WorldWideScience

Sample records for scattered carbon ion

  1. Angular scattering of 1–50 keV ions through graphene and thin carbon foils: Potential applications for space plasma instrumentation

    International Nuclear Information System (INIS)

    Ebert, Robert W.; Allegrini, Frédéric; Fuselier, Stephen A.; Nicolaou, Georgios; Bedworth, Peter; Sinton, Steve; Trattner, Karlheinz J.

    2014-01-01

    We present experimental results for the angular scattering of ∼1–50 keV H, He, C, O, N, Ne, and Ar ions transiting through graphene foils and compare them with scattering through nominal ∼0.5 μg cm −2 carbon foils. Thin carbon foils play a critical role in time-of-flight ion mass spectrometers and energetic neutral atom sensors in space. These instruments take advantage of the charge exchange and secondary electron emission produced as ions or neutral atoms transit these foils. This interaction also produces angular scattering and energy straggling for the incident ion or neutral atom that acts to decrease the performance of a given instrument. Our results show that the angular scattering of ions through graphene is less pronounced than through the state-of-the-art 0.5 μg cm −2 carbon foils used in space-based particle detectors. At energies less than 50 keV, the scattering angle half width at half maximum, ψ 1/2 , for ∼3–5 atoms thick graphene is up to a factor of 3.5 smaller than for 0.5 μg cm −2 (∼20 atoms thick) carbon foils. Thus, graphene foils have the potential to improve the performance of space-based plasma instruments for energies below ∼50 keV

  2. The complex ion structure of warm dense carbon measured by spectrally resolved x-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, D.; Barbrel, B.; Falcone, R. W. [Department of Physics, University of California, Berkeley, California 94720 (United States); Vorberger, J. [Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Straße 38, 01187 Dresden (Germany); Helfrich, J.; Frydrych, S.; Ortner, A.; Otten, A.; Roth, F.; Schaumann, G.; Schumacher, D.; Siegenthaler, K.; Wagner, F.; Roth, M. [Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstraße 9, 64289 Darmstadt (Germany); Gericke, D. O.; Wünsch, K. [Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Bachmann, B.; Döppner, T. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Bagnoud, V.; Blažević, A. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt (Germany); and others

    2015-05-15

    We present measurements of the complex ion structure of warm dense carbon close to the melting line at pressures around 100 GPa. High-pressure samples were created by laser-driven shock compression of graphite and probed by intense laser-generated x-ray sources with photon energies of 4.75 keV and 4.95 keV. High-efficiency crystal spectrometers allow for spectrally resolving the scattered radiation. Comparing the ratio of elastically and inelastically scattered radiation, we find evidence for a complex bonded liquid that is predicted by ab-initio quantum simulations showing the influence of chemical bonds under these conditions. Using graphite samples of different initial densities we demonstrate the capability of spectrally resolved x-ray scattering to monitor the carbon solid-liquid transition at relatively constant pressure of 150 GPa. Showing first single-pulse scattering spectra from cold graphite of unprecedented quality recorded at the Linac Coherent Light Source, we demonstrate the outstanding possibilities for future high-precision measurements at 4th Generation Light Sources.

  3. Medium energy ion scattering (MEIS)

    International Nuclear Information System (INIS)

    Dittmann, K.; Markwitz, A.

    2009-01-01

    This report gives an overview about the technique and experimental study of medium energy ion scattering (MEIS) as a quantitative technique to determine and analyse the composition and geometrical structure of crystalline surfaces and near surface-layers by measuring the energy and yield of the backscattered ions. The use of a lower energy range of 50 to 500 keV accelerated ions impinging onto the target surface and the application of a high-resolution electrostatic energy analyser (ESA) makes medium energy ion scattering spectroscopy into a high depth resolution and surface-sensitive version of RBS with less resulting damage effects. This report details the first steps of research in that field of measurement technology using medium energetic backscattered ions detected by means of a semiconductor radiation detector instead of an ESA. The study of medium energy ion scattering (MEIS) has been performed using the 40 keV industrial ion implanter established at GNS Sciences remodelled with supplementary high voltage insulation for the ion source in order to apply voltages up to 45 kV, extra apertures installed in the beamline and sample chamber in order to set the beam diameter accurately, and a semiconductor radiation detector. For measurement purposes a beam of positive charged helium ions accelerated to an energy of about 80 keV has been used impinging onto target surfaces of lead implanted into silicon (PbSi), scandium implanted into aluminium (ScAl), aluminium foil (Al) and glassy carbon (C). First results show that it is possible to use the upgraded industrial implanter for medium energy ion scattering. The beam of 4 He 2+ with an energy up to 88 keV has been focussed to 1 mm in diameter. The 5 nA ion beam hit the samples under 2 x 10 -8 mbar. The results using the surface barrier detector show scattering events from the samples. Cooling of the detector to liquid nitrogen temperatures reduced the electronic noise in the backscattering spectrum close to zero. A

  4. Heavy ion scattering: High energy limits of RBS and ERD

    International Nuclear Information System (INIS)

    Rauhala, E.

    1994-01-01

    Elastic scattering of 7 Li ions by oxygen and 12 C, 14 N and 16 O ions by aluminum, silicon, titanium and sulfur have been studied below the Coulomb barrier energies 3-30 MeV in the angular range of 78 degrees - 170 degrees. By kinematically reversing the reactions, the recoiling of carbon, nitrogen and oxygen by 40-100 MeV 27 Al, 28 Si, 32S and 48 Ti ions into recoil angles of 20 degrees, 25 degrees, 30 degrees and 40 degrees has also been investigated. Excitation functions and angular distributions are presented. Contrary to the case of light H and He ions, the heavy ion scattering cross sections fall off rapidly above the non-Rutherford threshold energy, rendering heavy ion RBS and ERD spectrometry worthless. Both classical and wave mechanical calculations have been attempted for predicting the RBS threshold energies. Simple calculations give moderate accuracy, while the more extensive nuclear potential perturbation approach relies on parameters fitted for the particular experiment. The authors present a general classical semi-empirical model for both direct scattering (RBS) and the kinematically reversed reactions (ERD), accurately reproducing the experimental data. The model is based on parameters fitted from the present scattering experiments and from an extensive literature survey

  5. Applications of ion scattering in surface analysis

    International Nuclear Information System (INIS)

    Armour, D.G.

    1981-01-01

    The study of ion scattering from surfaces has made an increasingly important contribution both to the development of highly surface specific analysis techniques and to the understanding of the atomic collision processes associated with ion bombardment of solid surfaces. From an analysis point of view, by appropriate choice of parameters such as ion energy and species, scattering geometry and target temperature, it is possible to study not only the composition of the surface layer but also the detailed atomic arrangement. The ion scattering technique is thus particularly useful for the study of surface compositional and structural changes caused by adsorption, thermal annealing or ion bombardment treatments of simple or composite materials. Ion bombardment induced desorption, damage or atomic mixing can also be effectively studied using scattering techniques. By reviewing the application of the technique to a variety of these technologically important surface investigations, it is possible to illustrate the way in which ion scattering has developed as the understanding of the underlying physics has improved. (author)

  6. Compton profiles by inelastic ion-electron scattering

    International Nuclear Information System (INIS)

    Boeckl, H.; Bell, F.

    1983-01-01

    It is shown that Compton profiles (CP) can be measured by inelastic ion-electron scattering. Within the impulse approximation the binary-encounter peak (BEP) reflects the CP of the target atom whereas the electron-loss peak (ELP) is given by projectile CP's. Evaluation of experimental data reveals that inelastic ion-electron scattering might be a promising method to supply inelastic electron or photon scattering for the determination of target CP's. The measurement of projectile CP's is unique to ion scattering since one gains knowledge about wave-function effects because of the high excitation degree of fast heavy-ion projectiles

  7. Eikonal phase shift analyses of carbon-carbon scattering

    International Nuclear Information System (INIS)

    Townsend, L.W.; Bidasaria, H.B.; Wilson, J.W.

    1983-01-01

    A high-energy double-folding optical potential approximation to the exact nucleus-nucleus multiple-scattering series is used to determine eikonal phase shifts for carbon-carbon scattering at 204.2, 242.7, and 288.6 MeV. The double-folding potentials are obtained by folding the energy-dependent free nucleon-nucleon interaction with densities for the projectile and target obtained by unfolding the finite nucleon charge density from harmonic-well carbon charge distributions. The charge parameters for the latter are taken from the results of electron scattering experiments. Predictions for total, reaction, and elastic differential cross sections, using standard partial wave analysis for the scattering of identical particles, are made and compared with recent experimental results. Excellent agreement is obtained although there are no arbitrarily adjusted parameters in the theory

  8. Auger vs resonance neutralization in low energy He+ ion scattering

    International Nuclear Information System (INIS)

    Woodruff, D.P.

    1983-01-01

    He + ions incident on a metal surface can neutralize either by an Auger or resonant charge exchange. While the Auger process has always been thought to be dominant, recent theoretical interest in the simpler one-electron resonance process has led to suggestions that this alone can account for the neutralization seen in low energy He + ion scattering. In this paper this assertion is analysed by looking at the wider information available on charge exchange processes for He + ion scattering through comparison with Li + ion scattering, the importance of multiple scattering in both these scattering experiments and the results of ion neutralization spectroscopy. These lead to the conclusion that while resonance neutralization to produce metastable He* may well occur at a substantial rate in He + ion scattering, the dominant process leading to loss of ions from the final scattered signal is Auger neutralization as originally proposed. (author)

  9. WIMP detection and slow ion dynamics in carbon nanotube arrays

    CERN Document Server

    Cavoto, G.; Cocina, F.; Ferretti, J.; Polosa, A.D.

    2016-06-24

    Large arrays of aligned carbon nanotubes (CNTs), open at one end, could be used as target material for the directional detection of weakly interacting dark matter particles (WIMPs). As a result of a WIMP elastic scattering on a CNT, a carbon ion might be injected in the body of the array and propagate through multiple collisions within the lattice. The ion may eventually emerge from the surface with open end CNTs, provided that its longitudinal momentum is large enough to compensate energy losses and its transverse momentum approaches the channeling conditions in a single CNT. Therefore, the angle formed between the WIMP wind apparent orientation and the direction of parallel carbon nanotube axes must be properly chosen. We focus on very low ion recoil kinetic energies, related to low mass WIMPs (~ 10 GeV) where most of the existing experiments have low sensitivity. Relying on some exact results on two-dimensional lattices of circular obstacles, we study the low energy ion motion in the transverse plane with ...

  10. Rydberg Molecules for Ion-Atom Scattering in the Ultracold Regime.

    Science.gov (United States)

    Schmid, T; Veit, C; Zuber, N; Löw, R; Pfau, T; Tarana, M; Tomza, M

    2018-04-13

    We propose a novel experimental method to extend the investigation of ion-atom collisions from the so far studied cold, essentially classical regime to the ultracold, quantum regime. The key aspect of this method is the use of Rydberg molecules to initialize the ultracold ion-atom scattering event. We exemplify the proposed method with the lithium ion-atom system, for which we present simulations of how the initial Rydberg molecule wave function, freed by photoionization, evolves in the presence of the ion-atom scattering potential. We predict bounds for the ion-atom scattering length from ab initio calculations of the interaction potential. We demonstrate that, in the predicted bounds, the scattering length can be experimentally determined from the velocity of the scattered wave packet in the case of ^{6}Li^{+}-^{6}Li and from the molecular ion fraction in the case of ^{7}Li^{+}-^{7}Li. The proposed method to utilize Rydberg molecules for ultracold ion-atom scattering, here particularized for the lithium ion-atom system, is readily applicable to other ion-atom systems as well.

  11. ITER Fast Ion Collective Thomson Scattering

    DEFF Research Database (Denmark)

    Bindslev, Henrik; Larsen, Axel Wright; Meo, Fernando

    2005-01-01

    The EFDA Contract 04-1213 with Risø National Laboratory concerning a detailed integrated design of a Fast Ion Collective Thomson Scattering (CTS) diagnostic for ITER was signed on 31 December 2004. In 2003 the Risø CTS group finished a feasibility study and a conceptual design of an ITER Fast Ion...... Collective Thomson Scattering System (Contract 01.654) [1, 2]. The purpose of the CTS diagnostic is to measure the distribution function of fast ions in the plasma. The feasibility study demonstrated that the only system that can fully meet the ITER measurement requirements for confined fusion alphas is a 60...... the blanket gap, and calculations of diagnosing fuel ion ratio and rotation velocity by CTS....

  12. Study of multiple scattering effects in heavy ion RBS

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Z.; O`Connor, D.J. [Newcastle Univ., NSW (Australia). Dept. of Physics

    1996-12-31

    Multiple scattering effect is normally neglected in conventional Rutherford Backscattering (RBS) analysis. The backscattered particle yield normally agrees well with the theory based on the single scattering model. However, when heavy incident ions are used such as in heavy ion Rutherford backscattering (HIRBS), or the incident ion energy is reduced, multiple scattering effect starts to play a role in the analysis. In this paper, the experimental data of 6MeV C ions backscattered from a Au target are presented. In measured time of flight spectrum a small step in front of the Au high energy edge is observed. The high energy edge of the step is about 3.4 ns ahead of the Au signal which corresponds to an energy {approx} 300 keV higher than the 135 degree single scattering energy. This value coincides with the double scattering energy of C ion undergoes two consecutive 67.5 degree scattering. Efforts made to investigate the origin of the high energy step observed lead to an Monte Carlo simulation aimed to reproduce the experimental spectrum on computer. As a large angle scattering event is a rare event, two consecutive large angle scattering is extremely hard to reproduce in a random simulation process. Thus, the simulation has not found a particle scattering into 130-140 deg with an energy higher than the single scattering energy. Obviously faster algorithms and a better physical model are necessary for a successful simulation. 16 refs., 3 figs.

  13. Study of multiple scattering effects in heavy ion RBS

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Z; O` Connor, D J [Newcastle Univ., NSW (Australia). Dept. of Physics

    1997-12-31

    Multiple scattering effect is normally neglected in conventional Rutherford Backscattering (RBS) analysis. The backscattered particle yield normally agrees well with the theory based on the single scattering model. However, when heavy incident ions are used such as in heavy ion Rutherford backscattering (HIRBS), or the incident ion energy is reduced, multiple scattering effect starts to play a role in the analysis. In this paper, the experimental data of 6MeV C ions backscattered from a Au target are presented. In measured time of flight spectrum a small step in front of the Au high energy edge is observed. The high energy edge of the step is about 3.4 ns ahead of the Au signal which corresponds to an energy {approx} 300 keV higher than the 135 degree single scattering energy. This value coincides with the double scattering energy of C ion undergoes two consecutive 67.5 degree scattering. Efforts made to investigate the origin of the high energy step observed lead to an Monte Carlo simulation aimed to reproduce the experimental spectrum on computer. As a large angle scattering event is a rare event, two consecutive large angle scattering is extremely hard to reproduce in a random simulation process. Thus, the simulation has not found a particle scattering into 130-140 deg with an energy higher than the single scattering energy. Obviously faster algorithms and a better physical model are necessary for a successful simulation. 16 refs., 3 figs.

  14. Ion temperature via laser scattering on ion Bernstein waves

    International Nuclear Information System (INIS)

    Wurden, G.A.; Ono, M.; Wong, K.L.

    1981-10-01

    Hydrogen ion temperature has been measured in a warm toroidal plasma with externally launched ion Bernstein waves detected by heterodyne CO 2 laser scattering. Radial scanning of the laser beam allows precise determination of k/sub perpendicular to/ for the finite ion Larmor radius wave (ω approx. less than or equal to 2Ω/sub i/). Knowledge of the magnetic field strength and ion concentration then give a radially resolved ion temperature from the dispersion relation. Probe measurements and Doppler broadening of ArII 4806A give excellent agreement

  15. Elastic and inelastic heavy ion scattering

    International Nuclear Information System (INIS)

    Toepffer, C.; University of the Witwatersrand, Johannesburg; Richter, A.

    1977-02-01

    In the field of elastic and inelastic heavy ion scattering, the following issues are dealt with: semiclassical descriptive approximations, optical potentials, barriers, critical radii and angular momenta, excitation functions and the application to superheavy ions and high energies. (WL) [de

  16. Intermediate energy proton and light-ion scattering

    International Nuclear Information System (INIS)

    Moss, J.M.

    1981-01-01

    A review is presented of recent (1979-81) developments in the field of intermediate-energy proton and light-ion scattering from nuclei. New theoretical and calculational techniques of particular interest to experimentalists are discussed. Emphasis is placed on topics in nuclear structure physics - giant resonances, pion-condensation precursor phenomena, and polarization transfer (spin-flip) experiments - where intermediate energy proton and light-ion scattering has made new and unique contributions

  17. Hyperthermal (1-100 eV) nitrogen ion scattering damage to D-ribose and 2-deoxy-D-ribose films.

    Science.gov (United States)

    Deng, Zongwu; Bald, Ilko; Illenberger, Eugen; Huels, Michael A

    2007-10-14

    Highly charged heavy ion traversal of a biological medium can produce energetic secondary fragment ions. These fragment ions can in turn cause collisional and reactive scattering damage to DNA. Here we report hyperthermal (1-100 eV) scattering of one such fragment ion (N(+)) from biologically relevant sugar molecules D-ribose and 2-deoxy-D-ribose condensed on polycrystalline Pt substrate. The results indicate that N(+) ion scattering at kinetic energies down to 10 eV induces effective decomposition of both sugar molecules and leads to the desorption of abundant cation and anion fragments. Use of isotope-labeled molecules (5-(13)C D-ribose and 1-D D-ribose) partly reveals some site specificity of the fragment origin. Several scattering reactions are also observed. Both ionic and neutral nitrogen atoms abstract carbon from the molecules to form CN(-) anion at energies down to approximately 5 eV. N(+) ions also abstract hydrogen from hydroxyl groups of the molecules to form NH(-) and NH(2) (-) anions. A fraction of OO(-) fragments abstract hydrogen to form OH(-). The formation of H(3)O(+) ions also involves hydrogen abstraction as well as intramolecular proton transfer. These findings suggest a variety of severe damaging pathways to DNA molecules which occur on the picosecond time scale following heavy ion irradiation of a cell, and prior to the late diffusion-limited homogeneous chemical processes.

  18. Carbon Ion Therapy

    DEFF Research Database (Denmark)

    Bassler, Niels; Hansen, David Christoffer; Herrmann, Rochus

    On the importance of choice of target size for selective boosting of hypoxic tumor subvolumina in carbon ion therapy Purpose: Functional imaging methods in radiotherapy are maturing and can to some extent uncover radio resistant structures found within a tumour entity. Selective boost of identified...... effect. All cell lines investigated here did not reach an OER of 1, even for the smaller structures, which may indicate that the achievable dose average LET of carbon ions is too low, and heavier ions than carbon may be considered for functional LET-painting....

  19. WIMP detection and slow ion dynamics in carbon nanotube arrays

    International Nuclear Information System (INIS)

    Cavoto, G.; Cirillo, E.N.M.; Cocina, F.; Ferretti, J.; Polosa, A.D.

    2016-01-01

    Large arrays of aligned carbon nanotubes (CNTs), open at one end, could be used as target material for the directional detection of weakly interacting dark matter particles (WIMPs). As a result of a WIMP elastic scattering on a CNT, a carbon ion might be injected in the body of the array and propagate through multiple collisions within the lattice. The ion may eventually emerge from the surface with open end CNTs, provided that its longitudinal momentum is large enough to compensate energy losses and its transverse momentum approaches the channeling conditions in a single CNT. Therefore, the angle formed between the WIMP wind apparent orientation and the direction of parallel carbon nanotube axes must be properly chosen. We focus on very low ion recoil kinetic energies, related to low mass WIMPs (∼ 11 GeV) where most of the existing experiments have low sensitivity. Relying on some exact results on two-dimensional lattices of circular obstacles, we study the low energy ion motion in the transverse plane with respect to CNT directions. New constraints are obtained on how to devise the CNT arrays to maximize the target channeling efficiency. (orig.)

  20. WIMP detection and slow ion dynamics in carbon nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Cavoto, G. [INFN Sezione di Roma, Rome (Italy); Cirillo, E.N.M. [Sapienza Universita di Roma, Dipartimento SBAI, Rome (Italy); Cocina, F. [Sapienza Universita di Roma, Dipartimento di Fisica, Rome (Italy); Ferretti, J. [Sapienza Universita di Roma, Dipartimento di Fisica (Italy); INFN Sezione di Roma, Rome (Italy); Polosa, A.D. [Sapienza Universita di Roma, Dipartimento di Fisica (Italy); CERN, Theory Division, Geneva (Switzerland); INFN Sezione di Roma, Rome (Italy)

    2016-06-15

    Large arrays of aligned carbon nanotubes (CNTs), open at one end, could be used as target material for the directional detection of weakly interacting dark matter particles (WIMPs). As a result of a WIMP elastic scattering on a CNT, a carbon ion might be injected in the body of the array and propagate through multiple collisions within the lattice. The ion may eventually emerge from the surface with open end CNTs, provided that its longitudinal momentum is large enough to compensate energy losses and its transverse momentum approaches the channeling conditions in a single CNT. Therefore, the angle formed between the WIMP wind apparent orientation and the direction of parallel carbon nanotube axes must be properly chosen. We focus on very low ion recoil kinetic energies, related to low mass WIMPs (∼ 11 GeV) where most of the existing experiments have low sensitivity. Relying on some exact results on two-dimensional lattices of circular obstacles, we study the low energy ion motion in the transverse plane with respect to CNT directions. New constraints are obtained on how to devise the CNT arrays to maximize the target channeling efficiency. (orig.)

  1. WIMP detection and slow ion dynamics in carbon nanotube arrays.

    Science.gov (United States)

    Cavoto, G; Cirillo, E N M; Cocina, F; Ferretti, J; Polosa, A D

    2016-01-01

    Large arrays of aligned carbon nanotubes (CNTs), open at one end, could be used as target material for the directional detection of weakly interacting dark matter particles (WIMPs). As a result of a WIMP elastic scattering on a CNT, a carbon ion might be injected in the body of the array and propagate through multiple collisions within the lattice. The ion may eventually emerge from the surface with open end CNTs, provided that its longitudinal momentum is large enough to compensate energy losses and its transverse momentum approaches the channeling conditions in a single CNT. Therefore, the angle formed between the WIMP wind apparent orientation and the direction of parallel carbon nanotube axes must be properly chosen. We focus on very low ion recoil kinetic energies, related to low mass WIMPs ([Formula: see text] GeV) where most of the existing experiments have low sensitivity. Relying on some exact results on two-dimensional lattices of circular obstacles, we study the low energy ion motion in the transverse plane with respect to CNT directions. New constraints are obtained on how to devise the CNT arrays to maximize the target channeling efficiency.

  2. Influence of surface oxidation on ion dynamics and capacitance in porous and nonporous carbon electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Dyatkin, Boris [Drexel Univ., Philadelphia, PA (United States); Zhang, Yu [Vanderbilt Univ., Nashville, TN (United States); Mamontov, Eugene [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kolesnikov, Alexander I. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cheng, Yongqiang [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Meyer, III, Harry M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cummings, Peter T. [Vanderbilt Univ., Nashville, TN (United States); Gogotsi, Yury G. [Drexel Univ., Philadelphia, PA (United States)

    2016-04-07

    Here, we investigate the influence of surface chemistry and ion confinement on capacitance and electrosorption dynamics of room-temperature ionic liquids (RTILs) in supercapacitors. Using air oxidation and vacuum annealing, we produced defunctionalized and oxygen-rich surfaces of carbide-derived carbons (CDCs) and graphene nanoplatelets (GNPs). While oxidized surfaces of porous CDCs improve capacitance and rate handling abilities of ions, defunctionalized nonporous GNPs improve charge storage densities on planar electrodes. Quasi-elastic neutron scattering (QENS) and inelastic neutron scattering (INS) probed the structure, dynamics, and orientation of RTIL ions confined in divergently functionalized pores. Oxidized, ionophilic surfaces draw ions closer to pore surfaces and enhance potential-driven ion transport during electrosorption. Molecular dynamics (MD) simulations corroborated experimental data and demonstrated the significance of surface functional groups on ion orientations, accumulation densities, and capacitance.

  3. Heavy ion scattering; a fixed energy inverse problem

    International Nuclear Information System (INIS)

    Amos, K.

    1993-01-01

    Heavy ion scattering has been studied quite intensively in the last decade and central in most analyses of data from such experiments be they on fusion, particle transfer or internal state excitations of the colliding pair, is the inter-ion interaction affecting their relative motion. It is customary to use the elastic scattering data to constrain solutions of the (nonrelativistic) Schroedinger equation to ascertain the character of that (central and complex) heavy ion potential. These matters for projectiles ranging from the lightest 'heavy' ion, a proton, to Oxygen nuclei are considered in brief herein. The targets range from 12 C to 208 Pb. The central entity in the analyses to be discussed will be the S-function, and so for completeness, the simple potential scattering theory details are presented that specify the S-function and relate it to measured cross-sections. 20 refs., 18 figs

  4. Scattering and transfer reactions with heavy ions

    International Nuclear Information System (INIS)

    Hussein, M.S.

    From the elastic scattering analysis the input parameters are found for the inelastic scattering analysis and the transfer reactions of the heavy ion reactions. The main theme reported is the likeness and conection among these processes. (L.C.) [pt

  5. Eelectrochemical properties and corrosion resistance of carbon-ion-implanted magnesium

    International Nuclear Information System (INIS)

    Xu, Ruizhen; Yang, Xiongbo; Li, Penghui; Suen, Kai Wong; Wu, Guosong; Chu, Paul K.

    2014-01-01

    Highlights: • Carbon, as a biocompatible benign element, was implanted into Mg. • A protective amorphous carbon layer was formed after implantation. • Treated sample exhibits good corrosion resistance in two solutions. - Abstract: The corrosion resistance of magnesium-based biomaterials is critical to clinical applications. In this work, carbon as a biocompatible and benign nonmetallic element with high chemical inertness is implanted into pure magnesium to improve the corrosion behavior. X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HR-TEM), and Raman scattering reveal the formation of an amorphous carbon layer after ion implantation. Electrochemical studies demonstrate remarkable improvement in the corrosion resistance of magnesium in simulated body fluids (SBF) and Dulbecco’s Modified Eagle Medium (DMEM)

  6. Coherent scattering of CO2 light from ion-acoustic waves

    International Nuclear Information System (INIS)

    Peratt, A.L.; Watterson, R.L.; Derfler, H.

    1977-01-01

    Scattering of laser radiation from ion-acoustic waves in a plasma is investigated analytically and experimentally. The formulation predicts a coherent component of the scattered power on a largely incoherent background spectrum when the acoustic analog of Bragg's law and Doppler shift conditions are satisfied. The experiment consists of a hybrid CO 2 laser system capable of either low power continuous wave or high power pulsed mode operation. A heterodyne light mixing scheme is used to detect the scattered power. The proportionality predicted by the theory is verified by scattering from externally excited acoustic and ion-acoustic waves; continuous wave and pulsed modes in each case. Measurement of the ion-acoustic dispersion relation by continuous wave scattering is also presented

  7. Heavy ion elastic scatterings

    International Nuclear Information System (INIS)

    Mermaz, M.C.

    1984-01-01

    Diffraction and refraction play an important role in particle elastic scattering. The optical model treats correctly and simultaneously both phenomena but without disentangling them. Semi-classical discussions in terms of trajectories emphasize the refractive aspect due to the real part of the optical potential. The separation due to to R.C. Fuller of the quantal cross section into two components coming from opposite side of the target nucleus allows to understand better the refractive phenomenon and the origin of the observed oscillations in the elastic scattering angular distributions. We shall see that the real part of the potential is responsible of a Coulomb and a nuclear rainbow which allows to determine better the nuclear potential in the interior region near the nuclear surface since the volume absorption eliminates any effect of the real part of the potential for the internal partial scattering waves. Resonance phenomena seen in heavy ion scattering will be discussed in terms of optical model potential and Regge pole analysis. Compound nucleus resonances or quasi-molecular states can be indeed the more correct and fundamental alternative

  8. Neutron scattering investigation of carbon/carbon composites

    International Nuclear Information System (INIS)

    Prem, M.; Krexner, G.; Peterlik, H.

    2005-01-01

    Full text: Carbon/Carbon (C/C) composites, built up from bi-directionally woven fabrics from PAN based carbon fibers, pre-impregnated with phenolic resin followed by pressure curing and carbonization at 1000 o C and a final heat treatment at either 1800 o C or 2400 o C, were investigated by means of small-angle as well as wideangle elastic neutron scattering. Sample orientations arranging the carbon fibers parallel and perpendicular to the incoming beam were examined. Structural features of the composites, i.e. of the fibers as well as the inherently existing pores, are presented and the influence of the heat treatment on the structural properties is discussed. (author)

  9. InN{0001} polarity by ion scattering spectroscopy

    International Nuclear Information System (INIS)

    Walker, M.; Veal, T.D.; McConville, C.F.; Lu, Hai; Schaff, W.J.

    2005-01-01

    The polarity of a wurtzite InN thin film grown on a c-plane sapphire substrate with GaN and AlN buffer layers has been investigated by co-axial impact collision ion scattering spectroscopy (CAICISS). Time of flight (TOF) spectra of He + ions scattered from the surface of the InN film were taken as a function of the incident angles of the primary 3 keV He + ions. From the TOF spectra, the polar angle-dependence of the In scattered intensity was obtained. Comparison of the experimental polar-angle dependence of the In CAICISS signal intensity with simulated results for the various volume ratios of (0001)- and (000 anti 1)-polarity domains indicated that the InN film is approximately 75% In-polarity and 25% N-polarity. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. On the neutralization of noble gas ions in low energy ion scattering

    International Nuclear Information System (INIS)

    Draxler, M.

    2003-04-01

    The set-up ACOLISSA has been set to operation. It was thoroughly tested and found to completely fulfill the requirements for the measurement of charge integrated and of ion TOF-LEIS spectra. Charge integrated scattering spectra in LEIS exhibit a surface peak in many experimental conditions. It was shown that the appearance of this peak is due to a reduced energy width of the contribution from the surface layer and partly due to a reduced energy loss in the surface layer as compared to deeper layers. In the regime of strong multiple scattering, both reasons reflect the fact, that scattering from surface atoms occurs practically exclusively by single binary collisions, while plural and multiple scattering set in in the subsurface layers. As a consequence, only the surface layer and to some extent also the second layer will contribute to the surface peak. Experiment as well as simulation show this behavior, so that other possible reasons for the appearance of a surface peak (e.g. channeling) can safely be ruled out. At high energies, when the multiple scattering half width angle is small, surface effects are mainly caused by electronic stopping and become small, as observed in both, experiment and simulation. In this regime, the energy spectrum is well described by the single scattering spectrum. From the present thesis one can draw the following conclusions concerning the neutralization of noble gas ions at metal surfaces: below the threshold for collision induced processes (CIN, CIR) Ε Εth), P+ is governed by local processes (collision induced neutralization and collision induced reionization) and by a non-local process (Auger neutralization), and thus depends on the energy as well as on vperp. From experiments like the one presented here, where the ion energy as well as the scattering geometry are varied, the process parameters of the neutralization can uniquely be determined for any system. These findings are generally valid and reveal the relevance of different

  11. Proton and carbon ion therapy

    CERN Document Server

    Lomax, Tony

    2013-01-01

    Proton and Carbon Ion Therapy is an up-to-date guide to using proton and carbon ion therapy in modern cancer treatment. The book covers the physics and radiobiology basics of proton and ion beams, dosimetry methods and radiation measurements, and treatment delivery systems. It gives practical guidance on patient setup, target localization, and treatment planning for clinical proton and carbon ion therapy. The text also offers detailed reports on the treatment of pediatric cancers, lymphomas, and various other cancers. After an overview, the book focuses on the fundamental aspects of proton and carbon ion therapy equipment, including accelerators, gantries, and delivery systems. It then discusses dosimetry, biology, imaging, and treatment planning basics and provides clinical guidelines on the use of proton and carbon ion therapy for the treatment of specific cancers. Suitable for anyone involved with medical physics and radiation therapy, this book offers a balanced and critical assessment of state-of-the-art...

  12. Heavy ion elastic scattering of code : OPTHI

    International Nuclear Information System (INIS)

    Ismail, M.; Divatia, A.S.

    1982-01-01

    A computer code, OPTHI has been designed to calculate nuclear optical model elastic cross sections for the scattering of heavy ions. The program has been designed to be utilitarian rather than capable of giving an exact description of elastic scattering. Input format is described and the program listing is given. (M.G.B.)

  13. Fast-ion dynamics in the TEXTOR tokamak measured by collective Thomson scattering

    DEFF Research Database (Denmark)

    Bindslev, H.; Nielsen, S.K.; Porte, L.

    2006-01-01

    Here we present the first measurements by collective Thomson scattering of the evolution of fast-ion populations in a magnetically confined fusion plasma. 150 kW and 110 Ghz radiation from a gyrotron were scattered in the TEXTOR tokamak plasma with energetic ions generated by neutral beam injection...... and ion cyclotron resonance heating. The temporal behavior of the spatially resolved fast-ion velocity distribution is inferred from the received scattered radiation. The fast-ion dynamics at sawteeth and the slowdown after switch off of auxiliary heating is resolved in time. The latter is shown...

  14. Electronic sputtering by swift highly charged ions of nitrogen on amorphous carbon

    International Nuclear Information System (INIS)

    Caron, M.; Haranger, F.; Rothard, H.; Ban d'Etat, B.; Boduch, P.; Clouvas, A.; Potiriadis, C.; Neugebauer, R.; Jalowy, T.

    2001-01-01

    Electronic sputtering with heavy ions as a function of both electronic energy loss dE/dx and projectile charge state q was studied at the French heavy ion accelerator GANIL. Amorphous carbon (untreated, and sputter-cleaned and subsequently exposed to nitrogen) was irradiated with swift highly charged ions (Z=6-73, q=6-54, energy 6-13 MeV/u) in an ultrahigh vacuum scattering chamber. The fluence dependence of ion-induced electron yields allows to deduce a desorption cross-section σ which varies approximately as σ∼(dE/dx) 1.65 or σ∼q 3.3 for sputter-cleaned amorphous carbon exposed to nitrogen. This q dependence is close to the cubic charge dependence observed for the emission of H + secondary ions which are believed to be emitted from the very surface. However, the power law σ∼(dE/dx) 1.65 , related to the electronic energy loss gives the best empirical description. The dependence on dE/dx is close to a quadratic one thus rather pointing towards a thermal evaporation-like effect

  15. Coupled channels effects in heavy ion elastic scattering

    International Nuclear Information System (INIS)

    Bond, P.D.

    1977-01-01

    The effects of inelastic excitation on the elastic scattering of heavy ions are considered within a coupled channels framework. Both Coulomb and nuclear excitation results are applied to 18 O + 184 W and other heavy ion reactions

  16. Resonance interaction of heavy ions in radar scattering

    International Nuclear Information System (INIS)

    Strutinskij, V.M.

    1983-01-01

    Resonances on back angles in the process of scatterina of heavy ions are investigated. Comprehensive investigation into possible sources of irregular structure of angular distribution during elastic scattering (ES) on wide angles are compated with an experiment. The first source is a two-component interference and the second one is a resonance structure connected with the process of formation of definite nucleon states in strongly deformed intermediate nucleus. Comparison of radar cross section calculations (back scattering cross section) with angular ES distributions of hydrogen on silicon testifies a possibility to interpret an anomalous scattering on wide angles in some reactions with heavy ions as a result of modulation of partial amplitudes by resonances of the input state typein the initial state of interaction of two nuclei

  17. Resonant inelastic scattering of quasifree electrons on ions

    International Nuclear Information System (INIS)

    Grabbe, S.

    1994-01-01

    Several studies of resonant-transfer excitation (RTE) have been reported in ion-atom collisions where the doubly excited autoionizing states are produced. Such a complex collision can be approximated as the scattering of quasifree electrons of the target from the projectile ion. Most of the investigations have been restricted to the deexcitation of the autoionizing states to the ground state by Auger electron emission. It has been shown that there is a strong interference between the elastic scattering amplitude and the resonance amplitude. The authors present here the cases where the corresponding interference is between the inelastic scattering and the resonance process. Recent work on 3 ell 3 ell ' resonances that decay predominantly to n=2 states will be presented for C 5+ -molecular hydrogen collisions

  18. Analysing power for quasi-elastic pp scattering in carbon and for elastic pp scattering on free protons

    International Nuclear Information System (INIS)

    Bystricky, J.; Deregel, J.; Lehar, F.

    1984-01-01

    The ratio of the analysing powers for quasi-elastic pp scattering in carbon and for elastic scattering on free protons was measured from T = 0.52 to 2.8 GeV by scattering of the SATURNE II polarized proton beam on carbon and CH 2 . It was found to have a maximum at about 0.8 GeV. The energy dependence for quasi-elastic scattering on carbon had not been measured before above 1 GeV. The observed effect was not expected from simple models

  19. The threshold anomaly for heavy-ion scattering

    Energy Technology Data Exchange (ETDEWEB)

    Satchler, G.R.

    1987-01-01

    The real parts of optical potentials deduced from heavy-ion scattering measurements become rapidly more attractive as the bombarding energy is reduced close to the top of the Coulomb barrier. This behavior is explained as a coupled-channels effect, and is related to the corresponding reduction in the absorptive potential through a dispersion relation which expresses the consequences of causality. Another manifestation of this ''anomaly'' is the striking enhancement observed for the near- and sub-barrier fusion of two heavy ions. The barrier penetration model of fusion is examined critically in this context. It is also stressed that similar anomalies could appear in the energy dependence of nonelastic scattering. 21 refs., 4 figs.

  20. Charge-state distribution of MeV He ions scattered from the surface atoms

    International Nuclear Information System (INIS)

    Kimura, Kenji; Ohtsuka, Hisashi; Mannami, Michihiko

    1993-01-01

    The charge-state distribution of 500-keV He ions scattered from a SnTe (001) surface has been investigated using a new technique of high-resolution high-energy ion scattering spectroscopy. The observed charge-state distribution of ions scattered from the topmost atomic layer coincides with that of ions scattered from the subsurface region and does not depend on the incident charge state but depends on the exit angle. The observed exit-angle dependence is explained by a model which includes the charge-exchange process with the valence electrons in the tail of the electron distribution at the surface. (author)

  1. Possibilities for direct optical observation of negative hydrogen ions in ion beam plasma sources via Rayleigh or Thomson scattering

    International Nuclear Information System (INIS)

    Burgess, D.D.

    1985-01-01

    The possibilities of applying optical scattering techniques to the determination of H - concentrations in plasma sources relevant to negative ion beam generation are considered. Rayleigh scattering measurements for incident wavelengths just below the H - photoionization limit appear to be only just feasible experimentally. A more promising possibility is observation of the modification in a plasma containing negative ions of the collective ion-feature in Thomson scattering. Numerical predictions of the effects of H - concentration on the spectral distribution of the ion-feature are presented. (author)

  2. Complementary scattered and recoiled ion data from TOF-E heavy ion elastic recoil detection analysis

    International Nuclear Information System (INIS)

    Johnston, P.N.; El Bouanani, M.; Stannard, W.B.; Bubb, I.F.; Cohen, D.D.; Dytlewski, N.; Siegele, R.

    1998-01-01

    The advantage of Time of Flight and Energy (ToF-E) Heavy Ion Elastic Recoil Detection Analysis (HIERDA) over Rutherford Backscattering (RBS) analysis is its mass and energy dispersive capabilities. The mass resolution of ToF-E HIERDA deteriorates for very heavy elements. The limitation is related to the poor energy resolution of Si detectors for heavy ions. While the energy spectra from ToF-E HIERDA data are normally used to extract depth profiles, this work discusses the benefits of using the time spectra of both the recoiled and the scattered ions for depth profiling. The simulation of the complementary scattered and recoiled ion time spectra improves depth profiling and reduced current limitations when dealing with very heavy ions, such as Pt, Bi, Ta. (authors)

  3. Optimalization study for ion-temperature measurements by means of Rutherford scattering

    International Nuclear Information System (INIS)

    Donne, A.J.H.; Barbian, E.P.

    1986-03-01

    Small-angle Rutherford scattering of energetic neutrals by plasma ions is governed by energy and momentum conservation. The FWHM of the scattering distibution reveals the ion temperature of the plasma. A feasibility study is performed to optimize the parameters in case Rutherford-scattering technique is applied to a medium-sized tokamak experiment. Together with a time-of-flight analyser with a high energy resolution of about 100, a 20 keV helium probing beam with a neutral current density of 10 A/m 2 can provide a detailed spectrum within 3 ms, from which the ion temperature can be extracted with an accuracy of better than 10%. The influence of plasma impurities and resonant charge exchange on the scattering process is discussed in detail. The good spatial resolution makes the method very suitable to investigate energy deposition profiles in the case of ion-cyclotron radiation applied to the plasma for the purpose of plasma heating. (orig.)

  4. Physics of the ion acoustic wave driven by the stimulated Brillouin scattering instability

    International Nuclear Information System (INIS)

    Clayton, C.E.

    1984-01-01

    The ion acoustic wave excited in the stimulated Brillouin scattering (SBS) instability is probed via collective ruby-laser Thomson scattering in order to understand the low saturation level observed in the instability. Many of the features observed in the Brillouin backscattered CO 2 laser light from the underdense gas-target plasma are also observed in the Thomson scattered ruby light - from which it is learned that the ion acoustic wave grows exponentially and then saturates as the CO 2 pump power is increased. The primary advantage of the ruby Thomson scattering diagnostic is in its capability of providing simultaneous space and time resolved measurements of the ion wave amplitude. From these first such detailed measurements, it was found that the ion wave grows exponentially in space at a rate that agrees with the linear convective SBS theory. However, at higher pump powers, the ion wave saturates at an inferred amplitude of anti-n/n 0 approx. = 5 to 10%. Further increases in the pump power appear to result in an increase in the length over which the ion wave is saturated. A nearly constant SBS reflectivity in this saturated regime, however, suggests that the saturated ion wave does not contribute as much to the scattered power as would be expected from Bragg scattering theory. This apparent contradiction can be resolved if ion trapping is responsible for the saturation of the ion wave

  5. Scaling relations in elastic scattering cross sections between multiply charged ions and hydrogen

    International Nuclear Information System (INIS)

    Rodriguez, V.D.

    1991-01-01

    Differential elastic scattering cross sections of bare ions from hydrogen are calculated using the eikonal approximation. The results satisfy a scaling relation involving the scattering angle, the ion charge and a factor related to the ion mass. A semiclassical explanation in terms of a distant collision hypothesis for small scattering angle is proposed. A unified picture of related scaling rules found in direct processes is discussed. (author)

  6. Computer simulation program for medium-energy ion scattering and Rutherford backscattering spectrometry

    Science.gov (United States)

    Nishimura, Tomoaki

    2016-03-01

    A computer simulation program for ion scattering and its graphical user interface (MEISwin) has been developed. Using this program, researchers have analyzed medium-energy ion scattering and Rutherford backscattering spectrometry at Ritsumeikan University since 1998, and at Rutgers University since 2007. The main features of the program are as follows: (1) stopping power can be chosen from five datasets spanning several decades (from 1977 to 2011), (2) straggling can be chosen from two datasets, (3) spectral shape can be selected as Gaussian or exponentially modified Gaussian, (4) scattering cross sections can be selected as Coulomb or screened, (5) simulations adopt the resonant elastic scattering cross section of 16O(4He, 4He)16O, (6) pileup simulation for RBS spectra is supported, (7) natural and specific isotope abundances are supported, and (8) the charge fraction can be chosen from three patterns (fixed, energy-dependent, and ion fraction with charge-exchange parameters for medium-energy ion scattering). This study demonstrates and discusses the simulations and their results.

  7. Charge state of ions scattered by metal surface

    International Nuclear Information System (INIS)

    Kishinevsky, L.M.; Parilis, E.S.; Verleger, V.K.

    1976-01-01

    A model for description of charge distributions for scattering of heavy ions in the keV region, on metal surfaces developing and improving the method of Van der Weg and Bierman, and taking into account the connection between the ion charge state and scattering kinematics, is proposed. It is shown that multiple charged particles come from ions with a vacancy in the inner shell while the outer shell vacancies give only single charged ions and neutrals. The approximately linear increase of degree of ionization with normal velocity, and the non-monotonic charge dependence of the energy spectrum established by Chicherov and Buck et al is explained by considering irreversible neutralization in the depth of the metal, taking into account the connection of the charge state with the shape of trajectory and its location relative to the metal surface. The dependence of charge state on surface structure is discussed. Some new experiments are proposed. (author)

  8. Studies on ion scattering and sputtering processes relevant to ion beam sputter deposition of multicomponent thin films

    International Nuclear Information System (INIS)

    Auciello, O.; Ameen, M.S.; Kingon, A.I.

    1989-01-01

    Results from computer simulation and experiments on ion scattering and sputtering processes in ion beam sputter deposition of high Tc superconducting and ferroelectric thin films are presented. It is demonstrated that scattering of neutralized ions from the targets can result in undesirable erosion of, and inert gas incorporation in, the growing films, depending on the ion/target atom ass ratio and ion beam angle of incidence/target/substrate geometry. The studies indicate that sputtering Kr + or Xe + ions is preferable to the most commonly used Ar + ions, since the undesirable phenomena mentioned above are minimized for the first two ions. These results are used to determine optimum sputter deposition geometry and ion beam parameters for growing multicomponent oxide thin films by ion beam sputter-deposition. 10 refs., 5 figs

  9. Measurements of scattering processes in negative ion-atom collisions

    International Nuclear Information System (INIS)

    Kvale, T.J.

    1992-01-01

    This Technical Progress Report describes the progress made on the research objectives during the past twelve months. This research project is designed to provide measurements of various scattering processes which occur in H - collisions with atomic (specifically, noble gas and atomic hydrogen) targets at intermediate energies. These processes include: elastic scattering,single- and double-electron detachment, and target excitation/ionization. For the elastic and target inelastic processes where H - is scattered intact, the experimental technique of Ion Energy-Loss Spectroscopy (IELS) will be employed to identify the final target state(s). In most of the above processes, cross sections are unknown both experimentally and theoretically. The measurements in progress will provide either experimentally-determined cross sections or set upper limits to those cross sections. In either case, these measurements will be stringent tests of our understanding in energetic negative ion-atom collisions. This series of experiments required the construction of a new facility and the initial ion beam was accelerated through the apparatus in April 1991

  10. Mechanical Design of Carbon Ion Optics

    Science.gov (United States)

    Haag, Thomas

    2005-01-01

    Carbon Ion Optics are expected to provide much longer thruster life due to their resistance to sputter erosion. There are a number of different forms of carbon that have been used for fabricating ion thruster optics. The mechanical behavior of carbon is much different than that of most metals, and poses unique design challenges. In order to minimize mission risk, the behavior of carbon must be well understood, and components designed within material limitations. Thermal expansion of the thruster structure must be compatible with thermal expansion of the carbon ion optics. Specially designed interfaces may be needed so that grid gap and aperture alignment are not adversely affected by dissimilar material properties within the thruster. The assembled thruster must be robust and tolerant of launch vibration. The following paper lists some of the characteristics of various carbon materials. Several past ion optics designs are discussed, identifying strengths and weaknesses. Electrostatics and material science are not emphasized so much as the mechanical behavior and integration of grid electrodes into an ion thruster.

  11. Neutron scattering analysis of rubber carbon black composite structure

    International Nuclear Information System (INIS)

    Hjelm, R.P. Jr.; Wampler, W.A.; Gerspacher, M.

    1994-01-01

    We explore the uses of small-angle neutron scattering to dissect component form, structure and distribution in carbon black-reinforced rubber by varying the contrast of the system relative to some fluid by changing the fluid scattering-length density. This is the method of contrast variation. Contrast variation allows us to separate scattering contributions from the different components. Here, we extend our studies on high surface area (HSA) carbon black suspended in cyclohexane/deuterocyclohexane to HSA mixed with polyisoprene as a gel of ''bound'' rubber swollen with the same solvent mixtures. Contrast variation of swollen composite gels shows that there are two length scales in the gel structure. Above 1 nm fluctuations in the carbon black predominate. Interactions with elastomer hold the HSA aggregates appart. Below 1 nm the scattering is largely from the elastomer. The smooth surface structure of the carbon black is unaltered by the interactions with elastomer and appears smooth over length scales above about 1 nm. These results show that contrast variation can provide information on composite structure that is not available by other means. This information relates to the reinforcement mechanism of elastomers by carbon blacks

  12. Ion scattering spectroscopy studies of zirconium dioxide thin films prepared in situ

    International Nuclear Information System (INIS)

    Martin, P.J.; Netterfield, R.P.

    1987-01-01

    Low energy Ion Scattering Spectroscopy has been used to investigate, in situ, thin films of zirconium dioxide deposited by evaporation and ion-assisted deposition. It is shown that when a film is deposited to an average thickness of 0.3 nm +- 0.03, as measured by in situ ellipsometry, complete coverage of the substrate occurs. 'Ion-assisted films have detectably higher Zr surface concentrations and reduced low-energy sputter peaks. Inelastic tailing effects in the Zr scattering peak for 2 keV 4 He + are found to come from particles scattered from approximately the first 7 nm of the oxide surface. The influence of primary ion energy on the Zr/O ratio is also examined. (author)

  13. Computer simulation program for medium-energy ion scattering and Rutherford backscattering spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Tomoaki, E-mail: t-nishi@hosei.ac.jp

    2016-03-15

    A computer simulation program for ion scattering and its graphical user interface (MEISwin) has been developed. Using this program, researchers have analyzed medium-energy ion scattering and Rutherford backscattering spectrometry at Ritsumeikan University since 1998, and at Rutgers University since 2007. The main features of the program are as follows: (1) stopping power can be chosen from five datasets spanning several decades (from 1977 to 2011), (2) straggling can be chosen from two datasets, (3) spectral shape can be selected as Gaussian or exponentially modified Gaussian, (4) scattering cross sections can be selected as Coulomb or screened, (5) simulations adopt the resonant elastic scattering cross section of {sup 16}O({sup 4}He, {sup 4}He){sup 16}O, (6) pileup simulation for RBS spectra is supported, (7) natural and specific isotope abundances are supported, and (8) the charge fraction can be chosen from three patterns (fixed, energy-dependent, and ion fraction with charge-exchange parameters for medium-energy ion scattering). This study demonstrates and discusses the simulations and their results.

  14. Rayleigh scattering from ions near threshold

    International Nuclear Information System (INIS)

    Roy, S.C.; Gupta, S.K.S.; Kissel, L.; Pratt, R.H.

    1988-01-01

    Theoretical studies of Rayleigh scattering of photons from neon atoms with different degrees of ionization, for energies both below and above the K-edges of the ions, are presented. Some unexpected structures both in Rayleigh scattering and in photoionization from neutral and weakly ionized atoms, very close to threshold, have been reported. It has recently been realized that some of the predicted structures may have a nonphysical origin and are due to the limitation of the independent-particle model and also to the use of a Coulombic Latter tail. Use of a K-shell vacancy potential - in which an electron is assumed to be removed from the K-shell - in calculating K-shell Rayleigh scattering amplitudes removes some of the structure effects near threshold. We present in this work a discussion of scattering angular distributions and total cross sections, obtained utilizing vacancy potentials, and compare these predictions with those previously obtained in other potential model. (author) [pt

  15. Intense heavy ion beam-induced effects in carbon-based stripper foils

    Energy Technology Data Exchange (ETDEWEB)

    Kupka, Katharina

    2016-08-15

    -ray scattering (SAXS) were used. The changes of physical properties, in particular the electrical resistivity, thermal conductivity and stiffness of the foils were studied by in-situ 4-point probe, laser flash analysis and atomic force microscopy, respectively. A technique for measuring temperature of very thin, semitransparent and free-standing stripper foils during irradiation by means of an infrared (IR) camera was developed and applied. The experimental investigations were complemented by molecular dynamics simulations of amorphous carbon exposed to different swift heavy ions. The simulations provide information on the structural changes in the tracks at atomic scale. Virtual amorphous carbon cells were created by simulating liquid quenching and plasma deposition, yielding cells with different degrees of clustering of sp{sup 2} and sp{sup 3} bonding. The impacts of swift heavy ions were modeled by an instantaneous energy deposition deduced from inelastic thermal spike model calculations. Results of experiments and simulations provide evidence for the beam-induced transformation of amorphous carbon to a defected graphitic structure and for clustering of sp{sup 2} and sp{sup 3} bonds. These structural changes result in severe property changes. The electrical and thermal properties of amorphous carbon seem to improve during beam exposure, but the mechanical properties degrade severely. The beam conditions have a strong influence on the evolution of induced structure and property changes. A better understanding of the response of (amorphous) carbon stripper foils to swift heavy ion beams as revealed by dedicated irradiation and characterization experiments performed within this thesis, provides criteria for material requirements for future stripper foils used in high-power heavy ion accelerators such as FAIR.

  16. Intense heavy ion beam-induced effects in carbon-based stripper foils

    International Nuclear Information System (INIS)

    Kupka, Katharina

    2016-08-01

    -ray scattering (SAXS) were used. The changes of physical properties, in particular the electrical resistivity, thermal conductivity and stiffness of the foils were studied by in-situ 4-point probe, laser flash analysis and atomic force microscopy, respectively. A technique for measuring temperature of very thin, semitransparent and free-standing stripper foils during irradiation by means of an infrared (IR) camera was developed and applied. The experimental investigations were complemented by molecular dynamics simulations of amorphous carbon exposed to different swift heavy ions. The simulations provide information on the structural changes in the tracks at atomic scale. Virtual amorphous carbon cells were created by simulating liquid quenching and plasma deposition, yielding cells with different degrees of clustering of sp 2 and sp 3 bonding. The impacts of swift heavy ions were modeled by an instantaneous energy deposition deduced from inelastic thermal spike model calculations. Results of experiments and simulations provide evidence for the beam-induced transformation of amorphous carbon to a defected graphitic structure and for clustering of sp 2 and sp 3 bonds. These structural changes result in severe property changes. The electrical and thermal properties of amorphous carbon seem to improve during beam exposure, but the mechanical properties degrade severely. The beam conditions have a strong influence on the evolution of induced structure and property changes. A better understanding of the response of (amorphous) carbon stripper foils to swift heavy ion beams as revealed by dedicated irradiation and characterization experiments performed within this thesis, provides criteria for material requirements for future stripper foils used in high-power heavy ion accelerators such as FAIR.

  17. Energy and angle resolved ion scattering spectroscopy: new possibilities for surface analysis

    International Nuclear Information System (INIS)

    Hellings, G.J.A.

    1986-01-01

    In this thesis the design and development of a novel, very sensitive and high-resolving spectrometer for surface analysis is described. This spectrometer is designed for Energy and Angle Resolved Ion Scattering Spectroscopy (EARISS). There are only a few techniques that are sensitive enough to study the outermost atomic layer of surfaces. One of these techniques, Low-Energy Ion Scattering (LEIS), is discussed in chapter 2. Since LEIS is destructive, it is important to make a very efficient use of the scattered ions. This makes it attractive to simultaneously carry out energy and angle dependent measurements (EARISS). (Auth.)

  18. Channeling regimes in ion surface scattering

    NARCIS (Netherlands)

    Robin, A; Heiland, W

    We report on surface channeling experiments of singly charged ions on single crystal surfaces of Pt(1 1 0) and Pd(1 1 0). Using a time-of-flight system installed in forward direction we analyze the energy distribution of the scattered projectiles. By variation of the primary energy and the angle of

  19. Simulation of multiple scattering background in heavy ion backscattering spectrometry

    International Nuclear Information System (INIS)

    Li, M.M.; O'Connor, D.J.

    1999-01-01

    With the development of heavy ion backscattering spectrometry (HIBS) for the detection of trace quantities of heavy-atom impurities on Si surfaces, it is necessary to quantify the multiple scattering contribution to the spectral background. In the present work, the Monte Carlo computer simulation program TRIM has been used to study the backscattering spectrum and the multiple scattering background features for heavy ions C, Ne, Si, Ar and Kr impinging on four types of targets: (1) a single ultra-thin (free standing) Au film of 10 A thickness, (2) a 10 A Au film on a 50 A Si surface, (3) a 10 A Au film on an Si substrate (10 000 A), and (4) a thick target (10 000 A) of pure Si. The ratio of the signal from the Au thin layer to the background due to multiple scattering has been derived by fitting the simulation results. From the simulation results, it is found that the Au film contributes to the background which the Si plays a role in developing due to the ion's multiple scattering in the substrate. Such a background is generated neither by only the Au thin layer nor by the pure Si substrate independently. The corresponding mechanism of multiple scattering in the target can be explained as one large-angle scattering in the Au layer and subsequently several small angle scatterings in the substrate. This study allows an appropriate choice of incident beam species and energy range when the HIBS is utilized to analyse low level impurities in Si wafers

  20. In-Situ Observation of Solid Electrolyte Interphase Formation in Ordered Mesoporous Hard Carbon by Small-Angle Neutron Scattering

    International Nuclear Information System (INIS)

    Bridges, Craig A.; Paranthaman, Mariappan Parans; Sun, Xiao-Guang; Zhao, Jinkui; Dai, Sheng

    2012-01-01

    The aim of this work was to better understand the electrochemical processes occurring during the cycling of a lithium-ion half-cell containing ordered mesoporous hard carbon using time-resolved in situ small-angle neutron scattering (SANS). Utilizing electrolytes containing mixtures of deuterated (2H) and non-deuterated (1H) carbonates, we have addressed the challenging task of monitoring the formation and evolution of the solid-electrolyte interphase (SEI) layer. An evolution occurs in the SEI layer during discharge from a composition dominated by a higher scattering length density (SLD) lithium salt, to a lower SLD lithium salt for the ethylene carbonate/dimethyl carbonate (EC/DMC) mixture employed. By comparing half-cells containing different solvent deuteration levels, we show that it is possible to observe both SEI formation and lithium intercalation occurring concurrently at the low voltage region in which lithium intercalates into the hard carbon. These results demonstrate that SANS can be employed to monitor complicated electrochemical processes occurring in rechargeable batteries, in a manner that simultaneously provides information on the composition and microstructure of the electrode.

  1. Chaotic scattering in heavy-ion reactions with mass transfer

    International Nuclear Information System (INIS)

    Rodriguez Padron, Emilio; Guzman Martinez, Fernando

    1998-01-01

    The role of the mass transfer in heavy ion collisions is analyzed in the framework of a simple semi phenomenological model searching for chaotic scattering effects. The model couples the relative motion of the ions to a collective degree of freedom. The collective degree of freedom is identified by the mass asymmetry of the system. A Saxon-Woods potential is used for nucleus-nucleus interaction whiles a harmonic potential rules the temporal behaviour of the collective degree of freedom. This model shows chaotic scattering which could be an explanation for certain types of cross-section fluctuations observed in this kind of reactions

  2. Principles of fuel ion ratio measurements in fusion plasmas by collective Thomson scattering

    DEFF Research Database (Denmark)

    Stejner Pedersen, Morten; Nielsen, Stefan Kragh; Bindslev, Henrik

    2011-01-01

    ratio. Measurements of the fuel ion ratio will be important for plasma control and machine protection in future experiments with burning fusion plasmas. Here we examine the theoretical basis for fuel ion ratio measurements by CTS. We show that the sensitivity to plasma composition is enhanced......For certain scattering geometries collective Thomson scattering (CTS) measurements are sensitive to the composition of magnetically confined fusion plasmas. CTS therefore holds the potential to become a new diagnostic for measurements of the fuel ion ratio—i.e. the tritium to deuterium density...... by the signatures of ion cyclotron motion and ion Bernstein waves which appear for scattering geometries with resolved wave vectors near perpendicular to the magnetic field. We investigate the origin and properties of these features in CTS spectra and give estimates of their relative importance for fuel ion ratio...

  3. Indirect processes in electron-ion scattering

    International Nuclear Information System (INIS)

    Bottcher, C.; Griffin, D.C.; Pindzola, M.S.; Phaneuf, R.A.

    1983-10-01

    A summary is given of an informal workshop held at Oak Ridge National Laboratory on June 22-23, 1983, in which the current status of theoretical calculations of indirect processes in electron-ion scattering was reviewed. Processes of particular interest in astrophysical and fusion plasmas were emphasized. Topics discussed include atomic structure effects, electron-impact ionization, and dielectronic recombination

  4. Indirect processes in electron-ion scattering

    Energy Technology Data Exchange (ETDEWEB)

    Bottcher, C.; Griffin, D.C.; Pindzola, M.S.; Phaneuf, R.A.

    1983-10-01

    A summary is given of an informal workshop held at Oak Ridge National Laboratory on June 22-23, 1983, in which the current status of theoretical calculations of indirect processes in electron-ion scattering was reviewed. Processes of particular interest in astrophysical and fusion plasmas were emphasized. Topics discussed include atomic structure effects, electron-impact ionization, and dielectronic recombination.

  5. Ion-induced particle desorption in time-of-flight medium energy ion scattering

    Science.gov (United States)

    Lohmann, S.; Primetzhofer, D.

    2018-05-01

    Secondary ions emitted from solids upon ion impact are studied in a time-of-flight medium energy ion scattering (ToF-MEIS) set-up. In order to investigate characteristics of the emission processes and to evaluate the potential for surface and thin film analysis, experiments employing TiN and Al samples were conducted. The ejected ions exhibit a low initial kinetic energy of a few eV, thus, requiring a sufficiently high acceleration voltage for detection. Molecular and atomic ions of different charge states originating both from surface contaminations and the sample material are found, and relative yields of several species were determined. Experimental evidence that points towards a predominantly electronic sputtering process is presented. For emitted Ti target atoms an additional nuclear sputtering component is suggested.

  6. Ion mobilities in diatomic gases: measurement versus prediction with non-specular scattering models.

    Science.gov (United States)

    Larriba, Carlos; Hogan, Christopher J

    2013-05-16

    Ion/electrical mobility measurements of nanoparticles and polyatomic ions are typically linked to particle/ion physical properties through either application of the Stokes-Millikan relationship or comparison to mobilities predicted from polyatomic models, which assume that gas molecules scatter specularly and elastically from rigid structural models. However, there is a discrepancy between these approaches; when specular, elastic scattering models (i.e., elastic-hard-sphere scattering, EHSS) are applied to polyatomic models of nanometer-scale ions with finite-sized impinging gas molecules, predictions are in substantial disagreement with the Stokes-Millikan equation. To rectify this discrepancy, we developed and tested a new approach for mobility calculations using polyatomic models in which non-specular (diffuse) and inelastic gas-molecule scattering is considered. Two distinct semiempirical models of gas-molecule scattering from particle surfaces were considered. In the first, which has been traditionally invoked in the study of aerosol nanoparticles, 91% of collisions are diffuse and thermally accommodating, and 9% are specular and elastic. In the second, all collisions are considered to be diffuse and accommodating, but the average speed of the gas molecules reemitted from a particle surface is 8% lower than the mean thermal speed at the particle temperature. Both scattering models attempt to mimic exchange between translational, vibrational, and rotational modes of energy during collision, as would be expected during collision between a nonmonoatomic gas molecule and a nonfrozen particle surface. The mobility calculation procedure was applied considering both hard-sphere potentials between gas molecules and the atoms within a particle and the long-range ion-induced dipole (polarization) potential. Predictions were compared to previous measurements in air near room temperature of multiply charged poly(ethylene glycol) (PEG) ions, which range in morphology from

  7. Rainbow and Fresnel diffraction effects in the heavy ion scattering

    International Nuclear Information System (INIS)

    Salvadori, M.C.B.S.

    1984-01-01

    A detailed theoretical analysis of the heavy-ion elastic scattering differential cross section, using the uniform semiclassical approximation of Berry in the sharp cut-off limit is presented. A decomposition of the cross section into four physically well-defined components is used in the analysis. The aim of the analysis is to explore the possibility of distinguishing at the cross-section level, between a pure raibow or Fresnel diffraction nature of the heavy-ion elastic scattering at above-barrier energies and not too large angles. (Author) [pt

  8. Benchmarking the inelastic neutron scattering soil carbon method

    Science.gov (United States)

    The herein described inelastic neutron scattering (INS) method of measuring soil carbon was based on a new procedure for extracting the net carbon signal (NCS) from the measured gamma spectra and determination of the average carbon weight percent (AvgCw%) in the upper soil layer (~8 cm). The NCS ext...

  9. Evaluation of plastic materials for range shifting, range compensation, and solid-phantom dosimetry in carbon-ion radiotherapy

    International Nuclear Information System (INIS)

    Kanematsu, Nobuyuki; Koba, Yusuke; Ogata, Risa

    2013-01-01

    Purpose: Beam range control is the essence of radiotherapy with heavy charged particles. In conventional broad-beam delivery, fine range adjustment is achieved by insertion of range shifting and compensating materials. In dosimetry, solid phantoms are often used for convenience. These materials should ideally be equivalent to water. In this study, the authors evaluated dosimetric water equivalence of four common plastics, high-density polyethylene (HDPE), polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), and polyoxymethylene (POM). Methods: Using the Bethe formula for energy loss, the Gottschalk formula for multiple scattering, and the Sihver formula for nuclear interactions, the authors calculated the effective densities of the plastics for these interactions. The authors experimentally measured variation of the Bragg peak of carbon-ion beams by insertion of HDPE, PMMA, and POM, which were compared with analytical model calculations. Results: The theoretical calculation resulted in slightly reduced multiple scattering and severely increased nuclear interactions for HDPE, compared to water and the other plastics. The increase in attenuation of carbon ions for 20-cm range shift was experimentally measured to be 8.9% for HDPE, 2.5% for PMMA, and 0.0% for POM while PET was theoretically estimated to be in between PMMA and POM. The agreement between the measurements and the calculations was about 1% or better. Conclusions: For carbon-ion beams, POM was dosimetrically indistinguishable from water and the best of the plastics examined in this study. The poorest was HDPE, which would reduce the Bragg peak by 0.45% per cm range shift, although with marginal superiority for reduced multiple scattering. Between the two clear plastics, PET would be superior to PMMA in dosimetric water equivalence.

  10. Carbonation of wollastonite(001) competing hydration: microscopic insights from ion spectroscopy and density functional theory.

    Science.gov (United States)

    Longo, Roberto C; Cho, Kyeongjae; Brüner, Philipp; Welle, Alexander; Gerdes, Andreas; Thissen, Peter

    2015-03-04

    In this paper, we report about the influence of the chemical potential of water on the carbonation reaction of wollastonite (CaSiO3) as a model surface of cement and concrete. Total energy calculations based on density functional theory combined with kinetic barrier predictions based on nudge elastic band method show that the exposure of the water-free wollastonite surface to CO2 results in a barrier-less carbonation. CO2 reacts with the surface oxygen and forms carbonate (CO3(2-)) complexes together with a major reconstruction of the surface. The reaction comes to a standstill after one carbonate monolayer has been formed. In case one water monolayer is covering the wollastonite surface, the carbonation is no more barrier-less, yet ending in a localized monolayer. Covered with multilayers of water, the thermodynamic ground state of the wollastonite completely changes due to a metal-proton exchange reaction (also called early stage hydration) and Ca(2+) ions are partially removed from solid phase into the H2O/wollastonite interface. Mobile Ca(2+) reacts again with CO2 and forms carbonate complexes, ending in a delocalized layer. By means of high-resolution time-of-flight secondary-ion mass spectrometry images, we confirm that hydration can lead to a partially delocalization of Ca(2+) ions on wollastonite surfaces. Finally, we evaluate the impact of our model surface results by the meaning of low-energy ion-scattering spectroscopy combined with careful discussion about the competing reactions of carbonation vs hydration.

  11. Measuring main-ion temperatures in ASDEX upgrade using scattering of ECRH radiation

    DEFF Research Database (Denmark)

    Pedersen, Morten Stejner; Nielsen, Stefan Kragh; Jacobsen, Asger Schou

    2016-01-01

    We demonstrate that collective Thomson scattering of millimeter wave electron cyclotron resonance heating radiation can be used for measurements of the main-ion temperature in the ASDEX Upgrade tokamak.......We demonstrate that collective Thomson scattering of millimeter wave electron cyclotron resonance heating radiation can be used for measurements of the main-ion temperature in the ASDEX Upgrade tokamak....

  12. On mechanism of low-energy heavy ions scattering on a target surface with small atomic mass

    Energy Technology Data Exchange (ETDEWEB)

    Umarov, F.F. E-mail: farid1945@yahoo.com; Bazarbaev, N.N.; Kudryashova, L.B.; Krylov, N.M

    2002-11-01

    In the present work, an experimental study of low-energy (E{sub 0}=20-500 eV) heavy Cs{sup +} ions scattering on target surfaces with small atomic masses (Al, Si, Ni) has been performed for more accurate definition of mechanism of scattering and evaluation of an opportunity for use of heavy ions scattering as a tool of surface layer analysis. It is shown that the dependence of the relative energies of scattered ions versus the initial energy E/E{sub 0} (E{sub 0}) for Si (E{sub b}=4.64 eV/atom) and Ni (E{sub b}=4.43 eV/atom) approximately coincide despite the fact that the mass of Ni atom is twice as large as that of the Si atom mass. At the same time their binding energies E{sub b} are approximately equal to each other. It is found that the scattering angles of Cs{sup +} ions considerably exceed a limiting scattering angle {theta}{sub lim} in a single collision. It has been established that the scattering of low-energy heavy ions by light targets is described by a non-binary mechanism of many-particle interactions (simultaneous ion interaction with several target atoms). It has been shown that during the many-particle interactions the structure of energy spectra disappears; high relative energy of scattering ions and their dependence on energy of bombardment is observed. It has been found that the energy of scattered ions depends on binding energy, melting temperature and packing density of target atoms.

  13. Highly Enhanced Raman Scattering on Carbonized Polymer Films.

    Science.gov (United States)

    Yoon, Jong-Chul; Hwang, Jongha; Thiyagarajan, Pradheep; Ruoff, Rodney S; Jang, Ji-Hyun

    2017-06-28

    We have discovered a carbonized polymer film to be a reliable and durable carbon-based substrate for carbon enhanced Raman scattering (CERS). Commercially available SU8 was spin coated and carbonized (c-SU8) to yield a film optimized to have a favorable Fermi level position for efficient charge transfer, which results in a significant Raman scattering enhancement under mild measurement conditions. A highly sensitive CERS (detection limit of 10 -8 M) that was uniform over a large area was achieved on a patterned c-SU8 film and the Raman signal intensity has remained constant for 2 years. This approach works not only for the CMOS-compatible c-SU8 film but for any carbonized film with the correct composition and Fermi level, as demonstrated with carbonized-PVA (poly(vinyl alcohol)) and carbonized-PVP (polyvinylpyrollidone) films. Our study certainly expands the rather narrow range of Raman-active material platforms to include robust carbon-based films readily obtained from polymer precursors. As it uses broadly applicable and cheap polymers, it could offer great advantages in the development of practical devices for chemical/bio analysis and sensors.

