Sample records for scatter emission imaging

  1. Scattered Radiation Emission Imaging: Principles and Applications

    Directory of Open Access Journals (Sweden)

    M. K. Nguyen


    Full Text Available Imaging processes built on the Compton scattering effect have been under continuing investigation since it was first suggested in the 50s. However, despite many innovative contributions, there are still formidable theoretical and technical challenges to overcome. In this paper, we review the state-of-the-art principles of the so-called scattered radiation emission imaging. Basically, it consists of using the cleverly collected scattered radiation from a radiating object to reconstruct its inner structure. Image formation is based on the mathematical concept of compounded conical projection. It entails a Radon transform defined on circular cone surfaces in order to express the scattered radiation flux density on a detecting pixel. We discuss in particular invertible cases of such conical Radon transforms which form a mathematical basis for image reconstruction methods. Numerical simulations performed in two and three space dimensions speak in favor of the viability of this imaging principle and its potential applications in various fields.

  2. The Mathematical Foundations of 3D Compton Scatter Emission Imaging

    Directory of Open Access Journals (Sweden)

    T. T. Truong


    Full Text Available The mathematical principles of tomographic imaging using detected (unscattered X- or gamma-rays are based on the two-dimensional Radon transform and many of its variants. In this paper, we show that two new generalizations, called conical Radon transforms, are related to three-dimensional imaging processes based on detected Compton scattered radiation. The first class of conical Radon transform has been introduced recently to support imaging principles of collimated detector systems. The second class is new and is closely related to the Compton camera imaging principles and invertible under special conditions. As they are poised to play a major role in future designs of biomedical imaging systems, we present an account of their most important properties which may be relevant for active researchers in the field.

  3. Magnetic resonance imaging-guided attenuation and scatter corrections in three-dimensional brain positron emission tomography

    CERN Document Server

    Zaidi, H; Slosman, D O


    Reliable attenuation correction represents an essential component of the long chain of modules required for the reconstruction of artifact-free, quantitative brain positron emission tomography (PET) images. In this work we demonstrate the proof of principle of segmented magnetic resonance imaging (MRI)-guided attenuation and scatter corrections in 3D brain PET. We have developed a method for attenuation correction based on registered T1-weighted MRI, eliminating the need of an additional transmission (TX) scan. The MR images were realigned to preliminary reconstructions of PET data using an automatic algorithm and then segmented by means of a fuzzy clustering technique which identifies tissues of significantly different density and composition. The voxels belonging to different regions were classified into air, skull, brain tissue and nasal sinuses. These voxels were then assigned theoretical tissue-dependent attenuation coefficients as reported in the ICRU 44 report followed by Gaussian smoothing and additio...

  4. The SEEDS Direct Imaging Survey for Planets and Scattered Dust Emission in Debris Disk Systems (United States)

    Janson, Markus; Brandt, Timothy; Moro-Martin, Amaya; Usuda, Tomonori; Thalmann, Christian; Carson, Joseph C.; Goto, Miwa; Currie, Thayne; McElwain, M. W.; Itoh, Yoichi; hide


    Debris disks around young main-sequence stars often have gaps and cavities which for a long time have been interpreted as possibly being caused by planets. In recent years, several giant planet discoveries have been made in systems hosting disks of precisely this nature, further implying that interactions with planets could be a common cause of such disk structures. As part of the SEEDS high-contrast imaging survey, we are surveying a population of debris disk-hosting stars with gaps and cavities implied by their spectral energy distributions, in order to attempt to spatially resolve the disk as well as to detect any planets that may be responsible for the disk structure. Here we report on intermediate results from this survey. Five debris disks have been spatially resolved, and a number of faint point sources have been discovered, most of which have been tested for common proper motion, which in each case has excluded physical companionship with the target stars. From the detection limits of the 50 targets that have been observed, we find that beta Pic b-like planets (approximately 10M(sub jup) planets around G-A-type stars) near the gap edges are less frequent than 15-30%, implying that if giant planets are the dominant cause of these wide (27 AU on average) gaps, they are generally less massive than beta Pic b.

  5. Assessment of the scatter correction procedures in single photon emission computed tomography imaging using simulation and clinical study

    Directory of Open Access Journals (Sweden)

    Mehravar Rafati


    Conclusion: The simulation and the clinical studies showed that the new approach could be better performance than DEW, TEW methods, according to values of the contrast, and the SNR for scatter correction.

  6. Autofocus imaging : Image reconstruction based on inverse scattering theory

    NARCIS (Netherlands)

    Behura, J.; Wapenaar, C.P.A.; Snieder, R.


    Conventional imaging algorithms assume single scattering and therefore cannot image multiply scattered waves correctly. The multiply scattered events in the data are imaged at incorrect locations resulting in spurious subsurface structures and erroneous interpretation. This drawback of current

  7. Advanced optical imaging with scattering lenses

    NARCIS (Netherlands)

    Yilmaz, H.


