WorldWideScience

Sample records for scatter experiment experiment

  1. Virtual neutron scattering experiments

    DEFF Research Database (Denmark)

    Overgaard, Julie Hougaard; Bruun, Jesper; May, Michael

    2017-01-01

    . In the last week of the course, students travel to a large-scale neutron scattering facility to perform real neutron scattering experiments. Through student interviews and survey answers, we argue, that the virtual training prepares the students to engage more fruitfully with experiments by letting them focus......We describe how virtual experiments can be utilized in a learning design that prepares students for hands-on experiments at large-scale facilities. We illustrate the design by showing how virtual experiments are used at the Niels Bohr Institute in a master level course on neutron scattering...

  2. Virtual neutron scattering experiments

    DEFF Research Database (Denmark)

    Overgaard, Julie Hougaard; Bruun, Jesper; May, Michael

    2016-01-01

    We describe how virtual experiments can be utilized in a learning design that prepares students for hands-on experiments at large-scale facilities. We illustrate the design by showing how virtual experiments are used at the Niels Bohr Institute in a master level course on neutron scattering....... In the last week of the course, students travel to a large-scale neutron scattering facility to perform real neutron scattering experiments. Through student interviews and survey answers, we argue, that the virtual training prepares the students to engage more fruitfully with experiments by letting them focus...... on physics and data rather than the overwhelming instrumentation. We argue that this is because they can transfer their virtual experimental experience to the real-life situation. However, we also find that learning is still situated in the sense that only knowledge of particular experiments is transferred...

  3. Quantum entanglement and neutron scattering experiments

    International Nuclear Information System (INIS)

    Cowley, R A

    2003-01-01

    It is shown that quantum entanglement in condensed matter can be observed with scattering experiments if the energy resolution of the experiments enables a clear separation between the elastic scattering and the scattering from the excitations in the system. These conditions are not satisfied in recent deep inelastic neutron scattering experiments from hydrogen-containing systems that have been interpreted as showing the existence of quantum entanglement for short times in, for example, water at room temperature. It is shown that the theory put forward to explain these experiments is inconsistent with the first-moment sum rule for the Van Hove scattering function and we suggest that the theory is incorrect. The experiments were performed using the unique EVS spectrometer at ISIS and suggestions are made about how the data and their interpretation should be re-examined

  4. Classical wave experiments on chaotic scattering

    International Nuclear Information System (INIS)

    Kuhl, U; Stoeckmann, H-J; Weaver, R

    2005-01-01

    We review recent research on the transport properties of classical waves through chaotic systems with special emphasis on microwaves and sound waves. Inasmuch as these experiments use antennas or transducers to couple waves into or out of the systems, scattering theory has to be applied for a quantitative interpretation of the measurements. Most experiments concentrate on tests of predictions from random matrix theory and the random plane wave approximation. In all studied examples a quantitative agreement between experiment and theory is achieved. To this end it is necessary, however, to take absorption and imperfect coupling into account, concepts that were ignored in most previous theoretical investigations. Classical phase space signatures of scattering are being examined in a small number of experiments

  5. Virtual neutron scattering experiments - Training and preparing students for large-scale facility experiments

    Directory of Open Access Journals (Sweden)

    Julie Hougaard Overgaard

    2016-11-01

    Full Text Available Dansk Vi beskriver, hvordan virtuelle eksperimenter kan udnyttes i et læringsdesign ved at forberede de studerende til hands-on-eksperimenter ved storskalafaciliteter. Vi illustrerer designet ved at vise, hvordan virtuelle eksperimenter bruges på Niels Bohr Institutets kandidatkursus om neutronspredning. I den sidste uge af kurset, rejser studerende til et storskala neutronspredningsfacilitet for at udføre neutronspredningseksperimenter. Vi bruger studerendes udsagn om deres oplevelser til at argumentere for, at arbejdet med virtuelle experimenter forbereder de studerende til at engagere sig mere frugtbart med eksperimenter ved at lade dem fokusere på fysikken og relevante data i stedet for instrumenternes funktion. Vi hævder, at det er, fordi de kan overføre deres erfaringer med virtuelle eksperimenter til rigtige eksperimenter. Vi finder dog, at læring stadig er situeret i den forstand, at kun kendskab til bestemte eksperimenter overføres. Vi afslutter med at diskutere de muligheder, som virtuelle eksperimenter giver. English We describe how virtual experiments can be utilized in a learning design that prepares students for hands-on experiments at large-scale facilities. We illustrate the design by showing how virtual experiments are used at the Niels Bohr Institute in a master level course on neutron scattering. In the last week of the course, students travel to a large-scale neutron scattering facility to perform real neutron scattering experiments. Through student interviews and survey answers, we argue, that the virtual training prepares the students to engage more fruitfully with experiments by letting them focus on physics and data rather than the overwhelming instrumentation. We argue that this is because they can transfer their virtual experimental experience to the real-life situation. However, we also find that learning is still situated in the sense that only knowledge of particular experiments is transferred. We proceed to

  6. Mikheyev-Smirnov-Wolfenstein effect in electron-neutrino scattering experiments

    International Nuclear Information System (INIS)

    Bahcall, J.N.; Gelb, J.M.; Rosen, S.P.

    1987-01-01

    We calculate the influence of resonant neutrino scattering [the Mikheyev-Smirnov-Wolfenstein (MSW) effect] in the Sun and in the Earth on measurable quantities in solar-neutrino--electron scattering experiments. The MSW effect reduces the expected rate for 8 B-neutrino--electron scattering by a factor that ranges from --0.8 to --0.2 if resonant scattering is the correct explanation for the discrepancy between observation and calculation in the /sup 37/Cl experiment. The Earth can produce a significant diurnal effect for certain values of the neutrino mixing angle and mass difference

  7. Elastic scattering with the MINERνA experiment

    International Nuclear Information System (INIS)

    Ziemer, Benjamin P

    2013-01-01

    The Main Injector Experiment ν-A (MINERνA) located at Fermi National Laboratory will measure neutrino cross sections, nuclear effects from a broad range of nuclear targets and a variety of other neutrino interactions. Neutrino elastic scattering will be one of the first focuses of the MINERA collaboration; these measurements will be an important input to current and future neutrino oscillation experiments. Results of the charged current quasi-elastic channel exposure in anti-neutrino NuMI running are presented. Future elastic scattering results, both charged current and neutral current, in anti-neutrino and neutrino exposures are also discussed.

  8. Introduction of sample environment equipment for neutron scattering experiments

    International Nuclear Information System (INIS)

    Shimojo, Yutaka; Ihata, Yoshiaki; Kaneko, Koji; Takeda, Masayasu

    2013-02-01

    Neutron scattering experiments have been frequently performed under variety of sample conditions, such as various temperatures, pressures, magnetic fields and stresses, and those complex conditions to fully utilize superior properties of neutron. To this aim, a number of sample environment equipment, refrigerators, furnaces, pressure cells, superconducting magnets are equipped in JRR-3 to be used for experiments. In this document, all available sample environment equipment in both JRR-3 reactor and guide halls are summarized. We hope this document would help neutron scattering users to perform effective and excellent experiments. (author)

  9. Simulation of a complete inelastic neutron scattering experiment

    DEFF Research Database (Denmark)

    Edwards, H.; Lefmann, K.; Lake, B.

    2002-01-01

    A simulation of an inelastic neutron scattering experiment on the high-temperature superconductor La2-xSrxCuO4 is presented. The complete experiment, including sample, is simulated using an interface between the experiment control program and the simulation software package (McStas) and is compared...... with the experimental data. Simulating the entire experiment is an attractive alternative to the usual method of convoluting the model cross section with the resolution function, especially if the resolution function is nontrivial....

  10. The complete experiment for backward elastic dp scattering

    International Nuclear Information System (INIS)

    Rekalo, M.P.; Piskunov, N.M.; Sitnik, I.M.

    1996-01-01

    The problem of the complete experiment in backward elastic dp scattering is analyzed. All effects due to polarization of one or two initial and one of secondary particles are considered. It is shown that the minimal set of measurements allowing to reconstruct each of four amplitudes describing this process does not comprise too complicated experiments and is quite realistic nowadays. The geography of realization of the complete experiment is briefly reviewed. 21 refs

  11. Inexpensive Mie scattering experiment for the classroom manufactured by 3D printing

    International Nuclear Information System (INIS)

    Scholz, Christian; Sack, Achim; Heckel, Michael; Pöschel, Thorsten

    2016-01-01

    Scattering experiments are fundamental for structure analysis of matter on molecular, atomic and sub-atomic length scales. In contrast, it is not standard to demonstrate optical scattering experiments on the undergraduate level beyond simple diffraction gratings. We present an inexpensive Mie scattering setup manufactured with 3D printing and open hardware. The experiment can be used to determine the particle size in dilute monodisperse colloidal suspensions with surprisingly high accuracy and is, thus, suitable to demonstrate relations between scattering measurements and microscopic properties of particles within undergraduate lab course projects. (paper)

  12. Validation of large-angle scattering data via shadow-bar experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ohnishi, S., E-mail: ohnishi@nmri.go.jp [National Maritime Research Institute, 6-38-1, Shinkawa, Mitaka, Tokyo 181-0004 (Japan); Tamaki, S.; Murata, I. [Osaka University, 1-14-16-1, Yamadaoka, Suita-si, Osaka 565-0871 (Japan)

    2016-11-15

    Highlights: • An experiment to validate large-angle scattering cross section is conducted. • Pieces of Nb foil are set behind a shadow bar to obtain the {sup 92m}Nb production rates. • The results calculated using ENDF/B-VI library data exhibit a 57% overestimation. • The adjustment of cross section in large-angle region makes the C/E close to 1. - Abstract: An experiment emphasizing the influence of large-angle scattering on nuclear data was conducted, in which a Fe shadow bar and a Fe slab target were placed before a deuterium–tritium fusion (DT) neutron source. Two Nb foils were set on both sides of the shadow bar in order to monitor the neutron source intensity and to measure the neutrons scattered from the slab target. The {sup 93}Nb(n,2n){sup 92m}Nb reaction rate of the foil was measured following the DT neutron irradiation and calculated using the MCNP5 Monte Carlo radiation transportation code. The {sup 92m}Nb production rates calculated using data from the JEFF-3.1 and JENDL-4.0 libraries agreed with that measured in the experiment, while the result calculated using data from the ENDF/B-VI library exhibited a 57% overestimation. Because the sensitivity of the {sup 92m}Nb production rate to the scattering angular distribution was large in the angular region between scattering direction cosines of −0.9 and −0.4, the scattering angular distribution was adjusted in that region. This adjustment resulted in a calculation-to-experiment ratio close to 1, but had little influence on the existing integral benchmark experiment.

  13. Size estimates of nobel gas clusters by Rayleigh scattering experiments

    Institute of Scientific and Technical Information of China (English)

    Pinpin Zhu (朱频频); Guoquan Ni (倪国权); Zhizhan Xu (徐至展)

    2003-01-01

    Noble gases (argon, krypton, and xenon) are puffed into vacuum through a nozzle to produce clusters for studying laser-cluster interactions. Good estimates of the average size of the argon, krypton and xenon clusters are made by carrying out a series of Rayleigh scattering experiments. In the experiments, we have found that the scattered signal intensity varied greatly with the opening area of the pulsed valve. A new method is put forward to choose the appropriate scattered signal and measure the size of Kr cluster.

  14. Multiple scattering and attenuation corrections in Deep Inelastic Neutron Scattering experiments

    International Nuclear Information System (INIS)

    Dawidowski, J; Blostein, J J; Granada, J R

    2006-01-01

    Multiple scattering and attenuation corrections in Deep Inelastic Neutron Scattering experiments are analyzed. The theoretical basis of the method is stated, and a Monte Carlo procedure to perform the calculation is presented. The results are compared with experimental data. The importance of the accuracy in the description of the experimental parameters is tested, and the implications of the present results on the data analysis procedures is examined

  15. Polarized neutron inelastic scattering experiments on spin dynamics

    International Nuclear Information System (INIS)

    Kakurai, Kazuhisa

    2016-01-01

    The principles of polarized neutron scattering are introduced and examples of polarized neutron inelastic scattering experiments on spin dynamics investigation are presented. These examples should demonstrate the importance of the polarized neutron utilization for the investigation of non-trivial magnetic ground and excited states in frustrated and low dimensional quantum spin systems. (author)

  16. Experimenting from a Distance in the Case of Rutherford Scattering

    Science.gov (United States)

    Grober, S.; Vetter, M.; Eckert, B.; Jodl, H. -J.

    2010-01-01

    The Rutherford scattering experiment plays a central role in working out atomic models in physics and chemistry. Nevertheless, the experiment is rarely performed at school or in introductory physics courses at university. Therefore, we realized this experiment as a remotely controlled laboratory (RCL), i.e. the experiment is set up in reality and…

  17. Simulation of complete neutron scattering experiments: from model systems to liquid germanium

    International Nuclear Information System (INIS)

    Hugouvieux, V.

    2004-11-01

    In this thesis, both theoretical and experimental studies of liquids are done. Neutron scattering enables structural and dynamical properties of liquids to be investigated. On the theoretical side, molecular dynamics simulations are of great interest since they give positions and velocities of the atoms and the forces acting on each of them. They also enable spatial and temporal correlations to be computed and these quantities are also available from neutron scattering experiments. Consequently, the comparison can be made between results from molecular dynamics simulations and from neutron scattering experiments, in order to improve our understanding of the structure and dynamics of liquids. However, since extracting reliable data from a neutron scattering experiment is difficult, we propose to simulate the experiment as a whole, including both instrument and sample, in order to gain understanding and to evaluate the impact of the different parasitic contributions (absorption, multiple scattering associated with elastic and inelastic scattering, instrument resolution). This approach, in which the sample is described by its structure and dynamics as computed from molecular dynamics simulations, is presented and tested on isotropic model systems. Then liquid germanium is investigated by inelastic neutron scattering and both classical and ab initio molecular dynamics simulations. This enables us to simulate the experiment we performed and to evaluate the influence of the contributions from the instrument and from the sample on the detected signal. (author)

  18. Recent single ARM electron scattering experiments at Saclay

    International Nuclear Information System (INIS)

    Frois, B.

    1981-07-01

    Some recent electron scattering experiments at intermediate energies performed at the Saclay linear accelerator (ALS) are presented. First the definitive results of the measurements of the size of valence orbits by magnetic elastic electron scattering are discussed and followed by an overview of the study of charge distributions in closed shell nuclei. These results are among the most stringent experimental tests of nuclear theory because they probe without ambiguity the shape of nuclei. Then, it is shown how the details of the transition densities of the first excited states of 152 Sm have been brought out by very high momentum transfer experiments. Finally, the results of the investigation of mesonic degrees of freedom in deuterium and helium-3 are presented

  19. Defect properties from X-ray scattering experiments

    International Nuclear Information System (INIS)

    Peisl, H.

    1976-01-01

    Lattice distortions due to defects in crystals can be studied most directly by elastic X-ray or neutron scattering experiments. The 'size' of the defects can be determined from the shift of the Bragg reflections. Defect induced diffuse scattering intensity close to and between Bragg reflections gives information on the strength and symmetry of the distortion fields and yields the atomic structure of point defects (interstitials, vacancies, small aggregates). Diffuse scattering is a very sensitive method to decide whether defects are present as isolated point defects or have formed aggregates. X-ray scattering has been used to study defects produced in various ionic crystals by γ- and neutron irradiation. After an introduction to the principles of the method the experimental results will be reviewed and discussed in some detail. (orig.) [de

  20. Neutron-Proton Scattering Experiments at ANKE-COSY

    Science.gov (United States)

    Kacharava, A.; Chiladze, D.; Chiladze, B.; Keshelashvili, I.; Lomidze, N.; Macharashvili, G.; McHedlishvili, D.; Nioradze, M.; Rathmann, F.; Ströher, H.; Wilkin, C.

    2010-04-01

    The nucleon-nucleon interaction (NN) is fundamental for the whole of nuclear physics and hence to the composition of matter as we know it. It has been demonstrated that stored, polarised beams and polarised internal targets are experimental tools of choice to probe spin effects in NN-scattering experiments. While the EDDA experiment has dramatically improved the proton-proton date base, information on spin observables in neutron-proton scattering is very incomplete above 800 MeV, resulting in large uncertainties in isoscalar n p phase shifts. Experiments at COSY, using a polarised deuteron beam or target, can lead to significant improvements in the situation through the study of quasi-free reactions on the neutron in the deuteron. Such a measurements has already been started at ANKE by using polarised deuterons on an unpolarised target to study the dp → ppn deuteron charge-exchange reaction and the full program with a polarised storage cell target just has been conducted. At low excitation energies of the final pp system, the spin observables are directly related to the spin- dependent parts of the neutron-proton charge-exchange amplitudes. Our measurement of the deuteron-proton spin correlations will allow us to determine the relative phases of these amplitudes in addition to their overall magnitudes.

  1. Elastic scattering of protons at the TOTEM experiment at the LHC

    CERN Document Server

    AUTHOR|(CDS)2080719; Csanád, Máté; Niewiadomski, Hubert

    The TOTEM experiment at the LHC at CERN is optimized to measure elastic and diffractive scattering at the LHC and measures the total proton-proton cross-section with\tthe luminosity-independent method. The TOTEM experiment uses the special technique of movable beam pipe insertions -- called Roman Pots -- to detect very forward protons. The reconstruction of the forward proton kinematics requires the precise understanding of the LHC beam optics. A new method of LHC optics determination is reported, which exploits kinematical distributions of elastically scattered proton-proton data measured by the Roman Pots of the TOTEM experiment. The method has been successfully applied to data samples recorded since 2010. The interpretation of the proton-proton elastic differential cross-section is a challenging task. The geometrical model of proton-proton elastic scattering of Bialas and Bzdak is fitted to ISR data and to data measured by the TOTEM experiment at LHC energy of $\\sqrt{s}=7$~TeV. The Bialas-Bzdak model is g...

  2. Status and neutron scattering experiments at KENS

    International Nuclear Information System (INIS)

    Watanabe, N.; Sasaki, H.; Ishikawa, Y.; Endoh, Y.; Inoue, K.

    1983-01-01

    This paper reports present status of the KENS facility, progress in neutron scattering experiments and instrumental developments, and status of the KENS-I' program. A design study of a high intensity rapid-cycle 800 MeV proton synchrotron for proposed new pulsed neutron (KENS-II) and meson source is also descirbed

  3. Background studies for the MINER Coherent Neutrino Scattering reactor experiment

    International Nuclear Information System (INIS)

    Agnolet, G.; Baker, W.; Barker, D.; Beck, R.; Carroll, T.J.; Cesar, J.; Cushman, P.; Dent, J.B.; De Rijck, S.; Dutta, B.; Flanagan, W.; Fritts, M.; Gao, Y.; Harris, H.R.; Hays, C.C.; Iyer, V.

    2017-01-01

    The proposed Mitchell Institute Neutrino Experiment at Reactor (MINER) experiment at the Nuclear Science Center at Texas A&M University will search for coherent elastic neutrino-nucleus scattering within close proximity (about 2 m) of a 1 MW TRIGA nuclear reactor core using low threshold, cryogenic germanium and silicon detectors. Given the Standard Model cross section of the scattering process and the proposed experimental proximity to the reactor, as many as 5–20 events/kg/day are expected. We discuss the status of preliminary measurements to characterize the main backgrounds for the proposed experiment. Both in situ measurements at the experimental site and simulations using the MCNP and GEANT4 codes are described. A strategy for monitoring backgrounds during data taking is briefly discussed.

  4. Background studies for the MINER Coherent Neutrino Scattering reactor experiment

    Energy Technology Data Exchange (ETDEWEB)

    Agnolet, G.; Baker, W. [Department of Physics and Astronomy, and the Mitchell Institute for Fundamental Physics and Astronomy, Texas A& M University, College Station, TX 77843 (United States); Barker, D. [School of Physics & Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Beck, R. [Department of Physics and Astronomy, and the Mitchell Institute for Fundamental Physics and Astronomy, Texas A& M University, College Station, TX 77843 (United States); Carroll, T.J.; Cesar, J. [Department of Physics, University of Texas at Austin, Austin, TX 78712 (United States); Cushman, P. [School of Physics & Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Dent, J.B. [Department of Physics, University of Louisiana at Lafayette, Lafayette, LA 70504 (United States); De Rijck, S. [Department of Physics, University of Texas at Austin, Austin, TX 78712 (United States); Dutta, B. [Department of Physics and Astronomy, and the Mitchell Institute for Fundamental Physics and Astronomy, Texas A& M University, College Station, TX 77843 (United States); Flanagan, W. [Department of Physics, University of Texas at Austin, Austin, TX 78712 (United States); Fritts, M. [School of Physics & Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Gao, Y. [Department of Physics and Astronomy, and the Mitchell Institute for Fundamental Physics and Astronomy, Texas A& M University, College Station, TX 77843 (United States); Department of Physics & Astronomy, Wayne State University, Detroit 48201 (United States); Harris, H.R.; Hays, C.C. [Department of Physics and Astronomy, and the Mitchell Institute for Fundamental Physics and Astronomy, Texas A& M University, College Station, TX 77843 (United States); Iyer, V. [School of Physical Sciences, National Institute of Science Education and Research, Jatni - 752050 (India); and others

    2017-05-01

    The proposed Mitchell Institute Neutrino Experiment at Reactor (MINER) experiment at the Nuclear Science Center at Texas A&M University will search for coherent elastic neutrino-nucleus scattering within close proximity (about 2 m) of a 1 MW TRIGA nuclear reactor core using low threshold, cryogenic germanium and silicon detectors. Given the Standard Model cross section of the scattering process and the proposed experimental proximity to the reactor, as many as 5–20 events/kg/day are expected. We discuss the status of preliminary measurements to characterize the main backgrounds for the proposed experiment. Both in situ measurements at the experimental site and simulations using the MCNP and GEANT4 codes are described. A strategy for monitoring backgrounds during data taking is briefly discussed.

  5. Neutron–Proton Scattering Experiments at ANKE–COSY

    Directory of Open Access Journals (Sweden)

    Rathmann F.

    2010-04-01

    Full Text Available The nucleon–nucleon interaction (NN is fundamental for the whole of nuclear physics and hence to the composition of matter as we know it. It has been demonstrated that stored, polarised beams and polarised internal targets are experimental tools of choice to probe spin effects in NN–scattering experiments. While the EDDA experiment has dramatically improved the proton–proton date base, information on spin observables in neutron–proton scattering is very incomplete above 800 MeV, resulting in large uncertainties in isoscalar n p phase shifts. Experiments at COSY, using a polarised deuteron beam or target, can lead to significant improvements in the situation through the study of quasi–free reactions on the neutron in the deuteron. Such a measurements has already been started at ANKE by using polarised deuterons on an unpolarised target to study the dp → {pp}n deuteron charge–exchange reaction and the full program with a polarised storage cell target just has been conducted. At low excitation energies of the final pp system, the spin observables are directly related to the spin– dependent parts of the neutron–proton charge–exchange amplitudes. Our measurement of the deuteron–proton spin correlations will allow us to determine the relative phases of these amplitudes in addition to their overall magnitudes.

  6. Precise measurement in elastic electron scattering: HAPPEX and E-158 experiments

    International Nuclear Information System (INIS)

    Vacheret, A.

    2004-12-01

    Parity Violation asymmetry measurements in elastic electron scattering are in one hand an interesting way of retrieving new informations about the sea quarks of the nucleon and in the other hand a powerful test of the Standard Model electroweak sector at low energy. This thesis describes the HAPPEX experiment at JLab and the E-158 experiment at SLAC (USA) which measure de parity violation asymmetries in elastic scattering of polarized electron on nuclei like Hydrogen or Helium and on atomic electrons. With the measurements on hadronic targets one can extract the strange quarks contribution to the charge and current density of the nucleon. With the electron-electron scattering one can test the standard model at the loop level and far from the Z pole by extracting sin 2 θ W . In this thesis we describe the formalism associated with the electroweak probe. We present in detail the experimental methods used to make such precise measurements of parity violation asymmetry. Then, we describe the experimental set-up of each experiment and in particular the electron detector and the feedback loop on the beam current for the HAPPEX experiment and the analysis of E-158 run III with a dedicated systematic study on the beam sub-pulse fluctuations. We present the preliminary results for each experiment with a comparison with the other existing results and the future experiments. (author)

  7. Set of thermal neutron-scattering experiments for the Weapons Neutron Research Facility

    International Nuclear Information System (INIS)

    Brugger, R.M.

    1975-12-01

    Six classes of experiments form the base of a program of thermal neutron scattering at the Weapons Neutron Research (WNR) Facility. Three classes are to determine the average microscopic positions of atoms in materials and three are to determine the microscopic vibrations of these atoms. The first three classes concern (a) powder sample neutron diffraction, (b) small angle scattering, and (c) single crystal Laue diffraction. The second three concern (d) small kappa inelastic scattering, (e) scattering surface phonon measurements, and (f) line widths. An instrument to couple with the WNR pulsed source is briefly outlined for each experiment

  8. The basic physics of neutron scattering experiments

    International Nuclear Information System (INIS)

    Mezei, F.

    1999-01-01

    The basic physical principles behind the well-established but also developing practice of neutron scattering experiments are presented. A few examples are given either to illustrate the physical principles or to give an idea of the variety, importance or magnitude of various phenomena. The evolution of neutron scattering experimental techniques is investigated from a special aspect: the increasing capability of taking into account more and more important and sometimes decisive finer details by using more and more realistic mathematical models of the evolution of the neutrons from birth do death, eventually passing by the sample and being scattered more than one times. Working with such numerical 'virtual instruments' one will have to go far beyond notions like resolution function, convolution etc, and actually eliminate a large number of approximations currently in use. (K.A.)

  9. Detector system for e-d scattering experiments on the VEPP-3 storage ring

    International Nuclear Information System (INIS)

    Isaeva, L.G.; Lazarenko, B.A.; Nikolenko, D.M.; Popov, S.G.; Rachek, I.A.; Ukraintsev, Yu.G.; Tsentalovich, E.P.; Wojtsekhowski, B.B.; Nelubin, V.V.

    1993-01-01

    Experiments on electron scattering from polarized deuterons were carried out on the VEPP-3 storage ring at the Novosibirsk Institute for Nuclear Physics. The e-D coincidences were detected for elastic scattering experiments, and the p-n coincidences for photo disintegration studies. The tensor analyzing power of the elastic scattering was measured in the range of momentum transfer up to 3 f -1 , and of photo disintegration in the range of photon energy up to 500 MeV. The detector system created for these experiments and the data analysis procedures are described in this paper. (orig.)

  10. Forward and backward scattering experiments in ultra-cold Rubidium atoms

    DEFF Research Database (Denmark)

    Kampel, Nir Shlomo

    project, we have studied coherent forward scattering in the form of a memory experiment. In such an experiment we convert the input light pulse to an atomic excitation, and at a later time convert back the atomic excitation into the retrieved light pulse. In the first project, we investigate the source...

  11. Enhanced Thomson scattering theory applied to eight experiments

    International Nuclear Information System (INIS)

    Simon, A.; Short, R.W.; Seka, W.; Goldman, L.M.

    1985-01-01

    The onset of an instability, such as the 2ω/sub p/ at the n/sub c//4 surface, usually leads to wave breaking and the emission of hot electron pulses which can profoundly influence instability thresholds and scattering behavior elsewhere in the plasma. In particular, enhanced Thomson scattering (via the plasma line) can occur, and this has been used to explain the observation of the SRS instability well below the theoretical threshold. A simple model of the hot electron pulses based on measured values of the hot and cold electron temperatures, T/sub h/ and T/sub c/, has yielded good agreement with experimental observation of the Raman spectral frequency bands. The agreement has continued, even for experiments which are clearly above the SRS threshold, with the enhanced noise likely acting as a ''seed'' for the SRS growth. We will show details of the successful comparison of this theory with six experiments carried out on SHIVA, ARGUS, NOVETTE(2), and GDL(2), and also with an upscattering feature seen at Garching. In addition, a recent experiment using 6 beams of OMEGA (at 0.35μ) will be discussed, and compared with the theory. The report is comprised of viewgraphs of the talks

  12. Monte Carlo simulation of fast neutron scattering experiments including DD-breakup neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, D.; Siebert, B.R.L.

    1993-06-01

    The computational simulation of the deuteron breakup in a scattering experiment has been investigated. Experimental breakup spectra measured at 16 deuteron energies and at 7 angles for each energy served as the data base. Analysis of these input data and of the conditions of the scattering experiment made it possible to reduce the input data. The use of one weighted breakup spectrum is sufficient to simulate the scattering spectra at one incident neutron energy. A number of tests were carried out to prove the validity of this result. The simulation of neutron scattering on carbon, including the breakup, was compared with measured spectra. Differences between calculated and measured spectra were for the most part within the experimental uncertainties. Certain significant deviations can be attributed to erroneous scattering cross sections taken from an evaluation and used in the simulation. Scattering on higher-lying states in [sup 12]C can be analyzed by subtracting the simulated breakup-scattering from the experimental spectra. (orig.)

  13. Monte Carlo simulation of fast neutron scattering experiments including DD-breakup neutrons

    International Nuclear Information System (INIS)

    Schmidt, D.; Siebert, B.R.L.

    1993-06-01

    The computational simulation of the deuteron breakup in a scattering experiment has been investigated. Experimental breakup spectra measured at 16 deuteron energies and at 7 angles for each energy served as the data base. Analysis of these input data and of the conditions of the scattering experiment made it possible to reduce the input data. The use of one weighted breakup spectrum is sufficient to simulate the scattering spectra at one incident neutron energy. A number of tests were carried out to prove the validity of this result. The simulation of neutron scattering on carbon, including the breakup, was compared with measured spectra. Differences between calculated and measured spectra were for the most part within the experimental uncertainties. Certain significant deviations can be attributed to erroneous scattering cross sections taken from an evaluation and used in the simulation. Scattering on higher-lying states in 12 C can be analyzed by subtracting the simulated breakup-scattering from the experimental spectra. (orig.)

  14. Electron-nucleon scattering experiments in the GeV range

    International Nuclear Information System (INIS)

    Glawe, U.B.

    1980-01-01

    In the framework of this thesis a computer code systems was developed which describes the inclusive electron scattering on bound nucleons in the impact approximation. It could be shown that the structure functions for the quasi-free scattering can be represented as an incoherent superposition of the structure functions of the free processes. The structure functions of the free processes were determined from experimental cross sections. From the comparison of the calculations with electron scattering experiments on the nuclei 6 Li, 9 Be, 12 C, 27 Al, and 28 Si in the kinematic range 0.0 2 2 and W [de

  15. On the analysis of Deep Inelastic Neutron Scattering Experiments

    International Nuclear Information System (INIS)

    Blostein, J.J.; Dawidowski, J.; Granada, J.R.

    2001-01-01

    We analyze the different steps that must be followed for data processing in Deep Inelastic Neutron Scattering Experiments. Firstly we discuss to what extent multiple scattering effects can affect the measured peak shape, concluding the an accurate calculation of these effects must be performed to extract the desired effective temperature from the experimental data. We present a Monte Carlo procedure to perform these corrections. Next, we focus our attention on experiments performed on light nuclei. We examine cases in which the desired information is obtained from the observed peak areas, and we analyze the procedure to obtain an effective temperature from the experimental peaks. As a consequence of the results emerging from those cases we trace the limits of validity of the convolution formalism usually employed, and propose a different treatment of the experimental data for this kind of measurements. (author)

  16. On the analysis of Deep Inelastic Neutron Scattering Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Blostein, J.J.; Dawidowski, J.; Granada, J.R. [Comision Nacional de Energia Atomica and CONICET, Centro Atomico Bariloche and Instituto Balseiro, Bariloche (Argentina)

    2001-03-01

    We analyze the different steps that must be followed for data processing in Deep Inelastic Neutron Scattering Experiments. Firstly we discuss to what extent multiple scattering effects can affect the measured peak shape, concluding the an accurate calculation of these effects must be performed to extract the desired effective temperature from the experimental data. We present a Monte Carlo procedure to perform these corrections. Next, we focus our attention on experiments performed on light nuclei. We examine cases in which the desired information is obtained from the observed peak areas, and we analyze the procedure to obtain an effective temperature from the experimental peaks. As a consequence of the results emerging from those cases we trace the limits of validity of the convolution formalism usually employed, and propose a different treatment of the experimental data for this kind of measurements. (author)

  17. Experiment on direct nn scattering - The radiation-induced outgassing complication

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson, S.L., E-mail: sstephen@gettysburg.edu [Gettysburg College, Gettysburg, PA 17325 (United States); Crawford, B.E. [Gettysburg College, Gettysburg, PA 17325 (United States); Furman, W.I.; Lychagin, E.V.; Muzichka, A.Yu.; Nekhaev, G.V.; Sharapov, E.I.; Shvetsov, V.N.; Strelkov, A.V. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Levakov, B.G.; Lyzhin, A.E.; Chernukhin, Yu.I. [Russian Federal Nuclear Center - All Russian Research Institute of Technical Physics, P.O. Box 245, 456770 Snezhinsk (Russian Federation); Howell, C.R. [Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Mitchell, G.E. [North Carolina State University, Raleigh, NC 27695-8202 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Tornow, W. [Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Showalter-Bucher, R.A. [Northeastern University, Boston, MA 02115 (United States)

    2012-12-01

    The first direct neutron-neutron scattering experiment using the YAGUAR pulsed reactor has yielded initial results. They show a unforeseen significant thermal neutron background as a result of radiation-induced desorption within the scattering chamber. Thermal neutrons are mostly scattering not from other neutrons but instead from the desorbed gas molecules. Analysis of the obtained neutron time-of-flight spectra suggests neutron scattering from H{sub 2} molecules. The presented desorption model agrees with our experimental value of the desorption yield {eta}{sub {gamma}}=0.02 molecules/gamma. Possible techniques to reduce the effect of the desorption background are presented.

  18. A novel technique for determining luminosity in electron-scattering/positron-scattering experiments from multi-interaction events

    Science.gov (United States)

    Schmidt, A.; O'Connor, C.; Bernauer, J. C.; Milner, R.

    2018-01-01

    The OLYMPUS experiment measured the cross-section ratio of positron-proton elastic scattering relative to electron-proton elastic scattering to look for evidence of hard two-photon exchange. To make this measurement, the experiment alternated between electron beam and positron beam running modes, with the relative integrated luminosities of the two running modes providing the crucial normalization. For this reason, OLYMPUS had several redundant luminosity monitoring systems, including a pair of electromagnetic calorimeters positioned downstream from the target to detect symmetric Møller and Bhabha scattering from atomic electrons in the hydrogen gas target. Though this system was designed to monitor the rate of events with single Møller/Bhabha interactions, we found that a more accurate determination of relative luminosity could be made by additionally considering the rate of events with both a Møller/Bhabha interaction and a concurrent elastic ep interaction. This method was improved by small corrections for the variance of the current within bunches in the storage ring and for the probability of three interactions occurring within a bunch. After accounting for systematic effects, we estimate that the method is accurate in determining the relative luminosity to within 0.36%. This precise technique can be employed in future electron-proton and positron-proton scattering experiments to monitor relative luminosity between different running modes.

  19. π-Helium-4 scattering experiment at 5GeV/c. Data processing

    International Nuclear Information System (INIS)

    Cotte, Philippe.

    1978-01-01

    The context of this work is an experiment realised at CERN, with the object to search pre-existing isobaric states in helium nucleus, by means of the study of scattering reactions of π - with simultaneous observation of recoil nucleus ( 3 He or 3 H) and forward pion. In this work, only the study of recoil detectors is done. This one, described with many details consists of a set of four wire chamber planes, two planes of semiconductors and two scintillators planes. The performances of this set of detectors are presented in regard to identification of recoil particle, energy and recoil angle measurements. A 'missing mass' analysis of the events of the experiment is done. Preliminary results of elastic and inelastic scattering are given. For elastic scattering a qualitative comparison is done with the multiple scattering Glauber formalism [fr

  20. Geometry Survey of the Time-of-Flight Neutron-Elastic Scattering (Antonella) Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Oshinowo, Babatunde O. [Fermilab; Izraelevitch, Federico [Buenos Aires U.

    2016-10-17

    The Antonella experiment is a measurement of the ionization efficiency of nuclear recoils in silicon at low energies [1]. It is a neutron elastic scattering experiment motivated by the search for dark matter particles. In this experiment, a proton beam hits a lithium target and neutrons are produced. The neutron shower passes through a collimator that produces a neutron beam. The beam illuminates a silicon detector. With a certain probability, a neutron interacts with a silicon nucleus of the detector producing elastic scattering. After the interaction, a fraction of the neutron energy is transferred to the silicon nucleus which acquires kinetic energy and recoils. This kinetic energy is then dissipated in the detector producing ionization and thermal energy. The ionization produced is measured with the silicon detector electronics. On the other hand, the neutron is scattered out of the beam. A neutron-detector array (made of scintillator bars) registers the neutron arrival time and the scattering angle to reconstruct the kinematics of the neutron-nucleus interaction with the time-of-flight technique [2]. In the reconstruction equations, the energy of the nuclear recoil is a function of the scattering angle with respect to the beam direction, the time-of-flight of the neutron and the geometric distances between components of the setup (neutron-production target, silicon detector, scintillator bars). This paper summarizes the survey of the different components of the experiment that made possible the off-line analysis of the collected data. Measurements were made with the API Radian Laser Tracker and I-360 Probe Wireless. The survey was completed at the University of Notre Dame, Indiana, USA in February 2015.

  1. Specimen environments in thermal neutron scattering experiments

    International Nuclear Information System (INIS)

    Cebula, D.J.

    1980-11-01

    This report is an attempt to collect into one place outline information concerning the techniques used and basic design of sample environment apparatus employed in neutron scattering experiments. Preliminary recommendations for the specimen environment programme of the SNS are presented. The general conclusion reached is that effort should be devoted towards improving reliability and efficiency of operation of specimen environment apparatus and developing systems which are robust and easy to use, rather than achieving performance at the limits of technology. (author)

  2. Thomson scattering diagnostic for the microwave tokamak experiment

    International Nuclear Information System (INIS)

    Foote, J.H.; Barter, J.D.; Sewall, N.R.; Jolly, J.J.; Schlander, L.F.

    1990-01-01

    The Thomson scattering diagnostic system (TSS) on the microwave tokamak experiment (MTX) at LLNL routinely monitors electron temperature (T e ) and density. Typical measured values at the plasma center under clean conditions are 900±70 eV and 1--2x10 14 (±30%) cm -3 . The TSS apparatus is compact, with all elements mounted on one sturdy, two-level optics table. Because of this, we maintain with minimum effort the alignment of both the ruby-laser input optics and the scattered-light collecting optics. Undesired background signals, e.g., plasma light as well as ruby-laser light scattered off obstacles and walls, are generally small compared with the Thomson-scattered signals we normally detect. In the MTX T e region, the TSS data are definitely fitted better when relativistic effects are included in the equations. Besides determining the temperature of the Maxwellian electron distribution, the system is designed to detect electron heating from GW-level free-electron laser (FEL) pulses by measuring large wavelength shifts of the scattered laser photons. TSS data suggest that we may indeed be able to detect these electrons, which can have energies up to 10 keV, according to computer simulation

  3. Comparison of scattering experiments using synchrotron radiation with Monte Carlo simulations using Geant4

    International Nuclear Information System (INIS)

    Gerlach, M.; Krumrey, M.; Cibik, L.; Mueller, P.; Ulm, G.

    2009-01-01

    Monte Carlo techniques are powerful tools to simulate the interaction of electromagnetic radiation with matter. One of the most widespread simulation program packages is Geant4. Almost all physical interaction processes can be included. However, it is not evident what accuracy can be obtained by a simulation. In this work, results of scattering experiments using monochromatized synchrotron radiation in the X-ray regime are quantitatively compared to the results of simulations using Geant4. Experiments were performed for various scattering foils made of different materials such as copper and gold. For energy-dispersive measurements of the scattered radiation, a cadmium telluride detector was used. The detector was fully characterized and calibrated with calculable undispersed as well as monochromatized synchrotron radiation. The obtained quantum efficiency and the response functions are in very good agreement with the corresponding Geant4 simulations. At the electron storage ring BESSY II the number of incident photons in the scattering experiments was measured with a photodiode that had been calibrated against a cryogenic radiometer, so that a direct comparison of scattering experiments with Monte Carlo simulations using Geant4 was possible. It was shown that Geant4 describes the photoeffect, including fluorescence as well as the Compton and Rayleigh scattering, with high accuracy, resulting in a deviation of typically less than 20%. Even polarization effects are widely covered by Geant4, and for Doppler broadening of Compton-scattered radiation the extension G4LECS can be included, but the fact that both features cannot be combined is a limitation. For most polarization-dependent simulations, good agreement with the experimental results was found, except for some orientations where Rayleigh scattering was overestimated in the simulation.

  4. Comparison of scattering experiments using synchrotron radiation with Monte Carlo simulations using Geant4

    Science.gov (United States)

    Gerlach, M.; Krumrey, M.; Cibik, L.; Müller, P.; Ulm, G.

    2009-09-01

    Monte Carlo techniques are powerful tools to simulate the interaction of electromagnetic radiation with matter. One of the most widespread simulation program packages is Geant4. Almost all physical interaction processes can be included. However, it is not evident what accuracy can be obtained by a simulation. In this work, results of scattering experiments using monochromatized synchrotron radiation in the X-ray regime are quantitatively compared to the results of simulations using Geant4. Experiments were performed for various scattering foils made of different materials such as copper and gold. For energy-dispersive measurements of the scattered radiation, a cadmium telluride detector was used. The detector was fully characterized and calibrated with calculable undispersed as well as monochromatized synchrotron radiation. The obtained quantum efficiency and the response functions are in very good agreement with the corresponding Geant4 simulations. At the electron storage ring BESSY II the number of incident photons in the scattering experiments was measured with a photodiode that had been calibrated against a cryogenic radiometer, so that a direct comparison of scattering experiments with Monte Carlo simulations using Geant4 was possible. It was shown that Geant4 describes the photoeffect, including fluorescence as well as the Compton and Rayleigh scattering, with high accuracy, resulting in a deviation of typically less than 20%. Even polarization effects are widely covered by Geant4, and for Doppler broadening of Compton-scattered radiation the extension G4LECS can be included, but the fact that both features cannot be combined is a limitation. For most polarization-dependent simulations, good agreement with the experimental results was found, except for some orientations where Rayleigh scattering was overestimated in the simulation.

  5. Comparison of scattering experiments using synchrotron radiation with Monte Carlo simulations using Geant4

    Energy Technology Data Exchange (ETDEWEB)

    Gerlach, M. [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany); Krumrey, M. [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany)], E-mail: Michael.Krumrey@ptb.de; Cibik, L.; Mueller, P.; Ulm, G. [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany)

    2009-09-11

    Monte Carlo techniques are powerful tools to simulate the interaction of electromagnetic radiation with matter. One of the most widespread simulation program packages is Geant4. Almost all physical interaction processes can be included. However, it is not evident what accuracy can be obtained by a simulation. In this work, results of scattering experiments using monochromatized synchrotron radiation in the X-ray regime are quantitatively compared to the results of simulations using Geant4. Experiments were performed for various scattering foils made of different materials such as copper and gold. For energy-dispersive measurements of the scattered radiation, a cadmium telluride detector was used. The detector was fully characterized and calibrated with calculable undispersed as well as monochromatized synchrotron radiation. The obtained quantum efficiency and the response functions are in very good agreement with the corresponding Geant4 simulations. At the electron storage ring BESSY II the number of incident photons in the scattering experiments was measured with a photodiode that had been calibrated against a cryogenic radiometer, so that a direct comparison of scattering experiments with Monte Carlo simulations using Geant4 was possible. It was shown that Geant4 describes the photoeffect, including fluorescence as well as the Compton and Rayleigh scattering, with high accuracy, resulting in a deviation of typically less than 20%. Even polarization effects are widely covered by Geant4, and for Doppler broadening of Compton-scattered radiation the extension G4LECS can be included, but the fact that both features cannot be combined is a limitation. For most polarization-dependent simulations, good agreement with the experimental results was found, except for some orientations where Rayleigh scattering was overestimated in the simulation.

  6. VLAD for epithermal neutron scattering experiments at large energy transfers

    International Nuclear Information System (INIS)

    Tardocchi, M; Gorini, G; Perelli-Cippo, E; Andreani, C; Imberti, S; Pietropaolo, A; Senesi, R; Rhodes, N R; Schooneveld, E M

    2006-01-01

    The Very Low Angle Detector (VLAD) bank will extend the kinematical region covered by today's epithermal neutron scattering experiments to low momentum transfer ( -1 ) together with large energy transfer 0 -4 0 . In this paper the design of VLAD is presented together with Montecarlo simulations of the detector performances. The results of tests made with prototype VLAD detectors are also presented, confirming the usefulness of the Resonance Detector for measurements at very low scattering angles

  7. Proton polarizing system with Ar-ion laser for p-vector-RI scattering experiments

    International Nuclear Information System (INIS)

    Wakui, T.; Hatano, M.; Sakai, H.; Uesaka, T.; Tamii, A.

    2005-01-01

    A proton polarizing system for use in scattering experiments with radioactive isotope beams is described. Protons in a naphthalene crystal doped with pentacene are polarized in a magnetic field of 0.3T at 100K by transferring a large population difference among the photo-excited triplet states of pentacene to the hydrogen nuclei. An Ar-ion laser, which demands minimal maintenance during scattering experiments, is employed to excite the pentacene molecules. A proton polarization of 37% is obtained

  8. Intra-beam Scattering Theory and RHIC Experiments

    International Nuclear Information System (INIS)

    Wei, J.; Fedotov, A.; Fischer, W.; Malitsky, N.; Parzen, G.; Qiang, J.

    2005-01-01

    Intra-beam scattering is the leading mechanism limiting the luminosity in heavy-ion storage rings like the Relativistic Heavy Ion Collider (RHIC). The multiple Coulomb scattering among the charged particles causes transverse emittance growth and longitudinal beam de-bunching and beam loss, compromising machine performance during collision. Theoretically, the original theories developed by Piwinski, Bjorken, and Mtingwa only describe the rms beam size growth of an unbounded Gaussian distribution. Equations based on the Fokker-Planck approach are developed to further describe the beam density profile evolution and beam loss. During the 2004 RHIC heavy-ion operation, dedicated IBS experiments were performed to bench-mark the rms beam size growth, beam loss, and profile evolution both for a Gaussian-like and a longitudinal hollow beam. This paper summarizes the IBS theory and discusses the experimental bench-marking results

  9. Neutrino Scattering Uncertainties and their Role in Long Baseline Oscillation Experiments

    International Nuclear Information System (INIS)

    D.A. Harris; G. Blazey; Arie Bodek; D. Boehnlein; S. Boyd; William Brooks; Antje Bruell; Howard S. Budd; R. Burnstein; D. Casper; A. Chakravorty; Michael Christy; Jesse Chvojka; M.A.C. Cummings; P. deBarbaro; D. Drakoulakos; J. Dunmore; Rolf Ent; Hugh Gallagher; David Gaskell; Ronald Gilman; Charles Glashausser; Wendy Hinton; Xiaodong Jiang; T. Kafka; O. Kamaev; Cynthia Keppel; M. Kostin; Sergey Kulagin; Gerfried Kumbartzki; Steven Manly; W.A. Mann; Kevin Mcfarland-porter; Wolodymyr Melnitchouk; Jorge Morfin; D. Naples; John Nelson; Gabriel Niculescu; Maria-ioana Niculescu; W. Oliver; Michael Paolone; Emmanuel Paschos; A. Pla-Dalmau; Ronald Ransome; C. Regis; P. Rubinov; V. Rykalin; Willis Sakumoto; P. Shanahan; N. Solomey; P. Spentzouris; P. Stamoulis; G. Tzanakos; Stephen Wood; F.X. Yumiceva; B. Ziemer; M. Zois

    2004-01-01

    The field of oscillation physics is about to make an enormous leap forward in statistical precision: first through the MINOS experiment in the coming year, and later through the NOvA and T2K experiments. Because of the relatively poor understanding of neutrino interactions in the energy ranges of these experiments, there are systematics that can arise in interpreting far detector data that can be as large as or even larger than the expected statistical uncertainties. We describe how these systematic errors arise, and how specific measurements in a dedicated neutrino scattering experiment like MINERvA can reduce the cross section systematic errors to well below the statistical errors

  10. Background determination for the neutron-neutron scattering experiment at the reactor YAGUAR

    Energy Technology Data Exchange (ETDEWEB)

    Muzichka, A.Yu. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Furman, W.I. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Lychagin, E.V. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Krylov, A.R. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Nekhaev, G.V. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Sharapov, E.I. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Shvetsov, V.N. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Strelkov, A.V. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Levakov, B.G. [Russian Federal Nuclear Center-All-Russian Research Institute of Technical Physics, PO Box 245, 456770 Snezhinsk (Russian Federation); Lyzhin, A.E. [Russian Federal Nuclear Center-All-Russian Research Institute of Technical Physics, PO Box 245, 456770 Snezhinsk (Russian Federation); Chernukhin, Yu.I. [Russian Federal Nuclear Center-All-Russian Research Institute of Technical Physics, PO Box 245, 456770 Snezhinsk (Russian Federation); Kandiev, Ya.Z. [Russian Federal Nuclear Center-All-Russian Research Institute of Technical Physics, PO Box 245, 456770 Snezhinsk (Russian Federation); Howell, C.R. [Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Mitchell, G.E. [North Carolina State University, Raleigh, NC 27695-8202 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Crawford, B.E. [Gettysburg College, Box 405, Gettysburg, PA 17325 (United States); Stephenson, S.L. [Gettysburg College, Box 405, Gettysburg, PA 17325 (United States)]. E-mail: sstephen@gettysburg.edu; Tornow, W. [Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States)

    2007-06-01

    The motivation and design is outlined for the experiment to measure the neutron-neutron singlet scattering length directly with thermal neutrons at the pulsed reactor YAGUAR. A statistical accuracy of 3% can be reached, though achieving the goal of an overall accuracy of 3-5% for the nn-scattering length depends on the background level. Possible sources of background are discussed in depth and the results of extensive modeling of the background are presented. Measurements performed at YAGUAR to test these background calculations are described. The experimental results indicate an anticipated background level up to 30% relative to the expected nn effect at the maximal energy burst of the reactor. The conclusion is made that the nn experiment at YAGUAR is feasible to produce the first directly measured value for the neutron-neutron scattering length.

  11. Detection of inverse Compton scattering in plasma wakefield experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bohlen, Simon

    2016-12-15

    Inverse Compton scattering (ICS) is the process of scattering of photons and electrons, where the photons gain a part of the electrons energy. In combination with plasma wakefield acceleration (PWA), ICS offers a compact MeV γ-ray source. A numerical study of ICS radiation produced in PWA experiments at FLASHForward was performed, using an ICS simulation code and the results from particle-in-cell modelling. The possibility of determining electron beam properties from measurements of the γ-ray source was explored for a wide range of experimental conditions. It was found that information about the electron divergence, the electron spectrum and longitudinal information can be obtained from measurements of the ICS beams for some cases. For the measurement of the ICS profile at FLASHForward, a CsI(Tl) scintillator array was chosen, similar to scintillators used in other ICS experiments. To find a suitable detector for spectrum measurements, an experimental test of a Compton spectrometer at the RAL was conducted. This test showed that a similar spectrometer could also be used at FLASHForward. However, changes to the spectrometer could be needed in order to use the pair production effect. In addition, further studies using Geant4 could lead to a better reconstruction of the obtained data. The studies presented here show that ICS is a promising method to analyse electron parameters from PWA experiments in further detail.

  12. High-pressure system for Compton scattering experiments

    International Nuclear Information System (INIS)

    Oomi, G.; Honda, F.; Kagayama, T.; Itoh, F.; Sakurai, H.; Kawata, H.; Shimomura, O.

    1998-01-01

    High-pressure apparatus for Compton scattering experiments has been developed to study the momentum distribution of conduction electrons in metals and alloys at high pressure. This apparatus was applied to observe the Compton profile of metallic Li under pressure. It was found that the Compton profile at high pressure could be obtained within several hours by using this apparatus and synchrotron radiation. The result on the pressure dependence of the Fermi momentum of Li obtained here is in good agreement with that predicted from the free-electron model

  13. Thomson scattering diagnostic for the Microwave Tokamak Experiment

    International Nuclear Information System (INIS)

    Foote, J.H.; Barter, J.D.; Sewall, N.R.; Jolly, J.J.; Schlander, L.F.

    1990-01-01

    The Thomson-scattering diagnostic system (TSS) on the Microwave Tokamak Experiment (MTX) at LLNL routinely monitors electron temperature (T e ) and density. Typical measured values at the plasma center under clean conditions are 900 ± 70 eV and 1 to 2 x 10 14 (±30%) cm -3 . The TSS apparatus is compact, with all elements mounted on one sturdy, two-level optics table. Because of this, we maintain with minimum effort the alignment of both the ruby-laser input optics and the scattered-light collecting optics. Undesired background signals, e.g., plasma light as well as ruby-laser light scattered off obstacles and walls, are generally small compared with the Thomson-scattered signals we normally detect. In the MTX T e region, the TSS data are definitely fitted better when relativistic effects are included in the equations. Besides determining the temperature of the Maxwellian electron distribution, the system is designed to detect electron heating from GW-level free-electron laser (FEL) pulses by measuring large wavelength shifts of the scattered laser photons. TSS data suggest that we may indeed by able to detect these electrons, which can have energies up to 10 keV, according to computer simulation. 7 refs., 4 figs

  14. Simple smoothing technique to reduce data scattering in physics experiments

    International Nuclear Information System (INIS)

    Levesque, L

    2008-01-01

    This paper describes an experiment involving motorized motion and a method to reduce data scattering from data acquisition. Jitter or minute instrumental vibrations add noise to a detected signal, which often renders small modulations of a graph very difficult to interpret. Here we describe a method to reduce scattering amongst data points from the signal measured by a photodetector that is motorized and scanned in a direction parallel to the plane of a rectangular slit during a computer-controlled diffraction experiment. The smoothing technique is investigated using subsets of many data points from the data acquisition. A limit for the number of data points in a subset is determined from the results based on the trend of the small measured signal to avoid severe changes in the shape of the signal from the averaging procedure. This simple smoothing method can be achieved using any type of spreadsheet software

  15. Simulation of complete neutron scattering experiments: from model systems to liquid germanium; Simulation complete d'une experience de diffusion de neutrons: des systemes modeles au germanium liquide

    Energy Technology Data Exchange (ETDEWEB)

    Hugouvieux, V

    2004-11-15

    In this thesis, both theoretical and experimental studies of liquids are done. Neutron scattering enables structural and dynamical properties of liquids to be investigated. On the theoretical side, molecular dynamics simulations are of great interest since they give positions and velocities of the atoms and the forces acting on each of them. They also enable spatial and temporal correlations to be computed and these quantities are also available from neutron scattering experiments. Consequently, the comparison can be made between results from molecular dynamics simulations and from neutron scattering experiments, in order to improve our understanding of the structure and dynamics of liquids. However, since extracting reliable data from a neutron scattering experiment is difficult, we propose to simulate the experiment as a whole, including both instrument and sample, in order to gain understanding and to evaluate the impact of the different parasitic contributions (absorption, multiple scattering associated with elastic and inelastic scattering, instrument resolution). This approach, in which the sample is described by its structure and dynamics as computed from molecular dynamics simulations, is presented and tested on isotropic model systems. Then liquid germanium is investigated by inelastic neutron scattering and both classical and ab initio molecular dynamics simulations. This enables us to simulate the experiment we performed and to evaluate the influence of the contributions from the instrument and from the sample on the detected signal. (author)

  16. Stimulated Brillouin scattering experiments

    International Nuclear Information System (INIS)

    Slater, D.C.; Berger, R.L.; Busch, G.; Kinzer, C.M.; Mayer, F.J.; Powers, L.V.; Tanner, D.J.

    1981-01-01

    This report describes two experiments in which SBS would be expected to play an important role. In the first experiment, we find a clear signature of the Brillouin backscatter of a short (100 psec) pulse from a long (approx. 50 μm) gradient length gas target plasma. The second experiment used much longer (approx. 1 nsec) pulses on spherical glass shell targets. These experiments were done with both narrow ( 30A) bandwidth laser light. Using one-dimensional, spherically symmetric fluid simulations, we have attempted to model many of the laser-plasma interaction processes which combine to determine the amount of absorbed energy in the long-pulse experiments. These simulations indicate that modest laser bandwidths are successful in reducing the level of SBS at the irradiances ( 15 W/cm 2 ) used in these experiments

  17. Dark matter effective field theory scattering in direct detection experiments

    Energy Technology Data Exchange (ETDEWEB)

    Schneck, K.; Cabrera, B.; Cerdeño, D. G.; Mandic, V.; Rogers, H. E.; Agnese, R.; Anderson, A. J.; Asai, M.; Balakishiyeva, D.; Barker, D.; Basu Thakur, R.; Bauer, D. A.; Billard, J.; Borgland, A.; Brandt, D.; Brink, P. L.; Bunker, R.; Caldwell, D. O.; Calkins, R.; Chagani, H.; Chen, Y.; Cooley, J.; Cornell, B.; Crewdson, C. H.; Cushman, P.; Daal, M.; Di Stefano, P. C. F.; Doughty, T.; Esteban, L.; Fallows, S.; Figueroa-Feliciano, E.; Godfrey, G. L.; Golwala, S. R.; Hall, J.; Harris, H. R.; Hofer, T.; Holmgren, D.; Hsu, L.; Huber, M. E.; Jardin, D. M.; Jastram, A.; Kamaev, O.; Kara, B.; Kelsey, M. H.; Kennedy, A.; Leder, A.; Loer, B.; Lopez Asamar, E.; Lukens, P.; Mahapatra, R.; McCarthy, K. A.; Mirabolfathi, N.; Moffatt, R. A.; Morales Mendoza, J. D.; Oser, S. M.; Page, K.; Page, W. A.; Partridge, R.; Pepin, M.; Phipps, A.; Prasad, K.; Pyle, M.; Qiu, H.; Rau, W.; Redl, P.; Reisetter, A.; Ricci, Y.; Roberts, A.; Saab, T.; Sadoulet, B.; Sander, J.; Schnee, R. W.; Scorza, S.; Serfass, B.; Shank, B.; Speller, D.; Toback, D.; Upadhyayula, S.; Villano, A. N.; Welliver, B.; Wilson, J. S.; Wright, D. H.; Yang, X.; Yellin, S.; Yen, J. J.; Young, B. A.; Zhang, J.

    2015-05-18

    We examine the consequences of the effective field theory (EFT) of dark matter–nucleon scattering for current and proposed direct detection experiments. Exclusion limits on EFT coupling constants computed using the optimum interval method are presented for SuperCDMS Soudan, CDMS II, and LUX, and the necessity of combining results from multiple experiments in order to determine dark matter parameters is discussed. We demonstrate that spectral differences between the standard dark matter model and a general EFT interaction can produce a bias when calculating exclusion limits and when developing signal models for likelihood and machine learning techniques. We also discuss the implications of the EFT for the next-generation (G2) direct detection experiments and point out regions of complementarity in the EFT parameter space.

  18. The EDDA experiment: proton-proton elastic scattering excitation functions at intermediate energies

    International Nuclear Information System (INIS)

    Hinterberher, F.

    1996-01-01

    The EDDA experiment is designed to provide a high precision measurement of proton-proton elastic scattering excitation functions ranging from 0.5 to 2.5 GeV of (lab) incident kinetic energy. It is an internal target experiment utilizing the proton beam of the cooler synchrotron COSY operated by KFA Juelich. The excitation functions are measured during the acceleration ramp of COSY. (author)

  19. ‘Rutherford’s experiment’ on alpha particles scattering: the experiment that never was

    Science.gov (United States)

    Leone, M.; Robotti, N.; Verna, G.

    2018-05-01

    The so-called Rutherford’s experiment, as it is outlined in many physics textbooks, is a case in point of the flaws around the history at the educational level of one of the decisive event of modern physics: the discovery that the atom has a nucleus. This paper shows that this alleged experiment is a very approximate and very partial synthesis of a series of different particle scattering experiments, starting with that carried out by Rutherford in 1906 and ending with Geiger and Marsden’s 1913 experiments.

  20. DISCUS, Neutron Single to Double Scattering Ratio in Inelastic Scattering Experiment by Monte-Carlo

    International Nuclear Information System (INIS)

    Johnson, M.W.

    1993-01-01

    1 - Description of problem or function: DISCUS calculates the ratio of once-scattered to twice-scattered neutrons detected in an inelastic neutron scattering experiment. DISCUS also calculates the flux of once-scattered neutrons that would have been observed if there were no absorption in the sample and if, once scattered, the neutron would emerge without further re-scattering or absorption. Three types of sample geometry are used: an infinite flat plate, a finite flat plate or a finite length cylinder. (The infinite flat plate is included for comparison with other multiple scattering programs.) The program may be used for any sample for which the scattering law is of the form S(/Q/, omega). 2 - Method of solution: Monte Carlo with importance sampling is used. Neutrons are 'forced' both into useful angular trajectories, and useful energy bins. Biasing of the collision point according to the point of entry of the neutron into the sample is also utilised. The first and second order scattered neutron fluxes are calculated in independent histories. For twice-scattered neutron histories a square distribution in Q-omega space is used to sample the neutron coming from the first scattering event, whilst biasing is used for the second scattering event. (A square distribution is used so as to obtain reasonable inelastic-inelastic statistics.) 3 - Restrictions on the complexity of the problem: Unlimited number of detectors. Max. size of (Q, omega) matrix is 39*149. Max. number of points in momentum space for the scattering cross section is 199

  1. Laser light scatter experiments on plasma focus plant

    International Nuclear Information System (INIS)

    Wenzel, N.

    1985-01-01

    The plasma focus plant is an experiment on nuclear fusion, which is distinguished by a high neutron yield. Constituting an important method of diagnosis in plasma focussing, the laser light scatter method makes it possible, apart from finding the electron temperature and density, to determine the ion temperature resolved according to time and place and further, to study the occurrence of micro-turbulent effects. Starting from the theoretical basis, this dissertation describes light scatter measurements with ruby lasers on the POSEIDON plasma focus. They are given, together with earlier measurements on the Frascati 1 MJ plant and the Heidelberg 12 KJ plant. The development of the plasma parameters and the occurrence of superthermal light scatter events are discussed in connection with the dynamics of the plasma and the neutron emission characteristics of the individual plants. The results support the view that the thermo-nuclear neutron production at the plasma focus is negligible. Although the importance of micro-turbulent mechanisms in producing neutrons cannot be finally judged, important guidelines are given for the spatial and time relationships with plasma dynamics, plasma parameters and neutron emission. The work concludes with a comparison of all light scatter measurements at the plasma focus described in the literature. (orig.) [de

  2. Progress on Thomson scattering in the Pegasus Toroidal Experiment

    International Nuclear Information System (INIS)

    Schlossberg, D J; Bongard, M W; Fonck, R J; Schoenbeck, N L; Winz, G R

    2013-01-01

    A novel Thomson scattering system has been implemented on the Pegasus Toroidal Experiment where typical densities of 10 19 m −3 and electron temperatures of 10 to 500 eV are expected. The system leverages technological advances in high-energy pulsed lasers, volume phase holographic (VPH) diffraction gratings, and gated image intensified (ICCD) cameras to provide a relatively low-maintenance, economical, robust diagnostic system. Scattering is induced by a frequency-doubled, Q-switched Nd:YAG laser (2 J at 532 nm, 7 ns FWHM pulse) directed to the plasma over a 7.7 m long beam path, and focused to 80%) and fast-gated ICCDs (gate > 2 ns, Gen III intensifier) with high-throughput (F/1.8), achromatic lensing. A stray light mitigation facility has been implemented, consisting of a multi-aperture optical baffle system and a simple beam dump. Successful stray light reduction has enabled detection of scattered signal, and Rayleigh scattering has been used to provide a relative calibration. Initial temperature measurements have been made and data analysis algorithms are under development

  3. Progress on Thomson scattering in the Pegasus Toroidal Experiment

    Science.gov (United States)

    Schlossberg, D. J.; Bongard, M. W.; Fonck, R. J.; Schoenbeck, N. L.; Winz, G. R.

    2013-11-01

    A novel Thomson scattering system has been implemented on the Pegasus Toroidal Experiment where typical densities of 1019 m-3 and electron temperatures of 10 to 500 eV are expected. The system leverages technological advances in high-energy pulsed lasers, volume phase holographic (VPH) diffraction gratings, and gated image intensified (ICCD) cameras to provide a relatively low-maintenance, economical, robust diagnostic system. Scattering is induced by a frequency-doubled, Q-switched Nd:YAG laser (2 J at 532 nm, 7 ns FWHM pulse) directed to the plasma over a 7.7 m long beam path, and focused to VPH transmission gratings (eff. > 80%) and fast-gated ICCDs (gate > 2 ns, Gen III intensifier) with high-throughput (F/1.8), achromatic lensing. A stray light mitigation facility has been implemented, consisting of a multi-aperture optical baffle system and a simple beam dump. Successful stray light reduction has enabled detection of scattered signal, and Rayleigh scattering has been used to provide a relative calibration. Initial temperature measurements have been made and data analysis algorithms are under development.

  4. Scattering from extended targets in range-dependent fluctuating ocean-waveguides with clutter from theory and experiments.

    Science.gov (United States)

    Jagannathan, Srinivasan; Küsel, Elizabeth T; Ratilal, Purnima; Makris, Nicholas C

    2012-08-01

    Bistatic, long-range measurements of acoustic scattered returns from vertically extended, air-filled tubular targets were made during three distinct field experiments in fluctuating continental shelf waveguides. It is shown that Sonar Equation estimates of mean target-scattered intensity lead to large errors, differing by an order of magnitude from both the measurements and waveguide scattering theory. The use of the Ingenito scattering model is also shown to lead to significant errors in estimating mean target-scattered intensity in the field experiments because they were conducted in range-dependent ocean environments with large variations in sound speed structure over the depth of the targets, scenarios that violate basic assumptions of the Ingenito model. Green's theorem based full-field modeling that describes scattering from vertically extended tubular targets in range-dependent ocean waveguides by taking into account nonuniform sound speed structure over the target's depth extent is shown to accurately describe the statistics of the targets' scattered field in all three field experiments. Returns from the man-made targets are also shown to have a very different spectral dependence from the natural target-like clutter of the dominant fish schools observed, suggesting that judicious multi-frequency sensing may often provide a useful means of distinguishing fish from man-made targets.