  14. X-ray and neutron scattering from amorphous diamondlike carbon and hydrocarbon films

    International Nuclear Information System (INIS)

    Findeisen, E.

    1994-10-01

    In this report amorphous, diamondlike, carbon and hydrocarbon films are investigated by two different methods, namely, X-ray scattering and a combination of X-ray and neutron reflectivity. As specular reflectivity probes the scattering length density profile of a sample perpendicular to its surface, the combination of X-ray and neutron reflectivity reveals the nuclei density of both carbon and hydrogen separately. This allows to calculate the concentration of hydrogen in the films, which varies in the presented experiments between 0 and 36 atomic %. This method is a new and nondestructive technique to determine the concentration of hydrogen within an error of about ±1 at. % in samples with sharp interfaces. It is well suited for thin diamondlike carbon films. X-ray scattering is used to obtain structural information on the atomic scale, especially the average carbon-carbon distance and the average coordination number of the carbon atoms. As grazing incidence diffraction experiments were not successful, free-standing films are used for the scattering experiments with synchrotron light. However, the scattered intensity for large scattering vectors is, in spite of the intense primary beam, very weak, and therefore the accuracy of the obtained structural parameter is not sufficient to prove the diamondlike properties also on the atomic scale. (au) (10 tabs., 76 ills., 102 refs.)

  15. Scattering of Femtosecond Laser Pulses on the Negative Hydrogen Ion

    Science.gov (United States)

    Astapenko, V. A.; Moroz, N. N.

    2018-05-01

    Elastic scattering of ultrashort laser pulses (USLPs) on the negative hydrogen ion is considered. Results of calculations of the USLP scattering probability are presented and analyzed for pulses of two types: the corrected Gaussian pulse and wavelet pulse without carrier frequency depending on the problem parameters.

  16. Glancing-angle scattering of fast ions at crystal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Mannami, Michihiko; Narumi, Kazumasa; Katoh, Humiya; Kimura, Kenji [Kyoto Univ. (Japan). Faculty of Engineering

    1997-03-01

    Glancing angle scattering of fast ions from a single crystal surface is a novel technique to study ion-surface interaction. Results of recent studies of ion-surface interaction are reviewed for ions with velocities faster than the Fermi velocity of solid. For the ions with velocities less than the Fermi velocity of target valence electrons the ion-surface interaction shows a new aspect where only the valence electrons of target solid participate in the stopping processes. It will show that the position-dependent stopping power of a surface for these ions governed by the elastic collisions of valence electrons and the ions. A method is proposed from this position-dependent stopping power to derived the electron density distribution averaged over the plane parallel to the surface. (author)

  17. Scattering extraction of ions at CRYRING for SEU testing

    CERN Document Server

    Novák, D; Klamra, W; Norlin, L O; Bagge, L; Kaellberg, A; Paál, A; Rensfelt, K G; Molnár, J

    1999-01-01

    A measuring station has been built at the CRYRING heavy ion accelerator to test the Single Event Upset (SEU) phenomena in working Static RAM circuits. The setup extracts the beam using Rutherford scattering and the ions are monitored with a BaF sub 2 scintillator. SEU measurements have been performed for standard bulk CMOS memory circuits.

  18. Algebraic and coordinate space potentials from heavy ion scattering

    International Nuclear Information System (INIS)

    Amos, K.; Berge, L.; Allen, L.J.; Fiedeldey, H.

    1993-01-01

    An inversion scheme is presented to derive the potentials of algebraic scattering theory from the corresponding S-functions. Representative heavy ion scattering data of 12 C, 14 N and 16 O ions on 208 Pb, accurately fitted by McIntyre strong absorption type S-functions, are employed to obtain exact algebraic potentials and to generalize the analytical shapes proposed previously by Alhassid et al. The coordinate space potentials corresponding to a number of S-functions are also obtained via semiclassical inversion. The major advantage of the algebraic potentials is that, at a theoretical level they are more directly related to the S-functions than are coordinate space potentials. 16 refs., 1 tab., 9 figs

  19. Simulation of ion beam scattering in a gas stripper

    Energy Technology Data Exchange (ETDEWEB)

    Maxeiner, Sascha, E-mail: maxeiner@phys.ethz.ch; Suter, Martin; Christl, Marcus; Synal, Hans-Arno

    2015-10-15

    Ion beam scattering in the gas stripper of an accelerator mass spectrometer (AMS) enlarges the beam phase space and broadens its energy distribution. As the size of the injected beam depends on the acceleration voltage through phase space compression, the stripper becomes a limiting factor of the overall system transmission especially for low energy AMS system in the sub MV region. The spatial beam broadening and collisions with the accelerator tube walls are a possible source for machine background and energy loss fluctuations influence the mass resolution and thus isotope separation. To investigate the physical processes responsible for these effects, a computer simulation approach was chosen. Monte Carlo simulation methods are applied to simulate elastic two body scattering processes in screened Coulomb potentials in a (gas) stripper and formulas are derived to correctly determine random collision parameters and free path lengths for arbitrary (and non-homogeneous) gas densities. A simple parametric form for the underlying scattering cross sections is discussed which features important scaling behaviors. An implementation of the simulation was able to correctly model the data gained with the TANDY AMS system at ETH Zurich. The experiment covered transmission measurements of uranium ions in helium and beam profile measurements after the ion beam passed through the He-stripper. Beam profiles measured up to very high stripper densities could be understood in full system simulations including the relevant ion optics. The presented model therefore simulates the fundamental physics of the interaction between an ion beam and a gas stripper reliably. It provides a powerful and flexible tool for optimizing existing AMS stripper geometries and for designing new, state of the art low energy AMS systems.

  20. An l-window formalism for elastic heavy-ion scattering

    International Nuclear Information System (INIS)

    Rowley, N.

    1980-01-01

    It is shown that the heavy-ion elastic scattering amplitude may be written as an exact summation over sharp cut-off Coulomb amplitudes with coefficients which are simply the differences of successive nuclear S-matrix elements. Thus in the case of strong absorption the coefficients are non-zero only over a small range of angular momenta, formally making the elastic amplitude similar to those for inelastic scattering and transfer reactions in that it possesses an 'l window'. Some good approximations to the sharp cut-off Coulomb amplitudes are given enabling the results obtained by the usual integral techniques for dealing with smooth S matrices to be rederived simply. A simple means of studying cases where the transition from no absorption to total absorption takes place over a very small range of angular momenta is also provided. The case of identical spin-zero ions, in particular the system 16 0 + 16 0, is discussed and a qualitative understanding of many of the experimental results and of previous fits to the data obtained. Large-angle scattering of non-identical ions is also mentioned and the l-window formalism suggests that the angular distributions for the elastic and other channels should be very similar in this region. (author)

  1. Energy-loss of He ions in carbon allotropes studied by elastic resonance in backscattering spectra

    Energy Technology Data Exchange (ETDEWEB)

    Tosaki, Mitsuo, E-mail: tosaki.mitsuo.3v@kyoto-u.ac.jp [Radioisotope Research Center, Kyoto University, Kyoto 606-8501 (Japan); Rauhala, Eero [Department of Physics, University of Helsinki (Finland)

    2015-10-01

    Backscattering spectra for {sup 4}He ions incident on carbon allotropes have been measured in the energy range from 4.30 to 4.95 MeV in steps of 50–100 keV at scattering angles of 106° and 170°. We used three carbon allotropes: graphite, diamond and amorphous carbon. For all these allotropes, we can observe the sharp ({sup 4}He, {sup 12}C) elastic nuclear resonance at the He ion energy of 4.265 MeV in the backscattering spectra. By varying the incident He energy, we have systematically analyzed the profiles of the resonance peaks to study the energy-loss processes: stopping cross-sections and energy-loss straggling around the interesting region of the stopping maximum at about 500 keV. We focus on the resonance profiles and investigate an allotropic effect concerning the energy-loss. Furthermore, an energy bunching effect on the straggling is presented and the mechanism is discussed.

  2. Trapping behaviour of deuterium ions implanted into tungsten simultaneously with carbon ions

    International Nuclear Information System (INIS)

    Kobayashi, Makoto; Suzuki, Sachiko; Wang, Wanjing; Kurata, Rie; Kida, Katsuya; Oya, Yasuhisa; Okuno, Kenji; Ashikawa, Naoko; Sagara, Akio; Yoshida, Naoaki

    2009-01-01

    The trapping behaviour of deuterium ions implanted into tungsten simultaneously with carbon ions was investigated by thermal desorption spectroscopy (TDS) and x-ray photoelectron spectroscopy (XPS). The D 2 TDS spectrum consisted of three desorption stages, namely desorption of deuterium trapped by intrinsic defects, ion-induced defects and carbon with the formation of the C-D bond. Although the deuterium retention trapped by intrinsic defects was almost constant, that by ion-induced defects increased as the ion fluence increased. The retention of deuterium with the formation of the C-D bond was saturated at an ion fluence of 0.5x10 22 D + m -2 , where the major process was changed from the sputtering of tungsten with the formation of a W-C mixture to the formation of a C-C layer, and deuterium retention as the C-D bond decreased. It was concluded that the C-C layer would enhance the chemical sputtering of carbon with deuterium with the formation of CD x and the chemical state of carbon would control the deuterium retention in tungsten under C + -D 2 + implantation.

  3. On mechanism of low-energy heavy ions scattering on a target surface with small atomic mass

    CERN Document Server

    Umarov, F F; Kudryashova, L B; Krylov, N M

    2002-01-01

    In the present work, an experimental study of low-energy (E sub 0 =20-500 eV) heavy Cs sup + ions scattering on target surfaces with small atomic masses (Al, Si, Ni) has been performed for more accurate definition of mechanism of scattering and evaluation of an opportunity for use of heavy ions scattering as a tool of surface layer analysis. It is shown that the dependence of the relative energies of scattered ions versus the initial energy E/E sub 0 (E sub 0) for Si (E sub b =4.64 eV/atom) and Ni (E sub b =4.43 eV/atom) approximately coincide despite the fact that the mass of Ni atom is twice as large as that of the Si atom mass. At the same time their binding energies E sub b are approximately equal to each other. It is found that the scattering angles of Cs sup + ions considerably exceed a limiting scattering angle theta sub l sub i sub m in a single collision. It has been established that the scattering of low-energy heavy ions by light targets is described by a non-binary mechanism of many-particle inter...

  4. Light output response of EJ-309 liquid organic scintillator to 2.86-3.95 MeV carbon recoil ions due to neutron elastic and inelastic scatter

    Science.gov (United States)

    Norsworthy, Mark A.; Ruch, Marc L.; Hamel, Michael C.; Clarke, Shaun D.; Hausladen, Paul A.; Pozzi, Sara A.

    2018-03-01

    We present the first measurements of energy-dependent light output from carbon recoils in the liquid organic scintillator EJ-309. For this measurement, neutrons were produced by an associated particle deuterium-tritium generator and scattered by a volume of EJ-309 scintillator into stop detectors positioned at four fixed angles. Carbon recoils in the scintillator were isolated using triple coincidence among the associated particle detector, scatter detector, and stop detectors. The kinematics of elastic and inelastic scatter allowed data collection at eight specific carbon recoil energies between 2.86 and 3.95 MeV. We found the light output caused by carbon recoils in this energy range to be approximately 1.14% of that caused by electrons of the same energy, which is comparable to the values reported for other liquid organic scintillators. A comparison of the number of scattered neutrons at each angle to a Monte Carlo N-Particle eXtended simulation indicates that the ENDF/B-VII.1 evaluation of differential cross sections for 14.1 MeV neutrons on carbon has discrepancies with the experiment as large as 55%, whereas those reported in the JENDL-4.0u evaluation agree with experiment.

  5. Quantitative considerations in medium energy ion scattering depth profiling analysis of nanolayers

    Energy Technology Data Exchange (ETDEWEB)

    Zalm, P.C.; Bailey, P. [International Institute for Accelerator Applications, University of Huddersfield, Queensgate, Huddersfield HD1 3DH (United Kingdom); Reading, M.A. [Physics and Materials Research Centre, University of Salford, Salford M5 4WT (United Kingdom); Rossall, A.K. [International Institute for Accelerator Applications, University of Huddersfield, Queensgate, Huddersfield HD1 3DH (United Kingdom); Berg, J.A. van den, E-mail: j.vandenberg@hud.ac.uk [International Institute for Accelerator Applications, University of Huddersfield, Queensgate, Huddersfield HD1 3DH (United Kingdom)

    2016-11-15

    The high depth resolution capability of medium energy ion scattering (MEIS) is becoming increasingly relevant to the characterisation of nanolayers in e.g. microelectronics. In this paper we examine the attainable quantitative accuracy of MEIS depth profiling. Transparent but reliable analytical calculations are used to illustrate what can ultimately be achieved for dilute impurities in a silicon matrix and the significant element-dependence of the depth scale, for instance, is illustrated this way. Furthermore, the signal intensity-to-concentration conversion and its dependence on the depth of scattering is addressed. Notably, deviations from the Rutherford scattering cross section due to screening effects resulting in a non-coulombic interaction potential and the reduction of the yield owing to neutralization of the exiting, backscattered H{sup +} and He{sup +} projectiles are evaluated. The former mainly affects the scattering off heavy target atoms while the latter is most severe for scattering off light target atoms and can be less accurately predicted. However, a pragmatic approach employing an extensive data set of measured ion fractions for both H{sup +} and He{sup +} ions scattered off a range of surfaces, allows its parameterization. This has enabled the combination of both effects, which provides essential information regarding the yield dependence both on the projectile energy and the mass of the scattering atom. Although, absolute quantification, especially when using He{sup +}, may not always be achievable, relative quantification in which the sum of all species in a layer adds up to 100%, is generally possible. This conclusion is supported by the provision of some examples of MEIS derived depth profiles of nanolayers. Finally, the relative benefits of either using H{sup +} or He{sup +} ions are briefly considered.

  6. Ion-reversibility studies in amorphous solids using the two-atom scattering model

    International Nuclear Information System (INIS)

    Oen, O.S.

    1981-06-01

    An analytical two-atom scattering model has been developed to treat the recent discovery of the enhancement near 180 0 of Rutherford backscattering yields from disordered solids. In contrast to conventional calculations of Rutherford backscattering that treat scattering from a single atom only (the backscattering atom), the present model includes the interaction of a second atom lying between the target surface and the backscattering plane. The projectile ion makes a glancing collision with this second atom both before and after it is backscattered. The model predicts an enhancement effect whose physical origin arises from the tolerance of path for those ions whose inward and outward trajectories lie in the vicinity of the critical impact parameter. Results using Moliere scattering show how the yield enhancement depends on ion energy, backscattering depth, exit angle, scattering potential, atomic numbers of the projectile and target, and target density. In the model the critical impact parameter and critical angle play important roles. It is shown that these quantities depend on a single dimensionless parameter and analytical expressions for them are given which are accurate to better than 1%

  7. Neoplastic transformation induced by carbon ions.

    Science.gov (United States)

    Bettega, Daniela; Calzolari, Paola; Hessel, Petra; Stucchi, Claudio G; Weyrather, Wilma K

    2009-03-01

    The objective of this experiment was to compare the oncogenic potential of carbon ion beams and conventional photon beams for use in radiotherapy. The HeLa X human skin fibroblast cell line CGL1 was irradiated with carbon ions of three different energies (270, 100, and 11.4 MeV/u). Inactivation and transformation data were compared with those for 15 MeV photons. Inactivation and transformation frequencies for the 270 MeV/u carbon ions were similar to those for 15-MeV photons. The maximal relative biologic effectiveness (RBE(alpha)) values for 100MeV/u and 11.4 MeV/u carbon ions, respectively, were as follows: inactivation, 1.6 +/- 0.2 and 6.7 +/- 0.7; and transformation per surviving cell, 2.5 +/- 0.6 and 12 +/- 3. The curve for dose-transformation per cell at risk exhibited a maximum that was shifted toward lower doses at lower energies. Transformation induction per cell at risk for carbon ions in the entrance channel was comparable to that for photons, whereas for the lower energies, 100 MeV/u and 11 MeV/u, which are representative of the energies delivered to the tumor margins and volume, respectively, the probability of transformation in a single cell was greater than it was for photons. In addition, at isoeffective doses with respect to cell killing, the 11.4-MeV/u beam was more oncogenic than were photons.

  8. On velocity space interrogation regions of fast-ion collective Thomson scattering at ITER

    DEFF Research Database (Denmark)

    Salewski, Mirko; Nielsen, Stefan Kragh; Bindslev, Henrik

    2011-01-01

    the collective scattering in well-defined regions in velocity space, here dubbed interrogation regions. Since the CTS instrument measures entire spectra of scattered radiation, many different interrogation regions are probed simultaneously. We here give analytic expressions for weight functions describing...... the interrogation regions, and we show typical interrogation regions of the proposed ITER CTS system. The backscattering system with receivers on the low-field side is sensitive to fast ions with pitch |p| = |v/v| ... scattering system with receivers on the high-field side would be sensitive to co- and counter-passing fast ions in narrow interrogation regions with pitch |p| > 0.6–0.8. Additionally, we use weight functions to reconstruct 2D fast-ion distribution functions, given two projected 1D velocity distribution...

  9. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Aines, Roger D.; Bourcier, William L.

    2014-08-19

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  10. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    Science.gov (United States)

    Aines, Roger D.; Bourcier, William L.

    2010-11-09

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  11. Scattering of low energy noble gas ions from a metal surface

    International Nuclear Information System (INIS)

    Luitjens, S.B.

    1980-01-01

    Reflection of low energy (0.1-10 keV) noble gas ions can be used to analyse a solid surface. To study charge exchange processes, the ion fractions of neon and of argon, scattered from a Cu(100) surface, have been determined. (Auth.)

  12. Small-angle scattering of ions or atoms by atomic hydrogen

    International Nuclear Information System (INIS)

    Franco, V.

    1982-01-01

    A theory for small-angle scattering of arbitrary medium- or high-energy atoms or ions by atomic hydrogen is described. Results are obtained in terms of the known closed-form and easily calculable Glauber-approximation scattering amplitudes for electron-hydrogen collisions and for collisions between the nucleus (treated as one charged particle) of the ion or atom and the hydrogen atom, and in terms of the transition form factor of the arbitrary ion or atom. Applications are made to the angular differential cross sections for the excitation of atomic hydrogen to its n = 2 states by singly charged ground-state helium ions having velocities of roughly between 1/2 and 1 a.u. The differential cross sections are obtained in terms of electron-hydrogen amplitudes and the known He + ground-state form factor. Comparisons are made with other calculations and with recent measurements. The results are in good agreement with the data. It is seen that the effect of the He + electron is to produce significant constructive interference at most energies

  13. Direct observation and theory of trajectory-dependent electronic energy losses in medium-energy ion scattering.

    Science.gov (United States)

    Hentz, A; Parkinson, G S; Quinn, P D; Muñoz-Márquez, M A; Woodruff, D P; Grande, P L; Schiwietz, G; Bailey, P; Noakes, T C Q

    2009-03-06

    The energy spectrum associated with scattering of 100 keV H+ ions from the outermost few atomic layers of Cu(111) in different scattering geometries provides direct evidence of trajectory-dependent electronic energy loss. Theoretical simulations, combining standard Monte Carlo calculations of the elastic scattering trajectories with coupled-channel calculations to describe inner-shell ionization and excitation as a function of impact parameter, reproduce the effects well and provide a means for far more complete analysis of medium-energy ion scattering data.

  14. Characterization of carbon ion-induced mutations in Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Shikazono, N.; Suzuki, C.; Kitamura, S.; Watanabe, H.; Tano, S.; Tanaka, A.

    2003-01-01

    Full text: Irradiation of Arabidopsis thaliana by carbon ions was carried out to investigate the mutational effect of ion particles in higher plants. The averaged mutation rate of carbon ions was 2.0 X 10 -6 / Gy, which was 18-fold higher than that of electrons. PCR analysis of the carbon ion-induced mutants showed that, out of 28 mutant alleles, 14 had point-like mutations within the gene, while 14 contained large structural alterations. In the case of 12 electron-induced mutants, 9 had point-like mutations within the gene, while 3 contained large structural alterations. These results suggest that carbon ions are more likely to induce large structural alterations compared with electrons. Further sequence analysis revealed that most of the point-like mutations induced by carbon ions were short deletions. In the case of rearrangements, DNA strand breaks were found to be rejoined using, if present, short homologous sequences for both types of radiation. After carbon ion-irradiation, small deletions were frequently observed around the breakpoints, whereas duplications of terminal sequence were found after electron-irradiation. These results suggest that non-homologous end joining (NHEJ) pathway operates after plant cells are exposed to both ion particles and electrons but that different mode of rejoining deals with the broken ends produced by each radiation. From the present results, it seems reasonable to assume that carbon ions could predominantly induce null mutations in Arabidopsis. The fact that the molecular nature of carbon ion-induced mutation was different from that of electrons and that the molecular mechanisms of cells to induce mutations appeared to be also different implicates that ion particle is not only valuable as a new mutagen but also useful as a new tool to study repair mechanisms of certain types of DNA damage

  15. Heavy ion elastic and quasi-elastic scattering above E/A = 30 MeV

    International Nuclear Information System (INIS)

    Barrette, J.

    1986-05-01

    At high energy, heavy-ion elastic scattering probes the ion-ion potential in a large domain much inside the strong absorption radius. This results in a more precise determination of the real part of the nuclear potential and a consistent picture of its evolution with energy begins to emerge. It is relatively similar to that observed in light ion scattering. Even if the inelastic angular distributions seem to contain less refractive or interior contribution, coupled channel effects from these states are still important at least up to 20 MeV/n. Heavy-ion induced transfer reactions to discrete states have small cross sections but present a very strong selectivity for states with the highest available spin and could thus provide new and interesting spectroscopic information

  16. Measurement of two ion components in a plasma by collective scattering

    International Nuclear Information System (INIS)

    Kasparek, W.; Hirsch, K.; Holzhauer, E.

    With collective laser scattering a clear separation of the ion features of two ion species with large mass ratio was experimentally realized. Furthermore demixing effects in a H 2 /A mixture as well as a temperature difference were observed. (orig.) 891 HT/orig. 892 HIS

  17. Design of microcomputer-based data acquisition system for the time-of-flight ion scattering spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Lo, H; Su, C [National Tsing Hua Univ., Hsinchu (Taiwan). Inst. of Nuclear Engineering

    1981-07-15

    A microcomputer-based data aquisition system used on a time-of-flight ion scattering spectrometer is described. The flight time of 90/sup 0/-scattered ions from target atom determined directly with a 30 MHz crystal-controlled oscillator and its associated circuit. The ion intensity is detected by a channel multiplier, and its output signal pulse is converted from the analog form into digital form by an ADC. Both flight time and ion intensity are stored in the microcomputer.

  18. Design of microcomputer-based data acquisition system for the time-of-flight ion scattering spectrometer

    International Nuclear Information System (INIS)

    Lo, H.; Su, C.

    1981-01-01

    A microcomputer-based data aquisition system used on a time-of-flight ion scattering spectrometer is described. The flight time of 90 0 -scattered ions from target atom determined directly with a 30 MHz crystal-controlled oscillator and its associated circuit. The ion intensity is detected by a channel multiplier, and its output signal pulse is converted from the analog form into digital form by an ADC. Both flight time and ion intensity are stored in the microcomputer. (orig.)

  19. Dose profile monitoring with carbon ions by means of prompt-gamma measurements

    Energy Technology Data Exchange (ETDEWEB)

    Testa, E. [Institut de Physique Nucleaire de Lyon, Universite de Lyon, F-69003 Lyon, Universite Lyon 1 and IN2P3/CNRS, UMR 5822, F-69622 Villeurbanne (France)], E-mail: e.testa@ipnl.in2p3.fr; Bajard, M.; Chevallier, M.; Dauvergne, D.; Le Foulher, F. [Institut de Physique Nucleaire de Lyon, Universite de Lyon, F-69003 Lyon, Universite Lyon 1 and IN2P3/CNRS, UMR 5822, F-69622 Villeurbanne (France); Freud, N.; Letang, J.M. [Institut National des Sciences Appliquees de Lyon, Laboratoire de Controle Non-Destructif par Rayonnements Ionisants (France); Poizat, J.C.; Ray, C.; Testa, M. [Institut de Physique Nucleaire de Lyon, Universite de Lyon, F-69003 Lyon, Universite Lyon 1 and IN2P3/CNRS, UMR 5822, F-69622 Villeurbanne (France)

    2009-03-15

    A key point in the quality control of ion therapy is real-time monitoring and imaging of the dose delivered to the patient. Among the possible signals that can be used to make such a monitoring, prompt gamma-rays issued from nuclear fragmentation are possible candidates, provided the correlation between the emission profile and the primary beam range can be established. By means of simultaneous energy and time-of-flight discrimination, we could measure the longitudinal profile of the prompt gamma-rays emitted by 73 MeV/u carbon ions stopping inside a PMMA target. This technique allowed us to minimize the shielding against neutrons and scattered gamma rays, and to find a good correlation between the prompt-gamma profile and the ion range. This profile was studied as a function of the observation angle. By extrapolating our results to higher energies and realistic detection efficiencies, we showed that prompt gamma-ray measurements make it feasible to control in real time the longitudinal dose during ion therapy treatments.

  20. Corrosion resistance of uranium with carbon ion implantation

    International Nuclear Information System (INIS)

    Liang Hongwei; Yan Dongxu; Bai Bin; Lang Dingmu; Xiao Hong; Wang Xiaohong

    2008-01-01

    The carbon modified layers prepared on uranium surface by carbon ion implantation, gradient implantation, recoil implantation and ion beam assisted deposition process techniques were studied. Depth profile elements of the samples based on Auger electron spectroscopy, phase composition identified by X-ray diffraction as well as corrosion resistance of the surface modified layers by electrochemistry tester and humid-thermal oxidation test were carried out. The carbon modified layers can be obtained by above techniques. The samples deposited with 45 keV ion bombardment, implanted by 50 keV ions and implanted with gradient energies are of better corrosion resistance properties. The samples deposited carbon before C + implantation and C + assisted deposition exhibit worse corrosion resistance properties. The modified layers are dominantly dot-corraded, which grows from the dots into substructure, however, the assisted deposition samples have comparatively high carbon composition and are corraded weakly. (authors)

  1. Resonating rays in ion-ion scattering from an optical potential

    International Nuclear Information System (INIS)

    Farhan, A.R.; Stoyanov, B.J.; Nagl, A.; Uberall, H.; de Llano, M.

    1986-01-01

    The amplitude of ion-ion scattering, described, e.g., by an optical potential, separates into a ''surface-wave'' part (which, as shown before, may give rise to resonances) and a ''geometrical-ray'' part. The amplitude as alternately expressed here by the Wentzel-Kramers-Brillouin approximation resolves into an externally reflected ''barrier wave'' and into ''internal'' or ''penetrating rays'' that undergo an internal reflection together with possible additional multiple reflections. Our numerical calculations show that resonances also occur in the penetrating rays, which take place when a characteristic equation is satisfied. The geometrical meaning of the latter is determined by the optical path length of penetration being an integer multiple of π, plus a 1/2π caustic phase jump, and an extra phase shift due to barrier penetration

  2. SWIMS, Sigmund and Winterbon Multiple Scattering of Ion Beams

    International Nuclear Information System (INIS)

    Eyeberger, L.

    1999-01-01

    1 - Description of program or function - SWIMS calculates the angular dispersion of ion beams that undergo small-angle, incoherent multiple scattering by gaseous or solid media. 2 - Method of solution - SWIMS uses the tabulated angular distributions of Sigmund and Winterbon for a Thomas-Fermi screened Coulomb potential. The fraction of the incident beam scattered into a cone defined by the polar angle is computed as a function of that angle for a reduced thickness over the rang of 0.01 to 10

  3. Exchange scattering of quasiparticles by positive ion in He3

    International Nuclear Information System (INIS)

    Ehdel'shtejn, V.M.

    1983-01-01

    The difference in the mobility of negative and positive ions in normal 3 He at low temperatures is discussed. The mobility mechanisms for the ions of different sign are qualitatively different since the positive ion can exchange quasiparticles with the helium atoms from the ice-like shell surrounding the ion. A study of the mobility in a magnetic field may yield quantitative information on the magnitude of the exchange interaction. A calculation for the exchange scattering model is carried out and it is shown that a logarithmic contribution to the positive ion mobility μsub(+)(T) appears which is analogous to the Kondo effect

  4. Shunting arc plasma source for pure carbon ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Koguchi, H.; Sakakita, H.; Kiyama, S.; Shimada, T.; Sato, Y.; Hirano, Y. [Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan)

    2012-02-15

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA/mm{sup 2} at the peak of the pulse.

  5. Shunting arc plasma source for pure carbon ion beam.

    Science.gov (United States)

    Koguchi, H; Sakakita, H; Kiyama, S; Shimada, T; Sato, Y; Hirano, Y

    2012-02-01

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA∕mm(2) at the peak of the pulse.

  6. Highly-resolving Rutherford-scattering spectroscopy with heavy ions

    International Nuclear Information System (INIS)

    Klein, C.

    2003-10-01

    in the present thesis for the first time the Browne-Buechner spectrometer for the highly resolving ion-beam analysis in the ion beam center Rossendorf is completely presented. A main topic of this theis lied in the apparative construction and the taking-into-operation of the spectrometer and the scattering chamber including the facilities for the sample treatment and characterization. In the framework of this thesis for the chosen measurement arrangement the experimental conditions were elaborated, which allow the routine-like application of the spectrometer for analyses of thin-film systems. for C and Li ions as incident particles especially the straggling was more precisely determined in a large range of materials. By means of the spectrometer also the interaction of the ion with the solid respectively single atoms on its surface could be studied. For the first time the mean charge-state after the single collision on a gold atom was determined for differently heavy ions in a wide energy range

  7. Stoichiometric carbon nitride synthesized by ion beam sputtering and post nitrogen ion implantation

    International Nuclear Information System (INIS)

    Valizadeh, R.; Colligon, J.S.; Katardiev, I.V.; Faunce, C.A.; Donnelly, S.E.

    1998-01-01

    Full text: Carbon nitride films have been deposited on Si (100) by ion beam sputtering a vitreous graphite target with nitrogen and argon ions with and without concurrent N2 ion bombardment at room temperature. The sputtering beam energy was 1000 eV and the assisted beam energy was 300 eV with ion / atom arrival ratio ranging from 0.5 to 5. The carbon nitride films were deposited both as single layer directly on silicon substrate and as multilayer between two layers of stoichiometric amorphous silicon nitride and polycrystalline titanium nitride. The deposited films were implanted ex-situ with 30 keV nitrogen ions with various doses ranging from 1E17 to 4E17 ions.cm -2 and 2 GeV xenon ion with a dose of 1E12 ions.cm -2 . The nitrogen concentration of the films was measured with Rutherford Backscattering (RBS), Secondary Neutral Mass Spectrometry (SNMS) and Parallel Electron Energy Loss Spectroscopy (PEELS). The nitrogen concentration for as deposited sample was 34 at% and stoichiometric carbon nitride C 3 N 4 was achieved by post nitrogen implantation of the multi-layered films. Post bombardment of single layer carbon nitride films lead to reduction in the total nitrogen concentration. Carbon K edge structure obtained from PEELS analysis suggested that the amorphous C 3 N 4 matrix was predominantly sp 2 bonded. This was confirmed by Fourier Transforrn Infra-Red Spectroscopy (FTIR) analysis of the single CN layer which showed the nitrogen was mostly bonded with carbon in nitrile (C≡N) and imine (C=N) groups. The microstructure of the film was determined by Transmission Electron Microscopy (TEM) which indicated that the films were amorphous

  8. Sorption studies of nickel ions onto activated carbon

    Science.gov (United States)

    Joshi, Parth; Vyas, Meet; Patel, Chirag

    2018-05-01

    Activated porous carbons are made through pyrolysis and activation of carbonaceous natural as well as synthetic precursors. The use of low-cost activated carbon derived from azadirachta indica, an agricultural waste material, has been investigated as a replacement for the current expensive methods of removing nickel ions from wastewater. The temperature variation study showed that the nickel ions adsorption is endothermic and spontaneous with increased randomness at the solid solution interface. Significant effect on adsorption was observed on varying the pH of the nickel ion solutions. Therefore, this study revealed that azadirachta indica can serve as a good source of activated carbon with multiple and simultaneous metal ions removing potentials and may serve as a better replacement for commercial activated carbons in applications that warrant their use.

  9. Mutagenic effects of carbon ions near the range end in plants

    Energy Technology Data Exchange (ETDEWEB)

    Hase, Yoshihiro, E-mail: hase.yoshihiro@jaea.go.jp [Ion Beam Mutagenesis Research Group, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Yoshihara, Ryouhei; Nozawa, Shigeki; Narumi, Issay [Ion Beam Mutagenesis Research Group, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)

    2012-03-01

    To gain insight into the mutagenic effects of accelerated heavy ions in plants, the mutagenic effects of carbon ions near the range end (mean linear energy transfer (LET): 425 keV/{mu}m) were compared with the effects of carbon ions penetrating the seeds (mean LET: 113 keV/{mu}m). Mutational analysis by plasmid rescue of Escherichia coli rpsL from irradiated Arabidopsis plants showed a 2.7-fold increase in mutant frequency for 113 keV/{mu}m carbon ions, whereas no enhancement of mutant frequency was observed for carbon ions near the range end. This suggested that carbon ions near the range end induced mutations that were not recovered by plasmid rescue. An Arabidopsis DNA ligase IV mutant, deficient in non-homologous end-joining repair, showed hyper-sensitivity to both types of carbon-ion irradiation. The difference in radiation sensitivity between the wild type and the repair-deficient mutant was greatly diminished for carbon ions near the range end, suggesting that these ions induce irreparable DNA damage. Mutational analysis of the Arabidopsis GL1 locus showed that while the frequency of generation of glabrous mutant sectors was not different between the two types of carbon-ion irradiation, large deletions (>{approx}30 kb) were six times more frequently induced by carbon ions near the range end. When 352 keV/{mu}m neon ions were used, these showed a 6.4 times increase in the frequency of induced large deletions compared with the 113 keV/{mu}m carbon ions. We suggest that the proportion of large deletions increases with LET in plants, as has been reported for mammalian cells. The nature of mutations induced in plants by carbon ions near the range end is discussed in relation to mutation detection by plasmid rescue and transmissibility to progeny.

  10. Tensor interaction in heavy-ion scattering. Pt. 1

    International Nuclear Information System (INIS)

    Nishioka, H.; Johnson, R.C.

    1985-01-01

    The Heidelberg shape-effect model for heavy-ion tensor interactions is reformulated and generalized using the Hooton-Johnson formulation. The generalized semiclassical model (the turning-point model) predicts that the components of the tensor analysing power anti Tsub(2q) have certain relations with each other for each type of tensor interaction (Tsub(R), Tsub(P) and Tsub(L) types). The predicted relations between the anti Tsub(2q) are very simple and have a direct connection with the properties of the tensor interaction at the turning point. The model predictions are satisfied in quantum-mechanical calculations for 7 Li and 23 Na elastic scattering from 58 Ni in the Fresnel-diffraction energy region. As a consequence of this model, it becomes possible to single out effects from a Tsub(P)- or Tsub(L)-type tensor interaction in polarized heavy-ion scattering. The presence of a Tsub(P)-type tensor interaction is suggested by measured anti T 20 /anti T 22 ratios for 7 Li + 58 Ni scattering. In the turning-point model the three types of tensor operator are not independent, and this is found to be true also in a quantum-mechanical calculation. The model also predicts relations between the components of higher-rank tensor analysing power in the presence of a higher-rank tensor interaction. The rank-3 tensor case is discussed in detail. (orig.)

  11. High Capacity of Hard Carbon Anode in Na-Ion Batteries Unlocked by PO x Doping

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhifei; Ma, Lu; Surta, Todd Wesley; Bommier, Clement; Jian, Zelang; Xing, Zhenyu; Stickle, William F.; Dolgos, Michelle; Amine, Khalil; Lu, Jun; Wu, Tianpin; Ji, Xiulei

    2016-08-12

    The capacity of hard carbon anodes in Na-ion batteries 2.5 rarely reaches values beyond 300 mAh/g. We report that doping POx into local structures of hard carbon increases its reversible capacity from 283 to 359 mAh/g. We confirm that the doped POx is redox inactive by X-ray adsorption near edge structure measurements, thus not contributing to the higher capacity. We observe two significant changes of hard carbon's local structures caused by doping. First, the (002) d-spacing inside the turbostratic nanodomains is increased, revealed by both laboratory and synchrotron X-ray diffraction. Second, doping turns turbostratic nanodomains more defective along ab planes, indicated by neutron total scattering and the associated pair distribution function studies. The local structural changes of hard carbon are correlated to the higher capacity, where both the plateau and slope regions in the potential profiles are enhanced. Our study demonstrates that Na-ion storage in hard carbon heavily depends on carbon local structures, where such structures, despite being disordered, can be tuned toward unusually high capacities.

  12. Multiple scattering of low energy rare gas ions: a comparison of experiment and computer simulation

    International Nuclear Information System (INIS)

    Heiland, W.; Taglauer, E.; Robinson, M.T.

    1976-01-01

    Some aspects of ion scattering below a few keV have been interpreted by multiple scattering. This can partly be simulated by chain or string models, where the single crystal surface is replaced by a chain of atoms. The computer program MARLOWE allows a simulation of solid-ion interaction, which is much closer to reality, e.g. the crystal is three-dimensional, includes lattice vibrations, electronic stopping power, different scattering potentials, etc. It is shown that the energy of the reflected ions as a function of the primary energy, lattice constant, impact angle and scattering angle can be understood within the string model. These results of the string model are confirmed by the MARLOWE calculations. For an interpretation of the measured intensities the simple string model is insufficient, whereas with MARLOWE reasonable agreement with experimental data may be achieved, if the thermal vibrations of the lattice atoms are taken into account. The experimental data include Ne + →Ni, Ne + →Ag and preliminary data on Ne + →W. The screening parameters of the scattering potentials are estimated for these ion-atom combinations. The results allow some conclusions about surface Debye temperatures. (Auth.)

  13. Experience with carbon ion radiotherapy at GSI

    Energy Technology Data Exchange (ETDEWEB)

    Jaekel, O. [Division of Medical Physics in Radiation Therapy (E040), German Cancer Research Center, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)]. E-mail: o.jaekel@dkfz.de; Schulz-Ertner, D. [Department of Radiation Oncology, University of Heidelberg, Heidelberg (Germany); Karger, C.P. [Division of Medical Physics in Radiation Therapy (E040), German Cancer Research Center, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Heeg, P. [Division of Medical Physics in Radiation Therapy (E040), German Cancer Research Center, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Debus, J. [Department of Radiation Oncology, University of Heidelberg, Heidelberg (Germany)

    2005-12-15

    At GSI, a radiotherapy facility was established using beam scanning and active energy variation. Between December 1997 and April 2004, 220 patients have been treated at this facility with carbon ions. Most patients are treated for chordoma and chondrosarcoma of the base of skull, using a dose of 60 Gye (Gray equivalent) in 20 fractions. Carbon ion therapy is also offered in a combination with conventional radiotherapy for a number of other tumors (adenoidcystic carcinoma, chordoma of the cervical spine and sacrum, atypical menningeoma). The patients treated for skull base tumors showed an overall local control rate after two years of 90%. The overall treatment toxicity was mild. This shows that carbon ion radiotherapy can safely be applied using a scanned beam and encouraged the Heidelberg university hospital to build a hospital based facility for ion therapy.

  14. Intraband scattering studies in carbon- and aluminium-doped MgB2

    International Nuclear Information System (INIS)

    Samuely, P.; Szabo, P.; Hol'anova, Z.; Bud'ko, S.; Canfield, P.

    2006-01-01

    Magnetic field effect on the point-contact spectra of the Al- and C-substituted MgB 2 is presented. It is shown that suppression of the π-band contribution to the spectrum is different in the aluminium- and carbon-doped samples. The carbon substitution leads to a stronger enhancement of the π-band scattering while the Al-doping does not change the ratio between the π and σ scatterings

  15. Use of low energy alkali ion scattering as a probe of surface structure

    International Nuclear Information System (INIS)

    Overbury, S.H.

    1986-01-01

    An overview is given of the use of low energy ion scattering as a probe of surface structure with emphasis on work done using alkali ions. Various schemes for extracting structural information from the ion energy and angle distributions are discussed in terms of advantages and disadvantages of each. The scattering potential which is the primary non-structural parameter needed for analysis, is discussed in terms of recent experimental results. The structure of clean and reconstructed surfaces are discussed, with examples of measurements of layer relaxations on the Mo(111) surface and missing row reconstructions on the Au(110) and Pt(110) surfaces. Studies of adsorbate covered surfaces are presented with respect to location of the adsorbate and its effect on the structure of the underlying substrate. Finally, examples are given which demonstrate the sensitivity of ion scattering to surface defects and disordering on reconstructed Au(110) and Pt(110) surfaces and unreconstructed Mo(111) surfaces, and to ordering of adsorbates on Mo(001). 47 refs., 12 figs

  16. Adsorption of palladium ions by modified carbons from rice husks

    International Nuclear Information System (INIS)

    Mostafa, M.R.

    1994-01-01

    Steam activated carbon of high surface area does not show palladium ions adsorption. Treatment of this carbon with HF acid increases to a great extent the gas adsorption capacity expressed as nitrogen surface area as well as the adsorption capacity of palladium ions from aqueous solution. HHB was loaded in different amounts on to these carbons. The acid sites represent the active fraction of the surface on which the adsorption palladium ions proceed. The uptake of palladium ions by HHB treated carbons is related to the total number of HHB molecules loaded on the carbon surface. (author)

  17. Positron scattering and annihilation from hydrogenlike ions

    International Nuclear Information System (INIS)

    Novikov, S.A.; Bromley, M.W.J.; Mitroy, J.

    2004-01-01

    The Kohn variational method is used with a configuration-interaction-type wave function to determine the J=0 and J=1 phase shifts and annihilation parameter Z eff for positron-hydrogenic ion scattering. The phase shifts are within 1-2% of the best previous calculations. The values of Z eff are small and do not exceed unity for any of the momenta considered. At thermal energies Z eff is minute with a value of order 10 -50 occurring for He + at k=0.05a 0 -1 . In addition to the variational calculations, analytic expressions for the phase shift and annihilation parameters within the Coulomb wave Born approximation are derived and used to help elucidate the dynamics of positron collisions with positive ions

  18. Analysis of Solar Wind Precipitation on Mars Using MAVEN/SWIA Observations of Spacecraft-Scattered Ions

    Science.gov (United States)

    Lue, C.; Halekas, J. S.

    2017-12-01

    Particle sensors on the MAVEN spacecraft (SWIA, SWEA, STATIC) observe precipitating solar wind ions during MAVEN's periapsis passes in the Martian atmosphere (at 120-250 km altitude). The signature is observed as positive and negative particles at the solar wind energy, traveling away from the Sun. The observations can be explained by the solar wind penetrating the Martian magnetic barrier in the form of energetic neutral atoms (ENAs) due to charge-exchange with the Martian hydrogen corona, and then being reionized in positive or negative form upon impact with the atmosphere (1). These findings have elucidated solar wind precipitation dynamics at Mars, and can also be used to monitor the solar wind even when MAVEN is at periapsis (2). In the present study, we focus on a SWIA instrument background signal that has been interpreted as spacecraft/instrument-scattered ions (2). We aim to model and subtract the scattered ion signal from the observations including those of reionized solar wind. We also aim to use the scattered ion signal to track hydrogen ENAs impacting the spacecraft above the reionization altitude. We characterize the energy spectrum and directional scattering function for solar wind scattering off the SWIA aperture structure, the radome and the spacecraft body. We find a broad scattered-ion energy spectrum up to the solar wind energy, displaying increased energy loss and reduced flux with increasing scattering angle, allowing correlations with the solar wind direction, energy, and flux. We develop models that can be used to predict the scattered signal based on the direct solar wind observations or to infer the solar wind properties based on the observed scattered signal. We then investigate deviations to the models when the spacecraft is in the Martian atmosphere and evaluate the plausibility of that these are caused by ENAs. We also perform SIMION modeling of the scattering process and the resulting signal detection by SWIA, to study the results from

  19. Method for fabricating carbon/lithium-ion electrode for rechargeable lithium cell

    Science.gov (United States)

    Huang, Chen-Kuo (Inventor); Surampudi, Subbarao (Inventor); Attia, Alan I. (Inventor); Halpert, Gerald (Inventor)

    1995-01-01

    The method includes steps for forming a carbon electrode composed of graphitic carbon particles adhered by an ethylene propylene diene monomer binder. An effective binder composition is disclosed for achieving a carbon electrode capable of subsequent intercalation by lithium ions. The method also includes steps for reacting the carbon electrode with lithium ions to incorporate lithium ions into graphitic carbon particles of the electrode. An electrical current is repeatedly applied to the carbon electrode to initially cause a surface reaction between the lithium ions and to the carbon and subsequently cause intercalation of the lithium ions into crystalline layers of the graphitic carbon particles. With repeated application of the electrical current, intercalation is achieved to near a theoretical maximum. Two differing multi-stage intercalation processes are disclosed. In the first, a fixed current is reapplied. In the second, a high current is initially applied, followed by a single subsequent lower current stage. Resulting carbon/lithium-ion electrodes are well suited for use as an anode in a reversible, ambient temperature, lithium cell.

  20. Heavy metal ion adsorption onto polypyrrole-impregnated porous carbon.

    Science.gov (United States)

    Choi, Moonjung; Jang, Jyongsik

    2008-09-01

    Polypyrrole-impregnated porous carbon was readily synthesized using vapor infiltration polymerization of pyrrole monomers. The results show that the functionalized polymer layer was successfully coated onto the pore surface of carbon without collapse of mesoporous structure. The modified porous carbon exhibited an improved complexation affinity for heavy metal ions such as mercury, lead, and silver ions due to the amine group of polypyrrole. The introduced polypyrrole layer could provide the surface modification to be applied for heavy metal ion adsorbents. Especially, polymer-impregnated porous carbon has an enhanced heavy metal ion uptake, which is 20 times higher than that of adsorbents with amine functional groups. Furthermore, the relationship between the coated polymer amount and surface area was also investigated in regard to adsorption capacity.

  1. Characterization of high-T/sub c/ Nb--Ge thin films by ion scattering, ion-induced x-rays, and ion resonance techniques

    International Nuclear Information System (INIS)

    Miller, J.W.; Appleton, E.R.; Murphree, Q.C.; Gavaler, J.R.

    1976-01-01

    Thin films of high-T/sub c/ (21-22 0 K) Nb--Ge were analyzed using three ion bombardment techniques. The depth dependence of stoichiometry in these superconducting thin films is determined by the deconvolution of a series of Rutherford backscattering spectra using 2.0-3.2 MeV 4 He ions at several incidence and scattering angles. Confirmation of these results is provided by studying the yields of Nb and Ge characteristic X-rays as a function of the angle of beam incidence. The depth dependence of oxygen, or oxides of Nb and Ge, is of particular interest, but more difficult to determine. A very sharp ion scattering resonance 16 O (α,α) at 3.045 MeV was utilized to enhance the backscattered yield and depth sensitivity of oxygen determination. The combined use of these three techniques now provides a nearly complete and nondestructive means for the characterization of such films

  2. Ejection of fast recoil atoms from solids under ion bombardment (medium-energy ion scattering by solid surfaces: Pt. 3)

    International Nuclear Information System (INIS)

    Dodonoy, A.I.; Mashkova, E.S.; Molchanov, V.A.

    1989-01-01

    This paper is the third part of our review surface scattering. Part I, which was devoted to the scattering of ions by the surfaces of disordered solids, was published in 1972; Part II, concerning scattering by crystal surfaces, was published in 1974. Since the publication of these reviews the material contained in them has become obsolete in many respects. A more recent account of the status of the problem has been given in a number of studies, including the book by E.S. Mashkova and V.A. Molchanov, Medium-Energy Ion Scattering by Solid Surfaces (Atomizdat, Moscow, 1980), than extended version of which was published by North-Holland in 1985. We note, however, that at the time these reviews were written the study of fast recoil atoms had not been carried out systematically; the problem was studied only as a by-product of surface scattering and sputtering. For this reason, in the above-mentioned works and in other reviews the data relating to recoil atoms were considered only occasionally. In recent years there have appeared a number of works - theoretical, experimental and computer -specially devoted to the study of the ejection of recoil atoms under ion bombardment. A number of interesting effects, which are due to the crystal structure of the target, have been discovered. It therefore, appeared desirable to us to systematize the available material and to present it as Part III of our continuing review. (author)

  3. Scattering of energetic ions by solids: a simulation

    International Nuclear Information System (INIS)

    Pearce, J.G.; Shaar, Z.; Crosbie, R.E.

    1977-01-01

    Digital computer simulation of an experiment is described which measures the energy-intensity distribution of noble gas ions scattered by crystalline solids. The discussion emphasizes the simulation techniques employed (in particular, the choice of integration method), the methods of relating computer input data to the experimental variables, and the transformation of computer results into a form directly comparable to experimental data

  4. Amorphous molecular junctions produced by ion irradiation on carbon nanotubes

    International Nuclear Information System (INIS)

    Wang Zhenxia; Yu Liping; Zhang Wei; Ding Yinfeng; Li Yulan; Han Jiaguang; Zhu Zhiyuan; Xu Hongjie; He Guowei; Chen Yi; Hu Gang

    2004-01-01

    Experiments and molecular dynamics have demonstrated that electron irradiation could create molecular junctions between crossed single-wall carbon nanotubes. Recently molecular dynamics computation predicted that ion irradiation could also join single-walled carbon nanotubes. Employing carbon ion irradiation on multi-walled carbon nanotubes, we find that these nanotubes evolve into amorphous carbon nanowires, more importantly, during the process of which various molecular junctions of amorphous nanowires are formed by welding from crossed carbon nanotubes. It demonstrates that ion-beam irradiation could be an effective way not only for the welding of nanotubes but also for the formation of nanowire junctions

  5. Plasma rotation and ion temperature measurements by collective Thomson scattering at ASDEX Upgrade

    DEFF Research Database (Denmark)

    Stejner Pedersen, Morten; Nielsen, Stefan Kragh; Jacobsen, Asger Schou

    2015-01-01

    We present the first deuterium ion temperature and rotation measurements by collective Thomson scattering at ASDEX Upgrade. The results are in general agreement with boron-based charge exchange recombination spectroscopy measurements and consistent with neoclassical simulations for the plasma sce...... scenario studied here. This demonstration opens the prospect for direct non-perturbative measurements of the properties of the main ion species in the plasma core with applications in plasma transport and confinement studies.......We present the first deuterium ion temperature and rotation measurements by collective Thomson scattering at ASDEX Upgrade. The results are in general agreement with boron-based charge exchange recombination spectroscopy measurements and consistent with neoclassical simulations for the plasma...

  6. Microstructure evolution in carbon-ion implanted sapphire

    International Nuclear Information System (INIS)

    Orwa, J. O.; McCallum, J. C.; Jamieson, D. N.; Prawer, S.; Peng, J. L.; Rubanov, S.

    2010-01-01

    Carbon ions of MeV energy were implanted into sapphire to fluences of 1x10 17 or 2x10 17 cm -2 and thermally annealed in forming gas (4% H in Ar) for 1 h. Secondary ion mass spectroscopy results obtained from the lower dose implant showed retention of implanted carbon and accumulation of H near the end of range in the C implanted and annealed sample. Three distinct regions were identified by transmission electron microscopy of the implanted region in the higher dose implant. First, in the near surface region, was a low damage region (L 1 ) composed of crystalline sapphire and a high density of plateletlike defects. Underneath this was a thin, highly damaged and amorphized region (L 2 ) near the end of range in which a mixture of i-carbon and nanodiamond phases are present. Finally, there was a pristine, undamaged sapphire region (L 3 ) beyond the end of range. In the annealed sample some evidence of the presence of diamond nanoclusters was found deep within the implanted layer near the projected range of the C ions. These results are compared with our previous work on carbon implanted quartz in which nanodiamond phases were formed only a few tens of nanometers from the surface, a considerable distance from the projected range of the ions, suggesting that significant out diffusion of the implanted carbon had occurred.

  7. Molecular anisotropy effects in carbon K-edge scattering: depolarized diffuse scattering and optical anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Stone, Kevin H.

    2014-07-14

    Some polymer properties, such as conductivity, are very sensitive to short- and intermediate-range orientational and positional ordering of anisotropic molecular functional groups, and yet means to characterize orientational order in disordered systems are very limited. We demonstrate that resonant scattering at the carbon K-edge is uniquely sensitive to short-range orientation correlations in polymers through depolarized scattering at high momentum transfers, using atactic polystyrene as a well-characterized test system. Depolarized scattering is found to coexist with unpolarized fluorescence, and to exhibit pronounced anisotropy. We also quantify the spatially averaged optical anisotropy from low-angle reflectivity measurements, finding anisotropy consistent with prior visible, x-ray absorption, and theoretical studies. The average anisotropy is much smaller than that in the depolarized scattering and the two have different character. Both measurements exhibit clear spectral signatures from the phenyl rings and the polyethylene-like backbone. Discussion focuses on analysis considerations and prospects for using this depolarized scattering for studies of disorder in soft condensed matter.

  8. Simulation of the molecular recombination yield for swift H2+ ions through thin carbon foils

    International Nuclear Information System (INIS)

    Garcia-Molina, Rafael; Barriga-Carrasco, Manuel D.

    2003-01-01

    We have calculated the recombination yield for swift H 2 + molecular ions at the exit of thin amorphous carbon foils, as a function of the dwell time and incident energy. Our results are based on a detailed simulation of the motion through the target of the H 2 + molecular ion (before dissociation takes place) and its constituent fragments (after dissociation), including the following effects: Coulomb repulsion, nuclear scattering, electron capture and loss, as well as self-retarding and wake forces, which provide the relative distance and velocity of the dissociated fragments at the foil exit. The recombination of an H 2 + ion at the exit of the foil depends on the interproton separation and internal energy of the dissociated fragments, and on their probability to capture an electron. Comparison of our results with the available experimental data shows a good agreement

  9. The Crossed-Beam Scattering Method in Studies of Ion-Molecule Reaction Dynamics

    Czech Academy of Sciences Publication Activity Database

    Herman, Zdeněk

    2001-01-01

    Roč. 212, - (2001), s. 413-443 ISSN 1387-3806 R&D Projects: GA ČR GA203/00/0632 Institutional research plan: CEZ:AV0Z4040901 Keywords : ion-molecule reaction dynamics * ion scattering * experimental methods Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.176, year: 2001

  10. Iterative reconstruction with boundary detection for carbon ion computed tomography

    Science.gov (United States)

    Shrestha, Deepak; Qin, Nan; Zhang, You; Kalantari, Faraz; Niu, Shanzhou; Jia, Xun; Pompos, Arnold; Jiang, Steve; Wang, Jing

    2018-03-01

    In heavy ion radiation therapy, improving the accuracy in range prediction of the ions inside the patient’s body has become essential. Accurate localization of the Bragg peak provides greater conformity of the tumor while sparing healthy tissues. We investigated the use of carbon ions directly for computed tomography (carbon CT) to create the relative stopping power map of a patient’s body. The Geant4 toolkit was used to perform a Monte Carlo simulation of the carbon ion trajectories, to study their lateral and angular deflections and the most likely paths, using a water phantom. Geant4 was used to create carbonCT projections of a contrast and spatial resolution phantom, with a cone beam of 430 MeV/u carbon ions. The contrast phantom consisted of cranial bone, lung material, and PMMA inserts while the spatial resolution phantom contained bone and lung material inserts with line pair (lp) densities ranging from 1.67 lp cm-1 through 5 lp cm-1. First, the positions of each carbon ion on the rear and front trackers were used for an approximate reconstruction of the phantom. The phantom boundary was extracted from this approximate reconstruction, by using the position as well as angle information from the four tracking detectors, resulting in the entry and exit locations of the individual ions on the phantom surface. Subsequent reconstruction was performed by the iterative algebraic reconstruction technique coupled with total variation minimization (ART-TV) assuming straight line trajectories for the ions inside the phantom. The influence of number of projections was studied with reconstruction from five different sets of projections: 15, 30, 45, 60 and 90. Additionally, the effect of number of ions on the image quality was investigated by reducing the number of ions/projection while keeping the total number of projections at 60. An estimation of carbon ion range using the carbonCT image resulted in improved range prediction compared to the range calculated using a

  11. Ions in carbon dioxide at an atmospheric pressure

    International Nuclear Information System (INIS)

    Ikezoe, Yasumasa; Onuki, Kaoru; Shimizu, Saburo; Nakajima, Hayato; Sato, Shoichi; Matsuoka, Shingo; Nakamura, Hirone; Tamura, Takaaki

    1985-01-01

    The formation and the subsequent reactions of positive and negative ions were observed by a time resolved atmospheric pressure ionization mass spectrometer (TRAPI) in an atmospheric pressure carbon dioxide added with small amounts of carbon monoxide and oxygen. A relatively stable ion of (44 x n) + (n >= 2) having a different reactivity from that of (CO 2 ) + sub(n) was found to be one of major ionic species in this gas system. This species was tentatively assigned as [O 2 (CO) 2 ] + (CO 2 )sub(n-2). A new reaction sequence of positive ions is proposed which can be operative in the radiolysis of carbon dioxide at 1 atm. (author)

  12. Alkali ion scattering from Ag(0 0 1) and Ag thin films at low and hyperthermal energies

    Energy Technology Data Exchange (ETDEWEB)

    Ray, M.P.; Lake, R.E. [Department of Physics and Astronomy, Clemson University, 118 Kinard Laboratory, Clemson, South Carolina 29634 (United States); Sosolik, C.E. [Department of Physics and Astronomy, Clemson University, 118 Kinard Laboratory, Clemson, South Carolina 29634 (United States)], E-mail: sosolik@clemson.edu

    2009-02-15

    We have investigated the scattering of K{sup +} and Cs{sup +} ions from a single crystal Ag(0 0 1) surface and from a Ag-Si(1 0 0) Schottky diode structure. For the K{sup +} ions, incident energies of 25 eV to 1 keV were used to obtain energy-resolved spectra of scattered ions at {theta}{sub i} = {theta}{sub f} = 45 deg. These results are compared to the classical trajectory simulation SAFARI and show features indicative of light atom-surface scattering where sequential binary collisions can describe the observed energy loss spectra. Energy-resolved spectra obtained for Cs{sup +} ions at incident energies of 75 eV and 200 eV also show features consistent with binary collisions. However, for this heavy atom-surface scattering system, the dominant trajectory type involves at least two surface atoms, as large angular deflections are not classically allowed for any single scattering event. In addition, a significant deviation from the classical double-collision prediction is observed for incident energies around 100 eV, and molecular dynamics studies are proposed to investigate the role of collective lattice effects. Data are also presented for the scattering of K{sup +} ions from a Schottky diode structure, which is a prototype device for the development of active targets to probe energy loss at a surface.

  13. Electron-translation effects in heavy-ion scattering

    International Nuclear Information System (INIS)

    Heinz, U.; Greiner, W.; Mueller, B.

    1981-01-01

    The origin and importance of electron-translation effects within a molecular description of electronic excitations in heavy-ion collisions is investigated. First, a fully consistent quantum-mechanical description of the scattering process is developed; the electrons are described by relativistic molecular orbitals, while the nuclear motion is approximated nonrelativistically. Leaving the quantum-mechanical level by using the semiclassical approximation for the nuclear motion, a set of coupled differential equations for the occupation amplitudes of the molecular orbitals is derived. In these coupled-channel equations the spurious asymptotic dynamical couplings are corrected for by additional matrix elements stemming from the electron translation. Hence, a molecular description of electronic excitations in heavy-ion scattering has been achieved, which is free from the spurious asymptotic couplings of the conventional perturbated stationary-state approach. The importance of electron-translation effects for continuum electrons and positrons is investigated. To this end an algorithm for the description of continuum electrons is proposed, which for the first time should allow for the calculation of angular distributions for delta electrons. Finally, the practical consequences of electron-translation effects are studied by calculating the corrected coupling matrix elements for the Pb-Cm system and comparing the corresponding K-vacancy probabilities with conventional calculations. We critically discuss conventional methods for cutting off the coupling matrix elements in coupled-channel calculations

  14. Behavior of carbon readsorbed on tungsten during low energy Ar ion irradiation at elevated temperatures

    International Nuclear Information System (INIS)

    Pranevicius, L.; Pranevicius, L.L.; Milcius, D.; Templier, C.; Bobrovaite, B.

    2008-01-01

    A study of the behavior of carbon sputtered and readsorbed after scattering collisions with particles of surrounding gas on the tungsten surface affected by Ar ion irradiation with the flux equal to 2 x 10 16 cm -2 s -1 extracted from plasma under 300 V negative bias voltage in the temperature range 370-870 K was performed. The dependence of the W sample weight change on the working gas pressure in the range 0.1-10 Pa was registered and the information was deduced about prevailing sputtering-redeposition processes. The depth profiles of carbon at the tungsten surface were measured. We found that carbon distribution profiles in tungsten depend on the C redeposition rate for fixed ion irradiation parameters. Three regimes have been distinguished: (i) at working gas pressure equal to 5 Pa and more, the C redeposition rate prevails the sample surface erosion rate and the W surface is covered by continuous amorphous carbon film (the C film growth regime), (ii) at working gas pressure equal to about 1 Pa, the C redepostion rate is approximately equal to the erosion rate and the W surface is partially covered by redeposited carbon, and (iii) at working gas pressure less than 0.2 Pa, the erosion rate prevails the C redeposition rate (the W surface erosion regime). In the regime of balanced redeposition and erosion deep C penetration depth into nanocrystalline W was registered. It is suggested that under simultaneous C adsorption and ion irradiation at elevated temperature C adatoms are driven from the W surface into grain boundaries and into the bulk by the difference in chemical potentials between the activated W surface and grain boundaries. As the W surface is covered by amorphous C film, the grain boundaries are blocked and the efficiency of carbon transport decreases

  15. Predicted precision of ion temperature and impurity fractional density measurements using the JET collective scattering diagnostic

    International Nuclear Information System (INIS)

    Orsitto, F.

    1992-11-01

    In a previous investigation the possibility of measuring the bulk ion temperature was considered in detail, in the context of the proposed Thomson scattering diagnostic for fast ions and alpha particles in the Joint European Torus project. In this report we give an affirmative answer to the question of whether good precision can be obtained in the simultaneous determination of the temperatures and densities of plasma ions from a collective scattering experiment provided some conditions are satisfied. (Author)

  16. Heavy ion inelastic scattering with a 4π gamma detector

    International Nuclear Information System (INIS)

    Gross, E.E.

    1989-01-01

    Heavy-ion inelastic scattering with a new technique that uses a 4π γ-ray detector in coincidence with charged particle detectors is applied to 24 Mg(200 MeV) + 208 Pb scattering. In addition to differential cross sections, a complete particle-γ angular correlation is obtained for decay of the 2 1 + (1.37 MeV) state of 24 Mg. The data are analyzed in coupled-channels. The correlation data proves to be especially sensitive to the static quadrupole moment. 14 refs., 9 figs

  17. Structural and compositional characterization of X-cut LiNbO3 crystals implanted with high energy oxygen and carbon ions

    International Nuclear Information System (INIS)

    Bentini, G.G.; Bianconi, M.; Cerutti, A.; Chiarini, M.; Pennestri, G.; Sada, C.; Argiolas, N.; Bazzan, M.; Mazzoldi, P.; Guzzi, R.

    2005-01-01

    High energy implantation of medium-light elements such as oxygen and carbon was performed in X-cut LiNbO 3 single crystals in order to prepare high quality optical waveguides. The compositional and damage profiles, obtained by exploiting the secondary ion mass spectrometry and Rutherford back-scattering techniques respectively, were correlated to the structural properties measured by the high resolution X-ray diffraction. This study evidences the development of tensile strain induced by the ion implantation that can contribute to the decrease of the ordinary refractive index variation through the photo-elastic effect

  18. Measurements of scattering processes in negative ion-atom collisions

    International Nuclear Information System (INIS)

    Kvale, T.J.

    1991-01-01

    This research project is designed to provide measurements of various scattering processes which occur in H - collisions with atomic targets at intermediate energies. The immediate goal is to study elastic scattering, single electron detachment, and target excitation/ionization in H - scattering from noble gas targets. For the target inelastic processes, these cross sections are unknown both experimentally and theoretically. The present measurements will provide either experimentally-determined cross sections or set upper limits to those cross sections. In either case, these measurements will be stringent tests of our understanding in energetic negative ion collisions. This series of experiments required the construction of a new facility, and significant progress toward its operation has been realized during this period. The proposed research is described in this report. The progress on and the status of the apparatus is also detailed in this report

  19. Clinical Outcome of Sacral Chordoma With Carbon Ion Radiotherapy Compared With Surgery

    International Nuclear Information System (INIS)

    Nishida, Yoshihiro; Kamada, Tadashi; Imai, Reiko; Tsukushi, Satoshi; Yamada, Yoshihisa; Sugiura, Hideshi; Shido, Yoji; Wasa, Junji; Ishiguro, Naoki

    2011-01-01

    Purpose: To evaluate the efficacy, post-treatment function, toxicity, and complications of carbon ion radiotherapy (RT) for sacral chordoma compared with surgery. Methods and Materials: The records of 17 primary sacral chordoma patients treated since 1990 with surgery (n = 10) or carbon ion RT (n = 7) were retrospectively analyzed for disease-specific survival, local recurrence-free survival, complications, and functional outcome. The applied carbon ion dose ranged from 54.0 Gray equivalent (GyE) to 73.6 GyE (median 70.4). Results: The mean age at treatment was 55 years for the surgery group and 65 years for the carbon ion RT group. The median duration of follow-up was 76 months for the surgery group and 49 months for the carbon ion RT group. The local recurrence-free survival rate at 5 years was 62.5% for the surgery and 100% for the carbon ion RT group, and the disease-specific survival rate at 5 years was 85.7% and 53.3%, respectively. Urinary-anorectal function worsened in 6 patients (60%) in the surgery group, but it was unchanged in all the patients who had undergone carbon ion RT. Postoperative wound complications requiring reoperation occurred in 3 patients (30%) after surgery and in 1 patient (14%) after carbon ion RT. The functional outcome evaluated using the Musculoskeletal Tumor Society scoring system revealed 55% in the surgery group and 75% in the carbon ion RT group. Of the six factors in this scoring system, the carbon ion RT group had significantly greater scores in emotional acceptance than did the surgery group. Conclusion: Carbon ion RT results in a high local control rate and preservation of urinary-anorectal function compared with surgery.

  20. Solvation behavior of carbonate-based electrolytes in sodium ion batteries.

    Science.gov (United States)

    Cresce, Arthur V; Russell, Selena M; Borodin, Oleg; Allen, Joshua A; Schroeder, Marshall A; Dai, Michael; Peng, Jing; Gobet, Mallory P; Greenbaum, Steven G; Rogers, Reginald E; Xu, Kang

    2016-12-21

    Sodium ion batteries are on the cusp of being a commercially available technology. Compared to lithium ion batteries, sodium ion batteries can potentially offer an attractive dollar-per-kilowatt-hour value, though at the penalty of reduced energy density. As a materials system, sodium ion batteries present a unique opportunity to apply lessons learned in the study of electrolytes for lithium ion batteries; specifically, the behavior of the sodium ion in an organic carbonate solution and the relationship of ion solvation with electrode surface passivation. In this work the Li + and Na + -based solvates were characterized using electrospray mass spectrometry, infrared and Raman spectroscopy, 17 O, 23 Na and pulse field gradient double-stimulated-echo pulse sequence nuclear magnetic resonance (NMR), and conductivity measurements. Spectroscopic evidence demonstrate that the Li + and Na + cations share a number of similar ion-solvent interaction trends, such as a preference in the gas and liquid phase for a solvation shell rich in cyclic carbonates over linear carbonates and fluorinated carbonates. However, quite different IR spectra due to the PF 6 - anion interactions with the Na + and Li + cations were observed and were rationalized with the help of density functional theory (DFT) calculations that were also used to examine the relative free energies of solvates using cluster - continuum models. Ion-solvent distances for Na + were longer than Li + , and Na + had a greater tendency towards forming contact pairs compared to Li + in linear carbonate solvents. In tests of hard carbon Na-ion batteries, performance was not well correlated to Na + solvent preference, leading to the possibility that Na + solvent preference may play a reduced role in the passivation of anode surfaces and overall Na-ion battery performance.

  1. Luminescence imaging of water during carbon-ion irradiation for range estimation

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp; Komori, Masataka; Koyama, Shuji; Morishita, Yuki; Sekihara, Eri [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Higashi-ku, Nagoya, Aichi 461-8673 (Japan); Akagi, Takashi; Yamashita, Tomohiro [Hygo Ion Beam Medical Center, Hyogo 679-5165 (Japan); Toshito, Toshiyuki [Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Aichi 462-8508 (Japan)

    2016-05-15

    Purpose: The authors previously reported successful luminescence imaging of water during proton irradiation and its application to range estimation. However, since the feasibility of this approach for carbon-ion irradiation remained unclear, the authors conducted luminescence imaging during carbon-ion irradiation and estimated the ranges. Methods: The authors placed a pure-water phantom on the patient couch of a carbon-ion therapy system and measured the luminescence images with a high-sensitivity, cooled charge-coupled device camera during carbon-ion irradiation. The authors also carried out imaging of three types of phantoms (tap-water, an acrylic block, and a plastic scintillator) and compared their intensities and distributions with those of a phantom containing pure-water. Results: The luminescence images of pure-water phantoms during carbon-ion irradiation showed clear Bragg peaks, and the measured carbon-ion ranges from the images were almost the same as those obtained by simulation. The image of the tap-water phantom showed almost the same distribution as that of the pure-water phantom. The acrylic block phantom’s luminescence image produced seven times higher luminescence and had a 13% shorter range than that of the water phantoms; the range with the acrylic phantom generally matched the calculated value. The plastic scintillator showed ∼15 000 times higher light than that of water. Conclusions: Luminescence imaging during carbon-ion irradiation of water is not only possible but also a promising method for range estimation in carbon-ion therapy.