    This thesis describes new advanced optical methods to control light propagation through disordered nanophotonic materials for focusing and high‐resolution imaging applications. A combination of light scattering, wavefront control, and our new image processing algorithms enable using random

  8. Imaging partons in exclusive scattering processes

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, Markus


    The spatial distribution of partons in the proton can be probed in suitable exclusive scattering processes. I report on recent performance estimates for parton imaging at a proposed Electron-Ion Collider.

  9. Compton scatter correction for planner scintigraphic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Vaan Steelandt, E.; Dobbeleir, A.; Vanregemorter, J. [Algemeen Ziekenhuis Middelheim, Antwerp (Belgium). Dept. of Nuclear Medicine and Radiotherapy


    A major problem in nuclear medicine is the image degradation due to Compton scatter in the patient. Photons emitted by the radioactive tracer scatter in collision with electrons of the surrounding tissue. Due to the resulting loss of energy and change in direction, the scattered photons induce an object dependant background on the images. This results in a degradation of the contrast of warm and cold lesions. Although theoretically interesting, most of the techniques proposed in literature like the use of symmetrical photopeaks can not be implemented on the commonly used gamma camera due to the energy/linearity/sensitivity corrections applied in the detector. A method for a single energy isotope based on existing methods with adjustments towards daily practice and clinical situations is proposed. It is assumed that the scatter image, recorded from photons collected within a scatter window adjacent to the photo peak, is a reasonable close approximation of the true scatter component of the image reconstructed from the photo peak window. A fraction `k` of the image using the scatter window is subtracted from the image recorded in the photo peak window to produce the compensated image. The principal matter of the method is the right value for the factor `k`, which is determined in a mathematical way and confirmed by experiments. To determine `k`, different kinds of scatter media are used and are positioned in different ways in order to simulate a clinical situation. For a secondary energy window from 100 to 124 keV below a photo peak window from 126 to 154 keV, a value of 0.7 is found. This value has been verified using both an antropomorph thyroid phantom and the Rollo contrast phantom.

  10. Wave propagation, scattering and emission in complex media (United States)

    Jin, Ya-Qiu

    . Gitterman. Transformation of the spectrum of scattered radiation in randomly inhomogeneous absorptive plasma layer / G. V. Jandieri, G. D. Aburjunia, V. G. Jandieri. Numerical analysis of microwave heating on saponification reaction / K. Huang, K. Jia -- IV. Scattering from complex targets. Analysis of electromagnetic scattering from layered crossed-gratings of circular cylinders using lattice sums technique / K. Yasumoto, H. T. Jia. Scattering by a body in a random medium / M. Tateiba, Z. Q. Meng, H. El-Ocla. A rigorous analysis of electromagnetic scattering from multilayered crossed-arrays of metallic cylinders / H. T. Jia, K. Yasumoto. Vector models of non-stable and spatially-distributed radar objects / A. Surkov ... [et al.]. Simulation of algorithm of orthogonal signals forming and processing used to estimate back scattering matrix of non-stable radar objects / D. Nosov ... [et al.]. New features of scattering from a dielectric film on a reflecting metal substrate / Z. H. Gu, I. M. Fuks, M. Ciftan. A higher order FDTD method for EM wave propagation in collision plasmas / S. B. Liu, J. J. Mo, N. C. Yuan -- V. Radiative transfer and remote sensing. Simulating microwave emission from Antarctica ice sheet with a coherent model / M. Tedesco, P. Pampaloni. Scattering and emission from inhomogeneous vegetation canopy and alien target by using three-dimensional Vector Radiative Transfer (3D-VRT) equation / Y. Q. Jin, Z. C. Liang. Analysis of land types using high-resolution satellite images and fractal approach / H. G. Zhang ... [et al.]. Data fusion of RADARSAT SAR and DMSP SSM/I for monitoring sea ice of China's Bohai Sea / Y. Q. Jin. Retrieving atmospheric temperature profiles from simulated microwave radiometer data with artificial neural networks / Z. G. Yao, H. B. Chen -- VI. Wave propagation and wireless communication. Wireless propagation in urban environments: modeling and experimental verification / D. Erricolo ... [et al.]. An overview of physics-based wave

  11. Bistatic Forward Scattering Radar Detection and Imaging

    Directory of Open Access Journals (Sweden)

    Hu Cheng


    Full Text Available Forward Scattering Radar (FSR is a special type of bistatic radar that can implement image detection, imaging, and identification using the forward scattering signals provided by the moving targets that cross the baseline between the transmitter and receiver. Because the forward scattering effect has a vital significance in increasing the targets’ Radar Cross Section (RCS, FSR is quite advantageous for use in counter stealth detection. This paper first introduces the front line technology used in forward scattering RCS, FSR detection, and Shadow Inverse Synthetic Aperture Radar (SISAR imaging and key problems such as the statistical characteristics of forward scattering clutter, accurate parameter estimation, and multitarget discrimination are then analyzed. Subsequently, the current research progress in FSR detection and SISAR imaging are described in detail, including the theories and experiments. In addition, with reference to the BeiDou navigation satellite, the results of forward scattering experiments in civil aircraft detection are shown. Finally, this paper considers future developments in FSR target detection and imaging and presents a new, promising technique for stealth target detection.

