOGIES

    International Nuclear Information System (INIS)

    Lee, Eve J.; Chiang, Eugene

    2016-01-01

    A “minimum model” for debris disks consists of a narrow ring of parent bodies, secularly forced by a single planet on a possibly eccentric orbit, colliding to produce dust grains that are perturbed by stellar radiation pressure. We demonstrate how this minimum model can reproduce a wide variety of disk morphologies imaged in scattered starlight. Five broad categories of disk shape can be captured: “rings,” “needles,” “ships-and-wakes,” “bars,” and “moths (a.k.a. fans),” depending on the viewing geometry. Moths can also sport “double wings.” We explain the origin of morphological features from first principles, exploring the dependence on planet eccentricity, disk inclination dispersion, and the parent body orbital phases at which dust grains are born. A key determinant in disk appearance is the degree to which dust grain orbits are apsidally aligned. Our study of a simple steady-state (secularly relaxed) disk should serve as a reference for more detailed models tailored to individual systems. We use the intuition gained from our guidebook of disk morphologies to interpret, informally, the images of a number of real-world debris disks. These interpretations suggest that the farthest reaches of planetary systems are perturbed by eccentric planets, possibly just a few Earth masses each.

  8. A Primer on Unifying Debris Disk Morphologies

    Science.gov (United States)

    Lee, Eve J.; Chiang, Eugene

    2016-08-01

    A “minimum model” for debris disks consists of a narrow ring of parent bodies, secularly forced by a single planet on a possibly eccentric orbit, colliding to produce dust grains that are perturbed by stellar radiation pressure. We demonstrate how this minimum model can reproduce a wide variety of disk morphologies imaged in scattered starlight. Five broad categories of disk shape can be captured: “rings,” “needles,” “ships-and-wakes,” “bars,” and “moths (a.k.a. fans),” depending on the viewing geometry. Moths can also sport “double wings.” We explain the origin of morphological features from first principles, exploring the dependence on planet eccentricity, disk inclination dispersion, and the parent body orbital phases at which dust grains are born. A key determinant in disk appearance is the degree to which dust grain orbits are apsidally aligned. Our study of a simple steady-state (secularly relaxed) disk should serve as a reference for more detailed models tailored to individual systems. We use the intuition gained from our guidebook of disk morphologies to interpret, informally, the images of a number of real-world debris disks. These interpretations suggest that the farthest reaches of planetary systems are perturbed by eccentric planets, possibly just a few Earth masses each.

  9. The Coldest Object in the Universe: Probing the Mass Distribution of the Ultra-Cold Outflow and Dusty Disk in the Boomerang Nebula

    Science.gov (United States)

    Sahai, R.; Vlemmings, W.; Nyman, L.

    2015-12-01

    Our Cycle 0 ALMA observations confirmed that the Boomerang Nebula is the coldest known object in the Universe, with a massive high-speed outflow that has cooled significantly below the temperature of the cosmic background (CMB). The Boomerang's prodigious mass-loss rate (0.001M⊙) and low-luminosity (300L⊙) make it a key object for understanding the remarkable transition of the circumstellar envelopes of AGB stars into bipolar planetary nebulae. We have obtained new ACA CO 1-0 data that recover much of the flux lost in the Cycle 0 data, and reveal heretofore unseen distant regions of the ultra-cold outflow re-heated to temperatures above the CMB. Our CO J=3-2 data reveal the precise, highly collimated shape of an inner bipolar structure and its dense central waist, with unprecedented angular resolution (0.4”). The waist shows a core-halo structure in the thermal dust emission at 0.88 mm, and its derived flux at this wavelength, compared with the 3.3, 2.6, and 1.3 mm fluxes support the presence of about 5×10-4 M⊙ of very large (˜mm-sized), cold (˜30K) grains. We also find the unexpected presence of weak SO emission, possibly resulting from the release of S from grains due to high-speed shocks.

  10. The Coldest Object in the Universe: Probing the Mass Distribution of the Ultra-Cold Outflow and Dusty Disk in the Boomerang Nebula

    Science.gov (United States)

    Sahai, R.; Vlemmings, W.; Nyman, L. A.

    2014-01-01

    Our Cycle 0 ALMA observations confirmed that the Boomerang Nebula is the coldest known object in the universe, with a massive high-speed outflow that has cooled significantly below the temperature of the cosmic background (CMB). The Boomerang's prodigious mass-loss rate (0.001 solar mass M yr (exp -1) and low-luminosity (300L ) make it a key object for understanding the remarkable transition of the circumstellar envelopes of AGB stars into bipolar planetary nebulae. We have obtained new ACA CO 1-0 data that recover much of the flux lost in the Cycle O data, and reveal heretofore unseen distant regions of the ultra-cold outflow reheated to temperatures above the CMB. Our CO J=3-2 data reveal the precise, highly collimated shape of an inner bipolar structure and its dense central waist, with unprecedented angular resolution (0.4 in). The waist shows a core-halo structure in the thermal dust emission at 0.88 millimeter, and its derived flux at this wavelength, compared with the 3.3, 2.6, and 1.3 millimeter fluxes support the presence of about 5 x 10 (exp -4) solar mass of very large (approximately millimeter-sized), cold (approximately 30K) grains. We also find the unexpected presence of weak SO emission, possibly resulting from the release of S from grains due to high-speed shocks.

  11. Dust in Proto-Planetary Disks: Properties and Evolution

    OpenAIRE

    Natta, A.; Testi, L.; Calvet, N.; Henning, Th.; Waters, R.; Wilner, D.

    2006-01-01

    We review the properties of dust in protoplanetary disks around optically visible pre-main sequence stars obtained with a variety of observational techniques, from measurements of scattered light at visual and infrared wavelengths to mid-infrared spectroscopy and millimeter interferometry. A general result is that grains in disks are on average much larger than in the diffuse interstellar medium (ISM). In many disks, there is evidence that a large mass of dust is in grains with millimeter and...

  12. Subaru/SCExAO First-light Direct Imaging of a Young Debris Disk around HD 36546

    International Nuclear Information System (INIS)

    Currie, Thayne; Guyon, Olivier; Kudo, Tomoyuki; Jovanovic, Nemanja; Lozi, Julien; Tamura, Motohide; Kuzuhara, Masayuki; Schlieder, Joshua E.; Brandt, Timothy D.; Kuhn, Jonas; Serabyn, Eugene; Singh, Garima; Janson, Markus; Carson, Joseph; Groff, Tyler; Kasdin, N. Jeremy; McElwain, Michael W.; Grady, Carol; Uyama, Taichi; Akiyama, Eiji

    2017-01-01

    We present H -band scattered light imaging of a bright debris disk around the A0 star HD 36546 obtained from the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system with data recorded by the HiCIAO camera using the vector vortex coronagraph. SCExAO traces the disk from r ∼ 0.″3 to r ∼1″ (34–114 au). The disk is oriented in a near east–west direction (PA ∼ 75°), is inclined by i ∼ 70°–75°, and is strongly forward-scattering (g > 0.5). It is an extended disk rather than a sharp ring; a second, diffuse dust population extends from the disk’s eastern side. While HD 36546 intrinsic properties are consistent with a wide age range (t ∼ 1–250 Myr), its kinematics and analysis of coeval stars suggest a young age (3–10 Myr) and a possible connection to Taurus-Auriga’s star formation history. SCExAO’s planet-to-star contrast ratios are comparable to the first-light Gemini Planet Imager contrasts; for an age of 10 Myr, we rule out planets with masses comparable to HR 8799 b beyond a projected separation of 23 au. A massive icy planetesimal disk or an unseen super-Jovian planet at r > 20 au may explain the disk’s visibility. The HD 36546 debris disk may be the youngest debris disk yet imaged, is the first newly identified object from the now-operational SCExAO extreme AO system, is ideally suited for spectroscopic follow-up with SCExAO/CHARIS in 2017, and may be a key probe of icy planet formation and planet–disk interactions.

  13. Subaru/SCExAO First-light Direct Imaging of a Young Debris Disk around HD 36546

    Energy Technology Data Exchange (ETDEWEB)

    Currie, Thayne; Guyon, Olivier; Kudo, Tomoyuki; Jovanovic, Nemanja; Lozi, Julien [National Astronomical Observatory of Japan, Subaru Telescope, National Institutes of Natural Sciences, Hilo, HI 96720 (United States); Tamura, Motohide; Kuzuhara, Masayuki [Astrobiology Center, National Institutes of Natural Sciences, 2-21-1 Osawa, Mitaka, Tokyo (Japan); Schlieder, Joshua E. [IPAC-NExScI, Mail Code 100-22, Caltech, 1200 E. California Boulevard, Pasadena, CA 91125 (United States); Brandt, Timothy D. [Astrophysics Department, Institute for Advanced Study, Princeton, NJ (United States); Kuhn, Jonas [Institute for Astronomy, ETH-Zurich, Wolfgang-Pauli-Str. 27, 8093 Zurich (Switzerland); Serabyn, Eugene; Singh, Garima [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA (United States); Janson, Markus [Department of Astronomy, Stockholm University, AlbaNova University Center, SE-106 91 Stockholm (Sweden); Carson, Joseph [Department of Physics and Astronomy, College of Charleston, 66 George Street, Charleston, SC (United States); Groff, Tyler; Kasdin, N. Jeremy [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ (United States); McElwain, Michael W.; Grady, Carol [Exoplanets and Stellar Astrophysics Laboratory, Code 667, NASA-Goddard Space Flight Center, Greenbelt, MD (United States); Uyama, Taichi [Department of Astronomy, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo (Japan); Akiyama, Eiji [Chile Observatory, National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo (Japan); and others

    2017-02-10

    We present H -band scattered light imaging of a bright debris disk around the A0 star HD 36546 obtained from the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system with data recorded by the HiCIAO camera using the vector vortex coronagraph. SCExAO traces the disk from r ∼ 0.″3 to r ∼1″ (34–114 au). The disk is oriented in a near east–west direction (PA ∼ 75°), is inclined by i ∼ 70°–75°, and is strongly forward-scattering (g > 0.5). It is an extended disk rather than a sharp ring; a second, diffuse dust population extends from the disk’s eastern side. While HD 36546 intrinsic properties are consistent with a wide age range (t ∼ 1–250 Myr), its kinematics and analysis of coeval stars suggest a young age (3–10 Myr) and a possible connection to Taurus-Auriga’s star formation history. SCExAO’s planet-to-star contrast ratios are comparable to the first-light Gemini Planet Imager contrasts; for an age of 10 Myr, we rule out planets with masses comparable to HR 8799 b beyond a projected separation of 23 au. A massive icy planetesimal disk or an unseen super-Jovian planet at r > 20 au may explain the disk’s visibility. The HD 36546 debris disk may be the youngest debris disk yet imaged, is the first newly identified object from the now-operational SCExAO extreme AO system, is ideally suited for spectroscopic follow-up with SCExAO/CHARIS in 2017, and may be a key probe of icy planet formation and planet–disk interactions.

  14. Modeling collisions in circumstellar debris disks

    Science.gov (United States)

    Nesvold, Erika

    2015-10-01

    resonances near the chaotic zone. I investigate the effects of the initial eccentricity distribution of the disk particles and find a negligible effect on the gap size at Jovian planet masses, since collisions tend to erase memory of the initial particle eccentricity distributions. I also find that the presence of Trojan analogs is a potentially powerful diagnostic of planets in the mass range ˜1--10MJup. I apply my model to place new upper limits on planets around Fomalhaut, HR 4796 A, HD 202628, HD 181327, and beta Pictoris. Finally, to show how SMACK can be used to analyze a single debris disk in detail, I present a new model of the beta Pictoris disk and planet system that, for the first time, combines simulations of the colliding planetesimals and the dynamics of the dust grains, allowing me to model features and asymmetries in both submillimeter and scattered light images of the disk. I combine a 100,000 superparticle SMACK simulation with N-body integrations of the dust produced by the simulated collisions. I find that secular perturbations of the planet's measured inclination and eccentricity can explain the observed warp and planetesimal ring, while collisions between planetesimals shape the disk by eroding close-in material. The complex 3D structure of the disk due to the perturbations from the planet creates an azimuthally asymmetric spatial distribution of collisions, which could contribute to the observed azimuthal clump of CO gas seen with ALMA. My simulations of the small dust grains produced by collisions demonstrate that the "birth ring" approximation for beta Pictoris fails to account for the ˜54% of dust mass produced outside of the planetesimal ring. I also reproduce the gross morphology of high-resolution scattered light images of the disk, including the two-disk "x"-pattern seen in scattered light, which has not been replicated by previous dust dynamics models.

  15. Hydrodynamical winds from a geometrically thin disk

    International Nuclear Information System (INIS)

    Fukue, Jun

    1989-01-01

    Hydrodynamical winds emanating from the surface of a geometrically thin disk under the gravitational field of the central object are examined. The attention is focused on the transonic nature of the flow. For a given configuration of streamlines, the flow fields are divided into three regions: the inner region where the gas near the disk plane is gravitationally bound to form a corona; the intermediate wind region where multiple critical points appear and the gas flows out from the disk passing through critical points; and the outer region where the gas is unbound to escape to infinity without passing through critical points. This behavior of disk winds is due to the shape of the gravitational potential of the central object along the streamline and due to the energy source distribution at the flow base on the disk plane where the potential in finite. (author)

  16. Dust in Protoplanetary Disks: Properties and Evolution

    NARCIS (Netherlands)

    Natta, A.; Testi, L.; Calvet, N.; Henning, T.; Waters, R.; Wilner, D.

    2007-01-01

    We review the properties of dust in protoplanetary disks around optically visible pre-main-sequence stars obtained with a variety of observational techniques, from measurements of scattered light at visual and infrared wavelengths to mid-infrared spectroscopy and millimeter interferometry. A general

  17. A Wavelet-Enhanced PWTD-Accelerated Time-Domain Integral Equation Solver for Analysis of Transient Scattering from Electrically Large Conducting Objects

    KAUST Repository

    Liu, Yang

    2018-02-26

    A wavelet-enhanced plane-wave time-domain (PWTD) algorithm for efficiently and accurately solving time-domain surface integral equations (TD-SIEs) on electrically large conducting objects is presented. The proposed scheme reduces the memory requirement and computational cost of the PWTD algorithm by representing the PWTD ray data using local cosine wavelet bases (LCBs) and performing PWTD operations in the wavelet domain. The memory requirement and computational cost of the LCB-enhanced PWTD-accelerated TD-SIE solver, when applied to the analysis of transient scattering from smooth quasi-planar objects with near-normal incident pulses, scale nearly as O(Ns log Ns) and O(Ns 1.5 ), respectively. Here, Ns denotes the number of spatial unknowns. The efficiency and accuracy of the proposed scheme are demonstrated through its applications to the analysis of transient scattering from a 185 wave-length-long NASA almond and a 123-wavelength long Air-bus-A320 model.

  18. Dynamics of acoustically levitated disk samples.

    Science.gov (United States)

    Xie, W J; Wei, B

    2004-10-01

    The acoustic levitation force on disk samples and the dynamics of large water drops in a planar standing wave are studied by solving the acoustic scattering problem through incorporating the boundary element method. The dependence of levitation force amplitude on the equivalent radius R of disks deviates seriously from the R3 law predicted by King's theory, and a larger force can be obtained for thin disks. When the disk aspect ratio gamma is larger than a critical value gamma(*) ( approximately 1.9 ) and the disk radius a is smaller than the critical value a(*) (gamma) , the levitation force per unit volume of the sample will increase with the enlargement of the disk. The acoustic levitation force on thin-disk samples ( gammaacoustic field for stable levitation of a large water drop is to adjust the reflector-emitter interval H slightly above the resonant interval H(n) . The simulation shows that the drop is flattened and the central parts of its top and bottom surface become concave with the increase of sound pressure level, which agrees with the experimental observation. The main frequencies of the shape oscillation under different sound pressures are slightly larger than the Rayleigh frequency because of the large shape deformation. The simulated translational frequencies of the vertical vibration under normal gravity condition agree with the theoretical analysis.

  19. Evaluation of powder metallurgy superalloy disk materials

    Science.gov (United States)

    Evans, D. J.

    1975-01-01

    A program was conducted to develop nickel-base superalloy disk material using prealloyed powder metallurgy techniques. The program included fabrication of test specimens and subscale turbine disks from four different prealloyed powders (NASA-TRW-VIA, AF2-1DA, Mar-M-432 and MERL 80). Based on evaluation of these specimens and disks, two alloys (AF2-1DA and Mar-M-432) were selected for scale-up evaluation. Using fabricating experience gained in the subscale turbine disk effort, test specimens and full scale turbine disks were formed from the selected alloys. These specimens and disks were then subjected to a rigorous test program to evaluate their physical properties and determine their suitability for use in advanced performance turbine engines. A major objective of the program was to develop processes which would yield alloy properties that would be repeatable in producing jet engine disks from the same powder metallurgy alloys. The feasibility of manufacturing full scale gas turbine engine disks by thermomechanical processing of pre-alloyed metal powders was demonstrated. AF2-1DA was shown to possess tensile and creep-rupture properties in excess of those of Astroloy, one of the highest temperature capability disk alloys now in production. It was determined that metallographic evaluation after post-HIP elevated temperature exposure should be used to verify the effectiveness of consolidation of hot isostatically pressed billets.

  20. Disk Storage Server

    CERN Multimedia

    This model was a disk storage server used in the Data Centre up until 2012. Each tray contains a hard disk drive (see the 5TB hard disk drive on the main disk display section - this actually fits into one of the trays). There are 16 trays in all per server. There are hundreds of these servers mounted on racks in the Data Centre, as can be seen.

  1. MOLECULAR GAS IN YOUNG DEBRIS DISKS

    International Nuclear Information System (INIS)

    Moor, A.; Abraham, P.; Kiss, Cs.; Juhasz, A.; Kospal, A.; Pascucci, I.; Apai, D.; Henning, Th.; Csengeri, T.; Grady, C.

    2011-01-01

    Gas-rich primordial disks and tenuous gas-poor debris disks are usually considered as two distinct evolutionary phases of the circumstellar matter. Interestingly, the debris disk around the young main-sequence star 49 Ceti possesses a substantial amount of molecular gas and possibly represents the missing link between the two phases. Motivated to understand the evolution of the gas component in circumstellar disks via finding more 49 Ceti-like systems, we carried out a CO J = 3-2 survey with the Atacama Pathfinder EXperiment, targeting 20 infrared-luminous debris disks. These systems fill the gap between primordial and old tenuous debris disks in terms of fractional luminosity. Here we report on the discovery of a second 49 Ceti-like disk around the 30 Myr old A3-type star HD21997, a member of the Columba Association. This system was also detected in the CO(2-1) transition, and the reliable age determination makes it an even clearer example of an old gas-bearing disk than 49 Ceti. While the fractional luminosities of HD21997 and 49 Ceti are not particularly high, these objects seem to harbor the most extended disks within our sample. The double-peaked profiles of HD21997 were reproduced by a Keplerian disk model combined with the LIME radiative transfer code. Based on their similarities, 49 Ceti and HD21997 may be the first representatives of a so far undefined new class of relatively old (∼>8 Myr), gaseous dust disks. From our results, neither primordial origin nor steady secondary production from icy planetesimals can unequivocally explain the presence of CO gas in the disk of HD21997.

  2. Understanding Floppy Disks.

    Science.gov (United States)

    Valentine, Pamela

    1980-01-01

    The author describes the floppy disk with an analogy to the phonograph record, and discusses the advantages, disadvantages, and capabilities of hard-sectored and soft-sectored floppy disks. She concludes that, at present, the floppy disk will continue to be the primary choice of personal computer manufacturers and their customers. (KC)

  3. HNC IN PROTOPLANETARY DISKS

    International Nuclear Information System (INIS)

    Graninger, Dawn; Öberg, Karin I.; Qi, Chunhua; Kastner, Joel

    2015-01-01

    The distributions and abundances of small organics in protoplanetary disks are potentially powerful probes of disk physics and chemistry. HNC is a common probe of dense interstellar regions and the target of this study. We use the Submillimeter Array (SMA) to observe HNC 3–2 toward the protoplanetary disks around the T Tauri star TW Hya and the Herbig Ae star HD 163296. HNC is detected toward both disks, constituting the first spatially resolved observations of HNC in disks. We also present SMA observations of HCN 3–2 and IRAM 30 m observations of HCN and HNC 1–0 toward HD 163296. The disk-averaged HNC/HCN emission ratio is 0.1–0.2 toward both disks. Toward TW Hya, the HNC emission is confined to a ring. The varying HNC abundance in the TW Hya disk demonstrates that HNC chemistry is strongly linked to the disk physical structure. In particular, the inner rim of the HNC ring can be explained by efficient destruction of HNC at elevated temperatures, similar to what is observed in the ISM. However, to realize the full potential of HNC as a disk tracer requires a combination of high SNR spatially resolved observations of HNC and HCN and disk-specific HNC chemical modeling

  4. HNC IN PROTOPLANETARY DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Graninger, Dawn; Öberg, Karin I.; Qi, Chunhua [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Kastner, Joel, E-mail: dgraninger@cfa.harvard.edu [Center for Imaging Science, School of Physics and Astronomy, and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States)

    2015-07-01

    The distributions and abundances of small organics in protoplanetary disks are potentially powerful probes of disk physics and chemistry. HNC is a common probe of dense interstellar regions and the target of this study. We use the Submillimeter Array (SMA) to observe HNC 3–2 toward the protoplanetary disks around the T Tauri star TW Hya and the Herbig Ae star HD 163296. HNC is detected toward both disks, constituting the first spatially resolved observations of HNC in disks. We also present SMA observations of HCN 3–2 and IRAM 30 m observations of HCN and HNC 1–0 toward HD 163296. The disk-averaged HNC/HCN emission ratio is 0.1–0.2 toward both disks. Toward TW Hya, the HNC emission is confined to a ring. The varying HNC abundance in the TW Hya disk demonstrates that HNC chemistry is strongly linked to the disk physical structure. In particular, the inner rim of the HNC ring can be explained by efficient destruction of HNC at elevated temperatures, similar to what is observed in the ISM. However, to realize the full potential of HNC as a disk tracer requires a combination of high SNR spatially resolved observations of HNC and HCN and disk-specific HNC chemical modeling.

  5. Continuum Reverberation Mapping of AGN Accretion Disks

    Energy Technology Data Exchange (ETDEWEB)

    Fausnaugh, Michael M. [Department of Astronomy, Ohio State University, Columbus, OH (United States); MIT Kavli Institute for Astrophysics and Space Research, Cambridge, MA (United States); Peterson, Bradley M. [Department of Astronomy, Ohio State University, Columbus, OH (United States); Center for Cosmology and AstroParticle Physics, Ohio State University, Columbus, OH (United States); Space Telescope Science Institute, Baltimore, MD (United States); Starkey, David A. [SUPA Physics and Astronomy, University of St. Andrews, Scotland (United Kingdom); Department of Astronomy, University of Illinois at Urbana-Champaign, Urbana, IL (United States); Horne, Keith, E-mail: faus@mit.edu [SUPA Physics and Astronomy, University of St. Andrews, Scotland (United Kingdom); Collaboration: the AGN STORM Collaboration

    2017-12-05

    We show recent detections of inter-band continuum lags in three AGN (NGC 5548, NGC 2617, and MCG+08-11-011), which provide new constraints on the temperature profiles and absolute sizes of the accretion disks. We find lags larger than would be predicted for standard geometrically thin, optically thick accretion disks by factors of 2.3–3.3. For NGC 5548, the data span UV through optical/near-IR wavelengths, and we are able to discern a steeper temperature profile than the T ~ R{sup −3/4} expected for a standard thin disk. Using a physical model, we are also able to estimate the inclinations of the disks for two objects. These results are similar to those found from gravitational microlensing of strongly lensed quasars, and provide a complementary approach for investigating the accretion disk structure in local, low luminosity AGN.

  6. Unitarity, (anti)shadowing, and black-disk limit

    International Nuclear Information System (INIS)

    Desgrolard, P.; Jenkovszky, L.; Struminsky, B.V.

    2000-01-01

    By using realistic models for elastic hadron scattering, we demonstrate that, at current accelerator energies, the s-channel unitarity bound is safe and is not to be reached until 10 5 GeV, while the black-disk limit is saturated around 6 TeV. It will be followed by a larger transparency of the scattered particles near the center

  7. THE SPITZER INFRARED SPECTROGRAPH SURVEY OF PROTOPLANETARY DISKS IN ORION A. I. DISK PROPERTIES

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K. H. [Korea Astronomy and Space Science Institute (KASI), 776, Daedeokdae-ro, Yuseong-gu, Daejeon 305-348 (Korea, Republic of); Watson, Dan M.; Manoj, P.; Forrest, W. J. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Furlan, Elise [Infrared Processing and Analysis Center, Caltech, 770 S. Wilson Avenue, Pasadena, CA 91125 (United States); Najita, Joan [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Sargent, Benjamin [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Dr., Rochester, NY 14623 (United States); Hernández, Jesús [Centro de Investigaciones de Astronomía, Apdo. Postal 264, Mérida 5101-A (Venezuela, Bolivarian Republic of); Calvet, Nuria [Department of Astronomy, University of Michigan, 830 Dennison Building, 500 Church Street, Ann Arbor, MI 48109 (United States); Adame, Lucía [Facultad de Ciencias Físico-Matemáticas, Universidad Autónoma de Nuevo León, Av. Universidad S/N, San Nicolás de los Garza, Nuevo León, C.P. 66451, México (Mexico); Espaillat, Catherine [Department of Astronomy, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); Megeath, S. T. [Ritter Astrophysical Research Center, Department of Physics and Astronomy, University of Toledo, 2801 W. Bancroft St., Toledo, OH 43606 (United States); Muzerolle, James, E-mail: quarkosmos@kasi.re.kr [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); and others

    2016-09-01

    We present our investigation of 319 Class II objects in Orion A observed by Spitzer /IRS. We also present the follow-up observations of 120 of these Class II objects in Orion A from the Infrared Telescope Facility/SpeX. We measure continuum spectral indices, equivalent widths, and integrated fluxes that pertain to disk structure and dust composition from IRS spectra of Class II objects in Orion A. We estimate mass accretion rates using hydrogen recombination lines in the SpeX spectra of our targets. Utilizing these properties, we compare the distributions of the disk and dust properties of Orion A disks with those of Taurus disks with respect to position within Orion A (Orion Nebular Cluster [ONC] and L1641) and with the subgroups by the inferred radial structures, such as transitional disks (TDs) versus radially continuous full disks (FDs). Our main findings are as follows. (1) Inner disks evolve faster than the outer disks. (2) The mass accretion rates of TDs and those of radially continuous FDs are statistically significantly displaced from each other. The median mass accretion rate of radially continuous disks in the ONC and L1641 is not very different from that in Taurus. (3) Less grain processing has occurred in the disks in the ONC compared to those in Taurus, based on analysis of the shape index of the 10 μ m silicate feature ( F {sub 11.3}/ F {sub 9.8}). (4) The 20–31 μ m continuum spectral index tracks the projected distance from the most luminous Trapezium star, θ {sup 1} Ori C. A possible explanation is UV ablation of the outer parts of disks.

  8. Exploring Disks Around Planets

    Science.gov (United States)

    Kohler, Susanna

    2017-07-01

    Giant planets are thought to form in circumstellar disks surrounding young stars, but material may also accrete into a smaller disk around the planet. Weve never detected one of these circumplanetary disks before but thanks to new simulations, we now have a better idea of what to look for.Image from previous work simulating a Jupiter-mass planet forming inside a circumstellar disk. The planet has its own circumplanetary disk of accreted material. [Frdric Masset]Elusive DisksIn the formation of giant planets, we think the final phase consists of accretion onto the planet from a disk that surrounds it. This circumplanetary disk is important to understand, since it both regulates the late gas accretion and forms the birthplace of future satellites of the planet.Weve yet to detect a circumplanetary disk thus far, because the resolution needed to spot one has been out of reach. Now, however, were entering an era where the disk and its kinematics may be observable with high-powered telescopes (like the Atacama Large Millimeter Array).To prepare for such observations, we need models that predict the basic characteristics of these disks like the mass, temperature, and kinematic properties. Now a researcher at the ETH Zrich Institute for Astronomy in Switzerland, Judit Szulgyi, has worked toward this goal.Simulating CoolingSzulgyi performs a series of 3D global radiative hydrodynamic simulations of 1, 3, 5, and 10 Jupiter-mass (MJ) giant planets and their surrounding circumplanetary disks, embedded within the larger circumstellar disk around the central star.Density (left column), temperature (center), and normalized angular momentum (right) for a 1 MJ planet over temperatures cooling from 10,000 K (top) to 1,000 K (bottom). At high temperatures, a spherical circumplanetary envelope surrounds the planet, but as the planet cools, the envelope transitions around 64,000 K to a flattened disk. [Szulgyi 2017]This work explores the effects of different planet temperatures and

  9. THE NATURE OF TRANSITION CIRCUMSTELLAR DISKS. II. SOUTHERN MOLECULAR CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Romero, Gisela A.; Schreiber, Matthias R.; Rebassa-Mansergas, Alberto [Departamento de Fisica y Astronomia, Universidad de Valparaiso, Valparaiso (Chile); Cieza, Lucas A. [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); Merin, Bruno [Herschel Science Centre, ESAC (ESA), P.O. Box 78, 28691 Villanueva de la Canada, Madrid (Spain); Smith Castelli, Analia V. [Consejo Nacional de Investigaciones Cientificas y Tecnicas, Rivadavia 1917, C1033AAJ Buenos Aires (Argentina); Allen, Lori E. [Department of Astronomy, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721-0065 (United States); Morrell, Nidia [Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena (Chile)

    2012-04-10

    Transition disk objects are pre-main-sequence stars with little or no near-IR excess and significant far-IR excess, implying inner opacity holes in their disks. Here we present a multifrequency study of transition disk candidates located in Lupus I, III, IV, V, VI, Corona Australis, and Scorpius. Complementing the information provided by Spitzer with adaptive optics (AO) imaging (NaCo, VLT), submillimeter photometry (APEX), and echelle spectroscopy (Magellan, Du Pont Telescopes), we estimate the multiplicity, disk mass, and accretion rate for each object in our sample in order to identify the mechanism potentially responsible for its inner hole. We find that our transition disks show a rich diversity in their spectral energy distribution morphology, have disk masses ranging from {approx}<1 to 10 M{sub JUP}, and accretion rates ranging from {approx}<10{sup -11} to 10{sup -7.7} M{sub Sun} yr{sup -1}. Of the 17 bona fide transition disks in our sample, three, nine, three, and two objects are consistent with giant planet formation, grain growth, photoevaporation, and debris disks, respectively. Two disks could be circumbinary, which offers tidal truncation as an alternative origin of the inner hole. We find the same heterogeneity of the transition disk population in Lupus III, IV, and Corona Australis as in our previous analysis of transition disks in Ophiuchus while all transition disk candidates selected in Lupus V, VI turned out to be contaminating background asymptotic giant branch stars. All transition disks classified as photoevaporating disks have small disk masses, which indicates that photoevaporation must be less efficient than predicted by most recent models. The three systems that are excellent candidates for harboring giant planets potentially represent invaluable laboratories to study planet formation with the Atacama Large Millimeter/Submillimeter Array.

  10. THE NATURE OF TRANSITION CIRCUMSTELLAR DISKS. II. SOUTHERN MOLECULAR CLOUDS

    International Nuclear Information System (INIS)

    Romero, Gisela A.; Schreiber, Matthias R.; Rebassa-Mansergas, Alberto; Cieza, Lucas A.; Merín, Bruno; Smith Castelli, Analía V.; Allen, Lori E.; Morrell, Nidia

    2012-01-01

    Transition disk objects are pre-main-sequence stars with little or no near-IR excess and significant far-IR excess, implying inner opacity holes in their disks. Here we present a multifrequency study of transition disk candidates located in Lupus I, III, IV, V, VI, Corona Australis, and Scorpius. Complementing the information provided by Spitzer with adaptive optics (AO) imaging (NaCo, VLT), submillimeter photometry (APEX), and echelle spectroscopy (Magellan, Du Pont Telescopes), we estimate the multiplicity, disk mass, and accretion rate for each object in our sample in order to identify the mechanism potentially responsible for its inner hole. We find that our transition disks show a rich diversity in their spectral energy distribution morphology, have disk masses ranging from ∼ JUP , and accretion rates ranging from ∼ –11 to 10 –7.7 M ☉ yr –1 . Of the 17 bona fide transition disks in our sample, three, nine, three, and two objects are consistent with giant planet formation, grain growth, photoevaporation, and debris disks, respectively. Two disks could be circumbinary, which offers tidal truncation as an alternative origin of the inner hole. We find the same heterogeneity of the transition disk population in Lupus III, IV, and Corona Australis as in our previous analysis of transition disks in Ophiuchus while all transition disk candidates selected in Lupus V, VI turned out to be contaminating background asymptotic giant branch stars. All transition disks classified as photoevaporating disks have small disk masses, which indicates that photoevaporation must be less efficient than predicted by most recent models. The three systems that are excellent candidates for harboring giant planets potentially represent invaluable laboratories to study planet formation with the Atacama Large Millimeter/Submillimeter Array.

  11. Probing Protoplanetary Disks: From Birth to Planets

    Science.gov (United States)

    Cox, Erin Guilfoil

    2018-01-01

    Disks are very important in the evolution of protostars and their subsequent planets. How early disks can form has implications for early planet formation. In the youngest protostars (i.e., Class 0 sources) magnetic fields can control disk growth. When the field is parallel to the collapsing core’s rotation axis, infalling material loses angular momentum and disks form in later stages. Sub-/millimeter polarization continuum observations of Class 0 sources at ~1000 au resolution support this idea. However, in the inner (~100 au), denser regions, it is unknown if the polarization only traces aligned dust grains. Recent theoretical studies have shown that self-scattering of thermal emission in the disk may contribute significantly to the polarization. Determining the scattering contribution in these sources is important to disentangle the magnetic field. At older times (the Class II phase), the disk structure can both act as a modulator and signpost of planet formation, if there is enough of a mass reservoir. In my dissertation talk, I will present results that bear on disk evolution at both young and late ages. I will present 8 mm polarization results of two Class 0 protostars (IRAS 4A and IC348 MMS) from the VLA at ~50 au resolution. The inferred magnetic field of IRAS 4A has a circular morphology, reminiscent of material being dragged into a rotating structure. I will show results from SOFIA polarization data of the area surrounding IRAS 4A at ~4000 au. I will also present ALMA 850 micron polarization data of ten protostars in the Perseus Molecular Cloud. Most of these sources show very ordered patterns and low (~0.5%) polarization in their inner regions, while having very disordered patterns and high polarization patterns in their extended emission that may suggest different mechanisms in the inner/outer regions. Finally, I will present results from our ALMA dust continuum survey of protoplanetary disks in Rho Ophiuchus; we measured both the sizes and fluxes of

  12. Magnetohydrodynamics of accretion disks

    International Nuclear Information System (INIS)

    Torkelsson, U.

    1994-04-01

    The thesis consists of an introduction and summary, and five research papers. The introduction and summary provides the background in accretion disk physics and magnetohydrodynamics. The research papers describe numerical studies of magnetohydrodynamical processes in accretion disks. Paper 1 is a one-dimensional study of the effect of magnetic buoyancy on a flux tube in an accretion disk. The stabilizing influence of an accretion disk corona on the flux tube is demonstrated. Paper 2-4 present numerical simulations of mean-field dynamos in accretion disks. Paper 11 verifies the correctness of the numerical code by comparing linear models to previous work by other groups. The results are also extended to somewhat modified disk models. A transition from an oscillatory mode of negative parity for thick disks to a steady mode of even parity for thin disks is found. Preliminary results for nonlinear dynamos at very high dynamo numbers are also presented. Paper 3 describes the bifurcation behaviour of the nonlinear dynamos. For positive dynamo numbers it is found that the initial steady solution is replaced by an oscillatory solution of odd parity. For negative dynamo numbers the solution becomes chaotic at sufficiently high dynamo numbers. Paper 4 continues the studies of nonlinear dynamos, and it is demonstrated that a chaotic solution appears even for positive dynamo numbers, but that it returns to a steady solution of mixed parity at very high dynamo numbers. Paper 5 describes a first attempt at simulating the small-scale turbulence of an accretion disk in three dimensions. There is only find cases of decaying turbulence, but this is rather due to limitations of the simulations than that turbulence is really absent in accretion disks

  13. X-ray scatter removal by deconvolution

    International Nuclear Information System (INIS)

    Seibert, J.A.; Boone, J.M.

    1988-01-01

    The distribution of scattered x rays detected in a two-dimensional projection radiograph at diagnostic x-ray energies is measured as a function of field size and object thickness at a fixed x-ray potential and air gap. An image intensifier-TV based imaging system is used for image acquisition, manipulation, and analysis. A scatter point spread function (PSF) with an assumed linear, spatially invariant response is modeled as a modified Gaussian distribution, and is characterized by two parameters describing the width of the distribution and the fraction of scattered events detected. The PSF parameters are determined from analysis of images obtained with radio-opaque lead disks centrally placed on the source side of a homogeneous phantom. Analytical methods are used to convert the PSF into the frequency domain. Numerical inversion provides an inverse filter that operates on frequency transformed, scatter degraded images. Resultant inverse transformed images demonstrate the nonarbitrary removal of scatter, increased radiographic contrast, and improved quantitative accuracy. The use of the deconvolution method appears to be clinically applicable to a variety of digital projection images

  14. Accretion disks in active galactic nuclei

    International Nuclear Information System (INIS)

    Shields, G.A.

    1989-01-01

    Active galactic nuclei (AGN) have taunted astrophysicists for a quarter century. How do these objects produce huge luminosities---in some cases, far outshining our galaxy---from a region perhaps no larger than the solar system? Accretion onto supermassive black holes has been widely considered the best buy in theories of AGN. Much work has gone into accretion disk theory, searches for black holes in galactic nuclei, and observational tests. These efforts have not proved the disk model, but there is progress. Evidence for black holes in the nuclei of nearby galaxies is provided by observations of stellar velocities, and radiation from the disk's hot surface may be observed in the ultraviolet (UV) and neighboring spectral bands. In the review, the author describe some of the recent work on accretion disks in AGN, with an emphasis on points of contact between theory and observation

  15. Meteoritic Evidence for Injection of Trans-Neptunian Objects into the Inner Solar System

    Science.gov (United States)

    Zolensky, M.; Johnson, J.; Ziegler, K.; Chan, Q.; Kebukawa, Y.; Bottke, W.; Fries, M.; Martinez, J.; Le, L.

    2018-01-01

    There is excellent evidence that a dynamical instability in the early solar system led to gravitational interactions between the giant planets and trans-Neptunian planetesimals. Giant planetary migration triggered by the instability dispersed a disk of primordial trans-Neptunian object (TNOs) and created a number of small body reservoirs (e.g. the Kuiper Belt, scattered disk, irregular satellites, and the Jupiter/Neptune Trojan populations). It also injected numerous bodies into the main asteroid belt, where modeling shows they can successfully reproduce the observed P and D-type asteroid populations.

  16. Equilibrium configuration of a stratus floating above accretion disks: Full-disk calculation

    Science.gov (United States)

    Itanishi, Yusuke; Fukue, Jun

    2017-06-01

    We examine floating strati above a luminous accretion disk, supported by the radiative force from the entire disk, and calculate the equilibrium locus, which depends on the disk luminosity and the optical depth of the stratus. Due to the radiative transfer effect (albedo effect), the floating height of the stratus with a finite optical depth generally becomes high, compared with the particle case. In contrast to the case of the near-disk approximation, moreover, the floating height becomes yet higher in the present full-disk calculation, since the intense radiation from the inner disk is taken into account. As a result, when the disk luminosity normalized by the Eddington luminosity is ˜0.3 and the stratus optical depth is around unity, the stable configuration disappears at around r ˜ 50 rg, rg being the Schwarzschild radius, and the stratus would be blown off as a cloudy wind consisting of many strati with appropriate conditions. This luminosity is sufficiently smaller than the Eddington one, and the present results suggest that the radiation-driven cloudy wind can be easily blown off from the sub-Eddington disk, and this can explain various outflows observed in ultra-fast outflow objects as well as in broad-absorption-line quasars.

  17. Disk Defect Data

    Data.gov (United States)

    National Aeronautics and Space Administration — How Data Was Acquired: The data presented is from a physical simulator that simulated engine disks. Sample Rates and Parameter Description: All parameters are...

  18. HERSCHEL OBSERVATIONS OF THE T CHA TRANSITION DISK: CONSTRAINING THE OUTER DISK PROPERTIES

    OpenAIRE

    Cieza, Lucas A.; Olofsson, Johan; Harvey, Paul M.; Pinte, Christophe; Merin, Bruno; Augereau, Jean-Charles; Evans, Neal J., II; Najita, Joan; Henning, Thomas; Menard, Francois

    2011-01-01

    T Cha is a nearby (d = 100 pc) transition disk known to have an optically thin gap separating optically thick inner and outer disk components. Huelamo et al. (2011) recently reported the presence of a low-mass object candidate within the gap of the T Cha disk, giving credence to the suspected planetary origin of this gap. Here we present the Herschel photometry (70, 160, 250, 350, and 500 micron) of T Cha from the "Dust, Ice, and Gas in Time" (DIGIT) Key Program, which bridges the wavelength ...

  19. Verbatim Floppy Disk

    CERN Multimedia

    1976-01-01

    Introduced under the name "Verbatim", Latin for "literally", these disks that sized more than 5¼ inches have become almost universal on dedicated word processing systems and personal computers. This format was replaced more slowly by the 3½-inch format, introduced for the first time in 1982. Compared to today, these large format disks stored very little data. In reality, they could only contain a few pages of text.

  20. Mass distributions in disk galaxies

    NARCIS (Netherlands)

    Martinsson, Thomas; Verheijen, Marc; Bershady, Matthew; Westfall, Kyle; Andersen, David; Swaters, Rob

    We present results on luminous and dark matter mass distributions in disk galaxies from the DiskMass Survey. As expected for normal disk galaxies, stars dominate the baryonic mass budget in the inner region of the disk; however, at about four optical scale lengths (hR ) the atomic gas starts to

  1. Dusty disks around young stars

    NARCIS (Netherlands)

    Verhoeff, A.

    2009-01-01

    Stars are formed through the collapse of giant molecular clouds. During this contraction the matter spins up and naturally forms a circumstellar disk. Once accretion comes to a halt, these disks are relatively stable. Some disks are known to last up to 10 Myrs. Most disks however, dissipate on

  2. Stratified Simulations of Collisionless Accretion Disks

    Energy Technology Data Exchange (ETDEWEB)

    Hirabayashi, Kota; Hoshino, Masahiro, E-mail: hirabayashi-k@eps.s.u-tokyo.ac.jp [Department of Earth and Planetary Science, The University of Tokyo, Tokyo, 113-0033 (Japan)

    2017-06-10

    This paper presents a series of stratified-shearing-box simulations of collisionless accretion disks in the recently developed framework of kinetic magnetohydrodynamics (MHD), which can handle finite non-gyrotropy of a pressure tensor. Although a fully kinetic simulation predicted a more efficient angular-momentum transport in collisionless disks than in the standard MHD regime, the enhanced transport has not been observed in past kinetic-MHD approaches to gyrotropic pressure anisotropy. For the purpose of investigating this missing link between the fully kinetic and MHD treatments, this paper explores the role of non-gyrotropic pressure and makes the first attempt to incorporate certain collisionless effects into disk-scale, stratified disk simulations. When the timescale of gyrotropization was longer than, or comparable to, the disk-rotation frequency of the orbit, we found that the finite non-gyrotropy selectively remaining in the vicinity of current sheets contributes to suppressing magnetic reconnection in the shearing-box system. This leads to increases both in the saturated amplitude of the MHD turbulence driven by magnetorotational instabilities and in the resultant efficiency of angular-momentum transport. Our results seem to favor the fast advection of magnetic fields toward the rotation axis of a central object, which is required to launch an ultra-relativistic jet from a black hole accretion system in, for example, a magnetically arrested disk state.

  3. Sinuous oscillations and steady warps of polytropic disks

    International Nuclear Information System (INIS)

    Balmforth, N.J.; Spiegel, E.A.

    1995-05-01

    In an asymptotic development of the equations governing the equilibria and linear stability of rapidly rotating polytropes we employed the slender aspect of these objects to reduce the three-dimensional partial differential equations to a somewhat simpler, ordinary integro-differential form. The earlier calculations dealt with isolated objects that were in centrifugal balance, that is the centrifugal acceleration of the configuration was balanced largely by self gravity with small contributions from the pressure gradient. Another interesting situation is that in which the polytrope rotates subject to externally imposed gravitational fields. In astrophysics, this is common in the theory of galactic dynamics because disks are unlikely to be isolated objects. The dark halos associated with disks also provide one possible explanation of the apparent warping of many galaxies. If the axis of the highly flattened disk is not aligned with that of the much less flattened halo, then the resultant torque of the halo gravity on the disk might provide a nonaxisymmetric distortion or disk warp. Motivated by these possibilities we shall here build models of polytropic disks of small but finite thickness which are subjected to prescribed, external gravitational fields. First we estimate how a symmetrical potential distorts the structure of the disk, then we examine its sinuous oscillations to confirm that they freely decay, hence suggesting that a warp must be externally forced. Finally, we consider steady warps of the disk plane when the axis of the disk does not coincide with that of the halo

  4. Debris Disks: Probing Planet Formation

    OpenAIRE

    Wyatt, Mark C.

    2018-01-01

    Debris disks are the dust disks found around ~20% of nearby main sequence stars in far-IR surveys. They can be considered as descendants of protoplanetary disks or components of planetary systems, providing valuable information on circumstellar disk evolution and the outcome of planet formation. The debris disk population can be explained by the steady collisional erosion of planetesimal belts; population models constrain where (10-100au) and in what quantity (>1Mearth) planetesimals (>10km i...

  5. Fast, Capacious Disk Memory Device

    Science.gov (United States)

    Muller, Ronald M.

    1990-01-01

    Device for recording digital data on, and playing back data from, memory disks has high recording or playback rate and utilizes available recording area more fully. Two disks, each with own reading/writing head, used to record data at same time. Head on disk A operates on one of tracks numbered from outside in; head on disk B operates on track of same number in sequence from inside out. Underlying concept of device applicable to magnetic or optical disks.

  6. Source to Accretion Disk Tilt

    OpenAIRE

    Montgomery, M. M.; Martin, E. L.

    2010-01-01

    Many different system types retrogradely precess, and retrograde precession could be from a tidal torque by the secondary on a misaligned accretion disk. However, a source to cause and maintain disk tilt is unknown. In this work, we show that accretion disks can tilt due to a force called lift. Lift results from differing gas stream supersonic speeds over and under an accretion disk. Because lift acts at the disk's center of pressure, a torque is applied around a rotation axis passing through...

  7. SIGNATURES OF GRAVITATIONAL INSTABILITY IN RESOLVED IMAGES OF PROTOSTELLAR DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Ruobing [Lawrence Berkeley National Lab, Berkeley, CA 94720 (United States); Vorobyov, Eduard [Department of Astrophysics, The University of Vienna, Vienna, A-1180 (Austria); Pavlyuchenkov, Yaroslav [Institute of Astronomy, Russian Academy of Sciences, Moscow (Russian Federation); Chiang, Eugene [Department of Astronomy, University of California at Berkeley, Berkeley, CA 94720 (United States); Liu, Hauyu Baobab, E-mail: rdong2013@berkeley.edu [European Southern Observatory (ESO), Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany)

    2016-06-01

    Protostellar (class 0/I) disks, which have masses comparable to those of their nascent host stars and are fed continuously from their natal infalling envelopes, are prone to gravitational instability (GI). Motivated by advances in near-infrared (NIR) adaptive optics imaging and millimeter-wave interferometry, we explore the observational signatures of GI in disks using hydrodynamical and Monte Carlo radiative transfer simulations to synthesize NIR scattered light images and millimeter dust continuum maps. Spiral arms induced by GI, located at disk radii of hundreds of astronomical units, are local overdensities and have their photospheres displaced to higher altitudes above the disk midplane; therefore, arms scatter more NIR light from their central stars than inter-arm regions, and are detectable at distances up to 1 kpc by Gemini/GPI, VLT/SPHERE, and Subaru/HiCIAO/SCExAO. In contrast, collapsed clumps formed by disk fragmentation have such strong local gravitational fields that their scattering photospheres are at lower altitudes; such fragments appear fainter than their surroundings in NIR scattered light. Spiral arms and streamers recently imaged in four FU Ori systems at NIR wavelengths resemble GI-induced structures and support the interpretation that FUors are gravitationally unstable protostellar disks. At millimeter wavelengths, both spirals and clumps appear brighter in thermal emission than the ambient disk and can be detected by ALMA at distances up to 0.4 kpc with one hour integration times at ∼0.″1 resolution. Collapsed fragments having masses ≳1 M {sub J} can be detected by ALMA within ∼10 minutes.

  8. Does the debris disk around HD 32297 contain cometary grains?

    Energy Technology Data Exchange (ETDEWEB)

    Rodigas, Timothy J.; Hinz, Philip M.; Bailey, Vanessa; Defrere, Denis; Leisenring, Jarron; Schneider, Glenn; Skemer, Andrew J.; Vaitheeswaran, Vidhya [Steward Observatory, The University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Debes, John H. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Mamajek, Eric E.; Pecaut, Mark J. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627-0171 (United States); Currie, Thayne [University of Toronto, 50 St. George Street, Toronto, ON M5S 1A1 (Canada); De Rosa, Robert J.; Ward-Duong, Kimberly [School of Earth and Space Exploration, Arizona State University, P.O. Box 871404, Tempe, AZ 85287-1404 (United States); Hill, John M. [Large Binocular Telescope Observatory, University of Arizona, Tucson, AZ 85721 (United States); Skrutskie, Michael, E-mail: rodigas@as.arizona.edu [Department of Astronomy, University of Virginia, 530 McCormick Road, Charlottesville, VA 22903 (United States)

    2014-03-01

    We present an adaptive optics imaging detection of the HD 32297 debris disk at L' (3.8 μm) obtained with the LBTI/LMIRcam infrared instrument at the Large Binocular Telescope. The disk is detected at signal-to-noise ratio per resolution element ∼3-7.5 from ∼0.''3 to 1.''1 (30-120 AU). The disk at L' is bowed, as was seen at shorter wavelengths. This likely indicates that the disk is not perfectly edge-on and contains highly forward-scattering grains. Interior to ∼50 AU, the surface brightness at L' rises sharply on both sides of the disk, which was also previously seen at Ks band. This evidence together points to the disk containing a second inner component located at ≲50 AU. Comparing the color of the outer (50 disk at L' with archival Hubble Space Telescope/NICMOS images of the disk at 1-2 μm allows us to test the recently proposed cometary grains model of Donaldson et al. We find that the model fails to match this disk's surface brightness and spectrum simultaneously (reduced chi-square = 17.9). When we modify the density distribution of the model disk, we obtain a better overall fit (reduced chi-square = 2.87). The best fit to all of the data is a pure water ice model (reduced chi-square = 1.06), but additional resolved imaging at 3.1 μm is necessary to constrain how much (if any) water ice exists in the disk, which can then help refine the originally proposed cometary grains model.