  2. Luminescence imaging of water during carbon-ion irradiation for range estimation

    International Nuclear Information System (INIS)

    Yamamoto, Seiichi; Komori, Masataka; Koyama, Shuji; Morishita, Yuki; Sekihara, Eri; Akagi, Takashi; Yamashita, Tomohiro; Toshito, Toshiyuki

    2016-01-01

    Purpose: The authors previously reported successful luminescence imaging of water during proton irradiation and its application to range estimation. However, since the feasibility of this approach for carbon-ion irradiation remained unclear, the authors conducted luminescence imaging during carbon-ion irradiation and estimated the ranges. Methods: The authors placed a pure-water phantom on the patient couch of a carbon-ion therapy system and measured the luminescence images with a high-sensitivity, cooled charge-coupled device camera during carbon-ion irradiation. The authors also carried out imaging of three types of phantoms (tap-water, an acrylic block, and a plastic scintillator) and compared their intensities and distributions with those of a phantom containing pure-water. Results: The luminescence images of pure-water phantoms during carbon-ion irradiation showed clear Bragg peaks, and the measured carbon-ion ranges from the images were almost the same as those obtained by simulation. The image of the tap-water phantom showed almost the same distribution as that of the pure-water phantom. The acrylic block phantom’s luminescence image produced seven times higher luminescence and had a 13% shorter range than that of the water phantoms; the range with the acrylic phantom generally matched the calculated value. The plastic scintillator showed ∼15 000 times higher light than that of water. Conclusions: Luminescence imaging during carbon-ion irradiation of water is not only possible but also a promising method for range estimation in carbon-ion therapy.

  3. Transport of Carbonate Ions by Novel Cellulose Fiber Supported Solid Membrane

    Directory of Open Access Journals (Sweden)

    A. G. Gaikwad

    2012-06-01

    Full Text Available Transport of carbonate ions was explored through fiber supported solid membrane. A novel fiber supported solid membrane was prepared by chemical modification of cellulose fiber with citric acid, 2′2-bipyridine and magnesium carbonate. The factors affecting the permeability of carbonate ions such as immobilization of citric acid-magnesium metal ion -2′2-bipyridine complex (0 to 2.5 mmol/g range over cellulose fiber, carbon-ate ion concentration in source phase and NaOH concentration in receiving phase were investigated. Ki-netic of carbonate, sulfate, and nitrate ions was investigated through fiber supported solid membrane. Transport of carbonate ions with/without bubbling of CO2 (0 to 10 ml/min in source phase was explored from source to receiving phase. The novel idea is to explore the adsorptive transport of CO2 from source to receiving phase through cellulose fiber containing magnesium metal ion organic framework. Copyright © 2012 BCREC UNDIP. All rights reserved.Received: 25th November 2011; Revised: 17th December 2011; Accepted: 19th December 2011[How to Cite: A.G. Gaikwad. (2012. Transport of Carbonate Ions by Novel Cellulose Fiber Supported Solid Membrane. Bulletin of Chemical Reaction Engineering & Catalysis, 7 (1: 49– 57.  doi:10.9767/bcrec.7.1.1225.49-57][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.1.1225.49-57 ] | View in 

  4. Relaxation of mechanical stresses in Si-Ge/Si structures implanted by carbon ions. Study with optical methods

    International Nuclear Information System (INIS)

    Klyuj, M.Yi.

    1998-01-01

    Optical properties of Si-Ge/Si structures implanted by carbon ions with the energy of 20 keV and at the doses of 5 centre dot 10 15 - 1- 16 cm -2 are studied by spectro ellipsometry and Raman scattering techniques. From the comparison of experimental data with the results of theoretical calculations, it is shown that, as a result of implantation, a partial relaxation of mechanical stresses in the Si 1-x Ge x film due to introduction of carbon atoms with a small covalent radius into the Si-Ge lattice takes place. An elevated implantation temperature allows one to maintain a high structural perfection of the implanted film

  5. Structure carbon materials: clusters, nanotubes, ion-implant polymers and diamonds

    International Nuclear Information System (INIS)

    Lapchuk, N.M.; Odzhaev, V.B.; Poklonskij, N.A.; Sviridov, D.V.

    2009-01-01

    The paper summarizes the series of research works dealing with the physics of nanostructured carbon materials, which were awarded a Sevchenko Prize in 2008. The paper considers the mechanism of synthesis of 3D carbon nanospecies and their nanomechanics, magnetic properties of ion-implanted diamonds, as well as the regularities of formation of novel forms of amorphous hydrogenated carbon and metal-carbon nanocomposites via ion bombardment of polymers, as well as electronic, magnetic, and structural properties of ion-implanted polymers an their possible applications in micro- and nanoelectronics. (authors)

  6. Low energy ion scattering (LEIS) and the compositional and structural analysis of solid surfaces

    International Nuclear Information System (INIS)

    Berg, J.A. van den; Armour, D.G.

    1981-01-01

    The physics of Low Energy Ion Scattering (LEIS) and its application as a surface analytical technique are reviewed. It is shown that compositional and short-range structural information can be obtained by choosing experimental conditions which optimize the contributions of single and double (or multiple) collisions, respectively. The LEIS technique allows mass analysis in a straightforward way, possesses a high surface selectivity but is unable to provide quantitative information in isolation due to scattering cross-section uncertainties and not easily quantifiable charge exchange effects. Structural information regarding adsorbate positions on single crystal surfaces and the short-range substrate structure (including damaged and reconstructed surfaces) can be obtained by exploiting shadowing and/or multiple scattering phenomena. The progress made in recent years in this area is charted. It is shown that computer simulations often play an important role in this type of study. Effects, such as charge exchange, inelastic energy loss and ion beam surface perturbations, which complicate the use of low energy ion scattering for surface analysis are discussed in detail. The present status of the technique in the different areas of study is indicated. (author)

  7. Evaluation of beam delivery and ripple filter design for non-isocentric proton and carbon ion therapy.

    Science.gov (United States)

    Grevillot, L; Stock, M; Vatnitsky, S

    2015-10-21

    This study aims at selecting and evaluating a ripple filter design compatible with non-isocentric proton and carbon ion scanning beam treatment delivery for a compact nozzle. The use of non-isocentric treatments when the patient is shifted as close as possible towards the nozzle exit allows for a reduction in the air gap and thus an improvement in the quality of scanning proton beam treatment delivery. Reducing the air gap is less important for scanning carbon ions, but ripple filters are still necessary for scanning carbon ion beams to reduce the number of energy steps required to deliver homogeneous SOBP. The proper selection of ripple filters also allows a reduction in the possible transverse and depth-dose inhomogeneities that could appear in non-isocentric conditions in particular. A thorough review of existing ripple filter designs over the past 16 years is performed and a design for non-isocentric treatment delivery is presented. A unique ripple filter quality index (QIRiFi) independent of the particle type and energy and representative of the ratio between energy modulation and induced scattering is proposed. The Bragg peak width evaluated at the 80% dose level (BPW80) is proposed to relate the energy modulation of the delivered Bragg peaks and the energy layer step size allowing the production of homogeneous SOBP. Gate/Geant4 Monte Carlo simulations have been validated for carbon ion and ripple filter simulations based on measurements performed at CNAO and subsequently used for a detailed analysis of the proposed ripple filter design. A combination of two ripple filters in a series has been validated for non-isocentric delivery and did not show significant transverse and depth-dose inhomogeneities. Non-isocentric conditions allow a significant reduction in the spot size at the patient entrance (up to 350% and 200% for protons and carbon ions with range shifter, respectively), and therefore in the lateral penumbra in the patients.

  8. Fitting phase shifts to electron-ion elastic scattering measurements

    International Nuclear Information System (INIS)

    Per, M.C.; Dickinson, A.S.

    2000-01-01

    We have derived non-Coulomb phase shifts from measured differential cross sections for electron scattering by the ions Na + , Cs + , N 3+ , Ar 8+ and Xe 6+ at energies below the inelastic threshold. Values of the scaled squared deviation between the observed and fitted differential cross sections, χ 2 , for the best-fit phase shifts were typically in the range 3-6 per degree of freedom. Generally good agreement with experiment is obtained, except for wide-angle scattering by Ar 8+ and Xe 6+ . Current measurements do not define phase shifts to better than approx. 0.1 rad even in the most favourable circumstances and uncertainties can be much larger. (author)

  9. Multiple scattering problems in heavy ion elastic recoil detection analysis

    International Nuclear Information System (INIS)

    Johnston, P.N.; El Bouanani, M.; Stannard, W.B.; Bubb, I.F.; Cohen, D.D.; Dytlewski, N.; Siegele, R.

    1998-01-01

    A number of groups use Heavy Ion Elastic Recoil Detection Analysis (HIERDA) to study materials science problems. Nevertheless, there is no standard methodology for the analysis of HIERDA spectra. To overcome this deficiency we have been establishing codes for 2-dimensional data analysis. A major problem involves the effects of multiple and plural scattering which are very significant, even for quite thin (∼100 nm) layers of the very heavy elements. To examine the effects of multiple scattering we have made comparisons between the small-angle model of Sigmund et al. and TRIM calculations. (authors)

  10. The electron-ion scattering experiment ELISe at the International Facility for Antiproton and Ion Research (FAIR)-A conceptual design study

    NARCIS (Netherlands)

    Antonov, A. N.; Gaidarov, M. K.; Ivanov, M. V.; Kadrev, D. N.; Aiche, M.; Barreau, G.; Czajkowski, S.; Jurado, B.; Belier, G.; Chatillon, A.; Granier, T.; Taieb, J.; Dore, D.; Letourneau, A.; Ridikas, D.; Dupont, E.; Berthoumieux, E.; Panebianco, S.; Farget, F.; Schmitt, C.; Audouin, L.; Khan, E.; Tassan-Got, L.; Aumann, T.; Beller, P.; Boretzky, K.; Dolinskii, A.; Egelhof, P.; Emling, H.; Franzke, B.; Geissel, H.; Kelic-Heil, A.; Kester, O.; Kurz, N.; Litvinov, Y.; Muenzenberg, G.; Nolden, F.; Schmidt, K. -H.; Scheidenberger, Ch.; Simon, H.; Steck, M.; Weick, H.; Enders, J.; Pietralla, N.; Richter, A.; Schrieder, G.; Zilges, A.; Distler, M. O.; Merkel, H.; Mueller, U.; Junghans, A. R.; Lenske, H.; Fujiwara, M.; Suda, T.; Kato, S.; Adachi, T.; Hamieh, S.; Harakeh, M. N.; Kalantar-Nayestanaki, N.; Woertche, H.; Berg, G. P. A.; Koop, I. A.; Logatchov, P. V.; Otboev, A. V.; Parkhomchuk, V. V.; Shatilov, D. N.; Shatunov, P. Y.; Shatunov, Y. M.; Shiyankov, S. V.; Shvartz, D. I.; Skrinsky, A. N.; Chulkov, L. V.; Danilin, B. V.; Korsheninnikov, A. A.; Kuzmin, E. A.; Ogloblin, A. A.; Volkov, V. A.; Grishkin, Y.; Lisin, V. P.; Mushkarenkov, A. N.; Nedorezov, V.; Polonski, A. L.; Rudnev, N. V.; Turinge, A. A.; Artukh, A.; Avdeichikov, V.; Ershov, S. N.; Fomichev, A.; Golovkov, M.; Gorshkov, A. V.; Grigorenko, L.; Klygin, S.; Krupko, S.; Meshkov, I. N.; Rodin, A.; Sereda, Y.; Seleznev, I.; Sidorchuk, S.; Syresin, E.; Stepantsov, S.; Ter-Akopian, G.; Teterev, Y.; Vorontsov, A. N.; Kamerdzhiev, S. P.; Litvinova, E. V.; Karataglidis, S.; Alvarez Rodriguez, R.; Borge, M. J. G.; Ramirez, C. Fernandez; Garrido, E.; Sarriguren, P.; Vignote, J. R.; Fraile Prieto, L. M.; Lopez Herraiz, J.; Moya de Guerra, E.; Udias-Moinelo, J.; Amaro Soriano, J. E.; Rojo, A. M. Lallena; Caballero, J. A.; Johansson, H. T.; Jonson, B.; Nilsson, T.; Nyman, G.; Zhukov, M.; Golubev, P.; Rudolph, D.; Hencken, K.; Jourdan, J.; Krusche, B.; Rauscher, T.; Kiselev, D.; Trautmann, D.; Al-Khalili, J.; Catford, W.; Johnson, R.; Stevenson, P. D.; Barton, C.; Jenkins, D.; Lemmon, R.; Chartier, M.; Cullen, D.; Bertulani, C. A.; Heinz, A.

    2011-01-01

    The electron-ion scattering experiment ELISe is part of the installations envisaged at the new experimental storage ring at the International Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany. It offers an unique opportunity to use electrons as probe in investigations of the

  11. The Glauber model and heavy ion reaction and elastic scattering cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Mehndiratta, Ajay [Physics Department, Indian Institute of Technology, Guwahati (India); Shukla, Prashant, E-mail: pshukla@barc.gov.in [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094 (India)

    2017-05-15

    We revisit the Glauber model to study the heavy ion reaction cross sections and elastic scattering angular distributions at low and intermediate energies. The Glauber model takes nucleon–nucleon cross sections and nuclear densities as inputs and has no free parameter and thus can predict the cross sections for unknown systems. The Glauber model works at low energies down to Coulomb barrier with very simple modifications. We present new parametrization of measured total cross sections as well as ratio of real to imaginary parts of the scattering amplitudes for pp and np collisions as a function of nucleon kinetic energy. The nuclear (charge) densities obtained by electron scattering form factors measured in large momentum transfer range are used in the calculations. The heavy ion reaction cross sections are calculated for light and heavy systems and are compared with available data measured over large energy range. The model gives excellent description of the data. The elastic scattering angular distributions are calculated for various systems at different energies. The model gives good description of the data at small momentum transfer but the calculations deviate from the data at large momentum transfer.

  12. Ion beam analysis of hydrogen retained in carbon nanotubes and carbon films

    International Nuclear Information System (INIS)

    McDaniel, F.D.; Holland, O.W.; Naab, F.U.; Mitchell, L.J.; Dhoubhadel, M.; Duggan, J.L.

    2006-01-01

    Carbon nanotubes (CNTs) are studied as a possible hydrogen storage medium for future energy needs. Typically, hydrogen is stored in the CNTs by exposure of the material to a high-pressure H 2 atmosphere at different temperatures. The maximum hydrogen concentrations stored following this method and measured using ion beam analysis do not exceed 1 wt.%. Introduction of defects by ion irradiation (i.e. implantation) prior to high-pressure H 2 treatment, offers an alternative method to activate H adsorption and enhance the chemisorption of hydrogen. This is a preliminary work where hydrogen was introduced into single-wall nanotubes and carbon films by low-energy (13.6 keV) hydrogen ion implantation. Elastic recoil detection was used to measure the quantity and depth distribution of hydrogen retained in the carbonaceous materials. Results show that there are substantial differences in the measured profiles between the CNT samples and the vitreous carbon. On another hand, only ∼43% of the implanted hydrogen in the CNTs is retained in the region where it should be located according to the SRIM simulations for a solid carbon sample

  13. Electronic excitation induced modifications in elongated iron nanoparticle encapsulated multiwalled carbon nanotubes under ion irradiation

    Science.gov (United States)

    Saikiran, V.; Bazylewski, P.; Sameera, I.; Bhatia, Ravi; Pathak, A. P.; Prasad, V.; Chang, G. S.

    2018-05-01

    Multi-wall carbon nanotubes (MWCNT) filled with Fe nanorods were shown to have contracted and deformed under heavy ion irradiation. In this study, 120 MeV Ag and 80 MeV Ni ion irradiation was performed to study the deformation and defects induced in iron filled MWCNT under heavy ion irradiation. The structural modifications induced due to electronic excitation by ion irradiation were investigated employing high-resolution transmission electron microscopy, micro-Raman scattering experiments, and synchrotron-based X-ray absorption and emission spectroscopy. We understand that the ion irradiation causes modifications in the Fe nanorods which result in compressions and expansions of the nanotubes, and in turn leads to the buckling of MWCNT. The G band of the Raman spectra shifts slightly towards higher wavenumber and the shoulder G‧ band enhances with the increase of ion irradiation fluence, where the buckling wavelength depends on the radius 'r' of the nanotubes as exp[(r)0.5]. The intensity ratio of the D to G Raman modes initially decreases at the lowest fluence, and then it increases with the increase in ion fluence. The electron diffraction pattern and the high resolution images clearly show the presence of ion induced defects on the walls of the tube and encapsulated iron nanorods.

  14. The scattering of low energy helium ions and atoms from a copper single crystal, ch. 2

    International Nuclear Information System (INIS)

    Verheij, L.K.; Poelsema, B.; Boers, A.L.

    1976-01-01

    The scattering of 4-10 keV helium ions from a copper surface cannot be completely described with elastic, single collisions. The general behaviour of the measured energy and width of the surface peak can be explained by differences in inelastic energy losses for scattering from an ideal surface and from surface structures (damage). Multiple scattering effects have a minor influence. Additional information about the inelastic processes is obtained from scattering experiments with a primary atom beam. For large angles of incidence, the energy of the reflected ions is reduced about 20 eV if the primary beam consists of atoms instead of ions. An explanation of this effect and an explanation of the different behaviour of small angles is given. In the investigated energy range, the electronic stopping power might depend on the charge state of the primary particles. The experimental results are rather well explained by the Lindhard, Scharff, Schioett theory

  15. Focused ion beam milling of carbon fibres

    International Nuclear Information System (INIS)

    Huson, Mickey G.; Church, Jeffrey S.; Hillbrick, Linda K.; Woodhead, Andrea L.; Sridhar, Manoj; Van De Meene, Allison M.L.

    2015-01-01

    A focused ion beam has been used to mill both individual carbon fibres as well as fibres in an epoxy composite, with a view to preparing flat surfaces for nano-indentation. The milled surfaces have been assessed for damage using scanning probe microscopy nano-indentation and Raman micro-probe analysis, revealing that FIB milling damages the carbon fibre surface and covers surrounding areas with debris of disordered carbon. The debris is detected as far as 100 μm from the milling site. The energy of milling as well as the orientation of the beam was varied and shown to have an effect when assessed by Raman spectroscopy. - Highlights: • Focused ion beam (FIB) milling was used to mill flat surfaces on carbon fibres. • Raman spectroscopy showed amorphous carbon was generated during FIB milling. • The amorphous debris is detected as far as 100 μm from the milling site. • This surface degradation was confirmed by nano-indentation experiments.

  16. Magnetothermoelectric properties of layered structures for ion impurity scattering

    Science.gov (United States)

    Figarova, S. R.; Huseynov, H. I.; Figarov, V. R.

    2018-05-01

    In the paper, longitudinal and transverse thermoelectric powers are considered in a magnetic field parallel to the layer plane for scattering of charge carriers by weakly screened impurity ions. Based on the semiclassical approximation, it is obtained that, depending on the position of the Fermi level relative to the miniband top and superlattice period, the thermoelectric power can change sign and amplify.

  17. Fluoro-Carbonate Solvents for Li-Ion Cells

    International Nuclear Information System (INIS)

    NAGASUBRAMANIAN, GANESAN

    1999-01-01

    A number of fluoro-carbonate solvents were evaluated as electrolytes for Li-ion cells. These solvents are fluorine analogs of the conventional electrolyte solvents such as dimethyl carbonate, ethylene carbonate, diethyl carbonate in Li-ion cells. Conductivity of single and mixed fluoro carbonate electrolytes containing 1 M LiPF(sub 6) was measured at different temperatures. These electrolytes did not freeze at -40 C. We are evaluating currently, the irreversible 1st cycle capacity loss in carbon anode in these electrolytes and the capacity loss will be compared to that in the conventional electrolytes. Voltage stability windows of the electrolytes were measured at room temperature and compared with that of the conventional electrolytes. The fluoro-carbon electrolytes appear to be more stable than the conventional electrolytes near Li voltage. Few preliminary electrochemical data of the fluoro-carbonate solvents in full cells are reported in the literature. For example, some of the fluorocarbonate solvents appear to have a wider voltage window than the conventional electrolyte solvents. For example, methyl 2,2,2 trifluoro ethyl carbonate containing 1 M LiPF(sub 6) electrolyte has a decomposition voltage exceeding 6 V vs. Li compared to and lt;5 V for conventional electrolytes. The solvent also appears to be stable in contact with lithium at room temperature

  18. Surface modification of commercial tin coatings by carbon ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, L.J.; Sood, D.K.; Manory, R.R. [Royal Melbourne Inst. of Tech., VIC (Australia)

    1993-12-31

    Commercial TiN coatings of about 2 {mu}m thickness on high speed steel substrates were implanted at room temperature with 95 keV carbon ions at nominal doses between 1 x 10{sup 17} - 8x10{sup 17} ions cm{sup -2}. Carbon ion implantation induced a significant improvement in ultramicrohardness, friction coefficient and wear properties. The surface microhardness increases monotonically by up to 115% until a critical dose is reached. Beyond this dose the hardness decreases, but remains higher than that of unimplanted sample. A lower friction coefficient and a longer transition period towards a steady state condition were obtained by carbon ion implantation. The changes in tribomechanical properties are discussed in terms of radiation damage and possible formation of a second phase rich in carbon. 6 refs., 3 figs.

  19. Surface modification of commercial tin coatings by carbon ion implantation

    International Nuclear Information System (INIS)

    Liu, L.J.; Sood, D.K.; Manory, R.R.

    1993-01-01

    Commercial TiN coatings of about 2 μm thickness on high speed steel substrates were implanted at room temperature with 95 keV carbon ions at nominal doses between 1 x 10 17 - 8x10 17 ions cm -2 . Carbon ion implantation induced a significant improvement in ultramicrohardness, friction coefficient and wear properties. The surface microhardness increases monotonically by up to 115% until a critical dose is reached. Beyond this dose the hardness decreases, but remains higher than that of unimplanted sample. A lower friction coefficient and a longer transition period towards a steady state condition were obtained by carbon ion implantation. The changes in tribomechanical properties are discussed in terms of radiation damage and possible formation of a second phase rich in carbon. 6 refs., 3 figs

  20. Surface modification of commercial tin coatings by carbon ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, L J; Sood, D K; Manory, R R [Royal Melbourne Inst. of Tech., VIC (Australia)

    1994-12-31

    Commercial TiN coatings of about 2 {mu}m thickness on high speed steel substrates were implanted at room temperature with 95 keV carbon ions at nominal doses between 1 x 10{sup 17} - 8x10{sup 17} ions cm{sup -2}. Carbon ion implantation induced a significant improvement in ultramicrohardness, friction coefficient and wear properties. The surface microhardness increases monotonically by up to 115% until a critical dose is reached. Beyond this dose the hardness decreases, but remains higher than that of unimplanted sample. A lower friction coefficient and a longer transition period towards a steady state condition were obtained by carbon ion implantation. The changes in tribomechanical properties are discussed in terms of radiation damage and possible formation of a second phase rich in carbon. 6 refs., 3 figs.

  1. Ion irradiation effects on tensile properties of carbon fibres

    International Nuclear Information System (INIS)

    Kurumada, A.; Ishihara, M.; Baba, S.; Aihara, J.

    2004-01-01

    Carbon/carbon composite materials have high thermal conductivity and excellent mechanical properties at high temperatures. They have been used as structural materials at high temperatures in fission and experimental fusion reactors. The changes in the microstructures and the mechanical properties due to irradiation damage must be measured for the safety design and the life assessment of the materials. The purpose of this study is to obtain a basic knowledge of the development of new carbon composite materials having high thermal conductivity and excellent resistance to irradiation damage. Five kinds of carbon fibres were selected, including a vapour growth carbon fibre (VGCF; K1100X), a polyacrylonitrile-based fibre (PAN; M55JB by Toray Corp.), two meso-phase pitch-based fibres (YS-15-60S and YS-70-60S by Nippon Graphite Fiber Corp.) and a pitch-based fibre (K13C2U by Mitsubishi Chemical Co.). They were irradiated by high-energy carbon, nickel and argon ions. Irradiation damages in the carbon fibres are expected to be uniform across the cross-section, as the diameters of the carbon fibres are about 20 μm and are sufficiently smaller than the ranges of ions. The cross-sectional areas increased due to ion irradiation, with the exception of the K1100X of VGCF. One of the reasons for the increases is the swelling of carbon basal planes due to lattice defects in the graphite interlayer. The tensile strengths and the Young's moduli decreased due to ion irradiation except for the K1100X of VGCF and the YS-15-60S of meso-phase pitch-based fibres. One of the reasons for the decreases is thought to be that the microstructures of carbon fibres are damaged in the axial direction, as ions were irradiated vertically with respect to the longitudinal direction of carbon fibres. The results of this study indicate that the VGCF and the meso-phase pitch-based carbon fibres could be useful as reinforcement fibres of new carbon composite materials having high thermal conductivity and

  2. Nearside-farside analysis of aligned heavy-ion elastic scattering

    International Nuclear Information System (INIS)

    Heck, K.; Grawert, G.; Mukhopadhyay, D.

    1985-01-01

    The nearside-farside decomposition of scattering amplitudes is brought to bear upon analysing powers for polarized heavy-ion elastic scattering. Results for aligned 7 Li on 58 Ni and on 12 C show that at an incident centre-of-mass energy slightly above the Coulomb barrier all observables provide a clear signature of a nearside-dominated process. This is in consonance with the so-called shape-effect ideology which relates second-rank analysing powers with the orientation of aligned, deformed projectiles solely at the point of closest approach. At higher energies, however, the advent of Fraunhofer interference as observed in cross section and analysing powers is found to be coupled with increasing deviations from the shape-effect relations. (orig.)

  3. Harmonic effects on ion-bulk waves and simulation of stimulated ion-bulk-wave scattering in CH plasmas

    Science.gov (United States)

    Feng, Q. S.; Zheng, C. Y.; Liu, Z. J.; Cao, L. H.; Xiao, C. Z.; Wang, Q.; Zhang, H. C.; He, X. T.

    2017-08-01

    Ion-bulk (IBk) wave, a novel branch with a phase velocity close to the ion’s thermal velocity, discovered by Valentini et al (2011 Plasma Phys. Control. Fusion 53 105017), is recently considered as an important electrostatic activity in solar wind, and thus of great interest to space physics and also inertial confinement fusion. The harmonic effects on IBk waves has been researched by Vlasov simulation for the first time. The condition of excitation of the large-amplitude IBk waves is given. The nature of nonlinear IBk waves in the condition of kFeng scattering (SFS) has been proposed and also verified by Vlasov-Maxwell code. In CH plasmas, in addition to the stimulated Brillouin scattering from multi ion-acoustic waves, there exists SIBS simultaneously. This research gives an insight into the SIBS in the field of laser plasma interaction.

  4. Fast ion dynamics in ASDEX upgrade and TEXTOR measured by collective Thomson scattering

    International Nuclear Information System (INIS)

    Moseev, D.

    2011-11-01

    Fast ions are an essential ingredient in burning nuclear fusion plasmas: they are responsible for heating the bulk plasma, carry a significant amount of plasma current and moreover interact with various magnetohydrodynamic (MHD) instabilities. The collective Thomson scattering (CTS) diagnostic is sensitive to the projection of fast ion velocity distribution function. This thesis is mainly devoted to investigations of fast ion physics in tokamak plasmas by means of CTS. (Author)

  5. Fast ion dynamics in ASDEX upgrade and TEXTOR measured by collective Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Moseev, D.

    2011-11-15

    Fast ions are an essential ingredient in burning nuclear fusion plasmas: they are responsible for heating the bulk plasma, carry a significant amount of plasma current and moreover interact with various magnetohydrodynamic (MHD) instabilities. The collective Thomson scattering (CTS) diagnostic is sensitive to the projection of fast ion velocity distribution function. This thesis is mainly devoted to investigations of fast ion physics in tokamak plasmas by means of CTS. (Author)

  6. Calculated energy distributions for light 0.25--18-keV ions scattered from solid surfaces

    International Nuclear Information System (INIS)

    Robinson, J.E.; Harms, A.A.; Karapetsas, S.K.

    1975-01-01

    Scattered energy distributions are calculated for light ions incident on Nb and Mo surfaces of interest for controlled nulcear fusion reactors. The scattered energy is found to vary as a function of the reflection coefficient between a multiple-collision limit at low energies and a single-collision Rutherford scattering limit at high energies. High-energy peaking of the scattered particle distributions is also found for low incident energies

  7. Carbon contaminant in the ion processing of aluminum oxide film

    International Nuclear Information System (INIS)

    Chaug, Y.; Roy, N.

    1989-01-01

    Ion processing can induce contamination on the bombarded surface. However, this process is essential for the microelectronics device fabrication. Auger electron spectroscopy has been used to study the simultaneous deposition of carbon impurity during ion bombardment of magnetron rf-sputtering deposited aluminum oxide film. Ion bombardment on aluminum oxide results in a preferential removal of surface oxygen and a formation of a metastable state of aluminum suboxide. Cosputtered implanted carbon contaminant appears to have formed a new state of stoichiometry on the surface of the ion bombarded aluminum oxide and existed as an aluminum carbide. This phase has formed due to the interaction of the implanted carbon and the aluminum suboxide. The Ar + ion sputter etching rate is reduced for the carbon contaminated oxide. The electrical resistance of the aluminum oxide between two gold strips has been measured. It is found that the electrical resistance is also reduced due to the formation of the new stoichiometry on the surface

  8. Application of ion beams for polymeric carbon based biomaterials

    International Nuclear Information System (INIS)

    Evelyn, A.L.

    2001-01-01

    Ion beams have been shown to be quite suitable for the modification and analysis of carbon based biomaterials. Glassy polymeric carbon (GPC), made from cured phenolic resins, has a high chemical inertness that makes it useful as a biomaterial in medicine for drug delivery systems and for the manufacture of heart valves and other prosthetic devices. Low and high-energy ion beams have been used, with both partially and fully cured phenolic resins, to enhance biological cell/tissue growth on, and to increase tissue adhesion to GPC surfaces. Samples bombarded with energetic ion beams in the keV to MeV range exhibited increased surface roughness, measured using optical microscopy and atomic force microscopy. Ion beams were also used to perform nuclear reaction analyses of GPC encapsulated drugs for use in internal drug delivery systems. The results from the high energy bombardment were more dramatic and are shown in this paper. The interaction of energetic ions has demonstrated the useful application of ion beams to enhance the properties of carbon-based biomaterials

  9. Collective Thomson scattering in tokamaks having energetic ions

    International Nuclear Information System (INIS)

    Myer, R.C.; Woskov, P.P.; Machuzak, J.S.; Sigmar, D.J.; Cohn, D.R.; Bretz, N.L.; Efthimion, P.C.; Colestock, P.L.

    1989-01-01

    The authors discuss how collective Thomson scattering (CTS), using high power gyrotrons or long wavelength lasers,m shows promise as a powerful non-intrusive diagnostic of fast-ion transport as it may be capable of measuring the fast-ion velocity distribution and density profile with good spatial and temporal resolution. In addition, CTS may be used as a diagnostic for detecting localized power deposition in the background plasma. High power CTS systems are presently being planned for TFTR, JET, and CIT. Recent theoretical analysis suggests that an energetic (200-800 keV) He 3 minority can be produced in TFTR by ion cyclotron heating (ICH). Such an energetic population would be useful for simulating the energetic alpha-particles produced in a burning plasma. Since the ICH generated distribution is non-Maxwellian, the authors generalize the theoretical analysis of CTS to allow for particle distributions which can be represented by various orthogonal polynomial expansions. They evaluate the efficacy of CTS in detecting a fast He 3 component and determine the sensitivity of the diagnostic to the details of the ion distribution. In particular, the effectiveness of a planned 56 GHz gyrotron CTS diagnostic for TFTR is evaluated

  10. Application of one body dissipation to deep inelastic heavy ion scattering

    International Nuclear Information System (INIS)

    Beck, F.; Blocki, J.; Dworzecka, M.; Wolschin, G.

    1978-01-01

    The one body dissipation mechanism is employed to couple the relative motion of two heavy ions to the internal degrees of freedom. Trajectories, energy and angular momentum losses are calculated, and compared with experimental data on deep inelastic scattering. (orig.) [de

  11. Dynamic polarization by coulomb excitation in the closed formalism for heavy ion scattering

    International Nuclear Information System (INIS)

    Frahn, W.E.; Hill, T.F.

    1978-01-01

    We present a closed-form treatment of the effects of dynamic polarization by Coulomb excitation on the elastic scattering of deformed heavy ions. We assume that this interaction can be represented by an absorptive polarization potential. The relatively long range of this potential entails a relatively slow variation of the associated reflection function in l-space. This feature leads to a simple generalization of the closed formula derived previously for the elastic scattering amplitude of spherical heavy nuclei. We use both the polarization potential of Love et al. and the recent improved potential of Baltz et al. to derive explicit expressions for the associated reflection functions in a Coulomb-distorted eikonal approximation. As an example we analyze the elastic scattering of 90-MeV 18 O ions by 184 W and show that both results give a quantitative description of the data. (orig.) [de

  12. Prospects for ion temperature measurements in JET by Thomson scattering of submillimetre waves

    International Nuclear Information System (INIS)

    Whitbourn, L.B.

    1975-03-01

    The Thomson scattering of submillimeter waves is envisaged as a possible means for measuring the ion temperature of the JET plasma. The present discussion is principally concerned with the practical limitations imposed to the method by the availability of high power pulsed sources and sensitive detectors and noise due to plasma emission at submillimeter wavelengths (bremsstrahlung and electron cyclotron emission). Coherent scattering from plasma wave (e.g. ion acoustic waves and electron drift waves) with millimeter and submillimeter waves are considered briefly. Further suitable development of lasers and heterodyne detectors would make such measurements possible. A pulsed HCN laser associated with a detectors with a lower heterodyne noise equivalent power could then be used to advantage. For scattering with CH 3 F laser the NEP of a Josephson junction would be adequate because a relatively high level of plasma emission is expected at 496 μm [fr

  13. Electronic structure of incident carbon ions on a graphite surface

    International Nuclear Information System (INIS)

    Kiuchi, Masato; Takeuchi, Takae; Yamamoto, Masao.

    1997-01-01

    The electronic structure of an incident carbon ion on a graphite surface is discussed on the basis of ab initio molecular orbital calculations. A carbon cation forms a covalent bond with the graphite, and a carbon nonion is attracted to the graphite surface through van der Waals interaction. A carbon anion has no stable state on a graphite surface. The charge effects of incident ions become clear upon detailed examination of the electronic structure. (author)

  14. CARBON-FIBRE-REINFORCED POLYMER PARTS EFFECT ON SPACECRAFT OPTOELECTRONIC MODULE LENS SCATTERING

    Directory of Open Access Journals (Sweden)

    S. S. Kolasha

    2016-01-01

    Full Text Available Spacecraft optoelectronic modules traditionally have aluminum alloy or titanium alloy casing which substantial weight increases fuel consumption required to put them into orbit and, consequently, total cost of the project. Carbon fiber reinforced polymer based composite constructive materials is an efficient solution that allows reducing weight and dimensions of large optoelectronic modules 1,5–3 times and the coefficient of linear thermal expansion 15–20 times if compared with metals. Optical characteristic is a crucial feature of carbon-fibre-reinforced polymer that determines composite material interaction with electromagnetic emission within the optical range. This work was intended to develop a method to evaluate Carbon fiber reinforced polymer optoelectronic modules casing effect on lens scattering by computer simulation with Zemax application software package. Degrees of scattered, reflected and absorbed radiant flux effect on imaging quality are described here. The work included experimental study in order to determine bidirectional reflectance distribution function by goniometric method for LUP-0.1 carbon fabric check test pieces of EDT-69U epoxy binder with EPOFLEX-0.4 glue layer and 5056-3.5-23-A aluminium honeycomb filler. The scattered emission was registered within a hemisphere above the check test piece surface. Optical detection direction was determined with zenith (0º < θ < 90º and azimuth (0º < φ < 180º angles with 10° increment. The check test piece surface was proved to scatter emission within a narrow angle range (approximately 20° with clear directivity. Carbon fiber reinforced polymers was found to feature integrated reflectance coefficient 3 to 4 times greater than special coatings do. 

  15. Scattering of antiprotons from carbon at 46.8 MeV

    International Nuclear Information System (INIS)

    Garetta, D.; Birien, P.; Bruge, G.; Chaumeaux, A.; Janouin, S.; Legrand, D.; Mallet-Lemaire, M.C.; Mayer, B.; Pain, J.; Drake, D.M.; Peng, J.C.

    1984-01-01

    Antiproton-carbon elastic and inelastic scattering cross sections have been measured at 46.8 MeV over an angular range 6 0 0 with a magnetic spectrometer. Fits to the elastic and inelastic 4.44 MeV excited state cross sections put realistic limits on the strengths of the real and imaginary parts of the antiproton-carbon optical potential. The continuum cross section due to carbon break-up appears to be smaller than it is for corresponding proton data. (orig.)

  16. Dynamics of fast ions during sawtooth oscillations in the TEXTOR tokamak measured by collective Thomson scattering

    DEFF Research Database (Denmark)

    Nielsen, Stefan Kragh; Salewski, Mirko; Bindslev, Henrik

    2011-01-01

    Experimental investigations of sawteeth interaction with fast ions measured by collective Thomson scattering on TEXTOR are presented. Time-resolved measurements of localized 1D fast-ion distribution functions allow us to study fast-ion dynamics during several sawtooth cycles. Sawtooth oscillation...

  17. Observations of non-collective x-ray scattering in warm dense carbon plasma

    International Nuclear Information System (INIS)

    Bao Lihua; Zhang Jiyan; Zhao Yang; Ding Yongkun; Zhang Xiaoding

    2012-01-01

    An experiment for observing the spectrally resolved non-collective x-ray scattering in warm dense carbon plasma is presented in this paper. The experiment used Ta M-band x-rays to heat a foamed carbon cylinder sample isochorically and measured the scattering spectrum with a HOPG crystal spectrometer. The spectrum was compared with the calculation results using a Born-Mermin-approximation model. The best fitting was found at an electron temperature of T e =34 eV and an electron density of n e =1.6×10 23 cm −3 .

  18. Three-Dimensional Carbon Nanostructures for Advanced Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Chiwon Kang

    2016-10-01

    Full Text Available Carbon nanostructural materials have gained the spotlight as promising anode materials for energy storage; they exhibit unique physico-chemical properties such as large surface area, short Li+ ion diffusion length, and high electrical conductivity, in addition to their long-term stability. However, carbon-nanostructured materials have issues with low areal and volumetric densities for the practical applications in electric vehicles, portable electronics, and power grid systems, which demand higher energy and power densities. One approach to overcoming these issues is to design and apply a three-dimensional (3D electrode accommodating a larger loading amount of active anode materials while facilitating Li+ ion diffusion. Furthermore, 3D nanocarbon frameworks can impart a conducting pathway and structural buffer to high-capacity non-carbon nanomaterials, which results in enhanced Li+ ion storage capacity. In this paper, we review our recent progress on the design and fabrication of 3D carbon nanostructures, their performance in Li-ion batteries (LIBs, and their implementation into large-scale, lightweight, and flexible LIBs.

  19. Charge transfer processes during ion scattering and stimulated desorption of secondary ions from gas-condensed dielectric surfaces

    CERN Document Server

    Souda, R

    2002-01-01

    The ion emission mechanism from weakly-interacting solid surfaces has been investigated. The H sup + ion captures a valence electron via transient chemisorption, so that the ion neutralization probability is related to the nature of bonding of adsorbates. The H sup + ion is scattered from physisorbed Ar at any coverage whereas the H sup + yield from solid H sub 2 O decays considerably due to covalency in the hydrogen bond. In electron- and ion-stimulated desorption, the ion ejection probability is correlated intimately with the physisorption/chemisorption of parent atoms or molecules. The emission of F sup + ions is rather exceptional because they arise from the screened F 2s core-hole state followed by the ionization via the intra-atomic Auger decay after bond breakage. In electron-stimulated desorption of H sub 2 O, hydrated protons are emitted effectively from nanoclusters formed on a solid Ar substrate due to Coulomb repulsion between confined valence holes.

  20. Effect of carbon on ion beam mixing of Fe-Ti bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Hirvonen, J.P.; Nastasi, M.; Lappalainen, R.; Sickafus, K. (Los Alamos National Lab., NM (USA); Helsinki Univ. (Finland). Dept. of Physics; Los Alamos National Lab., NM (USA))

    1989-01-01

    The influence of implanted carbon on ion beam mixing of a Fe-Ti system was investigated. Carbon was introduced into bilayer samples by implanting {sup 13}C isotopes. The implantation energies were selected to set the mean range of carbon ions in either the iron or titanium layer. The effect of implanted carbon on 400 keV Ar ion mixing in the temperature range from 0 to 300{degree}C was studied using Rutherford backscattering spectroscopy at the energy of 5 MeV. Changes in carbon concentration profiles were probed utilizing the resonance of the nuclear reaction {sup 13}C(p,{gamma}){sup 14}N at the proton energy of 1.748 MeV. The measurements revealed that mixing was not affected by carbon implanted into the titanium layer. However, carbon in the iron layer remarkably retarded mixing at all temperatures investigated. Significant changes in carbon depth distributions were observed only when the sample with implanted carbon in the iron layer was mixed at 300{degree}C. These results are explained in terms of the enhanced mobility of carbon in an evaporated iron film which allows segregation to the interface. At low temperatures, however, vacancy-carbon interaction in iron may have a contribution to the retarded ion beam mixing. 19 refs., 3 figs.

  1. Multiply charged carbon-ion production for medical application

    International Nuclear Information System (INIS)

    Kitagawa, A.; Muramatsu, M.; Sasaki, N.; Takasugi, W.; Wakaisami, S.; Biri, S.; Drentje, A. G.

    2008-01-01

    Over 3000 cancer patients have already been treated by the heavy-ion medical accelerator in Chiba at the National Institute of Radiological Sciences since 1994. The clinical results have clearly verified the effectiveness and safety of heavy-ion radiotherapy. The most important result has been to establish that the carbon ion is one of the most effective radiations for radiotherapy. The ion source is required to realize a stable beam with the same conditions for daily operation. However, the deposition of carbon ions on the wall of the plasma chamber is normally unavoidable. This causes an ''anti-wall-coating effect,'' i.e., a decreasing of the beam, especially for the higher charge-state ions due to the surface material of the wall. The ion source must be required to produce a sufficiently intense beam under the bad condition. Other problems were solved by improvements and maintenance, and thus we obtained enough reproducibility and stability along with decreased failures. We summarize our over 13 years of experience, and show the scope for further developments

  2. Measurements of ion temperature and plasma hydrogenic composition by collective Thomson scattering in neutral beam heated discharges at TEXTOR

    DEFF Research Database (Denmark)

    Stejner Pedersen, Morten; Salewski, Mirko; Korsholm, Søren Bang

    2013-01-01

    A method is developed to perform plasma composition and ion temperature measurements across the plasma minor radius in TEXTOR based on ion cyclotron structures in collective Thomson scattering spectra. By gradually moving the scattering volume, we obtain measurements across the outer midplane of ...

  3. Plasma characterization using ultraviolet Thomson scattering from ion-acoustic and electron plasma waves (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Follett, R. K., E-mail: rfollett@lle.rochester.edu; Delettrez, J. A.; Edgell, D. H.; Henchen, R. J.; Katz, J.; Myatt, J. F.; Froula, D. H. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States)

    2016-11-15

    Collective Thomson scattering is a technique for measuring the plasma conditions in laser-plasma experiments. Simultaneous measurements of ion-acoustic and electron plasma-wave spectra were obtained using a 263.25-nm Thomson-scattering probe beam. A fully reflective collection system was used to record light scattered from electron plasma waves at electron densities greater than 10{sup 21} cm{sup −3}, which produced scattering peaks near 200 nm. An accurate analysis of the experimental Thomson-scattering spectra required accounting for plasma gradients, instrument sensitivity, optical effects, and background radiation. Practical techniques for including these effects when fitting Thomson-scattering spectra are presented and applied to the measured spectra to show the improvements in plasma characterization.

  4. Effects of ion implantation on the electrochemical characteristics of carbon electrodes

    International Nuclear Information System (INIS)

    Takahashi, Katsuo; Iwaki, Masaya

    1994-01-01

    Various carbon materials are important electrode materials for electrochemical field. By ion implantation, the surface layer reforming of carbon materials (mainly galssy carbon) was carried out, and the effect that it exerts to their electrode characteristics was investigated. As the results of the ion implantation of Li, N, O, K, Ti, Zn, Cd and others performed so far, it was found that mainly by the change of the surface layer to amorphous state, there were the effects of the lowering of base current and the lowering of electrode reaction rate, and it was known that the surface layers of carbon materials doped with various kinds of ions showed high chemical stability. The use of carbon materials as electrodes in electrochemistry is roughly divided into the electrodes for electrolytic industry and fuel cells for large current and those for the measurement in electrochemical reaction for small current. The structure of carbon materials and electrode characteristics, and the reforming effect by ion implantation are reported. (K.I.)

  5. Nearside-farside analysis of aligned heavy-ion elastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Heck, K; Grawert, G [Marburg Univ. (Germany, F.R.). Fachbereich Physik; Mukhopadhyay, D [Heidelberg Univ. (Germany, F.R.). Inst. fuer Theoretische Physik

    1985-04-22

    The nearside-farside decomposition of scattering amplitudes is brought to bear upon analysing powers for polarized heavy-ion elastic scattering. Results for aligned /sup 7/Li on /sup 58/Ni and on /sup 12/C show that at an incident centre-of-mass energy slightly above the Coulomb barrier all observables provide a clear signature of a nearside-dominated process. This is in consonance with the so-called shape-effect ideology which relates second-rank analysing powers with the orientation of aligned, deformed projectiles solely at the point of closest approach. At higher energies, however, the advent of Fraunhofer interference as observed in cross section and analysing powers is found to be coupled with increasing deviations from the shape-effect relations.

  6. Observation of Electronic Raman Scattering in Metallic Carbon Nanotubes

    Czech Academy of Sciences Publication Activity Database

    Farhat, H.; Berciaud, S.; Kalbáč, Martin; Saito, R.; Heinz, T. F.; Dresselhaus, M. S.; Kong, J.

    2011-01-01

    Roč. 107, č. 15 (2011), s. 157401 ISSN 0031-9007 R&D Projects: GA MŠk ME09060 Institutional research plan: CEZ:AV0Z40400503 Keywords : spectroscopy * electronic Raman scattering * metallic carbon nanotubes Subject RIV: CG - Electrochemistry Impact factor: 7.370, year: 2011

  7. Quantum screening effects on the electron-ion occurrence scattering time advance in strongly coupled semiclassical plasmas

    International Nuclear Information System (INIS)

    Song, Mi-Young; Jung, Young-Dae

    2003-01-01

    Quantum screening effects on the occurrence scattering time advance for elastic electron-ion collisions in strongly coupled semiclassical plasmas are investigated using the second-order eikonal analysis. The electron-ion interaction in strongly coupled semiclassical plasmas is obtained by the pseudopotential model taking into account the plasma screening and quantum effects. It is found that the quantum-mechanical effects significantly reduce the occurrence scattering time advance. It is also found that the occurrence scattering time advance increases with increasing Debye length. It is quite interesting to note that the domain of the maximum occurrence time advance is localized for the forward scattering case. The region of the scaled thermal de Broglie wave length (λ-bar) for the maximum occurrence time advance is found to be 0.4≤λ-bar≤1.4

  8. Channeling implantation of high energy carbon ions in a diamond crystal: Determination of the induced crystal amorphization

    Science.gov (United States)

    Erich, M.; Kokkoris, M.; Fazinić, S.; Petrović, S.

    2018-02-01

    This work reports on the induced diamond crystal amorphization by 4 MeV carbon ions implanted in the 〈1 0 0〉 oriented crystal and its determination by application of RBS/C and EBS/C techniques. The spectra from the implanted samples were recorded for 1.2, 1.5, 1.75 and 1.9 MeV protons. For the two latter ones the strong resonance of the nuclear elastic scattering 12C(p,p0)12C at 1.737 MeV was explored. The backscattering channeling spectra were successfully fitted and the ion beam induced crystal amorphization depth profile was determined using a phenomenological approach, which is based on the properly defined Gompertz type dechanneling functions for protons in the 〈1 0 0〉 diamond crystal channels and the introduction of the concept of ion beam amorphization, which is implemented through our newly developed computer code CSIM.

  9. The effect of thermal vibrations of lattice atoms on the scattering of low energetic ions (2-10keV)

    International Nuclear Information System (INIS)

    Poelsema, B.; Boers, A.L.

    1977-01-01

    An introduction to the study of solid state surfaces by analyzing the scattering behavior of low energetic noble gas ions is given. Attention is paid to thermal vibrations of the surface atoms. The scattering of Ar and Kr ions on a Cu monocrystal is discussed as an example

  10. Mutagenic effects of nitrogen and carbon ions on stevia

    International Nuclear Information System (INIS)

    Wang Cailian; Chen Qiufang; Shen Mei; Lu Ting; Shu Shizhen

    1998-06-01

    Dry seeds of stevia were implanted by 60∼100 keV nitrogen ion and 75 keV carbon ion with various doses. The biological effects in M 1 and mutation in M 2 were studied. The results showed that ion beam was able to induce variation on chromosome structure and inhibited mitosis action in root tip cells. The rate of cells with chromosome aberration was increased with the increase of ion beam energy and dose. Energy effects of mitosis were presented between 75 keV and 60, 100 keV. As compared with γ-rays, the effects of ion beam were lower on chromosomal aberration but were higher on frequency of the mutation. The rate of cell with chromosome aberration and M 2 useful mutation induced by implantation of carbon ion was higher than those induced by implantation of nitrogen ion. Mutagenic effects of Feng 1 x Ri Yuan and of Ri Yuan x Feng 2 are higher than that of Ji Ning and Feng 2

  11. Mode coupling theory analysis of electrolyte solutions: Time dependent diffusion, intermediate scattering function, and ion solvation dynamics.

    Science.gov (United States)

    Roy, Susmita; Yashonath, Subramanian; Bagchi, Biman

    2015-03-28

    A self-consistent mode coupling theory (MCT) with microscopic inputs of equilibrium pair correlation functions is developed to analyze electrolyte dynamics. We apply the theory to calculate concentration dependence of (i) time dependent ion diffusion, (ii) intermediate scattering function of the constituent ions, and (iii) ion solvation dynamics in electrolyte solution. Brownian dynamics with implicit water molecules and molecular dynamics method with explicit water are used to check the theoretical predictions. The time dependence of ionic self-diffusion coefficient and the corresponding intermediate scattering function evaluated from our MCT approach show quantitative agreement with early experimental and present Brownian dynamic simulation results. With increasing concentration, the dispersion of electrolyte friction is found to occur at increasingly higher frequency, due to the faster relaxation of the ion atmosphere. The wave number dependence of intermediate scattering function, F(k, t), exhibits markedly different relaxation dynamics at different length scales. At small wave numbers, we find the emergence of a step-like relaxation, indicating the presence of both fast and slow time scales in the system. Such behavior allows an intriguing analogy with temperature dependent relaxation dynamics of supercooled liquids. We find that solvation dynamics of a tagged ion exhibits a power law decay at long times-the decay can also be fitted to a stretched exponential form. The emergence of the power law in solvation dynamics has been tested by carrying out long Brownian dynamics simulations with varying ionic concentrations. The solvation time correlation and ion-ion intermediate scattering function indeed exhibit highly interesting, non-trivial dynamical behavior at intermediate to longer times that require further experimental and theoretical studies.

  12. Carbon ion radiotherapy in bone and soft tissue sarcomas

    International Nuclear Information System (INIS)

    Kamada, Tadashi; Imai, Reiko; Kagei, Kenji; Tsuji, Hiroshi; Yanagi, Takeshi; Ishikawa, Hitoshi; Tsujii, Hirohiko

    2006-01-01

    The Heavy Ion Medical Accelerator in Chiba (HIMAC) is the world's first heavy ion accelerator complex dedicated to medical use in a hospital environment. Heavy ions have superior depth-dose distribution and greater cell-killing capability. In June 1996, clinical research for the treatment of bone and soft tissue sarcomas was begun using carbon ions generated by the HIMAC. As of February 2006, a total of the 278 patients with bone and soft tissue sarcoma had been enrolled into the clinical trial. Most of the patients had locally advanced and/or medically inoperable tumors. The clinical trial revealed that carbon ion radiotherapy provided definite local control and offered a survival advantage without unacceptable morbidity in bone and soft tissue sarcomas that were hard to cure with other modalities. (author)

  13. Specificity of mutations induced by carbon ions in budding yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Matuo, Youichirou; Nishijima, Shigehiro; Hase, Yoshihiro; Sakamoto, Ayako; Tanaka, Atsushi; Shimizu, Kikuo

    2006-01-01

    To investigate the nature of mutations induced by accelerated ions in eukaryotic cells, the effects of carbon-ion irradiation were compared with those of γ-ray irradiation in the budding yeast Saccharomyces cerevisiae. The mutational effect and specificity of carbon-ion beams were studied in the URA3 gene of the yeast. Our experiments showed that the carbon ions generated more than 10 times the number of mutations induced by γ-rays, and that the types of base changes induced by carbon ions include transversions (68.7%), transitions (13.7%) and deletions/insertions (17.6%). The transversions were mainly G:C → T:A, and all the transitions were G:C → A:T. In comparison with the surrounding sequence context of mutational base sites, the C residues in the 5'-AC(A/T)-3' sequence were found to be easily changed. Large deletions and duplications were not observed, whereas ion-induced mutations in Arabidopsis thaliana were mainly short deletions and rearrangements. The remarkable feature of yeast mutations induced by carbon ions was that the mutation sites were localized near the linker regions of nucleosomes, whereas mutations induced by γ-ray irradiation were located uniformly throughout the gene

  14. Antenna design for fast ion collective Thomson scattering diagnostic for the international thermonuclear experimental reactor

    DEFF Research Database (Denmark)

    Leipold, Frank; Furtula, Vedran; Salewski, Mirko

    2009-01-01

    Fast ion physics will play an important role for the international thermonuclear experimental reactor (ITER), where confined alpha particles will affect and be affected by plasma dynamics and thereby have impacts on the overall confinement. A fast ion collective Thomson scattering (CTS) diagnostic...

  15. EPR characterization of carbonate ion effect on TCE and PCE decomposition by gamma-rays

    International Nuclear Information System (INIS)

    Yoon, J.H.; Chung, H.H.; Lee, M.J.; Jung, J.

    2002-01-01

    Carbonate ions significantly inhibit the decomposition of TCE (trichloroethylene) and PCE (perchloroethylene) by gamma-rays. The inhibition effect is larger in the case of TCE than PCE due to a greater dependence of TCE decomposition on hydroxyl radicals. The inhibition effect of carbonate ions was characterized by an EPR/spin-trapping technique. The intensity of DMPO-OH adduct signal decreased as the carbonate ion concentration increased and the percent of signal reduction was linearly proportional to the logarithm of carbonate ion concentration. This directly proves that the carbonate ions inhibit the decomposition of TCE and PCE by scavenging hydroxyl radicals. (author)

  16. The electron-ion scattering experiment ELISe at the International Facility for Antiproton and Ion Research (FAIR)-A conceptual design study

    Energy Technology Data Exchange (ETDEWEB)

    Antonov, A.N.; Gaidarov, M.K. [INRNE-BAS Sofia (Bulgaria); Ivanov, M.V. [Grupo de Physica Nuclear, Complutense University of Madrid (Spain); Kadrev, D.N. [INRNE-BAS Sofia (Bulgaria); Aiche, M.; Barreau, G.; Czajkowski, S.; Jurado, B. [Centre d' Etudes Nucleaires Bordeaux-Gradingnan (CENBG) (France); Belier, G.; Chatillon, A.; Granier, T.; Taieb, J. [CEA Bruyeres-le-Chatel (France); Dore, D.; Letourneau, A.; Ridikas, D.; Dupont, E.; Berthoumieux, E.; Panebianco, S. [CEA Saclay (France); Farget, F.; Schmitt, C. [GANIL Caen (France)

    2011-05-01

    The electron-ion scattering experiment ELISe is part of the installations envisaged at the new experimental storage ring at the International Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany. It offers an unique opportunity to use electrons as probe in investigations of the structure of exotic nuclei. The conceptual design and the scientific challenges of ELISe are presented.

  17. The electron-ion scattering experiment ELISe at the International Facility for Antiproton and Ion Research (FAIR)-A conceptual design study

    International Nuclear Information System (INIS)

    Antonov, A.N.; Gaidarov, M.K.; Ivanov, M.V.; Kadrev, D.N.; Aiche, M.; Barreau, G.; Czajkowski, S.; Jurado, B.; Belier, G.; Chatillon, A.; Granier, T.; Taieb, J.; Dore, D.; Letourneau, A.; Ridikas, D.; Dupont, E.; Berthoumieux, E.; Panebianco, S.; Farget, F.; Schmitt, C.

    2011-01-01

    The electron-ion scattering experiment ELISe is part of the installations envisaged at the new experimental storage ring at the International Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany. It offers an unique opportunity to use electrons as probe in investigations of the structure of exotic nuclei. The conceptual design and the scientific challenges of ELISe are presented.

  18. Ion track annealing in quartz investigated by small angle X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Schauries, D.; Afra, B.; Rodriguez, M.D. [Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 2601 (Australia); Trautmann, C. [GSI Helmholtz Centre for Heavy Ion Research, Planckstrasse 1, 64291 Darmstadt (Germany); Technische Universität Darmstadt, 64287 Darmstadt (Germany); Hawley, A. [Australian Synchrotron, 800 Blackburn Road, Clayton, VIC 3168 (Australia); Kluth, P. [Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 2601 (Australia)

    2015-12-15

    We report on the reduction of cross-section and length of amorphous ion tracks embedded within crystalline quartz during thermal annealing. The ion tracks were created via Au ion irradiation with an energy of 2.2 GeV. The use of synchrotron-based small angle X-ray scattering (SAXS) allowed characterization of the latent tracks, without the need for chemical etching. Temperatures between 900 and 1000 °C were required to see a notable change in track size. The shrinkage in cross-section and length was found to be comparable for tracks aligned perpendicular and parallel to the c-axis.

  19. Fast-ion dynamics in the TEXTOR tokamak measured by collective Thomson scattering

    International Nuclear Information System (INIS)

    Bindslev, H; Nielsen, S K; Porte, L; Hoekzema, J A; Korsholm, S B; Meo, F; Michelsen, P K; Michelsen, S; Oosterbeek, J W; Tsakadze, E L; Westerhof, E; Woskov, P

    2007-01-01

    The dynamics of fast ion populations in the TEXTOR tokamak are measured by collective Thomson scattering of millimetre wave radiation generated by a gyrotron operated at 110 GHz and 100-150 kW. Temporal evolution of the energetic ion velocity distribution at switch on of neutral beam injection (NBI) and the slowdown after switch off of NBI are measured. The turn on phase of the NBI has, furthermore, been measured in plasmas with a range of electron densities and temperatures. All of these measurements are shown to be in good agreement with simple Fokker-Planck modelling. Bulk ion rotation velocity is also measured

  20. Characterization of carbon ion implantation induced graded microstructure and phase transformation in stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Kai; Wang, Yibo [Shanghai Key laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Li, Zhuguo, E-mail: lizg@sjtu.edu.cn [Shanghai Key laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2015-08-15

    Austenitic stainless steel 316L is ion implanted by carbon with implantation fluences of 1.2 × 10{sup 17} ions-cm{sup −} {sup 2}, 2.4 × 10{sup 17} ions-cm{sup −} {sup 2}, and 4.8 × 10{sup 17} ions-cm{sup −} {sup 2}. The ion implantation induced graded microstructure and phase transformation in stainless steel is investigated by X-ray diffraction, X-ray photoelectron spectroscopy and high resolution transmission electron microscopy. The corrosion resistance is evaluated by potentiodynamic test. It is found that the initial phase is austenite with a small amount of ferrite. After low fluence carbon ion implantation, an amorphous layer and ferrite phase enriched region underneath are formed. Nanophase particles precipitate from the amorphous layer due to energy minimization and irradiation at larger ion implantation fluence. The morphology of the precipitated nanophase particles changes from circular to dumbbell-like with increasing implantation fluence. The corrosion resistance of stainless steel is enhanced by the formation of amorphous layer and graphitic solid state carbon after carbon ion implantation. - Highlights: • Carbon implantation leads to phase transformation from austenite to ferrite. • The passive film on SS316L becomes thinner after carbon ion implantation. • An amorphous layer is formed by carbon ion implantation. • Nanophase precipitate from amorphous layer at higher ion implantation fluence. • Corrosion resistance of SS316L is improved by carbon implantation.

  1. Unified description of scattering and fusion phenomena in heavy-ion collisions

    International Nuclear Information System (INIS)

    Sahu, Basudeb; Sahu, B. B.; Mallick, G. S.; Agarwalla, S. K.; Shastry, C. S.

    2008-01-01

    An analytical recursive formula of the partial-wave scattering matrix for the total effective complex potential of nucleus-nucleus collisions is derived to conveniently analyze the data of angular variations of elastic scattering cross sections. Further, another expression of cross sections for the absorption from arbitrarily small intervals is derived. This leads to the explanation of the fusion cross section (σ fus ) data at various incident center-of-mass energies E c.m. by collecting the absorption contributions in the interior region of the effective potential. This concept is akin to that used by Udagawa et al. in the calculation of fusion cross sections in elastic channels. The interaction potential considered in the analysis is energy independent and by virtue of its weakly absorbing character it supports resonance states in different partial-wave trajectories. Consequently, occurrence of these resonances is shown to be the physical origin of the observed oscillatory structure in the variation respect to energy of the quantity D(E c.m. )=d 2 (E c.m. σ fus )/dE c.m. 2 , the second derivative of the product E c.m. σ fus with respect to E c.m. . In this article, we investigate two well-known cases of heavy-ion collisions, namely 12 C+ 208 Pb and 16 O+ 208 Pb, and obtain simultaneous and very successful explanations of cross sections for elastic scattering and fusion and the results of D(E c.m. ). These results obtained by using a somewhat novel and convenient method demonstrate the unified description of scattering and fusion for interacting heavy-ion systems

  2. Quality of life (QOL) assessment in patients received carbon ion radiotherapy

    International Nuclear Information System (INIS)

    Kamada, Tadashi; Mizoe, Jun-Etsu; Tsuji, Hiroshi; Yanagi, Tsuyoshi; Miyamoto, Tada-aki; Kato, Hirotoshi; Oono, Tatsuya; Yamada, Shigeru; Tsujii, Hirohiko

    2003-01-01

    Until February 2003, a total of 1,463 patients were enrolled in clinical trials of carbon ion radiotherapy. Most of the patients had locally advanced and/or medically inoperable tumors. The clinical trials revealed that carbon ion radiotherapy provided definite local control and offered a survival advantage without unacceptable morbidity in a variety of tumors that were hard to cure by other modalities. In this study, quality of life (QOL) outcomes of patients with unresectable bone and soft tissue sarcoma after carbon ion radiotherapy are investigated. (author)

  3. Elastic scattering of helium ions on 9Be nuclei and exchange mechanisms

    International Nuclear Information System (INIS)

    Burtebaev, N.; Dujsebaev, B.A.

    1999-01-01

    Among nuclei of 1p-shell 9 Be is an extremely deformed nucleus with cluster structure. This considerably impedes determination of nucleus-nucleus potential of interaction. The latter relates to the fact that cross-section of 3 He ion and ?-particle elastic scattering on light nuclei is formed by not only mechanism of mere potential nature but also by other processes of heavy breakaway and displacement as well as by effects of channel relation. Final probability of 6 He+ and 3 He and 5 He+? cluster existence in 9 Be nucleus can be determined in the processes of 3 He or ?-particle ion scattering. As a result, it can cause considerable growth of cross-section under backward angles due to exchange of impinging particle with identical cluster in a nucleus. In order to study the contribution of different mechanisms into formation of cross-section of elastic scattering of helium nuclides on 9 Be nucleus we have performed series of experiments in broad angular range at energies 8-20 MeV/nucleon at derived beams of isochronous cyclotron of the Institute of Nuclear Physics of Kazakhstan national Nuclear Centre

  4. Exploring Ion-Ion Interactions in Aqueous Solutions by a Combination of Molecular Dynamics and Neutron Scattering

    Czech Academy of Sciences Publication Activity Database

    Kohagen, Miriam; Pluhařová, E.; Mason, Philip E.; Jungwirth, Pavel

    2015-01-01

    Roč. 6, č. 9 (2015), s. 1563-1567 ISSN 1948-7185 R&D Projects: GA ČR GBP208/12/G016 Institutional support: RVO:61388963 Keywords : ion pairing * molecular dynamics * neutron scattering Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 8.539, year: 2015 http://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.5b00060

  5. Carbon nanotube/carbon nanotube composite AFM probes prepared using ion flux molding

    Science.gov (United States)

    Chesmore, Grace; Roque, Carrollyn; Barber, Richard

    The performance of carbon nanotube-carbon nanotube composite (CNT/CNT composite) atomic force microscopy (AFM) probes is compared to that of conventional Si probes in AFM tapping mode. The ion flux molding (IFM) process, aiming an ion beam at the CNT probe, aligns the tip to a desired angle. The result is a relatively rigid tip that is oriented to offset the cantilever angle. Scans using these probes reveal an improvement in image accuracy over conventional tips, while allowing higher aspect ratio imaging of 3D surface features. Furthermore, the lifetimes of CNT-CNT composite tips are observed to be longer than both conventional tips and those claimed for other CNT technologies. Novel applications include the imaging of embiid silk. Supported by the Clare Boothe Luce Research Scholars Award and Carbon Design Innovations.

  6. Enhanced Scattering of Diffuse Ions on Front of the Earth's Quasi-Parallel Bow Shock: a Case Study

    Science.gov (United States)

    Kis, A.; Matsukiyo, S.; Otsuka, F.; Hada, T.; Lemperger, I.; Dandouras, I. S.; Barta, V.; Facsko, G. I.

    2017-12-01

    In the analysis we present a case study of three energetic upstream ion events at the Earth's quasi-parallel bow shock based on multi-spacecraft data recorded by Cluster. The CIS-HIA instrument onboard Cluster provides partial energetic ion densities in 4 energy channels between 10 and 32 keV.The difference of the partial ion densities recorded by the individual spacecraft at various distances from the bow shock surface makes possible the determination of the spatial gradient of energetic ions.Using the gradient values we determined the spatial profile of the energetic ion partial densities as a function of distance from the bow shock and we calculated the e-folding distance and the diffusion coefficient for each event and each ion energy range. Results show that in two cases the scattering of diffuse ions takes place in a normal way, as "by the book", and the e-folding distance and diffusion coefficient values are comparable with previous results. On the other hand, in the third case the e-folding distance and the diffusion coefficient values are significantly lower, which suggests that in this case the scattering process -and therefore the diffusive shock acceleration (DSA) mechanism also- is much more efficient. Our analysis provides an explanation for this "enhanced" scattering process recorded in the third case.

  7. Dissociative scattering of low-energy SiF{sub 3}{sup +} and SiF{sup +} ions (5-200 eV) on Cu(100) surface

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Hiroyuki; Baba, Yuji; Sasaki, T A [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    Dissociative scattering of molecular SiF{sub 3}{sup +} and SiF{sup +} ions from a Cu(100) single crystal surface has been investigated in the incident energy range from 5 eV to 200 eV with a scattering angle of 77deg. The scattered ion intensity of dissociative ions and parent molecular ions were measured as a function of incident ion energy. The observed data show that onset energies of dissociation for SiF{sub 3}{sup +} and SiF{sup +} ions are 30 eV and 40 eV, respectively. The obtained threshold energies are consistent with a impulsive collision model where the dissociation of incident ion is caused by vibrational excitation during collision. (author)

  8. SU-D-BRB-02: Investigations of Secondary Ion Distributions in Carbon Ion Therapy Using the Timepix Detector.

    Science.gov (United States)

    Gwosch, K; Hartmann, B; Jakubek, J; Granja, C; Soukup, P; Jaekel, O; Martisikova, M

    2012-06-01

    Due to the high conformity of carbon ion therapy, unpredictable changes in the patient's geometry or deviations from the planned beam properties can result in changes of the dose distribution. PET has been used successfully to monitor the actual dose distribution in the patient. However, it suffers from biological washout processes and low detection efficiency. The purpose of this contribution is to investigate the potential of beam monitoring by detection of prompt secondary ions emerging from a homogeneous phantom, simulating a patient's head. Measurements were performed at the Heidelberg Ion-Beam Therapy Center (Germany) using a carbon ion pencil beam irradiated on a cylindrical PMMA phantom (16cm diameter). For registration of the secondary ions, the Timepix detector was used. This pixelated silicon detector allows position-resolved measurements of individual ions (256×256 pixels, 55μm pitch). To track the secondary ions we used several parallel detectors (3D voxel detector). For monitoring of the beam in the phantom, we analyzed the directional distribution of the registered ions. This distribution shows a clear dependence on the initial beam energy, width and position. Detectable were range differences of 1.7mm, as well as vertical and horizontal shifts of the beam position by 1mm. To estimate the clinical potential of this method, we measured the yield of secondary ions emerging from the phantom for a beam energy of 226MeV/u. The differential distribution of secondary ions as a function of the angle from the beam axis for angles between 0 and 90° will be presented. In this setup the total yield in the forward hemisphere was found to be in the order of 10 -1 secondary ions per primary carbon ion. The presented measurements show that tracking of secondary ions provides a promising method for non-invasive monitoring of ion beam parameters for clinical relevant carbon ion fluences. Research with the pixel detectors was carried out in frame of the Medipix

  9. Precipitation characteristics of uranyl ions at different pHs depending on the presence of carbonate ions and hydrogen peroxide.

    Science.gov (United States)

    Kim, Kwang-Wook; Kim, Yeon-Hwa; Lee, Se-yoon; Lee, Jae-Won; Joe, Kih-Soo; Lee, Eil-Hee; Kim, Jong-Seung; Song, Kyuseok; Song, Kee-Chan

    2009-04-01

    This work studied the dissolution of uranium dioxide and precipitation characteristics of uranyl ions in alkaline and acidic solutions depending on the presence of carbonate ions and H2O2 in the solutions at different pHs controlled by adding HNO3 or NaOH in the solution. The chemical structures of the precipitates generated in different conditions were evaluated and compared by using XRD, SEM, TG-DT, and IR analyses together. The sizes and forms of the precipitates in the solutions were evaluated, as well. The uranyl ions were precipitated in the various forms, depending on the solution pH and the presences of hydrogen peroxide and carbonate ions in the solution. In a 0.5 M Na2CO3 solution with H2O2, where the uranyl ions formed mixed uranyl peroxy-carbonato complexes, the uranyl ions were precipitated as a uranium peroxide of UO4(H20)4 at pH 3-4, and precipitated as a clarkeite of Na2U2Ox(OH)y(H2O)z above pH 13. In the same carbonate solution without H2O2, where the uranyl ions formed uranyl tris-carbonato complex, the uranyl ions were observed to be precipitated as a different form of clarkeite above pH 13. The precipitate of uranyl ions in a nitrate solution without carbonate ions and H2O2 at a high pH were studied together to compare the precipitate forms in the carbonate solutions.