  5. Preparing Monodisperse Macromolecular Samples for Successful Biological Small-Angle X-ray and Neutron Scattering Experiments

    Science.gov (United States)

    Jeffries, Cy M.; Graewert, Melissa A.; Blanchet, Clément E.; Langley, David B.; Whitten, Andrew E.; Svergun, Dmitri I

    2017-01-01

    Small-angle X-ray and neutron scattering (SAXS and SANS) are techniques used to extract structural parameters and determine the overall structures and shapes of biological macromolecules, complexes and assemblies in solution. The scattering intensities measured from a sample contain contributions from all atoms within the illuminated sample volume including the solvent and buffer components as well as the macromolecules of interest. In order to obtain structural information, it is essential to prepare an exactly matched solvent blank so that background scattering contributions can be accurately subtracted from the sample scattering to obtain the net scattering from the macromolecules in the sample. In addition, sample heterogeneity caused by contaminants, aggregates, mismatched solvents, radiation damage or other factors can severely influence and complicate data analysis so it is essential that the samples are pure and monodisperse for the duration of the experiment. This Protocol outlines the basic physics of SAXS and SANS and reveals how the underlying conceptual principles of the techniques ultimately ‘translate’ into practical laboratory guidance for the production of samples of sufficiently high quality for scattering experiments. The procedure describes how to prepare and characterize protein and nucleic acid samples for both SAXS and SANS using gel electrophoresis, size exclusion chromatography and light scattering. Also included are procedures specific to X-rays (in-line size exclusion chromatography SAXS) and neutrons, specifically preparing samples for contrast matching/variation experiments and deuterium labeling of proteins. PMID:27711050

  6. Small angle X-ray scattering experiments with three-dimensional imaging gas detectors

    International Nuclear Information System (INIS)

    La Monaca, A.; Iannuzzi, M.; Messi, R.

    1985-01-01

    Measurements of small angle X-ray scattering of lupolen - R, dry collagen and dry cornea are presented. The experiments have been performed with synchrotron radiation and a new three-dimensional imaging drif-chamber gas detector

  7. Practical way to avoid spurious geometrical contributions in Brillouin light scattering experiments at variable scattering angles.

    Science.gov (United States)

    Battistoni, Andrea; Bencivenga, Filippo; Fioretto, Daniele; Masciovecchio, Claudio

    2014-10-15

    In this Letter, we present a simple method to avoid the well-known spurious contributions in the Brillouin light scattering (BLS) spectrum arising from the finite aperture of collection optics. The method relies on the use of special spatial filters able to select the scattered light with arbitrary precision around a given value of the momentum transfer (Q). We demonstrate the effectiveness of such filters by analyzing the BLS spectra of a reference sample as a function of scattering angle. This practical and inexpensive method could be an extremely useful tool to fully exploit the potentiality of Brillouin acoustic spectroscopy, as it will easily allow for effective Q-variable experiments with unparalleled luminosity and resolution.

  8. Inelastic neutron scattering experiments with the monochromatic imaging mode of the RITA-II spectrometer

    International Nuclear Information System (INIS)

    Bahl, C.R.H.; Lefmann, K.; Abrahamsen, A.B.; Ronnow, H.M.; Saxild, F.; Jensen, T.B.S.; Udby, L.; Andersen, N.H.; Christensen, N.B.; Jakobsen, H.S.; Larsen, T.; Haefliger, P.S.; Streule, S.; Niedermayer, Ch.

    2006-01-01

    Recently a monochromatic multiple data taking mode has been demonstrated for diffraction experiments using a RITA type cold neutron spectrometer with a multi-bladed analyser and a position-sensitive detector. Here, we show how this mode can be used in combination with a flexible radial collimator to perform real inelastic neutron scattering experiments. We present the results from inelastic powder, single crystal dispersion and single crystal constant energy mapping experiments. The advantages and complications of performing these experiments are discussed along with a comparison between the imaging mode and the traditional monochromatic focussing mode

  9. Inelastic neutron scattering experiments with the monochromatic imaging mode of the RITA-II spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Bahl, C.R.H. [Department of Materials Research, Riso National Laboratory, Building 227, Frederiksborgvej 399, DK-4000 Roskilde (Denmark) and Department of Physics, Technical University of Denmark, DK-2800 Lyngby (Denmark)]. E-mail: christian.bahl@risoe.dk; Lefmann, K. [Department of Materials Research, Riso National Laboratory, Building 227, Frederiksborgvej 399, DK-4000 Roskilde (Denmark)]. E-mail: kim.lefmann@risoe.dk; Abrahamsen, A.B. [Department of Materials Research, Riso National Laboratory, Building 227, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Ronnow, H.M. [Laboratory for Neutron Scattering, Paul Scherrer Institute, CH-5232 Villigen (Switzerland); Saxild, F. [Department of Materials Research, Riso National Laboratory, Building 227, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Jensen, T.B.S. [Department of Materials Research, Riso National Laboratory, Building 227, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Udby, L. [Department of Materials Research, Riso National Laboratory, Building 227, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Andersen, N.H. [Department of Materials Research, Riso National Laboratory, Building 227, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Christensen, N.B. [Department of Materials Research, Riso National Laboratory, Building 227, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Laboratory for Neutron Scattering, Paul Scherrer Institute, CH-5232 Villigen (Switzerland); Jakobsen, H.S. [Niels Bohr Institute for Astronomy, Physics and Geophysics, University of Copenhagen, DK-2100 Copenhagen (Denmark); Larsen, T. [Niels Bohr Institute for Astronomy, Physics and Geophysics, University of Copenhagen, DK-2100 Copenhagen (Denmark); Haefliger, P.S. [Laboratory for Neutron Scattering, Paul Scherrer Institute, CH-5232 Villigen (Switzerland); Streule, S.; Niedermayer, Ch. [Laboratory for Neutron Scattering, Paul Scherrer Institute, CH-5232 Villigen (Switzerland)

    2006-05-15

    Recently a monochromatic multiple data taking mode has been demonstrated for diffraction experiments using a RITA type cold neutron spectrometer with a multi-bladed analyser and a position-sensitive detector. Here, we show how this mode can be used in combination with a flexible radial collimator to perform real inelastic neutron scattering experiments. We present the results from inelastic powder, single crystal dispersion and single crystal constant energy mapping experiments. The advantages and complications of performing these experiments are discussed along with a comparison between the imaging mode and the traditional monochromatic focussing mode.

  10. Neutron inelastic scattering experiments on the mixed-valent compound YbCuAl

    International Nuclear Information System (INIS)

    Mattens, W.C.M.; de Boer, F.R.; Murani, A.P.; Lander, G.H.

    1979-01-01

    The dynamical susceptibility of YbCuAl has been established by means of time of flight neutron scattering experiments. Non-Korringa behavior of the quasi-elastic line-width has been found and comparison with NMR data will be given

  11. A new instrumental set-up for polarized neutron scattering experiments

    International Nuclear Information System (INIS)

    Schmidt, Wolfgang; Ohl, Michael

    2005-01-01

    Neutron scattering with polarization analysis is a powerful tool to determine magnetic structures and excitations. A common setup is to mount the sample at the center of a Helmholtz-type coil which can provide a magnetic field of any direction at the sample position and also a guide field along the neutron flight paths around the sample. Recent experiments showed quite a high demand for measurements at low momentum transfers. For the corresponding low scattering angles air scattering gives rise to a very large background. For this reason we have extended the standard setup to a combination of a large vacuum tank surrounded by electrical coils. The vacuum tank eliminates the air scattering and we can use the polarization analysis down to the lowest accessible momentum transfers. The coils themselves also show some new features: In contrary to the classic (symmetric) coil distribution we use an asymmetric setup which gives the advantage of a larger scattering window. Due to a more sophisticated current distribution this modified coil arrangement needs not to be rotated for different scattering conditions. The whole set-up will soon be available at IN12, a cold neutrons three-axis spectrometer operated by FZ Juelich in collaboration with CEA Grenoble as a CRG-B instrument at the Institut Laue Langevin in Grenoble

  12. Multiple scattering effects in fast neutron polarization experiments using high-pressure helium-xenon gas scintillators as analyzers

    International Nuclear Information System (INIS)

    Tornow, W.; Mertens, G.

    1977-01-01

    In order to study multiple scattering effects both in the gas and particularly in the solid materials of high-pressure gas scintillators, two asymmetry experiments have been performed by scattering of 15.6 MeV polarized neutrons from helium contained in stainless steel vessels of different wall thicknesses. A monte Carlo computer code taking into account the polarization dependence of the differential scattering cross sections has been written to simulate the experiments and to calculate corrections for multiple scattering on helium, xenon and the gas containment materials. Besides the asymmetries for the various scattering processes involved, the code yields time-of-flight spectra of the scattered neutrons and pulse height spectra of the helium recoil nuclei in the gas scintillator. The agreement between experimental results and Monte Carlo calculations is satisfactory. (Auth.)

  13. Transition from hydrodynamic to fast sound in a He-Ne mixture a neutron Brillouin scattering experiment

    CERN Document Server

    Bafile, U; Barocchi, F; Sampoli, M

    2002-01-01

    The presence of a fast-sound mode in the microscopic dynamics of the rare-gas mixture He-Ne, predicted by theoretical studies and molecular-dynamics simulations, was demonstrated by an inelastic neutron scattering experiment. In order to study the transition between the fast and the normal acoustic modes in the hydrodynamic regime, k values lower by about one order of magnitude than in the usual experiments have to be probed. We describe here the results of the first neutron Brillouin scattering experiment performed with this purpose on the same system already investigated at larger k. The results of both experiments, together with those of a new molecular-dynamics simulation, provide a complete and consistent description, still missing so far, of the onset of fast-sound propagation in a binary mixture. (orig.)

  14. Very large solid angle spectrometer for single arm electron scattering experiments

    International Nuclear Information System (INIS)

    Leconte, P.

    1981-01-01

    Major information about short range behavior of nuclear forces should be obtained through electron scattering experiments at high momentum transfer. Cross sections will be very low as is usually the case in electron scattering. In order to reach them, the solid angle of the detection system will have to be enlarged. Traditional optics cannot give correct answer to the problem. For very large apertures, it is impossible to obtain good focussing properties which provide accurate momentum/position correlation with no dependence on the entrance angles. Furthermore, the experiment will require the measurement of these angles. It means that the final system will be equipped with a complete set of position sensitive detectors able to measure positions and angles of trajectories in both planes. Then, the question arises: is it really necessary to provide good focussing, or more precisely: is it possible to get all the required information without the help of a sophisticated predetermined magnetic optics. We try to answer this question and then to sketch from a new point of view the best spectrometer we could think of

  15. Complete experiment for dp and 3He,d backward elastic scattering

    International Nuclear Information System (INIS)

    Rekalo, M.P.; Piskunov, N.M.; Sitnik, I.M.

    1997-01-01

    The problem of the complete experiment in backward elastic scattering of particles with spins of 1 and 1/2 is considered. For the first time all possible effects caused by polarization of one or two initial and one final particles are touched upon. The minimal set of measurements allowing to reconstruct each of four amplitudes describing this process is suggested. Some observables are expected to be sensitive to such deuteron peculiarities as possible P-wave components. The developed technique is a good tool to calculate easily the expectations in the Impulse Approximation for any observables. The geography of the complete experiment is briefly discussed

  16. Observation of fluxes of electrons scattered by the atmosphere in the second Araks experiment

    International Nuclear Information System (INIS)

    Lyachov, S.B.; Managadze, G.G.

    1980-01-01

    This paper describes the results of the USHBA spectrometer measurements of the fluxes of atmospheric scattered electrons in the second Araks experiment. The experimental data are presented for heights from 100 to 140 km. The spectral distributions of the scattered electron fluxes are given and the altitude variation of their intensity is compared with the atmosphere models. The conclusion is made about the possible effect of rocket gassing on the electron scattering processes for definite angles of injection

  17. Enhancing detection sensitivity of SST-1 Thomson scattering experiment

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhari, Vishnu; Patel, Kiran; Thomas, Jinto; Kumar, Ajai, E-mail: ajai@ipr.res.in

    2016-10-15

    Thomson Scattering System (TSS) is the main diagnostic to extract electron temperature and density of steady state superconducting (SST-1) tokamak plasma. Silicon avalanche photo diode is used with low noise and fast signal conditioning electronics (SCE) to detect incoming Thomson scattered laser photons. A stringent requirement for the measurement is to detect high speed and low level light signal (detection of 100 numbers of Thomson scattered photons for 50 ns pulse width at input of active area of detector) in the presence of wide band electro-magnetic interference (EMI) noise. The electronics and instruments for different sub-systems kept in laboratory contribute to the radiated and conductive noise in a complex manner to the experiment, which can degrade the resultant signal to noise ratio (SNR <1). In general a repeated trial method with flexible grounding scheme are used to improve system signal to noise ratio, which is time consuming and less efficient. In the present work a simple, robust, cost-effective instrumentation system is used for the measurement and monitoring with improved ground scheme and shielding method to minimize noise, isolating the internal sub-system generated noise and external interference which leads to an improved SNR.

  18. How do we know what is ‘inside the atom’?—Simulating scattering experiments in the classroom

    Science.gov (United States)

    Cunningham, E. S.

    2017-07-01

    The idea of the indivisible atom, held since the time of the ancient Greeks, was smashed just over 100 years ago. Ernest Rutherford and his team of scientists in the UK used scattering experiments to discover that atoms have a very dense and extremely small central nucleus that contains more than 99.9% of the mass of an atom and is ten thousand times smaller than an atom. Then just over 50 years ago three physicists in America: Jerome Friedman, Henry Kendall and Richard Taylor carried out scattering experiments in California, that revealed the internal structure of nucleons—later called quarks. This workshop, developed by the Public Engagement team at the Science and Technology Facilities Council, takes secondary school students through these historic discoveries and the present day scattering experiments still changing the world of science.

  19. Signature for g bosons from medium energy proton scattering experiments

    International Nuclear Information System (INIS)

    Kuyucak, S.

    1993-01-01

    We apply the recently developed algebraic (1/N expansion) scattering formalism to medium energy proton scattering from 154 Sm and 176 Yb. The nuclear structure effects in this formalism are described by the interacting boson model generalized to arbitrary interactions and types of bosons i.e. s,d,g, etc. We find that, in the sd boson model, a consistent description of cross sections is possible only for the 0 + and 2 + states. The failure of the model with regard to the 4 + states indicates that the effective hexadecapole operator used in the sd model is inadequate. In contrast, the data for scattering to the 0 + , 2 + and 4 + states could be consistently described in the sdg boson model. The spectroscopic data for the low-lying levels usually can not distinguish between the sd and sdg models due to renormalization of parameters, and one has to look at high spin or energy data for evidence of g bosons. The inelastic proton scattering experiments, on the other hand, directly probe the wave functions, and hence could provide a signature for g bosons even in the ground band states

  20. The G0 Experiment

    International Nuclear Information System (INIS)

    Nakahara, Kazutaka

    2007-01-01

    The G0 experiment measures the parity-violating asymmetries in elastic electron-proton and quasi-elastic electron-deuteron scattering over the momentum transfers 0.12 ≤ Q2 ≤ 1.0 GeV2. These asymmetries are sensitive to the strange-quark contribution to the charge and magnetization distributions of the proton. The experiment is conducted at Jefferson Laboratory using a toroidal spectrometer designed to detect forward scattered recoil protons and backward scattered elastic and quasi-elastic electrons. The forward angle experiment was completed in 2004, and the backward angle phase of the experiment is currently taking place

  1. MCRTOF, Multiple Scattering of Resonance Region Neutron in Time of Flight Experiments

    International Nuclear Information System (INIS)

    Ohkubo, Mako

    1984-01-01

    1 - Description of program or function: Multiple scattering of neutrons in the resonance energy region impinging on a disk with an arbitrary angle. 2 - Method of solution: The Monte Carlo method is employed to simulate the path of an incident neutron in a medium for which macroscopic cross sections are determined by resonance parameters. By tracing a large number of neutrons, probabilities for capture, transmission, front-face scattering, rear-face scattering and side-face scattering are determined and printed out as function of incident neutron energy. Optionally, the distribution of capture locations in the disk can be printed. The incident neutron energy is swept to fit a situation as encountered in time-of-flight experiments. 3 - Restrictions on the complexity of the problem: The cross section file is constructed from input resonance parameters with a single- level Breit-Wigner formula. The following restrictions and simplifications apply: - The maximum number of resonances is five. - Reactions other than capture and scattering are neglected. - The angular scattering distribution in the center-of-mass system is assumed to be uniform. - Chemical binding effects are neglected

  2. Inelastic X-ray scattering experiments at extreme conditions: high temperatures and high pressures

    Directory of Open Access Journals (Sweden)

    S.Hosokawa

    2008-03-01

    Full Text Available In this article, we review the present status of experimental techniques under extreme conditions of high temperature and high pressure used for inelastic X-ray scattering (IXS experiments of liquid metals, semiconductors, molten salts, molecular liquids, and supercritical water and methanol. For high temperature experiments, some types of single-crystal sapphire cells were designed depending on the temperature of interest and the sample thickness for the X-ray transmission. Single-crystal diamond X-ray windows attached to the externally heated high-pressure vessel were used for the IXS experiment of supercritical water and methanol. Some typical experimental results are also given, and the perspective of IXS technique under extreme conditions is discussed.

  3. Basic experiment on scattering type level gauge using neutron source

    International Nuclear Information System (INIS)

    Kumazaki, Hiroshi; Fukuchi, Ryoichi; Horiguchi, Yasuhiro

    1984-01-01

    The level gauges using sealed radiation sources have been utilized for pulp and chemical industries, however, for those gauges, transmission type gamma sources are used, which require considerably large radioactivity, and it hinders the spread to medium and small enterprises. Recently, Cf-252 has become easily available, and various He-3 counters are on the market, consequently, the scattering type level gauges combining them have been examined. With the level gauges of this type, the judgement of level can be made sufficiently with the Cf-252 below 3.7 x 10 6 Bq, therefore, if the practical instruments are made, they seem to spread into medium and small enterprises because of the safety and the chief handling radiation being unnecessary. For the purpose of developing and manufacturing for trial this scattering type level gauge, the basic experiment was carried out to examine the effects of the change of salt content and the thickness of vessels and the effect of scattering materials. The possibility of the on-off operation as level gauges was also examined. The experimental method and the results are reported. The count considerably decreased with increasing salt content. Scattering materials worked effectively to increase the count. (Kako, I.)

  4. Experiment to measure total cross sections, differential cross sections and polarization effects in pp elastic scattering at RHIC

    International Nuclear Information System (INIS)

    Guryn, W.

    1998-02-01

    The authors are describing an experiment to study proton-proton (pp) elastic scattering experiment at the Relativistic Heavy Ion Collider (RHIC). Using both polarized and unpolarized beams, the experiment will study pp elastic scattering from √s = 50 GeV to √s = 500 GeV in two kinematical regions. In the Coulomb Nuclear Interference (CNI) region, 0.0005 2 , they will measure and study the s dependence of the total and elastic cross sections, σ tot and σ el ; the ratio of the real to the imaginary part of the forward elastic scattering amplitude, ρ; and the nuclear slope parameter of the pp elastic scattering, b. In the medium |t|-region, |t| 2 , they plan to study the evolution of the dip structure with s, as observed at ISR in the differential elastic cross section, dσ el /dt, and the s and |t| dependence of b. With the polarized beams the following can be measured: the difference in the total cross sections as function of initial transverse spin states Δσ T , the analyzing power, A N , and the transverse spin correlation parameter A NN . The behavior of the analyzing power A N at RHIC energies in the dip region of dσ el /dt, where a pronounced structure was found at fixed-target experiments will be studied. The relation of pp elastic scattering to the beam polarization measurement at RHIC is also discussed

  5. Quasi-elastic helium-atom scattering from surfaces: experiment and interpretation

    International Nuclear Information System (INIS)

    Jardine, A.P.; Ellis, J.; Allison, W.

    2002-01-01

    Diffusion of an adsorbate is affected both by the adiabatic potential energy surface in which the adsorbate moves and by the rate of thermal coupling between the adsorbate and substrate. In principle both factors are amenable to investigation through quasi-elastic broadening in the energy spread of a probing beam of helium atoms. This review provides a topical summary of both the quasi-elastic helium-atom scattering technique and the available data in relation to the determination of diffusion parameters. In particular, we discuss the activation barriers deduced from experiment and their relation to the adiabatic potential and the central role played by the friction parameter, using the CO/Cu(001) system as a case study. The main issues to emerge are the need for detailed molecular dynamics simulations in the interpretation of data and the desirability of significantly greater energy resolution in the experiments themselves. (author)

  6. Update on the direct n-n scattering experiment at the reactor YAGUAR

    Science.gov (United States)

    Stephenson, S. L.; Crawford, B. E.; Furman, W. I.; Lychagin, E. V.; Muzichka, A. Yu.; Nekhaev, G. V.; Sharapov, E. I.; Shvetsov, V. N.; Strelkov, A. V.; Levakov, B. G.; Lyzhin, A. E.; Chernukhin, Yu. I.; Howell, C. R.; Mitchell, G. E.; Tornow, W.; Showalter-Bucher, R. A.

    2013-10-01

    The first direct measurement of the 1S0 neutron-neutron scattering experiment using the YAGUAR aperiodic reactor at the Russian Federal Nuclear Center - All Russian Research Institute of Technical Physics has preliminary results. Thermal neutrons are scattered from a thermal neutron ``gas'' within the scattering chamber of the reactor and measured via time-of-flight. These initial results show an unexpectedly large thermal neutron background now understood to be from radiation-induced desorption within the scattering chamber. Analysis of the neutron time-of-flight spectra suggests neutron scattering from H2 and possibly H2O molecules. An experimental value for the desorption yield ηγ of 0.02 molecules/gamma agrees with modeled results. Techniques to reduce the effect of the nonthermal desorption will be presented. This work was supported in part by ISTC project No. 2286, Russia Found. Grant 01-02-17181, the US DOE grants Nos. DE-FG02-97-ER41042 and DE-FG02-97-ER41033, and by the US NSF through Award Nos. 0107263 and 0555652.

  7. The Thomson scattering experiment pulsed by CO2 laser in FT

    International Nuclear Information System (INIS)

    Bartolini, L.; Fornetti, G.; Nardi, M.; Occhionero, G.; Ferri de Collibus, M.

    1987-01-01

    An experiment carried out to measure the plasma ion temperature Tsub(i) in the tokamak FT in Frascati by Collective Thomson Scattering. A tandem laser system generates two single mode beams (10.6μ) one of which is pulsed and amplified up to levels of 5 MW, 1μs and actively frequency locked to a second continuous wave low pressure CO 2 laser. The pulse beam crosses the plasma and the forward scattered light is collected at angles between 1 degrees centigrade and 1.6 degrees centigrade. An heterodyne technique in which the c.w. beam is the local oscillator is used to measure the Doppler enlarged spectral density of the signal. The experimental apparatus is described and the results are reported and discussed

  8. Doppler shift simulation of scattered HF signals during the Tromsø HF pumping experiment on 16 February 1996

    Directory of Open Access Journals (Sweden)

    T. D. Borisova

    2002-09-01

    Full Text Available Comparisons between bistatic scatter measurements and simulation results during the Tromsø HF pumping experiment on 16 February 1996 are made. Doppler measurements of an HF diagnostic signal scattered from the field-aligned irregularities (FAIs in the auroral E-region were carried out on the London – Tromsø – St. Petersburg path at 9410 kHz from 21:00 to 22:00 UT. The scattered signals were observed both from natural and artificial ionospheric irregularities located in the vicinity of Tromsø. To simulate the Doppler frequency shifts, fd , of scattered signals, a radio channel model, named CONE, was developed. The model allows for ray tracing, group and phase paths, and Doppler frequency shift calculations. The calculated Doppler shifts were analyzed for dependence on the magnitude and direction of plasma velocities in the scattering volume. It was found that the velocity components in the north-south direction are crucial for explaining the Doppler frequency shifts of the scattered diagnostic signals. To simulate fd , real velocities obtained from the EISCAT UHF radar at an altitude of 278 km and from the digital all-sky imager during the experiment were employed. The simulation results of Doppler frequency shift variations with time are in reasonable agreement with the experimental Doppler shifts of scattered signals on the London – Tromsø – St. Petersburg path.Key words. Ionosphere (active experiments; ionospheric irregularities Radio science (ionospheric propagation

  9. ISPyB for BioSAXS, the gateway to user autonomy in solution scattering experiments

    International Nuclear Information System (INIS)

    De Maria Antolinos, Alejandro; Pernot, Petra; Brennich, Martha E.; Kieffer, Jérôme; Bowler, Matthew W.; Delageniere, Solange; Ohlsson, Staffan; Malbet Monaco, Stephanie; Ashton, Alun; Franke, Daniel; Svergun, Dmitri; McSweeney, Sean; Gordon, Elspeth; Round, Adam

    2015-01-01

    The ISPyB information-management system for crystallography has been adapted to include data from small-angle X-ray scattering of macromolecules in solution experiments. Logging experiments with the laboratory-information management system ISPyB (Information System for Protein crystallography Beamlines) enhances the automation of small-angle X-ray scattering of biological macromolecules in solution (BioSAXS) experiments. The ISPyB interface provides immediate user-oriented online feedback and enables data cross-checking and downstream analysis. To optimize data quality and completeness, ISPyBB (ISPyB for BioSAXS) makes it simple for users to compare the results from new measurements with previous acquisitions from the same day or earlier experiments in order to maximize the ability to collect all data required in a single synchrotron visit. The graphical user interface (GUI) of ISPyBB has been designed to guide users in the preparation of an experiment. The input of sample information and the ability to outline the experimental aims in advance provides feedback on the number of measurements required, calculation of expected sample volumes and time needed to collect the data: all of this information aids the users to better prepare for their trip to the synchrotron. A prototype version of the ISPyBB database is now available at the European Synchrotron Radiation Facility (ESRF) beamline BM29 and is already greatly appreciated by academic users and industrial clients. It will soon be available at the PETRA III beamline P12 and the Diamond Light Source beamlines I22 and B21

  10. ISPyB for BioSAXS, the gateway to user autonomy in solution scattering experiments

    Energy Technology Data Exchange (ETDEWEB)

    De Maria Antolinos, Alejandro; Pernot, Petra; Brennich, Martha E.; Kieffer, Jérôme [European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38042 Grenoble (France); Bowler, Matthew W. [European Molecular Biology Laboratory, Grenoble Outstation, 71 avenue des Martyrs, CS 90181, 38042 Grenoble (France); Université Grenoble Alpes–EMBL–CNRS, 71 avenue des Martyrs, CS 90181, 38042 Grenoble (France); Delageniere, Solange; Ohlsson, Staffan; Malbet Monaco, Stephanie [European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38042 Grenoble (France); Ashton, Alun [DLS, Diamond House, Harwell Science and Innovation Campus, Fermi Avenue, Didcot OX11 0QX (United Kingdom); Franke, Daniel; Svergun, Dmitri [European Molecular Biology Laboratory, Hamburg Outstation, c/o DESY, Building 25A, Notkestrasse 85, 22603 Hamburg (Germany); McSweeney, Sean; Gordon, Elspeth [European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38042 Grenoble (France); Round, Adam, E-mail: around@embl.fr [European Molecular Biology Laboratory, Grenoble Outstation, 71 avenue des Martyrs, CS 90181, 38042 Grenoble (France); Université Grenoble Alpes–EMBL–CNRS, 71 avenue des Martyrs, CS 90181, 38042 Grenoble (France); European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38042 Grenoble (France)

    2015-01-01

    The ISPyB information-management system for crystallography has been adapted to include data from small-angle X-ray scattering of macromolecules in solution experiments. Logging experiments with the laboratory-information management system ISPyB (Information System for Protein crystallography Beamlines) enhances the automation of small-angle X-ray scattering of biological macromolecules in solution (BioSAXS) experiments. The ISPyB interface provides immediate user-oriented online feedback and enables data cross-checking and downstream analysis. To optimize data quality and completeness, ISPyBB (ISPyB for BioSAXS) makes it simple for users to compare the results from new measurements with previous acquisitions from the same day or earlier experiments in order to maximize the ability to collect all data required in a single synchrotron visit. The graphical user interface (GUI) of ISPyBB has been designed to guide users in the preparation of an experiment. The input of sample information and the ability to outline the experimental aims in advance provides feedback on the number of measurements required, calculation of expected sample volumes and time needed to collect the data: all of this information aids the users to better prepare for their trip to the synchrotron. A prototype version of the ISPyBB database is now available at the European Synchrotron Radiation Facility (ESRF) beamline BM29 and is already greatly appreciated by academic users and industrial clients. It will soon be available at the PETRA III beamline P12 and the Diamond Light Source beamlines I22 and B21.

  11. Experiment to measure total cross sections, differential cross sections and polarization effects in pp elastic scattering at RHIC

    International Nuclear Information System (INIS)

    Guryn, W.

    1995-01-01

    The author is describing an experiment to study proton-proton (pp) elastic scattering experiment at the Relativistic Heavy Ion Collider (RHIC). Using both polarized and unpolarized beams, the experiment will study pp elastic scattering from √s = 60 GeV to √s = 500 GeV in two kinematical regions .In the Coulomb Nuclear Interference (CNI) region, 0.0005 2 , we will measure and study the s dependence of the total and elastic cross sections, σ tot and σ el ; the ratio of the real to the imaginary part of the forward elastic scattering amplitude, ρ; and the nuclear slope parameter of the pp elastic scattering, b. In the medium |t|, |t| ≤ 1.5 (GeV/c) 2 , we plan to study the evolution of the dip structure with s, as observed at ISR in the differential elastic cross section, dσ el /dt, and the s and |t| dependence of b. With the polarized beams the following can be measured: the difference in the total cross sections as function of initial transverse spin stated Δσ T , the analyzing power, A N , and the transverse spin correlation parameter A NN . The behavior of the analyzing power A N at RHIC energies in the dip region of dσ el /dt, where a pronounced structure was found at fixed-target experiments will be studied

  12. The Manuel Lujan, Jr. Neutron Scattering Center LANSCE experiment reports 1989 run cycle

    Energy Technology Data Exchange (ETDEWEB)

    Hyer, D.K.; DiStravolo, M.A. (comps.)

    1990-10-01

    This report contains a listing and description of experiments carried on at the LANSCE neutron scattering facility in the following areas: High Density Powder Diffraction; Neutron Powder Diffractometer, (NPD); Single Crystal Diffractometer, (SCD); Low-Q Diffractometer, (LQD); Surface Profile Analysis Reflectometer, (SPEAR); Filter Difference Spectrometer, (FDS); and Constant-Q Spectrometer.

  13. The Manuel Lujan, Jr. Neutron Scattering Center LANSCE experiment reports 1989 run cycle

    International Nuclear Information System (INIS)

    Hyer, D.K.; DiStravolo, M.A.

    1990-10-01

    This report contains a listing and description of experiments carried on at the LANSCE neutron scattering facility in the following areas: High Density Powder Diffraction; Neutron Powder Diffractometer, (NPD); Single Crystal Diffractometer, (SCD); Low-Q Diffractometer, (LQD); Surface Profile Analysis Reflectometer, (SPEAR); Filter Difference Spectrometer, (FDS); and Constant-Q Spectrometer

  14. Perfect/complete scattering experiments. Probing quantum mechanics on atomic and molecular collisions and coincidences

    International Nuclear Information System (INIS)

    Lohmann, Bernd; Grum-Grzhimailo, Alexei N.; Kleinpoppen, Hans

    2013-01-01

    Derives parameters for electrons, photons, atoms, ions, molecules calculated from theory. Delivers the quantum mechanical knowledge of atomic and molecular physics. Presents state-of-the-art experiments in atomic and molecular physics and related theoretical approaches. The main goal of this book is to elucidate what kind of experiment must be performed in order to determine the full set of independent parameters which can be extracted and calculated from theory, where electrons, photons, atoms, ions, molecules, or molecular ions may serve as the interacting constituents of matter. The feasibility of such perfect' and-or 'complete' experiments, providing the complete quantum mechanical knowledge of the process, is associated with the enormous potential of modern research techniques, both, in experiment and theory. It is even difficult to overestimate the role of theory in setting of the complete experiment, starting with the fact that an experiment can be complete only within a certain theoretical framework, and ending with the direct prescription of what, and in what conditions should be measured to make the experiment 'complete'. The language of the related theory is the language of quantum mechanical amplitudes and their relative phases. This book captures the spirit of research in the direction of the complete experiment in atomic and molecular physics, considering some of the basic quantum processes: scattering, Auger decay and photo-ionization. It includes a description of the experimental methods used to realize, step by step, the complete experiment up to the level of the amplitudes and phases. The corresponding arsenal includes, beyond determining the total cross section, the observation of angle and spin resolved quantities, photon polarization and correlation parameters, measurements applying coincidence techniques, preparing initially polarized targets, and even more sophisticated methods. The 'complete' experiment is, until today, hardly to perform

  15. Perfect/complete scattering experiments. Probing quantum mechanics on atomic and molecular collisions and coincidences

    Energy Technology Data Exchange (ETDEWEB)

    Lohmann, Bernd [Muenster Univ. (Germany). Inst. fuer Theoretische Physik 1; Grum-Grzhimailo, Alexei N. [Moscow State Univ. (Russian Federation). Skobeltsyn Inst. of Nuclear Physics; Kleinpoppen, Hans

    2013-07-01

    Derives parameters for electrons, photons, atoms, ions, molecules calculated from theory. Delivers the quantum mechanical knowledge of atomic and molecular physics. Presents state-of-the-art experiments in atomic and molecular physics and related theoretical approaches. The main goal of this book is to elucidate what kind of experiment must be performed in order to determine the full set of independent parameters which can be extracted and calculated from theory, where electrons, photons, atoms, ions, molecules, or molecular ions may serve as the interacting constituents of matter. The feasibility of such perfect' and-or 'complete' experiments, providing the complete quantum mechanical knowledge of the process, is associated with the enormous potential of modern research techniques, both, in experiment and theory. It is even difficult to overestimate the role of theory in setting of the complete experiment, starting with the fact that an experiment can be complete only within a certain theoretical framework, and ending with the direct prescription of what, and in what conditions should be measured to make the experiment 'complete'. The language of the related theory is the language of quantum mechanical amplitudes and their relative phases. This book captures the spirit of research in the direction of the complete experiment in atomic and molecular physics, considering some of the basic quantum processes: scattering, Auger decay and photo-ionization. It includes a description of the experimental methods used to realize, step by step, the complete experiment up to the level of the amplitudes and phases. The corresponding arsenal includes, beyond determining the total cross section, the observation of angle and spin resolved quantities, photon polarization and correlation parameters, measurements applying coincidence techniques, preparing initially polarized targets, and even more sophisticated methods. The 'complete' experiment is

  16. Doppler shift simulation of scattered HF signals during the Tromsø HF pumping experiment on 16 February 1996

    Directory of Open Access Journals (Sweden)

    T. D. Borisova

    Full Text Available Comparisons between bistatic scatter measurements and simulation results during the Tromsø HF pumping experiment on 16 February 1996 are made. Doppler measurements of an HF diagnostic signal scattered from the field-aligned irregularities (FAIs in the auroral E-region were carried out on the London – Tromsø – St. Petersburg path at 9410 kHz from 21:00 to 22:00 UT. The scattered signals were observed both from natural and artificial ionospheric irregularities located in the vicinity of Tromsø. To simulate the Doppler frequency shifts, fd , of scattered signals, a radio channel model, named CONE, was developed. The model allows for ray tracing, group and phase paths, and Doppler frequency shift calculations. The calculated Doppler shifts were analyzed for dependence on the magnitude and direction of plasma velocities in the scattering volume. It was found that the velocity components in the north-south direction are crucial for explaining the Doppler frequency shifts of the scattered diagnostic signals. To simulate fd , real velocities obtained from the EISCAT UHF radar at an altitude of 278 km and from the digital all-sky imager during the experiment were employed. The simulation results of Doppler frequency shift variations with time are in reasonable agreement with the experimental Doppler shifts of scattered signals on the London – Tromsø – St. Petersburg path.

    Key words. Ionosphere (active experiments; ionospheric irregularities Radio science (ionospheric propagation

  17. Stimulated scattering in laser driven fusion and high energy density physics experiments

    Energy Technology Data Exchange (ETDEWEB)

    Yin, L., E-mail: lyin@lanl.gov; Albright, B. J.; Rose, H. A.; Montgomery, D. S.; Kline, J. L.; Finnegan, S. M.; Bergen, B.; Bowers, K. J. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Kirkwood, R. K.; Milovich, J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2014-09-15

    In laser driven fusion and high energy density physics experiments, one often encounters a kλ{sub D} range of 0.15 < kλ{sub D} < 0.5, where stimulated Raman scattering (SRS) is active (k is the initial electron plasma wave number and λ{sub D} is the Debye length). Using particle-in-cell simulations, the SRS reflectivity is found to scale as ∼ (kλ{sub D}){sup −4} for kλ{sub D} ≳ 0.3 where electron trapping effects dominate SRS saturation; the reflectivity scaling deviates from the above for kλ{sub D} < 0.3 when Langmuir decay instability (LDI) is present. The SRS risk is shown to be highest for kλ{sub D} between 0.2 and 0.3. SRS re-scattering processes are found to be unimportant under conditions relevant to ignition experiments at the National Ignition Facility (NIF). Large-scale simulations of the hohlraum plasma show that the SRS wavelength spectrum peaks below 600 nm, consistent with most measured NIF spectra, and that nonlinear trapping in the presence of plasma gradients determines the SRS spectral peak. Collisional effects on SRS, stimulated Brillouin scattering (SBS), LDI, and re-scatter, together with three dimensional effects, are examined. Effects of collisions are found to include de-trapping as well as cross-speckle electron temperature variation from collisional heating, the latter of which reduces gain, introduces a positive frequency shift that counters the trapping-induced negative frequency shift, and affects SRS and SBS saturation. Bowing and breakup of ion-acoustic wavefronts saturate SBS and cause a dramatic, sharp decrease in SBS reflectivity. Mitigation of SRS and SBS in the strongly nonlinear trapping regime is discussed.

  18. Neutron scattering. Experiment manuals

    International Nuclear Information System (INIS)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2014-01-01

    The following topics are dealt with: The thermal triple-axis spectrometer PUMA, the high-resolution powder diffractometer SPODI, the hot-single-crystal diffractometer HEiDi, the three-axis spectrometer PANDA, the backscattering spectrometer SPHERES, the DNS neutron-polarization analysis, the neutron spin-echo spectrometer J-NSE, small-angle neutron scattering at KWS-1 and KWS-2, a very-small-angle neutron scattering diffractometer with focusing mirror, the reflectometer TREFF, the time-of-flight spectrometer TOFTOF. (HSI)

  19. A letter of intent for a neutrino scattering experiment on the booster neutrino meanline: FINeSSE

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, B.T.; Tayloe, R.; /Indiana U. /Yale U.

    2005-03-01

    The experiment described in this Letter of Intent provides a decisive measurement of {Delta}s, the spin of the nucleon carried by strange quarks. This is crucial as, after more than thirty years of study, the spin contribution of strange quarks to the nucleon is still not understood. The interpretation of {Delta}s measurements from inclusive Deep Inelastic Scattering (DIS) experiments using charged leptons suffers from two questionable techniques; an assumption of SU(3)-flavor symmetry, and an extrapolation into unmeasured kinematic regions, both of which provide ample room for uncertain theoretical errors in the results. The results of recent semi-inclusive DIS data from HERMES paint a somewhat different picture of the contribution of strange quarks to the nucleon spin than do the inclusive results, but since HERMES does not make use of either of the above-mentioned techniques, then the results are somewhat incomparable. What is required is a measurement directly probing the spin contribution of the strange quarks in the nucleon. Neutrino experiments provide a theoretically clean and robust method of determining {Delta}s by comparing the neutral current interaction, which is isoscalar plus isovector, to the charged current interaction, which is strictly isovector. A past experiment, E734, performed at Brookhaven National Laboratory, has pioneered this effort. Building on what they have learned, we present an experiment which achieves a measurement to {+-} 0.025 using neutrino scattering, and {+-} 0.04 using anti-neutrino scattering, significantly better than past measurements. The combination of the neutrino and anti-neutrino data, when combined with the results of the parity-violating electron-nucleon scattering data, will produce the most significant result for {Delta}s. This experiment can also measure neutrino cross sections in the energy range required for accelerator-based precision oscillation measurements. Accurate measurements of cross sections have been

  20. Studies on laser beam propagation and stimulated scattering in multiple beam experiments

    International Nuclear Information System (INIS)

    Labaune, C.; Lewis, K.; Bandulet, H.; Lewis, K.; Depierreux, S.; Huller, S.; Masson-Laborde, P.E.; Pesme, D.; Riazuelo, G.

    2006-01-01

    The propagation and stimulated scattering of intense laser beams interacting with underdense plasmas are two important issues for inertial confinement fusion (ICF). The purpose of this work was to perform experiments under well-controlled interaction conditions and confront them with numerical simulations to test the physics included in the codes. Experimental diagnostics include time and space resolved images of incident and SBS light and of SBS-ion acoustic activity. New numerical diagnostics, including similar constraints as the experimental ones and the treatment of the propagation of the light between the emitting area and the detectors, have been developed. Particular care was put to include realistic plasma density and velocity profiles, as well as laser pulse shape in the simulations. In the experiments presented in this paper, the interaction beam was used with a random phase plate (RPP) to produce a statistical distribution of speckles in the focal volume. Stimulated Brillouin Scattering (SBS) was described using a decomposition of the spatial scales which provides a predictive modeling of SBS in an expanding mm-scale plasma. Spatial and temporal behavior of the SBS-ion acoustic waves was found to be in good agreement with the experimental ones for two laser intensities. (authors)

  1. Terrestrial effects on dark matter-electron scattering experiments

    DEFF Research Database (Denmark)

    Emken, Timon; Kouvaris, Chris; Shoemaker, Ian M.

    2017-01-01

    A well-studied possibility is that dark matter may reside in a sector secluded from the Standard Model, except for the so-called photon portal: kinetic mixing between the ordinary and dark photons. Such interactions can be probed in dark matter direct detection experiments, and new experimental...... techniques involving detection of dark matter-electron scattering offer new sensitivity to sub-GeV dark matter. Typically however it is implicitly assumed that the dark matter is not altered as it traverses the Earth to arrive at the detector. In this paper we study in detail the effects of terrestrial...... stopping on dark photon models of dark matter, and find that they significantly reduce the sensitivity of XENON10 and DAMIC. In particular we find that XENON10 only excludes masses in the range (5-3000) MeV while DAMIC only probes (20-50) MeV. Their corresponding cross section sensitivity is reduced...

  2. LabVIEW-based X-ray detection system for laser compton scattering experiment

    International Nuclear Information System (INIS)

    Luo Wen; Xu Wang; Pan Qiangyan

    2010-01-01

    A LabVIEW-based X-ray detection system has been developed for laser-Compton scattering (LCS) experiment at the 100 MeV Linac of the Shanghai Institute of Applied Physics (SINAP). It mainly consists of a Si (Li) detector, readout electronics and a LabVIEW-based Data Acquisition (DAQ), and possesses the functions of signal spectrum displaying, acquisition control and simple online data analysis and so on. The performance test shows that energy and time resolutions of the system are 184 eV at 5.9 keV and ≤ 1% respectively and system instability is found to be 0.3‰ within a week. As a result, this X-ray detection system has low-cost and high-performance features and can meet the requirements of LCS experiment. (authors)

  3. Meeting the future of coherent neutrino scattering. A feasibility study for upcoming reactor experiments

    Energy Technology Data Exchange (ETDEWEB)

    Salathe, Marco; Rink, Thomas [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)

    2016-07-01

    Due to ongoing progress in detector development and background suppression techniques first evidence of neutrino coherent scattering seems reachable in future experiments. In recent years efforts have been enhanced to detect this effect with germanium detectors. This work aims at summarizing and improving past studies on the potential of an experiment at a reactor site to a new level of accuracy by using the most recent neutrino spectra, knowledge gained in recent detector developments and in contrast to prior studies an energy-dependent quenching factor. The influence of the main parameters (background suppression, detector resolution and threshold, reactor spectra, different isotopes) of a germanium detector experiment is presented and the sensitivities regarding the main reaction channels are calculated. The results were obtained through two independent methods; an algebraic computation and a numerical simulation. Both methods reveal the most important experimental parameters and clarify the state of the art challenges that research has to meet in such an experiment.

  4. Hard two-photon contribution to elastic lepton-proton scattering determined by the OLYMPUS experiment

    Science.gov (United States)

    Hasell, D. K.; OLYMPUS Collaboration

    2018-02-01

    The OLYMPUS collaboration has recently made a precise measurement of the positron-proton to electron-proton elastic scattering cross section ratio, R 2γ, over a wide range of the virtual photon polarization, 0.456 reasonable agreement with predictions based on phenomenological fits to the available form factor data. The motivation for measuring R 2γ will be presented followed by a description of the OLYMPUS experiment. The importance of radiative corrections in the analysis will be shown also. Then we will present the OLYMPUS results and compare with results from two similar experiments and theoretical calculations.

  5. Neutron scattering. Experiment manuals

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2010-07-01

    The following topics are dealt with: The thermal triple axis spectrometer PUMA, the high-resolution powder diffractometer SPODI, the hot single-crystal diffractometer HEiDi for structure analysis with neutrons, the backscattering spectrometer SPHERES, neutron polarization analysis with tht time-of-flight spectrometer DNS, the neutron spin-echo spectrometer J-NSE, small-angle neutron scattering with the KWS-1 and KWS-2 diffractometers, the very-small-angle neutron scattering diffractrometer with focusing mirror KWS-3, the resonance spin-echo spectrometer RESEDA, the reflectometer TREFF, the time-of-flight spectrometer TOFTOF. (HSI)

  6. Neutron scattering. Experiment manuals

    International Nuclear Information System (INIS)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2010-01-01

    The following topics are dealt with: The thermal triple axis spectrometer PUMA, the high-resolution powder diffractometer SPODI, the hot single-crystal diffractometer HEiDi for structure analysis with neutrons, the backscattering spectrometer SPHERES, neutron polarization analysis with tht time-of-flight spectrometer DNS, the neutron spin-echo spectrometer J-NSE, small-angle neutron scattering with the KWS-1 and KWS-2 diffractometers, the very-small-angle neutron scattering diffractrometer with focusing mirror KWS-3, the resonance spin-echo spectrometer RESEDA, the reflectometer TREFF, the time-of-flight spectrometer TOFTOF. (HSI)

  7. Summary of Thomson-scattering data from the Tandem Mirror Experiment (TMX)

    International Nuclear Information System (INIS)

    Goodman, R.K.

    1982-01-01

    We provide a synthesis of our Thomson-scattering measurements of electron temperature (T/sub e/) and density (n/sub e/) for the Tandem Mirror Experiment (TMX). TMX operated in two modes - high and low T/sub e/. When performing in the high T/sub e/ mode (in general > 100 eV), heating the central-cell ions with neutral beams raised T/sub e/ in the end plug. We achieved a maximum T/sub e/ of 260 eV in the east end plug. Specifically, our experiments demonstrated that in the end plug, the radial T/sub e/ profiles were flat to r = 5 cm; the ratio of potential (phi/sub p/) to T/sub e/ ranged between four and six. In addition, we found that although T/sub e/ in the central cell was generally comparable to that in the plug, it was often not constant along a magnetic field line. Under some conditions a non-Maxwellian electron distribution may have been present

  8. Preparation and characterisation of magnetic nanostructured samples for inelastic neutron scattering experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kreuzpaintner, Wolfgang

    2010-06-22

    Recent advances in thin-film structuring techniques have generated significant interest in the dynamics of spin waves in magnetic nanostructures and the possible use of inelastic neutron scattering (INS) for their investigation. This thesis describes the design and implementation, at GKSS Research Centre, of equipment for preparation of large and laterally submicron and nanometre structured magnetic samples for such future INS experiments. After a brief resume on spin waves in nanostructures, the development work on new purpose-designed equipment, including high vacuum (HV) argon ion beam milling and ultra high vacuum (UHV) e-beam evaporation setups, is described. Ni nanodot as well as Ni and novel Gd nanowire samples were prepared using combinations of sputter deposition, laser interference lithography, argon ion beam milling, e-beam evaporation and self organisation techniques. With reference to sample preparation, epitaxial growth studies for Ni on Si(100) substrate were performed, resulting in the development of a new deposition process, which by thermal tuning allows for the direct epitaxial growth of Ni on Si with unprecedented crystalline quality. The results of various characterisation experiments on the prepared nanostructured samples, including Scanning Electron Microscopy (SEM), microprobe analysis, Atomic and Magnetic Force Microscopy (AFM/MFM), Vibrating Sample Magnetometry (VSM), X-ray Diffraction (XRD) and Reflectivity (XRR), unpolarised and Polarised Neutron Scattering (PNR) and off-specular scattering by X-rays and neutrons using rocking scans and Time-Of-Flight Grazing Incidence Small Angle Neutron Scattering (TOF-GISANS), together with various analysis procedures such as Distorted-Wave Born Approximation (DWBA), are reported. The analysis of a Gd nanowire sample by TOF-GISANS led to a novel evaluation technique which in comparison with single wavelength methods allows portions of reciprocal space to be scanned without changing the angle of

  9. Preparation and characterisation of magnetic nanostructured samples for inelastic neutron scattering experiments

    International Nuclear Information System (INIS)

    Kreuzpaintner, Wolfgang

    2010-01-01

    Recent advances in thin-film structuring techniques have generated significant interest in the dynamics of spin waves in magnetic nanostructures and the possible use of inelastic neutron scattering (INS) for their investigation. This thesis describes the design and implementation, at GKSS Research Centre, of equipment for preparation of large and laterally submicron and nanometre structured magnetic samples for such future INS experiments. After a brief resume on spin waves in nanostructures, the development work on new purpose-designed equipment, including high vacuum (HV) argon ion beam milling and ultra high vacuum (UHV) e-beam evaporation setups, is described. Ni nanodot as well as Ni and novel Gd nanowire samples were prepared using combinations of sputter deposition, laser interference lithography, argon ion beam milling, e-beam evaporation and self organisation techniques. With reference to sample preparation, epitaxial growth studies for Ni on Si(100) substrate were performed, resulting in the development of a new deposition process, which by thermal tuning allows for the direct epitaxial growth of Ni on Si with unprecedented crystalline quality. The results of various characterisation experiments on the prepared nanostructured samples, including Scanning Electron Microscopy (SEM), microprobe analysis, Atomic and Magnetic Force Microscopy (AFM/MFM), Vibrating Sample Magnetometry (VSM), X-ray Diffraction (XRD) and Reflectivity (XRR), unpolarised and Polarised Neutron Scattering (PNR) and off-specular scattering by X-rays and neutrons using rocking scans and Time-Of-Flight Grazing Incidence Small Angle Neutron Scattering (TOF-GISANS), together with various analysis procedures such as Distorted-Wave Born Approximation (DWBA), are reported. The analysis of a Gd nanowire sample by TOF-GISANS led to a novel evaluation technique which in comparison with single wavelength methods allows portions of reciprocal space to be scanned without changing the angle of

  10. A fully computerized multi-pass Fabry-Perot interferometer for Rayleigh-Brillouin scattering experiments

    International Nuclear Information System (INIS)

    Bohidar, H.; Berland, T.; Boger, F.; Joessang, T.; Feder, J.

    1987-01-01

    The development of a Multipass Fabry-Perot interforometer assembly for use in Rayleigh-Brillouin scattering experiments is reported. The optical alignment and the scattered signal data acquisition have been completely computerized. Digital scanning and alignment strategies of the Fabry-Perot resonator have been incorporated, which makes this instrument quite unique in this respect. The high contrast (∼10 10 ) and finesse (∼50) offered by this instrument makes it possible to detect Brillouin peaks from samples that have a small Brillouin scattering cross-section. As part of this system a compatible and precision sample chamber has been constructed, which has been designed to operate in the pressure and temperature ranges of 1-1000B and 20-150 o C, respectively. The cell has been constructed to be small and compact, but it still has a large heat capacity (∼250J/K) which ensures easy and stable temperature control of the liquid sample volume which has a size of 40 mm 3 . The achievable temperature stability is +-1mK and +-2mK for operating temperatures below and above 100 o C, respectively. The pressure stability is in the range of +-0.05B of the set pressure for pressures below 100B and it is +-0.05% for higher pressures up to 1000B. Both pressure and temperature are remotely monitored and controlled by a ND/100 computer. Special care has been taken in designing the optics of the pressure cell to ensure that both the primary and secondary reflections from the entrance window, as well as the main beam, go out of the scattering region in order to achieve higher signal-to-noise ratio in actual experiments

  11. The TUNL neutron-neutron scattering length experiment

    International Nuclear Information System (INIS)

    Trotter, D.E.G.; Tornow, W.; Howell, C.R.

    1995-01-01

    Since an accurate value for the neutron-neutron (nn) scattering length a nn is of fundamental interest, its determination should not rely on one source of experimental information only. Besides the π d capture reaction, the nd breakup reaction has been the classical reaction used for determining a nn . However, none of the published values for a nn obtained from kinematically complete nd → n+n+p breakup data are based on a rigorous treatment of the three-nucleon continuum. In addition, the scale uncertainty associated with the existing nd breakup cross-section data in the region of the nn final-state interaction peak is too large to allow for a meaningful reanalysis. Therefore, a new kinematically complete nd breakup experiment is underway at TUNL at an incident neutron energy of 13 MeV. State-of-the-art three-nucleon continuum calculations will be used to analyze the data. In order to investigate the possible influence of three-nucleon force effects, a nn will be determined from data taken at four production angles of the nn pair between 20.5 degrees and 43 degrees (lab)

  12. Slow neutron scattering experiments

    International Nuclear Information System (INIS)

    Moon, R.M.

    1985-01-01

    Neutron scattering is a versatile technique that has been successfully applied to condensed-matter physics, biology, polymer science, chemistry, and materials science. The United States lost its leadership role in this field to Western Europe about 10 years ago. Recently, a modest investment in the United States in new facilities and a positive attitude on the part of the national laboratories toward outside users have resulted in a dramatic increase in the number of US scientists involved in neutron scattering research. Plans are being made for investments in new and improved facilities that could return the leadership role to the United States. 23 references, 4 figures, 3 tables

  13. Developments on positron scattering experiments including beam production and detection

    International Nuclear Information System (INIS)

    Selim, F.A.; Golovchenko, J.A.

    2001-01-01

    Positron scattering and channeling experiments require high quality (low emittance) beams. A new electrostatic optics system for extracting positrons from a moderator is presented. The system features improved efficiency of focusing and beam transport of moderated positrons emitted with angular spreads up to ± 30 , with good phase space characteristics. The presented optics also provides a high degree of freedom in controlling exit beam trajectories. The system has been installed in the LLNL Pelletron accelerator and showed great enhancement on the beam quality. On the detection side, image plates were used to measure the angular distributions of positrons transmitted through the gold crystals. The measurements demonstrate the advantages of image plates as quantitative position sensitive detectors for positrons. (orig.)

  14. On the importance of fast scattering data for aluminium in the interpretation results from H{sub 2}O moderated lattice experiments

    Energy Technology Data Exchange (ETDEWEB)

    Fayers, F J; Terry, M J [General Reactor Physics Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1967-07-15

    Aluminium is often used as a structural material or fuel cladding in lattice experiments with light water moderators. In particular most of the experiments with regular rod lattices of plutonium fuel have contained significant quantities of aluminium. This report examines the importance of scattering data for aluminium in leakage calculations for light water systems. It is shown that some discrepancy exists between calculated plane moments and experimentally measured moments, which may be corrected by an 'ad hoc' adjustment of inelastic scattering data for aluminium. WIMS results are presented for some Battelle plutonium fuelled rod lattices, and it is shown that this adjustment of inelastic data leads to a noticeable correction for the predicted reactivities of these experiments. The influence of scattering data for aluminium on results for some other lattices of interest has been shown to be less important. (author)

  15. Spin-density correlations in the dynamic spin-fluctuation theory: Comparison with polarized neutron scattering experiments

    Energy Technology Data Exchange (ETDEWEB)

    Melnikov, N.B., E-mail: melnikov@cs.msu.su [Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Reser, B.I., E-mail: reser@imp.uran.ru [Miheev Institute of Metal Physics, Ural Branch of Russian Academy of Sciences, Ekaterinburg 620990 (Russian Federation); Paradezhenko, G.V., E-mail: gparadezhenko@cs.msu.su [Lomonosov Moscow State University, Moscow 119991 (Russian Federation)

    2016-08-01

    To study the spin-density correlations in the ferromagnetic metals above the Curie temperature, we relate the spin correlator and neutron scattering cross-section. In the dynamic spin-fluctuation theory, we obtain explicit expressions for the effective and local magnetic moments and spatial spin-density correlator. Our theoretical results are demonstrated by the example of bcc Fe. The effective and local moments are found in good agreement with results of polarized neutron scattering experiment over a wide temperature range. The calculated short-range order is small (up to 4 Å) and slowly decreases with temperature.

  16. QCD Precision Measurements and Structure Function Extraction at a High Statistics, High Energy Neutrino Scattering Experiment: NuSOnG

    International Nuclear Information System (INIS)

    Adams, T.; Batra, P.; Bugel, Leonard G.; Camilleri, Leslie Loris; Conrad, Janet Marie; Fisher, Peter H.; Formaggio, Joseph Angelo; Karagiorgi, Georgia S.; )

    2009-01-01

    We extend the physics case for a new high-energy, ultra-high statistics neutrino scattering experiment, NuSOnG (Neutrino Scattering On Glass) to address a variety of issues including precision QCD measurements, extraction of structure functions, and the derived Parton Distribution Functions (PDFs). This experiment uses a Tevatron-based neutrino beam to obtain a sample of Deep Inelastic Scattering (DIS) events which is over two orders of magnitude larger than past samples. We outline an innovative method for fitting the structure functions using a parameterized energy shift which yields reduced systematic uncertainties. High statistics measurements, in combination with improved systematics, will enable NuSOnG to perform discerning tests of fundamental Standard Model parameters as we search for deviations which may hint of 'Beyond the Standard Model' physics

  17. A small-angle camera for resonant scattering experiments at the storage ring DORIS

    International Nuclear Information System (INIS)

    Stuhrmann, H.B.; Gabriel, A.

    1983-01-01

    Resonant small-angle scattering is measured routinely in the wavelength range of 0.6 to 3.25 A with the instrument X15 at the storage ring DORIS. The monochromatic beam with a vertical offset of 1.22 m is achieved by a double monochromator system with a constant exit slit. The small-angle instrument allows for sample-detector distances between 0.37 and 7.33 m. A multiwire proportional counter with a sensitive area of 200 X 200 mm detects the scattered intensity with a spatial resolution of 2 X 2 mm. Its sensitivity can be adapted to the requirements of the experiment by activating a drift chamber of 8 cm depth at the back end of the detector. The performance of the instrument as a function of the wavelength is described. The energy resolution is about 1 eV at the L 3 absorption edge of caesium, as shown by the resonant scattering of ferritin in 30% CsCl solution. (Auth.)

  18. Track reconstruction for the Mu3e experiment based on a novel Multiple Scattering fit

    Directory of Open Access Journals (Sweden)

    Kozlinskiy Alexandr

    2017-01-01

    Full Text Available The Mu3e experiment is designed to search for the lepton flavor violating decay μ+ → e+e+e−. The aim of the experiment is to reach a branching ratio sensitivity of 10−16. In a first phase the experiment will be performed at an existing beam line at the Paul-Scherrer Institute (Switzerland providing 108 muons per second, which will allow to reach a sensitivity of 2 · 10−15. The muons with a momentum of about 28 MeV/c are stopped and decay at rest on a target. The decay products (positrons and electrons with energies below 53MeV are measured by a tracking detector consisting of two double layers of 50 μm thin silicon pixel sensors. The high granularity of the pixel detector with a pixel size of 80 μm × 80 μm allows for a precise track reconstruction in the high multiplicity environment of the Mu3e experiment, reaching 100 tracks per reconstruction frame of 50 ns in the final phase of the experiment. To deal with such high rates and combinatorics, the Mu3e track reconstruction uses a novel fit algorithm that in the simplest case takes into account only the multiple scattering, which allows for a fast online tracking on a GPU based filter farm. An implementation of the 3-dimensional multiple scattering fit based on hit triplets is described. The extension of the fit that takes into account energy losses and pixel size is used for offline track reconstruction. The algorithm and performance of the offline track reconstruction based on a full Geant4 simulation of the Mu3e detector are presented.

  19. Proceedings of the workshop on scattering experiments under extreme conditions

    International Nuclear Information System (INIS)

    Sakai, N.; Ikeda, H.; Ando, M.

    1991-10-01

    In the National Laboratory for High Energy Physics (KEK), as the research facilities, there are Photon Factory, the facility for utilizing the booster and University of Tokyo Meson Science Research Center. For the research on physical properties, it is very important to do structural analysis in a broad sense and to observe the behavior of quasiparticles in solids. The X-ray and pulsed neutrons required for these researches can be obtained in a single laboratory in KEK, and it is rare in the world. At this opportunity of the workshop on scattering experiments under extreme conditions, it is hoped that the positive interchange between both PF and booster groups will be carried out. The research on magnetic substances using X-ray is a most noteworthy utilization of synchrotron radiation. The discovery of X-ray resonance magnetic scattering by K. Namikawa is one of the remarkable researches using synchrotron radiation in the world. When the extreme conditions around samples are prepared, the quality of signals for the research on physical properties is to be heightened. In this report, the researches on physical properties under ultrahigh pressure and ultralow temperature are reported. (K.I.)

  20. A didactic experiment showing the Compton scattering by means of a clinical gamma camera.

    Science.gov (United States)

    Amato, Ernesto; Auditore, Lucrezia; Campennì, Alfredo; Minutoli, Fabio; Cucinotta, Mariapaola; Sindoni, Alessandro; Baldari, Sergio

    2017-06-01

    We describe a didactic approach aimed to explain the effect of Compton scattering in nuclear medicine imaging, exploiting the comparison of a didactic experiment with a gamma camera with the outcomes from a Monte Carlo simulation of the same experimental apparatus. We employed a 99m Tc source emitting 140.5keV photons, collimated in the upper direction through two pinholes, shielded by 6mm of lead. An aluminium cylinder was placed on the source at 50mm of distance. The energy of the scattered photons was measured on the spectra acquired by the gamma camera. We observed that the gamma ray energy measured at each step of rotation gradually decreased from the characteristic energy of 140.5keV at 0° to 102.5keV at 120°. A comparison between the obtained data and the expected results from the Compton formula and from the Monte Carlo simulation revealed a full agreement within the experimental error (relative errors between -0.56% and 1.19%), given by the energy resolution of the gamma camera. Also the electron rest mass has been evaluated satisfactorily. The experiment was found useful in explaining nuclear medicine residents the phenomenology of the Compton scattering and its importance in the nuclear medicine imaging, and it can be profitably proposed during the training of medical physics residents as well. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  1. Proposal to perform a high - statisics neutrino scattering experiment using a fine - grained detector in the NuMI Beam

    Energy Technology Data Exchange (ETDEWEB)

    Morfin, J.G.; /Fermilab; McFarland, K.; /Rochester U.

    2003-12-01

    The NuMI facility at Fermilab will provide an extremely intense beam of neutrinos for the MINOS neutrino-oscillation experiment. The spacious and fully-outfitted MINOS near detector hall will be the ideal venue for a high-statistics, high-resolution {nu} and {bar {nu}}-nucleon/nucleus scattering experiment. The experiment described here will measure neutrino cross-sections and probe nuclear effects essential to present and future neutrino-oscillation experiments. Moreover, with the high NuMI beam intensity, the experiment will either initially address or significantly improve our knowledge of a wide variety of neutrino physics topics of interest and importance to the elementary-particle and nuclear-physics communities.

  2. Double-slit experiment in momentum space

    Science.gov (United States)

    Ivanov, I. P.; Seipt, D.; Surzhykov, A.; Fritzsche, S.

    2016-08-01

    Young's classic double-slit experiment demonstrates the reality of interference when waves and particles travel simultaneously along two different spatial paths. Here, we propose a double-slit experiment in momentum space, realized in the free-space elastic scattering of vortex electrons. We show that this process proceeds along two paths in momentum space, which are well localized and well separated from each other. For such vortex beams, the (plane-wave) amplitudes along the two paths acquire adjustable phase shifts and produce interference fringes in the final angular distribution. We argue that this experiment can be realized with the present-day technology. We show that it gives experimental access to the Coulomb phase, a quantity which plays an important role in all charged particle scattering but which usual scattering experiments are insensitive to.

  3. The determination of electron momentum densities by inelastic scattering gamma-ray-electron coincidence measurements: The (γ,eγ)-experiment

    International Nuclear Information System (INIS)

    Rollason, A.J.; Bell, F.; Schneider, J.R.

    1989-09-01

    Measurements have been made of the recoiling electron in 320 keV gamma ray inelastic scattering collisions in thin aluminium targets. The angular correlation of these electrons detected in coincidence with the scattered photon is in agreement with the kinematic requirements of the Compton effect and is correctly predicted by Monte Carlo simulations based on the impulse approximation. Further simulations of ideal-geometry experiments indicate that information about the initial electron momenta is available from an examination of those electron-photon events originating in a surface layer of one electronic mean free path depth and that elastic scattering of the recoil electrons from greater depths produces a nearly flat background to this signal. The results clearly demonstrate the feasibility of the (γ,eγ) experiment for studying electron momentum densities with synchrotron radiation. (orig.) With 23 refs., 17 figs

  4. The SAMPLE experiment: Parity-violating electron scattering from the proton and deuteron

    International Nuclear Information System (INIS)

    Pitt, M.; Arrington, J.; Beck, D.; Beise, E.; Candell, E.; Cardman, L.; Carr, R.; Dodson, G.; Dow, K.; Duncan, F.; Farkhondeh, M.; Filippone, B.; Forest, T.; Gao, H.; Korsch, W.; Kowalski, S.; Lung, A.; McKeown, R.; Mohring, R.; Mueller, B.; Napolitano, J.; Simicevic, N.; Terburg, B.; Witkowski, M.

    1995-01-01

    Recent experimental evidence on nucleon structure has provided indications that some strange quark matrix elements can be comparable to those involving up and down quarks. The SAMPLE experiment will determine the strange magnetic form factor G s M at Q 2 =0.1 (GeV/c) 2 from a measurement of the asymmetry in the scattering of polarized electrons from the proton. The error on the extraction of G s M is ultimately limited by a theoretical uncertainty---the uncertain electroweak hadronic radiative correction to the axial form factor, R T=1 A . To address this issue, the collaboration is also approved to measure the asymmetry in parity-violating quasielastic electron scattering from the deuteron. The combination of the proton and deuteron measurements will yield a value of G s M that is almost completely free of the uncertainty in R T=1 A

  5. The OLYMPUS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Milner, R.; Hasell, D.K. [Massachusetts Institute of Technology, Cambridge, MA (United States); Kohl, M. [Hampton Univ., Hampton, VA (United States); Collaboration: The OLYMPUS Collaboration; and others

    2013-12-15

    The OLYMPUS experiment was designed to measure the ratio between the positron-proton and electron-proton elastic scattering cross sections, with the goal of determining the contribution of two-photon exchange to the elastic cross section. Two-photon exchange might resolve the discrepancy between measurements of the proton form factor ratio, {mu}{sub p}G{sup p}{sub E}/G{sup p}{sub M}, made using polarization techniques and those made in unpolarized experiments. OLYMPUS operated on the DORIS storage ring at DESY, alternating between 2.01 GeV electron and positron beams incident on an internal hydrogen gas target. The experiment used a toroidal magnetic spectrometer instrumented with drift chambers and time-of-flight detectors to measure rates for elastic scattering over the polar angular range of approximately 25 -75 . Symmetric Moeller/Bhabha calorimeters at 1.29 and telescopes of GEM and MWPC detectors at 12 served as luminosity monitors. A total luminosity of approximately 4.5 fb{sup -1} was collected over two running periods in 2012. This paper provides details on the accelerator, target, detectors, and operation of the experiment.