  9. PLANETESIMAL DISK MICROLENSING

    International Nuclear Information System (INIS)

    Heng, Kevin; Keeton, Charles R.

    2009-01-01

    Motivated by debris disk studies, we investigate the gravitational microlensing of background starlight by a planetesimal disk around a foreground star. We use dynamical survival models to construct a plausible example of a planetesimal disk and study its microlensing properties using established ideas of microlensing by small bodies. When a solar-type source star passes behind a planetesimal disk, the microlensing light curve may exhibit short-term, low-amplitude residuals caused by planetesimals several orders of magnitude below Earth mass. The minimum planetesimal mass probed depends on the photometric sensitivity and the size of the source star, and is lower when the planetesimal lens is located closer to us. Planetesimal lenses may be found more nearby than stellar lenses because the steepness of the planetesimal mass distribution changes how the microlensing signal depends on the lens/source distance ratio. Microlensing searches for planetesimals require essentially continuous monitoring programs that are already feasible and can potentially set constraints on models of debris disks, the progeny of the supposed extrasolar analogues of Kuiper Belts.

  10. IMAGING DISCOVERY OF THE DEBRIS DISK AROUND HIP 79977

    Energy Technology Data Exchange (ETDEWEB)

    Thalmann, C.; Dominik, C. [Astronomical Institute ' Anton Pannekoek' , University of Amsterdam, Amsterdam (Netherlands); Janson, M.; Brandt, T. D.; Knapp, G. R. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ (United States); Buenzli, E. [Department of Astronomy and Steward Observatory, University of Arizona, Tucson, AZ (United States); Wisniewski, J. P. [H.L. Dodge Department of Physics and Astronomy, University of Oklahoma, OK (United States); Carson, J. [Department of Physics and Astronomy, College of Charleston, Charleston, SC (United States); McElwain, M. W. [NASA Goddard Space Flight Center, Greenbelt, MD (United States); Currie, T. [Department of Astronomy and Astrophysics, University of Toronto, Toronto (Canada); Moro-Martin, A. [Department of Astrophysics, CAB-CSIC/INTA, Madrid (Spain); Usuda, T.; Egner, S.; Golota, T.; Guyon, O. [Subaru Telescope, Hilo, HI (United States); Abe, L. [Laboratoire Hippolyte Fizeau, Nice (France); Brandner, W.; Feldt, M. [Max Planck Institute for Astronomy, Heidelberg (Germany); Goto, M. [Universitaetssternwerte Muenchen, Ludwig-Maximilians-Universitaet, Munich (Germany); Hashimoto, J., E-mail: thalmann@uva.nl [National Astronomical Observatory of Japan, Tokyo (Japan); and others

    2013-02-01

    We present Subaru/HiCIAO H-band high-contrast images of the debris disk around HIP 79977, whose presence was recently inferred from an infrared excess. Our images resolve the disk for the first time, allowing characterization of its shape, size, and dust grain properties. We use angular differential imaging (ADI) to reveal the disk geometry in unpolarized light out to a radius of {approx}2'', as well as polarized differential imaging to measure the degree of scattering polarization out to {approx}1.''5. In order to strike a favorable balance between suppression of the stellar halo and conservation of disk flux, we explore the application of principal component analysis to both ADI and reference star subtraction. This allows accurate forward modeling of the effects of data reduction on simulated disk images, and thus direct comparison with the imaged disk. The resulting best-fit values and well-fitting intervals for the model parameters are a surface brightness power-law slope of S{sub out} = -3.2[ - 3.6, -2.9], an inclination of i = 84 Degree-Sign [81 Degree-Sign , 86 Degree-Sign ], a high Henyey-Greenstein forward-scattering parameter of g = 0.45[0.35, 0.60], and a non-significant disk-star offset of u = 3.0[ - 1.5, 7.5] AU = 24[ - 13, 61] mas along the line of nodes. Furthermore, the tangential linear polarization along the disk rises from {approx}10% at 0.''5 to {approx}45% at 1.''5. These measurements paint a consistent picture of a disk of dust grains produced by collisional cascades and blown out to larger radii by stellar radiation pressure.

  11. Computing Temperatures in Optically Thick Protoplanetary Disks

    Science.gov (United States)

    Capuder, Lawrence F.. Jr.

    2011-01-01

    We worked with a Monte Carlo radiative transfer code to simulate the transfer of energy through protoplanetary disks, where planet formation occurs. The code tracks photons from the star into the disk, through scattering, absorption and re-emission, until they escape to infinity. High optical depths in the disk interior dominate the computation time because it takes the photon packet many interactions to get out of the region. High optical depths also receive few photons and therefore do not have well-estimated temperatures. We applied a modified random walk (MRW) approximation for treating high optical depths and to speed up the Monte Carlo calculations. The MRW is implemented by calculating the average number of interactions the photon packet will undergo in diffusing within a single cell of the spatial grid and then updating the packet position, packet frequencies, and local radiation absorption rate appropriately. The MRW approximation was then tested for accuracy and speed compared to the original code. We determined that MRW provides accurate answers to Monte Carlo Radiative transfer simulations. The speed gained from using MRW is shown to be proportional to the disk mass.

  12. A Pulsar and a Disk

    Science.gov (United States)

    Kohler, Susanna

    2016-07-01

    Recent, unusual X-ray observations from our galactic neighbor, the Small Magellanic Cloud, have led to an interesting model for SXP 214, a pulsar in a binary star system.Artists illustration of the magnetic field lines of a pulsar, a highly magnetized, rotating neutron star. [NASA]An Intriguing BinaryAn X-ray pulsar is a magnetized, rotating neutron star in a binary system with a stellar companion. Material is fed from the companion onto the neutron star, channeled by the objects magnetic fields onto a hotspot thats millions of degrees. This hotspot rotating past our line of sight is what produces the pulsations that we observe from X-ray pulsars.Located in the Small Magellanic Cloud, SXP 214 is a transient X-ray pulsar in a binary with a Be-type star. This star is spinning so quickly that material is thrown off of it to form a circumstellar disk.Recently, a team of authors led by JaeSub Hong (Harvard-Smithsonian Center for Astrophysics) have presented new Chandra X-ray observations of SXP 214, tracking it for 50 ks (~14 hours) in January 2013. These observations reveal some very unexpected behavior for this pulsar.X-ray PuzzleThe energy distribution of the X-ray emission from SXP 214 over time. Dark shades or blue colors indicate high counts, and light shades or yellow colors indicate low counts. Lower-energy X-ray emission appeared only later, after about 20 ks. [Hong et al. 2016]Three interesting pieces of information came from the Chandra observations:SXP 214s rotation period was measured to be 211.5 s an increase in the spin rate since the discovery measurement of a 214-second period. Pulsars usually spin down as they lose angular momentum over time so what caused this one to spin up?Its overall X-ray luminosity steadily increased over the 50 ks of observations.Its spectrum became gradually softer (lower energy) over time; in the first 20 ks, the spectrum only consisted of hard X-ray photons above 3 keV, but after 20 ks, softer X-ray photons below 2 ke

  13. Premixed direct injection disk

    Science.gov (United States)

    York, William David; Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin; Zuo, Baifang; Uhm, Jong Ho

    2013-04-23

    A fuel/air mixing disk for use in a fuel/air mixing combustor assembly is provided. The disk includes a first face, a second face, and at least one fuel plenum disposed therebetween. A plurality of fuel/air mixing tubes extend through the pre-mixing disk, each mixing tube including an outer tube wall extending axially along a tube axis and in fluid communication with the at least one fuel plenum. At least a portion of the plurality of fuel/air mixing tubes further includes at least one fuel injection hole have a fuel injection hole diameter extending through said outer tube wall, the fuel injection hole having an injection angle relative to the tube axis. The invention provides good fuel air mixing with low combustion generated NOx and low flow pressure loss translating to a high gas turbine efficiency, that is durable, and resistant to flame holding and flash back.

  14. Herniated lumbar intervertebral disk

    International Nuclear Information System (INIS)

    Hochhauser, L.; Cacayorin, E.D.; Karcnik, T.J.; McGowan, D.P.; Clark, K.G.; Storrs, D.; Kieffer, S.A.

    1988-01-01

    From a series of 25 patients with low-back pain and sciatica who subsequently underwent surgical exploration, 24 lumbar herniated disks and one asymmetrically bulging disk were correctly diagnosed with use of a 0.5-T MR imaging unit. The radiologic findings on saggital images included a polypoid protrusion beyond the posterior margin of the vertebral bodies more clearly displayed with T1-weighted than with T-2 weighted sequences and a focal extension into the extradural space on axial views. In most, the signal intensity of HNP was isointense to the disk of origin. The study suggests that MR imaging is currently capable of accurately predicting an HNP. The diagnosis is based primarily on morphologic characteristics rather than signal intensity alterations

  15. Relativistic, accreting disks

    International Nuclear Information System (INIS)

    Abramowicz, M.A; Jaroszynski, M.; Sikora, M.

    1978-01-01

    An analytic theory of the hydrodynamical structure of accreting disks (without self-gravitation but with pressure) orbiting around and axially symmetric, stationary, compact body (e.g. black hole) is presented. The inner edge of the marginally stable accreting disk (i.e. disk with constant angular momentum density) has a sharp cusp located on the equatorial plane between rsub(ms) and rsub(mb). The existence of the cusp is also typical for any angular momentum distribution. The physical importance of the cusp follows from the close analogy with the case of a close binary system (L 1 Lagrange point on the Roche lobe). The existence of the cusp is thus a crucial phenomenon in such problems as boundary condition for the viscous stresses, accretion rate etc. (orig.) [de

  16. Relativistic, accreting disks

    Energy Technology Data Exchange (ETDEWEB)

    Abramowicz, M A; Jaroszynski, M; Sikora, M [Polska Akademia Nauk, Warsaw

    1978-02-01

    An analytic theory of the hydrodynamical structure of accreting disks (without self-gravitation but with pressure) orbiting around an axially symmetric, stationary, compact body (e.g. black hole) is presented. The inner edge of the marginally stable accreting disk (i.e. disk with constant angular momentum density) has a sharp cusp located on the equatorial plane between r/sub ms/ and r/sub mb/. The existence of the cusp is also typical for any angular momentum distribution. The physical importance of the cusp follows from the close analogy with the case of a close binary system (L/sub 1/ Lagrange point on the Roche lobe). The existence of the cusp is thus a crucial phenomenon in such problems as boundary condition for the viscous stresses, accretion rate, etc.

  17. Chemistry in protoplanetary disks

    Science.gov (United States)

    Semenov, D. A.

    2012-01-01

    In this lecture I discuss recent progress in the understanding of the chemical evolution of protoplanetary disks that resemble our Solar system during the first ten million years. At the verge of planet formation, strong variations of temperature, density, and radiation intensities in these disks lead to a layered chemical structure. In hot, dilute and heavily irradiated atmosphere only simple radicals, atoms, and atomic ions can survive, formed and destroyed by gas-phase processes. Beneath the atmosphere a partly UV-shielded, warm molecular layer is located, where high-energy radiation drives rich chemistry, both in the gas phase and on dust surfaces. In a cold, dense, dark disk midplane many molecules are frozen out, forming thick icy mantles where surface chemistry is active and where complex (organic) species are synthesized.

  18. Testing the black disk limit in $pp$ collisions at very high energy

    OpenAIRE

    Brogueira, P.; de Deus, J. Dias

    2011-01-01

    We use geometric scaling invariant quantities to measure the approach, or not, of the imaginary and real parts of the elastic scattering amplitude, to the black disk limit, in $pp$ collisions at very high energy.

  19. High-Contrast Near-Infrared Imaging Polarimetry of the Protoplanetary Disk around RY Tau

    Science.gov (United States)

    Takami, Michihiro; Karr, Jennifer L.; Hashimoto, Jun; Kim, Hyosun; Wisenewski, John; Henning, Thomas; Grady, Carol; Kandori, Ryo; Hodapp, Klaus W.; Kudo, Tomoyuki; hide

    2013-01-01

    We present near-infrared coronagraphic imaging polarimetry of RY Tau. The scattered light in the circumstellar environment was imaged at H-band at a high resolution (approx. 0.05) for the first time, using Subaru-HiCIAO. The observed polarized intensity (PI) distribution shows a butterfly-like distribution of bright emission with an angular scale similar to the disk observed at millimeter wavelengths. This distribution is offset toward the blueshifted jet, indicating the presence of a geometrically thick disk or a remnant envelope, and therefore the earliest stage of the Class II evolutionary phase. We perform comparisons between the observed PI distribution and disk models with: (1) full radiative transfer code, using the spectral energy distribution (SED) to constrain the disk parameters; and (2) monochromatic simulations of scattered light which explore a wide range of parameters space to constrain the disk and dust parameters. We show that these models cannot consistently explain the observed PI distribution, SED, and the viewing angle inferred by millimeter interferometry. We suggest that the scattered light in the near-infrared is associated with an optically thin and geometrically thick layer above the disk surface, with the surface responsible for the infrared SED. Half of the scattered light and thermal radiation in this layer illuminates the disk surface, and this process may significantly affect the thermal structure of the disk.

  20. HIGH-CONTRAST NEAR-INFRARED IMAGING POLARIMETRY OF THE PROTOPLANETARY DISK AROUND RY TAU

    Energy Technology Data Exchange (ETDEWEB)

    Takami, Michihiro; Karr, Jennifer L.; Kim, Hyosun; Chou, Mei-Yin [Institute of Astronomy and Astrophysics, Academia Sinica. P.O. Box 23-141, Taipei 10617, Taiwan (China); Hashimoto, Jun; Kandori, Ryo; Kusakabe, Nobuhiko; Kwon, Jungmi [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Wisniewski, John [H. L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 West Brooks Street, Norman, OK 73019 (United States); Henning, Thomas; Brandner, Wolfgang [Max Planck Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany); Grady, Carol A. [Eureka Scientific, 2452 Delmer, Suite 100, Oakland, CA 96002 (United States); Hodapp, Klaus W. [Institute for Astronomy, University of Hawaii, 640 North A' ohoku Place, Hilo, HI 96720 (United States); Kudo, Tomoyuki [Subaru Telescope, 650 North A' ohoku Place, Hilo, HI 96720 (United States); Itoh, Yoichi [Nishi-Harima Astronomical Observatory, Center for Astronomy, University of Hyogo, 407-2 Nishigaichi, Sayo, Hyogo 679-5313 (Japan); Momose, Munetake [College of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512 (Japan); Mayama, Satoshi [The Center for the Promotion of Integrated Sciences, The Graduate University for Advanced Studies (SOKENDAI), Shonan International Village, Hayama-cho, Miura-gun, Kanagawa 240-0193 (Japan); Currie, Thayne [Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON (Canada); Follette, Katherine B. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson AZ 85721 (United States); Abe, Lyu, E-mail: hiro@asiaa.sinica.edu.tw [Laboratoire Lagrange (UMR 7293), Universite de Nice-Sophia Antipolis, CNRS, Observatoire de la Cote d' Azur, 28 Avenue Valrose, F-06108 Nice Cedex 2 (France); and others

    2013-08-01

    We present near-infrared coronagraphic imaging polarimetry of RY Tau. The scattered light in the circumstellar environment was imaged at the H band at a high resolution ({approx}0.''05) for the first time, using Subaru/HiCIAO. The observed polarized intensity (PI) distribution shows a butterfly-like distribution of bright emission with an angular scale similar to the disk observed at millimeter wavelengths. This distribution is offset toward the blueshifted jet, indicating the presence of a geometrically thick disk or a remnant envelope, and therefore the earliest stage of the Class II evolutionary phase. We perform comparisons between the observed PI distribution and disk models with (1) full radiative transfer code, using the spectral energy distribution (SED) to constrain the disk parameters; and (2) monochromatic simulations of scattered light which explore a wide range of parameters space to constrain the disk and dust parameters. We show that these models cannot consistently explain the observed PI distribution, SED, and the viewing angle inferred by millimeter interferometry. We suggest that the scattered light in the near-infrared is associated with an optically thin and geometrically thick layer above the disk surface, with the surface responsible for the infrared SED. Half of the scattered light and thermal radiation in this layer illuminates the disk surface, and this process may significantly affect the thermal structure of the disk.

  1. RESOLVING THE PLANET-HOSTING INNER REGIONS OF THE LkCa 15 DISK

    Energy Technology Data Exchange (ETDEWEB)

    Thalmann, C.; Garufi, A.; Quanz, S. P.; Daemgen, S.; Engler, N. [ETH Zurich, Institute for Astronomy, Wolfgang-Pauli-Strasse 27, 8093 Zurich (Switzerland); Janson, M. [Department of Astronomy, Stockholm University, SE-106 91 Stockholm (Sweden); Boccaletti, A. [LESIA, Observatoire de Paris, PSL Research University, CNRS, Université Paris Diderot, Sorbonne Paris Cité, UPMC Paris 6, Sorbonne Université, 5 place Jules Janssen, F-92195 Meudon CEDEX (France); Sissa, E.; Gratton, R.; Desidera, S. [INAF–Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122 Padova (Italy); Salter, G.; Langlois, M. [Aix Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, F-13388 Marseille (France); Benisty, M.; Bonnefoy, M.; Chauvin, G.; Lagrange, A.-M.; Lannier, J. [Université Grenoble Alpes, IPAG, F-38000 Grenoble (France); Dominik, C. [Anton Pannekoek Institute, University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Feldt, M.; Henning, T., E-mail: thalmann@phys.ethz.ch [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); and others

    2016-09-10

    LkCa 15 hosts a pre-transitional disk as well as at least one accreting protoplanet orbiting in its gap. Previous disk observations have focused mainly on the outer disk, which is cleared inward of ∼50 au. The planet candidates, on the other hand, reside at orbital radii around 15 au, where disk observations have been unreliable until recently. Here, we present new J -band imaging polarimetry of LkCa 15 with SPHERE IRDIS, yielding the most accurate and detailed scattered-light images of the disk to date down to the planet-hosting inner regions. We find what appear to be persistent asymmetric structures in the scattering material at the location of the planet candidates, which could be responsible at least for parts of the signals measured with sparse-aperture masking. These images further allow us to trace the gap edge in scattered light at all position angles and search the inner and outer disks for morphological substructure. The outer disk appears smooth with slight azimuthal variations in polarized surface brightness, which may be due to shadowing from the inner disk or a two-peaked polarized phase function. We find that the near-side gap edge revealed by polarimetry matches the sharp crescent seen in previous ADI imaging very well. Finally, the ratio of polarized disk to stellar flux is more than six times larger in the J -band than in the RI bands.

  2. Probabilistic Sensitivities for Fatigue Analysis of Turbine Engine Disks

    Directory of Open Access Journals (Sweden)

    Harry R. Millwater

    2006-01-01

    Full Text Available A methodology is developed and applied that determines the sensitivities of the probability-of-fracture of a gas turbine disk fatigue analysis with respect to the parameters of the probability distributions describing the random variables. The disk material is subject to initial anomalies, in either low- or high-frequency quantities, such that commonly used materials (titanium, nickel, powder nickel and common damage mechanisms (inherent defects or surface damage can be considered. The derivation is developed for Monte Carlo sampling such that the existing failure samples are used and the sensitivities are obtained with minimal additional computational time. Variance estimates and confidence bounds of the sensitivity estimates are developed. The methodology is demonstrated and verified using a multizone probabilistic fatigue analysis of a gas turbine compressor disk analysis considering stress scatter, crack growth propagation scatter, and initial crack size as random variables.

  3. PROTOPLANETARY DISK HEATING AND EVOLUTION DRIVEN BY SPIRAL DENSITY WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Rafikov, Roman R., E-mail: rrr@ias.edu [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States)

    2016-11-10

    Scattered light imaging of protoplanetary disks often reveals prominent spiral arms, likely excited by massive planets or stellar companions. Assuming that these arms are density waves, evolving into spiral shocks, we assess their effect on the thermodynamics, accretion, and global evolution of the disk. We derive analytical expressions for the direct (irreversible) heating, angular momentum transport, and mass accretion rate induced by disk shocks of arbitrary amplitude. These processes are very sensitive to the shock strength. We show that waves of moderate strength (density jump at the shock ΔΣ/Σ ∼ 1) result in negligible disk heating (contributing at the ∼1% level to the energy budget) in passive, irradiated protoplanetary disks on ∼100 au scales, but become important within several au. However, shock heating is a significant (or even dominant) energy source in disks of cataclysmic variables, stellar X-ray binaries, and supermassive black hole binaries, heated mainly by viscous dissipation. Mass accretion induced by the spiral shocks is comparable to (or exceeds) the mass inflow due to viscous stresses. Protoplanetary disks featuring prominent global spirals must be evolving rapidly, in ≲0.5 Myr at ∼100 au. A direct upper limit on the evolution timescale can be established by measuring the gravitational torque due to the spiral arms from the imaging data. We find that, regardless of their origin, global spiral waves must be important agents of the protoplanetary disk evolution. They may serve as an effective mechanism of disk dispersal and could be related to the phenomenon of transitional disks.

  4. PROTOPLANETARY DISK HEATING AND EVOLUTION DRIVEN BY SPIRAL DENSITY WAVES

    International Nuclear Information System (INIS)

    Rafikov, Roman R.

    2016-01-01

    Scattered light imaging of protoplanetary disks often reveals prominent spiral arms, likely excited by massive planets or stellar companions. Assuming that these arms are density waves, evolving into spiral shocks, we assess their effect on the thermodynamics, accretion, and global evolution of the disk. We derive analytical expressions for the direct (irreversible) heating, angular momentum transport, and mass accretion rate induced by disk shocks of arbitrary amplitude. These processes are very sensitive to the shock strength. We show that waves of moderate strength (density jump at the shock ΔΣ/Σ ∼ 1) result in negligible disk heating (contributing at the ∼1% level to the energy budget) in passive, irradiated protoplanetary disks on ∼100 au scales, but become important within several au. However, shock heating is a significant (or even dominant) energy source in disks of cataclysmic variables, stellar X-ray binaries, and supermassive black hole binaries, heated mainly by viscous dissipation. Mass accretion induced by the spiral shocks is comparable to (or exceeds) the mass inflow due to viscous stresses. Protoplanetary disks featuring prominent global spirals must be evolving rapidly, in ≲0.5 Myr at ∼100 au. A direct upper limit on the evolution timescale can be established by measuring the gravitational torque due to the spiral arms from the imaging data. We find that, regardless of their origin, global spiral waves must be important agents of the protoplanetary disk evolution. They may serve as an effective mechanism of disk dispersal and could be related to the phenomenon of transitional disks.

  5. VLBA Observations of Strong Anisotripic Radio Scattering Toward the Orion Nebula

    Science.gov (United States)

    Kounkel, Marina; Hartmann, Lee; Loinard, Laurent; Mioduszewski, Amy J.; Rodríguez, Luis F.; Ortiz-León, Gisela N.; Johnson, Michael D.; Torres, Rosa M.; Briceño, Cesar

    2018-05-01

    We present observations of VLBA 20, a radio source found toward the edge of the Orion Nebula Cluster (ONC). Nonthermal emission dominates the spectral energy distribution of this object from the radio to mid-infrared regime, suggesting that VLBA 20 is extragalactic. This source is heavily scattered in the radio regime. Very Long Baseline Array observations resolve it to ∼34 × 19 mas at 5 GHz, and the wavelength dependence of the scattering disk is consistent with ν ‑2 at other frequencies. The origin of the scattering is most likely the ionized X-ray emitting gas from the winds of the most massive stars of the ONC. The scattering is highly anisotropic, with the axis ratio of 2:1, higher than what is typically observed toward other sources.

  6. Modeling Protoplanetary Disks

    Science.gov (United States)

    Holman, Megan; Tubbs, Drake; Keller, L. D.

    2018-01-01

    Using spectra models with known parameters and comparing them to spectra gathered from real systems is often the only ways to find out what is going on in those real systems. This project uses the modeling programs of RADMC-3D to generate model spectra for systems containing protoplanetary disks. The parameters can be changed to simulate protoplanetary disks in different stages of planet formation, with different sized gaps in different areas of the disks, as well as protoplanetary disks that contain different types of dust. We are working on producing a grid of models that all have different variations in the parameters in order to generate a miniature database to use for comparisons to gathered spectra. The spectra produced from these simulations will be compared to spectra that have been gathered from systems in the Small Magellanic cloud in order to find out the contents and stage of development of that system. This allows us to see if and how planets are forming in the Small Magellanic cloud, a region which has much less metallicity than our own galaxy. The data we gather from comparisons between the model spectra and the spectra of systems in the Small Magellanic Cloud can then be applied to how planets may have formed in the early universe.

  7. The Disk Mass Project

    NARCIS (Netherlands)

    Verheijen, Marc A. W.; Bershady, Matthew A.; Swaters, Rob A.; Andersen, David R.; Westfall, Kyle B.; de Jong, Roelof Sybe

    2007-01-01

    Little is known about the content and distribution of dark matter in spiral galaxies. To break the degeneracy in galaxy rotation curve decompositions, which allows a wide range of dark matter halo density profiles, an independent measure of the mass surface density of stellar disks is needed. Here,

  8. IMAGING THE INNER AND OUTER GAPS OF THE PRE-TRANSITIONAL DISK OF HD 169142 AT 7 mm

    Energy Technology Data Exchange (ETDEWEB)

    Osorio, Mayra; Anglada, Guillem; Macías, Enrique; Gómez, José F.; Mayen-Gijon, Juan M. [Instituto de Astrofísica de Andalucía (CSIC), Glorieta de la Astronomía s/n, E-18008 Granada (Spain); Carrasco-González, Carlos; Rodríguez, Luis F.; D' Alessio, Paola [Centro de Radioastronomía y Astrofísica, UNAM, Apartado Postal 3-72 (Xangari), 58089 Morelia, Michoacán (Mexico); Torrelles, José M. [Institut de Ciències de l' Espai (CSIC)-Institut de Ciències del Cosmos (UB)/IEEC, Martí i Franquès 1, E-08028 Barcelona (Spain); Calvet, Nuria [Department of Astronomy, University of Michigan, 825 Dennison Building, 500 Church Street, Ann Arbor, MI 48109 (United States); Nagel, Erick [Departamento de Astronomía, Universidad de Guanajuato, Guanajuato, Gto 36240 (Mexico); Dent, William R. F. [ALMA SCO, Alonso de Córdova 3107, Vitacura, Santiago (Chile); Quanz, Sascha P.; Reggiani, Maddalena, E-mail: osorio@iaa.es [Institute for Astronomy, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich (Switzerland)

    2014-08-20

    We present Very Large Array observations at 7 mm that trace the thermal emission of large dust grains in the HD 169142 protoplanetary disk. Our images show a ring of enhanced emission of radius ∼25-30 AU, whose inner region is devoid of detectable 7 mm emission. We interpret this ring as tracing the rim of an inner cavity or gap, possibly created by a planet or a substellar companion. The ring appears asymmetric, with the western part significantly brighter than the eastern one. This azimuthal asymmetry is reminiscent of the lopsided structures that are expected to be produced as a consequence of trapping of large dust grains. Our observations also reveal an outer annular gap at radii from ∼40 to ∼70 AU. Unlike other sources, the radii of the inner cavity, the ring, and the outer gap observed in the 7 mm images, which trace preferentially the distribution of large (millimeter/centimeter sized) dust grains, coincide with those obtained from a previous near-infrared polarimetric image, which traces scattered light from small (micron-sized) dust grains. We model the broadband spectral energy distribution and the 7 mm images to constrain the disk physical structure. From this modeling we infer the presence of a small (radius ∼0.6 AU) residual disk inside the central cavity, indicating that the HD 169142 disk is a pre-transitional disk. The distribution of dust in three annuli with gaps in between them suggests that the disk in HD 169142 is being disrupted by at least two planets or substellar objects.

  9. Rotation of a metal gear disk in an ultrasonic levitator

    Science.gov (United States)

    Rendon, Pablo L.; Boullosa, Ricardo R.; Salazar, Laura

    2016-11-01

    The phenomenon known as acoustic radiation pressure is well-known to be associated with the time-averaged momentum flux of an acoustic wave, and precisely because it is a time-averaged effect, it is relatively easy to observe experimentally. An ultrasonic levitator makes use of this effect to levitate small particles. Although it is a less-well studied effect, the transfer of angular momentum using acoustic waves in air or liquids has nonetheless been the subject of some recent studies. This transfer depends on the scattering and absorbing properties of the object and is achieved, typically, through the generation of acoustic vortex beams. In the present study, we examine the manner in which the acoustic standing wave located between two disks of an ultrasonic levitator in air may transfer angular momentum to objects with different shapes. In this case, a non-spherical object is subjected to, in addition to the radiation force, a torque which induces rotation. Analytical solutions for the acoustic force and torque are available, but limited to a few simple cases. In general, a finite element model must be used to obtain solutions. Thus, we develop and validate a finite element simulation in order to calculate directly the torque and radiation force.

  10. Hydraulic jumps in ''viscous'' accretion disks

    International Nuclear Information System (INIS)

    Michel, F.C.

    1984-01-01

    We propose that the dissipative process necessary for rapid accretion disk evolution is driven by hydraulic jump waves on the surface of the disk. These waves are excited by the asymmetric nature of the central rotator (e.g., neutron star magnetosphere) and spiral out into the disk to form a pattern corotating with the central object. Disk matter in turn is slowed slightly at each encounter with the jump and spirals inward. In this process, the disk is heated by true turbulence produced in the jumps. Additional effects, such as a systematic misalignment of the magnetic moment of the neutron star until it is nearly orthogonal, and systematic distortion of the magnetosphere in such a way as to form an even more asymmetric central ''paddle wheel'' may enhance the interaction with inflowing matter. The application to X-ray sources corresponds to the ''slow'' solutions of Ghosh and Lamb, and therefore to rms magnetic fields of about 4 x 10 10 gauss. Analogous phenomena have been proposed to act in the formation of galactic spiral structure

  11. Estimation of residual stress in cold rolled iron-disks from strain measurements on the high resolution Fourier diffractometer

    International Nuclear Information System (INIS)

    Aksenov, V.L.; Balagurov, A.M.; Taran, Yu.V.

    1995-01-01

    The results of estimating residual stresses in cold rolled iron disks by measurements with the high resolution Fourier diffractometer (HRFD) at the IBR-2 pulsed reactor are presented. These measurements were made for calibration of magnetic and ultrasonic measurements carried out at the Fraunhofer-Institute for Nondestructive Testing in Saarbrucken (Germany). The tested objects were cold rolled steel disks of 2.5 mm thickness and diameter of about 500 mm used for forming small, gas pressure tanks. Neutron diffraction experiments were carried out at the scattering angle 2θ=+152 d eg with resolution Δd/d=1.5·10 -3 . The gauge volume was chosen according to the magnetic measurements lateral resolution 20x20 mm 2 . In the nearest future the neutron diffraction measurements with cold rolled iron disks at the scattering angle 2θ=±90 0 are planned. Also the texture analysis will be included in the Rietveld refinement procedure for more correct calculation of residual stress fields in the cold rolled materials. 8 refs., 10 figs., 1 tab

  12. WATER ICE AT THE SURFACE OF THE HD 100546 DISK

    Energy Technology Data Exchange (ETDEWEB)

    Honda, M. [Department of Physics, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011 (Japan); Kudo, T.; Terada, H.; Takato, N. [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A’ohoku Place, Hilo, Hawaii 96720 (United States); Takatsuki, S.; Nakamoto, T. [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan); Inoue, A. K. [College of General Education, Osaka Sangyo University, Daito, Osaka 574-8530 (Japan); Fukagawa, M.; Tamura, M. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2016-04-10

    We made near-infrared multicolor imaging observations of a disk around Herbig Be star HD 100546 using Gemini/NICI. K (2.2 μm), H{sub 2}O ice (3.06 μm), and L′ (3.8 μm) disk images were obtained and we found a 3.1 μm absorption feature in the scattered light spectrum, likely due to water ice grains at the disk surface. We compared the observed depth of the ice absorption feature with the disk model based on Oka et al., including the water ice photodesorption effect by stellar UV photons. The observed absorption depth can be explained by both the disk models with and without the photodesorption effect within the measurement accuracy, but the model with photodesorption effects is slightly more favored, implying that the UV photons play an important role in the survival/destruction of ice grains at the Herbig Ae/Be disk surface. Further improvement to the accuracy of the observations of the water ice absorption depth is needed to constrain the disk models.

  13. WATER ICE AT THE SURFACE OF THE HD 100546 DISK

    International Nuclear Information System (INIS)

    Honda, M.; Kudo, T.; Terada, H.; Takato, N.; Takatsuki, S.; Nakamoto, T.; Inoue, A. K.; Fukagawa, M.; Tamura, M.

    2016-01-01

    We made near-infrared multicolor imaging observations of a disk around Herbig Be star HD 100546 using Gemini/NICI. K (2.2 μm), H 2 O ice (3.06 μm), and L′ (3.8 μm) disk images were obtained and we found a 3.1 μm absorption feature in the scattered light spectrum, likely due to water ice grains at the disk surface. We compared the observed depth of the ice absorption feature with the disk model based on Oka et al., including the water ice photodesorption effect by stellar UV photons. The observed absorption depth can be explained by both the disk models with and without the photodesorption effect within the measurement accuracy, but the model with photodesorption effects is slightly more favored, implying that the UV photons play an important role in the survival/destruction of ice grains at the Herbig Ae/Be disk surface. Further improvement to the accuracy of the observations of the water ice absorption depth is needed to constrain the disk models

  14. Dust Concentration and Emission in Protoplanetary Disks Vortices

    Science.gov (United States)

    Sierra, Anibal; Lizano, Susana; Barge, Pierre

    2017-12-01

    We study the dust concentration and emission in protoplanetary disks vortices. We extend the Lyra-Lin solution for the dust concentration of a single grain size to a power-law distribution of grain sizes n(a)\\propto {a}-p. Assuming dust conservation in the disk, we find an analytic dust surface density as a function of the grain radius. We calculate the increase of the dust-to-gas mass ratio ɛ and the slope p of the dust size distribution due to grain segregation within the vortex. We apply this model to a numerical simulation of a disk containing a persistent vortex. Due to the accumulation of large grains toward the vortex center, ɛ increases by a factor of 10 from the background disk value, and p decreases from 3.5 to 3.0. We find the disk emission at millimeter wavelengths corresponding to synthetic observations with ALMA and VLA. The simulated maps at 7 mm and 1 cm show a strong azimuthal asymmetry. This happens because, at these wavelengths, the disk becomes optically thin while the vortex remains optically thick. The large vortex opacity is mainly due to an increase in the dust-to-gas mass ratio. In addition, the change in the slope of the dust size distribution increases the opacity by a factor of two. We also show that the inclusion of the dust scattering opacity substantially changes the disks images.

  15. Zodiac II: Debris Disk Science from a Balloon

    Science.gov (United States)

    Bryden, Geoffrey; Traub, Wesley; Roberts, Lewis C., Jr.; Bruno, Robin; Unwin, Stephen; Backovsky, Stan; Brugarolas, Paul; Chakrabarti, Supriya; Chen, Pin; Hillenbrand, Lynne; hide

    2011-01-01

    Zodiac II is a proposed balloon-borne science investigation of debris disks around nearby stars. Debris disks are analogs of the Asteroid Belt (mainly rocky) and Kuiper Belt (mainly icy) in our Solar System. Zodiac II will measure the size, shape, brightness, and color of a statistically significant sample of disks. These measurements will enable us to probe these fundamental questions: what do debris disks tell us about the evolution of planetary systems; how are debris disks produced; how are debris disks shaped by planets; what materials are debris disks made of; how much dust do debris disks make as they grind down; and how long do debris disks live? In addition, Zodiac II will observe hot, young exoplanets as targets of opportunity. The Zodiac II instrument is a 1.1-m diameter SiC (Silicone carbide) telescope and an imaging coronagraph on a gondola carried by a stratospheric balloon. Its data product is a set of images of each targeted debris disk in four broad visible-wavelength bands. Zodiac II will address its science questions by taking high-resolution, multi-wavelength images of the debris disks around tens of nearby stars. Mid-latitude flights are considered: overnight test flights in the US followed by half-global flights in the Southern Hemisphere. These longer flights are required to fully explore the set of known debris disks accessible only to Zodiac II. On these targets, it will be 100 times more sensitive than the Hubble Space Telescope's Advanced Camera for Surveys (HST/ACS); no existing telescope can match the Zodiac II contrast and resolution performance. A second objective of Zodiac II is to use the near-space environment to raise the Technology Readiness Level (TRL) of SiC mirrors, internal coronagraphs, deformable mirrors, and wavefront sensing and control, all potentially needed for a future space-based telescope for high-contrast exoplanet imaging.

  16. The HIP 79977 debris disk in polarized light

    Science.gov (United States)

    Engler, N.; Schmid, H. M.; Thalmann, Ch.; Boccaletti, A.; Bazzon, A.; Baruffolo, A.; Beuzit, J. L.; Claudi, R.; Costille, A.; Desidera, S.; Dohlen, K.; Dominik, C.; Feldt, M.; Fusco, T.; Ginski, C.; Gisler, D.; Girard, J. H.; Gratton, R.; Henning, T.; Hubin, N.; Janson, M.; Kasper, M.; Kral, Q.; Langlois, M.; Lagadec, E.; Ménard, F.; Meyer, M. R.; Milli, J.; Mouillet, D.; Olofsson, J.; Pavlov, A.; Pragt, J.; Puget, P.; Quanz, S. P.; Roelfsema, R.; Salasnich, B.; Siebenmorgen, R.; Sissa, E.; Suarez, M.; Szulagyi, J.; Turatto, M.; Udry, S.; Wildi, F.

    2017-11-01

    density dependence is described by (r/r0)α with a steep (positive) power law index α = 5 inside r0 and a more shallow (negative) index α = -2.5 outside r0. The scattering asymmetry factor lies between g = 0.2 and 0.6 (forward scattering) adopting a scattering-angle dependence for the fractional polarization such as that for Rayleigh scattering. Conclusions: Polarimetric imaging with SPHERE-ZIMPOL of the edge-on debris disk around HIP 79977 provides accurate profiles for the polarized flux. Our data are qualitatively very similar to the case of AU Mic and they confirm that edge-on debris disks have a polarization minimum at a position near the star and a maximum near the projected separation of the main debris belt. The comparison of the polarized flux contrast ratio (Fpol)disk/F∗ with the fractional infrared excess provides strong constraints on the scattering albedo of the dust.

  17. Identifying Likely Disk-hosting M dwarfs with Disk Detective

    Science.gov (United States)

    Silverberg, Steven; Wisniewski, John; Kuchner, Marc J.; Disk Detective Collaboration

    2018-01-01

    M dwarfs are critical targets for exoplanet searches. Debris disks often provide key information as to the formation and evolution of planetary systems around higher-mass stars, alongside the planet themselves. However, less than 300 M dwarf debris disks are known, despite M dwarfs making up 70% of the local neighborhood. The Disk Detective citizen science project has identified over 6000 new potential disk host stars from the AllWISE catalog over the past three years. Here, we present preliminary results of our search for new disk-hosting M dwarfs in the survey. Based on near-infrared color cuts and fitting stellar models to photometry, we have identified over 500 potential new M dwarf disk hosts, nearly doubling the known number of such systems. In this talk, we present our methodology, and outline our ongoing work to confirm systems as M dwarf disks.

  18. HERSCHEL OBSERVATIONS OF THE T CHA TRANSITION DISK: CONSTRAINING THE OUTER DISK PROPERTIES

    International Nuclear Information System (INIS)

    Cieza, Lucas A.; Olofsson, Johan; Henning, Thomas; Harvey, Paul M.; Evans II, Neal J.; Pinte, Christophe; Augereau, Jean-Charles; Ménard, Francois; Merín, Bruno; Najita, Joan

    2011-01-01

    T Cha is a nearby (d ∼ 100 pc) transition disk known to have an optically thin gap separating optically thick inner and outer disk components. Huélamo et al. recently reported the presence of a low-mass object candidate within the gap of the T Cha disk, giving credence to the suspected planetary origin of this gap. Here we present the Herschel photometry (70, 160, 250, 350, and 500 μm) of T Cha from the 'Dust, Ice, and Gas in Time' Key Program, which bridges the wavelength range between existing Spitzer and millimeter data and provide important constraints on the outer disk properties of this extraordinary system. We model the entire optical to millimeter wavelength spectral energy distribution (SED) of T Cha (19 data points between 0.36 and 3300 μm without any major gaps in wavelength coverage). T Cha shows a steep spectral slope in the far-IR, which we find clearly favors models with outer disks containing little or no dust beyond ∼40 AU. The full SED can be modeled equally well with either an outer disk that is very compact (only a few AU wide) or a much larger one that has a very steep surface density profile. That is, T Cha's outer disk seems to be either very small or very tenuous. Both scenarios suggest a highly unusual outer disk and have important but different implications for the nature of T Cha. Spatially resolved images are needed to distinguish between the two scenarios.

  19. HERSCHEL OBSERVATIONS OF THE T CHA TRANSITION DISK: CONSTRAINING THE OUTER DISK PROPERTIES

    Energy Technology Data Exchange (ETDEWEB)

    Cieza, Lucas A. [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); Olofsson, Johan; Henning, Thomas [Max Planck Institut fuer Astronomie, Koenigstuhl 17, 69117 Heidelberg (Germany); Harvey, Paul M.; Evans II, Neal J. [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Pinte, Christophe; Augereau, Jean-Charles; Menard, Francois [UJF-Grenoble 1/CNRS-INSU, Institut de Planetologie et d' Astrophysique de Grenoble (IPAG) UMR 5274, Grenoble, F-38041 (France); Merin, Bruno [Herschel Science Centre, European Space Agency (ESAC), P.O. Box 78, 28691 Villanueva de la Canada, Madrid (Spain); Najita, Joan, E-mail: lcieza@ifa.hawaii.edu [National Optical Astronomy Observatory, 950 N. Cherry Avenue, Tucson, AZ 86719 (United States)

    2011-11-10

    T Cha is a nearby (d {approx} 100 pc) transition disk known to have an optically thin gap separating optically thick inner and outer disk components. Huelamo et al. recently reported the presence of a low-mass object candidate within the gap of the T Cha disk, giving credence to the suspected planetary origin of this gap. Here we present the Herschel photometry (70, 160, 250, 350, and 500 {mu}m) of T Cha from the 'Dust, Ice, and Gas in Time' Key Program, which bridges the wavelength range between existing Spitzer and millimeter data and provide important constraints on the outer disk properties of this extraordinary system. We model the entire optical to millimeter wavelength spectral energy distribution (SED) of T Cha (19 data points between 0.36 and 3300 {mu}m without any major gaps in wavelength coverage). T Cha shows a steep spectral slope in the far-IR, which we find clearly favors models with outer disks containing little or no dust beyond {approx}40 AU. The full SED can be modeled equally well with either an outer disk that is very compact (only a few AU wide) or a much larger one that has a very steep surface density profile. That is, T Cha's outer disk seems to be either very small or very tenuous. Both scenarios suggest a highly unusual outer disk and have important but different implications for the nature of T Cha. Spatially resolved images are needed to distinguish between the two scenarios.

  20. ALMA Survey of Lupus Protoplanetary Disks. II. Gas Disk Radii

    Science.gov (United States)

    Ansdell, M.; Williams, J. P.; Trapman, L.; van Terwisga, S. E.; Facchini, S.; Manara, C. F.; van der Marel, N.; Miotello, A.; Tazzari, M.; Hogerheijde, M.; Guidi, G.; Testi, L.; van Dishoeck, E. F.

    2018-05-01

    We present Atacama Large Millimeter/Sub-Millimeter Array (ALMA) Band 6 observations of a complete sample of protoplanetary disks in the young (∼1–3 Myr) Lupus star-forming region, covering the 1.33 mm continuum and the 12CO, 13CO, and C18O J = 2–1 lines. The spatial resolution is ∼0.″25 with a medium 3σ continuum sensitivity of 0.30 mJy, corresponding to M dust ∼ 0.2 M ⊕. We apply Keplerian masking to enhance the signal-to-noise ratios of our 12CO zero-moment maps, enabling measurements of gas disk radii for 22 Lupus disks; we find that gas disks are universally larger than millimeter dust disks by a factor of two on average, likely due to a combination of the optically thick gas emission and the growth and inward drift of the dust. Using the gas disk radii, we calculate the dimensionless viscosity parameter, α visc, finding a broad distribution and no correlations with other disk or stellar parameters, suggesting that viscous processes have not yet established quasi-steady states in Lupus disks. By combining our 1.33 mm continuum fluxes with our previous 890 μm continuum observations, we also calculate the millimeter spectral index, α mm, for 70 Lupus disks; we find an anticorrelation between α mm and millimeter flux for low-mass disks (M dust ≲ 5), followed by a flattening as disks approach α mm ≈ 2, which could indicate faster grain growth in higher-mass disks, but may also reflect their larger optically thick components. In sum, this work demonstrates the continuous stream of new insights into disk evolution and planet formation that can be gleaned from unbiased ALMA disk surveys.

  1. Transitional Disks Associated with Intermediate-Mass Stars: Results of the SEEDS YSO Survey

    Science.gov (United States)

    Grady, C.; Fukagawa, M.; Maruta, Y.; Ohta, Y.; Wisniewski, J.; Hashimoto, J.; Okamoto, Y.; Momose, M.; Currie, T.; McElwain, M.; hide

    2014-01-01

    Protoplanetary disks are where planets form, grow, and migrate to produce the diversity of exoplanet systems we observe in mature systems. Disks where this process has advanced to the stage of gap opening, and in some cases central cavity formation, have been termed pre-transitional and transitional disks in the hope that they represent intermediate steps toward planetary system formation. Recent reviews have focussed on disks where the star is of solar or sub-solar mass. In contrast to the sub-millimeter where cleared central cavities predominate, at H-band some T Tauri star transitional disks resemble primordial disks in having no indication of clearing, some show a break in the radial surface brightness profile at the inner edge of the outer disk, while others have partially to fully cleared gaps or central cavities. Recently, the Meeus Group I Herbig stars, intermediate-mass PMS stars with IR spectral energy distributions often interpreted as flared disks, have been proposed to have transitional and pre-transitional disks similar to those associated with solar-mass PMS stars, based on thermal-IR imaging, and sub-millimeter interferometry. We have investigated their appearance in scattered light as part of the Strategic Exploration of Exoplanets and Disks with Subaru (SEEDS), obtaining H-band polarimetric imagery of 10 intermediate-mass stars with Meeus Group I disks. Augmented by other disks with imagery in the literature, the sample is now sufficiently large to explore how these disks are similar to and differ from T Tauri star disks. The disk morphologies seen in the Tauri disks are also found for the intermediate-mass star disks, but additional phenomena are found; a hallmark of these disks is remarkable individuality and diversity which does not simply correlate with disk mass or stellar properties, including age, including spiral arms in remnant envelopes, arms in the disk, asymmetrically and potentially variably shadowed outer disks, gaps, and one disk

  2. Vibration of imperfect rotating disk

    Directory of Open Access Journals (Sweden)

    Půst L.

    2011-12-01

    Full Text Available This study is concerned with the theoretical and numerical calculations of the flexural vibrations of a bladed disk. The main focus of this study is to elaborate the basic background for diagnostic and identification methods for ascertaining the main properties of the real structure or an experimental model of turbine disks. The reduction of undesirable vibrations of blades is proposed by using damping heads, which on the experimental model of turbine disk are applied only on a limited number of blades. This partial setting of damping heads introduces imperfection in mass, stiffness and damping distribution on the periphery and leads to more complicated dynamic properties than those of a perfect disk. Calculation of FEM model and analytic—numerical solution of disk behaviour in the limited (two modes frequency range shows the splitting of resonance with an increasing speed of disk rotation. The spectrum of resonance is twice denser than that of a perfect disk.

  3. Evolution of magnetic disk subsystems

    Science.gov (United States)

    Kaneko, Satoru

    1994-06-01

    The higher recording density of magnetic disk realized today has brought larger storage capacity per unit and smaller form factors. If the required access performance per MB is constant, the performance of large subsystems has to be several times better. This article describes mainly the technology for improving the performance of the magnetic disk subsystems and the prospects of their future evolution. Also considered are 'crosscall pathing' which makes the data transfer channel more effective, 'disk cache' which improves performance coupling with solid state memory technology, and 'RAID' which improves the availability and integrity of disk subsystems by organizing multiple disk drives in a subsystem. As a result, it is concluded that since the performance of the subsystem is dominated by that of the disk cache, maximation of the performance of the disk cache subsystems is very important.

  4. Herniated disk disease

    International Nuclear Information System (INIS)

    Ross, J.S.; Masaryk, T.J.; Modic, M.T.; Bohlman, H.; Wilber, G.; Carter, J.

    1988-01-01

    Thirty patients with symptoms of disk herniation and no previous surgery were examined with Gd-DTPA-enhanced MR imaging. Studies obtained before and after administration of Gd-DTPA included the following sequences: sagittal and axial spin echo (SE) 500/17 (repetition time, msec/echo time, msec), sagittal SE 2,000/60, sagittal FLASH 200/13/60. Studies were interpreted separately for presence of extradural disease (EDD) characterized by morphology, mass effect, and enhancement. Post Gd-DTPA diagnoses were: normal, n = 1; herniation, n = 28; neoplasm, n = 1. Tissue diagnosis was obtained in 13. The Gd-DTPA examination correctly changed the diagnosis in one case, provided increased confidence in the diagnosis in four, and was equivalent to the precontrast study in eight. Increased conspicuity of EDD with Gd-DTPA was related to the enhancement of epidural space analogous to IV CT and enhancement of scar surrounding disk herniation. Histologically, this scar was identical to that seen in postoperative spines, Gd-DTPA appears to be a useful adjunct in cervical and thoracic degenerative disk disease

  5. Destruction of Refractory Carbon in Protoplanetary Disks

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Dana E.; Blake, Geoffrey A. [Division of Geological and Planetary Sciences, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Bergin, Edwin A. [Department of Astronomy, University of Michigan, 1085 S. University, Ann Arbor, MI 48109-1107 (United States); Ciesla, Fred J. [Department of Geophysical Sciences, The University of Chicago, 5734 South Ellis Ave., Chicago, IL 60637 (United States); Visser, Ruud [European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748, Garching (Germany); Lee, Jeong-Eun [School of Space Research, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104 (Korea, Republic of)

    2017-08-10

    The Earth and other rocky bodies in the inner solar system contain significantly less carbon than the primordial materials that seeded their formation. These carbon-poor objects include the parent bodies of primitive meteorites, suggesting that at least one process responsible for solid-phase carbon depletion was active prior to the early stages of planet formation. Potential mechanisms include the erosion of carbonaceous materials by photons or atomic oxygen in the surface layers of the protoplanetary disk. Under photochemically generated favorable conditions, these reactions can deplete the near-surface abundance of carbon grains and polycyclic aromatic hydrocarbons by several orders of magnitude on short timescales relative to the lifetime of the disk out to radii of ∼20–100+ au from the central star depending on the form of refractory carbon present. Due to the reliance of destruction mechanisms on a high influx of photons, the extent of refractory carbon depletion is quite sensitive to the disk’s internal radiation field. Dust transport within the disk is required to affect the composition of the midplane. In our current model of a passive, constant- α disk, where α = 0.01, carbon grains can be turbulently lofted into the destructive surface layers and depleted out to radii of ∼3–10 au for 0.1–1 μ m grains. Smaller grains can be cleared out of the planet-forming region completely. Destruction may be more effective in an actively accreting disk or when considering individual grain trajectories in non-idealized disks.