  10. On the cost-effectiveness of Carbon ion radiation therapy for skull base chordoma

    International Nuclear Information System (INIS)

    Jaekel, Oliver; Land, Beate; Combs, Stephanie Elisabeth; Schulz-Ertner, Daniela; Debus, Juergen

    2007-01-01

    Aim: The cost-effectiveness of Carbon ion radiotherapy (RT) for patients with skull base chordoma is analyzed. Materials and Methods: Primary treatment costs and costs for recurrent tumors are estimated. The costs for treatment of recurrent tumors were estimated using a sample of 10 patients presenting with recurrent chordoma at the base of skull at DKFZ. Using various scenarios for the local control rate and reimbursements of Carbon ion therapy the cost-effectiveness of ion therapy for these tumors is analyzed. Results: If local control rate for skull base chordoma achieved with carbon ion therapy exceeds 70.3%, the overall treatment costs for carbon RT are lower than for conventional RTI. The cost-effectiveness ratio for carbon RT is 2539 Euro per 1% increase in survival, or 7692 Euro per additional life year. Conclusion: Current results support the thesis that Carbon ion RT, although more expensive, is at least as cost-effective as advanced photon therapies for these patients. Ion RT, however, offers substantial benefits for the patients such as improved control rates and less severe side effects

  11. Impact of beam ions on α-particle measurements by collective Thomson scattering in ITER

    DEFF Research Database (Denmark)

    Egedal, J.; Bindslev, H.; Budny, R.V.

    2005-01-01

    Collective Thomson scattering (CTS) has been proposed as a viable diagnostic for characterizing fusion born a-distributions in ITER. However, the velocities of the planned 1 MeV deuterium heating beam ions in 1TER are similar to that of fusion born a-particles and may therefore mask the measureme......Collective Thomson scattering (CTS) has been proposed as a viable diagnostic for characterizing fusion born a-distributions in ITER. However, the velocities of the planned 1 MeV deuterium heating beam ions in 1TER are similar to that of fusion born a-particles and may therefore mask...... and the alpha-particles are calculated. Our investigations show that the CTS measurements of alpha-particles will not be masked by the presence of the beam ions in H-mode plasmas. In lower density reversed shear plasmas, only a part of the CTS alpha-particle spectrum will be perturbed....

  12. Infrared laser scattering system for the plasma diagnostics: CO/sub 2/ laser characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Hiraki, N; Kawasaki, S; Muraoka, K

    1975-08-01

    A detailed study was conducted of the operating characteristics of a double discharge infrared TEA carbon dioxide laser used for scattering measurements of plasmas. The discharge condition, the laser output energy and power, the beam profile and divergence, the emission spectral line width, the time lag and jitter of the output from the discharge trigger, have been established. It is concluded that the carbon dioxide oscillator can deliver the allowable beam divergence and spectral line width for the measurement of ion temperature in light scattering studies of theta pinch plasmas. The results presented might be applicable to laser fusion experiments using carbon dioxide lasers.

  13. Quantal theory of heavy ion scattering in a three-dimensional TDHF model

    International Nuclear Information System (INIS)

    Cusson, R.Y.

    1977-01-01

    The fast Fourier transform and the predictor corrector method are used to solve the time-dependent Hartree-Fock equations. The equations are then used to calculate the electric scattering of heavy ions, concentrating on 16 O + 16 O and 14 N + 12 C

  14. Pyrolytic Carbon Nanosheets for Ultrafast and Ultrastable Sodium-Ion Storage.

    Science.gov (United States)

    Cho, Se Youn; Kang, Minjee; Choi, Jaewon; Lee, Min Eui; Yoon, Hyeon Ji; Kim, Hae Jin; Leal, Cecilia; Lee, Sungho; Jin, Hyoung-Joon; Yun, Young Soo

    2018-04-01

    Na-ion cointercalation in the graphite host structure in a glyme-based electrolyte represents a new possibility for using carbon-based materials (CMs) as anodes for Na-ion storage. However, local microstructures and nanoscale morphological features in CMs affect their electrochemical performances; they require intensive studies to achieve high levels of Na-ion storage performances. Here, pyrolytic carbon nanosheets (PCNs) composed of multitudinous graphitic nanocrystals are prepared from renewable bioresources by heating. In particular, PCN-2800 prepared by heating at 2800 °C has a distinctive sp 2 carbon bonding nature, crystalline domain size of ≈44.2 Å, and high electrical conductivity of ≈320 S cm -1 , presenting significantly high rate capability at 600 C (60 A g -1 ) and stable cycling behaviors over 40 000 cycles as an anode for Na-ion storage. The results of this study show the unusual graphitization behaviors of a char-type carbon precursor and exceptionally high rate and cycling performances of the resulting graphitic material, PCN-2800, even surpassing those of supercapacitors. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Specificity of mutations induced by carbon ions in budding yeast Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Matuo, Youichirou [Graduate School of Engineering, Osaka University, Yamada-oka 2-1, Suita, Osaka 565-0871 (Japan); Nishijima, Shigehiro [Graduate School of Engineering, Osaka University, Yamada-oka 2-1, Suita, Osaka 565-0871 (Japan); Hase, Yoshihiro [Radiation-Applied Biology Division, Quantum Beam Science Directorate, Japan Atomic Energy Agency (JAEA), Watanuki-machi 1233, Takasaki, Gunma 370-1292 (Japan); Sakamoto, Ayako [Radiation-Applied Biology Division, Quantum Beam Science Directorate, Japan Atomic Energy Agency (JAEA), Watanuki-machi 1233, Takasaki, Gunma 370-1292 (Japan); Tanaka, Atsushi [Radiation-Applied Biology Division, Quantum Beam Science Directorate, Japan Atomic Energy Agency (JAEA), Watanuki-machi 1233, Takasaki, Gunma 370-1292 (Japan); Shimizu, Kikuo [Radioisotope Research Center, Osaka University, Yamada-oka 2-4, Suita, Osaka 565-0871 (Japan)]. E-mail: shimizu@rirc.osaka-u.ac.jp

    2006-12-01

    To investigate the nature of mutations induced by accelerated ions in eukaryotic cells, the effects of carbon-ion irradiation were compared with those of {gamma}-ray irradiation in the budding yeast Saccharomyces cerevisiae. The mutational effect and specificity of carbon-ion beams were studied in the URA3 gene of the yeast. Our experiments showed that the carbon ions generated more than 10 times the number of mutations induced by {gamma}-rays, and that the types of base changes induced by carbon ions include transversions (68.7%), transitions (13.7%) and deletions/insertions (17.6%). The transversions were mainly G:C {sup {yields}} T:A, and all the transitions were G:C {sup {yields}} A:T. In comparison with the surrounding sequence context of mutational base sites, the C residues in the 5'-AC(A/T)-3' sequence were found to be easily changed. Large deletions and duplications were not observed, whereas ion-induced mutations in Arabidopsis thaliana were mainly short deletions and rearrangements. The remarkable feature of yeast mutations induced by carbon ions was that the mutation sites were localized near the linker regions of nucleosomes, whereas mutations induced by {gamma}-ray irradiation were located uniformly throughout the gene.

  16. Validity of the independent-processes approximation for resonance structures in electron-ion scattering cross sections

    International Nuclear Information System (INIS)

    Badnell, N.R.; Pindzola, M.S.; Griffin, D.C.

    1991-01-01

    The total inelastic cross section for electron-ion scattering may be found in the independent-processes approximation by adding the resonant cross section to the nonresonant background cross section. We study the validity of this approximation for electron excitation of multiply charged ions. The resonant-excitation cross section is calculated independently using distorted waves for various Li-like and Na-like ions using (N+1)-electron atomic-structure methods previously developed for the calculation of dielectronic-recombination cross sections. To check the effects of interference between the two scattering processes, we also carry out detailed close-coupling calculations for the same atomic ions using the R-matrix method. For low ionization stages, interference effects manifest themselves sometimes as strong window features in the close-coupling cross section, which are not present in the independent-processes cross section. For higher ionization stages, however, the resonance features found in the independent-processes approximation are found to be in good agreement with the close-coupling results

  17. Estimate of repulsive interatomic pair potentials by low-energy alkali-metal-ion scattering and computer simulation

    International Nuclear Information System (INIS)

    Ghrayeb, R.; Purushotham, M.; Hou, M.; Bauer, E.

    1987-01-01

    Low-energy ion scattering is used in combination with computer simulation to study the interaction potential between 600-eV potassium ions and atoms in metallic surfaces. A special algorithm is described which is used with the computer simulation code marlowes. This algorithm builds up impact areas on the simulated solid surface from which scattering cross sections can be estimated with an accuracy better than 1%. This can be done by calculating no more than a couple of thousand trajectories. The screening length in the Moliere approximation to the Thomas-Fermi potential is fitted in such a way that the ratio between the calculated cross sections for double and single scattering matches the scattering intensity ratio measured experimentally and associated with the same mechanisms. The consistency of the method is checked by repeating the procedure for different incidence conditions and also by predicting the intensities associated with other surface scattering mechanisms. The screening length estimates are found to be insensitive to thermal vibrations. The calculated ratios between scattering cross sections by different processes are suggested to be sensitive enough to the relative atomic positions in order to be useful in surface-structure characterization

  18. Monte-Carlo simulation of heavy ion elastic recoil detection analysis data to include the effects of large angle plural scattering

    International Nuclear Information System (INIS)

    Johnston, P.N.; Franich, R.D.

    1999-01-01

    Heavy Ion Elastic Recoil Detection Analysis (HIERDA) is becoming widely used to study a range of problems in materials science, however there is no standard methodology for the analysis of HIERDA spectra. Major impediments are the effects of multiple and plural scattering which are very significant, even for quite thin (∼100nm) layers of very heavy elements. To examine the effects of multiple scattering a fast FORTRAN version of TRIM has been adapted to simulate the spectrum of backscattered and recoiled ions reaching the detector. Two problems have been initially investigated. In the first, the detector is positioned beyond the critical angle for single scattering from a pure vanadium target where traditional slab analysis would not predict any scattered yield. In the second, a thin Au layer on a Si substrate is modelled for two different thicknesses of the substrate to investigate the effect of the substrate chosen. The use of multiple processors enabled the acquisition of statistically reasonable simulation spectra for scattered and recoiled ions. For each target modelled, 10 9 incident ions were tracked. The results of the simulations are compared with experimental measurements performed using ToF-E HIERDA at Lucas Heights and show good agreement except in the long tails due to Plural Scattering

  19. Scattering of atomic and molecular ions from single crystal surfaces of Cu, Ag and Fe

    International Nuclear Information System (INIS)

    Zoest, J.M. van.

    1986-01-01

    This thesis deals with analysis of crystal surfaces of Cu, Ag and Fe with Low Energy Ion scattering Spectroscopy (LEIS). Different atomic and molecular ions with fixed energies below 7 keV are scattered by a metal single crystal (with adsorbates). The energy and direction of the scattered particles are analysed for different selected charge states. In that way information can be obtained concerning the composition and atomic and electronic structure of the single crystal surface. Energy spectra contain information on the composition of the surface, while structural atomic information is obtained by direction measurements (photograms). In Ch.1 a description is given of the experimental equipment, in Ch.2 a characterization of the LEIS method. Ch.3 deals with the neutralization of keV-ions in surface scattering. Two different ways of data interpretation are presented. First a model is treated in which the observed directional dependence of neutralization action of the first atom layer of the surface is presented by a laterally varying thickness of the neutralizing layer. Secondly it is shown that the data can be reproduced by a more realistic, physical model based on atomic transition matrix elements. In Ch.4 the low energy hydrogen scattering is described. The study of the dissociation of H 2 + at an Ag surface r0230ted in a model based on electronic dissociation, initialized by electron capture into a repulsive (molecular) state. In Ch.5 finally the method is applied to the investigation of the surface structure of oxidized Fe. (Auth.)

  20. X-ray Raman spectroscopy of lithium-ion battery electrolyte solutions in a flow cell.

    Science.gov (United States)

    Ketenoglu, Didem; Spiekermann, Georg; Harder, Manuel; Oz, Erdinc; Koz, Cevriye; Yagci, Mehmet C; Yilmaz, Eda; Yin, Zhong; Sahle, Christoph J; Detlefs, Blanka; Yavaş, Hasan

    2018-03-01

    The effects of varying LiPF 6 salt concentration and the presence of lithium bis(oxalate)borate additive on the electronic structure of commonly used lithium-ion battery electrolyte solvents (ethylene carbonate-dimethyl carbonate and propylene carbonate) have been investigated. X-ray Raman scattering spectroscopy (a non-resonant inelastic X-ray scattering method) was utilized together with a closed-circle flow cell. Carbon and oxygen K-edges provide characteristic information on the electronic structure of the electrolyte solutions, which are sensitive to local chemistry. Higher Li + ion concentration in the solvent manifests itself as a blue-shift of both the π* feature in the carbon edge and the carbonyl π* feature in the oxygen edge. While these oxygen K-edge results agree with previous soft X-ray absorption studies on LiBF 4 salt concentration in propylene carbonate, carbon K-edge spectra reveal a shift in energy, which can be explained with differing ionic conductivities of the electrolyte solutions.

  1. ADSORPTION OF STRONTIUM IONS FROM WATER ON MODIFIED ACTIVATED CARBONS

    Directory of Open Access Journals (Sweden)

    Mihai Ciobanu

    2016-12-01

    Full Text Available Adsorption of strontium ions from aqueous solutions on active carbons CAN-7 and oxidized CAN-8 has been studied. It has been found that allure of the adsorption isotherms for both studied active carbons are practically identical. Studies have shown that the adsorption isotherms for strontium ions from aqueous solutions are well described by the Langmuir and Dubinin-Radushkevich equations, respectively. The surface heterogeneity of activated carbons CAN-7 and oxidized CAN-8 has been assessed by using Freundlich equation.

  2. Modified carbon black materials for lithium-ion batteries

    Science.gov (United States)

    Kostecki, Robert; Richardson, Thomas; Boesenberg, Ulrike; Pollak, Elad; Lux, Simon

    2016-06-14

    A lithium (Li) ion battery comprising a cathode, a separator, an organic electrolyte, an anode, and a carbon black conductive additive, wherein the carbon black has been heated treated in a CO.sub.2 gas environment at a temperature range of between 875-925 degrees Celsius for a time range of between 50 to 70 minutes to oxidize the carbon black and reduce an electrochemical reactivity of the carbon black towards the organic electrolyte.

  3. Upcycling of Packing-Peanuts into Carbon Microsheet Anodes for Lithium-Ion Batteries.

    Science.gov (United States)

    Etacheri, Vinodkumar; Hong, Chulgi Nathan; Pol, Vilas G

    2015-09-15

    Porous carbon microsheet anodes with Li-ion storage capacity exceeding the theoretical limit are for the first time derived from waste packing-peanuts. Crystallinity, surface area, and porosity of these 1 μm thick carbon sheets were tuned by varying the processing temperature. Anodes composed of the carbon sheets outperformed the electrochemical properties of commercial graphitic anode in Li-ion batteries. At a current density of 0.1 C, carbon microsheet anodes exhibited a specific capacity of 420 mAh/g, which is slightly higher than the theoretical capacity of graphite (372 mAh/g) in Li-ion half-cell configurations. At a higher rate of 1 C, carbon sheets retained 4-fold higher specific capacity (220 mAh/g) compared to those of commercial graphitic anode. After 100 charge-discharge cycles at current densities of 0.1 and 0.2 C, optimized carbon sheet anodes retained stable specific capacities of 460 and 370 mAh/g, respectively. Spectroscopic and microscopic investigations proved the structural integrity of these high-performance carbon anodes during numerous charge-discharge cycles. Considerably higher electrochemical performance of the porous carbon microsheets are endorsed to their disorderness that facilitate to store more Li-ions than the theoretical limit, and porous 2-D microstructure enabling fast solid-state Li-ion diffusion and superior interfacial kinetics. The work demonstrated here illustrates an inexpensive and environmentally benign method for the upcycling of packaging materials into functional carbon materials for electrochemical energy storage.

  4. Heavy-ion induced desorption yields of amorphous carbon films bombarded with 4.2 MeV/u lead ions

    CERN Document Server

    Mahner, E; Küchler, D; Scrivens, R; Costa Pinto, P; Yin Vallgren, C; Bender, M

    2011-01-01

    During the past decade, intense experimental studies on the heavy-ion induced molecular desorption were performed in several particle accelerator laboratories worldwide in order to understand and overcome large dynamic pressure rises caused by lost beam ions. Different target materials and various coatings were studied for desorption and mitigation techniques were applied to heavy-ion accelerators. For the upgrade of the CERN injector complex, a coating of the Super Proton Synchrotron (SPS) vacuum system with a thin film of amorphous carbon is under study to mitigate the electron cloud effect observed during SPS operation with the nominal proton beam for the Large Hadron Collider (LHC). Since the SPS is also part of the heavy-ion injector chain for LHC, dynamic vacuum studies of amorphous carbon films are important to determine their ion induced desorption yields. At the CERN Heavy Ion Accelerator (LINAC 3), carbon-coated accelerator-type stainless steel vacuum chambers were tested for desorption using 4.2 Me...

  5. Molecular analysis of carbon ion-induced mutations in Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Shikazono, Naoya; Tanaka, Atsushi; Watanabe, Hiroshi; Tano, Shigemitsu; Yokota, Yukihiko

    1998-01-01

    In order to elucidate the characteristics of the mutations induced by ion particles at the molecular level in plants, mutated loci in carbon ion-induced mutants of Arabidopsis were investigated by PCR and Southern blot analyses. In the present study, two lines of gl1 mutant and two lines of tt4 mutant were isolated after carbon ion-irradiation. Out of four mutants, one had a deletion, other two contained rearrangements, and one had a point-like mutation. From the present result, it was suggested that ion particles induced different kinds of alterations of the DNA and therefore they could produce various types of mutant alleles in plants. (author)

  6. Proton polarizing system with Ar-ion laser for p-vector-RI scattering experiments

    International Nuclear Information System (INIS)

    Wakui, T.; Hatano, M.; Sakai, H.; Uesaka, T.; Tamii, A.

    2005-01-01

    A proton polarizing system for use in scattering experiments with radioactive isotope beams is described. Protons in a naphthalene crystal doped with pentacene are polarized in a magnetic field of 0.3T at 100K by transferring a large population difference among the photo-excited triplet states of pentacene to the hydrogen nuclei. An Ar-ion laser, which demands minimal maintenance during scattering experiments, is employed to excite the pentacene molecules. A proton polarization of 37% is obtained

  7. The co-effect of collagen and magnesium ions on calcium carbonate biomineralization

    International Nuclear Information System (INIS)

    Jiao Yunfeng; Feng Qingling; Li Xiaoming

    2006-01-01

    The process of calcium carbonate biomineralization in the solution containing collagen and magnesium ions was studied in this paper. The results were characterized by using powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). The effect rules were obtained by the cooperation of collagen and magnesium ions in different concentration. The experiment results showed that in the presence of both collagen and magnesium ions, aragonite and vaterite were precipitated at low Mg/Ca ion concentration ratio, while only aragonite with regular spherical morphology was precipitated at high Mg/Ca ion concentration ratio. It indicated that collagen has a promotional effect on magnesium ions in controlling the polymorph of calcium carbonate crystal. A much wider range of calcium carbonate morphologies was observed in the presence of both collagen and magnesium ions. The experiments suggested that collagen acts in combination with magnesium ions to inhibit calcite crystal growth, while favoring the formation of aragonite crystals

  8. A rechargeable iodine-carbon battery that exploits ion intercalation and iodine redox chemistry.

    Science.gov (United States)

    Lu, Ke; Hu, Ziyu; Ma, Jizhen; Ma, Houyi; Dai, Liming; Zhang, Jintao

    2017-09-13

    Graphitic carbons have been used as conductive supports for developing rechargeable batteries. However, the classic ion intercalation in graphitic carbon has yet to be coupled with extrinsic redox reactions to develop rechargeable batteries. Herein, we demonstrate the preparation of a free-standing, flexible nitrogen and phosphorus co-doped hierarchically porous graphitic carbon for iodine loading by pyrolysis of polyaniline coated cellulose wiper. We find that heteroatoms could provide additional defect sites for encapsulating iodine while the porous carbon skeleton facilitates redox reactions of iodine and ion intercalation. The combination of ion intercalation with redox reactions of iodine allows for developing rechargeable iodine-carbon batteries free from the unsafe lithium/sodium metals, and hence eliminates the long-standing safety issue. The unique architecture of the hierarchically porous graphitic carbon with heteroatom doping not only provides suitable spaces for both iodine encapsulation and cation intercalation but also generates efficient electronic and ionic transport pathways, thus leading to enhanced performance.Carbon-based electrodes able to intercalate Li + and Na + ions have been exploited for high performing energy storage devices. Here, the authors combine the ion intercalation properties of porous graphitic carbons with the redox chemistry of iodine to produce iodine-carbon batteries with high reversible capacities.

  9. SU-E-T-499: Initial Developments of An OpenCL-Based Cross-Platform Monte Carlo Dose Engine for Carbon Ion Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Qin, N; Tian, Z; Pompos, A; Jiang, S; Jia, X [UT Southwestern Medical Center, Dallas, TX (United States); Pinto, M; Dedes, G; Parodi, K [Ludwig-Maximilians-Univ. Munchen, Garching B. Munich (Germany)

    2015-06-15

    Purpose Dose calculation is of critical importance for carbon ion therapy. Monte Carlo (MC) simulation is considered to be the most accurate method for calculation of absorbed dose and of all the more fundamental physical quantities related to biological effects. The long computation time, however, limits its routine clinical applications. We have recently started developing a fast MC package, gCMC for carbon therapy on a parallel processing platform, e.g. GPU, aiming at achieving sufficient efficiency to enable MC in clinically important tasks. This abstract reports our progress. Methods gCMC was developed in OpenCL environment. Our initial developments focused on water material. gCMC supported carbon ion transport in the energy range of 1–450 MeV/u. A Class II condensed history algorithm was implemented for charged particle transport simulations with stopping power computed via Bethe-Bloch equation. Energy straggling and multiple scattering were modeled. Total cross section of nuclear interaction was extracted from Geant4. At present, nuclear interaction events were sampled but transports of secondary particles were not included. Results We tested cases with a homogeneous water phantom and a pencil carbon ion beam with energy of 200–400 MeV/u. When only electro-magnetic channel was included, dose/fluence difference between gCMC and Geant4 results averaged within 10% isodose line was <0.5% of the maximum dose/fluence. After enabling nuclear interactions without transporting secondary particles, dose and fluence agreed with the corresponding results computed by Geant4 with <1% difference. Due to the support for multiple platforms of OpenCL, gCMC was executable on NVidia and AMD GPUs, and Intel CPUs. It took ∼50 sec to transport 107 200MeV/u source carbon ions on an NVidia Titan GPU card. Conclusion Preliminary studies have demonstrated the accuracy and efficiency of gCMC. With further developments in near future, gCMC will potentially achieve clinically

  10. SU-E-T-499: Initial Developments of An OpenCL-Based Cross-Platform Monte Carlo Dose Engine for Carbon Ion Therapy

    International Nuclear Information System (INIS)

    Qin, N; Tian, Z; Pompos, A; Jiang, S; Jia, X; Pinto, M; Dedes, G; Parodi, K

    2015-01-01

    Purpose Dose calculation is of critical importance for carbon ion therapy. Monte Carlo (MC) simulation is considered to be the most accurate method for calculation of absorbed dose and of all the more fundamental physical quantities related to biological effects. The long computation time, however, limits its routine clinical applications. We have recently started developing a fast MC package, gCMC for carbon therapy on a parallel processing platform, e.g. GPU, aiming at achieving sufficient efficiency to enable MC in clinically important tasks. This abstract reports our progress. Methods gCMC was developed in OpenCL environment. Our initial developments focused on water material. gCMC supported carbon ion transport in the energy range of 1–450 MeV/u. A Class II condensed history algorithm was implemented for charged particle transport simulations with stopping power computed via Bethe-Bloch equation. Energy straggling and multiple scattering were modeled. Total cross section of nuclear interaction was extracted from Geant4. At present, nuclear interaction events were sampled but transports of secondary particles were not included. Results We tested cases with a homogeneous water phantom and a pencil carbon ion beam with energy of 200–400 MeV/u. When only electro-magnetic channel was included, dose/fluence difference between gCMC and Geant4 results averaged within 10% isodose line was <0.5% of the maximum dose/fluence. After enabling nuclear interactions without transporting secondary particles, dose and fluence agreed with the corresponding results computed by Geant4 with <1% difference. Due to the support for multiple platforms of OpenCL, gCMC was executable on NVidia and AMD GPUs, and Intel CPUs. It took ∼50 sec to transport 107 200MeV/u source carbon ions on an NVidia Titan GPU card. Conclusion Preliminary studies have demonstrated the accuracy and efficiency of gCMC. With further developments in near future, gCMC will potentially achieve clinically

  11. Neutron scattering differential cross sections of carbon and bismuth at 37 MeV

    International Nuclear Information System (INIS)

    Zhou Zuying; Tang Hongqing; Qi Bujia; Zhou Chenwei; Du Yanfeng; Xia Haihong; Walter, R.L.; Tornow, W.; Howell, C.; Braun, R.; Roper, C.; Chen Zemin; Chen Zhengpeng; Chen Yingtang

    1997-01-01

    Elastic differential cross sections of 37 MeV neutrons scattered from carbon and bismuth were measured in the angular range 11 to 160 degrees by means of the multi-detector TOF facility. The 37 MeV neutrons were produced via the T(d,n) 4 He reaction in a tritium gas target. The pulsed 20 MeV deuteron beam was provided by the HI-13 tandem accelerator. The angular distribution of scattered neutrons from carbon and bismuth were measured in the angular range 11 degree to 145 degree and 11 degree to 160 degree respectively in steps of about 3 degree

  12. Scattering of field-aligned beam ions upstream of Earth's bow shock

    Directory of Open Access Journals (Sweden)

    A. Kis

    2007-03-01

    Full Text Available Field-aligned beams are known to originate from the quasi-perpendicular side of the Earth's bow shock, while the diffuse ion population consists of accelerated ions at the quasi-parallel side of the bow shock. The two distinct ion populations show typical characteristics in their velocity space distributions. By using particle and magnetic field measurements from one Cluster spacecraft we present a case study when the two ion populations are observed simultaneously in the foreshock region during a high Mach number, high solar wind velocity event. We present the spatial-temporal evolution of the field-aligned beam ion distribution in front of the Earth's bow shock, focusing on the processes in the deep foreshock region, i.e. on the quasi-parallel side. Our analysis demonstrates that the scattering of field-aligned beam (FAB ions combined with convection by the solar wind results in the presence of lower-energy, toroidal gyrating ions at positions deeper in the foreshock region which are magnetically connected to the quasi-parallel bow shock. The gyrating ions are superposed onto a higher energy diffuse ion population. It is suggested that the toroidal gyrating ion population observed deep in the foreshock region has its origins in the FAB and that its characteristics are correlated with its distance from the FAB, but is independent on distance to the bow shock along the magnetic field.

  13. Study of CuAl(100) by using He ion scattering

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, L; Zur Muhlen, E; O` Connor, D J [Newcastle Univ., NSW (Australia). Dept. of Physics

    1994-12-31

    The clean CuAl (100) surface has been investigated by using He{sup +} ion scattering. The polar scans show that Al atoms randomly replace the Cu atoms but sit (0.15{+-}0.05) Angstroms higher than the Cu atoms. The outmost layer concentration of Al is about (17{+-}3)%. The aluminium concentration on the outmost layer is sensitive to the sample temperature up to 300 deg C. 7 refs., 5 figs.

  14. Study of CuAl(100) by using He ion scattering

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, L.; Zur Muhlen, E.; O`Connor, D.J. [Newcastle Univ., NSW (Australia). Dept. of Physics

    1993-12-31

    The clean CuAl (100) surface has been investigated by using He{sup +} ion scattering. The polar scans show that Al atoms randomly replace the Cu atoms but sit (0.15{+-}0.05) Angstroms higher than the Cu atoms. The outmost layer concentration of Al is about (17{+-}3)%. The aluminium concentration on the outmost layer is sensitive to the sample temperature up to 300 deg C. 7 refs., 5 figs.

  15. The ion velocity distribution of tokamak plasmas: Rutherford scattering at TEXTOR

    Energy Technology Data Exchange (ETDEWEB)

    Tammen, H.F.

    1995-01-10

    One of the most promising ways to gererate electricity in the next century on a large scale is nuclear fusion. In this process two light nuclei fuse and create a new nucleus with a smaller mass than the total mass of the original nuclei, the mass deficit is released in the form of kinetic energy. Research into this field has already been carried out for some decades now, and will have to continue for several more decades before a commercially viable fusion reactor can be build. In order to obtain fusion, fuels of extremely high temperatures are needed to overcome the repulsive force of the nuclei involved. Under these circumstances the fuel is fully ionized: it consists of ions and electrons and is in the plasma state. The problem of confining such a hot substance is solved by using strong magnetic fields. One specific magnetic configuration, in common use, is called the tokamak. The plasma in this machine has a toroidal, i.e. doughnut shaped, configuration. For understanding the physical processes which take place in the plasma, a good temporally and spatially resolved knowledge of both the ion and electron velocity distribution is required. The situation concerning the electrons is favourable, but this is not the case for the ions. To improve the existing knowledge of the ion velocity distribution in tokamak plasmas, a Rutherford scattering diagnostic (RUSC), designed and built by the FOM-Institute for Plasmaphysics `Rijnhuizen`, was installed at the TEXTOR tokamak in Juelich (D). The principle of the diagnostic is as follows. A beam of monoenergetic particles (30 keV, He) is injected vertically into the plasma. A small part of these particles collides elastically with the moving plasma ions. By determining the energy of a scattered beam particle under a certain angle (7 ), the initial velocity of the plasma ion in one direction can be computed. (orig./WL).

  16. The ion velocity distribution of tokamak plasmas: Rutherford scattering at TEXTOR

    International Nuclear Information System (INIS)

    Tammen, H.F.

    1995-01-01

    One of the most promising ways to gererate electricity in the next century on a large scale is nuclear fusion. In this process two light nuclei fuse and create a new nucleus with a smaller mass than the total mass of the original nuclei, the mass deficit is released in the form of kinetic energy. Research into this field has already been carried out for some decades now, and will have to continue for several more decades before a commercially viable fusion reactor can be build. In order to obtain fusion, fuels of extremely high temperatures are needed to overcome the repulsive force of the nuclei involved. Under these circumstances the fuel is fully ionized: it consists of ions and electrons and is in the plasma state. The problem of confining such a hot substance is solved by using strong magnetic fields. One specific magnetic configuration, in common use, is called the tokamak. The plasma in this machine has a toroidal, i.e. doughnut shaped, configuration. For understanding the physical processes which take place in the plasma, a good temporally and spatially resolved knowledge of both the ion and electron velocity distribution is required. The situation concerning the electrons is favourable, but this is not the case for the ions. To improve the existing knowledge of the ion velocity distribution in tokamak plasmas, a Rutherford scattering diagnostic (RUSC), designed and built by the FOM-Institute for Plasmaphysics 'Rijnhuizen', was installed at the TEXTOR tokamak in Juelich (D). The principle of the diagnostic is as follows. A beam of monoenergetic particles (30 keV, He) is injected vertically into the plasma. A small part of these particles collides elastically with the moving plasma ions. By determining the energy of a scattered beam particle under a certain angle (7 ), the initial velocity of the plasma ion in one direction can be computed. (orig./WL)

  17. Calcium ions in aqueous solutions: Accurate force field description aided by ab initio molecular dynamics and neutron scattering

    Science.gov (United States)

    Martinek, Tomas; Duboué-Dijon, Elise; Timr, Štěpán; Mason, Philip E.; Baxová, Katarina; Fischer, Henry E.; Schmidt, Burkhard; Pluhařová, Eva; Jungwirth, Pavel

    2018-06-01

    We present a combination of force field and ab initio molecular dynamics simulations together with neutron scattering experiments with isotopic substitution that aim at characterizing ion hydration and pairing in aqueous calcium chloride and formate/acetate solutions. Benchmarking against neutron scattering data on concentrated solutions together with ion pairing free energy profiles from ab initio molecular dynamics allows us to develop an accurate calcium force field which accounts in a mean-field way for electronic polarization effects via charge rescaling. This refined calcium parameterization is directly usable for standard molecular dynamics simulations of processes involving this key biological signaling ion.

  18. ITER fast ion collective Thomson scattering, conceptual design of 60 GHz system

    International Nuclear Information System (INIS)

    Meo, F.; Bindslev, H.; Korsholm, S.B.

    2007-08-01

    The collective Thomson scattering diagnostic for ITER at the 60 GHz range is capable of measuring the fast ion distribution parallel and perpendicular to the magnetic field at different radial locations simultaneously. The design is robust technologically with no moveable components near the plasma. The fast ion CTS diagnostic consists of two separate systems. Each system has its own RF launcher and separate set of detectors. The first system measures the perpendicular component of the fast ion velocity distribution. It consists of radially directed RF launcher and receiver, both located in the equatorial port on the low field side (LFS). This system will be referred to by the acronym LFS-BS system referring to the location of the receiver and the fact that it measures backscattered radiation. The second part of the CTS diagnostic measures the parallel component of the fast ion distribution. It consists of an RF launcher located in the mid-plane port on the LFS and a receiver mounted on the inner vacuum vessel wall that views the plasma from between two blanket modules. This system will be referred to as HFS-FS referring to the location of the receivers and that they measure forward scattered radiation. The design of both LFS-BS and HFS-FS receivers is aimed at measuring at different spatial locations simultaneously with no moveable components near the plasma. This report is a preliminary study of the hardware design and engineering constraints for this frequency range. Section 2 conceptually describes the two systems and their main components. Section 3 clarifies the impact of design parameters such as beam widths and scattering angle on the CTS measurements. With this in hand, the ITER measurement requirements are translated into constraints on the CTS system designs. An important result in this section is that systems can be designed inside these constraints. Section 4 outlines the technical feasibility and describes in more detail the design and the engineering

  19. Poultry litter-based activated carbon for removing heavy metal ions in water.

    Science.gov (United States)

    Guo, Mingxin; Qiu, Guannan; Song, Weiping

    2010-02-01

    Utilization of poultry litter as a precursor material to manufacture activated carbon for treating heavy metal-contaminated water is a value-added strategy for recycling the organic waste. Batch adsorption experiments were conducted to investigate kinetics, isotherms, and capacity of poultry litter-based activated carbon for removing heavy metal ions in water. It was revealed that poultry litter-based activated carbon possessed significantly higher adsorption affinity and capacity for heavy metals than commercial activated carbons derived from bituminous coal and coconut shell. Adsorption of metal ions onto poultry litter-based carbon was rapid and followed Sigmoidal Chapman patterns as a function of contact time. Adsorption isotherms could be described by different models such as Langmuir and Freundlich equations, depending on the metal species and the coexistence of other metal ions. Potentially 404 mmol of Cu2+, 945 mmol of Pb2+, 236 mmol of Zn2+, and 250-300 mmol of Cd2+ would be adsorbed per kg of poultry litter-derived activated carbon. Releases of nutrients and metal ions from litter-derived carbon did not pose secondary water contamination risks. The study suggests that poultry litter can be utilized as a precursor material for economically manufacturing granular activated carbon that is to be used in wastewater treatment for removing heavy metals.

  20. Effect of ion concentrations on uranium absorption from sodium carbonate solutions

    International Nuclear Information System (INIS)

    Traut, D.E.; El Hazek, N.M.T.; Palmer, G.R.; Nichols, I.L.

    1979-01-01

    The effect of various ion concentrations on uranium absorption from a sodium carbonate solution by a strong-base, anion resin was investigated in order to help assure an adequate uranium supply for future needs. The studies were conducted to improve the recovery of uranium from in situ leach solutions by ion exchange. The effects of carbonate, bicarbonate, chloride, and sulfate ions were examined. Relatively low (less than 5 g/l) concentrations of chloride, sulfate, and bicarbonate were found to be detrimental to the absorption of uranium. High (greater than 10 g/l) carbonate concentrations also adversely affected the uranium absorption. In addition, the effect of initial resin form was investigated in tests of the chloride, carbonate, and bicarbonate forms; resin form was shown to have no effect on the absorption of uranium

  1. Oxidation processes on conducting carbon additives for lithium-ion batteries

    KAUST Repository

    La Mantia, Fabio; Huggins, Robert A.; Cui, Yi

    2012-01-01

    The oxidation processes at the interface between different types of typical carbon additives for lithium-ion batteries and carbonates electrolyte above 5 V versus Li/Li+ were investigated. Depending on the nature and surface area of the carbon

  2. Ion-irradiation-induced defects in bundles of carbon nanotubes

    International Nuclear Information System (INIS)

    Salonen, E.; Krasheninnikov, A.V.; Nordlund, K.

    2002-01-01

    We study the structure and formation yields of atomic-scale defects produced by low-dose Ar ion irradiation in bundles of single-wall carbon nanotubes. For this, we employ empirical potential molecular dynamics and simulate ion impact events over an energy range of 100-1000 eV. We show that the most common defects produced at all energies are vacancies on nanotube walls, which at low temperatures are metastable but long-lived defects. We further calculate the spatial distribution of the defects, which proved to be highly non-uniform. We also show that ion irradiation gives rise to the formations of inter-tube covalent bonds mediated by carbon recoils and nanotube lattice distortions due to dangling bond saturation. The number of inter-tube links, as well as the overall damage, linearly grows with the energy of incident ions

  3. Low-cost carbon-silicon nanocomposite anodes for lithium ion batteries.

    Science.gov (United States)

    Badi, Nacer; Erra, Abhinay Reddy; Hernandez, Francisco C Robles; Okonkwo, Anderson O; Hobosyan, Mkhitar; Martirosyan, Karen S

    2014-01-01

    The specific energy of the existing lithium ion battery cells is limited because intercalation electrodes made of activated carbon (AC) materials have limited lithium ion storage capacities. Carbon nanotubes, graphene, and carbon nanofibers are the most sought alternatives to replace AC materials but their synthesis cost makes them highly prohibitive. Silicon has recently emerged as a strong candidate to replace existing graphite anodes due to its inherently large specific capacity and low working potential. However, pure silicon electrodes have shown poor mechanical integrity due to the dramatic expansion of the material during battery operation. This results in high irreversible capacity and short cycle life. We report on the synthesis and use of carbon and hybrid carbon-silicon nanostructures made by a simplified thermo-mechanical milling process to produce low-cost high-energy lithium ion battery anodes. Our work is based on an abundant, cost-effective, and easy-to-launch source of carbon soot having amorphous nature in combination with scrap silicon with crystalline nature. The carbon soot is transformed in situ into graphene and graphitic carbon during mechanical milling leading to superior elastic properties. Micro-Raman mapping shows a well-dispersed microstructure for both carbon and silicon. The fabricated composites are used for battery anodes, and the results are compared with commercial anodes from MTI Corporation. The anodes are integrated in batteries and tested; the results are compared to those seen in commercial batteries. For quick laboratory assessment, all electrochemical cells were fabricated under available environment conditions and they were tested at room temperature. Initial electrochemical analysis results on specific capacity, efficiency, and cyclability in comparison to currently available AC counterpart are promising to advance cost-effective commercial lithium ion battery technology. The electrochemical performance observed for

  4. Fast-ion redistribution due to sawtooth crash in the TEXTOR tokamak measured by collective Thomson scattering

    DEFF Research Database (Denmark)

    Nielsen, Stefan Kragh; Bindslev, Henrik; Salewski, Mirko

    2010-01-01

    Here we present collective Thomson scattering measurements of 1D fast-ion velocity distribution functions in neutral beam heated TEXTOR plasmas with sawtooth oscillations. Up to 50% of the fast ions in the centre are redistributed as a consequence of a sawtooth crash. We resolve various directions...

  5. The survival effects of V79 cells irradiated with carbon ions in different let

    International Nuclear Information System (INIS)

    Wang Jufang; Zhou Guangming; He Jing; Li Wenjian; Li Qiang; Dang Bingrong; Li Xinglin; Weng Xiaoqiong; Xie Hongmei; Wei Zengquan; Gao Qingxiang

    2001-01-01

    The survival of cultured Chinese V79 hamster cells irradiated with carbon ions with different LETs were investigated. Irradiation was performed at the heavy Ion Research Facility in Lanzhou (HIRFL). Results were compared with those obtained from the experiments with γ rats and could be concluded as follows: The survival curves for carbon ions showed as straight lines and were fitted to the one-target one-hit model, but for γ rays the curves with shoulders were fitted to the multi-target one-hit model. As the LETs were 125, 200 and 700 keV/μm for carbon ions, the inactivation cross section 35, 12 and 8 μm 2 , respectively, which suggested that under the experimental conditions, the lower the LET of carbon ions, the more seriously the irradiation killed cells. In the case of 125 keV/μm, the RBEs of carbon ions at the 0.1 and 0.37 survival levels were 1.47 and 2.19 respectively

  6. Biomass carbon micro/nano-structures derived from ramie fibers and corncobs as anode materials for lithium-ion and sodium-ion batteries

    International Nuclear Information System (INIS)

    Jiang, Qiang; Zhang, Zhenghao; Yin, Shengyu; Guo, Zaiping; Wang, Shiquan; Feng, Chuanqi

    2016-01-01

    Highlights: • Ramie fibers and corncobs are used as precursors to prepare the biomass carbons. • The ramie fiber carbon (RFC) took on morphology of 3D micro-rods. • The corncob carbon (CC) possessed a 2D nanosheets structure. • Both RFC and CC exhibited outstanding electrochemical performances in LIBs and SIBs systems. - Abstract: Three-dimensional (3D) rod-like carbon micro-structures derived from natural ramie fibers and two-dimensional (2D) carbon nanosheets derived from corncobs have been fabricated by heat treatment at 700 °C under argon atomsphere. The structure and morphology of the as-obtained ramie fiber carbon (RFC) and corncob carbon (CC) were characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) technique. The electrochemical performances of the biomass carbon-based anode in lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) were investigated. When tested as anode material for lithium ion batteries, both the RFC microrods and CC nanosheets exhibited high capacity, excellent rate capability, and stable cyclability. The specific capacity were still as high as 489 and 606 mAhg −1 after 180 cycles when cycled at room temperature in a 3.0–0.01 V potential (vs. Li/Li + ) window at current density of 100 mAg −1 , respectively, which are much higher than that of graphite (375 mAhg −1 ) under the same current density. Although the anodes in sodium ion batteries showed poorer specific capability than that in lithium-ion batteries, they still achieve a reversible sodium intercalation capacity of 122 and 139 mAhg −1 with similar cycling stability. The feature of stable cycling performance makes the biomass carbon derived from natural ramie fibers and corncobs to be promising candidates as electrodes in rechargeable sodium-ion batteries and lithium-ion batteries.

  7. Biomass carbon micro/nano-structures derived from ramie fibers and corncobs as anode materials for lithium-ion and sodium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Qiang; Zhang, Zhenghao [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for Synthesis and Applications of Organic Functional Molecules, Hubei University, Wuhan 430062 (China); Yin, Shengyu [College of Environmental and Biological Engineering, Wuhan Technology and Business University, Wuhan 430065 (China); Guo, Zaiping [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for Synthesis and Applications of Organic Functional Molecules, Hubei University, Wuhan 430062 (China); Institute for Superconducting & Electronic Materials, University of Wollongong, NSW 2522 (Australia); Wang, Shiquan [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for Synthesis and Applications of Organic Functional Molecules, Hubei University, Wuhan 430062 (China); Feng, Chuanqi, E-mail: cfeng@hubu.edu.cn [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for Synthesis and Applications of Organic Functional Molecules, Hubei University, Wuhan 430062 (China)

    2016-08-30

    Highlights: • Ramie fibers and corncobs are used as precursors to prepare the biomass carbons. • The ramie fiber carbon (RFC) took on morphology of 3D micro-rods. • The corncob carbon (CC) possessed a 2D nanosheets structure. • Both RFC and CC exhibited outstanding electrochemical performances in LIBs and SIBs systems. - Abstract: Three-dimensional (3D) rod-like carbon micro-structures derived from natural ramie fibers and two-dimensional (2D) carbon nanosheets derived from corncobs have been fabricated by heat treatment at 700 °C under argon atomsphere. The structure and morphology of the as-obtained ramie fiber carbon (RFC) and corncob carbon (CC) were characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) technique. The electrochemical performances of the biomass carbon-based anode in lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) were investigated. When tested as anode material for lithium ion batteries, both the RFC microrods and CC nanosheets exhibited high capacity, excellent rate capability, and stable cyclability. The specific capacity were still as high as 489 and 606 mAhg{sup −1} after 180 cycles when cycled at room temperature in a 3.0–0.01 V potential (vs. Li/Li{sup +}) window at current density of 100 mAg{sup −1}, respectively, which are much higher than that of graphite (375 mAhg{sup −1}) under the same current density. Although the anodes in sodium ion batteries showed poorer specific capability than that in lithium-ion batteries, they still achieve a reversible sodium intercalation capacity of 122 and 139 mAhg{sup −1} with similar cycling stability. The feature of stable cycling performance makes the biomass carbon derived from natural ramie fibers and corncobs to be promising candidates as electrodes in rechargeable sodium-ion batteries and lithium-ion batteries.

  8. Microdosimetry of proton and carbon ions

    Energy Technology Data Exchange (ETDEWEB)

    Liamsuwan, Thiansin [Thailand Institute of Nuclear Technology, Ongkharak, Nakhon Nayok 26120 (Thailand); Hultqvist, Martha [Medical Radiation Physics, Department of Physics, Stockholm University, SE-10691 (Sweden); Lindborg, Lennart; Nikjoo, Hooshang, E-mail: hooshang.nikjoo@ki.se [Radiation Biophysics Group, Department of Oncology-Pathology, Karolinska Institutet, Box 260 SE-17176, Stockholm (Sweden); Uehara, Shuzo [School of Health Sciences, Kyushu University, Fukuoka 812-8581 (Japan)

    2014-08-15

    carbon ion beams. The results are useful for characterizing ion beams of practical importance for biophysical modeling of radiation-induced DNA damage response and repair in the depth profiles of protons and carbon ions used in radiotherapy.

  9. Study on the growth of aligned carbon nanotubes controlled by ion bombardment

    International Nuclear Information System (INIS)

    Wang Biben; Zhang Bing; Zheng Kun; Hao Wei; Wang Wanlu; Liao Kejun

    2004-01-01

    Aligned carbon nanotubes were prepared by plasma-enhanced hot filament chemical vapor deposition using CH 4 , H 2 and NH 3 as reaction gases. It was investigated how different negative bias affects the growth of aligned carbon nanotubes. The results indicate that the average diameter of the aligned carbon nanotubes is reduced and the average length of the aligned carbon nanotubes is increased with increasing negative bias. Because of the occurrence of glow discharge, a cathode sheath forms near the substrate surface, and a number of ions are produced in it, and a very strong electrical field builds up near the substrate surface. Under the effect of the field, the strong bombardment of ions on the substrate surface will influence the growth of aligned carbon nanotubes. Combined with related theories, authors have analyzed and discussed the ion bombardment effects on the growth of the aligned carbon nanotudes

  10. In-situ, real-time, studies of film growth processes using ion scattering and direct recoil spectroscopy techniques.

    Energy Technology Data Exchange (ETDEWEB)

    Smentkowski, V. S.

    1999-04-22

    Time-of-flight ion scattering and recoil spectroscopy (TOF-ISARS) enables the characterization of the composition and structure of surfaces with 1-2 monolayer specificity. It will be shown that surface analysis is possible at ambient pressures greater than 3 mTorr using TOF-ISARS techniques; allowing for real-time, in situ studies of film growth processes. TOF-ISARS comprises three analytical techniques: ion scattering spectroscopy (ISS), which detects the backscattered primary ion beam; direct recoil spectroscopy (DRS), which detects the surface species recoiled into the forward scattering direction; and mass spectroscopy of recoiled ions (MSRI), which is 3 variant of DRS capable of isotopic resolution for all surface species--including H and He. The advantages and limitations of each of these techniques will be discussed. The use of the three TOF-ISARS methods for real-time, in situ film growth studies at high ambient pressures will be illustrated. It will be shown that MSRI analysis is possible during sputter deposition. It will be also be demonstrated that the analyzer used for MSRI can also be used for time of flight secondary ion mass spectroscopy (TOF-SIMS) under high vacuum conditions. The use of a single analyzer to perform the complimentary surface analytical techniques of MSRI and SIMS is unique. The dwd functionality of the MSRI analyzer provides surface information not obtained when either MSRI or SIMS is used independently.

  11. The prospect for fuel ion ratio measurements in ITER by collective Thomson scattering

    DEFF Research Database (Denmark)

    Stejner Pedersen, Morten; Korsholm, Søren Bang; Nielsen, Stefan Kragh

    2012-01-01

    We show that collective Thomson scattering (CTS) holds the potential to become a new diagnostic principle for measurements of the fuel ion ratio, nT/nD, in ITER. Fuel ion ratio measurements will be important for plasma control and machine protection in ITER. Measurements of ion cyclotron structures...... in CTS spectra have been suggested as the basis for a new fuel ion ratio diagnostic which would be well suited for reactor environments and capable of providing spatially resolved measurements in the plasma core. Such measurements were demonstrated in recent experiments in the TEXTOR tokamak. Here we...... conduct a sensitivity study to investigate the potential measurement accuracy of a CTS fuel ion ratio diagnostic on ITER. The study identifies regions of parameter space in which CTS can be expected to provide useful information on plasma composition, and we find that a CTS fuel ion ratio diagnostic could...

  12. Carbon nanotube: nanodiamond Li-ion battery cathodes with increased thermal conductivity

    Science.gov (United States)

    Salgado, Ruben; Lee, Eungiee; Shevchenko, Elena V.; Balandin, Alexander A.

    2016-10-01

    Prevention of excess heat accumulation within the Li-ion battery cells is a critical design consideration for electronic and photonic device applications. Many existing approaches for heat removal from batteries increase substantially the complexity and overall weight of the battery. Some of us have previously shown a possibility of effective passive thermal management of Li-ion batteries via improvement of thermal conductivity of cathode and anode material1. In this presentation, we report the results of our investigation of the thermal conductivity of various Li-ion cathodes with incorporated carbon nanotubes and nanodiamonds in different layered structures. The cathodes were synthesized using the filtration method, which can be utilized for synthesis of commercial electrode-active materials. The thermal measurements were conducted with the "laser flash" technique. It has been established that the cathode with the carbon nanotubes-LiCo2 and carbon nanotube layered structure possesses the highest in-plane thermal conductivity of 206 W/mK at room temperature. The cathode containing nanodiamonds on carbon nanotubes structure revealed one of the highest cross-plane thermal conductivity values. The in-plane thermal conductivity is up to two orders-of-magnitude greater than that in conventional cathodes based on amorphous carbon. The obtained results demonstrate a potential of carbon nanotube incorporation in cathode materials for the effective thermal management of Li-ion high-powered density batteries.

  13. Radius anomaly in the diffraction model for heavy-ion elastic scattering

    Science.gov (United States)

    Pandey, L. N.; Mukherjee, S. N.

    1984-04-01

    The elastic scattering of heavy ions, 20Ne on 208Pb, 20Ne on 235U, 84Kr on 208Pb, and 84Kr on 232Th, is examined within the framework of Frahn's diffraction model. An analysis of the experiment using the "quarter point recipe" of the expected Fresnel cross sections yields a larger radius for 208Pb than the radii for 235U and 232Th. It is shown that inclusion of the nuclear deformation in the model removes the above anomaly in the radii, and the assumption of smooth cutoff of the angular momentum simultaneously leads to a better fit to elastic scattering data, compared to those obtained by the earlier workers on the assumption of sharp cutoff. [NUCLEAR REACTIONS Elastic scattering, 20Ne+208Pb (161.2 MeV), 20Ne+235U (175 MeV), 84Kr+208Pb (500 MeV), 84Kr+232Th (500 MeV), diffraction model, nuclear deformation.

  14. Influence of compaction and surface roughness on low-energy ion scattering signals

    NARCIS (Netherlands)

    Jansen, W.P.A.; Knoester, A.; Maas, A.J.H.; Schmit, P.; Kytökivi, A.; Denier van der Gon, A.W.; Brongersma, H.H.

    2004-01-01

    Investigation of the surface composition of powders often requires compaction. To study the effect of compaction on surface analysis, samples have been compacted at various pressures ranging from 0 Pa (i.e. no compaction) up to 2000 MPa (2 × 104 kg cm-2) Low-energy ion scattering (LEIS) was used to

  15. Adsorption efficiencies of calcium (II ion and iron (II ion on activated carbon obtained from pericarp of rubber fruit

    Directory of Open Access Journals (Sweden)

    Orawan Sirichote

    2008-03-01

    Full Text Available Determination of adsorption efficiencies of activated carbon from pericarp of rubber fruit for calcium (II ion and iron (II ion has been performed by flowing the solutions of these ions through a column of activated carbon. The weights of activated carbon in 500 mL buret column (diameter 3.2 cm for flowing calcium (II ion and iron (II ion solutions were 15 g and 10 g, respectively. The initial concentration of calcium ion was prepared to be about eight times more diluted than the true concentration found in the groundwater from the lower part of southern Thailand. Calcium (II ion concentrations were analysed by EDTA titration and its initial concentration was found to be 23.55 ppm. With a flow rate of 26 mL/min, the adsorption efficiency was 11.4 % with passed through volume 4.75 L. Iron (II ion concentrations were analysed by spectrophotometric method; its initial concentration was found to be 1.5565 ppm. At a flow rate of 22 mL/min, the adsorption efficiency was 0.42 % with passed through volume of 34.0 L.

  16. Testing ion structure models with x-ray Thomson scattering

    Directory of Open Access Journals (Sweden)

    Wünsch K.

    2013-11-01

    Full Text Available We investigate the influence of various ionic structure models on the interpretation of the X-ray Thomson scattering signal. For the calculation of the ion structure, classical hypernetted chain equations are used applying different effective inter-particle potentials. It is shown that the different models lead to significant discrepancies in the theoretically predicted weight of the Rayleigh peak, in particular for small k-values where correlation effects are important. Here, we propose conditions which might allow for an experimental verification of the theories under consideration of experimental constraints of k-vector blurring.

  17. Lithium ion behavior in lithium oxide by neutron scattering studies

    International Nuclear Information System (INIS)

    Ishii, Yoshinobu; Morii, Yukio; Katano, Susumu; Watanabe, Hitoshi; Funahashi, Satoru; Ohno, Hideo; Nicklow, R.M.

    1992-01-01

    Lithium ion behavior in lithium oxide, Li 2 O, was studied in the temperature range from 293 K to 1120 K by the High-Resolution Powder Diffractometer (HRPD) installed in the JRR-3M. The diffraction patterns were analyzed with the RIETAN program. At room temperature, the thermal parameters related to the mean square of the amplitude of vibration of the lithium and the oxygen ions were 6 x 10 -21 m 2 and 4 x 10 -21 m 2 , respectively. AT 1120 K the thermal parameter of the lithium ion was 34 x 10 -21 m 2 . On the other hand, the parameter of the oxygen ion was 16 x 10 -21 m 2 . Inelastic neutron scattering studies for the lithium oxide single crystal were also carried out on the triple-axis neutron spectrometers installed at the JRR-2 and the HFIR. Although the value of a phonon energy of a transverse acoustic mode (Σ 3 ) at zone boundary was 30.6 meV at room temperature, this value was decreased to 25.1 meV at 700 K. This large softening was caused by anharmonicity of the crystal potential of lithium oxide. (author)

  18. Inelastic heavy ion scattering on 90Zr and 208Pb at intermediate energies

    International Nuclear Information System (INIS)

    Blumenfeld, Y.; Beaumel, D.; Chomaz, P.; Frascaria, N.; Garron, J.P.; Jacmart, J.C.; Roynette, J.C.; Scarpaci, J.A.; Suomijarvi, T.

    1988-01-01

    Heavy ion inelastic scattering has been investigated using the SPEG spectrometer at GANIL. It is shown that the use of such a high resolution spectrometer allows a quantitative study of the giant resonances excited in heavy ion collisions. The contribution of the pick-up break-up mechanism to the high excitation energy region (E > 30 MeV) is then discussed. Recent results obtained with 40 Ar beams at two different incident energies show that target excitations are also present in this energy region

  19. Performance of Novel Randomly Oriented High Graphene Carbon in Lithium Ion Capacitors

    Directory of Open Access Journals (Sweden)

    Rahul S. Kadam

    2018-01-01

    Full Text Available The structure of carbon material comprising the anode is the key to the performance of a lithium ion capacitor. In addition to determining the capacity, the structure of the carbon material also determines the diffusion rate of the lithium ion into the anode which in turn controls power density which is vital in high rate applications. This paper covers details of systematic investigation of the performance of a structurally novel carbon, called Randomly Oriented High Graphene (ROHG carbon, and graphite in a high rate application device, that is, lithium ion capacitor. Electrochemical impedance spectroscopy shows that ROHG is less resistive and has faster lithium ion diffusion rates (393.7 × 10−3 S·s(1/2 compared to graphite (338.1 × 10−3 S·s(1/2. The impedance spectroscopy data is supported by the cell data showing that the ROHG carbon based device has energy density of 22.8 Wh/l with a power density of 4349.3 W/l, whereas baseline graphite based device has energy density of 5 Wh/l and power density of 4243.3 W/l. This data clearly shows advantage of the randomly oriented graphene platelet structure of ROHG in lithium ion capacitor performance.

  20. Exchange interpretation of anomalous back angle heavy ion elastic scattering

    International Nuclear Information System (INIS)

    Zisman, M.S.

    1977-10-01

    Anomalous back angle oscillations in the angular distributions obtained in the elastic scattering of 16 O + 28 Si and 12 C + 28 Si have been interpreted in terms of an elastic cluster transfer comparable to that observed in other heavy ion reactions. The calculations appear to at least qualitatively explain the data with respect to the existence and phase of the back angle oscillations. The results indicate that an exchange mechanism may play an important role in the oscillations

  1. Contributions of secondary fragmentation by carbon ion beams in water phantom: Monte Carlo simulation

    International Nuclear Information System (INIS)

    Ying, C K; Bolst, David; Tran, Linh T.; Guatelli, Susanna; Rosenfeld, A. B.; Kamil, W A

    2017-01-01

    Heavy-particle therapy such as carbon ion therapy is currently very popular because of its superior conformality in terms of dose distribution and higher Relative Biological Effectiveness (RBE). However, carbon ion beams produce a complex mixed radiation field, which needs to be fully characterised. In this study, the fragmentation of a 290 MeV/u primary carbon ion beam was studied using the Geant4 Monte Carlo Toolkit. When the primary carbon ion beam interacts with water, secondary light charged particles (H, He, Li, Be, B) and fast neutrons are produced, contributing to the dose, especially after the distal edge of the Bragg peak. (paper)

  2. Low energy RBS-channeling measurement system with the use of a time-of-flight scattered ion detector

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Masataka; Kobayashi, Naoto; Hayashi, Nobuyuki [Electrotechnical Lab., Tsukuba, Ibaraki (Japan)

    1996-07-01

    We have developed a low energy Rutherford backscattering spectrometry-ion channeling measurement system for the analysis of thin films and solid surfaces with the use of several tens keV hydrogen ions and a time-of-flight particle energy spectrometer. For the detection of the scattered ions new TOF spectrometer has been developed, which consists of two micro-channel-plate detectors. The pulsing of the primary ion beam is not necessary for this type of TOF measurement, and it is possible to observe continues scattered ion beams. The dimension of whole system is very compact compared to the conventional RBS-channeling measurement system with the use of MeV He ions. The energy resolution, {delta} E/E, for 25 keV H{sup +} was 4.1%, which corresponds to the depth resolution of 4.8 nm for silicon. The depth resolution of our system is better than that of conventional RBS system with MeV helium ions and solid state detectors. We have demonstrated the ion channeling measurement by this system with 25 keV hydrogen ions. The system can be available well to the analysis of thin films and solid surfaces with the use of the ion channeling effect. The observation of the reaction between Fe and hydrogen terminated silicon surface was also demonstrated. (J.P.N.)

  3. Molecular dynamics study of radiation damage and microstructure evolution of zigzag single-walled carbon nanotubes under carbon ion incidence

    Science.gov (United States)

    Li, Huan; Tang, Xiaobin; Chen, Feida; Huang, Hai; Liu, Jian; Chen, Da

    2016-07-01

    The radiation damage and microstructure evolution of different zigzag single-walled carbon nanotubes (SWCNTs) were investigated under incident carbon ion by molecular dynamics (MD) simulations. The radiation damage of SWCNTs under incident carbon ion with energy ranging from 25 eV to 1 keV at 300 K showed many differences at different incident sites, and the defect production increased to the maximum value with the increase in incident ion energy, and slightly decreased but stayed fairly stable within the majority of the energy range. The maximum damage of SWCNTs appeared when the incident ion energy reached 200 eV and the level of damage was directly proportional to incident ion fluence. The radiation damage was also studied at 100 K and 700 K and the defect production decreased distinctly with rising temperature because radiation-induced defects would anneal and recombine by saturating dangling bonds and reconstructing carbon network at the higher temperature. Furthermore, the stability of a large-diameter tube surpassed that of a thin one under the same radiation environments.

  4. Direct Comparison of Biologically Optimized Spread-out Bragg Peaks for Protons and Carbon Ions

    International Nuclear Information System (INIS)

    Wilkens, Jan J.; Oelfke, Uwe

    2008-01-01

    Purpose: In radiotherapy with hadrons, it is anticipated that carbon ions are superior to protons, mainly because of their biological properties: the relative biological effectiveness (RBE) for carbon ions is supposedly higher in the target than in the surrounding normal tissue, leading to a therapeutic advantage over protons. The purpose of this report is to investigate this effect by using biological model calculations. Methods and Materials: We compared spread-out Bragg peaks for protons and carbon ions by using physical and biological optimization. The RBE for protons and carbon ions was calculated according to published biological models. These models predict increased RBE values in regions of high linear energy transfer (LET) and an inverse dependency of the RBE on dose. Results: For pure physical optimization, protons yield a better dose distribution along the central axis. In biologically optimized plans, RBE variations for protons were relatively small. For carbon ions, high RBE values were found in the high-LET target region, as well as in the low-dose region outside the target. This means that the LET dependency and dose dependency of the RBE can cancel each other. We show this for radioresistant tissues treated with two opposing beams, for which the predicted carbon RBE within the target volume was lower than outside. Conclusions: For tissue parameters used in this study, the model used does not predict a biologic advantage of carbon ions. More reliable model parameters and clinical trials are necessary to explore the true potential of radiotherapy with carbon ions

  5. Effects of main traits of sweet sorghum irradiated by carbon ions

    International Nuclear Information System (INIS)

    Li Wenjian; He Jingyu; Liu Qingfang; Yu Lixia; Dong Xicun

    2009-01-01

    To investigate the influence of carbon ion irradiation on important agronomic characters of sweet sorghum, dry seeds of Sweet Sorghum BJ0601 and BJ0602 were irradiated by 100 MeV/u 12 C +6 ion beam to different doses at Heavy Ion Accelerator National Laboratory in Lanzhou (HIANLL). When matured, the main traits of sweet sorghum were measured. The correlation coefficient of five main agronomic characters, i.e. number of node, plant height, stalk diameter, sugar content and stem weight per plant, were analyzed using the SPSS 13.0 software. The results indicated that the obvious influence of sweet sorghum irradiated by carbon ion beam was observed. In addition, the correlation of main traits was studied. This study may provide rudimental data to select novel variety of sweet sorghum suited for fuel ethanol production. In addition, the average of sugar content of early mutant BJ0601-1 is higher than BJ0601 in M2, and the sugar content of sweet sorghum may be improved by carbon ion beam irradiation. (authors)

  6. Boron ion irradiation induced structural and surface modification of glassy carbon

    International Nuclear Information System (INIS)

    Kalijadis, Ana; Jovanović, Zoran; Cvijović-Alagić, Ivana; Laušević, Zoran

    2013-01-01

    The incorporation of boron into glassy carbon was achieved by irradiating two different types of targets: glassy carbon polymer precursor and carbonized glassy carbon. Targets were irradiated with a 45 keV B 3+ ion beam in the fluence range of 5 × 10 15 –5 × 10 16 ions cm −2 . For both types of targets, the implanted boron was located in a narrow region under the surface. Following irradiation, the polymer was carbonized under the same condition as the glassy carbon samples (at 1273 K) and examined by Raman spectroscopy, temperature programmed desorption, hardness and cyclic voltammetry measurements. Structural analysis showed that during the carbonization process of the irradiated polymers, boron is substitutionally incorporated into the glassy carbon structure, while for irradiated carbonized glassy carbon samples, boron irradiation caused an increase of the sp 3 carbon fraction, which is most pronounced for the highest fluence irradiation. Further analyses showed that different nature of boron incorporation, and thus changed structural parameters, are crucial for obtaining glassy carbon samples with modified mechanical, chemical and electrochemical properties over a wide range

  7. Soil-Carbon Measurement System Based on Inelastic Neutron Scattering

    International Nuclear Information System (INIS)

    Orion, I.; Wielopolski, L.

    2002-01-01

    Increase in the atmospheric CO 2 is associated with concurrent increase in the amount of carbon sequestered in the soil. For better understanding of the carbon cycle it is imperative to establish a better and extensive database of the carbon concentrations in various soil types, in order to develop improved models for changes in the global climate. Non-invasive soil carbon measurement is based on Inelastic Neutron Scattering (INS). This method has been used successfully to measure total body carbon in human beings. The system consists of a pulsed neutron generator that is based on D-T reaction, which produces 14 MeV neutrons, a neutron flux monitoring detector and a couple of large NaI(Tl), 6'' diameter by 6'' high, spectrometers [4]. The threshold energy for INS reaction in carbon is 4.8 MeV. Following INS of 14 MeV neutrons in carbon 4.44 MeV photons are emitted and counted during a gate pulse period of 10 μsec. The repetition rate of the neutron generator is 104 pulses per sec. The gamma spectra are acquired only during the neutron generator gate pulses. The INS method for soil carbon content measurements provides a non-destructive, non-invasive tool, which can be optimized in order to develop a system for in field measurements

  8. The investigation of the elastic photon scattering cross sections by copper atoms and ions

    International Nuclear Information System (INIS)

    Kuplyauskene, A.B.

    1976-01-01

    The differential cross sections of coherent scattering of photons on a copper atom and ions Cu + and Cu 2+ and also on ions Zn + and Ga 2+ in their ground states have been studied theoretically. The energy of an incident photon has varied in the range from 0.5 keV to 200 keV, and the scattering cross sections are given for angles of 30 deg, 60 deg, 90 deg, 120 deg, 150 deg. The calculations are performed in the formfactor approximation with the use of generalized hydrogen-like analytical radial orbitals. To clarify the contribution from individual shells the cross sections of photon scattering on individual electron of shells are calculated. It follows from the calculations that when the energies of the incident photon are less than 4 keV, the main contribution into the differential cross section is made by external electrons. Then, alongside with the increase of the energy, the contribution of the electrons decreases, and the inner shells begin to play a more important role. Therefore the photon cross sections for the energies greater than 50 keV practically coincide for atoms and ions of copper. The general regularities of the cross section variation accompanying the increase of the photon energy are similar for all the elements under study. The angular dependences of cross sections are such that they decrease first and after reaching the minimum at angles of 90 deg - 120 deg increase again

  9. Highly ordered three-dimensional macroporous carbon spheres for determination of heavy metal ions

    International Nuclear Information System (INIS)

    Zhang, Yuxiao; Zhang, Jianming; Liu, Yang; Huang, Hui; Kang, Zhenhui

    2012-01-01

    Highlights: ► Highly ordered three dimensional macroporous carbon spheres (MPCSs) were prepared. ► MPCS was covalently modified by cysteine (MPCS–CO–Cys). ► MPCS–CO–Cys was first time used in electrochemical detection of heavy metal ions. ► Heavy metal ions such as Pb 2+ and Cd 2+ can be simultaneously determined. -- Abstract: An effective voltammetric method for detection of trace heavy metal ions using chemically modified highly ordered three dimensional macroporous carbon spheres electrode surfaces is described. The highly ordered three dimensional macroporous carbon spheres were prepared by carbonization of glucose in silica crystal bead template, followed by removal of the template. The highly ordered three dimensional macroporous carbon spheres were covalently modified by cysteine, an amino acid with high affinities towards some heavy metals. The materials were characterized by physical adsorption of nitrogen, scanning electron microscopy, and transmission electron microscopy techniques. While the Fourier-transform infrared spectroscopy was used to characterize the functional groups on the surface of carbon spheres. High sensitivity was exhibited when this material was used in electrochemical detection (square wave anodic stripping voltammetry) of heavy metal ions due to the porous structure. And the potential application for simultaneous detection of heavy metal ions was also investigated.

  10. Enhanced Lithium- and Sodium-Ion Storage in an Interconnected Carbon Network Comprising Electronegative Fluorine.

    Science.gov (United States)

    Hong, Seok-Min; Etacheri, Vinodkumar; Hong, Chulgi Nathan; Choi, Seung Wan; Lee, Ki Bong; Pol, Vilas G

    2017-06-07

    Fluorocarbon (C x F y ) anode materials were developed for lithium- and sodium-ion batteries through a facile one-step carbonization of a single precursor, polyvinylidene fluoride (PVDF). Interconnected carbon network structures were produced with doped fluorine in high-temperature carbonization at 500-800 °C. The fluorocarbon anodes derived from the PVDF precursor showed higher reversible discharge capacities of 735 mAh g -1 and 269 mAh g -1 in lithium- and sodium-ion batteries, respectively, compared to the commercial graphitic carbon. After 100 charge/discharge cycles, the fluorocarbon showed retentions of 91.3% and 97.5% in lithium (at 1C) and sodium (at 200 mA g -1 ) intercalation systems, respectively. The effects of carbonization temperature on the electrochemical properties of alkali metal ion storage were thoroughly investigated and documented. The specific capacities in lithium- and sodium-ion batteries were dependent on the fluorine content, indicating that the highly electronegative fluorine facilitates the insertion/extraction of lithium and sodium ions in rechargeable batteries.

  11. On the mechanism of water cluster-ion formation in carbon dioxide

    International Nuclear Information System (INIS)

    Warneck, P.; Rakshit, A.B.

    1981-01-01

    A drift chamber mass spectrometer has been used to study the formation of water cluster-ions in carbon dioxide containing traces of water vapour. The dominant reaction sequences were identified up to the fourth generation of daughter ions starting with CO 2 + . The subsequent reaction mechanism remains uncertain and several possibilities are discussed. The final ions are H 3 O + H 2 O and H 3 O + (H 2 O) 2 . The significance of the reaction schemes to the radiation chemistry of carbon dioxide is pointed out. (orig.)