  6. The OLYMPUS experiment

    International Nuclear Information System (INIS)

    Milner, R.; Hasell, D.K.; Kohl, M.

    2013-12-01

    The OLYMPUS experiment was designed to measure the ratio between the positron-proton and electron-proton elastic scattering cross sections, with the goal of determining the contribution of two-photon exchange to the elastic cross section. Two-photon exchange might resolve the discrepancy between measurements of the proton form factor ratio, μ p G p E /G p M , made using polarization techniques and those made in unpolarized experiments. OLYMPUS operated on the DORIS storage ring at DESY, alternating between 2.01 GeV electron and positron beams incident on an internal hydrogen gas target. The experiment used a toroidal magnetic spectrometer instrumented with drift chambers and time-of-flight detectors to measure rates for elastic scattering over the polar angular range of approximately 25 -75 . Symmetric Moeller/Bhabha calorimeters at 1.29 and telescopes of GEM and MWPC detectors at 12 served as luminosity monitors. A total luminosity of approximately 4.5 fb -1 was collected over two running periods in 2012. This paper provides details on the accelerator, target, detectors, and operation of the experiment.

  7. The OLYMPUS experiment

    Science.gov (United States)

    Milner, R.; Hasell, D. K.; Kohl, M.; Schneekloth, U.; Akopov, N.; Alarcon, R.; Andreev, V. A.; Ates, O.; Avetisyan, A.; Bayadilov, D.; Beck, R.; Belostotski, S.; Bernauer, J. C.; Bessuille, J.; Brinker, F.; Buck, B.; Calarco, J. R.; Carassiti, V.; Cisbani, E.; Ciullo, G.; Contalbrigo, M.; D'Ascenzo, N.; De Leo, R.; Diefenbach, J.; Donnelly, T. W.; Dow, K.; Elbakian, G.; Eversheim, D.; Frullani, S.; Funke, Ch.; Gavrilov, G.; Gläser, B.; Görrissen, N.; Hauschildt, J.; Henderson, B. S.; Hoffmeister, Ph.; Holler, Y.; Ice, L. D.; Izotov, A.; Kaiser, R.; Karyan, G.; Kelsey, J.; Khaneft, D.; Klassen, P.; Kiselev, A.; Krivshich, A.; Lehmann, I.; Lenisa, P.; Lenz, D.; Lumsden, S.; Ma, Y.; Maas, F.; Marukyan, H.; Miklukho, O.; Movsisyan, A.; Murray, M.; Naryshkin, Y.; O'Connor, C.; Perez Benito, R.; Perrino, R.; Redwine, R. P.; Rodríguez Piñeiro, D.; Rosner, G.; Russell, R. L.; Schmidt, A.; Seitz, B.; Statera, M.; Thiel, A.; Vardanyan, H.; Veretennikov, D.; Vidal, C.; Winnebeck, A.; Yeganov, V.

    2014-03-01

    The OLYMPUS experiment was designed to measure the ratio between the positron-proton and electron-proton elastic scattering cross-sections, with the goal of determining the contribution of two-photon exchange to the elastic cross-section. Two-photon exchange might resolve the discrepancy between measurements of the proton form factor ratio, μpGEp/GMp, made using polarization techniques and those made in unpolarized experiments. OLYMPUS operated on the DORIS storage ring at DESY, alternating between 2.01 GeV electron and positron beams incident on an internal hydrogen gas target. The experiment used a toroidal magnetic spectrometer instrumented with drift chambers and time-of-flight detectors to measure rates for elastic scattering over the polar angular range of approximately 25°-75°. Symmetric Møller/Bhabha calorimeters at 1.29° and telescopes of GEM and MWPC detectors at 12° served as luminosity monitors. A total luminosity of approximately 4.5 fb-1 was collected over two running periods in 2012. This paper provides details on the accelerator, target, detectors, and operation of the experiment.

  8. Small-angle neutron-scattering experiments

    International Nuclear Information System (INIS)

    Hardy, A.D.; Thomas, M.W.; Rouse, K.D.

    1981-04-01

    A brief introduction to the technique of small-angle neutron scattering is given. The layout and operation of the small-angle scattering spectrometer, mounted on the AERE PLUTO reactor, is also described. Results obtained using the spectrometer are presented for three materials (doped uranium dioxide, Magnox cladding and nitrided steel) of interest to Springfields Nuclear Power Development Laboratories. The results obtained are discussed in relation to other known data for these materials. (author)

  9. Development of a system for simultaneously generating triple extreme conditions for neutron scattering experiments

    Energy Technology Data Exchange (ETDEWEB)

    Ichimura, Shigeju [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-10-01

    We have developed new system available for controlling sample environment during the neutron scattering experiments. The system can simultaneously generate triple extreme conditions of low temperature, high magnetic field and high pressure. The system consists of : (1) a liquid-helium cryostat which enables the sample temperature range of 1.7 K to 200 K, (2) a superconducting magnet providing a vertical field up to 5 Tesla with antisymmetric split-coil geometry for polarized-beam experiments, and (3) a non-magnetic clamping high-pressure cell designed with the aim of generating hydrostatic pressure up to 2.5 Gpa. In the workshop, we will report the outline of the system and some results of performance tests using the system at JRR-3M of JAERI. (author)

  10. An analysis of clock-shift experiments: is scatter increased and deflection reduced in clock-shifted homing pigeons?

    Science.gov (United States)

    Chappell

    1997-01-01

    Clock-shifting (altering the phase of the internal clock) in homing pigeons leads to a deflection in the vanishing bearing of the clock-shifted group relative to controls. However, two unexplained phenomena are common in clock-shift experiments: the vanishing bearings of the clock-shifted group are often more scattered (with a shorter vector length) than those of the control group, and the deflection of the mean bearing of the clock-shifted group from that of the controls is often smaller than expected theoretically. Here, an analysis of 55 clock-shift experiments performed in four countries over 21 years is reported. The bearings of the clock-shifted groups were significantly more scattered than those of controls and less deflected than expected, but these effects were not significantly different at familiar and unfamiliar sites. The possible causes of the effects are discussed and evaluated with reference to this analysis and other experiments. The most likely causes appear to be conflict between the directions indicated by the sun compass and either unshifted familiar visual landmarks (at familiar sites only) or the unshifted magnetic compass (possible at both familiar and unfamiliar sites).

  11. The MOLLER Experiment: ``An Ultra-precise Measurement of the Weak Charge of the Electron using moller Scattering''

    Science.gov (United States)

    Beminiwattha, Rakitha; Moller Collaboration

    2017-09-01

    Parity Violating Electron Scattering (PVES) is an extremely successful precision frontier tool that has been used for testing the Standard Model (SM) and understanding nucleon structure. Several generations of highly successful PVES programs at SLAC, MIT-Bates, MAMI-Mainz, and Jefferson Lab have contributed to the understanding of nucleon structure and testing the SM. But missing phenomena like matter-antimatter asymmetry, neutrino flavor oscillations, and dark matter and energy suggest that the SM is only a `low energy' effective theory. The MOLLER experiment at Jefferson Lab will measure the weak charge of the electron, QWe = 1 - 4sin2θW , with a precision of 2.4 % by measuring the parity violating asymmetry in electron-electron () scattering and will be sensitive to subtle but measurable deviations from precisely calculable predictions from the SM. The MOLLER experiment will provide the best contact interaction search for leptons at low OR high energy makes it a probe of physics beyond the Standard Model with sensitivities to mass-scales of new PV physics up to 7.5 TeV. Overview of the experiment and recent pre-R&D progress will be reported.

  12. Spectrometer magnet for experiment NA4 (deep inelastic muon scattering)

    CERN Multimedia

    CERN PhotoLab

    1977-01-01

    This is one section of the toroidal-field spectrometer magnet of experiment NA4 (deep inelastic muon scattering), shown here during the installation period and later located in the North Area of the SPS. To see all 4 sections, select 7709201. Igor Savin from Dubna looks at what his lab had provided: the huge iron disks were machined at and provided by Dubna. Multi-Wire Proportional Chambers were installed in the gaps between the packs of 4 disks. When the beam from the SPS struck the target (to the right in this picture), the iron would quickly stop the hadronic shower, whilst the muons would go on, performing oscillations in the toroidal field. NA4 was a CERN-Dubna-Munich-Saclay (later also Bologna) collaboration, spokesman: Carlo Rubbia.

  13. New generation of cryogen free advanced superconducting magnets for neutron scattering experiments

    International Nuclear Information System (INIS)

    Kirichek, O; Adroja, D T; Manuel, P; Bewley, R I; Brown, J; Kouzmenko, G; Wotherspoon, R

    2012-01-01

    Recent advances in superconducting technology and cryocooler refrigeration have resulted in a new generation of advanced superconducting magnets for neutron beam applications. These magnets have outstanding parameters such as high homogeneity and stability at highest magnetic fields possible, a reasonably small stray field, low neutron scattering background and larger exposure to neutron detectors. At the same time the pulse tube refrigeration technology provides a complete re-condensing regime which allows to minimise the requirements for cryogens without introducing additional noise and mechanical vibrations. The magnets can be used with dilution refrigerator insert which expands the temperature range from 20mK to 300K. Here we are going to present design, test results and the operational data of the 14T magnet for neutron diffraction and the 9T wide angle chopper magnet for neutron spectroscopy developed by Oxford Instruments in collaboration with ISIS neutron source. First scientific results obtained from the neutron scattering experiments with these magnets are also going to be discussed.

  14. Scattering by two spheres: Theory and experiment

    DEFF Research Database (Denmark)

    Bjørnø, Irina; Jensen, Leif Bjørnø

    1998-01-01

    of suspended sediments. The scattering properties of single regular-shaped particles have been studied in depth by several authors in the past. However, single particle scattering cannot explain all features of scattering by suspended sediment. When the concentration of particles exceeds a certain limit...... on three issues: (1) to develop a simplified theory for scattering by two elastical spheres; (2) to measure the scattering by two spheres in a water tank, and (3) to compare the theoretical/numerical results with the measured data. A number of factors influencing multiple scattering, including...

  15. Scattering of a light wave by a thin fiber on or near a prism: experiment and analytical theory.

    Science.gov (United States)

    Tajima, Fumiaki; Nishiyama, Yoshio

    2012-06-01

    We have performed an experiment of the scattering of the near field on a prism created by a laser wave, evanescent wave (EW), or plane wave (PW) of an incident angle slightly larger than or smaller than the critical angle, by a thin fiber of subwavelength diameter set above the prism, and we made an analytical theory of an adapted model for the experiment. We have been able to analyze the experimental data exactly by the model theory better than any other theory we have ever known. The importance of the multiple interaction of the wave between the fiber and the surface and also the close similarity of the scattering characteristics between the EW and the PW mentioned above have been acknowledged by the analysis of the data obtained.

  16. Estimating the Analytical and Surface Enhancement Factors in Surface-Enhanced Raman Scattering (SERS): A Novel Physical Chemistry and Nanotechnology Laboratory Experiment

    Science.gov (United States)

    Pavel, Ioana E.; Alnajjar, Khadijeh S.; Monahan, Jennifer L.; Stahler, Adam; Hunter, Nora E.; Weaver, Kent M.; Baker, Joshua D.; Meyerhoefer, Allie J.; Dolson, David A.

    2012-01-01

    A novel laboratory experiment was successfully implemented for undergraduate and graduate students in physical chemistry and nanotechnology. The main goal of the experiment was to rigorously determine the surface-enhanced Raman scattering (SERS)-based sensing capabilities of colloidal silver nanoparticles (AgNPs). These were quantified by…

  17. Dirac experiment

    International Nuclear Information System (INIS)

    Gomez, F.; Adeva, B.; Afanasev, L.; Benayoun, M.; Brekhovskikh, V.; Caragheorgheopol, G.; Cechak, T.; Chiba, M.; Constantinescu, S.; Doudarev, A.; Dreossi, D.; Drijard, D.; Ferro-Luzzi, M.; Gallas, M.V.; Gerndt, J.; Giacomich, R.; Gianotti, P.; Goldin, D.; Gorin, A.; Gortchakov, O.; Guaraldo, C.; Hansroul, M.; Hosek, R.; Iliescu, M.; Jabitski, M.; Kalinina, N.; Karpoukhine, V.; Kluson, J.; Kobayashi, M.; Kokkas, P.; Komarov, V.; Koulikov, A.; Kouptsov, A.; Krouglov, V.; Krouglova, L.; Kuroda, K.-I.; Lanaro, A.; Lapshine, V.; Lednicky, R.; Leruste, P.; Levisandri, P.; Lopez Aguera, A.; Lucherini, V.; Maki, T.; Manuilov, I.; Montanet, L.; Narjoux, J.-L.; Nemenov, L.; Nikitin, M.; Nunez Pardo, T.; Okada, K.; Olchevskii, V.; Pazos, A.; Pentia, M.; Penzo, A.; Perreau, J.-M.; Petrascu, C.; Plo, M.; Ponta, T.; Pop, D.; Riazantsev, A.; Rodriguez, J.M.; Rodriguez Fernandez, A.; Rykaline, V.; Santamarina, C.; Saborido, J.; Schacher, J.; Sidorov, A.; Smolik, J.; Takeutchi, F.; Tarasov, A.; Tauscher, L.; Tobar, M.J.; Trusov, S.; Vazquez, P.; Vlachos, S.; Yazkov, V.; Yoshimura, Y.; Zrelov, P.

    2001-01-01

    The main objective of DIRAC experiment is the measurement of the lifetime τ of the exotic hadronic atom consisting of π + and π - mesons. The lifetime of this atom is determined by the decay mode π + π - → π 0 π 0 due to the strong interaction. Through the precise relationship between the lifetime and the S-wave pion-pion scattering length difference |a 0 - a 2 | for isospin 0 and 2 (respectively), a measurement of τ with an accuracy of 10% will allow a determination of |a 0 - a 2 | at a 5% precision level. Pion-pion scattering lengths have been calculated in the framework of chiral perturbation theory with an accuracy below 5%. In this way DIRAC experiment will provide a crucial test of the chiral symmetry breaking scheme in QCD effective theories at low energies

  18. Laser Light Scattering, from an Advanced Technology Development Program to Experiments in a Reduced Gravity Environment

    Science.gov (United States)

    Meyer, William V.; Tscharnuter, Walther W.; Macgregor, Andrew D.; Dautet, Henri; Deschamps, Pierre; Boucher, Francois; Zuh, Jixiang; Tin, Padetha; Rogers, Richard B.; Ansari, Rafat R.

    1994-01-01

    Recent advancements in laser light scattering hardware are described. These include intelligent single card correlators; active quench/active reset avalanche photodiodes; laser diodes; and fiber optics which were used by or developed for a NASA advanced technology development program. A space shuttle experiment which will employ aspects of these hardware developments is previewed.

  19. The OLYMPUS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Milner, R. [Massachusetts Institute of Technology, Cambridge, MA (United States); Hasell, D.K., E-mail: hasell@mit.edu [Massachusetts Institute of Technology, Cambridge, MA (United States); Kohl, M. [Hampton University, Hampton, VA (United States); Schneekloth, U. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Akopov, N. [Alikhanyan National Science Laboratory (Yerevan Physics Institute), Yerevan (Armenia); Alarcon, R. [Arizona State University, Tempe, AZ (United States); Andreev, V.A. [Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); Ates, O. [Hampton University, Hampton, VA (United States); Avetisyan, A. [Alikhanyan National Science Laboratory (Yerevan Physics Institute), Yerevan (Armenia); Bayadilov, D.; Beck, R. [Friedrich Wilhelms Universität, Bonn (Germany); Belostotski, S. [Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); Bernauer, J.C.; Bessuille, J. [Massachusetts Institute of Technology, Cambridge, MA (United States); Brinker, F. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Buck, B. [Massachusetts Institute of Technology, Cambridge, MA (United States); Calarco, J.R. [University of New Hampshire, Durham, NH (United States); Carassiti, V. [Università di Ferrara and Istituto Nazionale di Fisica Nucleare, Ferrara (Italy); Cisbani, E. [Istituto Superiore di Sanità and Istituto Nazionale di Fisica Nucleare, Rome (Italy); Ciullo, G. [Università di Ferrara and Istituto Nazionale di Fisica Nucleare, Ferrara (Italy); and others

    2014-03-21

    The OLYMPUS experiment was designed to measure the ratio between the positron–proton and electron–proton elastic scattering cross-sections, with the goal of determining the contribution of two-photon exchange to the elastic cross-section. Two-photon exchange might resolve the discrepancy between measurements of the proton form factor ratio, μ{sub p}G{sub E}{sup p}/G{sub M}{sup p}, made using polarization techniques and those made in unpolarized experiments. OLYMPUS operated on the DORIS storage ring at DESY, alternating between 2.01 GeV electron and positron beams incident on an internal hydrogen gas target. The experiment used a toroidal magnetic spectrometer instrumented with drift chambers and time-of-flight detectors to measure rates for elastic scattering over the polar angular range of approximately 25°–75°. Symmetric Møller/Bhabha calorimeters at 1.29° and telescopes of GEM and MWPC detectors at 12° served as luminosity monitors. A total luminosity of approximately 4.5 fb{sup −1} was collected over two running periods in 2012. This paper provides details on the accelerator, target, detectors, and operation of the experiment.

  20. Additional information about the chemistry of precipitates by variation of the scattering contrast in SANS and SAXS experiments

    International Nuclear Information System (INIS)

    Grosse, M.

    1999-01-01

    Contrast variation experiments provide the possibility to get information about the chemical composition of heterogeneities seen in the small angle scattering experiment. Phases in complex materials can become visible or invisible by changing the contrast. A very important question in this field is the determination of the type of precipitates which are formed during neutron irradiation. These irradiation-induced precipitates are the cause for the neutron embrittlement, which is the life time limiting process for a nuclear power plant. An example is presented, which shows that with contrast variation experiments information about chemical composition of precipitates can be obtained. Several phases in complex materials can be separated. (K.A.)

  1. Dirac experiment

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, F.; Adeva, B.; Afanasev, L.; Benayoun, M.; Brekhovskikh, V.; Caragheorgheopol, G.; Cechak, T.; Chiba, M.; Constantinescu, S.; Doudarev, A.; Dreossi, D.; Drijard, D.; Ferro-Luzzi, M.; Gallas, M.V.; Gerndt, J.; Giacomich, R.; Gianotti, P.; Goldin, D.; Gorin, A.; Gortchakov, O.; Guaraldo, C.; Hansroul, M.; Hosek, R.; Iliescu, M.; Jabitski, M.; Kalinina, N.; Karpoukhine, V.; Kluson, J.; Kobayashi, M.; Kokkas, P.; Komarov, V.; Koulikov, A.; Kouptsov, A.; Krouglov, V.; Krouglova, L.; Kuroda, K.-I.; Lanaro, A.; Lapshine, V.; Lednicky, R.; Leruste, P.; Levisandri, P.; Lopez Aguera, A.; Lucherini, V.; Maki, T.; Manuilov, I.; Montanet, L.; Narjoux, J.-L.; Nemenov, L.; Nikitin, M.; Nunez Pardo, T.; Okada, K.; Olchevskii, V.; Pazos, A.; Pentia, M.; Penzo, A.; Perreau, J.-M.; Petrascu, C.; Plo, M.; Ponta, T.; Pop, D.; Riazantsev, A.; Rodriguez, J.M.; Rodriguez Fernandez, A.; Rykaline, V.; Santamarina, C.; Saborido, J.; Schacher, J.; Sidorov, A.; Smolik, J.; Takeutchi, F.; Tarasov, A.; Tauscher, L.; Tobar, M.J.; Trusov, S.; Vazquez, P.; Vlachos, S.; Yazkov, V.; Yoshimura, Y.; Zrelov, P

    2001-04-01

    The main objective of DIRAC experiment is the measurement of the lifetime {tau} of the exotic hadronic atom consisting of {pi}{sup +} and {pi}{sup -} mesons. The lifetime of this atom is determined by the decay mode {pi}{sup +} {pi}{sup -} {yields} {pi}{sup 0} {pi}{sup 0} due to the strong interaction. Through the precise relationship between the lifetime and the S-wave pion-pion scattering length difference |a{sub 0} - a{sub 2}| for isospin 0 and 2 (respectively), a measurement of {tau} with an accuracy of 10% will allow a determination of |a{sub 0} - a{sub 2}| at a 5% precision level. Pion-pion scattering lengths have been calculated in the framework of chiral perturbation theory with an accuracy below 5%. In this way DIRAC experiment will provide a crucial test of the chiral symmetry breaking scheme in QCD effective theories at low energies.

  2. Investigation into magnetic correlations in cuprates by means of neutron scattering experiments

    International Nuclear Information System (INIS)

    Henggeler, W.

    1996-01-01

    This thesis shows the results of our investigation on cuprate materials containing rare earth ions. The main experimental tools were inelastic and elastic neutron scattering techniques. In some cases we also performed μSR, susceptibility and specific heat measurements. One aim was to learn more about the crystalline environment of the rare earth ions in these substances via the crystalline electric field (CEF) interaction. Furthermore, we investigated the correlations of the magnetic moments of these ions by a determination of the dispersion of the CEF excitations. The theory that is essential for the understanding of this work is outlined. The instruments on which the experiments have been performed are presented in the third chapter. In the fourth chapter we show the measurements of the CEF excitations of Ho 3+ in Y 0.99 Ho 0.01 Ba 2 Cu 3 O 6+x . The Ho ions represent ideal local probes to examine changes of the charge distribution in the copper oxide planes upon doping with oxygen. To prevent any influence of the Ho-Ho exchange interaction on the CEF excitations we performed the experiments on substances containing only one percent of Ho. Our results show that for all the intermediately doped compounds the charge distribution is very inhomogeneous. For all the highly doped samples we observe a line asymmetry for which several possible origins are discussed. In the fifth chapter we examine the Pr 3+ CEF excitations in the Pr 2-x Ce x CuO 4(-δ) (0≤x≤0.2)-substances. Our results show a coexistence of different environments of the Pr ions in all the doped compounds. We try to describe these inhomogeneities with the help of a model. We used the μSR-technique on some of these samples in order to learn more about the oxygen reduction process. Finally, we performed inelastic neutron scattering experiments on Pr 1.86 Ce 0.14 CuO 4 single crystal, which allowed a direct determination of the coupling constants between the magnetic moments of the Pr ions. (author

  3. Water structure as a function of temperature from X-ray scattering experiments and ab initio molecular dynamics

    International Nuclear Information System (INIS)

    Hura, Greg; Russo, Daniela; Glaeser, Robert M.; Head-Gordon, Teresa; Krack, Matthias; Parrinello, Michele

    2003-01-01

    We present high-quality X-ray scattering experiments on pure water taken over a temperature range of 2 to 77 C using a synchrotron beam line at the advanced light source (ALS) at Lawrence Berkeley National Laboratory. The ALS X-ray scattering intensities are qualitatively different in trend of maximum intensity over this temperature range compared to older X-ray experiments. While the common procedure is to report both the intensity curve and radial distribution function(s), the proper extraction of the real-space pair correlation functions from the experimental scattering is very difficult due to uncertainty introduced in the experimental corrections, the proper weighting of OO, OH, and HH contributions, and numerical problems of Fourier transforming truncated data in Q-space. Instead, we consider the direct calculation of X-ray scattering spectra using electron densities derived from density functional theory based on real-space configurations generated with classical water models. The simulation of the experimental intensity is therefore definitive for determining radial distribution functions over a smaller Q-range. We find that the TIP4P, TIP5P and polarizable TIP4P-Pol2 water models, with DFT-LDA densities, show very good agreement with the experimental intensities, and TIP4P-Pol2 in particular shows quantitative agreement over the full temperature range. The resulting radial distribution functions from TIP4P-Pol2 provide the current best benchmarks for real-space water structure over the biologically relevant temperature range studied here

  4. Charge exchange during pion-nucleon scattering at low energy: experiment and analysis

    International Nuclear Information System (INIS)

    Vernin, Pascal

    1972-01-01

    This research thesis lies within the frame of a more general study of pion-nucleon scattering according to the following processes: π + p → π + p; π - p → π - p; π - p → π 0 n. It more precisely addresses the last reaction, so-called charge exchange. Pion-nucleon interactions are described by phase shifts of scattering waves. But the measurement of one of these phase shifts (that of the S wave) requires very low energy pions, and could not have been performed until now with a good precision. In order to fill this gap, the author performed charge exchange experiments at 180 deg. and for energies of 22.6, 33.9 and 42.6 MeV. After a recall on involved theoretical data, the author describes the experimental setup, and reports the detailed study of problems raised by neutron detection. He shows that the analysis of experimental data allows (a 3 - a 1 ) to be obtained with a precision which, without being as high as desired, is nevertheless satisfying [fr

  5. Antiproton-nucleus experiments at LEAR and KAON

    International Nuclear Information System (INIS)

    Yavin, A.I.

    1989-12-01

    Antimatter and matter-antimatter systems are briefly discussed. Results of the antiproton-nucleus scattering experiments at LEAR are described, with the emphasis on unfinished experiments and on proposed experiments yet untouched. A few remarks on antiproton and antideuteron experiments at KAON are then presented

  6. ISPyB for BioSAXS, the gateway to user autonomy in solution scattering experiments.

    Science.gov (United States)

    De Maria Antolinos, Alejandro; Pernot, Petra; Brennich, Martha E; Kieffer, Jérôme; Bowler, Matthew W; Delageniere, Solange; Ohlsson, Staffan; Malbet Monaco, Stephanie; Ashton, Alun; Franke, Daniel; Svergun, Dmitri; McSweeney, Sean; Gordon, Elspeth; Round, Adam

    2015-01-01

    Logging experiments with the laboratory-information management system ISPyB (Information System for Protein crystallography Beamlines) enhances the automation of small-angle X-ray scattering of biological macromolecules in solution (BioSAXS) experiments. The ISPyB interface provides immediate user-oriented online feedback and enables data cross-checking and downstream analysis. To optimize data quality and completeness, ISPyBB (ISPyB for BioSAXS) makes it simple for users to compare the results from new measurements with previous acquisitions from the same day or earlier experiments in order to maximize the ability to collect all data required in a single synchrotron visit. The graphical user interface (GUI) of ISPyBB has been designed to guide users in the preparation of an experiment. The input of sample information and the ability to outline the experimental aims in advance provides feedback on the number of measurements required, calculation of expected sample volumes and time needed to collect the data: all of this information aids the users to better prepare for their trip to the synchrotron. A prototype version of the ISPyBB database is now available at the European Synchrotron Radiation Facility (ESRF) beamline BM29 and is already greatly appreciated by academic users and industrial clients. It will soon be available at the PETRA III beamline P12 and the Diamond Light Source beamlines I22 and B21.

  7. On the neutron charge radius and the new experiments proposed for the precise (n,e) - scattering length measurement

    International Nuclear Information System (INIS)

    Enik, T.L.; Mitsyna, L.V.; Nikolenko, V.G.; Oprea, I.A.; Parzhitsky, S.S.; Popov, A.B.; Samosvat, G.S.; Vtiuryn, V.A.

    1999-01-01

    Relationship between the n,e scattering length, b ne , the neutron mean square charge radius n 2 > and anomalous magnetic moment μ n , the quantities which characterize the internal structure of the neutron, was investigated. The performed analysis showed that in the framework of the modern cloudy bag model (CBM) of the nucleon the values of b ne is determined by the value of n 2 > without the so-called Foldy term being taken into account, while in the framework of the phenomenological Foldy approach the experimental values of ne > obtained up to date can be described only by this Foldy term within an accuracy of about 10%, i.e. by the anomalous magnetic moment of the neutron, μ n . Then a necessity is obvious to obtain b ne with higher accuracy than in previous experiments. To remove the contradictions in the experimental b ne estimates, new experiments to measure the energy dependence of the slow neutron scattering cross section by 86 Kr and scattering anisotropy on Xe isotopes, have been proposed. The investigation has been performed at Frank Laboratory of Neutron Physics, JINR. (authors)

  8. "Rutherford's Experiment" on Alpha Particles Scattering: The Experiment That Never Was

    Science.gov (United States)

    Leone, M.; Robotti, N.; Verna, G.

    2018-01-01

    The so-called "Rutherford's experiment," as it is outlined in many physics textbooks, is a case in point of the flaws around the history at the educational level of one of the decisive event of modern physics: the discovery that the atom has a nucleus. This paper shows that this alleged experiment is a very approximate and very partial…

  9. Preliminary results from the MINERvA experiment

    International Nuclear Information System (INIS)

    Harris, Deborah A.

    2011-01-01

    The MINERvA experiment, operating since 2009 in the NuMI neutrino beam line at Fermilab, has collected neutrino and antineutrino scattering data on a variety of nuclear targets. The detector is designed to identify events originating in plastic scintillator, lead, carbon, iron, water, and liquid helium. The goal of the experiment is to measure inclusive and exclusive cross sections for neutrino and antineutrino with much greater precision than previous experiments. We present preliminary kinematic distributions for charged current quasi-elastic scattering and other processes.

  10. Limiting effects on laser compression by resonant backward Raman scattering in modern experiments

    International Nuclear Information System (INIS)

    Yampolsky, Nikolai A.; Fisch, Nathaniel J.

    2011-01-01

    Through resonant backward Raman scattering, the plasma wave mediates the energy transfer between long pump and short seed laser pulses. These mediations can result in pulse compression at extraordinarily high powers. However, both the overall efficiency of the energy transfer and the duration of the amplified pulse depend upon the persistence of the plasma wave excitation. At least with respect to the recent state-of-the-art experiments, it is possible to deduce that at present the experimentally realized efficiency of the amplifier is likely constrained mainly by two effects, namely, the pump chirp and the plasma wave wavebreaking.

  11. Optimization of a coherent soft x-ray beamline for coherent scattering experiments at NSLS-II

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro D.; Chubar, O.; Kaznatcheev, K.; Reininger, R.; Sanchez-Hanke, C.; Wang, S.

    2011-08-21

    The coherent soft x-ray and full polarization control (CSX) beamline at the National Synchrotron Light Source - II (NSLS-II) will deliver 1013 coherent photons per second in the energy range of 0.2-2 keV with a resolving power of 2000. The source, a dual elliptically polarizing undulator (EPU), and beamline optics should be optimized to deliver the highest possible coherent flux in a 10-30 {micro}m spot for use in coherent scattering experiments. Using the computer code Synchrotron Radiation Workshop (SRW), we simulate the photon source and focusing optics in order to investigate the conditions which provide the highest usable coherent intensity on the sample. In particular, we find that an intermediate phasing magnet is needed to correct for the relative phase between the two EPUs and that the optimum phase setting produces a spectrum in which the desired wavelength is slightly red-shifted thus requiring a larger aperture than originally anticipated. This setting is distinct from that which produces an on-axis spectrum similar to a single long undulator. Furthermore, partial coherence calculations, utilizing a multiple electron approach, indicate that a high degree of spatial coherence is still obtained at the sample location when such an aperture is used. The aperture size which maximizes the signal-to-noise ratio of a double-slit experiment is explored. This combination of high coherence and intensity is ideally suited for x-ray ptychography experiments which reconstruct the scattering density from micro-diffraction patterns. This technique is briefly reviewed and the effects on the image quality of proximity to the beamline focus are explored.

  12. A Platform for X-Ray Thomson Scattering Measurements of Radiation Hydrodynamics Experiments on the NIF

    Science.gov (United States)

    Lefevre, Heath; Ma, Kevin; Belancourt, Patrick; MacDonald, Michael; Doeppner, Tilo; Keiter, Paul; Kuranz, Carolyn

    2017-10-01

    A recent experiment on the National Ignition Facility (NIF) radiographed the evolution of the Rayleigh-Taylor (RT) instability under high and low drive cases. This experiment showed that under a high drive the growth rate of the RT instability is reduced relative to the low drive case. The high drive launches a radiative shock, increases the temperature of the post-shock region, and ablates the spikes, which reduces the RT growth rate. The plasma parameters must be measured to validate this claim. We present a target design for making X-Ray Thomson Scattering (XRTS) measurements on radiation hydrodynamics experiments on NIF to measure the electron temperature of the shocked region in the above cases. Specifically, we show that a previously fielded NIF radiation hydrodynamics platform can be modified to allow sufficient signal and temperature resolution for XRTS measurements. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0002956 and the National Science Foundation through the Basic Plasma Science and Engineering program.

  13. The OLYMPUS Experiment

    OpenAIRE

    Milner, R.; Hasell, D. K.; Kohl, M.; Schneekloth, U.; Akopov, N.; Alarcon, R.; Andreev, V. A.; Ates, O.; Avetisyan, A.; Bayadilov, D.; Beck, R.; Belostotski, S.; Bernauer, J. C.; Bessuille, J.; Brinker, F.

    2013-01-01

    The OLYMPUS experiment was designed to measure the ratio between the positron-proton and electron-proton elastic scattering cross sections, with the goal of determining the contribution of two-photon exchange to the elastic cross section. Two-photon exchange might resolve the discrepancy between measurements of the proton form factor ratio, $\\mu_p G^p_E/G^p_M$, made using polarization techniques and those made in unpolarized experiments. OLYMPUS operated on the DORIS storage ring at DESY, alt...

  14. Analysis and implementation of a space resolving spherical crystal spectrometer for x-ray Thomson scattering experiments.

    Science.gov (United States)

    Harding, E C; Ao, T; Bailey, J E; Loisel, G; Sinars, D B; Geissel, M; Rochau, G A; Smith, I C

    2015-04-01

    The application of a space-resolving spectrometer to X-ray Thomson Scattering (XRTS) experiments has the potential to advance the study of warm dense matter. This has motivated the design of a spherical crystal spectrometer, which is a doubly focusing geometry with an overall high sensitivity and the capability of providing high-resolution, space-resolved spectra. A detailed analysis of the image fluence and crystal throughput in this geometry is carried out and analytical estimates of these quantities are presented. This analysis informed the design of a new spectrometer intended for future XRTS experiments on the Z-machine. The new spectrometer collects 6 keV x-rays with a spherically bent Ge (422) crystal and focuses the collected x-rays onto the Rowland circle. The spectrometer was built and then tested with a foam target. The resulting high-quality spectra prove that a spherical spectrometer is a viable diagnostic for XRTS experiments.

  15. A posteriori determination of the useful data range for small-angle scattering experiments on dilute monodisperse systems.

    Science.gov (United States)

    Konarev, Petr V; Svergun, Dmitri I

    2015-05-01

    Small-angle X-ray and neutron scattering (SAXS and SANS) experiments on solutions provide rapidly decaying scattering curves, often with a poor signal-to-noise ratio, especially at higher angles. On modern instruments, the noise is partially compensated for by oversampling, thanks to the fact that the angular increment in the data is small compared with that needed to describe adequately the local behaviour and features of the scattering curve. Given a (noisy) experimental data set, an important question arises as to which part of the data still contains useful information and should be taken into account for the interpretation and model building. Here, it is demonstrated that, for monodisperse systems, the useful experimental data range is defined by the number of meaningful Shannon channels that can be determined from the data set. An algorithm to determine this number and thus the data range is developed, and it is tested on a number of simulated data sets with various noise levels and with different degrees of oversampling, corresponding to typical SAXS/SANS experiments. The method is implemented in a computer program and examples of its application to analyse the experimental data recorded under various conditions are presented. The program can be employed to discard experimental data containing no useful information in automated pipelines, in modelling procedures, and for data deposition or publication. The software is freely accessible to academic users.

  16. Deeply Virtual Compton Scattering off a deuterium target at the HERMES experiment

    International Nuclear Information System (INIS)

    Movsisyan, Aram

    2011-05-01

    Deeply virtual Compton scattering is studied in this report, using all data collected at the HERMES experiment from 1996 to 2005. Azimuthal asymmetries with respect to beam-helicity, beam-charge and target polarization alone and also to their different combinations for hard exclusive electroproduction of real photons in deep-inelastic scattering from a both unpolarized and longitudinally polarized deuterium targets are measured. The asymmetries are attributed to the interference between the deeply virtual Compton scattering and Bethe-Heitler processes. The asymmetries are observed in the exclusive region -(1.5) 2 GeV 2 2 X 2 GeV 2 of the squared missing mass. The dependences of these asymmetries on -t, x N , or Q 2 are investigated. The results include the coherent process ed→edγ and the incoherent process ed→epnγ where in addition a nucleon may be excited to a resonance. For an unpolarized deuterium target, the leading Fourier amplitude of the beam-helicity asymmetry that is sensitive to the interference term is found to be substantial, but no significant t dependence is observed. The leading amplitude of the beam-charge asymmetry is substantial at large -t, but becomes small at small values of -t. The amplitudes of the beam-helicity asymmetry that are sensitive to the squared DVCS term are found to be consistent with zero. The deuteron Compton form factor H 1 appears to have a similar behavior as H of the proton. (orig.)

  17. The ELISe experiment, potential paths towards its realization

    International Nuclear Information System (INIS)

    Simon, H

    2015-01-01

    In this paper the opportunities and prerequisites for carrying out electron scattering experiments off unstable beams for the first time will be outlined. A colliding beam experiment with intersecting electron and RIBs will be described, which allows making the best uses of the precious unstable nuclei for elastic and inelastic scattering using a pure electromagnetic probe. The experiment could be already realized within the modularized start version of the FAIR facility which is currently being constructed. (paper)

  18. Transverse momentum at work in high-energy scattering experiments

    Science.gov (United States)

    Signori, Andrea

    2017-01-01

    I will review some aspects of the definition and the phenomenology of Transverse-Momentum-Dependent distributions (TMDs) which are potentially interesting for the physics program at several current and future experimental facilities. First of all, I will review the definition of quark, gluon and Wilson loop TMDs based on gauge invariant hadronic matrix elements. Looking at the phenomenology of quarks, I will address the flavor dependence of the intrinsic transverse momentum in unpolarized TMDs, focusing on its extraction from Semi-Inclusive Deep-Inelastic Scattering. I will also present an estimate of its impact on the transverse momentum spectrum of W and Z bosons produced in unpolarized hadronic collisions and on the determination of the W boson mass. Moreover, the combined effect of the flavor dependence and the evolution of TMDs with the energy scale will be discussed for electron-positron annihilation. Concerning gluons, I will present from an effective theory point of view the TMD factorization theorem for the transverse momentum spectrum of pseudoscalar quarkonium produced in hadronic collisions. Relying on this, I will discuss the possibility of extracting precise information on (un)polarized gluon TMDs at a future Fixed Target Experiment at the LHC (AFTER@LHC).

  19. Advanced approach to the analysis of a series of in-situ nuclear forward scattering experiments

    Energy Technology Data Exchange (ETDEWEB)

    Vrba, Vlastimil, E-mail: vlastimil.vrba01@upol.cz [Department of Experimental Physics, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, 771 46 Olomouc (Czech Republic); Procházka, Vít, E-mail: v.prochazka@upol.cz [Department of Experimental Physics, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, 771 46 Olomouc (Czech Republic); Smrčka, David, E-mail: david.smrcka@upol.cz [Department of Experimental Physics, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, 771 46 Olomouc (Czech Republic); Miglierini, Marcel, E-mail: marcel.miglierini@stuba.sk [Slovak University of Technology in Bratislava, Faculty of Electrical Engineering and Information Technology, Institute of Nuclear and Physical Engineering, Ilkovicova 3, 812 19 Bratislava (Slovakia); Department of Nuclear Reactors, Faculty of Nuclear Science and Physical Engineering, Czech Technical University in Prague, V Holešovičkách 2, 180 00 Prague (Czech Republic)

    2017-03-01

    This study introduces a sequential fitting procedure as a specific approach to nuclear forward scattering (NFS) data evaluation. Principles and usage of this advanced evaluation method are described in details and its utilization is demonstrated on NFS in-situ investigations of fast processes. Such experiments frequently consist of hundreds of time spectra which need to be evaluated. The introduced procedure allows the analysis of these experiments and significantly decreases the time needed for the data evaluation. The key contributions of the study are the sequential use of the output fitting parameters of a previous data set as the input parameters for the next data set and the model suitability crosscheck option of applying the procedure in ascending and descending directions of the data sets. Described fitting methodology is beneficial for checking of model validity and reliability of obtained results.

  20. Advanced approach to the analysis of a series of in-situ nuclear forward scattering experiments

    International Nuclear Information System (INIS)

    Vrba, Vlastimil; Procházka, Vít; Smrčka, David; Miglierini, Marcel

    2017-01-01

    This study introduces a sequential fitting procedure as a specific approach to nuclear forward scattering (NFS) data evaluation. Principles and usage of this advanced evaluation method are described in details and its utilization is demonstrated on NFS in-situ investigations of fast processes. Such experiments frequently consist of hundreds of time spectra which need to be evaluated. The introduced procedure allows the analysis of these experiments and significantly decreases the time needed for the data evaluation. The key contributions of the study are the sequential use of the output fitting parameters of a previous data set as the input parameters for the next data set and the model suitability crosscheck option of applying the procedure in ascending and descending directions of the data sets. Described fitting methodology is beneficial for checking of model validity and reliability of obtained results.

  1. Realization and utilization of a harmonic light scattering experiment to select new molecules with great optical nonlinearity

    International Nuclear Information System (INIS)

    Dhenaut, Christophe

    1995-01-01

    Conception of new organic materials for nonlinear optics is generally driven by a molecular engineering approach. The usual technique for determining the quadratic hyper polarizability of designed molecules is the electric field induced second harmonic (EFISH) experiment. However this technique is limited to neutral molecules with a permanent dipole moment. We have realized an harmonic light scattering (HLS) experiment which allow the measurement of any kind of molecules, polar or non polar, neutral or ionic. Using this technique we have been able to demonstrate experimentally the validity of the octupole concept (molecules without dipole moment) which has been proposed recently. We have studied molecules corresponding to various octupolar geometries. Nonlinearities are found to be comparable to those of the best dipolar compounds. We have also investigated other molecular families with different symmetry such as polyenes, sub-phthalocyanines and phthalocyanines by EFISH and HLS techniques. We have confronted results obtained by the two experiments. It appears that these results are not easy to compare, the tensorial components accessible by each experiment being different. The two experiments seems complementary. HLS experiments allow the observation of a quadratic hyper polarizability for centrosymmetric molecules. This surprising observation could be explained by the contribution of a vibration al part to the hyper polarizability measured by HLS (but not present in EFISH). Interpretation of this dynamic process is still in progress. (author) [fr

  2. Laser fusion implosion and plasma interaction experiments

    International Nuclear Information System (INIS)

    Ahlstrom, H.G.

    1977-08-01

    Results related to the propagation, absorption and scattering of laser light by both spherical and planar targets are described. The absorption measurements indicate that for intensities of interest, inverse bremsstrahlung is not the dominant absorption mechanism. The laser light scattered by the plasma is polarization dependent and provides evidence that Brillouin scattering and resonance absorption are operative. Special diagnostics have been designed and experiments have been performed to elucidate the nature of these two processes. Implosion results on glass microshell targets filled with DT gas are also summarized. These experiments are for targets intentionally operated in the portion of parameter space characteristic of exploding pusher events. Experiments have been performed over a yield range from 0 to 10 9 neutrons per event. It is shown how this data can be normalized with a simple scaling law

  3. Modeling and design of radiative hydrodynamic experiments with X-ray Thomson Scattering measurements on NIF

    Science.gov (United States)

    Ma, K. H.; Lefevre, H. J.; Belancourt, P. X.; MacDonald, M. J.; Doeppner, T.; Keiter, P. A.; Kuranz, C. C.; Johnsen, E.

    2017-10-01

    Recent experiments at the National Ignition Facility studied the effect of radiation on shock-driven hydrodynamic instability growth. X-ray radiography images from these experiments indicate that perturbation growth is lower in highly radiative shocks compared to shocks with negligible radiation flux. The reduction in instability growth is attributed to ablation from higher temperatures in the foam for highly radiative shocks. The proposed design implements the X-ray Thomson Scattering (XRTS) technique in the radiative shock tube platform to measure electron temperatures and densities in the shocked foam. We model these experiments with CRASH, an Eulerian radiation hydrodynamics code with block-adaptive mesh refinement, multi-group radiation transport and electron heat conduction. Simulations are presented with SiO2 and carbon foams for both the high temperature, radiative shock and the low-temperature, hydrodynamic shock cases. Calculations from CRASH give estimations for shock speed, electron temperature, effective ionization, and other quantities necessary for designing the XRTS diagnostic measurement. This work is funded by the LLNL under subcontract B614207, and was performed under the auspices of the U.S. DOE by LLNL under Contract No. DE-AC52-07NA27344.

  4. Analysing neutron scattering data using McStas virtual experiments

    DEFF Research Database (Denmark)

    Udby, L.; Willendrup, Peter Kjær; Bergbäck Knudsen, Erik

    2011-01-01

    With the intention of developing a new data analysis method using virtual experiments we have built a detailed virtual model of the cold triple-axis spectrometer RITA-II at PSI, Switzerland, using the McStas neutron ray-tracing package. The parameters characterising the virtual instrument were...... carefully tuned against real experiments. In the present paper we show that virtual experiments reproduce experimentally observed linewidths within 1–3% for a variety of samples. Furthermore we show that the detailed knowledge of the instrumental resolution found from virtual experiments, including sample...

  5. Deeply Virtual Compton Scattering off a deuterium target at the HERMES experiment

    Energy Technology Data Exchange (ETDEWEB)

    Movsisyan, Aram

    2011-05-15

    Deeply virtual Compton scattering is studied in this report, using all data collected at the HERMES experiment from 1996 to 2005. Azimuthal asymmetries with respect to beam-helicity, beam-charge and target polarization alone and also to their different combinations for hard exclusive electroproduction of real photons in deep-inelastic scattering from a both unpolarized and longitudinally polarized deuterium targets are measured. The asymmetries are attributed to the interference between the deeply virtual Compton scattering and Bethe-Heitler processes. The asymmetries are observed in the exclusive region -(1.5){sup 2} GeV{sup 2}

  6. A study of interference effects in Na(3S,3P)-Ne, Ar scattering experiments at high angular resolution

    International Nuclear Information System (INIS)

    Berg, F.T.M. van den.

    1984-01-01

    In this thesis the author presents measurements of differential cross sections for the scattering of Na-atoms in the ground-state and first excited-state by the rare gas atoms Ne and Ar. The scattering experiments were performed in a crossed-beam apparatus built and tested by van Deventer et al. The unique high angular-resolution (0.1 0 ) of this beam-scattering apparatus permits us (i) to remove the discrepancies that still exist between the various X 2 Σ- and A 2 PI-potential curves for Na-Ar and Na-Ne reported up to now, (ii) to obtain detailed information on the B 2 Σ-potentials for these systems and (iii) to demonstrate the necessity of taking into account the spin-uncoupling effects, in the interpretation of the experimental Na-Ne scattering patterns. (Auth.)

  7. Analysis of a neutron scattering integral experiment on iron for neutron energies from 1 to 15 MeV

    International Nuclear Information System (INIS)

    Cramer, S.N.; Oblow, E.M.

    1976-11-01

    Monte Carlo calculations were made to analyze the results of an integral experiment with an iron sample to determine the adequacy of neutron scattering cross section data for iron. The experimental results analyzed included energy-dependent NE-213 detector count rates at a scattering angle of 90 deg and pulse-height spectra for scattered neutrons produced in an iron ring pulsed with a 1- to 20-MeV neutron source. The pulse-height data were unfolded to generate secondary neutron spectra at 90 deg as a function of incident neutron energy. Multigroup Monte Carlo calculations using the MORSE code and ENDF/B-IV cross sections were made to analyze all reported results. Discrepancies between calculated and measured responses were found for inelastic scattering reactions in the range from 1 to 4 MeV. These results were related to deficiencies in ENDF/B-IV iron cross section data

  8. Direct measurement of the cross section of neutron-neutron scattering at the YAGUAR reactor. Substantiation of the experiment technique

    International Nuclear Information System (INIS)

    Chernukhin, Yu.G.; Kandiev, Ya.Z.; Lartsev, V.D.; Levakov, B.G.; Modestov, D.G.; Simonenko, V.A.; Streltsov, S.I.; Khmel'nitskij, D.V.

    2006-01-01

    The main stage of experiment for direct measurement of cross section of neutron-neutron scattering σ nn at low energies (E nn determination. It was shown, that for achieving the criterion ε ∼ 4% it will be necessary to have 40-50 pulses of a reactor [ru

  9. Possible interpretation of the scale invariance violation during a deep inelastic muons scattering experiment on an hadron target

    International Nuclear Information System (INIS)

    Salati, Pierre.

    1980-01-01

    The purpose of this work is to analyse the structure functions produced by a deep inelastic scattering experiment of muons upon a hadronic target. A non perturbative model is tested. In order to chek the quantum chromodynamics, the moments and the Altarelli-Parisi equations are used. The main result is the scaling parameter lambda [fr

  10. Resonant neutrino scattering: An impossible experiment?

    International Nuclear Information System (INIS)

    Suzuki, D.; Sumikama, T.; Ogura, M.; Mittig, W.; Shiraki, A.; Ichikawa, Y.; Kimura, H.; Otsu, H.; Sakurai, H.; Nakai, Y.; Hussein, M.S.

    2010-01-01

    The experimental feasibility was investigated for the resonant scattering of monoenergetic neutrinos emitted in the two-body β decay. A simple general formula shows that the resonance cross section can be as large as of the order of 10 -17 cm 2 . The Moessbauer setup using a solid crystal was examined with a focus on the electronic structure of the emitter and the absorber. Based on realistic calculations, we show that interactions of valence electrons in the solid lead to a level broadening of the atomic ground state, which considerably suppresses the resonant scattering of neutrinos.

  11. Trial fabrication of a secondary x-ray spectrometer with high energy resolution for use in x-ray resonant inelastic scattering experiments

    International Nuclear Information System (INIS)

    Iwazumi, Toshiaki

    2004-01-01

    An instrument was fabricated for use of x-ray resonant inelastic scattering with high-energy resolution in expectation of finding new physical phenomena in strongly correlated electron systems. In the scattering x-ray spectrometer, an asymmetric Johanson crystal spectrometer, which was deployed in an asymmetric Rowland configuration, was designed, fabricated and assessed. The performance expected theoretically for the Johanson spectrometer was recognized from experiments by use of synchrotron radiation. (Y. Kazumata)

  12. Achieving Very Low Levels of Detection: An Improved Surface-Enhanced Raman Scattering Experiment for the Physical Chemistry Teaching Laboratory

    Science.gov (United States)

    McMillan, Brian G.

    2016-01-01

    This experiment was designed and successfully introduced to complement the nanochemistry taught to undergraduate students in a useful and interesting way. Colloidal Ag nanoparticles were synthesized by a simple, room-temperature method, and the resulting suspension was then used to study the surface-enhanced Raman scattering (SERS) of methylene…

  13. Probing the hydrogen equilibrium and kinetics in zeolite imidazolate frameworks via molecular dynamics and quasi-elastic neutron scattering experiments.

    Science.gov (United States)

    Pantatosaki, Evangelia; Jobic, Hervé; Kolokolov, Daniil I; Karmakar, Shilpi; Biniwale, Rajesh; Papadopoulos, George K

    2013-01-21

    The problem of simulating processes involving equilibria and dynamics of guest sorbates within zeolitic imidazolate frameworks (ZIF) by means of molecular dynamics (MD) computer experiments is of growing importance because of the promising role of ZIFs as molecular "traps" for clean energy applications. A key issue for validating such an atomistic modeling attempt is the possibility of comparing the MD results, with real experiments being able to capture analogous space and time scales to the ones pertained to the computer experiments. In the present study, this prerequisite is fulfilled through the quasi-elastic neutron scattering technique (QENS) for measuring self-diffusivity, by elaborating the incoherent scattering signal of hydrogen nuclei. QENS and MD experiments were performed in parallel to probe the hydrogen motion, for the first time in ZIF members. The predicted and measured dynamics behaviors show considerable concentration variation of the hydrogen self-diffusion coefficient in the two topologically different ZIF pore networks of this study, the ZIF-3 and ZIF-8. Modeling options such as the flexibility of the entire matrix versus a rigid framework version, the mobility of the imidazolate ligand, and the inclusion of quantum mechanical effects in the potential functions were examined in detail for the sorption thermodynamics and kinetics of hydrogen and also of deuterium, by employing MD combined with Widom averaging towards studying phase equilibria. The latter methodology ensures a rigorous and efficient way for post-processing the dynamics trajectory, thereby avoiding stochastic moves via Monte Carlo simulation, over the large number of configurational degrees of freedom a nonrigid framework encompasses.

  14. Development and performance test of a system available for generating multiple extreme conditions for neutron scattering experiments

    International Nuclear Information System (INIS)

    Kawano, Shinji; Fukui, Susumu; Moriai, Atsushi; Ohtomo, Akitoshi; Ichimura, Shigeki; Onodera, Akifumi; Amita, F.; Katano, Susumu

    1998-01-01

    We have developed unique system available for controlling sample environment during the neutron scattering experiments. The system can simultaneously generate triple extreme conditions of low temperature, high magnetic field and high pressure. The system consists of: (i) a liquid-helium cryostat variable for sample temperature from 1.7 K to 200 K, (ii) a superconducting magnet providing a vertical field up to ±5 T with an antisymmetric split-coil geometry for polarized-beam experiments, and (iii) a non-magnetic piston-cylinder high-pressure cell designed with the aim of generating hydrostatic pressure up to 2.5 GPa. In the presentation, we will report the outline of the system and some results of performance tests at KURRI and JRR-3M of JAERI. (author)

  15. Balloonborne lidar experiment

    Science.gov (United States)

    Shepherd, O.; Aurilio, G.; Bucknam, R. D.; Brooke, R. W.; Hurd, A. G.

    1980-12-01

    The object of this contract was to design a balloonborne lidar experiment capable of performing nightime atmospheric density measurements in the 10 to 40 km altitude domain with a resolution of 100 meters. The payload includes a frequency-tripled Nd:YAG laser with outputs at 353 and 1064 nm, a telescoped receiver with PMT detectors, a command-controlled optical pointing system, and support systems, including thermal control, telemetry, command, and power. Density measurements would be made using the back-scattered 353 nm radiation data with aerosol corrections obtained from 1064 nm radiation scatterings.

  16. The reactor antineutrino anomaly and low energy threshold neutrino experiments

    Science.gov (United States)

    Cañas, B. C.; Garcés, E. A.; Miranda, O. G.; Parada, A.

    2018-01-01

    Short distance reactor antineutrino experiments measure an antineutrino spectrum a few percent lower than expected from theoretical predictions. In this work we study the potential of low energy threshold reactor experiments in the context of a light sterile neutrino signal. We discuss the perspectives of the recently detected coherent elastic neutrino-nucleus scattering in future reactor antineutrino experiments. We find that the expectations to improve the current constraints on the mixing with sterile neutrinos are promising. We also analyze the measurements of antineutrino scattering off electrons from short distance reactor experiments. In this case, the statistics is not competitive with inverse beta decay experiments, although future experiments might play a role when compare it with the Gallium anomaly.

  17. Possible effect of static surface disorder on diffractive scattering of H2 from Ru(0001): Comparison between theory and experiment.

    Science.gov (United States)

    Kroes, G J; Wijzenbroek, Mark; Manson, J R

    2017-12-28

    Specific features of diffractive scattering of H 2 from metal surfaces can serve as fingerprints of the reactivity of the metal towards H 2 , and in principle theory-experiment comparisons for molecular diffraction can help with the validation of semi-empirical functionals fitted to experiments of sticking of H 2 on metals. However, a recent comparison of calculated and Debye-Waller (DW) extrapolated experimental diffraction probabilities, in which the theory was done on the basis of a potential energy surface (PES) accurately describing sticking to Ru(0001), showed substantial discrepancies, with theoretical and experimental probabilities differing by factors of 2 and 3. We demonstrate that assuming a particular amount of random static disorder to be present in the positions of the surface atoms, which can be characterized through a single parameter, removes most of the discrepancies between experiment and theory. Further improvement might be achievable by improving the accuracy of the DW extrapolation, the model of the H 2 rotational state distribution in the experimental beams, and by fine-tuning the PES. However, the question of whether the DW model is applicable to attenuation of diffractive scattering in the presence of a sizable van der Waals well (depth ≈ 50 meV) should also receive attention, in addition to the question of whether the amount of static surface disorder effectively assumed in the modeling by us could have been present in the experiments.

  18. The electron-ion scattering experiment ELISe at the International Facility for Antiproton and Ion Research (FAIR)-A conceptual design study

    NARCIS (Netherlands)

    Antonov, A. N.; Gaidarov, M. K.; Ivanov, M. V.; Kadrev, D. N.; Aiche, M.; Barreau, G.; Czajkowski, S.; Jurado, B.; Belier, G.; Chatillon, A.; Granier, T.; Taieb, J.; Dore, D.; Letourneau, A.; Ridikas, D.; Dupont, E.; Berthoumieux, E.; Panebianco, S.; Farget, F.; Schmitt, C.; Audouin, L.; Khan, E.; Tassan-Got, L.; Aumann, T.; Beller, P.; Boretzky, K.; Dolinskii, A.; Egelhof, P.; Emling, H.; Franzke, B.; Geissel, H.; Kelic-Heil, A.; Kester, O.; Kurz, N.; Litvinov, Y.; Muenzenberg, G.; Nolden, F.; Schmidt, K. -H.; Scheidenberger, Ch.; Simon, H.; Steck, M.; Weick, H.; Enders, J.; Pietralla, N.; Richter, A.; Schrieder, G.; Zilges, A.; Distler, M. O.; Merkel, H.; Mueller, U.; Junghans, A. R.; Lenske, H.; Fujiwara, M.; Suda, T.; Kato, S.; Adachi, T.; Hamieh, S.; Harakeh, M. N.; Kalantar-Nayestanaki, N.; Woertche, H.; Berg, G. P. A.; Koop, I. A.; Logatchov, P. V.; Otboev, A. V.; Parkhomchuk, V. V.; Shatilov, D. N.; Shatunov, P. Y.; Shatunov, Y. M.; Shiyankov, S. V.; Shvartz, D. I.; Skrinsky, A. N.; Chulkov, L. V.; Danilin, B. V.; Korsheninnikov, A. A.; Kuzmin, E. A.; Ogloblin, A. A.; Volkov, V. A.; Grishkin, Y.; Lisin, V. P.; Mushkarenkov, A. N.; Nedorezov, V.; Polonski, A. L.; Rudnev, N. V.; Turinge, A. A.; Artukh, A.; Avdeichikov, V.; Ershov, S. N.; Fomichev, A.; Golovkov, M.; Gorshkov, A. V.; Grigorenko, L.; Klygin, S.; Krupko, S.; Meshkov, I. N.; Rodin, A.; Sereda, Y.; Seleznev, I.; Sidorchuk, S.; Syresin, E.; Stepantsov, S.; Ter-Akopian, G.; Teterev, Y.; Vorontsov, A. N.; Kamerdzhiev, S. P.; Litvinova, E. V.; Karataglidis, S.; Alvarez Rodriguez, R.; Borge, M. J. G.; Ramirez, C. Fernandez; Garrido, E.; Sarriguren, P.; Vignote, J. R.; Fraile Prieto, L. M.; Lopez Herraiz, J.; Moya de Guerra, E.; Udias-Moinelo, J.; Amaro Soriano, J. E.; Rojo, A. M. Lallena; Caballero, J. A.; Johansson, H. T.; Jonson, B.; Nilsson, T.; Nyman, G.; Zhukov, M.; Golubev, P.; Rudolph, D.; Hencken, K.; Jourdan, J.; Krusche, B.; Rauscher, T.; Kiselev, D.; Trautmann, D.; Al-Khalili, J.; Catford, W.; Johnson, R.; Stevenson, P. D.; Barton, C.; Jenkins, D.; Lemmon, R.; Chartier, M.; Cullen, D.; Bertulani, C. A.; Heinz, A.

    2011-01-01

    The electron-ion scattering experiment ELISe is part of the installations envisaged at the new experimental storage ring at the International Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany. It offers an unique opportunity to use electrons as probe in investigations of the

  19. Detail analysis of fusion neutronics benchmark experiment on beryllium

    International Nuclear Information System (INIS)

    Konno, Chikara; Ochiai, Kentaro; Takakura, Kosuke; Ohnishi, Seiki; Kondo, Keitaro; Wada, Masayuki; Sato, Satoshi

    2010-01-01

    Our previous analysis of the integral experiments (in situ and TOF experiments) on beryllium with DT neutrons at JAEA/FNS pointed out two problems by using MCNP4C and the latest nuclear data libraries; one was a strange larger neutron peak around 12 MeV appearing in the TOF experiment analysis with JEFF-3.1 and the other was an overestimation on law energy neutrons in the in situ experiment analyses with all the nuclear data libraries. We investigated reasons for these problems in detail. It was found out that the official ACE file MCJEFF3.1 of JEFF-3.1 had an inconsistency with the original JEFF-3.1, which caused the strange larger neutron peak around 12 MeV in the TOF experiment analysis. We also found out that the calculated thermal neutron peak was probably too large in the in situ experiment. On trial we examined influence of the thermal neutron scattering law data of beryllium metal in ENDF/B-VI. The result pointed out that the coherent elastic scattering cross-section data in the thermal neutron scattering law data of beryllium metal were probably too large.

  20. Polarization experiments

    International Nuclear Information System (INIS)

    Halzen, F.

    1977-02-01

    In a theoretical review of polarization experiments two important points are emphasized: (a) their versatility and their relevance to a large variety of aspects of hadron physics (tests of basic symmetries; a probe of strong interaction dynamics; a tool for hadron spectroscopy); (b) the wealth of experimental data on polarization parameters in pp and np scattering in the Regge language and in the diffraction language. (author)

  1. Technical realization of the ELISe experiment at FAIR

    International Nuclear Information System (INIS)

    Simon, H.

    2009-01-01

    The ELISe experiment addresses the physics, scattering electrons off radioactive ions in colliding kinematics for the first time. It is an integral part of the FAIR facility as specified in the Baseline Technical Report. The physics addressed covers elastic and inelastic scattering experiments for the study of charge distributions, the electromagnetic response and the single particle structure via quasielastic scattering. Details on the programme can be found in our recent publication. The colliding beam kinematics allows for a complete reconstruction of the excitation and deexcitation process, measured via the electron and decay products with a close to 4π solid angle coverage. This complements and enhances the opportunities of the only other expected electron scattering experiment world-wide called SCRIT that aims for elastic scattering studies, and is especially suited for ISOL type facilities. The high centre-of-mass energy for the colliding beams, the fully identified target like ion beam, and the high reachable luminosities up to a few times 10 29 cm -2 s -1 will allow to extend the projected studies exploring also the inelastic channels. In this paper, the technical design of ELISe is presented. (author)

  2. Tutorial on Fourier space coverage for scattering experiments, with application to SAR

    Science.gov (United States)

    Deming, Ross W.

    2010-04-01

    The Fourier Diffraction Theorem relates the data measured during electromagnetic, optical, or acoustic scattering experiments to the spatial Fourier transform of the object under test. The theorem is well-known, but since it is based on integral equations and complicated mathematical expansions, the typical derivation may be difficult for the non-specialist. In this paper, the theorem is derived and presented using simple geometry, plus undergraduatelevel physics and mathematics. For practitioners of synthetic aperture radar (SAR) imaging, the theorem is important to understand because it leads to a simple geometric and graphical understanding of image resolution and sampling requirements, and how they are affected by radar system parameters and experimental geometry. Also, the theorem can be used as a starting point for imaging algorithms and motion compensation methods. Several examples are given in this paper for realistic scenarios.

  3. Small Angle Neutron Scattering experiments on ``side-on fixed"" liquid crystal polyacrylates

    Science.gov (United States)

    Leroux, N.; Keller, P.; Achard, M. F.; Noirez, L.; Hardouin, F.

    1993-08-01

    Small Angle Neutron Scattering experiments were carried out on liquid crystalline “side-on fixed” polyacrylates : we observe that the polymer backbone adopts a prolate conformation in the nematic phase. Such anisotropy of the global backbone is larger for smaller spacer length. In every case we measure at low temperatures a large chain extension as previously described in polysiloxanes. Par diffusion des neutrons aux petits angles nous observons que la chaîne de polyacrylates “en haltère” adopte une conformation type prolate en phase nématique. Son anisotropie est d'autant plus grande que l'espaceur est plus court. Dans tous les cas, nous retrouvons à basse température la forte extension de la chaîne polymère qui fut d'abord révélée dans les polysiloxanes.

  4. A recoil detector of Koala experiment at HESR

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Huagen [Forschungszentrum Juelich (Germany)

    2015-07-01

    The concept of the luminosity detector for the PANDA experiment is based on measuring antiproton-proton elastic scattering in the Coulomb-nuclear interference region by 4 planes of HV-MAPS tracking detectors. The absolute precision is limited by the lack of existing data of the physics quantities σ{sub tot}, ρ and b describing the differential cross section as a function of squared 4-momentum transfer t in the relevant beam momentum region. Therefore, the so-called Koala experiment has been proposed to measure antiproton-proton elastic scattering. The goal of Koala experiment is to measure a wide range of t-distribution to determine the parameters σ{sub tot}, ρ and b. The idea is to measure the scattered beam antiprotons at forward angles by tracking detectors and the recoil target protons near 90 {sup circle} by energy detectors. In order to validate this method a recoil detector has been designed and built. Commissioning of the recoil detector by measuring proton-proton elastic scattering has been performed at COSY. Preliminary results of the commissioning are presented.

  5. The two-component spin-fermion model for high-Tc cuprates: its applications in neutron scattering and ARPES experiments

    International Nuclear Information System (INIS)

    Bang, Yunkyu

    2012-01-01

    Motivated by neutron scattering experiments in high-T c cuprates, we propose the two-component spin-fermion model as a minimal phenomenological model, which has both local spins and itinerant fermions as independent degrees of freedom (d.o.f.). Our calculations of the dynamic spin correlation function provide a successful description of the puzzling neutron experiment data and show that: (i) the upward dispersion branch of magnetic excitations is mostly due to local spin excitations; (ii) the downward dispersion branch is from collective particle-hole excitations of fermions; and (iii) the resonance mode is a mixture of both d.o.f. Using the same model with the same set of parameters, we calculated the renormalized quasiparticle (q.p.) dispersion and successfully reproduced one of the key features of the angle-resolved photoemission spectroscopy (ARPES) experiments, namely the high-energy kink structure in the fermion q.p. dispersion, thus supporting the two-component spin-fermion phenomenology. (paper)

  6. Data processing with PC-9801 micro-computer for HCN laser scattering experiments

    International Nuclear Information System (INIS)

    Iwasaki, T.; Okajima, S.; Kawahata, K.; Tetsuka, T.; Fujita, J.