  6. Diffuse Reflectance Spectroscopy of Hidden Objects, Part I: Interpretation of the Reflection-Absorption-Scattering Fractions in Near-Infrared (NIR) Spectra of Polyethylene Films.

    Science.gov (United States)

    Pomerantsev, Alexey L; Rodionova, Oxana Ye; Skvortsov, Alexej N

    2017-08-01

    Investigation of a sample covered by an interfering layer is required in many fields, e.g., for process control, biochemical analysis, and many other applications. This study is based on the analysis of spectra collected by near-infrared (NIR) diffuse reflectance spectroscopy. Each spectrum is a composition of a useful, target spectrum and a spectrum of an interfering layer. To recover the target spectrum, we suggest using a new phenomenological approach, which employs the multivariate curve resolution (MCR) method. In general terms, the problem is very complex. We start with a specific problem of analyzing a system, which consists of several layers of polyethylene (PE) film and underlayer samples with known spectral properties. To separate information originating from PE layers and the target, we modify the system versus both the number of the PE layers as well as the reflectance properties of the target sample. We consider that the interfering spectrum of the layer can be modeled using three components, which can be tentatively called transmission, absorption, and scattering contributions. The novelty of our approach is that we do not remove the reflectance and scattering effects from the spectra, but study them in detail aiming to use this information to recover the target spectrum.

  7. PLANETESIMAL AND PROTOPLANET DYNAMICS IN A TURBULENT PROTOPLANETARY DISK: IDEAL UNSTRATIFIED DISKS

    International Nuclear Information System (INIS)

    Yang, Chao-Chin; Mac Low, Mordecai-Mark; Menou, Kristen

    2009-01-01

    The dynamics of planetesimals and planetary cores may be strongly influenced by density perturbations driven by magneto-rotational turbulence in their natal protoplanetary gas disks. Using the local shearing box approximation, we perform numerical simulations of planetesimals moving as massless particles in a turbulent, magnetized, unstratified gas disk. Our fiducial disk model shows turbulent accretion characterized by a Shakura-Sunyaev viscosity parameter of α ∼ 10 -2 , with rms density perturbations of ∼10%. We measure the statistical evolution of particle orbital properties in our simulations including mean radius, eccentricity, and velocity dispersion. We confirm random walk growth in time of all three properties, the first time that this has been done with direct orbital integration in a local model. We find that the growth rate increases with the box size used at least up to boxes of eight scale heights in horizontal size. However, even our largest boxes show velocity dispersions sufficiently low that collisional destruction of planetesimals should be unimportant in the inner disk throughout its lifetime. Our direct integrations agree with earlier torque measurements showing that type I migration dominates over diffusive migration by stochastic torques for most objects in the planetary core and terrestrial planet mass range. Diffusive migration remains important for objects in the mass range of kilometer-sized planetesimals. Discrepancies in the derived magnitude of turbulence between local and global simulations of magneto-rotationally unstable disks remains an open issue, with important consequences for planet formation scenarios.

  8. IMAGING THE DISK AND JET OF THE CLASSICAL T TAURI STAR AA TAU

    International Nuclear Information System (INIS)

    Cox, Andrew W.; Grady, Carol A.; Hammel, Heidi B.; Hornbeck, Jeremy; Russell, Ray W.; Sitko, Michael L.; Woodgate, Bruce E.

    2013-01-01

    Previous studies of the classical T Tauri star AA Tau have interpreted the UX-Orionis-like photo-polarimetric variability as being due to a warp in the inner disk caused by an inclined stellar magnetic dipole field. We test that these effects are macroscopically observable in the inclination and alignment of the disk. We use Hubble Space Telescope (HST)/STIS coronagraphic imagery to measure the V magnitude of the star for both STIS coronagraphic observations, compare these data with optical photometry in the literature, and find that, unlike other classical T Tauri stars observed in the same HST program, the disk is most robustly detected in scattered light at stellar optical minimum light. We measure the outer disk radius, 1.''15 ± 0.''10, major-axis position angle, and disk inclination and find that the inner disk, as reported in the literature, is both misinclined and misaligned with respect to the outer disk. AA Tau drives a faint jet, detected in both STIS observations and in follow-on Goddard Fabry-Perot imagery, which is also misaligned with respect to the projection of the outer disk minor axis and is poorly collimated near the star, but which can be traced 21'' from the star in data from 2005. The measured outer disk inclination, 71° ± 1°, is out of the range of inclinations suggested for stars with UX-Orionis-like variability when no grain growth has occurred in the disk. The faintness of the disk, small disk size, and detection of the star despite the high inclination all indicate that the dust disk must have experienced grain growth and settling toward the disk midplane, which we verify by comparing the observed disk with model imagery from the literature.

  9. Circumstellar Disk Lifetimes In Numerous Galactic Young Stellar Clusters

    Science.gov (United States)

    Richert, A. J. W.; Getman, K. V.; Feigelson, E. D.; Kuhn, M. A.; Broos, P. S.; Povich, M. S.; Bate, M. R.; Garmire, G. P.

    2018-04-01

    Photometric detections of dust circumstellar disks around pre-main sequence (PMS) stars, coupled with estimates of stellar ages, provide constraints on the time available for planet formation. Most previous studies on disk longevity, starting with Haisch, Lada & Lada (2001), use star samples from PMS clusters but do not consider datasets with homogeneous photometric sensitivities and/or ages placed on a uniform timescale. Here we conduct the largest study to date of the longevity of inner dust disks using X-ray and 1-8 {μ m} infrared photometry from the MYStIX and SFiNCs projects for 69 young clusters in 32 nearby star-forming regions with ages t ≤ 5 Myr. Cluster ages are derived by combining the empirical AgeJX method with PMS evolutionary models, which treat dynamo-generated magnetic fields in different ways. Leveraging X-ray data to identify disk-free objects, we impose similar stellar mass sensitivity limits for disk-bearing and disk-free YSOs while extending the analysis to stellar masses as low as M ˜ 0.1 M⊙. We find that the disk longevity estimates are strongly affected by the choice of PMS evolutionary model. Assuming a disk fraction of 100% at zero age, the inferred disk half-life changes significantly, from t1/2 ˜ 1.3 - 2 Myr to t1/2 ˜ 3.5 Myr when switching from non-magnetic to magnetic PMS models. In addition, we find no statistically significant evidence that disk fraction varies with stellar mass within the first few Myr of life for stars with masses <2 M⊙, but our samples may not be complete for more massive stars. The effects of initial disk fraction and star-forming environment are also explored.

  10. PRECISE BLACK HOLE MASSES FROM MEGAMASER DISKS: BLACK HOLE-BULGE RELATIONS AT LOW MASS

    International Nuclear Information System (INIS)

    Greene, Jenny E.; Peng, Chien Y.; Kim, Minjin; Kuo, Cheng-Yu; Braatz, James A.; Impellizzeri, C. M. Violette; Condon, James J.; Lo, K. Y.; Henkel, Christian; Reid, Mark J.

    2010-01-01

    The black hole (BH)-bulge correlations have greatly influenced the last decade of efforts to understand galaxy evolution. Current knowledge of these correlations is limited predominantly to high BH masses (M BH ∼>10 8 M sun ) that can be measured using direct stellar, gas, and maser kinematics. These objects, however, do not represent the demographics of more typical L 2 O megamasers in circumnuclear disks. The masers trace the Keplerian rotation of circumnuclear molecular disks starting at radii of a few tenths of a pc from the central BH. Modeling of the rotation curves, presented by Kuo et al., yields BH masses with exquisite precision. We present stellar velocity dispersion measurements for a sample of nine megamaser disk galaxies based on long-slit observations using the B and C spectrograph on the Dupont telescope and the Dual Imaging Spectrograph on the 3.5 m telescope at Apache Point. We also perform bulge-to-disk decomposition of a subset of five of these galaxies with Sloan Digital Sky Survey imaging. The maser galaxies as a group fall below the M BH -σ * relation defined by elliptical galaxies. We show, now with very precise BH mass measurements, that the low-scatter power-law relation between M BH and σ * seen in elliptical galaxies is not universal. The elliptical galaxy M BH -σ * relation cannot be used to derive the BH mass function at low mass or the zero point for active BH masses. The processes (perhaps BH self-regulation or minor merging) that operate at higher mass have not effectively established an M BH -σ * relation in this low-mass regime.

  11. EMBEDDED PROTOSTELLAR DISKS AROUND (SUB-)SOLAR STARS. II. DISK MASSES, SIZES, DENSITIES, TEMPERATURES, AND THE PLANET FORMATION PERSPECTIVE

    International Nuclear Information System (INIS)

    Vorobyov, Eduard I.

    2011-01-01

    We present basic properties of protostellar disks in the embedded phase of star formation (EPSF), which is difficult to probe observationally using available observational facilities. We use numerical hydrodynamics simulations of cloud core collapse and focus on disks formed around stars in the 0.03-1.0 M sun mass range. Our obtained disk masses scale near-linearly with the stellar mass. The mean and median disk masses in the Class 0 and I phases (M mean d,C0 = 0.12 M sun , M mdn d,C0 = 0.09 M sun and M mean d,CI = 0.18 M sun , M mdn d,CI = 0.15 M sun , respectively) are greater than those inferred from observations by (at least) a factor of 2-3. We demonstrate that this disagreement may (in part) be caused by the optically thick inner regions of protostellar disks, which do not contribute to millimeter dust flux. We find that disk masses and surface densities start to systematically exceed that of the minimum mass solar nebular for objects with stellar mass as low as M * = 0.05-0.1 M sun . Concurrently, disk radii start to grow beyond 100 AU, making gravitational fragmentation in the disk outer regions possible. Large disk masses, surface densities, and sizes suggest that giant planets may start forming as early as in the EPSF, either by means of core accretion (inner disk regions) or direct gravitational instability (outer disk regions), thus breaking a longstanding stereotype that the planet formation process begins in the Class II phase.

  12. Low-temperature oxidation effects on the morphological and structural properties of hexagonal Zn nano disks

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, R.; Villa S, G.; Rosales D, J. [Tecnologico de Estudios Superiores de Jocotitlan, Carretera Toluca-Atlacomulco Km 44.8, Jocotitlan, Estado de Mexico (Mexico); Vigueras S, E.; Hernandez L, S. [Universidad Autonoma del Estado de Mexico, Laboratorio de Investigacion y Desarrollo de Materiales Avanzados, Paseo Colon esquina Paseo Tollocan, Toluca, Estado de Mexico (Mexico); Acuna, P. [Universidad Autonoma del Estado de Mexico, Programa de Doctorado en Ciencia de Materiales, Paseo Colon esquina Paseo Tollocan, Toluca, Estado de Mexico (Mexico); Argueta V, A.; Colin B, N., E-mail: lorr810813@gmail.com [Tecnologico de Estudios Superiores de Jocotitlan, Programa de Ingenieria Mecatronica, Carretera Toluca-Atlacomulco Km 44.8, Jocotitlan, Estado de Mexico (Mexico)

    2017-11-01

    Ambient-atmosphere oxidation in the temperature range of 90-450 degrees Celsius was performed over Zn films composed by well-faceted hexagonal nano disks, which were deposited by thermal evaporation. Morphological and structural properties of oxidized Zn nano disks were studied by scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, X-ray diffraction and Raman scattering measurements. It was found that Zn nano disks keep its original shape only when they are annealed at 90 or 150 degrees Celsius. Smooth oxidation occurred only on the rectangular faces of Zn nano disks heated at 150 degrees Celsius. Thermal oxidation at 250 degrees Celsius favored growth of Zn O nano needles over the surface of the Zn nano disks. Hexagonal-shape of Zn nano disks was transformed completely into a complex morphology composed by different shaped particles, with further increase in oxidation temperature to 450 degrees Celsius. (Author)

  13. Low-temperature oxidation effects on the morphological and structural properties of hexagonal Zn nano disks

    International Nuclear Information System (INIS)

    Lopez, R.; Villa S, G.; Rosales D, J.; Vigueras S, E.; Hernandez L, S.; Acuna, P.; Argueta V, A.; Colin B, N.

    2017-01-01

    Ambient-atmosphere oxidation in the temperature range of 90-450 degrees Celsius was performed over Zn films composed by well-faceted hexagonal nano disks, which were deposited by thermal evaporation. Morphological and structural properties of oxidized Zn nano disks were studied by scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, X-ray diffraction and Raman scattering measurements. It was found that Zn nano disks keep its original shape only when they are annealed at 90 or 150 degrees Celsius. Smooth oxidation occurred only on the rectangular faces of Zn nano disks heated at 150 degrees Celsius. Thermal oxidation at 250 degrees Celsius favored growth of Zn O nano needles over the surface of the Zn nano disks. Hexagonal-shape of Zn nano disks was transformed completely into a complex morphology composed by different shaped particles, with further increase in oxidation temperature to 450 degrees Celsius. (Author)

  14. Lensless ghost imaging through the strongly scattering medium

    International Nuclear Information System (INIS)

    Yang Zhe; Zhao Xueliang; Li Junlin; Zhao Lianjie; Qin Wei

    2016-01-01

    Lensless ghost imaging has attracted much interest in recent years due to its profound physics and potential applications. In this paper we report studies of the robust properties of the lensless ghost imaging system with a pseudo-thermal light source in a strongly scattering medium. The effects of the positions of the strong medium on the ghost imaging are investigated. In the lensless ghost imaging system, a pseudo-thermal light is split into two correlated beams by a beam splitter. One beam goes to a charge-coupled detector camera, labeled as CCD2. The other beam goes to an object and then is collected in another charge-coupled detector camera, labeled as CCD1, which serves as a bucket detector. When the strong medium, a pane of ground glass disk, is placed between the object and CCD1, the bucket detector, the quality of ghost imaging is barely affected and a good image could still be obtained. The quality of the ghost imaging can also be maintained, even when the ground glass is rotating, which is the strongest scattering medium so far. However, when the strongly scattering medium is present in the optical path from the light source to CCD2 or the object, the lensless ghost imaging system hardly retrieves the image of the object. A theoretical analysis in terms of the second-order correlation function is also provided. (paper)

  15. RINGED ACCRETION DISKS: INSTABILITIES

    Energy Technology Data Exchange (ETDEWEB)

    Pugliese, D.; Stuchlík, Z., E-mail: d.pugliese.physics@gmail.com, E-mail: zdenek.stuchlik@physics.cz [Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo náměstí 13, CZ-74601 Opava (Czech Republic)

    2016-04-01

    We analyze the possibility that several instability points may be formed, due to the Paczyński mechanism of violation of mechanical equilibrium, in the orbiting matter around a supermassive Kerr black hole. We consider a recently proposed model of a ringed accretion disk, made up by several tori (rings) that can be corotating or counter-rotating relative to the Kerr attractor due to the history of the accretion process. Each torus is governed by the general relativistic hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. We prove that the number of the instability points is generally limited and depends on the dimensionless spin of the rotating attractor.

  16. Audit: Automated Disk Investigation Toolkit

    Directory of Open Access Journals (Sweden)

    Umit Karabiyik

    2014-09-01

    Full Text Available Software tools designed for disk analysis play a critical role today in forensics investigations. However, these digital forensics tools are often difficult to use, usually task specific, and generally require professionally trained users with IT backgrounds. The relevant tools are also often open source requiring additional technical knowledge and proper configuration. This makes it difficult for investigators without some computer science background to easily conduct the needed disk analysis. In this paper, we present AUDIT, a novel automated disk investigation toolkit that supports investigations conducted by non-expert (in IT and disk technology and expert investigators. Our proof of concept design and implementation of AUDIT intelligently integrates open source tools and guides non-IT professionals while requiring minimal technical knowledge about the disk structures and file systems of the target disk image.

  17. HUBBLE SPACE TELESCOPE NICMOS POLARIZATION OBSERVATIONS OF THREE EDGE-ON MASSIVE YOUNG STELLAR OBJECTS

    International Nuclear Information System (INIS)

    Simpson, Janet P.; Colgan, Sean W. J.; Erickson, Edwin F.; Burton, Michael G.; Cotera, Angela S.; Hines, Dean C.; Whitney, Barbara A.

    2009-01-01

    Massive young stellar objects (YSOs), like low-mass YSOs, appear to be surrounded by optically thick envelopes and/or disks and have regions, often bipolar, that are seen in polarized scattered light at near-infrared wavelengths. We are using the 0.''2 spatial resolution of the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) on Hubble Space Telescope to examine the structure of the disks and outflow regions of massive YSOs in star-forming regions within a few kpc of the Sun. Here we report on 2 μm polarimetry of NGC 6334 V and S255 IRS1. NGC 6334 V consists of a double-lobed bright reflection nebula seen against a dark region, probably an optically thick molecular cloud. Our polarization measurements show that the illuminating star lies ∼2'' south of the line connecting the two lobes; we do not detect this star at 2 μm, but there are a small radio source and a mid-infrared source at this location. S255 IRS1 consists of two YSOs (NIRS1 and NIRS3) with overlapping scattered light lobes and luminosities corresponding to early B stars. Included in IRS1 is a cluster of stars from whose polarization we determine the local magnetic field direction. Neither of the YSOs has its scattered light lobes aligned with this magnetic field. The line connecting the scattered light lobes of NIRS1 is twisted symmetrically around the star; the best explanation is that the star is part of a close binary and the outflow axis of NIRS1 is precessing as a result of non-coplanar disk and orbit. The star NIRS3 is also offset from the line connecting its two scattered light lobes. We suggest that all three YSOs show evidence of episodic ejection of material as they accrete from dense, optically thick envelopes.

  18. Dust evolution in protoplanetary disks

    OpenAIRE

    Gonzalez , Jean-François; Fouchet , Laure; T. Maddison , Sarah; Laibe , Guillaume

    2007-01-01

    6 pages, 5 figures, to appear in the Proceedings of IAU Symp. 249: Exoplanets: Detection, Formation and Dynamics (Suzhou, China); International audience; We investigate the behaviour of dust in protoplanetary disks under the action of gas drag using our 3D, two-fluid (gas+dust) SPH code. We present the evolution of the dust spatial distribution in global simulations of planetless disks as well as of disks containing an already formed planet. The resulting dust structures vary strongly with pa...

  19. Fallback disks & magnetars: prospects & possibilities

    Science.gov (United States)

    Alpar, M. A.

    Some bound matter in the form of a fallback disk may be an initial parameter of isolated neutron stars at birth which along with the initial rotation rate and dipole and higher multipole magnetic moments determines the evolution of neutron stars and the categories into which they fall This talk reviews the strengths and difficulties of fallback disk models in explaining properties of isolated neutron stars of different categories Evidence for and observational limits on fallback disks will also be discussed

  20. IBM 3390 Hard Disk Platter

    CERN Multimedia

    1991-01-01

    The 3390 disks rotated faster than those in the previous model 3380. Faster disk rotation reduced rotational delay (ie. the time required for the correct area of the disk surface to move to the point where data could be read or written). In the 3390's initial models, the average rotational delay was reduced to 7.1 milliseconds from 8.3 milliseconds for the 3380 family.

  1. STELLAR MASS DEPENDENT DISK DISPERSAL

    International Nuclear Information System (INIS)

    Kennedy, Grant M.; Kenyon, Scott J.

    2009-01-01

    We use published optical spectral and infrared (IR) excess data from nine young clusters and associations to study the stellar mass dependent dispersal of circumstellar disks. All clusters older than ∼3 Myr show a decrease in disk fraction with increasing stellar mass for solar to higher mass stars. This result is significant at about the 1σ level in each cluster. For the complete set of clusters we reject the null hypothesis-that solar and intermediate-mass stars lose their disks at the same rate-with 95%-99.9% confidence. To interpret this behavior, we investigate the impact of grain growth, binary companions, and photoevaporation on the evolution of disk signatures. Changes in grain growth timescales at fixed disk temperature may explain why early-type stars with IR excesses appear to evolve faster than their later-type counterparts. Little evidence that binary companions affect disk evolution suggests that photoevaporation is the more likely mechanism for disk dispersal. A simple photoevaporation model provides a good fit to the observed disk fractions for solar and intermediate-mass stars. Although the current mass-dependent disk dispersal signal is not strong, larger and more complete samples of clusters with ages of 3-5 Myr can improve the significance and provide better tests of theoretical models. In addition, the orbits of extra-solar planets can constrain models of disk dispersal and migration. We suggest that the signature of stellar mass dependent disk dispersal due to photoevaporation may be present in the orbits of observed extra-solar planets. Planets orbiting hosts more massive than ∼1.6 M sun may have larger orbits because the disks in which they formed were dispersed before they could migrate.

  2. FDTD scattered field formulation for scatterers in stratified dispersive media.

    Science.gov (United States)

    Olkkonen, Juuso

    2010-03-01

    We introduce a simple scattered field (SF) technique that enables finite difference time domain (FDTD) modeling of light scattering from dispersive objects residing in stratified dispersive media. The introduced SF technique is verified against the total field scattered field (TFSF) technique. As an application example, we study surface plasmon polariton enhanced light transmission through a 100 nm wide slit in a silver film.

  3. SUBARU IMAGING OF ASYMMETRIC FEATURES IN A TRANSITIONAL DISK IN UPPER SCORPIUS

    Energy Technology Data Exchange (ETDEWEB)

    Mayama, S. [Center for the Promotion of Integrated Sciences, The Graduate University for Advanced Studies (SOKENDAI), Shonan International Village, Hayama-cho, Miura-gun, Kanagawa 240-0193 (Japan); Hashimoto, J.; Kusakabe, N.; Kuzuhara, M.; Takahashi, Y.; Akiyama, E. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Muto, T. [Division of Liberal Arts, Kogakuin University, 1-24-2, Nishi-Shinjuku, Shinjuku-ku, Tokyo 163-8677 (Japan); Tsukagoshi, T.; Momose, M. [College of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512 (Japan); Kudo, T.; Egner, S. [Subaru Telescope, 650 North A' ohoku Place, Hilo, HI 96720 (United States); Dong, R.; Brandt, T. [Department of Astrophysical Sciences, Princeton University, NJ 08544 (United States); Fukagawa, M. [Department of Earth and Space Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Takami, M. [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 106, Taiwan (China); Wisniewski, J. P. [H L Dodge Department of Physics and Astronomy, University of Oklahoma, 440 West Brooks St. Norman, OK 73019 (United States); Follette, K. [Department of Astronomy and Steward Observatory, The University of Arizona, 933 North Cherry Avenue, Rm. N204, Tucson, AZ 85721-0065 (United States); Abe, L. [Laboratoire Hippolyte Fizeau, UMR6525, Universite de Nice Sophia-Antipolis, 28, avenue Valrose, F-06108 Nice Cedex 02 (France); Brandner, W. [Max Planck Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany); Carson, J., E-mail: mayama_satoshi@soken.ac.jp [Department of Physics and Astronomy, College of Charleston, 58 Coming Street, Charleston, SC 29424 (United States); and others

    2012-12-01

    We report high-resolution (0.07 arcsec) near-infrared polarized intensity images of the circumstellar disk around the star 2MASS J16042165-2130284 obtained with HiCIAO mounted on the Subaru 8.2 m telescope. We present our H-band data, which clearly exhibit a resolved, face-on disk with a large inner hole for the first time at infrared wavelengths. We detect the centrosymmetric polarization pattern in the circumstellar material as has been observed in other disks. Elliptical fitting gives the semimajor axis, semiminor axis, and position angle (P.A.) of the disk as 63 AU, 62 AU, and -14 Degree-Sign , respectively. The disk is asymmetric, with one dip located at P.A.s of {approx}85 Degree-Sign . Our observed disk size agrees well with a previous study of dust and CO emission at submillimeter wavelength with Submillimeter Array. Hence, the near-infrared light is interpreted as scattered light reflected from the inner edge of the disk. Our observations also detect an elongated arc (50 AU) extending over the disk inner hole. It emanates at the inner edge of the western side of the disk, extending inward first, then curving to the northeast. We discuss the possibility that the inner hole, the dip, and the arc that we have observed may be related to the existence of unseen bodies within the disk.

  4. [Disk calcifications in children].

    Science.gov (United States)

    Schmit, P; Fauré, C; Denarnaud, L

    1985-05-01

    It is not unusual for intervertebral disk calcifications to be detected in pediatric practice, the 150 or so cases reported in the literature probably representing only a small proportion of lesions actually diagnosed. Case reports of 33 children with intervertebral disk calcifications were analyzed. In the majority of these patients (31 of 33) a diagnosis of "idiopathic" calcifications had been made, the cervical localization of the lesions being related to repeated ORL infections and/or trauma. A pre-existing pathologic factor was found in two cases (one child with juvenile rheumatoid arthritis treated by corticoids and one child with Williams and Van Beuren's syndrome). An uncomplicated course was noted in 31 cases, the symptomatology (pain, spinal stiffness and febricula) improving after several days. Complications developed in two cases: one child had very disabling dysphagia due to an anteriorly protruding cervical herniated disc and surgery was necessary; the other child developed cervicobrachial neuralgia due to herniated disc protrusion into the cervical spinal canal, but symptoms regressed within several days although calcifications persisted unaltered. These findings and the course of the rare complications documented in the literature suggest the need for the most conservative treatment possible in cases of disc calcifications in children.

  5. Disk storage at CERN

    CERN Document Server

    Mascetti, L; Chan, B; Espinal, X; Fiorot, A; Labrador, H Gonz; Iven, J; Lamanna, M; Presti, G Lo; Mościcki, JT; Peters, AJ; Ponce, S; Rousseau, H; van der Ster, D

    2015-01-01

    CERN IT DSS operates the main storage resources for data taking and physics analysis mainly via three system: AFS, CASTOR and EOS. The total usable space available on disk for users is about 100 PB (with relative ratios 1:20:120). EOS actively uses the two CERN Tier0 centres (Meyrin and Wigner) with 50:50 ratio. IT DSS also provide sizeable on-demand resources for IT services most notably OpenStack and NFS-based clients: this is provided by a Ceph infrastructure (3 PB) and few proprietary servers (NetApp). We will describe our operational experience and recent changes to these systems with special emphasis to the present usages for LHC data taking, the convergence to commodity hardware (nodes with 200-TB each with optional SSD) shared across all services. We also describe our experience in coupling commodity and home-grown solution (e.g. CERNBox integration in EOS, Ceph disk pools for AFS, CASTOR and NFS) and finally the future evolution of these systems for WLCG and beyond.

  6. Disk storage at CERN

    Science.gov (United States)

    Mascetti, L.; Cano, E.; Chan, B.; Espinal, X.; Fiorot, A.; González Labrador, H.; Iven, J.; Lamanna, M.; Lo Presti, G.; Mościcki, JT; Peters, AJ; Ponce, S.; Rousseau, H.; van der Ster, D.

    2015-12-01

    CERN IT DSS operates the main storage resources for data taking and physics analysis mainly via three system: AFS, CASTOR and EOS. The total usable space available on disk for users is about 100 PB (with relative ratios 1:20:120). EOS actively uses the two CERN Tier0 centres (Meyrin and Wigner) with 50:50 ratio. IT DSS also provide sizeable on-demand resources for IT services most notably OpenStack and NFS-based clients: this is provided by a Ceph infrastructure (3 PB) and few proprietary servers (NetApp). We will describe our operational experience and recent changes to these systems with special emphasis to the present usages for LHC data taking, the convergence to commodity hardware (nodes with 200-TB each with optional SSD) shared across all services. We also describe our experience in coupling commodity and home-grown solution (e.g. CERNBox integration in EOS, Ceph disk pools for AFS, CASTOR and NFS) and finally the future evolution of these systems for WLCG and beyond.

  7. CYANIDE PHOTOCHEMISTRY AND NITROGEN FRACTIONATION IN THE MWC 480 DISK

    Energy Technology Data Exchange (ETDEWEB)

    Guzmán, V. V.; Öberg, K. I.; Loomis, R.; Qi, C., E-mail: vguzman@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2015-11-20

    HCN is a commonly observed molecule in Solar System bodies and in interstellar environments. Its abundance with respect to CN is a proposed tracer of UV exposure. HCN is also frequently used to probe the thermal history of objects, by measuring its degree of nitrogen fractionation. To address the utility of HCN as a probe of disks, we present Atacama Large (sub-) Millimeter Array observations of CN, HCN, H{sup 13}CN, and HC{sup 15}N toward the protoplanetary disk around Herbig Ae star MWC 480, and of CN and HCN toward the disk around T Tauri star DM Tau. Emission from all molecules is clearly detected and spatially resolved, including the first detection of HC{sup 15}N in a disk. Toward MWC 480, CN emission extends radially more than 1″ exterior to the observed cut-off of HCN emission. Quantitative modeling further reveals very different radial abundance profiles for CN and HCN, with best-fit outer cut-off radii of >300 AU and 110 ± 10 AU, respectively. This result is in agreement with model predictions of efficient HCN photodissociation into CN in the outer-part of the disk where the vertical gas and dust column densities are low. No such difference in CN and HCN emission profiles are observed toward DM Tau, suggestive of different photochemical structures in Herbig Ae and T Tauri disks. We use the HCN isotopologue data toward the MWC 480 disk to provide the first measurement of the {sup 14}N/{sup 15}N ratio in a disk. We find a low disk averaged {sup 14}N/{sup 15}N ratio of 200 ± 100, comparable to what is observed in cloud cores and comets, demonstrating interstellar inheritance and/or efficient nitrogen fractionation in this disk.

  8. The Vela pulsar with an active fallback disk

    Energy Technology Data Exchange (ETDEWEB)

    Özsükan, Gökçe; Ekşi, K. Yavuz [Faculty of Science and Letters, Department of Physics, İstanbul Technical University, Maslak 34469, İstanbul (Turkey); Hambaryan, Valeri; Neuhäuser, Ralph; Hohle, Markus M.; Ginski, Christian [Astrophysikalisches Institut und Universitäts-Sternwarte, Universität Jena, Schillergäßchen 2-3, 07745 Jena (Germany); Werner, Klaus, E-mail: eksi@itu.edu.tr [Institute for Astronomy and Astrophysics, Kepler Center for Astro and Particle Physics, Eberhard Karls University, Sand 1, D-72076 Tübingen (Germany)

    2014-11-20

    Fallback disks are expected to form around young neutron stars. The presence of these disks can be revealed by their blackbody spectrum in the infrared, optical, and UV bands. We present a re-reduction of the archival optical and infrared data of the Vela pulsar, together with the existing infrared and UV spectrum of Vela, and model their unpulsed components with the blackbody spectrum of a supernova debris disk. We invoke the quiescent disk solution of Sunyaev and Shakura for the description of the disk in the propeller stage and find the inner radius of the disk to be inside the light cylinder radius. We perform a high-resolution X-ray analysis with XMM-Newton and find a narrow absorption feature at 0.57 keV that can be interpreted as the K {sub α} line of He-like oxygen (O VII). The strength of the line indicates an element over-abundance in our line of sight exceeding the amounts that would be expected from interstellar medium. The spectral feature may originate from the pulsar wind nebula and may be partly caused by the reprocessed X-ray radiation by the fallback disk. We discuss the lower-than-three braking index of Vela as partially due to the contribution of the propeller torques. Our results suggest that the pulsar mechanism can work simultaneously with the propeller processes and that the debris disks can survive the radiation pressure for at least ∼10{sup 4} yr. As Vela is a relatively close object, and a prototypical pulsar, the presence of a disk, if confirmed, may indicate the ubiquity of debris disks around young neutron stars.

  9. THE HERSCHEL DIGIT SURVEY OF WEAK-LINE T TAURI STARS: IMPLICATIONS FOR DISK EVOLUTION AND DISSIPATION

    International Nuclear Information System (INIS)

    Cieza, Lucas A.; Olofsson, Johan; Henning, Thomas; Harvey, Paul M.; Evans, Neal J. II; Najita, Joan; Merín, Bruno; Liebhart, Armin; Güdel, Manuel; Augereau, Jean-Charles; Pinte, Christophe

    2013-01-01

    As part of the 'Dust, Ice, and Gas In Time (DIGIT)' Herschel Open Time Key Program, we present Herschel photometry (at 70, 160, 250, 350, and 500 μm) of 31 weak-line T Tauri star (WTTS) candidates in order to investigate the evolutionary status of their circumstellar disks. Of the stars in our sample, 13 had circumstellar disks previously known from infrared observations at shorter wavelengths, while 18 of them had no previous evidence for a disk. We detect a total of 15 disks as all previously known disks are detected at one or more Herschel wavelengths and two additional disks are identified for the first time. The spectral energy distributions (SEDs) of our targets seem to trace the dissipation of the primordial disk and the transition to the debris disk regime. Of the 15 disks, 7 appear to be optically thick primordial disks, including 2 objects with SEDs indistinguishable from those of typical Classical T Tauri stars, 4 objects that have significant deficit of excess emission at all IR wavelengths, and 1 'pre-transitional' object with a known gap in the disk. Despite their previous WTTS classification, we find that the seven targets in our sample with optically thick disks show evidence for accretion. The remaining eight disks have weaker IR excesses similar to those of optically thin debris disks. Six of them are warm and show significant 24 μm Spitzer excesses, while the last two are newly identified cold debris-like disks with photospheric 24 μm fluxes, but significant excess emission at longer wavelengths. The Herschel photometry also places strong constraints on the non-detections, where systems with F 70 /F 70,* ∼> 5-15 and L disk /L * ∼> 10 –3 to 10 –4 can be ruled out. We present preliminary models for both the optically thick and optically thin disks and discuss our results in the context of the evolution and dissipation of circumstellar disks.

  10. Impact analysis of TOTEM data at the LHC: black disk limit exceeded

    CERN Document Server

    Alkin, A; Kovalenko, O; Troshin, S M

    2015-01-01

    We discuss the profile of the impact--parameter dependent elastic scattering amplitude. Extraction of impact-parameter dependence from the dataset with inclusion of the experimental data on elastic scattering at the LHC energies helps to reveal the asymptotics of hadron interactions. Analysis of the data clearly indicates that the impact-parameter elastic scattering amplitude exceed the black disk limit at the LHC energy 7TeV and the inelastic overlap function reaches its maximum value at $b>0$

  11. A DISK AROUND THE PLANETARY-MASS COMPANION GSC 06214-00210 b: CLUES ABOUT THE FORMATION OF GAS GIANTS ON WIDE ORBITS

    International Nuclear Information System (INIS)

    Bowler, Brendan P.; Liu, Michael C.; Kraus, Adam L.; Mann, Andrew W.; Ireland, Michael J.

    2011-01-01

    We present Keck OSIRIS 1.1-1.8 μm adaptive optics integral field spectroscopy of the planetary-mass companion to GSC 06214-00210, a member of the ∼5 Myr Upper Scorpius OB association. We infer a spectral type of L0 ± 1, and our spectrum exhibits multiple signs of youth. The most notable feature is exceptionally strong Paβ emission (EW = –11.4 ± 0.3 Å), which signals the presence of a circumplanetary accretion disk. The luminosity of GSC 06214-00210 b combined with its age yields a model-dependent mass of 14 ± 2 M Jup , making it the lowest-mass companion to show evidence of a disk. With a projected separation of 320 AU, the formation of GSC 06214-00210 b and other very low mass companions on similarly wide orbits is unclear. One proposed mechanism is formation at close separations followed by planet-planet scattering to much larger orbits. Since that scenario involves a close encounter with another massive body, which is probably destructive to circumplanetary disks, it is unlikely that GSC 06214-00210 b underwent a scattering event in the past. This implies that planet-planet scattering is not solely responsible for the population of gas giants on wide orbits. More generally, the identification of disks around young planetary companions on wide orbits offers a novel method to constrain the formation pathway of these objects, which is otherwise notoriously difficult to do for individual systems. We also refine the spectral type of the primary from M1 to K7 and detect a mild (2σ) excess at 22 μm using Wide-Field Infrared Survey Explorer photometry.

  12. SILICATE EVOLUTION IN BROWN DWARF DISKS

    International Nuclear Information System (INIS)

    Riaz, B.

    2009-01-01

    We present a compositional analysis of the 10 μm silicate spectra for brown dwarf disks in the Taurus and Upper Scorpius (UppSco) star-forming regions, using archival Spitzer/Infrared Spectrograph observations. A variety in the silicate features is observed, ranging from a narrow profile with a peak at 9.8 μm, to nearly flat, low-contrast features. For most objects, we find nearly equal fractions for the large-grain and crystalline mass fractions, indicating both processes to be active in these disks. The median crystalline mass fraction for the Taurus brown dwarfs is found to be 20%, a factor of ∼2 higher than the median reported for the higher mass stars in Taurus. The large-grain mass fractions are found to increase with an increasing strength in the X-ray emission, while the opposite trend is observed for the crystalline mass fractions. A small 5% of the Taurus brown dwarfs are still found to be dominated by pristine interstellar medium-like dust, with an amorphous submicron grain mass fraction of ∼87%. For 15% of the objects, we find a negligible large-grain mass fraction, but a >60% small amorphous silicate fraction. These may be the cases where substantial grain growth and dust sedimentation have occurred in the disks, resulting in a high fraction of amorphous submicron grains in the disk surface. Among the UppSco brown dwarfs, only usd161939 has a signal-to-noise ratio high enough to properly model its silicate spectrum. We find a 74% small amorphous grain and a ∼26% crystalline mass fraction for this object.

  13. Infrared radiative transfer in dense disks around young stars

    International Nuclear Information System (INIS)

    Dent, W.R.F.

    1988-01-01

    A two-dimensional radiative transfer program has been used to determine the temperature distribution within cylindrically symmetric, centrally heated dust clouds. In particular, the disk-shaped structures observed around young luminous stars have been modeled. Changing the dust distribution in these disks primarily affected the observed morphology in the near-infrared and far-infrared, and at millimeter wavelengths. The overall cloud spectrum, however, was mainly determined by the characteristics of the grains themselves. Comparison with published far-infrared and molecular line data has indicated that the dust density can generally be modeled by a power-law distribution in r with index of -2 and an exponential in z with disk thickness proportional to 1/r. When observed nearly edge-on, scattered direct stellar radiation is observed in the polar regions in the form of comet-shaped lobes of emission. 26 references

  14. THE STRUCTURE OF A SELF-GRAVITATING PROTOPLANETARY DISK AND ITS IMPLICATIONS FOR DIRECT IMAGING OBSERVATIONS

    International Nuclear Information System (INIS)

    Muto, Takayuki

    2011-01-01

    We consider the effects of self-gravity on the hydrostatic balance in the vertical direction of a gaseous disk and discuss the possible signature of the self-gravity that may be captured by direct imaging observations of protoplanetary disks in the future. In this paper, we consider a vertically isothermal disk in order to isolate the effects of self-gravity. The specific disk model we consider in this paper is the one with a radial surface density gap, at which the Toomre's Q-parameter of the disk varies rapidly in the radial direction. We calculate the vertical structure of the disk including the effects of self-gravity. We then calculate the scattered light and the dust thermal emission. We find that if the disk is massive enough and the effects of self-gravity come into play, a weak bump-like structure at the gap edge appears in the near-infrared (NIR) scattered light, while no such bump-like structure is seen in the submillimeter (sub-mm) dust continuum image. The appearance of the bump is caused by the variation of the height of the surface in the NIR wavelength. If such a bump-like feature is detected in future direct imaging observations, combined with sub-mm observations, it will give us useful information about the physical states of the disk.

  15. Melting of polydisperse hard disks

    NARCIS (Netherlands)

    Pronk, S.; Frenkel, D.

    2004-01-01

    The melting of a polydisperse hard-disk system is investigated by Monte Carlo simulations in the semigrand canonical ensemble. This is done in the context of possible continuous melting by a dislocation-unbinding mechanism, as an extension of the two-dimensional hard-disk melting problem. We find

  16. The Stability of Galaxy Disks

    NARCIS (Netherlands)

    Westfall, K. B.; Andersen, D. R.; Bershady, M. A.; Martinsson, T. P. K.; Swaters, R. A.; Verheijen, M. A. W.; Seigar, M.S.; Treuthardt, P.

    2014-01-01

    We calculate the stellar surface mass density (Σ*) and two-component (gas+stars) disk stability (QRW) for 25 late-type galaxies from the DiskMass Survey. These calculations are based on fits of a dynamical model to our ionized-gas and stellar kinematic data performed using a Markov Chain Monte Carlo

  17. Vibration of imperfect rotating disk

    Czech Academy of Sciences Publication Activity Database

    Půst, Ladislav; Pešek, Luděk

    2011-01-01

    Roč. 5, č. 2 (2011), s. 205-216 ISSN 1802-680X R&D Projects: GA ČR GA101/09/1166 Institutional research plan: CEZ:AV0Z20760514 Keywords : bladed disk * imperfect disk * travelling waves Subject RIV: BI - Acoustics http://www.kme.zcu.cz/acm/index.php/acm/article/view/86

  18. RINGED ACCRETION DISKS: EQUILIBRIUM CONFIGURATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Pugliese, D.; Stuchlík, Z., E-mail: d.pugliese.physics@gmail.com, E-mail: zdenek.stuchlik@physics.cz [Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo náměstí 13, CZ-74601 Opava (Czech Republic)

    2015-12-15

    We investigate a model of a ringed accretion disk, made up by several rings rotating around a supermassive Kerr black hole attractor. Each toroid of the ringed disk is governed by the general relativity hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. Properties of the tori can then be determined by an appropriately defined effective potential reflecting the background Kerr geometry and the centrifugal effects. The ringed disks could be created in various regimes during the evolution of matter configurations around supermassive black holes. Therefore, both corotating and counterrotating rings have to be considered as being a constituent of the ringed disk. We provide constraints on the model parameters for the existence and stability of various ringed configurations and discuss occurrence of accretion onto the Kerr black hole and possible launching of jets from the ringed disk. We demonstrate that various ringed disks can be characterized by a maximum number of rings. We present also a perturbation analysis based on evolution of the oscillating components of the ringed disk. The dynamics of the unstable phases of the ringed disk evolution seems to be promising in relation to high-energy phenomena demonstrated in active galactic nuclei.

  19. Revealing asymmetries in the HD 181327 debris disk: A recent massive collision or interstellar medium warping

    Energy Technology Data Exchange (ETDEWEB)

    Stark, Christopher C.; Kuchner, Marc J. [NASA Goddard Space Flight Center, Exoplanets and Stellar Astrophysics Laboratory, Code 667, Greenbelt, MD 20771 (United States); Schneider, Glenn [Steward Observatory, The University of Arizona, Tucson, AZ 85721 (United States); Weinberger, Alycia J. [Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road NW, Washington, DC 20015 (United States); Debes, John H. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Grady, Carol A. [Eureka Scientific, 2452 Delmer, Suite 100, Oakland, CA 96002 (United States); Jang-Condell, Hannah, E-mail: christopher.c.stark@nasa.gov [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States)

    2014-07-01

    New multi-roll coronagraphic images of the HD 181327 debris disk obtained using the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope reveal the debris ring in its entirety at high signal-to-noise ratio and unprecedented spatial resolution. We present and apply a new multi-roll image processing routine to identify and further remove quasi-static point-spread function-subtraction residuals and quantify systematic uncertainties. We also use a new iterative image deprojection technique to constrain the true disk geometry and aggressively remove any surface brightness asymmetries that can be explained without invoking dust density enhancements/deficits. The measured empirical scattering phase function for the disk is more forward scattering than previously thought and is not well-fit by a Henyey-Greenstein function. The empirical scattering phase function varies with stellocentric distance, consistent with the expected radiation pressured-induced size segregation exterior to the belt. Within the belt, the empirical scattering phase function contradicts unperturbed debris ring models, suggesting the presence of an unseen planet. The radial profile of the flux density is degenerate with a radially varying scattering phase function; therefore estimates of the ring's true width and edge slope may be highly uncertain. We detect large scale asymmetries in the disk, consistent with either the recent catastrophic disruption of a body with mass >1% the mass of Pluto, or disk warping due to strong interactions with the interstellar medium.

  20. Revealing Asymmetries in the HD 181327 Debris Disk: A Recent Massive Collision or Interstellar Medium Warping

    Science.gov (United States)

    Stark, Christopher C.; Schneider, Glenn; Weinberger, Alycia J.; Debes, John H.; Grady, Carol A.; Jang-Condell, Hannah; Kuchner, Marc J.

    2014-07-01

    New multi-roll coronagraphic images of the HD 181327 debris disk obtained using the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope reveal the debris ring in its entirety at high signal-to-noise ratio and unprecedented spatial resolution. We present and apply a new multi-roll image processing routine to identify and further remove quasi-static point-spread function-subtraction residuals and quantify systematic uncertainties. We also use a new iterative image deprojection technique to constrain the true disk geometry and aggressively remove any surface brightness asymmetries that can be explained without invoking dust density enhancements/deficits. The measured empirical scattering phase function for the disk is more forward scattering than previously thought and is not well-fit by a Henyey-Greenstein function. The empirical scattering phase function varies with stellocentric distance, consistent with the expected radiation pressured-induced size segregation exterior to the belt. Within the belt, the empirical scattering phase function contradicts unperturbed debris ring models, suggesting the presence of an unseen planet. The radial profile of the flux density is degenerate with a radially varying scattering phase function; therefore estimates of the ring's true width and edge slope may be highly uncertain. We detect large scale asymmetries in the disk, consistent with either the recent catastrophic disruption of a body with mass >1% the mass of Pluto, or disk warping due to strong interactions with the interstellar medium.

  1. STABILITY OF MAGNETIZED DISKS AND IMPLICATIONS FOR PLANET FORMATION

    International Nuclear Information System (INIS)

    Lizano, Susana; Galli, Daniele; Cai, Mike J.; Adams, Fred C.

    2010-01-01

    This paper considers gravitational perturbations in geometrically thin disks with rotation curves dominated by a central object, but with substantial contributions from magnetic pressure and tension. The treatment is general, but the application is to the circumstellar disks that arise during the gravitational collapse phase of star formation. We find the dispersion relation for spiral density waves in these generalized disks and derive the stability criterion for axisymmetric (m = 0) disturbances (the analog of the Toomre parameter Q T ) for any radial distribution of the mass-to-flux ratio λ. The magnetic effects work in two opposing directions: on one hand, magnetic tension and pressure stabilize the disk against gravitational collapse and fragmentation; on the other hand, they also lower the rotation rate making the disk more unstable. For disks around young stars the first effect generally dominates, so that magnetic fields allow disks to be stable for higher surface densities and larger total masses. These results indicate that magnetic fields act to suppress the formation of giant planets through gravitational instability. Finally, even if gravitational instability can form a secondary body, it must lose an enormous amount of magnetic flux in order to become a planet; this latter requirement represents an additional constraint for planet formation via gravitational instability and places a lower limit on the electrical resistivity.

  2. Radiative Transfer Modeling in Proto-planetary Disks

    Science.gov (United States)

    Kasper, David; Jang-Condell, Hannah; Kloster, Dylan

    2016-01-01

    Young Stellar Objects (YSOs) are rich astronomical research environments. Planets form in circumstellar disks of gas and dust around YSOs. With ever increasing capabilities of the observational instruments designed to look at these proto-planetary disks, most notably GPI, SPHERE, and ALMA, more accurate interfaces must be made to connect modeling of the disks with observation. PaRTY (Parallel Radiative Transfer in YSOs) is a code developed previously to model the observable density and temperature structure of such a disk by self-consistently calculating the structure of the disk based on radiative transfer physics. We present upgrades we are implementing to the PaRTY code to improve its accuracy and flexibility. These upgrades include: creating a two-sided disk model, implementing a spherical coordinate system, and implementing wavelength-dependent opacities. These upgrades will address problems in the PaRTY code of infinite optical thickness, calculation under/over-resolution, and wavelength-independent photon penetration depths, respectively. The upgraded code will be used to better model disk perturbations resulting from planet formation.

  3. Extreme Asymmetry in the Polarized Disk of V1247 Orionis

    Science.gov (United States)

    Ohta, Yurina; Fukagawa, Misato; Sitko, Michael; Muto, Takayuki; Kraus, Stefan; Grady, Carol A.; Wisniewski, John A.; Swearingen, Jeremy R.; Shibai, Hiroshi; McElwain, Michael W.

    2016-01-01

    We present the first near-infrared scattered-light detection of the transitional disk around V1247 Ori, which was obtained using high-resolution polarimetric differential imaging observations with Subaru/HiCIAO. Our imaging in the H band reveals the disk morphology at separations of approx.0.14-0.86 (54-330 au) from the central star. The polarized intensity image shows a remarkable arc-like structure toward the southeast of the star, whereas the fainter northwest region does not exhibit any notable features. The shape of the arm is consistent with an arc of 0.28 +/- 0.09 in radius (108 au from the star), although the possibility of a spiral arm with a small pitch angle cannot be excluded. V1247 Ori features an exceptionally large azimuthal contrast in scattered, polarized light; the radial peak of the southeastern arc is about three times brighter than the northwestern disk measured at the same distance from the star. Combined with the previous indication of an inhomogeneous density distribution in the gap at 46 au, the notable asymmetry in the outer disk suggests the presence of unseen companions and/or planet-forming processes ongoing in the arc.

  4. ALMA Dust Polarization Observations of Two Young Edge-on Protostellar Disks

    Science.gov (United States)

    Lee, Chin-Fei; Li, Zhi-Yun; Ching, Tao-Chung; Lai, Shih-Ping; Yang, Haifeng

    2018-02-01

    Polarized emission is detected in two young nearly edge-on protostellar disks in 343 GHz continuum at ∼50 au (∼0.″12) resolution with Atacama Large Millimeter/submillimeter Array. One disk is in HH 212 (Class 0) and the other in the HH 111 (early Class I) protostellar system. The polarization fraction is ∼1%. The disk in HH 212 has a radius of ∼60 au. The emission is mainly detected from the nearside of the disk. The polarization orientations are almost perpendicular to the disk major axis, consistent with either self-scattering or emission by grains aligned with a poloidal field around the outer edge of the disk because of the optical depth effect and temperature gradient; the presence of a poloidal field would facilitate the launching of a disk wind, for which there is already tentative evidence in the same source. The disk of HH 111 VLA 1 has a larger radius of ∼220 au and is thus more resolved. The polarization orientations are almost perpendicular to the disk major axis in the nearside, but more along the major axis in the farside, forming roughly half of an elliptical pattern there. It appears that toroidal and poloidal magnetic field may explain the polarization on the near and far sides of the disk, respectively. However, it is also possible that the polarization is due to self-scattering. In addition, alignment of dust grains by radiation flux may play a role in the farside. Our observations reveal a diversity of disk polarization patterns that should be taken into account in future modeling efforts.