  12. Resonant Raman scattering in ion-beam-synthesized Mg2Si in a silicon matrix

    International Nuclear Information System (INIS)

    Baleva, M.; Zlateva, G.; Atanassov, A.; Abrashev, M.; Goranova, E.

    2005-01-01

    Resonant Raman scattering by ion beam synthesized in silicon matrix Mg 2 Si phase is studied. The samples are prepared with the implantation of 24 Mg + ions with dose 4x10 17 cm -2 and with two different energies 40 and 60 keV into (100)Si substrates. The far infrared spectra are used as criteria for the formation of the Mg 2 Si phase. The Raman spectra are excited with different lines of Ar + laser, with energies of the lines lying in the interval from 2.40 to 2.75 eV. The resonant scattering can be investigated using these laser lines, as far as according to the Mg 2 Si band structure, there are direct gaps with energies in the same region. The energy dependences of the scattered intensities in the case of the scattering by the allowed F 2g and the forbidden LO-type modes are experimentally obtained and theoretically interpreted. On the base of the investigation energies of the interband transitions in the Mg 2 Si are determined. It is found also that the resonant Raman scattering appears to be a powerful tool for characterization of a material with inclusions in it. In the particular case it is concluded that the Mg 2 Si phase is present in the form of a surface layer in the sample, prepared with implantation energy 40 keV and as low-dimensional precipitates, embedded in the silicon matrix, in the sample, prepared with the higher implantation energy

  13. Electron and ion temperatures: a comparison of ground-based incoherent scatter and AE-C satellite measurements

    International Nuclear Information System (INIS)

    Benson, R.F.; Bauer, P.; Brace, L.H.; Carlson, H.C.; Hagen, J.; Hanson, W.B.; Hoegy, W.R.; Torr, M.R.; Wickwar, V.B.

    1977-01-01

    The Atmosphere Exploere-C satellite (AE-C) is uniquely suited for correlative studies with ground-based stations because its on-board propulsion system enables a desired ground station overflight condition to be maintained for a period of several weeks. It also provides the first low-altitude (below 260 km) comparison of satellite and incoherent scatter electron and ion temperatures. More than 40 comparisons of remote and in situ measurements were made by using data from AE-C and four incoherent scatter stations (Arecibo, Chatanika, Millstone Hill, and St. Santin). The results indicate very good agreement between satellite and ground measurements of the ion temperature, the average satellite retarding potential analyzer temperatures differing from the average incoherent scatter temperatures by -2% at St. Santin, +3% at Millstone Hill, and +2% at Arecibo. The electron temperatures also agree well, the average satellite temperatures exceeding the average incoherent scatter temperatures by 3% at St. Santin, 2% at Arecibo, and 11% at Millstone Hill. Several temperature comparisons were made between AE-C and Chatanika. In spite of the highly variable ionosphere often encountered at this high-latitude location, good agreement was obtained between the in situ and remote measurements of electron and ion temperatures. Longitudinal variations are found to be very important in the comparisons of electron temperature in some locations. The agreement between the electron temperatures is considerably better than that found in some earlier comparisons involving satellities at higher altitudes

  14. Small-angle neutron scattering study of activated carbon cloth and ammonium persulfate-modified activated carbon cloth: Effect of oxygen content

    International Nuclear Information System (INIS)

    Pendleton, Phillip; Chen Lin

    2006-01-01

    Small-angle neutron scattering (SANS) patterns of as-received, oxidized, and thermally reduced FM1/250 activated carbon cloth (ACC) samples are compared to determine the effects of surface chemistry on scattering. Porosity analyses show minimal effect on pore size distribution from oxidation, but an increase in micropore volume on heat treatment. SANS suggests an increase in localized order within the treated samples when compared with graphite cloth patterns. The ACC exhibits Porod scattering at q-ranges -1 ; the graphite cloth exhibits the same at q-ranges>1.0 nm -1 . A cylindrical model reproduces the scattering patterns in the micropore equivalent dimensions, q>0.5 nm -1

  15. Analysis of Ion Composition Estimation Accuracy for Incoherent Scatter Radars

    Science.gov (United States)

    Martínez Ledesma, M.; Diaz, M. A.

    2017-12-01

    The Incoherent Scatter Radar (ISR) is one of the most powerful sounding methods developed to estimate the Ionosphere. This radar system determines the plasma parameters by sending powerful electromagnetic pulses to the Ionosphere and analyzing the received backscatter. This analysis provides information about parameters such as electron and ion temperatures, electron densities, ion composition, and ion drift velocities. Nevertheless in some cases the ISR analysis has ambiguities in the determination of the plasma characteristics. It is of particular relevance the ion composition and temperature ambiguity obtained between the F1 and the lower F2 layers. In this case very similar signals are obtained with different mixtures of molecular ions (NO2+ and O2+) and atomic oxygen ions (O+), and consequently it is not possible to completely discriminate between them. The most common solution to solve this problem is the use of empirical or theoretical models of the ionosphere in the fitting of ambiguous data. More recent works take use of parameters estimated from the Plasma Line band of the radar to reduce the number of parameters to determine. In this work we propose to determine the error estimation of the ion composition ambiguity when using Plasma Line electron density measurements. The sensibility of the ion composition estimation has been also calculated depending on the accuracy of the ionospheric model, showing that the correct estimation is highly dependent on the capacity of the model to approximate the real values. Monte Carlo simulations of data fitting at different signal to noise (SNR) ratios have been done to obtain valid and invalid estimation probability curves. This analysis provides a method to determine the probability of erroneous estimation for different signal fluctuations. Also it can be used as an empirical method to compare the efficiency of the different algorithms and methods on when solving the ion composition ambiguity.

  16. Analysis of helium-ion scattering with a desktop computer

    Science.gov (United States)

    Butler, J. W.

    1986-04-01

    This paper describes a program written in an enhanced BASIC language for a desktop computer, for simulating the energy spectra of high-energy helium ions scattered into two concurrent detectors (backward and glancing). The program is designed for 512-channel spectra from samples containing up to 8 elements and 55 user-defined layers. The program is intended to meet the needs of analyses in materials sciences, such as metallurgy, where more than a few elements may be present, where several elements may be near each other in the periodic table, and where relatively deep structure may be important. These conditions preclude the use of completely automatic procedures for obtaining the sample composition directly from the scattered ion spectrum. Therefore, efficient methods are needed for entering and editing large amounts of composition data, with many iterations and with much feedback of information from the computer to the user. The internal video screen is used exclusively for verbal and numeric communications between user and computer. The composition matrix is edited on screen with a two-dimension forms-fill-in text editor and with many automatic procedures, such as doubling the number of layers with appropriate interpolations and extrapolations. The control center of the program is a bank of 10 keys that initiate on-event branching of program flow. The experimental and calculated spectra, including those of individual elements if desired, are displayed on an external color monitor, with an optional inset plot of the depth concentration profiles of the elements in the sample.

  17. Microdosimetry for a carbon ion beam using track-etched detectors

    International Nuclear Information System (INIS)

    Ambrozova, I.; Ploc, O.; Davidkova, M.; Vondracek, V.; Sefl, M.; Stepan, V.; Pachnerova Brabcova, K.; Incerti, S.

    2015-01-01

    Track-etched detectors (TED) have been used as linear energy transfer (LET) spectrometers in heavy ion beams for many years. LET spectra and depth -dose distribution of a carbon ion beam were measured behind polymethylmethacrylate degraders at Heavy Ion Medical Accelerator in Chiba, Japan. The measurements were performed along monoenergetic beam with energy 290 MeV u -1 in different positions: (1) at beam extraction area, (2) at beginning, (3) maximum and (4) behind the Bragg peak region (0, 117, 147 and 151 mm of water-equivalent depth, respectively). The LET spectra inside and outside of the primary ion beam have been evaluated. TED record only heavy charged particles with LET above 8 -10 keV μm -1 , while electrons and ions with lower LET are not detected. The Geant4 simulation toolkit version 4.9.6.P01 has been used to estimate the contribution of non-detected particles to absorbed dose. Presented results demonstrate the applicability of TED for microdosimetry measurements in therapeutic carbon ion beams. (authors)

  18. Impedance study of the ion-to-electron transduction process for carbon cloth as solid-contact material in potentiometric ion sensors

    International Nuclear Information System (INIS)

    Mattinen, Ulriika; Rabiej, Sylwia; Lewenstam, Andrzej; Bobacka, Johan

    2011-01-01

    Carbon cloth was studied as solid-contact material in potentiometric ion sensors by using electrochemical impedance spectroscopy and potentiometry. The ion-to-electron transduction process was studied by electrochemical impedance spectroscopy by using a two-electrode symmetrical cell where a liquid electrolyte was sandwiched between two solid electrodes, including bare glassy carbon (GC), GC/carbon cloth and GC/poly(3,4-ethylenedioxythiophene). Impedance data for different electrode/electrolyte combinations were evaluated and compared. Solid-contact K + -selective electrodes were fabricated by coating the carbon cloth with a conventional plasticized PVC-based K + -selective membrane via drop casting. These K + -sensors showed proper analytical performance and acceptable long-term potential stability (potential drift ≈ 1 mV/day). Solid contact reference electrodes were fabricated in an analogous manner by coating the carbon cloth with a plasticized PVC membrane containing a moderately lipophilic salt. The results indicate that carbon cloth can be used as a solid-contact material in potentiometric ion sensors and pseudo-reference electrodes.

  19. Molecular carbon nitride ion beams for enhanced corrosion resistance of stainless steel

    Science.gov (United States)

    Markwitz, A.; Kennedy, J.

    2017-10-01

    A novel approach is presented for molecular carbon nitride beams to coat stainless surfaces steel using conventional safe feeder gases and electrically conductive sputter targets for surface engineering with ion implantation technology. GNS Science's Penning type ion sources take advantage of the breaking up of ion species in the plasma to assemble novel combinations of ion species. To test this phenomenon for carbon nitride, mixtures of gases and sputter targets were used to probe for CN+ ions for simultaneous implantation into stainless steel. Results from mass analysed ion beams show that CN+ and a variety of other ion species such as CNH+ can be produced successfully. Preliminary measurements show that the corrosion resistance of stainless steel surfaces increased sharply when implanting CN+ at 30 keV compared to reference samples, which is interesting from an application point of view in which improved corrosion resistance, surface engineering and short processing time of stainless steel is required. The results are also interesting for novel research in carbon-based mesoporous materials for energy storage applications and as electrode materials for electrochemical capacitors, because of their high surface area, electrical conductivity, chemical stability and low cost.

  20. Temporal evolution of confined fast-ion velocity distributions measured by collective Thomson scattering in TEXTOR

    DEFF Research Database (Denmark)

    Nielsen, Stefan Kragh; Bindslev, Henrik; Porte, L.

    2008-01-01

    reported [Bindslev , Phys. Rev. Lett. 97, 205005 2006]. Here we extend the discussion of these results which were obtained at the TEXTOR tokamak. The fast ions are generated by neutral-beam injection and ion-cyclotron resonance heating. The CTS system uses 100-150 kW of 110-GHz gyrotron probing radiation......Fast ions created in the fusion processes will provide up to 70% of the heating in ITER. To optimize heating and current drive in magnetically confined plasmas insight into fast-ion dynamics is important. First measurements of such dynamics by collective Thomson scattering (CTS) were recently...... of the velocity distribution after turnoff of the ion heating. These results are in close agreement with numerical simulations....

  1. Relative clinical effectiveness of carbon ion radiotherapy. Theoretical modelling for H and N tumours

    International Nuclear Information System (INIS)

    Antonovic, Laura; Toma-Dasu, Iuliana; Dasu, Alexandru; Furusawa, Yoshiya

    2015-01-01

    Comparison of the efficiency of photon and carbon ion radiotherapy (RT) administered with the same number of fractions might be of limited clinical interest, since a wide range of fractionation patterns are used clinically today. Due to advanced photon treatment techniques, hypofractionation is becoming increasingly accepted for prostate and lung tumours, whereas patients with head and neck tumours still benefit from hyperfractionated treatments. In general, the number of fractions is considerably lower in carbon ion RT. A clinically relevant comparison would be between fractionation schedules that are optimal within each treatment modality category. In this in silico study, the relative clinical effectiveness (RCE) of carbon ions was investigated for human salivary gland tumours, assuming various radiation sensitivities related to their oxygenation. The results indicate that, for hypoxic tumours in the absence of reoxygenation, the RCE (defined as the ratio of D 50 for photons to carbon ions) ranges from 3.5 to 5.7, corresponding to carbon ion treatments given in 36 and 3 fractions, respectively, and 30 fractions for photons. Assuming that interfraction local oxygenation changes take place, results for RCE are lower than that for an oxic tumour if only a few fractions of carbon ions are used. If the carbon ion treatment is given in more than 12 fractions, the RCE is larger for the hypoxic than for the well-oxygenated tumour. In conclusion, this study showed that in silico modelling enables the study of a wide range of factors in the clinical considerations and could be an important step towards individualisation of RT treatments. (author)

  2. Development of C6+ laser ion source and RFQ linac for carbon ion radiotherapy

    Science.gov (United States)

    Sako, T.; Yamaguchi, A.; Sato, K.; Goto, A.; Iwai, T.; Nayuki, T.; Nemoto, K.; Kayama, T.; Takeuchi, T.

    2016-02-01

    A prototype C6+ injector using a laser ion source has been developed for a compact synchrotron dedicated to carbon ion radiotherapy. The injector consists of a laser ion source and a 4-vane radio-frequency quadrupole (RFQ) linac. Ion beams are extracted from plasma and directly injected into the RFQ. A solenoid guides the low-energy beams into the RFQ. The RFQ is designed to accelerate high-intensity pulsed beams. A structure of monolithic vanes and cavities is adopted to reduce its power consumption. In beam acceleration tests, a solenoidal magnetic field set between the laser ion source and the RFQ helped increase both the peak currents before and after the RFQ by a factor of 4.

  3. Development of C6+ laser ion source and RFQ linac for carbon ion radiotherapy

    International Nuclear Information System (INIS)

    Sako, T.; Yamaguchi, A.; Sato, K.; Goto, A.; Iwai, T.; Nayuki, T.; Nemoto, K.; Kayama, T.; Takeuchi, T.

    2016-01-01

    A prototype C 6+ injector using a laser ion source has been developed for a compact synchrotron dedicated to carbon ion radiotherapy. The injector consists of a laser ion source and a 4-vane radio-frequency quadrupole (RFQ) linac. Ion beams are extracted from plasma and directly injected into the RFQ. A solenoid guides the low-energy beams into the RFQ. The RFQ is designed to accelerate high-intensity pulsed beams. A structure of monolithic vanes and cavities is adopted to reduce its power consumption. In beam acceleration tests, a solenoidal magnetic field set between the laser ion source and the RFQ helped increase both the peak currents before and after the RFQ by a factor of 4

  4. Experimental and simulated fast ion velocity distributions on collective Thomson scattering diagnostic in the Large Helical Device

    DEFF Research Database (Denmark)

    Nishiura, M.; Kubo, S.; Tanaka, K.

    2012-01-01

    We have developed a collective Thomson scattering diagnostic system in the LHD. The CTS spectrum spread is observed in the frequency region corresponding to the bulk and fast ions during NB injection. The NB originated fast ions are evaluated by the MORH code for understanding the measured CTS sp...

  5. SAXS investigation of latent track structure in HDPE irradiated with high energy Fe ions

    Energy Technology Data Exchange (ETDEWEB)

    Hai, Yang; Huang, Can [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Ma, Mingwang [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Institute of Electronic Engineering, CAEP, Mianyang 621900 (China); Liu, Qi; Wang, Yuzhu; Liu, Yi; Tian, Feng; Lin, Jun [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Zhu, Zhiyong, E-mail: zhuzhiyong@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2015-08-01

    Semi-crystalline high density polyethylene (HDPE) samples were irradiated with 1.157 GeV {sup 56}Fe ion beams to fluences ranging from 1 × 10{sup 11} to 6 × 10{sup 12} ions/cm{sup 2}. The radiation induced changes in nano/microstructure were investigated with small angle X-ray scattering (SAXS) technique. The scattering contributions from HDPE matrix and ion tracks are successfully separated and analyzed through tilted SAXS measurements with respect to the X-ray beam direction. Lorentz correction, one-dimensional correlation function calculation, fractal nature analysis of the isotropic scattering pattern reveal that HDPE long period polymeric structures are damaged and new materials, possibly clusters of carbon-rich materials, are formed inside the ion tracks. Least square curve fitting of the scattering contribution from the ion track reveals that the track is composed of a core of about 5.3 nm in radius, characterized by a significant density deficit compared to the virgin HDPE, surrounded by a shell of about 4.3 nm in thickness with less density reduction.

  6. Exact evaluation of the rates of electrostatic decay and scattering off thermal ions for an unmagnetized Maxwellian plasma

    Energy Technology Data Exchange (ETDEWEB)

    Layden, B.; Cairns, Iver H.; Robinson, P. A. [School of Physics, University of Sydney, Sydney, NSW 2006 (Australia)

    2013-08-15

    Electrostatic decay of Langmuir waves into Langmuir and ion sound waves (L→L′+S) and scattering of Langmuir waves off thermal ions (L+i→L′+i′, also called “nonlinear Landau damping”) are important nonlinear weak-turbulence processes. The rates for these processes depend on the quadratic longitudinal response function α{sup (2)} (or, equivalently, the quadratic longitudinal susceptibility χ{sup (2)}), which describes the second-order response of a plasma to electrostatic wave fields. Previous calculations of these rates for an unmagnetized Maxwellian plasma have relied upon an approximate form for α{sup (2)} that is valid where two of the wave fields are fast (i.e., v{sub φ}=ω/k≫V{sub e} where ω is the angular frequency, k is the wavenumber, and V{sub e} is the electron thermal speed) and one is slow (v{sub φ}≪V{sub e}). Recently, an exact expression was derived for α{sup (2)} that is valid for any phase speeds of the three waves in an unmagnetized Maxwellian plasma. Here, this exact α{sup (2)} is applied to the calculation of the three-dimensional rates for electrostatic decay and scattering off thermal ions, and the resulting exact rates are compared with the approximate rates. The calculations are performed using previously derived three-dimensional rates for electrostatic decay given in terms of a general α{sup (2)}, and newly derived three-dimensional rates for scattering off thermal ions; the scattering rate is derived assuming a Maxwellian ion distribution, and both rates are derived assuming arc distributions for the wave spectra. For most space plasma conditions, the approximate rate is found to be accurate to better than 20%; however, for sufficiently low Langmuir phase speeds (v{sub φ}/V{sub e}≈3) appropriate to some spatial domains of the foreshock regions of planetary bow shocks and type II solar radio bursts, the use of the exact rate may be necessary for accurate calculations. The relative rates of electrostatic decay

  7. A new computer code for quantitative analysis of low-energy ion scattering data

    NARCIS (Netherlands)

    Dorenbos, G; Breeman, M; Boerma, D.O

    We have developed a computer program for the full analysis of low-energy ion scattering (LEIS) data, i.e. an analysis that is equivalent to the full calculation of the three-dimensional trajectories of beam particles through a number of layers in the solid, and ending in the detector. A dedicated

  8. Size Effect of Ordered Mesoporous Carbon Nanospheres for Anodes in Li-Ion Battery

    Directory of Open Access Journals (Sweden)

    Pei-Yi Chang

    2015-12-01

    Full Text Available The present work demonstrates the application of various sizes of ordered mesoporous carbon nanospheres (OMCS with diameters of 46–130 nm as an active anode material for Li-ion batteries (LIB. The physical and chemical properties of OMCS have been evaluated by performing scanning electron microscopy (SEM, transmission electron microscopy (TEM, N2 adsorption-desorption analysis; small-angle scattering system (SAXS and X-ray diffraction (XRD. The electrochemical analysis of using various sizes of OMCS as anode materials showed high capacity and rate capability with the specific capacity up to 560 mA·h·g−1 at 0.1 C after 85 cycles. In terms of performance at high current rate compared to other amorphous carbonaceous materials; a stable and extremely high specific capacity of 240 mA·h·g−1 at 5 C after 15 cycles was achieved. Such excellent performance is mainly attributed to the suitable particle size distribution of OMCS and intimate contact between OMCS and conductive additives; which can be supported from the TEM images. Results obtained from this study clearly indicate the excellence of size distribution of highly integrated mesoporous structure of carbon nanospheres for LIB application.

  9. A Thomson scattering diagnostic to measure fast ion and α-particle distributions in JET

    International Nuclear Information System (INIS)

    Costley, A.E.; Hoekzema, J.A.; Stott, P.E.; Watkins, M.L.

    1988-01-01

    The paper presents the findings of a feasibility investigation into the proposed Thomson scattering diagnostic to measure fast ion and α-particle distributions in JET. A description is given of the motivation for alpha particle diagnostics on JET, followed by a brief survey of possible α-particle diagnostics for JET. The basic principles of the collective Thomson scattering technique are presented, along with its implementation on JET. The expected performance of the system, and other applications of the diagnostic system are also discussed. (U.K.)

  10. The structural and compositional analysis of single crystal surfaces using low energy ion scattering

    International Nuclear Information System (INIS)

    Armour, D.G.; Van der Berg, J.A.; Verheij, IL.K.

    1979-01-01

    The use of ion scattering for surface composition and structure analysis has been reviewed. The extreme surface specificity of this technique has been widely used to obtain quitative information in a straightforward way, but the/aolc/currence of charge exchange processes, thermal lattice vibrations and multiple scattering have precluded quantitative analysis of experimental data. Examples are quoted to illustrate the progress that has been made in understanding these fundamental processes and in applying this knowledge to the development of the analytical capabilities of the technique. (author)

  11. Highly ordered three-dimensional macroporous carbon spheres for determination of heavy metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuxiao; Zhang, Jianming [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China); Liu, Yang, E-mail: yangl@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China); Huang, Hui [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China); Kang, Zhenhui, E-mail: zhkang@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Highly ordered three dimensional macroporous carbon spheres (MPCSs) were prepared. Black-Right-Pointing-Pointer MPCS was covalently modified by cysteine (MPCS-CO-Cys). Black-Right-Pointing-Pointer MPCS-CO-Cys was first time used in electrochemical detection of heavy metal ions. Black-Right-Pointing-Pointer Heavy metal ions such as Pb{sup 2+} and Cd{sup 2+} can be simultaneously determined. -- Abstract: An effective voltammetric method for detection of trace heavy metal ions using chemically modified highly ordered three dimensional macroporous carbon spheres electrode surfaces is described. The highly ordered three dimensional macroporous carbon spheres were prepared by carbonization of glucose in silica crystal bead template, followed by removal of the template. The highly ordered three dimensional macroporous carbon spheres were covalently modified by cysteine, an amino acid with high affinities towards some heavy metals. The materials were characterized by physical adsorption of nitrogen, scanning electron microscopy, and transmission electron microscopy techniques. While the Fourier-transform infrared spectroscopy was used to characterize the functional groups on the surface of carbon spheres. High sensitivity was exhibited when this material was used in electrochemical detection (square wave anodic stripping voltammetry) of heavy metal ions due to the porous structure. And the potential application for simultaneous detection of heavy metal ions was also investigated.

  12. Comparison of fast ion collective Thomson scattering measurements at ASDEX Upgrade with numerical simulations

    DEFF Research Database (Denmark)

    Salewski, Mirko; Meo, Fernando; Stejner Pedersen, Morten

    2010-01-01

    Collective Thomson scattering (CTS) experiments were carried out at ASDEX Upgrade to measure the one-dimensional velocity distribution functions of fast ion populations. These measurements are compared with simulations using the codes TRANSP/NUBEAM and ASCOT for two different neutral beam injecti...

  13. Influences of Au ion radiation on microstructure and surface-enhanced Raman scattering of nanoporous copper

    Science.gov (United States)

    Wang, Jing; Hu, Zhaoyi; Li, Rui; Liu, Xiongjun; Xu, Chuan; Wang, Hui; Wu, Yuan; Fu, Engang; Lu, Zhaoping

    2018-05-01

    In this work, effects of Au ion irradiation on microstructure and surface-enhanced Raman scattering (SERS) performance of nanoporous copper (NPC) were investigated. It is found that the microstructure of NPC could be tailored by the ion irradiation dose, i.e., the pore size decreases while the ligament size significantly coarsens with the increase of the irradiation dose. In addition, the SERS enhancement for rhodamine 6G molecules was improved by Au ions irradiation at an appropriate dose. The underlying mechanism of the increase of SERS enhancement resulted from ion irradiation was discussed. Our findings could provide a new way to tune nanoporosity of nanoporous metals and improve their SERS performance.

  14. Role of carbon impurities on the surface morphology evolution of tungsten under high dose helium ion irradiation

    International Nuclear Information System (INIS)

    Al-Ajlony, A.; Tripathi, J.K.; Hassanein, A.

    2015-01-01

    The effect of carbon impurities on the surface evolution (e.g., fuzz formation) of tungsten (W) surface during 300 eV He ions irradiation was studied. Several tungsten samples were irradiated by He ion beam with a various carbon ions percentage. The presence of minute carbon contamination within the He ion beam was found to be effective in preventing the fuzz formation. At higher carbon concentration, the W surface was found to be fully covered with a thick graphitic layer on the top of tungsten carbide (WC) layer that cover the sample surface. Lowering the ion beam carbon percentage was effective in a significant reduction in the thickness of the surface graphite layer. Under these conditions the W surface was also found to be immune for the fuzz formation. The effect of W fuzz prevention by the WC formation on the sample surface was more noticeable when the He ion beam had much lower carbon (C) ions content (0.01% C). In this case, the fuzz formation was prevented on the vast majority of the W sample surface, while W fuzz was found in limited and isolated areas. The W surface also shows good resistance to morphology evolution when bombarded by high flux of pure H ions at 900 °C. - Highlights: • Reporting formation of W nanostructure (fuzz) due to low energy He ion beam irradiation. • The effect of adding various percentage of carbon impurity to the He ion beam on the trend of W fuzz formation was studied. • Mitigation of W fuzz formation due to addition of small percentage of carbon to the He ion beam is reported. • The formation of long W nanowires due to He ion beam irradiation mixed with 0.01% carbon ions is reported.

  15. Study of the defect structures produced by heavy ions in dielectrics by means of small angle scattering

    International Nuclear Information System (INIS)

    Albrecht, D.J.

    1983-11-01

    The aim of the present thesis was to study the defects in dielectrics produced by fast ions. For this the small angle scattering was proved as suitable method. By the production by means of the ion beam of an accelerator the defects possess a pronounced preferential direction. In scattering experiments this system of scattering centers is distinguished by its unusually strong dependence of the sample orientation according to the primary beam. This property was studied, described, and illustrated by examples, and it could by shown that from this additional informations about the scattering defects can be derived. For the first time nuclear tracks were detected by means of small angle neutron scattering. It could be shown that here the same results are obtained as by small angle X-ray scattering. The measured intensity distributions could be assigned to a mathematical model description which gives form, width, and density of the tracks in the position space. On the base of this cylinder model computer codes were established which simulate the scattering experiment regarding the main influences and calculate the expected theoretical intensity distribution. The agreement between calculated and measured scattering distributions proves the validity of the model. The parameters determined by this model, maximal change of density in the track, defect length, radial dilatation, distance of the narrowings and there depth were determined. For the main quantities, radial dilatation and maximal change of densities a simple description of the energy dependence could be given via the energy loss. (orig./HSI) [de

  16. Highly porous carbon with large electrochemical ion absorption capability for high-performance supercapacitors and ion capacitors.

    Science.gov (United States)

    Wang, Shijie; Wang, Rutao; Zhang, Yabin; Zhang, Li

    2017-11-03

    Carbon-based supercapacitors have attracted extensive attention as the complement to batteries, owing to their durable lifespan and superiority in high-power-demand fields. However, their widespread use is limited by the low energy storage density; thus, a high-surface-area porous carbon is urgently needed. Herein, a highly porous carbon with a Brunauer-Emmett-Teller specific surface area up to 3643 m 2 g -1 has been synthesized by chemical activation of papayas for the first time. This sp 2 -bonded porous carbon has a continuous three-dimensional network of highly curved, atom-thick walls that form narrow mesopores of 2 ∼ 5 nm in width, which can be systematically tailored with varied activation levels. Two-electrode symmetric supercapacitors constructed by this porous carbon achieve energy density of 8.1 Wh kg -1 in aqueous electrolyte and 65.5 Wh kg -1 in ionic-liquid electrolyte. Furthermore, half-cells (versus Li or Na metal) using this porous carbon as ion sorption cathodes yield high specific capacity, e.g., 51.0 and 39.3 mAh g -1 in Li + and Na + based organic electrolyte. These results underline the possibility of obtaining the porous carbon for high-performance carbon-based supercapacitors and ion capacitors in a readily scalable and economical way.

  17. Highly porous carbon with large electrochemical ion absorption capability for high-performance supercapacitors and ion capacitors

    Science.gov (United States)

    Wang, Shijie; Wang, Rutao; Zhang, Yabin; Zhang, Li

    2017-11-01

    Carbon-based supercapacitors have attracted extensive attention as the complement to batteries, owing to their durable lifespan and superiority in high-power-demand fields. However, their widespread use is limited by the low energy storage density; thus, a high-surface-area porous carbon is urgently needed. Herein, a highly porous carbon with a Brunauer-Emmett-Teller specific surface area up to 3643 m2 g-1 has been synthesized by chemical activation of papayas for the first time. This sp2-bonded porous carbon has a continuous three-dimensional network of highly curved, atom-thick walls that form narrow mesopores of 2 ˜ 5 nm in width, which can be systematically tailored with varied activation levels. Two-electrode symmetric supercapacitors constructed by this porous carbon achieve energy density of 8.1 Wh kg-1 in aqueous electrolyte and 65.5 Wh kg-1 in ionic-liquid electrolyte. Furthermore, half-cells (versus Li or Na metal) using this porous carbon as ion sorption cathodes yield high specific capacity, e.g., 51.0 and 39.3 mAh g-1 in Li+ and Na+ based organic electrolyte. These results underline the possibility of obtaining the porous carbon for high-performance carbon-based supercapacitors and ion capacitors in a readily scalable and economical way.

  18. Doubly versus singly positively charged oxygen ions back-scattered from a silicon surface under dynamic O2+ bombardment

    International Nuclear Information System (INIS)

    Franzreb, Klaus; Williams, Peter; Loerincik, Jan; Sroubek, Zdenek

    2003-01-01

    Mass-resolved (and emission-charge-state-resolved) low-energy ion back-scattering during dynamic O 2 + bombardment of a silicon surface was applied in a Cameca IMS-3f secondary ion mass spectrometry (SIMS) instrument to determine the bombarding energy dependence of the ratio of back-scattered O 2+ versus O + . While the ratio of O 2+ versus O + drops significantly at reduced bombarding energies, O 2+ back-scattered from silicon was still detectable at an impact energy (in the lab frame) as low as about 1.6 keV per oxygen atom. Assuming neutralization prior to impact, O 2+ ion formation in an asymmetric 16 O→ 28 Si collision is expected to take place via 'collisional double ionization' (i.e. by promotion of two outer O 2p electrons) rather than by the production of an inner-shell (O 2s or O 1s) core hole followed by Auger-type de-excitation during or after ejection. A molecular orbital (MO) correlation diagram calculated for a binary 'head-on' O-Si collision supports this interpretation

  19. Bystander effects on mammalian cells induced by carbon ions

    International Nuclear Information System (INIS)

    Wang Jufang; Zhao Jing; Ma Qiufeng; Chinese Academy of Sciences, Beijing; Li Weijian; Zhou Guangming; Dang Bingrong; Mao Limin; Feng Yan

    2004-01-01

    Bystander effects on unirradiated V79 cells were observed by irradiated conditioned medium (ICM) method and co-cultured with carbon-ion-irradiated V79 cells. The results showed that the colony formation efficiency of unirradiated cells is obviously decreased by ICM. After co-culture with carbon-ion-irradiated cells for some time, the colony formation efficiency of co-cultured cells was lower than expected results assuming no bystander effects. The micronucleus frequency and hprt gene mutation rate was almost the same as expected results. Cytotoxic factor(s), which was effective for cell growth but not for micronucleus and mutation on unirradiated cells, might be released by irradiated cells. (authors)

  20. FIR-laser scattering for JT-60

    International Nuclear Information System (INIS)

    Itagaki, Tokiyoshi; Matoba, Tohru; Funahashi, Akimasa; Suzuki, Yasuo

    1977-09-01

    An ion Thomson scattering method with far infrared (FIR) laser has been studied for measuring the ion temperature in large tokamak JT-60 to be completed in 1981. Ion Thomson scattering has the advantage of measuring spatial variation of the ion temperature. The ion Thomson scattering in medium tokamak (PLT) and future large tokamak (JET) requires a FIR laser of several megawatts. Research and development of FIR high power pulse lasers with power up to 0.6 MW have proceeded in ion Thomson scattering for future high-temperature tokamaks. The FIR laser power will reach to the desired several megawatts in a few years, so JAERI plans to measure the ion temperature in JT-60 by ion Thomson scattering. A noise source of the ion Thomson scattering with 496 μm-CH 3 F laser is synchrotron radiation of which the power is similar to NEP of the Schottky-barrier diode. However, the synchrotron radiation power is one order smaller than that when a FIR laser is 385 μm-D 2 O laser. The FIR laser power corresponding to a signal to noise ratio of 1 is about 4 MW for CH 3 F laser, and 0.4 MW for D 2 O laser if NEP of the heterodyne mixer is one order less. A FIR laser scattering system for JT-60 should be realized with improvement of FIR laser power, NEP of heterodyne mixer and reduction of synchrotron radiation. (auth.)

  1. MgO-templated carbon as a negative electrode material for Na-ion capacitors

    Science.gov (United States)

    Kado, Yuya; Soneda, Yasushi

    2016-12-01

    In this study, MgO-templated carbon with different pore structures was investigated as a negative electrode material for Na-ion capacitors. With increasing the Brunauer-Emmett-Teller surface area, the irreversible capacity increased, and the coulombic efficiency of the 1st cycle decreased because of the formation of solid electrolyte interface layers. MgO-templated carbon annealed at 1000 °C exhibited the highest capacity and best rate performance, suggesting that an appropriate balance between surface area and crystallinity is imperative for fast Na-ion storage, attributed to the storage mechanism: combination of non-faradaic electric double-layer capacitance and faradaic Na intercalation in the carbon layers. Finally, a Na-ion capacitor cell using MgO-templated carbon and activated carbon as the negative and positive electrodes, respectively, exhibited an energy density at high power density significantly greater than that exhibited by the cell using a commercial hard carbon negative electrode.

  2. Transition between laser absorption dominated regimes in carbon-based plasma

    Directory of Open Access Journals (Sweden)

    K. Hajisharifi

    2017-09-01

    Full Text Available In this work, we investigate the energy absorption enhancement of a laser by adding a variety of light ion species to a primarily carbon-based plasma during the high-power laser interaction with the finite size targets. A developed Particle-In-Cell simulation code is used to study the reduction of laser reflectivity (stimulated backward scatterings in both Brillouin- and Raman-dominated regimes. The simulation is performed in various Carbon-light ion plasmas such as Carbon-Hydrogen, Carbon-Helium, Carbon-Deuterium, and Carbon-Tritium. The results show that, in the optimized condition, the inclusion of light Hydrogen ions into the Carbon-based plasma up to 50%-50% mixture enhances the laser absorption exceeding 20% in the Brillouin regime due to the suppression of laser reflectivity in contract to 4% in the Raman-dominated regime. Moreover, the absorption dominated regime switches from Raman to Brillouin regime by adding 50% of Hydrogen ions to a purely carbon target. The results of this investigation will be applicable to the laser-plasma experiments so long as the laser energy absorption in the Carbon plasma target, the most readily available material in laboratory, is concerned.

  3. Revealing the Solvation Structure and Dynamics of Carbonate Electrolytes in Lithium-Ion Batteries by Two-Dimensional Infrared Spectrum Modeling.

    Science.gov (United States)

    Liang, Chungwen; Kwak, Kyungwon; Cho, Minhaeng

    2017-12-07

    Carbonate electrolytes in lithium-ion batteries play a crucial role in conducting lithium ions between two electrodes. Mixed solvent electrolytes consisting of linear and cyclic carbonates are commonly used in commercial lithium-ion batteries. To understand how the linear and cyclic carbonates introduce different solvation structures and dynamics, we performed molecular dynamics simulations of two representative electrolyte systems containing either linear or cyclic carbonate solvents. We then modeled their two-dimensional infrared (2DIR) spectra of the carbonyl stretching mode of these carbonate molecules. We found that the chemical exchange process involving formation and dissociation of lithium-ion/carbonate complexes is responsible for the growth of 2DIR cross peaks with increasing waiting time. In addition, we also found that cyclic carbonates introduce faster dynamics of dissociation and formation of lithium-ion/carbonate complexes than linear carbonates. These findings provide new insights into understanding the lithium-ion mobility and its interplay with solvation structure and ultrafast dynamics in carbonate electrolytes used in lithium-ion batteries.

  4. Rutherford scattering of neutral atoms: a technique for measuring plasma ion temperatures. An analysis of the applicability to the central cell plasma of TMX

    International Nuclear Information System (INIS)

    Granneman, E.H.A.

    1980-01-01

    Rutherford scattering of neutral particles by plasma ions is examined as a method for determining plasma ion in the central cell fo the Tandem Mirror Experiment (TMX). When a scattering configuration, consisting of a 20-keV-, 10-A-deuterium neutral beam and an energy analyzer with a 1% resolution, is arranged such that only neutral particles scattered by plasma ions over an angle of 10 0 are accepted, central-cell ion temperatures in the 30- to 1000-eV range can be measured. The count rate registered by the detector(s) is estimated to be 2000 counts/ms. Consequently, good statistical accuracy and time resolution are attainable simultaneously. The results of the calculation are presented such that the scaling of the count rates and the energy broadening with scattering angle, neutral-beam energy, ion temperature, and plasma density can easily be deduced. Neutral helium beams are also considered; they have some advantages over deuterium beams. The background signal, caused by neutral particles entering the detector after two successive charge-exchange collisions, is examined and ways to completely eliminate this background are indicated

  5. Successive ionization of positive ions of carbon and nitrogen by electron bombardment

    International Nuclear Information System (INIS)

    Donets, E.D.; Ilyushchenko, V.I.

    Experimental studies of deep ionization of heavy ions are described. The applications of such studies in atomic physics, plasma physics and space physics are discussed. Investigations using intersecting ion-electron beams, shifted beams and ion trap sources are described, and data are presented for multi-charged ions of carbon, oxygen and nitrogen. A detailed description of the development of the IEL (electron beam ionizer) source, and the KRION (cryogenic version) source is given, and further data for the multiple ionization of carbon and nitrogen are given for charge states up to C 6+ and N 7+ . The advantages and disadvantages of the KRION source are discussed, and preliminary studies of a new torroidal ion trap source (HIRAC) are presented. (11 figs, 57 refs) (U.S.)

  6. Bursting behaviours in cascaded stimulated Brillouin scattering

    International Nuclear Information System (INIS)

    Liu Zhan-Jun; He Xian-Tu; Zheng Chun-Yang; Wang Yu-Gang

    2012-01-01

    Stimulated Brillouin scattering is studied by numerically solving the Vlasov—Maxwell system. A cascade of stimulated Brillouin scattering can occur when a linearly polarized laser pulse propagates in a plasma. It is found that a stimulated Brillouin scattering cascade can reduce the scattering and increase the transmission of light, as well as introduce a bursting behaviour in the evolution of the laser-plasma interaction. The bursting time in the reflectivity is found to be less than half the ion acoustic period. The ion temperature can affect the stimulated Brillouin scattering cascade, which can repeat several times at low ion temperatures and can be completely eliminated at high ion temperatures. For stimulated Brillouin scattering saturation, higher-harmonic generation and wave—wave interaction of the excited ion acoustic waves can restrict the amplitude of the latter. In addition, stimulated Brillouin scattering cascade can restrict the amplitude of the scattered light. (physics of gases, plasmas, and electric discharges)

  7. Enhancements to the Low-Energy Ion Facility at SUNY Geneseo

    Science.gov (United States)

    Barfield, Zachariah; Kostick, Steven; Nagasing, Ethan; Fletcher, Kurt; Padalino, Stephen

    2017-10-01

    The Low Energy Ion Facility at SUNY Geneseo is used for detector development and characterization for inertial confinement fusion diagnostics. The system has been upgraded to improve the ion beam quality by reducing contaminant ions. In the new configuration, ions produced by the Peabody Scientific duoplasmatron ion source are accelerated through a potential, focused into a new NEC analyzing magnet and directed to an angle of 30°. A new einzel lens on the output of the magnet chamber focuses the beam into a scattering chamber with a water-cooled target mount and rotatable detector mount plates. The analyzing magnet has been calibrated for deuteron, 4He+, and 4He2+ ion beams at a range of energies, and no significant hysteresis has been observed. The system can accelerate deuterons to energies up to 25 keV to initiate d-d fusion using a deuterated polymer target. Charged particle spectra with protons, tritons, and 3He ions from d-d fusion have been measured at scattering angles ranging from 55° to 135°. A time-of-flight beamline has been designed to measure the energies of ions elastically scattered at 135°. CEM detectors initiate start and stop signals from secondary electrons produced when low energy ions pass through very thin carbon foils. Funded in part by the U.S. Department of Energy through the Laboratory for Laser Energetics.

  8. Development of the ion-acoustic turbulence in a magnetoactive plasma following induced ls-scattering near the lower hybrid resonance

    International Nuclear Information System (INIS)

    Batanov, G.M.; Kolik, L.V.; Sapozhnikov, A.V.; Sarksyan, K.A.; Skvortsova, N.N.

    1984-01-01

    The development and nonlinear saturation of ion-acoustic turbulent oscillat tions excited in a plasma by high frequency pumping wave have been experimentall investigated. As a result of investigations into the interaction between obliqu ue Langmuir waves and a magnetoactive plasma near the lower hybrid resonance performed under the regime of HF-pumping wave pulse generation the following c conclusions are drawn: 1) dynamic characteristics of the development of ion-acou tic turbulent oscillations point to the induced ls-scattering process and the de ependence of the rate of this process on the level of initial superthermal ion-acoustic noises, 2) a nonlinear process limiting the of ion-acoustic turbule ence intensity growth is probably the process of induced sound wave scattering on ions followed by the unstable wave energy transfer over the spectrum into the e lower frequency region. Various mechanisms are responsible for excitation of on acoustic waves and HF-waves near the pumping wave frequency (red satellite)

  9. [Involvement of carbonate/bicarbonate ions in the superoxide-generating reaction of adrenaline autoxidation].

    Science.gov (United States)

    Sirota, T V

    2015-01-01

    An important role of carbonate/bicarbonate ions has been recognized in the superoxide generating reaction of adrenaline autooxidation in an alkaline buffer (a model of quinoid adrenaline oxidation in the body). It is suggested that these ions are directly involved not only in formation of superoxide anion radical (О(2)(-)) but also other radicals derived from the carbonate/bicarbonate buffer. Using various buffers it was shown that the rate of accumulation of adrenochrome, the end product of adrenaline oxidation, and the rate of О(2)(-)· formation depend on concentration of carbonate/bicarbonate ions in the buffer and that these ions significantly accelerate adrenaline autooxidation thus demonstrating prooxidant properties. The detectable amount of diformazan, the product of nitro blue tetrazolium (NBT) reduction, was significantly higher than the amount of adrenochrome formed; taking into consideration the literature data on О(2)(-)· detection by NBT it is suggested that adrenaline autooxidation is accompanied by one-electron reduction not only of oxygen dissolved in the buffer and responsible for superoxide formation but possible carbon dioxide also dissolved in the buffer as well as carbonate/bicarbonate buffer components leading to formation of corresponding radicals. The plots of the dependence of the inhibition of adrenochrome and diformazan formation on the superoxide dismutase concentration have shown that not only superoxide radicals are formed during adrenaline autooxidation. Since carbonate/bicarbonate ions are known to be universally present in the living nature, their involvement in free radical processes proceeding in the organism is discussed.

  10. Heavy-ion radiography

    International Nuclear Information System (INIS)

    Fabrikant, J.I.; Tobias, C.A.; Holley, W.R.; Benton, E.V.; Woodruff, K.H.; MacFarland, E.W.

    1983-01-01

    High energy, heavy-ion beams offer superior discrimination of tissue electron densities at very low radiation doses. This characteristic has potential for diagnostic medical imaging of neoplasms arising in the soft tissues and organs because it can detect smaller inhomogeneities than x rays. Heavy-ion imaging may also increase the accuracy of cancer radiotherapy planning involving use of accelerated charged particles. In the current physics research program of passive heavy-ion imaging, critical modulation transfer function tests are being carried out in heavy-ion projection radiography and heavy-ion computerized tomography. The research goal is to improve the heavy-ion imaging method until it reaches the limits of its theoretical resolution defined by range straggling, multiple scattering, and other factors involved in the beam quality characteristics. Clinical uses of the imaging method include the application of heavy-ion computerized tomography to heavy-ion radiotherapy planning, to the study of brain tumors and other structures of the head, and to low-dose heavy-ion projection mammography, particularly for women with dense breasts where other methods of diagnosis fail. The ions used are primarily 300 to 570 MeV/amu carbon and neon ions accelerated at the Lawrence Berkeley Laboratory Bevalac

  11. Carbon Nanotube-Based Ion Selective Sensors for Wearable Applications.

    Science.gov (United States)

    Roy, Soumyendu; David-Pur, Moshe; Hanein, Yael

    2017-10-11

    Wearable electronics offer new opportunities in a wide range of applications, especially sweat analysis using skin sensors. A fundamental challenge in these applications is the formation of sensitive and stable electrodes. In this article we report the development of a wearable sensor based on carbon nanotube (CNT) electrode arrays for sweat sensing. Solid-state ion selective electrodes (ISEs), sensitive to Na + ions, were prepared by drop coating plasticized poly(vinyl chloride) (PVC) doped with ionophore and ion exchanger on CNT electrodes. The ion selective membrane (ISM) filled the intertubular spaces of the highly porous CNT film and formed an attachment that was stronger than that achieved with flat Au, Pt, or carbon electrodes. Concentration of the ISM solution used influenced the attachment to the CNT film, the ISM surface morphology, and the overall performance of the sensor. Sensitivity of 56 ± 3 mV/decade to Na + ions was achieved. Optimized solid-state reference electrodes (REs), suitable for wearable applications, were prepared by coating CNT electrodes with colloidal dispersion of Ag/AgCl, agarose hydrogel with 0.5 M NaCl, and a passivation layer of PVC doped with NaCl. The CNT-based REs had low sensitivity (-1.7 ± 1.2 mV/decade) toward the NaCl solution and high repeatability and were superior to bare Ag/AgCl, metals, carbon, and CNT films, reported previously as REs. CNT-based ISEs were calibrated against CNT-based REs, and the short-term stability of the system was tested. We demonstrate that CNT-based devices implemented on a flexible support are a very attractive platform for future wearable technology devices.

  12. Microporous carbon derived from polyaniline base as anode material for lithium ion secondary battery

    International Nuclear Information System (INIS)

    Xiang, Xiaoxia; Liu, Enhui; Huang, Zhengzheng; Shen, Haijie; Tian, Yingying; Xiao, Chengyi; Yang, Jingjing; Mao, Zhaohui

    2011-01-01

    Highlights: → Nitrogen-containing microporous carbon was prepared from polyaniline base by K 2 CO 3 activation, and used as anode material for lithium ion secondary battery. → K 2 CO 3 activation promotes the formation of amorphous and microporous structure. → High nitrogen content, and large surface area with micropores lead to strong intercalation between carbon and lithium ion, and thus improve the lithium storage capacity. -- Abstract: Microporous carbon with large surface area was prepared from polyaniline base using K 2 CO 3 as an activating agent. The physicochemical properties of the carbon were characterized by scanning electron microscope, X-ray diffraction, Brunauer-Emmett-Teller, elemental analyses and X-ray photoelectron spectroscopy measurement. The electrochemical properties of the microporous carbon as anode material in lithium ion secondary battery were evaluated. The first discharge capacity of the microporous carbon was 1108 mAh g -1 , whose first charge capacity was 624 mAh g -1 , with a coulombic efficiency of 56.3%. After 20 cycling tests, the microporous carbon retains a reversible capacity of 603 mAh g -1 at a current density of 100 mA g -1 . These results clearly demonstrated the potential role of microporous carbon as anode for high capacity lithium ion secondary battery.

  13. Thomson scattering measurements of ion interpenetration in cylindrically converging, supersonic magnetized plasma flows

    Science.gov (United States)

    Swadling, George

    2015-11-01

    Ion interpenetration driven by high velocity plasma collisions is an important phenomenon in high energy density environments such as the interiors of ICF vacuum hohlraums and fast z-pinches. The presence of magnetic fields frozen into these colliding flows further complicates the interaction dynamics. This talk focuses on an experimental investigation of ion interpenetration in collisions between cylindrically convergent, supersonic, magnetized flows (M ~10, Vflow ~ 100km/s, ni ~ 1017cm-3) . The flows used in this study were plasma ablation streams produced by tungsten wire array z-pinches, driven by the 1.4MA, 240ns Magpie facility at Imperial College, and diagnosed using a combination of optical Thomson scattering, Faraday rotation and interferometry. Optical Thomson scattering (TS) provides time-resolved measurements of local flow velocity and plasma temperature across multiple (7 to 14) spatial positions. TS spectra are recorded simultaneously from multiple directions with respect to the probing beam, resulting in separate measurements of the rates of transverse diffusion and slowing-down of the ion velocity distribution. The measurements demonstrate flow interpenetration through the array axis at early time, and also show an axial deflection of the ions towards the anode. This deflection is induced by a toroidal magnetic field (~ 10T), frozen into the plasma that accumulates near the axis. Measurements obtained later in time show a change in the dynamics of the stream interactions, transitioning towards a collisional, shock-like interaction of the streams, and rapid radial collapse of the magnetized plasma column. The quantitative nature of the spatial profiles of the density, flow velocities and ion temperatures measured in these experiments will allow detailed verification of MHD and PIC codes used by the HEDP community. Work Supported by EPSRC (Grant No. EP/G001324/1), DOE (Cooperative Agreement Nos. DE-F03-02NA00057 & DE-SC-0001063) & Sandia National

  14. Doubly versus Singly Positively Charged Oxygen Ions Back-Scattering from a Silicon Surface under Dynamic O2+ Bombardment

    Czech Academy of Sciences Publication Activity Database

    Franzreb, K.; Williams, P.; Lörinčík, Jan; Šroubek, Zdeněk

    203-204, 1/4 (2003), s. 39-42 ISSN 0169-4332 Institutional research plan: CEZ:AV0Z2067918; CEZ:AV0Z4040901 Keywords : low-energy ion scattering * doubly charged ions * molecular orbital Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.284, year: 2003

  15. Broadband Dielectric Spectroscopy and Quasi-Elastic Neutron Scattering on Single-Ion Polymer Conductors

    Science.gov (United States)

    Soles, Christopher; Peng, Hua-Gen; Page, Kirt; Snyder, Chad; Pandy, Ashoutosh; Jeong, Youmi; Runt, James; NIST Collaboration; Pennsylvania Collaboration

    2011-03-01

    The application of solid polymer electrolytes in rechargeable batteries has not been fully realized after decades of research due to its low conductivity. Dramatic increases of the ion conductivity are needed and this progress requires the understanding of conduction mechanism. We address this topic in two fronts, namely, the effect of plasticizer additives and geometric confinement on the charge transfer mechanism. To this end, we combine broadband dielectric spectroscopy (BDS) to characterize the ion mobility and quasi-elastic neutron scattering (QENS) to quantify segmental motion on a single-ion model polymer electrolyte. Deuterated small molecules were used as plasticizers so that the segmental motion of the polymer electrolyte could be monitored by QENS to understand the mechanism behind the increased conductivity. Anodic aluminum oxide (AAO) membranes with well defined channel sizes are used as the matrix to study the transport of ions solvated in a 1D polymer electrolyte.

  16. Integrated carbon nanospheres arrays as anode materials for boosted sodium ion storage

    Directory of Open Access Journals (Sweden)

    Wangjia Tang

    2018-01-01

    Full Text Available Developing cost-effective advanced carbon anode is critical for innovation of sodium ion batteries. Herein, we develop a powerful combined method for rational synthesis of free-standing binder-free carbon nanospheres arrays via chemical bath plus hydrothermal process. Impressively, carbon spheres with diameters of 150–250 nm are randomly interconnected with each other forming highly porous arrays. Positive advantages including large porosity, high surface and strong mechanical stability are combined in the carbon nanospheres arrays. The obtained carbon nanospheres arrays are tested as anode material for sodium ion batteries (SIBs and deliver a high reversible capacity of 102 mAh g−1 and keep a capacity retention of 95% after 100 cycles at a current density of 0.25 A g−1 and good rate performance (65 mAh g−1 at a high current density of 2 A g−1. The good electrochemical performance is attributed to the stable porous nanosphere structure with fast ion/electron transfer characteristics.

  17. Low energy ion scattering as a tool for surface structure and composition analysis

    International Nuclear Information System (INIS)

    Armour, D.G.

    1980-01-01

    Low energy ion scattering is finding increasing application in the study of areas such as gas adsorption, thin film deposition and surface damage creation and annealing during ion irradiation where structural and compositional changes occurring in only the outermost atomic layer need to be monitored. The capabilities of the technique and the ways in which it has been developed for different types of analysis depend strongly on the fundamental atomic collision processes taking place at the surface and it is these processes, together with examples of their role in analysis applications, that form the subject of this paper. (author)

  18. A study of photoluminescence and micro-Raman scattering in C-implanted GaN

    International Nuclear Information System (INIS)

    Zhang Limin; Zhang Xiaodong; Liu Zhengmin

    2010-01-01

    GaN samples (no yellow luminescence) in their as-grown states were implanted with 10 13 -10 17 C ions/cm 2 and studied by photoluminescence spectra and micro-Raman scattering spectra. The photoluminescence study showed that yellow luminescence were produced in the C-implanted GaN after 950 degree C annealing, and the peaks of the near band edge emissions showed blue-shifts after C implantation. The Raman measurements indicated that the stresses in GaN films did not change after C implantation. The samples implanted with 10 15 cm -2 carbon ions had the Raman peak at 300 cm -1 , which is associated to the disorder-activated Raman scattering. However, further increasing the implantation dose resulted decreased intensity of the 300 cm -1 peak, due to the ion beam current increase with the implantation dose. (authors)

  19. Dynamics of water and ions in clays of type montmorillonite by microscopic simulation and quasi-elastic neutron scattering

    International Nuclear Information System (INIS)

    Malikova, N.

    2005-09-01

    Montmorillonite clays in low hydration states, with Na + and Cs + compensating counter ions, are investigated by a combination of microscopic simulation and quasi-elastic neutron scattering to obtain information on the local structure and dynamics of water and ions in the interlayer. At first predictions of simulation into the dynamics of water and ions at elevate temperatures are shown (0 deg C 80 deg C, pertinent for the radioactive waste disposal scenario) Marked difference is observed between the modes of diffusion of the Na + and C + counter ions. In water dynamics, a significant step towards bulk water behaviour is seen on transition from the mono- to bilayer states. Secondly, a detailed comparison between simulation and quasi-elastic neutron scattering (Neutron Spin Echo and Time-of-Flight) regarding ambient temperature water dynamics is presented. Overall, the approaches are found to be in good agreement with each other and limitations of each of the methods are clearly shown. (author)

  20. Quasielastic neutron scattering measurements and ab initio MD-simulations on single ion motions in molten NaF

    Energy Technology Data Exchange (ETDEWEB)

    Demmel, F. [ISIS Facility, Rutherford Appleton Laboratory, Didcot OX11 0QX (United Kingdom); Mukhopadhyay, S. [ISIS Facility, Rutherford Appleton Laboratory, Didcot OX11 0QX (United Kingdom); Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom)

    2016-01-07

    The ionic stochastic motions in the molten alkali halide NaF are investigated by quasielastic neutron scattering and first principles molecular dynamics simulation. Quasielastic neutron scattering was employed to extract the diffusion behavior of the sodium ions in the melt. An extensive first principles based simulation on a box of up to 512 particles has been performed to complement the experimental data. From that large box, a smaller 64-particle box has then been simulated over a runtime of 60 ps. A good agreement between calculated and neutron data on the level of spectral shape has been obtained. The obtained sodium diffusion coefficients agree very well. The simulation predicts a fluorine diffusion coefficient similar to the sodium one. Applying the Nernst-Einstein equation, a remarkable large cross correlation between both ions can be deduced. The velocity cross correlations demonstrate a positive correlation between the ions over a period of 0.1 ps. That strong correlation is evidence that the unlike ions do not move completely statistically independent and have a strong association over a short period of time.

  1. ITER Fast Ion Collective Thomson Scattering

    DEFF Research Database (Denmark)

    Bindslev, Henrik; Meo, Fernando; Korsholm, Søren Bang

    In this report we investigate the feasibility of diagnosing the fast ions in ITER by collective Thomson scattering (CTS), exploring and comparing the diagnostic potentials of CTS systems base on a range of different probe frequencies. In the first section we first recall the requirements for meas...... the diagnostic potentials uncovered in the preceding four sections. A number of more detailed discussions are placed in appendices along with supporting material....... for measurements of the confined fusion alpha particles in ITER set by the ITER team. Then we outline the considerations, which enter into the selection and evaluation of CTS systems. System definition includes choice of probe frequency, geometry of probe and receiver beam patterns and probe power, but ultimately...... covers many more details. Here we introduce terms and methods used in the more detailed system evaluations later in the report. In Sections 2 through 5 we consider four different types of CTS systems, which differ by the ranges in which their probe frequencies lie. In Section 6 we summarize and compare...

  2. Characterization of silicon- and carbon-based composite anodes for lithium-ion batteries

    International Nuclear Information System (INIS)

    Khomenko, Volodymyr G.; Barsukov, Viacheslav Z.

    2007-01-01

    In recent years development of active materials for negative electrodes has been of great interest. Special attention has been focused on the active materials possessing higher reversible capacity than that of conventional graphite. In the present work the electrochemical performance of some carbon/silicon-based materials has been analyzed. For this purpose various silicon-based composites were prepared using such carbon materials as graphite, hard carbon and graphitized carbon black. An analysis of charging-discharging processes at electrodes based on different carbon materials has shown that graphite modified with silicon is the most promising anode material. It has also been revealed that the irreversible capacity mainly depends on the content of Si. An optimum content of Si has been determined with taking into account that high irreversible capacity is not suitable for practical application in lithium-ion batteries. This content falls within the range of 8-10 wt%. The reversible capacity of graphite modified with 8 wt% carbon-coated Si was as high as 604 mAh g -1 . The irreversible capacity loss with this material was as low as 8.1%. The small irreversible capacity of the material allowed developing full lithium-ion rechargeable cells in the 2016 coin cell configuration. Lithium-ion batteries based on graphite modified with silicon show gravimetric and volumetric specific energy densities which are higher by approximately 20% than those for a lithium-ion battery based on natural graphite

  3. Non-invasive monitoring of therapeutic carbon ion beams in a homogeneous phantom by tracking of secondary ions

    Science.gov (United States)

    Gwosch, K.; Hartmann, B.; Jakubek, J.; Granja, C.; Soukup, P.; Jäkel, O.; Martišíková, M.

    2013-06-01

    Radiotherapy with narrow scanned carbon ion beams enables a highly accurate treatment of tumours while sparing the surrounding healthy tissue. Changes in the patient’s geometry can alter the actual ion range in tissue and result in unfavourable changes in the dose distribution. Consequently, it is desired to verify the actual beam delivery within the patient. Real-time and non-invasive measurement methods are preferable. Currently, the only technically feasible method to monitor the delivered dose distribution within the patient is based on tissue activation measurements by means of positron emission tomography (PET). An alternative monitoring method based on tracking of prompt secondary ions leaving a patient irradiated with carbon ion beams has been previously suggested. It is expected to help in overcoming the limitations of the PET-based technique like physiological washout of the beam induced activity, low signal and to allow for real-time measurements. In this paper, measurements of secondary charged particle tracks around a head-sized homogeneous PMMA phantom irradiated with pencil-like carbon ion beams are presented. The investigated energies and beam widths are within the therapeutically used range. The aim of the study is to deduce properties of the primary beam from the distribution of the secondary charged particles. Experiments were performed at the Heidelberg Ion Beam Therapy Center, Germany. The directions of secondary charged particles emerging from the PMMA phantom were measured using an arrangement of two parallel pixelated silicon detectors (Timepix). The distribution of the registered particle tracks was analysed to deduce its dependence on clinically important beam parameters: beam range, width and position. Distinct dependencies of the secondary particle tracks on the properties of the primary carbon ion beam were observed. In the particular experimental set-up used, beam range differences of 1.3 mm were detectable. In addition, variations

  4. Scattering of light keV ions from amorphous and crystalline solid surfaces

    International Nuclear Information System (INIS)

    Robinson, J.E.; Kwok, K.K.; Thompson, D.A.

    1976-01-01

    Total reflection coefficients (R), backscattered energy fractions (γ), and backscattered energy spectra are evaluated using a binary collision Monte Carlo technique for a variety of light ions (H, D, T, He) in the energy range 0.25-8 keV, incident on amorphous targets (C, Fe, Nb). The scattering is also evaluated for H on Nb for a range of incident angles and two electronic stopping values. The average scattered energy per reflected particle and the backscattered energy spectra are found to vary in a universal manner as a function of the reflection coefficient between the Rutherford high energy limit and a low energy multiple collision limit. Single crystal effects are also briefly discussed using a diffusional dechanneling model. (Auth.)

  5. Three-dimensional core-shell Fe_2O_3 @ carbon/carbon cloth as binder-free anode for the high-performance lithium-ion batteries

    International Nuclear Information System (INIS)

    Wang, Xiaohua; Zhang, Miao; Liu, Enzuo; He, Fang; Shi, Chunsheng; He, Chunnian; Li, Jiajun; Zhao, Naiqin

    2016-01-01

    Highlights: • The 3D core-shell Fe_2O_3@C/CC structure is fabricated by simple hydrothermal route. • The composite connected 3D carbon networks consist of carbon cloth, Fe_2O_3 nanorods and outer carbon layer. • The Fe_2O_3@C/CC used as binder-free anode in LIBs, demonstrates excellent performances. - Abstract: A facile and scalable strategy is developed to fabricate three dimensional core-shell Fe_2O_3 @ carbon/carbon cloth structure by simple hydrothermal route as binder-free lithium-ion battery anode. In the unique structure, carbon coated Fe_2O_3 nanorods uniformly disperse on carbon cloth which forms the conductive carbon network. The hierarchical porous Fe_2O_3 nanorods in situ grown on the carbon cloth can effectively shorten the transfer paths of lithium ions and reduce the contact resistance. The carbon coating significantly inhibits pulverization of active materials during the repeated Li-ion insertion/extraction, as well as the direct exposure of Fe_2O_3 to the electrolyte. Benefiting from the structural integrity and flexibility, the nanocomposites used as binder-free anode for lithium-ion batteries, demonstrate high reversible capacity and excellent cyclability. Moreover, this kind of material represents an alternative promising candidate for flexible, cost-effective, and binder-free energy storage devices.

  6. Development of C{sup 6+} laser ion source and RFQ linac for carbon ion radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Sako, T., E-mail: takayuki1.sako@toshiba.co.jp; Yamaguchi, A.; Sato, K. [Toshiba Corporation, Yokohama 235-8522 (Japan); Goto, A.; Iwai, T.; Nayuki, T.; Nemoto, K.; Kayama, T. [Cancer Research Center, Yamagata University Faculty of Medicine, Yamagata 990-9585 (Japan); Takeuchi, T. [Accelerator Engineering Corporation, Chiba 263-0043 (Japan)

    2016-02-15

    A prototype C{sup 6+} injector using a laser ion source has been developed for a compact synchrotron dedicated to carbon ion radiotherapy. The injector consists of a laser ion source and a 4-vane radio-frequency quadrupole (RFQ) linac. Ion beams are extracted from plasma and directly injected into the RFQ. A solenoid guides the low-energy beams into the RFQ. The RFQ is designed to accelerate high-intensity pulsed beams. A structure of monolithic vanes and cavities is adopted to reduce its power consumption. In beam acceleration tests, a solenoidal magnetic field set between the laser ion source and the RFQ helped increase both the peak currents before and after the RFQ by a factor of 4.

  7. Development of C⁶⁺ laser ion source and RFQ linac for carbon ion radiotherapy.

    Science.gov (United States)

    Sako, T; Yamaguchi, A; Sato, K; Goto, A; Iwai, T; Nayuki, T; Nemoto, K; Kayama, T; Takeuchi, T

    2016-02-01

    A prototype C(6+) injector using a laser ion source has been developed for a compact synchrotron dedicated to carbon ion radiotherapy. The injector consists of a laser ion source and a 4-vane radio-frequency quadrupole (RFQ) linac. Ion beams are extracted from plasma and directly injected into the RFQ. A solenoid guides the low-energy beams into the RFQ. The RFQ is designed to accelerate high-intensity pulsed beams. A structure of monolithic vanes and cavities is adopted to reduce its power consumption. In beam acceleration tests, a solenoidal magnetic field set between the laser ion source and the RFQ helped increase both the peak currents before and after the RFQ by a factor of 4.

  8. Formation of low friction and wear-resistant carbon coatings on tool steel by 75keV, high-dose carbon ion implantation

    International Nuclear Information System (INIS)

    Mikkelsen, N.J.; Eskildsen, S.S.; Straede, C.A.; Chechenin, N.G.

    1994-01-01

    Hardened AISI D2 steel samples were subjected to mass-separated C + ion bombardment at 75keV with ion doses in the range 0.5-15x10 18 C + cm -2 . It was observed that sputtering was still limited, and the system exhibited internal growth, because most of the ions penetrated more than 0.1μm into the growing carbon film. At the lowest ion doses applied, carbon was implanted into the steel, while higher doses resulted in the implanted carbon concentration near the surface being almost 100%. For the highest doses applied, Rutherford backscattering spectrometry and surface profilometry analyses showed that layers about 0.5-1μm thick of almost pure carbon grew outward from the steel substrate. Transmission electron microscopy showed that the carbon layers were amorphous and exhibited an intermixed layer-substrate interface. The layers were hard and exhibited pronounced elastic recovery when subjected to ultralow load indentation. Low friction and excellent wear properties were measured when tested under dry conditions with a ball-on-disc tribometer. ((orig.))

  9. Suppression of Stimulated Brillouin Scattering in multiple-ion species inertial confinement fusion Hohlraum Plasmas

    International Nuclear Information System (INIS)

    Neumayer, P

    2007-01-01

    A long-standing problem in the field of laser-plasma interactions is to successfully employ multiple-ion species plasmas to reduce stimulated Brillouin scattering (SBS) in inertial confinement fusion (ICF) hohlraum conditions. Multiple-ion species increase significantly the linear Landau damping for acoustic waves. Consequently, recent hohlraum designs for indirect-drive ignition on the National Ignition Facility investigate wall liner material options so that the liner gain for parametric instabilities will be below threshold for the onset SBS. Although the effect of two-ion species plasmas on Landau damping has been directly observed with Thomson scattering, early experiments on SBS in these plasmas have suffered from competing non-linear effects or laser beam filamentation. In this study, a reduction of SBS scattering to below the percent level has been observed in hohlraums at Omega that emulate the plasma conditions in an indirect drive ICF experiments. These experiments have measured the laser-plasma interaction processes in ignition-relevant high-electron temperature regime demonstrating Landau damping as a controlling process for SBS. The hohlraums have been filled with various fractions of CO 2 and C 3 H 8 varying the ratio of the light (H) to heavy (C and O) ion density from 0 to 2.6. They have been heated by 14.5 kJ of 351-nm light, thus increasing progressively Landau damping by an order of magnitude at constant electron density and temperature. A delayed 351-nm interaction beam, spatially smoothed to produce a 200-(micro)m laser spot at best focus, has propagated along the axis of the hohlraum. The backscattered light, both into the lens and outside, the transmitted light through the hohlraum plasma and the radiation temperature of the hohlraum has been measured. For ignition relevant laser intensities (3-9 10 14 Wcm -2 ), we find that the SBS reflectivity scales as predicted with Landau damping from >30% to <1%. Simultaneously, the hohlraum radiation

  10. Electrochemical Performance of Electrospun carbon nanofibers as free-standing and binder-free anodes for Sodium-Ion and Lithium-Ion Batteries

    International Nuclear Information System (INIS)

    Jin, Juan; Shi, Zhi-qiang; Wang, Cheng-yang

    2014-01-01

    Highlights: • Electrospun carbon nanofiber webs were prepared by pyrolysis of polyacrylonitrile. • The webs as binder-free and current collector-free electrodes for SIBs and LIBs. • Different layer spacing and pore size for Li and Na lead different electrochemical behavior. • Electrochemical performances of the electrodes were high. - Abstract: A series of hard carbon nanofiber-based electrodes derived from electrospun polyacrylonitrile (PAN) nanofibers (PAN-CNFs) have been fabricated by stabilization in air at about 280 °C and then carbonization in N 2 at heat treatment temperatures (HTT) between 800 and 1500 °C. The electrochemical performances of the binder-free, current collector-free carbon nanofiber-based anodes in lithium-ion batteries and sodium-ion batteries are systematically investigated and compared. We demonstrate the presence of similar alkali metal insertion mechanisms in both cases, but just the differences of the layer spacing and pore size available for lithium and sodium ion lead the discharge capacity delivered at sloping region and plateau region to vary from the kinds of alkali elements. Although the anodes in sodium-ion batteries show poorer rate capability than that in lithium-ion batteries, they still achieve a reversible sodium intercalation capacity of 275 mAh g −1 and similar cycling stability due to the conductive 3-D network, weakly ordered turbostratic structure and a large interlayer spacing between graphene sheets. The feature of high capacity and stable cycling performance makes PAN-CNFs to be promising candidates as electrodes in rechargeable sodium-ion batteries and lithium-ion batteries

  11. EUD-based biological optimization for carbon ion therapy

    International Nuclear Information System (INIS)

    Brüningk, Sarah C.; Kamp, Florian; Wilkens, Jan J.