    1986-09-01

    In order to process the data of HCN laser scattering experiments, a micro-computer software has been developed and applied to the measurements of density fluctuations in the JIPP T-IIU tokamak plasma. The data processing system consists of a spectrum analyzer, SM-2100A Signal Analyzer (IWATSU ELECTRIC CO., LTD.), PC-9801m3 micro-computer, a CRT-display and a dot-printer. The output signals from the spectrum analyzer are A/D converted, and stored on a mini-floppy-disk equipped to the signal analyzer. The software to process the data is composed of system-programs and several user-programs. The real time data processing is carried out for every shot of plasma at 4 minutes interval by the micro-computer connected with the signal analyzer through a GP-IB interface. The time evolutions of the frequency spectrum of the density fluctuations are displayed on the CRT attached to the micro-computer and printed out on a printer-sheet. In the case of the data processing after experiments, the data stored on the floppy-disk of the signal analyzer are read out by using a floppy-disk unit attached to the micro-computer. After computation with the user-programs, the results, such as monitored signal, frequency spectra, wave number spectra and the time evolutions of the spectrum, are displayed and printed out. In this technical report, the system, the software and the directions for use are described. (author)

  7. Effects of multiple scatter on the propagation and absorption of electromagnetic waves in a field-aligned-striated cold magneto-plasma: implications for ionospheric modification experiments

    Directory of Open Access Journals (Sweden)

    T. R. Robinson

    Full Text Available A new theory of the propagation of low power electromagnetic test waves through the upper-hybrid resonance layer in the presence of magnetic field-aligned plasma density striations, which includes the effects of multiple scatter, is presented. The case of sinusoidal striations in a cold magnetoplasma is treated rigorously and then extended, in an approximate manner, to the broad-band striation spectrum and warm plasma cases. In contrast to previous, single scatter theories, it is found that the interaction layer is much broader than the wavelength of the test wave. This is due to the combined electric fields of the scattered waves becoming localised on the contour of a fixed plasma density, which corresponds to a constant value for the local upper-hybrid resonance frequency over the whole interaction region. The results are applied to the calculation of the refractive index of an ordinary mode test wave during modification experiments in the ionospheric F-region. Although strong anomalous absorption arises, no new cutoffs occur at the upper-hybrid resonance, so that in contrast to the predictions of previous single scatter theories, no additional reflections occur there. These results are consistent with observations made during ionospheric modification experiments at Tromsø, Norway.

    Key words. Ionosphere (active experiments; ionospheric irregularities Radio science (ionospheric propagation

  8. Neutron-proton scattering experiments and phase analyses for the n-p system in the energy range from 17 to 50 MeV

    International Nuclear Information System (INIS)

    Krupp, H.

    1986-01-01

    In the framework of the study of the nucleon-nucleon interaction neutron-proton scattering experiments were performed at the neutron collimator POLKA of the Karlsruhe cyclotron. Neutrons were produced by the source reaction D(d,n)X in the energy range between 17 and 50 MeV. Measured were the differential cross section, the analyzing power, and the spin correlation coefficient of the elastic n-p scattering. By means of the new data the knowledge of the isospin T=0 scattering phases could be improved. It is for the first time possible to determine the scattering phases for T=1 independently from n-p and p-p data with comparable accuracy. (orig./HSI) [de

  9. Strange Quark Contributions to Parity-Violating Asymmetries in the Forward G0 Electron-Proton Scattering Experiment

    Energy Technology Data Exchange (ETDEWEB)

    David Armstrong; Francois Arvieux; Razmik Asaturyan; Todd Averett; Stephanie Bailey; Guillaume Batigne; Douglas Beck; Elizabeth Beise; Jay Benesch; Louis Bimbot; James Birchall; Angela Biselli; Peter Bosted; Elodie Boukobza; Herbert Breuer; Roger Carlini; R. Carr; Nicholas Chant; Yu-Chiu Chao; Swapan Chattopadhyay; Russell Clark; Silviu Covrig; Anthony Cowley; Daniel Dale; C. Davis; Willie Falk; John Finn; Tony Forest; Gregg Franklin; Christophe Furget; David Gaskell; Joseph Grames; Keith Griffioen; Klaus Grimm; Benoit Guillon; Hayko Guler; Lars Hannelius; R. Hasty; A. Hawthorne Allen; Tanja Horn; Kathleen Johnston; Mark Jones; Peter Kammel; Reza Kazimi; Paul King; Ameya Kolarkar; Elie Korkmaz; Wolfgang Korsch; Serge Kox; Joachim Kuhn; Jeff Lachniet; Lawrence Lee; Jason Lenoble; Eric Liatard; J. Liu; Berenice Loupias; A. Lung; Glen MacLachlan; Dominique Marchand; J.W. Martin; Kenneth McFarlane; Daniella Mckee; Robert McKeown; Fernand Merchez; Hamlet Mkrtchyan; Bryan Moffit; M. Morlet; Itaru Nakagawa; Kazutaka Nakahara; Melissa Nakos; Retief Neveling; Silvia Niccolai; S. Ong; Shelley Page; Vassilios Papavassiliou; Stephen Pate; Sarah Phillips; Mark Pitt; Benard Poelker; Tracy Porcelli; Gilles Quemener; Brian Quinn; William Ramsay; Aamer Rauf; Jean-Sebastien Real; Julie Roche; Philip Roos; Gary Rutledge; Jeffery Secrest; Neven Simicevic; G.R. Smith; Damon Spayde; Samuel Stepanyan; Marcy Stutzman; Vincent Sulkosky; Vardan Tadevosyan; Raphael Tieulent; Jacques Van de Wiele; Willem van Oers; Eric Voutier; William Vulcan; G. Warren; S.P. Wells; Steven Williamson; S.A. Wood; Chen Yan; Junho Yun; Valdis Zeps

    2005-06-01

    We have measured parity-violating asymmetries in elastic electron-proton scattering over the range of momentum transfers 0.12 < Q{sup 2} < 1.0 GeV{sup 2}. These asymmetries, arising from interference of the electromagnetic and neutral weak interactions, are sensitive to strange quark contributions to the currents of the proton. The measurements were made at JLab using a toroidal spectrometer to detect the recoiling protons from a liquid hydrogen target. The results indicate non-zero, Q{sup 2} dependent, strange quark contributions and provide new information beyond that obtained in previous experiments.

  10. Feasibility study of a microwave or far-infrared scattering experiment to measure small scale turbulence and anomalous transport in J.E.T

    International Nuclear Information System (INIS)

    Koechlin, F.; Olivain, J.; Gresillon, D.; Truc, A.

    1981-03-01

    In the first part, we make a rapid review of what can be expected as low frequency turbulence in J.E.T. This is to define the parameters of the density fluctuations which can be expected. A method to deduce the anomalous transport is described. In the second part, the physical problems of measuring these parameters by microwave or far-infrared scattering are outlined. In the third part, a preliminary study of a microwave scattering experiment at lambda approximately 1.3 mm is made. In the fourth part, a F.I.R. laser experiment at 10.6 μm is also proposed to perform the same measurements. In this last case, an estimation of the thermal nature of the plasma emission could be made, in order to eventually extend the diagnostic to the ion temperature measurement

  11. How hadron collider experiments contributed to the development of QCD: from hard-scattering to the perfect liquid

    Science.gov (United States)

    Tannenbaum, M. J.

    2018-05-01

    A revolution in elementary particle physics occurred during the period from the ICHEP1968 to the ICHEP1982 with the advent of the parton model from discoveries in Deeply Inelastic electron-proton Scattering at SLAC, neutrino experiments, hard-scattering observed in p+p collisions at the CERN ISR, the development of QCD, the discovery of the J/ Ψ at BNL and SLAC and the clear observation of high transverse momentum jets at the CERN SPS p¯ + p collider. These and other discoveries in this period led to the acceptance of QCD as the theory of the strong interactions. The desire to understand nuclear physics at high density such as in neutron stars led to the application of QCD to this problem and to the prediction of a Quark-Gluon Plasma (QGP) in nuclei at high energy density and temperatures. This eventually led to the construction of the Relativistic Heavy Ion Collider (RHIC) at BNL to observe superdense nuclear matter in the laboratory. This article discusses how experimental methods and results which confirmed QCD at the first hadron collider, the CERN ISR, played an important role in experiments at the first heavy ion collider, RHIC, leading to the discovery of the QGP as a perfect liquid as well as discoveries at RHIC and the LHC which continue to the present day.

  12. Coordination of the Tromsoe Partial Reflection Experiment (PRE) and EISCAT

    International Nuclear Information System (INIS)

    Haug, A.

    1977-01-01

    A redesigned partial reflection experiment has been installed and put in operation at Ramfjord, Tromsoe. In this paper the theory for the experiment is briefly outlined and it is shown that the partial reflection experiment is suitable for a number of different studies of the lower ionosphere. An antenna array of 10 5 m 2 has been erected at the same site where the European Incoherent Scatter Facility (EISCAT) will be installed. In the redesigned experiment system control and fast data analysis are performed by a computer with the necessary peripherals. It is shown that the resolution, accuracy and height range of the different partial reflection sub-experiments provides for a number of coordinated investigations with the European Incoherent Scatter facility. (Auth.)

  13. Extraction of the neutron-neutron scattering length ann from kinematically complete neutron-deuteron breakup experiments

    International Nuclear Information System (INIS)

    Witala, H.; Hueber, D.; Gloeckle, W.; Tornow, W.; Gonzalez Trotter, D.E.

    1996-01-01

    Data for the neutron-neutron final-state-interaction cross section obtained recently in a kinematically complete neutron-deuteron breakup experiment have been reanalyzed using rigorous solutions of the three-nucleon Faddeev equations with realistic nucleon-nucleon interactions. A discrepancy was found with respect to a recent analysis based on the W-matrix approximation to the Paris potential. We also estimate theoretical uncertainties in extracting the neutron-neutron scattering length resulting from the use of different nucleon-nucleon interactions and the possible action of the two pion-exchange three-nucleon force. We find that there exists a certain production angle for the interacting neutron-neutron pair where the uncertainties become minimal. (author)

  14. Initial state radiation experiment at MAMI

    Energy Technology Data Exchange (ETDEWEB)

    Mihovilovič, M.; Merkel, H. [Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, Johann-Joachim-Becher-Weg 45, 55128 Mainz (Germany); Collaboration: A1-Collaboration

    2013-11-07

    In an attempt to contribute further insight into the discrepancy between the Lamb shift and elastic scattering determinations of the proton charge radius, a new experiment at MAMI is underway, aimed at measuring proton form-factors at very low momentum transfers by using a new technique based on initial state radiation. This paper reports on first findings of the pilot measurement performed in 2010, whose main goal was to check the feasibility of the proposed experiment and to recognize and overcome potential obstacles before running the full experiment in 2013.

  15. High energy diffraction processes - TOTEM experiment

    CERN Document Server

    Kaspar, Jan

    2005-01-01

    We study two problems in this thesis. First, we analyse a model for pp and anti-pp elastic scattering. The model was developed by M.M.Islam and coworkers in the past 25 years. Our aim was to make a prediction for differential cross section of pp scattering at energy of 14 TeV which will be measured by the TOTEM experiment at the LHC at CERN. Since protons carry electromagnetic charge, we had to take into account an electromagnetic interaction and effects of the interference between electromagnetic and hadronic forces. We also analysed the model in the impact parameter representation. It enabled us to gain information about range of hadronic forces responsible for elastic, inelastic and total pp and anti-pp scattering. In the second part we present our alignment method for detectors inside the Roman pots of the TOTEM experiment. The method was used during Roman Pot tests on the SPS beam last year.

  16. De-squeeze the beams: the TOTEM and ATLAS/ALFA experiments

    CERN Multimedia

    Stefania Pandolfi

    2016-01-01

    A special week-long proton–proton run with larger beam sizes at the interaction point is intended to probe the p-p elastic scattering regime at small angles.   Nicola Turini, deputy spokesperson for TOTEM, in front of one of the experiment’s ‘Roman Pot’ detectors in the LHC tunnel. (Photo: Maximilien Brice/CERN) Usually, the motto of the LHC is “maximum luminosity”. But for a few days per year, the LHC ignores its motto to run at very low luminosity for the forward experiments. This week, the LHC will provide the TOTEM and ATLAS/ALFA experiments with data for a broad physics programme. The TOTEM experiment at Point 5 and the ATLAS/ALFA experiment at Point 1 study the elastic scattering of protons, which are not observable in normal operation runs. In the elastic scattering process, the two protons survive their encounter intact and only change directions by exchanging momentum. To allow this special run, the operators play with the so-c...

  17. The Manuel Lujan Jr. Neutron Scattering Center (LANSCE) experiment reports 1993 run cycle. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Farrer, R.; Longshore, A. [comps.

    1995-06-01

    This year the Manuel Lujan Jr. Neutron Scattering Center (LANSCE) ran an informal user program because the US Department of Energy planned to close LANSCE in FY1994. As a result, an advisory committee recommended that LANSCE scientists and their collaborators complete work in progress. At LANSCE, neutrons are produced by spallation when a pulsed, 800-MeV proton beam impinges on a tungsten target. The proton pulses are provided by the Clinton P. Anderson Meson Physics Facility (LAMPF) accelerator and a associated Proton Storage Ring (PSR), which can Iter the intensity, time structure, and repetition rate of the pulses. The LAMPF protons of Line D are shared between the LANSCE target and the Weapons Neutron Research (WNR) facility, which results in LANSCE spectrometers being available to external users for unclassified research about 80% of each annual LAMPF run cycle. Measurements of interest to the Los Alamos National Laboratory (LANL) may also be performed and may occupy up to an additional 20% of the available beam time. These experiments are reviewed by an internal program advisory committee. This year, a total of 127 proposals were submitted. The proposed experiments involved 229 scientists, 57 of whom visited LANSCE to participate in measurements. In addition, 3 (nuclear physics) participating research teams, comprising 44 scientists, carried out experiments at LANSCE. Instrument beam time was again oversubscribed, with 552 total days requested an 473 available for allocation.

  18. The Manuel Lujan Jr. Neutron Scattering Center (LANSCE) experiment reports 1993 run cycle. Progress report

    International Nuclear Information System (INIS)

    Farrer, R.; Longshore, A.

    1995-06-01

    This year the Manuel Lujan Jr. Neutron Scattering Center (LANSCE) ran an informal user program because the US Department of Energy planned to close LANSCE in FY1994. As a result, an advisory committee recommended that LANSCE scientists and their collaborators complete work in progress. At LANSCE, neutrons are produced by spallation when a pulsed, 800-MeV proton beam impinges on a tungsten target. The proton pulses are provided by the Clinton P. Anderson Meson Physics Facility (LAMPF) accelerator and a associated Proton Storage Ring (PSR), which can Iter the intensity, time structure, and repetition rate of the pulses. The LAMPF protons of Line D are shared between the LANSCE target and the Weapons Neutron Research (WNR) facility, which results in LANSCE spectrometers being available to external users for unclassified research about 80% of each annual LAMPF run cycle. Measurements of interest to the Los Alamos National Laboratory (LANL) may also be performed and may occupy up to an additional 20% of the available beam time. These experiments are reviewed by an internal program advisory committee. This year, a total of 127 proposals were submitted. The proposed experiments involved 229 scientists, 57 of whom visited LANSCE to participate in measurements. In addition, 3 (nuclear physics) participating research teams, comprising 44 scientists, carried out experiments at LANSCE. Instrument beam time was again oversubscribed, with 552 total days requested an 473 available for allocation

  19. Attosecond experiments on plasmonic nanostructures principles and experiments

    CERN Document Server

    Schötz, Johannes

    2016-01-01

    Johannes Schötz presents the first measurements of optical electro-magnetic near-fields around nanostructures with subcycle-resolution. The ability to measure and understand light-matter interactions on the nanoscale is an important component for the development of light-wave-electronics, the control and steering of electron dynamics with the frequency of light, which promises a speed-up by several orders of magnitude compared to conventional electronics. The experiments presented here on metallic nanotips, widely used in experiments and applications, do not only demonstrate the feasibility of attosecond streaking as a unique tool for fundamental studies of ultrafast nanophotonics but also represent a first important step towards this goal. Contents Electron Scattering in Solids Attosecond Streaking from Metal Nanotips Target Groups Lecturers and students of physics, especially in the area of nanophotonics and attosecond physics About the Author Johannes Schötz received his Master's degree in physics and cu...

  20. Reactive scattering of H2 from Cu(100): comparison of dynamics calculations based on the specific reaction parameter approach to density functional theory with experiment.

    Science.gov (United States)

    Sementa, L; Wijzenbroek, M; van Kolck, B J; Somers, M F; Al-Halabi, A; Busnengo, H F; Olsen, R A; Kroes, G J; Rutkowski, M; Thewes, C; Kleimeier, N F; Zacharias, H

    2013-01-28

    We present new experimental and theoretical results for reactive scattering of dihydrogen from Cu(100). In the new experiments, the associative desorption of H(2) is studied in a velocity resolved and final rovibrational state selected manner, using time-of-flight techniques in combination with resonance-enhanced multi-photon ionization laser detection. Average desorption energies and rotational quadrupole alignment parameters were obtained in this way for a number of (v = 0, 1) rotational states, v being the vibrational quantum number. Results of quantum dynamics calculations based on a potential energy surface computed with a specific reaction parameter (SRP) density functional, which was derived earlier for dihydrogen interacting with Cu(111), are compared with the results of the new experiments and with the results of previous molecular beam experiments on sticking of H(2) and on rovibrationally elastic and inelastic scattering of H(2) and D(2) from Cu(100). The calculations use the Born-Oppenheimer and static surface approximations. With the functional derived semi-empirically for dihydrogen + Cu(111), a chemically accurate description is obtained of the molecular beam experiments on sticking of H(2) on Cu(100), and a highly accurate description is obtained of rovibrationally elastic and inelastic scattering of D(2) from Cu(100) and of the orientational dependence of the reaction of (v = 1, j = 2 - 4) H(2) on Cu(100). This suggests that a SRP density functional derived for H(2) interacting with a specific low index face of a metal will yield accurate results for H(2) reactively scattering from another low index face of the same metal, and that it may also yield accurate results for H(2) interacting with a defected (e.g., stepped) surface of that same metal, in a system of catalytic interest. However, the description that was obtained of the average desorption energies, of rovibrationally elastic and inelastic scattering of H(2) from Cu(100), and of the

  1. The Thomson Scattering System on the Lithium Tokamak eXperiment (LTX)

    International Nuclear Information System (INIS)

    Strickler, T.; Majeski, R.; Kaita, R.; LeBlanc, B.

    2008-01-01

    The Lithium Tokamak eXperiment (LTX) is a spherical tokamak with R0 = 0.4m, a = 0.26m, BTF ∼ 3.4kG, IP ∼ 400kA, and pulse length ∼ 0.25s. The goal of LTX is to investigate tokamak plasmas that are almost entirely surrounded by a lithium-coated plasma-facing shell conformal to the last closed magnetic flux surface. Based on previous experimental results and simulation, it is expected that the low-recycling liquid lithium surfaces will result in higher temperatures at the plasma edge, flatter overall temperature profiles, centrally-peaked density profiles, and an increased confinement time. To test these predictions, the electron temperature and density profiles in LTX will be measured by a multi-point Thomson scattering system (TVTS). Initially, TS measurements will be made at up to 12 simultaneous points between the plasma center and plasma edge. Later, high resolution edge measurements will be deployed to study the lithium edge physics in greater detail. Technical challenges to implementing the TS system included limited 'line of sight' access to the plasma due to the plasma-facing shell and problems associated with the presence of liquid lithium.

  2. Study of problems met in muon pattern recognition for a deep inelastic scattering experiment at the S.P.S

    International Nuclear Information System (INIS)

    Besson, C.

    1976-01-01

    The problems of the muon pattern recognition are studied for a muon-proton deep inelastic scattering experiment at the S.P.S. The pattern recognition program is described together with the problems caused by some characteristics of the apparatus of the European muon collaboration. Several reconstruction technics are compared, and a way of handling big drift chamber problems is found. Some results on Monte-Carlo tracks are given [fr

  3. The electron-ion scattering experiment ELISe at the International Facility for Antiproton and Ion Research (FAIR)-A conceptual design study

    Energy Technology Data Exchange (ETDEWEB)

    Antonov, A.N.; Gaidarov, M.K. [INRNE-BAS Sofia (Bulgaria); Ivanov, M.V. [Grupo de Physica Nuclear, Complutense University of Madrid (Spain); Kadrev, D.N. [INRNE-BAS Sofia (Bulgaria); Aiche, M.; Barreau, G.; Czajkowski, S.; Jurado, B. [Centre d' Etudes Nucleaires Bordeaux-Gradingnan (CENBG) (France); Belier, G.; Chatillon, A.; Granier, T.; Taieb, J. [CEA Bruyeres-le-Chatel (France); Dore, D.; Letourneau, A.; Ridikas, D.; Dupont, E.; Berthoumieux, E.; Panebianco, S. [CEA Saclay (France); Farget, F.; Schmitt, C. [GANIL Caen (France)

    2011-05-01

    The electron-ion scattering experiment ELISe is part of the installations envisaged at the new experimental storage ring at the International Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany. It offers an unique opportunity to use electrons as probe in investigations of the structure of exotic nuclei. The conceptual design and the scientific challenges of ELISe are presented.

  4. The electron-ion scattering experiment ELISe at the International Facility for Antiproton and Ion Research (FAIR)-A conceptual design study

    International Nuclear Information System (INIS)

    Antonov, A.N.; Gaidarov, M.K.; Ivanov, M.V.; Kadrev, D.N.; Aiche, M.; Barreau, G.; Czajkowski, S.; Jurado, B.; Belier, G.; Chatillon, A.; Granier, T.; Taieb, J.; Dore, D.; Letourneau, A.; Ridikas, D.; Dupont, E.; Berthoumieux, E.; Panebianco, S.; Farget, F.; Schmitt, C.

    2011-01-01

    The electron-ion scattering experiment ELISe is part of the installations envisaged at the new experimental storage ring at the International Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany. It offers an unique opportunity to use electrons as probe in investigations of the structure of exotic nuclei. The conceptual design and the scientific challenges of ELISe are presented.

  5. Time-of-flight experiments using a pseudo-statistical chopper

    International Nuclear Information System (INIS)

    Aizawa, Otohiko; Kanda, Keiji

    1975-01-01

    A ''pseudo-statistical'' chopper was manufactured and used for the experiments on neutron transmission and scattering. The characteristics of the chopper and the experimental results are discussed in comparison with those in the time-of-flight technique using a conventional chopper. Which of the two methods is superior depends on the form of the time-of-flight distribution to be measured. Pseudo-statistical pulsing may be especially advantageous for scattering experiments with single or a few-line time-of-flight spectrum. (auth.)

  6. The ELISe experiment at FAIR

    International Nuclear Information System (INIS)

    Simon, H.

    2007-01-01

    In this paper the novel ELectron Ion scattering in a Storage ring (eA-collider) experiment that is part of the baseline of FAIR[http://www.gsi.de/fair/reports/btr.html] will be discussed in terms of future prospects in a viable physics programme[http://www.gsi.de/documents/DOC-2006-Mar-118-1.pdf, http://www.gsi.de/fair/experiments/ELISe/] that will be feasible for the first time, making use of a clean purely electromagnetic probe in conjunction with unstable secondary beams, the electron

  7. Experiments in Special Relativity Using Compton Scattering of Gamma Rays.

    Science.gov (United States)

    Egelstaff, P. A.; And Others

    1981-01-01

    Some simple undergraduate laboratory experiments are described, which verify the energy-momentum relationship of special relativity. These experiments have been designed either to be used as classroom demonstrations or to be carried out by second-year students. (Author/JN)

  8. Introducing a standard method for experimental determination of the solvent response in laser pump, x-ray probe time-resolved wide-angle x-ray scattering experiments on systems in solution

    DEFF Research Database (Denmark)

    Kjær, Kasper Skov; Brandt van Driel, Tim; Kehres, Jan

    2013-01-01

    In time-resolved laser pump, X-ray probe wide-angle X-ray scattering experiments on systems in solution the structural response of the system is accompanied by a solvent response. The solvent response is caused by reorganization of the bulk solvent following the laser pump event, and in order...... response-the solvent term-experimentally when applying laser pump, X-ray probe time-resolved wide-angle X-ray scattering. The solvent term describes difference scattering arising from the structural response of the solvent to changes in the hydrodynamic parameters: pressure, temperature and density. We...... is demonstrated to exhibit first order behaviour with respect to the amount of energy deposited in the solution. We introduce a standardized method for recording solvent responses in laser pump, X-ray probe time-resolved X-ray wide-angle scattering experiments by using dye mediated solvent heating. Furthermore...

  9. Personal history of nucleon polarization experiments

    International Nuclear Information System (INIS)

    Chamberlain, O.

    1984-09-01

    The history of nucleon scattering experiments is reviewed, starting with the observation of large proton polarizations in scattering from light elements such as carbon, and ending with the acceleration of polarized proton beams in high-energy synchrotrons. Special mention is made about significant contributions made by C.L. Oxley, L. Wolfenstein, R.D. Tripp, T. Ypsilantis, A. Abragam, M. Borghini, T. Niinikoski, Froissart, Stora, A.D. Krisch, and L.G. Ratner

  10. Search for narrow baryon resonances (of masses through 3.4 and 5 GeV) through a π-p large angle elastic scattering formation experiment

    International Nuclear Information System (INIS)

    Chauveau, J.

    1981-01-01

    This work describes a search for narrow baryon resonances (of masses between 3.4 and 5 GeV) through a π - p large angle elastic scattering formation experiment. An optimization of the sensitivity of the experiment to detect resonances is obtained by the measurement of the central part of the angular distribution (/cos theta*/ -4 . The apparatus and data analysis are described in details. No narrow resonance has been found, the sensitivity of the experiment being characterized by a width GAMMA approximately equal to 1 MeV and an elasticity x approximately equal to 0.01. Finally, the differential cross section measurement is compared to some parton models [fr

  11. Enhancing signal detection and completely eliminating scattering using quasi-phase-cycling in 2D IR experiments.

    Science.gov (United States)

    Bloem, Robbert; Garrett-Roe, Sean; Strzalka, Halina; Hamm, Peter; Donaldson, Paul

    2010-12-20

    We demonstrate how quasi-phase-cycling achieved by sub-cycle delay modulation can be used to replace optical chopping in a box-CARS 2D IR experiment in order to enhance the signal size, and, at the same time, completely eliminate any scattering contamination. Two optical devices are described that can be used for this purpose, a wobbling Brewster window and a photoelastic modulator. They are simple to construct, easy to incorporate into any existing 2D IR setup, and have attractive features such as a high optical throughput and a fast modulation frequency needed to phase cycle on a shot-to-shot basis.

  12. Plasmon holographic experiments: theoretical framework

    International Nuclear Information System (INIS)

    Verbeeck, J.; Dyck, D. van; Lichte, H.; Potapov, P.; Schattschneider, P.

    2005-01-01

    A theoretical framework is described to understand the results of plasmon holography experiments leading to insight in the meaning of the experimental results and pointing out directions for future experiments. The framework is based on the formalism of mutual intensity to describe how coherence is transferred through an optical system. For the inelastic interaction with the object, an expression for the volume plasmon excitations in a free electron gas is used as a model for the behaviour of aluminium. The formalism leads to a clear graphical intuitive tool for understanding the experiments. It becomes evident that the measured coherence is solely related to the angular distribution of the plasmon scattering in the case of bulk plasmons. After describing the framework, the special case of coherence outside a spherical particle is treated and the seemingly controversial idea of a plasmon with a limited coherence length obtained from experiments is clarified

  13. Planar radiative shock experiments and their comparison to simulations

    International Nuclear Information System (INIS)

    Reighard, A. B.; Drake, R. P.; Mucino, J. E.; Knauer, J. P.; Busquet, M.

    2007-01-01

    Recent experiments have obtained radiographic data from shock waves driven at >100 km/s in xenon gas, and Thomson scattering data from similar experiments using argon gas. Presented here is a review of these experiments, followed by an outline of the discrepancies between the data and the results of one-dimensional simulations. Simulations using procedures that work well for similar but nonradiative experiments show inconsistencies between the measured position of the interface of the beryllium and xenon and the calculated position for these experiments. Sources of the discrepancy are explored

  14. Early Results from the Qweak Experiment

    Directory of Open Access Journals (Sweden)

    Androic D.

    2014-03-01

    Full Text Available A subset of results from the recently completed Jefferson Lab Qweak experiment are reported. This experiment, sensitive to physics beyond the Standard Model, exploits the small parity-violating asymmetry in elastic e→p$\\vec e{\\rm{p}}$ scattering to provide the first determination of the proton’s weak charge Qwp$Q_w^p$. The experiment employed a 180 μA longitudinally polarized 1.16 GeV electron beam on a 35 cm long liquid hydrogen target. Scattered electrons in the angular range 6° < θ < 12° corresponding to Q2 = 0.025 GeV2 were detected in eight Cerenkov detectors arrayed symmetrically around the beam axis. The goals of the experiment were to provide a measure of e→p$\\vec e{\\rm{p}}$ to 4.2% (combined statisstatistical and systematic error, which implies a measure of sin2(θw at the level of 0.3%, and to help constrain the vector weak quark charges C1u and C1d. The experimental method is described, with particular focus on the challenges associated with the world’s highest power LH2 target. The new constraints on C1u and C1d provided by the subset of the experiment’s data analyzed to date will also be shown, together with the extracted weak charge of the neutron.

  15. Analysis of hard exclusive scattering processes of the HERMES recoil experiment

    International Nuclear Information System (INIS)

    Brodski, Irina

    2014-11-01

    Deeply virtual Compton Scattering (DVCS), ep → epγ is the simplest reaction giving indication of generalized parton distributions (GPD) of the nucleon. The DVCS process has the same final state as the Bethe-Heitler process (BH). For this reason the access is taken not through the cross-sections directly but through asymmetries between DVCS events depending on charge and polarization of the 27.6 GeV beam. For the first time the azimuthal asymmetry amplitudes according the charge of the lepton beam are extracted using a kinematically complete reconstruction method at the HERMES experiment. The recoil detector installed in 2006 allows the reconstruction of recoiling protons that completes the measurements of the forward detector to cover almost the complete angle range around the vertex. This approach allows suppressing the background processes by almost a complete magnitude compared to the traditional method using only the information of the forward spectrometer. The analysis of the asymmetries was carried out at different values of the kinematic variables t c' x B and Q 2 to investigate the dependence of these variables. This work pushes the limits of the readability of data and shows which periods have been found to be unstable in the data acquisition. It points out the impact of this finding to previous HERMES publications.

  16. RADLAC II high current electron beam propagation experiment

    International Nuclear Information System (INIS)

    Frost, C.A.; Shope, S.L.; Mazarakis, M.G.; Poukey, J.W.; Wagner, J.S.; Turman, B.N.; Crist, C.E.; Welch, D.R.; Struve, K.W.

    1993-01-01

    The resistive hose instability of an electron beam was observed to be convective in recent RADLAC II experiments for higher current shots. The effects of air scattering for these shots were minimal. These experiments and theory suggest low-frequency hose motion which does not appear convective may be due to rapid expansion and subsequent drifting of the beam nose

  17. Qweak experiment update and applications/opportunities at lower energies

    International Nuclear Information System (INIS)

    Pitt, Mark L.

    2013-01-01

    The Q weak experiment has recently completed data-taking at Jefferson Lab. The primary focus of the experiment is to perform a precision measurement of the proton's neutral weak charge. The Standard Model gives a definite prediction for the weak charge. Any deviation from that can be interpreted as evidence for new physics beyond the Standard Model. This precision, low energy measurement is sensitive to new physics signatures at energy scales up to 2 TeV. The experiment measures the parity-violating asymmetry in the scattering of 1.165 GeV longitudinally polarized electrons on the proton at low momentum transfer (Q 2 ∼ 0.025 (GeV/c) 2 ). This paper provides a brief status report on the experiment with a focus on instrumentation and techniques that are applicable to lower beam energy realizations of parity-violating electron scattering measurements. Estimates of anticipated errors on the proton's weak charge expected if the Q weak apparatus were used at a lower beam energy are also discussed

  18. Hard two-photon contribution to elastic lepton-proton scattering determined by the OLYMPUS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, B.S. [Massachusetts Institute of Technology, Cambridge, MA (United States); Ice, L.D. [Arizona State Univ., Tempe, AZ (United States); Khaneft, D. [Mainz Univ. (Germany); Collaboration: OLYMPUS Collaboration; and others

    2016-12-15

    The OLYMPUS collaboration reports on a precision measurement of the positron-proton to electron-proton elastic cross section ratio, R{sub 2γ}, a direct measure of the contribution of hard two- photon exchange to the elastic cross section. In the OLYMPUS measurement, 2.01 GeV electron and positron beams were directed through a hydrogen gas target internal to the DORIS storage ring at DESY. A toroidal magnetic spectrometer instrumented with drift chambers and time-of-flight scintillators detected elastically scattered leptons in coincidence with recoiling protons over a scattering angle range of ∼20 to 80 . The relative luminosity between the two beam species was monitored using tracking telescopes of interleaved GEM and MWPC detectors at 12 , as well as symmetric Moeller/Bhabha calorimeters at 1.29 . A total integrated luminosity of 4.5 fb{sup -1} was collected. In the extraction of R{sub 2γ}, radiative effects were taken into account using a Monte Carlo generator to simulate the convolutions of internal bremsstrahlung with experiment-specific conditions such as detector acceptance and reconstruction efficiency. The resulting values of R{sub 2γ}, presented here for a wide range of virtual photon polarization 0.456<ε<0.978, are smaller than some hadronic two-photon exchange calculations predict, but are in reasonable agreement with a subtracted dispersion model and a phenomenological fit to the form factor data.

  19. Experiments around I-8

    CERN Multimedia

    CERN PhotoLab

    1975-01-01

    The lithium transition-radiation detectors and the large liquid argon calorimeters of experiment R806T are shown above and below the intersection at I-8 (Brookhaven-CERN-Saclay-Syracuse-Yale Collaboration, Study of large transverse momentum phenomena by electron and photon detection). At 90 deg to the intersecting beams are the monitoring proporional chambers of experiment R805 (Measurement of real to imaginary ratio of forward scattering amplitude - Coulomb interference - by the CERN-Rome Collaboration). Left and right of the intersection one sees, symmetrically placed around the interaction region, the large scintillation counters hodoscopes used by R801 (Pisa-Stony Brook Collaboration) to measure the pp total cross section and the features of inelastic collisions.

  20. COMPASS polarized Drell-Yan experiment

    CERN Document Server

    Doshita, Norihiro

    2016-01-01

    The COMPASS II started at 2012 that includes polarized Drell-Yan program with a polarized solid target. The availability of pion beam provides an access to the Drell-Yan physics throughout the process where quark(target)-antiquark(beam) pair annihilates electromagnetically with a production of dilepton pair. Study of angular dependencies of the Drell-Yan process cross-section allows us to access to parton distribution functions (PDFs) or, more precisely, a convolutions of various PDFs. The transversely polarized target together with negative pion beam is an important feature of the COMPASS Drell-Yan experiment, that provides us with unique data on transverse momentum dependent (TMD) PDFs. After a plot run in 2014, the experiment has just started in 2015. The role of the Drell-Yan experiment at COMPASS in TMD PDFs study, with a comparison to semi-inclusive deep inelastic scattering experiment, is described. The experimental set-up, the status of the data taking in 2015 and preliminary analysis results in the 2...

  1. Reconstructing an icosahedral virus from single-particle diffraction experiments

    Science.gov (United States)

    Saldin, D. K.; Poon, H.-C.; Schwander, P.; Uddin, M.; Schmidt, M.

    2011-08-01

    The first experimental data from single-particle scattering experiments from free electron lasers (FELs) are now becoming available. The first such experiments are being performed on relatively large objects such as viruses, which produce relatively low-resolution, low-noise diffraction patterns in so-called ``diffract-and-destroy'' experiments. We describe a very simple test on the angular correlations of measured diffraction data to determine if the scattering is from an icosahedral particle. If this is confirmed, the efficient algorithm proposed can then combine diffraction data from multiple shots of particles in random unknown orientations to generate a full 3D image of the icosahedral particle. We demonstrate this with a simulation for the satellite tobacco necrosis virus (STNV), the atomic coordinates of whose asymmetric unit is given in Protein Data Bank entry 2BUK.

  2. The CONNIE experiment

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar-Arevalo, A.; et al.

    2016-10-19

    The CONNIE experiment uses fully depleted, high resistivity CCDs as particle detectors in an attempt to measure for the first time the Coherent Neutrino-Nucleus Elastic Scattering of antineutrinos from a nuclear reactor with silicon nuclei.This talk, given at the XV Mexican Workshop on Particles and Fields (MWPF), discussed the potential of CONNIE to perform this measurement, the installation progress at the Angra dos Reis nuclear power plant, as well as the plans for future upgrades.

  3. High power microwave diagnostic for the fusion energy experiment ITER

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang; Leipold, Frank; Goncalves, B.

    2016-01-01

    Microwave diagnostics will play an increasingly important role in burning plasma fusion energy experiments like ITER and beyond. The Collective Thomson Scattering (CTS) diagnostic to be installed at ITER is an example of such a diagnostic with great potential in present and future experiments....... The ITER CTS diagnostic will inject a 1 MW 60 GHz gyrotron beam into the ITER plasma and observe the scattering off fluctuations in the plasma — to monitor the dynamics of the fast ions generated in the fusion reactions....

  4. Studies of nuclear structure via polarization transfer experiments

    International Nuclear Information System (INIS)

    Moss, J.M.

    1985-01-01

    Inelastic scattering and charge exchange reactions at medium energies are discussed. Theoretical treatments of these phenomena based on the Dirac equation are presented. A LAMPF experiment in which polarization observables were employed in the search for collective effects in the nuclear pion field is discussed. This experiment is compared with the EMC (European Muon Collaboration) effect. 37 refs., 11 figs

  5. Polarized internal targets for electronuclear experiments

    International Nuclear Information System (INIS)

    van den Brand, J.F.J.

    1993-01-01

    Polarized internal gas targets represent a unique opportunity for the measurement of spin observables in electro-nuclear physics. Two measurements will be discussed. First, spin observables have been measured in elastic and quasi-free scattering of 45, 200, 300, and 415 MeV polarized protons from a polarized 3 He internal gas target at the Indiana University Cyclotron Facility Cooler Ring. The data obtained constitute the first measurement of spin correlation parameters using a storage ring with polarized beam and polarized internal gas target. Second, a quasi-free (e,e'p) experiment using tensor polarized deuterium will be discussed. Here, the goal is the measurement of the S- and D-state parts of the proton spectral function by scattering 700 MeV electrons from an atomic beam source. Large acceptance detectors have been used in both experiments. The internal-target technique has broad applicability in nuclear and particle physics

  6. Extraction of the 1S0 neutron-neutron scattering length from a kinematically-complete n-d breakup experiment at TUNL

    International Nuclear Information System (INIS)

    Gonzalez Trotter, D. E.; Tornow, W.; Howell, C. R.; Salinas, F.; Walter, R. L.; Witalea, H.

    1999-01-01

    The 1 S 0 neutron-neutron (nn) scattering length's currently accepted value (a nn =-18.6±0.3 fm) is derived exclusively from two π - -d capture-reaction experiments, in disagreement with the average -16.7±0.5 fm extracted from kinematically-complete nd breakup experiments. This discrepancy may be due to deficiencies in the analyses of n-d breakup data and/or three-nucleon force (3NF) effects. A kinematically-complete n+d→n 1 +n 2 +p breakup experiment at an incident neutron energy of 13.0 MeV was performed recently at TUNL. The value of a nn was extracted from the direct comparison of experimental and rigorously-calculated theoretical nd breakup differential cross sections at four production angles of the nn pair. Using modern nucleon-nucleon potential models in the three-nucleon cross-section calculations we obtained a nn =-18.7±0.6 fm, in agreement with the π - -d result. We found no significant effect due to 3NFs on our a nn value

  7. Breathing conditions for animals in radiobiological experiments

    International Nuclear Information System (INIS)

    Stevens, G.N.; Michael, B.D.

    1988-01-01

    In the course of experiments designed to determine the influence of redox agents on the radiosensitivity of murine normal tissues, an unexpected scatter of data points relating to jejunal crypt regeneration was found in mice irradiated under supposedly air-breathing conditions. One possible explanation for the scatter in the data related to variation in the oxygen tension within the jig at the time of irradiation, and the jig modified accordingly. (author)

  8. Plasma heating by relativistic electron beams: correlations between experiment and theory

    International Nuclear Information System (INIS)

    Thode, L.E.; Godfrey, B.B.

    1975-01-01

    The streaming instability is the primary heating mechanism in most, if not all, experiments in which the beam is injected into partially or fully ionized gas. In plasma heating experiments, the relativistic beam must traverse an anode foil before interacting with the plasma. The linear theory for such a scattered beam is discussed, including a criterion for the onset of the kinetic interaction. A nonlinear model of the two-stream instability for a scattered beam is developed. Using this model, data from ten experiments are unfolded to obtain the following correlations: (i) for a fixed anode foil, the dependence of the plasma heating on the beam-to-plasma density ratio is due to anode foil scattering, (ii) for a fixed beam-to-plasma density ratio, the predicted change in the magnitude of plasma heating as a function of the anode foil is in agreement with experiment, and (iii) the plasma heating tentatively appears to be proportional to the beam kinetic energy density and beam pulse length. For a fixed anode foil, theory also predicts that the energy deposition is improved by increasing the beam electron energy γmc 2 . Presently, no experiment has been performed to confirm this aspect of the theory

  9. High Power Microwave Diagnostic for the Fusion Energy Experiment ITER

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang; Leipold, Frank; Gonçalves, B.

    2016-01-01

    Microwave diagnostics will play an increasingly important role in burning plasma fusion energy experiments like ITER and beyond. The Collective Thomson Scattering (CTS) diagnostic to be installed at ITER is an example of such a diagnostic with great potential in present and future experiments...

  10. Mean square hydrogen fluctuations in chitosan/lecithin nanoparticles from elastic neutron scattering experiments

    Science.gov (United States)

    Sonvico, Fabio; Teresa Di Bari, Maria; Bove, Livia; Deriu, Antonio; Cavatorta, Fabrizio; Albanese, Gianfranco

    2006-11-01

    Recently, we have started a systematic study of the structure and dynamics of nano- and microparticles of interest as highly biocompatible drug carriers. For these particles, that are composed of polymeric and lipid material, a detailed understanding of the particle-solvent interactions is of key importance in order to tailor their characteristics for delivering drugs with specific chemical properties. Here we report results of elastic neutron scattering (ENS) investigations on lecithin/chitosan nanoparticles. They were first prepared by autoassembling the two components in aqueous solution; the samples were then freeze-dried and re-hydrated in a D 2O atmosphere. The experiments were performed in the temperature range of 20-50 K using the backscattering spectrometer IN13 at ILL (Grenoble, France). The comparison of samples in the dry state with similar ones at an hydration level of about 0.3-0.4 (g D 2O/g hydrated sample), indicates that the presence of an outer chitosan ‘‘coating’’ reduces the mean square fluctuations of the hydrogens in the lipid component, leading thus to a stiffer nanoparticle structure.

  11. The PRad experiment and the proton radius puzzle

    Directory of Open Access Journals (Sweden)

    Gasparian Ashot

    2014-06-01

    Full Text Available New results from the recent muonic hydrogen experiments seriously questioned our knowledge of the proton charge radius, rp. The new value, with its unprecedented less than sub-percent precision, is currently up to eight standard deviation smaller than the average value from all previous experiments, triggering the well-known “proton charge radius puzzle” in nuclear and atomic physics. The PRad collaboration is currently preparing a novel, magnetic-spectrometer-free ep scattering experiment in Hall B at JLab for a new independent rp measurement to address this growing “puzzle” in physics.

  12. The Argon Dark Matter Experiment

    CERN Document Server

    AUTHOR|(CDS)2071720

    2009-01-01

    The ArDM experiment, a 1 ton liquid argon TPC/Calorimeter, is designed for the detection of dark matter particles which can scatter off the spinless argon nucleus, producing nuclear recoils. These events will be discerned by their light to charge ratio, as well as the time structure of the scintillation light. The experiment is presently under construction and commissioning on surface at CERN. Cryogenic operation and light detection performance was recently confirmed in a test run of the full 1 ton liquid argon target under purely calorimetric operation and with a prototype light readout system. This note describes the experimental concept, the main detector components and presents some first results.

  13. Hard Two-Photon Contribution to Elastic Lepton-Proton Scattering Determined by the OLYMPUS Experiment

    Science.gov (United States)

    Henderson, B. S.; Ice, L. D.; Khaneft, D.; O'Connor, C.; Russell, R.; Schmidt, A.; Bernauer, J. C.; Kohl, M.; Akopov, N.; Alarcon, R.; Ates, O.; Avetisyan, A.; Beck, R.; Belostotski, S.; Bessuille, J.; Brinker, F.; Calarco, J. R.; Carassiti, V.; Cisbani, E.; Ciullo, G.; Contalbrigo, M.; de Leo, R.; Diefenbach, J.; Donnelly, T. W.; Dow, K.; Elbakian, G.; Eversheim, P. D.; Frullani, S.; Funke, Ch.; Gavrilov, G.; Gläser, B.; Görrissen, N.; Hasell, D. K.; Hauschildt, J.; Hoffmeister, Ph.; Holler, Y.; Ihloff, E.; Izotov, A.; Kaiser, R.; Karyan, G.; Kelsey, J.; Kiselev, A.; Klassen, P.; Krivshich, A.; Lehmann, I.; Lenisa, P.; Lenz, D.; Lumsden, S.; Ma, Y.; Maas, F.; Marukyan, H.; Miklukho, O.; Milner, R. G.; Movsisyan, A.; Murray, M.; Naryshkin, Y.; Perez Benito, R.; Perrino, R.; Redwine, R. P.; Rodríguez Piñeiro, D.; Rosner, G.; Schneekloth, U.; Seitz, B.; Statera, M.; Thiel, A.; Vardanyan, H.; Veretennikov, D.; Vidal, C.; Winnebeck, A.; Yeganov, V.; Olympus Collaboration

    2017-03-01

    The OLYMPUS Collaboration reports on a precision measurement of the positron-proton to electron-proton elastic cross section ratio, R2 γ , a direct measure of the contribution of hard two-photon exchange to the elastic cross section. In the OLYMPUS measurement, 2.01 GeV electron and positron beams were directed through a hydrogen gas target internal to the DORIS storage ring at DESY. A toroidal magnetic spectrometer instrumented with drift chambers and time-of-flight scintillators detected elastically scattered leptons in coincidence with recoiling protons over a scattering angle range of ≈20 ° to 80°. The relative luminosity between the two beam species was monitored using tracking telescopes of interleaved gas electron multiplier and multiwire proportional chamber detectors at 12°, as well as symmetric Møller or Bhabha calorimeters at 1.29°. A total integrated luminosity of 4.5 fb-1 was collected. In the extraction of R2 γ, radiative effects were taken into account using a Monte Carlo generator to simulate the convolutions of internal bremsstrahlung with experiment-specific conditions such as detector acceptance and reconstruction efficiency. The resulting values of R2 γ, presented here for a wide range of virtual photon polarization 0.456 <ɛ <0.978 , are smaller than some hadronic two-photon exchange calculations predict, but are in reasonable agreement with a subtracted dispersion model and a phenomenological fit to the form factor data.

  14. Review of recent experiments in intermediate energy nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, P D [Carnegie-Mellon Univ., Pittsburgh, PA (USA)

    1978-01-01

    The data generated at intermediate-energy accelerator facilities has expanded rapidly over the past few years. A number of recent experiments chosen for their impact on nuclear structure questions are reviewed. Proton scattering together with pionic and muonic atom X-ray measurements are shown to be giving very precise determinations of gross nuclear properties. Pion scattering and reaction data although less precise, are starting to generate a new understanding of wave functions of specific nuclear states. Specific examples where new unpublished data are now available are emphasized. In addition, other medium-energy experiments that are starting to contribute to nuclear structure physics are summarized.

  15. Realism in the Realized Popper's Experiment

    Science.gov (United States)

    Hunter, Geoffrey

    2002-12-01

    The realization of Karl Popper's EPR-like experiment by Shih and Kim (published 1999) produced the result that Popper hoped for: no ``action at a distance'' on one photon of an entangled pair when a measurement is made on the other photon. This experimental result is interpretable in local realistic terms: each photon has a definite position and transverse momentum most of the time; the position measurement on one photon (localization within a slit) disturbs the transverse momentum of that photon in a non-predictable way in accordance with the uncertainty principle; however, there is no effect on the other photon (the photon that is not in a slit) no action at a distance. The position measurement (localization within a slit) of the one photon destroys the coherence (entanglement) between the photons; i.e. decoherence occurs. This realistic (albeit retrodictive) interpretation of the Shih-Kim realization of what Popper called his ``crucial experiment'' is in accord with Bohr's original concept of the nature of the uncertainty principle, as being an inevitable effect of the disturbance of the measured system by the measuring apparatus. In this experiment the impact parameter of an incident photon with the centerline of the slit is an uncontrollable parameter of each individual photon scattering event; this impact parameter is variable for every incident photon, the variations being a statistical aspect of the beam of photons produced by the experimental arrangement. These experimental results are also in accord with the proposition of Einstein, Podolski and Rosen's 1935 paper: that quantum mechanics provides only a statistical, physically incomplete, theory of microscopic physical processes, for the quantum mechanical description of the experiment does not describe or explain the individual photon scattering events that are actually observed; the angle by which an individual photon is scattered is not predictable, because the photon's impact parameter with the

  16. CLEAR: Prospects for a low threshold neutrino experiment at the Spallation Neutron Source

    International Nuclear Information System (INIS)

    Scholberg, Kate

    2008-01-01

    A low-threshold neutrino scattering experiment at a high intensity stopped-pion neutrino source has the potential to measure coherent neutral current neutrino-nucleus elastic scattering. A promising prospect for the measurement of this process is a proposed noble-liquid-based experiment, dubbed CLEAR (Coherent Low Energy A (Nuclear) Recoils), at the Spallation Neutron Source. This poster will describe the CLEAR proposal and its physics reach.

  17. Liquid jets for experiments on complex fluids

    International Nuclear Information System (INIS)

    Steinke, Ingo

    2015-02-01

    The ability of modern storage rings and free-electron lasers to produce intense X-ray beams that can be focused down to μm and nm sizes offers the possibility to study soft condensed matter systems on small length and short time scales. Gas dynamic virtual nozzles (GDVN) offer the unique possibility to investigate complex fluids spatially confined in a μm sized liquid jet with high flow rates, high pressures and shear stress distributions. In this thesis two different applications of liquid jet injection systems have been studied. The influence of the shear flow present in a liquid jet on colloidal dispersions was investigated via small angle X-ray scattering and a coherent wide angle X-ray scattering experiment on a liquid water jet was performed. For these purposes, liquid jet setups that are capable for X-ray scattering experiments have been developed and the manufacturing of gas dynamic virtual nozzles was realized. The flow properties of a liquid jet and their influences on the liquid were studied with two different colloidal dispersions at beamline P10 at the storage ring PETRA III. The results show that high shear flows present in a liquid jet lead to compressions and expansions of the particle structure and to particle alignments. The shear rate in the used liquid jet could be estimated to γ ≥ 5.4 . 10 4 Hz. The feasibility of rheology studies with a liquid jet injection system and the combined advantages is discussed. The coherent X-ray scattering experiment on a water jet was performed at the XCS instrument at the free-electron laser LCLS. First coherent single shot diffraction patterns from water were taken to investigate the feasibility of measuring speckle patterns from water.

  18. Proposal for an experiment at the SIN: determination of D-state admixture in deuterons with the aid of π+-d scattering

    International Nuclear Information System (INIS)

    Gruebler, W.; Koenig, V.; Schmelzbach, P.A.; Stammbach, T.

    A double scatter experiment is proposed in which the tensor polarization of the recoil deuterons is measured in the forwards direction. It is noted that using a relatively simple measurement arrangement and a short measurement time, the D-state admixture in deuterons can be determined very precisely. The experimental facilities and arrangments, structural predictions, estimate of collision rates and measurement time, background, possible improvements, and the equipment and financing are discussed. 3 references

  19. A study of quasi-elastic muon (anti)neutrino scattering in he NOMAD experiment

    International Nuclear Information System (INIS)

    Lyubushkin, Vladimir

    2009-01-01

    We have studied the muon neutrino and antineutrino quasi-elastic (QEL) scattering reactions (v μ n→μ - p and v-bar μ p→μ + n using a set of experimental data collected by the NOMAD collaboration. We have performed measurements of the cross-section of these processes on a nuclear target (mainly Carbon) normalizing it to the total v μ (v-bar μ ) charged current cross-section. The results for the flux averaged QEL cross-sections in the (anti)neutrino energy interval 3-100 GeV are qel >v μ = (0.92±0.02(stat)±0.06(syst))x10 -38 cm 2 and qel >v-bar μ = (0.81±0.05(stat)±0.09(syst))x10 -38 cm 2 for neutrino and antineutrino, respectively. The axial mass parameter MA was extracted from the measured quasi-elastic neutrino cross-section. The corresponding result is M A = 1.05±0.02(stat)±0.06(syst) GeV. It is consistent with the axial mass values recalculated from the antineutrino cross-section and extracted from the pure Q 2 shape analysis of the high purity sample of v μ quasi-elastic 2-track events, but has smaller systematic error and should be quoted as the main result of this work. Our measured MA is found to be in good agreement with the world average value obtained in previous deuterium filled bubble chamber experiments. The NOMAD measurement of M A is lower than those recently published by K2K and MiniBooNE collaborations. However, within the large errors quoted by these experiments on M A , these results are compatible with the more precise NOMAD value.

  20. Bose-Einstein condensate collapse: A comparison between theory and experiment

    International Nuclear Information System (INIS)

    Savage, C.M.; Robins, N.P.; Hope, J.J.

    2003-01-01

    We solve the Gross-Pitaevskii equation numerically for the collapse induced by a switch from positive to negative scattering lengths. We compare our results with experiments performed with Bose-Einstein condensates of 85 Rb, in which the scattering length was controlled using a Feshbach resonance. Building on previous theoretical work we identify quantitative differences between the predictions of mean-field theory and the results of the experiments. In addition to the previously reported difference between the predicted and observed critical atom number for collapse, we also find that the predicted collapse times systematically exceed those observed experimentally

  1. The Qweakp experiment at Jefferson Laboratory

    International Nuclear Information System (INIS)

    Page, Shelley

    2008-01-01

    A major new experiment is being prepared at Jefferson Laboratory to measure the proton's weak charge via the parity violating asymmetry in elastic electron-proton scattering at very low momentum transfer. The Standard Model makes a firm prediction of the proton' weak charge, Q w p = 1 - 4 sin2thetaW, based on the running of the weak mixing angle sin2thetaW from the Z 0 pole down to low energies, corresponding to a 10sigma effect in our experiment. Our ultimate goal is to determine the proton' weak charge with 4% combined statistical and systematic errors, which in turn leads to a 0.3% measurement of sin2 thetaW. The experiment is currently under construction; installation in Hall C at Jefferson Lab followed by data taking is planned for 2009.

  2. Detector development and experiments at COSY

    International Nuclear Information System (INIS)

    Morsch, H.P.

    1988-05-01

    These proceedings contain the manuscripts of the lectures presented at the named workshop. These concern a review about the COSY project, ideal detectors for hadron physics at COSY, possible experiments at COSY, magnetic spectrometers, a modification of BIG KARL, consideration on COSY experiments in the early stage, a detector for exclusive 2-meson production experiments, the excitation of baryons and physics with complex projectiles, a status report about the Indiana cooler ring, special scintillators, multiwire chambers, position-sensitive semiconductor detectors, detectors for neutral particles, a small large-acceptance photon detector, a status report of the two-arm photon spectrometer TAPS, studies on the parity violation in the pp scattering, the measurement of excitation functions for the study of dibaryon states, and results from the neutron workshop held in February 1988 at the KFA Juelich. (HSI)

  3. Experiment of laser thomson scattering at HL-1 tokamak device

    International Nuclear Information System (INIS)

    Zuo Henian; Chen Jiafu; Yan Derong; Liu Aiping; Shi Peilan; Wang Wei; Liu Xiaomei

    1989-05-01

    The structure and performance of the Ruby Laser Thomson Scattering apparatus for HL-1 tokamak device is described. The method of acquisition and calibration of multichannel scattered signals are presented. Examples of measured electron temperature T. with experimental error are given

  4. Fragmentation and nucleon structure in semi-inclusive deep-inelastic scattering at the HERMES experiment

    Energy Technology Data Exchange (ETDEWEB)

    Jossten, Sylvester Johannes

    2013-10-15

    Multiplicities for the semi-inclusive production of each charge state of {pi}{sup {+-}} and K{sup {+-}} mesons in deep-inelastic scattering are presented as a function of the kinematic quantities x, Q{sup 2}, z and P{sub h} {sub perpendicular} {sub to}. The multiplicities were extracted from data collected by the HERMES experiment at the HERA storage ring using 27.6 GeV electron and positron beams on a hydrogen or deuterium gas target. These results for identified hadrons constitute the most precise measurement to date, and will significantly enhance our understanding of the proton structure, as well as the fragmentation process in deep-inelastic scattering. Furthermore, the 3D binning at an unprecedented level of precision provides a handle to help disentangle the transverse momentum structure of both. The high level of precision coupled with an intermediate energy regime requires a careful study of the complex interaction between the experimental systematics, theoretical uncertainties, and the applicability of the factorization theorem within the standard framework of leading-twist collinear QCD. This is illustrated by the extraction of the valence quark ratio d{sub {nu}}/u{sub {nu}} at leading-order in {alpha}{sub s}. These results show a strong z-dependence below z {approx} 0.30, which could be interpreted as evidence for factorization breaking. This evidence weakens somewhat when isospin invariance of the fragmentation functions is assumed to be broken. Additionally, the multiplicities for the semi-inclusive production of {pi}{sup 0} mesons in deep-inelastic scattering are presented as a function of z. These multiplicities were extracted from the same data sample as used for the charged meson results. The neutral pion multiplicity is the same as the average charged pion multiplicity, up to z {approx} 0.70. This is consistent with isospin invariance below z {approx} 0.70. The results at high values of z show strong signs of isospin symmetry breaking.

  5. “SmartGlass” Obstacles for Dynamic Inducing of Light Scattering in Vision Research Experiments

    Directory of Open Access Journals (Sweden)

    Olga DANILENKO

    2016-11-01

    Full Text Available We describe a technique that allows control of visual stimuli quality through the use of a setup with a polymer dispersed liquid crystal (PDLC film positioned in the optical pathway of one or both human eyes. Nowadays, PDLC films allow alteration of the resolution and contrast limits of the transmitted light due to continuous change in the light scattering that is obtained by the application of an AC electrical field. In our experimental setup, the use of a wide-aperture up to area of 20 x 15 cm2 PDLC sheet is combined with a flat-screen PC display or with a modified display emission block without its interference filter unit and with an installed individually controllable colored light-emitting diode (LED backlight. In the latter case, the spatial structure of visual stimulus remains constant, but the PDLC switching-on timing for intensity, color, and contrast of visual stimuli control is done by a PC via an Arduino USB interface. Arduino applies a voltage to the backlight colored LEDs and the low voltage up to 30 – 80 V to light-scattering PDLC sheet. Modifications to this setup can improve the resolution of the timing and screen stimulus intensity and color purity, and increase the flexibility of its application in visual research tasks. A particular use of PDLC scattering sheets involves the altering of the stimuli input strength of the eye in different binocular viewing schemes. In such applications, a restricted-optical-aperture PDLC element is mounted in a goggle frame, and the element is controlled by the application of low-voltage AC field. The efficacy of the setup is demonstrated in experiments of human vision contrast sensitivity adaptation studies. Studies allow to determine the characteristic time of the contrast sensitivity altering of 4 s during adaptation phase and the same order of the characteristic time during recovery.DOI: http://dx.doi.org/10.5755/j01.ms.22.4.12907

  6. Experiments with monoenergetic high-energy gamma rays

    International Nuclear Information System (INIS)

    Moreh, R.

    1982-01-01

    Some new studies using photon beams with energies below 12 MeV are reviewed. These experiments involve three main topics: (1) Elastic and nuclear Raman scattering of photons. (2) Use of the (#betta#,n) reaction for studying E1-E2 and E1-M1 interference effects in A of the order of 208 nuclei. Some spectroscopic studies using the (#betta#,n) reaction are also mentioned. (3) Study of the spatial orientation of molecular groups using nuclear resonance photon scattering. (author)

  7. Some topics concerning N--N and N--D experiments at medium energy

    International Nuclear Information System (INIS)

    Simmons, J.E.

    1975-01-01

    The status of recent proton-proton phase shift analyses is reviewed at medium energy with mention of the state of the n-p I = 0 analyses. Some conclusions are reached, including a recommendation for renewed theoretical effort to calculate absorption parameters for N--N scattering above 300 MeV in higher partial waves (l greater than or equal to 3). Recent experimental data are examined for p-p small angle scattering at 630 MeV and also near 500 MeV. Further small angle experiments on p-p and p-d scattering are deemed desirable. A brief discussion of recent n-p charge exchange experiments is given. Finally, the status of medium to high energy (100 to 2000 MeV) p-d elastic scattering is reviewed with emphasis on back angle scattering and the usefulness of p-d polarization measurements. (1 table, 12 figures, 94 references) (U.S.)

  8. Probing Supersymmetry with Neutral Current Scattering Experiments

    Science.gov (United States)

    Kurylov, A.; Ramsey-Musolf, M. J.; Su, S.

    2004-02-01

    We compute the supersymmetric contributions to the weak charges of the electron (QWe) and proton (QWp) in the framework of Minimal Supersymmetric Standard Model. We also consider the ratio of neutral current to charged current cross sections, R v and Rv¯ at v (v¯)-nucleus deep inelastic scattering, and compare the supersymmetric corrections with the deviations of these quantities from the Standard Model predictions implied by the recent NuTeV measurement.

  9. Theory of ionospheric heating experiments

    International Nuclear Information System (INIS)

    Cragin, B.L.

    1975-01-01

    A brief description of the F region ionospheric heating experiments is given including some historical notes and a brief summary of the observations. A theory for the phenomenon of ''artificial spread F'' is presented. The explanation is in terms of scattering by approximately field-aligned, large scale ionization density irregularities, which are produced by a thermal version of the stimulated Brillouin scattering instability in which the heating wave decays into another electromagnetic wave and an electrostatic wave of very low frequency. This thermal instability differs from conventional stimulated Brillouin scattering in that the low frequency wave is driven by differential heating in the interference pattern of the two electromagnetic waves, rather than by the usual ponderomotive force. Some aspects of the theory of the phenomenon of ''wide-band attenuation'' or ''anomalous absorption'' of a probing electromagnetic wave. Some general results from the theory of wave propagation in a random medium are used to derive equations describing the absorption of a probing electromagnetic wave due to scattering (by large scale irregularities) into new electromagnetic waves or (by small scale irregularities) into electron plasma oscillations

  10. The Manuel Lujan, Jr. Neutron Scattering Center (LANSCE) experiment reports, 1991 run cycle

    International Nuclear Information System (INIS)

    DiStravolo, M.A.

    1992-12-01

    This report briefly discusses experiments conducted at the Lansce neutron source facility. The experiments were conducted on the following instruments: high intensity powder diffractometer; neutron powder diffractometer; single crystal diffractometer; low-q diffractometer; surface profile analysis reflectometer; filter difference spectrometer; experiment reports, and pharos

  11. Photon Production through Multi-step Processes Important in Nuclear Fluorescence Experiments

    International Nuclear Information System (INIS)

    Hagmann, C; Pruet, J

    2006-01-01

    The authors present calculations describing the production of photons through multi-step processes occurring when a beam of gamma rays interacts with a macroscopic material. These processes involve the creation of energetic electrons through Compton scattering, photo-absorption and pair production, the subsequent scattering of these electrons, and the creation of energetic photons occurring as these electrons are slowed through Bremsstrahlung emission. Unlike single Compton collisions, during which an energetic photon that is scattered through a large angle loses most of its energy, these multi-step processes result in a sizable flux of energetic photons traveling at large angles relative to an incident photon beam. These multi-step processes are also a key background in experiments that measure nuclear resonance fluorescence by shining photons on a thin foil and observing the spectrum of back-scattered photons. Effective cross sections describing the production of backscattered photons are presented in a tabular form that allows simple estimates of backgrounds expected in a variety of experiments. Incident photons with energies between 0.5 MeV and 8 MeV are considered. These calculations of effective cross sections may be useful for those designing NRF experiments or systems that detect specific isotopes in well-shielded environments through observation of resonance fluorescence

  12. Sustained Spheromak Physics Experiment, SSPX

    International Nuclear Information System (INIS)

    Hooper, E.B.

    1997-01-01

    The Sustained Spheromak Physics Experiment is proposed for experimental studies of spheromak confinement issues in a controlled way: in steady state relative to the confinement timescale and at low collisionality. Experiments in a flux - conserver will provide data on transport in the presence of resistive modes in shear-stabilized systems and establish operating regimes which pave the way for true steady-state experiments with the equilibrium field supplied by external coils. The proposal is based on analysis of past experiments, including the achievement of T e = 400 eV in a decaying spheromak in CTX. Electrostatic helicity injection from a coaxial ''''gun'''' into a shaped flux conserver will form and sustain the plasma for several milliseconds. The flux conserver minimizes fluxline intersection with the walls and provides MHD stability. Improvements from previous experiments include modem wall conditioning (especially boronization), a divertor for density and impurity control, and a bias magnetic flux for configurational flexibility. The bias flux will provide innovative experimental opportunities, including testing helicity drive on the large-radius plasma boundary. Diagnostics include Thomson scattering for T e measurements and ultra-short pulse reflectrometry to measure density and magnetic field profiles and turbulence. We expect to operate at T e of several hundred eV, allowing improved understanding of energy and current transport due to resistive MHD turbulence during sustained operation. This will provide an exciting advance in spheromak physics and a firm basis for future experiments in the fusion regime

  13. Pion condensation and instabilities: current theory and experiment

    International Nuclear Information System (INIS)

    Gyulassy, M.

    1980-05-01

    Current calculations of pion condensation phenomena in symmetric nuclear matter are reviewed. The RPA and MFA methods are compared. Latest results [LBL-10572] with a relativistic MFA theory constrained by bulk nuclear properties are presented. The differences between equilibrium (condensation) and nonequilibrium (dynamic) instabilities are discussed. Finally, two-proton correlation experiments aimed at looking for critical scattering phenomena and two-pion correlation experiments aimed at looking for pion field coherence are analyzed. 10 figures, 2 tables

  14. Neutron Brillouin scattering in dense fluids

    Energy Technology Data Exchange (ETDEWEB)

    Verkerk, P [Technische Univ. Delft (Netherlands); FINGO Collaboration

    1997-04-01

    Thermal neutron scattering is a typical microscopic probe for investigating dynamics and structure in condensed matter. In contrast, light (Brillouin) scattering with its three orders of magnitude larger wavelength is a typical macroscopic probe. In a series of experiments using the improved small-angle facility of IN5 a significant step forward is made towards reducing the gap between the two. For the first time the transition from the conventional single line in the neutron spectrum scattered by a fluid to the Rayleigh-Brillouin triplet known from light-scattering experiments is clearly and unambiguously observed in the raw neutron data without applying any corrections. Results of these experiments are presented. (author).