  5. The black disk to be observed in the Orear region

    International Nuclear Information System (INIS)

    Dremin, I.M.

    2012-01-01

    It is argued that the very first signatures of the approach to the black disk asymptotical limit in hadron collisions may be observed in the differential cross section of elastic scattering. The exponentially decreasing with the angle (or √(|t|) ) regime beyond the diffraction peak will become replaced by an oscillatory behavior or by the power-like falloff. Some estimates of energies where this can happen are presented.

  6. A SPITZER c2d LEGACY SURVEY TO IDENTIFY AND CHARACTERIZE DISKS WITH INNER DUST HOLES

    International Nuclear Information System (INIS)

    Merin, Bruno; Brown, Joanna M.; Herczeg, Gregory J.; Van Dishoeck, Ewine F.; Oliveira, Isa; Lahuis, Fred; Bottinelli, Sandrine; Augereau, Jean-Charles; Olofsson, Johan; Evans, Neal J.; Harvey, Paul M.; Cieza, Lucas; Spezzi, Loredana; Prusti, Timo; Alcala, Juan M.; Blake, Geoffrey A.; Bayo, Amelia; Geers, Vincent G.; Walter, Frederick M.; Chiu, Kuenley

    2010-01-01

    Understanding how disks dissipate is essential to studies of planet formation. However, identifying exactly how dust and gas dissipate is complicated due to the difficulty of finding objects that are clearly in the transition phase of losing their surrounding material. We use Spitzer Infrared Spectrograph (IRS) spectra to examine 35 photometrically selected candidate cold disks (disks with large inner dust holes). The infrared spectra are supplemented with optical spectra to determine stellar and accretion properties and 1.3 mm photometry to measure disk masses. Based on detailed spectral energy distribution modeling, we identify 15 new cold disks. The remaining 20 objects have IRS spectra that are consistent with disks without holes, disks that are observed close to edge-on, or stars with background emission. Based on these results, we determine reliable criteria to identify disks with inner holes from Spitzer photometry, and examine criteria already in the literature. Applying these criteria to the c2d surveyed star-forming regions gives a frequency of such objects of at least 4% and most likely of order 12% of the young stellar object population identified by Spitzer. We also examine the properties of these new cold disks in combination with cold disks from the literature. Hole sizes in this sample are generally smaller than in previously discovered disks and reflect a distribution in better agreement with exoplanet orbit radii. We find correlations between hole size and both disk and stellar masses. Silicate features, including crystalline features, are present in the overwhelming majority of the sample, although the 10 μm feature strength above the continuum declines for holes with radii larger than ∼7 AU. In contrast, polycyclic aromatic hydrocarbons are only detected in 2 out of 15 sources. Only a quarter of the cold disk sample shows no signs of accretion, making it unlikely that photoevaporation is the dominant hole-forming process in most cases.

  7. Pre-main-sequence disk accretion in Z Canis Majoris

    International Nuclear Information System (INIS)

    Hartmann, L.; Kenyon, S.J.; Hewett, R.; Edwards, S.; Strom, K.M.; Strom, S.E.; Stauffer, J.R.

    1989-01-01

    It is suggested that the pre-main-sequence object Z CMa is a luminous accretion disk, similar in many respects to the FU Orionis variables. Z CMa shows the broad, doubled optical absorption lines expected from a rapidly rotating accretion disk. The first overtone CO absorption detected in Z CMa is blue-shifted, suggesting line formation in a disk wind. Accretion at rates about 0.001 solar mass/yr over 100 yr is required to explain the luminosity of Z CMa. The large amount of material accreted (0.1 solar mass/yr) indicates that Z CMa is in a very early stage of stellar evolution, possibly in an initial phase of massive disk accretion. 41 references

  8. A model for neutrino emission from nuclear accretion disks

    Science.gov (United States)

    Deaton, Michael

    2015-04-01

    Compact object mergers involving at least one neutron star can produce short-lived black hole accretion engines. Over tens to hundreds of milliseconds such an engine consumes a disk of hot, nuclear-density fluid, and drives changes to its surrounding environment through luminous emission of neutrinos. The neutrino emission may drive an ultrarelativistic jet, may peel off the disk's outer layers as a wind, may irradiate those winds or other forms of ejecta and thereby change their composition, may change the composition and thermodynamic state of the disk itself, and may oscillate in its flavor content. We present the full spatial-, angular-, and energy-dependence of the neutrino distribution function around a realistic model of a nuclear accretion disk, to inform future explorations of these types of behaviors. Spectral Einstein Code (SpEC).

  9. Pre-main-sequence disk accretion in Z Canis Majoris

    Science.gov (United States)

    Hartmann, L.; Kenyon, S. J.; Hewett, R.; Edwards, S.; Strom, K. M.; Strom, S. E.; Stauffer, J. R.

    1989-01-01

    It is suggested that the pre-main-sequence object Z CMa is a luminous accretion disk, similar in many respects to the FU Orionis variables. Z CMa shows the broad, doubled optical absorption lines expected from a rapidly rotating accretion disk. The first overtone CO absorption detected in Z CMa is blue-shifted, suggesting line formation in a disk wind. Accretion at rates about 0.001 solar mass/yr over 100 yr is required to explain the luminosity of Z CMa. The large amount of material accreted (0.1 solar mass/yr) indicates that Z CMa is in a very early stage of stellar evolution, possibly in an initial phase of massive disk accretion.

  10. Hydrogen Cyanide In Protoplanetary Disks

    Science.gov (United States)

    Walker, Ashley L.; Oberg, Karin; Cleeves, L. Ilsedore

    2018-01-01

    The chemistry behind star and planet formation is extremely complex and important in the formation of habitable planets. Life requires molecules containing carbon, oxygen, and importantly, nitrogen. Hydrogen cyanide, or HCN, one of the main interstellar nitrogen carriers, is extremely dangerous here on Earth. However, it could be used as a vital tool for tracking the chemistry of potentially habitable planets. As we get closer to identifying other habitable planets, we must understand the beginnings of how those planets are formed in the early protoplanetary disk. This project investigates HCN chemistry in different locations in the disk, and what this might mean for forming planets at different distances from the star. HCN is a chemically diverse molecule. It is connected to the formation for other more complex molecules and is commonly used as a nitrogen tracer. Using computational chemical models we look at how the HCN abundance changes at different locations. We use realistic and physically motivated conditions for the gas in the protoplanetary disk: temperature, density, and radiation (UV flux). We analyze the reaction network, formation, and destruction of HCN molecules in the disk environment. The disk environment informs us about stability of habitable planets that are created based on HCN molecules. We reviewed and compared the difference in the molecules with a variety of locations in the disk and ultimately giving us a better understanding on how we view protoplanetary disks.

  11. Surface reconstruction through poisson disk sampling.

    Directory of Open Access Journals (Sweden)

    Wenguang Hou

    Full Text Available This paper intends to generate the approximate Voronoi diagram in the geodesic metric for some unbiased samples selected from original points. The mesh model of seeds is then constructed on basis of the Voronoi diagram. Rather than constructing the Voronoi diagram for all original points, the proposed strategy is to run around the obstacle that the geodesic distances among neighboring points are sensitive to nearest neighbor definition. It is obvious that the reconstructed model is the level of detail of original points. Hence, our main motivation is to deal with the redundant scattered points. In implementation, Poisson disk sampling is taken to select seeds and helps to produce the Voronoi diagram. Adaptive reconstructions can be achieved by slightly changing the uniform strategy in selecting seeds. Behaviors of this method are investigated and accuracy evaluations are done. Experimental results show the proposed method is reliable and effective.

  12. Proton nuclear scattering radiography

    International Nuclear Information System (INIS)

    Saudinos, J.

    1982-04-01

    Nuclear scattering of protons allows to radiograph objects with specific properties: 3-dimensional radiography, different information as compared to X-ray technique, hydrogen radiography. Furthermore the nuclear scattering radiography (NSR) is a well adapted method to gating techniques allowing the radiography of fast periodic moving objects. Results obtained on phantoms, formalin fixed head and moving object are shown and discussed. The dose delivery is compatible with clinical use, but at the moment, the irradiation time is too long between 1 and 4 hours. Perspectives to make the radiograph faster and to get a practical method are discussed

  13. 8-inch IBM floppy disk

    CERN Multimedia

    1971-01-01

    The 8-inch floppy disk was a magnetic storage disk for the data introduced commercially by IBM in 1971. It was designed by an IBM team as an inexpensive way to load data into the IBM System / 370. Plus it was a read-only bare disk containing 80 KB of data. The first read-write version was introduced in 1972 by Memorex and could contain 175 KB on 50 tracks (with 8 sectors per track). Other improvements have led to various coatings and increased capacities. Finally, it was surpassed by the mini diskette of 5.25 inches introduced in 1976.

  14. The Fortios disks revisited

    Directory of Open Access Journals (Sweden)

    António M. Monge Soares

    2017-07-01

    Full Text Available We have used EDXRF, Micro-PIXE and optical microscopy (metallographic analysis, complemented with SEM-EDS, to first determine the elemental content, and second, to identify the process used to join the components (disk, peripheral rod and tab of several Iron Age gold buttons. These have a very similar typology and were found at three archaeological sites in the South-Western part of the Iberian Peninsula. A set of 35 buttons from Castro dos Ratinhos (7, Outeiro da Cabeça (23 and Fortios (5 were analyzed and the results published in Trabajos de Prehistoria (Soares et al. 2010. Recently Perea et al. (2016 have published analyses of other 4 gold buttons from Fortios with the same purpose, but only using one technique, SEM-EDS. As they only analysed the rough surface layer, the results are neither effective nor reliable, taking into account the constraints associated with the technique, namely the small depth reached (< 2 ?m by the incident beam and, consequently, its sensitivity to the topography of the analyzed surface. Despite these constraints, they have accepted uncritically their results and, at the same time, question our own analyses and results and the interpretation we have made. Here we discuss the approach of Perea et al. in order to determine not only the elemental content of the Fortios gold buttons, but also to identify the joining process used in their manufacture.

  15. Bend testing for miniature disks

    International Nuclear Information System (INIS)

    Huang, F.H.; Hamilton, M.L.; Wire, G.L.

    1982-01-01

    A bend test was developed to obtain ductility measurements on a large number of alloy variants being irradiated in the form of miniature disks. Experimental results were shown to be in agreement with a theoretical analysis of the bend configuration. Disk specimens fabricated from the unstrained grip ends of previously tested tensile specimens were used for calibration purposes; bend ductilities and tensile ductilities were in good agreement. The criterion for estimating ductility was judged acceptable for screening purposes

  16. Ultraviolet spectrophotometry of 2A 1822--371: A bulge on the accretion disk

    International Nuclear Information System (INIS)

    Mason, K.O.; Cordova, F.A.

    1982-01-01

    The X-ray source 2A 1822--371 has been observed with the IUE satellite over an 8 hour period. Long and short wavelength exposures of duration 45 or 60 minutes were alternated in order to resolve the 5.57 hr photometric modulation of the star. The data provide evidence that the shape of the 5.57 hr modulation evolves smoothly with energy between extremes defined by the optical and X-ray curves. The far-UV light curve is more deeply modulated than the X-ray light curve. The combined ultraviolet and the UBV band optical data can be fitted with a single blackbody of temperature 2.7 x 10 4 K, or an optically thick disk model with parameters T/sub asterisk/ = 1.2 x 10 5 K and R/sub out//R/sub in/approx.30. A single power-law model does not adequately represent the continuum. There is evidence of absorption due to the 2200 A interstellar feature whose depth requires a color excess, E(B--V)approx.0.1, with 3 sigma upper and lower bounds of 0.29 and 0.01. Emission lines of C IV 1550 A and N V 1240 A are detected in the UV spectrum. The work of Mason et al. and White et al. suggests that the optical and ultraviolet emission arises in an accretion disk, whereas the X-radiation is emitted from a scattering cloud that envelopes a central compact object. In the present paper, the 5.57 hr optical, X-ray and ultraviolet modulation of 2A 1822--371 is intrepreted as the result of partial occultation of the emitting region by a comparison star and a bulge on the outer accretion disk. X-ray heating of the bulge will probably also contribute to the modulation at optical and ultraviolet wavelengths

  17. Small vs. large dust grains in transitional disks: do different cavity sizes indicate a planet?. SAO 206462 (HD 135344B) in polarized light with VLT/NACO

    Science.gov (United States)

    Garufi, A.; Quanz, S. P.; Avenhaus, H.; Buenzli, E.; Dominik, C.; Meru, F.; Meyer, M. R.; Pinilla, P.; Schmid, H. M.; Wolf, S.

    2013-12-01

    Context. Transitional disks represent a short stage of the evolution of circumstellar material. Studies of dust grains in these objects can provide pivotal information on the mechanisms of planet formation. Dissimilarities in the spatial distribution of small (μm-size) and large (mm-size) dust grains have recently been pointed out. Aims: Constraints on the small dust grains can be obtained by imaging the distribution of scattered light at near-infrared wavelengths. We aim at resolving structures in the surface layer of transitional disks (with particular emphasis on the inner 10-50 AU), thus increasing the scarce sample of high-resolution images of these objects. Methods: We obtained VLT/NACO near-IR high-resolution polarimetric differential imaging observations of SAO 206462 (HD 135344B). This technique allows one to image the polarized scattered light from the disk without any occulting mask and to reach an inner working angle of ~0.1″. Results: A face-on disk is detected in H and Ks bands between 0.1″ and 0.9″. No significant differences are seen between the H and Ks images. In addition to the spiral arms, these new data allow us to resolve for the first time an inner disk cavity for small dust grains. The cavity size (≃28 AU) is much smaller than what is inferred for large dust grains from (sub-)mm observations (39 to 50 AU). This discrepancy cannot be ascribed to any resolution effect. Conclusions: The interaction between the disk and potential orbiting companion(s) can explain both the spiral arm structure and the discrepant cavity sizes for small and large dust grains. One planet may be carving out the gas (and, thus, the small grains) at 28 AU, and generating a pressure bump at larger radii (39 AU), which holds back the large grains. We analytically estimate that, in this scenario, a single giant planet (with a mass between 5 and 15 MJ) at 17 to 20 AU from the star is consistent with the observed cavity sizes. Based on observations collected at the

  18. MID-INFRARED SPECTRA OF TRANSITIONAL DISKS IN THE CHAMAELEON I CLOUD

    International Nuclear Information System (INIS)

    Kim, K. H.; Watson, Dan M.; Manoj, P.; Forrest, W. J.; Sargent, B.; McClure, M. K.; Green, J. D.; Harrold, Samuel T.; Furlan, E.; Najita, J.; Espaillat, C.; Calvet, N.; Luhman, K. L.

    2009-01-01

    We present 5-40 μm Spitzer Infrared Spectrograph spectra of a collection of transitional disks, objects for which the spectral energy distribution (SED) indicates central clearings (holes) or gaps in the dust distribution, in the Chamaeleon I star-forming region. Like their counterparts in the Taurus-Auriga star-forming region that we have previously observed, the spectra of these young objects (1-3 Myr old) reveal that the central clearings or gaps are very sharp-edged, and are surrounded by optically thick dusty disks similar to those around other classical T Tauri stars in the Chamaeleon I association. Also like the Taurus transitional disks, the Chamaeleon I transitional disks have extremely large depletion factors for small dust grains in their gaps, compared to the full accretion disks whose SEDs are represented by the median SED of Class II objects in the region. We find that the fraction of transitional disks in the Chamaeleon I cloud is somewhat higher than that in the Taurus-Auriga cloud, possibly indicating that the frequency of transitional disks, on average, increases with cluster age. We also find a significant correlation between the stellar mass and the radius of the outer edge of the gap. We discuss the disk structures implied by the spectra and the constraints they place on gap-formation mechanisms in protoplanetary disks.

  19. Properties of Planet-Forming Prostellar Disks

    Science.gov (United States)

    Lindstrom, David (Technical Monitor); Lubow, Stephen

    2005-01-01

    The proposal achieved many of its objectives. The main area of investigation was the interaction of young planets with surrounding protostellar disks. The grant funds were used to support visits by CoIs and visitors: Gordon Ogilvie, Gennaro D Angelo, and Matthew Bate. Funds were used for travel and partial salary support for Lubow. We made important progress in two areas described in the original proposal: secular resonances (Section 3) and nonlinear waves in three dimensions (Section 5). In addition, we investigated several new areas: planet migration, orbital distribution of planets, and noncoorbital corotation resonances.

  20. Comparison of central axis and jet ring coolant supply for turbine disk cooling on a SSME-HPOTP model

    Science.gov (United States)

    Kim, Y. W.; Metzger, D. E.

    1992-01-01

    The test facility, test methods and results are presented for an experimental study modeling the cooling of turbine disks in the blade attachment regions with multiple impinging jets, in a configuration simulating the disk cooling method employed on the Space Shuttle Main Engine oxygen turbopump. The study's objective was to provide a comparison of detailed local convection heat transfer rates obtained for a single center-supply of disk coolant with those obtained with the present flight configuration where disk coolant is supplied through an array of 19 jets located near the disk outer radius. Specially constructed disk models were used in a program designed to evaluate possible benefits and identify any possible detrimental effects involved in employing an alternate disk cooling scheme. The study involved the design, construction and testing of two full scale rotating model disks, one plane and smooth for baseline testing and the second contoured to the present flight configuration, together with the corresponding plane and contoured stator disks. Local heat transfer rates are determined from the color display of encapsulated liquid crystals coated on the disk in conjunction with use of a computer vision system. The test program was composed of a wide variety of disk speeds, flowrates, and geometrical configurations, including testing for the effects of disk boltheads and gas ingestion from the gas path region radially outboard of the disk-cavity.

  1. Wave chaos in the elastic disk.

    Science.gov (United States)

    Sondergaard, Niels; Tanner, Gregor

    2002-12-01

    The relation between the elastic wave equation for plane, isotropic bodies and an underlying classical ray dynamics is investigated. We study, in particular, the eigenfrequencies of an elastic disk with free boundaries and their connection to periodic rays inside the circular domain. Even though the problem is separable, wave mixing between the shear and pressure component of the wave field at the boundary leads to an effective stochastic part in the ray dynamics. This introduces phenomena typically associated with classical chaos as, for example, an exponential increase in the number of periodic orbits. Classically, the problem can be decomposed into an integrable part and a simple binary Markov process. Similarly, the wave equation can, in the high-frequency limit, be mapped onto a quantum graph. Implications of this result for the level statistics are discussed. Furthermore, a periodic trace formula is derived from the scattering matrix based on the inside-outside duality between eigenmodes and scattering solutions and periodic orbits are identified by Fourier transforming the spectral density.

  2. Covering and piercing disks with two centers

    KAUST Repository

    Ahn, Heekap; Kim, Sangsub; Knauer, Christian; Schlipf, Lena; Shin, Chansu; Vigneron, Antoine E.

    2013-01-01

    We give exact and approximation algorithms for two-center problems when the input is a set D of disks in the plane. We first study the problem of finding two smallest congruent disks such that each disk in D intersects one of these two disks. Then we study the problem of covering the set D by two smallest congruent disks. © 2012 Elsevier B.V.

  3. Covering and piercing disks with two centers

    KAUST Repository

    Ahn, Heekap

    2013-04-01

    We give exact and approximation algorithms for two-center problems when the input is a set D of disks in the plane. We first study the problem of finding two smallest congruent disks such that each disk in D intersects one of these two disks. Then we study the problem of covering the set D by two smallest congruent disks. © 2012 Elsevier B.V.

  4. Covering and piercing disks with two centers

    KAUST Repository

    Ahn, Heekap; Kim, Sangsub; Knauer, Christian; Schlipf, Lena; Shin, Chansu; Vigneron, Antoine E.

    2011-01-01

    We consider new versions of the two-center problem where the input consists of a set D of disks in the plane. We first study the problem of finding two smallest congruent disks such that each disk in intersects one of these two disks. Then we study the problem of covering the set D by two smallest congruent disks. We give exact and approximation algorithms for these versions. © 2011 Springer-Verlag.

  5. EFFECTS OF LOCAL DISSIPATION PROFILES ON MAGNETIZED ACCRETION DISK SPECTRA

    International Nuclear Information System (INIS)

    Tao, Ted; Blaes, Omer

    2013-01-01

    We present spectral calculations of non-LTE accretion disk models appropriate for high-luminosity stellar mass black hole X-ray binary systems. We first use a dissipation profile based on scaling the results of shearing box simulations of Hirose et al. to a range of annuli parameters. We simultaneously scale the effective temperature, orbital frequency, and surface density with luminosity and radius according to the standard α-model. This naturally brings increased dissipation to the disk surface layers (around the photospheres) at small radii and high luminosities. We find that the local spectrum transitions directly from a modified blackbody to a saturated Compton scattering spectrum as we increase the effective temperature and orbital frequency while decreasing midplane surface density. Next, we construct annuli models based on the parameters of a L/L Edd = 0.8 disk orbiting a 6.62 solar mass black hole using two modified dissipation profiles that explicitly put more dissipation per unit mass near the disk surface. The new dissipation profiles are qualitatively similar to the one found by Hirose et al., but produce strong near power-law spectral tails. Our models also include physically motivated magnetic acceleration support based once again on scaling the Hirose et al. results. We present three full-disk spectra, each based on one of the dissipation prescriptions. Our most aggressive dissipation profile results in a disk spectrum that is in approximate quantitative agreement with certain observations of the steep power-law spectral states from some black hole X-ray binaries.

  6. DISK EVOLUTION IN THE THREE NEARBY STAR-FORMING REGIONS OF TAURUS, CHAMAELEON, AND OPHIUCHUS

    International Nuclear Information System (INIS)

    Furlan, E.; Watson, Dan M.; McClure, M. K.

    2009-01-01

    We analyze samples of Spitzer Infrared Spectrograph spectra of T Tauri stars in the Ophiuchus, Taurus, and Chamaeleon I star-forming regions, whose median ages lie in the <1-2 Myr range. The median mid-infrared spectra of objects in these three regions are similar in shape, suggesting, on average, similar disk structures. When normalized to the same stellar luminosity, the medians follow each other closely, implying comparable mid-infrared excess emission from the circumstellar disks. We use the spectral index between 13 and 31 μm and the equivalent width of the 10 μm silicate emission feature to identify objects whose disk configuration departs from that of a continuous, optically thick accretion disk. Transitional disks, whose steep 13-31 μm spectral slope and near-IR flux deficit reveal inner disk clearing, occur with about the same frequency of a few percent in all three regions. Objects with unusually large 10 μm equivalent widths are more common (20%-30%); they could reveal the presence of disk gaps filled with optically thin dust. Based on their medians and fraction of evolved disks, T Tauri stars in Taurus and Chamaeleon I are very alike. Disk evolution sets in early, since already the youngest region, the Ophiuchus core (L1688), has more settled disks with larger grains. Our results indicate that protoplanetary disks show clear signs of dust evolution at an age of a few Myr, even as early as ∼1 Myr, but age is not the only factor determining the degree of evolution during the first few million years of a disk's lifetime.

  7. The catalog of edge-on disk galaxies from SDSS. I. The catalog and the structural parameters of stellar disks

    Energy Technology Data Exchange (ETDEWEB)

    Bizyaev, D. V. [Apache Point Observatory and New Mexico State University, Sunspot, NM, 88349 (United States); Kautsch, S. J. [Nova Southeastern University, Fort Lauderdale, FL 33314 (United States); Mosenkov, A. V. [Central Astronomical Observatory of RAS (Russian Federation); Reshetnikov, V. P.; Sotnikova, N. Ya.; Yablokova, N. V. [St. Petersburg State University (Russian Federation); Hillyer, R. W. [Christopher Newport University, Newport News, VA 23606 (United States)

    2014-05-20

    We present a catalog of true edge-on disk galaxies automatically selected from the Seventh Data Release of the Sloan Digital Sky Survey (SDSS). A visual inspection of the g, r, and i images of about 15,000 galaxies allowed us to split the initial sample of edge-on galaxy candidates into 4768 (31.8% of the initial sample) genuine edge-on galaxies, 8350 (55.7%) non-edge-on galaxies, and 1865 (12.5%) edge-on galaxies not suitable for simple automatic analysis because these objects either show signs of interaction and warps, or nearby bright stars project on it. We added more candidate galaxies from RFGC, EFIGI, RC3, and Galaxy Zoo catalogs found in the SDSS footprints. Our final sample consists of 5747 genuine edge-on galaxies. We estimate the structural parameters of the stellar disks (the stellar disk thickness, radial scale length, and central surface brightness) in the galaxies by analyzing photometric profiles in each of the g, r, and i images. We also perform simplified three-dimensional modeling of the light distribution in the stellar disks of edge-on galaxies from our sample. Our large sample is intended to be used for studying scaling relations in the stellar disks and bulges and for estimating parameters of the thick disks in different types of galaxies via the image stacking. In this paper, we present the sample selection procedure and general description of the sample.

  8. Quasiresonant scattering

    International Nuclear Information System (INIS)

    Hategan, Cornel; Comisel, Horia; Ionescu, Remus A.

    2004-01-01

    The quasiresonant scattering consists from a single channel resonance coupled by direct interaction transitions to some competing reaction channels. A description of quasiresonant Scattering, in terms of generalized reduced K-, R- and S- Matrix, is developed in this work. The quasiresonance's decay width is, due to channels coupling, smaller than the width of the ancestral single channel resonance (resonance's direct compression). (author)

  9. Thomson Scattering

    NARCIS (Netherlands)

    Donne, A. J. H.

    1994-01-01

    Thomson scattering is a very powerful diagnostic which is applied at nearly every magnetic confinement device. Depending on the experimental conditions different plasma parameters can be diagnosed. When the wave vector is much larger than the plasma Debye length, the total scattered power is

  10. PLANET FORMATION IN STELLAR BINARIES. I. PLANETESIMAL DYNAMICS IN MASSIVE PROTOPLANETARY DISKS

    International Nuclear Information System (INIS)

    Rafikov, Roman R.; Silsbee, Kedron

    2015-01-01

    About 20% of exoplanets discovered by radial velocity surveys reside in stellar binaries. To clarify their origin one has to understand the dynamics of planetesimals in protoplanetary disks within binaries. The standard description, accounting for only gas drag and gravity of the companion star, has been challenged recently, as the gravity of the protoplanetary disk was shown to play a crucial role in planetesimal dynamics. An added complication is the tendency of protoplanetary disks in binaries to become eccentric, giving rise to additional excitation of planetesimal eccentricity. Here, for the first time, we analytically explore the secular dynamics of planetesimals in binaries such as α Cen and γ Cep under the combined action of (1) gravity of the eccentric protoplanetary disk, (2) perturbations due to the (coplanar) eccentric companion, and (3) gas drag. We derive explicit solutions for the behavior of planetesimal eccentricity e p in non-precessing disks (and in precessing disks in certain limits). We obtain the analytical form of the distribution of the relative velocities of planetesimals, which is a key input for understanding their collisional evolution. Disk gravity strongly influences relative velocities and tends to push the sizes of planetesimals colliding with comparable objects at the highest speed to small values, ∼1 km. We also find that planetesimals in eccentric protoplanetary disks apsidally aligned with the binary orbit collide at lower relative velocities than in misaligned disks. Our results highlight the decisive role that disk gravity plays in planetesimal dynamics in binaries

  11. Ultrafast disk lasers and amplifiers

    Science.gov (United States)

    Sutter, Dirk H.; Kleinbauer, Jochen; Bauer, Dominik; Wolf, Martin; Tan, Chuong; Gebs, Raphael; Budnicki, Aleksander; Wagenblast, Philipp; Weiler, Sascha

    2012-03-01

    Disk lasers with multi-kW continuous wave (CW) output power are widely used in manufacturing, primarily for cutting and welding applications, notably in the automotive industry. The ytterbium disk technology combines high power (average and/or peak power), excellent beam quality, high efficiency, and high reliability with low investment and operating costs. Fundamental mode picosecond disk lasers are well established in micro machining at high throughput and perfect precision. Following the world's first market introduction of industrial grade 50 W picosecond lasers (TruMicro 5050) at the Photonics West 2008, the second generation of the TruMicro series 5000 now provides twice the average power (100 W at 1030 nm, or 60 W frequency doubled, green output) at a significantly reduced footprint. Mode-locked disk oscillators achieve by far the highest average power of any unamplified lasers, significantly exceeding the 100 W level in laboratory set-ups. With robust long resonators their multi-microjoule pulse energies begin to compete with typical ultrafast amplifiers. In addition, significant interest in disk technology has recently come from the extreme light laser community, aiming for ultra-high peak powers of petawatts and beyond.

  12. NIRCam Coronagraphic Observations of Disks and Planetary Systems

    Science.gov (United States)

    Beichman, Charles A.; Ygouf, Marie; Gaspar, Andras; NIRCam Science Team

    2017-06-01

    The NIRCam coronagraph offers a dramatic increase in sensitivity at wavelengths of 3-5 um where young planets are brightest. While large ground-based telescopes with Extreme Adaptive Optics have an advantage in inner working angle, NIRCam's sensitivity will allow high precision photometry for known planets and searches for planets with masses below that of Saturn. For debris disk science NIRCam observations will address the scattering properties of dust, look for evidence of ices and tholins, and search for planets which affect the structure of the disk itself.The NIRCam team's GTO program includes medium-band filter observations of known young planets having 1-5 Jupiter masses. A collaborative program with the MIRI team will provide coronagraphic observations at longer wavelengths. The combined dataset will yield the exoplanet’s total luminosity and effective temperature, an estimate of the initial entropy of the newly-formed planet, and the retrieval of atmospheric properties.The program will also make deep searches for lower mass planets toward known planetary systems, nearby young M stars and debris disk systems. Achievable mass limits range from ~1 Jupiter mass beyond 20 AU for the brightest A stars to perhaps a Uranus mass within 10 AU for the closest M stars.We will discuss details of the coronagraphic program for both the exoplanet and debris disk cases with an emphasis on using APT to optimize the observations of target and reference stars.

  13. Defect reduction of patterned media templates and disks

    Science.gov (United States)

    Luo, Kang; Ha, Steven; Fretwell, John; Ramos, Rick; Ye, Zhengmao; Schmid, Gerard; LaBrake, Dwayne; Resnick, Douglas J.; Sreenivasan, S. V.

    2010-05-01

    Imprint lithography has been shown to be an effective technique for the replication of nano-scale features. Acceptance of imprint lithography for manufacturing will require a demonstration of defect levels commensurate with cost-effective device production. This work summarizes the results of defect inspections of hard disks patterned using Jet and Flash Imprint Lithography (J-FILTM). Inspections were performed with optical based automated inspection tools. For the hard drive market, it is important to understand the defectivity of both the template and the imprinted disk. This work presents a methodology for automated pattern inspection and defect classification for imprint-patterned media. Candela CS20 and 6120 tools from KLA-Tencor map the optical properties of the disk surface, producing highresolution grayscale images of surface reflectivity and scattered light. Defects that have been identified in this manner are further characterized according to the morphology. The imprint process was tested after optimizing both the disk cleaning and adhesion layers processes that precede imprinting. An extended imprint run was performed and both the defect types and trends are reported.

  14. CT recognition of lateral lumbar disk herniation

    International Nuclear Information System (INIS)

    Williams, A.L.; Haughton, V.M.; Daniels, D.L.; Thornton, R.S.

    1982-01-01

    Although computed tomography (CT) has been shown to be useful in diagnosing posterolateral and central lumbar disk herniations, its effectiveness in demonstrating lateral herniated disks has not been emphasized. The myelographic recognition of those herniations may be difficult because root sheaths or dural sacs may not be deformed. A total of 274 CT scans interpreted as showing lumbar disk herniation was reviewed. Fourteen (5%) showed a lateral disk herniation. The CT features of a lateral herniated disk included: (1) focal protrusion of the disk margin within or lateral to the intervertebral foramen: (2) displacement of epidural fat within the intervertebral foramen; (3) absence of dural sac deformity; and (4) soft-tissue mass within or lateral to the intervertebral foramen. Because it can image the disk margin and free disk fragments irrespective of dural sac or root sheath deformity, CT may be more effective than myelography for demonstrating the presence and extent of lateral disk herniation

  15. TRANSITIONAL DISKS AND THEIR ORIGINS: AN INFRARED SPECTROSCOPIC SURVEY OF ORION A

    International Nuclear Information System (INIS)

    Kim, K. H.; Watson, Dan M.; Manoj, P.; Forrest, W. J.; Arnold, Laura; Najita, Joan; Furlan, Elise; Sargent, Benjamin; Espaillat, Catherine; Muzerolle, James; Megeath, S. T.; Calvet, Nuria; Green, Joel D.

    2013-01-01

    Transitional disks are protoplanetary disks around young stars, with inner holes or gaps which are surrounded by optically thick outer, and often inner, disks. Here we present observations of 62 new transitional disks in the Orion A star-forming region. These were identified using the Spitzer Space Telescope's Infrared Spectrograph and followed up with determinations of stellar and accretion parameters using the Infrared Telescope Facility's SpeX. We combine these new observations with our previous results on transitional disks in Taurus, Chamaeleon I, Ophiuchus, and Perseus, and with archival X-ray observations. This produces a sample of 105 transitional disks of ''cluster'' age 3 Myr or less, by far the largest hitherto assembled. We use this sample to search for trends between the radial structure in the disks and many other system properties, in order to place constraints on the possible origins of transitional disks. We see a clear progression of host-star accretion rate and the different disk morphologies. We confirm that transitional disks with complete central clearings have median accretion rates an order of magnitude smaller than radially continuous disks of the same population. Pre-transitional disks—those objects with gaps that separate inner and outer disks—have median accretion rates intermediate between the two. Our results from the search for statistically significant trends, especially related to M-dot , strongly support that in both cases the gaps are far more likely to be due to the gravitational influence of Jovian planets or brown dwarfs orbiting within the gaps, than to any of the photoevaporative, turbulent, or grain-growth processes that can lead to disk dissipation. We also find that the fraction of Class II YSOs which are transitional disks is large, 0.1-0.2, especially in the youngest associations.

  16. High-resolution observations of IRAS 08544-4431. Detection of a disk orbiting a post-AGB star and of a slow disk wind

    Science.gov (United States)

    Bujarrabal, V.; Castro-Carrizo, A.; Winckel, H. Van; Alcolea, J.; Contreras, C. Sánchez; Santander-García, M.; Hillen, M.

    2018-06-01

    Context. Aims: In order to study the effects of rotating disks in the post-asymptotic giant branch (post-AGB) evolution, we observe a class of binary post-AGB stars that seem to be systematically surrounded by equatorial disks and slow outflows. Although the rotating dynamics had only been well identified in three cases, the study of such structures is thought to be fundamental to the understanding of the formation of disks in various phases of the late evolution of binary stars and the ejection of planetary nebulae from evolved stars. Methods: We present ALMA maps of 12CO and 13CO J = 3-2 lines in the source IRAS 08544-4431, which belongs to the above mentioned class of objects. We analyzed the data by means of nebula models, which account for the expectedly composite source and can reproduce the data. From our modeling, we estimated the main nebula parameters, including the structure and dynamics and the density and temperature distributions. We discuss the uncertainties of the derived values and, in particular, their dependence on the distance. Results: Our observations reveal the presence of an equatorial disk in rotation; a low-velocity outflow is also found, probably formed of gas expelled from the disk. The main characteristics of our observations and modeling of IRAS 08544-4431 are similar to those of better studied objects, confirming our interpretation. The disk rotation indicates a total central mass of about 1.8 M⊙, for a distance of 1100 pc. The disk is found to be relatively extended and has a typical diameter of 4 × 1016 cm. The total nebular mass is 2 × 10-2 M⊙, of which 90% corresponds to the disk. Assuming that the outflow is due to mass loss from the disk, we derive a disk lifetime of 10 000 yr. The disk angular momentum is found to be comparable to that of the binary system at present. Assuming that the disk angular momentum was transferred from the binary system, as expected, the high values of the disk angular momentum in this and other

  17. MISALIGNED DISKS AS OBSCURERS IN ACTIVE GALAXIES

    International Nuclear Information System (INIS)

    Lawrence, Andy; Elvis, Martin

    2010-01-01

    We critically review the evidence concerning the fraction of active galactic nuclei (AGNs) that appear as Type 2 AGNs, carefully distinguishing strict Type 2 AGNs from both more lightly reddened Type 1 AGNs, and from low excitation narrow line AGNs, which may represent a different mode of activity. Low-excitation AGNs occur predominantly at low luminosities; after removing these, true Type 2 AGNs represent 58% ± 5% of all AGNs, and lightly reddened Type 1 AGNs a further ∼15%. Radio, IR, and volume-limited samples all agree in showing no change of Type 2 fraction with luminosity. X-ray samples do show a change with luminosity; we discuss possible reasons for this discrepancy. We test a very simple picture which produces this Type 2 fraction with minimal assumptions. In this picture, infall from large scales occurs in random directions, but must eventually align with the inner accretion flow, producing a severely warped disk on parsec scales. If the re-alignment is dominated by tilt, with minimal twist, a wide range of covering factors is predicted in individual objects, but with an expected mean fraction of Type 2 AGNs of exactly 50%. This 'tilted disk' picture predicts reasonable alignment of observed nuclear structures on average, but with distinct misalignments in individual cases. Initial case studies of the few well-resolved objects show that such misalignments are indeed present.

  18. High frequency and pulse scattering physical acoustics

    CERN Document Server

    Pierce, Allan D

    1992-01-01

    High Frequency and Pulse Scattering investigates high frequency and pulse scattering, with emphasis on the phenomenon of echoes from objects. Geometrical and catastrophe optics methods in scattering are discussed, along with the scattering of sound pulses and the ringing of target resonances. Caustics and associated diffraction catastrophes are also examined.Comprised of two chapters, this volume begins with a detailed account of geometrically based approximation methods in scattering theory, focusing on waves transmitted through fluid and elastic scatterers and glory scattering; surface ray r

  19. Optimized design of the chopper disks and the neutron guide in a disk chopper neutron time-of-flight spectrometer

    International Nuclear Information System (INIS)

    Copley, J.R.D.

    1990-01-01

    We consider important aspects of the performance of a disk chopper neutron time-of-flight spectrometer. The intensity at the sample position, and the contributions of the choppers to the resolution of the instrument, are evaluated as a function of the widths of the slots in the chopper disks and the width of the neutron guide between the disks. We find that there is an optimum choice of the ratios of these widths and that this choice depends on a single parameter which, for elastic scattering, is a simple ratio of distances. When pairs of counter-rotating disks are employed, the widths of the slots can be modified by grossly changing the phase relationship between the members of a chopper pair. If the slot widths are changed, the width of the guide should also be altered in order to maintain the spectrometer in an optimized state. This change in the guide width may be effectively achieved using an arrangement of nested guides. Resolution and intensity calculations demonstrate the important gains which may be realized using this approach. (orig.)

  20. Dust in protoplanetary disks: observations*

    Directory of Open Access Journals (Sweden)

    Waters L.B.F.M.

    2015-01-01

    Full Text Available Solid particles, usually referred to as dust, are a crucial component of interstellar matter and of planet forming disks surrounding young stars. Despite the relatively small mass fraction of ≈1% (in the solar neighborhood of our galaxy; this number may differ substantially in other galaxies that interstellar grains represent of the total mass budget of interstellar matter, dust grains play an important role in the physics and chemistry of interstellar matter. This is because of the opacity dust grains at short (optical, UV wavelengths, and the surface they provide for chemical reactions. In addition, dust grains play a pivotal role in the planet formation process: in the core accretion model of planet formation, the growth of dust grains from the microscopic size range to large, cm-sized or larger grains is the first step in planet formation. Not only the grain size distribution is affected by planet formation. Chemical and physical processes alter the structure and chemical composition of dust grains as they enter the protoplanetary disk and move closer to the forming star. Therefore, a lot can be learned about the way stars and planets are formed by observations of dust in protoplanetary disks. Ideally, one would like to measure the dust mass, the grain size distribution, grain structure (porosity, fluffiness, the chemical composition, and all of these as a function of position in the disk. Fortunately, several observational diagnostics are available to derive constrains on these quantities. In combination with rapidly increasing quality of the data (spatial and spectral resolution, a lot of progress has been made in our understanding of dust evolution in protoplanetary disks. An excellent review of dust evolution in protoplanetary disks can be found in Testi et al. (2014.

  1. Application of the kappa statistic in MRI diagnosis of lumbar disk herniation

    International Nuclear Information System (INIS)

    Li Dasheng; Zhang Fang; Gao Shuming; Gu Jinxiang; Li Lu; Qu Hui

    2008-01-01

    Objective: To assess the concordance of MRI diagnosis for patients suspected of lumbar disk herniation by using Kappa statistic. Methods: One hundred patients (48 males and 52 females) with lumbosacral radiculm pain, aged from 17 to 86 (average 61). All patients underwent fast spin-echo T 1 and T 2 weighted imaging on a 3.0 T MR scanner and spine surface coil. Two radiologists (doctor A and doctor B) evaluated the lumbar disks from L3-4, L4-5, and L5-S1 in 50 out of the 100 patients independently. The presence of a bulging disk or a herniation was reported. Images were interpreted twice: once before and once after disclosure of clinical information. And disks of 52 patients out of the 100 samples were interpreted by the two radiologists independently without clinical information as well. The Kappa statistics was employed to assess the concordance of each radiologist's diagnoses as well as the observer variation of the two radiologists. Results: Diagnoses before and after disclosure to clinical information were concordant in 114 disks for doctor A and in 109 for doctor B, respectively. Diagnoses before and after disclosure to clinical information were not concordant in 36 disks for doctor A and in 41 disks for doctor B, respectively. The Kappa values were 0.60±0.06 and 0.57±0.06 for doctor A and doctor B, respectively. The concordance was moderate. After disclosure to clinical information, the numbers of reported bulging disks increased significantly, by 10 and 31 for doctor A and doctor B, respectively. Without clinical information, the diagnoses of the two radiologists were concordant in 77 disks, while not concordant in 79 disks. The interobserver agreement was poor (Kappa=0.24±0.06). The difference on diagenoses made between with and without clinical information mainly happened on the differential diagnosis of normal disks and bulging disks. The different diagnoses made between with and without clinical information were on 20 disks and on 30 disks for doctor

  2. Explaining millimeter-sized particles in brown dwarf disks

    NARCIS (Netherlands)

    Pinilla, P.; Birnstiel, T.; Benisty, M.; Ricci, L.; Natta, A.; Dullemond, C.P.; Dominik, C.; Testi, L.

    2013-01-01

    Context. Planets have been detected around a variety of stars, including low-mass objects, such as brown dwarfs. However, such extreme cases are challenging for planet formation models. Recent sub-millimeter observations of disks around brown dwarf measured low spectral indices of the continuum

  3. Operated herniated disk and lumbar spinal stenosis in Togolese ...

    African Journals Online (AJOL)

    Objective: To determine the anatomical aspects and results of surgical treatment of herniated disk and lumbar spinal stenosis observed in the Rheumatology unit of CHU SO of Lomé. Patients and methods: This was a transversal study conducted on a series of patients cases admitted to the Rheumatology Unit of CHU SO of ...

  4. THE MASS DEPENDENCE BETWEEN PROTOPLANETARY DISKS AND THEIR STELLAR HOSTS

    International Nuclear Information System (INIS)

    Andrews, Sean M.; Rosenfeld, Katherine A.; Kraus, Adam L.; Wilner, David J.

    2013-01-01

    We present a substantial extension of the millimeter (mm) wave continuum photometry catalog for circumstellar dust disks in the Taurus star-forming region, based on a new ''snapshot'' λ = 1.3 mm survey with the Submillimeter Array. Combining these new data with measurements in the literature, we construct a mm-wave luminosity distribution, f(L mm ), for Class II disks that is statistically complete for stellar hosts with spectral types earlier than M8.5 and has a 3σ depth of roughly 3 mJy. The resulting census eliminates a longstanding selection bias against disks with late-type hosts, and thereby demonstrates that there is a strong correlation between L mm and the host spectral type. By translating the locations of individual stars in the Hertzsprung-Russell diagram into masses and ages, and adopting a simple conversion between L mm and the disk mass, M d , we confirm that this correlation corresponds to a statistically robust relationship between the masses of dust disks and the stars that host them. A Bayesian regression technique is used to characterize these relationships in the presence of measurement errors, data censoring, and significant intrinsic scatter: the best-fit results indicate a typical 1.3 mm flux density of ∼25 mJy for 1 M ☉ hosts and a power-law scaling L mm ∝M * 1.5-2.0 . We suggest that a reasonable treatment of dust temperature in the conversion from L mm to M d favors an inherently linear M d ∝M * scaling, with a typical disk-to-star mass ratio of ∼0.2%-0.6%. The measured rms dispersion around this regression curve is ±0.7 dex, suggesting that the combined effects of diverse evolutionary states, dust opacities, and temperatures in these disks imprint a full width at half-maximum range of a factor of ∼40 on the inferred M d (or L mm ) at any given host mass. We argue that this relationship between M d and M * likely represents the origin of the inferred correlation between giant planet frequency and host star mass in the

  5. The Mass Dependence between Protoplanetary Disks and their Stellar Hosts

    Science.gov (United States)

    Andrews, Sean M.; Rosenfeld, Katherine A.; Kraus, Adam L.; Wilner, David J.

    2013-07-01

    We present a substantial extension of the millimeter (mm) wave continuum photometry catalog for circumstellar dust disks in the Taurus star-forming region, based on a new "snapshot" λ = 1.3 mm survey with the Submillimeter Array. Combining these new data with measurements in the literature, we construct a mm-wave luminosity distribution, f(L mm), for Class II disks that is statistically complete for stellar hosts with spectral types earlier than M8.5 and has a 3σ depth of roughly 3 mJy. The resulting census eliminates a longstanding selection bias against disks with late-type hosts, and thereby demonstrates that there is a strong correlation between L mm and the host spectral type. By translating the locations of individual stars in the Hertzsprung-Russell diagram into masses and ages, and adopting a simple conversion between L mm and the disk mass, Md , we confirm that this correlation corresponds to a statistically robust relationship between the masses of dust disks and the stars that host them. A Bayesian regression technique is used to characterize these relationships in the presence of measurement errors, data censoring, and significant intrinsic scatter: the best-fit results indicate a typical 1.3 mm flux density of ~25 mJy for 1 M ⊙ hosts and a power-law scaling L_mm ∝ M_{\\ast}^{1.5-2.0}. We suggest that a reasonable treatment of dust temperature in the conversion from L mm to Md favors an inherently linear Md vpropM * scaling, with a typical disk-to-star mass ratio of ~0.2%-0.6%. The measured rms dispersion around this regression curve is ±0.7 dex, suggesting that the combined effects of diverse evolutionary states, dust opacities, and temperatures in these disks imprint a full width at half-maximum range of a factor of ~40 on the inferred Md (or L mm) at any given host mass. We argue that this relationship between Md and M * likely represents the origin of the inferred correlation between giant planet frequency and host star mass in the exoplanet

  6. Forging Long Shafts On Disks

    Science.gov (United States)

    Tilghman, Chris; Askey, William; Hopkins, Steven

    1989-01-01

    Isothermal-forging apparatus produces long shafts integral with disks. Equipment based on modification of conventional isothermal-forging equipment, required stroke cut by more than half. Enables forging of shafts as long as 48 in. (122 cm) on typical modified conventional forging press, otherwise limited to making shafts no longer than 18 in. (46cm). Removable punch, in which forged material cools after plastic deformation, essential novel feature of forging apparatus. Technology used to improve such products as components of gas turbines and turbopumps and of other shaft/disk parts for powerplants, drive trains, or static structures.

  7. Parallel Readout of Optical Disks

    Science.gov (United States)

    1992-08-01

    r(x,y) is the apparent reflectance function of the disk surface including the phase error. The illuminat - ing optics should be chosen so that Er(x,y...of the light uniformly illuminat - ing the chip, Ap = 474\\im 2 is the area of photodiode, and rs is the time required to switch the synapses. Figure...reference beam that is incident from the right. Once the hologram is recorded the input is blocked and the disk is illuminat - ed. Lens LI takes the

  8. Surface geometry of protoplanetary disks inferred from near-infrared imaging polarimetry

    International Nuclear Information System (INIS)

    Takami, Michihiro; Hasegawa, Yasuhiro; Gu, Pin-Gao; Karr, Jennifer L.; Chapillon, Edwige; Tang, Ya-Wen; Muto, Takayuki; Dong, Ruobing; Hashimoto, Jun; Kusakabe, Nobuyuki; Akiyama, Eiji; Kwon, Jungmi; Itoh, Youchi; Carson, Joseph; Follette, Katherine B.; Mayama, Satoshi; Sitko, Michael; Janson, Markus; Grady, Carol A.; Kudo, Tomoyuki

    2014-01-01

    We present a new method of analysis for determining the surface geometry of five protoplanetary disks observed with near-infrared imaging polarimetry using Subaru-HiCIAO. Using as inputs the observed distribution of polarized intensity (PI), disk inclination, assumed properties for dust scattering, and other reasonable approximations, we calculate a differential equation to derive the surface geometry. This equation is numerically integrated along the distance from the star at a given position angle. We show that, using these approximations, the local maxima in the PI distribution of spiral arms (SAO 206462, MWC 758) and rings (2MASS J16042165-2130284, PDS 70) are associated with local concave-up structures on the disk surface. We also show that the observed presence of an inner gap in scattered light still allows the possibility of a disk surface that is parallel to the light path from the star, or a disk that is shadowed by structures in the inner radii. Our analysis for rings does not show the presence of a vertical inner wall as often assumed in studies of disks with an inner gap. Finally, we summarize the implications of spiral and ring structures as potential signatures of ongoing planet formation.