    2015-01-01

    Purpose: Treatment planning for carbon ion therapy requires an accurate modeling of the biological response of each tissue to estimate the clinical outcome of a treatment. The relative biological effectiveness (RBE) accounts for this biological response on a cellular level but does not refer to the actual impact on the organ as a whole. For photon therapy, the concept of equivalent uniform dose (EUD) represents a simple model to take the organ response into account, yet so far no formulation of EUD has been reported that is suitable to carbon ion therapy. The authors introduce the concept of an equivalent uniform effect (EUE) that is directly applicable to both ion and photon therapies and exemplarily implemented it as a basis for biological treatment plan optimization for carbon ion therapy. Methods: In addition to a classical EUD concept, which calculates a generalized mean over the RBE-weighted dose distribution, the authors propose the EUE to simplify the optimization process of carbon ion therapy plans. The EUE is defined as the biologically equivalent uniform effect that yields the same probability of injury as the inhomogeneous effect distribution in an organ. Its mathematical formulation is based on the generalized mean effect using an effect-volume parameter to account for different organ architectures and is thus independent of a reference radiation. For both EUD concepts, quadratic and logistic objective functions are implemented into a research treatment planning system. A flexible implementation allows choosing for each structure between biological effect constraints per voxel and EUD constraints per structure. Exemplary treatment plans are calculated for a head-and-neck patient for multiple combinations of objective functions and optimization parameters. Results: Treatment plans optimized using an EUE-based objective function were comparable to those optimized with an RBE-weighted EUD-based approach. In agreement with previous results from photon

  12. Biological intercomparison using gut crypt survivals for proton and carbon ions

    International Nuclear Information System (INIS)

    Uzawa, Akiko; Ando, Koichi; Furusawa, Yoshiya

    2006-01-01

    Charged particle therapy depends on biological information for the dose prescription. Relative biological effectiveness or relative biological effectiveness (RBE) for this requirement could basically be provided by experimental data. As RBE values of protons and carbon ions depend on several factors such as cell/tissue type, endpoint, dose and fractionation schedule, a single RBE value could not function as a master key to open all rooms filled with guests of different radiosensitivities. However, any biological model with accurate reproducibility is useful for comparing biological effectiveness between different facilities. We used mouse gut crypt survivals as endpoint, and compared the cell killing efficiency of proton beams at three Japanese facilities. Three Linac X-ray machines with 4 and 6 MeV were used as reference beams, and there was only a small variation (coefficient of variance <2%) in biological effectiveness among them. The RBE values of protons relative to Linac X-rays ranged from 1.0 to 1.11 at the middle of a 6-cm SOBP (spread-out Bragg peak) and from 0.96 to 1.01 at the entrance plateau. The coefficient of variance for protons ranged between 4.0 and 5.1%. The biological comparison of carbon ions showed fairly good agreement in that the difference in biological effectiveness between National Institute of Radiological Sciences (NIRS)/Heavy Ion Medical Accelerator in Chiba (HIMAC) and Gesellschaft fur Schwerionenforschung (GSI)/Heavy Ion Synchrotron (SIS) was 1% for three positions within the 6-cm SOBP. The coefficient of variance was <1.7, <0.6 and <1.6% for proximal, middle and distal SOBP, respectively. We conclude that the inter-institutional variation of biological effectiveness is smaller for carbon ions than protons, and that beam-spreading methods of carbon ions do not critically influence gut crypt survival. (author)

  13. Carbon ion radiotherapy for sarcomas

    International Nuclear Information System (INIS)

    Imai, Reiko

    2013-01-01

    Principles of heavy ion therapy, its application to bone and soft tissue sarcomas and outline of its general state are described. The heavy ion therapy has advantages of its high dose distribution to the target and strong biological effect due to the Bragg peak formation and high linear energy transfer, respectively. The authors use carbon ion generated by Heavy Ion Medical Accelerator in Chiba (HIMAC) for the therapy of performance state 0-2 patients with the sarcomas unresectable, diagnosed pathologically, and of 60 y, 45% and teens, 8%) have been treated, whose tumor site has been the pelvis in 73%, volume >600 mL in 63%, tissue type of bone tumor in 70% (where cordoma has amounted to>200 cases). Five-year local control rate is found 71% and survival, 59%. In 175 therapeutically fresh cases with sacral cordoma of median age 67 y, with median clinical target volume 9 cm, treated with median dose 70.4 GyE/16 irradiations, the 8-y local control rate is found to be 69% and survival, 74%, within the median follow-up 54 months; with severe skin ulcer in 2 cases and deterioration of nervous dysfunction in 15 cases; suggesting the therapy is as effective and useful as surgical resection. At present, the therapy is not applicable to Japan health insurance. In the author's hospital, the heavy ion therapy has been conducted to total of >6,000 patients, which amounting to the largest number in the world. Now, 3 Japanese facilities can do the therapy as well and 3 countries in the world.(T.T.)

  14. Enhanced electrochemical performance of sandwich-structured polyaniline-wrapped silicon oxide/carbon nanotubes for lithium-ion batteries

    Science.gov (United States)

    Liu, Hui; Zou, Yongjin; Huang, Liyan; Yin, Hao; Xi, Chengqiao; Chen, Xin; Shentu, Hongwei; Li, Chao; Zhang, Jingjing; Lv, ChunJu; Fan, Meiqiang

    2018-06-01

    Sandwich-structured carbon nanotubes, silicon oxide, and polyaniline (hereafter denoted as CNTs/SiOx/PANI) were prepared by combining a sol-gel method, magnesiothermic reduction at 250 °C, and chemical oxidative polymerization. The CNTs, SiOx and PANI in the composite was 16 wt%, 51 wt% and 33 wt%, respectively. The CNTs/SiOx/PANI electrodes exhibited excellent cycle and high-rate performance as anodes in Li-ion batteries, including charge/discharge capacities of 1156/1178 mAh g-1 after 60 cycles at 0.2 A g-1 current density and 728/725 mAh g-1 at 8 A g-1 current density. The improvement was due to the synergy between CNTs and PANI. The SiOx scattered on the CNTs core and coated by PANI improved its conductivity and accommodated the volume change during repeated lithiation/delithiation cycles. This simple synthesis provided a scalable route for the large-scale production of CNTs/SiOx/PANI nanostructures, with various applications such as in Li-ion batteries.

  15. Enhancement of SPHK1 in vitro by carbon ion irradiation in oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Higo, Morihiro; Uzawa, Katsuhiro; Kawata, Tetsuya; Kato, Yoshikuni; Kouzu, Yukinao; Yamamoto, Nobuharu; Shibahara, Takahiko; Mizoe, Jun-etsu; Ito, Hisao; Tsujii, Hirohiko; Tanzawa, Hideki

    2006-01-01

    Purpose The purpose of this study was to assess the gene expression changes in oral squamous cell carcinoma (OSCC) cells after carbon ion irradiation. Methods and Materials Three OSCC cell lines (HSC2, Ca9-22, and HSC3) were irradiated with accelerated carbon ion beams or X-rays using three different doses. The cellular sensitivities were determined by clonogenic survival assay. To identify genes the expression of which is influenced by carbon ion irradiation in a dose-dependent manner, we performed Affymetrix GeneChip analysis with HG-U133 plus 2.0 arrays containing 54,675 probe sets. The identified genes were analyzed using the Ingenuity Pathway Analysis Tool to investigate the functional network and gene ontology. Changes in mRNA expression in the genes were assessed by real-time reverse transcriptase-polymerase chain reaction. Results We identified 98 genes with expression levels that were altered significantly at least twofold in each of the three carbon-irradiated OSCC cell lines at all dose points compared with nonirradiated control cells. Among these, SPHK1, the expression of which was significantly upregulated by carbon ion irradiation, was modulated little by X-rays. The function of SPHK1 related to cellular growth and proliferation had the highest p value (p = 9.25e-7 to 2.19e-2). Real-time reverse transcriptase-polymerase chain reaction analysis showed significantly elevated SPHK1 expression levels after carbon ion irradiation (p < 0.05), consistent with microarray data. Clonogenic survival assay indicated that carbon ion irradiation could induce cell death in Ca9-22 cells more effectively than X-rays. Conclusions Our findings suggest that SPHK1 helps to elucidate the molecular mechanisms and processes underlying the biologic response to carbon ion beams in OSCC

  16. Manipulating Adsorption-Insertion Mechanisms in Nanostructured Carbon Materials for High-Efficiency Sodium Ion Storage

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Shen [College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan 430072 China; Xiao, Lifen [College of Chemistry, Central China Normal University, Wuhan 430079 China; Pacific Northwest National Laboratory, Richland WA 99352 USA; Sushko, Maria L. [Pacific Northwest National Laboratory, Richland WA 99352 USA; Han, Kee Sung [Pacific Northwest National Laboratory, Richland WA 99352 USA; Shao, Yuyan [Pacific Northwest National Laboratory, Richland WA 99352 USA; Yan, Mengyu [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 China; Liang, Xinmiao [State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Science, Wuhan 430071 China; Mai, Liqiang [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 China; Feng, Jiwen [State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Science, Wuhan 430071 China; Cao, Yuliang [College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan 430072 China; Ai, Xinping [College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan 430072 China; Yang, Hanxi [College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan 430072 China; Liu, Jun [Pacific Northwest National Laboratory, Richland WA 99352 USA

    2017-05-12

    Hard carbon is one of the most promising anode materials for sodium-ion batteries, but the low coulombic efficiency is still a key barrier. In this paper we synthesized a series of nanostructured hard carbon materials with controlled architectures. Using a combination of in-situ XRD mapping, ex-situ NMR, EPR, electrochemical techniques and simulations, an “adsorption-intercalation” (A-I) mechanism is established for Na ion storage. During the initial stages of Na insertion, Na ions adsorb on the defect sites of hard carbon with a wide adsorption energy distribution, producing a sloping voltage profile. In the second stage, Na ions intercalate into graphitic layers with suitable spacing to form NaCx compounds similar to the Li ion intercalation process in graphite, producing a flat low voltage plateau. The cation intercalation with a flat voltage plateau should be enhanced and the sloping region should be avoided. Guided by this knowledge, non-porous hard carbon material has been developed which has achieved high reversible capacity and coulombic efficiency to fulfill practical application.

  17. What's next in carbon ion radiotherapy at NIRS?

    International Nuclear Information System (INIS)

    Kamada, Tadashi

    2011-01-01

    Since its launch by the National Institute of Radiological Sciences (NIRS) in 1994, cancer therapy using heavy ion beams (carbon ion beams) has been used in approximately 5,500 patients. Accumulated clinical experience has identified certain types of malignant tumors that respond exclusively to this treatment. It has also been made clear that this therapy is capable of treating several other types of cancers safely in a relatively short period of time, effecting remission and/or cure without pain or discomfort in a few days or weeks. We can reasonably state that heavy ion radiotherapy has been established as a safe and effective treatment method. NIRS researchers are continuing to make every effort to develop more effective, efficient, and patient-friendly heavy ion irradiation systems. The result of this research and development is also expected to slash the attendant costs of heavy ion radiotherapy. (author)

  18. BEAM DYNAMICS STUDIES FOR A COMPACT CARBON ION LINAC FOR THERAPY

    Energy Technology Data Exchange (ETDEWEB)

    Plastun, A.; Mustapha, B.; Nassiri, A.; Ostroumov, P.

    2016-05-01

    Feasibility of an Advanced Compact Carbon Ion Linac (ACCIL) for hadron therapy is being studied at Argonne National Laboratory in collaboration with RadiaBeam Technologies. The 45-meter long linac is designed to deliver 109 carbon ions per second with variable energy from 45 MeV/u to 450 MeV/u. S-band structure provides the acceleration in this range. The carbon beam energy can be adjusted from pulse to pulse, making 3D tumor scanning straightforward and fast. Front end accelerating structures such as RFQ, DTL and coupled DTL are designed to operate at lower frequencies. The design of the linac was accompanied with extensive end-to-end beam dynamics studies which are presented in this paper.

  19. Small angle neutron scattering and small angle X-ray scattering ...

    Indian Academy of Sciences (India)

    Abstract. The morphology of carbon nanofoam samples comprising platinum nanopar- ticles dispersed in the matrix was characterized by small angle neutron scattering (SANS) and small angle X-ray scattering (SAXS) techniques. Results show that the structure of pores of carbon matrix exhibits a mass (pore) fractal nature ...

  20. Binding of nickel and zinc ions with activated carbon prepared from ...

    African Journals Online (AJOL)

    Activated carbon was prepared from sugar cane fibre by carbonizing at 500 oC for 30 minutes. This was followed by activation with ammonium chloride. The activated carbon was characterised in terms of pH, bulk density, ash content, surface area and surface charge. Equilibrium sorption of nickel and zinc ions by the ...

  1. Adsorption of manganese(II) ions by EDTA-treated activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Khan, A.Y.; Mazyck, D.W. [Jones Edmunds & Associates, Gainesville, FL (United States)

    2009-07-01

    The adsorption of manganese(II) ions from aqueous solution onto three different granular activated carbons treated with ethylenediamine tetraacetic acid (EDTA) and its sodium salt was investigated. Characterization of the chelate-treated carbons showed that EDTA altered the physical and chemical properties of the sorbents relative to their untreated counterparts. Furthermore, the modified sorbents exhibited a heightened capacity towards the adsorption of Mn(II) ions from aqueous media. Manganese(II) ion removal increased from 0 to 6.5 mg/g for the lignite coal-based sorbent, from 3.5 to 14.7 mg/g for the wood-based sorbent and from 1.3 to 7.9 mg/g for the bituminous coal-based sorbent. The increased removal is attributed, in part, to the creation of Lewis base sites that participate in covalent interactions and hydrolysis reactions.

  2. Comparison of specular H-atomic-beam intensity and C+ secondary-ion yield at thermally activated decrease of a carbon layer on a Ni(110) surface

    International Nuclear Information System (INIS)

    Kaarmann, H.; Hoinkes, H.; Wilsch, H.

    1983-01-01

    The thermally activated disappearance of a carbon layer on a Ni(110) surface was investigated by the scattering of atomic hydrogen and by secondary-ion mass spectrometry. Decreasing C coverage at surface temperatures kept constant in each case at values between 650 and 750 K resulted in an exponential decrease of specular H-beam intensity as well as C + secondary-ion yield. This decrease in both cases fits first-order kinetics (presumable diffusion into the bulk) with an identical rate constant as a function of surface temperature and results finally in a preexponential frequency ν = 10/sup() 10plus-or-minus1/ s -1 and an activation energy E/sub A/ = 1.8 +- 0.2 eV

  3. Computational Evaluation of Amorphous Carbon Coating for Durable Silicon Anodes for Lithium-Ion Batteries

    Science.gov (United States)

    Hwang, Jeongwoon; Ihm, Jisoon; Lee, Kwang-Ryeol; Kim, Seungchul

    2015-01-01

    We investigate the structural, mechanical, and electronic properties of graphite-like amorphous carbon coating on bulky silicon to examine whether it can improve the durability of the silicon anodes of lithium-ion batteries using molecular dynamics simulations and ab-initio electronic structure calculations. Structural models of carbon coating are constructed using molecular dynamics simulations of atomic carbon deposition with low incident energies (1–16 eV). As the incident energy decreases, the ratio of sp2 carbons increases, that of sp3 decreases, and the carbon films become more porous. The films prepared with very low incident energy contain lithium-ion conducting channels. Also, those films are electrically conductive to supplement the poor conductivity of silicon and can restore their structure after large deformation to accommodate the volume change during the operations. As a result of this study, we suggest that graphite-like porous carbon coating on silicon will extend the lifetime of the silicon anodes of lithium-ion batteries. PMID:28347087

  4. Computational Evaluation of Amorphous Carbon Coating for Durable Silicon Anodes for Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Jeongwoon Hwang

    2015-10-01

    Full Text Available We investigate the structural, mechanical, and electronic properties of graphite-like amorphous carbon coating on bulky silicon to examine whether it can improve the durability of the silicon anodes of lithium-ion batteries using molecular dynamics simulations and ab-initio electronic structure calculations. Structural models of carbon coating are constructed using molecular dynamics simulations of atomic carbon deposition with low incident energies (1–16 eV. As the incident energy decreases, the ratio of sp2 carbons increases, that of sp3 decreases, and the carbon films become more porous. The films prepared with very low incident energy contain lithium-ion conducting channels. Also, those films are electrically conductive to supplement the poor conductivity of silicon and can restore their structure after large deformation to accommodate the volume change during the operations. As a result of this study, we suggest that graphite-like porous carbon coating on silicon will extend the lifetime of the silicon anodes of lithium-ion batteries.

  5. Adsorption of heavy metal ions on activated carbon, (5)

    International Nuclear Information System (INIS)

    Yoshida, Hisayoshi; Kamegawa, Katsumi; Arita, Seiji

    1978-01-01

    The adsorption effect of heavy metal ions Cd 2+ , Zn 2+ and Hg 2+ on activated carbon by adding EDTA is reported, utilizing the experimental data. The activated carbons used for the experiment are mostly D, and B, C and F partly. As for the experimental procedure, the solutions of 100 ml which are composed of activated carbon, pH adjusting liquid, EDTA solution and solutions of heavy metals Cd, Zn and Hg, are shaken for 24 hours at 20 deg C, and after the activated carbon is centrifuged and separated for 15 minutes at 3000 rpm, the remaining heavy metal concentrations and pH in the supernatant are measured. The experimental results showed the useful effect on the adsorption of heavy metal ions of Cd, Zn and Hg by adding about 1 mol ratio of (EDTA/heavy metals). The individual experimental results are presented in detail. Concerning the adsorption quantity, 83% of Cd ions remained in the supernatant without addition of EDTA, but less than 1% with addition of about 1 to 5 mol ratio of (EDTA/Cd), and this adsorption effect was almost similar to Zn and Hg, i.e. 100% to 1% in Zn and 70% to 2 or 3% in Hg, under the condition written above. As for the influence of pH on Cd adsorption, the remaining Cd ratio is less than 10%, when pH is 7 to 10.5 at the mol ratio of 1 and 5.5 to 9 at the mol ratio of 10. The adsorption effect was different according to the kinds of activated carbon. The influencing factors for adsorption effect are the concentration of coexisting cations in the solution and the mixing time, etc. The effects of pH on Zn and Hg adsorption were almost similar to Cd. (Nakai, Y.)

  6. The Strength of Chaos: Accurate Simulation of Resonant Electron Scattering by Many-Electron Ions and Atoms in the Presence of Quantum Chaos

    Science.gov (United States)

    2017-01-20

    AFRL-AFOSR-JP-TR-2017-0012 The Strength of Chaos : accurate simulation of resonant electron scattering by many-electron ions and atoms in the presence...of quantum chaos Igor Bray CURTIN UNIVERSITY OF TECHNOLOGY Final Report 01/20/2017 DISTRIBUTION A: Distribution approved for public release. AF...SUBTITLE The Strength of Chaos : accurate simulation of resonant electron scattering by many- electron ions and atoms in the presence of quantum chaos

  7. Water flow in carbon-based nanoporous membranes impacted by interactions between hydrated ions and aromatic rings.

    Science.gov (United States)

    Liu, Jian; Shi, Guosheng; Fang, Haiping

    2017-02-24

    Carbon-based nanoporous membranes, such as carbon nanotubes (CNTs), graphene/graphene oxide and graphyne, have shown great potential in water desalination and purification, gas and ion separation, biosensors, and lithium-based batteries, etc. A deep understanding of the interaction between hydrated ions in an aqueous solution and the graphitic surface in systems composed of water, ions and a graphitic surface is essential for applications with carbon-based nanoporous membrane platforms. In this review, we describe the recent progress of the interaction between hydrated ions and aromatic ring structures on the carbon-based surface and its applications in the water flow in a carbon nanotube. We expect that these works can be extended to the understanding of water flow in other nanoporous membranes, such as nanoporous graphene, graphyne and stacked sheets of graphene oxide.

  8. Scattering chamber for the Holifield Heavy Ion Research Facility

    International Nuclear Information System (INIS)

    Goodman, C.D.; Corum, J.E.

    1977-09-01

    A conceptual design is presented for a 62-in.-diam. general purpose scattering chamber to be used for nuclear research with heavy ions. The detector rotation mechanism is based on large diameter (approx. 58 in.) peripherally driven rings. This leaves the central region open for detectors and other apparatus and permits the use of a perpendicular ring for rotating a detector out of the reaction plane. A precision target slide with provisions for removing the entire slide under vacuum is part of the design. Access and viewing ports on the dished top and in the reaction plane will be provided. Cryogenic pumping will be used to keep the vacuum free from hydrocarbon vapors, water vapor, and oxygen

  9. Effects of beer administration in mice on acute toxicities induced by X rays and carbon ions

    International Nuclear Information System (INIS)

    Monobe, Manami

    2003-01-01

    We have investigated the tissue specificity of radioprotection by beer, which was previously found for human lymphocytes. C3H/He female mice, aged 14 weeks, received an oral administration of beer, ethanol or saline at a dose of 1 ml/mouse 30 min before whole-body irradiation with 137 Cs γ rays or 50 keV/μm carbon ions. The dicentrics of chromosome aberrations in spleen cells were significantly (p 0 (slope of a dose-survival curve) for γ rays and carbon ions as well. Beer administration significantly (p 50/30 (radiation dose required to kill 50% of mice within 30 days) for γ rays and carbon ions. Ethanol-administration also significantly (p 50/30 value for γ rays, but not for carbon ions. It is concluded that beer administration reduces the radiation injury caused by photons and carbon ions, depending on the tissue type. Radioprotection by beer administration is not solely due to OH radical-scavenging action by the ethanol contained in beer. (author)

  10. Scattering of field-aligned beam ions upstream of Earth's bow shock

    Directory of Open Access Journals (Sweden)

    A. Kis

    2007-03-01

    Full Text Available Field-aligned beams are known to originate from the quasi-perpendicular side of the Earth's bow shock, while the diffuse ion population consists of accelerated ions at the quasi-parallel side of the bow shock. The two distinct ion populations show typical characteristics in their velocity space distributions. By using particle and magnetic field measurements from one Cluster spacecraft we present a case study when the two ion populations are observed simultaneously in the foreshock region during a high Mach number, high solar wind velocity event. We present the spatial-temporal evolution of the field-aligned beam ion distribution in front of the Earth's bow shock, focusing on the processes in the deep foreshock region, i.e. on the quasi-parallel side. Our analysis demonstrates that the scattering of field-aligned beam (FAB ions combined with convection by the solar wind results in the presence of lower-energy, toroidal gyrating ions at positions deeper in the foreshock region which are magnetically connected to the quasi-parallel bow shock. The gyrating ions are superposed onto a higher energy diffuse ion population. It is suggested that the toroidal gyrating ion population observed deep in the foreshock region has its origins in the FAB and that its characteristics are correlated with its distance from the FAB, but is independent on distance to the bow shock along the magnetic field.

  11. Determination of low-energy ion-induced electron yields from thin carbon foils

    International Nuclear Information System (INIS)

    Allegrini, Frederic; Wimmer-Schweingruber, Robert F.; Wurz, Peter; Bochsler, Peter

    2003-01-01

    Ion beams crossing thin carbon foils can cause electron emission from the entrance and exit surface. Thin carbon foils are used in various types of time-of-flight (TOF) mass spectrometers to produce start pulses for TOF measurements. The yield of emitted electrons depends, among other parameters, on the energy of the incoming ion and its mass, and it has been experimentally determined for a few projectile elements. The electron emission yield is of great importance for deriving abundance ratios of elements and isotopes in space plasmas using TOF mass spectrometers. We have developed a detector for measuring ion-induced electron yields, and we have extended the electron yield measurements for oxygen to energies relevant for solar wind research. We also present first measurements of the carbon foil electron emission yield for argon and iron in the solar wind energy range

  12. Ion-beam synthesis and photoluminescence of SiC nanocrystals assisted by MeV-heavy-ion-beam annealing

    International Nuclear Information System (INIS)

    Khamsuwan, J.; Intarasiri, S.; Kirkby, K.; Chu, P.K.; Singkarat, S.; Yu, L.D.

    2012-01-01

    This work explored a novel way to synthesize silicon carbide (SiC) nanocrystals for photoluminescence. Carbon ions at 90 keV were implanted in single crystalline silicon wafers at elevated temperature, followed by irradiation using xenon ion beams at an energy of 4 MeV with two low fluences of 5 × 10 13 and 1 × 10 14 ions/cm 2 at elevated temperatures for annealing. X-ray diffraction, Raman scattering, infrared spectroscopy and transmission electron microscopy were used to characterize the formation of nanocrystalline SiC. Photoluminescence was measured from the samples. The results demonstrated that MeV-heavy-ion-beam annealing could indeed induce crystallization of SiC nanocrystals and enhance emission of photoluminescence with violet bands dominance due to the quantum confinement effect.

  13. Ratiometric fluorescent nanosensor based on carbon dots for the detection of mercury ion

    Science.gov (United States)

    Ma, Yusha; Mei, Jing; Bai, Jianliang; Chen, Xu; Ren, Lili

    2018-05-01

    A novel ratiometric fluorescent nanosensor based on carbon dots has been synthesized via bonding rhodamine B hydrazide to the carbon dots surface by an amide reaction. The ratiometric fluorescent nanosensor showed only a single blue fluorescence emission around 450 nm. While, as mercury ion was added, due to the open-ring of rhodamine moiety bonded on the CDs surface, the orange emission of the open-ring rhodamine would increase obviously according to the concentration of mercury ion, resulting in the distinguishable dual emissions at 450 nm and 575 nm under a single 360 excitation wavelength. Meanwhile, the ratiometric fluorescent nanosensor based on carbon dots we prepared is more sensitive to qualitative and semi-quantitative detection of mercury ion in the range of 0–100 μM, because fluorescence changes gradually from blue to orange emission under 365 nm lamp with the increasing of mercury ion in the tested solution.

  14. Ion dynamics in porous carbon electrodes in supercapacitors using in situ infrared spectroelectrochemistry.

    Science.gov (United States)

    Richey, Francis W; Dyatkin, Boris; Gogotsi, Yury; Elabd, Yossef A

    2013-08-28

    Electrochemical double layer capacitors (EDLCs), or supercapacitors, rely on electrosorption of ions by porous carbon electrodes and offer a higher power and a longer cyclic lifetime compared to batteries. Ionic liquid (IL) electrolytes can broaden the operating voltage window and increase the energy density of EDLCs. Herein, we present direct measurements of the ion dynamics of 1-ethyl-3-methylimidazolium bis((trifluoromethyl)sulfonyl)imide in an operating EDLC with electrodes composed of porous nanosized carbide-derived carbons (CDCs) and nonporous onion-like carbons (OLCs) with the use of in situ infrared spectroelectrochemistry. For CDC electrodes, IL ions (both cations and anions) were directly observed entering and exiting CDC nanopores during charging and discharging of the EDLC. Conversely, for OLC electrodes, IL ions were observed in close proximity to the OLC surface without any change in the bulk electrolyte concentration during charging and discharging of the EDLC. This provides experimental evidence that charge is stored on the surface of OLCs in OLC EDLCs without long-range ion transport through the bulk electrode. In addition, for CDC EDLCs with mixed electrolytes of IL and propylene carbonate (PC), the IL ions were observed entering and exiting CDC nanopores, while PC entrance into the nanopores was IL concentration dependent. This work provides direct experimental confirmation of EDLC charging mechanisms that previously were restricted to computational simulations and theories. The experimental measurements presented here also provide deep insights into the molecular level transport of IL ions in EDLC electrodes that will impact the design of the electrode materials' structure for electrical energy storage.

  15. Ion distributions at charged aqueous surfaces: Synchrotron X-ray scattering studies

    Energy Technology Data Exchange (ETDEWEB)

    Bu, Wei [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    Surface sensitive synchrotron X-ray scattering studies were performed to obtain the distribution of monovalent ions next to a highly charged interface at room temperature. To control surface charge density, lipids, dihexadecyl hydrogen-phosphate (DHDP) and dimysteroyl phosphatidic acid (DMPA), were spread as monolayer materials at the air/water interface, containing CsI at various concentrations. Five decades in bulk concentrations (CsI) are investigated, demonstrating that the interfacial distribution is strongly dependent on bulk concentration. We show that this is due to the strong binding constant of hydronium H3O+ to the phosphate group, leading to proton-transfer back to the phosphate group and to a reduced surface charge. Using anomalous reflectivity off and at the L3 Cs+ resonance, we provide spatial counterion (Cs+) distributions next to the negatively charged interfaces. The experimental ion distributions are in excellent agreement with a renormalized surface charge Poisson-Boltzmann theory for monovalent ions without fitting parameters or additional assumptions. Energy Scans at four fixed momentum transfers under specular reflectivity conditions near the Cs+ L3 resonance were conducted on 10-3 M CsI with DHDP monolayer materials on the surface. The energy scans exhibit a periodic dependence on photon momentum transfer. The ion distributions obtained from the analysis are in excellent agreement with those obtained from anomalous reflectivity measurements, providing further confirmation to the validity of the renormalized surface charge Poisson-Boltzmann theory for monovalent ions. Moreover, the dispersion corrections f0 and f00 for Cs+ around L3 resonance, revealing the local environment of a Cs+ ion in the solution at the interface, were extracted simultaneously with output of ion distributions.

  16. Study of carbon ion behavior by using collisional radiative model in the GAMMA 10 tandem mirror

    International Nuclear Information System (INIS)

    Kobayashi, Takayuki; Yoshikawa, Masayuki; Kubota, Yuusuke; Saito, Masashi; Matama, Ken; Itakura, Akiyoshi; Cho, Teruji; Kato, Takako

    2006-01-01

    In a plasma experiment, collisional radiative model (CRM) is very useful model to evaluate impurity behaviors and plasma parameters with line emission from a plasma. CRMs for carbon and oxygen have been developed. However verification and application of the model for analysis of experimental results are not enough. Then we applied CRM calculation results to observed impurity spectra in the GAMMA 10 tandem mirror to evaluate the impurity density profile and the particle balance of each charge state of carbon ion. We calculated the effective ionization rate for each charge state of carbon ion and obtained the density profile of each ion. Moreover, we calculated absolute emission intensities from all carbon ions. (author)

  17. The atomic scale structure of CXV carbon: wide-angle x-ray scattering and modeling studies.

    Science.gov (United States)

    Hawelek, L; Brodka, A; Dore, J C; Honkimaki, V; Burian, A

    2013-11-13

    The disordered structure of commercially available CXV activated carbon produced from finely powdered wood-based carbon has been studied using the wide-angle x-ray scattering technique, molecular dynamics and density functional theory simulations. The x-ray scattering data has been converted to the real space representation in the form of the pair correlation function via the Fourier transform. Geometry optimizations using classical molecular dynamics based on the reactive empirical bond order potential and density functional theory at the B3LYP/6-31g* level have been performed to generate nanoscale models of CXV carbon consistent with the experimental data. The final model of the structure comprises four chain-like and buckled graphitic layers containing a small percentage of four-fold coordinated atoms (sp(3) defects) in each layer. The presence of non-hexagonal rings in the atomic arrangement has been also considered.

  18. Gold Nanoparticle-based Surface-enhanced Raman Scattering Fe(III) Ion Sensor

    International Nuclear Information System (INIS)

    Ly, Nguyen Hoang; Joo, Sang-Woo; Cho, Kwang Hwi

    2015-01-01

    We performed density functional theory (DFT) calculations of 4-aminobenzo-15-crown-5 (4AB15C5) in conjugation with 4-mercaptobenzoic acid (4MCB) with the polarizable continuum model (PCM) while considering the aqueous media. After specific binding of the ferric ion onto the 4MCB.4AB15C5 compound, the Raman frequencies and intensities were estimated by DFT calculations with the PCM. It was predicted that the Raman intensities became significantly increased upon binding of the ferric ion. 4MCB.4AB15C5 could be assembled on gold nanoparticles (AuNPs) via the cleavage of the thiol bond. Colorimetric and UV.Vis absorption spectroscopy indicated that AuNPs became significantly aggregated in the presence of 1.10 mM of the ferric ion. Surface-enhanced Raman scattering (SERS) of 4MCB.4AB15C5 was used to identify the dissimilar spectral behaviors that yield a difference in intensity in the presence of the ferric ion. These changes were not observed in the other biological ions Zn 2+ , Mn 2+ , Fe 2+ , Na + , K + , Ca 2+ , Mg 2+ , NH 4+ , and Co 2+ . This study indicated that 4AB15C5 could be used to detect ferric ions in aqueous AuNP solutions by a combined method of colorimetric, UV.Vis absorption, and Raman spectroscopy. AuNPs.[4MCB. 4AB15C5] can thus be utilized as a selective turn-on sensor to Fe3 + in aqueous solutions above 1 mM.

  19. Effects of ion beam bombardment of carbon thin films deposited onto tungsten carbide and tool steels

    Energy Technology Data Exchange (ETDEWEB)

    Awazu, Kaoru; Yoshida, Hiroyuki [Industrial Research Inst. of Ishikawa (Japan); Watanabe, Hiroshi [Gakushuin Univ., Tokyo (Japan); Iwaki, Masaya; Guzman, L [RIKEN, Saitama (Japan)

    1992-04-15

    A study was made of the effects of argon ion bombardment of carbon thin films deposited onto WC and tool steels. Carbon thin film deposition was performed at various temperatures ranging from 200degC to 350degC, using C{sub 6}H{sub 6} gas. Argon ion beam bombardment of the films was carried out at an energy of 150 keV with a dose of 1x10{sup 16} ions cm{sup -2}. The hardness and adhesion of the films were measured by means of Knoop hardness and scratch tests respectively. The structure of the carbon films was estimated by laser Raman spectroscopy, and the relations were investigated between the mechanical properties and the structure of the films. The hardness of carbon thin films increases as their deposition temperature decreases; this tendency corresponds to the increase in amorphous structure estimated by Raman spectra. Argon ion bombardment results in constant hardness and fraction of amorphous structure. Argon ion beam bombardment of films prior to additional carbon deposition may cause the adhesion of the subsequently deposited films to improve. It is concluded that argon ion beam bombardment is useful for improving the properties of carbon films deposited onto WC and tool steels. (orig.).

  20. Effects of ion beam bombardment of carbon thin films deposited onto tungsten carbide and tool steels

    International Nuclear Information System (INIS)

    Awazu, Kaoru; Yoshida, Hiroyuki; Watanabe, Hiroshi; Iwaki, Masaya; Guzman, L.

    1992-01-01

    A study was made of the effects of argon ion bombardment of carbon thin films deposited onto WC and tool steels. Carbon thin film deposition was performed at various temperatures ranging from 200degC to 350degC, using C 6 H 6 gas. Argon ion beam bombardment of the films was carried out at an energy of 150 keV with a dose of 1x10 16 ions cm -2 . The hardness and adhesion of the films were measured by means of Knoop hardness and scratch tests respectively. The structure of the carbon films was estimated by laser Raman spectroscopy, and the relations were investigated between the mechanical properties and the structure of the films. The hardness of carbon thin films increases as their deposition temperature decreases; this tendency corresponds to the increase in amorphous structure estimated by Raman spectra. Argon ion bombardment results in constant hardness and fraction of amorphous structure. Argon ion beam bombardment of films prior to additional carbon deposition may cause the adhesion of the subsequently deposited films to improve. It is concluded that argon ion beam bombardment is useful for improving the properties of carbon films deposited onto WC and tool steels. (orig.)

  1. Change of chemical bond and wettability of polylacticacid implanted with high-flux carbon ion

    International Nuclear Information System (INIS)

    Zhang Jizhong; Kang Jiachen; Zhang Xiaoji; Zhou Hongyu

    2008-01-01

    Polylacticacid (PLA) was submitted to high-flux carbon ion implantation with energy of 40 keV. It was investigated to the effect of ion fluence (1 x 10 12 -1 x 10 15 ions/cm 2 ) on the properties of the polymer. X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), wettability, and roughness were employed to study change of structure and properties of the as-implanted PLA samples. Six carbon bonds, that is, C, C-H, C-O-C, C-O, O-C-O, and >C=O, were observed on surfaces of the as-implanted PLA samples. The intensities of various chemical bonds changed with increasing ion fluence. AFM images displayed that there was irradiation damage and that it was related closely with ion fluence. At fluence as high as 1 x 10 15 ions/cm 2 surface-restructuring phenomenum took place on the surface of the PLA. Wettability was also affected by the variation on the fluence. With increasing ion fluence, the water contact angle of the as-implanted PLA samples changed gradually reaching a maximum of 76.5 deg. with 1 x 10 13 ions/cm 2 . The experimental results revealed that carbon ion fluence strongly affected surface chemical bond, morphology, wettability, and roughness of the PLA samples

  2. Ion fractions in the scattering of hydrogen on silicon surfaces

    International Nuclear Information System (INIS)

    Garcia, Evelina A.; Gonzalez Pascual, C.; Bolcatto, P.G.; Passeggi, M.C.G.; Goldberg, E.C.

    2005-01-01

    We present a theoretical calculation of the resonant charge-exchange process occurring in H 0 scattering by Si(100)2 x 1 surfaces. In the atom-surface interacting system the core states of the surface atoms are included and the parameters of the Hamiltonian are calculated in an ab initio basis taking into account the extended features of the surface and the localized atom-atom interactions within a mean-field approximation. The density of states of the surface and sub-surface atoms are obtained from a molecular dynamic-density functional theory in the local density approximation. An elastic binary collision is assumed to fix the projectile trajectory, while the inelastic processes are determined by the interaction of the projectile atom with all the surface atoms 'seen' along its trajectory. The ion fractions are calculated by using the Green-Keldysh formalism to solve the time dependent process. The results, obtained as an average over different possibilities for the scattering center, reproduce the general trends of the experiment. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Experimental control of the beam properties of laser-accelerated protons and carbon ions

    Energy Technology Data Exchange (ETDEWEB)

    Amin, Munib

    2008-12-15

    The laser generation of energetic high quality beams of protons and heavier ions has opened up the door to a plethora of applications. These beams are usually generated by the interaction of a short pulse high power laser with a thin metal foil target. They could already be applied to probe transient phenomena in plasmas and to produce warm dense matter by isochoric heating. Other applications such as the production of radioisotopes and tumour radiotherapy need further research to be put into practice. To meet the requirements of each application, the properties of the laser-accelerated particle beams have to be controlled precisely. In this thesis, experimental means to control the beam properties of laser-accelerated protons and carbon ions are investigated. The production and control of proton and carbon ion beams is studied using advanced ion source designs: Experiments concerning mass-limited (i.e. small and isolated) targets are conducted. These targets have the potential to increase both the number and the energy of laser-accelerated protons. Therefore, the influence of the size of a plane foil target on proton beam properties is measured. Furthermore, carbon ion sources are investigated. Carbon ions are of particular interest in the production of warm dense matter and in cancer radiotherapy. The possibility to focus carbon ion beams is investigated and a simple method for the production of quasi-monoenergetic carbon ion beams is presented. This thesis also provides an insight into the physical processes connected to the production and the control of laser-accelerated ions. For this purpose, laser-accelerated protons are employed to probe plasma phenomena on laser-irradiated targets. Electric fields evolving on the surface of laser-irradiated metal foils and hollow metal foil cylinders are investigated. Since these fields can be used to displace, collimate or focus proton beams, understanding their temporal and spatial evolution is crucial for the design of

  4. Experimental control of the beam properties of laser-accelerated protons and carbon ions

    International Nuclear Information System (INIS)

    Amin, Munib

    2008-12-01

    The laser generation of energetic high quality beams of protons and heavier ions has opened up the door to a plethora of applications. These beams are usually generated by the interaction of a short pulse high power laser with a thin metal foil target. They could already be applied to probe transient phenomena in plasmas and to produce warm dense matter by isochoric heating. Other applications such as the production of radioisotopes and tumour radiotherapy need further research to be put into practice. To meet the requirements of each application, the properties of the laser-accelerated particle beams have to be controlled precisely. In this thesis, experimental means to control the beam properties of laser-accelerated protons and carbon ions are investigated. The production and control of proton and carbon ion beams is studied using advanced ion source designs: Experiments concerning mass-limited (i.e. small and isolated) targets are conducted. These targets have the potential to increase both the number and the energy of laser-accelerated protons. Therefore, the influence of the size of a plane foil target on proton beam properties is measured. Furthermore, carbon ion sources are investigated. Carbon ions are of particular interest in the production of warm dense matter and in cancer radiotherapy. The possibility to focus carbon ion beams is investigated and a simple method for the production of quasi-monoenergetic carbon ion beams is presented. This thesis also provides an insight into the physical processes connected to the production and the control of laser-accelerated ions. For this purpose, laser-accelerated protons are employed to probe plasma phenomena on laser-irradiated targets. Electric fields evolving on the surface of laser-irradiated metal foils and hollow metal foil cylinders are investigated. Since these fields can be used to displace, collimate or focus proton beams, understanding their temporal and spatial evolution is crucial for the design of

  5. Study of mode-converted and directly-excited ion Bernstein waves by CO2 laser scattering in Alcator C

    International Nuclear Information System (INIS)

    Takase, Y.; Fiore, C.L.; McDermott, F.S.; Moody, J.D.; Porkolab, M.; Shepard, T.; Squire, J.

    1987-01-01

    Mode-converted and directly excited ion Bernstein waves (IBW) were studied using CO 2 laser scattering in the Alcator C tokamak. During the ICRF fast wave heating experiments, mode-converted IBW was observed on the high-field side of the resonance in both second harmonic and minority heating regimes. By comparing the relative scattered powers from the two antennas separated by 180 0 toroidally, an increased toroidal wave damping with increasing density was inferred. In the IBW heating experiments, optimum direct excitation is obtained when an ion-cyclotron harmonic layer is located just behind the antenna. Wave absorption at the ω = 3Ω/sub D/ = 1.5Ω/sub H/ layer was directly observed. Edge ion heating was inferred from the IBW dispersion when this absorption layer was located in the plasma periphery, which may be responsible for the observed improvement in particle confinement

  6. Feasibility of carbon-ion radiotherapy for re-irradiation of locoregionally recurrent, metastatic, or secondary lung tumors.

    Science.gov (United States)

    Hayashi, Kazuhiko; Yamamoto, Naoyoshi; Karube, Masataka; Nakajima, Mio; Tsuji, Hiroshi; Ogawa, Kazuhiko; Kamada, Tadashi

    2018-03-02

    Intrathoracic recurrence after carbon-ion radiotherapy for primary or metastatic lung tumors remains a major cause of cancer-related deaths. However, treatment options are limited. Herein, we report on the toxicity and efficacy of re-irradiation with carbon-ion radiotherapy for locoregionally recurrent, metastatic, or secondary lung tumors. Data of 95 patients with prior intrathoracic carbon-ion radiotherapy who were treated with re-irradiation with carbon-ion radiotherapy at our institution between 2006 and 2016 were retrospectively analyzed. Seventy-three patients (76.8%) had primary lung tumors and 22 patients (23.2%) had metastatic lung tumors. The median dose of initial carbon-ion radiotherapy was 52.8 Gy (relative biological effectiveness) and the median dose of re-irradiation was 66.0 Gy (relative biological effectiveness). None of the patients received concurrent chemotherapy. The median follow-up period after re-irradiation was 18 months. In terms of grade ≥3 toxicities, one patient experienced each of the following: grade 5 bronchopleural fistula, grade 4 radiation pneumonitis, grade 3 chest pain, and grade 3 radiation pneumonitis. The 2-year local control and overall survival rates were 54.0% and 61.9%, respectively. In conclusion, re-irradiation with carbon-ion radiotherapy was associated with relatively low toxicity and moderate efficacy. Re-irradiation with carbon-ion radiotherapy might be an effective treatment option for patients with locoregionally recurrent, metastatic, or secondary lung tumors. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  7. Chromosomal aberrations in peripheral blood lymphocytes of prostate cancer patients treated with IMRT and carbon ions

    International Nuclear Information System (INIS)

    Hartel, Carola; Nikoghosyan, Anna; Durante, Marco; Sommer, Sylwester; Nasonova, Elena; Fournier, Claudia; Lee, Ryonfa; Debus, Juergen; Schulz-Ertner, Daniela; Ritter, Sylvia

    2010-01-01

    Background and purpose: To investigate the cytogenetic damage in blood lymphocytes of patients treated for prostate cancer with different radiation qualities and target volumes. Materials and methods: Twenty patients receiving carbon-ion boost irradiation followed by IMRT or IMRT alone for the treatment of prostate cancer entered the study. Cytogenetic damage induced in peripheral blood lymphocytes of these patients was investigated at different times during the radiotherapy course using Giemsa staining and mFISH. A blood sample from each patient was taken before initiation of radiation therapy and irradiated in vitro to test for individual radiosensitivity. In addition, in vitro dose-effect curves for the induction of chromosomal exchanges by X-rays and carbon ions of different energies were measured. Results: The yield of chromosome aberrations increased during the therapy course, and the frequency was lower in patients irradiated with carbon ions as compared to patients treated with IMRT with similar target volumes. A higher frequency of aberrations was measured by increasing the target volume. In vitro, high-LET carbon ions were more effective than X-rays in inducing aberrations and yielded a higher fraction of complex exchanges. The yield of complex aberrations observed in vivo was very low. Conclusion: The investigation showed no higher aberration yield induced by treatment with a carbon-ion boost. In contrast, the reduced integral dose to the normal tissue is reflected in a lower chromosomal aberration yield when a carbon-ion boost is used instead of IMRT alone. No cytogenetic 'signature' of exposure to densely ionizing carbon ions could be detected in vivo.

  8. Integration and evaluation of automated Monte Carlo simulations in the clinical practice of scanned proton and carbon ion beam therapy.

    Science.gov (United States)

    Bauer, J; Sommerer, F; Mairani, A; Unholtz, D; Farook, R; Handrack, J; Frey, K; Marcelos, T; Tessonnier, T; Ecker, S; Ackermann, B; Ellerbrock, M; Debus, J; Parodi, K

    2014-08-21

    Monte Carlo (MC) simulations of beam interaction and transport in matter are increasingly considered as essential tools to support several aspects of radiation therapy. Despite the vast application of MC to photon therapy and scattered proton therapy, clinical experience in scanned ion beam therapy is still scarce. This is especially the case for ions heavier than protons, which pose additional issues like nuclear fragmentation and varying biological effectiveness. In this work, we present the evaluation of a dedicated framework which has been developed at the Heidelberg Ion Beam Therapy Center to provide automated FLUKA MC simulations of clinical patient treatments with scanned proton and carbon ion beams. Investigations on the number of transported primaries and the dimension of the geometry and scoring grids have been performed for a representative class of patient cases in order to provide recommendations on the simulation settings, showing that recommendations derived from the experience in proton therapy cannot be directly translated to the case of carbon ion beams. The MC results with the optimized settings have been compared to the calculations of the analytical treatment planning system (TPS), showing that regardless of the consistency of the two systems (in terms of beam model in water and range calculation in different materials) relevant differences can be found in dosimetric quantities and range, especially in the case of heterogeneous and deep seated treatment sites depending on the ion beam species and energies, homogeneity of the traversed tissue and size of the treated volume. The analysis of typical TPS speed-up approximations highlighted effects which deserve accurate treatment, in contrast to adequate beam model simplifications for scanned ion beam therapy. In terms of biological dose calculations, the investigation of the mixed field components in realistic anatomical situations confirmed the findings of previous groups so far reported only in

  9. Evolution of Carbon Ion Radiotherapy at the National Institute of Radiological Sciences in Japan.

    Science.gov (United States)

    Mohamad, Osama; Makishima, Hirokazu; Kamada, Tadashi

    2018-03-06

    Charged particles can achieve better dose distribution and higher biological effectiveness compared to photon radiotherapy. Carbon ions are considered an optimal candidate for cancer treatment using particles. The National Institute of Radiological Sciences (NIRS) in Chiba, Japan was the first radiotherapy hospital dedicated for carbon ion treatments in the world. Since its establishment in 1994, the NIRS has pioneered this therapy with more than 69 clinical trials so far, and hundreds of ancillary projects in physics and radiobiology. In this review, we will discuss the evolution of carbon ion radiotherapy at the NIRS and some of the current and future projects in the field.

  10. Coprecipitation of alkali metal ions with calcium carbonate

    International Nuclear Information System (INIS)

    Okumura, Minoru; Kitano, Yasushi

    1986-01-01

    The coprecipitation of alkali metal ions Li + , Na + , K + and Rb + with calcium carbonate has been studied experimentally and the following results have been obtained: (1) Alkali metal ions are more easily coprecipitated with aragonite than with calcite. (2) The relationship between the amounts of alkali metal ions coprecipitated with aragonite and their ionic radii shows a parabolic curve with a peak located at Na + which has approximately the same ionic radius as Ca 2+ . (3) However, the amounts of alkali metal ions coprecipitated with calcite decrease with increasing ionic radius of alkali metals. (4) Our results support the hypothesis that (a) alkali metals are in interstitial positions in the crystal structure of calcite and do not substitute for Ca 2+ in the lattice, but (b) in aragonite, alkali metals substitute for Ca 2+ in the crystal structure. (5) Magnesium ions in the parent solution increase the amounts of alkali metal ions (Li + , Na + , K + and Rb + ) coprecipitated with calcite but decrease those with aragonite. (6) Sodium-bearing aragonite decreases the incorporation of other alkali metal ions (Li + , K + and Rb + ) into the aragonite. (author)

  11. SU-F-T-144: Analytical Closed Form Approximation for Carbon Ion Bragg Curves in Water

    Energy Technology Data Exchange (ETDEWEB)

    Tuomanen, S; Moskvin, V; Farr, J [St. Jude Children’s Research Hospital, Memphis, TN (United States)

    2016-06-15

    Purpose: Semi-empirical modeling is a powerful computational method in radiation dosimetry. A set of approximations exist for proton ion depth dose distribution (DDD) in water. However, the modeling is more complicated for carbon ions due to fragmentation. This study addresses this by providing and evaluating a new methodology for DDD modeling of carbon ions in water. Methods: The FLUKA, Monte Carlo (MC) general-purpose transport code was used for simulation of carbon DDDs for energies of 100–400 MeV in water as reference data model benchmarking. Based on Thomas Bortfeld’s closed form equation approximating proton Bragg Curves as a basis, we derived the critical constants for a beam of Carbon ions by applying models of radiation transport by Lee et. al. and Geiger to our simulated Carbon curves. We hypothesized that including a new exponential (κ) residual distance parameter to Bortfeld’s fluence reduction relation would improve DDD modeling for carbon ions. We are introducing an additional term to be added to Bortfeld’s equation to describe fragmentation tail. This term accounts for the pre-peak dose from nuclear fragments (NF). In the post peak region, the NF transport will be treated as new beams utilizing the Glauber model for interaction cross sections and the Abrasion- Ablation fragmentation model. Results: The carbon beam specific constants in the developed model were determined to be : p= 1.75, β=0.008 cm-1, γ=0.6, α=0.0007 cm MeV, σmono=0.08, and the new exponential parameter κ=0.55. This produced a close match for the plateau part of the curve (max deviation 6.37%). Conclusion: The derived semi-empirical model provides an accurate approximation of the MC simulated clinical carbon DDDs. This is the first direct semi-empirical simulation for the dosimetry of therapeutic carbon ions. The accurate modeling of the NF tail in the carbon DDD will provide key insight into distal edge dose deposition formation.

  12. Radioprotective effects of melatonin on carbon-ion and X ray irradiation in mice

    International Nuclear Information System (INIS)

    Saito, Masayoshi; Kawata, Tetsuya; Liu, C.; Sakurai, Akiko; Ito, Hisao; Ando, Koichi

    2004-01-01

    The radioprotective ability of melatonin was investigated in C3H mice irradiated to a whole-body X-ray (150 Kv, 20 mA) and carbon-ion (290 MeV/u). Mice exposed to X-ray, 13 KeV/μm and 50 KeV/μm carbon-ion dose of 7.0-7.5 Gy, 6.5-7.25 Gy and 6.0-6.5 Gy, respectively. One hour before the irradiation, mice were given an intraperitoneal injection of 0.2 ml of either solvent (soybean oil) or melatonin (250 mg/kg, uniform suspension in soybean oil). Mice were observed for mortality over a period of 30 days following irradiation. Results obtained the first year are as follows. The toxicity of melatonin (at a dose 250 mg/kg) intraperitoneal administered to mice could not be observed. A pretreatment of melatonin is effective in protecting mice from lethal damage of low-linear energy transfer (LET) irradiation (X-ray and 13 KeV/μm carbon-ion). In the high-LET irradiated mice with 50 KeV/μm carbon-ion, melatonin exhibited a slight increase in their survival. (author)

  13. The forward rainbow scattering of low energy protons by a graphene sheet

    Science.gov (United States)

    Ćosić, M.; Petrović, S.; Nešković, N.

    2018-05-01

    This article studies the rainbow scattering of 5-keV protons by the single sheet of free-standing graphene and its possible use as a tool for investigation of the ion-graphene interaction. The proton-graphene interaction potential was constructed by using the Doyle-Turner, ZBL, and Molière proton-carbon interaction potentials. The thermal motion of carbon atoms was included by averaging the potentials according to the Debye model. Proton trajectories were obtained by numerical solution of the corresponding Newton equations of motion. They were used to obtain the mapping of the proton initial positions to their scattering angles. Morphological properties of the introduced mapping including its multiplicity and the rainbow singularities were used to explain important features of the obtained angular distributions of transmitted protons.

  14. Health-related quality of life after carbon-ion radiotherapy for prostate cancer. A 3-year prospective study

    International Nuclear Information System (INIS)

    Katoh, Hiroyuki; Tsuji, Hiroshi; Ishikawa, Hitoshi

    2014-01-01

    To assess 3-year health-related quality of life of patients treated with carbon ion radiotherapy for prostate cancer. A total of 213 patients received carbon-ion radiotherapy at a total dose of 66 Gy equivalent in 20 fractions over 5 weeks, and neoadjuvant and adjuvant androgen deprivation therapy were administered for high-risk patients for at least 12 months. A health-related quality of life assessment was carried out at four time-points (immediately before the initiation of carbon-ion radiotherapy, immediately after, 12 and 36 months after completion of carbon-ion radiotherapy) using Functional Assessment of Cancer Therapy General and for Prostate Cancer Patients. The evaluable response rates among all responses were more than 94%. Overall, a significant decrease in the scores of the health-related quality of life 12 months after carbon-ion radiotherapy returned to their baseline levels at 36 months. Additionally, no significant decrease was observed in the scores at any of the assessment time-points compared with their baseline scores in the group of carbon-ion radiotherapy without androgen deprivation therapy; however, the presence of morbidity and biochemical failure significantly worsened the scores, and the decreases in the scores did not improve even at 36 months after carbon-ion radiotherapy. An assessment based on a subjective scoring system shows a significant decrease in health-related quality of life at 12 months after carbon-ion radiation therapy, which tends to return to baseline levels at 36 months. The presence of morbidity and bio-chemical failure significantly worsen health-related quality of life scores. Further controlled studies focusing on health-related quality of life assessment in patients with prostate cancer are warranted. (author)

  15. Nuclear rotational population patterns in heavy-ion scattering and transfer reactions

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, J O; Stoyer, M A [Lawrence Berkeley Lab., CA (USA); Canto, L F; Donangelo, R [Universidade Federal do Rio de Janeiro, RJ (Brazil); Ring, P [Technische Univ. Muenchen, Garching (Germany, F.R.). Fakultaet fuer Physik

    1991-05-01

    A model of {sup 239}Pu with decoupled neutron is used for theoretical calculations of rotational population patterns in heavy ion inelastic scattering and one-neutron transfer reactions. The system treated in {sup 90}Zr on {sup 239}Pu at the near-barrier energy of 500 MeV and backscattering angles of 180deg and 140deg. The influence of the complex nuclear optical potential is seen to be very strong, and the Nilsson wave function of the odd neutron produces a distinctive pattern in the transfer reaction. (orig.).

  16. Oxygen adsorption on Cu(111) using low energy ion scattering spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, F.M.; Yao, J.; Shen, Y.G.; King, B.V.; O`Connor, D.J. [Newcastle Univ., NSW (Australia). Dept. of Physics

    1993-12-31

    The surface structure and oxygen adsorption of Cu(l 11) have been studied by 2 keV Li{sup +}, He{sup +} and Ar{sup +} ion scattering . Incident and azimuthal dependences were measured for the clean and O-covered surfaces, and the surface geometry was analysed on the basis of the shadowing features. Experimental results under different oxygen exposures at room temperature showed that the Cu(l 11) surface undergoes a roughening transition and results in a reconstruction where Cu atoms are vertically displaced by about 0.23 Angstroms. 4 refs., 4 figs.

  17. Oxygen adsorption on Cu(111) using low energy ion scattering spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, F M; Yao, J; Shen, Y G; King, B V; O` Connor, D J [Newcastle Univ., NSW (Australia). Dept. of Physics

    1994-12-31

    The surface structure and oxygen adsorption of Cu(l 11) have been studied by 2 keV Li{sup +}, He{sup +} and Ar{sup +} ion scattering . Incident and azimuthal dependences were measured for the clean and O-covered surfaces, and the surface geometry was analysed on the basis of the shadowing features. Experimental results under different oxygen exposures at room temperature showed that the Cu(l 11) surface undergoes a roughening transition and results in a reconstruction where Cu atoms are vertically displaced by about 0.23 Angstroms. 4 refs., 4 figs.

  18. Oxygen adsorption on Cu(111) using low energy ion scattering spectroscopy

    International Nuclear Information System (INIS)

    Zhang, F.M.; Yao, J.; Shen, Y.G.; King, B.V.; O'Connor, D.J.

    1993-01-01

    The surface structure and oxygen adsorption of Cu(l 11) have been studied by 2 keV Li + , He + and Ar + ion scattering . Incident and azimuthal dependences were measured for the clean and O-covered surfaces, and the surface geometry was analysed on the basis of the shadowing features. Experimental results under different oxygen exposures at room temperature showed that the Cu(l 11) surface undergoes a roughening transition and results in a reconstruction where Cu atoms are vertically displaced by about 0.23 Angstroms. 4 refs., 4 figs

  19. Detailed calculation of low-energy positron scattering by the hydrogen molecular ion

    International Nuclear Information System (INIS)

    Armour, E.A.G.; Carr, J.M.; Franklin, C.P.

    1996-01-01

    Detailed calculations are made using the Kohn method of positron scattering by the hydrogen molecular ion below the positronium formation threshold at 9.45 eV. Phase shifts from the two-centre Coulomb value are obtained for the lowest partial wave of Σ g + symmetry using a very flexible trial function containing a large number of short-range correlation functions. The convergence of the results with respect to both the linear and non-linear parameters is explored. (author)

  20. Fluorescent carbon quantum dot hydrogels for direct determination of silver ions.

    Science.gov (United States)

    Cayuela, A; Soriano, M L; Kennedy, S R; Steed, J W; Valcárcel, M

    2016-05-01

    The paper reports for the first time the direct determination of silver ion (Ag(+)) using luminescent Carbon Quantum Dot hydrogels (CQDGs). Carbon Quantum Dots (CQDs) with different superficial moieties (passivate-CQDs with carboxylic groups, thiol-CQDs and amine-CQDs) were used to prepare hybrid gels using a low molecular weight hydrogelator (LMWG). The use of the gels results in considerable fluorescence enhancement and also markedly influences selectivity. The most selective CQDG system for Ag(+) ion detection proved to be those containing carboxylic groups onto their surface. The selectivity towards Ag(+) ions is possibly due to its flexible coordination sphere compared with other metal ions. This fluorescent sensing platform is based on the strong Ag-O interaction which can quench the photoluminescence of passivate-CQDs (p-CQDs) through charge transfer. The limit of detection (LOD) and quantification (LOQ) of the proposed method were 0.55 and 1.83µgmL(-1), respectively, being applied in river water samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Detection of Sn(II) ions via quenching of the fluorescence of carbon nanodots

    International Nuclear Information System (INIS)

    Mohd Yazid, S.N.A.; Chin, S.F.; Pang, S.C.; Ng, S.M.

    2013-01-01

    We report that fluorescent carbon nanodots (C-dots) can act as an optical probe for quantifying Sn(II) ions in aqueous solution. C-dots are synthesized by carbonization and surface oxidation of preformed sago starch nanoparticles. Their fluorescence is significantly quenched by Sn(II) ions, and the effect can be used to determine Sn(II) ions. The highest fluorescence intensity is obtained at a concentration of 1.75 mM of C-dots in aqueous solution. The probe is highly selective and hardly interfered by other ions. The quenching mechanism appears to be predominantly of the static (rather than dynamic) type. Under optimum conditions, there is a linear relationship between fluorescence intensity and Sn(II) ions concentration up to 4 mM, and with a detection limit of 0.36 μM. (author)

  2. Na-ion capacitor using sodium pre-doped hard carbon and activated carbon

    International Nuclear Information System (INIS)

    Kuratani, Kentaro; Yao, Masaru; Senoh, Hiroshi; Takeichi, Nobuhiko; Sakai, Tetsuo; Kiyobayashi, Tetsu

    2012-01-01

    We assembled a sodium-ion capacitor (Na-IC) by combining sodium pre-doped hard carbon (HC) as the negative- and activated carbon (AC) as the positive-electrode. The electrochemical properties were compared with two lithium-ion capacitors (Li-ICs) in which the negative electrodes were prepared with Li pre-doped HC and mesocarbon microbeads (MCMB). The positive and negative electrodes were prepared using the established doctor blade method. The negative electrodes were galvanostatically pre-doped with Na or Li to 80% of the full capacity of carbons. The potential of the negative electrodes after pre-doping was around 0.0 V vs. Na/Na + or Li/Li + , which resulted in the higher output potential difference of the Na-IC and Li-ICs than that of the conventional electrochemical double-layer capacitors (EDLCs) because AC positive electrode works in the same principle both in the ion capacitors and in the EDLC. The state-of-charge of the negative electrode varied 80 ± 10% during the electrochemical charging and discharging. The capacity of the cell was evaluated using galvanostatic charge–discharge measurement. At the discharge current density of 10 mA cm −2 , the Na-IC maintained 70% of the capacity that obtained at the current density of 0.5 mA cm −2 , which was comparable to the Li-ICs. At 50 mA cm −2 , the capacities of the Li-IC(MCMB) and the Na-IC dropped to 20% whereas the Li-IC(HC) retained 30% of the capacity observed at 0.5 mA cm −2 . The capacities of the Na-IC and Li-ICs decreased by 9% and 3%, respectively, after 1000 cycles of charging and discharging.

  3. Ion scattering studies of ordered alloy surfaces: CuAu(1 0 0) and NiAl

    International Nuclear Information System (INIS)

    Beikler, R.; Taglauer, E.

    2000-01-01

    The composition and structure of alloy surfaces can differ from the corresponding bulk properties due to segregation and relaxation effects. We studied the (1 0 0) surface of the ordered alloy CuAu and amorphous Ni and Al by low-energy Ne + and Na + ion scattering. The interpretation of the experimental results is supported by numerical simulations using the MARLOWE code. In the CuAu system a certain geometry was found to be very sensitive to Au presence in the 2nd layer. Comparison with MARLOWE results also allows to study variations in the ion yields arising from neutralization effects. By trajectory analysis ion survival probabilities are estimated for Ni and Al

  4. Room temperature diamond-like carbon coatings produced by low energy ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Markwitz, A., E-mail: a.markwitz@gns.cri.nz [Department for Ion Beam Technologies, GNS Science, 30 Gracefield Road, Lower Hutt (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology (New Zealand); Mohr, B.; Leveneur, J. [Department for Ion Beam Technologies, GNS Science, 30 Gracefield Road, Lower Hutt (New Zealand)

    2014-07-15

    Nanometre-smooth diamond-like carbon coatings (DLC) were produced at room temperature with ion implantation using 6 kV C{sub 3}H{sub y}{sup +} ion beams. Ion beam analysis measurements showed that the coatings contain no heavy Z impurities at the level of 100 ppm, have a homogeneous stoichiometry in depth and a hydrogen concentration of typically 25 at.%. High resolution TEM analysis showed high quality and atomically flat amorphous coatings on wafer silicon. Combined TEM and RBS analysis gave a coating density of 3.25 g cm{sup −3}. Raman spectroscopy was performed to probe for sp{sup 2}/sp{sup 3} bonds in the coatings. The results indicate that low energy ion implantation with 6 kV produces hydrogenated amorphous carbon coatings with a sp{sup 3} content of about 20%. Results highlight the opportunity of developing room temperature DLC coatings with ion beam technology for industrial applications.

  5. SnSe/carbon nanocomposite synthesized by high energy ball milling as an anode material for sodium-ion and lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhang, Zhian; Zhao, Xingxing; Li, Jie

    2015-01-01

    Graphical abstract: A homogeneous nanocomposite of SnSe and carbon black was synthesised by high energy ball milling and empolyed as an anode material for sodium-ion batteries (SIBs) and lithium-ion batteries (LIBs). The nanocomposite anode exhibits excellent electrochemical performances in both SIBs and LIBs. - Highlights: • A homogeneous nanocomposite of SnSe and carbon black was fabricated by high energy ball milling. • SnSe and carbon black are homogeneously mixed at the nanoscale level. • The SnSe/C anode exhibits excellent electrochemical performances in both SIBs and LIBs. - Abstract: A homogeneous nanocomposite of SnSe and carbon black, denoted as SnSe/C nanocomposite, was fabricated by high energy ball milling and empolyed as a high performance anode material for both sodium-ion batteries and lithium-ion batteries. The X-ray diffraction patterns, scanning electron microscopy and transmission electron microscopy observations confirmed that SnSe in SnSe/C nanocomposite was homogeneously distributed within carbon black. The nanocomposite anode exhibited enhanced electrochemical performances including a high capacity, long cycling behavior and good rate performance in both sodium-ion batteries (SIBs) and lithium-ion batteries (LIBs). In SIBs, an initial capacitiy of 748.5 mAh g −1 was obtained and was maintained well on cycling (324.9 mAh g −1 at a high current density of 500 mA g −1 in the 200 th cycle) with 72.5% retention of second cycle capacity (447.7 mAh g −1 ). In LIBs, high initial capacities of approximately 1097.6 mAh g −1 was obtained, and this reduced to 633.1 mAh g −1 after 100 cycles at 500 mA g −1

  6. Biological intercomparison using gut crypt survivals for proton and carbon-ion beams

    International Nuclear Information System (INIS)

    Uzawa, Akiko; Ando, Koichi; Furusawa, Yoshiya

    2007-01-01

    Charged particle therapy depends on biological information for the dose prescription. Relative biological effectiveness or RBE for this requirement could basically be provided by experimental data. As RBE values of protons and carbon ions depend on several factors such as cell/tissue type, biological endpoint, dose and fractionation schedule, a single RBE value could not deal with all different radiosensitivities. However, any biological model with accurate reproducibility is useful for comparing biological effectiveness between different facilities. We used mouse gut crypt survivals as endpoint, and compared the cell killing efficiency of proton beams at three Japanese facilities. Three Linac X-ray machines with 4 and 6 MeV were used as reference beams, and there was only a small variation (coefficient of variance<2%) in biological effectiveness among them. The RBE values of protons relative to Linac X-rays ranged from 1.0 to 1.11 at the middle of a 6-cm SOBP (spread-out Bragg peak) and from 0.96 to 1.01 at the entrance plateau. The coefficient of variance for protons ranged between 4.0 and 5.1%. The biological comparison of carbon ions showed fairly good agreement in that the difference in biological effectiveness between National Institute of Radiological Sciences (NIRS)/ Heavy Ion Medical Accelerator in Chiba (HIMAC) and Gesellschaft fur Schwerionenforschung (GSI)/Heavy Ion Synchrotron (SIS) was 1% for three positions within the 6-cm SOBP. The coefficient of variance was <1.7, <0.6 and <1.6% for proximal, middle and distal SOBP, respectively. We conclude that the inter-institutional variation of biological effectiveness is smaller for carbon ions than protons, and that beam-spreading methods of carbon ions do not critically influence gut crypt survival. (author)

  7. Technical Note: Experimental carbon ion range verification in inhomogeneous phantoms using prompt gammas

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, M.; Dauvergne, D.; Dedes, G.; Krimmer, J.; Ray, C.; Testa, E., E-mail: e.testa@ipnl.in2p3.fr; Testa, M. [IPNL, Université de Lyon, Lyon F-69003 |(France); Université Lyon 1, Villeurbanne F-69622 (France); CNRS/IN2P3, UMR 5822, Villeurbanne F-69622 (France); De Rydt, M. [IPNL, Université de Lyon, Lyon F-69003 (France); Université Lyon 1, Villeurbanne F-69622 (France); CNRS/IN2P3, UMR 5822, Villeurbanne F-69622 (France); Instituut voor Kern- en Stralingsfysica, KU Leuven, Celestijnenlaan 200D, Leuven B-3001 (Belgium); Freud, N.; Létang, J. M. [CREATIS, Université de Lyon, Lyon F-69003 (France); Université Lyon 1, Villeurbanne F-69622 (France); CNRS UMR 5220, INSERM U1044, INSA-Lyon, Centre Léon Bérard, 69008 Lyon (France)

    2015-05-15

    Purpose: The purpose of this study was to experimentally assess the possibility to monitor carbon ion range variations—due to tumor shift and/or elongation or shrinking—using prompt-gamma (PG) emission with inhomogeneous phantoms. Such a study is related to the development of PG monitoring techniques to be used in a carbon ion therapy context. Methods: A 95 MeV/u carbon ion beam was used to irradiate phantoms with a variable density along the ion path to mimic the presence of bone and lung in homogeneous humanlike tissue. PG profiles were obtained after a longitudinal scan of the phantoms. A setup comprising a narrow single-slit collimator and two detectors placed at 90° with respect to the beam axis was used. The time of flight technique was applied to allow the selection between PG and background events. Results: Using the positions at 50% entrance and 50% falloff of the PG profiles, a quantity called prompt-gamma profile length (PGPL) is defined. It is possible to observe shifts in the PGPL when there are absolute ion range shifts as small as 1–2 mm. Quantitatively, for an ion range shift of −1.33 ± 0.46 mm (insertion of a Teflon slab), a PGPL difference of −1.93 ± 0.58 mm and −1.84 ± 1.27 mm is obtained using a BaF{sub 2} and a NaI(Tl) detector, respectively. In turn, when an ion range shift of 4.59 ± 0.42 mm (insertion of a lung-equivalent material slab) is considered, the difference is of 4.10 ± 0.54 and 4.39 ± 0.80 mm for the same detectors. Conclusions: Herein, experimental evidence of the usefulness of employing PG to monitor carbon ion range using inhomogeneous phantoms is presented. Considering the homogeneous phantom as reference, the results show that the information provided by the PG emission allows for detecting ion range shifts as small as 1–2 mm. When considering the expected PG emission from an energy slice in a carbon ion therapy scenario, the experimental setup would allow to retrieve the same PGPL as the high statistics of

  8. Comparison of the effects of photon versus carbon ion irradiation when combined with chemotherapy in vitro

    International Nuclear Information System (INIS)

    Schlaich, Fabian; Brons, Stephan; Haberer, Thomas; Debus, Jürgen; Combs, Stephanie E; Weber, Klaus-Josef

    2013-01-01

    Characterization of combination effects of chemotherapy drugs with carbon ions in comparison to photons in vitro. The human colon adenocarcinoma cell line WiDr was tested for combinations with camptothecin, cisplatin, gemcitabine and paclitaxel. In addition three other human tumour cell lines (A549: lung, LN-229: glioblastoma, PANC-1: pancreas) were tested for the combination with camptothecin. Cells were irradiated with photon doses of 2, 4, 6 and 8 Gy or carbon ion doses of 0.5, 1, 2 and 3 Gy. Cell survival was assessed using the clonogenic growth assay. Treatment dependent changes in cell cycle distribution (up to 12 hours post-treatment) were measured by FACS analysis after propidium-iodide staining. Apoptosis was monitored for up to 36 hours post-treatment by Nicoletti-assay (with qualitative verification using DAPI staining). All cell lines exhibited the well-known increase of killing efficacy per unit dose of carbon ion exposure, with relative biological efficiencies at 10% survival (RBE 10 ) ranging from 2.3 to 3.7 for the different cell lines. In combination with chemotherapy additive toxicity was the prevailing effect. Only in combination with gemcitabine or cisplatin (WiDr) or camptothecin (all cell lines) the photon sensitivity was slightly enhanced, whereas purely independent toxicities were found with the carbon ion irradiation, in all cases. Radiation-induced cell cycle changes displayed the generally observed dose-dependent G2-arrest with little effect on S-phase fraction for all cell lines for photons and for carbon ions. Only paclitaxel showed a significant induction of apoptosis in WiDr cell line but independent of the used radiation quality. Combined effects of different chemotherapeutics with photons or with carbon ions do neither display qualitative nor substantial quantitative differences. Small radiosensitizing effects, when observed with photons are decreased with carbon ions. The data support the idea that a radiochemotherapy with common

  9. Energy loss and straggling of 1–50 keV H, He, C, N, and O ions passing through few layer graphene

    International Nuclear Information System (INIS)

    Allegrini, Frédéric; Bedworth, Peter; Ebert, Robert W.; Fuselier, Stephen A.; Nicolaou, Georgios; Sinton, Steve

    2015-01-01

    Highlights: • Evaluation of graphene foils for space plasma instruments. • Energy loss and straggling of keV ions passing through graphene foils. • Lower energy loss than for ultra-thin carbon foils. • Thickness non-uniformity leads to higher straggling. - Abstract: Graphene could be an alternative to amorphous carbon foils, in particular in space plasma instrumentation. The interaction of ions or neutral atoms with these foils results in different effects: electron emission, charge exchange, angular scattering, and energy straggling. We showed in previous studies that (1) the charge exchange properties are similar for graphene and regular carbon foils, and (2) the scattering at low energies (few keVs) is less for graphene than for one of our thinnest practical carbon foils. In this study, we report measurements of the energy loss and straggling of ∼1–50 keV H, He, C, N, and O ions in graphene. We compare graphene and a carbon foil for hydrogen. We provide simple power law fits to the average energy loss, energy straggling, and skewness of the energy distributions. We find the energy loss for ions transiting through graphene to be reduced compared to thin carbon foils but the energy straggling to be larger, which we attribute to the non-uniformity of the graphene foils used in this study

  10. Structural and optical properties of 70-keV carbon ion beam synthesized carbon nanoclusters in thermally grown silicon dioxide

    International Nuclear Information System (INIS)

    Poudel, P.R.; Poudel, P.P.; Paramo, J.A.; Strzhemechny, Y.M.; Rout, B.; McDaniel, F.D.