  15. A FRAMEWORK FOR INTERPRETING FAST RADIO TRANSIENTS SEARCH EXPERIMENTS: APPLICATION TO THE V-FASTR EXPERIMENT

    International Nuclear Information System (INIS)

    Trott, Cathryn M.; Tingay, Steven J.; Wayth, Randall B.; Macquart, Jean-Pierre R.; Palaniswamy, Divya; Thompson, David R.; Wagstaff, Kiri L.; Majid, Walid A.; Burke-Spolaor, Sarah; Deller, Adam T.; Brisken, Walter F.

    2013-01-01

    We define a framework for determining constraints on the detection rate of fast transient events from a population of underlying sources, with a view to incorporate beam shape, frequency effects, scattering effects, and detection efficiency into the metric. We then demonstrate a method for combining independent data sets into a single event rate constraint diagram, using a probabilistic approach to the limits on parameter space. We apply this new framework to present the latest results from the V-FASTR experiment, a commensal fast transients search using the Very Long Baseline Array (VLBA). In the 20 cm band, V-FASTR now has the ability to probe the regions of parameter space of importance for the observed Lorimer and Keane fast radio transient candidates by combining the information from observations with differing bandwidths, and properly accounting for the source dispersion measure, VLBA antenna beam shape, experiment time sampling, and stochastic nature of events. We then apply the framework to combine the results of the V-FASTR and Allen Telescope Array Fly's Eye experiments, demonstrating their complementarity. Expectations for fast transients experiments for the SKA Phase I dish array are then computed, and the impact of large differential bandwidths is discussed.

  16. Proton and neutron polarized targets for nucleon-nucleon experiments at SATURNE II

    International Nuclear Information System (INIS)

    Ball, J.; Combet, M.; Sans, J.L.; Benda, B.; Chaumette, P.; Deregel, J.; Durand, G.; Dzyubak, A.P.; Gaudron, C.; Lehar, F.; Janout, Z.; Khachaturov, B.A.

    1996-01-01

    A SATURNE polarized target has been used for nucleon-nucleon elastic scattering and transmission experiments for 15 years. The polarized proton target is a 70 cm 3 cartridge loaded with Pentanol-2. For polarized neutron target, two cartridges loaded with 6 LiD and 6 LiH are set in the refrigerator and can be quickly inserted in the beam. First experiments using 6 Li products in quasielastic pp or pn analyzing power measurements are compared with the same observables measured in a free nucleon-nucleon scattering using polarized proton targets. Angular distribution as a function of a kinematically conjugate angle and coplanarity in nucleon-nucleon scattering is shown for different targets. (author)

  17. Experiments on few-nucleon systems at MAMI

    International Nuclear Information System (INIS)

    Distler, M.O. . Author

    2008-01-01

    The experimental effort at the Mainz Microtron with respect to few-body physics is focused on a number of selected topics. The structure of 3 He has been studied in the reactions 3 He(ε, εn) and 3 He(ε, ε'p) with large (transversal) missing momenta and in quasi-elastic electron scattering. Experiments to determine the neutron electric form factor G en have been performed - a measurement at a four-momentum transfer Q 2 ∼ 1.5(GeV/c) 2 took place in July 2007. Electromagnetically induced two-nucleon knockout has been investigated in order to study the role of correlated nucleon-nucleon motion in the nucleus. Measurements of the (e,e' pn) reaction on 3 He and 16 O were performed for the first time. A triple-polarization experiment of type 3 He(ε, ε'p)d has been performed in August 2007, where, in addition, the spin of the knocked-out proton is analyzed. This measurement provides information on the spin-dependent momentum distribution of proton-deuteron clusters in the 3 He nucleus. By using this deuteron-tagging method spin-polarized 3 He might also serve as an effective polarized proton target for electron scattering experiments. Presented at the 20th Few-Body Conference, Pisa, Italy, 10-14 September 2007. (author)

  18. Data acquisition and experiment control system for high-data-rate experiments at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Alberi, J.L.; Stubblefield, F.W.

    1981-11-01

    A data acquisition and experiment control system for experiments at the Biology Small-Angle X-ray Scattering Station at the National Synchrotron Light Source has been developed based on a multiprocessor, functionally distributed architecture. The system controls an x-ray monochromator and spectrometer and acquires data from any one of three position-sensitive x-ray detectors. The average data rate from the position-sensitive detector is approx. 10 6 events/sec. Data is stored in a one megaword histogramming memory. The experiments at this Station require that x-ray diffraction patterns be correlated with timed stimuli at the sample. Therefore, depending on which detector is in use, up to 10 3 time-correlated diffraction patterns may be held in the system memory simultaneously. The operation of the system is functionally distributed over four processors communicating via a multiport memory

  19. Few-body experiments with polarized beams and polarized targets

    International Nuclear Information System (INIS)

    Simmons, J.E.

    1983-01-01

    A survey is presented concerning recent polarization experiments in the elastic p-d, p- 3 He, and p- 4 He systems. Mention is made of selected neutron experiments. The nominal energy range is 10 to 1000 MeV. Recent results and interpretations of the p-d system near 10 MeV are discussed. New experiments on the energy dependence of back angle p-d tensor polarization are discussed with respect to resolution of discrepancies and difficulty of theoretical interpretation. Progress is noted concerning multiple scattering interpretation of forward p-d deuteron polarization. Some new results are presented concerning the p- 3 He system and higher energy p- 4 He polarization experiments. 52 references

  20. Laser fusion experiments, facilities and diagnostics at Lawrence Livermore Laboratory

    International Nuclear Information System (INIS)

    Ahlstrom, H.G.

    1980-02-01

    The progress of the LLL Laser Fusion Program to achieve high gain thermonuclear micro-explosions is discussed. Many experiments have been successfully performed and diagnosed using the large complex, 10-beam, 30 TW Shiva laser system. A 400 kJ design of the 20-beam Nova laser has been completed. The construction of the first phase of this facility has begun. New diagnostic instruments are described which provide one with new and improved resolution, information on laser absorption and scattering, thermal energy flow, suprathermal electrons and their effects, and final fuel conditions. Measurements were made on the absorption and Brillouin scattering for target irradiations at both 1.064 μm and 532 nm. These measurements confirm the expected increased absorption and reduced scattering at the shorter wavelength. Implosion experiments have been performed which have produced final fuel densities over the range of 10x to 100x liquid DT density

  1. Experiments on the nuclear interactions of pion and electrons. Final progress report

    International Nuclear Information System (INIS)

    Minehart, R.C.

    1998-05-01

    The work in this report is grouped into four categories. (1) The experiments in pion nucleus physics were primarily studies of pion absorption and scattering in light nuclei, carried out at the Los Alamos Meson Physics Facility (LAMPF). (2) The experiments on fundamental particle properties were carried out at LAMPF and at the Paul Scherrer Institute (PSI) in Switzerland, the pion-beta decay experiment is still under construction and will begin taking data in 1999. (3) The experiments in electro-nuclear physics were performed at the Stanford Linear Electron Accelerator (SLAC), at the Saclay Laboratory in France, at the LEGS facility at the Brookhaven National Laboratory, and at the Continuous Electron Beam Accelerator Facility (CEBAF) at the Jefferson Laboratory. These experiments relate mainly to the question of the role of longitudinal and transverse strength for inelastic scattering from nuclei, measurements of fundamental nuclear properties with tagged polarized photons, and to the quark structure of the nucleon and its excited states. (4) Experiments on absorption of antiprotons in heavy nuclei, were carried out by K. Ziock primarily while on a sabbatical leave in Munich, Germany

  2. Complete experiments in electron-atom collisions

    International Nuclear Information System (INIS)

    Anderson, N.; Bartschat, K.

    1996-01-01

    This paper addresses the advances up to the present in complete electron-atom collision experiments. The aim is to present a series of key examples for fundamental scattering processes, together with the experimental techniques that have been used. The purpose is not a full presentation of all processes studied, nor of all data that have been accumulated; rather, it is to select examples of the most recent theoretical and experimental results that will enable the reader to assess the present level of achievement. We hope that the power of this approach will become evident along the way, in the sense that it provides an efficient framework for a systematic, and complete test of the current theoretical understanding. In addition, it may produce specific recipes for ways to select experimental geometries that most efficiently test theoretical predictions, and it may reveal connections between apparently unrelated observables from often very different and highly sophisticated experiments, thus providing valuable consistency checks. The presentation is structured in the following way. To begin with, a general analysis of scattering amplitude properties concludes in a recipe for determination of the number of independent parameters necessary to define a complete experiment for a given process. We then proceed to analyze in a systematic way a string of specific cases of elastic and inelastic collisions, with gradually increasing levels of sophistication. Finally, we comment on directions in which future studies could fruitfully be pursued. 77 refs., 53 figs

  3. Experiments with the newly available carbon beams at ISOLDE

    CERN Multimedia

    Garcia borge, M J; Koester, U H; Koldste, G T

    2002-01-01

    Recent target-ions-source developments at ISOLDE providing significantly increased yields for carbon isotopes, open up for new and intriguing experiments. We propose to exploit this in two different ways. In particular we wish to do an elastic resonance scattering experiment of $^{9}$C on a proton target to gain information on the particle unbound system $^{10}$N. Furthermore we wish to perform decay experiments of the neutron-rich carbon isotopes, with special focus on $^{17-19}$C but also including a test to see whether the even more neutron-rich isotopes $^{20,22}$C are accessible at ISOLDE.

  4. Experiment and application of soft x-ray grazing incidence optical scattering phenomena

    Science.gov (United States)

    Chen, Shuyan; Li, Cheng; Zhang, Yang; Su, Liping; Geng, Tao; Li, Kun

    2017-08-01

    For short wavelength imaging systems,surface scattering effects is one of important factors degrading imaging performance. Study of non-intuitive surface scatter effects resulting from practical optical fabrication tolerances is a necessary work for optical performance evaluation of high resolution short wavelength imaging systems. In this paper, Soft X-ray optical scattering distribution is measured by a soft X-ray reflectometer installed by my lab, for different sample mirrors、wavelength and grazing angle. Then aim at space solar telescope, combining these scattered light distributions, and surface scattering numerical model of grazing incidence imaging system, PSF and encircled energy of optical system of space solar telescope are computed. We can conclude that surface scattering severely degrade imaging performance of grazing incidence systems through analysis and computation.

  5. Hydrostatic pressure cells development for X-ray and neutron experiments

    International Nuclear Information System (INIS)

    Passamai Junior, Jose Luis

    2010-01-01

    It was developed and built two pressure cell original models in order to be applied in X-ray elastic scattering (X-ray diffraction), X-ray absorption and neutron scattering experiments (neutron diffraction) under hydrostatic pressure. For the first two experimental cases, where X-ray beam is used, the pressure cell built with two B 4 C anvil mounted in a CuBe body. The B 4 C anvil was prepared at CTA research center in order to present an enhanced X-ray transparence and hardness. The special detail and advantage of the CuBe cell with B 4 C anvil is that this cell can be also used to measure de AC magnetic susceptibility in situ. This special characteristic is highlight as new concept of labeled here as multipurpose pressure cell. A second type of cell pressure was developed in order to be used in neutron elastic scattering experiments, specific in neutron diffraction experiments. The neutron cell pressure was developed using carbon fibers composite to improve the mechanical resistance a cylindrical geometry. The B 4 C pressure cells were available to researches in LNLS. The neutron pressure cell was given to research staff of IPEN Nuclear Reactor. This work show details and draws of these two types of hydrostatic pressure cells. (author)

  6. Representation, testing and assessment of the 'Estelle' formal description technique from a computer-controlled neutron scatter experiment

    International Nuclear Information System (INIS)

    Wolschke, U.

    1986-08-01

    Estelle is a formal method of description, which was developed based on an extended state transition model for the specification of communication records and services. Regardless of the field of application, there are problems common to all systems in distributed systems, i.e. in communication systems as in process computer systems, which are to be specified. These include real time problems, such as waiting for events, reactions to expected events and those occurring at the correct time, reacting to unexpected events or those not occurring at the correct time, transmitting and receiving data and the synchronisation of process going on simultaneously. This work examines, using the example of a process computer-controlled neutron scatter experiment, whether Estelle is suitable for the specification of distributed real time systems in this field of application. (orig.) [de

  7. Improving a high-efficiency, gated spectrometer for x-ray Thomson scattering experiments at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Döppner, T., E-mail: doeppner1@llnl.gov; Bachmann, B.; Emig, J.; Hardy, M.; Kalantar, D. H.; Kritcher, A. L.; Landen, O. L.; Ma, T.; Wood, R. D. [Lawrence Livermore National Laboratory, Livermore, California 94720 (United States); Kraus, D.; Saunders, A. M. [University of California, Berkeley, California 94720 (United States); Neumayer, P. [Gesellschaft für Schwerionenphysik, Darmstadt (Germany); Falcone, R. W. [University of California, Berkeley, California 94720 (United States); Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Fletcher, L. B. [SLAC National Accelerator Laboratory, Menlo Park, California 94720 (United States)

    2016-11-15

    We are developing x-ray Thomson scattering for applications in implosion experiments at the National Ignition Facility. In particular we have designed and fielded MACS, a high-efficiency, gated x-ray spectrometer at 7.5–10 keV [T. Döppner et al., Rev. Sci. Instrum. 85, 11D617 (2014)]. Here we report on two new Bragg crystals based on Highly Oriented Pyrolytic Graphite (HOPG), a flat crystal and a dual-section cylindrically curved crystal. We have performed in situ calibration measurements using a brass foil target, and we used the flat HOPG crystal to measure Mo K-shell emission at 18 keV in 2nd order diffraction. Such high photon energy line emission will be required to penetrate and probe ultra-high-density plasmas or plasmas of mid-Z elements.

  8. Electron Neutrino Charged-Current Quasielastic Scattering in the MINERvA Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Wolcott, Jeremy [Rochester U.

    2015-10-28

    The electron-neutrino charged-current quasielastic (CCQE) cross section on nuclei is an important input parameter to appearance-type neutrino oscillation experiments. Current experiments typically work from the muon neutrino cross section and apply corrections from theoretical arguments to obtain a prediction for the electron neutrino cross section, but to date there has been no experimental verification of the estimates for this channel at an energy scale appropriate to such experiments. We present the first measurement of an exclusive reaction in few-GeV electron neutrino interactions, namely, the cross section for a CCQE-like process, made using the MINERvA detector. The result is given as differential cross-sections vs. the electron energy, electron angle, and square of the four-momentum transferred to the nucleus, $Q^2$. We also compute the ratio to a muon neutrino cross-section in $Q^2$ from MINERvA. We find satisfactory agreement between this measurement and the predictions of the GENIE generator.

  9. Neutrino proton scattering and the isosinglet term

    International Nuclear Information System (INIS)

    White, D.H.

    1990-01-01

    Elastic neutrino proton scattering is sensitive to the SU(3) axial isosinglet term which is in turn dependent on the strangeness content of the proton. The uncertainties in the analysis of a neutrino proton elastic scattering experiment are discussed, and an experiment which is insensitive to many of the difficulties of the previous experiment is described

  10. A fast filter processor as a part of the trigger logic in an elastic scattering experiment

    International Nuclear Information System (INIS)

    Kenyon Gjerpe, I.

    1981-01-01

    A fast special purpose processor as a part of the trigger logic in an elastic scattering experiment is described. The decision to incorporate such a processor was taken because the trigger rate was estimated to be an order of magnitude higher than the date taking capability of the on-line minicomputer, a NORD 10. The processor is capable of checking the coplanarity and the opening angle of the two outgoing tracks within about 100 μs. This is done with a spatial resolution of 1 mm by using two points each track given by 3 MWPCs. For comparison this is two orders of magnitude faster than the same algorithm coded in assembly language on a PDP 11/40. The main contribution to this increased speed is due to extensive use of pipelining and parallelism. When running with the processor in the trigger, 75% more elastic events per incoming beam particle were collected, and 3 times as many elastic events per trigger were recorded on to tape for further in-depth analysis, than previously. Due to major improvements in the primary trigger logic this was less than the gain initially anticipated. A first version of the processor was designed and constructed in the CERN DD division by J. Joosten, M. Letheren and B. Martin under the supervision of C. Verkerk. The author was involved in the final design, construction and testing, and subsequently was responsible for the intergration, programming and running of the processor in the experiment. (orig.)

  11. Electron cooling experiments at the ESR

    International Nuclear Information System (INIS)

    Steck, M.; Beller, P.; Beckert, K.; Franzke, B.; Nolden, F.

    2004-01-01

    The properties of electron cooled beams of highly charged ions have been studied at the ESR. New experiments using a beam scraper to determine the transverse beam size provide the beam parameters in the intrabeam scattering dominated intensity regime, but also at very low intensity when the ion beam enters into an ultra-cold state. Extremely low values of longitudinal and transverse beam temperature on the order of meV were achieved for less than 1000 stored ions. An experiment with bunched ultra-cold beam showed a limit of the line density which agrees with the one observed for coasting beams. Cooling of decelerated ions at a minimum energy of 3 MeV/u has been demonstrated recently

  12. How to understand the tunneling in attosecond experiment?. Bohr-Einstein photon box Gedanken experiment, tunneling time and the wave particle duality

    Science.gov (United States)

    Kullie, Ossama

    2018-02-01

    The measurement of the tunneling time (T-time) in today's attosecond and strong field (low-frequency) experiments, despite its controversial discussion, offers a fruitful opportunity to understand time measurement and the time in quantum mechanics. In addition, as we will see in this work, a related controversial issue is the particulate nature of the radiation. The T-time in attosecond experiment and its different aspects and models, is discussed in this work, especially in relation to my model of real T-time (Kullie, 2015), where a good agreement with the experiment and an intriguing similarity to the Bohr-Einstein photon box Gedanken experiment was found. The tunneling process itself is still not well understood, but I am arguing that a scattering mechanism (by the laser wave packet) offers a possibility to understand the tunneling process in the tunneling region. This is related to the question about the corpuscular nature of light which is widely discussed in modern quantum optics experiments.

  13. New insights into nucleation. Pressure trace measurements and the first small angle X-ray scattering experiments in a supersonic laval nozzle

    International Nuclear Information System (INIS)

    Ghosh, D.

    2007-01-01

    Homogeneous nucleation rates of the n-alcohols and the n-alkanes have been determined by combining information from two sets of supersonic Laval nozzle expansion experiments under identical conditions. The nucleation rates J=N/Δt Jmax for the n-alcohols are in the range of 1.10 17 -3 s -1 17 for the temperatures 207≤T/K≤249, the nucleation rates for the n-alkanes lie in the range of 5.10 15 -3 s -1 18 for the temperatures 143 ≤T/K≤215. For the first time it is shown that the nucleation rate is not only a function of the supersaturation and temperature but clearly also sensitive to the expansion rate during supersonic nozzle expansion. A good agreement between the experimental results and those available in literature is found by applying Hale's scaling formalism [Hale, B., Phys. Rev. A 33, 4256 (1986); Hale, B., Metall. Trans. A 23, 1863 (1992)]. The scaling parameters from this work are also in good agreement with those shown by Rusyniak et al. [Rusyniak, M., M. S. El-Shall, J. Phys. Chem. B 105, 11873 (2001)] and Brus et al. [Brus, D., V. Zdimal F. Stratmann, J. Chem Phys. 124, 164306 (2006)]. In the first experiment static pressure measurements were conducted for the n-alkanes to determine the condensible partial pressure, temperature, supersaturation, characteristic time, and the expansion rate corresponding to the maximum nucleation rate. Characteristic times in the range of 13≤Δt Jmax /μs≤34 were found. In the second set of experiments, the first flow rate resolved Small Angle X-ray Scattering experiments are conducted to determine the particle number density for both substance classes. Particle number densities in the range of 1.10 12 -3 12 and 1.10 11 -3 12 for the n-alcohols and n-alkanes are found, respectively. Additionally, by analyzing the radially averaged scattering spectrum, information on the mean radius and the width of the size distribution of the aerosols is obtained. Mean radii for the n-alcohols in the range of 4< left angle r

  14. Direct dark matter search with the CRESST-III experiment - status and perspectives

    Science.gov (United States)

    Willers, M.; Angloher, G.; Bento, A.; Bucci, C.; Canonica, L.; Defay, X.; Erb, A.; Feilitzsch, F. v.; Ferreiro Iachellini, N.; Gütlein, A.; Gorla, P.; Hauff, D.; Jochum, J.; Kiefer, M.; Kluck, H.; Kraus, H.; Lanfranchi, J.-C.; Loebell, J.; Mancuso, M.; Münster, A.; Pagliarone, C.; Petricca, F.; Potzel, W.; Pröbst, F.; Puig, R.; Reindl, F.; Schäffner, K.; Schieck, J.; Schönert, S.; Seidel, W.; Stahlberg, M.; Stodolsky, L.; Strandhagen, C.; Strauss, R.; Tanzke, A.; Trinh Thi, H. H.; Türkoǧlu, C.; Uffinger, M.; Ulrich, A.; Usherov, I.; Wawoczny, S.; Wüstrich, M.; Zöller, A.

    2017-09-01

    The CRESST-III experiment, located in the Gran Sasso underground laboratory (LNGS, Italy), aims at the direct detection of dark matter (DM) particles. Scintillating CaWO4 crystals operated as cryogenic detectors are used as target material for DM-nucleus scattering. The simultaneous measurement of the phonon signal from the CaWO4 crystal and of the emitted scintillation light in a separate cryogenic light detector is used to discriminate backgrounds from a possible dark matter signal. The experiment aims to significantly improve the sensitivity for low-mass (≲ 5-10 GeV/c2) DM particles by using optimized detector modules with a nuclear recoil-energy threshold ≲ 100 eV. The current status of the experiment as well as projections of the sensitivity for spin-independent DM-nucleon scattering will be presented.

  15. Neutron scattering. Lectures

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2010-07-01

    The following topics are dealt with: Neutron sources, neutron properties and elastic scattering, correlation functions measured by scattering experiments, symmetry of crystals, applications of neutron scattering, polarized-neutron scattering and polarization analysis, structural analysis, magnetic and lattice excitation studied by inelastic neutron scattering, macromolecules and self-assembly, dynamics of macromolecules, correlated electrons in complex transition-metal oxides, surfaces, interfaces, and thin films investigated by neutron reflectometry, nanomagnetism. (HSI)

  16. Neutron scattering. Lectures

    International Nuclear Information System (INIS)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2010-01-01

    The following topics are dealt with: Neutron sources, neutron properties and elastic scattering, correlation functions measured by scattering experiments, symmetry of crystals, applications of neutron scattering, polarized-neutron scattering and polarization analysis, structural analysis, magnetic and lattice excitation studied by inelastic neutron scattering, macromolecules and self-assembly, dynamics of macromolecules, correlated electrons in complex transition-metal oxides, surfaces, interfaces, and thin films investigated by neutron reflectometry, nanomagnetism. (HSI)

  17. Experiments on neutron-proton and neutron-electron interaction

    International Nuclear Information System (INIS)

    Koester, L.

    1975-01-01

    The paper reports on zero-energy experiments with neutrons, protons and electrons with a wavelength that is considerably longer than the particle expansion. Scattering amplitudes are measured for the reactions n + p and n + e. A neutron gravity refractometer is used. (WL/AK) [de

  18. Coincidence (e,e'p) Scattering on 40Ar and 48Ti to Aid Precision Neutrino Oscillation Experiments

    Science.gov (United States)

    Abrams, Dan; E12-14-012 Collaboration

    2017-09-01

    Neutrino oscillations are an active area of research, with experiments such as DUNE (Deep Underground Neutrino Experiment). DUNE will make use of large liquid argon detectors to perform a precision measurement of the CP violating phase. Hence, an understanding of the argon nuclear ground state and its response to (anti-)neutrino interactions is of paramount importance. Information about the nuclear ground state is encapsulated in the spectral function, S (k , E) , the joint probability of removing a nucleon of momentum k = |k | from the ground state leaving the residual (A-1) system with excitation energy E. E12-14-012 at Jefferson Lab ran in early 2017 and has measured the argon spectral function through coincidence (e ,e' p) scattering on 40Ar and 48Ti. The results of E12-14-012 are important to both the neutrino and nuclear physics communities. A direct measurement of the coincidence (e ,e' p) cross section from 40Ar and 48Ti will provide valuable information about the argon nucleus, as well as the experimental input necessary to constrain theoretical models used to calculate S (k , E) , paving the way for reliable estimates of the neutrino cross sections. Data from E12-14-012 is currently being analyzed at UVA and Va. Tech. Supported in part by the Department of Energy Grant No: DE-FG02-96ER40950.

  19. Neutron Scattering from 36Ar and 4He Films

    DEFF Research Database (Denmark)

    Carneiro, K.

    1977-01-01

    Scale factors for neutron diffraction and neutron inelastic scattering are presented for common adsorbates, and the feasibility of experiments is discussed together with the information gained by each type of experiment. Diffraction, coherent inelastic scattering, and incoherent scattering are tr...

  20. Ion movie camera for particle-beam-fusion experiments

    International Nuclear Information System (INIS)

    Stygar, W.A.; Mix, L.P.; Leeper, R.J.; Maenchen, J.; Wenger, D.F.; Mattson, C.R.; Muron, D.J.

    1992-01-01

    A camera with a 3 ns time resolution and a continuous (>100 ns) record length has been developed to image a 10 12 --10 13 W/cm 2 ion beam for inertial-confinement-fusion experiments. A thin gold Rutherford-scattering foil placed in the path of the beam scatters ions into the camera. The foil is in a near-optimized scattering geometry and reduces the beam intensity∼seven orders of magnitude. The scattered ions are pinhole imaged onto a 2D array of 39 p-i-n diode detectors; outputs are recorded on LeCroy 6880 transient-waveform digitizers. The waveforms are analyzed and combined to produce a 39-pixel movie which can be displayed on an image processor to provide time-resolved horizontal- and vertical-focusing information

  1. Polarization transfer in inelastic scattering

    International Nuclear Information System (INIS)

    Moss, J.M.

    1980-01-01

    Polarization transfer experiments are now feasible for inelastic scattering experiments on complex nuclei. Experiments thus far have dealt with the spin-flip probability; this observable is sensitive to the action of spin-spin and tensor forces in inelastic scattering. Spin-flip probabilities at E approx. 40 MeV in isoscalar transitions in 12 C(12.71 MeV) and 15 O(8.89 MeV) show considerable deviation from DWBA-shell model predictions; this deviation indicates evidence for more complex reaction mechanisms. Experiments at intermediate energies will soon be possible and will yield data of much higher precision than is possible at lower (E < 100 MeV) energies. These experiments hold exciting promise in such areas as nuclear critical opalescence. 7 figures, 1 table

  2. Gas-filled hohlraum experiments at the national ignition facility.

    Energy Technology Data Exchange (ETDEWEB)

    Fernández, J. C. (Juan C.); Gautier, D. C. (Donald Cort); Goldman, S. R. (Sanford R.); Grimm, B. M.; Hegelich, B. M. (Bjorn M.); Kline, J. L. (John L.); Montgomery, D. S. (David S.); Lanier, N. E. (Nicholas E.); Rose, H. A. (Harvey A.); Schmidt, D. M. (David M.); Swift, D. C.; Workman, J. B. (Jonathan B.); Alvarez, Sharon; Bower, Dan.; Braun, Dave.; Campbell, K. (Katherine); DeWald, E.; Glenzer, S. (Siegfried); Holder, J. (Joe P.); Kamperschroer, J. H. (James H.); Kimbrough, Joe (Joseph R.); Kirkwood, Robert (Bob); Landen, O. L. (Otto L.); Mccarville, Tom (Tomas J.); Macgowan, B.; Mackinnon, A.; Niemann, C.; Schein, J.; Schneider, M; Watts, Phil; Young, Ben-li [number : znumber] 194154; Young B.

    2004-01-01

    The summary of this paper is: (1) We have fielded on NIF a gas-filled hohlraum designed for future ignition experiments; (2) Wall-motion measurements are consistent with LASNEX simulations; (3) LPI back-scattering results have confounded expectations - (a) Stimulated Brillouin (SBS) dominates Raman (SRS) for any gas-fill species, (b) Measured SBS time-averaged reflectivity values are high, peak values are even higher, (c) SRS and SBS peak while laser-pulse is rising; and (4) Plasma conditions at the onset of high back-scattering yield high SBS convective linear gain - Wavelengths of the back-scattered light is predicted by linear theory.

  3. Gas-filled hohlraum experiments at the national ignition facility

    International Nuclear Information System (INIS)

    Fernandez, J.C.; Gautier, D.C.; Goldman, S.R.; Grimm, B.M.; Hegelich, B.M.; Kline, J.L.; Montgomery, D.S.; Lanier, N.E.; Rose, H.A.; Schmidt, D.M.; Swift, D.C.; Workman, J.B.; Alvarez, Sharon; Bower, Dan; Braun, Dave; Campbell, K.; DeWald, E.; Glenzer, S.; Holder, J.; Kamperschroer, J.H.; Kimbrough, Joe; Kirkwood, Robert; Landen, O.L.; Mccarville, Tom; Macgowan, B.; Mackinnon, A.; Niemann, C.; Schein, J.; Schneider, M.; Watts, Phil; Young, Ben-li; Young B.

    2004-01-01

    The summary of this paper is: (1) We have fielded on NIF a gas-filled hohlraum designed for future ignition experiments; (2) Wall-motion measurements are consistent with LASNEX simulations; (3) LPI back-scattering results have confounded expectations - (a) Stimulated Brillouin (SBS) dominates Raman (SRS) for any gas-fill species, (b) Measured SBS time-averaged reflectivity values are high, peak values are even higher, (c) SRS and SBS peak while laser-pulse is rising; and (4) Plasma conditions at the onset of high back-scattering yield high SBS convective linear gain - Wavelengths of the back-scattered light is predicted by linear theory.

  4. Processing of thermal scattering data with NJOY experience and comments

    International Nuclear Information System (INIS)

    Mattes, M.

    1989-01-01

    The THERMR module of NJOY-89 generates pointwise integrated cross sections and double differential neutron scattering cross sections in the thermal energy range where the binding of the scatterer in a material or the motion of atoms in a gas is important. The results are added to an existing PENDF tape using special MT numbers in the range 221 to 250. The cross sections can then be group-averaged with the GROUPR module or plotted and reformated in subsequent modules

  5. On the road to metallic nanoparticles by rational design: bridging the gap between atomic-level theoretical modeling and reality by total scattering experiments

    Science.gov (United States)

    Prasai, Binay; Wilson, A. R.; Wiley, B. J.; Ren, Y.; Petkov, Valeri

    2015-10-01

    The extent to which current theoretical modeling alone can reveal real-world metallic nanoparticles (NPs) at the atomic level was scrutinized and demonstrated to be insufficient and how it can be improved by using a pragmatic approach involving straightforward experiments is shown. In particular, 4 to 6 nm in size silica supported Au100-xPdx (x = 30, 46 and 58) explored for catalytic applications is characterized structurally by total scattering experiments including high-energy synchrotron X-ray diffraction (XRD) coupled to atomic pair distribution function (PDF) analysis. Atomic-level models for the NPs are built by molecular dynamics simulations based on the archetypal for current theoretical modeling Sutton-Chen (SC) method. Models are matched against independent experimental data and are demonstrated to be inaccurate unless their theoretical foundation, i.e. the SC method, is supplemented with basic yet crucial information on the length and strength of metal-to-metal bonds and, when necessary, structural disorder in the actual NPs studied. An atomic PDF-based approach for accessing such information and implementing it in theoretical modeling is put forward. For completeness, the approach is concisely demonstrated on 15 nm in size water-dispersed Au particles explored for bio-medical applications and 16 nm in size hexane-dispersed Fe48Pd52 particles explored for magnetic applications as well. It is argued that when ``tuned up'' against experiments relevant to metals and alloys confined to nanoscale dimensions, such as total scattering coupled to atomic PDF analysis, rather than by mere intuition and/or against data for the respective solids, atomic-level theoretical modeling can provide a sound understanding of the synthesis-structure-property relationships in real-world metallic NPs. Ultimately this can help advance nanoscience and technology a step closer to producing metallic NPs by rational design.The extent to which current theoretical modeling alone can

  6. Very large-scale structures in sintered silica aerogels as evidenced by atomic force microscopy and ultra-small angle X-ray scattering experiments

    CERN Document Server

    Marliere, C; Etienne, P; Woignier, T; Dieudonné, P; Phalippou, J

    2001-01-01

    During the last few years the bulk structure of silica aerogels has been extensively studied mainly by scattering techniques (neutrons, X-rays, light). It has been shown that small silica particles aggregate to constitute a fractal network. Its spatial extension and fractal dimension are strongly dependent on the synthesis conditions (e.g., pH of gelifying solutions). These typical lengths range from 1 to 10 nm. Ultra-small angle X-ray scattering (USAXS) and atomic force microscopy (AFM) experiments have been carried out on aerogels at different steps of densification. The results presented in this paper reveal the existence of a spatial arrangement of the solid part at a very large length scale. The evolution of this very large-scale structure during the densification process has been studied and reveals a contraction of this macro-structure made of aggregates of clusters. (16 refs).

  7. Investigation into magnetic correlations in cuprates by means of neutron scattering experiments; Untersuchung magnetischer Korrelationen in Kupraten mit Hilfe von Neutronenstreuexperimenten

    Energy Technology Data Exchange (ETDEWEB)

    Henggeler, W [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-12-31

    Cuprate materials containing rare earth ions were studied. The main experimental tools were inelastic and elastic neutron scattering techniques. Some {mu}SR, susceptibility and specific heat measurements were also performed. One aim was to learn more about the crystalline environment of the rare earth ions in these substances via the crystalline electric field (CEF) interaction. Furthermore, we investigated the correlations of the magnetic moments of these ions by a determination of the dispersion of the CEF excitations. The theory that is essential for the understanding of this work is outlined. The instruments on which the experiments have been performed are presented. We show the measurements of the CEF excitations of Ho{sup 3+} in Y{sub 0.99}Ho{sub 0.01}Ba{sub 2}Cu{sub 3}O{sub 6+x}. The Ho ions represent ideal local probes to examine changes of the charge distribution in the copper oxide planes upon doping with oxygen. To prevent any influence of the Ho-Ho exchange interaction on the CEF excitations we performed the experiments on substances containing only one percent of Ho. Our results show that for all the intermediately doped compounds the charge distribution is very inhomogeneous. For all the highly doped samples we observe a line asymmetry for which several possible origins are discussed. We examine the Pr{sup 3+} CEF excitations in the Pr{sub 2-x}Ce{sub x}CuO{sub 4(-{delta})} (0{<=}x{<=}0.2)-substances. Our results show a coexistence of different environments of the Pr ions in all the doped compounds. We try to describe these inhomogeneities with the help of a model. We used the {mu}SR-technique on some of these samples in order to learn more about the oxygen reduction process. Finally, we performed inelastic neutron scattering experiments on Pr{sub 1.86}Ce{sub 0.14}CuO{sub 4} single crystal, which allowed a direct determination of the coupling constants between the magnetic moments of the Pr ions. (author) figs., tabs., 93 refs.

  8. Investigation into magnetic correlations in cuprates by means of neutron scattering experiments; Untersuchung magnetischer Korrelationen in Kupraten mit Hilfe von Neutronenstreuexperimenten

    Energy Technology Data Exchange (ETDEWEB)

    Henggeler, W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-12-31

    Cuprate materials containing rare earth ions were studied. The main experimental tools were inelastic and elastic neutron scattering techniques. Some {mu}SR, susceptibility and specific heat measurements were also performed. One aim was to learn more about the crystalline environment of the rare earth ions in these substances via the crystalline electric field (CEF) interaction. Furthermore, we investigated the correlations of the magnetic moments of these ions by a determination of the dispersion of the CEF excitations. The theory that is essential for the understanding of this work is outlined. The instruments on which the experiments have been performed are presented. We show the measurements of the CEF excitations of Ho{sup 3+} in Y{sub 0.99}Ho{sub 0.01}Ba{sub 2}Cu{sub 3}O{sub 6+x}. The Ho ions represent ideal local probes to examine changes of the charge distribution in the copper oxide planes upon doping with oxygen. To prevent any influence of the Ho-Ho exchange interaction on the CEF excitations we performed the experiments on substances containing only one percent of Ho. Our results show that for all the intermediately doped compounds the charge distribution is very inhomogeneous. For all the highly doped samples we observe a line asymmetry for which several possible origins are discussed. We examine the Pr{sup 3+} CEF excitations in the Pr{sub 2-x}Ce{sub x}CuO{sub 4(-{delta})} (0{<=}x{<=}0.2)-substances. Our results show a coexistence of different environments of the Pr ions in all the doped compounds. We try to describe these inhomogeneities with the help of a model. We used the {mu}SR-technique on some of these samples in order to learn more about the oxygen reduction process. Finally, we performed inelastic neutron scattering experiments on Pr{sub 1.86}Ce{sub 0.14}CuO{sub 4} single crystal, which allowed a direct determination of the coupling constants between the magnetic moments of the Pr ions. (author) figs., tabs., 93 refs.

  9. E-36: First Proto-Megascience Experiment at NAL

    Energy Technology Data Exchange (ETDEWEB)

    Pronskikh, Vitaly S. [Fermilab

    2016-03-01

    E-36, an experiment on small angle proton-proton scattering, began testing equipment in the National Accelerator Laboratory’s newly achieved 100-GeV beam on February 12, 1972, marking the beginning of NAL’s experimental program. This experiment, which drew collaborators from NAL, Joint Institute for Nuclear Research (JINR at Dubna, USSR), the University of Rochester (Rochester, New York) and Rockefeller University (New York City) was significant not only as a milestone in Fermilab’s history but also as a model of cooperation between the East and West at a time when Cold War tensions still ran high. An examination of the origin, operation, and resolution of E-36 and the chain of experiments it spawned reveals the complex interplay of science and politics that drove these experiments as well as seeds of the megascience paradigm that has come to dominate high-energy physics research since the 1970s.

  10. Perfect/complete scattering experiments probing quantum mechanics on atomic and molecular collisions and coincidences

    CERN Document Server

    Kleinpoppen, Hans; Grum-Grzhimailo, Alexei N

    2013-01-01

    The main goal of this book is to elucidate what kind of experiment must be performed in order to determine the full set of independent parameters which can be extracted and calculated from theory, where electrons, photons, atoms, ions, molecules, or molecular ions may serve as the interacting constituents of matter.  The feasibility of such perfect' and-or `complete' experiments, providing the complete quantum mechanical knowledge of the process, is associated with the enormous potential of modern research techniques, both, in experiment and theory.  It is even difficult to overestimate the role of theory in setting of the complete experiment, starting with the fact that an experiment can be complete only within a certain theoretical framework, and ending with the direct prescription of what, and in what conditions should be measured to make the experiment `complete'.  The language of the related theory is the language of quantum mechanical amplitudes and their relative phases.  This book captures the spi...

  11. Experimental setup for deeply virtual Compton scattering (DVCS) experiment in hall A at Jefferson Laboratory

    International Nuclear Information System (INIS)

    Camsonne, A.

    2005-11-01

    The Hall A Deeply Virtual Compton Scattering (DVCS) experiment used the 5.757 GeV polarized electron beam available at Jefferson Laboratory and ran from september until december 2004. Using the standard Hall A left high resolution spectrometer three kinematical points were taken at a fixed x b (jorken) = 0.32 value for three Q 2 values: 1.5 GeV 2 , 1.91 GeV 2 , 2.32 GeV 2 . An electromagnetic Lead Fluoride calorimeter and a proton detector scintillator array designed to work at a luminosity of 10 37 cm -2 s -1 were added to ensure the exclusivity of the DVCS reaction. In addition to the new detectors new custom electronics was used: a calorimeter trigger module which determines if an electron photon coincidence has occurred and a sampling system allowing to deal with pile-up events during the offline analysis. Finally the data from the kinematic at Q 2 = 2.32 GeV 2 and s = 5.6 GeV 2 allowed to get a preliminary result for the exclusive π 0 electroproduction on the proton. (author)

  12. A simple proposal for Rayleigh's scaterring experiment

    Directory of Open Access Journals (Sweden)

    Adriano José Ortiz

    2010-03-01

    Full Text Available This work presents an alternative proposal for Rayleigh's scattering experiment presented and discussed in Krapas and Santos (2002 in this journal. Besides being simple and low-cost, the proposal suggested here is also proposing to demonstrate experimentally other physical phenomena such as polarization of light from the sky, the rainbow and reflection on non-conductive surfaces, as well as determine the direction of these biases. The polarization will be observed with the aid of Polaroid obtained from liquid crystal displays taken from damaged electronic devices and the Polaroid polarization direction will be established by the observation of Brewester's angle in reflection experiment.

  13. The study of membrane formation via phase inversion method by cloud point and light scattering experiment

    Science.gov (United States)

    Arahman, Nasrul; Maimun, Teuku; Mukramah, Syawaliah

    2017-01-01

    The composition of polymer solution and the methods of membrane preparation determine the solidification process of membrane. The formation of membrane structure prepared via non-solvent induced phase separation (NIPS) method is mostly determined by phase separation process between polymer, solvent, and non-solvent. This paper discusses the phase separation process of polymer solution containing Polyethersulfone (PES), N-methylpirrolidone (NMP), and surfactant Tetronic 1307 (Tet). Cloud point experiment is conducted to determine the amount of non-solvent needed on induced phase separation. Amount of water required as a non-solvent decreases by the addition of surfactant Tet. Kinetics of phase separation for such system is studied by the light scattering measurement. With the addition of Tet., the delayed phase separation is observed and the structure growth rate decreases. Moreover, the morphology of fabricated membrane from those polymer systems is analyzed by scanning electron microscopy (SEM). The images of both systems show the formation of finger-like macrovoids through the cross-section.

  14. Study of the influence of color van der Waals forces and of non-Coulombian effects in 208pb+208pb scattering using a high-precision experiment

    International Nuclear Information System (INIS)

    Casandjian, Jean-Marc

    1996-01-01

    This work deals with the precise measurement of the absolute angular position of the elastic 208 pb+ 208 pb scattering cross section oscillations. The main objective is to verify if all of the elastic scattering ingredients are known even with an angular position precision of a few milli-degrees or if it is necessary to introduce new elements such as the color van der Waals force. This experiment was performed at Ganil. We obtained a precision of 0.004 deg. on the absolute cross section oscillation position and an angular shift of a few hundredths of degrees in relation to the expected position of a pure coulomb scattering. The attainment of this precision required particular precautions in the measurement of the absolute energy target position and scattering angle. First, the angular straggling on a thin target and the production of δ electrons during the scattering is studied. Next the origin of the angular shift is examined by the calculation of all the potentials that act during the scattering. The agreement between experimentation and theory allowed us to set a new limit on the color van der Waals interaction. (author) [fr

  15. Parity violation in deep inelastic electron scattering

    International Nuclear Information System (INIS)

    Taylor, R.E.

    1979-11-01

    Neutral currents in electron scattering and the Weinberg-Salam model are reviewed. This generally accepted model is consistent with experimental results from neutrino interactions; an appropriate deep inelastic electron scattering experiment would measure couplings that don't involve neutrinos to see if they are also correctly described by the theory. The SLAC-Yale experiment measures a difference in the e-d inelastic cross section for right- and left-handed electrons. The polarized source, beam monitors, scattering experiment, checks of helicity dependence, and results are described. It is concluded that the data obtained are in agreement with the Weinberg-Salam model, and that the best value of sin 2 theta/sub W/ for these data is in excellent agreement with the average values of that parameter deduced from neutrino experiments. Future experiments with polarized electrons are discussed. 12 figures, 2 tables

  16. Scattering of phytoplankton cells from cytometry during a microcosm experiment

    Science.gov (United States)

    Moutier, W.; Duforêt-Gaurier, L.; Loisel, H.; Thyssen, M.; Mériaux, X.; Desailly, D.; Courcot, L.; Dugenne, M.

    2016-02-01

    This study presents an application of the CytoSense flow cytometer (CytoBuoy b.v., NL) as a powerful tool to analyze optical properties of phytoplankton cells. Recently, Duforêt et al., (2015) developed a methodology to derive the forward, sideward and backward cross section (σFWS, σSWS and σbb, respectively) of individual particles from the CytoSense. For the first time, this methodology was applied to phytoplankton cultures. A 20 day microcosm experiment was conducted on two phytoplankton species (Chlamydomonas concordia and Thalassiosira pseudonana). We realized daily sampling for biogeochemical and flow cytometer analysis and carried out optical measurements. Scanning electron migrographs (SEM) were performed at different life stages to investigate the cells morphology.First, CytoSense estimates were tested against radiative transfer computations. The comparison exercise, is based on radiative transfer simulations because for phytoplankton cultures, in situ measurements of σFWS and σSWS, particle by particle, are not available in literature. For that purpose, we build a database of 590,000 simulations, considering homogeneous and multi-layered spheres, to represent the optical properties of a large diversity of phytoplankton cells. Comparison showed that the CytoSense estimates for the cultures are consistent with values predicted by the theory. Second, the flow cytometer was used to analyze the temporal course of the forward and the sideward efficiency during the entire life-cycle. Results showed differences between the two species. From an ACP analysis, the variation of the optical properties were associated with the chlorophyll-a concentration by living cell, the thickness of the frustule and the aggregate formation. To finish, the bulk backscattering coefficient was rebuilt from σbb of individual cells and compare with the bb measured by a WET Labs ECO-BB9. Relative errors (RE) were between 0.3 and 0.47 and the mean RE was of 0.36. A such work shows

  17. Workshop on polarized neutron filters and polarized pulsed neutron experiments

    International Nuclear Information System (INIS)

    Itoh, Shinichi

    2004-07-01

    The workshop was held in KEK by thirty-three participants on April 26, 2004. The polarized neutron filter method was only discussed. It consists of three parts; the first part was discussed on the polarized neutron methods, the second part on the polarized neutron experiments and the third on the pulse neutron spectrometer and polarized neutron experiments. The six papers were presented such as the polarized 3 He neutron spin filter, neutron polarization by proton polarized filter, soft master and neutron scattering, polarized neutron in solid physics, polarization experiments by chopper spectroscope and neutron polarization system in superHRPD. (S.Y.)

  18. Scattering by ensembles of small particles experiment, theory and application

    Science.gov (United States)

    Gustafson, B. A. S.

    1980-01-01

    A hypothetical self consistent picture of evolution of prestellar intertellar dust through a comet phase leads to predictions about the composition of the circum-solar dust cloud. Scattering properties of thus resulting conglomerates with a bird's-nest type of structure are investigated using a micro-wave analogue technique. Approximate theoretical methods of general interest are developed which compared favorably with the experimental results. The principal features of scattering of visible radiation by zodiacal light particles are reasonably reproduced. A component which is suggestive of (ALPHA)-meteoroids is also predicted.

  19. Scattering by ensembles of small particles experiment, theory and application

    International Nuclear Information System (INIS)

    Gustafson, B.Aa.S.

    1980-01-01

    A hypothetical selfconsistent picture of evolution of prestellar interstellar dust through a comet phase leades to predictions about the composition of the circum-solar dust cloud. Scattering properties of thus resulting conglomerates with a bird's-nest type of structure are investigated using a micro-wave analogue technique. Approximate theoretical methods of general interest are developed which compared favorably with the experimental results. The principal features of scattering of visible radiation by zodiacal light particles are reasonably reproduced. A component which is suggestive of β-meteoroids is also predicted. (author)

  20. Scintillation Counters for Neutron Scattering Experiments; Compteurs a scintillations pour les experiences de diffusion neutronique; Stsintillyatsionnye schetchiki dlya ehksperimentov s rasseyaniem nejtronov; Contadores de centelleo para experimentos de dispersion neutronica.

    Energy Technology Data Exchange (ETDEWEB)

    Harris, D; Duffil, C [Atomic Energy of Canada Ltd., Chalk River, Ontario (Canada); Wraight, L A [Aere, Harwell, Didcot, Berks (United Kingdom)

    1963-01-15

    Scintillation counters discussed in this paper are of two types : (i) UP or B{sub 2}O{sub 3} fixed with zinc sulphide in varving composition, (ii) Li containing glasses of varying composition. The ideal composition of each rype for neutron scattering experiments and their relative sensitivity tae neutrons and {gamma}-rays are considered. The ZnS type can be used with a {gamma}-ray pulse shape discriminator and practical experience of its use in a multi-counter time-of-flight experiment is described. The Li glass has higher {gamma}-background but also higher neutron efficiency. Performance figures of a scintillator containing 25% by wt. Li{sub 2}O and 1 mm thick will be given. (author) [French] Les compteurs a scintillations etudies sont de deux types : i) LiF ou B{sub 2}O{sub 3} fixe par du sulfure de zinc en composition variable, ii) verres contenant du lithium en composition variable. Les auteurs examinent la composition ideale de chaque type de compteur pour les experiences de diffusion de neutrons, ainsi que leur sinsibilite rrelative aux neutrons et aux rayons gamma. On peut utiliser le compteur a ZnS avec un discriminates de forme pour rayons gamma; les auteurs decrivent l'experience qu'ils ont de son emploi dans une experience de temps de vol a plusieurs compteurs. Le compteur verre-Li a un mouvement propre plus eleve pour les rayons gamma mais une meilleure efficacite vis-a-vis des neutrons. Les auteurs donnent quelques chiffres concernant le fonctionnement d'un scintillateur contenant 25% en poids de Li{sub 2}O et ayant une epaisseur de un millimetre. (author) [Spanish] Los contadores de centelleo examinados en esta memoria son de dos tipos : a) de LiF o B{sub 2}O{sub 3} mezclado con sulfuro de cinc en proporciones variables; b) de vidrios litiados de diversas composiciones. Los autores estudian la composicion ideal de cada tipo para experimentos de dispersion neutronica, asi como su sensibilidad relativa a los neutrones y a los rayos gamma. El tio de Zn

  1. Current experiments using polarized beams of the JINR LHE accelerator complex

    International Nuclear Information System (INIS)

    Lehar, F.

    2001-01-01

    The present review is devoted to the spin-dependent experiments carried out or prepared at the JINR LHE Synchrocyclotron. The acceleration of polarized deuterons, and experiments using the internal targets, the beam extraction and the polarimetry are briefly described. Then, representative experiments using either the extracted deuteron beam or secondary beams of polarized nucleons produced by polarized deuterons are treated. Three current experiments: 'DELTA-SIGMA', 'DELTA' and 'pp-SINGLET', require the polarized nucleon beams in conjunction with the Dubna polarized proton target. Already available Δσ L (np) results from the first experiment show unexpected energy dependence. Experiment 'DELTA' should investigate the nucleon strangeness. The aim of the third experiment is to study a possible resonant behavior of the spin-singlet pp scattering amplitude. For all other Dubna experiments unpolarized nucleon or nuclei targets are used. The polarized deuteron beam allows determining spin-dependent observable necessary for understanding the deuteron structure, as well as the nucleon substructure. One part of investigations concerns deuteron break-up reactions and deuteron proton backward elastic scattering. A considerable amount of data was obtained in this domain. Another part is dedicated to the measurements of the same spin-dependent observable in a 'cumulative' region. Interesting results were obtained for proton or pion productions in inclusive and semi-inclusive measurements. In the field of inelastic deuteron reactions, the analyzing power measurements were performed in the region covering Roper resonances. Many existing models are in disagreement with observed momentum dependences of different results. Finally, the proton-carbon analyzing power measurements extended the momentum region of rescattering observables. Some inclusive Dubna results are compared to exclusive Saclay data, and to lepton-deuteron measurements. Most of the JINR LHE experiments are

  2. Neutron experiments at LAMPF

    International Nuclear Information System (INIS)

    Jain, M.

    1975-01-01

    The problem of the nucleon-nucleon force is the most fundamental in nuclear physics and is basic to particle physics. However, in the energy range from pion production threshold to 1 GeV, the N-N interaction is rather poorly determined. In general, at these energies, there is no unique set of phase shifts and coupling parameters; the I = 1 parameters are known at least quantitatively, but the I = 0 parameters are not even known qualitatively. This is illustrated by the variation of 3 S 1 phase shift from -17 to 35 0 in the three solutions of the energy-independent nucleon-nucleon phase shift analysis of Glonti. In addition, these results are in considerable disagreement with the analyses of MacGregor. This is due to the paucity of the n-p scattering data including polarization and triple scattering parameters. Furthermore, as will be shown later, there is considerable disagreement between the results from different groups in the intermediate energy region of even so basic an observable as the n-p differential cross section. Therefore, a long range program was started for the definitive determination of the n-p interaction at LAMPF energies (300 to 800 MeV). This is an ambitious project which will ultimately require the performance of many experiments. Each successive set of measurements will clarify our understainding of the n-p system to some degree and simplify the problems of the subsequent measurements. In this communication a general description of the experimental setup and the various neutron experiments performed at LAMPF is given

  3. Multipoint Thomson scattering system for the EXTRAP Z-pinch experiment

    International Nuclear Information System (INIS)

    Karlsson, P.

    1986-03-01

    A Thomson scattering system for simultaneous measurements of the electron temperature and density at three different positions at two different times during a single plasma shot has been developed for the EXTRAP-L1 Z-pinch. The plasma in the present version of EXTRAP-L1 is characterized by densities in the range from 10 21 to 10 22 m -3 , temperatures up to 50 eV and a pinch radius of the order of 1 cm. A spatial resolution down to 3 mm between positions is obtained by imaging the plasma onto an array of quartz optical fibres at the output slit of the spectrometer. Fifteen PM-tubes are used to detect the scattered radiation as well as the background radiation. Due to the relatively dense plasma prevailing in the present version of EXTRAP-L1 the number of scattered photons in large and the photon to electron conversion noise is small. The background radiation is the most important factor limiting the accuracy of the measurements. (author)

  4. The ν-cleus experiment: a gram-scale fiducial-volume cryogenic detector for the first detection of coherent neutrino-nucleus scattering

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, R.; Rothe, J.; Angloher, G.; Hauff, D.; Mancuso, M.; Petricca, F.; Proebst, F.; Seidel, W.; Stodolsky, L. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Bento, A. [Universidade de Coimbra, CIUC, Departamento de Fisica, Coimbra (Portugal); Guetlein, A.; Kluck, H.; Schieck, J. [Institut fuer Hochenergiephysik, Oesterreichische Akademie der Wissenschaften, Vienna (Austria); Vienna University of Technology, Atominstitut, Vienna (Austria); Oberauer, L.; Schoenert, S. [Technische Universitaet Muenchen, Physik-Department, Garching (Germany)

    2017-08-15

    We discuss a small-scale experiment, called ν-cleus, for the first detection of coherent neutrino-nucleus scattering by probing nuclear-recoil energies down to the 10 eV regime. The detector consists of low-threshold CaWO{sub 4} and Al{sub 2}O{sub 3} calorimeter arrays with a total mass of about 10 g and several cryogenic veto detectors operated at millikelvin temperatures. Realizing a fiducial volume and a multi-element target, the detector enables active discrimination of γ, neutron and surface backgrounds. A first prototype Al{sub 2}O{sub 3} device, operated above ground in a setup without shielding, has achieved an energy threshold of ∝20 eV and further improvements are in reach. A sensitivity study for the detection of coherent neutrino scattering at nuclear power plants shows a unique discovery potential (5 σ) within a measuring time of

  5. SANE Of Jefferson Lab: Spin Asymmetries on the Nucleon Experiment

    International Nuclear Information System (INIS)

    Ahmidouch, Abdellah

    2011-01-01

    The Spin Asymmetry on the Nucleon Experiment (SANE) at Jefferson Lab measures proton spin observables A 1 p , A 2 p and structure functions g 1 p and g 2 p over a broad range of Bjorken scaling variable x from 0.3 to 0.8, for four-momentum transfers ranging from 2.5 GeV 2 to 6.5 GeV 2 . Inclusive double spin asymmetries were measured by scattering 4.7 and 5.9-GeV longitudinally polarized electron beam off a polarized solid NH 3 target, in both parallel and near-perpendicular configuration. Scattered electrons were detected using a novel non-magnetic detector array with 194-msr acceptance. This paper presents the physics motivation for the experiment, the detector performance, and the latest status of the ongoing data analysis.

  6. Test of New Readout Electronics for the BONuS12 Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ehrhart, Mathieu [Inst. de Physique Nucleaire (IPN), Orsay (France)

    2017-07-01

    For decades, electron-proton scattering experiments have been providing a large amount of data on the proton structure function. However, because of the instability of free neutrons, fewer experiments have been able to study the neutron structure function. The BONuS collaboration at Jefferson Laboratory addresses this challenge by scattering electrons off a deuterium target, using a RTPC capable of detecting the low-momentum spectator protons near the target. Events of electrons scattering on almost free neutrons are selected by constraining the spectator protons to very low momenta and very backward scattering angles. In 2005, BONuS successfully measured the neutron structure with scattering electrons of up to 5.3 GeV energy. An extension of this measurement has been approved using the newly upgraded 12 GeV electron beam and CLAS12 (CEBAF Large Acceptance Spectrometer). For this new set of measurements, a new RTPC detector using GEM trackers is being developed to allow measurements of spectator protons with momenta as low as 70 MeV/c. The new RTPC will use a new readout electronic system, which is also used by other trackers in CLAS12. This thesis will present the first tests of this electronics using a previously built RTPC of similar design.

  7. Elastic Scattering and Total Cross-Section in p+p reactions measured by the LHC Experiment TOTEM at sqrt(s) = 7 TeV

    OpenAIRE

    Collaboration, T. Csörgő for the TOTEM; :; Antchev, G.; Aspell, P.; Atanassov, I.; Avati, V.; Baechler, J.; Berardi, V.; Berretti, M.; Bossini, E.; Bozzo, M.; Brogi, P.; Brücken, E.; Buzzo, A.; Cafagna, F. S.

    2012-01-01

    Proton-proton elastic scattering has been measured by the TOTEM experiment at the CERN Large Hadron Collider at $\\sqrt{s} = 7 $ TeV in special runs with the Roman Pot detectors placed as close to the outgoing beam as seven times the transverse beam size. The differential cross-section measurements are reported in the |t|-range of 0.36 to 2.5 GeV^2. Extending the range of data to low t values from 0.02 to 0.33 GeV^2,and utilizing the luminosity measurements of CMS, the total proton-proton cros...

  8. Compton scattering by mesons in nuclei: Experiment on 208Pb

    International Nuclear Information System (INIS)

    Fuhrberg, K.; Martin, G.; Haeger, D.; Ludwig, M.; Schumacher, M.; Andersson, B.E.; Blomqvist, K.I.; Ruijter, H.; Sandell, A.; Schroeder, B.; Hayward, E.; Nilsson, L.; Zorro, R.

    1992-01-01

    Using 58 and 73 MeV tagged photons and scattering angles from 60deg to 150deg, it is shown that is possible to observe Compton scattering by 'mesons in nuclei ' through an incomplete cancellation of the mesonic (exchange- current) seagull amplitude by parts of the nuclear resonance amplitude related to the giant-dipole resonance of 208 Pb. This phenomenon is a property of an extended nucleus and , therefore, cannot be dtudied on the deuteron. Predictions of the exchange form factor which determines the angular distribution of the exchange seagull amplitude are compared with experimental data. (orig.)

  9. Reduction of Raman scattering and fluorescence from anvils in high pressure Raman scattering

    Science.gov (United States)

    Dierker, S. B.; Aronson, M. C.

    2018-05-01

    We describe a new design and use of a high pressure anvil cell that significantly reduces the Raman scattering and fluorescence from the anvils in high pressure Raman scattering experiments. The approach is particularly useful in Raman scattering studies of opaque, weakly scattering samples. The effectiveness of the technique is illustrated with measurements of two-magnon Raman scattering in La2CuO4.

  10. Neutron-deuteron breakup experiment at En=13 MeV: Determination of the 1S0 neutron-neutron scattering length ann

    International Nuclear Information System (INIS)

    Gonzalez Trotter, D.E.; Meneses, F. Salinas; Tornow, W.; Howell, C.R.; Chen, Q.; Crowell, A.S.; Roper, C.D.; Walter, R.L.; Schmidt, D.; Witala, H.; Gloeckle, W.; Tang, H.; Zhou, Z.; Slaus, I.

    2006-01-01

    We report on results of a kinematically complete neutron-deuteron breakup experiment performed at Triangle Universities Nuclear Laboratory using an E n =13 MeV incident neutron beam. The 1 S 0 neutron-neutron scattering length a nn has been determined for four production angles of the neutron-neutron final-state interaction configuration. The absolute cross-section data were analyzed with rigorous three-nucleon calculations. Our average value of a nn =-18.7±0.7 fm is in excellent agreement with a nn =-18.6±0.4 fm obtained from capture experiments of negative pions on deuterons. We also performed a shape analysis of the final-state interaction cross-section enhancements by allowing the normalization of the data to float. From these relative data, we obtained an average value of a nn =-18.8±0.5 fm, in agreement with the result obtained from the absolute cross-section measurements. Our result deviates from the world average of a nn =-16.7±0.5 fm determined from previous kinematically complete neutron-deuteron breakup experiments, including the most recent one carried out at Bonn. However, this low value for a nn is at variance with theoretical expectation and other experimental information about the sign of charge-symmetry breaking of the nucleon-nucleon interaction. In agreement with theoretical predictions, no evidence was found of significant three-nucleon force effects on the neutron-neutron final-state interaction cross sections

  11. New insights into nucleation. Pressure trace measurements and the first small angle X-ray scattering experiments in a supersonic laval nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, D.

    2007-07-01

    Homogeneous nucleation rates of the n-alcohols and the n-alkanes have been determined by combining information from two sets of supersonic Laval nozzle expansion experiments under identical conditions. The nucleation rates J=N/{delta}t{sub Jmax} for the n-alcohols are in the range of 1.10{sup 17}experiment static pressure measurements were conducted for the n-alkanes to determine the condensible partial pressure, temperature, supersaturation, characteristic time, and the expansion rate corresponding to the maximum nucleation rate. Characteristic times in the range of 13{<=}{delta}t{sub Jmax}/{mu}s{<=}34 were found. In the second set of experiments, the first flow rate resolved Small Angle X-ray Scattering experiments are conducted to determine the particle number density for both substance classes. Particle number densities in the range of 1.10{sup 12}scattering spectrum, information on the

  12. Sample Environment in Experiments using X-Ray Synchrotron Radiation

    DEFF Research Database (Denmark)

    Buras, B

    1984-01-01

    beam experiments with wavelength chosen at will from the continuous spectrum. Another type of insertion device, called undulator produces quasi-monochromatic radiation. The insertion devices enable the tailoring of the emitted S.R. to the requirements of the users and can be treated as the first......Modern electron (positron) storage rings are able to emit very intense X-ray radiation with a continuous spectrum extending to 0.1 A, from bending magnets and insertion devices (wavelength shifters and multipole wigglers). It can be used directly for white beam experiments and/or for monochromatic...... optical element of the beam line. This feature is especially important for experiments with samples in special environment because the latter imposes limitations both on scattering and absorption experiments. However, these limitations can be minimized in each case by finding the best match between...

  13. Molecular beam scattering experiments on the abstraction and exchange reactions of deuterium atoms with the hydrogen halides HCl, HBr, and HI

    International Nuclear Information System (INIS)

    Bauer, W.; Rusin, L.Y.; Toennies, J.P.

    1978-01-01

    Molecular beam scattering experiments have been carried out on the abstraction and exchange reactions of deuterium atoms (T=2600 K) with the hydrogen halides HX(T=300 K) in the range of scattering angles: 0 0 0 (theta/sub cm/=0 0 is the direction of the incident D-atom beam). The apparatus employed a very sensitive electron bombardment detector with a sufficiently low H 2 background to make possible the measurement of differential cross sections of about 0.1 A 2 /sr for reactively scattered HD and H and nonreactively scattered D-atoms. The measured HD signal can be largely attributed to various background sources and only serves to establish a rough upper limit on the abstraction cross section in the angular range investigated. The H-atom signal was more intense. The observed angular distribution was forward peaked, and is attributed to the exchange reaction. The nonreactively scattered D-atom signal was used in conjunction with a recently reported effective spherically symmetric potential to provide an absolute calibration of the detector sensitivity. The measured integral cross sections for the exchange reactions are 2.3 A 2 (D+HCl), 1.3 A 2 (D+HBr) and 1.6 A 2 (D+HI) with an estimated error of about +- 30%. The absolute cross sections and the H-atom angular distributions are consistent with the DX distributions measured by McDonald and Herschbach. Both experimental angular distributions are considerably narrower than those predicted by the recent classical trajectory calculations of Raff, Suzukawa, and Thompson. The implications of the new data for the activation energies for the exchange reactions are discussed

  14. Experiments on the nuclear interactions of pions and electrons

    International Nuclear Information System (INIS)

    Minehart, R.C.; Ziock, K.O.H.

    1989-07-01

    We have completed the analysis of the 3 He(π + ,pp)n reaction, and are working on the analysis of data for the 3 He(π - ,pn)p reaction. An experiment to study the π + d → 2p reaction at LAMPF was successful in studying incident pion energies as low as 6 MeV. Preliminary results have been reported, and work is continuing to improve the accuracy in the calculation of the fraction of pions in the incident beam. A proposal has been accepted by LAMPF for a new experiment, scheduled to run in the summer of 1990, to study pion absorption in 3 He and 4 He using an extensive scintillator time-of-flight system capable of detecting neutrons as well as charged particles. We are continuing to analyze data obtained in PSI in the search for the admixture of massive neutrinos in pion decay and have continued the search for fractionally charged particles. We are also fully involved in some major collaborations: the search for the decay μ + → e + + γ, and the study of anti-proton absorption in heavy nuclei. We are taking part in a U.Va.-PSI collaboration to measure pion beta decay to an accuracy of about 1%, using a large acceptance CsI detector to measure the π 0 following decay of stopped π + mesons. We have also been working on experiments to study electron scattering, using the SLAC-NPAS facility for nuclear physics and the electron accelerator at SACLAY in France. Data from experiment NE-9 at SLAC are being analyzed. This experiment, which was run near the end of 1987, is intended to separate the transverse and longitudinal cross sections for inclusive electron scattering in the QFS region. Experiment NE-8 measured the cross section for photo-disintegration of the deuteron in the GeV range. Some design work was carried out this year on Experiment NE-16 at SLAC, a study of the (e,e'p) reaction in 4 He, expected to run late in 1990

  15. ELECTRON SCATTERING EXPERIMENTS ON THE NEUTRON AND PROTON

    Energy Technology Data Exchange (ETDEWEB)

    Berkelman, Karl

    1963-06-15

    The electric and magnetic helicity form factors of the proton are measured at 4-momentum transfers (squared) of 25 to 45 f/sup -2/, by means of electron scattering by protons at high energies. The results are combined with other e/sup -/--p and e/sup -/--d experimental findings in order to show the proton form fuctors from 0 to 45 f/sup -2/ and the neutron form factors from 0 to 25 f/sup -2/. (T.F.H.)

  16. Streaming experiment of gamma-ray obliquely incident on concrete shield wall with straight cylindrical ducts and verification of single scattering code

    International Nuclear Information System (INIS)

    Yamaji, Akio; Saito, Tetsuo.