  9. Surface geometry of protoplanetary disks inferred from near-infrared imaging polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Takami, Michihiro; Hasegawa, Yasuhiro; Gu, Pin-Gao; Karr, Jennifer L.; Chapillon, Edwige; Tang, Ya-Wen [Institute of Astronomy and Astrophysics, Academia Sinica, PO Box 23-141, Taipei 10617, Taiwan, ROC (China); Muto, Takayuki [Division of Liberal Arts, Kogakuin University, 1-24-2, Nishi-Shinjuku, Shinjuku-ku, Tokyo 163-8677 (Japan); Dong, Ruobing [Nuclear Science Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Hashimoto, Jun [H. L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks St. Norman, OK 73019 (United States); Kusakabe, Nobuyuki; Akiyama, Eiji; Kwon, Jungmi [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Itoh, Youchi [Nishi-Harima Astronomical Observatory, Center for Astronomy, University of Hyogo, 407-2 Nishigaichi, Sayo, Sayo, Hyogo 679-5313 (Japan); Carson, Joseph [Department of Physics and Astronomy, College of Charleston, 58 Coming Street, Charleston, SC 29424 (United States); Follette, Katherine B. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Mayama, Satoshi [The Center for the Promotion of Integrated Sciences, The Graduate University for Advanced Studies (SOKENDAI), Shonan International Village, Hayama-cho, Miura-gun, Kanagawa 240-0193 (Japan); Sitko, Michael [Department of Physics, University of Cincinnati, Cincinnati, OH 45221 (United States); Janson, Markus [Astrophysics Research Center, Queen' s University Belfast, BT7 1NN (United Kingdom); Grady, Carol A. [Eureka Scientific, 2452 Delmer Suite 100, Oakland, CA 96402 (United States); Kudo, Tomoyuki, E-mail: hiro@asiaa.sinica.edu.tw [Subaru Telescope, 650 North Aohoku Place, Hilo, HI 96720 (United States); and others

    2014-11-01

    We present a new method of analysis for determining the surface geometry of five protoplanetary disks observed with near-infrared imaging polarimetry using Subaru-HiCIAO. Using as inputs the observed distribution of polarized intensity (PI), disk inclination, assumed properties for dust scattering, and other reasonable approximations, we calculate a differential equation to derive the surface geometry. This equation is numerically integrated along the distance from the star at a given position angle. We show that, using these approximations, the local maxima in the PI distribution of spiral arms (SAO 206462, MWC 758) and rings (2MASS J16042165-2130284, PDS 70) are associated with local concave-up structures on the disk surface. We also show that the observed presence of an inner gap in scattered light still allows the possibility of a disk surface that is parallel to the light path from the star, or a disk that is shadowed by structures in the inner radii. Our analysis for rings does not show the presence of a vertical inner wall as often assumed in studies of disks with an inner gap. Finally, we summarize the implications of spiral and ring structures as potential signatures of ongoing planet formation.

  10. Modeling the HD 32297 Debris Disk With Far-Infrared Herschel Data

    Science.gov (United States)

    Donaldson, J.K.; Lebreton, J.; Roberge, A.; Augereau, J.-C.; Krivov, A. V.

    2013-01-01

    HD 32297 is a young A-star (approx. 30 Myr) 112 pc away with a bright edge-on debris disk that has been resolved in scattered light. We observed the HD 32297 debris disk in the far-infrared and sub-millimeter with the Herschel Space Observatory PACS and SPIRE instruments, populating the spectral energy distribution (SED) from 63 to 500 micron..We aimed to determine the composition of dust grains in the HD 32297 disk through SED modeling, using geometrical constraints from the resolved imaging to break the degeneracies inherent in SED modeling. We found the best fitting SED model has two components: an outer ring centered around 110 AU, seen in the scattered light images, and an inner disk near the habitable zone of the star. The outer disk appears to be composed of grains>2 micron consisting of silicates, carbonaceous material, and water ice with an abundance ratio of 1:2:3 respectively and 90% porosity. These grains appear consistent with cometary grains, implying the underlying planetesimal population is dominated by comet-like bodies. We also discuss the 3.7 sigma detection of [C ii] emission at 158 micron with the Herschel PACS instrument, making HD 32297 one of only a handful of debris disks with circumstellar gas detected

  11. The Disk Mass Project: breaking the disk-halo degeneracy

    NARCIS (Netherlands)

    Verheijen, Marc A. W.; Bershady, Matthew A.; Swaters, Rob A.; Andersen, David R.; Westfall, Kyle B.; DE JONG, R. S.

    2007-01-01

    Little is known about the content and distribution of dark matter in spiral galaxies. To break the degeneracy in galaxy rotation curve decompositions, which allows a wide range of dark matter halo density profiles, an independent measure of the mass surface density of stellar disks is needed. Here,

  12. Scattering theory

    International Nuclear Information System (INIS)

    Sitenko, A.

    1991-01-01

    This book emerged out of graduate lectures given by the author at the University of Kiev and is intended as a graduate text. The fundamentals of non-relativistic quantum scattering theory are covered, including some topics, such as the phase-function formalism, separable potentials, and inverse scattering, which are not always coverded in textbooks on scattering theory. Criticisms of the text are minor, but the reviewer feels an inadequate index is provided and the citing of references in the Russian language is a hindrance in a graduate text

  13. Possible Analog for Early Solar System Disk Found

    Science.gov (United States)

    1998-10-01

    SOCORRO, NM -- The smallest protoplanetary disk ever seen rotating around a young star has been detected by an international team of astronomers using the National Science Foundation's Very Large Array (VLA) radio telescope. If confirmed, this result could provide an "ideal laboratory" for studying potential planet-forming disks of a size similar to the one that formed our Solar System. The researchers used the VLA to image the core of an object known as NGC 2071, some 1300 light years from Earth. The team of astronomers was able to measure the rotation of a disk seen around a young star by tracking water masers - clusters of super-heated molecules that amplify radio emission -- within it. This is the first direct evidence of such motion in a protoplanetary disk. "This result is exciting because only through understanding protoplanetary disks can scientists answer the question of how easy - or hard - it is to create planets," said Jose M. Torrelles of the Institute for Astrophysics of Andalucia in Granada, Spain, leader of the research team. "Other protoplanetary disks have been found, but the system in NGC 2071 is the first that may be comparable to the disk that created our own Solar System. Its size is similar to the orbit of the planet Neptune around our Sun." "Because there is very little matter in one of these protoplanetary disks -- typically less than one hundredth the mass of our Sun -- they are extremely difficult to detect and study" said Paul Ho of the Harvard-Smithsonian Center for Astrophysics and another team member. "We needed the highest possible resolution of the VLA to do this work." The VLA is an array of twenty-seven radio dishes, each 25 meters in diameter, located outside of Socorro. The individual antennas can be moved along tracks to change the array's alignment. The work on NGC 2071 was done when the array was stretched out to over 36 kilometers, thus providing the extremely high resolution necessary to image the system. This disk

  14. A SPITZER CENSUS OF TRANSITIONAL PROTOPLANETARY DISKS WITH AU-SCALE INNER HOLES

    International Nuclear Information System (INIS)

    Muzerolle, James; Allen, Lori E.; Megeath, S. Thomas; Hernandez, Jesus; Gutermuth, Robert A.

    2010-01-01

    Protoplanetary disks with AU-scale inner clearings, often referred to as transitional disks, provide a unique sample for understanding disk dissipation mechanisms and possible connections to planet formation. Observations of young stellar clusters with the Spitzer Space Telescope have amassed mid-infrared (IR) spectral energy distributions (SEDs) for thousands of star-disk systems from which transition disks can be identified. From a sample of eight relatively nearby young regions (d ∼ 0) to select for robust optically thick outer disks, and 3.6-5.8 μm spectral slope and 5.8 μm continuum excess limits to select for optically thin or zero continuum excess from the inner few AU of the disks. We also identified two additional categories representing more ambiguous cases: 'warm excess' objects with transition-like SEDs but moderate excess at 5.8 μm, and 'weak excess' objects with smaller 24 μm excess that may be optically thin or exhibit advanced dust grain growth and settling. From existing Hα emission measurements, we find evidence for different accretion activity among the three categories, with a majority of the classical and warm excess transition objects still accreting gas through their inner holes and onto the central stars, while a smaller fraction of the weak transition objects are accreting at detectable rates. We find a possible age dependence on the frequency of classical transition objects, with fractions relative to the total population of disks in a given region of a few percent at 1-2 Myr rising to 10%-20% at 3-10 Myr. The trend is even stronger if the weak and warm excess objects are included. This relationship may be due to a dependence of the outer disk clearing timescale with stellar age, suggesting a variety of clearing mechanisms working at different times, or it may reflect that a smaller fraction of all disks actually undergo an inner clearing phase at younger ages. Classical transition disks appear to be less common, and weak transition

  15. Coevolution of Binaries and Circumbinary Gaseous Disks

    Science.gov (United States)

    Fleming, David; Quinn, Thomas R.

    2018-04-01

    The recent discoveries of circumbinary planets by Kepler raise questions for contemporary planet formation models. Understanding how these planets form requires characterizing their formation environment, the circumbinary protoplanetary disk, and how the disk and binary interact. The central binary excites resonances in the surrounding protoplanetary disk that drive evolution in both the binary orbital elements and in the disk. To probe how these interactions impact both binary eccentricity and disk structure evolution, we ran N-body smooth particle hydrodynamics (SPH) simulations of gaseous protoplanetary disks surrounding binaries based on Kepler 38 for 10^4 binary orbital periods for several initial binary eccentricities. We find that nearly circular binaries weakly couple to the disk via a parametric instability and excite disk eccentricity growth. Eccentric binaries strongly couple to the disk causing eccentricity growth for both the disk and binary. Disks around sufficiently eccentric binaries strongly couple to the disk and develop an m = 1 spiral wave launched from the 1:3 eccentric outer Lindblad resonance (EOLR). This wave corresponds to an alignment of gas particle longitude of periastrons. We find that in all simulations, the binary semi-major axis decays due to dissipation from the viscous disk.

  16. Critical scattering

    International Nuclear Information System (INIS)

    Stirling, W.G.; Perry, S.C.

    1996-01-01

    We outline the theoretical and experimental background to neutron scattering studies of critical phenomena at magnetic and structural phase transitions. The displacive phase transition of SrTiO 3 is discussed, along with examples from recent work on magnetic materials from the rare-earth (Ho, Dy) and actinide (NpAs, NpSb, USb) classes. The impact of synchrotron X-ray scattering is discussed in conclusion. (author) 13 figs., 18 refs

  17. THICK-DISK EVOLUTION INDUCED BY THE GROWTH OF AN EMBEDDED THIN DISK

    International Nuclear Information System (INIS)

    Villalobos, Alvaro; Helmi, Amina; Kazantzidis, Stelios

    2010-01-01

    We perform collisionless N-body simulations to investigate the evolution of the structural and kinematical properties of simulated thick disks induced by the growth of an embedded thin disk. The thick disks used in the present study originate from cosmologically common 5:1 encounters between initially thin primary disk galaxies and infalling satellites. The growing thin disks are modeled as static gravitational potentials and we explore a variety of growing-disk parameters that are likely to influence the response of thick disks. We find that the final thick-disk properties depend strongly on the total mass and radial scale length of the growing thin disk, and much less sensitively on its growth timescale and vertical scale height as well as the initial sense of thick-disk rotation. Overall, the growth of an embedded thin disk can cause a substantial contraction in both the radial and vertical direction, resulting in a significant decrease in the scale lengths and scale heights of thick disks. Kinematically, a growing thin disk can induce a notable increase in the mean rotation and velocity dispersions of thick-disk stars. We conclude that the reformation of a thin disk via gas accretion may play a significant role in setting the structure and kinematics of thick disks, and thus it is an important ingredient in models of thick-disk formation.

  18. Jets, black holes and disks in blazars

    Directory of Open Access Journals (Sweden)

    Ghisellini Gabriele

    2013-12-01

    Full Text Available The Fermi and Swift satellites, together with ground based Cherenkov telescopes, has greatly improved our knowledge of blazars, namely Flat Spectrum Radio Quasars and BL Lac objects, since all but the most powerful emit most of their electro–magnetic output at γ–ray energies, while the very powerful blazars emit mostly in the hard X–ray region of the spectrum. Often they show coordinated variability at different frequencies, suggesting that in these cases the same population of electrons is at work, in a single zone of the jet. The location of this region along the jet is a matter of debate. The jet power correlates with the mass accretion rate, with jets existing at all values of disk luminosities, measured in Eddington units, sampled so far. The most powerful blazars show clear evidence of the emission from their disks, and this has revived methods of finding the black hole mass and accretion rate by modelling a disk spectrum to the data. Being so luminous, blazars can be detected also at very high redshift, and therefore are a useful tool to explore the far universe. One interesting line of research concerns how heavy are their black holes at high redshifts. If we associate the presence of a relativistic jets with a fastly spinning black hole, then we naively expect that the accretion efficiency is larger than for non–spinning holes. As a consequence, the black hole mass in jetted systems should grow at a slower rate. In turn, this would imply that, at high redshifts, the heaviest black holes should be in radio–quiet quasars. We instead have evidences of the opposite, challenging our simple ideas of how a black hole grows.

  19. EVOLUTION OF MASSIVE PROTOSTARS VIA DISK ACCRETION

    International Nuclear Information System (INIS)

    Hosokawa, Takashi; Omukai, Kazuyuki; Yorke, Harold W.

    2010-01-01

    Mass accretion onto (proto-)stars at high accretion rates M-dot * > 10 -4 M sun yr -1 is expected in massive star formation. We study the evolution of massive protostars at such high rates by numerically solving the stellar structure equations. In this paper, we examine the evolution via disk accretion. We consider a limiting case of 'cold' disk accretion, whereby most of the stellar photosphere can radiate freely with negligible backwarming from the accretion flow, and the accreting material settles onto the star with the same specific entropy as the photosphere. We compare our results to the calculated evolution via spherically symmetric accretion, the opposite limit, whereby the material accreting onto the star contains the entropy produced in the accretion shock front. We examine how different accretion geometries affect the evolution of massive protostars. For cold disk accretion at 10 -3 M sun yr -1 , the radius of a protostar is initially small, R * ≅ a few R sun . After several solar masses have accreted, the protostar begins to bloat up and for M * ≅ 10 M sun the stellar radius attains its maximum of 30-400 R sun . The large radius ∼100 R sun is also a feature of spherically symmetric accretion at the same accreted mass and accretion rate. Hence, expansion to a large radius is a robust feature of accreting massive protostars. At later times, the protostar eventually begins to contract and reaches the zero-age main sequence (ZAMS) for M * ≅ 30 M sun , independent of the accretion geometry. For accretion rates exceeding several 10 -3 M sun yr -1 , the protostar never contracts to the ZAMS. The very large radius of several hundreds R sun results in the low effective temperature and low UV luminosity of the protostar. Such bloated protostars could well explain the existence of bright high-mass protostellar objects, which lack detectable H II regions.

  20. Test of the periodic-orbit approximation in n-disk systems

    International Nuclear Information System (INIS)

    Wirzba, A.

    1993-01-01

    The scattering of a point particle in two dimensions from two (or three) equally-sized (and spaced) circular hard disks is one of the simplest classically hyperbolic scattering problems. Because of this simplicity such systems are well suited for the study of the semiclassical periodic-orbit approximation in the cycle expansion of the dynamical zeta function applied to a quantum-mechanical scattering problem. Especially the predictions of the semiclassical cycle expansion for the quantum-mechanical resonances can be tested in these n-disk systems. Whereas for high wave numbers the cycle expansion gives quite accurate results, there are systematic deviations for low wave numbers from the exact quantum-mechanical values. The low-lying quantum-mechanical resonance poles of the 2- and 3-disk problem are constructed and compared to the cycle-expansion results. The characteristic determinant of the scattering matrix is expanded in terms of simple traces which in turn are related to the classical periodic orbits and possible creeping contributions. It will be shown that for large separations of the disks the correct resonance-pole positions can be extracted just from the knowledge of the lowest traces whose semiclassical limit are the fundamental periodic orbits. Creeping-orbit corrections are shown to be small. (orig.)

  1. Disk Operating System User's Guide

    Science.gov (United States)

    1972-05-01

    This document serves the purpose of bringing together in one place most of the information a user needs to use the DDP-516 Disk Operating System, (DOS). DOS is a core resident, one user, console-oriented operating system which allows the user to cont...

  2. Gas Evolution in Protoplanetary Disks

    NARCIS (Netherlands)

    Woitke, Peter; Dent, Bill; Thi, Wing-Fai; Sibthorpe, Bruce; Rice, Ken; Williams, Jonathan; Sicilia-Aguilar, Aurora; Brown, Joanna; Kamp, Inga; Pascucci, Ilaria; Alexander, Richard; Roberge, Aki

    2009-01-01

    This article summarizes a Splinter Session at the Cool Stars XV conference in St. Andrews with 3 review and 4 contributed talks. The speakers have discussed various approaches to understand the structure and evolution of the gas component in protoplanetary disks. These ranged from observational

  3. Chaotic Dynamics of Falling Disks: from Maxwell to Bar Tricks.

    Science.gov (United States)

    Field, Stuart

    1998-03-01

    Understanding the motion of flat objects falling in a viscous medium dates back to at least Newton and Maxwell, and is relevant to problems in meteorology, sedimentology, aerospace and chemical engineering, and nori/disks/pub.html>bar wagering strategies. Recent theoretical studies have emphasized the role played by deterministic chaos. Here we nori/falling.html>report(S. B. Field, M. Klaus, M. G. Moore, and F. Nori, Nature 388), 252 (1997) experimental observations and theoretical analysis of the dynamics of disks falling in water/glycerol mixtures. We find four distinct types of motion, and map out a ``phase diagram'' in the appropriate variables. The apparently complex behavior of the disks can be reduced to a series of one-dimensional maps which display a discontinuity at the crossover from periodic and chaotic motion. This discontinuity leads to an unusual intermittency transition between the two behaviors, which has not previously been observed experimentally in any system.

  4. Hot accretion disks with electron-positron pairs

    International Nuclear Information System (INIS)

    White, T.R.; Lightman, A.P.

    1989-01-01

    The hot thermal accretion disks of the 1970s are studied and consideration is given to the effects of electron-positron pairs, which were originally neglected. It is found that disks cooled by internally produced photons have a critical accretion rate above which equilibrium is not possible in a radial annulus centered around r = 10 GM/c-squared, where M is the mass of the central object. This confirms and extends previous work by Kusunose and Takahara. Above the critical rate, pairs are created more rapidly than they can be destroyed. Below the critical rate, there are two solutions to the disk structure, one with a high pair density and one with a low pair density. Depending on the strength of the viscosity, the critical accretion rate corresponds to a critical luminosity of about 3-10 percent of the Eddington limit. 32 refs

  5. Polarimetry and Flux Distribution in the Debris Disk Around HD 32297

    Science.gov (United States)

    Asensio-Torres, R.; Janson, M.; Hashimoto, J.; Thalmann, C.; Currie, T.; Buenzli,; Kudo, T.; Kuzuhara, M.; Kusakabe, N.; Akiyama, E.; hide

    2016-01-01

    We present high-contrast angular differential imaging (ADI) observations of the debris disk around HD32297 in H-band, as well as the first polarimetric images for this system in polarized differential imaging (PDI) mode with Subaru/HICIAO. In ADI, we detect the nearly edge-on disk at > or = 5(sigma) levels from approx. 0.45" to approx.1.7" (50-192AU) from the star and recover the spine deviation from the midplane already found in previous works. We also find for the first time imaging and surface brightness (SB) indications for the presence of a gapped structure on both sides of the disk at distances of approx. 0.75" (NE side) and approx. 0.65" (SW side). Global forward-modeling work delivers a best-fit model disk and well-fitting parameter intervals that essentially match previous results, with high-forward scattering grains and a ring located at 110AU. However, this single ring model cannot account for the gapped structure seen in our SB profiles. We create simple double ring models and achieve a satisfactory fit with two rings located at 60 and 95AU, respectively, low-forward scattering grains and very sharp inner slopes. In polarized light we retrieve the disk extending from approx. 0.25-1.6", although the central region is quite noisy and high S/N are only found in the range approx. 0.75-1.2". The disk is polarized in the azimuthal direction, as expected, and the departure from the midplane is also clearly observed. Evidence for a gapped scenario is not found in the PDI data. We obtain a linear polarization degree of the grains that increases from approx. 10% at 0.55" to approx. 25% at 1.6". The maximum is found at scattering angles of 90, either from the main components of the disk or from dust grains blown out to larger radii.

  6. AN M DWARF COMPANION AND ITS INDUCED SPIRAL ARMS IN THE HD 100453 PROTOPLANETARY DISK

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Ruobing [Nuclear Science Division, Lawrence Berkeley National Lab, Berkeley, CA 94720 (United States); Zhu, Zhaohuan [Princeton University, Princeton, NJ 08544 (United States); Fung, Jeffrey; Chiang, Eugene [Department of Astronomy, University of California at Berkeley, Berkeley, CA 94720 (United States); Rafikov, Roman [Institute for Advanced Study, Princeton, NJ 08540 (United States); Wagner, Kevin, E-mail: rdong2013@berkeley.edu [Department of Astronomy/Steward Observatory, The University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States)

    2016-01-01

    Recent VLT/SPHERE near-infrared imaging observations revealed two spiral arms with a near m = 2 rotational symmetry in the protoplanetary disk around the ∼1.7 M{sub ⊙} Herbig star HD 100453. A ∼0.3 M{sub ⊙} M dwarf companion, HD 100453 B, was also identified at a projected separation of 120 AU from the primary. In this Letter, we carry out hydrodynamic and radiative transfer simulations to examine the scattered light morphology of the HD 100453 disk as perturbed by the companion on a circular and coplanar orbit. We find that the companion truncates the disk at ∼45 AU in scattered light images, and excites two spiral arms in the remaining (circumprimary) disk with a near m = 2 rotational symmetry. Both the truncated disk size and the morphology of the spirals are in excellent agreement with the SPHERE observations at Y, J, H, and K1-bands, suggesting that the M dwarf companion is indeed responsible for the observed double-spiral-arm pattern. Our model suggests that the disk is close to face on (inclination angle ∼5°), and that the entire disk-companion system rotates counterclockwise on the sky. The HD 100453 observations, along with our modeling work, demonstrate that double spiral arm patterns in near-infrared scattered light images can be generically produced by companions, and support future observations to identify the companions responsible for the arms observed in the MWC 758 and SAO 206462 systems.

  7. RESOLVED CO GAS INTERIOR TO THE DUST RINGS OF THE HD 141569 DISK

    Energy Technology Data Exchange (ETDEWEB)

    Flaherty, Kevin M.; Hughes, A. Meredith; Zachary, Julia [Van Vleck Observatory, Astronomy Department, Wesleyan University, 96 Foss Hill Drive, Middletown, CT 06459 (United States); Andrews, Sean M.; Qi, Chunhua; Wilner, David J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Boley, Aaron C.; White, Jacob A. [Department of Physics and Astronomy, University of British Columbia, Vancouver BC (Canada); Harney, Will [Department of Physics and Astronomy, Union College, Schenectady, NY (United States)

    2016-02-10

    The disk around HD 141569 is one of a handful of systems whose weak infrared emission is consistent with a debris disk, but still has a significant reservoir of gas. Here we report spatially resolved millimeter observations of the CO(3-2) and CO(1-0) emission as seen with the Submillimeter Array and CARMA. We find that the excitation temperature for CO is lower than expected from cospatial blackbody grains, similar to previous observations of analogous systems, and derive a gas mass that lies between that of gas-rich primordial disks and gas-poor debris disks. The data also indicate a large inner hole in the CO gas distribution and an outer radius that lies interior to the outer scattered light rings. This spatial distribution, with the dust rings just outside the gaseous disk, is consistent with the expected interactions between gas and dust in an optically thin disk. This indicates that gas can have a significant effect on the location of the dust within debris disks.

  8. Dusty disks around central stars of planetary nebulae

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Geoffrey C. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); De Marco, Orsola [Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109 (Australia); Nordhaus, Jason [Center for Computational Relativity and Gravitation, and National Technical Institute for the Deaf, Rochester Institute of Technology, Rochester, NY 14623 (United States); Green, Joel [Department of Astronomy, The University of Texas, 1 University Station, C1400, Austin, TX 78712-0259 (United States); Rauch, Thomas; Werner, Klaus [Institute for Astronomy and Astrophysics, Kepler Center for Astro and Particle Physics, Eberhard Karls University, Sand 1, D-72076 Tübingen (Germany); Chu, You-Hua, E-mail: gclayton@fenway.phys.lsu.edu, E-mail: orsola@science.mq.edu.au, E-mail: nordhaus@astro.rit.edu, E-mail: joel@astro.as.utexas.edu, E-mail: rauch@astro.uni-tuebingen.de, E-mail: werner@astro.uni-tuebingen.de, E-mail: chu@astro.uiuc.edu [Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States)

    2014-06-01

    Only a few percent of cool, old white dwarfs (WDs) have infrared excesses interpreted as originating in small hot disks due to the infall and destruction of single asteroids that come within the star's Roche limit. Infrared excesses at 24 μm were also found to derive from the immediate vicinity of younger, hot WDs, most of which are still central stars of planetary nebulae (CSPNe). The incidence of CSPNe with this excess is 18%. The Helix CSPN, with a 24 μm excess, has been suggested to have a disk formed from collisions of Kuiper belt-like objects (KBOs). In this paper, we have analyzed an additional sample of CSPNe to look for similar infrared excesses. These CSPNe are all members of the PG 1159 class and were chosen because their immediate progenitors are known to often have dusty environments consistent with large dusty disks. We find that, overall, PG 1159 stars do not present such disks more often than other CSPNe, although the statistics (five objects) are poor. We then consider the entire sample of CSPNe with infrared excesses and compare it to the infrared properties of old WDs, as well as cooler post-asymptotic giant branch (AGB) stars. We conclude with the suggestion that the infrared properties of CSPNe more plausibly derive from AGB-formed disks rather than disks formed via the collision of KBOs, although the latter scenario cannot be ruled out. Finally, there seems to be an association between CSPNe with a 24 μm excess and confirmed or possible binarity of the central star.

  9. Generalized Langevin equation with colored noise description of the stochastic oscillations of accretion disks

    Energy Technology Data Exchange (ETDEWEB)

    Harko, Tiberiu [University College London, Department of Mathematics, London (United Kingdom); Leung, Chun Sing [Polytechnic University, Department of Applied Mathematics, Hong Kong (China); Mocanu, Gabriela [Babes-Bolyai University, Faculty of Physics, Cluj-Napoca (Romania)

    2014-05-15

    We consider a description of the stochastic oscillations of the general relativistic accretion disks around compact astrophysical objects interacting with their external medium based on a generalized Langevin equation with colored noise and on the fluctuation-dissipation theorems. The former accounts for the general memory and retarded effects of the frictional force. The presence of the memory effects influences the response of the disk to external random interactions, and it modifies the dynamical behavior of the disk, as well as the energy dissipation processes. The generalized Langevin equation of the motion of the disk in the vertical direction is studied numerically, and the vertical displacements, velocities, and luminosities of the stochastically perturbed disks are explicitly obtained for both the Schwarzschild and the Kerr cases. The power spectral distribution of the disk luminosity is also obtained. As a possible astrophysical application of the formalism we investigate the possibility that the intra-day variability of the active galactic nuclei may be due to the stochastic disk instabilities. The perturbations due to colored/nontrivially correlated noise induce a complicated disk dynamics, which could explain some astrophysical observational features related to disk variability. (orig.)

  10. Generalized Langevin equation with colored noise description of the stochastic oscillations of accretion disks

    International Nuclear Information System (INIS)

    Harko, Tiberiu; Leung, Chun Sing; Mocanu, Gabriela

    2014-01-01

    We consider a description of the stochastic oscillations of the general relativistic accretion disks around compact astrophysical objects interacting with their external medium based on a generalized Langevin equation with colored noise and on the fluctuation-dissipation theorems. The former accounts for the general memory and retarded effects of the frictional force. The presence of the memory effects influences the response of the disk to external random interactions, and it modifies the dynamical behavior of the disk, as well as the energy dissipation processes. The generalized Langevin equation of the motion of the disk in the vertical direction is studied numerically, and the vertical displacements, velocities, and luminosities of the stochastically perturbed disks are explicitly obtained for both the Schwarzschild and the Kerr cases. The power spectral distribution of the disk luminosity is also obtained. As a possible astrophysical application of the formalism we investigate the possibility that the intra-day variability of the active galactic nuclei may be due to the stochastic disk instabilities. The perturbations due to colored/nontrivially correlated noise induce a complicated disk dynamics, which could explain some astrophysical observational features related to disk variability. (orig.)

  11. Generalized Langevin equation with colored noise description of the stochastic oscillations of accretion disks

    Science.gov (United States)

    Harko, Tiberiu; Leung, Chun Sing; Mocanu, Gabriela

    2014-05-01

    We consider a description of the stochastic oscillations of the general relativistic accretion disks around compact astrophysical objects interacting with their external medium based on a generalized Langevin equation with colored noise and on the fluctuation-dissipation theorems. The former accounts for the general memory and retarded effects of the frictional force. The presence of the memory effects influences the response of the disk to external random interactions, and it modifies the dynamical behavior of the disk, as well as the energy dissipation processes. The generalized Langevin equation of the motion of the disk in the vertical direction is studied numerically, and the vertical displacements, velocities, and luminosities of the stochastically perturbed disks are explicitly obtained for both the Schwarzschild and the Kerr cases. The power spectral distribution of the disk luminosity is also obtained. As a possible astrophysical application of the formalism we investigate the possibility that the intra-day variability of the active galactic nuclei may be due to the stochastic disk instabilities. The perturbations due to colored/nontrivially correlated noise induce a complicated disk dynamics, which could explain some astrophysical observational features related to disk variability.

  12. On Fallback Disks around Young Neutron Stars

    Science.gov (United States)

    Alpar, M. Ali; Ertan, Ü.; Erkut, M. H.

    2006-08-01

    Some bound matter in the form of a fallback disk may be an initial parameter of isolated neutron stars at birth, which, along with the initial rotation rate and dipole (and higher multipole) magnetic moments, determines the evolution of neutron stars and the categories into which they fall. This talk reviews the possibilities of fallback disk models in explaining properties of isolated neutron stars of different categories. Recent observations of a fallback disk and observational limits on fallback disks will also be discussed.

  13. Producing Distant Planets by Mutual Scattering of Planetary Embryos

    Science.gov (United States)

    Silsbee, Kedron; Tremaine, Scott

    2018-02-01

    It is likely that multiple bodies with masses between those of Mars and Earth (“planetary embryos”) formed in the outer planetesimal disk of the solar system. Some of these were likely scattered by the giant planets into orbits with semimajor axes of hundreds of au. Mutual torques between these embryos may lift the perihelia of some of them beyond the orbit of Neptune, where they are no longer perturbed by the giant planets, so their semimajor axes are frozen in place. We conduct N-body simulations of this process and its effect on smaller planetesimals in the region of the giant planets and the Kuiper Belt. We find that (i) there is a significant possibility that one sub-Earth mass embryo, or possibly more, is still present in the outer solar system; (ii) the orbit of the surviving embryo(s) typically has perihelion of 40–70 au, semimajor axis less than 200 au, and inclination less than 30° (iii) it is likely that any surviving embryos could be detected by current or planned optical surveys or have a significant effect on solar system ephemerides; (iv) whether or not an embryo has survived to the present day, its dynamical influence earlier in the history of the solar system can explain the properties of the detached disk (defined in this paper as containing objects with perihelia >38 au and semimajor axes between 80 and 500 au).

  14. Depolarization Rayleigh scattering as a means of molecular concentration determination in plasmas

    NARCIS (Netherlands)

    Meulenbroeks, R.F.G.; Schram, D.C.; Jaegers, L.J.M.; Sanden, van de M.C.M.

    1992-01-01

    The difference in polarization for Rayleigh scattered radiation on spherically and nonspherically symmetric scattering objects has been used to obtain molecular species concentrations in plasmas of simple composition. Using a Rayleigh scattering diagnostic, the depolarized component of the scattered

  15. Optical spectroscopy of Z Canis Majoris, V1057 Cygni, and FU Orionis - Accretion disks and signatures of disk winds

    Science.gov (United States)

    Welty, Alan D.; Strom, Stephen E.; Edwards, Suzan; Kenyon, Scott J.; Hartmann, Lee W.

    1992-01-01

    High resolution, high SNR optical spectra have been used to investigate the hypothesis that in outburst, FU Ori objects are self-luminous accretion disks whose light dominates at optical and near-IR wavelengths. Strong evidence has been found for linewidth versus wavelength correlation in good agreement with model predictions for Z CMa and V1057 Cyg, but not for FU Ori itself. Linewidth varies continuously with wavelength at optical wavelengths in the former two objects, In the case of FU Ori, it is argued that a combination of strong wind components to spectral lines, and surface gravity possibly being lower than that of supergiants, conceals the underlying linewidth versus wavelength relationship. A marginal correlation is found between linewidth and lower excitation potential in all three objects. Synthetic disk spectra are subtracted from observed spectral, and remarkably good fits are found for all three objects for wavelengths longer than about 5000 A.

  16. CIRCUMSTELLAR DEBRIS DISKS: DIAGNOSING THE UNSEEN PERTURBER

    Energy Technology Data Exchange (ETDEWEB)

    Nesvold, Erika R. [Department of Terrestrial Magnetism, Carnegie Institution for Science, 5241 Broad Branch Rd., Washington, DC 20015 (United States); Naoz, Smadar; Vican, Laura [Department of Physics and Astronomy, UCLA, 475 Portola Plaza, Los Angeles, CA 90095 (United States); Farr, Will M. [School of Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT (United Kingdom)

    2016-07-20

    The first indication of the presence of a circumstellar debris disk is usually the detection of excess infrared emission from the population of small dust grains orbiting the star. This dust is short-lived, requiring continual replenishment, and indicating that the disk must be excited by an unseen perturber. Previous theoretical studies have demonstrated that an eccentric planet orbiting interior to the disk will stir the larger bodies in the belt and produce dust via interparticle collisions. However, motivated by recent observations, we explore another possible mechanism for heating a debris disk: a stellar-mass perturber orbiting exterior to and inclined to the disk and exciting the disk particles’ eccentricities and inclinations via the Kozai–Lidov mechanism. We explore the consequences of an exterior perturber on the evolution of a debris disk using secular analysis and collisional N -body simulations. We demonstrate that a Kozai–Lidov excited disk can generate a dust disk via collisions and we compare the results of the Kozai–Lidov excited disk with a simulated disk perturbed by an interior eccentric planet. Finally, we propose two observational tests of a dust disk that can distinguish whether the dust was produced by an exterior brown dwarf or stellar companion or an interior eccentric planet.

  17. NASA Lunar and Meteorite Sample Disk Program

    Science.gov (United States)

    Foxworth, Suzanne

    2017-01-01

    The Lunar and Meteorite Sample Disk Program is designed for K-12 classroom educators who work in K-12 schools, museums, libraries, or planetariums. Educators have to be certified to borrow the Lunar and Meteorite Sample Disks by attending a NASA Certification Workshop provided by a NASA Authorized Sample Disk Certifier.

  18. PROTOPLANETARY DISK RESONANCES AND TYPE I MIGRATION

    International Nuclear Information System (INIS)

    Tsang, David

    2011-01-01

    Waves reflected by the inner edge of a protoplanetary disk are shown to significantly modify Type I migration, even allowing the trapping of planets near the inner disk edge for small planets in a range of disk parameters. This may inform the distribution of planets close to their central stars, as observed recently by the Kepler mission.

  19. Compact disk error measurements

    Science.gov (United States)

    Howe, D.; Harriman, K.; Tehranchi, B.

    1993-01-01

    The objectives of this project are as follows: provide hardware and software that will perform simple, real-time, high resolution (single-byte) measurement of the error burst and good data gap statistics seen by a photoCD player read channel when recorded CD write-once discs of variable quality (i.e., condition) are being read; extend the above system to enable measurement of the hard decision (i.e., 1-bit error flags) and soft decision (i.e., 2-bit error flags) decoding information that is produced/used by the Cross Interleaved - Reed - Solomon - Code (CIRC) block decoder employed in the photoCD player read channel; construct a model that uses data obtained via the systems described above to produce meaningful estimates of output error rates (due to both uncorrected ECC words and misdecoded ECC words) when a CD disc having specific (measured) error statistics is read (completion date to be determined); and check the hypothesis that current adaptive CIRC block decoders are optimized for pressed (DAD/ROM) CD discs. If warranted, do a conceptual design of an adaptive CIRC decoder that is optimized for write-once CD discs.

  20. AN ORDERED MAGNETIC FIELD IN THE PROTOPLANETARY DISK OF AB Aur REVEALED BY MID-INFRARED POLARIMETRY

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dan; Pantin, Eric; Telesco, Charles M.; Zhang, Han; Barnes, Peter J.; Mariñas, Naibí [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, FL 32611 (United States); Wright, Christopher M. [School of Physical, Environmental, and Mathematical Sciences, University of New South Wales, Canberra, ACT 2610 (Australia); Packham, Chris, E-mail: d.li@ufl.edu [Physics and Astronomy Department, University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249 (United States)

    2016-11-20

    Magnetic fields ( B -fields) play a key role in the formation and evolution of protoplanetary disks, but their properties are poorly understood due to the lack of observational constraints. Using CanariCam at the 10.4 m Gran Telescopio Canarias, we have mapped out the mid-infrared polarization of the protoplanetary disk around the Herbig Ae star AB Aur. We detect ∼0.44% polarization at 10.3 μ m from AB Aur's inner disk ( r  < 80 au), rising to ∼1.4% at larger radii. Our simulations imply that the mid-infrared polarization of the inner disk arises from dichroic emission of elongated particles aligned in a disk B -field. The field is well ordered on a spatial scale, commensurate with our resolution (∼50 au), and we infer a poloidal shape tilted from the rotational axis of the disk. The disk of AB Aur is optically thick at 10.3 μ m, so polarimetry at this wavelength is probing the B -field near the disk surface. Our observations therefore confirm that this layer, favored by some theoretical studies for developing magneto-rotational instability and its resultant viscosity, is indeed very likely to be magnetized. At radii beyond ∼80 au, the mid-infrared polarization results primarily from scattering by dust grains with sizes up to ∼1 μ m, a size indicating both grain growth and, probably, turbulent lofting of the particles from the disk mid-plane.

  1. HIGH-RESOLUTION 25 μM IMAGING OF THE DISKS AROUND HERBIG AE/BE STARS

    Energy Technology Data Exchange (ETDEWEB)

    Honda, M. [Department of Mathematics and Physics, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293 (Japan); Maaskant, K. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Okamoto, Y. K. [Institute of Astrophysics and Planetary Sciences, Faculty of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512 (Japan); Kataza, H. [Department of Infrared Astrophysics, Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229-8510 (Japan); Yamashita, T. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Miyata, T.; Sako, S.; Kamizuka, T. [Institute of Astronomy, School of Science, University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Fujiyoshi, T.; Fujiwara, H. [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A’ohoku Place, Hilo, Hawaii 96720 (United States); Sakon, I.; Onaka, T. [Department of Astronomy, School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); Mulders, G. D. [Lunar and Planetary Laboratory, The University of Arizona, Tucson, AZ 85721 (United States); Lopez-Rodriguez, E.; Packham, C. [Department of Physics and Astronomy, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249 (United States)

    2015-05-10

    We imaged circumstellar disks around 22 Herbig Ae/Be stars at 25 μm using Subaru/COMICS and Gemini/T-ReCS. Our sample consists of an equal number of objects from each of the two categories defined by Meeus et al.; 11 group I (flaring disk) and II (flat disk) sources. We find that group I sources tend to show more extended emission than group II sources. Previous studies have shown that the continuous disk is difficult to resolve with 8 m class telescopes in the Q band due to the strong emission from the unresolved innermost region of the disk. This indicates that the resolved Q-band sources require a hole or gap in the disk material distribution to suppress the contribution from the innermost region of the disk. As many group I sources are resolved at 25 μm, we suggest that many, but not all, group I Herbig Ae/Be disks have a hole or gap and are (pre-)transitional disks. On the other hand, the unresolved nature of many group II sources at 25 μm supports the idea that group II disks have a continuous flat disk geometry. It has been inferred that group I disks may evolve into group II through the settling of dust grains into the mid-plane of the protoplanetary disk. However, considering the growing evidence for the presence of a hole or gap in the disk of group I sources, such an evolutionary scenario is unlikely. The difference between groups I and II may reflect different evolutionary pathways of protoplanetary disks.

  2. HIGH-RESOLUTION 25 μM IMAGING OF THE DISKS AROUND HERBIG AE/BE STARS

    International Nuclear Information System (INIS)

    Honda, M.; Maaskant, K.; Okamoto, Y. K.; Kataza, H.; Yamashita, T.; Miyata, T.; Sako, S.; Kamizuka, T.; Fujiyoshi, T.; Fujiwara, H.; Sakon, I.; Onaka, T.; Mulders, G. D.; Lopez-Rodriguez, E.; Packham, C.

    2015-01-01

    We imaged circumstellar disks around 22 Herbig Ae/Be stars at 25 μm using Subaru/COMICS and Gemini/T-ReCS. Our sample consists of an equal number of objects from each of the two categories defined by Meeus et al.; 11 group I (flaring disk) and II (flat disk) sources. We find that group I sources tend to show more extended emission than group II sources. Previous studies have shown that the continuous disk is difficult to resolve with 8 m class telescopes in the Q band due to the strong emission from the unresolved innermost region of the disk. This indicates that the resolved Q-band sources require a hole or gap in the disk material distribution to suppress the contribution from the innermost region of the disk. As many group I sources are resolved at 25 μm, we suggest that many, but not all, group I Herbig Ae/Be disks have a hole or gap and are (pre-)transitional disks. On the other hand, the unresolved nature of many group II sources at 25 μm supports the idea that group II disks have a continuous flat disk geometry. It has been inferred that group I disks may evolve into group II through the settling of dust grains into the mid-plane of the protoplanetary disk. However, considering the growing evidence for the presence of a hole or gap in the disk of group I sources, such an evolutionary scenario is unlikely. The difference between groups I and II may reflect different evolutionary pathways of protoplanetary disks

  3. Investigating dust trapping in transition disks with millimeter-wave polarization

    Science.gov (United States)

    Pohl, A.; Kataoka, A.; Pinilla, P.; Dullemond, C. P.; Henning, Th.; Birnstiel, T.

    2016-08-01

    Context. Spatially resolved polarized (sub-)mm emission has been observed for example in the protoplanetary disk around HL Tau. Magnetically aligned grains are commonly interpreted as the source of polarization. However, self-scattering by large dust grains with a high enough albedo is another polarization mechanism, which is becoming a compelling method independent of the spectral index to constrain the dust grain size in protoplanetary disks. Aims: We study the dust polarization at mm wavelengths in the dust trapping scenario proposed for transition disks, when a giant planet opens a gap in the disk. We investigate the characteristic polarization patterns and their dependence on disk inclination, dust size evolution, planet position, and observing wavelength. Methods: We combine two-dimensional hydrodynamical simulations of planet-disk interactions with self-consistent dust growth models. These size-dependent dust density distributions are used for follow-up three-dimensional radiative transfer calculations to predict the polarization degree at ALMA bands due to scattered thermal emission. Results: Dust self-scattering has been proven to be a viable mechanism for producing polarized mm-wave radiation. We find that the polarization pattern of a disk with a planetary gap after 1 Myr of dust evolution shows a distinctive three-ring structure. Two narrow inner rings are located at the planet gap edges. A third wider ring of polarization is situated in the outer disk beyond 100 au. For increasing observing wavelengths, all three rings change their position slightly, where the innermost and outermost rings move inward. This distance is detectable when comparing the results at ALMA bands 3, 6, and 7. Within the highest polarized intensity regions the polarization vectors are oriented in the azimuthal direction. For an inclined disk there is an interplay between polarization originating from a flux gradient and inclination-induced quadrupole polarization. For

  4. Angular momentum transfer in steady disk accretion

    International Nuclear Information System (INIS)

    Gorbatskij, V.G.

    1977-01-01

    The conditions of steady disk accretion have been investigated. The disk axisymmetric model is considered. It is shown that the gas is let at the outer boundary of the disk with the azimuthal velocity which is slightly less than the Kepler circular one. Gas possesses the motion quality moment which is transferred from the outer layers of the disk to the surface of the star. The steady state of the disk preserved until the inflow of the moment to the star increases its rotation velocity up to magnitudes close to the critical one

  5. Compton scattering

    International Nuclear Information System (INIS)

    Botto, D.J.; Pratt, R.H.

    1979-05-01

    The current status of Compton scattering, both experimental observations and the theoretical predictions, is examined. Classes of experiments are distinguished and the results obtained are summarized. The validity of the incoherent scattering function approximation and the impulse approximation is discussed. These simple theoretical approaches are compared with predictions of the nonrelativistic dipole formula of Gavrila and with the relativistic results of Whittingham. It is noted that the A -2 based approximations fail to predict resonances and an infrared divergence, both of which have been observed. It appears that at present the various available theoretical approaches differ significantly in their predictions and that further and more systematic work is required

  6. Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Botto, D.J.; Pratt, R.H.

    1979-05-01

    The current status of Compton scattering, both experimental observations and the theoretical predictions, is examined. Classes of experiments are distinguished and the results obtained are summarized. The validity of the incoherent scattering function approximation and the impulse approximation is discussed. These simple theoretical approaches are compared with predictions of the nonrelativistic dipole formula of Gavrila and with the relativistic results of Whittingham. It is noted that the A/sup -2/ based approximations fail to predict resonances and an infrared divergence, both of which have been observed. It appears that at present the various available theoretical approaches differ significantly in their predictions and that further and more systematic work is required.

  7. Warm Debris Disks from WISE

    Science.gov (United States)

    Padgett, Deborah L.

    2011-01-01

    "The Wide Field Infrared Survey Explorer (WISE) has just completed a sensitive all-sky survey in photometric bands at 3.4, 4.6, 12, and 22 microns. We report on a preliminary investigation of main sequence Hipparcos and Tycho catalog stars with 22 micron emission in excess of photospheric levels. This warm excess emission traces material in the circumstellar region likely to host terrestrial planets and is preferentially found in young systems with ages warm debris disk candidates are detected among FGK stars and a similar number of A stars within 120 pc. We are in the process of obtaining spectra to determine spectral types and activity level of these stars and are using HST, Herschel and Keck to characterize the dust, multiplicity, and substellar companions of these systems. In this contribution, we will discuss source selection methods and individual examples from among the WISE debris disk candidates. "

  8. MIT miniaturized disk bend test

    International Nuclear Information System (INIS)

    Harling, O.K.; Lee, M.; Sohn, D.S.; Kohse, G.; Lau, C.W.

    1983-01-01

    A miniaturized disk bend test (MDBT) using transmission electron microscopy specimens for the determination of various mechanical properties is being developed at MIT. Recent progress in obtaining strengths and ductilities of highly irradiated metal alloys is reviewed. Other mechanical properties can also be obtained using the MDBT approach. Progress in fatigue testing and in determination of the ductile-to-brittle transition temperature is reviewed briefly. 11 figures

  9. KINEMATICS OF THE CO GAS IN THE INNER REGIONS OF THE TW Hya DISK

    Energy Technology Data Exchange (ETDEWEB)

    Rosenfeld, Katherine A.; Qi Chunhua; Andrews, Sean M.; Wilner, David J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Corder, Stuartt A. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Dullemond, C. P. [Institut fuer Theoretische Astrophysik, Universitaet Heidelberg, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany); Lin Shinyi [Department of Physics, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (United States); Hughes, A. M. [Department of Astronomy, University of California at Berkeley, 601 Campbell Hall, Berkeley, CA 94720 (United States); D' Alessio, Paola [Centro de Radioastronomia y Astrofisica, Universidad Nacional Autonoma de Mexico, Apartado Postal 72-3 (Xangari), 58089 Morelia, Michoacan (Mexico); Ho, P. T. P. [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 106, Taiwan (China)

    2012-10-01

    We present a detailed analysis of the spatially and spectrally resolved {sup 12}CO J = 2-1 and J = 3-2 emission lines from the TW Hya circumstellar disk, based on science verification data from the Atacama Large Millimeter/submillimeter Array (ALMA). These lines exhibit substantial emission in their high-velocity wings (with projected velocities out to 2.1 km s{sup -1}, corresponding to intrinsic orbital velocities >20 km s{sup -1}) that trace molecular gas as close as 2 AU from the central star. However, we are not able to reproduce the intensity of these wings and the general spatio-kinematic pattern of the lines with simple models for the disk structure and kinematics. Using three-dimensional non-local thermodynamic equilibrium molecular excitation and radiative transfer calculations, we construct some alternative models that successfully account for these features by modifying either (1) the temperature structure of the inner disk (inside the dust-depleted disk cavity; r < 4 AU), (2) the intrinsic (Keplerian) disk velocity field, or (3) the distribution of disk inclination angles (a warp). The latter approach is particularly compelling because a representative warped disk model qualitatively reproduces the observed azimuthal modulation of optical light scattered off the disk surface. In any model scenario, the ALMA data clearly require a substantial molecular gas reservoir located inside the region where dust optical depths are known to be substantially diminished in the TW Hya disk, in agreement with previous studies based on infrared spectroscopy. The results from these updated model prescriptions are discussed in terms of their potential physical origins, which might include dynamical perturbations from a low-mass companion with an orbital separation of a few AU.

  10. Fullerenes and disk-fullerenes

    International Nuclear Information System (INIS)

    Deza, M; Dutour Sikirić, M; Shtogrin, M I

    2013-01-01

    A geometric fullerene, or simply a fullerene, is the surface of a simple closed convex 3-dimensional polyhedron with only 5- and 6-gonal faces. Fullerenes are geometric models for chemical fullerenes, which form an important class of organic molecules. These molecules have been studied intensively in chemistry, physics, crystallography, and so on, and their study has led to the appearance of a vast literature on fullerenes in mathematical chemistry and combinatorial and applied geometry. In particular, several generalizations of the notion of a fullerene have been given, aiming at various applications. Here a new generalization of this notion is proposed: an n-disk-fullerene. It is obtained from the surface of a closed convex 3-dimensional polyhedron which has one n-gonal face and all other faces 5- and 6-gonal, by removing the n-gonal face. Only 5- and 6-disk-fullerenes correspond to geometric fullerenes. The notion of a geometric fullerene is therefore generalized from spheres to compact simply connected two-dimensional manifolds with boundary. A two-dimensional surface is said to be unshrinkable if it does not contain belts, that is, simple cycles consisting of 6-gons each of which has two neighbours adjacent at a pair of opposite edges. Shrinkability of fullerenes and n-disk-fullerenes is investigated. Bibliography: 87 titles

  11. Fullerenes and disk-fullerenes

    Science.gov (United States)

    Deza, M.; Dutour Sikirić, M.; Shtogrin, M. I.

    2013-08-01

    A geometric fullerene, or simply a fullerene, is the surface of a simple closed convex 3-dimensional polyhedron with only 5- and 6-gonal faces. Fullerenes are geometric models for chemical fullerenes, which form an important class of organic molecules. These molecules have been studied intensively in chemistry, physics, crystallography, and so on, and their study has led to the appearance of a vast literature on fullerenes in mathematical chemistry and combinatorial and applied geometry. In particular, several generalizations of the notion of a fullerene have been given, aiming at various applications. Here a new generalization of this notion is proposed: an n-disk-fullerene. It is obtained from the surface of a closed convex 3-dimensional polyhedron which has one n-gonal face and all other faces 5- and 6-gonal, by removing the n-gonal face. Only 5- and 6-disk-fullerenes correspond to geometric fullerenes. The notion of a geometric fullerene is therefore generalized from spheres to compact simply connected two-dimensional manifolds with boundary. A two-dimensional surface is said to be unshrinkable if it does not contain belts, that is, simple cycles consisting of 6-gons each of which has two neighbours adjacent at a pair of opposite edges. Shrinkability of fullerenes and n-disk-fullerenes is investigated. Bibliography: 87 titles.