    2015-01-01

    The structural and optical properties of carbon nanoclusters formed in thermally grown silicon dioxide film via the ion beam synthesis process have been investigated. A low-energy (70 keV) carbon ion beam (C - ) at a fluence of 3 x 10 17 atoms/cm 2 was used for implantation into a thermally grown silicon dioxide layer (500 nm thick) on a Si (100) wafer. Several parts of the implanted samples were subsequently annealed in a gas mixture (4 % H 2 + 96 % Ar) at 900 C for different time periods. The as-implanted and annealed samples were characterized by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy, Raman spectroscopy, transmission electron microscopy (TEM), and photoluminescence spectroscopy (PL). The carbon ion implantation depth profile was simulated using a widely used Monte Carlo-based simulation code SRIM-2012. Additionally, the elemental depth profile of the implanted carbon along with host elements of silicon and oxygen were simulated using a dynamic ion-solid interaction code T-DYN, which incorporates the effects of the surface sputtering and gradual change in the elemental composition in the implanted layers due to high-fluence ion implantation. The elemental depth profile obtained from the XPS measurements matches closely to the T-DYN predictions. Raman measurements indicate the formation of graphitic phases in the annealed samples. The graphitic peak (G-peak) was found to be increased with the annealing time duration. In the sample annealed for 10 min, the sizes of the carbon nanoclusters were found to be 1-4 nm in diameter using TEM. The PL measurements at room temperature using a 325-nm laser show broad-band emissions in the ultraviolet to visible range in the as-implanted sample. Intense narrow bands along with the broad bands were observed in the annealed samples. The defects present in the as-grown samples along with carbon ion-induced defect centers in the as-implanted samples are the main contributors to the observed

  11. Structural and optical properties of 70-keV carbon ion beam synthesized carbon nanoclusters in thermally grown silicon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Poudel, P.R. [University of North Texas, Ion Beam Modification and Analysis Laboratory, Department of Physics, Denton, TX (United States); Intel Corporation, Rio Rancho, NM (United States); Poudel, P.P. [University of Kentucky, Department of Chemistry, Lexington, KY (United States); Paramo, J.A.; Strzhemechny, Y.M. [Texas Christian University, Department of Physics and Astronomy, Fort Worth, TX (United States); Rout, B. [University of North Texas, Ion Beam Modification and Analysis Laboratory, Department of Physics, Denton, TX (United States); University of North Texas, Center for Advanced Research and Technology, Denton, TX (United States); McDaniel, F.D. [University of North Texas, Ion Beam Modification and Analysis Laboratory, Department of Physics, Denton, TX (United States)

    2014-09-18

    The structural and optical properties of carbon nanoclusters formed in thermally grown silicon dioxide film via the ion beam synthesis process have been investigated. A low-energy (70 keV) carbon ion beam (C{sup -}) at a fluence of 3 x 10{sup 17} atoms/cm{sup 2} was used for implantation into a thermally grown silicon dioxide layer (500 nm thick) on a Si (100) wafer. Several parts of the implanted samples were subsequently annealed in a gas mixture (4 % H{sub 2} + 96 % Ar) at 900 C for different time periods. The as-implanted and annealed samples were characterized by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy, Raman spectroscopy, transmission electron microscopy (TEM), and photoluminescence spectroscopy (PL). The carbon ion implantation depth profile was simulated using a widely used Monte Carlo-based simulation code SRIM-2012. Additionally, the elemental depth profile of the implanted carbon along with host elements of silicon and oxygen were simulated using a dynamic ion-solid interaction code T-DYN, which incorporates the effects of the surface sputtering and gradual change in the elemental composition in the implanted layers due to high-fluence ion implantation. The elemental depth profile obtained from the XPS measurements matches closely to the T-DYN predictions. Raman measurements indicate the formation of graphitic phases in the annealed samples. The graphitic peak (G-peak) was found to be increased with the annealing time duration. In the sample annealed for 10 min, the sizes of the carbon nanoclusters were found to be 1-4 nm in diameter using TEM. The PL measurements at room temperature using a 325-nm laser show broad-band emissions in the ultraviolet to visible range in the as-implanted sample. Intense narrow bands along with the broad bands were observed in the annealed samples. The defects present in the as-grown samples along with carbon ion-induced defect centers in the as-implanted samples are the main

  12. Biological effects of accelerated boron, carbon, and neon ions

    International Nuclear Information System (INIS)

    Grigoryev, Yu.G.; Ryzhov, N.I.; Popov, V.I.

    1975-01-01

    The biological effects of accelerated boron, carbon, and neon ions on various biological materials were determined. The accelerated ions included 10 B, 11 B, 12 C, 20 Ne, 22 Ne, and 40 Ar. Gamma radiation and x radiation were used as references in the experiments. Among the biological materials used were mammalian cells and tissues, yeasts, unicellular algae (chlorella), and hydrogen bacteria. The results of the investigation are given and the biophysical aspects of the problem are discussed

  13. Benchmarking nuclear models of FLUKA and GEANT4 for carbon ion therapy

    CERN Document Server

    Bohlen, TT; Quesada, J M; Bohlen, T T; Cerutti, F; Gudowska, I; Ferrari, A; Mairani, A

    2010-01-01

    As carbon ions, at therapeutic energies, penetrate tissue, they undergo inelastic nuclear reactions and give rise to significant yields of secondary fragment fluences. Therefore, an accurate prediction of these fluences resulting from the primary carbon interactions is necessary in the patient's body in order to precisely simulate the spatial dose distribution and the resulting biological effect. In this paper, the performance of nuclear fragmentation models of the Monte Carlo transport codes, FLUKA and GEANT4, in tissue-like media and for an energy regime relevant for therapeutic carbon ions is investigated. The ability of these Monte Carlo codes to reproduce experimental data of charge-changing cross sections and integral and differential yields of secondary charged fragments is evaluated. For the fragment yields, the main focus is on the consideration of experimental approximations and uncertainties such as the energy measurement by time-of-flight. For GEANT4, the hadronic models G4BinaryLightIonReaction a...

  14. Mutagenic effects of carbon ion beam irradiations on dry Lotus japonicus seeds

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Shanwei [Biophysics Group, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhou, Libin, E-mail: libinzhou@impcas.ac.cn [Biophysics Group, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000 (China); Li, Wenjian; Du, Yan [Biophysics Group, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000 (China); Yu, Lixia; Feng, Hui; Mu, Jinhu [Biophysics Group, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Chen, Yuze [College of Life Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, Gansu Province 730070 (China)

    2016-09-15

    Carbon ion beam irradiation is a powerful method for creating mutants and has been used in crop breeding more and more. To investigate the effects of carbon ion beams on Lotus japonicus, dry seeds were irradiated by 80 MeV/u carbon ion beam at dosages of 0, 100, 200, 300, 400, 500 and 600 Gy. The germination rate, survival rate and root length of M{sub 1} populations were explored and the dose of 400 Gy was selected as the median lethal dose (LD{sub 50}) for a large-scale mutant screening. Among 2472 M{sub 2} plants, 127 morphological mutants including leaf, stem, flower and fruit phenotypic variation were found, and the mutation frequency was approximately 5.14%. Inter simple sequence repeat (ISSR) assays were utilized to investigate the DNA polymorphism between seven mutants and eight plants without phenotypic variation from M{sub 2} populations. No remarkable differences were detected between these two groups, and the total polymorphic rate was 0.567%.

  15. ELSEPA—Dirac partial-wave calculation of elastic scattering of electrons and positrons by atoms, positive ions and molecules

    Science.gov (United States)

    Salvat, Francesc; Jablonski, Aleksander; Powell, Cedric J.

    2005-01-01

    The FORTRAN 77 code system ELSEPA for the calculation of elastic scattering of electrons and positrons by atoms, positive ions and molecules is presented. These codes perform relativistic (Dirac) partial-wave calculations for scattering by a local central interaction potential V(r). For atoms and ions, the static-field approximation is adopted, with the potential set equal to the electrostatic interaction energy between the projectile and the target, plus an approximate local exchange interaction when the projectile is an electron. For projectiles with kinetic energies up to 10 keV, the potential may optionally include a semiempirical correlation-polarization potential to describe the effect of the target charge polarizability. Also, for projectiles with energies less than 1 MeV, an imaginary absorptive potential can be introduced to account for the depletion of the projectile wave function caused by open inelastic channels. Molecular cross sections are calculated by means of a single-scattering independent-atom approximation in which the electron density of a bound atom is approximated by that of the free neutral atom. Elastic scattering by individual atoms in solids is described by means of a muffin-tin model potential. Partial-wave calculations are feasible on modest personal computers for energies up to about 5 MeV. The ELSEPA code also implements approximate factorization methods that allow the fast calculation of elastic cross sections for much higher energies. The interaction model adopted in the calculations is defined by the user by combining the different options offered by the code. The nuclear charge distribution can be selected among four analytical models (point nucleus, uniformly charged sphere, Fermi's distribution and Helm's uniform-uniform distribution). The atomic electron density is handled in numerical form. The distribution package includes data files with electronic densities of neutral atoms of the elements hydrogen to lawrencium ( Z=1

  16. Ion beam assisted deposition of metal-coatings on beryllium

    International Nuclear Information System (INIS)

    Tashlykov, I.S.; Tul'ev, V.V.

    2015-01-01

    Thin films were applied on beryllium substrates on the basis of metals (Cr, Ti, Cu and W) with method of the ion-assisted deposition in vacuum. Me/Be structures were prepared using 20 kV ions irradiation during deposition on beryllium neutral fraction generated from vacuum arc plasma. Rutherford back scattering and computer simulation RUMP code were applied to investigate the composition of the modified beryllium surface. Researches showed that the superficial structure is formed on beryllium by thickness ~ 50-60 nm. The covering composition includes atoms of the deposited metal (0.5-3.3 at. %), atoms of technological impurity carbon (0.8-1.8 at. %) and oxygen (6.3-9.9 at. %), atoms of beryllium from the substrate. Ion assisted deposition of metals on beryllium substrate is accompanied by radiation enhanced diffusion of metals, oxygen atoms in the substrate, out diffusion of beryllium, carbon atoms in the deposited coating and sputtering film-forming ions assists. (authors)

  17. BRIEF COMMUNICATION: Fast-ion redistribution due to sawtooth crash in the TEXTOR tokamak measured by collective Thomson scattering

    Science.gov (United States)

    Nielsen, S. K.; Bindslev, H.; Salewski, M.; Bürger, A.; Delabie, E.; Furtula, V.; Kantor, M.; Korsholm, S. B.; Leipold, F.; Meo, F.; Michelsen, P. K.; Moseev, D.; Oosterbeek, J. W.; Stejner, M.; Westerhof, E.; Woskov, P.; TEXTOR Team

    2010-09-01

    Here we present collective Thomson scattering measurements of 1D fast-ion velocity distribution functions in neutral beam heated TEXTOR plasmas with sawtooth oscillations. Up to 50% of the fast ions in the centre are redistributed as a consequence of a sawtooth crash. We resolve various directions to the magnetic field. The fast-ion distribution is found to be anisotropic as expected. For a resolved angle of 39° to the magnetic field we find a drop in the fast-ion distribution of 20-40%. For a resolved angle of 83° to the magnetic field the drop is no larger than 20%.

  18. Growth of CdTe on (100) GaAs and analysis using ion scattering spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Mitrovic, B.; King, B.V. [Newcastle Univ., NSW (Australia). Dept. of Physics

    1993-12-31

    A brief review of Coaxial Impact collision Ion Scattering Spectroscopy (CAICISS) has been presented as well as its advantages in studies of semiconductor surfaces and interfaces. The results that we have gained using fast computer code - SABRE are graphically presented as an incident angular spectrum. The plausible interpretation for the large anomalous peak at 60 deg is given. 14 refs., 1 fig.

  19. Growth of CdTe on (100) GaAs and analysis using ion scattering spectrometry

    International Nuclear Information System (INIS)

    Mitrovic, B.; King, B.V.

    1993-01-01

    A brief review of Coaxial Impact collision Ion Scattering Spectroscopy (CAICISS) has been presented as well as its advantages in studies of semiconductor surfaces and interfaces. The results that we have gained using fast computer code - SABRE are graphically presented as an incident angular spectrum. The plausible interpretation for the large anomalous peak at 60 deg is given. 14 refs., 1 fig

  20. Growth of CdTe on (100) GaAs and analysis using ion scattering spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Mitrovic, B; King, B V [Newcastle Univ., NSW (Australia). Dept. of Physics

    1994-12-31

    A brief review of Coaxial Impact collision Ion Scattering Spectroscopy (CAICISS) has been presented as well as its advantages in studies of semiconductor surfaces and interfaces. The results that we have gained using fast computer code - SABRE are graphically presented as an incident angular spectrum. The plausible interpretation for the large anomalous peak at 60 deg is given. 14 refs., 1 fig.

  1. Applications of inverse and algebraic scattering theories

    Energy Technology Data Exchange (ETDEWEB)

    Amos, K. [Qinghua Univ., Beijing, BJ (China). Dept. of Physics

    1997-06-01

    Inverse scattering theories, algebraic scattering theory and exactly solvable scattering potentials are diverse ways by which scattering potentials can be defined from S-functions specified by fits to fixed energy, quantal scattering data. Applications have been made in nuclear (heavy ion and nucleon-nucleus scattering), atomic and molecular (electron scattering from simple molecules) systems. Three inverse scattering approaches are considered in detail; the semiclassical WKB and fully quantal Lipperheide-Fiedeldey method, than algebraic scattering theory is applied to heavy ion scattering and finally the exactly solvable Ginocchio potentials. Some nuclear results are ambiguous but the atomic and molecular inversion potentials are in good agreement with postulated forms. 21 refs., 12 figs.

  2. Spectrally resolved measurement of the ion feature in the scattered spectrum of a hydrogen plasma obtained with a periodically pulsed Nd3+: YAG-laser

    International Nuclear Information System (INIS)

    Kasparek, W.

    Ion temperature and density in a magnetically stabilized hydrogen arc were determined with laser scattering from collective electron density fluctuations. A 90 0 -scattering experiment was set up using a periodically pulsed Nd 3+ : YAG-laser, an IR-photomultiplier and synchronous signal detection. A spectral resolution of 0.3 Angstroem was achieved by narrowing the laser line width and by using a Fabry-Perot-interferometer in combination with a monochromator as spectrometer. The data obtained from the scattered spectra (Tsub(i) = 1,1 ... 1,8 eV, nsub(e) = 2 ... 6 x 10 21 m -3 ) agree well with those obtained by other methods. The achieved high resolution also allowed to measure separately the ion features of two ion species with different mass, which are spectrally distinguished from each other. The results confirm the theoretical model of Evans. Demixing effects in a H 2 /A mixture as well as a temperature difference between the ion sorts are deduced. (orig.) 891 HT/orig. 892 HIS

  3. Optical theorem for heavy-ion scattering

    International Nuclear Information System (INIS)

    Schwarzschild, A.Z.; Auerbach, E.H.; Fuller, R.C.; Kahana, S.

    1976-01-01

    An heuristic derivation is given of an equivalent of the optical theorem stated in the charged situation with the remainder or nuclear elastic scattering amplitude defined as a difference of elastic and Coulomb amplitudes. To test the detailed behavior of this elastic scattering amplitude and the cross section, calculations were performed for elastic scattering of 18 O + 58 Ni, 136 Xe + 209 Bi, 84 Kr + 208 Pb, and 11 B + 26 Mg at 63.42 to 114 MeV

  4. Three-dimensional core-shell Fe{sub 2}O{sub 3} @ carbon/carbon cloth as binder-free anode for the high-performance lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaohua; Zhang, Miao [School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300350 (China); Liu, Enzuo, E-mail: ezliu@tju.edu.cn [School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300350 (China); Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300350 (China); He, Fang; Shi, Chunsheng [School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300350 (China); He, Chunnian [School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300350 (China); Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300350 (China); Li, Jiajun [School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300350 (China); Zhao, Naiqin, E-mail: nqzhao@tju.edu.cn [School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300350 (China); Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300350 (China)

    2016-12-30

    Highlights: • The 3D core-shell Fe{sub 2}O{sub 3}@C/CC structure is fabricated by simple hydrothermal route. • The composite connected 3D carbon networks consist of carbon cloth, Fe{sub 2}O{sub 3} nanorods and outer carbon layer. • The Fe{sub 2}O{sub 3}@C/CC used as binder-free anode in LIBs, demonstrates excellent performances. - Abstract: A facile and scalable strategy is developed to fabricate three dimensional core-shell Fe{sub 2}O{sub 3} @ carbon/carbon cloth structure by simple hydrothermal route as binder-free lithium-ion battery anode. In the unique structure, carbon coated Fe{sub 2}O{sub 3} nanorods uniformly disperse on carbon cloth which forms the conductive carbon network. The hierarchical porous Fe{sub 2}O{sub 3} nanorods in situ grown on the carbon cloth can effectively shorten the transfer paths of lithium ions and reduce the contact resistance. The carbon coating significantly inhibits pulverization of active materials during the repeated Li-ion insertion/extraction, as well as the direct exposure of Fe{sub 2}O{sub 3} to the electrolyte. Benefiting from the structural integrity and flexibility, the nanocomposites used as binder-free anode for lithium-ion batteries, demonstrate high reversible capacity and excellent cyclability. Moreover, this kind of material represents an alternative promising candidate for flexible, cost-effective, and binder-free energy storage devices.

  5. Effects of ion beam irradiation on the microstructures and strengths of different carbon fibers

    International Nuclear Information System (INIS)

    Oku, Tatsuo; Kurumada, Akira; Kawamata, Kiyohiro; Inagaki, Michio

    1998-01-01

    The high energy argon ion was irradiated to different carbon fibers with various microstructures. The cross-sectional structures and strengths properties have been evaluated before and after ion irradiation. As a result, the diameter of fibers decreased due to ion irradiation, except for the fiber with dual structure. The tensile strength also decreased due to ion irradiation, except for fibers which were not heat-treated. This suggests that it is necessary to consider not only the defects in the vertical cross-section but also changes in defect structures in the axial direction. The results of computer simulation indicated that argon ion with 175MeV/1μA produced homogeneous defects in the carbon fibers with the diameter of about 20 μm. (author)

  6. Carbon ion radiotherapy for chordomas and low-grade chondrosarcomas of the skull base. Results in 67 patients

    International Nuclear Information System (INIS)

    Schulz-Ertner, D.; Wannenmacher, M.; Nikoghosyan, A.; Thilmann, C.; Jaekel, O.; Karger, C.; Haberer, T.; Scholz, M.; Kraft, G.; Debus, J.

    2003-01-01

    Purpose: To prospectively evaluate outcome and toxicity after carbon ion radiotherapy (RT) in chordomas and low-grade chondrosarcomas. Patients and Methods: Between September 1998 and December 2001, 74 patients were treated for chordomas and chondrosarcomas with carbon ion RT at the ''Gesellschaft fuer Schwerionenforschung'' (GSI). Seven patients reirradiated with reduced carbon ion doses after conventional RT were excluded from the analysis, leaving 67 evaluable patients (44 chordomas and 23 chondrosarcomas) who received a full course of carbon ion therapy. Tumor-conform application of carbon ion beams was realized by intensity-controlled raster scanning with active energy variation. Three-dimensional treatment planning included intensity modulation and biological plan optimization. A median dose of 60 GyE was applied to the target volume within 20 consecutive days at a dose of 3.0 GyE per fraction. Results: Median follow-up was 15 months (range 3-46 months). At 3 years, actuarial local control was 100% for chondrosarcomas and 87% for chordomas, respectively. Partial tumor remission was observed in 14/44 (31%) chordoma patients and in 4/23 (17%) chondrosarcoma patients. At 3 years, actuarial overall survival was 100% for chondrosarcomas and 89% for chordomas, respectively. No severe side effects > CTC III have been observed. Conclusions: These data demonstrate the clinical efficiency and safety of scanning beam delivery of carbon ion beams in patients with skull base chordomas and chondrosarcomas. The observation of tumor regressions at a dose level of 60 GyE may indicate that the biological effectiveness of carbon ions in chordomas and chondrosarcomas is higher than initially estimated. (orig.)

  7. Initial characterization of mudstone nanoporosity with small angle neutron scattering using caprocks from carbon sequestration sites

    International Nuclear Information System (INIS)

    McCray, John; Navarre-Sitchler, Alexis; Mouzakis, Katherine; Heath, Jason E.; Dewers, Thomas A.; Rother, Gernot

    2010-01-01

    Geological carbon sequestration relies on the principle that CO 2 injected deep into the subsurface is unable to leak to the atmosphere. Structural trapping by a relatively impermeable caprock (often mudstone such as a shale) is the main trapping mechanism that is currently relied on for the first hundreds of years. Many of the pores of the caprock are of micrometer to nanometer scale. However, the distribution, geometry and volume of porosity at these scales are poorly characterized. Differences in pore shape and size can cause variation in capillary properties and fluid transport resulting in fluid pathways with different capillary entry pressures in the same sample. Prediction of pore network properties for distinct geologic environments would result in significant advancement in our ability to model subsurface fluid flow. Specifically, prediction of fluid flow through caprocks of geologic CO 2 sequestration reservoirs is a critical step in evaluating the risk of leakage to overlying aquifers. The micro- and nanoporosity was analyzed in four mudstones using small angle neutron scattering (SANS). These mudstones are caprocks of formations that are currently under study or being used for carbon sequestration projects and include the Marine Tuscaloosa Group, the Lower Tuscaloosa Group, the upper and lower shale members of the Kirtland Formation, and the Pennsylvanian Gothic shale. Total organic carbon varies from <0.3% to 4% by weight. Expandable clay contents range from 10% to ∼40% in the Gothic shale and Kirtland Formation, respectively. Neutrons effectively scatter from interfaces between materials with differing scattering length density (i.e. minerals and pores). The intensity of scattered neutrons, I(Q), where Q is the scattering vector, gives information about the volume of pores and their arrangement in the sample. The slope of the scattering data when plotted as log I(Q) vs. log Q provides information about the fractality or geometry of the pore network

  8. Initial characterization of mudstone nanoporosity with small angle neutron scattering using caprocks from carbon sequestration sites.

    Energy Technology Data Exchange (ETDEWEB)

    McCray, John (Colorado School of Mines); Navarre-Sitchler, Alexis (Colorado School of Mines); Mouzakis, Katherine (Colorado School of Mines); Heath, Jason E.; Dewers, Thomas A.; Rother, Gernot (Oak Ridge National Laboratory)

    2010-11-01

    Geological carbon sequestration relies on the principle that CO{sub 2} injected deep into the subsurface is unable to leak to the atmosphere. Structural trapping by a relatively impermeable caprock (often mudstone such as a shale) is the main trapping mechanism that is currently relied on for the first hundreds of years. Many of the pores of the caprock are of micrometer to nanometer scale. However, the distribution, geometry and volume of porosity at these scales are poorly characterized. Differences in pore shape and size can cause variation in capillary properties and fluid transport resulting in fluid pathways with different capillary entry pressures in the same sample. Prediction of pore network properties for distinct geologic environments would result in significant advancement in our ability to model subsurface fluid flow. Specifically, prediction of fluid flow through caprocks of geologic CO{sub 2} sequestration reservoirs is a critical step in evaluating the risk of leakage to overlying aquifers. The micro- and nanoporosity was analyzed in four mudstones using small angle neutron scattering (SANS). These mudstones are caprocks of formations that are currently under study or being used for carbon sequestration projects and include the Marine Tuscaloosa Group, the Lower Tuscaloosa Group, the upper and lower shale members of the Kirtland Formation, and the Pennsylvanian Gothic shale. Total organic carbon varies from <0.3% to 4% by weight. Expandable clay contents range from 10% to {approx}40% in the Gothic shale and Kirtland Formation, respectively. Neutrons effectively scatter from interfaces between materials with differing scattering length density (i.e. minerals and pores). The intensity of scattered neutrons, I(Q), where Q is the scattering vector, gives information about the volume of pores and their arrangement in the sample. The slope of the scattering data when plotted as log I(Q) vs. log Q provides information about the fractality or geometry of

  9. Quantification of the Relative Biological Effectiveness for Ion Beam Radiotherapy: Direct Experimental Comparison of Proton and Carbon Ion Beams and a Novel Approach for Treatment Planning

    International Nuclear Information System (INIS)

    Elsaesser, Thilo; Weyrather, Wilma K.; Friedrich, Thomas; Durante, Marco; Iancu, Gheorghe; Kraemer, Michael; Kragl, Gabriele; Brons, Stephan; Winter, Marcus; Weber, Klaus-Josef; Scholz, Michael

    2010-01-01

    Purpose: To present the first direct experimental in vitro comparison of the biological effectiveness of range-equivalent protons and carbon ion beams for Chinese hamster ovary cells exposed in a three-dimensional phantom using a pencil beam scanning technique and to compare the experimental data with a novel biophysical model. Methods and Materials: Cell survival was measured in the phantom after irradiation with two opposing fields, thus mimicking the typical patient treatment scenario. The novel biophysical model represents a substantial extension of the local effect model, previously used for treatment planning in carbon ion therapy for more than 400 patients, and potentially can be used to predict effectiveness of all ion species relevant for radiotherapy. A key feature of the new approach is the more sophisticated consideration of spatially correlated damage induced by ion irradiation. Results: The experimental data obtained for Chinese hamster ovary cells clearly demonstrate that higher cell killing is achieved in the target region with carbon ions as compared with protons when the effects in the entrance channel are comparable. The model predictions demonstrate agreement with these experimental data and with data obtained with helium ions under similar conditions. Good agreement is also achieved with relative biological effectiveness values reported in the literature for other cell lines for monoenergetic proton, helium, and carbon ions. Conclusion: Both the experimental data and the new modeling approach are supportive of the advantages of carbon ions as compared with protons for treatment-like field configurations. Because the model predicts the effectiveness for several ion species with similar accuracy, it represents a powerful tool for further optimization and utilization of the potential of ion beams in tumor therapy.

  10. Carbon ion therapy for advanced sinonasal malignancies: feasibility and acute toxicity

    International Nuclear Information System (INIS)

    Jensen, Alexandra D; Nikoghosyan, Anna V; Ecker, Swantje; Ellerbrock, Malte; Debus, Jürgen; Münter, Marc W

    2011-01-01

    To evaluate feasibility and toxicity of carbon ion therapy for treatment of sinonasal malignancies. First site of treatment failure in malignant tumours of the paranasal sinuses and nasal cavity is mostly in-field, local control hence calls for dose escalation which has so far been hampered by accompanying acute and late toxicity. Raster-scanned carbon ion therapy offers the advantage of sharp dose gradients promising increased dose application without increase of side-effects. Twenty-nine patients with various sinonasal malignancies were treated from 11/2009 to 08/2010. Accompanying toxicity was evaluated according to CTCAE v.4.0. Tumor response was assessed according to RECIST. Seventeen patients received treatment as definitive RT, 9 for local relapse, 2 for re-irradiation. All patients had T4 tumours (median CTV1 129.5 cc, CTV2 395.8 cc), mostly originating from the maxillary sinus. Median dose was 73 GyE mostly in mixed beam technique as IMRT plus carbon ion boost. Median follow- up was 5.1 months [range: 2.4 - 10.1 months]. There were 7 cases with grade 3 toxicity (mucositis, dysphagia) but no other higher grade acute reactions; 6 patients developed grade 2 conjunctivits, no case of early visual impairment. Apart from alterations of taste, all symptoms had resolved at 8 weeks post RT. Overall radiological response rate was 50% (CR and PR). Carbon ion therapy is feasible; despite high doses, acute reactions were not increased and generally resolved within 8 weeks post radiotherapy. Treatment response is encouraging though follow-up is too short to estimate control rates or evaluate potential late effects. Controlled trials are warranted

  11. Self-organized formation of metal-carbon nanostructures by hyperthermal ion deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hannstein, I.K.

    2006-04-26

    The quasi-simultaneous deposition of mass-selected hyperthermal carbon and metal ions results in a variety of interesting film morphologies, depending on the metal used and the deposition conditions. The observed features are of the order of a few nanometres and are therefore interesting for future potential applications in the various fields of nanotechnology. The present study focuses on the structural analysis of amorphous carbon films containing either copper, silver, gold, or iron using amongst others Rutherford Backscattering Spectroscopy, High Resolution Transmission Electron Microscopy, and Energy Dispersive X-Ray Spectroscopy. The film morphologies found are as follows: copper-containing films consist of copper nanoclusters with sizes ranging from about 3 to 9 nm uniformly distributed throughout the amorphous carbon matrix. The cluster size hereby rises with the copper content of the films. The silver containing films decompose into a pure amorphous carbon film with silver agglomerates at the surface. Both, the gold- and the iron-containing films show a multilayer structure of metal-rich layers with higher cluster density separated by metal-depleted amorphous carbon layers. The layer distances are of the order of up to 15 nm in the case of gold-carbon films and 7 nm in the case of iron-carbon films. The formation of theses different structures cannot be treated in the context of conventional self-organization mechanisms basing upon thermal diffusion and equilibrium thermodynamics. Instead, an ion-induced atomic transport, sputtering effects, and the stability of small metal clusters were taken into account in order to model the structure formation processes. A similar multilayer morphology was recently also reported in the literature for metal-carbon films grown by magnetron sputtering techniques. In order to investigate, whether the mechanisms are the same as in the case of the ion beam deposited films described above, first experiments were conducted

  12. The effects of one-body dissipation and collective inertias in heavy-ion scattering and fusion

    International Nuclear Information System (INIS)

    Stryjewski, J.S.

    1989-01-01

    A classical dynamical model of heavy ion scattering and fusion is presented. The model includes deformations, deformation-dependent inertias and one-body friction in both the entrance and exit channels. The deformation-dependent inertias are calculated using a hydrodynamic approach and the one-body friction is determined with the classical wall friction formalism. This model is used to study the effects of one-body friction and collective inertias on strongly damped heavy ion reactions and fusion. Quantum-mechanical calculations suggest that the strength of classical one-body friction, as calculated by the wall formalism, is too large by a factor of 3. Therefore, the fusion excitation functions for the reactions: 16 O + 16 O, 28 Si + 28 Si, 40 Ca + 40 Ca and 56 Fe + 56 Fe are calculated and compared with similar calculations in which the strength of the wall friction has been reduced by a factor of 3. Calculations using the full wall friction reproduce the experimental fusion excitation functions more accurately than calculations using the weaker wall friction. Also, because hydrodynamical inertias are the smallest possible classical inertias, the fusion excitation functions for: 16 O + 16 O, 28 Si + 28 Si, 40 Ca + 40 Ca and 56 Fe + 56 Fe are calculated with the size of the collective inertias increased by a factor of 2 over the hydrodynamical values. Once again, calculations using hydrodynamical collective inertias reproduce the experimental fusion excitation functions more accurately than calculations using the larger collective inertias. The effects of one-body friction and collective inertias on heavy ion scattering are also investigated; reaction times, scattering angles and energy loss are determined as functions of energy and angular momentum for the reactions 98 Mo + 98 Mo and 238 U + 238 U

  13. Decomposition of uranyl peroxo-carbonato complex ion in the presence of metal oxides in carbonate media

    International Nuclear Information System (INIS)

    Dong-Yong Chung; Min-Sung Park; Keun-Young Lee; Eil-Hee Lee; Kwang-Wook Kim; Jei-Kwon Moon

    2015-01-01

    Uranium oxide was dissolved in the form of the uranyl peroxo-carbonato complex ion, UO 2 (O 2 )(CO 3 ) 2 4- in carbonate solutions with hydrogen peroxide. When UO 2 (O 2 )(CO 3 ) 2 4- ions lose their peroxide component, they become a stable species of uranyl tricarbonato complex ion, UO 2 (O 2 )(CO 3 ) 2 4- . The uranyl peroxo-carbonato complex self-decomposed more rapidly into the uranyl tricarbonato complex ion in the presence of a metal oxide in the carbonate solution. In this study, decomposition of the uranyl peroxo-carbonato complex in a carbonate solution was investigated in the presence of several metal oxides using absorption spectroscopy. (author)

  14. Scattering of 14.2 MeV polarized neutrons from 12C

    International Nuclear Information System (INIS)

    Casparis, R.; Leemann, B.Th.; Preiswerk, M.; Rudin, H.; Wagner, R.; Zupranski, P.

    1976-01-01

    Polarized 14.2 MeV neutrons with a polarization of approximately 50% were produced in the 3 H(d(pol),n(pol)) 4 He reaction using vector polarized deuterons from an 'atomic beam' source of polarized ions. The angular distributions of the analyzing power in the elastic and inelastic (Q = -4.43 MeV) scattering of neutrons from carbon have been measured at ten angles in the range from 22 0 to 152 0 c.m. A time-of-flight technique was used to separate elastically and inelastically scattered neutrons. The results have been compared with theoretical calculations obtained with the DWBA and the coupled channels method. (Auth.)

  15. Separation of uranium from sodium carbonate - sodium bicarbonate eluate by ion exchange method

    International Nuclear Information System (INIS)

    Sakane, Kohji; Hirotsu, Takahiro; Fujii, Ayako; Katoh, Shunsaku; Sugasaka, Kazuhiko

    1982-01-01

    The ion exchange method was used for separating uranium from the eluate (0.5 N Na 2 CO 3 -0.5 N NaHCO 3 ) that was obtained in the extraction process of uranium from natural sea water by using the titanium-activated carbon composite adsorbent. Uranium in the eluate containing 3 mg/1 uranium was adsorbed by ion exchange resin (Amberlite IRA-400), and was eluted with the eluant (5 % NaCl-0.5 % Na 2 CO 3 ). The concentration ratio of uranium in the final concentrated-eluate became more than 20 times. The eluting solution to the adsorbent and the eluant to the resin could be repeatedly used in the desorption-ion exchange process. Sodium carbonate was consumed at the desorption step, and sodium bicarbonate was consumed at the ion exchange step. The concentration ratio of uranium was found to decrease as chloride ion in the eluate increased. (author)

  16. Separation of uranium from sodium carbonate-sodium bicarbonate eluate by ion exchange method

    International Nuclear Information System (INIS)

    Sakane, Kohji; Hirotsu, Takahiro; Fujii, Ayako; Katoh, Shunsaku; Sugasaka, Kazuhiko

    1982-01-01

    The ion exchange method was used for separating uranium from the eluate (0.5 N Na 2 CO 3 -0.5 N NaHCO 3 ) that was obtained in the extraction process of uranium from natural sea water by using the titanium-activated carbon composite adsorbent. Uranium in the eluate containing 3 mg/l uranium was adsorbed by ion exchange resin (Amberlite IRA-400), and was eluted with the eluent (5% NaCl-0.5% Na 2 CO 3 ). The concentration ratio of uranium in the final concentrated-eluate became more than 20 times. The eluting solution to the adsorbent and the eluant to the resin could be repeatedly used in the desorption-ion exchange process. Sodium carbonate was consumed at the desorption step, and sodium bicarbonate was consumed at the ion exchange step. The concentration ratio of uranium was found to decrease as chloride ion in the eluate increased. (author)

  17. Vicinage effects in energy loss and electron emission during grazing scattering of heavy molecular ions from a solid surface

    International Nuclear Information System (INIS)

    Song Yuanhong; Wang Younian; Miskovic, Z.L.

    2005-01-01

    Vicinage effects in the energy loss and the electron emission spectra are studied in the presence of Coulomb explosion of swift, heavy molecular ions, during their grazing scattering from a solid surface. The dynamic response of the surface is treated by means of the dielectric theory within the specular reflection model using the plasmon pole approximation for the bulk dielectric function, whereas the angle-resolved energy spectra of the electrons emitted from the surface are obtained on the basis of the first-order, time-dependent perturbation theory. The evolution of the charge states of the constituent ions in the molecule during scattering is described by a nonequilibrium extension of the Brandt-Kitagawa model. The molecule scattering trajectories and the corresponding Coulomb explosion dynamics are evaluated for the cases of the internuclear axis being either aligned in the beam direction or randomly oriented in the directions parallel to the surface. Our calculations show that the vicinage effect in the energy loss is generally weaker for heavy molecules than for light molecules. In addition, there is clear evidence of the negative vicinage effect in both the energy loss and the energy spectra of the emitted electrons for molecular ions at lower speeds and with the axis aligned in the direction of motion

  18. Comparison of Individual Radiosensitivity to γ-Rays and Carbon Ions.

    Science.gov (United States)

    Shim, Grace; Normil, Marie Delna; Testard, Isabelle; Hempel, William M; Ricoul, Michelle; Sabatier, Laure

    2016-01-01

    Carbon ions are an up-and-coming ion species, currently being used in charged particle radiotherapy. As it is well established that there are considerable interindividual differences in radiosensitivity in the general population that can significantly influence clinical outcomes of radiotherapy, we evaluate the degree of these differences in the context of carbon ion therapy compared with conventional radiotherapy. In this study, we evaluate individual radiosensitivity following exposure to carbon-13 ions or γ-rays in peripheral blood lymphocytes of healthy individuals based on the frequency of ionizing radiation (IR)-induced DNA double strand breaks (DSBs) that was either misrepaired or left unrepaired to form chromosomal aberrations (CAs) (simply referred to here as DSBs for brevity). Levels of DSBs were estimated from the scoring of CAs visualized with telomere/centromere-fluorescence in situ hybridization (TC-FISH). We examine radiosensitivity at the dose of 2 Gy, a routinely administered dose during fractionated radiotherapy, and we determined that a wide range of DSBs were induced by the given dose among healthy individuals, with highly radiosensitive individuals harboring more IR-induced breaks in the genome than radioresistant individuals following exposure to the same dose. Furthermore, we determined the relative effectiveness of carbon irradiation in comparison to γ-irradiation in the induction of DSBs at each studied dose (isodose effect), a quality we term "relative dose effect" (RDE). This ratio is advantageous, as it allows for simple comparison of dose-response curves. At 2 Gy, carbon irradiation was three times more effective in inducing DSBs compared with γ-irradiation (RDE of 3); these results were confirmed using a second cytogenetic technique, multicolor-FISH. We also analyze radiosensitivity at other doses (0.2-15 Gy), to represent hypo- and hyperfractionation doses and determined that RDE is dose dependent: high ratios at low doses

  19. Operation of low-energy ion implanters for Si, N, C ion implantation into silicon and glassy carbon

    International Nuclear Information System (INIS)

    Carder, D.A.; Markwitz, A.

    2009-01-01

    This report details the operation of the low-energy ion implanters at GNS Science for C, N and Si implantations. Two implanters are presented, from a description of the components through to instructions for operation. Historically the implanters have been identified with the labels 'industrial' and 'experimental'. However, the machines only differ significantly in the species of ions available for implantation and sample temperature during implantation. Both machines have been custom designed for research purposes, with a wide range of ion species available for ion implantation and the ability to implant two ions into the same sample at the same time from two different ion sources. A fast sample transfer capability and homogenous scanning profiles are featured in both cases. Samples up to 13 mm 2 can be implanted, with the ability to implant at temperatures down to liquid nitrogen temperatures. The implanters have been used to implant 28 Si + , 14 N + and 12 C + into silicon and glassy carbon substrates. Rutherford backscattering spectroscopy has been used to analyse the implanted material. From the data a Si 30 C 61 N 9 layer was measured extending from the surface to a depth of about 77 ± 2 nm for (100) silicon implanted with 12 C + and 14 N + at multiple energies. Silicon and nitrogen ion implantation into glassy carbon produced a Si (40.5 %), C (38 %), N (19.5 %) and O (2%) layer centred around a depth of 50 ± 2 nm from the surface. (author). 8 refs., 20 figs

  20. Binding of nickel and zinc ions with activated carbon prepared from sugar cane fibre (Saccharum officinarum L.

    Directory of Open Access Journals (Sweden)

    E.U. Ikhuoria

    2007-04-01

    Full Text Available Activated carbon was prepared from sugar cane fibre by carbonizing at 500 oC for 30 minutes. This was followed by activation with ammonium chloride. The activated carbon was characterised in terms of pH, bulk density, ash content, surface area and surface charge. Equilibrium sorption of nickel and zinc ions by the activated carbon was studied using a range of metal ion concentrations. The sorption data was observed to have an adequate fit for the Langmuir isotherm equation. The level of metal ion uptake was found to be of the order: Ni2+ > Zn2+. The difference in the removal efficiency could be explained in terms of the hydration energy of the metal ions. The distribution coefficient for a range of concentration of the metal ions at the sorbent water interface is found to be higher than the concentration in the continuous phase.

  1. Influence of carbonate ions on the micellization behavior in triblock copolymer solution

    CERN Document Server

    Thiyagarajan, P

    2002-01-01

    SANS was used to investigate the micellization behavior of triblock copolymers (F68, F88 and F108) as functions of carbonate ion concentration and temperature. SANS data were fitted to determine the sizes of the core and corona, inter-micelle distance, association number and the volume fraction of the micelles. As the polymer molecular weight increases, the core radius and the radius of gyration (R sub g) of the corona and the inter-micelle distance increase. The carbonate ion concentration and polymer molecular weight have dramatic influence on the temperatures at which the micellization and spherical-to-cylindrical micelle transformation occur. The mechanism by which this phenomenon occurs in these solutions is through a gradual dehydration of polymers with increasing carbonate concentration and/or temperature. (orig.)

  2. Carbon Cryogel and Carbon Paper-Based Silicon Composite Anode Materials for Lithium-Ion Batteries

    Science.gov (United States)

    Woodworth, James; Baldwin, Richard; Bennett, William

    2010-01-01

    A variety of materials are under investigation for use as anode materials in lithium-ion batteries, of which, the most promising are those containing silicon. 6 One such material is a composite formed via the dispersion of silicon in a resorcinol-formaldehyde (RF) gel followed by pyrolysis. Two silicon-carbon composite materials, carbon microspheres and nanofoams produced from nano-phase silicon impregnated RF gel precursors have been synthesized and investigated. Carbon microspheres are produced by forming the silicon-containing RF gel into microspheres whereas carbon nano-foams are produced by impregnating carbon fiber paper with the silicon containing RF gel to create a free standing electrode. 1-5 Both materials have demonstrated their ability to function as anodes and utilize the silicon present in the material. Stable reversible capacities above 400 mAh/g for the bulk material and above 1000 mAh/g of Si have been observed.

  3. Alternate dipping preparation of biomimetic apatite layers in the presence of carbonate ions

    International Nuclear Information System (INIS)

    Chatelain, Grégory; Bourgeois, Damien; Meyer, Daniel; Ravaux, Johann; Averseng, Olivier; Vidaud, Claude

    2014-01-01

    The classical simulated body fluids method cannot be employed to prepare biomimetic apatites encompassing metallic ions that lead to very stable phosphates. This is the case for heavy metals such as uranium, whose presence in bone mineral after contamination deserves toxicological study. We have demonstrated that existing methods, based on alternate dipping into calcium and phosphate ions solutions, can be adapted to achieve this aim. We have also especially studied the impact of the presence of carbonate ions in the medium as these are necessary to avoid hydrolysis of the contaminating metallic cations. Both the apatite–collagen complex method and a standard chemical (STD) method employing only mineral solutions lead to biomimetic apatites when calcium and carbonate ions are introduced simultaneously. The obtained materials were fully characterized and we established that the STD method tolerates the presence of carbonate ions much better, and this leads to homogeneous samples. Emphasis was set on the repeatability of the method to ensure the relevancy of further work performed on series of samples. Finally, osteoblasts cultured on these samples also proved a similar yield and standard-deviation in their adenosine triphosphate content when compared to commercially available substrates designed to study of such cell cultures. (paper)

  4. A novel experimental scheme of electron scattering off unstable nuclei with a self-confining radioactive ion target (SCRIT)

    International Nuclear Information System (INIS)

    Wakasugi, Masanori

    2005-01-01

    We proposed a new experimental scheme of an electron scattering off unstable nuclei using a Self-Confining Radioactive Ion Target (SCRIT). The SCRIT is an unstable ion target formed in the electron storage ring, and is based on completely new idea. We constructed prototype of the SCRIT device and installed it in the electron storage ring KSR in Kyoto University. In the test experiment, 10 7 -Cs ions are confined in the SCRIT with the lifetime of about 2 s and the feasibility of the SCRIT as the target has been confirmed. (author)

  5. Radiotherapy for chordomas and low-grade chondrosarcomas of the skull base with carbon ions

    International Nuclear Information System (INIS)

    Schulz-Ertner, Daniela; Haberer, Thomas; Jaekel, Oliver; Thilmann, Christoph; Kraemer, Michael; Enghardt, Wolfgang; Kraft, Gerhard; Wannenmacher, Michael; Debus, Juergen

    2002-01-01

    Purpose: Compared to photon irradiation, carbon ions provide physical and biologic advantages that may be exploited in chordomas and chondrosarcomas. Methods and Materials: Between August 1998 and December 2000, 37 patients with chordomas (n=24) and chondrosarcomas (n=13) were treated with carbon ion radiotherapy within a Phase I/II trial. Tumor conformal application of carbon ion beams was realized by intensity-controlled raster scanning with pulse-to-pulse energy variation. Three-dimensional treatment planning included biologic plan optimization. The median tumor dose was 60 GyE (GyE Gy x relative biologic effectiveness). Results: The mean follow-up was 13 months. The local control rate after 1 and 2 years was 96% and 90%, respectively. We observed 2 recurrences outside the gross tumor volume in patients with chordomas. Progression-free survival was 100% for chondrosarcomas and 83% for chordomas at 2 years. Partial remission after carbon ion radiotherapy was observed in 6 patients. Treatment toxicity was mild. Conclusion: These are the first data demonstrating the clinical feasibility, safety, and effectiveness of scanning beam delivery of ion beams in patients with skull base tumors. The preliminary results in patients with skull base chordomas and low-grade chondrosarcomas are encouraging, although the follow-up was too short to draw definite conclusions concerning outcome. In the absence of major toxicity, dose escalation might be considered

  6. Carbon-Ion Radiation Therapy for Pelvic Recurrence of Rectal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Shigeru, E-mail: s_yamada@nirs.go.jp [Research Center Hospital for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Kamada, Tadashi [Research Center Hospital for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Ebner, Daniel K. [Research Center Hospital for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Brown University Alpert Medical School, Providence, Rhode Island (United States); Shinoto, Makoto [Ion Beam Therapy Center, SAGA HIMAT Foundation, Saga (Japan); Terashima, Kotaro [Graduate School of Medical Sciences, Kyushu University, Fukuoka (Japan); Isozaki, Yuka; Yasuda, Shigeo; Makishima, Hirokazu; Tsuji, Hiroshi; Tsujii, Hirohiko [Research Center Hospital for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Isozaki, Tetsuro; Endo, Satoshi [Graduate School of Medicine, Chiba University, Chiba (Japan); Takahashi, Keiichi [Tokyo Metropolitan Cancer and Infectious Disease Center, Komagome, Tokyo (Japan); Sekimoto, Mitsugu [National Hospital Organization Osaka National Hospital, Osaka (Japan); Saito, Norio [National Cancer Center Hospital East, Kashiwa, Chiba (Japan); Matsubara, Hisahiro [Graduate School of Medicine, Chiba University, Chiba (Japan)

    2016-09-01

    Purpose: Investigation of the treatment potential of carbon-ion radiation therapy in pelvic recurrence of rectal cancer. Methods and Materials: A phase 1/2 dose escalation study was performed. One hundred eighty patients (186 lesions) with locally recurrent rectal cancer were treated with carbon-ion radiation therapy (CIRT) (phase 1/2: 37 and 143 patients, respectively). The relapse locations were 71 in the presacral region, 82 in the pelvic sidewalls, 28 in the perineum, and 5 near the colorectal anastomosis. A 16-fraction in 4 weeks dose regimen was used, with total dose ranging from 67.2 to 73.6 Gy(RBE); RBE-weighted absorbed dose: 4.2 to 4.6 Gy(RBE)/fraction. Results: During phase 1, the highest total dose, 73.6 Gy(RBE), resulted in no grade >3 acute reactions in the 13 patients treated at that dose. Dose escalation was halted at this level, and this dose was used for phase 2, with no other grade >3 acute reactions observed. At 5 years, the local control and survival rates at 73.6 Gy(RBE) were 88% (95% confidence interval [CI], 80%-93%) and 59% (95% CI, 50%-68%), respectively. Conclusion: Carbon-ion radiation therapy may be a safe and effective treatment option for locally recurrent rectal cancer and may serve as an alternative to surgery.

  7. Carbon ion radiotherapy for chordomas and low-grade chondrosarcomas of the skull base. Results in 67 patients

    Energy Technology Data Exchange (ETDEWEB)

    Schulz-Ertner, D.; Wannenmacher, M. [Dept. of Clinical Radiology, Univ. of Heidelberg (Germany); Nikoghosyan, A.; Thilmann, C.; Jaekel, O.; Karger, C. [German Cancer Research Center (dkfz), Heidelberg (Germany); Haberer, T.; Scholz, M.; Kraft, G. [Dept. of Biophysics, German Ion Research Center (GSI), Darmstadt (Germany); Debus, J. [Dept. of Clinical Radiology, Univ. of Heidelberg (Germany); German Cancer Research Center (dkfz), Heidelberg (Germany)

    2003-09-01

    Purpose: To prospectively evaluate outcome and toxicity after carbon ion radiotherapy (RT) in chordomas and low-grade chondrosarcomas. Patients and Methods: Between September 1998 and December 2001, 74 patients were treated for chordomas and chondrosarcomas with carbon ion RT at the ''Gesellschaft fuer Schwerionenforschung'' (GSI). Seven patients reirradiated with reduced carbon ion doses after conventional RT were excluded from the analysis, leaving 67 evaluable patients (44 chordomas and 23 chondrosarcomas) who received a full course of carbon ion therapy. Tumor-conform application of carbon ion beams was realized by intensity-controlled raster scanning with active energy variation. Three-dimensional treatment planning included intensity modulation and biological plan optimization. A median dose of 60 GyE was applied to the target volume within 20 consecutive days at a dose of 3.0 GyE per fraction. Results: Median follow-up was 15 months (range 3-46 months). At 3 years, actuarial local control was 100% for chondrosarcomas and 87% for chordomas, respectively. Partial tumor remission was observed in 14/44 (31%) chordoma patients and in 4/23 (17%) chondrosarcoma patients. At 3 years, actuarial overall survival was 100% for chondrosarcomas and 89% for chordomas, respectively. No severe side effects > CTC III have been observed. Conclusions: These data demonstrate the clinical efficiency and safety of scanning beam delivery of carbon ion beams in patients with skull base chordomas and chondrosarcomas. The observation of tumor regressions at a dose level of 60 GyE may indicate that the biological effectiveness of carbon ions in chordomas and chondrosarcomas is higher than initially estimated. (orig.)

  8. Scattering of photons from atomic electrons

    International Nuclear Information System (INIS)

    Pratt, R.H.; Zhou, B.; Bergstrom, P.M. Jr.; Pisk, K.; Suric, T.

    1990-01-01

    Validity of simpler approaches for elastic and inelastic photon scattering by atoms and ions is assessed by comparison with second-order S-matrix predictions. A simple scheme for elastic scattering based on angle-independent anomalous scattering factors has been found to give useful predictions near and below photoeffect thresholds. In inelastic scattering, major deviations are found from A 2 -based calculations. Extension of free-atom and free-ion cross sections to the dense plasma regime is discussed. 20 refs., 6 figs

  9. Investigation of different-ligand complexes of holmium and erbium with NTA and carbonate ion

    International Nuclear Information System (INIS)

    Nazarenko, N.A.; Bel'tyukova, S.V.; Poluehktov, N.S.

    1979-01-01

    Found out have been the optimum conditions for the formation of the lantanides (Ln) multiligand complexes with the nitriletriacetic acid (NTA) and the carbonate-ion. It has been established that the components correlation in complex compounds is equal to 1:1:1. Computed have been the values of the oscillator forces of the absorption bands, that conform to the ''supersensitive'' migration of the multiligand complexes, It is shown that the increment in the oscillator forces, the induced entering of one carbonate-ion into the Ln-NTA complex molecule conforms to about 1/4 of the oscillator forces increment during the migration from the aquo ion to the [Ln(CO 3 ) 4 ] 5- complex carbonaceous ion

  10. Simulation of the channelling of ions from MeV C60 in crystalline solids

    International Nuclear Information System (INIS)

    Fetterman, A; Sinclair, L; Tanushev, N; Tombrello, T; Nardi, E

    2007-01-01

    Simulations were performed describing the motion and breakup of energetic C 60 ions interacting with crystalline targets. A hybrid algorithm was used that employs a binary collision model for the scattering of the carbon ions by the atoms of the solid, and molecular dynamics for the Coulomb interactions of the 60 carbon ions with one another. For the case of yttrium iron garnet (YIG), directions such as [1 1 0], [1 0 0], [0 1 0] and [0 0 1] demonstrate channelling for a large fraction of the C ions. For directions such as [1 1 1], [2 1 1] and [7 5 3] the trajectories show no more channelling than for random directions. The effects of tilt, shielding and wake-field interactions were investigated for YIG and α-quartz

  11. The influence of fractionation on cell survival and premature differentiation after carbon ion irradiation

    International Nuclear Information System (INIS)

    Wang Jufang; Li Renming; Guo Chuanling; Fournier, C.; K-Weyrather, W.

    2008-01-01

    To investigate the influence of fractionation on cell survival and radiation induced premature differentiation as markers for early and late effects after X-rays and carbon irradiation. Normal human fibroblasts NHDF, AG1522B and WI-38 were irradiated with 250 kV X-rays, or 266 MeV/u, 195 MeV/u and 11 MeV/u carbon ions. Cytotoxicity was measured by a clonogenic survival assay or by determination of the differentiation pattern. Experiments with high-energy carbon ions show that fractionation induced repair effects are similar to photon irradiation. The relative biological effective (RBE) 10 values for clonogenic survival are 1.3 and 1.6 for irradiation in one or two fractions for NHDF cells and around 1.2 for AG1522B cells regardless of the fractionation scheme. The RBE for a doubling of post mitotic fibroblasts (PMF) in the population is 1 for both single and two fractionated irradiation of NHDF cells. Using 11 MeV/u carbon ions, no repair effect can be seen in WI-38 cells. The RBE 10 for clonogenic survival is 3.2 for single irradiation and 4.9 for two fractionated irradiations. The RBE for a doubling of PMF is 3.1 and 5.0 for single and two fractionated irradiations, respectively. For both cell lines the effects of high-energy carbon ions representing the irradiation of the skin and the normal tissue in the entrance channel are similar to the effects of X-rays. The fractionation effects are maintained. For the lower energy, which is representative for the irradiation of the tumor region, RBE is enhanced for clonogenic survival as well as for premature terminal differentiation. Fractionation effects are not detectable. Consequently, the therapeutic ratio is significantly enhanced by fractionated irradiation with carbon ions. (author)

  12. High energy (MeV) ion-irradiated π-conjugated polyaniline: Transition from insulating state to carbonized conducting state

    International Nuclear Information System (INIS)

    Park, S.K.; Lee, S.Y.; Lee, C.S.; Kim, H.M.; Joo, J.; Beag, Y.W.; Koh, S.K.

    2004-01-01

    High energy (MeV) C 2+ , F 2+ , and Cl 2+ ions were irradiated onto π-conjugated polyaniline emeraldine base (PAN-EB) samples. The energy of an ion beam was controlled to a range of 3-4.5 MeV, with the ion dosage varying from 1x10 12 to 1x10 16 ions/cm 2 . The highest dc conductivity (σ dc ) at room temperature was measured to be ∼60 S/cm for 4.5 MeV Cl 2+ ion-irradiated PAN-EB samples with a dose of 1x10 16 ions/cm 2 . We observed the transition of high energy ion-irradiated PAN-EB samples from insulating state to conducting state as a function of ion dosage based on σ dc and its temperature dependence. The characteristic peaks of the Raman spectrum of the PAN-EB samples were reduced, while the D-peak (disordered peak) and the G peak (graphitic peak) appeared as the ion dose increased. From the analysis of the D and G peaks of the Raman spectra of the systems compared to multiwalled carbon nanotubes, ion-irradiated graphites, and annealed carbon films, the number of the clusters of hexagon rings with conducting sp 2 -bonded carbons increased with ion dosage. We also observed the increase in the size of the nanocrystalline graphitic domain of the systems with increasing ion dosage. The intensity of normalized electron paramagnelic resonance signal also increased in correlation with ion dose. The results of this study demonstrate that π-conjugated pristine PAN-EB systems changed from insulating state to carbonized conducting state through high energy ion irradiation with high ion dosage

  13. Influence of temperature, chloride ions and chromium element on the electronic property of passive film formed on carbon steel in bicarbonate/carbonate buffer solution

    Energy Technology Data Exchange (ETDEWEB)

    Li, D.G. [School of Materials Science and Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Tubular Goods Research Center of CNPC, Xi' an 710065 (China)], E-mail: dangguoli78@yahoo.com.cn; Feng, Y.R.; Bai, Z.Q. [Tubular Goods Research Center of CNPC, Xi' an 710065 (China); Zhu, J.W.; Zheng, M.S. [School of Materials Science and Engineering, Xi' an Jiaotong University, Xi' an 710049 (China)

    2007-11-01

    The influences of temperature, chloride ions and chromium element on the electronic property of passive film formed on carbon steel in NaHCO{sub 3}/Na{sub 2}CO{sub 3} buffer solution are investigated by capacitance measurement and electrochemical impedance spectroscopy (EIS). The results show that the passive film appears n-type semiconductive character; with increasing the solution temperature, the addition of chromium into carbon steel and increasing the concentration of chloride ions, the slopes of Mott-Schottky plots decrease, which indicates the increment of the defect density in the passive film. EIS results show that the transfer impedance R{sub 1} and the diffusion impedance W decrease with increasing the solution temperature, with the addition of chromium into carbon steel and with increasing the chloride ions concentration. It can be concluded that the corrosion protection effect of passive film on the substrate decreases with increasing the solution temperature, adding chromium into carbon steel and increasing chloride ions concentration.

  14. Stimulated Raman scattering and ion dynamics: the role of Langmuir wave non-linearities

    International Nuclear Information System (INIS)

    Bonnaud, G.; Pesme, D.

    1988-02-01

    The non-linear evolution of stimulated Raman scattering by coupling of the SRS-driven Langmuir waves to ion acoustic waves is studied numerically, in a homogeneous density laser-irradiated plasma. The coupled wave amplitude behaviour is represented either by envelope equations or by complete wave-like equations. The various physical phenomena which are involved are described. This preliminary work has been presented at the 17th Anomalous Absorption Conference, held in last May, in Lake Tahoe City (USA) [fr

  15. Equilibrium Limit of Boundary Scattering in Carbon Nanostructures: Molecular Dynamics Calculations of Thermal Transport

    Science.gov (United States)

    Haskins, Justin; Kinaci, Alper; Sevik, Cem; Cagin, Tahir

    2012-01-01

    It is widely known that graphene and many of its derivative nanostructures have exceedingly high reported thermal conductivities (up to 4000 W/mK at 300 K). Such attractive thermal properties beg the use of these structures in practical devices; however, to implement these materials while preserving transport quality, the influence of structure on thermal conductivity should be thoroughly understood. For graphene nanostructures, having average phonon mean free paths on the order of one micron, a primary concern is how size influences the potential for heat conduction. To investigate this, we employ a novel technique to evaluate the lattice thermal conductivity from the Green-Kubo relations and equilibrium molecular dynamics in systems where phonon-boundary scattering dominates heat flow. Specifically, the thermal conductivities of graphene nanoribbons and carbon nanotubes are calculated in sizes up to 3 microns, and the relative influence of boundary scattering on thermal transport is determined to be dominant at sizes less than 1 micron, after which the thermal transport largely depends on the quality of the nanostructure interface. The method is also extended to carbon nanostructures (fullerenes) where phonon confinement, as opposed to boundary scattering, dominates, and general trends related to the influence of curvature on thermal transport in these materials are discussed.

  16. Survival probability in small angle scattering of low energy alkali ions from alkali covered metal surfaces

    International Nuclear Information System (INIS)

    Neskovic, N.; Ciric, D.; Perovic, B.

    1982-01-01

    The survival probability in small angle scattering of low energy alkali ions from alkali covered metal surfaces is considered. The model is based on the momentum approximation. The projectiles are K + ions and the target is the (001)Ni+K surface. The incident energy is 100 eV and the incident angle 5 0 . The interaction potential of the projectile and the target consists of the Born-Mayer, the dipole and the image charge potentials. The transition probability function corresponds to the resonant electron transition to the 4s projectile energy level. (orig.)

  17. Analysis of ion beam teletherapy patient-specific quality assurance.

    Science.gov (United States)

    Liu, Xiaoli; Deng, Yu; Schlegel, Nicki; Huang, Zhijie; Moyers, Michael F

    2018-02-27

    The objective of this study was to evaluate the procedures for patient-specific quality assurance measurements using modulated scanned and energy stacked beams for proton and carbon ion teletherapy. Delivery records from 1734 portal measurements were analyzed using a 3-point pass criteria: more than 22 of 24 chambers in a water phantom (WP) had to have a measured dose difference from the planned portal doses less than or equal to 3%, or the distance from the measurement point location to a point location in the plan having the same dose had to be less than or equal to 3 mm (distance to agreement [DTA]), and the mean dose deviation of all chambers had to be less than 3%. Stratification of results showed some associations between measurement parameters and pass rates. For proton portals, pass rates were high at all measurement depths, but for carbon ion portals, pass rates decreased as a function of increasing measurement depth. Pass rates of both proton and carbon ion portals with 1 WP were slightly lower than those with a second WP. The total pass rates were 97.7% and 91.9% for proton and carbon ion patient portals, respectively. In general, the measured doses exhibited good agreement with the treatment planning system (TPS) calculated doses. When the chamber position was deeper than 150 mm in carbon ion beams, a lower pass rate was observed, which may have been caused by ion chamber array setup uncertainty (lateral and depth) in highly modulated portals or incorrect modeling of scatter by the TPS. These deviations need further investigation. Copyright © 2018 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  18. Separation of uranium from sodium carbonate - sodium bicarbonate eluate by ion exchange method

    Energy Technology Data Exchange (ETDEWEB)

    Sakane, Kohji; Hirotsu, Takahiro; Fujii, Ayako; Katoh, Shunsaku; Sugasaka, Kazuhiko (Government Industrial Research Inst., Shikoku, Takamatsu (Japan))

    1982-09-01

    The ion exchange method was used for separating uranium from the eluate (0.5 N Na/sub 2/CO/sub 3/-0.5 N NaHCO/sub 3/) that was obtained in the extraction process of uranium from natural sea water by using the titanium-activated carbon composite adsorbent. Uranium in the eluate containing 3 mg/1 uranium was adsorbed by ion exchange resin (Amberlite IRA-400), and was eluted with the eluant (5 % NaCl-0.5 % Na/sub 2/CO/sub 3/). The concentration ratio of uranium in the final concentrated-eluate became more than 20 times. The eluting solution to the adsorbent and the eluant to the resin could be repeatedly used in the desorption-ion exchange process. Sodium carbonate was consumed at the desorption step, and sodium bicarbonate was consumed at the ion exchange step. The concentration ratio of uranium was found to decrease as chloride ion in the eluate increased.

  19. Separation of uranium from sodium carbonate-sodium bicarbonate eluate by ion exchange method

    Energy Technology Data Exchange (ETDEWEB)

    Sakane, K.; Hirotsu, T.; Fujii, A.; Katoh, S.; Sugasaka, K. (Government Industrial Research. Inst., Shikoku, Takamatsu (Japan))

    1982-01-01

    The ion exchange method was used for separating uranium from the eluate (0.5 N Na/sub 2/CO/sub 3/-0.5 N NaHCO/sub 3/) that was obtained in the extraction process of uranium from natural sea water by using the titanium-activated carbon composite adsorbent. Uranium in the eluate containing 3 mg/l uranium was adsorbed by ion exchange resin (Amberlite IRA-400), and was eluted with the eluent (5% NaCl-0.5% Na/sub 2/CO/sub 3/). The concentration ratio of uranium in the final concentrated-eluate became more than 20 times. The eluting solution to the adsorbent and the eluant to the resin could be repeatedly used in the desorption-ion exchange process. Sodium carbonate was consumed at the desorption step, and sodium bicarbonate was consumed at the ion exchange step. The concentration ratio of uranium was found to decrease as chloride ion in the eluate increased.

  20. I. Exchange currents in electron scattering from light nuclei. II. Heavy-ion scattering at intermediate and high energy

    International Nuclear Information System (INIS)

    Dubach, J.F.

    1976-01-01

    The purpose of this work is to develop a formalism that will allow one to search the wide variety of transitions presented by nuclei in order to locate situations in which the exchange-current effects are important or dominant and thus allow one to study the contributions of the meson exchanges to the electromagnetic densities within the nucleus. The nuclei studied are assumed to be described in a shell model using harmonic oscillator wave functions. The formalism needed to allow one to do a multipole analysis of these exchange currents within 1s and 1p nuclei is developed. This formalism is then applied to an examination of electron scattering from a series of light nuclei: 3 He, 6 Li, 7 Li, 9 Be, and 10 B. Three significant effects due to the inclusion of exchange currents are seen: (1) The exchange currents can often introduce new structure into the form factors. (2) At larger momentum transfer (700 to 1000 MeV/c) the exchange current contributions to the form factor dominate the simpler one-body form factor by a few orders of magnitude. (3) The exchange currents can excite E4 and M5 multipoles in the p shell which are forbidden to the simpler one-body currents. The elastic scattering of two heavy ions at intermediate and high energies (compared to the Coulomb barrier) is examined in the formalism of the WKB and ''Glauber theory'' approximations. As a concrete example, the scattering of 16 O from 60 Ni is studied assuming an optical-model potential that fits elastic scattering data at low energies. One immediate result is that the WKB approximation agrees quite well with ''exact'' numerical calculations at energies as low as 60 MeV. The Glauber theory fails below about 1 GeV but correction terms are developed that can extend the usefulness of the Glauber theory to much lower energies. The model problem of scattering from a black-sphere model of the nucleus is briefly examined

  1. Influence of activated carbon surface acidity on adsorption of heavy metal ions and aromatics from aqueous solution

    International Nuclear Information System (INIS)

    Sato, Sanae; Yoshihara, Kazuya; Moriyama, Koji; Machida, Motoi; Tatsumoto, Hideki

    2007-01-01

    Adsorption of toxic heavy metal ions and aromatic compounds onto activated carbons of various amount of surface C-O complexes were examined to study the optimum surface conditions for adsorption in aqueous phase. Cadmium(II) and zinc(II) were used as heavy metal ions, and phenol and nitrobenzene as aromatic compounds, respectively. Activated carbon was de-ashed followed by oxidation with nitric acid, and then it was stepwise out-gassed in helium flow up to 1273 K to gradually remove C-O complexes introduced by the oxidation. The oxidized activated carbon exhibited superior adsorption for heavy metal ions but poor performance for aromatic compounds. Both heavy metal ions and aromatics can be removed to much extent by the out-gassed activated carbon at 1273 K. Removing C-O complexes, the adsorption mechanisms would be switched from ion exchange to Cπ-cation interaction for the heavy metals adsorption, and from some kind of oxygen-aromatics interaction to π-π dispersion for the aromatics

  2. Hierarchical three-dimensional porous SnS{sub 2}/carbon cloth anode for high-performance lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Junfeng, E-mail: chchjjff@163.com [College of Electronic Information and Electric Engineering, Anyang Institute of Technology, Anyang 455000 (China); Zhang, Xiutai [College of Electronic Information and Electric Engineering, Anyang Institute of Technology, Anyang 455000 (China); Xing, Shumin [College of Mathematics and Physics, Anyang Institute of Technology, Anyang 455000 (China); Fan, Qiufeng; Yang, Junping; Zhao, Luhua; Li, Xiang [College of Electronic Information and Electric Engineering, Anyang Institute of Technology, Anyang 455000 (China)

    2016-08-15

    Graphical abstract: Hierarchical 3D porous SnS{sub 2}/carbon cloth, good electrochemical performance. - Highlights: • Hierarchical 3D porous SnS{sub 2}/carbon cloth has been firstly synthesized. • The SnS{sub 2}/carbon clothes were good candidates for excellent lithium ion batteries. • The SnS{sub 2}/carbon cloth exhibits improved capacity compared to pure SnS{sub 2}. - Abstract: Hierarchical three-dimension (3D) porous SnS{sub 2}/carbon clothes were synthesized via a facile polyol refluxing process. The as-synthesized samples were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer–Emmet–Teller (BET) and UV–vis diffuse reflectance spectrometer (UV–vis DRS). The 3D porous SnS{sub 2}/carbon clothes-based lithium ion batteries exhibited high reversible capacity and good rate capability as anode materials. The good electrochemical performance for lithium ion storage could be attributed to the special nanostructure, leading to high-rate transportation of electrolyte ion and electrons throughout the electrode matrix.