    1988-01-01

    To investigate a proximity effect of ducts on shield performance against γ radiation, an experiment was performed at JRR-4 by entering the γ-ray beam into a concrete shield wall of 100 cm-thickness with 3 or 5 straight cylindrical ducts of radius of 4.45 cm placed in a straight line or crosswise at interval of 8.9 cm. The dose rates were measured using digital dosimeters on a horizontal line 20 cm apart from the rear of the wall with 0, 1, 3 and 5 ducts, and with the incident angles of 0deg, 7deg, 14deg and 20deg, respectively. The dose rate distributions depended on the number of ducts and the incident angle, and the dose rate ratios of with-three-ducts to no-duct distributed within 3.6∼12, 1.3∼5.0 and 1.1∼4.3, for the incident angles of 7deg, 14deg and 20deg, while those of with-single-duct to no-duct within 1.2∼7.1, 1.1∼2.7 and 1.0∼1.9, respectively. The experiment was analyzed using a multigroup single scattering code G33YSN able to deal with the geometry of the ducts exactly. For each incident angle, the calculation agreed with the experiment within a factor of 2. (author)

  17. Deep inelastic muon scattering from nuclei at Fermilab

    International Nuclear Information System (INIS)

    Kaufman, S.B.

    1992-01-01

    Electron scattering experiments by Friedman, Kendall, and Taylor at SLAC first showed in 1968 that the proton was composed of point-like constituents (quarks). More recently the European Muon Collaboration (EMC) found in muon scattering experiments that the structure functions of a free nucleon are different from a heavy nucleus (open-quotes EMC effectclose quotes). Fermilab experiment E665 is now studying deep inelastic scattering of 490 GeV muons from targets ranging from hydrogen to lead, including measurements of the final state hadrons in order to learn more about these effects. The author describes this experiment and presents some initial results on the effects of the nuclear environment on the quark structure of nucleons

  18. Results from the H1 experiment at HERA

    International Nuclear Information System (INIS)

    Roeck, A. de

    1994-01-01

    New results from the H1 experiment at HERA on photoproduction, deep inelastic scattering and search for exotic particles are presented. Clear evidence is found for hard scattering in photoproduction interactions. Jets have been observed and used to examine the x γ distribution, indicating the need for a gluonic component in the photon. Hadronic final states and jet cross sections have been measured in deep inelastic scattering. A class of deep inelastic events with diffractive characteristics has been observed. The proton structure function F 2 (x, Q 2 ) has been measured in the new Bjorken-x region 10 -4 -2 and is found to rise with decreasing x. New limits for leptoquarks, squarks and excited electrons have been deduced. (orig.)

  19. Determination of the Kinematics of the Qweak Experiment and Investigation of an Atomic Hydrogen Moller Polarimeter

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Valerie M. [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2018-01-01

    The Qweak experiment has tested the Standard Model through making a precise measurement of the weak charge of the proton (QpW). This was done through measuring the parity-violating asymmetry for polarized electrons scattering off of unpolarized protons. The parity-violating asymmetry measured is directly proportional to the four-momentum transfer (Q^2) from the electron to the proton. The extraction of QpW from the measured asymmetry requires a precise Q^2 determination. The Qweak experiment had a Q^2 = 24.8 ± 0.1 m(GeV^2) which achieved the goal of an uncertainty of <= 0.5%. From the measured asymmetry and Q^2, QpW was determined to be 0.0719 ± 0.0045, which is in good agreement with the Standard Model prediction. This puts a 7.5 TeV lower limit on possible "new physics". This dissertation describes the analysis of Q^2 for the Qweak experiment. Future parity-violating electron scattering experiments similar to the Qweak experiment will measure asymmetries to high precision in order to test the Standard Model. These measurements will require the beam polarization to be measured to sub-0.5% precision. Presently the electron beam polarization is measured through Moller scattering off of a ferromagnetic foil or through using Compton scattering, both of which can have issues reaching this precision. A novel Atomic Hydrogen Moller Polarimeter has been proposed as a non-invasive way to measure the polarization of an electron beam via Moller scattering off of polarized monatomic hydrogen gas. This dissertation describes the development and initial analysis of a Monte Carlo simulation of an Atomic Hydrogen Moller Polarimeter.

  20. Source theory analysis of electron--positron annihilation experiments

    International Nuclear Information System (INIS)

    Schwinger, J.

    1975-01-01

    The phenomenological viewpoint already applied to deep inelastic scattering is extended to the discussion of electron-positron annihilation experiments. Some heuristic arguments lead to simple forms for the pion differential cross section that are in reasonable accord with the published experimental data in the energy interval 3 to 4.8 GeV

  1. Track reconstruction for the P2 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Tyukin, Alexey [JGU, Mainz (Germany); Collaboration: P2-Collaboration

    2016-07-01

    The P2 experiment at the future MESA accelerator in Mainz will measure elastically scattered electrons from a hydrogen or lead target in order to determine the parity violating asymmetry for different beam polarisations, which is created due to the weak charge of the target. The asymmetry can provide access to the Weinberg angle and the neutron skin of heavy nuclei. These quantities depend heavily on the momentum transfer Q{sup 2}, thus a reconstruction of single electron tracks in an inhomogeneous magnetic field is necessary. For this, the P2 detector will have four tracking planes of thin high voltage monolithic active pixel sensors (HV-MAPS). The scattered electrons propagate through a magnetic field and hit all four planes. In order to fit the hit positions the General Broken Lines method is used. As a fast propagator, a variation of the Runge-Kutta algorithm is applied, which solves the equation of motion in an inhomogeneous magnetic field numerically, such that the final state momentum and scattering angle can be reconstructed. The initial momentum and incident angle can vary strongly due to the thickness of the target, limiting the reconstruction quality. The average single track Q{sup 2} value of 0.006 GeV{sup 2}/c{sup 2} can be reconstructed with about 4 % uncertainty in a first analysis of the Geant4 simulation, leading to a high total precision due to large electron numbers in the experiment.

  2. Elastic scattering of surface plasmon polaritons: Modeling and experiment

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Coello, V.

    1998-01-01

    excitation wavelengths (594 and 633 nm) and different metal (silver and gold) films. The near-field optical images obtained are related to the calculated SPP intensity distributions demonstrating that the model developed can be successfully used in studies of SPP elastic scattering, e.g., to design...

  3. One-, two- and three-photon experiments

    International Nuclear Information System (INIS)

    Caldwell, D.O.; Cumalat, J.P.; Eisner, A.M.

    1977-01-01

    The results of experiments to provide further information about parton structure by getting into the deep inelastic region of π 0 electroproduction are presented. To analyse whether the interference between two- and three- photon exchange would give a difference between e + and e - scattering has been measured using the 20.5 GeV electron and 13.5 GeV positron beams and a hydrogen target. No evidence for the two-photon exchange has been observed within the experimental errors. Although the e + -e - difference in the three-photon experiment has been certainly + → γ/e - → γ= 1.09+-0.03. It yields a rough value of the parton mean cubed charge of 1.1+-0.5. The mere existence of the result provides strong support for the idea of constituent particles

  4. Spectrometer Development in Support of Thomson Scattering Investigations for the Helicon Plasma Experiment (HPX)

    Science.gov (United States)

    Sandri, Eva; Davies, Richard; Azzari, Phil; Frank, John; Frank, Jackson; James, Royce; Hopson, Jordon; Duke-Tinson, Omar; Paolino, Richard; Sherman, Justin; Wright, Erin; Turk, Jeremy

    2016-10-01

    Now that reproducible plasmas have been created on the Helicon Plasma Experiment (HPX) at the Coast Guard Academy Plasma Laboratory (CGAPL), a high-performance spectrometer utilizing volume-phase-holographic (VPH) grating and a charge coupled device (CCD) camera with a range of 380-1090 nm and resolution of 1024x1024 is being assembled. This spectrometer will collect doppler shifted photons created by exciting the plasma with the first harmonic of a 2.5 J Nd:YAG laser at a wavelength of 1064 nm. Direct measurements of the plasma's temperature and density will be determined using HPX's Thomson Scattering (TS) system as a single spatial point diagnostic. TS has the capability of determining plasma properties on short time scales and will be used to create a robust picture of the internal plasma parameters. A prototype spectrometer has been constructed to explore the Andor CCD camera's resolution and sensitivity. Concurrently, through intensive study of the high energy TS system, safety protocols and standard operation procedures (SOP) for the Coast Guard's largest and most powerful Laser have been developed. The current status of the TS SOP, diagnostic development, and the collection optic's spectrometer will be reported. Supported by U.S. DEPS Grant [HEL-JTO] PRWJFY15-16.

  5. Effect of scatter and attenuation correction in ROI analysis of brain perfusion scintigraphy. Phantom experiment and clinical study in patients with unilateral cerebrovascular disease

    Energy Technology Data Exchange (ETDEWEB)

    Bai, J. [Keio Univ., Tokyo (Japan). 21st Century Center of Excellence Program; Hashimoto, J.; Kubo, A. [Keio Univ., Tokyo (Japan). Dept. of Radiology; Ogawa, K. [Hosei Univ., Tokyo (Japan). Dept. of Electronic Informatics; Fukunaga, A.; Onozuka, S. [Keio Univ., Tokyo (Japan). Dept. of Neurosurgery

    2007-07-01

    The aim of this study was to evaluate the effect of scatter and attenuation correction in region of interest (ROI) analysis of brain perfusion single-photon emission tomography (SPECT), and to assess the influence of selecting the reference area on the calculation of lesion-to-reference count ratios. Patients, methods: Data were collected from a brain phantom and ten patients with unilateral internal carotid artery stenosis. A simultaneous emission and transmission scan was performed after injecting {sup 123}I-iodoamphetamine. We reconstructed three SPECT images from common projection data: with scatter correction and nonuniform attenuation correction, with scatter correction and uniform attenuation correction, and with uniform attenuation correction applied to data without scatter correction. Regional count ratios were calculated by using four different reference areas (contralateral intact side, ipsilateral cerebellum, whole brain and hemisphere). Results: Scatter correction improved the accuracy of measuring the count ratios in the phantom experiment. It also yielded marked difference in the count ratio in the clinical study when using the cerebellum, whole brain or hemisphere as the reference. Difference between nonuniform and uniform attenuation correction was not significant in the phantom and clinical studies except when the cerebellar reference was used. Calculation of the lesion-to-normal count ratios referring the same site in the contralateral hemisphere was not dependent on the use of scatter correction or transmission scan-based attenuation correction. Conclusion: Scatter correction was indispensable for accurate measurement in most of the ROI analyses. Nonuniform attenuation correction is not necessary when using the reference area other than the cerebellum. (orig.)

  6. Pelletron general purpose scattering chamber

    International Nuclear Information System (INIS)

    Chatterjee, A.; Kailas, S.; Kerekette, S.S.; Navin, A.; Kumar, Suresh

    1993-01-01

    A medium sized stainless steel scattering chamber has been constructed for nuclear scattering and reaction experiments at the 14UD pelletron accelerator facility. It has been so designed that several types of detectors, varying from small sized silicon surface barrier detectors to medium sized gas detectors and NaI detectors can be conveniently positioned inside the chamber for detection of charged particles. The chamber has been planned to perform the following types of experiments : angular distributions of elastically scattered particles, fission fragments and other charged particles, angular correlations for charged particles e.g. protons, alphas and fission fragments. (author). 2 figs

  7. Laser fusion experiments at 2 TW

    International Nuclear Information System (INIS)

    Storm, E.K.; Ahlstrom, H.G.; Boyle, M.J.

    1976-01-01

    The Lawrence Livermore Laboratory Solid State Laser System, Argus, has successfully performed laser implosion experiments at power levels exceeding 2 TW. D-T filled glass microspheres have been imploded to yield thermonuclear reaction products in excess of 5 x 10 8 per event. Neutron and α time-of-flight measurements indicate that D-T ion temperatures of approximately 5 to 6 keV and a density confinement time product (n tau) of approximately 1 x 10 12 were obtained in these experiments. Typically two 40J, 40 psec pulses of 1.06 μm light were focused on targets using 20 cm aperture f/l lenses, producing intensities at the target in excess of 10 16 W/cm 2 . An extensive array of diagnostics routinely monitored the laser performance and the laser target interaction process. Measurements of absorption and asymmetry in both the scattered light distribution and the ion blow off is evidence for non-classical absorption mechanisms and density scale heights of the order of 2 μm or less. The symmetry of the thermonuclear burn region is investigated by monitoring the α-particle flux in several directions, and an experiment to image the thermonuclear burn region is in process. These experiments significantly extend our data base and our understanding of laser induced thermonuclear implosions and the basic laser plasma interaction physics from the 0.4 to 0.7 TW level of previous experiments

  8. Laser fusion experiments at 2 TW

    International Nuclear Information System (INIS)

    Storm, E.K.; Ahlstrom, H.G.; Boyle, M.J.

    1976-01-01

    The Lawrence Livermore Laboratory Solid State Laser System, Arqus, has successfully performed laser implosion experiments at power levels exceeding 2 TW. D-T filled glass microspheres have been imploded to yield thermonuclear reaction products in excess of 5 x 10 8 per event. Neutron and α time-of-flight measurements indicate that D-T ion temperatures of approximately 5-6 keV and a density confinement time product (n tau) of approximately 1 x 10 12 were obtained in these experiments. Typically two 40J, 40 psec pulses of 1.06 μm light were focused on targets using 20 cm aperture f/1 lenses, producing intensities at the target in excess of 10 16 W/cm 2 . An extensive array of diagnostics routinely monitored the laser performance and the laser target interaction process. Measurements of absorption and asymmetry in both the scattered light distribution and the ion blow off is evidence for non-classical absorption mechanisms and density scale heights of the order of 2 μm or less. The symmetry of the thermonuclear burn region is investigated by monitoring the α-particle flux in several directions, and an experiment to image the thermonuclear burn region is in process. These experiments significantly extend our data base and our understanding of laser induced thermonuclear implosions and the basic laser plasma interaction physics from the 0.4 to 0.7 TW level of previous experiments

  9. Tensor polarized deuteron targets for intermediate energy physics experiments

    International Nuclear Information System (INIS)

    Meyer, W.; Schilling, E.

    1985-03-01

    At intermediate energies measurements from a tensor polarized deuteron target are being prepared for the following reactions: the photodisintegration of the deuteron, the elastic pion-deuteron scattering and the elastic electron-deuteron scattering. The experimental situation of the polarization experiments for these reactions is briefly discussed in section 2. In section 3 the definitions of the deuteron polarization and the possibilities to determine the vector and tensor polarization are given. Present tensor polarization values and further improvements in this field are reported in section 4. (orig.)

  10. GumTree-An integrated scientific experiment environment

    International Nuclear Information System (INIS)

    Lam, Tony; Hauser, Nick; Goetz, Andy; Hathaway, Paul; Franceschini, Fredi; Rayner, Hugh; Zhang, Lidia

    2006-01-01

    GumTree is an open source and multi-platform graphical user interface for performing neutron scattering and X-ray experiments. It handles the complete experiment life cycle from instrument calibration, data acquisition, and real time data analysis to results publication. The aim of the GumTree Project is to create a highly Integrated Scientific Experiment Environment (ISEE), allowing interconnectivity and data sharing between different distributed components such as motors, detectors, user proposal database and data analysis server. GumTree is being adapted to several instrument control server systems such as TANGO, EPICS and SICS, providing an easy-to-use front-end for users and simple-to-extend model for software developers. The design of GumTree is aimed to be reusable and configurable for any scientific instrument. GumTree will be adapted to six neutron beam instruments for the OPAL reactor at ANSTO. Other European institutes including ESRF, ILL and PSI have shown interest in using GumTree as their workbench for instrument control and data analysis

  11. Geneva University: Dark matter Search with the CDMS experiment

    CERN Multimedia

    Université de Genève

    2011-01-01

    Geneva University Physics Department 24, quai Ernest-Ansermet CH-1211 Geneva 4 Tel: (022) 379 62 73 Fax: (022) 379 69 92   Wednesday 21 September 2011 PARTICLE PHYSICS SEMINAR at 17.00 hrs – Stückelberg Auditorium “ Dark matter Search with the CDMS experiment ” Par Dr. Sebastian Arrenberg, Université de Zürich The Cryogenic Dark Matter Search experiment (CDMS) employs a total of 30 germanium and silicon detectors at the Soudan Underground Laboratory to detect weakly interacting massive particles (WIMPs) via their scattering from the target nuclei. Previous CDMS results, released in December 2009, set the world leading limit on the spin-independent WIMP-nucleon cross section above WIMP masses of ~50 GeV/c2 assuming elastic scattering.  In a subsequent analysis we investigated the inelastic dark matter scenario which was proposed to reconcile the disagreement between the results of DAMA/LIBRA and other existing dark matter searc...

  12. LH2 Target Design & Position Survey Techniques for the MUSE experiment for Precise Proton Radius Measurement

    Science.gov (United States)

    Le Pottier, Luc; Roy, Pryiashee; Lorenzon, Wolfgang; Raymond, Richard; Steinberg, Noah; Rossi de La Fuente, Erick; MUSE (MUon proton Scattering Experiment) Collaboration

    2017-09-01

    The proton radius puzzle is a currently unresolved problem which has intrigued the scientific community, dealing with a 7 σ discrepancy between the proton radii determined from muonic hydrogen spectroscopy and electron scattering measurements. The MUon Scattering Experiment (MUSE) aims to resolve this puzzle by performing the first simultaneous elastic scattering measurements of both electrons and muons on the proton, which will allow the comparison of the radii from the two interactions with reduced systematic uncertainties. The data from this experiment is expected to provide the best test of lepton universality to date. The experiment will take place at the Paul Scherrer Institute in Switzerland in 2018. An essential component of the experiment is a liquid hydrogen (LH2) cryotarget system. Our group at the University of Michigan is responsible for the design, fabrication and installation of this system. Here we present our LH2 target cell design and fabrication techniques for successful operation at 20 K and 1 atm, and our computer vision-based target position survey system which will determine the position of the target, installed inside a vacuum chamber, with 0.01 mm or better precision at the height of the liquid hydrogen target and along the beam direction during the experiment.

  13. Symmetric Moeller/Bhabha luminosity monitor for the OLYMPUS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Capozza, Luigi; Maas, Frank; Perez Benito, Roberto; Rodriguez Pineiro, David [Helmholtz-Institut Mainz, Mainz (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); O' Connor, Colton [Massachusetts Institute of Technology, Cambridge, MA (United States); Diefenbach, Juergen; Glaeser, Boris [Institut fuer Kernphysik, Mainz (Germany); Khaneft, Dmitry [Johannes Gutenberg-Universitaet Mainz, Mainz (Germany); Helmholtz-Institut Mainz, Mainz (Germany); Ma, Yue [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany)

    2015-07-01

    The OLYMPUS experiment is motivated by the discrepancy between the proton electric to magnetic form factor ratio measured using unpolarized and polarized electron scattering. This discrepancy can be explained by a two-photon exchange (TPE) contribution in lepton-hadron scattering. Measuring the ratio of electron-proton and positron-proton elastic scattering cross sections the contribution of the TPE can be determined. For this purpose, very precise measurements of the relative luminosity have to be performed. The symmetric Moeller/Bhabha luminosity monitor, made of calorimetric lead fluoride (PbF{sub 2}) Cherenkov detectors, provides precise data from counting coincidences Moeller and Bhabha events. High sensitivity to the geometrical acceptance and alignment requires accurate study of systematic uncertainties.

  14. TOTEM, a different LHC experiment

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    TOTEM will pursue a physics program (complementary to that of the other LHC detectors) spanning a wide range from total cross-section and elastic scattering measurements to the study of diffractive and forward phenomena. The TOTEM program will lead to a better understanding of the fundamental aspects of strong interactions. For the first time at hadron colliders, the very forward rapidity range, containing 90% of the energy flow and explored in high-energy cosmic ray experiments, is covered, allowing the search for unusual phenomena hinted at by cosmic ray experiments. The technical implementation of all TOTEM detectors is described. Silicon sensors housed in so-called Roman pots allow measurements of elastic and diffractive protons at distances as small as 1 mm from the beam centre. A scheme to tag events from Double-Pomeron-Exchange by diffractive protons on both sides transforms the LHC into an almost clean “gluon” collider, where the centre-of-mass energy is determined by the momentum losses of the ...

  15. First experiment with the double solenoid RIBRAS system

    Energy Technology Data Exchange (ETDEWEB)

    Lichtenthaeler, R.; Condori, R. Pampa; Lepine-Szily, A.; Pires, K. C. C.; Morais, M. C.; Leistenschneider, E.; Scarduelli, V. B.; Gasques, L. R. [Instituto de Fisica da USP, Sao Paulo, Brazil, C.P. 66318, 05314-970 (Brazil); Faria, P. N. de; Mendes, D. R. Jr. [Instituto de Fisica, Universidade Federal Fluminense, Niteroi, RJ, 24210-340 (Brazil); Shorto, J. M. B. [Instituto de Pesquisas Energeticas e Nucleares, IPEN/CNEN, Av. Lineu Prestes, 2242, 05508-000, Sao Paulo, SP (Brazil); Assuncao, M. [Departamento de Ciencias Exatas e da Terra, Universidade Federal de Sao Paulo, Campus Diadema, Sao Paulo (Brazil)

    2013-05-06

    A description of the double solenoid system (RIBRAS) operating since 2004 in one of the beam lines of the Pelletron Laboratory of the Institute of Physics of the University of Sao Paulo is presented. The recent installation of the secondary scattering chamber after the second solenoid is reported and the first experiment in RIBRAS using both solenoids is described.

  16. AIP The results of the Totem experiment

    CERN Document Server

    Nemes, F

    2017-01-01

    The TOTEM experiment at the LHC has measured proton-proton elastic scattering in dedicated runs at $\\sqrt{s}$=7 and 8 TeV centre-of-mass LHC energies. The proton-proton total cross-section $σ_{tot}$ has been derived for both energies using a luminosity independent method. TOTEM has excluded a purely exponential differential cross-section for elastic proton-proton scattering with significance greater than 7σ in the |t| range from 0.027 to 0.2 $GeV^2$ at $\\sqrt{s}$ = 8 TeV. The ρ parameter has been measured at $\\sqrt{s}$ = 8 TeV via the Coulomb-nuclear interference, and was found to be ρ = 0 . 12 ± 0 . 03

  17. Experiments using LHTL in JAERI

    International Nuclear Information System (INIS)

    Takamura, Saburo; Maeta, Hiroshi

    1984-01-01

    The liquid helium temperature loop (LHTL) in the Japan Atomic Energy Research Institute finished the irradiation experiment in March, 1983, accompanying the reconstruction of JRR-3 reactor, and at present, the removing work is in progress. This facility was built so as to be able to irradiate fast neutrons at 5 K, and in the state of having freezed the defects formed by irradiation, electric resistance, internal friction, X-ray scattering, length, mechanical strength and so on were able to be measured, and the state of recovery of irradiation defects accompanying temperature rise was able to be investigated. Recently, the irradiation damage of superconducting magnet materials used for nuclear fusion reactors has become a problem, and the importance of the irradiation experiment at extremely low temperature has increased. The LHTL engaged also in this problem. The transfer of irradiated specimens to the cryostat for measurement, the measurement of electric resistance, X-ray and the change of length, and compression test are reported. As for the properties of irradiation defects in metals, the examples of experiment carried out by the authors are briefly described. The effect of the irradiation at very low temperature on superconducting magnet materials is reported. (Kako, I.)

  18. The MTV experiment: searching for T-violation in polarized Li-8 at TRIUMF

    Energy Technology Data Exchange (ETDEWEB)

    Murata, J., E-mail: jiro@rikkyo.ac.jp [Rikkyo University, Department of Physics (Japan); Baba, H. [RIKEN, Nishina Center (Japan); Behr, J. A. [TRIUMF (Canada); Goto, F. [Nagoya University, Department of Physics (Japan); Inaba, S. [Rikkyo University, Department of Physics (Japan); Kawamura, H. [Tohoku University, Cyclotron and Radioisotope Center (Japan); Kitaguchi, M. [Nagoya University, Department of Physics (Japan); Levy, C. D. P. [TRIUMF (Canada); Masuda, H.; Nakaya, Y.; Ninomiya, K.; Onishi, J. [Rikkyo University, Department of Physics (Japan); Openshaw, R.; Pearson, M. [TRIUMF (Canada); Sakamoto, Y. [Rikkyo University, Department of Physics (Japan); Shimizu, H. [Nagoya University, Department of Physics (Japan); Shimizu, Y.; Tanaka, S.; Tanaka, Y.; Tanuma, R. [Rikkyo University, Department of Physics (Japan); and others

    2016-12-15

    The MTV experiment (Mott Polarimetry for T-Violation Experiment) is running at TRIUMF, to search for a large T-violating transverse electron-polarization in polarized {sup 8}Li β-decay. We aim at reaching precision of 10{sup −4} for the R-correlation, which is defined as a T-violating triple vector correlation in the β-decay rate function. A Mott polarimeter system using a CDC (Cylindrical Drift Chamber) is used to measure the left-right scattering asymmetry in the Mott scattering from a thin metal foil. In the present study, we aim to discuss systematic effects in Mott polarimetry using the CDC.

  19. Neutron scattering from fractals

    DEFF Research Database (Denmark)

    Kjems, Jørgen; Freltoft, T.; Richter, D.

    1986-01-01

    The scattering formalism for fractal structures is presented. Volume fractals are exemplified by silica particle clusters formed either from colloidal suspensions or by flame hydrolysis. The determination of the fractional dimensionality through scattering experiments is reviewed, and recent small...

  20. Theoretical analysis of hidden photon searches in high-precision experiments

    International Nuclear Information System (INIS)

    Beranek, Tobias

    2014-01-01

    Although the Standard Model of particle physics (SM) provides an extremely successful description of the ordinary matter, one knows from astronomical observations that it accounts only for around 5% of the total energy density of the Universe, whereas around 30% are contributed by the dark matter. Motivated by anomalies in cosmic ray observations and by attempts to solve questions of the SM like the (g-2) μ discrepancy, proposed U(1) extensions of the Standard Model gauge group SU(3) x SU(2) x U(1) have raised attention in recent years. In the considered U(1) extensions a new, light messenger particle γ', the hidden photon, couples to the hidden sector as well as to the electromagnetic current of the SM by kinetic mixing. This allows for a search for this particle in laboratory experiments exploring the electromagnetic interaction. Various experimental programs have been started to search for the γ' boson, such as in electron-scattering experiments, which are a versatile tool to explore various physics phenomena. One approach is the dedicated search in fixed-target experiments at modest energies as performed at MAMI or at JLAB. In these experiments the scattering of an electron beam off a hadronic target e→e(A,Z)l + l - is investigated and a search for a very narrow resonance in the invariant mass distribution of the l + l - pair is performed. This requires an accurate understanding of the theoretical basis of the underlying processes. For this purpose it is demonstrated in the first part of this work, in which way the hidden photon can be motivated from existing puzzles encountered at the precision frontier of the SM. The main part of this thesis deals with the analysis of the theoretical framework for electron scattering fixed-target experiments searching for hidden photons. As a first step, the cross section for the bremsstrahlung emission of hidden photons in such experiments is studied. Based on these results, the applicability of the Weizsaecker

  1. Experience with the Monte Carlo Method

    Energy Technology Data Exchange (ETDEWEB)

    Hussein, E M.A. [Department of Mechanical Engineering University of New Brunswick, Fredericton, N.B., (Canada)

    2007-06-15

    Monte Carlo simulation of radiation transport provides a powerful research and design tool that resembles in many aspects laboratory experiments. Moreover, Monte Carlo simulations can provide an insight not attainable in the laboratory. However, the Monte Carlo method has its limitations, which if not taken into account can result in misleading conclusions. This paper will present the experience of this author, over almost three decades, in the use of the Monte Carlo method for a variety of applications. Examples will be shown on how the method was used to explore new ideas, as a parametric study and design optimization tool, and to analyze experimental data. The consequences of not accounting in detail for detector response and the scattering of radiation by surrounding structures are two of the examples that will be presented to demonstrate the pitfall of condensed.

  2. Experience with the Monte Carlo Method

    International Nuclear Information System (INIS)

    Hussein, E.M.A.

    2007-01-01

    Monte Carlo simulation of radiation transport provides a powerful research and design tool that resembles in many aspects laboratory experiments. Moreover, Monte Carlo simulations can provide an insight not attainable in the laboratory. However, the Monte Carlo method has its limitations, which if not taken into account can result in misleading conclusions. This paper will present the experience of this author, over almost three decades, in the use of the Monte Carlo method for a variety of applications. Examples will be shown on how the method was used to explore new ideas, as a parametric study and design optimization tool, and to analyze experimental data. The consequences of not accounting in detail for detector response and the scattering of radiation by surrounding structures are two of the examples that will be presented to demonstrate the pitfall of condensed

  3. Elastic and inelastic electrons in the double-slit experiment: A variant of Feynman's which-way set-up.

    Science.gov (United States)

    Frabboni, Stefano; Gazzadi, Gian Carlo; Grillo, Vincenzo; Pozzi, Giulio

    2015-07-01

    Modern nanotechnology tools allowed us to prepare slits of 90 nm width and 450 nm spacing in a screen almost completely opaque to 200 keV electrons. Then by covering both slits with a layer of amorphous material and carrying out the experiment in a conventional transmission electron microscope equipped with an energy filter we can demonstrate that the diffraction pattern, taken by selecting the elastically scattered electrons, shows the presence of interference fringes, but with a bimodal envelope which can be accounted for by taking into account the non-constant thickness of the deposited layer. However, the intensity of the inelastically scattered electrons in the diffraction plane is very broad and at the limit of detectability. Therefore the experiment was repeated using an aluminum film and a microscope also equipped with a Schottky field emission gun. It was thus possible to observe also the image due to the inelastically scattered electron, which does not show interference phenomena both in the Fraunhofer or Fresnel regimes. If we assume that inelastic scattering through the thin layer covering the slits provides the dissipative process of interaction responsible for the localization mechanism, then these experiments can be considered a variant of the Feynman which-way thought experiment. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Tokamak advanced pump limiter experiments and analysis

    International Nuclear Information System (INIS)

    Conn, R.W.

    1983-06-01

    Experiments with pump limiter modules on several operating tokamaks establish such limiters as efficient collectors of particles and has demonstrated the importance of ballistic scattering as predicted theoretically. Plasma interaction with recycling neutral gas appears to become important as the plasma density increases and the effective ionization mean free path within the module decreases. In limiters with particle collection but without active internal pumping, the neutral gas pressure is found to vary nonlinearly with the edge plasma density at the highest densities studies. Both experiments and theory indicate that the energy spectrum of gas atoms in the pump ducting is non-thermal, consistent with the results of Monte Carlo neutral atom transport calculations. The distribution of plasma power over the front surface of such modules has been measured and appears to be consistent with the predictions of simple theory. Initial results from the latest experiment on the ISX-B tokamak with an actively pumped limiter module demonstrates that the core plasma density can be controlled with a pump limiter and that the scrape-off layer plasma can partially screen the core plasma from gas injection. The results from module pump limiter experiments and from the theory and design analysis of advanced pump limiters for reactors are used to suggest the major features of a definitive, axisymmetric, toroidal belt pump limiter experiment

  5. Field Experiments on SAR Detection of Film Slicks

    Science.gov (United States)

    Ermakov, S.; da Silva, J. C. B.; Kapustin, I.; Sergievskaya, I.

    2013-03-01

    Field experiments on radar detection of film slicks using satellite synthetic aperture radar TerraSAR-X and X-band scatterometer on board a research vessel are described. The experiments were carried out with surfactant films with known physical parameters, the surface tension and the film elasticity, at low to moderate wind conditions and at different radar incidence angles. It is shown that the depression of radar backscatter (contrast) in films slicks for X-band SAR weakly depends on wind velocity/direction, film elasticity and incidence angles within the range of 200-400. Scatterometer contrasts obtained at incidence angles of about 600 are larger than SAR contrasts. Theoretical analysis of radar contrasts for low-to-moderate incidence angles has been carried out based on a hydrodynamic model of wind wave damping due to films and on a composite radar imaging model. The hydrodynamic model takes into account wave damping due to viscoelastic films, wind wave generation and a phenomenological term describing nonlinear limitation of the wind wave spectrum. The radar model takes into account Bragg scattering and specular scattering mechanisms, the latter is usually negligible compared to the Bragg mechanism at moderate incidence angles (larger than 30-35 degrees), but gives noticeable contribution to radar backscattering at smaller incidence angles particularly for slick areas when cm-scale ripples are strongly depressed by films. Calculated radar contrasts in slicks are compared with experiments and it is concluded that development of the model is needed to predict quantitatively observations.

  6. Point defects and defect clusters examined on the basis of some fundamental experiments

    International Nuclear Information System (INIS)

    Zuppiroli, L.

    1975-01-01

    On progressing from the centre of the defect to the surface the theoretical approach to a point defect passes from electronic theories to elastic theory. Experiments by which the point defect can be observed fall into two categories. Those which detect long-range effects: measurement of dimensional variations in the sample; measurement of the mean crystal parameter variation; elastic X-ray scattering near the nodes of the reciprocal lattice (Huang scattering). Those which detect more local effects: low-temperature resistivity measurement; positron capture and annihilation; local scattering far from the reciprocal lattice nodes. Experiments involving both short and long-range effects can always be found. This is the case for example with the dechanneling of α particles by defects. Certain of the experimental methods quoted above apply also to the study of point defect clusters. These methods are illustrated by some of their most striking results which over the last twenty years have refined our knowledge of point defects and defect clusters: length and crystal parameter measurements; diffuse X-ray scattering; low-temperature resistivity measurements; ion emission microscopy; electron microscopy; elastoresistivity [fr

  7. Beam Extinction Monitoring in the Mu2e Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Prebys, Eric [Fermilab; Bartoszek, Larry [Technicare; Gaponenko, Andrei [Fermilab; Kasper, Peter [Fermilab

    2015-06-01

    The Mu2e Experiment at Fermilab will search for the conversion of a muon to an electron in the field of an atomic nucleus with unprecedented sensitivity. The experiment requires a beam consisting of proton bunches approximately 200ns FW long, separated by 1.7 microseconds, with no out-of-time protons at the 10⁻¹⁰ fractional level. The verification of this level of extinction is very challenging. The proposed technique uses a special purpose spectrometer which will observe particles scattered from the production target of the experiment. The acceptance will be limited such that there will be no saturation effects from the in-time beam. The precise level and profile of the out-of-time beam can then be built up statistically, by integrating over many bunches.

  8. Matter Scatter and Energy Anarchy. The Second Law of Thermodynamics is Simply Common Experience.

    Science.gov (United States)

    Ross, Keith A.

    1988-01-01

    Shows that the second law of thermodynamics is in the common experience of many people and if taught first, before the law of conservation, can result in fewer misconceptions among pupils. Stresses the use of common experiences in teaching. (CW)

  9. Prospects of polarized fixed target Drell-Yan experiments

    International Nuclear Information System (INIS)

    Liu, M X; Jiang, X; Crabb, D G; Chen, J P; Bai, M

    2011-01-01

    It has been proposed that the Siverse transverse single spin asymmetry in Drell-Yan production in transversely polarized p+p collisions would have an opposite sign compared to what has been observed in the polarized Semi-Inclusive Deep Inelastic Scattering (SIDIS) experiments. Experimental confirmation or disproval of this prediction would provide a novel fundamental test of QCD and shed new light on our theoretical understanding of the transverse spin physics phenomena. We discuss the prospects and physics sensitivities of polarized fixed target Drell-Yan experiments that could utilize the existing proton and other hadron beams at Fermilab, and polarized proton beams at RHIC with a polarized solid proton and/or neutron target option. We show that if realized, the new experiments would provide critical measurements of not only the sign change (or not) of Sivers functions, but also the information of quark and antiquark's Sivers distributions over a wide kinematic range.

  10. Recoil detector test for the day-one experiment at HESR

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Qiang [Institute of Modern Physics, CAS, 730000 Lanzhou (China); Forschungszentrum Juelich, 52425 Juelich (Germany); Xu, Huagen; Ritman, James [Forschungszentrum Juelich, 52425 Juelich (Germany)

    2013-07-01

    The proposed day-one experiment at HESR is a dedicated measurement of antiproton-proton elastic scattering. The aim of the day-one experiment is to determine the elastic differential parameters (total cross section σ{sub T}, the ratio of real to imaginary part of the forward scattering amplitude ρ, and the slope parameter B) by measuring a large range of 4-momentum transfer squared t (0.0008-0.1 GeV{sup 2}). The conceptual design of the day-one experiment is to measure the elastic scattered antiproton and recoil proton, by a tracking detector in the small polar angle range and by an energy detector near 90 , respectively. The recoil arm covers a maximum polar angle range from 71 to 90 and consists of two silicon strip detectors (76.8(length) x 50.0(width) x 1.0(thickness) mm{sup 3}) and two germanium detectors (80.4(length) x 50.0(width) x 5.0 (11.0) (thickness) mm{sup 3}). All detectors are single sided structure with 1.2 mm pitch. The silicon detectors will be used to detect recoil protons with energy up to about 12 MeV and the germanium detectors will be used to detect protons with energy from 12 MeV to 60 MeV. At present, one recoil arm is being constructed and the test for the detectors with radioactive sources is on-going. Preliminary test results indicate that all detectors are operational and work properly. The latest test results of these detectors are presented.

  11. High luminosity muon scattering at FNAL

    International Nuclear Information System (INIS)

    Bazizi, K.; Conrad, J.; Fang, G.; Erdmann, M.; Geesaman, D.; Jackson, H.; Guyot, C.; Virchaux, M.; Holmgren, H.; Malensek, A.; Melanson, H.; Morfin, J.; Schellman, H.; Nickerson, R.

    1990-02-01

    The charge of this group was to evaluate the physics that can be done with a high luminosity μ scattering experiment at FNAL using the upgraded Tevatron muon beam, and consider the apparatus required. In this report, the physics that can be accomplished with a high luminosity μ scattering experiment is evaluated. The CERN and FNAL μ beams are compared in the context of such an experiment. The expected muon flux with the upgraded machine is estimated. Two possible detectors are compared: the air-core toroid experiment proposed by Guyot et al., and an upgraded version of the E665 double-diode apparatus now in place at FNAL. The relative costs of the detectors are considered. A list of detailed questions that need to be answered regarding the double-diode experiment has be compiled. 2 refs., 10 figs., 2 tabs

  12. Peaked signals from dark matter velocity structures in direct detection experiments

    Science.gov (United States)

    Lang, Rafael F.; Weiner, Neal

    2010-06-01

    In direct dark matter detection experiments, conventional elastic scattering of WIMPs results in exponentially falling recoil spectra. In contrast, theories of WIMPs with excited states can lead to nuclear recoil spectra that peak at finite recoil energies ER. The peaks of such signals are typically fairly broad, with ΔER/Epeak ~ 1. We show that in the presence of dark matter structures with low velocity dispersion, such as streams or clumps, peaks from up-scattering can become extremely narrow with FWHM of a few keV only. This differs dramatically from the conventionally expected WIMP spectrum and would, once detected, open the possibility to measure the dark matter velocity structure with high accuracy. As an intriguing example, we confront the observed cluster of 3 events near 42 keV from the CRESST commissioning run with this scenario. Inelastic dark matter particles with a wide range of parameters are capable of producing such a narrow peak. We calculate the possible signals at other experiments, and find that such particles could also give rise to the signal at DAMA, although not from the same stream. Over some range of parameters, a signal would be visible at xenon experiments. We show that such dark matter peaks are a very clear signal and can be easily disentangled from potential backgrounds, both terrestrial or due to WIMP down-scattering, by an enhanced annual modulation in both the amplitude of the signal and its spectral shape.

  13. Peaked signals from dark matter velocity structures in direct detection experiments

    International Nuclear Information System (INIS)

    Lang, Rafael F.; Weiner, Neal

    2010-01-01

    In direct dark matter detection experiments, conventional elastic scattering of WIMPs results in exponentially falling recoil spectra. In contrast, theories of WIMPs with excited states can lead to nuclear recoil spectra that peak at finite recoil energies E R . The peaks of such signals are typically fairly broad, with ΔE R /E peak ∼ 1. We show that in the presence of dark matter structures with low velocity dispersion, such as streams or clumps, peaks from up-scattering can become extremely narrow with FWHM of a few keV only. This differs dramatically from the conventionally expected WIMP spectrum and would, once detected, open the possibility to measure the dark matter velocity structure with high accuracy. As an intriguing example, we confront the observed cluster of 3 events near 42 keV from the CRESST commissioning run with this scenario. Inelastic dark matter particles with a wide range of parameters are capable of producing such a narrow peak. We calculate the possible signals at other experiments, and find that such particles could also give rise to the signal at DAMA, although not from the same stream. Over some range of parameters, a signal would be visible at xenon experiments. We show that such dark matter peaks are a very clear signal and can be easily disentangled from potential backgrounds, both terrestrial or due to WIMP down-scattering, by an enhanced annual modulation in both the amplitude of the signal and its spectral shape

  14. Artificial ionospheric modification: The Metal Oxide Space Cloud experiment

    Science.gov (United States)

    Caton, Ronald G.; Pedersen, Todd R.; Groves, Keith M.; Hines, Jack; Cannon, Paul S.; Jackson-Booth, Natasha; Parris, Richard T.; Holmes, Jeffrey M.; Su, Yi-Jiun; Mishin, Evgeny V.; Roddy, Patrick A.; Viggiano, Albert A.; Shuman, Nicholas S.; Ard, Shaun G.; Bernhardt, Paul A.; Siefring, Carl L.; Retterer, John; Kudeki, Erhan; Reyes, Pablo M.

    2017-05-01

    Clouds of vaporized samarium (Sm) were released during sounding rocket flights from the Reagan Test Site, Kwajalein Atoll in May 2013 as part of the Metal Oxide Space Cloud (MOSC) experiment. A network of ground-based sensors observed the resulting clouds from five locations in the Republic of the Marshall Islands. Of primary interest was an examination of the extent to which a tailored radio frequency (RF) propagation environment could be generated through artificial ionospheric modification. The MOSC experiment consisted of launches near dusk on two separate evenings each releasing 6 kg of Sm vapor at altitudes near 170 km and 180 km. Localized plasma clouds were generated through a combination of photoionization and chemi-ionization (Sm + O → SmO+ + e-) processes producing signatures visible in optical sensors, incoherent scatter radar, and in high-frequency (HF) diagnostics. Here we present an overview of the experiment payloads, document the flight characteristics, and describe the experimental measurements conducted throughout the 2 week launch window. Multi-instrument analysis including incoherent scatter observations, HF soundings, RF beacon measurements, and optical data provided the opportunity for a comprehensive characterization of the physical, spectral, and plasma density composition of the artificial plasma clouds as a function of space and time. A series of companion papers submitted along with this experimental overview provide more detail on the individual elements for interested readers.

  15. Data acquisition. GRAAL experiment. Hybrid reactor experiment. AMS experiment

    International Nuclear Information System (INIS)

    Barancourt, D.; Barbier, G.; Bosson, G.; Bouvier, J.; Gallin-Martel, L.; Meillon, B.; Stassi, P.; Tournier, M.

    1997-01-01

    The main activity of the data acquisition team has consisted in hardware and software developments for the GRAAL experiment with the trigger board, for the 'Reacteurs Hybrides' group with an acquisition board ADCVME8V and for the AMS experiment with the monitoring of the aerogel detector. (authors)

  16. High Foot Implosion Experiments in Rugby Hohlraums

    Science.gov (United States)

    Ralph, Joseph; Leidinger, J.-P.; Callahan, D.; Kaiser, P.; Morice, O.; Marion, D.; Moody, J. D.; Ross, J. S.; Amendt, P.; Kritcher, A. L.; Milovich, J. L.; Strozzi, D.; Hinkel, D.; Michel, P.; Berzak Hopkins, L.; Pak, A.; Dewald, E. L.; Divol, L.; Khan, S.; Rygg, R.; Hurricane, O.; Lawrence Livermore National Lab Team; CEA/DAM Team

    2015-11-01

    The rugby hohlraum design is aimed at providing uniform x-ray drive on the capsule while minimizing the need for crossed beam energy transfer (CBET). As part of a series of experiments at the NIF using rugby hohlraums, design improvements in dual axis shock tuning experiments produced some of the most symmetric shocks measured on implosion experiments at the NIF. Additionally, tuning of the in-flight shell and hot spot shape have demonstrated that capsules can be tuned between oblate and prolate with measured velocities of nearly 340 km/s. However, these experimental measurements were accompanied by high levels of Stimulated Raman Scattering (SRS) that may result from the long inner beam path length, reamplification of the inner SRS by the outers, significant (CBET) or a combination of these. All rugby shots results were achieved with lower levels of hot electrons that can preheat the DT fuel layer for increased adiabat and reduced areal density. Detailed results from these experiments and those planned throughout the summer will be presented and compared with results obtained from cylindrical hohlraums. This work performed under the auspices of U.S. Department of Energy by Lawrence Livermore National Lab under Contract DE-AC52-07NA27344.

  17. GumTree - An Integrated Scientific Experiment Environment

    International Nuclear Information System (INIS)

    Lam, Tony; Hauser, Nick; Hathaway, Paul; Franceschini, Fredi; Rayner, Hugh; Zhang, Lidia; Goetz, Andy

    2005-01-01

    Full text: GumTree is an open source and multi-platform graphical user interface for performing neutron scattering and X-ray experiments. It handles the complete experiment life cycle from instrument calibration, data acquisition, and real time data analysis to results publication. The aim of the GumTree Project is to create a highly Integrated Scientific Experiment Environment (ISEE), allowing interconnectivity and data sharing between different distributed components such as motors, detectors, user proposal database and data analysis server. GumTree is being adapted to several instrument control server systems such as TANGO, EPICS and SICS, providing an easy-to-use front-end for users and simple-to-extend model for software developers. The design of GumTree is aimed to be reusable and configurable for any scientific instrument. GumTree will be adapted to six neutron beam instruments for the OPAL reactor at ANSTO. Other European institutes including ESRF, ILL and PSI have shown interest in using GumTree as their workbench for instrument control and data analysis. (authors)

  18. A Laboratory Experiment on EM Backscatter from Farley-Buneman and Gradient Drift Waves

    DEFF Research Database (Denmark)

    Alport, M. J.; D'Angelo, N.; Pécseli, Hans

    1981-01-01

    Results are reported of a laboratory experiment on Bragg backscatter of 3-cm microwaves by turbulent waves driven by the Farley-Buneman and gradient drift instabilities. The present work is the third in a series of laboratory experiments performed to test, under controlled conditions, prevalent i...... ideas on EM scattering by equatorial and high-latitude ionospheric waves and irregularities.......Results are reported of a laboratory experiment on Bragg backscatter of 3-cm microwaves by turbulent waves driven by the Farley-Buneman and gradient drift instabilities. The present work is the third in a series of laboratory experiments performed to test, under controlled conditions, prevalent...

  19. Diffraction experiments of argon or helium on polluted surfaces

    International Nuclear Information System (INIS)

    Berthier, J.P.; Constans, A.; Daury, G.; Lostis, P.

    1975-01-01

    Scattering patterns of molecular beams of argon or helium from metal surfaces (bulk metal or thin films) are reported. The pressure in the scattering chamber is about 10 -6 torr. So, the surfaces are polluted. Diffraction peaks are observed which can be interpreted very well by assuming that nitrogen, oxygen or carbon atoms are adsorbed of the surface. On the other hand, diffraction peaks from a silicon crystal have been observed which can be reproduced very well by using silicon crystal lattice. These experiments are not interpreted accurately, but show that molecular reflection can be used for some surface studies [fr

  20. Results of a first round 150 MeV nu/sub μ/ oscillation experiment and implications for future LAMPF experiments

    International Nuclear Information System (INIS)

    Cortez, B.; LoSecco, J.; Sulak, L.; Soukas, A.; Weng, W.

    1981-01-01

    We report on a sensitive search for neutrino oscillation. A pure nu/sub μ/ beam of low energy was constructed at the Brookhaven AGS. The appearance of any nu/sub e/ in the beam would signify oscillations. To maximize sensitivity the energy of the neutrino beam was reduced to 150 MeV. The existing neutrino beam line and a 30T liquid scintillation calorimeter used in previous nu p scattering experiments were utilized

  1. Raman scattering and modulated-DSC experiments on Potassium Germanate glasses*

    Science.gov (United States)

    Wang, N.; Novita, D.; Boolchand, P.

    2006-03-01

    We have synthesized titled glasses in the 0 modulated-DSC (MDSC) experiments. Raman lineshapes observed in the present work are quite similar to those reported by Henderson and Wang ^1. Preliminary MDSC experiments reveal glass transition temperatures, Tg(x), starting from a value of 570 C at x = 0, to decrease to 508 C near x = 0.06, and to increase thereafter almost linearly to 552 C as x increases to 0.15. On the other hand, the non-reversing enthalpy associated with Tg provides evidence of a global minimum in the 0.08 0.10 as Floppy, while those in the reversibility window as representing the Intermediate Phase^2. The space filling nature of the Intermediate Phase is, independently, corroborated by trends in molar volumes which show a broad global minimum in the 9-11% range. Identification of the three elastic phases provides a physical basis to understand the origin of the Germanate anomaly, and the electrical conductivity threshold when glasses become mechanically floppy. *Supported by NSF grant DMR 04-56472. ^1 G.S.Henderson and H.M.Wang, Eur. J. Mineral. 14, 733 (2002). ^2 P.Boolchand, G.Lucovsky, J.C. Phillips and M.F.Thorpe, Phil. Mag 85,3823 (2005).

  2. Design and performance of U7B beamline and X-ray diffraction and scattering station at NSRL and its preliminary experiments in protein crystallography

    International Nuclear Information System (INIS)

    Pan Guoqiang; Xu, Chaoyin; Fan Rong; Gao Chen; Lou Xiaohua; Teng Maikun; Huang Qingqiu; Niu Liwen

    2005-01-01

    This publication describes the design and performance of the U7B beamline and X-ray diffraction and diffuse scattering station at National Synchrotron Radiation Laboratory (NSRL). The beamline optics comprise a Pt-coated toroidal focusing mirror and a double-crystal Si(1 1 1) monochromator. A preliminary experiment of diffraction data collection and processing was carried out using a commercial imaging plate detector system (Mar345). The data collected from one single crystal of acutohaemolysin, a Lys49-type PLA2 from Agkistrodon acutus venom, are of high quality

  3. Electron scattering from sodium at intermediate energies

    International Nuclear Information System (INIS)

    Mitroy, J.; McCarthy, I.E.

    1986-10-01

    A comprehensive comparison is made between theoretical calculations and experimental data for intermediate energy (≥ 10 eV) electron scattering from sodium vapour. The theoretical predictions of coupled-channels calculations (including one, two or four channels) do not agree with experimental values of the differential cross sections for elastic scattering or the resonant 3s to 3p excitation. Increasingly-more-sophisticated calculations, incorporating electron correlations in the target states, and also including core-excited states in the close-coupling expansion, are done at a few selected energies in an attempt to isolate the cause of the discrepancies between theory and experiment. It is found that these more-sophisticated calculations give essentially the same results as the two- and four-channel calculations using Hartree-Fock wavefunctions. Comparison of the sodium high-energy elastic differential cross sections with those of neon suggests that the sodium differential cross section experiments may suffer from systematic errors. There is also disagreement, at the higher energies, between theoretical values for the scattering parameters and those that are derived from laser-excited superelastic scattering and electron photon coincidence experiments. When allowance is made for the finite acceptance angle of the electron spectrometers used in the experiments by convoluting the theory with a function representing the distribution of electrons entering the electron spectrometer it is found that the magnitudes of the differences between theory and experiment are reduced

  4. Hadron production in high energy muon scattering

    International Nuclear Information System (INIS)

    Hicks, R.G.

    1978-01-01

    An experiment was performed to study muon-proton scattering at an incident energy of 225 GeV and a total effective flux of 4.3 x 10 10 muons. This experiment is able to detect charged particles in coincidence with the scattered muon in the forward hemisphere, and results are reported for the neutral strange particles K/sub s/ 0 and Λ 0 decaying into two charged particles. Within experimental limits the masses and lifetimes of these particles are consistent with previous measurements. The distribution of hadrons produced in muon scattering was determined, measuring momentum components parallel and transverse to the virtual photon direction, and these distributions are compared to other high energy experiments involving the scattering of pions, protons, and neutrinos from protons. Structure functions for hadron production and particle ratios are calculated. No azimuthal dependence is observed, and lambda production does not appear to be polarized. The physical significance of the results is discussed within the frame-work of the quark-proton model

  5. Hadron production in high energy muon scattering

    International Nuclear Information System (INIS)

    Hicks, R.G.

    1978-01-01

    An experiment was performed to study muon-proton scattering at an incident energy of 225 GeV and a total effective flux of 4.3 x 10 10 muons. This experiment is able to detect charged particles in coincidence with the scattered muon in the forward hemisphere, and results are reported for the neutral strange particles K/sub s/ 0 and Λ 0 decaying into two charged particles. Within experimental limits the masses and lifetimes of these particles are consistent with previous measurements. The distribution of hadrons produced in muon scattering is determined, measuring momentum components parallel and transverse to the virtual photon direction, and these distributions are compared to other high energy experiments involving the scattering of pions, protons, and neutrinos from protons. Structure functions for hadron production and particle ratios are calculated. No azimuthal dependence is observed, and lambda production does not appear to be polarized. The physical significance of the results is discussed within the framework of the quark-parton model. 29 references

  6. High-energy 4ω probe laser for laser-plasma experiments at Nova

    International Nuclear Information System (INIS)

    Glenzer, S.H.; Weiland, T.L.; Bower, J.; MacKinnon, A.J.; MacGowan, B.J.

    1999-01-01

    For the characterization of inertial confinement fusion plasmas, we implemented a high-energy 4ω probe laser at the Nova laser facility. A total energy of >50 J at 4ω, a focal spot size of order 100 μm, and a pointing accuracy of 100 μm was demonstrated for target shots. This laser provides intensities of up to 3x10 14 Wcm -2 and therefore fulfills high-power requirements for laser-plasma interaction experiments. The 4ω probe laser is now routinely used for Thomson scattering. Successful experiments were performed in gas-filled hohlraums at electron densities of n e >2x10 21 cm -3 which represents the highest density plasma so far being diagnosed with Thomson scattering. copyright 1999 American Institute of Physics

  7. Analysis of high resolution scatter images from laser damage experiments performed on KDP

    International Nuclear Information System (INIS)

    Runkel, M.; Woods, B.; Yan, M.

    1996-01-01

    Interest in producing high damage threshold KH 2 PO 4 (KDP) and (D x H 1-x ) 2 PO 4 (KD*P, DKDP) for optical switching and frequency conversion applications is being driven by the system requirements for the National Ignition Facility (NIF) at Lawrence Livermore National Lab (LLNL). Historically, the path to achieving higher damage thresholds has been to improve the purity of crystal growth solutions. Application of advanced filtration technology has increased the damage threshold, but gives little insight into the actual mechanisms of laser damage. We have developed a laser scatter diagnostic to better study bulk defects and laser damage mechanisms in KDP and KD*P crystals. This diagnostic consists of a cavity doubled, kilohertz class, Nd:YLF laser (527 nm) and high dynamic range CCD camera which allows imaging of bulk scatter signals. With it, we have performed damage tests at 355 nm on four different open-quotes vintagesclose quotes of KDP crystals, concentrating on crystals produced via fast growth methods. We compare the diagnostic's resolution to LLNL's standard damage detection method of 100X darkfield microscopy and discuss its impact on damage threshold determination. We have observed the disappearance of scatter sites upon exposure to subthreshold irradiation. In contrast, we have seen scatterers appear where none previously existed. This includes isolated, large (high signal) sites as well as multiple small scatter sites which appear at fluences above 7 J/cm 2 (fine tracking). However, we have not observed a strong correlation of preexisting scatter sites and laser damage sites. We speculate on the connection between the laser-induced disappearance of scatter sites and the observed increase in damage threshold with laser conditioning

  8. np Elastic-scattering experiments with polarized neutron beams

    International Nuclear Information System (INIS)

    Chalmers, J.S.; Ditzler, W.R.; Hill, D.

    1985-01-01

    Measurements of the spin transfer parameters, K/sub NN/ and K/sub LL/, at 500, 650, and 800 MeV are presented for the reaction p-vector d → n-vector pp at 0 0 . The data are useful input to the NN data base and indicate that the quasi-free charge exchange (CEX) reaction is a useful mechanism for producing neutrons with at least 40% polarization at energies as low as 500 MeV. Measurements of np elastic scattering observables C/sub LL/ and C/sub SL/ covering 35 0 to 172 0 are performed using a polarized neutron beam at 500, 650, and 800 MeV. Preliminary results are presented. 3 refs., 6 figs

  9. Effect of gravitational focusing on annual modulation in dark-matter direct-detection experiments.

    Science.gov (United States)

    Lee, Samuel K; Lisanti, Mariangela; Peter, Annika H G; Safdi, Benjamin R

    2014-01-10

    The scattering rate in dark-matter direct-detection experiments should modulate annually due to Earth's orbit around the Sun. The rate is typically thought to be extremized around June 1, when the relative velocity of Earth with respect to the dark-matter wind is maximal. We point out that gravitational focusing can alter this modulation phase. Unbound dark-matter particles are focused by the Sun's gravitational potential, affecting their phase-space density in the lab frame. Gravitational focusing can result in a significant overall shift in the annual-modulation phase, which is most relevant for dark matter with low scattering speeds. The induced phase shift for light O(10)  GeV dark matter may also be significant, depending on the threshold energy of the experiment.

  10. Results from the LUX dark matter experiment

    Energy Technology Data Exchange (ETDEWEB)

    Horn, Markus, E-mail: markus.horn@yale.edu [Yale University, Dept. of Physics, 217 Prospect St., New Haven CT 06511 (United States); Akerib, D.S [Case Western Reserve University, Dept. of Physics, 10900 Euclid Ave, Cleveland, OH 44106 (United States); Araújo, H.M. [Imperial College London, High Energy Physics, Blackett Laboratory, London SW7 2BZ (United Kingdom); Bai, X. [South Dakota School of Mines and Technology, 501 East St Joseph St., Rapid City SD 57701 (United States); Bailey, A.J. [Imperial College London, High Energy Physics, Blackett Laboratory, London SW7 2BZ (United Kingdom); Balajthy, J. [University of Maryland, Dept. of Physics, College Park, MD 20742 (United States); Bernard, E. [Yale University, Dept. of Physics, 217 Prospect St., New Haven CT 06511 (United States); Bernstein, A. [Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA 94551 (United States); Bradley, A. [Case Western Reserve University, Dept. of Physics, 10900 Euclid Ave, Cleveland, OH 44106 (United States); Byram, D. [University of South Dakota, Dept. of Physics, 414E Clark St., Vermillion, SD 57069 (United States); Cahn, S.B. [Yale University, Dept. of Physics, 217 Prospect St., New Haven CT 06511 (United States); Carmona-Benitez, M.C. [University of California Santa Barbara, Dept. of Physics, Santa Barbara, CA (United States); Chan, C.; Chapman, J.J. [Brown University, Dept. of Physics, 182 Hope St., Providence, RI 02912 (United States); Chiller, A.A.; Chiller, C. [University of South Dakota, Dept. of Physics, 414E Clark St., Vermillion, SD 57069 (United States); Currie, A. [Imperial College London, High Energy Physics, Blackett Laboratory, London SW7 2BZ (United Kingdom); Viveiros, L. de [LIP-Coimbra, Department of Physics, University of Coimbra, Rua Larga, 3004-516 Coimbra (Portugal); Dobi, A. [University of Maryland, Dept. of Physics, College Park, MD 20742 (United States); and others

    2015-06-01

    The LUX (Large Underground Xenon) experiment aims at the direct detection of dark matter particles via their collisions with xenon nuclei. The 370 kg two-phase liquid xenon time projection chamber measures simultaneously the scintillation and ionization from interactions in the target. The ratio of these two signals provides very good discrimination between potential nuclear recoil and electronic recoil signals to search for WIMP-nucleon scattering. The LUX detector operates at the Sanford Underground Research Facility (Lead, South Dakota, USA) since February 2013. First results were presented in late 2013 setting the world's most stringent limits on WIMP-nucleon scattering cross-sections over a wide range of WIMP masses. A 300 day run beginning in 2014 will further improve the sensitivity and new calibration techniques will reduce systematics for the WIMP signal search.

  11. Results from the LUX dark matter experiment

    Science.gov (United States)

    Horn, Markus; Akerib, D. S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Bernard, E.; Bernstein, A.; Bradley, A.; Byram, D.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Chapman, J. J.; Chiller, A. A.; Chiller, C.; Currie, A.; de Viveiros, L.; Dobi, A.; Dobson, J.; Druszkiewicz, E.; Edwards, B.; Faham, C. H.; Fiorucci, S.; Flores, C.; Gaitskell, R. J.; Gehman, V. M.; Ghag, C.; Gibson, K. R.; Gilchriese, M. G. D.; Hall, C.; Hanhardt, M.; Haselschwardt, S.; Hertel, S. A.; Huang, D. Q.; Ihm, M.; Jacobsen, R. G.; Kazkaz, K.; Knoche, R.; Larsen, N. A.; Lee, C.; Lenardo, B.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Malling, D. C.; Mannino, R.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H.; Neves, F.; Ott, R. A.; Pangilinan, M.; Parker, P. D.; Pease, E. K.; Pech, K.; Phelps, P.; Reichhart, L.; Shutt, T.; Silva, C.; Solovov, V. N.; Sorensen, P.; O`Sullivan, K.; Sumner, T. J.; Szydagis, M.; Taylor, D.; Tennyson, B.; Tiedt, D. R.; Tripathi, M.; Uvarov, S.; Verbus, J. R.; Walsh, N.; Webb, R.; White, J. T.; Witherell, M. S.; Wolfs, F. L. H.; Woods, M.; Zhang, C.; LUX Collaboration

    2015-06-01

    The LUX (Large Underground Xenon) experiment aims at the direct detection of dark matter particles via their collisions with xenon nuclei. The 370 kg two-phase liquid xenon time projection chamber measures simultaneously the scintillation and ionization from interactions in the target. The ratio of these two signals provides very good discrimination between potential nuclear recoil and electronic recoil signals to search for WIMP-nucleon scattering. The LUX detector operates at the Sanford Underground Research Facility (Lead, South Dakota, USA) since February 2013. First results were presented in late 2013 setting the world's most stringent limits on WIMP-nucleon scattering cross-sections over a wide range of WIMP masses. A 300 day run beginning in 2014 will further improve the sensitivity and new calibration techniques will reduce systematics for the WIMP signal search.

  12. Results from the LUX dark matter experiment

    International Nuclear Information System (INIS)

    Horn, Markus; Akerib, D.S; Araújo, H.M.; Bai, X.; Bailey, A.J.; Balajthy, J.; Bernard, E.; Bernstein, A.; Bradley, A.; Byram, D.; Cahn, S.B.; Carmona-Benitez, M.C.; Chan, C.; Chapman, J.J.; Chiller, A.A.; Chiller, C.; Currie, A.; Viveiros, L. de; Dobi, A.

    2015-01-01

    The LUX (Large Underground Xenon) experiment aims at the direct detection of dark matter particles via their collisions with xenon nuclei. The 370 kg two-phase liquid xenon time projection chamber measures simultaneously the scintillation and ionization from interactions in the target. The ratio of these two signals provides very good discrimination between potential nuclear recoil and electronic recoil signals to search for WIMP-nucleon scattering. The LUX detector operates at the Sanford Underground Research Facility (Lead, South Dakota, USA) since February 2013. First results were presented in late 2013 setting the world's most stringent limits on WIMP-nucleon scattering cross-sections over a wide range of WIMP masses. A 300 day run beginning in 2014 will further improve the sensitivity and new calibration techniques will reduce systematics for the WIMP signal search

  13. Measurement of Nuclear Dependence in Inclusive Charged Current Neutrino Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Tice, Brian George [Rutgers Univ., New Brunswick, NJ (United States)

    2014-01-01

    Neutrino experiments use heavy nuclei (C, Fe, Pb) to achieve necessary statistics. However, the use of heavy nuclei exposes these experiments to the nuclear dependence of neutrino-nucleus cross sections, which are poorly known and difficult to model. This dissertation presents an analysis of the nuclear dependence of inclusive chargedcurrent neutrino scattering using events in carbon, iron, lead, and scintillator targets of the MINERvA detector. MINERvA (Main INjector ExpeRiment for -A) is a few-GeV neutrinonucleus scattering experiment at Fermilab.

  14. First Results of the LUX Dark Matter Experiment

    Science.gov (United States)

    Carmona-Benitez, M. C.; Akerib, D. S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E.; Bernstein, A.; Bradley, A.; Byram, D.; Cahn, S. B.; Chan, C.; Chapman, J. J.; Chiller, A. A.; Chiller, C.; Currie, A.; de Viveiros, L.; Dobi, A.; Dobson, J.; Druszkiewicz, E.; Edwards, B.; Faham, C. H.; Fiorucci, S.; Flores, C.; Gaitskell, R. J.; Gehman, V. M.; Ghag, C.; Gibson, K. R.; Gilchriese, M. G. D.; Hall, C.; Hanhardt, M.; Haselschwardt, S.; Hertel, S. A.; Horn, M.; Huang, D. Q.; Ihm, M.; Jacobsen, R. G.; Kazkaz, K.; Knoche, R.; Larsen, N. A.; Lee, C.; Lenardo, B.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Malling, D. C.; Manalaysay, A.; Mannino, R.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H.; Neves, F.; Ott, R. A.; Pangilinan, M.; Parker, P. D.; Pease, E. K.; Pech, K.; Phelps, P.; Reichhart, L.; Shutt, T.; Silva, C.; Solovov, V. N.; Sorensen, P.; O'Sullivan, K.; Sumner, T. J.; Szydagis, M.; Taylor, D.; Tennyson, B.; Tiedt, D. R.; Tripathi, M.; Tvrznikova, L.; Uvarov, S.; Verbus, J. R.; Walsh, N.; Webb, R.; White, J. T.; Witherell, M. S.; Wolfs, F. L. H.; Woods, M.; Zhang, C.; LUX Collaboration

    2016-04-01

    LUX (Large Underground Xenon) is a dark matter direct detection experiment deployed at the 4850' level of the Sanford Underground Research Facility (SURF) in Lead, SD, operating a 370 kg dual-phase xenon TPC. Results of the first WIMP search run were presented in late 2013, for the analysis of 85.3 live-days with a fiducial volume of 118 kg, taken during the period of April to August 2013. The experiment exhibited a sensitivity to spin-independent WIMP-nucleon elastic scattering with a minimum upper limit on the cross section of 7.6 ×10-46cm2 at a WIMP mass of 33 GeV/c2, becoming the world's leading WIMP search result, in conflict with several previous claimed hints of discovery.