  12. ALMA OBSERVATIONS OF HD 141569’s CIRCUMSTELLAR DISK

    Energy Technology Data Exchange (ETDEWEB)

    White, J. A.; Boley, A. C. [Department of Physics and Astronomy, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Hughes, A. M.; Flaherty, K. M. [Department of Astronomy, Van Vleck Observatory, Wesleyan University, 96 Foss Hill Drive, Middletown, CT 06459 (United States); Ford, E. [Center for Exoplanets and Habitable Worlds, 525 Davey Laboratory, The Pennsylvania State University, University Park, PA 16802-2111 (United States); Wilner, D.; Payne, M. [Harvard Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Corder, S., E-mail: jawhite@astro.ubc.ca [North American ALMA Science Center, National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA, 22903 (United States)

    2016-09-20

    We present ALMA band 7 (345 GHz) continuum and {sup 12}CO( J = 3-2) observations of the circumstellar disk surrounding HD 141569. At an age of about 5 Myr, the disk has a complex morphology that may be best interpreted as a nascent debris system with gas. Our 870 μ m ALMA continuum observations resolve a dust disk out to approximately 56 au from the star (assuming a distance of 116 pc) with 0.″38 resolution and 0.07 mJy beam{sup −1} sensitivity. We measure a continuum flux density for this inner material of 3.8 ± 0.4 mJy (including calibration uncertainties). The {sup 12}CO(3-2) gas is resolved kinematically and spatially from about 30 to 210 au. The integrated {sup 12}CO(3-2) line flux density is 15.7 ± 1.6 Jy km s{sup −1}. We estimate the mass of the millimeter debris and {sup 12}CO(3-2) gas to be ≳0.04 M {sub ⊕} and ∼2 × 10{sup −3} M {sub ⊕}, respectively. If the millimeter grains are part of a collisional cascade, then we infer that the inner disk (<50 au) has ∼160 M {sub ⊕} contained within objects less than 50 km in radius, depending on the planetesimal size distribution and density assumptions. Markov Chain Monte Carlo modeling of the system reveals a disk morphology with an inclination of 53.°4 centered around an M = 2.39 M {sub ⊙} host star ( M sin( i ) = 1.92 M {sub ⊙}). We discuss whether the gas in HD 141569's disk may be second generation. If it is, the system can be used to study the clearing stages of planet formation.

  13. THE HERSCHEL DIGIT SURVEY OF WEAK-LINE T TAURI STARS: IMPLICATIONS FOR DISK EVOLUTION AND DISSIPATION

    Energy Technology Data Exchange (ETDEWEB)

    Cieza, Lucas A. [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); Olofsson, Johan; Henning, Thomas [Max Planck Institute fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Harvey, Paul M.; Evans, Neal J. II [Department of Astronomy, University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, TX 78712-1205 (United States); Najita, Joan [National Optical Astronomy Observatory, 950 N. Cherry Avenue, Tucson, AZ 86719 (United States); Merin, Bruno [Herschel Science Centre, European Space Astronomy Centre, ESA, P.O. Box 78, E-28691 Villanueva de la Canada, Madrid (Spain); Liebhart, Armin; Guedel, Manuel [Department of Astronomy, University of Vienna, Tuerkenschanzstr. 17, A-1180 Vienna (Austria); Augereau, Jean-Charles; Pinte, Christophe, E-mail: lcieza@ifa.hawaii.edu [UJF-Grenoble 1/CNRS-INSU, Institut de Planetologie et d' Astrophysique (IPAG) UMR 5274, BP 53, F-38041 Grenoble cedex 9 (France)

    2013-01-10

    As part of the 'Dust, Ice, and Gas In Time (DIGIT)' Herschel Open Time Key Program, we present Herschel photometry (at 70, 160, 250, 350, and 500 {mu}m) of 31 weak-line T Tauri star (WTTS) candidates in order to investigate the evolutionary status of their circumstellar disks. Of the stars in our sample, 13 had circumstellar disks previously known from infrared observations at shorter wavelengths, while 18 of them had no previous evidence for a disk. We detect a total of 15 disks as all previously known disks are detected at one or more Herschel wavelengths and two additional disks are identified for the first time. The spectral energy distributions (SEDs) of our targets seem to trace the dissipation of the primordial disk and the transition to the debris disk regime. Of the 15 disks, 7 appear to be optically thick primordial disks, including 2 objects with SEDs indistinguishable from those of typical Classical T Tauri stars, 4 objects that have significant deficit of excess emission at all IR wavelengths, and 1 'pre-transitional' object with a known gap in the disk. Despite their previous WTTS classification, we find that the seven targets in our sample with optically thick disks show evidence for accretion. The remaining eight disks have weaker IR excesses similar to those of optically thin debris disks. Six of them are warm and show significant 24 {mu}m Spitzer excesses, while the last two are newly identified cold debris-like disks with photospheric 24 {mu}m fluxes, but significant excess emission at longer wavelengths. The Herschel photometry also places strong constraints on the non-detections, where systems with F {sub 70}/F {sub 70,*} {approx}> 5-15 and L {sub disk}/L {sub *} {approx}> 10{sup -3} to 10{sup -4} can be ruled out. We present preliminary models for both the optically thick and optically thin disks and discuss our results in the context of the evolution and dissipation of circumstellar disks.

  14. Polarimetry of Solar System Objects: Observations vs. Models

    Science.gov (United States)

    Yanamandra-Fisher, P. A.

    2014-04-01

    The overarching goals for the remote sensing and robotic exploration of planetary systems are: (1) understanding the formation of planetary systems and their diversity; and (2) search for habitability. Since all objects have unique polarimetric signatures inclusion of spectrophotopolarimetry as a complementary approach to standard techniques of imaging and spectroscopy, provides insight into the scattering properties of the planetary media. Specifically, linear and circular polarimetric signatures of the object arise from different physical processes and their study proves essential to the characterization of the object. Linear polarization of reflected light by various solar system objects provides insight into the scattering characteristics of atmospheric aerosols and hazes? and surficial properties of atmosphereless bodies. Many optically active materials are anisotropic and so their scattering properties differ with the object's principal axes (such as dichroic or birefringent materials) and are crystalline in structure instead of amorphous, (eg., the presence of olivines and silicates in cometary dust and circumstellar disks? Titan, etc.). Ices (water and other species) are abundant in the system indicated in their near - infrared spectra. Gas giants form outside the frost line (where ices condense), and their satellites and ring systems exhibit signature of water ice? clathrates, nonices (Si, C, Fe) in their NIR spectra and spectral dependence of linear polarization. Additionally, spectral dependence of polarization is important to separate the macroscopic (bulk) properties of the scattering medium from the microscopic (particulate) properties of the scattering medium. Circular polarization, on the other hand, is indicative of magnetic fields and biologically active molecules, necessary for habitability. These applications suffer from lack of detailed observations, instrumentation, dedicated missions and numericalretrieval methods. With recent discoveries and

  15. THE PDS 66 CIRCUMSTELLAR DISK AS SEEN IN POLARIZED LIGHT WITH THE GEMINI PLANET IMAGER

    International Nuclear Information System (INIS)

    Wolff, Schuyler G.; Greenbaum, Alexandra Z.; Perrin, Marshall; Hines, Dean C.; Millar-Blanchaer, Maxwell A.; Nielsen, Eric L.; Wang, Jason; Dong, Ruobing; Duchêne, Gaspard; Graham, James R.; Kalas, Paul; Cardwell, Andrew; Chilcote, Jeffrey; Draper, Zachary H.; Fitzgerald, Michael P.; Hung, Li-Wei; Goodsell, Stephen J.; Grady, Carol A.; Hartung, Markus; Hibon, Pascale

    2016-01-01

    We present H- and K-band imaging polarimetry for the PDS 66 circumstellar disk obtained during the commissioning of the Gemini Planet Imager (GPI). Polarization images reveal a clear detection of the disk in to the 0.″12 inner working angle (IWA) in the H band, almost three times closer to the star than the previous Hubble Space Telescope (HST) observations with NICMOS and STIS (0.″35 effective IWA). The centro-symmetric polarization vectors confirm that the bright inner disk detection is due to circumstellar scattered light. A more diffuse disk extends to a bright outer ring centered at 80 AU. We discuss several physical mechanisms capable of producing the observed ring + gap structure. GPI data confirm enhanced scattering on the east side of the disk that is inferred to be nearer to us. We also detect a lateral asymmetry in the south possibly due to shadowing from material within the IWA. This likely corresponds to a temporally variable azimuthal asymmetry observed in HST/STIS coronagraphic imaging

  16. THE PDS 66 CIRCUMSTELLAR DISK AS SEEN IN POLARIZED LIGHT WITH THE GEMINI PLANET IMAGER

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, Schuyler G.; Greenbaum, Alexandra Z. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Perrin, Marshall; Hines, Dean C. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Millar-Blanchaer, Maxwell A. [Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4 (Canada); Nielsen, Eric L. [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305 (United States); Wang, Jason; Dong, Ruobing; Duchêne, Gaspard; Graham, James R.; Kalas, Paul [Astronomy Department, University of California, Berkeley, Berkeley, CA 94720 (United States); Cardwell, Andrew [LBT Observatory, University of Arizona, 933 N. Cherry Avenue, Room 552, Tucson, AZ 85721 (United States); Chilcote, Jeffrey [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4 (Canada); Draper, Zachary H. [University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2 (Canada); Fitzgerald, Michael P.; Hung, Li-Wei [Department of Physics and Astronomy, University of California, Los Angeles, 430 Portola Plaza, Los Angeles, CA 90095 (United States); Goodsell, Stephen J. [Gemini Observatory, 670 N. A’ohoku Place, Hilo, HI 96720 (United States); Grady, Carol A. [Eureka Scientific, 2452 Delmer, Suite 100, Oakland, CA 96002 (United States); Hartung, Markus; Hibon, Pascale, E-mail: swolff9@jh.edu [Gemini Observatory, Casilla 603, La Serena (Chile); and others

    2016-02-10

    We present H- and K-band imaging polarimetry for the PDS 66 circumstellar disk obtained during the commissioning of the Gemini Planet Imager (GPI). Polarization images reveal a clear detection of the disk in to the 0.″12 inner working angle (IWA) in the H band, almost three times closer to the star than the previous Hubble Space Telescope (HST) observations with NICMOS and STIS (0.″35 effective IWA). The centro-symmetric polarization vectors confirm that the bright inner disk detection is due to circumstellar scattered light. A more diffuse disk extends to a bright outer ring centered at 80 AU. We discuss several physical mechanisms capable of producing the observed ring + gap structure. GPI data confirm enhanced scattering on the east side of the disk that is inferred to be nearer to us. We also detect a lateral asymmetry in the south possibly due to shadowing from material within the IWA. This likely corresponds to a temporally variable azimuthal asymmetry observed in HST/STIS coronagraphic imaging.

  17. THE MEGAMASER COSMOLOGY PROJECT. III. ACCURATE MASSES OF SEVEN SUPERMASSIVE BLACK HOLES IN ACTIVE GALAXIES WITH CIRCUMNUCLEAR MEGAMASER DISKS

    International Nuclear Information System (INIS)

    Kuo, C. Y.; Braatz, J. A.; Condon, J. J.; Impellizzeri, C. M. V.; Lo, K. Y.; Zaw, I.; Schenker, M.; Henkel, C.; Reid, M. J.; Greene, J. E.

    2011-01-01

    Observations of H 2 O masers from circumnuclear disks in active galaxies for the Megamaser Cosmology Project (MCP) allow accurate measurement of the mass of supermassive black holes (BH) in these galaxies. We present the Very Long Baseline Interferometry images and kinematics of water maser emission in six active galaxies: NGC 1194, NGC 2273, NGC 2960 (Mrk 1419), NGC 4388, NGC 6264 and NGC 6323. We use the Keplerian rotation curves of these six megamaser galaxies, plus a seventh previously published, to determine accurate enclosed masses within the central ∼0.3 pc of these galaxies, smaller than the radius of the sphere of influence of the central mass in all cases. We also set lower limits to the central mass densities of between 0.12 x 10 10 and 61 x 10 10 M sun pc -3 . For six of the seven disks, the high central densities rule out clusters of stars or stellar remnants as the central objects, and this result further supports our assumption that the enclosed mass can be attributed predominantly to a supermassive BH. The seven BHs have masses ranging between 0.75 x 10 7 and 6.5 x 10 7 M sun , with the mass errors dominated by the uncertainty of the Hubble constant. We compare the megamaser BH mass determination with BH mass measured from the virial estimation method. The virial estimation BH mass in four galaxies is consistent with the megamaser BH mass, but the virial mass uncertainty is much greater. Circumnuclear megamaser disks allow the best mass determination of the central BH mass in external galaxies and significantly improve the observational basis at the low-mass end of the M-σ * relation. The M-σ * relation may not be a single, low-scatter power law as originally proposed. MCP observations continue and we expect to obtain more maser BH masses in the future.

  18. Object and Objective Lost?

    DEFF Research Database (Denmark)

    Lopdrup-Hjorth, Thomas

    2015-01-01

    This paper explores the erosion and problematization of ‘the organization’ as a demarcated entity. Utilizing Foucault's reflections on ‘state-phobia’ as a source of inspiration, I show how an organization-phobia has gained a hold within Organization Theory (OT). By attending to the history...... of this organization-phobia, the paper argues that OT has become increasingly incapable of speaking about its core object. I show how organizations went from being conceptualized as entities of major importance to becoming theoretically deconstructed and associated with all kinds of ills. Through this history......, organizations as distinct entities have been rendered so problematic that they have gradually come to be removed from the center of OT. The costs of this have been rather significant. Besides undermining the grounds that gave OT intellectual credibility and legitimacy to begin with, the organization-phobia...

  19. OT2_amoor_4: A census of debris disks in nearby young moving groups with Herschel.

    Science.gov (United States)

    Moór, A.

    2011-09-01

    Nearly all young stars harbour circumstellar disks, that serve as the reservoir for mass accretion onto the star, and later become the birthplace of planetary systems. After the disappearance of the gas component from the disk a dusty debris disk is formed that is believed to mark the location of the planetesimal belt as well. For outlining the evolution of such debris disks traditionally open clusters and field stars were studied, however we argue that the recently discovered young moving groups are more suitable objects for such analyses, due to their proximity and good coverage of the first 50 Myr period of the planetary system evolution. In this proposal we request 70/160 um Herschel/PACS photometric observations for so-far unobserved moving group members. These observations will provide a complete coverage of all known members within 80 pc of five nearby young moving groups (beta Pic Moving Group, Tucana-Horologium, Carina, Columba, and Argus), in the A to K spectral range. Based on the new observations we will identify new debris disks, characterize the disk population within individual moving groups, and study disk evolution by comparing the groups of different ages. The results will be used to verify predictions of the self-stirring model of the evolution of planetesimal disks. We will also compare the properties of debris disks in groups of the same age, looking for additional 'environmental' parameters that affect disk structure over a whole moving group. Our study will be a significant contribution to the census of debris disks in young moving groups, increasing the number of observed sources by a factor of 1.5. Since Spitzer could perform only a limited census and the so-far approved Herschel programs added very few additional moving group obervations, our programme is expected to have a high legacy value.

  20. The atomic and molecular content of disks around very low-mass stars and brown dwarfs

    Energy Technology Data Exchange (ETDEWEB)

    Pascucci, I. [Lunar and Planetary Laboratory, The University of Arizona, Tucson, AZ 85721 (United States); Herczeg, G. [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Carr, J. S. [Naval Research Laboratory, Code 7211, Washington, DC 20375 (United States); Bruderer, S., E-mail: pascucci@lpl.arizona.edu [Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse 1, D-85748 Garching (Germany)

    2013-12-20

    There is growing observational evidence that disk evolution is stellar-mass-dependent. Here, we show that these dependencies extend to the atomic and molecular content of disk atmospheres. We analyze a unique dataset of high-resolution Spitzer/IRS spectra from eight very low mass star and brown dwarf disks. We report the first detections of Ne{sup +}, H{sub 2}, CO{sub 2}, and tentative detections of H{sub 2}O toward these faint and low-mass disks. Two of our [Ne II] 12.81 μm emission lines likely trace the hot (≥5000 K) disk surface irradiated by X-ray photons from the central stellar/sub-stellar object. The H{sub 2} S(2) and S(1) fluxes are consistent with arising below the fully or partially ionized surface traced by the [Ne II] emission in gas at ∼600 K. We confirm the higher C{sub 2}H{sub 2}/HCN flux and column density ratio in brown dwarf disks previously noted from low-resolution IRS spectra. Our high-resolution spectra also show that the HCN/H{sub 2}O fluxes of brown dwarf disks are on average higher than those of T Tauri disks. Our LTE modeling hints that this difference extends to column density ratios if H{sub 2}O lines trace warm ≥600 K disk gas. These trends suggest that the inner regions of brown dwarf disks have a lower O/C ratio than those of T Tauri disks, which may result from a more efficient formation of non-migrating icy planetesimals. An O/C = 1, as inferred from our analysis, would have profound implications on the bulk composition of rocky planets that can form around very low mass stars and brown dwarfs.

  1. OT1_ipascucc_1: Understanding the Origin of Transition Disks via Disk Mass Measurements

    Science.gov (United States)

    Pascucci, I.

    2010-07-01

    Transition disks are a distinguished group of few Myr-old systems caught in the phase of dispersing their inner dust disk. Three different processes have been proposed to explain this inside-out clearing: grain growth, photoevaporation driven by the central star, and dynamical clearing by a forming giant planet. Which of these processes lead to a transition disk? Distinguishing between them requires the combined knowledge of stellar accretion rates and disk masses. We propose here to use 43.8 hours of PACS spectroscopy to detect the [OI] 63 micron emission line from a sample of 21 well-known transition disks with measured mass accretion rates. We will use this line, in combination with ancillary CO millimeter lines, to measure their gas disk mass. Because gas dominates the mass of protoplanetary disks our approach and choice of lines will enable us to trace the bulk of the disk mass that resides beyond tens of AU from young stars. Our program will quadruple the number of transition disks currently observed with Herschel in this setting and for which disk masses can be measured. We will then place the transition and the ~100 classical/non-transition disks of similar age (from the Herschel KP "Gas in Protoplanetary Systems") in the mass accretion rate-disk mass diagram with two main goals: 1) reveal which gaps have been created by grain growth, photoevaporation, or giant planet formation and 2) from the statistics, determine the main disk dispersal mechanism leading to a transition disk.

  2. Foundations of Black Hole Accretion Disk Theory.

    Science.gov (United States)

    Abramowicz, Marek A; Fragile, P Chris

    2013-01-01

    This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads us to the four primary accretion disk models that we review: Polish doughnuts (thick disks), Shakura-Sunyaev (thin) disks, slim disks, and advection-dominated accretion flows (ADAFs). After presenting the models we discuss issues of stability, oscillations, and jets. Following our review of the analytic work, we take a parallel approach in reviewing numerical studies of black hole accretion disks. We finish with a few select applications that highlight particular astrophysical applications: measurements of black hole mass and spin, black hole vs. neutron star accretion disks, black hole accretion disk spectral states, and quasi-periodic oscillations (QPOs).

  3. Foundations of Black Hole Accretion Disk Theory

    Directory of Open Access Journals (Sweden)

    Marek A. Abramowicz

    2013-01-01

    Full Text Available This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads us to the four primary accretion disk models that we review: Polish doughnuts (thick disks, Shakura-Sunyaev (thin disks, slim disks, and advection-dominated accretion flows (ADAFs. After presenting the models we discuss issues of stability, oscillations, and jets. Following our review of the analytic work, we take a parallel approach in reviewing numerical studies of black hole accretion disks. We finish with a few select applications that highlight particular astrophysical applications: measurements of black hole mass and spin, black hole vs. neutron star accretion disks, black hole accretion disk spectral states, and quasi-periodic oscillations (QPOs.

  4. Fast disk array for image storage

    Science.gov (United States)

    Feng, Dan; Zhu, Zhichun; Jin, Hai; Zhang, Jiangling

    1997-01-01

    A fast disk array is designed for the large continuous image storage. It includes a high speed data architecture and the technology of data striping and organization on the disk array. The high speed data path which is constructed by two dual port RAM and some control circuit is configured to transfer data between a host system and a plurality of disk drives. The bandwidth can be more than 100 MB/s if the data path based on PCI (peripheral component interconnect). The organization of data stored on the disk array is similar to RAID 4. Data are striped on a plurality of disk, and each striping unit is equal to a track. I/O instructions are performed in parallel on the disk drives. An independent disk is used to store the parity information in the fast disk array architecture. By placing the parity generation circuit directly on the SCSI (or SCSI 2) bus, the parity information can be generated on the fly. It will affect little on the data writing in parallel on the other disks. The fast disk array architecture designed in the paper can meet the demands of the image storage.

  5. PHOTO-REVERBERATION MAPPING OF A PROTOPLANETARY ACCRETION DISK AROUND A T TAURI STAR

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Huan Y. A.; Plavchan, Peter; Ciardi, David [Infrared Processing and Analysis Center, California Institute of Technology, MC 100-22, 770 S. Wilson Ave., Pasadena, CA 91125 (United States); Rieke, George H. [Lunar and Planetary Laboratory and Department of Planetary Sciences, University of Arizona, 1629 E. University Blvd., Tucson, AZ 85721 (United States); Cody, Ann Marie [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Güth, Tina [Department of Physics, New Mexico Institute of Mining and Technology, 801 Leroy Pl., Socorro, NM 87801 (United States); Stauffer, John; Carey, Sean; Rebull, Luisa M. [Infrared Science Archive and Spitzer Science Center, Infrared Processing and Analysis Center, California Institute of Technology, MC 314-6, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Covey, Kevin [Department of Physics and Astronomy, MS-9164, Western Washington University, 516 High St., Bellingham, WA 98225 (United States); Duran-Rojas, Maria C. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Apartado Postal 106, 22800, Ensenada, Baja California, México (Mexico); Gutermuth, Robert A. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Morales-Calderón, María, E-mail: hyameng@lpl.arizona.edu [Centro de Astrobiología, Departamento de Astrofísica, INTA-CSIC, P.O. Box 78, E-28691, ESAC Campus, Villanueva de la Cañada, Madrid (Spain); and others

    2016-05-20

    Theoretical models and spectroscopic observations of newborn stars suggest that protoplantary disks have an inner “wall” at a distance set by the disk interaction with the star. Around T Tauri stars, the size of this disk hole is expected to be on a 0.1 au scale that is unresolved by current adaptive optics imaging, though some model-dependent constraints have been obtained by near-infrared interferometry. Here we report the first measurement of the inner disk wall around a solar-mass young stellar object, YLW 16B in the ρ Ophiuchi star-forming region, by detecting the light-travel time of the variable radiation from the stellar surface to the disk. Consistent time lags were detected on two nights, when the time series in H (1.6 μ m) and K (2.2 μ m) bands were synchronized while the 4.5 μ m emission lagged by 74.5 ± 3.2 s. Considering the nearly edge-on geometry of the disk, the inner rim should be 0.084 au from the protostar on average, with an error of order 0.01 au. This size is likely larger than the range of magnetospheric truncations and consistent with an optically and geometrically thick disk front at the dust sublimation radius at ∼1500 K. The widths of the cross-correlation functions between the data in different wavebands place possible new constraints on the geometry of the disk.

  6. Grand-design Spiral Arms in a Young Forming Circumstellar Disk

    Energy Technology Data Exchange (ETDEWEB)

    Tomida, Kengo; Lin, Chia Hui [Department of Earth and Space Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Machida, Masahiro N. [Department of Earth and Planetary Sciences, Faculty of Sciences, Kyushu University, Nishi-ku, Fukuoka 819-0395 (Japan); Hosokawa, Takashi [Department of Physics, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan); Sakurai, Yuya, E-mail: tomida@vega.ess.sci.osaka-u.ac.jp [Department of Physics, The University of Tokyo, Tokyo 113-0033 (Japan)

    2017-01-20

    We study formation and long-term evolution of a circumstellar disk in a collapsing molecular cloud core using a resistive magnetohydrodynamic simulation. While the formed circumstellar disk is initially small, it grows as accretion continues, and its radius becomes as large as 200 au toward the end of the Class-I phase. A pair of grand-design spiral arms form due to gravitational instability in the disk, and they transfer angular momentum in the highly resistive disk. Although the spiral arms disappear in a few rotations as expected in a classical theory, new spiral arms form recurrently as the disk, soon becoming unstable again by gas accretion. Such recurrent spiral arms persist throughout the Class-0 and I phases. We then perform synthetic observations and compare our model with a recent high-resolution observation of a young stellar object Elias 2–27, whose circumstellar disk has grand-design spiral arms. We find good agreement between our theoretical model and the observation. Our model suggests that the grand-design spiral arms around Elias 2–27 are consistent with material arms formed by gravitational instability. If such spiral arms commonly exist in young circumstellar disks, it implies that young circumstellar disks are considerably massive and gravitational instability is the key process of angular momentum transport.

  7. Grand-design Spiral Arms in a Young Forming Circumstellar Disk

    International Nuclear Information System (INIS)

    Tomida, Kengo; Lin, Chia Hui; Machida, Masahiro N.; Hosokawa, Takashi; Sakurai, Yuya

    2017-01-01

    We study formation and long-term evolution of a circumstellar disk in a collapsing molecular cloud core using a resistive magnetohydrodynamic simulation. While the formed circumstellar disk is initially small, it grows as accretion continues, and its radius becomes as large as 200 au toward the end of the Class-I phase. A pair of grand-design spiral arms form due to gravitational instability in the disk, and they transfer angular momentum in the highly resistive disk. Although the spiral arms disappear in a few rotations as expected in a classical theory, new spiral arms form recurrently as the disk, soon becoming unstable again by gas accretion. Such recurrent spiral arms persist throughout the Class-0 and I phases. We then perform synthetic observations and compare our model with a recent high-resolution observation of a young stellar object Elias 2–27, whose circumstellar disk has grand-design spiral arms. We find good agreement between our theoretical model and the observation. Our model suggests that the grand-design spiral arms around Elias 2–27 are consistent with material arms formed by gravitational instability. If such spiral arms commonly exist in young circumstellar disks, it implies that young circumstellar disks are considerably massive and gravitational instability is the key process of angular momentum transport.

  8. Secular Evolution in Disk Galaxies

    Science.gov (United States)

    Kormendy, John

    2013-10-01

    Self-gravitating systems evolve toward the most tightly bound configuration that is reachable via the evolution processes that are available to them. They do this by spreading -- the inner parts shrink while the outer parts expand -- provided that some physical process efficiently transports energy or angular momentum outward. The reason is that self-gravitating systems have negative specific heats. As a result, the evolution of stars, star clusters, protostellar and protoplanetary disks, black hole accretion disks and galaxy disks are fundamentally similar. How evolution proceeds then depends on the evolution processes that are available to each kind of self-gravitating system. These processes and their consequences for galaxy disks are the subjects of my lectures and of this Canary Islands Winter School. I begin with a review of the formation, growth and death of bars. Then I review the slow (`secular') rearrangement of energy, angular momentum, and mass that results from interactions between stars or gas clouds and collective phenomena such as bars, oval disks, spiral structure and triaxial dark haloes. The `existence-proof' phase of this work is largely over: we have a good heuristic understanding of how nonaxisymmetric structures rearrange disk gas into outer rings, inner rings and stuff dumped onto the centre. The results of simulations correspond closely to the morphology of barred and oval galaxies. Gas that is transported to small radii reaches high densities. Observations confirm that many barred and oval galaxies have dense central concentrations of gas and star formation. The result is to grow, on timescales of a few Gyr, dense central components that are frequently mistaken for classical (elliptical-galaxy-like) bulges but that were grown slowly out of the disk (not made rapidly by major mergers). The resulting picture of secular galaxy evolution accounts for the richness observed in galaxy structure. We can distinguish between classical and pseudo

  9. The Quasar Accretion Disk Size-Black Hole Mass Relation

    Science.gov (United States)

    Morgan, Christopher W.; Kochanek, C. S.; Morgan, Nicholas D.; Falco, Emilio E.

    2010-04-01

    We use the microlensing variability observed for 11 gravitationally lensed quasars to show that the accretion disk size at a rest-frame wavelength of 2500 Å is related to the black hole mass by log(R 2500/cm) = (15.78 ± 0.12) + (0.80 ± 0.17)log(M BH/109 M sun). This scaling is consistent with the expectation from thin-disk theory (R vprop M 2/3 BH), but when interpreted in terms of the standard thin-disk model (T vprop R -3/4), it implies that black holes radiate with very low efficiency, log(η) = -1.77 ± 0.29 + log(L/L E), where η =L/(\\dot{M}c^2). Only by making the maximum reasonable shifts in the average inclination, Eddington factors, and black hole masses can we raise the efficiency estimate to be marginally consistent with typical efficiency estimates (η ≈ 10%). With one exception, these sizes are larger by a factor of ~4 than the size needed to produce the observed 0.8 μm quasar flux by thermal radiation from a thin disk with the same T vprop R -3/4 temperature profile. While scattering a significant fraction of the disk emission on large scales or including a large fraction of contaminating line emission can reduce the size discrepancy, resolving it also appears to require that accretion disks have flatter temperature/surface brightness profiles. Based on observations obtained with the Small and Moderate Aperture Research Telescope System (SMARTS) 1.3 m, which is operated by the SMARTS Consortium, the Apache Point Observatory 3.5 m telescope, which is owned and operated by the Astrophysical Research Consortium, the WIYN Observatory which is owned and operated by the University of Wisconsin, Indiana University, Yale University, and the National Optical Astronomy Observatories (NOAO), the 6.5 m Magellan Baade telescope, which is a collaboration between the observatories of the Carnegie Institution of Washington (OCIW), University of Arizona, Harvard University, University of Michigan, and Massachusetts Institute of Technology, and observations made

  10. Near-Infrared Imaging Polarimetry of Inner Region of GG Tau A Disk

    Science.gov (United States)

    Yang, Yi; Hashimoto, Jun; Hayashi, Saeko S.; Tamura, Motohide; Mayama, Satoshi; Rafikov, Roman; Akiyama, Eiji; Carson, Joseph C.; Janson, Markus; Kwon, Jungmi; hide

    2016-01-01

    By performing non-masked polarization imaging with Subaru HiCIAO, polarized scattered light from the inner region of the disk around the GGTau A system was successfully detected in the H band, with a spatial resolution of approximately0 07, revealing the complicated inner disk structures around this young binary. This paper reports the observation of an arc-like structure to the north of GG Tau Ab, and part of a circumstellar structure that is noticeable around GG Tau Aa, extending to a distance of approximately 28 au from the primary star. The speckle noise around GG Tau Ab constrains its disk radius to 13 au. Based on the size of the circumbinary ring and the circumstellar disk around GG Tau Aa, these mimajor axis of the binary's orbit is likely to be 62 au. A comparison of the present observations with previous Atacama Large Millimeter Array and near-infrared H2 emission observations suggests that the north arc could be part of a large streamer flowing from the circumbinary ring to sustain the circumstellar disks. According to the previous studies,the circumstellar disk around GG Tau Aa has enough mass and can sustain itself for a duration sufficient for planet formation; thus, our study indicates that planets can form within close (separation 100 au) young binary systems.

  11. A study of the inner parts of protoplanetary disks observed by interferometry

    International Nuclear Information System (INIS)

    Anthonioz, Fabien

    2015-01-01

    Observing gas and dusty disks around young stars are of utmost importance for our knowledge about planetary formation. Observations of these disks bring unprecedented details about their structure and composition, and provide stronger and stronger constrains on planetary formation models. However, the inner parts of these disk are still barely known. Indeed, a 100 m diameter telescope would be required in order to resolve these inner region, for the closest young stars; nowadays, the construction of such telescope is impossible technologically and financially. By combining the light of pairs of telescopes, the interferometry technique is able to reach the sufficient resolving power, and permits us to observe the inner parts of circumstellar disks. My thesis has been focused on the observation and study of the inner part of TTauri's circumstellar disks. I present in this manuscript a statistical study on the environment around these stars, along with its modeling by taking into account thermal emission and light scattering of the disk. Finally, I present a more complete modelling for some of these stars, done by constraining spectroscopic, interferometric and photometric datasets with a radiative transfer code. (author)

  12. Scattering from a random layer of leaves in the physical optics limit

    Science.gov (United States)

    Lang, R. H.; Seker, S. S.; Le Vine, D. M.

    1982-01-01

    Backscatter of electromagnetic radiation from a layer of vegetation over flat lossy ground has been studied in collaborative research at the George Washingnton University and the Goddard Space Flight Center. In this work the vegetation is composed of leaves which are modeled by a random collection of lossy dielectric disks. Backscattering coefficients for the vegetation layer have been calculated in the case of disks whose diameter is large compared to wavelength. These backscattering coefficients are obtained in terms of the scattering amplitude of an individual disk by employing the distorted Born procedure. The scattering amplitude for a disk which is large compared to wavelength is then found by physical optic techniques. Computed results are interpreted in terms of dominant reflected and transmitted contributions from the disks and ground.

  13. Elastic scattering

    International Nuclear Information System (INIS)

    Leader, Elliot

    1991-01-01

    With very few unexplained results to challenge conventional ideas, physicists have to look hard to search for gaps in understanding. An area of physics which offers a lot more than meets the eye is elastic and diffractive scattering where particles either 'bounce' off each other, emerging unscathed, or just graze past, emerging relatively unscathed. The 'Blois' workshops provide a regular focus for this unspectacular, but compelling physics, attracting highly motivated devotees

  14. Neutron scattering

    International Nuclear Information System (INIS)

    1991-02-01

    The annual report on hand gives an overview of the research work carried out in the Laboratory for Neutron Scattering (LNS) of the ETH Zuerich in 1990. Using the method of neutron scattering, it is possible to examine in detail the static and dynamic properties of the condensed material. In accordance with the multidisciplined character of the method, the LNS has for years maintained a system of intensive co-operation with numerous institutes in the areas of biology, chemistry, solid-state physics, crystallography and materials research. In 1990 over 100 scientists from more than 40 research groups both at home and abroad took part in the experiments. It was again a pleasure to see the number of graduate students present, who were studying for a doctorate and who could be introduced into the neutron scattering during their stay at the LNS and thus were in the position to touch on central ways of looking at a problem in their dissertation using this modern experimental method of solid-state research. In addition to the numerous and interesting ways of formulating the questions to explain the structure, nowadays the scientific programme increasingly includes particularly topical studies in connection with high temperature-supraconductors and materials research

  15. Scattering theory

    CERN Document Server

    Friedrich, Harald

    2016-01-01

    This corrected and updated second edition of "Scattering Theory" presents a concise and modern coverage of the subject. In the present treatment, special attention is given to the role played by the long-range behaviour of the projectile-target interaction, and a theory is developed, which is well suited to describe near-threshold bound and continuum states in realistic binary systems such as diatomic molecules or molecular ions. It is motivated by the fact that experimental advances have shifted and broadened the scope of applications where concepts from scattering theory are used, e.g. to the field of ultracold atoms and molecules, which has been experiencing enormous growth in recent years, largely triggered by the successful realization of Bose-Einstein condensates of dilute atomic gases in 1995. The book contains sections on special topics such as near-threshold quantization, quantum reflection, Feshbach resonances and the quantum description of scattering in two dimensions. The level of abstraction is k...

  16. Small angle neutron scattering

    Directory of Open Access Journals (Sweden)

    Cousin Fabrice

    2015-01-01

    Full Text Available Small Angle Neutron Scattering (SANS is a technique that enables to probe the 3-D structure of materials on a typical size range lying from ∼ 1 nm up to ∼ a few 100 nm, the obtained information being statistically averaged on a sample whose volume is ∼ 1 cm3. This very rich technique enables to make a full structural characterization of a given object of nanometric dimensions (radius of gyration, shape, volume or mass, fractal dimension, specific area… through the determination of the form factor as well as the determination of the way objects are organized within in a continuous media, and therefore to describe interactions between them, through the determination of the structure factor. The specific properties of neutrons (possibility of tuning the scattering intensity by using the isotopic substitution, sensitivity to magnetism, negligible absorption, low energy of the incident neutrons make it particularly interesting in the fields of soft matter, biophysics, magnetic materials and metallurgy. In particular, the contrast variation methods allow to extract some informations that cannot be obtained by any other experimental techniques. This course is divided in two parts. The first one is devoted to the description of the principle of SANS: basics (formalism, coherent scattering/incoherent scattering, notion of elementary scatterer, form factor analysis (I(q→0, Guinier regime, intermediate regime, Porod regime, polydisperse system, structure factor analysis (2nd Virial coefficient, integral equations, characterization of aggregates, and contrast variation methods (how to create contrast in an homogeneous system, matching in ternary systems, extrapolation to zero concentration, Zero Averaged Contrast. It is illustrated by some representative examples. The second one describes the experimental aspects of SANS to guide user in its future experiments: description of SANS spectrometer, resolution of the spectrometer, optimization of

  17. Dynamics of dense particle disks

    International Nuclear Information System (INIS)

    Araki, S.; Tremaine, S.; Toronto Univ., Canada)

    1986-01-01

    The present investigation of mechanical equilibrium and collisional transport processes in dense, differentially rotating particle disks is based on the Enskog (1922) theory of dense, hard sphere gases, with the single exception that the spheres are inelastic. The viscous instability suggested as a source of Saturn B ring structure does not arise in the models presented, although the ring may be subject to a phase transition analogous to the liquid-solid transition observed in molecular dynamics simulations of elastic hard spheres. In such a case, the ring would alternately exhibit zero-shear, or solid, and high shear, or liquid, zones. 29 references

  18. Astrophysical disks Collective and Stochastic Phenomena

    CERN Document Server

    Fridman, Alexei M; Kovalenko, Ilya G

    2006-01-01

    The book deals with collective and stochastic processes in astrophysical discs involving theory, observations, and the results of modelling. Among others, it examines the spiral-vortex structure in galactic and accretion disks , stochastic and ordered structures in the developed turbulence. It also describes sources of turbulence in the accretion disks, internal structure of disk in the vicinity of a black hole, numerical modelling of Be envelopes in binaries, gaseous disks in spiral galaxies with shock waves formation, observation of accretion disks in a binary system and mass distribution of luminous matter in disk galaxies. The editors adaptly brought together collective and stochastic phenomena in the modern field of astrophysical discs, their formation, structure, and evolution involving the methodology to deal with, the results of observation and modelling, thereby advancing the study in this important branch of astrophysics and benefiting Professional Researchers, Lecturers, and Graduate Students.

  19. Grain surface chemistry in protoplanetary disks

    International Nuclear Information System (INIS)

    Reboussin, Laura

    2015-01-01

    Planetary formation occurs in the protoplanetary disks of gas and dust. Although dust represents only 1% of the total disk mass, it plays a fundamental role in disk chemical evolution since it acts as a catalyst for the formation of molecules. Understanding this chemistry is therefore essential to determine the initial conditions from which planets form. During my thesis, I studied grain-surface chemistry and its impact on the chemical evolution of molecular cloud, initial condition for disk formation, and protoplanetary disk. Thanks to numerical simulations, using the gas-grain code Nautilus, I showed the importance of diffusion reactions and gas-grain interactions for the abundances of gas-phase species. Model results combined with observations also showed the effects of the physical structure (in temperature, density, AV) on the molecular distribution in disks. (author)

  20. Rotation of gas above the galactic disk

    International Nuclear Information System (INIS)

    Gvaramadze, V.V.; Lominadze, D.G.

    1988-01-01

    The galactic disk is modeled by an oblate spheroid with confocal spherodial isodensity surfaces. An explicit analytic expression is found for the angular velocity of the gas outside the disk. The parameters of a three-component model of a spiral galaxy (oblate spheroid with central hole, bulge, and massive corona) are chosen in such a way as to obtain in the disk a two-hump rotation curve (as in the Galaxy, M 31, and M 81). It is shown that at heights absolute value z ≤ 2 kpc the gas rotates in the same manner as the disk. However, at greater heights the rotation curve ceases to have two humps. Allowance for the pressure gradient of the gas slightly changes the rotation curve directly above the disk (r r/sub disk/)

  1. [Management of disk displacement with condylar fracture].

    Science.gov (United States)

    Yu, Shi-bin; Li, Zu-bing; Yang, Xue-wen; Zhao, Ji-hong; Dong, Yao-jun

    2003-07-01

    To investigate clinical features of disk displacement during the course of condylar fracture and to explore the techniques of disk reposition and suturation. 32 patients (10 females and 22 males) who had disk displacements with condylar fractures were followed up. Reduction and reposition of the dislocated disks simultaneously with fixation of fractures were performed. 7 patients underwent intermaxillary fixation with elastic bands for 1 to 2 weeks. The occlusions were satisfactory in all cases but one for the reason of ramus height loss. No TMJ symptom was found when examined 3 months post operation. Anterior disk displacements were most occurred with high condylar process fractures. Surgical reposition and suturation of disk play an important role for the later TMJ-function.

  2. Accretion Disk Assembly During Common Envelope Evolution: Implications for Feedback and LIGO Binary Black Hole Formation

    Energy Technology Data Exchange (ETDEWEB)

    Murguia-Berthier, Ariadna; Ramirez-Ruiz, Enrico; Antoni, Andrea; Macias, Phillip [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); MacLeod, Morgan, E-mail: armurgui@ucsc.edu [School of Natural Sciences, Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ 08540 (United States)

    2017-08-20

    During a common envelope (CE) episode in a binary system, the engulfed companion spirals to tighter orbital separations under the influence of drag from the surrounding envelope material. As this object sweeps through material with a steep radial gradient of density, net angular momentum is introduced into the flow, potentially leading to the formation of an accretion disk. The presence of a disk would have dramatic consequences for the outcome of the interaction because accretion might be accompanied by strong, polar outflows with enough energy to unbind the entire envelope. Without a detailed understanding of the necessary conditions for disk formation during CE, therefore, it is difficult to accurately predict the population of merging compact binaries. This paper examines the conditions for disk formation around objects embedded within CEs using the “wind tunnel” formalism developed by MacLeod et al. We find that the formation of disks is highly dependent on the compressibility of the envelope material. Disks form only in the most compressible of stellar envelope gas, found in envelopes’ outer layers in zones of partial ionization. These zones are largest in low-mass stellar envelopes, but comprise small portions of the envelope mass and radius in all cases. We conclude that disk formation and associated accretion feedback in CE is rare, and if it occurs, transitory. The implication for LIGO black hole binary assembly is that by avoiding strong accretion feedback, CE interactions should still result in the substantial orbital tightening needed to produce merging binaries.

  3. PROTOPLANETARY DISKS IN THE ORION OMC1 REGION IMAGED WITH ALMA

    Energy Technology Data Exchange (ETDEWEB)

    Eisner, J. A.; Sheehan, P. D. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Bally, J. M. [Department of Astrophysical and Planetary Sciences, University of Colorado, UCB 389, Boulder, CO 80309 (United States); Ginsburg, A., E-mail: jeisner@email.arizona.edu [ESO Headquarters, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei Munchen (Germany)

    2016-07-20

    We present ALMA observations of the Orion Nebula that cover the OMC1 outflow region. Our focus in this paper is on compact emission from protoplanetary disks. We mosaicked a field containing ∼600 near-IR-identified young stars, around which we can search for sub-millimeter emission tracing dusty disks. Approximately 100 sources are known proplyds identified with the Hubble Space Telescope . We detect continuum emission at 1 mm wavelengths toward ∼20% of the proplyd sample, and ∼8% of the larger sample of near-IR objects. The noise in our maps allows 4 σ detection of objects brighter than ∼1.5 mJy, corresponding to protoplanetary disk masses larger than 1.5 M {sub J} (using standard assumptions about dust opacities and gas-to-dust ratios). None of these disks are detected in contemporaneous CO(2-1) or C{sup 18}O(2-1) observations, suggesting that the gas-to-dust ratios may be substantially smaller than the canonical value of 100. Furthermore, since dust grains may already be sequestered in large bodies in Orion Nebula cluster (ONC) disks, the inferred masses of disk solids may be underestimated. Our results suggest that the distribution of disk masses in this region is compatible with the detection rate of massive planets around M dwarfs, which are the dominant stellar constituent in the ONC.

  4. Exploring the Effects of Disk Thickness on the Black Hole Reflection Spectrum

    Science.gov (United States)

    Taylor, Corbin; Reynolds, Christopher S.

    2018-03-01

    The relativistically broadened reflection spectrum, observed in both AGN and X-ray binaries, has proven to be a powerful probe of the properties of black holes and the environments in which they reside. Emitted from the innermost regions of the accretion disk, this X-ray spectral component carries with it information not only about the plasma that resides in these extreme conditions, but also the black hole spin, a marker of the formation and accretion history of these objects. The models currently used to interpret the reflection spectrum are often simplistic, however, approximating the disk as an infinitely thin, optically thick plane of material orbiting in circular Keplerian orbits around the central object. Using a new relativistic ray-tracing suite (Fenrir) that allows for more complex disk approximations, we examine the effects that disk thickness may have on the reflection spectrum. Assuming a lamppost corona, we find that finite disk thickness can have a variety of effects on the reflection spectrum, including a truncation of the blue wing (from self-shadowing of the accretion disk) and an enhancement of the red wing (from the irradiation of the central “eye wall” of the inner disk). We deduce the systematic errors on black hole spin and height that may result from neglecting these effects.

  5. The Scattering Outcomes of Kepler Circumbinary Planets: Planet Mass Ratio

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Yan-Xiang; Ji, Jianghui, E-mail: yxgong@pmo.ac.cn, E-mail: jijh@pmo.ac.cn [CAS Key Laboratory of Planetary Sciences, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)

    2017-11-01

    Recent studies reveal that the free eccentricities of Kepler-34b and Kepler-413b are much larger than their forced eccentricities, implying that scattering events may take place in their formation. The observed orbital configuration of Kepler-34b cannot be well reproduced in disk-driven migration models, whereas a two-planet scattering scenario can play a significant role of shaping the planetary configuration. These studies indicate that circumbinary planets discovered by Kepler may have experienced scattering process. In this work, we extensively investigate the scattering outcomes of circumbinary planets focusing on the effects of planet mass ratio . We find that the planetary mass ratio and the the initial relative locations of planets act as two important parameters that affect the eccentricity distribution of the surviving planets. As an application of our model, we discuss the observed orbital configurations of Kepler-34b and Kepler-413b. We first adopt the results from the disk-driven models as the initial conditions, then simulate the scattering process that occurs in the late evolution stage of circumbinary planets. We show that the present orbital configurations of Kepler-34b and Kepler-413b can be well reproduced when considering a two unequal-mass planet ejection model. Our work further suggests that some of the currently discovered circumbinary single-planet systems may be survivors of original multiple-planet systems. The disk-driven migration and scattering events occurring in the late stage both play an irreplaceable role in sculpting the final systems.

  6. The multiple disk chopper neutron time-of-flight spectrometer at NIST

    International Nuclear Information System (INIS)

    Altorfer, F.B.; Cook, J.C.; Copley, J.R.D.

    1995-01-01

    A highly versatile multiple disk chopper neutron time-of-flight spectrometer is being installed at the Cold Neutron Research Facility of the National institute of Standards and Technology. This new instrument will fill an important gap in the portfolio of neutron inelastic scattering spectrometers in North America. It will be used for a wide variety of experiments such as studies of magnetic and vibrational excitations, tunneling spectroscopy, and quasielastic neutron scattering investigations of local and translational diffusion. The instrument uses disk choppers to monochromate and pulse the incident beam, and the energy changes of scattered neutrons are determined from their times-of-flight to a large array of detectors. The disks and the guide have been designed to make the instrument readily adaptable to the specific performance requirements of experimenters. The authors present important aspects of the design, as well as estimated values of the flux at the sample and the energy resolution for elastic scattering. The instrument should be operational in 1996

  7. Circumstellar Gas in Young Planetary Debris Disks

    Science.gov (United States)

    Roberge, A.

    Circumstellar (CS) disks orbiting young stars fall into two categories: primordial disks, composed of unprocessed interstellar dust and gas, and debris disks, produced by the destruction of solid planetary bodies. In the first class, the most abundant gas is H_2; in the second, it appears that the H_2 gas has disappeared, possibly through incorporation into gas giant planets. The lifetime of H_2 gas in a CS disk is therefore of great importance, as it dictates the timescale for the formation of giant planets. FUSE observations of H_2 in CS disk systems have shown that FUV absorption spectroscopy may sensitively probe for small amounts of gas along the line of sight to the star. Most importantly, the FUSE non-detection of H_2 gas in the Beta Pictoris disk suggests that the primordial gas lifetime is less than about 12 Myr, and that gas giant planets must form very quickly. However, this suggestion is based on one system, and needs to be tested in additional systems with a range of ages, especially since there are indications that age is not the only factor in the evolution of a CS disk. We propose for FUSE observations of 3 additional debris disk systems, Fomalhaut, HD3003, and HD2884. Fomalhaut is an intermediate age debris disk, one of the Fabulous Four CS disks first discovered in 1984. The other two disks are younger, with ages similar to that of Beta Pic. All three stars are brighter in the FUV than Beta Pic, permitting us to sensitively probe for traces of H_2 gas. We will also measure the amount of secondary atomic gas produced from planetary bodies in these disks, in an effort to understand the entire evolution of CS gas in young planetary systems.

  8. Theory of Disk Accretion onto Magnetic Stars

    Directory of Open Access Journals (Sweden)

    Lai Dong

    2014-01-01

    Full Text Available Disk accretion onto magnetic stars occurs in a variety of systems, including accreting neutron stars (with both high and low magnetic fields, white dwarfs, and protostars. We review some of the key physical processes in magnetosphere-disk interaction, highlighting the theoretical uncertainties. We also discuss some applications to the observations of accreting neutron star and protostellar systems, as well as possible connections to protoplanetary disks and exoplanets.

  9. Disk access controller for Multi 8 computer

    International Nuclear Information System (INIS)

    Segalard, Jean

    1970-01-01

    After having presented the initial characteristics and weaknesses of the software provided for the control of a memory disk coupled with a Multi 8 computer, the author reports the development and improvement of this controller software. He presents the different constitutive parts of the computer and the operation of the disk coupling and of the direct access to memory. He reports the development of the disk access controller: software organisation, loader, subprograms and statements

  10. Proton nuclear scattering radiography

    International Nuclear Information System (INIS)

    Duchazeaubeneix, J.C.; Faivre, J.C.; Garreta, D.