  3. On the distribution of electrons in the double ionization of helium-like ions by Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M Ya [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Drukarev, E G [Petersburg Nuclear Physics Institute, Gatchina, St Petersburg 188300 (Russian Federation)

    2003-06-28

    The Compton scattering of a high energy photon by a helium-like ion, followed by the ionization of two electrons, is considered outside of the Bethe surface of Compton scattering with the knock-out of a single electron. The role of shake-off (SO), of final state interactions (FSI) and of the quasi-free mechanism (QFM) is analysed. The triple and double differential distributions are calculated. It is demonstrated for the first time that in certain kinematical regions the process is dominated by the FSI and by the QFM, while the SO contribution is much smaller.

  4. Morphology- and ion size-induced actuation of carbon nanotube architectures

    Science.gov (United States)

    Geier; Mahrholz; Wierach; Sinapius

    2018-04-01

    Future adaptive applications require lightweight and stiff materials with high active strain but low energy consumption. A suitable combination of these properties is offered by carbon nanotube-based actuators. Papers made of carbon nanotubes (CNTs) are charged within an electrolyte, which results in an electrical field forming a double-layer of ions at their surfaces and a deflection of the papers can be detected. Until now, there is no generally accepted theory for the actuation mechanism. This study focuses on the actuation mechanism of CNT papers, which represent architectures of randomly oriented CNTs. The samples are tested electrochemically in an in-plane set-up to detect the free strain. The elastic modulus of the CNT papers is analyzed in a tensile test facility. The influence of various ion sizes of water-based electrolytes is investigated.

  5. Rigid versus Flexible Ligands on Carbon Nanotubes for the Enhanced Sensitivity of Cobalt Ions

    Energy Technology Data Exchange (ETDEWEB)

    Gou, Pingping; Kraut, Nadine D.; Feigel, Ian Matthew; Star, Alexander

    2013-02-26

    Carbon nanotubes have shown great promise in the fabrication of ultra-compact and highly sensitive chemical and biological sensors. Additional chemical functionalization schemes can controllably improve selectivity of the carbon nanotube-based sensors; however the exact transduction mechanism is still under debate. In this article we detail the synthesis and selective response of single-walled carbon nanotubes (SWNTs) functionalized with polyazomethine (PAM) polymer towards the application of a specific trace metal ion detector. The response of the polymer system was compared to shape persistent macrocycle (MAC) comprised of identical ion coordination ligands. While ion detection with rigid MAC/SWNT chemiresistor was comparable to bare SWNT, flexible PAM offers significant SWNT signal amplification, allowing for picomolar detection of Co{sup 2+} ions with both selectivity and a fast response. We hypothesized that rearrangement of the flexible PAM on the SWNT network is a sensing mechanism which allows for ultrasensitive detection of metal ions. The electron transfer and polymer rearrangement on the SWNT was studied by a combination of optical spectroscopy and electrical measurements - ultimately allowing for a better understanding of fundamental mechanisms that prompt device response.

  6. Conversion of Natural Tannin to Hydrothermal and Graphene-Like Carbons Studied by Wide-Angle X-ray Scattering.

    Science.gov (United States)

    Jurkiewicz, Karolina; Hawełek, Łukasz; Balin, Katarzyna; Szade, Jacek; Braghiroli, Flavia L; Fierro, Vanessa; Celzard, Alain; Burian, Andrzej

    2015-08-13

    The atomic structure of carbon materials prepared from natural tannin by two different techniques, high-temperature pyrolysis and low-temperature hydrothermal carbonization, was studied by wide-angle X-ray scattering. The obtained diffraction data were converted to the real space representation in the form of pair distribution functions. The X-ray photoelectron spectroscopy measurements provided information about the chemical state of carbon in tannin-based materials that was used to construct final structural models of the investigated samples. The results of the experimental data in both reciprocal and real spaces were compared with computer simulations based on the PM7 semiempirical quantum chemical method. Using the collected detailed information, structural models of the tannin-based carbons were proposed. The characteristics of the investigated materials at the atomic level were discussed in relation to their preparation method. The rearrangement of the tannin molecular structure and its transformation to graphene-like structure was described. The structure of tannin-based carbons pyrolyzed at 900 °C exhibited coherently scattering domains about 20 Å in size, consisting of two defected atomic layers and resembling a graphene-like arrangement.

  7. Comparative Risk Predictions of Second Cancers After Carbon-Ion Therapy Versus Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Eley, John G., E-mail: jeley@som.umaryland.edu [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); University of Texas Graduate School of Biomedical Sciences, Houston, Texas (United States); Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland (United States); Friedrich, Thomas [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt (Germany); Homann, Kenneth L.; Howell, Rebecca M. [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); University of Texas Graduate School of Biomedical Sciences, Houston, Texas (United States); Scholz, Michael; Durante, Marco [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt (Germany); Newhauser, Wayne D. [Department of Physics and Astronomy, Louisiana State University and Agricultural and Mechanical College, Baton Rouge, Louisiana (United States); Mary Bird Perkins Cancer Center, Baton Rouge, Louisiana (United States)

    2016-05-01

    Purpose: This work proposes a theoretical framework that enables comparative risk predictions for second cancer incidence after particle beam therapy for different ion species for individual patients, accounting for differences in relative biological effectiveness (RBE) for the competing processes of tumor initiation and cell inactivation. Our working hypothesis was that use of carbon-ion therapy instead of proton therapy would show a difference in the predicted risk of second cancer incidence in the breast for a sample of Hodgkin lymphoma (HL) patients. Methods and Materials: We generated biologic treatment plans and calculated relative predicted risks of second cancer in the breast by using two proposed methods: a full model derived from the linear quadratic model and a simpler linear-no-threshold model. Results: For our reference calculation, we found the predicted risk of breast cancer incidence for carbon-ion plans-to-proton plan ratio, , to be 0.75 ± 0.07 but not significantly smaller than 1 (P=.180). Conclusions: Our findings suggest that second cancer risks are, on average, comparable between proton therapy and carbon-ion therapy.

  8. ITER Plasma at Ion Cyclotron Frequency Domain: The Fusion Alpha Particles Diagnostics Based on the Stimulated Raman Scattering of Fast Magnetosonic Wave off High Harmonic Ion Bernstein Modes

    Science.gov (United States)

    Stefan, V. Alexander

    2014-10-01

    A novel method for alpha particle diagnostics is proposed. The theory of stimulated Raman scattering, SRS, of the fast wave and ion Bernstein mode, IBM, turbulence in multi-ion species plasmas, (Stefan University Press, La Jolla, CA, 2008). is utilized for the diagnostics of fast ions, (4)He (+2), in ITER plasmas. Nonlinear Landau damping of the IBM on fast ions near the plasma edge leads to the space-time changes in the turbulence level, (inverse alpha particle channeling). The space-time monitoring of the IBM turbulence via the SRS techniques may prove efficient for the real time study of the fast ion velocity distribution function, spatial distribution, and transport. Supported by Nikola Tesla Labs., La Jolla, CA 92037.

  9. The analysis of Rutherford scattering-channelling measurements of disorder production and annealing in ion irradiated semiconductors

    International Nuclear Information System (INIS)

    Carter, G.; Elliman, R.G.

    1983-01-01

    Rutherford scattering and channelling of light probe ions (e.g. He + ) has been extensively used for studies of disorder production in ion implanted semiconductors. Various authors have analysed models of amorphousness accumulation and Carter and Webb have indicated the general difficulties in assessing disorder production models from RBS/channelling studies if the production modes are complex and the manner in which the technique responds to different defect structures is unspecified. For less complex disorder production modes and by making reasonable assumptions about the technique response however, some insight into the form of backscattering yield - ion implant fluence functions can be obtained as is discussed in the present communication. It thus becomes possible to infer the importance of different disorder generation processes from RBS/channelling - ion influence studies. It will also be shown how simple annealing processes modify disorder accumulation and thus again how the operation of such processes may be inferred from RBS/channelling - ion fluence measurements. (author)

  10. Robotic-based carbon ion therapy and patient positioning in 6 degrees of freedom: setup accuracy of two standard immobilization devices used in carbon ion therapy and IMRT.

    Science.gov (United States)

    Jensen, Alexandra D; Winter, Marcus; Kuhn, Sabine P; Debus, Jürgen; Nairz, Olaf; Münter, Marc W

    2012-03-29

    To investigate repositioning accuracy in particle radiotherapy in 6 degrees of freedom (DOF) and intensity-modulated radiotherapy (IMRT, 3 DOF) for two immobilization devices (Scotchcast masks vs thermoplastic head masks) currently in use at our institution for fractionated radiation therapy in head and neck cancer patients. Position verifications in patients treated with carbon ion therapy and IMRT for head and neck malignancies were evaluated. Most patients received combined treatment regimen (IMRT plus carbon ion boost), immobilization was achieved with either Scotchcast or thermoplastic head masks. Position corrections in robotic-based carbon ion therapy allowing 6 DOF were compared to IMRT allowing corrections in 3 DOF for two standard immobilization devices. In total, 838 set-up controls of 38 patients were analyzed. Robotic-based position correction including correction of rotations was well tolerated and without discomfort. Standard deviations of translational components were between 0.5 and 0.8 mm for Scotchcast and 0.7 and 1.3 mm for thermoplastic masks in 6 DOF and 1.2-1.4 mm and 1.0-1.1 mm in 3 DOF respectively. Mean overall displacement vectors were between 2.1 mm (Scotchcast) and 2.9 mm (thermoplastic masks) in 6 DOF and 3.9-3.0 mm in 3 DOF respectively. Displacement vectors were lower when correction in 6 DOF was allowed as opposed to 3 DOF only, which was maintained at the traditional action level of >3 mm for position correction in the pre-on-board imaging era. Setup accuracy for both systems was within the expected range. Smaller shifts were required when 6 DOF were available for correction as opposed to 3 DOF. Where highest possible positioning accuracy is required, frequent image guidance is mandatory to achieve best possible plan delivery and maintenance of sharp gradients and optimal normal tissue sparing inherent in carbon ion therapy.

  11. Oxidation processes on conducting carbon additives for lithium-ion batteries

    KAUST Repository

    La Mantia, Fabio

    2012-11-21

    The oxidation processes at the interface between different types of typical carbon additives for lithium-ion batteries and carbonates electrolyte above 5 V versus Li/Li+ were investigated. Depending on the nature and surface area of the carbon additive, the irreversible capacity during galvanostatic cycling between 2.75 and 5.25 V versus Li/Li+ could be as high as 700 mAh g-1 (of carbon). In the potential region below 5 V versus Li/Li+, high surface carbon additives also showed irreversible plateaus at about 4.1-4.2 and 4.6 V versus Li/Li+. These plateaus disappeared after thermal treatments at or above 150 °C in inert gas. The influence of the irreversible capacity of carbon additives on the overall performances of positive electrodes was discussed. © 2012 Springer Science+Business Media Dordrecht.

  12. Carbon-ion beam irradiation kills X-ray-resistant p53-null cancer cells by inducing mitotic catastrophe.

    Directory of Open Access Journals (Sweden)

    Napapat Amornwichet

    Full Text Available BACKGROUND AND PURPOSE: To understand the mechanisms involved in the strong killing effect of carbon-ion beam irradiation on cancer cells with TP53 tumor suppressor gene deficiencies. MATERIALS AND METHODS: DNA damage responses after carbon-ion beam or X-ray irradiation in isogenic HCT116 colorectal cancer cell lines with and without TP53 (p53+/+ and p53-/-, respectively were analyzed as follows: cell survival by clonogenic assay, cell death modes by morphologic observation of DAPI-stained nuclei, DNA double-strand breaks (DSBs by immunostaining of phosphorylated H2AX (γH2AX, and cell cycle by flow cytometry and immunostaining of Ser10-phosphorylated histone H3. RESULTS: The p53-/- cells were more resistant than the p53+/+ cells to X-ray irradiation, while the sensitivities of the p53+/+ and p53-/- cells to carbon-ion beam irradiation were comparable. X-ray and carbon-ion beam irradiations predominantly induced apoptosis of the p53+/+ cells but not the p53-/- cells. In the p53-/- cells, carbon-ion beam irradiation, but not X-ray irradiation, markedly induced mitotic catastrophe that was associated with premature mitotic entry with harboring long-retained DSBs at 24 h post-irradiation. CONCLUSIONS: Efficient induction of mitotic catastrophe in apoptosis-resistant p53-deficient cells implies a strong cancer cell-killing effect of carbon-ion beam irradiation that is independent of the p53 status, suggesting its biological advantage over X-ray treatment.

  13. Lithium iron phosphate/carbon nanocomposite film cathodes for high energy lithium ion batteries

    International Nuclear Information System (INIS)

    Liu, Yanyi; Liu, Dawei; Zhang, Qifeng; Yu, Danmei; Liu, Jun; Cao, Guozhong

    2011-01-01

    This paper reports sol-gel derived nanostructured LiFePO4/carbon nanocomposite film cathodes exhibiting enhanced electrochemical properties and cyclic stabilities. LiFePO4/carbon films were obtained by spreading sol on Pt coated Si wafer followed by ambient drying overnight and annealing/pyrolysis at elevated temperature in nitrogen. Uniform and crack-free LiFePO4/carbon nanocomposite films were readily obtained and showed olivine phase as determined by means of X-Ray Diffractometry. The electrochemical characterization revealed that, at a current density of 200 mA/g (1.2 C), the nanocomposite film cathodes demonstrated an initial lithium-ion intercalation capacity of 312 mAh/g, and 218 mAh/g after 20 cycles, exceeding the theoretical storage capacity of conventional LiFePO4 electrode. Such enhanced Li-ion intercalation performance could be attributed to the nanocomposite structure with fine crystallite size below 20 nm as well as the poor crystallinity which provides a partially open structure allowing easy mass transport and volume change associated with Li-ion intercalation. Moreover the surface defect introduced by carbon nanocoating could also effectively facilitate the charge transfer and phase transitions.

  14. Hierarchical mesoporous/microporous carbon with graphitized frameworks for high-performance lithium-ion batteries

    Directory of Open Access Journals (Sweden)

    Yingying Lv

    2014-11-01

    Full Text Available A hierarchical meso-/micro-porous graphitized carbon with uniform mesopores and ordered micropores, graphitized frameworks, and extra-high surface area of ∼2200 m2/g, was successfully synthesized through a simple one-step chemical vapor deposition process. The commercial mesoporous zeolite Y was utilized as a meso-/ micro-porous template, and the small-molecule methane was employed as a carbon precursor. The as-prepared hierarchical meso-/micro-porous carbons have homogeneously distributed mesopores as a host for electrolyte, which facilitate Li+ ions transport to the large-area micropores, resulting a high reversible lithium ion storage of 1000 mA h/g and a high columbic efficiency of 65% at the first cycle.

  15. Behavior of the extraction of metallic ions in carbonate medium, using N-benzoylphenylhydroxylamine (BPHA) - benzene

    International Nuclear Information System (INIS)

    Cipriani, M.

    1978-01-01

    The possibility of separating quantitatively trace impurities like Cu, Fe, In and Pb, present in uranium base materials of nuclear grade, is demonstrated. A solvent extraction is employed which makes use of -benzoylphenylhydroxylamine(BPHA)-benzene solution and separation is effected in a medium containing 252 moles per liter of sodium-uranyl tricarbonate at pH of 9,0. Carbonate ions under such conditions inhibit uranium extraction by masking uranyl ion-BPHA reaction. The uranyl ions show a demasking action, releasing, thereby, Pb(II) ions which are being extracted from carbonate medium. The Atomic Absorption Spectrophometry technique is used to obtain the experimental data [pt

  16. Calibration of BAS-TR image plate response to high energy (3-300 MeV) carbon ions

    Science.gov (United States)

    Doria, D.; Kar, S.; Ahmed, H.; Alejo, A.; Fernandez, J.; Cerchez, M.; Gray, R. J.; Hanton, F.; MacLellan, D. A.; McKenna, P.; Najmudin, Z.; Neely, D.; Romagnani, L.; Ruiz, J. A.; Sarri, G.; Scullion, C.; Streeter, M.; Swantusch, M.; Willi, O.; Zepf, M.; Borghesi, M.

    2015-12-01

    The paper presents the calibration of Fuji BAS-TR image plate (IP) response to high energy carbon ions of different charge states by employing an intense laser-driven ion source, which allowed access to carbon energies up to 270 MeV. The calibration method consists of employing a Thomson parabola spectrometer to separate and spectrally resolve different ion species, and a slotted CR-39 solid state detector overlayed onto an image plate for an absolute calibration of the IP signal. An empirical response function was obtained which can be reasonably extrapolated to higher ion energies. The experimental data also show that the IP response is independent of ion charge states.

  17. Simulation of the channelling of ions from MeV C{sub 60} in crystalline solids

    Energy Technology Data Exchange (ETDEWEB)

    Fetterman, A [Basic and Applied Physics, California Institute of Technology, Pasadena, CA (United States); Sinclair, L [Basic and Applied Physics, California Institute of Technology, Pasadena, CA (United States); Tanushev, N [Basic and Applied Physics, California Institute of Technology, Pasadena, CA (United States); Tombrello, T [Basic and Applied Physics, California Institute of Technology, Pasadena, CA (United States); Nardi, E [Department of Particle Physics, Weizmann Institute of Science Rehovot, 76100 (Israel)

    2007-06-14

    Simulations were performed describing the motion and breakup of energetic C{sub 60} ions interacting with crystalline targets. A hybrid algorithm was used that employs a binary collision model for the scattering of the carbon ions by the atoms of the solid, and molecular dynamics for the Coulomb interactions of the 60 carbon ions with one another. For the case of yttrium iron garnet (YIG), directions such as [1 1 0], [1 0 0], [0 1 0] and [0 0 1] demonstrate channelling for a large fraction of the C ions. For directions such as [1 1 1], [2 1 1] and [7 5 3] the trajectories show no more channelling than for random directions. The effects of tilt, shielding and wake-field interactions were investigated for YIG and {alpha}-quartz.

  18. Analysis of diffuse scattering in neutron powder diagrams. Application to glassy carbon

    International Nuclear Information System (INIS)

    Boysen, H.

    1985-01-01

    From the quantitative analysis of the diffuse scattered intensity in powder diagrams valuable information about the disorder in crystals may be obtained. According to the dimensionality of this disorder (0D, 1D, 2D or 3D corresponding to diffuse peaks, streaks, planes or volume in reciprocal space) a characteristic modulation of the background is observed, which is described by specific functions. These are derived by averaging the appropriate cross sections over all crystallite orientations in the powder and folding with the resolution function of the instrument. If proper account is taken of all proportionality factors different components of the background can be put on one relative scale. The results are applied to two samples of glassy carbon differing in their degree of disorder. The neutron powder patterns contain contributions from 0D (00l peaks due to the stacking of graphitic layers), 1D (hkzeta streaks caused by the random orientation of these layers) and 3D (incoherent scattering, averaged thermal diffuse scattering, multiple scattering). From the fit to the observed data various parameters of the disorder like domain sizes, strains, interlayer distances, amount of incorporated hydrogen, pore sizes etc. are determined. It is shown that the omission of resolution corrections leads to false parameters. (orig.)

  19. Imaging the interphase of carbon fiber composites using transmission electron microscopy: Preparations by focused ion beam, ion beam etching, and ultramicrotomy

    Directory of Open Access Journals (Sweden)

    Wu Qing

    2015-10-01

    Full Text Available Three sample preparation techniques, focused ion beam (FIB, ion beam (IB etching, and ultramicrotomy (UM were used in comparison to analyze the interphase of carbon fiber/epoxy composites using transmission electron microscopy. An intact interphase with a relatively uniform thickness was obtained by FIB, and detailed chemical analysis of the interphase was investigated by electron energy loss spectroscopy. It shows that the interphase region is 200 nm wide with an increasing oxygen-to-carbon ratio from 10% to 19% and an almost constant nitrogen-to-carbon ratio of about 3%. However, gallium implantation of FIB tends to hinder fine structure analysis of the interphase. For IB etching, the interphase region is observed with transition morphology from amorphous resin to nano-crystalline carbon fiber, but the uneven sample thickness brings difficulty for quantitative chemical analysis. Moreover, UM tends to cause damage and/or deformation on the interphase. These results are meaningful for in-depth understanding on the interphase characteristic of carbon fiber composites.

  20. Time-of-flight scattering and recoiling spectrometry

    International Nuclear Information System (INIS)

    Rabalais, J.W.

    1991-01-01

    Ion scattering and recoiling spectrometry consists of directing a collimated beam of monoenergetic ions towards a surface and measuring the flux of scattered and recoiled particles from this surface. When the neutral plus ion flux is velocity selected by measuring the flight times from the sample to the detector, the technique is called time-of-flight scattering and recoiling spectrometry (TOF-SARS). TOF-SARS is capable of (1) surface elemental analysis by applying classical mechanics to the velocities of the particles, (2) surface structural analysis by monitoring the angular anisotropies in the particle flux, and (3) ion-surface electron exchange probabilities by analysis of the ion/neutral fractions in the particle flux. Examples of these three areas are presented herein

  1. Neutron scattering for lithium-ion batteries: analysis of materials and processes; Primenenie rasseyaniya nejtronov dlya analiza protsessov v litij-ionnykh akkumulyatorakh

    Energy Technology Data Exchange (ETDEWEB)

    Balagurov, A. M.; Bobrikov, I. A. [Ob' ' edinennyj Inst. Yadernykh Issledovanij, Dubna (Russian Federation); Samojlova, N. Yu. [Ob' ' edinennyj Inst. Yadernykh Issledovanij, Dubna (Russian Federation); Nauchno-Issledovatel' skij Inst. Yadernoj Fiziki im. D.V.Skobel' tsyna, MGU im. V.V.Lomonosova, Moscow (Russian Federation); Drozhzhin, O. A.; Antipov, E. V. [Moskovskij Gosudarstvennyj Univ. im. M.V.Lomonosova, Moscow (Russian Federation)

    2014-07-01

    The use of neutron scattering to study the structure of materials used in portable power sources (mainly lithium-ion batteries) and to examine the structural changes of these materials during the electrochemical processes is reviewed. We consider the applications of several basic techniques: diffraction, small angle and inelastic neutron scattering, neutron reflectometry and neutron imaging. The experimental facilities that already exist in advanced neutron sources and a series of representative experiments are reviewed. The results of some studies of lithium-containing materials and lithium-ion batteries performed at the IBR-2 pulsed research reactor at the Joint Institute for Nuclear Research (Dubna) are presented.

  2. Probing molecules on a surface by Cs+ reactive ion scattering: identification of C2Hx (x≤4) hydrocarbons

    International Nuclear Information System (INIS)

    Kang, H.; Lee, C.W.; Hwang, C.H.; Kim, C.M.

    2003-01-01

    We studied molecular species appearing in the reactions of ethylene on a Pt(1 1 1) surface by the technique of Cs + reactive ion scattering (Cs + RIS). Dehydrogenation reaction of ethylene was examined for a surface temperature range of 100-800 K, and the RIS result verified the well-known sequence of forming di-σ-bonded ethylene (-CH 2 -CH 2 -), ethylidyne (≡C-CH 3 ), CH, and then surface carbons, as the temperature increased. In particular, the intermediate species in the conversion of ethylene to ethylidyne was closely investigated, which showed the presence of an ethylidene intermediate (≡CH-CH 3 ). In a study of H/D exchange reactions between surface C 2 D 4 and H, we successfully identified the ethylenes in which several deuterium atoms were substituted by hydrogen (C 2 D 4-x H x ,x=0-4), and quantitatively determined their relative populations. These examples demonstrate the ability of the Cs + RIS method to identify small hydrocarbons and their isotope-exchanged species on surfaces

  3. Deposition of carbon nitride films by vacuum ion diode with explosive emission

    Energy Technology Data Exchange (ETDEWEB)

    Korenev, S.A.; Perry, A.J. [New Jersey Inst. of Tech., Newark (United States); Elkind, A.; Kalmukov, A.

    1997-10-31

    Carbon nitride films were synthesized using a novel technique based on the pulsed high voltage ion/electron diode with explosive emission (pulsed voltage 200-700 kV pulsed current 100-500 Acm{sup -2} (ions) 150-2000 Acm{sup -2} (electrons)). The method and its novel features are discussed as well as its application to the formation of the crystalline {beta}-phase in C{sub 3}N{sub 4} films. Mixed elemental nitrogen and carbon films are formed by sequential deposition then subjected to ion and/or electron beam mixing to synthesize the C{sub 3}N{sub 4} structure. The experimental conditions used for this pulsed process are described and the efficiency of the method for nitrogen incorporation is demonstrated. The results presented indicate that {beta}-C{sub 3}N{sub 4} crystallites are formed in an amorphous matrix. (orig.) 20 refs.

  4. Transport of carbon ion test particles and hydrogen recycling in the plasma of the Columbia tokamak ''HBT'' [High Beta Tokamak

    International Nuclear Information System (INIS)

    Wang, Jian-Hua.

    1990-01-01

    Carbon impurity ion transport is studied in the Columbia High Beta Tokamak (HBT), using a carbon tipped probe which is inserted into the plasma (n e ∼ 1 - 5 x 10 14 (cm -3 ), T e ∼ 4 - 10 (eV), B t ∼ 0.2 - 0.4(T)). Carbon impurity light, mainly the strong lines of C II (4267A, emitted by the C + ions) and C III (4647A, emitted by the C ++ ions), is formed by the ablation or sputtering of plasma ions and by the discharge of the carbon probe itself. The diffusion transport of the carbon ions is modeled by measuring the space-and-time dependent spectral light emission of the carbon ions with a collimated optical beam and photomultiplier. The point of emission can be observed in such a way as to sample regions along and transverse to the toroidal magnetic field. The carbon ion diffusion coefficients are obtained by fitting the data to a diffusion transport model. It is found that the diffusion of the carbon ions is ''classical'' and is controlled by the high collisionality of the HBT plasma; the diffusion is a two-dimensional problem and the expected dependence on the charge of the impurity ion is observed. The measurement of the spatial distribution of the H α emissivity was obtained by inverting the light signals from a 4-channel polychromator, the data were used to calculate the minor-radial influx, the density, and the recycling time of neutral hydrogen atoms or molecules. The calculation shows that the particle recycling time τ p is comparable with the plasma energy confinement time τ E ; therefore, the recycling of the hot plasma ions with the cold neutrals from the walls is one of the main mechanisms for loss of plasma energy

  5. Dose-volume histogram analysis of hepatic toxicity related to carbon ion radiation therapy of hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Yasuda, Shigeo; Kato, Hirotoshi; Tsujii, Hitohiko; Mizoe, Junetsu

    2005-01-01

    The purpose of this study is to analyze the correlation of hepatic toxicity with dose-volume factors of carbon ion radiotherapy in the liver. Forty-nine patients with hepatocellular carcinoma were treated with carbon ion radiotherapy delivered in 4 fractions over 4 to 7 days. Six patients received a total dose of 48 GyE and 43 received 52.8 GyE. The correlation of various blood biochemistry data with dose-volume histogram (DVH) data in non-cancerous liver were evaluated. The strongest significant correlation was seen between percent volume of non-cancerous liver with radiation dose more than 11 GyE (V 11 GyE ) and elevation of serum glutamic oxaloacetic transaminase (GOT) level as early adverse response after carbon ion beam radiation therapy (p=0.0003). In addition, significant correlation between DVH data and change of several other blood biochemistry data were also revealed in early phase. In late phase after carbon ion radiotherapy, the strongest significant correlation was seen between decrease of platelet count and V 26GyE (p=0.015). There was no significant correlation between other blood biochemistry data and DVH data in the late phase. It was suggested that dose-volume factors of carbon ion radiotherapy influenced only transient aggravation of liver function, which improved in the long term after irradiation. (author)

  6. Mesoporous activated carbon from corn stalk core for lithium ion batteries

    Science.gov (United States)

    Li, Yi; Li, Chun; Qi, Hui; Yu, Kaifeng; Liang, Ce

    2018-04-01

    A novel mesoporous activated carbon (AC) derived from corn stalk core is prepared via a facile and effective method which including the decomposition and carbonization of corn stalk core under an inert gas atmosphere and further activation process with KOH solution. The mesoporous activated carbon (AC) is characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) measurements. These biomass waste derived from activated carbon is proved to be promising anode materials for high specific capacity lithium ion batteries. The activated carbon anode possesses excellent reversible capacity of 504 mAh g-1 after 100 cycles at 0.2C. Compared with the unactivated carbon (UAC), the electrochemical performance of activated carbon is significantly improved due to its mesoporous structure.

  7. A dual spectroscopic fluorescence probe based on carbon dots for detection of 2,4,6-trinitrophenol/Fe (III) ion by fluorescence and frequency doubling scattering spectra and its analytical applications.

    Science.gov (United States)

    Xu, Jinxia; Bai, Zhangjun; Zu, Fanlin; Yan, Fanyong; Wei, Junfu; Zhang, Saihui; Luo, Yunmei

    2018-07-05

    A convenient, highly sensitive and reliable assay for 2,4,6‑trinitrophenol (TNP) and Fe (III) ion (Fe 3+ ) in the dual spectroscopic manner is developed based on novel carbon dots (CDs). The CDs with highly blue emitting fluorescent were easily prepared via the one-step potassium hydroxide-assisted reflux method from dextrin. The as-synthesized CDs exhibited the high crystalline quality, the excellent fluorescence characteristics with a high quantum yield of ~13.1%, and the narrow size distribution with an average diameter of 6.3±0.5nm. Fluorescence and frequency doubling scattering (FDS) spectra of CDs show the unique changes in the presence of TNP/Fe 3+ by different mechanism. The fluorescence of CDs decreased apparently in the presence of TNP via electron-transfer. Thus, after the experimental conditions were optimized, the linear range for detection TNP is 0-50μM, the detection limit was 19.1nM. With the addition of Fe 3+ , the FDS of CDs appeared to be highly sensitive with a quick response to Fe 3+ as a result of the change concentration of the scattering particle. The emission peak for FDS at 450nm was enhanced under the excitation wavelength at 900nm. The fluorescence response changes linearly with Fe 3+ concentration in the range of 8-40μM, the detection limits were determined to be 44.1nM. The applications of CDs were extended for the detection of TNP, Fe 3+ in real water samples with a high recovery. The results reported here may become the potential tools for the fast response of TNP and Fe 3+ in the analysis of environmental pollutants. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Study on initial stage of hetero-epitaxial growth by glancing angle scattering of fast ions from surfaces

    International Nuclear Information System (INIS)

    Fujii, Yoshikazu; Toba, Kazuaki; Narumi, Kazumasa; Kimura, Kenji; Mannami, Michihiko

    1993-01-01

    Initial stages of epitaxial growth of lead chalcogenides on the (100) surface of SnTe under UHV conditions are studied from the angular distribution of scattered ions at glancing angle incidence of 0.7 MeV He ions on the growing surfaces. Real time measurement of the angular distribution is performed during the growth. Anomalous broadening of the angular distribution is observed at the initial stage of the growth. The broadening is attributed to the surface wrinkles induced by a square network of misfit edge dislocations. (author)

  9. Protective Sliding Carbon-Based Nanolayers Prepared by Argon or Nitrogen Ion-Beam Assisted Deposition on Ti6Al4V Alloy

    Directory of Open Access Journals (Sweden)

    Petr Vlcak

    2016-01-01

    Full Text Available The microstructure and the surface properties of samples coated by carbon-based nanolayer were investigated in an effort to increase the surface hardness and reduce the coefficient of friction of the Ti6Al4V alloy. Protective carbon-based nanolayers were fabricated by argon or nitrogen ion-beam assisted deposition at ion energy of 700 eV on Ti6Al4V substrates. The Raman spectra indicated that nanolayers had a diamond-like carbon character with sp2 rich bonds. The TiC and TiN compounds formed in the surface area were detected by X-ray diffraction. Nanoscratch tests showed increased adhesion of a carbon-based nanolayer deposited with ion assistance in comparison with a carbon nanolayer deposited without ion assistance. The results showed that argon ion assistance leads to greater nanohardness than a sample coated by a carbon-based nanolayer with nitrogen ion assistance. A more than twofold increase in nanohardness and a more than fivefold decrease in the coefficient of friction were obtained for samples coated by a carbon-based nanolayer with ion assistance, in comparison with the reference sample.

  10. Tumor induction in mice after local irradiation with single doses of either carbon-ion beams or gamma rays.

    Science.gov (United States)

    Ando, Koichi; Koike, Sachiko; Ohmachi, Yasushi; Ando, Yutaka; Kobashi, Gen

    2014-12-01

    To determine the dose-dependent relative biological effectiveness (RBE) for tumor prevalence in mice receiving single localized doses to their right leg of either carbon ions (15, 45 or 75 keV/μm) or 137Cs gamma rays. A total of 1647 female C3H mice were irradiated to their hind legs with a localized dose of either reference gamma rays or 15, 45 or 75 keV/μm carbon-ion beams. Irradiated mice were evaluated for tumors twice a month during their three-year life span, and the dimensions of any tumors found were measured with a caliper. The tumor induction frequency was calculated by Kaplan-Meier analysis. The incidence of tumors from 50 Gy of 45 keV/μm carbon ions was marginally higher than those from 50 Gy of gamma rays. However, 60 Gy of 15 keV/μm carbon ions induced significantly fewer tumors than did gamma rays. RBE values of 0.87 + 0.12, 1.29 + 0.08 or 2.06 + 0.39 for lifetime tumorigenesis were calculated for 15, 45 or 75 keV/μm carbon-ion beams, respectively. Fibrosarcoma predominated, with no Linear Energy Transfer (LET)-dependent differences in the tumor histology. Experiments measuring the late effect of leg skin shrinkage suggested that the carcinogenic damage of 15 keV/μm carbon ions would be less than that of gamma rays. We conclude that patients receiving radiation doses to their normal tissues would face less risk of secondary tumor induction by carbon ions of intermediate LET values compared to equivalent doses of photons.

  11. Investigation of lithium forward scattering for the analysis of carbon and oxygen in human amniotic fluid

    International Nuclear Information System (INIS)

    Liendo, J.A.; Instituto Venezolano de Investigaciones Cientificas, Caracas; Florida State University, Tallahasse, FL; Gonzalez, A.C.; Rojas, A.; Instituto Venezolano de Investigaciones Cientificas, Caracas; Fletcher, N.R.; Caussyn, D.D.; Barber, P.

    2006-01-01

    Lithium forward elastic scattering is investigated as an additional method for Z 6,7 Li beams and the elastically scattered beam is detected at 16.45 deg, 20.45 deg and 28.0 deg simultaneously. The quality of elastic spectra improves with sample dilution. The content of C and O in the backing is subtracted. Carbon and oxygen concentrations of the non-diluted AF sample are determined by assuming that elemental concentration varies linearly with dilution. (author)

  12. Modified granular activated carbon: A carrier for the recovery of nickel ions from aqueous wastes

    Energy Technology Data Exchange (ETDEWEB)

    Satapathy, D.; Natarajan, G.S.; Sen, R. [Central Fuel Research Inst., Nagpur (India)

    2004-07-01

    Granular Activated Carbon (GAC) is widely used for the removal and recovery of toxic pollutants including metals because of its low cost and high affinity towards the scavenging of metal ions. Activated carbon derived from bituminous coal is preferred for wastewater treatment due to its considerable hardness, a characteristic needed to keep down handling losses during re-activation. Commercial grade bituminous coal based carbon, viz. Filtrasorb (F-400), was used in the present work. The scavenging of precious metals such as nickel onto GAC was studied and a possible attempt made to recover the adsorbed Ni{sup 2+} ions through the use of some suitable leaching processes. As part of the study, the role of complexing agents on the surface of the carbon was also investigated. The use of organic complexing agents such as oxine and 2-methyloxine in the recovery process was found to be promising. In addition, the surface of the carbon was modified with suitable oxidising agents that proved to be more effective than chelating agents. Several attempts were made to optimise the recovery of metal ions by carrying out experiments with oxidising agents in order to obtain maximum recovery from the minimum quantity of carbon. Experiments with nitric acid indicated that not only was the carbon surface modified but such modification also helped in carbon regeneration.

  13. An activated microporous carbon prepared from phenol-melamine-formaldehyde resin for lithium ion battery anode

    International Nuclear Information System (INIS)

    Zhu, Yinhai; Xiang, Xiaoxia; Liu, Enhui; Wu, Yuhu; Xie, Hui; Wu, Zhilian; Tian, Yingying

    2012-01-01

    Highlights: ► Microporous carbon was prepared by chemical activation of phenol-melamine-formaldehyde resin. ► Activation leads to high surface area, well-developed micropores. ► Micropores lead to strong intercalation between carbon and lithium ion. ► Large surface area promotes to improve the lithium storage capacity. -- Abstract: Microporous carbon anode materials were prepared from phenol-melamine-formaldehyde resin by ZnCl 2 and KOH activation. The physicochemical properties of the obtained carbon materials were characterized by scanning electron microscope, X-ray diffraction, Brunauer–Emmett–Teller, and elemental analysis. The electrochemical properties of the microporous carbon as anode materials in lithium ion secondary batteries were evaluated. At a current density of 100 mA g −1 , the carbon without activation shows a first discharge capacity of 515 mAh g −1 . After activation, the capacity improved obviously. The first discharge capacity of the carbon prepared by ZnCl 2 and KOH activation was 1010 and 2085 mAh g −1 , respectively. The reversible capacity of the carbon prepared by KOH activation was still as high as 717 mAh g −1 after 20 cycles, which was much better than that activated by ZnCl 2 . These results demonstrated that it may be a promising candidate as an anode material for lithium ion secondary batteries.

  14. Silicon Composite Anode Materials for Lithium Ion Batteries Based on Carbon Cryogels and Carbon Paper

    Science.gov (United States)

    Woodworth, James; Baldwin, Richard; Bennett, William

    2010-01-01

    A variety of materials are under investigation for use as anode materials in lithium-ion batteries, of which, the most promising are those containing silicon. One such material is a composite formed via the dispersion of silicon in a resorcinol-formaldehyde (RF) gel followed by pyrolysis. Two silicon-carbon composite materials, carbon microspheres and nanofoams produced from nano-phase silicon impregnated RF gel precursors have been synthesized and investigated. Carbon microspheres are produced by forming the silicon-containing RF gel into microspheres whereas carbon nanofoams are produced by impregnating carbon fiber paper with the silicon containing RF gel to create a free standing electrode. Both materials have demonstrated their ability to function as anodes and utilize the silicon present in the material. Stable reversible capacities above 400 mAh/g for the bulk material and above 1000 mAh/g of Si have been observed.

  15. Optical, structural, and chemical properties of CR-39 implanted with 5.2 MeV doubly charged carbon ions

    Science.gov (United States)

    Ali, Dilawar; Butt, M. Z.; Ishtiaq, Mohsin; Waqas Khaliq, M.; Bashir, Farooq

    2016-11-01

    Poly-allyl-diglycol-carbonate (CR-39) specimens were irradiated with 5.2 MeV doubly charged carbon ions using Pelletron accelerator. Ion dose was varied from 5 × 1013 to 5 × 1015 ions cm-2. Optical, structural, and chemical properties were investigated by UV-vis spectroscopy, x-ray diffractometer, and FTIR/Raman spectroscopy, respectively. It was found that optical absorption increases with increasing ion dose. Absorption edge shifts from UV region to visible region. The measured opacity values of pristine and ion implanted CR-39 range from 0.0519 to 4.7959 mm-1 following an exponential growth (9141%) with the increase in ion dose. The values of direct and indirect band gap energy decrease exponentially with an increase in ion dose by 59% and 71%, respectively. However, average refractive index in the visible region increases from 1.443 to 2.864 with an increase in ion dose, by 98%. A linear relation between band gap energy and crystallite size was observed. Both the number of carbon atoms in conjugation length and the number of carbon atoms per cluster increase linearly with the increase in ion dose. FTIR spectra showed that on C+2 ions irradiation, the intensity of all bands decreases gradually without appearance of any new band, indicating degradation of polymer after irradiation. Raman spectra revealed that the density of -CH2- group decreases on C+2 ions irradiation. However, the structure of CR-39 is completely destroyed on irradiation with ion dose 1 × 1015 and 5 × 1015 ions cm-2.

  16. Homologous recombination in Arabidopsis seeds along the track of energetic carbon ions

    International Nuclear Information System (INIS)

    Wang Ting; Li Fanghua; Liu Qingfang; Bian Po; Wang Jufang; Wu Yuejin; Wu Lijun; Li Wenjian

    2012-01-01

    Heavy ion irradiation has been used as radiotherapy of deep-seated tumors, and is also an inevitable health concern for astronauts in space mission. Unlike photons such as X-rays and γ-rays, a high linear energy transfer (LET) heavy ion has a varying energy distribution along its track. Therefore, it is important to determine the correlation of biological effects with the Bragg curve energy distribution of heavy ions. In this study, a continuous biological tissue equivalent was constructed using a layered cylinder of Arabidopsis seeds, which was irradiated with carbon ions of 87.5 MeV/nucleon. The position of energy loss peak in the seed pool was determined with CR-39 track detectors. The mutagenic effect in vivo along the path of carbon ions was investigated with the seeds in each layer as an assay unit, which corresponded to a given position in physical Bragg curve. Homologous recombination frequency (HRF), expression level of AtRAD54 gene, germination rate of seeds, and survival rate of young seedlings were used as checking endpoints, respectively. Our results showed that Arabidopsis S0 and S1 plants exhibited significant increases in HRF compared to their controls, and the expression level of AtRAD54 gene in S0 plants was significantly up-regulated. The depth-biological effect curves for HRF and the expression of AtRAD54 gene were not consistent with the physical Bragg curve. Differently, the depth-biological effect curves for the developmental endpoints matched generally with the physical Bragg curve. The results suggested a different response pattern of various types of biological events to heavy ion irradiation. It is also interesting that except for HRF in S0 plants, the depth-biological effect curves for each biological endpoint were similar for 5 Gy and 30 Gy of carbon irradiation.

  17. Homologous recombination in Arabidopsis seeds along the track of energetic carbon ions

    Energy Technology Data Exchange (ETDEWEB)

    Wang Ting [University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026 (China); Key Laboratory of Ion Beam Bio-engineering, Institute of Technical Biology and Agricultural Engineering, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei 230031 (China); Li Fanghua [Key Laboratory of Ion Beam Bio-engineering, Institute of Technical Biology and Agricultural Engineering, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei 230031 (China); Liu Qingfang [Radiobiology Laboratory, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000 (China); Bian Po, E-mail: bianpo@ipp.ac.cn [Key Laboratory of Ion Beam Bio-engineering, Institute of Technical Biology and Agricultural Engineering, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei 230031 (China); Wang Jufang [Radiobiology Laboratory, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000 (China); Wu Yuejin; Wu Lijun [Key Laboratory of Ion Beam Bio-engineering, Institute of Technical Biology and Agricultural Engineering, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei 230031 (China); Li Wenjian [Radiobiology Laboratory, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000 (China)

    2012-09-01

    Heavy ion irradiation has been used as radiotherapy of deep-seated tumors, and is also an inevitable health concern for astronauts in space mission. Unlike photons such as X-rays and {gamma}-rays, a high linear energy transfer (LET) heavy ion has a varying energy distribution along its track. Therefore, it is important to determine the correlation of biological effects with the Bragg curve energy distribution of heavy ions. In this study, a continuous biological tissue equivalent was constructed using a layered cylinder of Arabidopsis seeds, which was irradiated with carbon ions of 87.5 MeV/nucleon. The position of energy loss peak in the seed pool was determined with CR-39 track detectors. The mutagenic effect in vivo along the path of carbon ions was investigated with the seeds in each layer as an assay unit, which corresponded to a given position in physical Bragg curve. Homologous recombination frequency (HRF), expression level of AtRAD54 gene, germination rate of seeds, and survival rate of young seedlings were used as checking endpoints, respectively. Our results showed that Arabidopsis S0 and S1 plants exhibited significant increases in HRF compared to their controls, and the expression level of AtRAD54 gene in S0 plants was significantly up-regulated. The depth-biological effect curves for HRF and the expression of AtRAD54 gene were not consistent with the physical Bragg curve. Differently, the depth-biological effect curves for the developmental endpoints matched generally with the physical Bragg curve. The results suggested a different response pattern of various types of biological events to heavy ion irradiation. It is also interesting that except for HRF in S0 plants, the depth-biological effect curves for each biological endpoint were similar for 5 Gy and 30 Gy of carbon irradiation.

  18. Radiation biophysical studies with mammalian cells and a modulated carbon ion beam

    International Nuclear Information System (INIS)

    Chapman, J.D.; Blakely, E.A.; Smith, K.C.; Urtasun, R.C.; Lyman, J.T.; Tobias, C.A.

    1978-01-01

    Chinese hamster (V-79) and human kidney (T-1) cells were irradiated in stirred suspensions placed at various positions in the plateau and extended Bragg peak of a 400-MeV/amu carbon ion beam. The range of the ions was modulated by a lead (translational) ridge filter and a brass (spiral) ridge filter designed to produce extended peaks of approximately 4 and 10 cm, respectively. Stationary-phase and G 1 -phase populations of Chinese hamster cells were found to have different absolute radiosensitivities which, in turn, were different from that of asynchronous human kidney cells. The increase in relative biological effectiveness (RBE) observed as carbon ions were slowed down and stopped in water was similar for the three cell populations at doses greater than 400 rad. At lower doses the RBE was greater for the hamster cell populations than for the human kidney cells. The gain in RBE (at the 50% survival level) between the plateaus and the middle region of the extended peaks was approximately 2.0 and 1.7 for the 4- and 10-cm extended peaks, respectively. Oxygen enhancement ratios (OER) were determined at the 10% survival levels with stationary-phase populations of hamster cells. Values of 2.8, 2.65, and 1.65 were obtained for the OER of 220-kV x rays, plateau carbon, and the middle region of the 4-cm carbon peak, respectively. Across the 10-cm carbon peak the OER was found to vary between values of 2.4 to 1.55 from the proximal to distal positions

  19. Small-angle neutron scattering and cyclic voltammetry study on electrochemically oxidized and reduced pyrolytic carbon

    International Nuclear Information System (INIS)

    Braun, A.; Kohlbrecher, J.; Baertsch, M.; Schnyder, B.; Koetz, R.; Haas, O.; Wokaun, A.

    2004-01-01

    The electrochemical double layer capacitance and internal surface area of a pyrolytic carbon material after electrochemical oxidation and subsequent reduction was studied with cyclic voltammetry and small-angle neutron scattering. Oxidation yields an enhanced internal surface area (activation), and subsequent reduction causes a decrease of this internal surface area. The change of the Porod constant, as obtained from small-angle neutron scattering, reveals that the decrease in internal surface area is not caused merely by a closing or narrowing of the pores, but by a partial collapse of the pore network

  20. Effect of ion irradiation on the structure and the surface topography of carbon fiber

    International Nuclear Information System (INIS)

    Ligacheva, E.A.; Galyaeva, L.V.; Gavrilov, N.V.; Belykh, T.A.; Ligachev, A.E.; Sokhoreva, V.V.

    2006-01-01

    The effect of C + ion irradiation (40 keV, 10 15 - 10 19 cm -2 ) on the structure and surface topography of high-module carbon fibers is investigated. Interplanar distance and internal stress values are found to be minimal at a radiation dose of 10 17 cm -2 , the height of a layer pack being practically unchanged. The relief of ion irradiated carbon fiber surface constitutes regularly repetitive valleys and ridges spaced parallel with the fiber axis [ru

  1. Stimulated Raman scattering and ion dynamics: the role of Langmuir wave non-linearities

    International Nuclear Information System (INIS)

    Bonnaud, G.; Pesme, D.

    1987-01-01

    The saturation of the Stimulated Raman Scattering (SRS) is studied by means of wave-coupling numerical simulations. A new code (CHEOPS) has been designed in order to model these couplings, in real 1-D space, with aperiodic boundary conditions. Each wave can be represented either by a complete amplitude or by an envelope amplitude only. The choice of the wave set to be coupled allows to investigate separately some mechanisms relevant in long time SRS evolution. The various mechanisms which may inhibit SRS growth are reviewed and the SRS saturation scenarios are exhibited in an homogeneous density plasma slab. The ion dependent mechanisms appear to be the most efficient ones to saturate SRS. Their importance is strongly bound to the electron temperature and to the ion fluctuation level at time when SRS has already grown many e-foldings

  2. Synthesis of carbon-coated TiO 2 nanotubes for high-power lithium-ion batteries

    Science.gov (United States)

    Park, Sang-Jun; Kim, Young-Jun; Lee, Hyukjae

    Carbon-coated TiO 2 nanotubes are prepared by a simple one-step hydrothermal method with an addition of glucose in the starting powder, and are characterized by morphological analysis and electrochemical measurement. A thin carbon coating on the nanotube surface effectively suppresses severe agglomeration of TiO 2 nanotubes during hydrothermal reaction and post calcination. This action results in better ionic and electronic kinetics when applied to lithium-ion batteries. Consequently, carbon-coated TiO 2 nanotubes deliver a remarkable lithium-ion intercalation/deintercalation performance, such as reversible capacities of 286 and 150 mAh g -1 at 250 and 7500 mA g -1, respectively.

  3. Solvation of lithium ion in dimethoxyethane and propylene carbonate

    Science.gov (United States)

    Chaban, Vitaly

    2015-07-01

    Solvation of the lithium ion (Li+) in dimethoxyethane (DME) and propylene carbonate (PC) is of scientific significance and urgency in the context of lithium-ion batteries. I report PM7-MD simulations on the composition of Li+ solvation shells (SH) in a few DME/PC mixtures. The equimolar mixture features preferential solvation by PC, in agreement with classical MD studies. However, one DME molecule is always present in the first SH, supplementing the cage formed by five PC molecules. As PC molecules get removed, DME gradually substitutes vacant places. In the PC-poor mixtures, an entire SH is populated by five DME molecules.

  4. Does Aerobic Respiration Produce Carbon Dioxide or Hydrogen Ion and Bicarbonate?

    Science.gov (United States)

    Swenson, Erik R

    2018-05-01

    Maintenance of intracellular pH is critical for clinical homeostasis. The metabolism of glucose, fatty acids, and amino acids yielding the generation of adenosine triphosphate in the mitochondria is accompanied by the production of acid in the Krebs cycle. Both the nature of this acidosis and the mechanism of its disposal have been argued by two investigators with a long-abiding interest in acid-base physiology. They offer different interpretations and views of the molecular mechanism of this intracellular pH regulation during normal metabolism. Dr. John Severinghaus has posited that hydrogen ion and bicarbonate are the direct end products in the Krebs cycle. In the late 1960s, he showed in brain and brain homogenate experiments that acetazolamide, a carbonic anhydrase inhibitor, reduces intracellular pH. This led him to conclude that hydrogen ion and bicarbonate are the end products, and the role of intracellular carbonic anhydrase is to rapidly generate diffusible carbon dioxide to minimize acidosis. Dr. Erik Swenson posits that carbon dioxide is a direct end product in the Krebs cycle, a more widely accepted view, and that acetazolamide prevents rapid intracellular bicarbonate formation, which can then codiffuse with carbon dioxide to the cell surface and there be reconverted for exit from the cell. Loss of this "facilitated diffusion of carbon dioxide" leads to intracellular acidosis as the still appreciable uncatalyzed rate of carbon dioxide hydration generates more protons. This review summarizes the available evidence and determines that resolution of this question will require more sophisticated measurements of intracellular pH with faster temporal resolution.

  5. Dynamically induced spin-dependent interaction in the elastic scattering of heavy-ions

    International Nuclear Information System (INIS)

    Imanishi, B.; Oertzen, W. von.

    1982-02-01

    Dynamical polarization effect in heavy-ion elastic scattering is investigated in the framework of the coupled-reaction-channel theory. By using the adiabatic approximation at low incident energies, this effect is expressed as a spin-orbit (L vector.S vector) interaction with a L vector and S vector independent radial function. The strength of the (L vector.S vector) interaction calculated for the 12 C + 13 C system is in the same order of magnitude as deduced from experiments and is about two orders of magnitude larger than that obtained from the folding model calculation. (author)

  6. Enhanced electrochemical stability of carbon-coated antimony nanoparticles with sodium alginate binder for sodium-ion batteries

    Directory of Open Access Journals (Sweden)

    Jianmin Feng

    2018-04-01

    Full Text Available The poor cycling stability of antimony during a repeated sodium ion insertion and desertion process is the key issue, which leads to an unsatisfactory application as an anode material in a sodium-ion battery. Addressed at this, we report a facile two-step method to coat antimony nanoparticles with an ultrathin carbon layer of few nanometers (denoted Sb@C NPs for sodium-ion battery anode application. This carbon layer could buffer the volume change of antimony in the charge-discharge process and improve the battery cycle performance. Meanwhile, this carbon coating could also enhance the interfacial stability by firmly connecting the sodium alginate binders through its oxygen-rich surface. Benefitted from these advantages, an improved initial discharge capacity (788.5 mA h g−1 and cycling stability capacity (553 mA h g−1 after 50 times cycle have been obtained in a battery using Sb@C NPs as anode materials at 50 mA g−1. Keywords: Sodium-ion battery, Antimony, Sodium alginate, Liquid-phase reduction, Carbon coating

  7. Enhanced wear resistance of production tools and steel samples by implantation of nitrogen and carbon ions

    International Nuclear Information System (INIS)

    Mikkelsen, N.J.; Straede, C.A.

    1992-01-01

    In recent years ion implantation has become a feasible technique for obtaining improved wear resistance of production tools. However, basic knowledge of how and in which cases ion implantation is working at its best is still needed. The present paper discusses structural and tribological investigations of carbon and nitrogen implanted steels. The nitrogen data were obtained mainly from field tests and the investigation of carbon implantations took place mainly in the laboratory. A study was made of how the tribological behaviour of implanted steels changes with different implantation parameters. The tribological laboratory investigations were carried out using pin-on-disc equipment under controlled test conditions, and deal with high dose carbon implantation (approximately (1-2)x10 18 ions cm -2 ). The wear resistance of steels was enhanced dramatically, by up to several orders of magnitude. The field test results cover a broad range of ion implanted production tools, which showed a marked improvement in wear resistance. Nitrogen implanted tools are also compared with carbon and titanium implanted tools. (orig.)

  8. Coaxial MoS2@Carbon Hybrid Fibers: A Low-Cost Anode Material for High-Performance Li-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Rui Zhou

    2017-02-01

    Full Text Available A low-cost bio-mass-derived carbon substrate has been employed to synthesize MoS2@carbon composites through a hydrothermal method. Carbon fibers derived from natural cotton provide a three-dimensional and open framework for the uniform growth of MoS2 nanosheets, thus hierarchically constructing coaxial architecture. The unique structure could synergistically benefit fast Li-ion and electron transport from the conductive carbon scaffold and porous MoS2 nanostructures. As a result, the MoS2@carbon composites—when serving as anodes for Li-ion batteries—exhibit a high reversible specific capacity of 820 mAh·g−1, high-rate capability (457 mAh·g−1 at 2 A·g−1, and excellent cycling stability. The use of bio-mass-derived carbon makes the MoS2@carbon composites low-cost and promising anode materials for high-performance Li-ion batteries.

  9. Carbon Contamination During Ion Irradiation - Accurate Detection and Characterization of its Effect on Microstructure of Ferritic/Martensitic Steels

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing; Toloczko, Mychailo B.; Kruska, Karen; Schreiber, Daniel K.; Edwards, Danny J.; Zhu, Zihua; Zhang, Jiandong

    2017-11-17

    Accelerator-based ion beam techniques have been used to study radiation effects in materials for decades. Although carbon contamination induced by ion beam in target materials is a well-known issue, it has not been fully characterized nor quantified for studies in ferritic/martensitic (F/M) steels that are candidate materials for applications such as core structural components in advanced nuclear reactors. It is an especially important issue for this class of material because of the effect of carbon level on precipitate formation. In this paper, the ability to quantify carbon contamination using three common techniques, namely time-of-flight secondary ion mass spectroscopy (ToF-SIMS), atom probe tomography (APT) and transmission electron microscopy (TEM) is compared. Their effectiveness and short-comings in determining carbon contamination will be presented and discussed. The corresponding microstructural changes related to carbon contamination in ion irradiated F/M steels are also presented and briefly discussed.

  10. NearFar: A computer program for nearside farside decomposition of heavy-ion elastic scattering amplitude

    Science.gov (United States)

    Cha, Moon Hoe

    2007-02-01

    The NearFar program is a package for carrying out an interactive nearside-farside decomposition of heavy-ion elastic scattering amplitude. The program is implemented in Java to perform numerical operations on the nearside and farside angular distributions. It contains a graphical display interface for the numerical results. A test run has been applied to the elastic O16+Si28 scattering at E=1503 MeV. Program summaryTitle of program: NearFar Catalogue identifier: ADYP_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADYP_v1_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: none Computers: designed for any machine capable of running Java, developed on PC-Pentium-4 Operating systems under which the program has been tested: Microsoft Windows XP (Home Edition) Program language used: Java Number of bits in a word: 64 Memory required to execute with typical data: case dependent No. of lines in distributed program, including test data, etc.: 3484 Number of bytes distributed program, including test data, etc.: 142 051 Distribution format: tar.gz Other software required: A Java runtime interpreter, or the Java Development Kit, version 5.0 Nature of physical problem: Interactive nearside-farside decomposition of heavy-ion elastic scattering amplitude. Method of solution: The user must supply a external data file or PPSM parameters which calculates theoretical values of the quantities to be decomposed. Typical running time: Problem dependent. In a test run, it is about 35 s on a 2.40 GHz Intel P4-processor machine.

  11. Computer simulation of scattered ion and sputtered species effects in ion beam sputter-deposition of high temperature superconducting thin films

    International Nuclear Information System (INIS)

    Krauss, A.R.; Auciello, O.

    1992-01-01

    Ion beam sputter-deposition is a technique currently used by many groups to produce single and multicomponent thin films. This technique provides several advantages over other deposition methods, which include the capability for yielding higher film density, accurate stoichiometry control, and smooth surfaces. However, the relatively high kinetic energies associated with ion beam sputtering also lead to difficulties if the process is not properly controlled. Computer simulations have been performed to determine net deposition rates, as well as the secondary erosion, lattice damage, and gas implantation in the films, associated with primary ions scattered from elemental Y, Ba and Cu targets used to produce high temperature superconducting Y-Ba-Cu-O films. The simulations were performed using the TRIM code for different ion masses and kinetic energies, and different deposition geometries. Results are presented for primary beams of Ar + , Kr + and Xe + incident on Ba and Cu targets at 0 degrees and 45 degrees with respect to the surface normal, with the substrate positioned at 0 degrees and 45 degrees. The calculations indicate that the target composition, mass and kinetic energy of the primary beam, angle of incidence on the target, and position and orientation of the substrate affect the film damage and trapped primary beam gas by up to 5 orders of magnitude

  12. Active beam scattering apparatus and its application to JFT-2 tokamak

    International Nuclear Information System (INIS)

    Takeuchi, Hiroshi; Matsuda, Toshiaki; Nishitani, Takeo; Shiho, Makoto; Maeda, Hikosuke; Konagai, Chikara; Kimura, Hironobu.

    1983-09-01

    The capability to assess the ion temperatures using a neutral beam scattering system is investigated on the JFT-2 tokamak. The neutral beam scattering system consists of a 15 KeV neutral hydrogen atom beam and a momentum analyser with silicon surface barrier detectors. The energy analysis of scattered particles on the scattering angle of 4 0 gives the estimation of ion temperatures, which agree well with the one deduced from passive charge-exchange neutral measurements. The influence of impurity ions to the scattering spectrum is not observed and the results of gas scattering experiments suggests that this phenomenon occurs because of the ionization of neutral beam due to the collisions with impurity ions. (author)

  13. Alanine Radiation Detectors in Therapeutic Carbon Ion Beams

    DEFF Research Database (Denmark)

    Herrmann, Rochus; Jäkel, Oliver; Palmans, Hugo

    of the depth dose curves. Solid state detectors, such as diamond detectors, radiochromic films, TLDs and the amino acid alanine are used due to there good spatial resolution. If used in particle beams their response often exhibits a dependence on particle energy and type, so the acquired signal is not always...... proportional to absorbed dose. A model by Hansen and Olsen, based on the Track Structure Theory is available, which can predict the relative efficiency of some detectors, when the particle spectrum is known. For alanine detectors the model was successfully validated by Hansen and Olsen for several ion species...... at energies below 20 MeV/u. We implemented this model in the Monte Carlo code FLUKA. At the GSI heavy ion facility in Darmstadt, Germany, alanine has been irradiated with carbon ions at energies between 88 an 400 MeV/u, which is the energy range used for therapy. The irradiation and the detector response have...

  14. MnO-carbon hybrid nanofiber composites as superior anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Wang, Jian-Gan; Yang, Ying; Huang, Zheng-Hong; Kang, Feiyu

    2015-01-01

    MnO-carbon hybrid nanofiber composites are fabricated by electrospinning polyimide/manganese acetylacetonate precursor and a subsequent carbonization process. The composition, phase structure and morphology of the composites are characterized by scanning and transmission electron microscopy, X-ray diffraction and thermogravimetric analysis. The results indicate that the composites exhibit good nanofibrous morphology with MnO nanoparticles uniformly encapsulated by carbon nanofibers. The hybrid nanofiber composites are used directly as freestanding anodes for lithium-ion batteries to evaluate their electrochemical properties. It is found that the optimized MnO-carbon nanofiber composite can deliver a high reversible capacity of 663 mAh g −1 , along with excellent cycling stability and good rate capability. The superior performance enables the composites to be promising candidates as an anode alternative for high-performance lithium-ion batteries

  15. Neuron attachment properties of carbon negative-ion implanted bioabsorbable polymer of poly-lactic acid

    International Nuclear Information System (INIS)

    Tsuji, Hiroshi; Sasaki, Hitoshi; Sato, Hiroko; Gotoh, Yasuhito; Ishikawa, Junzo

    2002-01-01

    Modification of a bioabsorbable polymer of poly-lactic acid (PLA) by negative carbon ion implantation was investigated with resect to radiation effects on surface physical properties and nerve-cell attachment properties. Carbon negative ions were implanted to PLA at energy of 5-30 keV with a dose of 10 14 -10 16 ions/cm 2 . Most C-implanted PLA samples showed contact angles near 80 deg. and almost same as that of unimplanted PLA, although a few samples at 5 keV and less 3x10 14 ions/cm 2 had contact angles larger than 90 deg. The attachment properties of nerve cells of PC-12h (rat adrenal phechromocytoma) in vitro were studied. PC-12h cells attached on the unimplanted region in C-implanted PLA samples at 5 and 10 keV. On the contrary, the nerve cells attached on only implanted region for the C-implanted PLA sample at 30 keV and 1x10 15 ions/cm 2

  16. Generation of type III solar radio bursts: the role of induced scattering of plasma waves by ions

    International Nuclear Information System (INIS)

    Levin, B.N.; Lerner, A.M.; Rapoport, V.O.

    1984-01-01

    The plasma waves in type III solar radio-burst sources might have a spectrum which can explain why, in the quasilinear burst generation model, nonlinear scattering of the waves by ions is so weak. The agent exciting a burst would travel through the corona at velocities limited to a definite range

  17. Carbon-ion radiotherapy for marginal lymph node recurrences of cervical cancer after definitive radiotherapy: a case report

    International Nuclear Information System (INIS)

    Tamaki, Tomoaki; Nakano, Takashi; Ohno, Tatsuya; Kiyohara, Hiroki; Noda, Shin-ei; Ohkubo, Yu; Ando, Ken; Wakatsuki, Masaru; Kato, Shingo; Kamada, Tadashi

    2013-01-01

    Recurrences of cervical cancer after definitive radiotherapy often occur at common iliac or para-aortic lymph nodes as marginal lymph node recurrences. Patients with these recurrences have a chance of long-term survival by optimal re-treatment with radiotherapy. However, the re-irradiation often overlaps the initial and the secondary radiotherapy fields and can result in increased normal tissue toxicities in the bowels or the stomach. Carbon-ion radiotherapy, a form of particle beam radiotherapy using accelerated carbon ions, offers more conformal and sharp dose distribution than X-ray radiotherapy. Therefore, this approach enables the delivery of high radiation doses to the target while sparing its surrounding normal tissues. Marginal lymph node recurrences in common iliac lymph nodes after radiotherapy were treated successfully by carbon-ion radiotherapy in two patients. These two patients were initially treated with a combination of external beam radiotherapy and intracavitary and interstitial brachytherapy. However, the diseases recurred in the lymph nodes near the border of the initial radiotherapy fields after 22 months and 23 months. Because re-irradiation with X-ray radiotherapy may deliver high doses to a section of the bowels, carbon-ion radiotherapy was selected to treat the lymph node recurrences. A total dose of 48 Gy (RBE) in 12 fractions over 3 weeks was given to the lymph node recurrences, and the tumors disappeared completely with no severe acute toxicities. The two patients showed no evidence of disease for 75 months and 63 months after the initial radiotherapy and for 50 months and 37 months after the carbon-ion radiotherapy, respectively. No severe late adverse effects are observed in these patients. The two presented cases suggest that the highly conformal dose distribution of carbon-ion radiotherapy may be beneficial in the treatment of marginal lymph node recurrences after radiotherapy. In addition, the higher biological effect of carbon-ion

  18. Similarity between the effects of carbon-ion irradiation and X-irradiation on the development of rat brain

    International Nuclear Information System (INIS)

    Inouye, Minoru; Hayasaka, Shizu; Murata, Yoshiharu; Takahashi, Sentaro; Kubota, Yoshihisa

    2000-01-01

    The effects of carbon-ion irradiation and X-irradiation on the development of rat brain were compared. Twenty pregnant rats were injected with bromodeoxyuridine (BrdU) at 9 pm on day 18 pregnancy and divided into five groups. Three hours after injection (day 19.0) one group was exposed to 290 MeV/u carbon-ion radiation by a single dose of 1.5 Gy. Other groups were exposed to X-radiation by 1.5, 2.0 or 2.5 Gy, or sham-treated, respectively. Fetuses were removed from one dam in each group 8 h after exposure and examined histologically. Extensive cell death was observed in the brain mantle from the irradiated groups. The cell death after 1.5 Gy carbon-ion irradiation was remarkably more extensive than that after 1.5 Gy X-irradiation, but comparable to that after 2.0 Gy or 2.5 Gy X-irradiation. The remaining rats were allowed to give birth and the offspring were sacrificed at 6 weeks of age. All of the irradiated offspring manifested microcephaly. The size of the brain mantle exposed to 1.5 Gy carbon-ion radiation was significantly smaller than that exposed to 1.5 Gy X-radiation and larger than that exposed to 2.5 Gy X-radiation. A histological examination of the cerebral cortex revealed that cortical layers II-IV were malformed. The defect by 1.5 Gy carbon-ion irradiation was more severe than that by the same dose of X-irradiation. Although the BrdU-incorporated neurons were greatly reduced in number in all irradiated groups, these cells reached the superficial area of the cortex. These findings indicated that the effects of both carbon-ion irradiation and X-irradiation on the development of rat brain are similar in character, and the effect of 1.5 Gy carbon-ion irradiation compares to that of 2.0-2.5 Gy X-irradiation. (author)

  19. Ion beam analysis

    International Nuclear Information System (INIS)

    Bethge, K.

    1995-01-01

    Full text: Ion beam analysis is an accelerator application area for the study of materials and the structure of matter; electrostatic accelerators of the Van de Graaff or Dynamitron type are often used for energies up to a few MeV. Two types of machines are available - the single-ended accelerator type with higher beam currents and greater flexibility of beam management, or the tandem accelerator, limited to atomic species with negative ions. The accelerators are not generally installed at specialist accelerator laboratories and have to be easy to maintain and simple to operate. The most common technique for industrial research is Rutherford Back Scattering Spectrometry (RBS). Helium ions are the preferred projectiles, since at elevated energies (above 3 MeV) nuclear resonance scattering can be used to detect photons associated with target molecules containing elements such as carbon, nitrogen or oxygen. Due to the large amount of available data on nuclear reactions in this energy range, activation analysis (detecting trace elements by irradiating the sample) can be performed with charged particles from accelerators over a wider range of atoms than with the conventional use of neutrons, which is more suited to light elements. Resonance reactions have been used to detect trace metals such as aluminium, titanium and vanadium. Hydrogen atoms are vital to the material performance of several classes of materials, such as semiconductors, insulators and ceramics. Prudent selection of the projectile ion aids the analysis of hydrogen composition; the technique is then a simple measurement of the emitted gamma radiation. Solar cell material and glass can be analysed in this way. On a world-wide basis, numerous laboratories perform ion beam analysis for research purposes; considerable work is carried out in cooperation between scientific laboratories and industry, but only a few laboratories provide a completely commercial service

  20. S-matrix description of anomalous large-angle heavy-ion scattering

    Energy Technology Data Exchange (ETDEWEB)

    Frahn, W E; Hussein, M S [Sao Paulo Univ. (Brazil). Inst. de Fisica; Canto, L F; Donangelo, R [Rio de Janeiro Univ. (Brazil). Inst. de Fisica

    1981-10-12

    We present a quantitative description of the well-known anomalous features observed in the large-angle scattering of n..cap alpha.. type heavy ions, in particular of the pronounced structures in the backangle excitation function for /sup 16/O + /sup 28/Si. Our treatment is based on the close connection between these anomalies and particular structural deviations of the partial-wave S-matrix from normal strong-absorption behaviour. The properties of these deviations are found to be rather well specified by the data: they are localized within a narrow 'l-window' centered at a critical angular momentum significantly smaller than the grazing value, and have a parity-dependent as well as a parity-independent part. These properties provide important clues as to the physical processes causing the large-angle enhancement.