  15. Spectroscopic study of light scattering in linear alkylbenzene for liquid scintillator neutrino detectors

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiang; Zhang, Zhenyu [Wuhan University, Hubei Nuclear Solid Physics Key Laboratory, Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan (China); Liu, Qian; Zheng, Yangheng [University of Chinese Academy of Sciences, School of Physics, Beijing (China); Han, Junbo [Huazhong University of Science and Technology, Wuhan National High Magnetic Field Center, Wuhan (China); Zhang, Xuan; Ding, Yayun; Zhou, Li; Cao, Jun; Wang, Yifang [Chinese Academy of Sciences, Institute of High Energy Physics, Beijing (China)

    2015-11-15

    We have set up a light scattering spectrometer to study the depolarization of light scattering in linear alkylbenzene. The scattering spectra show that the depolarized part of light scattering is due to Rayleigh scattering. The additional depolarized Rayleigh scattering can make the effective transparency of linear alkylbenzene much better than expected. Therefore, sufficient scintillation photons can transmit through large liquid scintillator detector, such as that of the JUNO experiment. Our study is crucial to achieving an unprecedented energy resolution of 3 %/√(E(MeV)) required for the JUNO experiment to determine the neutrino mass hierarchy. The spectroscopic method can also be used to examine the depolarization of other organic solvents used in neutrino experiments. (orig.)

  16. Spectroscopic study of light scattering in linear alkylbenzene for liquid scintillator neutrino detectors

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiang, E-mail: xiangzhou@whu.edu.cn [Hubei Nuclear Solid Physics Key Laboratory, Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, 430072, Wuhan (China); Liu, Qian, E-mail: liuqian@ucas.ac.cn [School of Physics, University of Chinese Academy of Sciences, 100049, Beijing (China); Han, Junbo [Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, 430074, Wuhan (China); Zhang, Zhenyu [Hubei Nuclear Solid Physics Key Laboratory, Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, 430072, Wuhan (China); Zhang, Xuan; Ding, Yayun [Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing (China); Zheng, Yangheng [School of Physics, University of Chinese Academy of Sciences, 100049, Beijing (China); Zhou, Li; Cao, Jun; Wang, Yifang [Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing (China)

    2015-11-21

    We have set up a light scattering spectrometer to study the depolarization of light scattering in linear alkylbenzene. The scattering spectra show that the depolarized part of light scattering is due to Rayleigh scattering. The additional depolarized Rayleigh scattering can make the effective transparency of linear alkylbenzene much better than expected. Therefore, sufficient scintillation photons can transmit through large liquid scintillator detector, such as that of the JUNO experiment. Our study is crucial to achieving an unprecedented energy resolution of 3 %/√(E(MeV)) required for the JUNO experiment to determine the neutrino mass hierarchy. The spectroscopic method can also be used to examine the depolarization of other organic solvents used in neutrino experiments.

  17. Intermediate neutron spectrum problems and the intermediate neutron spectrum experiment

    International Nuclear Information System (INIS)

    Jaegers, P.J.; Sanchez, R.G.

    1996-01-01

    Criticality benchmark data for intermediate energy spectrum systems does not exist. These systems are dominated by scattering and fission events induced by neutrons with energies between 1 eV and 1 MeV. Nuclear data uncertainties have been reported for such systems which can not be resolved without benchmark critical experiments. Intermediate energy spectrum systems have been proposed for the geological disposition of surplus fissile materials. Without the proper benchmarking of the nuclear data in the intermediate energy spectrum, adequate criticality safety margins can not be guaranteed. The Zeus critical experiment now under construction will provide this necessary benchmark data

  18. Determination of tin equilibrium isotope fractionation factors from synchrotron radiation experiments

    NARCIS (Netherlands)

    Polyakov, VB; Mineev, SD; Clayton, RN; Hu, G; Mineev, KS

    2005-01-01

    A method of determination of the reduced isotopic partition function ratio (beta-factor) from the partial density of state (PDOS) obtained by inelastic nuclear resonant X-ray scattering (INRXS) in synchrotron radiation experiments has been established. The method has been demonstrated by the example

  19. Intermediate energy nucleon-deuteron scattering theory.

    Science.gov (United States)

    Wilson, J. W.

    1973-01-01

    Sloan's conclusion (1969) that terms of the multiple-scattering series beyond single scattering contribute only to S- and P-wave amplitudes in an S-wave separable model is examined. A comparison of experiments with the calculation at 146 MeV shows that the conclusion is valid in nucleon-deuteron scattering applications.

  20. Time-of-flight data acquisition unit (DAU) for neutron scattering experiments. Specification of the requirements and design concept. Version 3.1

    International Nuclear Information System (INIS)

    Herdam, G.; Klessmann, H.; Wawer, W.; Adebayo, J.; David, G.; Szatmari, F.

    1989-12-01

    This specification describes the requirements for the Data Acquisition Unit (DAU) and defines the design concept for the functional units involved. The Data Acquisition Unit will be used in the following neutron scattering experiments: Time-of-Flight Spectrometer NEAT, Time-of-Flight Spectrometer SPAN. In addition, the data of the SPAN spectrometer in Spin Echo experiments will be accumulated. The Data Acquisition Unit can be characterised by the following requirements: Time-of-flight measurement with high time resolution (125 ns), sorting the time-of-flight in up to 4096 time channels (channel width ≥ 1 μs), selection of different time channel widths for peak and background, on-line time-of-flight correction for neutron flight paths of different lengths, sorting the detector position information in up to 4096 position channels, accumulation of two-dimensional spectra in a 32 Mbyte RAM memory (4 K time channels*4 K position channels*16 bits). Because of the stringent timing requirements the functional units of the DAU are hardware controlled via tables. The DAU is part of a process control system which has access to the functional units via the VMEbus in order to initialise, to load tables and control information, and to read status information and spectra. (orig.) With 18 figs

  1. Electron scattering on molecular hydrogen

    International Nuclear Information System (INIS)

    Wingerden, B. van.

    1980-01-01

    The author considers scattering phenomena which occur when a beam of electrons interacts with a molecular hydrogen gas of low density. Depending on the energy loss of the scattered electrons one can distinguish elastic scattering, excitation and (auto)ionization of the H 2 -molecule. The latter processes may also lead to dissociation. These processes are investigated in four experiments in increasing detail. (Auth.)

  2. The Experiment Factory: standardizing behavioral experiments

    Directory of Open Access Journals (Sweden)

    Vanessa V Sochat

    2016-04-01

    Full Text Available The administration of behavioral and experimental paradigms for psychology research is hindered by lack of a coordinated effort to develop and deploy standardized paradigms. While several frameworks (de Leeuw (2015; McDonnell et al. (2012; Mason and Suri (2011; Lange et al. (2015 have provided infrastructure and methods for individual research groups to develop paradigms, missing is a coordinated effort to develop paradigms linked with a system to easily deploy them. This disorganization leads to redundancy in development, divergent implementations of conceptually identical tasks, disorganized and error-prone code lacking documentation, and difficulty in replication. The ongoing reproducibility crisis in psychology and neuroscience research (Baker (2015; Open Science Collaboration (2015 highlights the urgency of this challenge: reproducible research in behavioral psychology is conditional on deployment of equivalent experiments. A large, accessible repository of experiments for researchers to develop collaboratively is most efficiently accomplished through an open source framework. Here we present the Experiment Factory, an open source framework for the development and deployment of web-based experiments. The modular infrastructure includes experiments, virtual machines for local or cloud deployment, and an application to drive these components and provide developers with functions and tools for further extension. We release this infrastructure with a deployment (http://www.expfactory.org that researchers are currently using to run a set of over 80 standardized web-based experiments on Amazon Mechanical Turk. By providing open source tools for both deployment and development, this novel infrastructure holds promise to bring reproducibility to the administration of experiments, and accelerate scientific progress by providing a shared community resource of psychological paradigms.

  3. Gamow-Teller strength functions from (→p,→p') scattering experiments

    International Nuclear Information System (INIS)

    Hausser, O.

    1987-01-01

    We present here recent (→p, →'p) results from TRIUMF that are relevant to the determination of spin-flip isovector strength functions in nuclei. Distortion factors needed for the extraction of nuclear-structure information have been deduced from cross sections and analyzing powers in elastic scattering for several energies and targets. Nonrelativistic optical potentials obtained by folding effective nucleon (N)-nucleus interactions with nuclear densities are found to overpredict both elastic and reaction cross sections, whereas Dirac calculations that include Pauli blocking are in good agreement with the data. Spin observables (S nn and A y ) for the quasi-elastic region in 54 Fe(→p, →p) at 290 MeV provide some evidence for the reduction of the effective proton mass predicted in relativistic mean-field theories as a consequence of the attractive scalar field in the nuclear medium. The energy dependence of the effective N-nucleus interaction at small momentum transfers has been investigated using isoscalar and isovector 1 + states in 28 Si as probe states. We find that the cross sections for the isovector transitions are in good agreement with predictions for the dominant Vστ part of the Franey-Love interaction. Gamow-Teller (GT) strength functions have been obtained in 24 Mg and 54 Fe from measurements of both cross sections and spin-flip probabilities S nn . The spin-flip cross sections σS nn are particularly useful in heavier nuclei to discriminate against a continuous background of ΔS = 0 excitations. In the (s, d) shell where full shell-model wave functions are available, the GT quenching factors (g A eff / g A free ) 2 ≅ 0.7 are in good agreement with those from recent (p, n) and (n, p) experiments. We show that a state-by-state comparison of (p, p') and (e, e') results has the potential of identifying pionic current contributions in (e, e'). The GT quenching factors in 54 Fe are smaller than in the (s, d) shell probably because of severely

  4. Collaborative Research: Equipment for and Running of the PSI MUSE Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kohl, Michael [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-10-01

    The R&D funding from this award has been a significant tool to move the Muon Scattering Experiment (MUSE) at the Paul Scherrer Institute in Switzerland forward to the stage of realization. Specifically, this award has enabled Dr. Michael Kohl and his working group at Hampton University to achieve substantial progress toward the goal of providing beam particle tracking with Gas Electron Multiplier (GEM) detectors for MUSE experiment. Establishing a particle detection system that is capable of operating in a high-intensity environment, with a data acquisition system capable of running at several kHz, combined with robust tracking software providing high efficiency for track reconstruction in the presence of noise and backgrounds will have immediate application in many other experiments.

  5. Collaborative Research: Equipment for and Running of the PSI MUSE Experiment

    International Nuclear Information System (INIS)

    Kohl, Michael

    2016-01-01

    The R&D funding from this award has been a significant tool to move the Muon Scattering Experiment (MUSE) at the Paul Scherrer Institute in Switzerland forward to the stage of realization. Specifically, this award has enabled Dr. Michael Kohl and his working group at Hampton University to achieve substantial progress toward the goal of providing beam particle tracking with Gas Electron Multiplier (GEM) detectors for MUSE experiment. Establishing a particle detection system that is capable of operating in a high-intensity environment, with a data acquisition system capable of running at several kHz, combined with robust tracking software providing high efficiency for track reconstruction in the presence of noise and backgrounds will have immediate application in many other experiments.

  6. Acoustic resonances of fluid-immersed elastic cylinders and spheroids: Theory and experiment

    Science.gov (United States)

    Niemiec, Jan; Überall, Herbert; Bao, X. L.

    2002-05-01

    Frequency resonances in the scattering of acoustic waves from a target object are caused by the phase matching of surface waves repeatedly encircling the object. This is exemplified here by considering elastic finite cylinders and spheroids, and the phase-matching condition provides a means of calculating the complex resonance frequencies of such objects. Tank experiments carried out at Catholic University, or at the University of Le Havre, France by G. Maze and J. Ripoche, have been interpreted using this approach. The experiments employed sound pulses to measure arrival times, which allowed identification of the surface paths taken by the surface waves, thus giving rise to resonances in the scattering amplitude. A calculation of the resonance frequencies using the T-matrix approach showed satisfactory agreement with the experimental resonance frequencies that were either measured directly (as at Le Havre), or that were obtained by the interpretation of measured arrival times (at Catholic University) using calculated surface wave paths, and the extraction of resonance frequencies therefrom, on the basis of the phase-matching condition. Results for hemispherically endcapped, evacuated steel cylinders obtained in a lake experiment carried out by the NSWC were interpreted in the same fashion.

  7. The new spin physics program of the COMPASS experiment

    Directory of Open Access Journals (Sweden)

    Silva Luís

    2015-01-01

    Full Text Available The COMPASS experiment, at CERN SPS, has been compiling for more than a decade successful and precise results on nucleon structure and hadron spectroscopy, leading to statistical errors much smaller than previously measured. The new COMPASS spin physics program, starting this year, aims to a rather complete nucleon structure description; this new representation goes beyond the collinear approximation by including the quark intrinsic transverse momentum distributions. The theoretical framework, for this new picture of the nucleon, is given by the Transverse Momentum Dependent distributions (TMDs and by the Generalised Parton Distributions (GPDs. The TMDs, in particular Sivers, Boer-Mulders, pretzelosity and transversity functions will be obtained through the polarised Drell-Yan process, for the first time. The results will be complementary to those already obtained via polarised Semi-Inclusive Deep Inelastic Scattering (SIDIS. Also unpolarised SIDIS will be studied, allowing the knowledge improvement of the strange quark PDF and the access to the kaon fragmentation functions (FFs. Deeply Virtual Compton Scattering (DVCS off an unpolarised hydrogen target will be used to study the GPDs, in a kinematic region not yet covered by any existing experiment.

  8. Small-angle and surface scattering from porous and fractal materials.

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, S. K.

    1998-09-18

    We review the basic theoretical methods used to treat small-angle scattering from porous materials, treated as general two-phase systems, and also the basic experimental techniques for carrying out such experiments. We discuss the special forms of the scattering when the materials exhibit mass or surface fractal behavior, and review the results of recent experiments on several types of porous media and also SANS experiments probing the phase behavior of binary fluid mixtures or polymer solutions confined in porous materials. Finally, we discuss the analogous technique of off-specular scattering from surfaces and interfaces which is used to study surface roughness of various kinds.

  9. Possible role of double scattering in electron-atom scattering in a laser field

    International Nuclear Information System (INIS)

    Rabadan, I.; Mendez, L.; Dickinson, A.S.

    1996-01-01

    By considering observations of double-scattering effects in the excitation of the 2 1 P level of He, gas density values estimated for the laser-assisted elastic scattering experiments of Wallbank and Holmes (1993, 1994a,b) for which the Kroll-Watson approximation appears to fail. Using comparable densities for He and lower densities for Ar, and assuming the Kroll-Watson approximation for single-scattering events, differential cross sections are calculated including double scattering for laser-assisted scattering for a range of energies and scattering angles. Comparison with the observed values shows that double-scattering effects can give a semi-quantitative explanation of the apparent breakdown of the Kroll-Watson approximation in both He and Ar. (author)

  10. Hard X-ray techniques suitable for polymer experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bras, W; Goossens, H; Goderis, B, E-mail: Wim.Bras@esrf.fr [Netherlands Organisation for Scientific Research (NWO) (Netherlands); DUBBLE-ESRF, BP 220, F38043 Grenoble Cedex (France); Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands); Molecular and Nanomaterials, Chemistry Department, Catholic University of Leuven, Celestijnenlaan 200F (Belgium)

    2010-11-15

    Polymers have been studied since 1979 with 8-12 keV synchrotron radiation X-ray scattering methods and the number and sophistication of the experiments have rapidly grown ever since. More recently, new experimental techniques have been developed that use softer or harder X-rays in less conventional ways. This article provides a brief overview of the possibilities of hard X-ray techniques and indicates some areas that might gain from further developments.

  11. Hard X-ray techniques suitable for polymer experiments

    International Nuclear Information System (INIS)

    Bras, W; Goossens, H; Goderis, B

    2010-01-01

    Polymers have been studied since 1979 with 8-12 keV synchrotron radiation X-ray scattering methods and the number and sophistication of the experiments have rapidly grown ever since. More recently, new experimental techniques have been developed that use softer or harder X-rays in less conventional ways. This article provides a brief overview of the possibilities of hard X-ray techniques and indicates some areas that might gain from further developments.

  12. CONFERENCE: Elastic and diffractive scattering

    Energy Technology Data Exchange (ETDEWEB)

    White, Alan

    1989-09-15

    Elastic scattering, when particles appear to 'bounce' off each other, and the related phenomena of diffractive scattering are currently less fashionable than the study of hard scattering processes. However this could change rapidly if unexpected results from the UA4 experiment at the CERN Collider are confirmed and their implications tested. These questions were highlighted at the third 'Blois Workshop' on Elastic and Diffractive Scattering, held early in May on the Evanston campus of Northwestern University, near Chicago.

  13. Simulation of isotropic scattering of charged particles by composed potentials

    CERN Document Server

    Gerasimov, O Y

    2003-01-01

    The analytical model of scattering of charged particles by a multicentered adiabatic potential which consists of the long-range Coulomb and short-range potentials is used for the parametrization of experiments of elastic low-energy proton-deuteron scattering. For the energies 2.26-13 MeV, the analytical expressions for the phase scattering function in terms of identical parameters which depend on the lengths and effective radii of proton-proton and proton-neutron scattering and on the effective size of deuteron are obtained. The results are in good qualitative accordance with experiments.

  14. Concrete benchmark experiment: ex-vessel LWR surveillance dosimetry

    International Nuclear Information System (INIS)

    Ait Abderrahim, H.; D'Hondt, P.; Oeyen, J.; Risch, P.; Bioux, P.

    1993-09-01

    The analysis of DOEL-1 in-vessel and ex-vessel neutron dosimetry, using the DOT 3.5 Sn code coupled with the VITAMIN-C cross-section library, showed the same C/E values for different detectors at the surveillance capsule and the ex-vessel cavity positions. These results seem to be in contradiction with those obtained in several Benchmark experiments (PCA, PSF, VENUS...) when using the same computational tools. Indeed a strong decreasing radial trend of the C/E was observed, partly explained by the overestimation of the iron inelastic scattering. The flat trend seen in DOEL-1 could be explained by compensating errors in the calculation such as the backscattering due to the concrete walls outside the cavity. The 'Concrete Benchmark' experiment has been designed to judge the ability of this calculation methods to treat the backscattering. This paper describes the 'Concrete Benchmark' experiment, the measured and computed neutron dosimetry results and their comparison. This preliminary analysis seems to indicate an overestimation of the backscattering effect in the calculations. (authors). 5 figs., 1 tab., 7 refs

  15. Drilling in tempered glass – modelling and experiments

    DEFF Research Database (Denmark)

    Nielsen, Jens Henrik

    The present paper reports experimentally and numerically obtained results for the process of drilling in tempered glass. The experimental results are drilling depths on the edge in 19mm tempered glass with a known residual stress state measured by a scattered light polariscope. The experiments have...... been modelled using a state-of-the-art model and compared with satisfying result to the performed experiments. The numerical model has been used for a parametric study, investigating the redistribution of residual stresses during the process of drilling. This is done for investigating the possibility...... of applying forces in such holes and thereby being able to mechanically assemble tempered glass without the need of drilling holes before the tempering process. The paper is the result of currently ongoing research and the results should be treated as so....

  16. Thermal-neutron multiple scattering: critical double scattering

    International Nuclear Information System (INIS)

    Holm, W.A.

    1976-01-01

    A quantum mechanical formulation for multiple scattering of thermal-neutrons from macroscopic targets is presented and applied to single and double scattering. Critical nuclear scattering from liquids and critical magnetic scattering from ferromagnets are treated in detail in the quasielastic approximation for target systems slightly above their critical points. Numerical estimates are made of the double scattering contribution to the critical magnetic cross section using relevant parameters from actual experiments performed on various ferromagnets. The effect is to alter the usual Lorentzian line shape dependence on neutron wave vector transfer. Comparison with corresponding deviations in line shape resulting from the use of Fisher's modified form of the Ornstein-Zernike spin correlations within the framework of single scattering theory leads to values for the critical exponent eta of the modified correlations which reproduce the effect of double scattering. In addition, it is shown that by restricting the range of applicability of the multiple scattering theory from the outset to critical scattering, Glauber's high energy approximation can be used to provide a much simpler and more powerful description of multiple scattering effects. When sufficiently close to the critical point, it provides a closed form expression for the differential cross section which includes all orders of scattering and has the same form as the single scattering cross section with a modified exponent for the wave vector transfer

  17. The Manuel Lujan, Jr. Neutron Scattering Center, LANSCE experiment reports: 1990 Run Cycle

    Energy Technology Data Exchange (ETDEWEB)

    DiStravolo, M.A. (comp.)

    1991-10-01

    This year was the third in which LANSCE ran a formal user program. A call for proposals was issued before the scheduled run cycles, and experiment proposals were submitted by scientists from universities, industry, and other research facilities around the world. An external program advisory committee, which LANSCE shares with the Intense Pulsed Neutron Source (IPNS), Argonne National Laboratory examined the proposals and made recommendations. At LANSCE, neutrons are produced by spallation when a pulsed, 800-MeV proton beam impinges on a tungsten target. The proton pulses are provided by the Clinton P. Anderson Meson Physics Facility (LAMPF) accelerator and an associated Proton Storage Ring (PSR), which can alter the intensity, time structure, and repetition rate of the pulses. The LAMPF protons of Line D are shared between the LANSCE target and the Weapons Neutron Research facility, which results in LANSCE spectrometers being available to external users for unclassified research about 80% of each six-month LAMPF run cycle. Measurements of interest to the Los Alamos National Laboratory may also be performed and may occupy up to an additional 20% of the available beam time. These experiments are reviewed by an internal program advisory committee. One hundred thirty-four proposals were submitted for unclassified research and twelve proposals for research of a programmatic nature to the Laboratory. Our definition of beam availability is when the proton current from the PSR exceeds 50% of the planned value. The PSR ran at 65{mu}A current (average) at 20 Hz for most of 1990. All of the scheduled experiments were performed and experiments in support of the LANSCE research program were accomplished during the discretionary periods.

  18. The Manuel Lujan, Jr. Neutron Scattering Center, LANSCE experiment reports: 1990 Run Cycle

    International Nuclear Information System (INIS)

    DiStravolo, M.A.

    1991-10-01

    This year was the third in which LANSCE ran a formal user program. A call for proposals was issued before the scheduled run cycles, and experiment proposals were submitted by scientists from universities, industry, and other research facilities around the world. An external program advisory committee, which LANSCE shares with the Intense Pulsed Neutron Source (IPNS), Argonne National Laboratory examined the proposals and made recommendations. At LANSCE, neutrons are produced by spallation when a pulsed, 800-MeV proton beam impinges on a tungsten target. The proton pulses are provided by the Clinton P. Anderson Meson Physics Facility (LAMPF) accelerator and an associated Proton Storage Ring (PSR), which can alter the intensity, time structure, and repetition rate of the pulses. The LAMPF protons of Line D are shared between the LANSCE target and the Weapons Neutron Research facility, which results in LANSCE spectrometers being available to external users for unclassified research about 80% of each six-month LAMPF run cycle. Measurements of interest to the Los Alamos National Laboratory may also be performed and may occupy up to an additional 20% of the available beam time. These experiments are reviewed by an internal program advisory committee. One hundred thirty-four proposals were submitted for unclassified research and twelve proposals for research of a programmatic nature to the Laboratory. Our definition of beam availability is when the proton current from the PSR exceeds 50% of the planned value. The PSR ran at 65μA current (average) at 20 Hz for most of 1990. All of the scheduled experiments were performed and experiments in support of the LANSCE research program were accomplished during the discretionary periods

  19. Virtual synchrotron experiments for deep Earth studies

    Science.gov (United States)

    Jackson, J. M.; Alp, E. E.; Zhao, J.; Alatas, A.; Sturhahn, W.

    2011-12-01

    National facilities offer one-of-a-kind opportunities to apply state-of-the-art experimental techniques to the pressing scientific problems of today. Yet, few students are able to experience research projects at national facilities due to limited accessibility caused in part by limited involvement in the local academic institution, constrained working areas at the experimental stations, and/or travel costs. We present a virtual and remote beam-line for deep Earth mineral physics studies using nuclear resonant and inelastic x-ray scattering methods at Sector 3 of the Advanced Photon Source at Argonne National Laboratory. Off-site students have the capability of controlling their measurements via secure internet connections and webcams. Students can access a 'view only mode' for ease of interaction and safety-control. More experienced users have exclusive control of the experiment and can remotely change variables within the experimental setup.

  20. Dipole strength distributions from HIGS Experiments

    Science.gov (United States)

    Werner, V.; Cooper, N.; Goddard, P. M.; Humby, P.; Ilieva, R. S.; Rusev, G.; Beller, J.; Bernards, C.; Crider, B. P.; Isaak, J.; Kelley, J. H.; Kwan, E.; Löher, B.; Peters, E. E.; Pietralla, N.; Romig, C.; Savran, D.; Scheck, M.; Tonchev, A. P.; Tornow, W.; Yates, S. W.; Zweidinger, M.

    2015-05-01

    A series of photon scattering experiments has been performed on the double-beta decay partners 76Ge and 76Se, in order to investigate their dipole response up to the neutron separation threshold. Gamma-ray beams from bremsstrahlung at the S-DALINAC and from Compton-backscattering at HIGS have been used to measure absolute cross sections and parities of dipole excited states, respectively. The HIGS data allows for indirect measurement of averaged branching ratios, which leads to significant corrections in the observed excitation cross sections. Results are compared to statistical calculations, to test photon strength functions and the Axel-Brink hypothesis

  1. Elastic and inelastic electrons in the double-slit experiment: A variant of Feynman's which-way set-up

    Energy Technology Data Exchange (ETDEWEB)

    Frabboni, Stefano [Department FIM, University of Modena and Reggio Emilia, Via G. Campi 213/a, 41125 Modena (Italy); CNR-Institute of Nanoscience-S3, Via G. Campi 213/a, 41125 Modena (Italy); Gazzadi, Gian Carlo [CNR-Institute of Nanoscience-S3, Via G. Campi 213/a, 41125 Modena (Italy); Grillo, Vincenzo [CNR-Institute of Nanoscience-S3, Via G. Campi 213/a, 41125 Modena (Italy); CNR-IMEM, Parco delle Scienze 37a, 43100 Parma (Italy); Pozzi, Giulio [Department of Physics and Astronomy, University of Bologna, Viale B. Pichat 6/2, 40127 Bologna (Italy)

    2015-07-15

    Modern nanotechnology tools allowed us to prepare slits of 90 nm width and 450 nm spacing in a screen almost completely opaque to 200 keV electrons. Then by covering both slits with a layer of amorphous material and carrying out the experiment in a conventional transmission electron microscope equipped with an energy filter we can demonstrate that the diffraction pattern, taken by selecting the elastically scattered electrons, shows the presence of interference fringes, but with a bimodal envelope which can be accounted for by taking into account the non-constant thickness of the deposited layer. However, the intensity of the inelastically scattered electrons in the diffraction plane is very broad and at the limit of detectability. Therefore the experiment was repeated using an aluminum film and a microscope also equipped with a Schottky field emission gun. It was thus possible to observe also the image due to the inelastically scattered electron, which does not show interference phenomena both in the Fraunhofer or Fresnel regimes. If we assume that inelastic scattering through the thin layer covering the slits provides the dissipative process of interaction responsible for the localization mechanism, then these experiments can be considered a variant of the Feynman which-way thought experiment. - Highlights: • Fabrication by focused ion beam and electron beam induced deposition of two slits covered by electron transparent materials. • Two slits interference experiment with elastic and inelastic electrons. • Analysis of Fraunhofer and Fresnel images of the two slits formed with elastic and inelastic (plasmon loss) electrons.

  2. Scattering measurements in Tokamak type devices

    International Nuclear Information System (INIS)

    Matoba, Tohru

    1975-03-01

    Theories, experiments and proposals for light scattering in Tokamak type devices are reviewed. Thomson scattering, measuring method of the current density distribution by scattering and resonance fluorescence are summarily described. These methods may be useful for diagnosis of the fusion plasmas. The report may help planning of the measuring apparatus for the fusion plasmas in future. (auth.)

  3. Neutron scattering on molten transition metals and on Fe-C melts

    International Nuclear Information System (INIS)

    Weber, M.

    1978-01-01

    In order to find out whether short-range order phenomena can be detected in iron-carbon melts, neutron scattering experiments were carried out in molten iron-carbon alloys. The method of isotope substitution, where the natural alloying iron was substituted by a 57 Fe-enriched isotope mixture, helped to increase the ratio between the scattering length of the carbon atoms and that of the iron atoms. The mean coherent scattering length for the isotope mixture which is required for further evaluation of the measurements, was determined in an experiment by measuring the limiting angle for total reflection of neutrons on evaporated films. From this determination of the scattering length, a value for the so far unknown scattering length of the 58 Fe isotope was obtained. The small angle scattering in corrected intensity curves of molten Fe-C alloys was investigated in detail. Scattering experiments in unalloyed Fe, Co, and Ni in the range of small scattering vectors proved that this small-angle scattering effect, which was observed here for the first time, is of magnetic origin. It is caused by short-range spin correlations fluctuating with space and time. [de

  4. LHC Optics Measurement with Proton Tracks Detected by the Roman Pots of the TOTEM Experiment

    CERN Document Server

    INSPIRE-00062364; Aspell, P; Atanassov, I; Avati, V; Baechler, J; Berardi, V; Berretti, M; Bossini, E; Bottigli, U; Bozzo, M; Brücken, E; Buzzo, A; Cafagna, F S; Catanesi, M G; Covault, C; Csanád, M; Csörgö, T; Deile, M; Doubek, M; Eggert, K; Eremin, V; Ferro, F; Fiergolski, A; Garcia, F; Georgiev, V; Giani, S; Grzanka, L; Hammerbauer, J; Heino, J; Hilden, T; Karev, A; Kašpar, J; Kopal, J; Kundrát, V; Lami, S; Latino, G; Lauhakangas, R; Leszko, T; Lippmaa, E; Lippmaa, J; Lokajíček, M V; Losurdo, L; Lo Vetere, M; Lucas Rodríguez, F; Macrí, M; Mäki, T; Mercadante, A; Minafra, N; Minutoli, S; Nemes, F; Niewiadomski, H; Oliveri, E; Oljemark, F; Orava, R; Oriunno, M; Österberg, K; Palazzi, P; Peroutka, Z; Procházka, J; Quinto, M; Radermacher, E; Radicioni, E; Ravotti, F; Robutti, E; Ropelewski, L; Ruggiero, G; Saarikko, H; Scribano, A; Smajek, J; Snoeys, W; Sziklai, J; Taylor, C; Turini, N; Vacek, V; Welti, J; Whitmore, J; Wyszkowski, P; Zielinski, K

    2014-10-28

    Precise knowledge of the beam optics at the LHC is crucial to fulfil the physics goals of the TOTEM experiment, where the kinematics of the scattered protons is reconstructed with the near-beam telescopes -- so-called Roman Pots (RP). Before being detected, the protons' trajectories are influenced by the magnetic fields of the accelerator lattice. Thus precise understanding of the proton transport is of key importance for the experiment. A novel method of optics evaluation is proposed which exploits kinematical distributions of elastically scattered protons observed in the RPs. Theoretical predictions, as well as Monte Carlo studies, show that the residual uncertainty of this optics estimation method is smaller than 0.25 percent.

  5. A study of quasi-elastic muon (anti) neutrino scattering in the NOMAD experiment

    International Nuclear Information System (INIS)

    Lyubushkin, V.V.; Popov, B.A.

    2008-01-01

    We have studied the muon neutrino and antineutrino-quasi-elastic (QEL) scattering reactions (ν μ n → μ - p and νbar μ p → μ + n) using a set of experimental data collected by the NOMAD collaboration. We have performed measurements of the cross section of these processes on a nuclear target (mainly carbon) normalizing it to the total ν μ (νbar μ ) charged current cross section. The results for the flux averaged QEL cross sections in the (anti)neutrino energy interval 3-100 GeV are (σ qel )ν μ = (0.92 ± 0.02 (stat.) ± 0.06 (syst.)) · 10 -38 cm 2 and (σ qel )νbar μ = (0.81 ± 0.05 (stat.) ± 0.08 (syst.)) · 10 -38 cm 2 for neutrino and antineutrino, respectively. The axial mass parameter M A was extracted from the measured quasi-elastic neutrino cross section. The corresponding result is M A = 1.05 ± 0.02 (stat.) ± 0.06 (syst.) GeV. It is consistent with the axial mass values recalculated from the antineutrino cross section and extracted from the pure Q 2 shape analysis of the high purity sample of ν μ quasi-elastic 2-track events, but has smaller systematic error and should be quoted as the main result of this work. The measured M A is found to be in good agreement with the world average value obtained in the previous deuterium filled bubble chamber experiments. These results do not support M A measurements published recently by the K2K and MiniBooNE collaborations, which reported somewhat larger values, which are however compatible with our results within their large errors

  6. Effect of neutrons scattered from boundary of neutron field on shielding experiment

    International Nuclear Information System (INIS)

    Ogawa, Tatsuhiko; Abe, Takuya; Kosako, Toshiso; Iimoto, Takeshi

    2009-01-01

    Neutron shielding experiment with 49 cm-thick ordinary concrete was carried out at the reactor 'Yayoi' The University of Tokyo. System of this experiment is enclosed by heavy concrete where neutrons backscattered from heavy concrete likely affected neutron flux on the back surface of shielding concrete. Reaction rate of 197 Au(n, γ), cadmium covered 197 Au(n, γ) and 115 In(n, n') in the shielding concrete was measured using foil activation method. Neutron transport calculation was carried out in order to simulate reaction rate by calculating neutron spectra and convoluting with neutron capture cross-section in neutron shielding concrete. Comparison was made between calculated reaction rate and experimental one, and almost satisfactory agreement was found except for the back surface of shielding. To compose adequate simulation model, description of heavy concrete behind the shielding was thought to be of importance. For example, disregarding neutrons backscattered from heavy concrete, calculation underestimated reaction rate by the factor of 10. In another example, assuming that chemical composition of heavy concrete is equal to the composition adopted from a literature, the reaction rate was overestimated by factor of 5. By making the composition of heavy concrete equal to that based on facility design, overestimation was found to be the factor of 2. Therefore, adequate description of chemical composition of heavy concrete is found to be of importance in order to simulate neutron induced reaction rate on the back surface of neutron shielding concrete in shielding experiment performed in a system enclosed by heavy concrete. (author)

  7. Fixed target electroweak and hard scattering physics

    International Nuclear Information System (INIS)

    Brock, R.; Brown, C.N.; Montgomery, H.E.; Corcoran, M.D.

    1990-02-01

    The possibilities for future physics and experiments involving weak and electromagnetic interactions, neutrino oscillations, general hard scattering and experiments involving nuclear targets were explored. The studies were limited to the physics accessible using fixed target experimentation. While some of the avenues explored turn out to be relatively unrewarding in the light of competition elsewhere in the world, there are a number of positive conclusions reached about experimentation in the energy range available to the Main Injector and Tevatron. Some of the experiments would benefit from the increased intensity available from the Tevatron utilizing the Main Injector, while some require this increase. Finally, some of the experiments would use the Main Injector low energy, high intensity extracted beams directly. A program of electroweak and hard scattering experiments at fixed target energies retains the potential for important contributions to physics. The key to major parts of this program would appear to be the existence of the Main Injector. 115 refs, 17 figs

  8. CONFERENCE: Elastic and diffractive scattering

    International Nuclear Information System (INIS)

    White, Alan

    1989-01-01

    Elastic scattering, when particles appear to 'bounce' off each other, and the related phenomena of diffractive scattering are currently less fashionable than the study of hard scattering processes. However this could change rapidly if unexpected results from the UA4 experiment at the CERN Collider are confirmed and their implications tested. These questions were highlighted at the third 'Blois Workshop' on Elastic and Diffractive Scattering, held early in May on the Evanston campus of Northwestern University, near Chicago

  9. X-ray scattering by interstellar dust

    International Nuclear Information System (INIS)

    Rolf, D.

    1980-10-01

    This thesis reports work carried out to make a first observation of x-rays scattered by interstellar dust grains. Data about the dust, obtained at wavelengths ranging from the infrared to ultra-violet spectral regions, are discussed in order to establish a useful description of the grains themselves. This is then used to estimate the magnitude and form of the expected x-ray scattering effect which is shown to manifest itself as a diffuse halo accompanying the image of a celestial x-ray source. Two x-ray imaging experiments are then discussed. The first, specifically proposed to look for this effect surrounding a point x-ray source, was the Skylark 1611 project, and comprised an imaging proportional counter coupled to an x-ray mirror. This is described up to its final calibration when the basis for a concise model of its point response function was established. The experiment was not carried out but its objective and the experience gained during its testing were transferred to the second of the x-ray imaging experiments, the Einstein Observatory. The new instrumental characteristics are described and a model for its point response function is developed. Using this, image data for the point x-ray source GX339-4 is shown to exhibit the sought after scattering phenomenon. (author)

  10. Current status of neutron scattering in Thailand

    International Nuclear Information System (INIS)

    Ampornrat, Pantip

    1999-01-01

    Thailand's neutron spectrometer has been installed soon after the startup of the reactor. The neutron scattering experiments have been done continuously, although there were some problems involving the neutron intensity and instruments. Development program has been planned for better experimental result. This paper reports the past and present status of neutron scattering equipment and experiments in Thailand. In addition, installation of a HRPD (High Resolution Powder Diffraction) system is included within the scope of the Ongkharak Nuclear Research Center project. (author)

  11. Neutrino scattering and the reactor antineutrino anomaly

    Science.gov (United States)

    Garcés, Estela; Cañas, Blanca; Miranda, Omar; Parada, Alexander

    2017-12-01

    Low energy threshold reactor experiments have the potential to give insight into the light sterile neutrino signal provided by the reactor antineutrino anomaly and the gallium anomaly. In this work we analyze short baseline reactor experiments that detect by elastic neutrino electron scattering in the context of a light sterile neutrino signal. We also analyze the sensitivity of experimental proposals of coherent elastic neutrino nucleus scattering (CENNS) detectors in order to exclude or confirm the sterile neutrino signal with reactor antineutrinos.

  12. Inclusive and exclusive deep-inelastic electron scattering

    International Nuclear Information System (INIS)

    Morgenstern, J.

    1985-11-01

    In this talk, I will present some deep inelastic electron scattering experiments done recently at Saclay with the purpose of studying high momentum components in the nucleus, many body effects as correlations, exchange currents, and the electron-nucleon interaction inside the nuclear medium. For that purpose we have performed (e,e') and (ee'p) experiments. When we detect only the scattered electron, we get some average properties less sensitive to final state interaction; in ee'p measurements we are more specific

  13. Elastic and inelastic electron and muon scattering

    International Nuclear Information System (INIS)

    Hand, L.N.

    1977-01-01

    The current status of experiments in the field of elastic and inelastic electron and muon scattering is discussed. The talk is divided into discussions of the single arm inclusive experiments at SLAC and Fermilab; the multiparticle inclusive experiments at SLAC, Fermilab und Cornell, and a description of selected results from exclusive channel measurements on electroproduced final states. (orig.) [de

  14. Scattering of electrons by alkali-halide molecules: LiBr and CsCl

    International Nuclear Information System (INIS)

    Vukovic, L.; Zuo, M.; Shen, G.F.; Stumpf, B.; Bederson, B.

    1989-01-01

    We have investigated small-angle electron scattering by highly polar molecules. Recoil experiments are performed at 5 and 20 eV for electrons scattered by LiBr and CsCl, within the shadow of the unscattered molecular beam. Low-angular-range scattering described by the Born approximation for rotating dipoles, combined with different theories for intermediate- and high-angle scattering, are compared with our results. Evaluated total scattering cross sections as well as momentum-transfer and viscosity cross sections are given. A general two-dimensional analysis of the recoil experiment is presented

  15. High-power laser experiments to study collisionless shock generation

    Directory of Open Access Journals (Sweden)

    Sakawa Y.

    2013-11-01

    Full Text Available A collisionless Weibel-instability mediated shock in a self-generated magnetic field is studied using two-dimensional particle-in-cell simulation [Kato and Takabe, Astophys. J. Lett. 681, L93 (2008]. It is predicted that the generation of the Weibel shock requires to use NIF-class high-power laser system. Collisionless electrostatic shocks are produced in counter-streaming plasmas using Gekko XII laser system [Kuramitsu et al., Phys. Rev. Lett. 106, 175002 (2011]. A NIF facility time proposal is approved to study the formation of the collisionless Weibel shock. OMEGA and OMEGA EP experiments have been started to study the plasma conditions of counter-streaming plasmas required for the NIF experiment using Thomson scattering and to develop proton radiography diagnostics.

  16. Spin observables in nucleon-nucleus scattering

    International Nuclear Information System (INIS)

    Moss, J.M.

    1982-01-01

    The curse of inelastic nucleon scattering and charge exchange has always been the enormous complexity of the nucleon-nucleon (N-N) interaction. This complexity, however, can also be viewed as the ultimate promise of nucleons as probes of nuclear structure. Given an adequate theoretical basis, inelastic nucleon scattering is capable of providing information not obtainable with other probes. Recently a revolution of experimental technique has taken place that makes it desirable to re-examine the question of what physics is ultimately obtainable from inelastic nucleon scattering. It is now feasible to perform complete polarization transfer (PT) experiments for inelastic proton scattering with high efficiency and excellent energy resolution. Programs to measure PT obsevables are underway at several laboratories, and results are beginning to appear. Objectives of this presentation are to examine how such experiments are done, and what physics is presently obtained and may ultimately be learned from them

  17. Elastic Scattering and Total Cross-Section in p+p reactions as measured by the LHC Experiment TOTEM at $\\sqrt{s}$ = 7 TeV

    CERN Document Server

    Csörgö, Tamás; Aspell, P; Atanassov, I; Avati, V; Baechler, J; Berardi, V; Berretti, M; Bossini, E; Bozzo, M; Brogi, P; Brücken, E; Buzzo, A; Cafagna, F S; Calicchio, M; Catanesi, M G; Covault, C; Csanád, M; Deile, M; Dimovasili, E; Doubek, M; Eggert, K; Eremin, V; Ferretti, R; Ferro, F; Fiergolski, A; Garcia, F; Giani, S; Greco, V; Grzanka, L; Heino, J; Hilden, T; Intonti, M R; Janda, M; Kaspar, J; Kopal, J; Kundrát, V; Kurvinen, K; Lami, S; Latino, G; Lauhakangas, R; Leszko, T; Lippmaa, E; Lokajícek, M; Lo Vetere, M; Lucas Rodríguez, F; Macrí, M; Magaletti, L; Magazzù, G; Mercadante, A; Meucci, M; Minutoli, S; Nemes, F; Niewiadomski, H; Noschis, E; Novák, T; Oliveri, E; Oljemark, F; Orava, R; Oriunno, M; Österberg, K; Palazzi, P; Perrot, A-L; Pedreschi, E; Petäjäjärvi, J; Procházka, J; Quinto, M; Radermacher, E; Radicioni, E; Ravotti, F; Robutti, E; Ropelewski, L; Ruggiero, G; Saarikko, H; Sanguinetti, G; Santroni, A; Scribano, A; Sette, G; Snoeys, W; Spinella, F; Sziklai, J; Taylor, C; Turini, N; Vacek, V; Vítek, M; Welti, J; Whitmore, J

    2012-01-01

    Proton-proton elastic scattering has been measured by the TOTEM experiment at the CERN Large Hadron Collider at $\\sqrt{s} = 7 $ TeV in special runs with the Roman Pot detectors placed as close to the outgoing beam as seven times the transverse beam size. The differential cross-section measurements are reported in the |t|-range of 0.36 to 2.5 GeV$^2$. Extending the range of data to low t values from 0.02 to 0.33 GeV$^2$,and utilizing the luminosity measurements of CMS, the total proton-proton cross section at $\\sqrt{s}$ = 7 TeV is measured to be $(98.3 \\pm 0.2^{stat} \\pm 2.8^{syst})$ mb.

  18. K-α X-ray Thomson Scattering From Dense Plasmas

    International Nuclear Information System (INIS)

    Kritcher, Andrea L.; Neumayer, Paul; Castor, John; Doeppner, Tilo; Landen, Otto L.; Ng, Andrew; Pollaine, Steve; Price, Dwight; Glenzer, Siegfried H.; Falcone, Roger W.; Ja Lee, Hae; Lee, Richard W.; Morse, Edward C.

    2009-01-01

    Spectrally resolved Thomson scattering using ultra-fast K-α x rays has measured the compression and heating of shocked compressed matter. The evolution and coalescence of two shock waves traveling through a solid density LiH target were characterized by the elastic scattering component. The density and temperature at shock coalescence, 2.2 eV and 1.7x10 23 cm -3 , were determined from the plasmon frequency shift and the relative intensity of the elastic and inelastic scattering features in the collective scattering regime. The observation of plasmon scattering at coalescence indicates a transition to the dense metallic state in LiH. The density and temperature regimes accessed in these experiments are relevant for inertial confinement fusion experiments and for the study of planetary formation.

  19. K-(alpha) X-ray Thomson Scattering From Dense Plasmas

    International Nuclear Information System (INIS)

    Kritcher, A.L.; Neumayer, P.; Castor, J.; Doppner, T.; Falcone, R.W.; Landen, O.L.; Lee, H.J.; Lee, R.W.; Morse, E.C.; Ng, A.; Pollaine, S.; Price, D.; Glenzer, S.H.

    2009-01-01

    Spectrally resolved Thomson scattering using ultra-fast K-α x-rays has measured the compression and heating of shocked compressed matter. The evolution and coalescence of two shock waves traveling through a solid density LiH target were characterized by the elastic scattering component. The density and temperature at shock coalescence, 2.2 eV and 1.7 x 10 23 cm -3 , were determined from the plasmon frequency shift and the relative intensity of the elastic and inelastic scattering features in the collective scattering regime. The observation of plasmon scattering at coalescence indicates a transition to the dense metallic state in LiH. The density and temperature regimes accessed in these experiments are relevant for inertial confinement fusion experiments and for the study of planetary formation

  20. Status of 2XIIB plasma confinement experiments

    International Nuclear Information System (INIS)

    Coensgen, F.J.; Clauser, J.F.; Correll, D.L.

    1976-01-01

    This report describes the status of 2XIIB neutral beam injection experiments with stabilizing plasma. The stream suppresses ion-cyclotron fluctuations and permits density to 5 x 10 13 cm -3 . The ion energy is 13 keV, and electron temperature reaches 140 eV. Plasma confinement increases with ion energy and n tau reaches 7 x 10 10 cm -3 .s at 13 keV. The n tau energy scaling is consistent with electron drag and ion-ion scattering losses. Buildup on a streaming plasma in a steady-state magnetic field is described

  1. Electron cooling application for luminosity preservation in an experiment with internal targets at COSY

    CERN Document Server

    Meshkov, I N; Maier, R; Prasuhn, D; Sidorin, A O; Smirnov, A V; Stein, H J; Stockhorst, H; Trubnikov, G V

    2003-01-01

    This report is an investigation of the beam parameter evolution in the experiments with internal target. In calculations of the proton and deuteron beams we concentrated on cluster, atomic beam, storage cell and pellet targets at ANKE experiment mainly. In these calculations electron and stochastic cooling, intrabeam scattering, scattering on the target and residual gas atoms are taken into account. Beam parameter evolution is investigated in the long-term time scale, up to one hour, at different beam energies in the range from 1.0 to 2.7 GeV for proton beam and from 1 to 2.11 GeV for deuteron beam. The results of numerical simulations of the proton and deuteron beam parameters at different energies obtained using new version of BETACOOL program (elaborated at the first stage of this work [1]) are presented. Optimum parameters of the electron cooling system are estimated. The COSY experiment requirements can be satisfied even when electron cooling time is rather long. That allows to apply an electron cooling ...

  2. Experiments on the nuclear interactions of pions. Progress report, December 1, 1980-November 30, 1981

    International Nuclear Information System (INIS)

    Minehart, R.C.; Ziock, K.O.H.

    1981-01-01

    Progress is reviewed in these research areas: π-d elastic scattering; π-elastic and quasi-free scattering from helium isotopes; pion charge exchange in 3 He; pion absorption in 3 He and 4 He; quasi-free pion scattering; π → μ + ν experiment; study of the π 0 → 2e decay; measurement of the π - - π 0 mass difference; design of a low energy pion spectrometer; π + d → p + p in the energy range 60 to 200 MeV

  3. Preliminary Langmuir probe results on the CTX gun experiment

    International Nuclear Information System (INIS)

    Tuszewski, M.

    1981-12-01

    Preliminary results obtained with a double Langmuir probe in the Compact Toroid experiment facility confirm the existence of a gun plasma of n approx. 5 x 10 14 cm -3 and T approx. 10 eV lasting for approx. 250 to 400 μs, which is consistent with interferometry and Thomson scattering data. The probe current characteristics as a function of voltage suggest non-Maxwellian features of the particles distribution functions

  4. Precise tests of x-ray scattering theories in the Compton regime

    International Nuclear Information System (INIS)

    Dunford, R. W.; Gemmell, D. S.; Kanter, E. P.; Kraessig, B.; Southworth, S. H.; Young, L.

    1999-01-01

    The authors report two experiments intended to test the accuracy of state-of-the-art theoretical predictions for x-ray scattering from low-Z atoms. The first one deals with the differential x-ray scattering cross sections in Ne and He from 11-22 keV and the Ne Compton-to-Rayleigh scattering ratio in this energy range. It was found that, in order to be consistent with the experimental results, an accurate description at low Z must include nonlocal exchange, electron correlation, and dynamic effects. The second experiment concerns the ratio of helium double-to-single ionization for Compton scattering in the 8-28 keV energy range where published experimental and theoretical results so far fail to give a consistent picture. The progress of the experiment and the data analysis is reported

  5. Res-Parity: Parity Violation in Inelastic scattering at Low Q2

    International Nuclear Information System (INIS)

    Paul Reimer; Peter Bosted; John Arrington; Hamlet Mkrtchyan; Xiaochao Zheng

    2006-01-01

    Parity violating electron scattering has become a well established tool which has been used, for example, to probe the Standard Model and the strange-quark contribution to the nucleon. While much of this work has focused on elastic scattering, the RES-Parity experiment, which has been proposed to take place at Jefferson Laboratory, would focus on inelastic scattering in the low-Q 2 , low-W domain. RES-Parity would search for evidence of quark-hadron duality and resonance structure with parity violation in the resonance region. In terms of parity violation, this region is essentially unexplored, but the interpretation of other high-precision electron scattering experiments will rely on a reasonable understanding of scattering at lower energy and low-W through the effects of radiative corrections. RES-Parity would also study nuclear effects with the weak current. Because of the intrinsic broad band energy spectrum of neutrino beams, neutrino experiments are necessarily dependent on an untested, implicit assumption that these effects are identical to electromagnetic nuclear effects. RES-Parity is a relatively straight forward experiment. With a large expected asymmetry (∼ 0.5 x 10 -4 ) these studies may be completed with in a relatively brief period

  6. Customer experience

    OpenAIRE

    Koperdáková, Zuzana

    2016-01-01

    Bachelor thesis deals with the theme of customer experience and terms related to this topic. The thesis consists of three parts. The first part explains the terms generally, as the experience or customer loyalty. The second part is dedicated to medotology used for Customer Experience Management. In the third part is described application of Customer Experience Management in practice, particularly in the context Touch Point Analyses in GE Money Bank.

  7. Electron scattering and reactions from exotic nuclei

    International Nuclear Information System (INIS)

    Karataglidis, S.

    2017-01-01

    The SCRIT and FAIR/ELISe experiments are the first to attempt to measure directly electron scattering form factors from nuclei far from stability. This will give direct information for the (one-body) charge densities of those systems, about which there is little information available. The SCRIT experiment will be taking data for medium-mass exotic nuclei, while the electron-ion collider at ELISe, when constructed, will be able to measure form factors for a wide range of exotic nuclei, as available from the radioactive ion beams produced by the FAIR experiment. Other facilities are now being proposed, which will also consider electron scattering from exotic nuclei at higher energies, to study short-range correlations in exclusive reactions. This review will consider all available information concerning the current status (largely theoretical) of electron scattering from exotic nuclei and, where possible, complement such information with equivalent information concerning the neutron densities of those exotic systems, as obtained from intermediate energy proton scattering. The issue of long- and short-range correlations will be discussed, and whether extending such studies to the exotic sector will elicit new information. (orig.)

  8. Electron scattering and reactions from exotic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Karataglidis, S. [University of Johannesburg, Department of Physics, Auckland Park (South Africa); University of Melbourne, School of Physics, Victoria (Australia)

    2017-04-15

    The SCRIT and FAIR/ELISe experiments are the first to attempt to measure directly electron scattering form factors from nuclei far from stability. This will give direct information for the (one-body) charge densities of those systems, about which there is little information available. The SCRIT experiment will be taking data for medium-mass exotic nuclei, while the electron-ion collider at ELISe, when constructed, will be able to measure form factors for a wide range of exotic nuclei, as available from the radioactive ion beams produced by the FAIR experiment. Other facilities are now being proposed, which will also consider electron scattering from exotic nuclei at higher energies, to study short-range correlations in exclusive reactions. This review will consider all available information concerning the current status (largely theoretical) of electron scattering from exotic nuclei and, where possible, complement such information with equivalent information concerning the neutron densities of those exotic systems, as obtained from intermediate energy proton scattering. The issue of long- and short-range correlations will be discussed, and whether extending such studies to the exotic sector will elicit new information. (orig.)

  9. Concrete benchmark experiment: ex-vessel LWR surveillance dosimetry; Experience ``Benchmark beton`` pour la dosimetrie hors cuve dans les reacteurs a eau legere

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, H.; D`Hondt, P.; Oeyen, J.; Risch, P.; Bioux, P.

    1993-09-01

    The analysis of DOEL-1 in-vessel and ex-vessel neutron dosimetry, using the DOT 3.5 Sn code coupled with the VITAMIN-C cross-section library, showed the same C/E values for different detectors at the surveillance capsule and the ex-vessel cavity positions. These results seem to be in contradiction with those obtained in several Benchmark experiments (PCA, PSF, VENUS...) when using the same computational tools. Indeed a strong decreasing radial trend of the C/E was observed, partly explained by the overestimation of the iron inelastic scattering. The flat trend seen in DOEL-1 could be explained by compensating errors in the calculation such as the backscattering due to the concrete walls outside the cavity. The `Concrete Benchmark` experiment has been designed to judge the ability of this calculation methods to treat the backscattering. This paper describes the `Concrete Benchmark` experiment, the measured and computed neutron dosimetry results and their comparison. This preliminary analysis seems to indicate an overestimation of the backscattering effect in the calculations. (authors). 5 figs., 1 tab., 7 refs.

  10. Color transparency after the NE18 and E665 experiments: Outlook and perspectives at CEBAF

    Energy Technology Data Exchange (ETDEWEB)

    Nemchik, J. [Inst. of Experimental Physicals, Kosice (Czechoslovakia); Nikolaev, N.N.; Zakharov, B.G. [L.D. Landau Inst. for Theoretical Physics, Moscow (Russian Federation)

    1994-04-01

    CEBAF is a high-luminocity factory of virtual photons with variable virtuality Q{sup 2} and transverse size. This makes CEBAF, in particular after the energy upgrade to (8-12)GeV, an ideal facility for uncovering new phenomena, and opening new windows, at the interface of the perturbative and nonperturbative QCD. The authors discuss color transparency as the case for a broad program on electroproduction of vector mesons {rho}{sup 0}, {omega}{sup 0}, {phi}{sup 0} and their radial excitations {rho}{prime}, {omega}{prime}, {phi}{prime} at CEBAF. They also comment on the second generation of experiments on color transparency in {sup 4}He(e, e{prime}p) scattering, which are also feasible at CEBAF. In 1994, they can make more reliable projections into future because their understanding of the onset of color transparency has greatly been augmented by two experiments completed in 1993: (i) no effect of CT was seen in the SLAC NE18 experiment on A(e, e{prime}p) scattering at virtualities of the exchanged photon Q{sup 2} {approx_lt} 7 GeV{sup 2}, (ii) strong signal of CT was observed in the FNAL E665 experiment on exclusive {rho}{sup 0}-meson production in deep inelastic scattering in the same range of Q{sup 2}. They discuss the impact of these observations on the CEBAF experimental program. They argue they both are good news, both were anticipated theoretically, and both rule in the correct QCD mechanism of the onset of CT.

  11. Laser experiments in light cloudiness with the geostationary satellite ARTEMIS

    Science.gov (United States)

    Kuzkov, V.; Kuzkov, S.; Sodnik, Z.

    2016-08-01

    The geostationary satellite ARTEMIS was launched in July 2001. The satellite is equipped with a laser communication terminal, which was used for the world's first inter-satellite laser communication link between ARTEMIS and the low earth orbit satellite SPOT-4. Ground-to-space laser communication experiments were also conducted under various atmospheric conditions involving ESA's optical ground station. With a rapidly increasing volume of information transferred by geostationary satellites, there is a rising demand for high-speed data links between ground stations and satellites. For ground-to-space laser communications there are a number of important design parameters that need to be addressed, among them, the influence of atmospheric turbulence in different atmospheric conditions and link geometries. The Main Astronomical Observatory of NAS of Ukraine developed a precise computer tracking system for its 0.7 m AZT-2 telescope and a compact laser communication package LACES (Laser Atmosphere and Communication experiments with Satellites) for laser communication experiments with geostationary satellites. The specially developed software allows computerized tracking of the satellites using their orbital data. A number of laser experiments between MAO and ARTEMIS were conducted in partial cloudiness with some amount of laser light observed through clouds. Such conditions caused high break-up (splitting) of images from the laser beacon of ARTEMIS. One possible explanation is Raman scattering of photons on molecules of a water vapor in the atmosphere. Raman scattering causes a shift in a wavelength of the photons.In addition, a different value for the refraction index appears in the direction of the meridian for the wavelength-shifted photons. This is similar to the anomalous atmospheric refraction that appears at low angular altitudes above the horizon. We have also estimated the atmospheric attenuation and the influence of atmospheric turbulence on observed results

  12. Resolution of the VESUVIO spectrometer for High-energy Inelastic Neutron Scattering experiments

    Energy Technology Data Exchange (ETDEWEB)

    Imberti, S. [Universita degli Studi di Roma Tre, Dipartimento di Fisica ' E.Amaldi' , Rome (Italy) and CNR-INFM, Rome (Italy)]. E-mail: silvia.imberti@roma2.infn.it; Andreani, C. [Universita degli Studi di Roma Tor Vergata, Dipartimento di Fisica, Roma 60133 (Italy); CNR-INFM, Rome (Italy); Garbuio, V. [Universita degli Studi di Roma Tor Vergata, Dipartimento di Fisica, Roma 60133 (Italy); CNR-INFM, Rome (Italy); Gorini, G. [Universita degli Studi di Milano-Bicocca, Dipartimento di Fisica ' G.Occhialini' , Milan (Italy); CNR-INFM, Milan (Italy); Pietropaolo, A. [Universita degli Studi di Roma Tor Vergata, Dipartimento di Fisica, Roma 60133 (Italy); CNR-INFM, Rome (Italy); Senesi, R. [Universita degli Studi di Roma Tor Vergata, Dipartimento di Fisica, Roma 60133 (Italy); CNR-INFM, Rome (Italy); Tardocchi, M. [Universita degli Studi di Milano-Bicocca, Dipartimento di Fisica ' G.Occhialini' , Milan (Italy); CNR-INFM, Milan (Italy)

    2005-11-01

    New perspectives for epithermal neutron spectroscopy have been opened up as a result of the development of the Resonance Detector and its use on inverse geometry time-of-flight spectrometers at spallation sources. A special application of the Resonance Detector is the Very Low Angle Detector Bank (VLAD) for the VESUVIO spectrometer at ISIS, operating in the angular range 1 deg. <2{theta}<5 deg. This equipment allows High-energy Inelastic Neutron Scattering (HINS) measurements to be performed in the (q,{omega}) kinematical region at low wavevector (q<10A{sup -1}) and high energy (unlimited) transfer -bar {omega}>500meV, a regime so far inaccessible to experimental studies on condensed matter systems. The HINS measurements complement the Deep Inelastic Neutron Scattering (DINS) measurements performed on VESUVIO in the high wavevector q(20A{sup -1}1eV), where the short-time single-particle dynamics can be sampled. This paper will revise the main components of the resolution for HINS measurements of VESUVIO. Instrument performances and examples of applications for neutron scattering processes at high energy and at low wavevector transfer are discussed.

  13. Size, flexibility, and scattering functions of semiflexible polyelectrolytes with excluded volume effects: Monte Carlo simulations and neutron scattering experiments

    DEFF Research Database (Denmark)

    Cannavacciuolo, L.; Sommer, C.; Pedersen, J.S.

    2000-01-01

    outlined in the Odijk-Skolnick-Fixman theory, in which the behavior of charged polymers is described only in terms of increasing local rigidity and excluded volume effects. Moreover, the Monte Carlo data are found to be in very good agreement with experimental scattering measurements with equilibrium......We present a systematic Monte Carlo study of the scattering function S(q) of semiflexible polyelectrolytes at infinite dilution, in solutions with different concentrations of added salt. In the spirit of a theoretical description of polyelectrolytes in terms of the equivalent parameters, namely......, persistence length and excluded volume interactions, we used a modified wormlike chain model, in which the monomers are represented by charged hard spheres placed at distance a. The electrostatic interactions are approximated by a Debye-Huckel potential. We show that the scattering function is quantitatively...

  14. BioSAXS Sample Changer: a robotic sample changer for rapid and reliable high-throughput X-ray solution scattering experiments

    Energy Technology Data Exchange (ETDEWEB)

    Round, Adam, E-mail: around@embl.fr; Felisaz, Franck [European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble (France); Université Grenoble Alpes–EMBL–CNRS, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble (France); Fodinger, Lukas; Gobbo, Alexandre [European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble (France); Huet, Julien [European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble (France); Université Grenoble Alpes–EMBL–CNRS, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble (France); Villard, Cyril [European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble (France); Blanchet, Clement E., E-mail: around@embl.fr [EMBL c/o DESY, Notkestrasse 85, 22603 Hamburg (Germany); Pernot, Petra; McSweeney, Sean [ESRF, 6 Rue Jules Horowitz, 38000 Grenoble (France); Roessle, Manfred; Svergun, Dmitri I. [EMBL c/o DESY, Notkestrasse 85, 22603 Hamburg (Germany); Cipriani, Florent, E-mail: around@embl.fr [European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble (France); Université Grenoble Alpes–EMBL–CNRS, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble (France)

    2015-01-01

    A robotic sample changer for solution X-ray scattering experiments optimized for speed and to use the minimum amount of material has been developed. This system is now in routine use at three high-brilliance European synchrotron sites, each capable of several hundred measurements per day. Small-angle X-ray scattering (SAXS) of macromolecules in solution is in increasing demand by an ever more diverse research community, both academic and industrial. To better serve user needs, and to allow automated and high-throughput operation, a sample changer (BioSAXS Sample Changer) that is able to perform unattended measurements of up to several hundred samples per day has been developed. The Sample Changer is able to handle and expose sample volumes of down to 5 µl with a measurement/cleaning cycle of under 1 min. The samples are stored in standard 96-well plates and the data are collected in a vacuum-mounted capillary with automated positioning of the solution in the X-ray beam. Fast and efficient capillary cleaning avoids cross-contamination and ensures reproducibility of the measurements. Independent temperature control for the well storage and for the measurement capillary allows the samples to be kept cool while still collecting data at physiological temperatures. The Sample Changer has been installed at three major third-generation synchrotrons: on the BM29 beamline at the European Synchrotron Radiation Facility (ESRF), the P12 beamline at the PETRA-III synchrotron (EMBL@PETRA-III) and the I22/B21 beamlines at Diamond Light Source, with the latter being the first commercial unit supplied by Bruker ASC.

  15. Simulator experiments: effects of NPP operator experience on performance

    International Nuclear Information System (INIS)

    Beare, A.N.; Gray, L.H.

    1984-01-01

    During the FY83 research, a simulator experiment was conducted at the control room simulator for a GE Boiling Water Reactor (BWR) NPP. The research subjects were licensed operators undergoing requalification training and shift technical advisors (STAs). This experiment was designed to investigate the effects of senior reactor operator (SRO) experience, operating crew augmentation with an STA and practice, as a crew, upon crew and individual operator performance, in response to anticipated plant transients. Sixteen two-man crews of licensed operators were employed in a 2 x 2 factorial design. The SROs leading the crews were split into high and low experience groups on the basis of their years of experience as an SRO. One half of the high- and low-SRO experience groups were assisted by an STA. The crews responded to four simulated plant casualties. A five-variable set of content-referenced performance measures was derived from task analyses of the procedurally correct responses to the four casualties. System parameters and control manipulations were recorded by the computer controlling the simulator. Data on communications and procedure use were obtained from analysis of videotapes of the exercises. Questionnaires were used to collect subject biographical information and data on subjective workload during each simulated casualty. For four of the five performance measures, no significant differences were found between groups led by high (25 to 114 months) and low (1 to 17 months as an SRO) experience SROs. However, crews led by low experience SROs tended to have significantly shorter task performance times than crews led by high experience SROs. The presence of the STA had no significant effect on overall team performance in responding to the four simulated casualties. The FY84 experiments are a partial replication and extension of the FY83 experiment, but with PWR operators and simulator

  16. Imaging back scattered and near back scattered light in ignition scale plasmas

    International Nuclear Information System (INIS)

    Kirkwood, R.K.; Back, C.A.; Glenzer, S.H.; Moody, J.D.

    1996-01-01

    Diagnostics have been developed and fielded at the Nova laser facility that image scattered light in the vicinity of the final laser focusing lens. The absolute calibration of optical components exposed to the target debris have been achieved by a combination of routine in situ calibration and maintenance. The scattering observed from plasmas relevant to ignition experiments indicates that light scattered just outside the lens can be larger than that collected by the lens, and is a significant factor in the energy balance when the f number is high

  17. Density functional simulation of resonant inelastic X-ray scattering experiments in liquids: acetonitrile.

    Science.gov (United States)

    Niskanen, Johannes; Kooser, Kuno; Koskelo, Jaakko; Käämbre, Tanel; Kunnus, Kristjan; Pietzsch, Annette; Quevedo, Wilson; Hakala, Mikko; Föhlisch, Alexander; Huotari, Simo; Kukk, Edwin

    2016-09-21

    In this paper we report an experimental and computational study of liquid acetonitrile (H 3 C-C[triple bond, length as m-dash]N) by resonant inelastic X-ray scattering (RIXS) at the N K-edge. The experimental spectra exhibit clear signatures of the electronic structure of the valence states at the N site and incident-beam-polarization dependence is observed as well. Moreover, we find fine structure in the quasielastic line that is assigned to finite scattering duration and nuclear relaxation. We present a simple and light-to-evaluate model for the RIXS maps and analyze the experimental data using this model combined with ab initio molecular dynamics simulations. In addition to polarization-dependence and scattering-duration effects, we pinpoint the effects of different types of chemical bonding to the RIXS spectrum and conclude that the H 2 C-C[double bond, length as m-dash]NH isomer, suggested in the literature, does not exist in detectable quantities. We study solution effects on the scattering spectra with simulations in liquid and in vacuum. The presented model for RIXS proved to be light enough to allow phase-space-sampling and still accurate enough for identification of transition lines in physical chemistry research by RIXS.