    1982-10-01

    Nuclear scattering of protons allows to radiograph objects with specific properties: direct 3- dimensional radiography, different information as compared to X-ray technique, hydrogen radiography. Furthermore, it is a well adapted method to gating techniques allowing the radiography of fast periodic moving systems. Results obtained on different objects (light and heavy materials) are shown and discussed. The dose delivery is compatible with clinical use, but at the moment, the irradiation time is too long between 1 and 4 hours. Perspectives to make the radiography faster and to get a practical method are discussed

  11. Inverse acoustic problem of N homogeneous scatterers

    DEFF Research Database (Denmark)

    Berntsen, Svend

    2002-01-01

    The three-dimensional inverse acoustic medium problem of N homogeneous objects with known geometry and location is considered. It is proven that one scattering experiment is sufficient for the unique determination of the complex wavenumbers of the objects. The mapping from the scattered fields...

  12. Signatures of Young Planets in the Continuum Emission from Protostellar Disks

    Science.gov (United States)

    Isella, Andrea; Turner, Neal J.

    2018-06-01

    Many protostellar disks show central cavities, rings, or spiral arms likely caused by low-mass stellar or planetary companions, yet few such features are conclusively tied to bodies embedded in the disks. We note that even small features on the disk surface cast shadows, because the starlight grazes the surface. We therefore focus on accurately computing the disk thickness, which depends on its temperature. We present models with temperatures set by the balance between starlight heating and radiative cooling, which are also in vertical hydrostatic equilibrium. The planet has 20, 100, or 1000 M ⊕, ranging from barely enough to perturb the disk significantly, to clearing a deep tidal gap. The hydrostatic balance strikingly alters the appearance of the model disk. The outer walls of the planet-carved gap puff up under starlight heating, throwing a shadow across the disk beyond. The shadow appears in scattered light as a dark ring that could be mistaken for a gap opened by another more distant planet. The surface brightness contrast between outer wall and shadow for the 1000 M ⊕ planet is an order of magnitude greater than a model neglecting the temperature disturbances. The shadow is so deep that it largely hides the planet-launched outer arm of the spiral wave. Temperature gradients are such that outer low-mass planets undergoing orbital migration will converge within the shadow. Furthermore, the temperature perturbations affect the shape, size, and contrast of features at millimeter and centimeter wavelengths. Thus radiative heating and cooling are key to the appearance of protostellar disks with embedded planets.

  13. THE CONTRIBUTION OF SPIRAL ARMS TO THE THICK DISK ALONG THE HUBBLE SEQUENCE

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Medina, L. A. [Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN, A.P. 14-740, 07000 México D.F. (Mexico); Pichardo, B.; Moreno, E. [Instituto de Astronomía, Universidad Nacional Autónoma de México, A.P. 70-264, 04510, México D.F. (Mexico); Pérez-Villegas, A., E-mail: lmedina@fis.cinvestav.mx, E-mail: barbara@astro.unam.mx, E-mail: mperez@astro.unam.mx [Centro de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Apartado Postal 3-72, 58090 Morelia, Michoacán (Mexico)

    2015-04-01

    The first mechanism invoked to explain the existence of the thick disk in the Milky Way Galaxy was the spiral arms. Up-to-date work summons several other possibilities that together seem to better explain this component of our Galaxy. All these processes must affect distinct types of galaxies differently, but the contribution of each one has not been straightforward to quantify. In this work, we present the first comprehensive study of the effect of the spiral arms on the formation of thick disks, looking at early- to late-type disk galaxies in an attempt to characterize and quantify this specific mechanism in galactic potentials. To this purpose, we perform test particle numerical simulations in a three-dimensional spiral galactic potential (for early- to late-types spiral galaxies). By varying the parameters of the spiral arms we found that the vertical heating of the stellar disk becomes very important in some cases and strongly depends on the galactic morphology, pitch angle, arm mass, and the arm pattern speed. The later the galaxy type, the larger is the effect on the disk heating. This study shows that the physical mechanism causing the vertical heating is different from simple resonant excitation. The spiral pattern induces chaotic behavior not linked necessarily to resonances but to direct scattering of disk stars, which leads to an increase of the velocity dispersion. We applied this study to the specific example of the Milky Way Galaxy, for which we have also added an experiment that includes the Galactic bar. From this study we deduce that the effect of spiral arms of a Milky-Way-like potential on the dynamical vertical heating of the disk is negligible, unlike later galactic potentials for disks.

  14. Thin accretion disks around cold Bose-Einstein condensate stars

    Energy Technology Data Exchange (ETDEWEB)

    Danila, Bogdan [Babes-Bolyai University, Department of Physics, Cluj-Napoca (Romania); Harko, Tiberiu [University College London, Department of Mathematics, London (United Kingdom); Kovacs, Zoltan

    2015-05-15

    Due to their superfluid properties some compact astrophysical objects, like neutron or quark stars, may contain a significant part of their matter in the form of a Bose-Einstein condensate (BEC). Observationally distinguishing between neutron/quark stars and BEC stars is a major challenge for this latter theoretical model. An observational possibility of indirectly distinguishing BEC stars from neutron/quark stars is through the study of the thin accretion disks around compact general relativistic objects. In the present paper, we perform a detailed comparative study of the electromagnetic and thermodynamic properties of the thin accretion disks around rapidly rotating BEC stars, neutron stars and quark stars, respectively. Due to the differences in the exterior geometry, the thermodynamic and electromagnetic properties of the disks (energy flux, temperature distribution, equilibrium radiation spectrum, and efficiency of energy conversion) are different for these classes of compact objects. Hence in this preliminary study we have pointed out some astrophysical signatures that may allow one to observationally discriminate between BEC stars and neutron/quark stars. (orig.)

  15. Output factors and scatter ratios

    Energy Technology Data Exchange (ETDEWEB)

    Shrivastava, P N; Summers, R E; Samulski, T V; Baird, L C [Allegheny General Hospital, Pittsburgh, PA (USA); Ahuja, A S; Dubuque, G L; Hendee, W R; Chhabra, A S

    1979-07-01

    Reference is made to a previous publication on output factors and scatter ratios for radiotherapy units in which it was suggested that the output factor should be included in the definitions of scatter-air ratio and tissue-maximum ratio. In the present correspondence from other authors and from the authors of the previous publication, the original definitions and the proposed changes are discussed. Radiation scatter from source and collimator degradation of beam energy and calculation of dose in tissue are considered in relation to the objective of accurate dosimetry.

  16. DUST PROPERTIES AND DISK STRUCTURE OF EVOLVED PROTOPLANETARY DISKS IN Cep OB2: GRAIN GROWTH, SETTLING, GAS AND DUST MASS, AND INSIDE-OUT EVOLUTION

    International Nuclear Information System (INIS)

    Sicilia-Aguilar, Aurora; Henning, Thomas; Dullemond, Cornelis P.; Bouwman, Jeroen; Sturm, Bernhard; Patel, Nimesh; Juhász, Attila

    2011-01-01

    We present Spitzer/Infrared Spectrograph spectra of 31 T Tauri stars (TTS) and IRAM/1.3 mm observations for 34 low- and intermediate-mass stars in the Cep OB2 region. Including our previously published data, we analyze 56 TTS and 3 intermediate-mass stars with silicate features in Tr 37 (∼4 Myr) and NGC 7160 (∼12 Myr). The silicate emission features are well reproduced with a mixture of amorphous (with olivine, forsterite, and silica stoichiometry) and crystalline grains (forsterite, enstatite). We explore grain size and disk structure using radiative transfer disk models, finding that most objects have suffered substantial evolution (grain growth, settling). About half of the disks show inside-out evolution, with either dust-cleared inner holes or a radially dependent dust distribution, typically with larger grains and more settling in the innermost disk. The typical strong silicate features nevertheless require the presence of small dust grains, and could be explained by differential settling according to grain size, anomalous dust distributions, and/or optically thin dust populations within disk gaps. M-type stars tend to have weaker silicate emission and steeper spectral energy distributions than K-type objects. The inferred low dust masses are in a strong contrast with the relatively high gas accretion rates, suggesting global grain growth and/or an anomalous gas-to-dust ratio. Transition disks in the Cep OB2 region display strongly processed grains, suggesting that they are dominated by dust evolution and settling. Finally, the presence of rare but remarkable disks with strong accretion at old ages reveals that some very massive disks may still survive to grain growth, gravitational instabilities, and planet formation.

  17. SPITZER OBSERVATIONS OF THE λ ORIONIS CLUSTER. II. DISKS AROUND SOLAR-TYPE AND LOW-MASS STARS

    International Nuclear Information System (INIS)

    Hernandez, Jesus; Morales-Calderon, Maria; Calvet, Nuria; Hartmann, L.; Muzerolle, J.; Gutermuth, R.; Luhman, K. L.; Stauffer, J.

    2010-01-01

    We present IRAC/MIPS Spitzer Space Telescope observations of the solar-type and the low-mass stellar population of the young (∼5 Myr) λ Orionis cluster. Combining optical and Two Micron All Sky Survey photometry, we identify 436 stars as probable members of the cluster. Given the distance (450 pc) and the age of the cluster, our sample ranges in mass from 2 M sun to objects below the substellar limit. With the addition of the Spitzer mid-infrared data, we have identified 49 stars bearing disks in the stellar cluster. Using spectral energy distribution slopes, we place objects in several classes: non-excess stars (diskless), stars with optically thick disks, stars with 'evolved disks' (with smaller excesses than optically thick disk systems), and 'transitional disk' candidates (in which the inner disk is partially or fully cleared). The disk fraction depends on the stellar mass, ranging from ∼6% for K-type stars (R C - J C - J>4). We confirm the dependence of disk fraction on stellar mass in this age range found in other studies. Regarding clustering levels, the overall fraction of disks in the λ Orionis cluster is similar to those reported in other stellar groups with ages normally quoted as ∼5 Myr.

  18. Phonon scattering by isotopic impurities

    International Nuclear Information System (INIS)

    Dacol, D.K.

    1974-06-01

    The effects upon vibrations of a perfect crystal lattice due to the replacement of some of its atoms by isotopes of these atoms are studied. The approach consists in considering the isotopic impurities as scattering centres for the quanta of the elastic waves the objective is to obtain the scattering amplitudes. These amplitudes are obtained through a canonical transformation method which was introduced by Chevalier and Rideau in the study of the Wentzel's model in quantum field theory

  19. Hard disks with SCSI interface

    CERN Document Server

    Denisov, O Yu

    1999-01-01

    The testing of 20 models of hard SCSI-disks is carried out: the Fujitsu MAE3091LP; the IBM DDRS-39130, DGHS-318220, DNES-318350, DRHS-36V and DRVS-18V; the Quantum Atlas VI 18.2; the Viking 11 9.1; the Seagate ST118202LW, ST118273LW, ST118273W, ST318203LW, ST318275LW, ST34520W, ST39140LW and ST39173W; and the Western Digital WDE9100-0007, WDE9100-AV0016, WDE9100-AV0030 and WDE9180-0048. All tests ran under the Windows NT 4.0 workstation operating system with Service Pack 4, under video mode with 1024*768 pixel resolution, 32- bit colour depth and V-frequency equal to 85 Hz. The detailed description and characteristics of SCSI stores are presented. Test results (ZD Winstone 99 and ZD WinBench 99 tests) are given in both table and diagram (disk transfer rate) forms. (0 refs).

  20. The Stability of Galaxy Disks

    Science.gov (United States)

    Westfall, K. B.; Andersen, D. R.; Bershady, M. A.; Martinsson, T. P. K.; Swaters, R. A.; Verheijen, M. A. W.

    2014-03-01

    We calculate the stellar surface mass density (Σ*) and two-component (gas+stars) disk stability (QRW) for 25 late-type galaxies from the DiskMass Survey. These calculations are based on fits of a dynamical model to our ionized-gas and stellar kinematic data performed using a Markov Chain Monte Carlo sampling of the Bayesian posterior. Marginalizing over all galaxies, we find a median value of QRW = 2.0±0.9 at 1.5 scale lengths. We also find that QRW is anti-correlated with the star-formation rate surface density (Σ*), which can be predicted using a closed set of empirical scaling relations. Finally, we find that the star-formation efficiency (Σ*/Σg) is correlated with Σ* and weakly anti-correlated with QRW. The former is consistent with an equilibrium prediction of Σ*/Σg ∝ Σ*1/2. Despite its order-of-magnitude range, we find no correlation of Σ*/ΣgΣ*1/2 with any other physical quantity derived by our study.

  1. Forward diffraction amplitude of pp and pp elastic scattering at accelerator energies

    International Nuclear Information System (INIS)

    Kawasaki, M.; Maehara, T.; Yonezawa, M.

    2004-01-01

    A simple relation between the total cross section and the forward exponential slope of the elastic differential cross section of pp and pp scattering is indicated. An interpretation of this relation is presented as the formation of a black-disk structure for the elastic diffraction interaction of hadron-hadron scattering at the nonasymptotic energy region

  2. High-resolution submillimeter and near-infrared studies of the transition disk around Sz 91

    Energy Technology Data Exchange (ETDEWEB)

    Tsukagoshi, Takashi; Momose, Munetake [College of Science, Ibaraki University, Bunkyo 2-1-1, Mito 310-8512 (Japan); Hashimoto, Jun [Department of Physics and Astronomy, The University of Oklahoma, 440 West Brooks Street, Norman, OK 73019 (United States); Kudo, Tomoyuki; Saito, Masao; Ohashi, Nagayoshi; Kawabe, Ryohei; Akiyama, Eiji [National Astronomical Observatory Japan (NAOJ), Osawa 2-21-1, Mitaka, Tokyo 181-8588 (Japan); Andrews, Sean; Wilner, David [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Kitamura, Yoshimi [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Yoshinodai 3-1-1, Sagamihara, Kanagawa 229-8510 (Japan); Abe, Lyu [Lboratoire Lagrange (UMR 7293), Université de Nice-Sophia Antipolis, CNRS, Observatoire de la Côte d' Azur, 28 avenue Valrose, F-06108 Nice Cedex 2 (France); Brandner, Wolfgang [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Brandt, Timothy D. [Department of Astrophysical Sciences, Princeton University, Peyton Hall, Ivy Lane, Princeton, NJ 08544 (United States); Carson, Joseph [Department of Physics and Astronomy, College of Charleston, 58 Coming Street, Charleston, SC 29424 (United States); Currie, Thayne [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street M5S 3H4, Toronto, Ontario (Canada); Egner, Sebastian E.; Guyon, Olivier [Subaru Telescope, 650 North A' ohoku Place, Hilo, HI 96720 (United States); Goto, Miwa [Universitäts-Sternwarte München, Ludwig-Maximilians-Universität, Scheinerstr. 1, D-81679 München (Germany); Grady, Carol, E-mail: ttsuka@mx.ibaraki.ac.jp [Exoplanets and Stellar Astrophysics Laboratory, Code 667, Goddard Space Flight Center, Greenbelt, MD 20771 (United States); and others

    2014-03-10

    To reveal the structures of a transition disk around a young stellar object in Lupus, Sz 91 , we have performed aperture synthesis 345 GHz continuum and CO(3-2) observations with the Submillimeter Array (∼1''-3'' resolution) and high-resolution imaging of polarized intensity at the K{sub s} -band using the HiCIAO instrument on the Subaru Telescope (0.''25 resolution). Our observations successfully resolved the inner and outer radii of the dust disk to be 65 and 170 AU, respectively, which indicates that Sz 91 is a transition disk source with one of the largest known inner holes. The model fitting analysis of the spectral energy distribution reveals an H{sub 2} mass of 2.4 × 10{sup –3} M {sub ☉} in the cold (T < 30 K) outer part at 65 AU 3 × 10{sup –9} M {sub ☉}) of hot (T ∼ 180 K) dust possibly remains inside the inner hole of the disk. The structure of the hot component could be interpreted as either an unresolved self-luminous companion body (not directly detected in our observations) or a narrow ring inside the inner hole. Significant CO(3-2) emission with a velocity gradient along the major axis of the dust disk is concentrated on the Sz 91 position, suggesting a rotating gas disk with a radius of 420 AU. The Sz 91 disk is possibly a rare disk in an evolutionary stage immediately after the formation of protoplanets because of the large inner hole and the lower disk mass than other transition disks studied thus far.

  3. Diffractive scattering

    CERN Document Server

    De Wolf, E.A.

    2002-01-01

    We discuss basic concepts and properties of diffractive phenomena in soft hadron collisions and in deep-inelastic scattering at low Bjorken-x. The paper is not a review of the rapidly developing field but presents an attempt to show in simple terms the close inter-relationship between the dynamics of high-energy hadronic and deep-inelastic diffraction. Using the saturation model of Golec-Biernat and Wusthoff as an example, a simple explanation of geometrical scaling is presented. The relation between the QCD anomalous multiplicity dimension and the Pomeron intercept is discussed.

  4. Diffractive Scattering

    International Nuclear Information System (INIS)

    Wolf, E.A. de

    2002-01-01

    We discuss basic concepts and properties of diffractive phenomena in soft hadron collisions and in deep-inelastic scattering at low Bjorken - x. The paper is not a review of the rapidly developing field but presents an attempt to show in simple terms the close inter-relationship between the dynamics of high-energy hadronic and deep-inelastic diffraction. Using the saturation model of Golec-Biernat and Wuesthoff as an example, a simple explanation of geometrical scaling is presented. The relation between the QCD anomalous multiplicity dimension and the Pomeron intercept is discussed. (author)

  5. Protoplanetary disks around intermediate-mass stars: the asset of imaging in the mid-infrared

    International Nuclear Information System (INIS)

    Doucet, Coralie

    2006-01-01

    The accrued efficiency of the instruments in many wavelengths has allowed to show that most young stellar objects were surrounded by circumstellar matter distributed in a disk. Direct imaging of such systems is very difficult because of their narrow angular size and their weak luminosity in comparison with the star. Nowadays, 50 % of low-mass pre-main sequence stars, i.e. T Tauri stars, are surrounded by a disk. This proportion is less obvious for intermediate-mass stars, like Herbig Ae stars, that are less numerous and whose direct disk detection is more difficult. Until now, only the interpretation of the Spectral Energy Distribution (SED) of such objects allows to have access to the geometry of the disk. But the solutions are degenerated and several parameters fit the same SED. It is essential to have direct images of the objects, the only evidence of the presence of disks. This PhD allows to show that mid-infrared imaging could rise a part of the degeneracy of the disk's parameters linked to the fit of the SED for several objects and gives constraints on the minimum external radius and inclination of the disk. We present a new observation mode with VISIR, the mid-infrared imager and spectrometer on the VLT (ESO, Chile): the so-called BURST mode. This mode allows to reach the diffraction limit of the telescope. Thanks to mid-infrared imaging with this instrument, we were able, for the first time, to have access to the geometry of a disk (flared structure) around a massive star that was, until now, only deduced from the SED modelling. (author) [fr

  6. Radial decoupling of small and large dust grains in the transitional disk RX J1615.3-3255

    Science.gov (United States)

    Kooistra, Robin; Kamp, Inga; Fukagawa, Misato; Menard, Francois; Momose, Munetake; Tsukagoshi, Takashi; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Hashimoto, Jun; Abe, Lyu; hide

    2017-01-01

    We present H-band (1.6 micron) scattered light observations of the transitional disk RX J1615.3-3255, located in the approx. 1 Myr old Lupus association. From a polarized intensity image, taken with the HiCIAO instrument of the Subaru Telescope, we deduce the position angle and the inclination angle of the disk. The disk is found to extend out to 68 +/- 12 AU in scattered light and no clear structure is observed. Our inner working angle of 24 AU does not allow us to detect a central decrease in intensity similar to that seen at 30 AU in the 880 m continuum observations. We compare the observations with multiple disk models based on the spectral energy distribution (SED) and submm interferometry and find that an inner rim of the outer disk at 30 AU containing small silicate grains produces a polarized intensity signal which is an order of magnitude larger than observed. We show that a model in which the small dust grains extend smoothly into the cavity found for large grains is closer to the actual H-band observations. A comparison of models with different dust size distributions suggests that the dust in the disk might have undergone significant processing compared to the interstellar medium.

  7. SDP_golofs01_3: Stellar Disk Evolution

    Science.gov (United States)

    Olofsson, G.

    2010-03-01

    n a collaboration between the HSC, P. Harvey (Mission Scientist) and the three instrument consortia we propose to apply the full power of Herschel to investigate the properties of circum-stellar disks. The versatility of Herschel allows us to address several key questions: How do the disks evolve with time? Planets clearly form out of circum-stellar disks and there is growing evidence that the time scale is short, 1 - 10 Myr, for the main accretion phase. During this time period, the stellar radiation and stellar winds clean the disks from most of their dust and gas, eventually making them transparent. However, collisions and evaporation from comet- like bodies will continue to produce dust and gas. This activity declines with time, and we will pursue this scenario by observing a sample of IR excess stars of known age, ranging from a few million years to the age of the sun. Are there analogues to our Kuiper belt around nearby stars? The Kuiper belt is a dust belt surrounding the Sun, located outside the orbit of Neptune, which has a key role in stabilizing orbits of the KE-objects and this dynamical aspect makes it particularly interesting to search for stars that may host KE-belt analogues. Herschel offers a unique sensitivity beyond 100 m and we propose an extensive survey of nearby stars seeking cold dust emission. What will a closer IR look at the "Fabulous Four" (and some other resolved disks) reveal? Several nearby MS stars with IR excesses have circumstellar dust structures that can be resolved by Herschel. Imaging these structures in the six PACS+SPIRE bands will enable us to explore the dust properties, notably the size distribution and albedo.. What is the composition of young disks? We propose a detailed spectroscopic investigation of four bright disks, including a full spectral scan with PACS, an FTS scan at full resolution and HIFI observations of selected frequencies. The aim is to constrain the properties of both the dust and gas components.

  8. Polarized scattered light from self-luminous exoplanets. Three-dimensional scattering radiative transfer with ARTES

    Science.gov (United States)

    Stolker, T.; Min, M.; Stam, D. M.; Mollière, P.; Dominik, C.; Waters, L. B. F. M.

    2017-11-01

    Context. Direct imaging has paved the way for atmospheric characterization of young and self-luminous gas giants. Scattering in a horizontally-inhomogeneous atmosphere causes the disk-integrated polarization of the thermal radiation to be linearly polarized, possibly detectable with the newest generation of high-contrast imaging instruments. Aims: We aim to investigate the effect of latitudinal and longitudinal cloud variations, circumplanetary disks, atmospheric oblateness, and cloud particle properties on the integrated degree and direction of polarization in the near-infrared. We want to understand how 3D atmospheric asymmetries affect the polarization signal in order to assess the potential of infrared polarimetry for direct imaging observations of planetary-mass companions. Methods: We have developed a three-dimensional Monte Carlo radiative transfer code (ARTES) for scattered light simulations in (exo)planetary atmospheres. The code is applicable to calculations of reflected light and thermal radiation in a spherical grid with a parameterized distribution of gas, clouds, hazes, and circumplanetary material. A gray atmosphere approximation is used for the thermal structure. Results: The disk-integrated degree of polarization of a horizontally-inhomogeneous atmosphere is maximal when the planet is flattened, the optical thickness of the equatorial clouds is large compared to the polar clouds, and the clouds are located at high altitude. For a flattened planet, the integrated polarization can both increase or decrease with respect to a spherical planet which depends on the horizontal distribution and optical thickness of the clouds. The direction of polarization can be either parallel or perpendicular to the projected direction of the rotation axis when clouds are zonally distributed. Rayleigh scattering by submicron-sized cloud particles will maximize the polarimetric signal whereas the integrated degree of polarization is significantly reduced with micron

  9. Azimuthal asymmetries in the debris disk around HD 61005. A massive collision of planetesimals?

    Science.gov (United States)

    Olofsson, J.; Samland, M.; Avenhaus, H.; Caceres, C.; Henning, Th.; Moór, A.; Milli, J.; Canovas, H.; Quanz, S. P.; Schreiber, M. R.; Augereau, J.-C.; Bayo, A.; Bazzon, A.; Beuzit, J.-L.; Boccaletti, A.; Buenzli, E.; Casassus, S.; Chauvin, G.; Dominik, C.; Desidera, S.; Feldt, M.; Gratton, R.; Janson, M.; Lagrange, A.-M.; Langlois, M.; Lannier, J.; Maire, A.-L.; Mesa, D.; Pinte, C.; Rouan, D.; Salter, G.; Thalmann, C.; Vigan, A.

    2016-06-01

    Context. Debris disks offer valuable insights into the latest stages of circumstellar disk evolution, and can possibly help us to trace the outcomes of planetary formation processes. In the age range 10 to 100 Myr, most of the gas is expected to have been removed from the system, giant planets (if any) must have already been formed, and the formation of terrestrial planets may be on-going. Pluto-sized planetesimals, and their debris released in a collisional cascade, are under their mutual gravitational influence, which may result into non-axisymmetric structures in the debris disk. Aims: High angular resolution observations are required to investigate these effects and constrain the dynamical evolution of debris disks. Furthermore, multi-wavelength observations can provide information about the dust dynamics by probing different grain sizes. Methods: Here we present new VLT/SPHERE and ALMA observations of the debris disk around the 40 Myr-old solar-type star HD 61005. We resolve the disk at unprecedented resolution both in the near-infrared (in scattered and polarized light) and at millimeter wavelengths. We perform a detailed modeling of these observations, including the spectral energy distribution. Results: Thanks to the new observations, we propose a solution for both the radial and azimuthal distribution of the dust grains in the debris disk. We find that the disk has a moderate eccentricity (e ~ 0.1) and that the dust density is two times larger at the pericenter compared to the apocenter. Conclusions: With no giant planets detected in our observations, we investigate alternative explanations besides planet-disk interactions to interpret the inferred disk morphology. We postulate that the morphology of the disk could be the consequence of a massive collision between ~1000 km-sized bodies at ~61 au. If this interpretation holds, it would put stringent constraints on the formation of massive planetesimals at large distances from the star. Based on observations

  10. Stationary scattering theory

    International Nuclear Information System (INIS)

    Combes, J.M.

    1980-10-01

    A complementary approach to the time dependent scattering theory for one-body Schroedinger operators is presented. The stationary theory is concerned with objects of quantum theory like scattering waves and amplitudes. In the more recent abstract stationary theory some generalized form of the Lippman-Schwinger equation plays the basic role. Solving this equation leads to a linear map between generalized eigenfunctions of the perturbed and unperturbed operators. This map is the section at fixed energy of the wave-operator from the time dependent theory. Although the radiation condition does not appears explicitely in this formulation it can be shown to hold a posteriori in a variety of situations thus restoring the link with physical theories

  11. New ALMA Images of the HD 32297 and HD 61005 Debris Disks

    Science.gov (United States)

    MacGregor, Meredith Ann; Weinberger, Alycia; Wilner, David; Hughes, A. Meredith; debes, John Henry; Redfield, Seth; Donaldson, Jessica; Nesvold, Erika; Schneider, Glenn; Currie, Thayne; Roberge, Aki; Rodriguez, David

    2018-01-01

    HD 61005 (G-type star, “The Moth") and HD 32297 (A-type star) host two of the most iconic debris disks. Scattered light images show that both disks are nearly edge-on with dramatic swept-back wings of dust. Previous studies have proposed a range of mechanisms to explain this distinctive morphology including interactions with the interstellar medium, secular perturbations of grains by low-density, neutral interstellar gas, and gravitational interactions with an inclined, eccentric companion. We present new observations from the Atacama Large Millimeter/submillimeter Array (ALMA) at 1.3 mm that provide the highest resolution images at millimeter wavelengths to date of both systems. Observations at millimeter wavelengths are especially critical to our understanding of the physical mechanisms shaping the structure of these disks, since the large grains that dominate emission at these wavelengths are less affected by stellar radiation and winds and more reliably trace the underlying planetesimal distribution. We fit models directly to the observed visibilities within a Markov Chain Monte Carlo (MCMC) framework to characterize the continuum emission and place constraints on the structure of these unique debris disks. Our new ALMA images reveal that despite differences in spectral type, both systems are best described by a two-component structure with (1) a parent body belt, and (2) an outer halo aligned with the scattered light disk. Such halos have typically been assumed to be composed of small grains visible in scattered light, so these images are some of the first observational evidence that larger grains may also populate extended halos. In addition, we detect significant 12CO gas emission from HD 32297, and determine a robust upper limit for HD 61005.

  12. Three Radial Gaps in the Disk of TW Hydrae Imaged with SPHERE

    Science.gov (United States)

    van Boekel, R.; Henning, Th.; Menu, J.; de Boer, J.; Langlois, M.; Müller, A.; Avenhaus, H.; Boccaletti, A.; Schmid, H. M.; Thalmann, Ch.; Benisty, M.; Dominik, C.; Ginski, Ch.; Girard, J. H.; Gisler, D.; Lobo Gomes, A.; Menard, F.; Min, M.; Pavlov, A.; Pohl, A.; Quanz, S. P.; Rabou, P.; Roelfsema, R.; Sauvage, J.-F.; Teague, R.; Wildi, F.; Zurlo, A.

    2017-03-01

    We present scattered light images of the TW Hya disk performed with the Spectro-Polarimetric High-contrast Exoplanet REsearch instrument in Polarimetric Differential Imaging mode at 0.63, 0.79, 1.24, and 1.62 μm. We also present H2/H3-band angular differential imaging (ADI) observations. Three distinct radial depressions in the polarized intensity distribution are seen, around ≈85, ≈21, and ≲6 au.21 The overall intensity distribution has a high degree of azimuthal symmetry; the disk is somewhat brighter than average toward the south and darker toward the north-west. The ADI observations yielded no signifiant detection of point sources in the disk. Our observations have a linear spatial resolution of 1-2 au, similar to that of recent ALMA dust continuum observations. The sub-micron-sized dust grains that dominate the light scattering in the disk surface are strongly coupled to the gas. We created a radiative transfer disk model with self-consistent temperature and vertical structure iteration and including grain size-dependent dust settling. This method may provide independent constraints on the gas distribution at higher spatial resolution than is feasible with ALMA gas line observations. We find that the gas surface density in the “gaps” is reduced by ≈50% to ≈80% relative to an unperturbed model. Should embedded planets be responsible for carving the gaps then their masses are at most a few 10 {{{M}}}\\oplus . The observed gaps are wider, with shallower flanks, than expected for planet-disk interaction with such low-mass planets. If forming planetary bodies have undergone collapse and are in the “detached phase,” then they may be directly observable with future facilities such as the Mid-Infrared E-ELT Imager and Spectrograph at the E-ELT.

  13. Scaling Ratios and Triangles in Siegel Disks

    DEFF Research Database (Denmark)

    Buff, Xavier; Henriksen, Christian

    1999-01-01

    Let f(z)=e^{2i\\pi \\theta} + z^2, where \\theta is a quadratic irrational. McMullen proved that the Siegel disk for f is self-similar about the critical point, and we show that if \\theta = (\\sqrt{5}-1)/2 is the golden mean, then there exists a triangle contained in the Siegel disk, and with one...

  14. Attention Novices: Friendly Intro to Shiny Disks.

    Science.gov (United States)

    Bardes, D'Ellen

    1986-01-01

    Provides an overview of how optical storage technologies--videodisk, Write-Once disks, and CD-ROM CD-I disks are built into and controlled via DEC, Apple, Atari, Amiga, and IBM PC compatible microcomputers. Several available products are noted and a list of producers is included. (EM)

  15. Improper colouring of (random) unit disk graphs

    NARCIS (Netherlands)

    Kang, R.J.; Müller, T.; Sereni, J.S.

    2008-01-01

    For any graph G, the k-improper chromatic number ¿k(G) is the smallest number of colours used in a colouring of G such that each colour class induces a subgraph of maximum degree k. We investigate ¿k for unit disk graphs and random unit disk graphs to generalise results of McDiarmid and Reed

  16. Grinding Glass Disks On A Belt Sander

    Science.gov (United States)

    Lyons, James J., III

    1995-01-01

    Small machine attached to table-top belt sander makes possible to use belt sander to grind glass disk quickly to specified diameter within tolerance of about plus or minus 0.002 in. Intended to be used in place of production-shop glass grinder. Held on driveshaft by vacuum, glass disk rotated while periphery ground by continuous sanding belt.

  17. Recent development of disk lasers at TRUMPF

    Science.gov (United States)

    Schad, Sven-Silvius; Gottwald, Tina; Kuhn, Vincent; Ackermann, Matthias; Bauer, Dominik; Scharun, Michael; Killi, Alexander

    2016-03-01

    The disk laser is one of the most important laser concepts for today's industrial laser market. Offering high brilliance at low cost, high optical efficiency and great application flexibility the disk laser paved the way for many industrial laser applications. Over the past years power and brightness increased and the disk laser turned out to be a very versatile laser source, not only for welding but also for cutting. Both, the quality and speed of cutting are superior to CO2-based lasers for a vast majority of metals, and, most important, in a broad thickness range. In addition, due to the insensitivity against back reflections the disk laser is well suited for cutting highly reflective metal such as brass or copper. These advantages facilitate versatile cutting machines and explain the high and growing demand for disk lasers for applications besides welding applications that can be observed today. From a today's perspective the disk principle has not reached any fundamental limits regarding output power per disk or beam quality, and offers numerous advantages over other high power resonator concepts, especially over fiber lasers or direct diode lasers. This paper will give insight in the latest progress in kilowatt class cw disk laser technology at TRUMPF and will discuss recent power scaling results as well.

  18. Disk Galaxies : Building Blocks of the Universe?

    OpenAIRE

    Bower, Richard

    2016-01-01

    In my talk I look at the origin of disk galaxies from the theoretical perspective. In particular I look at simple ways to use the properties of disk galaxies, and their evolution, to test our current paradigm for galaxy formation within the CDM scenario.

  19. 10 MB disk platter from CDC 7638

    CERN Multimedia

    1974-01-01

    This magnetic disk was one of three which interfaced with various Control Data machines. This single platter came from a Control Data 7638 Disk Storage Subsystem and could contain up to 10MB - about the size of a few MP4's on your iPod.

  20. Material-independent modes for electromagnetic scattering

    Science.gov (United States)

    Forestiere, Carlo; Miano, Giovanni

    2016-11-01

    In this Rapid Communication, we introduce a representation of the electromagnetic field for the analysis and synthesis of the full-wave scattering by a homogeneous dielectric object of arbitrary shape in terms of a set of eigenmodes independent of its permittivity. The expansion coefficients are rational functions of the permittivity. This approach naturally highlights the role of plasmonic and photonic modes in any scattering process and suggests a straightforward methodology to design the permittivity of the object to pursue a prescribed tailoring of the scattered field. We discuss in depth the application of the proposed approach to the analysis and design of the scattering properties of a dielectric sphere.

  1. THE STRUCTURE OF PRE-TRANSITIONAL PROTOPLANETARY DISKS. II. AZIMUTHAL ASYMMETRIES, DIFFERENT RADIAL DISTRIBUTIONS OF LARGE AND SMALL DUST GRAINS IN PDS 70 {sup ,}

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, J.; Wisniewski, J. [Department of Physics and Astronomy, The University of Oklahoma, 440 West Brooks Street, Norman, OK 73019 (United States); Tsukagoshi, T. [College of Science, Ibaraki University, Bunkyo 2-1-1, Mito 310-8512 (Japan); Brown, J. M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS 78, Cambridge, MA 02138 (United States); Dong, R. [Astronomy Department, University of California, Berkeley, CA 94720 (United States); Muto, T. [Division of Liberal Arts, Kogakuin University, 1-24-2, Nishi-Shinjuku, Shinjuku-ku, Tokyo 163-8677 (Japan); Zhu, Z. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Ohashi, N.; Kudo, T.; Egner, S.; Guyon, O. [Subaru Telescope, 650 North A' ohoku Place, Hilo, HI 96720 (United States); Kusakabe, N.; Akiyama, E. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Abe, L. [Laboratoire Hippolyte Fizeau, UMR6525, Universite de Nice Sophia-Antipolis, 28, avenue Valrose, F-06108 Nice Cedex 02 (France); Brandner, W.; Carson, J.; Feldt, M. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Brandt, T. [Astrophysics Department, Institute for Advanced Study, Princeton, NJ (United States); Currie, T. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON (Canada); Grady, C. A., E-mail: jun.hashimoto@ou.edu [Eureka Scientific, 2452 Delmer, Suite 100, Oakland, CA 96002 (United States); and others

    2015-01-20

    The formation scenario of a gapped disk, i.e., transitional disk, and its asymmetry is still under debate. Proposed scenarios such as disk-planet interaction, photoevaporation, grain growth, anticyclonic vortex, eccentricity, and their combinations would result in different radial distributions of the gas and the small (sub-μm size) and large (millimeter size) dust grains as well as asymmetric structures in a disk. Optical/near-infrared (NIR) imaging observations and (sub-)millimeter interferometry can trace small and large dust grains, respectively; therefore multi-wavelength observations could help elucidate the origin of complicated structures of a disk. Here we report Submillimeter Array observations of the dust continuum at 1.3 mm and {sup 12}CO J = 2 → 1 line emission of the pre-transitional protoplanetary disk around the solar-mass star PDS 70. PDS 70, a weak-lined T Tauri star, exhibits a gap in the scattered light from its disk with a radius of ∼65 AU at NIR wavelengths. However, we found a larger gap in the disk with a radius of ∼80 AU at 1.3 mm. Emission from all three disk components (the gas and the small and large dust grains) in images exhibits a deficit in brightness in the central region of the disk, in particular, the dust disk in small and large dust grains has asymmetric brightness. The contrast ratio of the flux density in the dust continuum between the peak position to the opposite side of the disk reaches 1.4. We suggest the asymmetries and different gap radii of the disk around PDS 70 are potentially formed by several (unseen) accreting planets inducing dust filtration.

  2. The Structure of Pre-Transitional Protoplanetary Disks. II Azimuthal Asymmetries, Different Radial Distributions of Large and Small Dust Grains in PDS 70

    Science.gov (United States)

    Hashimoto, J.; Tsukagoshi, T.; Brown, J. M.; Dong, R.; Muto, T.; Zhu, Z.; Wisniewski, J.; Ohashi, N.; Kudo, T.; Kusakabe, N.; hide

    2015-01-01

    The formation scenario of a gapped disk, i.e., transitional disk, and its asymmetry is still under debate. Proposed scenarios such as disk-planet interaction, photoevaporation, grain growth, anticyclonic vortex, eccentricity, and their combinations would result in different radial distributions of the gas and the small (sub-micron size) and large (millimeter size) dust grains as well as asymmetric structures in a disk. Optical/near-infrared (NIR) imaging observations and (sub-)millimeter interferometry can trace small and large dust grains, respectively; therefore multi-wavelength observations could help elucidate the origin of complicated structures of a disk. Here we report Submillimeter Array observations of the dust continuum at 1.3 mm and CO-12 J = 2 yields 1 line emission of the pre-transitional protoplanetary disk around the solar-mass star PDS 70. PDS 70, a weak-lined T Tauri star, exhibits a gap in the scattered light from its disk with a radius of approx. 65 AU at NIR wavelengths. However, we found a larger gap in the disk with a radius of approx. 80 AU at 1.3 mm. Emission from all three disk components (the gas and the small and large dust grains) in images exhibits a deficit in brightness in the central region of the disk, in particular, the dust disk in small and large dust grains has asymmetric brightness. The contrast ratio of the flux density in the dust continuum between the peak position to the opposite side of the disk reaches 1.4. We suggest the asymmetries and different gap radii of the disk around PDS 70 are potentially formed by several (unseen) accreting planets inducing dust filtration.

  3. Chemical evolution of the galactic disk

    International Nuclear Information System (INIS)

    Wyse, R.F.G.; Gilmore, G.

    1987-01-01

    The distribution of enriched material in the stars and gas of their Galaxy contains information pertaining to the chemical evolution of the Milky Way from its formation epoch to the present day, and provides general constraints on theories of galaxy formation. The separate stellar components of the Galaxy cannot readily be understood if treated in isolation, but a reasonably self-consistent model for Galactic chemical evolution may be found if one considers together the chemical properties of the extreme spheroid, thick disk and thin disk populations of the Galaxy. The three major stellar components of the Galaxy are characterized by their distinct spatial distributions, metallicity structure, and kinematics, with the newly-identified thick disk being approximately three times more massive than the classical metal-poor, non-rotating extreme spheroid. Stellar evolution in the thick disk straightforwardly provides the desired pre-enrichment for resolution of the thin disk G dwarf problem

  4. Disk Evolution and the Fate of Water

    Science.gov (United States)

    Hartmann, Lee; Ciesla, Fred; Gressel, Oliver; Alexander, Richard

    2017-10-01

    We review the general theoretical concepts and observational constraints on the distribution and evolution of water vapor and ice in protoplanetary disks, with a focus on the Solar System. Water is expected to freeze out at distances greater than 1-3 AU from solar-type central stars; more precise estimates are difficult to obtain due to uncertainties in the complex processes involved in disk evolution, including dust growth, settling, and radial drift, and the level of turbulence and viscous dissipation within disks. Interferometric observations are now providing constraints on the positions of CO snow lines, but extrapolation to the unresolved regions where water ice sublimates will require much better theoretical understanding of mass and angular momentum transport in disks as well as more refined comparison of observations with sophisticated disk models.

  5. The WIRED Survey. IV. New Dust Disks from the McCook & Sion White Dwarf Catalog

    Science.gov (United States)

    Hoard, D.W.; Debes, John H.; Wachter, Stefanie; Leisawitz, David T.; Cohen, Martin

    2013-01-01

    We have compiled photometric data from the Wide-field Infrared Survey Explorer All Sky Survey and other archival sources for the more than 2200 objects in the original McCook & Sion Catalog of Spectroscopically Identified White Dwarfs. We applied color-selection criteria to identify 28 targets whose infrared spectral energy distributions depart from the expectation for the white dwarf photosphere alone. Seven of these are previously known white dwarfs with circumstellar dust disks, five are known central stars of planetary nebulae, and six were excluded for being known binaries or having possible contamination of their infrared photometry. We fit white dwarf models to the spectral energy distributions of the remaining ten targets, and find seven new candidates with infrared excess suggesting the presence of a circumstellar dust disk. We compare the model dust disk properties for these new candidates with a comprehensive compilation of previously published parameters for known white dwarfs with dust disks. It is possible that the current census of white dwarfs with dust disks that produce an excess detectable at K-band and shorter wavelengths is close to complete for the entire sample of known WDs to the detection limits of existing near-IR all-sky surveys. The white dwarf dust disk candidates now being found using longer wavelength infrared data are drawn from a previously underrepresented region of parameter space, in which the dust disks are overall cooler, narrower in radial extent, and/or contain fewer emitting grains.

  6. Underwater sound transmission through arrays of disk cavities in a soft elastic medium.

    Science.gov (United States)

    Calvo, David C; Thangawng, Abel L; Layman, Christopher N; Casalini, Riccardo; Othman, Shadi F

    2015-10-01

    Scattering from a cavity in a soft elastic medium, such as silicone rubber, resembles scattering from an underwater bubble in that low-frequency monopole resonance is obtainable in both cases. Arrays of cavities can therefore be used to reduce underwater sound transmission using thin layers and low void fractions. This article examines the role of cavity shape by microfabricating arrays of disk-shaped air cavities into single and multiple layers of polydimethylsiloxane. Comparison is made with the case of equivalent volume cylinders which approximate spheres. Measurements of ultrasonic underwater sound transmission are compared with finite element modeling predictions. The disks provide a deeper transmission minimum at a lower frequency owing to the drum-type breathing resonance. The resonance of a single disk cavity in an unbounded medium is also calculated and compared with a derived estimate of the natural frequency of the drum mode. Variation of transmission is determined as a function of disk tilt angle, lattice constant, and layer thickness. A modeled transmission loss of 18 dB can be obtained at a wavelength about 20 times the three-layer thickness, and thinner results (wavelength/thickness ∼ 240) are possible for the same loss with a single layer depending on allowable hydrostatic pressure.

  7. Magnetohydrodynamical processes near compact objects

    International Nuclear Information System (INIS)

    Bisnovatyi Kogan, G.S.

    1979-01-01

    Magnetohydrodynamical processes near compact objects are reviewed in this paper. First the accretion of the magnetized matter into a single black hole and spectra of radiation are considered. Then the magnetic-field phenomena in the disk accretion, when the black hole is in a pair are discussed. Furthermore, the magnetohydrodynamics phenomena during supernova explosion are considered. Finally the magnetohydrodynamics in the accretion of a neutron star is considered in connection With x-ray sources

  8. THE DARK DISK OF THE MILKY WAY

    International Nuclear Information System (INIS)

    Purcell, Chris W.; Bullock, James S.; Kaplinghat, Manoj

    2009-01-01

    Massive satellite accretions onto early galactic disks can lead to the deposition of dark matter in disk-like configurations that co-rotate with the galaxy. This phenomenon has potentially dramatic consequences for dark matter detection experiments. We utilize focused, high-resolution simulations of accretion events onto disks designed to be Galaxy analogues, and compare the resultant disks to the morphological and kinematic properties of the Milky Way's thick disk in order to bracket the range of co-rotating accreted dark matter. In agreement with previous results, we find that the Milky Way's merger history must have been unusually quiescent compared to median Λ cold dark matter expectations and, therefore, its dark disk must be relatively small: the fraction of accreted dark disk material near the Sun is about 20% of the host halo density or smaller and the co-rotating dark matter fraction near the Sun, defined as particles moving with a rotational velocity lag less than 50 km s -1 , is enhanced by about 30% or less compared to a standard halo model. Such a dark disk could contribute dominantly to the low energy (of order keV for a dark matter particle with mass 100 GeV) nuclear recoil event rate of direct detection experiments, but it will not change the likelihood of detection significantly. These dark disks provide testable predictions of weakly interacting massive particle dark matter models and should be considered in detailed comparisons to experimental data. Our findings suggest that the dark disk of the Milky Way may provide a detectable signal for indirect detection experiments, contributing up to about 25% of the dark matter self-annihilation signal in the direction of the center of the Galaxy, lending the signal a noticeably oblate morphology.

  9. Equilibrium figures for beta Lyrae type disks

    International Nuclear Information System (INIS)

    Wilson, R.E.

    1981-01-01

    Accumulated evidence for a geometrically and optically thick disk in the β Lyrae system has now established the disk's basic external configuration. Since the disk has been constant in its main properties over the historical interval of β Lyrae observations and also seems to have a basically well-defined photosphere, it is now time to being consideration of its sturcture. Here, we compute equilibrium figures for self-gravitating disks around stars in binary systems as a start toward eventual computation of complete disk models. A key role is played by centrifugally limited rotation of the central star, which would naturally arise late in the rapid phase of mass transfer. Beta Lyrae is thus postulated to be a double-contact binary, which makes possible nonarbitrary separation of star and disk into separate structures. The computed equilibrium figures are three-dimensional, as the gravitation of the second star is included. Under the approximation that the gravitational potential of the disk is that of a thin wire and that the local disk angular velocity is proportional to u/sup n/ (u = distance from rotation axis), we comptue the total potential and locate equipotential surfaces. The centrifugal potential is written in a particularly convenient form which permits one to change the rotation law discontinuously (for example, at the star-disk coupling point) while ensuring that centrifugal potential and centrifigual force are continuous functions of position. With such a one-parameter rotation law, one can find equilibrium disk figures with dimensions very similar to those found in β Lyrae, but considerations of internal consistency demand at least a two-parameter law

  10. Dual Microstructure Heat Treatment of a Nickel-Base Disk Alloy Assessed

    Science.gov (United States)

    Gayda, John

    2002-01-01

    Gas turbine engines for future subsonic aircraft will require nickel-base disk alloys that can be used at temperatures in excess of 1300 F. Smaller turbine engines, with higher rotational speeds, also require disk alloys with high strength. To address these challenges, NASA funded a series of disk programs in the 1990's. Under these initiatives, Honeywell and Allison focused their attention on Alloy 10, a high-strength, nickel-base disk alloy developed by Honeywell for application in the small turbine engines used in regional jet aircraft. Since tensile, creep, and fatigue properties are strongly influenced by alloy grain size, the effect of heat treatment on grain size and the attendant properties were studied in detail. It was observed that a fine grain microstructure offered the best tensile and fatigue properties, whereas a coarse grain microstructure offered the best creep resistance at high temperatures. Therefore, a disk with a dual microstructure, consisting of a fine-grained bore and a coarse-grained rim, should have a high potential for optimal performance. Under NASA's Ultra-Safe Propulsion Project and Ultra-Efficient Engine Technology (UEET) Program, a disk program was initiated at the NASA Glenn Research Center to assess the feasibility of using Alloy 10 to produce a dual-microstructure disk. The objectives of this program were twofold. First, existing dual-microstructure heat treatment (DMHT) technology would be applied and refined as necessary for Alloy 10 to yield the desired grain structure in full-scale forgings appropriate for use in regional gas turbine engines. Second, key mechanical properties from the bore and rim of a DMHT Alloy 10 disk would be measured and compared with conventional heat treatments to assess the benefits of DMHT technology. At Wyman Gordon and Honeywell, an active-cooling DMHT process was used to convert four full-scale Alloy 10 disks to a dual-grain microstructure. The resulting microstructures are illustrated in the

  11. Very Low-mass Stars and Brown Dwarfs in Upper Scorpius Using Gaia DR1: Mass Function, Disks, and Kinematics

    Science.gov (United States)

    Cook, Neil J.; Scholz, Aleks; Jayawardhana, Ray

    2017-12-01

    Our understanding of the brown dwarf population in star-forming regions is dependent on knowing distances and proper motions and therefore will be improved through the Gaia space mission. In this paper, we select new samples of very low-mass objects (VLMOs) in Upper Scorpius using UKIDSS colors and optimized proper motions calculated using Gaia DR1. The scatter in proper motions from VLMOs in Upper Scorpius is now (for the first time) dominated by the kinematic spread of the region itself, not by the positional uncertainties. With age and mass estimates updated using Gaia parallaxes for early-type stars in the same region, we determine masses for all VLMOs. Our final most complete sample includes 453 VLMOs of which ˜125 are expected to be brown dwarfs. The cleanest sample is comprised of 131 VLMOs, with ˜105 brown dwarfs. We also compile a joint sample from the literature that includes 415 VLMOs, out of which 152 are likely brown dwarfs. The disk fraction among low-mass brown dwarfs (M< 0.05 {M}⊙ ) is substantially higher than in more massive objects, indicating that disks around low-mass brown dwarfs survive longer than in low-mass stars overall. The mass function for 0.01< M< 0.1 {M}⊙ is consistent with the Kroupa Initial Mass Function. We investigate the possibility that some “proper motion outliers” have undergone a dynamical ejection early in their evolution. Our analysis shows that the color-magnitude cuts used when selecting samples introduce strong bias into the population statistics due to varying levels of contamination and completeness.

  12. ACCRETION KINEMATICS THROUGH THE WARPED TRANSITION DISK IN HD 142527 FROM RESOLVED CO(6–5) OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Casassus, S.; Marino, S.; Pérez, S.; Plas, G. van der; Christiaens, V.; Montesinos, Matías [Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago (Chile); Roman, P.; Dunhill, A.; Cuadra, J.; Cieza, L.; Moral, Victor [Millennium Nucleus “Protoplanetary Disks,” Chile (Chile); Armitage, P. J. [JILA, University of Colorado and NIST, UCB 440, Boulder, CO 80309 (United States); Wootten, A., E-mail: scasassus@u.uchile.cl [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903-2475 (United States)

    2015-10-01

    The finding of residual gas in the large central cavity of the HD 142527 disk motivates questions regarding the origin of its non-Keplerian kinematics and possible connections with planet formation. We aim to understand the physical structure that underlies the intra-cavity gaseous flows, guided by new molecular-line data in CO(6–5) with unprecedented angular resolutions. Given the warped structure inferred from the identification of scattered-light shadows cast on the outer disk, the kinematics are consistent, to first order, with axisymmetric accretion onto the inner disk occurring at all azimuths. A steady-state accretion profile, fixed at the stellar accretion rate, explains the depth of the cavity as traced in CO isotopologues. The abrupt warp and evidence for near free-fall radial flows in HD 142527 resemble theoretical models for disk tearing, which could be driven by the reported low-mass companion, whose orbit may be contained in the plane of the inner disk. The companion’s high inclination with respect to the massive outer disk could drive Kozai oscillations over long timescales; high-eccentricity periods may perhaps account for the large cavity. While shadowing by the tilted disk could imprint an azimuthal modulation in the molecular-line maps, further observations are required to ascertain the significance of azimuthal structure in the density field inside the cavity of HD 142527.

  13. Resolving the Polarized Dust Emission of the Disk around the Massive Star Powering the HH 80–81 Radio Jet

    Science.gov (United States)

    Girart, J. M.; Fernández-López, M.; Li, Z.-Y.; Yang, H.; Estalella, R.; Anglada, G.; Áñez-López, N.; Busquet, G.; Carrasco-González, C.; Curiel, S.; Galvan-Madrid, R.; Gómez, J. F.; de Gregorio-Monsalvo, I.; Jiménez-Serra, I.; Krasnopolsky, R.; Martí, J.; Osorio, M.; Padovani, M.; Rao, R.; Rodríguez, L. F.; Torrelles, J. M.

    2018-04-01

    Here we present deep (16 μJy beam‑1), very high (40 mas) angular resolution 1.14 mm, polarimetric, Atacama Large Millimeter/submillimeter Array (ALMA) observations toward the massive protostar driving the HH 80–81 radio jet. The observations clearly resolve the disk oriented perpendicularly to the radio jet, with a radius of ≃0.″171 (∼291 au at 1.7 kpc distance). The continuum brightness temperature, the intensity profile, and the polarization properties clearly indicate that the disk is optically thick for a radius of R ≲ 170 au. The linear polarization of the dust emission is detected almost all along the disk, and its properties suggest that dust polarization is produced mainly by self-scattering. However, the polarization pattern presents a clear differentiation between the inner (optically thick) part of the disk and the outer (optically thin) region of the disk, with a sharp transition that occurs at a radius of ∼0.″1 (∼170 au). The polarization characteristics of the inner disk suggest that dust settling has not occurred yet with a maximum dust grain size between 50 and 500 μm. The outer part of the disk has a clear azimuthal pattern but with a significantly higher polarization fraction compared to the inner disk. This pattern is broadly consistent with the self-scattering of a radiation field that is beamed radially outward, as expected in the optically thin outer region, although contribution from non-spherical grains aligned with respect to the radiative flux cannot be excluded.

  14. Fatigue Resistance of the Grain Size Transition Zone in a Dual Microstructure Superalloy Disk

    Science.gov (United States)

    Gabb, T. P.; Kantzos, P. T.; Telesman, J.; Gayda, J.; Sudbrack, C. K.; Palsa, B. S.

    2010-01-01

    Mechanical property requirements vary with location in nickel-based superalloy disks. To maximize the associated mechanical properties, heat treatment methods have been developed for producing tailored microstructures. In this study, a specialized heat treatment method was applied to produce varying grain microstructures from the bore to the rim portions of a powder metallurgy processed nickel-based superalloy disk. The bore of the contoured disk consisted of fine grains to maximize strength and fatigue resistance at lower temperatures. The rim microstructure of the disk consisted of coarse grains for maximum resistance to creep and dwell crack growth at high temperatures up to 704 C. However, the fatigue resistance of the grain size transition zone was unclear, and needed to be evaluated. This zone was located as a band in the disk web between the bore and rim. Specimens were extracted parallel and transverse to the transition zone, and multiple fatigue tests were performed at 427 and 704 C. Mean fatigue lives were lower at 427 C than for 704 C. Specimen failures often initiated at relatively large grains, which failed on crystallographic facets. Grain size distributions were characterized in the specimens, and related to the grains initiating failures as well as location within the transition zone. Fatigue life decreased with increasing maximum grain size. Correspondingly, mean fatigue resistance of the transition zone was slightly higher than that of the rim, but lower than that of the bore. The scatter in limited tests of replicates was comparable for all transition zone locations examined.

  15. Revealing the structure and dust content of debris disks on solar systems scales with GPI

    Science.gov (United States)

    Duchene, Gaspard; Fitzgerald, Michael P.; Kalas, Paul; Graham, James R.; Arriaga, Pauline; Bruzzone, Sebastian; Chen, Christine; Dawson, Rebekah Ilene; Dong, Ruobing; Draper, Zachary; Esposito, Thomas; Follette, Katherine; Hung, Li-Wei; Lawler, Samantha; Metchev, Stanimir; Millar-Blanchaer, Max; Murray-Clay, Ruth; Perrin, Marshall D.; Rameau, Julien; Wang, Jason; Wolff, Schuyler; Macintosh, Bruce; GPIES Team

    2016-01-01

    High contrast scattered light images offer the best prospect to assess the detailed geometry and structure of dusty debris disks. In turn, such images can yield profound insight on the architecture of the underlying planetary system as dust grains respond to the gravitational pull of planetary bodies. A new generation of extreme adaptive optics systems now enables an unprecedented exploration of circumstellar disks on solar system scales. Here we review the new science derived from over a dozen debris disks imaged with the Gemini Planet Imager (GPI) as part of the GPI Exoplanet Survey (GPIES). In addition to its exquisite imaging capability, GPI's polarimetric mode provides invaluable insight on the dust content of each disk, in most cases for the very first time. These early results typically reveal narrow belts of material with evacuated regions roughly 50-100 AU in radius, subtle asymmetries in structure and high degree of linear polarization. We will provide an overview of the disk observations made during the GPIES campaign to date and will discuss in more detail some of the most remarkable systems.This work is supported by grants NSF AST-0909188, -1411868, -1413718; NASA NNX-15AD95G, -14AJ80G, -11AD21G; and the NExSS research network.

  16. DETECTION OF SHARP SYMMETRIC FEATURES IN THE CIRCUMBINARY DISK AROUND AK Sco

    International Nuclear Information System (INIS)

    Janson, Markus; Asensio-Torres, Ruben; Thalmann, Christian; Meyer, Michael R.; Garufi, Antonio; Boccaletti, Anthony; Maire, Anne-Lise; Henning, Thomas; Pohl, Adriana; Zurlo, Alice; Marzari, Francesco; Carson, Joseph C.; Augereau, Jean-Charles; Desidera, Silvano

    2016-01-01

    The Search for Planets Orbiting Two Stars survey aims to study the formation and distribution of planets in binary systems by detecting and characterizing circumbinary planets and their formation environments through direct imaging. With the SPHERE Extreme Adaptive Optics instrument, a good contrast can be achieved even at small (<300 mas) separations from bright stars, which enables studies of planets and disks in a separation range that was previously inaccessible. Here, we report the discovery of resolved scattered light emission from the circumbinary disk around the well-studied young double star AK Sco, at projected separations in the ∼13–40 AU range. The sharp morphology of the imaged feature is surprising, given the smooth appearance of the disk in its spectral energy distribution. We show that the observed morphology can be represented either as a highly eccentric ring around AK Sco, or as two separate spiral arms in the disk, wound in opposite directions. The relative merits of these interpretations are discussed, as well as whether these features may have been caused by one or several circumbinary planets interacting with the disk

  17. Constraining the disk masses of the class I binary protostar GV Tau

    Energy Technology Data Exchange (ETDEWEB)

    Sheehan, Patrick D.; Eisner, Josh A., E-mail: psheehan@email.arizona.edu [Steward Observatory, University of Arizona 933 North Cherry Avenue, Tucson, AZ 85721 (United States)

    2014-08-10

    We present new spatially resolved 1.3 mm imaging with CARMA of the GV Tau system. GV Tau is a Class I binary protostar system in the Taurus Molecular Cloud, the components of which are separated by 1.''2. Each protostar is surrounded by a protoplanetary disk, and the pair may be surrounded by a circumbinary envelope. We analyze the data using detailed radiative transfer modeling of the system. We create synthetic protostar model spectra, images, and visibilities and compare them with CARMA 1.3 mm visibilities, a Hubble Space Telescope near-infrared scattered light image, and broadband spectral energy distributions from the literature to study the disk masses and geometries of the GV Tau disks. We show that the protoplanetary disks around GV Tau fall near the lower end of estimates of the Minimum Mass Solar Nebula, and may have just enough mass to form giant planets. When added to the sample of Class I protostars from Eisner, we confirm that Class I protostars are on average more massive than their Class II counterparts. This suggests that substantial dust grain processing occurs between the Class I and Class II stages, and may help to explain why the Class II protostars do not appear to have, on average, enough mass in their disks to form giant planets.

  18. DETECTION OF SHARP SYMMETRIC FEATURES IN THE CIRCUMBINARY DISK AROUND AK Sco

    Energy Technology Data Exchange (ETDEWEB)

    Janson, Markus; Asensio-Torres, Ruben [Department of Astronomy, Stockholm University, AlbaNova University Center, SE-106 91 Stockholm (Sweden); Thalmann, Christian; Meyer, Michael R.; Garufi, Antonio [Institute for Astronomy, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich (Switzerland); Boccaletti, Anthony [LESIA, Observatoire de Paris—Meudon, CNRS, Université Pierre et Marie Curie, Université Paris Didierot, 5 Place Jules Janssen, F-92195 Meudon (France); Maire, Anne-Lise; Henning, Thomas; Pohl, Adriana [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Zurlo, Alice [Núcleo de Astronomía, Facultad de Ingeniería, Universidad Diego Portales, Av. Ejercito 441, Santiago (Chile); Marzari, Francesco [Dipartimento di Fisica, University of Padova, Via Marzolo 8, I-35131 Padova (Italy); Carson, Joseph C. [Department of Physics and Astronomy, College of Charleston, 66 George Street, Charleston, SC 29424 (United States); Augereau, Jean-Charles [Université Grenoble Alpes, IPAG, F-38000 Grenoble (France); Desidera, Silvano [INAF—Osservatorio Astromonico di Padova, Vicolo dell’Osservatorio 5, I-35122 Padova (Italy)

    2016-01-01

    The Search for Planets Orbiting Two Stars survey aims to study the formation and distribution of planets in binary systems by detecting and characterizing circumbinary planets and their formation environments through direct imaging. With the SPHERE Extreme Adaptive Optics instrument, a good contrast can be achieved even at small (<300 mas) separations from bright stars, which enables studies of planets and disks in a separation range that was previously inaccessible. Here, we report the discovery of resolved scattered light emission from the circumbinary disk around the well-studied young double star AK Sco, at projected separations in the ∼13–40 AU range. The sharp morphology of the imaged feature is surprising, given the smooth appearance of the disk in its spectral energy distribution. We show that the observed morphology can be represented either as a highly eccentric ring around AK Sco, or as two separate spiral arms in the disk, wound in opposite directions. The relative merits of these interpretations are discussed, as well as whether these features may have been caused by one or several circumbinary planets interacting with the disk.

  19. THE PECULIAR DEBRIS DISK OF HD 111520 AS RESOLVED BY THE GEMINI PLANET IMAGER

    Energy Technology Data Exchange (ETDEWEB)

    Draper, Zachary H.; Matthews, Brenda C.; Gerard, Benjamin [Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 5C2 (Canada); Duchêne, Gaspard; Wang, Jason J.; Kalas, Paul; Graham, James R. [Department of Astronomy, UC Berkeley, Berkeley, CA 94720 (United States); Millar-Blanchaer, Maxwell A. [Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4 (Canada); Padgett, Deborah [NASA Goddard Space Flight Center, 8800 Greenbelt Rd., Greenbelt, MD 20771 (United States); Ammons, S. Mark [Lawrence Livermore National Lab, 7000 East Ave., Livermore, CA 94551 (United States); Bulger, Joanna [Subaru Telescope, NAOJ, 650 North Aohoku Pl., Hilo, HI 96720 (United States); Chen, Christine; Greenbaum, Alexandra Z. [Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218 (United States); Chilcote, Jeffrey K. [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George St., Toronto, ON M5S 3H4 (Canada); Doyon, René [Institut de Recherche sur les Exoplanètes, Départment de Physique, Université de Montréal, Montréal, QC H3C 3J7 (Canada); Fitzgerald, Michael P. [Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095 (United States); Follette, Kate B.; Macintosh, Bruce [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305 (United States); Hibon, Pascale [European Southern Observatory, Casilla 19001, Santiago 19 (Chile); Hinkley, Sasha [University of Exeter, Astrophysics Group, Physics Building, Stocker Rd., Exeter, EX4 4QL (United Kingdom); and others

    2016-08-01

    Using the Gemini Planet Imager, we have resolved the circumstellar debris disk around HD 111520 at a projected range of ∼30–100 AU in both total and polarized H -band intensity. The disk is seen edge-on at a position angle of 165° along the spine of emission. A slight inclination and asymmetric warp are covariant and alter the interpretation of the observed disk emission. We employ three point-spread function subtraction methods to reduce the stellar glare and instrumental artifacts to confirm that there is a roughly 2:1 brightness asymmetry between the NW and SE extension. This specific feature makes HD 111520 the most extreme example of asymmetric debris disks observed in scattered light among similar highly inclined systems, such as HD 15115 and HD 106906. We further identify a tentative localized brightness enhancement and scale height enhancement associated with the disk at ∼40 AU away from the star on the SE extension. We also find that the fractional polarization rises from 10% to 40% from 0.″5 to 0.″8 from the star. The combination of large brightness asymmetry and symmetric polarization fraction leads us to believe that an azimuthal dust density variation is causing the observed asymmetry.

  20. Neutron scattering. Lectures

    International Nuclear Information System (INIS)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2012-01-01

    The following topics are dealt with: Neutron scattering in contemporary research, neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)

  1. THE SPITZER INFRARED SPECTROGRAPH DEBRIS DISK CATALOG. I. CONTINUUM ANALYSIS OF UNRESOLVED TARGETS

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Christine H. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Mittal, Tushar [Department of Earth and Planetary Science, University of California Berkeley, Berkeley, CA 94720-4767 (United States); Kuchner, Marc [NASA Goddard Space Flight Center, Exoplanets and Stellar Astrophysics Laboratory, Code 667, Greenbelt, MD 20771 (United States); Forrest, William J.; Watson, Dan M. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Lisse, Carey M. [Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States); Manoj, P. [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005 (India); Sargent, Benjamin A., E-mail: cchen@stsci.edu [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States)

    2014-04-01

    During the Spitzer Space Telescope cryogenic mission, Guaranteed Time Observers, Legacy Teams, and General Observers obtained Infrared Spectrograph (IRS) observations of hundreds of debris disk candidates. We calibrated the spectra of 571 candidates, including 64 new IRAS and Multiband Imaging Photometer for Spitzer (MIPS) debris disks candidates, modeled their stellar photospheres, and produced a catalog of excess spectra for unresolved debris disks. For 499 targets with IRS excess but without strong spectral features (and a subset of 420 targets with additional MIPS 70 μm observations), we modeled the IRS (and MIPS data) assuming that the dust thermal emission was well-described using either a one- or two-temperature blackbody model. We calculated the probability for each model and computed the average probability to select among models. We found that the spectral energy distributions for the majority of objects (∼66%) were better described using a two-temperature model with warm (T {sub gr} ∼ 100-500 K) and cold (T {sub gr} ∼ 50-150 K) dust populations analogous to zodiacal and Kuiper Belt dust, suggesting that planetary systems are common in debris disks and zodiacal dust is common around host stars with ages up to ∼1 Gyr. We found that younger stars generally have disks with larger fractional infrared luminosities and higher grain temperatures and that higher-mass stars have disks with higher grain temperatures. We show that the increasing distance of dust around debris disks is inconsistent with self-stirred disk models, expected if these systems possess planets at 30-150 AU. Finally, we illustrate how observations of debris disks may be used to constrain the radial dependence of material in the minimum mass solar nebula.

  2. TURBULENT DISKS ARE NEVER STABLE: FRAGMENTATION AND TURBULENCE-PROMOTED PLANET FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, Philip F. [TAPIR, Mailcode 350-17, California Institute of Technology, Pasadena, CA 91125 (United States); Christiansen, Jessie L., E-mail: phopkins@caltech.edu [SETI Institute/NASA Ames Research Center, M/S 244-30, Moffett Field, CA 94035 (United States)

    2013-10-10

    A fundamental assumption in our understanding of disks is that when the Toomre Q >> 1, the disk is stable against fragmentation into self-gravitating objects (and so cannot form planets via direct collapse). But if disks are turbulent, this neglects a spectrum of stochastic density fluctuations that can produce rare, high-density mass concentrations. Here, we use a recently developed analytic framework to predict the statistics of these fluctuations, i.e., the rate of fragmentation and mass spectrum of fragments formed in a turbulent Keplerian disk. Turbulent disks are never completely stable: we calculate the (always finite) probability of forming self-gravitating structures via stochastic turbulent density fluctuations in such disks. Modest sub-sonic turbulence above Mach number M∼0.1 can produce a few stochastic fragmentation or 'direct collapse' events over ∼Myr timescales, even if Q >> 1 and cooling is slow (t{sub cool} >> t{sub orbit}). In transsonic turbulence this extends to Q ∼ 100. We derive the true Q-criterion needed to suppress such events, which scales exponentially with Mach number. We specify to turbulence driven by magneto-rotational instability, convection, or spiral waves and derive equivalent criteria in terms of Q and the cooling time. Cooling times ∼> 50 t{sub dyn} may be required to completely suppress fragmentation. These gravo-turbulent events produce mass spectra peaked near ∼(Q M{sub disk}/M{sub *}){sup 2} M{sub disk} (rocky-to-giant planet masses, increasing with distance from the star). We apply this to protoplanetary disk models and show that even minimum-mass solar nebulae could experience stochastic collapse events, provided a source of turbulence.

  3. TURBULENT DISKS ARE NEVER STABLE: FRAGMENTATION AND TURBULENCE-PROMOTED PLANET FORMATION

    International Nuclear Information System (INIS)

    Hopkins, Philip F.; Christiansen, Jessie L.

    2013-01-01

    A fundamental assumption in our understanding of disks is that when the Toomre Q >> 1, the disk is stable against fragmentation into self-gravitating objects (and so cannot form planets via direct collapse). But if disks are turbulent, this neglects a spectrum of stochastic density fluctuations that can produce rare, high-density mass concentrations. Here, we use a recently developed analytic framework to predict the statistics of these fluctuations, i.e., the rate of fragmentation and mass spectrum of fragments formed in a turbulent Keplerian disk. Turbulent disks are never completely stable: we calculate the (always finite) probability of forming self-gravitating structures via stochastic turbulent density fluctuations in such disks. Modest sub-sonic turbulence above Mach number M∼0.1 can produce a few stochastic fragmentation or 'direct collapse' events over ∼Myr timescales, even if Q >> 1 and cooling is slow (t cool >> t orbit ). In transsonic turbulence this extends to Q ∼ 100. We derive the true Q-criterion needed to suppress such events, which scales exponentially with Mach number. We specify to turbulence driven by magneto-rotational instability, convection, or spiral waves and derive equivalent criteria in terms of Q and the cooling time. Cooling times ∼> 50 t dyn may be required to completely suppress fragmentation. These gravo-turbulent events produce mass spectra peaked near ∼(Q M disk /M * ) 2 M disk (rocky-to-giant planet masses, increasing with distance from the star). We apply this to protoplanetary disk models and show that even minimum-mass solar nebulae could experience stochastic collapse events, provided a source of turbulence

  4. Mass loss from pre-main-sequence accretion disks. I - The accelerating wind of FU Orionis

    Science.gov (United States)

    Calvet, Nuria; Hartmann, Lee; Kenyon, Scott J.

    1993-01-01

    We present evidence that the wind of the pre-main-sequence object FU Orionis arises from the surface of the luminous accretion disk. A disk wind model calculated assuming radiative equilibrium explains the differential behavior of the observed asymmetric absorption-line profiles. The model predicts that strong lines should be asymmetric and blueshifted, while weak lines should be symmetric and double-peaked due to disk rotation, in agreement with observations. We propose that many blueshifted 'shell' absorption features are not produced in a true shell of material, but rather form in a differentially expanding wind that is rapidly rotating. The inference of rapid rotation supports the proposal that pre-main-sequence disk winds are rotationally driven.

  5. Far-infrared to Millimeter Data of Protoplanetary Disks: Dust Growth in the Taurus, Ophiuchus, and Chamaeleon I Star-forming Regions

    Energy Technology Data Exchange (ETDEWEB)

    Ribas, Álvaro; Espaillat, Catherine C.; Macías, Enrique [Department of Astronomy, Boston University, Boston, MA 02215 (United States); Bouy, Hervé [Laboratoire d’Astrophysique de Bordeaux, Univ. Bordeaux, CNRS, F-33615 Pessac (France); Andrews, Sean; Wilner, David [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 91023 (United States); Calvet, Nuria [Astronomy Department, University of Michigan, Ann Arbor, MI 48109 (United States); Naylor, David A.; Van der Wiel, Matthijs H. D. [Institute for Space Imaging Science, Department of Physics and Astronomy, University of Lethbridge (Canada); Riviere-Marichalar, Pablo, E-mail: aribas@bu.edu [Instituto de Ciencia de Materiales de Madrid (CSIC). Calle Sor Juana Inés de la Cruz 3, E-28049 Cantoblanco, Madrid (Spain)

    2017-11-01

    Far-infrared and (sub)millimeter fluxes can be used to study dust in protoplanetary disks, the building blocks of planets. Here, we combine observations from the Herschel Space Observatory with ancillary data of 284 protoplanetary disks in the Taurus, Chamaeleon I, and Ophiuchus star-forming regions, covering from the optical to mm/cm wavelengths. We analyze their spectral indices as a function of wavelength and determine their (sub)millimeter slopes when possible. Most disks display observational evidence of grain growth, in agreement with previous studies. No correlation is found between other tracers of disk evolution and the millimeter spectral indices. A simple disk model is used to fit these sources, and we derive posterior distributions for the optical depth at 1.3 mm and 10 au, the disk temperature at this same radius, and the dust opacity spectral index β . We find the fluxes at 70 μ m to correlate strongly with disk temperatures at 10 au, as derived from these simple models. We find tentative evidence for spectral indices in Chamaeleon I being steeper than those of disks in Taurus/Ophiuchus, although more millimeter observations are needed to confirm this trend and identify its possible origin. Additionally, we determine the median spectral energy distribution of each region and find them to be similar across the entire wavelength range studied, possibly due to the large scatter in disk properties and morphologies.

  6. Time-Dependent Variations of Accretion Disk

    Directory of Open Access Journals (Sweden)

    Hye-Weon Na

    1987-06-01

    Full Text Available In dward nova we assume the primary star as a white dwarf and the secondary as the late type star which filled Roche lobe. Mass flow from the secondary star leads to the formation of thin accretion disk around the white dwarf. We use the α parameter as viscosity to maintain the disk form and propose that the outburst in dwarf nova cause the steep increase of source term. With these assumptions we solve the basic equations of stellar structure using Newton-Raphson method. We show the physical parameters like temperature, density, pressure, opacity, surface density, height and flux to the radius of disk. Changing the value of α, we compare several parameters when mass flow rate is constant with those of when luminosity of disk is brightest. At the same time, we obtain time-dependent variations of luminosity and mass of disk. We propose the suitable range of α is 0.15-0.18 to the difference of luminosity. We compare several parameters of disk with those of the normal late type stars which have the same molecular weight of disk is lower. Maybe the outburst in dwarf nova is due to the variation of the α value instead of increment of mass flow from the secondary star.

  7. The CDF Run II disk inventory manager

    International Nuclear Information System (INIS)

    Hubbard, Paul; Lammel, Stephan

    2001-01-01

    The Collider Detector at Fermilab (CDF) experiment records and analyses proton-antiproton interactions at a center-of-mass energy of 2 TeV. Run II of the Fermilab Tevatron started in April of this year. The duration of the run is expected to be over two years. One of the main data handling strategies of CDF for Run II is to hide all tape access from the user and to facilitate sharing of data and thus disk space. A disk inventory manager was designed and developed over the past years to keep track of the data on disk, to coordinate user access to the data, and to stage data back from tape to disk as needed. The CDF Run II disk inventory manager consists of a server process, a user and administrator command line interfaces, and a library with the routines of the client API. Data are managed in filesets which are groups of one or more files. The system keeps track of user access to the filesets and attempts to keep frequently accessed data on disk. Data that are not on disk are automatically staged back from tape as needed. For CDF the main staging method is based on the mt-tools package as tapes are written according to the ANSI standard

  8. GIANT PLANET MIGRATION, DISK EVOLUTION, AND THE ORIGIN OF TRANSITIONAL DISKS

    International Nuclear Information System (INIS)

    Alexander, Richard D.; Armitage, Philip J.

    2009-01-01

    We present models of giant planet migration in evolving protoplanetary disks. Our disks evolve subject to viscous transport of angular momentum and photoevaporation, while planets undergo Type II migration. We use a Monte Carlo approach, running large numbers of models with a range in initial conditions. We find that relatively simple models can reproduce both the observed radial distribution of extrasolar giant planets, and the lifetimes and accretion histories of protoplanetary disks. The use of state-of-the-art photoevaporation models results in a degree of coupling between planet formation and disk clearing, which has not been found previously. Some accretion across planetary orbits is necessary if planets are to survive at radii ∼<1.5 AU, and if planets of Jupiter mass or greater are to survive in our models they must be able to form at late times, when the disk surface density in the formation region is low. Our model forms two different types of 'transitional' disks, embedded planets and clearing disks, which show markedly different properties. We find that the observable properties of these systems are broadly consistent with current observations, and highlight useful observational diagnostics. We predict that young transition disks are more likely to contain embedded giant planets, while older transition disks are more likely to be undergoing disk clearing.

  9. CT-guided percutaneous laser disk decompression for cervical and lumbar disk hernia

    International Nuclear Information System (INIS)

    Shimizu, Kanichiro; Koyama, Tutomu; Harada, Junta; Abe, Toshiaki

    2008-01-01

    Percutaneous laser disk decompression under X-ray fluoroscopy was first reported in 1987 for minimally invasive therapy of lumbar disk hernia. In patients with disk hernia, laser vaporizes a small portion of the intervertebral disk thereby reducing the volume and pressure of the affected disk. We present the efficacy and safety of this procedure, and analysis of fair or poor response cases. In our study, 226 cases of lumbar disk hernia and 7 cases of cervical disk hernia were treated under CT guided PLDD. Japan Orthopedic Association (JOA) score and Mac-Nab criteria were investigated to evaluate the response to treatment. Improvement ratio based on the JOA score was calculated as follows. Overall success rate was 91.6% in cases lumber disk hernia, and 100% in cases of cervical disk hernia. We experienced two cases with two cases with postoperative complication. Both cases were treated conservatively. The majority of acute cases and post operative cases were reported to be 'good' on Mac-Nab criteria. Cases of fair or poor response on Mac-Nab criteria were lateral type, foraminal stenosis or large disk hernia. CT-guided PLDD is a safe and accurate procedure. The overall success rate can be increased by carefully selecting patients. (author)

  10. Latest advances in high brightness disk lasers

    Science.gov (United States)

    Kuhn, Vincent; Gottwald, Tina; Stolzenburg, Christian; Schad, Sven-Silvius; Killi, Alexander; Ryba, Tracey

    2015-02-01

    In the last decade diode pumped solid state lasers have become an important tool for many industrial materials processing applications. They combine ease of operation with efficiency, robustness and low cost. This paper will give insight in latest progress in disk laser technology ranging from kW-class CW-Lasers over frequency converted lasers to ultra-short pulsed lasers. The disk laser enables high beam quality at high average power and at high peak power at the same time. The power from a single disk was scaled from 1 kW around the year 2000 up to more than 10 kW nowadays. Recently was demonstrated more than 4 kW of average power from a single disk close to fundamental mode beam quality (M²=1.38). Coupling of multiple disks in a common resonator results in even higher power. As an example we show 20 kW extracted from two disks of a common resonator. The disk also reduces optical nonlinearities making it ideally suited for short and ultrashort pulsed lasers. In a joint project between TRUMPF and IFSW Stuttgart more than 1.3 kW of average power at ps pulse duration and exceptionally good beam quality was recently demonstrated. The extremely low saturated gain makes the disk laser ideal for internal frequency conversion. We show >1 kW average power and >6 kW peak power in multi ms pulsed regime from an internally frequency doubled disk laser emitting at 515 nm (green). Also external frequency conversion can be done efficiently with ns pulses. >500 W of average UV power was demonstrated.

  11. Magnetically Induced Disk Winds and Transport in the HL Tau Disk

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Yasuhiro; Flock, Mario; Turner, Neal J. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Okuzumi, Satoshi, E-mail: yasuhiro@caltech.edu [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551 (Japan)

    2017-08-10

    The mechanism of angular momentum transport in protoplanetary disks is fundamental to understanding the distributions of gas and dust in the disks. The unprecedented ALMA observations taken toward HL Tau at high spatial resolution and subsequent radiative transfer modeling reveal that a high degree of dust settling is currently achieved in the outer part of the HL Tau disk. Previous observations, however, suggest a high disk accretion rate onto the central star. This configuration is not necessarily intuitive in the framework of the conventional viscous disk model, since efficient accretion generally requires a high level of turbulence, which can suppress dust settling considerably. We develop a simplified, semi-analytical disk model to examine under what condition these two properties can be realized in a single model. Recent, non-ideal MHD simulations are utilized to realistically model the angular momentum transport both radially via MHD turbulence and vertically via magnetically induced disk winds. We find that the HL Tau disk configuration can be reproduced well when disk winds are properly taken into account. While the resulting disk properties are likely consistent with other observational results, such an ideal situation can be established only if the plasma β at the disk midplane is β {sub 0} ≃ 2 × 10{sup 4} under the assumption of steady accretion. Equivalently, the vertical magnetic flux at 100 au is about 0.2 mG. More detailed modeling is needed to fully identify the origin of the disk accretion and quantitatively examine plausible mechanisms behind the observed gap structures in the HL Tau disk.

  12. Magnetically Induced Disk Winds and Transport in the HL Tau Disk

    International Nuclear Information System (INIS)

    Hasegawa, Yasuhiro; Flock, Mario; Turner, Neal J.; Okuzumi, Satoshi

    2017-01-01

    The mechanism of angular momentum transport in protoplanetary disks is fundamental to understanding the distributions of gas and dust in the disks. The unprecedented ALMA observations taken toward HL Tau at high spatial resolution and subsequent radiative transfer modeling reveal that a high degree of dust settling is currently achieved in the outer part of the HL Tau disk. Previous observations, however, suggest a high disk accretion rate onto the central star. This configuration is not necessarily intuitive in the framework of the conventional viscous disk model, since efficient accretion generally requires a high level of turbulence, which can suppress dust settling considerably. We develop a simplified, semi-analytical disk model to examine under what condition these two properties can be realized in a single model. Recent, non-ideal MHD simulations are utilized to realistically model the angular momentum transport both radially via MHD turbulence and vertically via magnetically induced disk winds. We find that the HL Tau disk configuration can be reproduced well when disk winds are properly taken into account. While the resulting disk properties are likely consistent with other observational results, such an ideal situation can be established only if the plasma β at the disk midplane is β 0 ≃ 2 × 10 4 under the assumption of steady accretion. Equivalently, the vertical magnetic flux at 100 au is about 0.2 mG. More detailed modeling is needed to fully identify the origin of the disk accretion and quantitatively examine plausible mechanisms behind the observed gap structures in the HL Tau disk.

  13. Tree-level disk amplitude of three closed strings

    Science.gov (United States)

    Mousavi, Sepideh; Velni, Komeil Babaei

    2018-05-01

    It has been shown that the disk-level S-matrix elements of one Ramond-Ramond (RR) and two Neveu-Schwarz-Neveu-Schwarz (NSNS) states could be found by applying the Ward identity associated with the string duality and the gauge symmetry on a given component of the S matrix. These amplitudes have appeared as the components of six different T-dual multiplets. It is predicted in the literature that there are some nonzero disk-level scattering amplitudes, such as one RR (p -1 ) form with zero transverse index and two N S N S states, could not be captured by the T-dual Ward identity. We explicitly find this amplitude in terms of a minimal context of the integral functions by the insertion of one closed string RR vertex operator and two NSNS vertex operators. From the amplitude invariance under the Ward identity associated with the NSNS gauge transformations and T-duality, we also find some integral identities.

  14. The Circumstellar Disk and Asymmetric Outflow of the EX Lup Outburst System

    Science.gov (United States)

    Hales, A. S.; Pérez, S.; Saito, M.; Pinte, C.; Knee, L. B. G.; de Gregorio-Monsalvo, I.; Dent, B.; López, C.; Plunkett, A.; Cortés, P.; Corder, S.; Cieza, L.

    2018-06-01

    We present Atacama Large Millimeter/submillimeter Array (ALMA) observations at 0.″3 resolution of EX Lup, the prototype of the EXor class of outbursting pre-main-sequence stars. The circumstellar disk of EX Lup is resolved for the first time in 1.3 mm continuum emission and in the J = 2–1 spectral line of three isotopologues of CO. At the spatial resolution and sensitivity achieved, the compact dust continuum disk shows no indications of clumps, fragments, or asymmetries above the 5σ level. Radiative transfer modeling constrains the characteristic radius of the dust disk to 23 au and the total dust mass to 1.0 × 10‑4 M ⊙ (33 M ⊕), similar to other EXor sources. The 13CO and C18O line emissions trace the disk rotation and are used to constrain the disk geometry, kinematics, and a total gas disk mass of 5.1 × 10‑4 M ⊙. The 12CO emission extends out to a radius of 200 au and is asymmetric, with one side deviating from Keplerian rotation. We detect blueshifted, 12CO arc-like emission located 0.″8 to the northwest and spatially disconnected from the disk emission. We interpret this extended structure as the brightened walls of a cavity excavated by an outflow, which are more commonly seen in FUor sources. Such outflows have also been seen in the borderline FU/EXor object V1647 Ori, but not toward EXor objects. Our detection provides evidence that the outflow phenomenon persists into the EXor phase, suggesting that FUor and EXor objects are a continuous population in which outflow activity declines with age, with transitional objects such as EX Lup and V1647 Ori.

  15. Golden mean Siegel disk universality and renormalization

    OpenAIRE

    Gaidashev, Denis; Yampolsky, Michael

    2016-01-01

    We provide a computer-assisted proof of one of the central open questions in one-dimensional renormalization theory -- universality of the golden-mean Siegel disks. We further show that for every function in the stable manifold of the golden-mean renormalization fixed point the boundary of the Siegel disk is a quasicircle which coincides with the closure of the critical orbit, and that the dynamics on the boundary of the Siegel disk is rigid. Furthermore, we extend the renormalization from on...

  16. Disk degeneration in 14 year old children

    International Nuclear Information System (INIS)

    Erkintalo, M.; Salminen, J.J.; Paajanen, H.; Terho, P.; Kormano, M.

    1989-01-01

    This paper reports low back symptoms of 1,500 school children (14 years old) evaluated with a questionnaire and with a standardized clinical examination. Forty children who complained of recurrent and/or persistent low back pain and 40 matching symptomless controls were randomly chosen to undergo MR imaging of the lumbar spine. Premature disk degeneration was seen in 25.5% of asymptomatic children and in 40% of those with low back pain. The difference was statistically not significant. Disk degeneration is a surprisingly frequent MR finding in symptomless children. Premature disk degeneration may be the cause of low back pain in some children but is not always symptomatic in childhood

  17. Gas Flow Across Gaps in Protoplanetary Disks

    OpenAIRE

    Lubow, Steve H.; D'Angelo, Gennaro

    2005-01-01

    We analyze the gas accretion flow through a planet-produced gap in a protoplanetary disk. We adopt the alpha disk model and ignore effects of planetary migration. We develop a semi-analytic, one-dimensional model that accounts for the effects of the planet as a mass sink and also carry out two-dimensional hydrodynamical simulations of a planet embedded in a disk. The predictions of the mass flow rate through the gap based on the semi-analytic model generally agree with the hydrodynamical simu...

  18. SUBMILLIMETER POLARIZATION OBSERVATION OF THE PROTOPLANETARY DISK AROUND HD 142527

    Energy Technology Data Exchange (ETDEWEB)

    Kataoka, Akimasa; Dullemond, Cornelis P.; Pohl, Adriana [Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany); Tsukagoshi, Takashi; Momose, Munetake [College of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512 (Japan); Nagai, Hiroshi [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Muto, Takayuki [Division of Liberal Arts, Kogakuin University, 1-24-2 Nishi-Shinjuku, Shinjuku-ku, Tokyo 163-8677 (Japan); Fukagawa, Misato [Division of Particle and Astrophysical Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602 (Japan); Shibai, Hiroshi [Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Hanawa, Tomoyuki [Center for Frontier Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522 (Japan); Murakawa, Koji, E-mail: kataoka@uni-heidelberg.de [College of General Education, Osaka Sangyo University, 3-1-1, Nakagaito, Daito, Osaka 574-8530 (Japan)

    2016-11-10

    We present the polarization observations toward the circumstellar disk around HD 142527 by using Atacama Large Millimeter/submillimeter Array at the frequency of 343 GHz. The beam size is 0.″51 × 0.″44, which corresponds to the spatial resolution of ∼71 × 62 au. The polarized intensity displays a ring-like structure with a peak located on the east side with a polarization fraction of P = 3.26 ± 0.02%, which is different from the peak of the continuum emission from the northeast region. The polarized intensity is significantly weaker at the peak of the continuum where P = 0.220 ± 0.010%. The polarization vectors are in the radial direction in the main ring of the polarized intensity, while there are two regions outside at the northwest and northeast areas where the vectors are in the azimuthal direction. If the polarization vectors represent the magnetic field morphology, the polarization vectors indicate the toroidal magnetic field configuration on the main ring and the poloidal fields outside. On the other hand, the flip of the polarization vectors is predicted by the self-scattering of thermal dust emission due to the change of the direction of thermal radiation flux. Therefore, we conclude that self-scattering of thermal dust emission plays a major role in producing polarization at millimeter wavelengths in this protoplanetary disk. Also, this puts a constraint on the maximum grain size to be approximately 150 μ m if we assume compact spherical dust grains.

  19. Rapid disappearance of a warm, dusty circumstellar disk.

    Science.gov (United States)

    Melis, Carl; Zuckerman, B; Rhee, Joseph H; Song, Inseok; Murphy, Simon J; Bessell, Michael S

    2012-07-04

    Stars form with gaseous and dusty circumstellar envelopes, which rapidly settle into disks that eventually give rise to planetary systems. Understanding the process by which these disks evolve is paramount in developing an accurate theory of planet formation that can account for the variety of planetary systems discovered so far. The formation of Earth-like planets through collisional accumulation of rocky objects within a disk has mainly been explored in theoretical and computational work in which post-collision ejecta evolution typically is ignored, although recent work has considered the fate of such material. Here we report observations of a young, Sun-like star (TYC 8241 2652 1) where infrared flux from post-collisional ejecta has decreased drastically, by a factor of about 30, over a period of less than two years. The star seems to have gone from hosting substantial quantities of dusty ejecta, in a region analogous to where the rocky planets orbit in the Solar System, to retaining at most a meagre amount of cooler dust. Such a phase of rapid ejecta evolution has not been previously predicted or observed, and no currently available physical model satisfactorily explains the observations.

  20. Microstructure Modeling of 3rd Generation Disk Alloy

    Science.gov (United States)

    Jou, Herng-Jeng

    2008-01-01

    The objective of this initiative, funded by NASA's Aviation Safety Program, is to model, validate, and predict, with high fidelity, the microstructural evolution of third-generation high-refractory Ni-based disc superalloys during heat treating and service conditions. This initiative is a natural extension of the DARPA-AIM (Accelerated Insertion of Materials) initiative with GE/Pratt-Whitney and with other process simulation tools. Strong collaboration with the NASA Glenn Research Center (GRC) is a key component of this initiative and the focus of this program is on industrially relevant disk alloys and heat treatment processes identified by GRC. Employing QuesTek s Computational Materials Dynamics technology and PrecipiCalc precipitation simulator, physics-based models are being used to achieve high predictive accuracy and precision. Combining these models with experimental data and probabilistic analysis, "virtual alloy design" can be performed. The predicted microstructures can be optimized to promote desirable features and concurrently eliminate nondesirable phases that can limit the reliability and durability of the alloys. The well-calibrated and well-integrated software tools that are being applied under the proposed program will help gas turbine disk alloy manufacturers, processing facilities, and NASA, to efficiently and effectively improve the performance of current and future disk materials.

  1. A giant protogalactic disk linked to the cosmic web

    Science.gov (United States)

    Martin, D. Christopher; Matuszewski, Mateusz; Morrissey, Patrick; Neill, James D.; Moore, Anna; Cantalupo, Sebastiano; Prochaska, J. Xavier; Chang, Daphne

    2015-08-01

    The specifics of how galaxies form from, and are fuelled by, gas from the intergalactic medium remain uncertain. Hydrodynamic simulations suggest that `cold accretion flows'--relatively cool (temperatures of the order of 104 kelvin), unshocked gas streaming along filaments of the cosmic web into dark-matter halos--are important. These flows are thought to deposit gas and angular momentum into the circumgalactic medium, creating disk- or ring-like structures that eventually coalesce into galaxies that form at filamentary intersections. Recently, a large and luminous filament, consistent with such a cold accretion flow, was discovered near the quasi-stellar object QSO UM287 at redshift 2.279 using narrow-band imaging. Unfortunately, imaging is not sufficient to constrain the physical characteristics of the filament, to determine its kinematics, to explain how it is linked to nearby sources, or to account for its unusual brightness, more than a factor of ten above what is expected for a filament. Here we report a two-dimensional spectroscopic investigation of the emitting structure. We find that the brightest emission region is an extended rotating hydrogen disk with a velocity profile that is characteristic of gas in a dark-matter halo with a mass of 1013 solar masses. This giant protogalactic disk appears to be connected to a quiescent filament that may extend beyond the virial radius of the halo. The geometry is strongly suggestive of a cold accretion flow.

  2. Anchoring Polar Magnetic Field in a Stationary Thick Accretion Disk

    Energy Technology Data Exchange (ETDEWEB)

    Samadi, Maryam; Abbassi, Shahram, E-mail: samadimojarad@um.ac.ir [Department of Physics, School of Sciences, Ferdowsi University of Mashhad, Mashhad, 91775-1436 (Iran, Islamic Republic of)

    2017-08-20

    We investigate the properties of a hot accretion flow bathed in a poloidal magnetic field. We consider an axisymmetric viscous-resistive flow in the steady-state configuration. We assume that the dominant mechanism of energy dissipation is due to turbulence viscosity and magnetic diffusivity. A certain fraction of that energy can be advected toward the central compact object. We employ the self-similar method in the radial direction to find a system of ODEs with just one varible, θ in the spherical coordinates. For the existence and maintenance of a purely poloidal magnetic field in a rotating thick disk, we find that the necessary condition is a constant value of angular velocity along a magnetic field line. We obtain an analytical solution for the poloidal magnetic flux. We explore possible changes in the vertical structure of the disk under the influences of symmetric and asymmetric magnetic fields. Our results reveal that a polar magnetic field with even symmetry about the equatorial plane makes the disk vertically thin. Moreover, the accretion rate decreases when we consider a strong magnetic field. Finally, we notice that hot magnetized accretion flows can be fully advected even in a slim shape.

  3. Bidirectional optical scattering facility

    Data.gov (United States)

    Federal Laboratory Consortium — Goniometric optical scatter instrument (GOSI)The bidirectional reflectance distribution function (BRDF) quantifies the angular distribution of light scattered from a...

  4. Effect of massive disks on bulge isophotes

    International Nuclear Information System (INIS)

    Monet, D.G.; Richstone, D.O.; Schechter, P.L.

    1981-01-01

    Massive disks produce flattened equipotentials. Unless the stars in a galaxy bulge are preferentially hotter in the z direction than in the plane, the isophotes will be at least as flat as the equipotentials. The comparison of two galaxy models having flat rotation curves with the available surface photometry for five external galaxies does not restrict the mass fraction which might reside in the disk. However, star counts in our own Galaxy indicate that unless the disk terminates close to the solar circle, no more than half the mass within that circle lies in the disk. The remaining half must lie either in the bulge or, more probably, in a third dark, round, dynamically distinct component

  5. Gravitomagnetic acceleration from black hole accretion disks

    International Nuclear Information System (INIS)

    Poirier, J; Mathews, G J

    2016-01-01

    We demonstrate how the motion of the neutral masses in an accretion disk orbiting a black hole creates a general-relativistic magnetic-like (gravitomagnetic) field that vertically accelerates neutral particles near an accretion disk upward and then inward toward the axis of the accretion disk. Even though this gravitomagnetic field is not the only mechanism contributing to the production of jets, it presents a novel means to identify one general relativistic effect from a much more complicated problem. In addition, as the accelerated material above or below the accretion disk nears the axis with a nearly vertical direction, a frame-dragging effect twists the trajectories around the axis thus contributing to the collimation of the jet. (note)

  6. Gravitomagnetic acceleration from black hole accretion disks

    Science.gov (United States)

    Poirier, J.; Mathews, G. J.

    2016-05-01

    We demonstrate how the motion of the neutral masses in an accretion disk orbiting a black hole creates a general-relativistic magnetic-like (gravitomagnetic) field that vertically accelerates neutral particles near an accretion disk upward and then inward toward the axis of the accretion disk. Even though this gravitomagnetic field is not the only mechanism contributing to the production of jets, it presents a novel means to identify one general relativistic effect from a much more complicated problem. In addition, as the accelerated material above or below the accretion disk nears the axis with a nearly vertical direction, a frame-dragging effect twists the trajectories around the axis thus contributing to the collimation of the jet.

  7. Review of gravitomagnetic acceleration from accretion disks

    Science.gov (United States)

    Poirier, J.; Mathews, G. J.

    2015-11-01

    We review the development of the equations of gravitoelectromagnetism and summarize how the motion of the neutral masses in an accretion disk orbiting a black hole creates a general-relativistic magnetic-like (gravitomagnetic) field that vertically accelerates neutral particles near the accretion disk upward and then inward toward the axis of the accretion disk. Even though this gravitomagnetic field is not the only mechanism to produce collimated jets, it is a novel means to identify one general relativistic effect from a much more complicated problem. In addition, as the accelerated material above or below the accretion disk nears the axis with a nearly vertical direction, a frame-dragging effect twists the trajectories around the axis thus contributing to the collimation of the jet.

  8. CO Gas Inside the Protoplanetary Disk Cavity in HD 142527: Disk Structure from ALMA

    OpenAIRE

    Perez, S.; Casassus, S.; Ménard, F.; Roman, P.; van der Plas, G.; Cieza, L.; Pinte, C.; Christiaens, Valentin; Hales, A. S.

    2014-01-01

    Inner cavities and annular gaps in circumstellar disks are possible signposts of giant planet formation. The young star HD 142527 hosts a massive protoplanetary disk with a large cavity that extends up to 140 AU from the central star, as seen in continuum images at infrared and millimeter wavelengths. Estimates of the survival of gas inside disk cavities are needed to discriminate between clearing scenarios. We present a spatially and spectrally resolved carbon monoxide isotopologue 2-1 line ...

  9. Contact statuses between functionally graded brake disk and pure pad disk

    International Nuclear Information System (INIS)

    Shahzamanian, M.M.; Sahari, B.B.; Bayat, M.; Mustapha, F.; Ismarrubie, Z.N.; Shahrjerdi, A.

    2009-01-01

    Full text: The contact statuses between functionally graded (FG) brake disks and pure pad disk are investigated by using finite element method (FEM). Two types of variation is considered for FG brake disk, the variation of materials are considered change in radial and thickness direction of disk. The material properties of these two types of FG brake disks are assumed to be represented by power-law distributions in the radius and thickness direction. The results are obtained and then compared. For the radial FG brake disk, the inner and outer surfaces are considered metal and ceramic respectively, and friction coefficient between metal surface and ceramic surface of FG brake dick with pad are considered 1.4 and 0.75 respectively. For the thickness FG brake disk the contact surface with pure pad brake disk is ceramic and the free surface is metal and friction coefficient between ceramic (contact) surface and pure pad brake disk is considered 0.75. In both types of FG brake disks the Coulomb contact friction is applied. Mechanical response of FG brake disks are compared and verified with the known results in the literatures. Three types of contact statuses are introduced as Sticking, Contact and Near Contact. The contact status between pad and disk for different values for pad thickness, grading index,n , and percentage of friction coefficient (λ) is shown. It can be seen that for all values of percentage of friction coefficient,λ , and grading indices, n, by increasing the thickness of pad cause the contact status changes from sticking to contact and then to near contact. (author)

  10. Asymmetric mass models of disk galaxies. I. Messier 99

    Science.gov (United States)

    Chemin, Laurent; Huré, Jean-Marc; Soubiran, Caroline; Zibetti, Stefano; Charlot, Stéphane; Kawata, Daisuke

    2016-04-01

    Mass models of galactic disks traditionally rely on axisymmetric density and rotation curves, paradoxically acting as if their most remarkable asymmetric features, such as lopsidedness or spiral arms, were not important. In this article, we relax the axisymmetry approximation and introduce a methodology that derives 3D gravitational potentials of disk-like objects and robustly estimates the impacts of asymmetries on circular velocities in the disk midplane. Mass distribution models can then be directly fitted to asymmetric line-of-sight velocity fields. Applied to the grand-design spiral M 99, the new strategy shows that circular velocities are highly nonuniform, particularly in the inner disk of the galaxy, as a natural response to the perturbed gravitational potential of luminous matter. A cuspy inner density profile of dark matter is found in M 99, in the usual case where luminous and dark matter share the same center. The impact of the velocity nonuniformity is to make the inner profile less steep, although the density remains cuspy. On another hand, a model where the halo is core dominated and shifted by 2.2-2.5 kpc from the luminous mass center is more appropriate to explain most of the kinematical lopsidedness evidenced in the velocity field of M 99. However, the gravitational potential of luminous baryons is not asymmetric enough to explain the kinematical lopsidedness of the innermost regions, irrespective of the density shape of dark matter. This discrepancy points out the necessity of an additional dynamical process in these regions: possibly a lopsided distribution of dark matter.