  18. Bistatic Forward Scattering Radar Detection and Imaging

    Directory of Open Access Journals (Sweden)

    Hu Cheng

    2016-06-01

    Full Text Available Forward Scattering Radar (FSR is a special type of bistatic radar that can implement image detection, imaging, and identification using the forward scattering signals provided by the moving targets that cross the baseline between the transmitter and receiver. Because the forward scattering effect has a vital significance in increasing the targets’ Radar Cross Section (RCS, FSR is quite advantageous for use in counter stealth detection. This paper first introduces the front line technology used in forward scattering RCS, FSR detection, and Shadow Inverse Synthetic Aperture Radar (SISAR imaging and key problems such as the statistical characteristics of forward scattering clutter, accurate parameter estimation, and multitarget discrimination are then analyzed. Subsequently, the current research progress in FSR detection and SISAR imaging are described in detail, including the theories and experiments. In addition, with reference to the BeiDou navigation satellite, the results of forward scattering experiments in civil aircraft detection are shown. Finally, this paper considers future developments in FSR target detection and imaging and presents a new, promising technique for stealth target detection.

  19. Using of germanium detectors in nuclear experiments with photon beams

    International Nuclear Information System (INIS)

    Kapitonov, I.M.; Tutin, I.A.

    1995-01-01

    Full text: The study of atomic nuclei with real photons is very important source of the information about nuclear structure. In such experiments the basic electromagnetic interaction between the photon and the target nuclei is well known. Experiments with photon beams become especially valuable when outcoming particles are also photons. In these cases completely model-independent information on nuclear structure can be extracted. The use of semiconductor Ge-spectrometers with excellent resolution and large sensitive volumes for recording outcoming photons gives us such an additional important advantage as possibility to observe individual closely spaced levels of the final nuclei. In the report an experience of using Ge-detectors in two types of nuclear experiments is described. Both of them - nuclear resonance fluorescence (NRF) and nuclear photodisintegration - are carried out in beams of bremsstrahlung gamma radiation. The central element of the setup recording gamma quanta in these experiments is germanium detector. NRF is unique method for studying low-lying excited nuclear states. The spins of the states can be determined easily from the measured angular distributions of scattered photons. Model independent parity assignments in NRF can be achieved by measuring polarization observables. There are two experimental possibilities: the use of linearly polarized photons (off-axis bremsstrahlung) in the entrance channel and the measurement of the linear polarization of the scattered photons using Compton polarimeters. For both methods several germanium detectors (3-5) must be used simultaneously. Nowadays Compton polarimeter can also be done from single large Ge-crystal by segmenting the outer electrode. Advantages and drawbacks of the methods and background conditions are discussed and requirements to Ge-crystals are formulated. The importance of using a new generation of electron accelerators with continuous wave (cw) beams for NRF-measurements is stressed. The

  20. The EDDA experiment at COSY

    Science.gov (United States)

    Rohdjess, H.

    1998-01-01

    Polarized and unpolarized proton-proton elastic scattering is investigated with the EDDA-experiment at the Cooler Synchrotron COSY at Jülich to significantly improve the world data base in the beam energy range 500-2500 MeV. Measurements during beam acceleration with thin internal targets and a large acceptance detector produce excitation functions over a broad angular and energy range with unprecedented internal consistency. Data taking with an unpolarized CH2 fiber target and an unpolarized beam have been completed and the derived differential cross sections demonstrate the benefit of this technique. With a polarized atomic beam target recently installed in COSY and a polarized COSY beam—currently under development—the measurements will be extended to analyzing powers and spin correlation parameters.

  1. The EDDA experiment at COSY

    International Nuclear Information System (INIS)

    Rohdjess, H.

    1998-01-01

    Polarized and unpolarized proton-proton elastic scattering is investigated with the EDDA-experiment at the Cooler Synchrotron COSY at Juelich to significantly improve the world data base in the beam energy range 500-2500 MeV. Measurements during beam acceleration with thin internal targets and a large acceptance detector produce excitation functions over a broad angular and energy range with unprecedented internal consistency. Data taking with an unpolarized CH 2 fiber target and an unpolarized beam have been completed and the derived differential cross sections demonstrate the benefit of this technique. With a polarized atomic beam target recently installed in COSY and a polarized COSY beam--currently under development--the measurements will be extended to analyzing powers and spin correlation parameters

  2. Staged Z-pinch experiments on the Mega-Ampere current driver COBRA

    Science.gov (United States)

    Valenzuela, Julio; Banasek, Jacob; Byvank, Thomas; Conti, Fabio; Greenly, John; Hammer, David; Potter, William; Rocco, Sophia; Ross, Michael; Wessel, Frank; Narkis, Jeff; Rahman, Hafiz; Ruskov, Emil; Beg, Farhat

    2017-10-01

    Experiments were conducted on the Cornell's 1 MA, 100 ns current driver COBRA with the goal of better understanding the Staged Z-pinch physics and validating MHD codes. We used a gas injector composed of an annular (1.2 cm radius) high atomic number (e.g., Ar or Kr) gas-puff and an on-axis plasma gun that delivers the ionized hydrogen target. Liner implosion velocity and stability were studied using laser shadowgraphy and interferometry as well as XUV imaging. From the data, the signature of the MRT instability and zippering effect can be seen, but time integrated X-ray imaging show a stable target plasma. A key component of the experiment was the use of optical Thomson scattering (TS) diagnostics to characterize the liner and target plasmas. By fitting the experimental scattered spectra with synthetic data, electron and ion temperature as well as density can be obtained. Preliminary analysis shows significant scattered line broadening from the plasma on-axis ( 0.5 mm diameter) which can be explained by either a low temperature H plasma with Te =Ti =75eV, or by a hot plasma with Ti =3keV, Te =350eV if an Ar-H mixture is present with an Ar fraction higher than 10%. Funded by the Advanced Research Projects Agency - Energy, DE-AR0000569.

  3. LIDAR Thomson scattering

    International Nuclear Information System (INIS)

    1991-07-01

    This collection contains 21 papers on the application and development of LIDAR (Light Detection and Ranging) Thomson scattering techniques for the determination of spatially resolved electron temperature and density in magnetic confinement experiments, particularly tokamaks. Refs, figs and tabs

  4. Experimental plan of Σp scatterings at J-PARC

    Directory of Open Access Journals (Sweden)

    Tamura H.

    2012-02-01

    Full Text Available In order to test theoretical frameworks of the baryon-baryon interactions and to confirm the ”Pauli effect between quarks” for the first time, we propose an experiment to measure low-energy hyperon proton scattering cross sections in the following channels with high statistics, 1. Σ− p elastic scattering, 2. Σ− p → Λn inelastic scattering, 3. Σ+ p elastic scattering. According to theoretical models based on quark-gluon picture for the short range part of the baryon-baryon interactions, the Σ+ p channel is expected to have an extremely repulsive core due to the Pauli effect between quarks, which leads a Σ+ p cross section twice as large as that predicted by conventional meson exchange models with a phenomenologically treated short range repulsive core. In addition, measurement of the Σ− p channel where the quark Pauli effect is not effective is also necessary to test the present theoretical models based on meson exchange picture with the flavor SU(3 symmetry. Thus this experiment will provide essential data to test the frameworks of the theoretical models of the baryon-baryon interactions and to investigate the nature of the repulsive core which has not been understood yet. In order to overcome the experimental difficulties in measuring low-energy hyperon proton scattering, we will use a new experimental technique in which a liquid H2 target is used as hyperon production and hyperon scattering targets with a detector system surrounding the LH2 target for detection of a scattered proton and a decay product from a hyperon. The hyperon scattering event is kinematically identified. Because imaging detectors used in past experiments are not employed, high intensity π beam can be used, allowing us to take high statistics data of 100 times more than the previous experiments. We have proposed an experiment of Σp scattering at the K1.8 beam line by utilizing the K1.8 beam line spectrometer and the SKS spectrometer. A high intensity

  5. Extracting Insights from Experience Designers to Enhance User Experience Design

    OpenAIRE

    Kremer, Simon; Lindemann, Udo

    2016-01-01

    User Experience (UX) summarizes how a user expects, perceives and assesses an encounter with a product. User Experience Design (UXD) aims at creating meaningful experiences. While UXD is a rather young discipline with-in product development and traditional processes predominate, other disciplines traditionally focus on creating experiences. We engaged with experience de-signers from the fields of arts, movies, sports, music and event management. By analyzing their working processes via interv...

  6. Neutron scattering study of dilute supercritical solutions

    International Nuclear Information System (INIS)

    Cochran, H.D.; Wignall, G.D.; Shah, V.M.; Londono, J.D.; Bienkowski, P.R.

    1994-01-01

    Dilute solutions in supercritical solvents exhibit interesting microstructures that are related to their dramatic macroscopic behavior. In typical attractive solutions, solutes are believed to be surrounded by clusters of solvent molecules, and solute molecules are believed to congregate in the vicinity of one another. Repulsive solutions, on the other hand, exhibit a local region of reduced solvent density around the solute with solute-solute congregation. Such microstructures influence solubility, partial molar volume, reaction kinetics, and many other properties. We have undertaken to observe these interesting microstructures directly by neutron scattering experiments on dilute noble gas systems including Ar. The three partial structure factors for such systems and the corresponding pair correlation functions can be determined by using the isotope substitution technique. The systems studied are uniquely suited for our objectives because of the large coherent neutron scattering length of the isotope 36 Ar and because of the accurate potential energy functions that are available for use in molecular simulations and theoretical calculations to be compared with the scattering results. We will describe our experiment, the unique apparatus we have built for it, and the neutron scattering results from our initial allocations of beam time. We will also describe planned scattering experiments to follow those with noble gases, including study of long-chain molecules in supercritical solvents. Such studies will involve hydrocarbon mixtures with and without deuteration to provide contrast

  7. Neutron scattering studies in the actinide region

    International Nuclear Information System (INIS)

    Kegel, G.H.R.; Egan, J.J.

    1993-09-01

    This report discusses the following topics: Prompt fission neutron energy spectra for 235 U and 239 Pu; Two-parameter measurement of nuclear lifetimes; ''Black'' neutron detector; Data reduction techniques for neutron scattering experiments; Inelastic neutron scattering studies in 197 Au; Elastic and inelastic scattering studies in 239 Pu; and neutron induced defects in silicon dioxide MOS structures

  8. The TOTEM Experiment at the CERN Large Hadron Collider

    Science.gov (United States)

    TOTEM Collaboration; Anelli, G.; Antchev, G.; Aspell, P.; Avati, V.; Bagliesi, M. G.; Berardi, V.; Berretti, M.; Boccone, V.; Bottigli, U.; Bozzo, M.; Brücken, E.; Buzzo, A.; Cafagna, F.; Calicchio, M.; Capurro, F.; Catanesi, M. G.; Catastini, P. L.; Cecchi, R.; Cerchi, S.; Cereseto, R.; Ciocci, M. A.; Cuneo, S.; Da Vià, C.; David, E.; Deile, M.; Dimovasili, E.; Doubrava, M.; Eggert, K.; Eremin, V.; Ferro, F.; Foussat, A.; Galuška, M.; Garcia, F.; Gherarducci, F.; Giani, S.; Greco, V.; Hasi, J.; Haug, F.; Heino, J.; Hilden, T.; Jarron, P.; Joram, C.; Kalliopuska, J.; Kaplon, J.; Kašpar, J.; Kundrát, V.; Kurvinen, K.; Lacroix, J. M.; Lami, S.; Latino, G.; Lauhakangas, R.; Lippmaa, E.; Lokajíček, M.; Lo Vetere, M.; Rodriguez, F. Lucas; Macina, D.; Macrí, M.; Magazzù, C.; Magazzù, G.; Magri, A.; Maire, G.; Manco, A.; Meucci, M.; Minutoli, S.; Morelli, A.; Musico, P.; Negri, M.; Niewiadomski, H.; Noschis, E.; Notarnicola, G.; Oliveri, E.; Oljemark, F.; Orava, R.; Oriunno, M.; Perrot, A.-L.; Österberg, K.; Paoletti, R.; Pedreschi, E.; Petäjäjärvi, J.; Pollovio, P.; Quinto, M.; Radermacher, E.; Radicioni, E.; Rangod, S.; Ravotti, F.; Rella, G.; Robutti, E.; Ropelewski, L.; Ruggiero, G.; Rummel, A.; Saarikko, H.; Sanguinetti, G.; Santroni, A.; Scribano, A.; Sette, G.; Snoeys, W.; Spinella, F.; Squillacioti, P.; Ster, A.; Taylor, C.; Tazzioli, A.; Torazza, D.; Trovato, A.; Trummal, A.; Turini, N.; Vacek, V.; Van Remortel, N.; Vinš, V.; Watts, S.; Whitmore, J.; Wu, J.

    2008-08-01

    The TOTEM Experiment will measure the total pp cross-section with the luminosity-independent method and study elastic and diffractive scattering at the LHC. To achieve optimum forward coverage for charged particles emitted by the pp collisions in the interaction point IP5, two tracking telescopes, T1 and T2, will be installed on each side in the pseudorapidity region 3.1 <= |η| <= 6.5, and Roman Pot stations will be placed at distances of ±147 m and ±220 m from IP5. Being an independent experiment but technically integrated into CMS, TOTEM will first operate in standalone mode to pursue its own physics programme and at a later stage together with CMS for a common physics programme. This article gives a description of the TOTEM apparatus and its performance.

  9. Opportunities for parity violating electron scattering experiments at the planned MESA facility

    Science.gov (United States)

    Aulenbacher, Kurt

    2011-11-01

    We suggest to start an accelerator physics project called the Mainz Energy recovering Superconducting Accelerator (MESA) as an extension to our experimental facilities. MESA may allow to introduce an innovative internal target regime based on the ERL principle. A second mode of operation will be to use an external polarized electron beam for parity violating experiments.

  10. SAR and LIDAR fusion: experiments and applications

    Science.gov (United States)

    Edwards, Matthew C.; Zaugg, Evan C.; Bradley, Joshua P.; Bowden, Ryan D.

    2013-05-01

    In recent years ARTEMIS, Inc. has developed a series of compact, versatile Synthetic Aperture Radar (SAR) systems which have been operated on a variety of small manned and unmanned aircraft. The multi-frequency-band SlimSAR has demonstrated a variety of capabilities including maritime and littoral target detection, ground moving target indication, polarimetry, interferometry, change detection, and foliage penetration. ARTEMIS also continues to build upon the radar's capabilities through fusion with other sensors, such as electro-optical and infrared camera gimbals and light detection and ranging (LIDAR) devices. In this paper we focus on experiments and applications employing SAR and LIDAR fusion. LIDAR is similar to radar in that it transmits a signal which, after being reflected or scattered by a target area, is recorded by the sensor. The differences are that a LIDAR uses a laser as a transmitter and optical sensors as a receiver, and the wavelengths used exhibit a very different scattering phenomenology than the microwaves used in radar, making SAR and LIDAR good complementary technologies. LIDAR is used in many applications including agriculture, archeology, geo-science, and surveying. Some typical data products include digital elevation maps of a target area and features and shapes extracted from the data. A set of experiments conducted to demonstrate the fusion of SAR and LIDAR data include a LIDAR DEM used in accurately processing the SAR data of a high relief area (mountainous, urban). Also, feature extraction is used in improving geolocation accuracy of the SAR and LIDAR data.

  11. Inelastic scattering. Time of flight

    International Nuclear Information System (INIS)

    Eccleston, R.

    1999-01-01

    It is the scattering function, S(Q,ω), which provides the link between the scattering data and the physical system being studied and is thereby the parameter of interest. The nature of the experiment will dictate the portions of momentum transfer - energy transfer space that is to be probed. The portions of Q-ω space that are accessible and the way it is covered determine the appropriateness of an instrument or technique to a particular experiment. One should also remember that if studying a polycrystalline of disordered material, momentum transfer need only by characterized by modulus Q whereas in studies of single crystals one is operating in four-dimensional Q x -Q y -Q z -ω space. (author)

  12. Commercial applications of neutron scattering

    International Nuclear Information System (INIS)

    Hutchings, M.T.

    1993-01-01

    The fact that industry is now willing to pay the full commercial cost for certain neutron scattering experiments aimed at solving its urgent materials - related problems is a true testimony to the usefulness of neutrons as microscopic probes. This paper gives examples of such use of three techniques drawn mainly from our experience at AEA Technology Harwell Laboratory. These are diffraction to measure residual stress, small angle neutron scattering to examine hardening precipitates in ferritic steels brought about by irradiation, and reflectivity to study amorphous diamond layers deposited on silicon. In most cases it is the penetrative power of the neutron which proves to be its best asset for commercial industrial applicaitons. (author)

  13. The experience sampling method: Investigating students' affective experience

    Science.gov (United States)

    Nissen, Jayson M.; Stetzer, MacKenzie R.; Shemwell, Jonathan T.

    2013-01-01

    Improving non-cognitive outcomes such as attitudes, efficacy, and persistence in physics courses is an important goal of physics education. This investigation implemented an in-the-moment surveying technique called the Experience Sampling Method (ESM) [1] to measure students' affective experience in physics. Measurements included: self-efficacy, cognitive efficiency, activation, intrinsic motivation, and affect. Data are presented that show contrasts in students' experiences (e.g., in physics vs. non-physics courses).

  14. All-optical atom trap as a target for MOTRIMS-like collision experiments

    Science.gov (United States)

    Sharma, S.; Acharya, B. P.; De Silva, A. H. N. C.; Parris, N. W.; Ramsey, B. J.; Romans, K. L.; Dorn, A.; de Jesus, V. L. B.; Fischer, D.

    2018-04-01

    Momentum-resolved scattering experiments with laser-cooled atomic targets have been performed since almost two decades with magneto-optical trap recoil ion momentum spectroscopy (MOTRIMS) setups. Compared to experiments with gas-jet targets, MOTRIMS features significantly lower target temperatures allowing for an excellent recoil ion momentum resolution. However, the coincident and momentum-resolved detection of electrons was long rendered impossible due to incompatible magnetic field requirements. Here we report on an experimental approach which is based on an all-optical 6Li atom trap that—in contrast to magneto-optical traps—does not require magnetic field gradients in the trapping region. Atom temperatures of about 2 mK and number densities up to 109 cm-3 make this trap ideally suited for momentum-resolved electron-ion coincidence experiments. The overall configuration of the trap is very similar to conventional magneto-optical traps. It mainly requires small modifications of laser beam geometries and polarization which makes it easily implementable in other existing MOTRIMS experiments.

  15. Simulator experiments: effects of NPP operator experience on performance

    International Nuclear Information System (INIS)

    Beare, A.N.; Gray, L.H.

    1985-01-01

    Experiments are being conducted on nuclear power plant (NPP) control room training simulators by the Oak Ridge National Laboratory, its subcontractor, General Physics Corporation, and participating utilities. The experiments are sponsored by the Nuclear Regulatory Commission's (NRC) Human Factors and Safeguards Branch, Division of Risk Analysis and Operations, and are a continuation of prior research using simulators, supported by field data collection, to provide a technical basis for NRC human factors regulatory issues concerned with the operational safety of nuclear power plants. During the FY83 research, a simulator experiment was conducted at the control room simulator for a GE boiling water reactor (BWR) NPP. The research subjects were licensed operators undergoing requalification training and shift technical advisors (STAs). This experiment was designed to investigate the effects of (a) senior reactor operator (SRO) experience, (b) operating crew augmentation with an STA and (c) practice, as a crew, upon crew and individual operator performance, in response to anticipated plant transients. The FY84 experiments are a partial replication and extension of the FY83 experiment, but with PWR operators and simulator. Methodology and results to date are reported

  16. The Cryogenic Dark Matter Search (CDMS-II) Experiment: First Results from the Soudan Mine

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Clarence Leeder [Stanford Univ., CA (United States)

    2004-09-01

    There is an abundance of evidence that the majority of the mass of the universe is in the form of non-baryonic non-luminous matter that was non-relativistic at the time when matter began to dominate the energy density. Weakly Interacting Massive Particles, or WIMPs, are attractive cold dark matter candidates because they would have a relic abundance today of ~0.1 which is consistent with precision cosmological measurements. WIMPs are also well motivated theoretically. Many minimal supersymmetric extensions of the Standard Model have WIMPs in the form of the lightest supersymmetric partner, typically taken to be the neutralino. The CDMS II experiment searches for WIMPs via their elastic scattering off of nuclei. The experiment uses Ge and Si ZIP detectors, operated at <50 mK, which simultaneously measure the ionization and athermal phonons produced by the scattering of an external particle. The dominant background for the experiment comes from electromagnetic interactions taking place very close to the detector surface. Analysis of the phonon signal from these interactions makes it possible to discriminate them from interactions caused by WIMPs. This thesis presents the details of an important aspect of the phonon pulse shape analysis known as the ''Lookup Table Correction''. The Lookup Table Correction is a position dependent calibration of the ZIP phonon response which improves the rejection of events scattering near the detector surface. The CDMS collaboration has recently commissioned its experimental installation at the Soudan Mine. This thesis presents an analysis of the data from the first WIMP search at the Soudan Mine. The results of this analysis set the world's lowest exclusion limit making the CDMS II experiment at Soudan the most sensitive WIMP search to this date.

  17. ';EXPERIMENTING with a Small Planet' as AN Experiment

    Science.gov (United States)

    Hay, W. W.

    2013-12-01

    Communicating science to the American public is difficult. The book ';Experimenting with a Small Planet' is a radical but sucessful departure from tradition. My background has been in study of the warm climate of the Cretaceous using numerical climate models -- not directly with modern climate change. The Arctic sea-ice meltback of 2007 was a startling event; it wasn't expected before the end of this century. Earth had gone past a tipping point toward an ice-free pole condition. I decided to try to write a book for the general public explaining the basics of climate and the significance of what is happening to our planet. Over 50 years I had written more than 200 technical papers in the peer-reviewed literature. I had also written 27 annual reviews on Geology for the high-school level World Book Encyclopedia. I had experience in communicating with the general public as Director of the University of Colorado Museum. Using my retirement community neighbors (businessmen, hedge fund manager, rancher, doctors, engineer, grade school teacher) as initial reviewers, I learned that: 1) the metric system is totally foreign and unintelligible - metric measurements must also be given in US feet, pounds, Fahrenheit temperatures, etc.; 2) readers stop if they encounter references to papers scattered in the text; 3) mathematics beyond arithmetic is feared; 4) scientific terminology is unknown; as is 5) the history of how we have come to understand physics, chemistry, biology, and geology. The average level of scientific knowledge of a successful retired American today is at best that of about 40 years ago; of our pubic school teachers, about 20 years old. Members of the US Congress have mostly law degrees, and at best took a few freshman-level courses in science when they were in college 30 years or more ago. Most Americans believe in the dogma of some religion, not in science. I discovered that most geologists know nothing about climatology, and most climatologists know next

  18. Generation of neutron scattering cross sections for silicon dioxide

    International Nuclear Information System (INIS)

    Ramos, R; Marquez Damian, J.I; Granada, J.R.; Cantargi, F

    2009-01-01

    A set of neutron scattering cross sections for silicon and oxygen bound in silicon dioxide were generated and validated. The cross sections were generated in the ACE format for MCNP using the nuclear data processing system NJOY, and the validation was done with published experimental data. This cross section library was applied to the calculation of five critical configurations published in the benchmark Critical Experiments with Heterogeneous Compositions of Highly Enriched Uranium, Silicon Dioxide and Polyethylene. The original calculations did not use the thermal scattering libraries generated in this work and presented significant differences with the experimental results. For this reason, the newly generated library was added to the input and the multiplication factor for each configuration was recomputed. The utilization of the thermal scattering libraries did not result in an improvement of the computational results. Based on this we conclude that integral experiments to validate this type of thermal cross sections need to be designed with a higher influence of thermal scattering in the measured result, and the experiments have to be performed under more controlled conditions. [es

  19. The SHiP experiment at CERN

    Science.gov (United States)

    Bonivento, Walter M.

    2017-07-01

    The discovery of the Higgs boson has fully confirmed the Standard Model of particles and fields. Nevertheless, there are still fundamental phenomena, like the existence of dark matter and the baryon asymmetry of the Universe, deserving an explanation that could come from the discovery of new particles. Searches for new physics with accelerators are performed at the LHC, looking for high massive particles coupled to matter with ordinary strength. A new experiment at CERN meant to search for very weakly coupled particles in the few GeV mass domain has been recently proposed. The existence of such particles, foreseen in different theoretical models beyond the Standard Model, is largely unexplored. A beam dump facility using high intensity 400 GeV protons is a copious source of such unknown particles in the GeV mass range. The beam dump is also a copious source of neutrinos and in particular it is an ideal source of tau neutrinos, the less known particle in the Standard Model. The neutrino detector can also search for dark matter through its scattering off the electrons. We report the physics potential of the SHiP experiment.

  20. Experiment WA1 (CDHS Neutrino Experiment)

    CERN Multimedia

    CERN PhotoLab

    1977-01-01

    Experiment WA1, also known under CDHS (CERN, Dortmund, Heidelberg, Saclay; spokesman Jack Steinberger), was the first neutrino experiment on the SPS, in its West Area. Magnetized iron (with a toroidal field) forms the core of the detector. On its outside we see drift chambers and photomultipliers (detecting the light from the plastic scintillators further in). Peter Schilly is wearing a white coat. See also CERN Annual Report 1976, p.57.

  1. Neutron elastic scattering at very small angles

    CERN Multimedia

    2002-01-01

    This experiment will measure neutron-proton elastic scattering at very small angles and hence very small four-momentum transfer, |t|. The range of |t| depends on the incident neutron momentum of the events but the geometrical acceptance will cover the angular range 0.025 < $\\Theta_{lab}$ < 1.9 mrad. The higher figure could be extended to 8.4 mrad by changing the geometry of the experiment in a later phase. \\\\ \\\\ The neutron beam will be highly collimated and will be derived from a 400 GeV external proton beam of up to $4 \\times 10^{10}$ protons per pulse in the SPS North Area Hall 1. The hydrogen target will be gaseous, operating at 40 atm. pressure and acts as a multiwire proportional chamber to detect the recoil protons. The forward neutron will be detected and located by interaction in a neutron vertex detector and its energy measured by a conventional steel plate calorimeter. \\\\ \\\\ The experiment will cover the angular region of nucleon-nucleon scattering which is dominated by Coulomb scattering ...

  2. Dynamics and denaturation of a protein. Simulations and neutron scattering on staphylococcus nuclease

    International Nuclear Information System (INIS)

    Goupil-Lamy, Anne

    1997-01-01

    This research thesis reports simulations and experiments of inelastic scattering on the whole frequency spectrum to analyse the vibrations of the staphylococcus nuclease and its fragment, in order to study protein folding. Based on these experiments, information on eigenvectors which describe vibration modes can be directly obtained. Inelastic intensities are indeed fully determined by nuclear cross sections and the mean square displacement of each atom. Some experimentally noticed peaks are then explained by calculating a theoretical spectrum from an analysis of normal modes. The studied fragment is made of 136 c-terminal residues. The fragment structure obtained by molecular dynamics simulation is compared with available experimental data. Then, experiments of neutron scattering on the nuclease of staphylococcus and its fragment have been performed. Quasi elastic scattering spectra have been measured. The author then used simulations to try to reproduce the quasi-elastic spectrum. Experiments of inelastic scattering have then been performed [fr

  3. Virtual Experiments on the Neutron Science TeraGrid Gateway

    International Nuclear Information System (INIS)

    Lynch, Vickie E; Cobb, John W; Farhi, Emmanuel N; Miller, Stephen D; Taylor, M

    2008-01-01

    The TeraGrid's outreach effort to the neutron science community is creating an environment that is encouraging the exploration of advanced cyberinfrastructure being incorporated into facility operations in a way that leverages facility operations to multiply the scientific output of its users, including many NSF supported scientists in many disciplines. The Neutron Science TeraGrid Gateway serves as an exploratory incubator for several TeraGrid projects. Virtual neutron scattering experiments from one exploratory project will be highlighted

  4. Active target with plastic scintillating fibers for hyperon-proton scattering experiments

    Czech Academy of Sciences Publication Activity Database

    Ahn, J. K.; Akikawa, H.; Arvieux, H.; Bassalleck, B.; Chung, M. S.; En'yo, H.; Fukuda, T.; Funahashi, H.; Golovkin, SV.; Gorin, AM.; Goto, Y.; Hanabata, M.; Hayakawa, T.; Ichikawa, A.; Ieiri, M.; Imai, K.; Ishino, M.; Kanda, H.; Kim, Y. D.; Kondo, Y.; Kozarenko, E. N.; Kreslo, I. E.; Lee, J. M.; Masaike, A.; Mihara, S.; Nakai, K.; Nakazawa, K.; Ozawa, K.; Sato, A.; Sato, H. D.; Sim, K. S.; Tabaru, T.; Takeutchi, F.; Tlustý, Pavel; Torii, H.; Yamamoto, K.; Yokkaichi, S.; Yoshida, M.

    2002-01-01

    Roč. 49, č. 2 (2002), s. 592-596 ISSN 0018-9499 R&D Projects: GA AV ČR IAA1048304; GA AV ČR KSK1048102 Institutional research plan: CEZ:AV0Z1048901 Keywords : active target * hyperon-proton scattering * scintillating fibers Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.431, year: 2002

  5. Observation and applications of single-electron charge signals in the XENON100 experiment

    NARCIS (Netherlands)

    Aprile, E.; et al., [Unknown; Alfonsi, M.; Colijn, A.P.; Decowski, M.P.

    2014-01-01

    The XENON100 dark matter experiment uses liquid xenon in a time projection chamber (TPC) to measure xenon nuclear recoils resulting from the scattering of dark matter weakly interacting massive particles (WIMPs). In this paper, we report the observation of single-electron charge signals which are

  6. TRIO experiment

    International Nuclear Information System (INIS)

    Clemmer, R.G.; Finn, P.A.; Malecha, R.F.

    1984-09-01

    The TRIO experiment is a test of in-situ tritium recovery and heat transfer performance of a miniaturized solid breeder blanket assembly. The assembly (capsule) was monitored for temperature and neutron flux profiles during irradiation and a sweep gas flowed through the capsule to an anaytical train wherein the amounts of tritium in its various chemical forms were determined. The capsule was designed to operate at different temperatures and sweep gas conditions. At the end of the experiment the amount of tritium retained in the solid was at a concentration of less than 0.1 wppM. More than 99.9% of tritium generated during the experiment was successfully recovered. The results of the experiment showed that the tritium inventories at the beginning and at the end of the experiment follow a relationship which appears to be characteristic of intragranular diffusion

  7. Pixel Experiments

    DEFF Research Database (Denmark)

    Petersen, Kjell Yngve; Søndergaard, Karin; Augustesen, Christina

    2015-01-01

    Pixel Experiments The term pixel is traditionally defined as any of the minute elements that together constitute a larger context or image. A pixel has its own form and is the smallest unit seen within a larger structure. In working with the potentials of LED technology in architectural lighting...... for using LED lighting in lighting design practice. The speculative experiments that have been set-up have aimed to clarify the variables that can be used as parameters in the design of lighting applications; including, for example, the structuring and software control of light. The experiments also...... elucidate and exemplify already well-known problems in relation to the experience of vertical and horizontal lighting. Pixel Experiments exist as a synergy between speculative test setups and lighting design in practice. This book is one of four books that is published in connection with the research...

  8. Inverse acoustic problem of N homogeneous scatterers

    DEFF Research Database (Denmark)

    Berntsen, Svend

    2002-01-01

    The three-dimensional inverse acoustic medium problem of N homogeneous objects with known geometry and location is considered. It is proven that one scattering experiment is sufficient for the unique determination of the complex wavenumbers of the objects. The mapping from the scattered fields...

  9. Cloud chamber experiments on the origin of ice crystal complexity in cirrus clouds

    Directory of Open Access Journals (Sweden)

    M. Schnaiter

    2016-04-01

    Full Text Available This study reports on the origin of small-scale ice crystal complexity and its influence on the angular light scattering properties of cirrus clouds. Cloud simulation experiments were conducted at the AIDA (Aerosol Interactions and Dynamics in the Atmosphere cloud chamber of the Karlsruhe Institute of Technology (KIT. A new experimental procedure was applied to grow and sublimate ice particles at defined super- and subsaturated ice conditions and for temperatures in the −40 to −60 °C range. The experiments were performed for ice clouds generated via homogeneous and heterogeneous initial nucleation. Small-scale ice crystal complexity was deduced from measurements of spatially resolved single particle light scattering patterns by the latest version of the Small Ice Detector (SID-3. It was found that a high crystal complexity dominates the microphysics of the simulated clouds and the degree of this complexity is dependent on the available water vapor during the crystal growth. Indications were found that the small-scale crystal complexity is influenced by unfrozen H2SO4 / H2O residuals in the case of homogeneous initial ice nucleation. Angular light scattering functions of the simulated ice clouds were measured by the two currently available airborne polar nephelometers: the polar nephelometer (PN probe of Laboratoire de Métérologie et Physique (LaMP and the Particle Habit Imaging and Polar Scattering (PHIPS-HALO probe of KIT. The measured scattering functions are featureless and flat in the side and backward scattering directions. It was found that these functions have a rather low sensitivity to the small-scale crystal complexity for ice clouds that were grown under typical atmospheric conditions. These results have implications for the microphysical properties of cirrus clouds and for the radiative transfer through these clouds.

  10. Study of inelastic processes in proton-proton collisions at the LHC with the TOTEM Experiment

    CERN Document Server

    Brogi, Paolo; Latino, Giuseppe

    2011-01-01

    The TOTEM experiment, located into the CMS cavern at the CERN Large Hadron Collider (LHC), is one of the six experiments that are investigating high energy physics at this new machine. In particular TOTEM has been designed for TOTal cross-section, Elastic scattering and diffraction dissociation Measurements. The total proton-proton cross-section will be measured with the luminosity-independent method based on the Optical Theorem. This method will allow a precision of 1÷2% at the center of mass energy of 14 TeV. In order to reach such a small error it is necessary to study the p-p elastic scattering cross-section (dσ/dt) down to |t|∼ 10^−3 GeV^2 (to evaluate at best the extrapolation to t = 0) and, at the same time, to measure the total inelastic interaction rate. For this aim, elastically scattered protons must be detected at very small angles with respect to the beam while having the largest possible η coverage for particle detection in order to reduce losses of inelastic events. In addition, TOTEM wi...

  11. Using acoustic levitation in synchrotron based laser pump hard x-ray probe experiments

    Science.gov (United States)

    Hu, Bin; Lerch, Jason; Suthar, Kamlesh; Dichiara, Anthony

    Acoustic levitation provides a platform to trap and hold a small amount of material by using standing pressure waves without a container. The technique has a potential to be used for laser pump x-ray probe experiments; x-ray scattering and laser distortion from the container can be avoided, sample consumption can be minimized, and unwanted chemistry that may occur at the container interface can be avoided. The method has been used at synchrotron sources for studying protein and pharmaceutical solutions using x-ray diffraction (XRD) and small angle x-ray scattering (SAXS). However, pump-probe experiments require homogeneously excited samples, smaller than the absorption depth of the material that must be held stably at the intersection of both the laser and x-ray beams. We discuss 1) the role of oscillations in acoustic levitation and the optimal acoustic trapping conditions for x-ray/laser experiments, 2) opportunities to automate acoustic levitation for fast sample loading and manipulation, and 3) our experimental results using SAXS to monitor laser induced thermal expansion in gold nanoparticles solution. We also performed Finite Element Analysis to optimize the trapping performance and stability of droplets ranging from 0.4 mm to 2 mm. Our early x-ray/laser demonstrated the potential of the technique for time-resolved X-ray science.

  12. Measurement of angular differential cross sections at the SSL Atomic Scattering Facility

    International Nuclear Information System (INIS)

    Kvale, T.J.

    1988-01-01

    The design of the SSL Atomic Scattering Facility (ASF) located at the NASA/Marshall Space Flight Center as well as some of the initial experiments to be performed with it, are covered. The goal is to develop an apparatus capable of measuring angular differential cross sections (ADCS) for the scattering of 2 to 14 eV atomic oxygen from various gaseous targets. At present little is known about atomic oxygen scattering with kinetic energies of a few eV. This apparatus is designed to increase the understanding of collisions in this energy region. Atomic oxygen scattering processes are of vital interest to NASA because the space shuttle as well as other low earth orbit satellites will be subjected to a flux of 5 eV atomic oxygen on the ram surfaces while in orbit. The primary experiments will involve the measurements of ADCS for atomic oxygen scattering from gaseous targets (in particular, molecular nitrogen). These, as well as the related initial experiments involving thermal He scattering from N2 and O2 targets will be described

  13. Evidence for Hard Gluon Bremsstrahlung in a Neutrino Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Sokoloff, Michael David [Univ. of California, Berkeley, CA (United States)

    1983-06-01

    The uncorrelated jet model (UJM) and the hydrodynamical model for particle production in very high energy scattering of two protons have been investigated. The differential cross-section for elastic scattering has been calculated in the UJM with Regge phase and the shrinkage of the diffraction peak has been discussed . Inclusive two-particle correlations due to energy-momentum conservation have been computed in the UJM and compared to experiment. Statistical quantities for particle production have been defined using t he analogy between the phase-space integral in particle production and the definition of the grand canonical partition function in statistical mechanics. The statistical quantities have been used in the hydrodynamical model of Landau to calculate the inclusive single particle rapidity distribution for pions and thermodynamical properties of the two colliding hadrons .

  14. Measurement of recoil photon polarisation in the electron-proton elastic scattering

    International Nuclear Information System (INIS)

    Buon, Jean

    1965-02-01

    This research thesis reports and discusses an experiment which aimed at checking the validity of the Born approximation at the first order in the elastic scattering of high energy electrons on protons. In this experiment, the recoil proton polarisation is measured in an elastic scattering of electrons with energy of 950 MeV and scattering at about 90 degrees in the mass centre system. The author describes the experimental installation, its operation and data collection, reports the analysis of photos and polarisation calculations and errors [fr

  15. What can we learn about the lipid vesicle structure from the small angle neutron scattering experiment?

    International Nuclear Information System (INIS)

    Kiselev, M.A.; Zemlyanaya, E.V.; Aswal, V.K.; Neubert, R.H.H.

    2005-01-01

    Small angle neutron scattering (SANS) on the unilamellar vesicle populations (diameter of 500 and 1000 Armstrong) was used to characterize lipid vesicles from dimyristoylphosphatidylcholine (DMPC) in three phases (gel, ripple, and liquid). Parameters of vesicle populations and internal structure of the DMPC bilayer were characterized on the basis of the Separated Form Factor (SFF) model. Vesicle shape changes from about spherical in liquid phase to elliptical in ripple and gel phases for vesicles prepared via extrusion through pores with the diameter of 500 Armstrong. Parameters of the internal bilayer structure (membrane thickness, thickness of the hydrophobic core, hydration, and surface area of lipid molecule) were determined on the basis of the Hydrophobic-Hydrophilic (HH) approximation of neutron scattering length density across the bilayer ρ(x) and on the basis of the Step Function (SF) approximation of ρ(x). It was demonstrated in the framework of HH approximation that DMPC membrane thickness in the liquid phase (T = 30 deg C) depends on the membrane curvature. Vesicle population prepared via extrusion through pores with the diameter of 500 Armstrong is characterized by an average radius of 275.6 ± 0.5 Armstrong, polydispersity of 27%, membrane thickness of 47.8 ± 0.2 Armstrong, thickness of hydrophobic core of 20.5 ± 0.3 Armstrong, surface area per DMPC molecule of 61.0 ± 0.4 A 2 Armstrong, and the number of water molecules per DMPC molecule of 11.9 ± 0.3. Vesicles prepared via extrusion through pores with the diameter of 1000 Armstrong have a polydispersity of 48%, and a membrane thickness of 45.6 ± 0.2 Armstrong. SF approximation was used to describe the DMPC membrane structure in gel (T 10 deg C) and ripple (T = 20 deg C) phases. DMPC vesicles prepared via extrusion through 1000- Armstrong pores have a membrane thickness of 49.6 ± 0.5 Armstrong in the gel phase and 48.3 ± 0.6 Armstrong in the ripple phase. The dependence of the DMPC membrane

  16. Materials International Space Station Experiment (MISSE): Overview, Accomplishments and Future Needs

    Science.gov (United States)

    deGroh, Kim K.; Jaworske, Donald A.; Pippin, Gary; Jenkins, Philip P.; Walters, Robert J.; Thibeault, Sheila A.; Palusinski, Iwona; Lorentzen, Justin R.

    2014-01-01

    8, yielding long-duration space environmental performance and durability data that enable material validation, processing recertification and space qualification; improved predictions of materials and component lifetimes in space; model verification and development; and correlation factors between space-exposure and ground-facilities enabling more accurate in-space performance predictions based on ground-laboratory testing. A few of the many experiment results and observations, and their impacts, are provided. Those highlighted include examples on improved understanding of atomic oxygen scattering mechanisms, LEO coating durability results, and polymer erosion yields and their impacts on spacecraft design. The MISSE 2 Atomic Oxygen Scattering Chamber Experiment discovered that the peak flux of scattered AO was determined to be 45 deg from normal incidence, not the model predicted cosine dependence. In addition, the erosion yield (E(sub y)) of Kapton H for AO scattered off oxidized-Al is 22% of the E(sub y) of direct AO impingement. These results were used to help determine the degradation mechanism of a cesium iodide detector within the Hubble Space Telescope Cosmic Origins Spectrograph Experiment. The MISSE 6 Indium Tin Oxide (ITO) Degradation Experiment measured surface electrical resistance of ram and wake ITO coated samples. The data confirmed that ITO is a stable AO protective coating, and the results validated the durability of ITO conductive coatings for solar arrays for the Atmosphere-Space Transition 2 Explorer program. The MISSE 2, 6 and 7 Polymer Experiments have provided LEO AO Ey data on over 120 polymer and composites samples. The flight E(sub y) values were found to range from 3.05 x 10(exp -26) cu cm/atom for the AO resistant polymer CORIN to 9.14 x 10(exp -26) cu cm/atom for polyoxymethylene (POM). In addition, flying the same polymers on different missions has advanced the understanding of the AO E(sub y) dependency on solar exposure for polymers

  17. Verification experiment of EPR paradox by (d, 2He) reaction

    International Nuclear Information System (INIS)

    Sakai, Hideyuki

    2003-01-01

    FBR paradox which was brought forward by Einstein, Podolsky and Rosen is expressed by Bell's inequality of spin correlation theoretically. In principle it is possible to verify the inequality by measuring spin correlation between two particles having spin 1/2 from a decay of 1 S 0 experimentally. Most of the past experiments to verify the inequality, however, have been performed by using photons. On the other hand, only one experiment by using hadron system was carried out by Lamehi and Mitting, where the [ 1 S 0 ] state was produced by proton-proton scattering at first, and then the spin orientations after the scattering were measured. Unfortunately, there exit some sources of ambiguity to reach definite conclusion from their result because the experiment was done at rather high energy of 13.5 MeV. In the experiment planned by the present author it is designed to overcome the experimental difficulties, which Lamehi and Mitting encountered, by (1) generating high purity singlet [ 1 S 0 ] state of two protons by (d, 2 He) type nuclear reaction at intermediate energy range, and by (2) developing high performance spin-correlation polarimeter which can analyze spins of two protons simultaneously to minimize the systematic errors. The excitation energy of 2 He corresponding to the proton-proton relative energy can be experimentally controlled. An idea singlet is realized by choosing the state with sufficiently small relative energy. It is planned to measure the spin correlation function by using SMART (Swinger and Magnetic Analyzer with Rotator and Twister) at RIKEN Accelerator Research Facility. Einstein POLarimeter (EPOL) to be installed on the second focal plane of SMART is under development, with which high precision measurements of spin orientations of two high energy protons simultaneously coming into limited space from 2 He decay are made selecting the subject events from very many background events. Monte Carlo simulation predicts the possibility to verify the

  18. Phonons: Theory and experiments II. Volume 2

    International Nuclear Information System (INIS)

    Bruesch, P.

    1986-01-01

    The present second volume titled as ''Phonons: Theory and Experiments II'', contains, a thorough study of experimental techniques and the interpretation of experimental results. This three-volume set tries to bridge the gap between theory and experiment, and is addressed to those working in both camps in the vast field of dynamical properties of solids. Topics presented in the second volume include; infrared-, Raman and Brillouin spectroscopy, interaction of X-rays with phonons, and inelastic neutron scattering. In addition an account is given of some other techniques, including ultrasonic methods, inelastic electron tunneling spectroscopy, point contact spectroscopy, and spectroscopy of surface phonons, thin films and adsorbates. Both experimental aspects and theoretical concepts necessary for the interpretation of experimental data are discussed. An attempt is made to present the descriptive as well as the analytical aspects of the topics. Simple models are often used to illustrate the basic concepts and more than 100 figures are included to illustrate both theoretical and experimental results. Many chapters contain a number of problems with hints and results giving additional information

  19. Static speckle experiments using white synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Sant, Tushar; Panzner, Tobias; Pietsch, Ullrich [Solid State Physics Group, University of Siegen (Germany)

    2008-07-01

    Static speckle experiments were performed using coherent white X-ray radiation from a bending magnet at BESSYII. Semiconductor and polymer surfaces were investigated under incidence condition smaller than the critical angle of total external reflection. The scattering pattern of the sample results from the illumination function modified by the surface undulations. The periodic oscillations are caused by the illumination function whereas other irregular features are associated with sample surface. The speckle map of reflection from a laterally periodic structure like GaAs grating is studied. Under coherent illumination the grating peaks split into speckles because of fluctuations on the sample surface. It is important to understand which length scales on the sample surface are responsible for the oscillations in reflectivity map. To investigate this experiments are done with a triangular shaped sample. Different parts of the sample are illuminated with the footprint on the sample larger or smaller than the actual sample length. This gives prior information about total illuminated area on the sample. Using this additional information a detailed surface profile of the sample is reconstructed.

  20. Probing noncommutative theories with quantum optical experiments

    Directory of Open Access Journals (Sweden)

    Sanjib Dey

    2017-11-01

    Full Text Available One of the major difficulties of modern science underlies at the unification of general relativity and quantum mechanics. Different approaches towards such theory have been proposed. Noncommutative theories serve as the root of almost all such approaches. However, the identification of the appropriate passage to quantum gravity is suffering from the inadequacy of experimental techniques. It is beyond our ability to test the effects of quantum gravity thorough the available scattering experiments, as it is unattainable to probe such high energy scale at which the effects of quantum gravity appear. Here we propose an elegant alternative scheme to test such theories by detecting the deformations emerging from the noncommutative structures. Our protocol relies on the novelty of an opto-mechanical experimental setup where the information of the noncommutative oscillator is exchanged via the interaction with an optical pulse inside an optical cavity. We also demonstrate that our proposal is within the reach of current technology and, thus, it could uncover a feasible route towards the realization of quantum gravitational phenomena thorough a simple table-top experiment.

  1. The Manuel Lujan, Jr. Neutron Scattering Center (LANSCE) experiment reports 1992 run cycle

    International Nuclear Information System (INIS)

    DiStravolo, M.A.

    1993-09-01

    This year was the fifth in which LANSCE ran a formal user program. A call for proposals was issued before the scheduled run cycles, and experiment proposals were submitted by scientists from universities, industry, and other research facilities around the world. An external program advisory committee, which LANSCE shares with the Intense Pulsed Neutron Source (IPNS), Argonne National Laboratory, examined the proposals and made recommendations. At LANSCE, neutrons are produced by spallation when a pulsed, 800-MeV proton beam impinges on a tungsten target. The proton pulses are provided by the Clinton P. Anderson Meson Physics Facility (LAMPF) accelerator and an associated Proton Storage Ring (PSR), which can alter the intensity, time structure, and repetition rate of the pulses. The LAMPF protons of Line D are shared between the LANSCE target and the Weapons Neutron Research (WNR) facility, which results in LANSCE spectrometers being available to external users for unclassified research about 80% of each annual LAMPF run cycle. Measurements of interest to the Los Alamos National Laboratory may also be performed and may occupy up to an additional 20% of the available beam time. These experiments are reviewed by an internal program advisory committee. One hundred sixty-seven proposals were submitted for unclassified research and twelve proposals for research of a programmatic interest to the Laboratory; six experiments in support of the LANSCE research program were accomplished during the discretionary periods. Oversubscription for instrument beam time by a factor of three was evident with 839 total days requested and only 371 available for allocation

  2. Ultrastrong Coupling Few-Photon Scattering Theory

    Science.gov (United States)

    Shi, Tao; Chang, Yue; García-Ripoll, Juan José

    2018-04-01

    We study the scattering of individual photons by a two-level system ultrastrongly coupled to a waveguide. The scattering is elastic for a broad range of couplings and can be described with an effective U (1 )-symmetric Hamiltonian. This simple model allows the prediction of scattering resonance line shapes, validated up to α =0.3 , and close to the Toulouse point α =1 /2 , where inelastic scattering becomes relevant. Our predictions model experiments with superconducting circuits [P. Forn-Díaz et al., Nat. Phys. 13, 39 (2017), 10.1038/nphys3905] and can be extended to study multiphoton scattering.

  3. Thomson scattering using an atomic notch filter

    NARCIS (Netherlands)

    Bakker, L.P.; Freriks, J.M.; Hoog, de F.J.; Kroesen, G.M.W.

    2000-01-01

    One of the biggest problems in performing Thomson scattering experiments in low-density plasmas is the very high stray light intensity in comparison with the Thomson scattering intensity. This problem is especially present in fluorescent lamps because of the proximity of the glass tube. We propose

  4. Optimal beam sources for Stark decelerators in collision experiments: a tutorial review

    International Nuclear Information System (INIS)

    Vogels, Sjoerd N.; Gao, Zhi; Meerakker, Sebastiaan Y.T. van de

    2015-01-01

    With the Stark deceleration technique, packets of molecules with a tunable velocity, a narrow velocity spread, and a high state purity can be produced. These tamed molecular beams find applications in high resolution spectroscopy, cold molecule trapping, and controlled scattering experiments. The quality and purity of the packets of molecules emerging from the decelerator critically depend on the specifications of the decelerator, but also on the characteristics of the molecular beam pulse with which the decelerator is loaded. We consider three frequently used molecular beam sources, and discuss their suitability for molecular beam deceleration experiments, in particular with the application in crossed beam scattering in mind. The performance of two valves in particular, the Nijmegen Pulsed Valve and the Jordan Valve, is illustrated by decelerating ND 3 molecules in a 2.6 meter-long Stark decelerator. We describe a protocol to characterize the valve, and to optimally load the pulse of molecules into the decelerator. We characterize the valves regarding opening time duration, optimal valve-to-skimmer distance, mean velocity, velocity spread, state purity, and relative intensity. (orig.)

  5. ARC EMCS Experiments (Seedling Growth-2) Experiment Status

    Science.gov (United States)

    Heathcote, David; Steele, Marianne

    2015-01-01

    Presentation of the status of the ARC ISS (International Space Station) Experiment, Seedling Growth-2 to the Payload Operations Investigator Working Group meeting at MSFC, Huntsville AL. The experiment employs the European Modular Cultivation System (ECMS).

  6. The nucleon-nucleus scattering at intermediate energies

    International Nuclear Information System (INIS)

    Auger, J.-P.

    1976-01-01

    The Glauber model has the merit to connect directly the nucleon-nucleus elastic differential cross section with the nucleon-nucleon amplitude and nuclear densities. The general agreement between the 1 GeV proton elastic scattering differential cross sections calculated without adjustable parameter and the experimental data (from He 4 to Pb 208 ) is rather satisfactory up to 2. - 2.5 fm -1 momentum transfer. Although the 1 GeV proton elastic scattering experiments constitute at present one of the best method in determining neutron densities, it seems that self-consistent calculations bring the best knowledge of these densities. The model independent analysis performed with electron and proton scattering experiments show that the difference between neutron and proton r.m.s. radius cannot be determined better than 25-30% for Pb 208 [fr

  7. TRACY transient experiment databook. 2) ramp withdrawal experiment

    International Nuclear Information System (INIS)

    Nakajima, Ken; Yamane, Yuichi; Ogawa, Kazuhiko; Aizawa, Eiju; Yanagisawa, Hiroshi; Miyoshi, Yoshinori

    2002-03-01

    This is a databook of TRACY ''ramp withdrawal'' experiments. TRACY is a reactor to perform supercritical experiments using low-enriched uranyl nitrate aqueous solution. The excess reactivity of TRACY is 3$ at maximum, and it is inserted by feeding the solution to a core tank or by withdrawing a control rod, which is called as the transient rod, from the core. In the ramp withdrawal experiment, the supercritical experiment is initiated by withdrawing the transient rod from the core in a constant speed using a motor drive system. The data in the present databook consist of datasheets and graphs. Experimental conditions and typical values of measured parameters are tabulated in the datasheet. In the graph, power and temperature profiles are plotted. Those data are useful for the investigation of criticality accidents with fissile solutions, and for validation of criticality accident analysis codes. (author)

  8. Thomson scattering from near-solid density plasmas using soft x-ray free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Holl, A; Bornath, T; Cao, L; Doppner, T; Dusterer, S; Forster, E; Fortmann, C; Glenzer, S H; Gregori, G; Laarmann, T; Meiwes-Broer, K H; Przystawik, A; Radcliffe, P; Redmer, R; Reinholz, H; Ropke, G; Thiele, R; Tiggesbaumker, J; Toleikis, S; Truong, N X; Tschentscher, T; Uschmann, I; Zastrau, U

    2006-11-21

    We propose a collective Thomson scattering experiment at the VUV free electron laser facility at DESY (FLASH) which aims to diagnose warm dense matter at near-solid density. The plasma region of interest marks the transition from an ideal plasma to a correlated and degenerate many-particle system and is of current interest, e.g. in ICF experiments or laboratory astrophysics. Plasma diagnostic of such plasmas is a longstanding issue. The collective electron plasma mode (plasmon) is revealed in a pump-probe scattering experiment using the high-brilliant radiation to probe the plasma. The distinctive scattering features allow to infer basic plasma properties. For plasmas in thermal equilibrium the electron density and temperature is determined from scattering off the plasmon mode.

  9. Experiment prediction for Loft Nonnuclear Experiment L1-4

    International Nuclear Information System (INIS)

    White, J.R.; Berta, V.T.; Holmstrom, H.L.O.

    1977-04-01

    A computer analysis, using the WHAM and RELAP4 computer codes, was performed to predict the LOFT system thermal-hydraulic response for Experiment L1-4 of the nonnuclear (isothermal) test series. Experiment L1-4 will simulate a 200 percent double-ended offset shear in the cold leg of a four-loop large pressurized water reactor. A core simulator will be used to provide a reactor vessel pressure drop representative of the LOFT nuclear core. Experiment L1-4 will be initiated with a nominal isothermal primary coolant temperature of 282.2 0 C, a pressurizer pressure of 15.51 MPa, and a primary coolant flow of 270.9 kg/s. In general, the predictions of saturated blowdown for Experiment Ll-4 are consistent with the expected system behavior, and predicted trends agree with results from Semiscale Test S-01-4A, which simulated the Ll-4 experiment conditions

  10. SCORE - Sounding-rocket Coronagraphic Experiment

    Science.gov (United States)

    Fineschi, Silvano; Moses, Dan; Romoli, Marco

    The Sounding-rocket Coronagraphic Experiment - SCORE - is a The Sounding-rocket Coronagraphic Experiment - SCORE - is a coronagraph for multi-wavelength imaging of the coronal Lyman-alpha lines, HeII 30.4 nm and HI 121.6 nm, and for the broad.band visible-light emission of the polarized K-corona. SCORE has flown successfully in 2009 acquiring the first images of the HeII line-emission from the extended corona. The simultaneous observation of the coronal Lyman-alpha HI 121.6 nm, has allowed the first determination of the absolute helium abundance in the extended corona. This presentation will describe the lesson learned from the first flight and will illustrate the preparations and the science perspectives for the second re-flight approved by NASA and scheduled for 2016. The SCORE optical design is flexible enough to be able to accommodate different experimental configurations with minor modifications. This presentation will describe one of such configurations that could include a polarimeter for the observation the expected Hanle effect in the coronal Lyman-alpha HI line. The linear polarization by resonance scattering of coronal permitted line-emission in the ultraviolet (UV) can be modified by magnetic fields through the Hanle effect. Thus, space-based UV spectro-polarimetry would provide an additional new tool for the diagnostics of coronal magnetism.

  11. Low-noise wide-band amplifiers for stochastic beam cooling experiments

    International Nuclear Information System (INIS)

    Leskovar, B.; Lo, C.C.

    1982-01-01

    Noise characteristics of the continuous-wave wide-band amplifier systems for stochastic beam cooling experiments are presented. Also, the noise performance, bandwidth capability and gain stability of components used in these amplifiers are summarized and compared in the 100 MHz to 40 GHz frequency range. This includes bipolar and field-effect transistors, parametric amplifier, Schottky diode mixer and maser. Measurements of the noise characteristics and scattering parameters of variety GaAs FETs as a function of ambient temperature are also given. Performance data and design information are presented on a broadband 150-500 MHz preamplifier having noise temperature of approximately 35 0 K at ambient temperature of 20 0 K. An analysis of preamplifier stability based on scattering parameters concept is included

  12. Detector studies for a high precision determination of the weak mixing angle at the future P2-experiment in Mainz

    Energy Technology Data Exchange (ETDEWEB)

    Gerz, Kathrin; Baunack, Sebastian; Becker, Dominik; Diefenbach, Juergen; Glaeser, Boris; Imai, Yoshio; Jennewein, Thomas [Institut fuer Kernphysik, Johannes-Gutenberg-Universitaet Mainz (Germany); Maas, Frank [Institut fuer Kernphysik, Johannes-Gutenberg-Universitaet Mainz (Germany); Helmholz-Institut Mainz (Germany); PRISMA Cluster of Excellence, Johannes Gutenberg-Universitaet, 55099 Mainz (Germany); Rodriguez, David [Helmholz-Institut Mainz (Germany); Collaboration: A4-Collaboration

    2015-07-01

    The P2 experiment at the upcoming MESA accelerator in Mainz aims for a high precision determination of the electroweak mixing angle: The 2% measurement of the parity violating asymmetry in elastic electron-proton scattering will allow for a determination of sin{sup 2}(θ{sub W}) of 0.15%. The experimental setup is currently being designed and will employ the use of an integrating, large solid angle magnetic solenoid spectrometer with quartz bars for the detection of elastically scattered electrons. The low-energy and high-statistics experiment places high demands on detector performance and radiation hardness of all materials used in the setup. We are going to present the current status of the development of the experiment, feasibility calculations and simulations. We put an emphasis on technology and design of a Cherenkov detector.

  13. An historical experiment: Los Angeles smog evolution observed by blimp.

    Science.gov (United States)

    Hidy, G M

    2018-02-12

    Observations of smog over the Los Angeles Basin (LAB) links high oxidant mixing ratios with poor visibility, sometimes smog by blimp in a Lagrangian-like format. The experiment on September 6, 1973, demonstrated that a blimp could travel with the wind across the LAB, observing ozone (O 3 ) and precursors, and particles of different size ranges. These included condensation nuclei (CN) concentrations dominated by particles of ≤ 0.1 µm diameter and light scattering coefficient (b sc ) representing mainly particles of 0.1-2.0 µm diameter. The results indicated a pollutant variation similar to that measured at a fixed site. Ozone was produced in an air mass, reaching a maximum of ~400 ppb in the presence of nitrogen oxides (NO x ) and nonmethane hydrocarbons (NMHCs), then declined. Although the photochemistry was developing, b sc grew with O 3 mixing ratio to a quasi-steady state at ~9-10 × 10 -4  m -1 , decreasing in value much later with decease in O 3 . The light scattering coefficient was found to be positively associated with the O 3 mixing ratio, whereas CN concentrations were negatively proportional to O 3 mixing ratio. The blimp experiment was supported with aircraft vertical profiles and ground-level observations from a mobile laboratory. The blimp flight obtained combined gas and particle changes aloft that could not be obtained by ground or fixed-wing aircraft measurements alone. The experiment was partially successful in achieving a true Lagrangian characterization of smog chemistry in a constrained or defined "open" air mass. The Los Angeles experiment demonstrated the use of a blimp as a platform for measurement of air pollution traveling with an air mass across an urban area. The method added unique data showing the relationship between photochemical smog chemistry and aerosol dynamics in smog. The method offers an alternative to reliance on smog chamber and modeling observations to designing air quality management strategies for reactive

  14. Multiple scattering of low energy rare gas ions: a comparison of experiment and computer simulation

    International Nuclear Information System (INIS)

    Heiland, W.; Taglauer, E.; Robinson, M.T.

    1976-01-01

    Some aspects of ion scattering below a few keV have been interpreted by multiple scattering. This can partly be simulated by chain or string models, where the single crystal surface is replaced by a chain of atoms. The computer program MARLOWE allows a simulation of solid-ion interaction, which is much closer to reality, e.g. the crystal is three-dimensional, includes lattice vibrations, electronic stopping power, different scattering potentials, etc. It is shown that the energy of the reflected ions as a function of the primary energy, lattice constant, impact angle and scattering angle can be understood within the string model. These results of the string model are confirmed by the MARLOWE calculations. For an interpretation of the measured intensities the simple string model is insufficient, whereas with MARLOWE reasonable agreement with experimental data may be achieved, if the thermal vibrations of the lattice atoms are taken into account. The experimental data include Ne + →Ni, Ne + →Ag and preliminary data on Ne + →W. The screening parameters of the scattering potentials are estimated for these ion-atom combinations. The results allow some conclusions about surface Debye temperatures. (Auth.)

  15. Scattering of high energy electrons on deuteron

    International Nuclear Information System (INIS)

    Grossetete, B.

    1964-12-01

    The aim of this work is to obtain information on the neutron form factor from the study of the scattering of electrons on deuterium. The first part is dedicated to the theoretical study of the elastic and inelastic scattering. We introduce different form factors: Sachs form factor, the Pauli and Dirac form factors, they appear in the analytic expression of the scattering cross-section. We show how the deuteron form factors can be deduced from neutron's and proton's form factors. In the case of the inelastic scattering we show how the cross section can be broken into components associated to partial waves and we obtain different formulas for the inelastic cross-section based on the Breit formula or the Durand formalism. The second part is dedicated to the experiment setting of electron scattering on deuterium. The elastic scattering experiment has been made on solid or liquid CD 2 targets while inelastic scattering has been studied on a liquid target. We have used an electron beam produced by the Orsay linear accelerator and the scattered electrons have been analysed by a magnetic spectrometer and a Cerenkov detector. The results give a very low value (slightly positive)for the charge form factor of the neutron and a magnetic form factor for the neutron slightly below that of the proton [fr

  16. Learning and Experience

    DEFF Research Database (Denmark)

    Olesen, Henning Salling

    2017-01-01

    Abstract: This chapter introduces a psycho-societal approach to theorizing learning, combining a materialist theory of socialization with a hermeneutic interpretation methodology. The term "approach" indicates the intrinsic connection between theory, empirical research process and epistemic subject....... Learning is theorized as dynamic subjective experience of (socially situated) realities, counting on individual subjectivity as well as subjective aspects of social interaction. This psycho-societal theory of subjective experiences conceptualizes individual psychic development as interactional experience...... of societal relations, producing an inner psycho-dynamic as a conscious and unconscious individual resource in future life. The symbolization of immediate sensual experiences form an individual life experience of social integration, language use being the medium of collective, social experience (knowledge...

  17. Correlation of microdosimetric measurements with relative biological effectiveness from clinical experience for two neutron therapy beams

    International Nuclear Information System (INIS)

    Stinchcomb, T.G.; Kuchnir, F.T.; Myrianthopoulos, L.C.; Horton, J.L. Jr.; Roberts, W.K.

    1986-01-01

    Microdosimetric measurements were made for the neutron therapy beams at the University of Chicago and at the Cleveland Clinic with the same geometry and phantom material using the same tissue-equivalent spherical proportional counter and standard techniques. The energy deposition spectra (dose distributions in lineal energy) are compared for these beams and for their scattered components (direct beam blocked). The model of dual radiation action (DRA) of Kellerer and Rossi is employed to interpret these data in terms of biological effectiveness over this limited range of radiation qualities. The site-diameter parameter of the DRA theory is determined for the Cleveland beam by setting the biological effectiveness (relative to 60 Co gamma radiation) equal to the relative biological effectiveness value deduced from radiobiology experiments and clinical experience. The resulting value of this site-diameter parameter is then used to predict the biological effectiveness of the Chicago beam. The prediction agrees with the value deduced from radiobiology and clinical experience. The biological effectiveness of the scattered components of both beams is also estimated using the model

  18. Design and development of the large helical device TV Thomson scattering

    International Nuclear Information System (INIS)

    Yamada, I.; Narihara, K.; Funaba, H.; Hayashi, H.

    2004-01-01

    We have developed a television (TV) Thomson scattering and installed it on the large helical device (LHD). The LHD TV Thomson scattering consists of a yttrium-aluminum-garnet (YAG) laser, beam transport system, scattered light collection optics, spectrometer, intensified charge coupled device camera, and data acquisition system. The spatial and temporal resolutions are about 7 mm and a few seconds, respectively. The temporal resolution of the LHD TV Thomson scattering is not good, but will be enough for long-time, steady-state discharge experiments in LHD. In the initial experiments, we measured electron temperature profiles of LHD plasmas at five spatial points. It has been found that the electron temperatures measured by the LHD TV Thomson scattering reasonably agree with those obtained by the LHD YAG Thomson scattering. We will report the details of the LHD TV Thomson scattering system with some experimental data

  19. The Whiteness of Things and Light Scattering

    Science.gov (United States)

    Gratton, L. M.; Lopez-Arias, T.; Calza, G.; Oss, S.

    2009-01-01

    We discuss some simple experiments dealing with intriguing properties of light and its interaction with matter. In particular, we show how to emphasize that light reflection, refraction and scattering can provide a proper, physical description of human perception of the "colour" white. These experiments can be used in the classroom with an enquiry…

  20. The experiment of grid characteristics for high-voltage radiography of chest

    International Nuclear Information System (INIS)

    Kim, Jung Min; Ahn, Bong Seon

    1992-01-01

    Grids can improve the diagnostic quality of chest radiography by trapping the greater part of scattered radiation thus providing more detailed chest radiographic images. It is most effective method of reduce the scatter ratio but must increase the expour factor. The benefit of use of grid is improve the contrast and the loss is increase of patient dose. In chest radiography especially hard quality high voltage radiography it will have to be considered to select the optimum grid with view point of benefit and loss. In this experiment, auther got some result of characteristics about 4 different grids with film method. 1. There was no difference the scatter ratio in case of no grid and the scatter ratio was about 60 % 2. 16 : 1 grid was excellent of scatter reduction factor in high voltage chest radiography, next was 10 : 1, CROSS, MICRO FINE grid have low scatter reduction rate compare to 16:1,10:1 grid. 3. The bucky factor of CROSS grid in accordance of kVp was find out the highest in 4 grids, on the contrary 10 : 1 grid was profitable to the. exposure does. 4. With careful consideration in the point of scatter reduction rate and bucky factor, auther suggest the 10 : 1 linear grid on the use of chest radiography in 80∼120 kVp, 16 : 1 grid in 120∼140 kVp