  12. Positron emission mammography imaging

    Energy Technology Data Exchange (ETDEWEB)

    Moses, William W.


    This paper examines current trends in Positron Emission Mammography (PEM) instrumentation and the performance tradeoffs inherent in them. The most common geometry is a pair of parallel planes of detector modules. They subtend a larger solid angle around the breast than conventional PET cameras, and so have both higher efficiency and lower cost. Extensions to this geometry include encircling the breast, measuring the depth of interaction (DOI), and dual-modality imaging (PEM and x-ray mammography, as well as PEM and x-ray guided biopsy). The ultimate utility of PEM may not be decided by instrument performance, but by biological and medical factors, such as the patient to patient variation in radiotracer uptake or the as yet undetermined role of PEM in breast cancer diagnosis and treatment.

  13. Healing X-ray scattering images. (United States)

    Liu, Jiliang; Lhermitte, Julien; Tian, Ye; Zhang, Zheng; Yu, Dantong; Yager, Kevin G


    X-ray scattering images contain numerous gaps and defects arising from detector limitations and experimental configuration. We present a method to heal X-ray scattering images, filling gaps in the data and removing defects in a physically meaningful manner. Unlike generic inpainting methods, this method is closely tuned to the expected structure of reciprocal-space data. In particular, we exploit statistical tests and symmetry analysis to identify the structure of an image; we then copy, average and interpolate measured data into gaps in a way that respects the identified structure and symmetry. Importantly, the underlying analysis methods provide useful characterization of structures present in the image, including the identification of diffuse versus sharp features, anisotropy and symmetry. The presented method leverages known characteristics of reciprocal space, enabling physically reasonable reconstruction even with large image gaps. The method will correspondingly fail for images that violate these underlying assumptions. The method assumes point symmetry and is thus applicable to small-angle X-ray scattering (SAXS) data, but only to a subset of wide-angle data. Our method succeeds in filling gaps and healing defects in experimental images, including extending data beyond the original detector borders.

  14. Healing X-ray scattering images

    Directory of Open Access Journals (Sweden)

    Jiliang Liu


    Full Text Available X-ray scattering images contain numerous gaps and defects arising from detector limitations and experimental configuration. We present a method to heal X-ray scattering images, filling gaps in the data and removing defects in a physically meaningful manner. Unlike generic inpainting methods, this method is closely tuned to the expected structure of reciprocal-space data. In particular, we exploit statistical tests and symmetry analysis to identify the structure of an image; we then copy, average and interpolate measured data into gaps in a way that respects the identified structure and symmetry. Importantly, the underlying analysis methods provide useful characterization of structures present in the image, including the identification of diffuse versus sharp features, anisotropy and symmetry. The presented method leverages known characteristics of reciprocal space, enabling physically reasonable reconstruction even with large image gaps. The method will correspondingly fail for images that violate these underlying assumptions. The method assumes point symmetry and is thus applicable to small-angle X-ray scattering (SAXS data, but only to a subset of wide-angle data. Our method succeeds in filling gaps and healing defects in experimental images, including extending data beyond the original detector borders.

  15. SENTINEL-1 Image Matching Using Strong Scatters (United States)

    Ghannadi, M. A.; Saadatseresht, M.; Motagh, M.


    The availability of new radar spaceborne sensors offers new interesting potentialities for the geomatics application: spatial and temporal change detection, generation of Digital Elevation Model(DEM) using radargrametry and interferometry. Since the start of the sentinel-1 mission to take images from different regions all over the world, the ability to use these images in variety domains has been treasured. This paper suggests a method for image matching using strong scatters. all the experiments are done on sentinel-1 stereo images from Jam, Bushehr, Iran.

  16. Resonant cyclotron scattering in magnetars' emission

    NARCIS (Netherlands)

    Rea, N.; Zane, S.; Turolla, R.; Lyutikov, M.; Götz, D.


    We present a systematic fit of a model of resonant cyclotron scattering (RCS) to the X-ray data of 10 magnetars, including canonical and transient anomalous X-ray pulsars (AXPs) and soft gamma repeaters (SGRs). In this scenario, nonthermal magnetar spectra in the soft X-rays (i.e., below ~10 keV)

  17. An Inverse Compton Scattering Model of Pulsar Emission. III. Polarization (United States)

    Xu, R. X.; Liu, J. F.; Han, J. L.; Qiao, G. J.


    Qiao and his collaborators recently proposed an inverse Compton scattering model to explain radio emission from pulsars. In this paper, we investigate the polarization properties of pulsar emission in the model. First of all, using the lower frequency approximation, we derived the analytical amplitude of the inverse Compton scattered wave of a single electron in a strong magnetic field. We found that the outgoing radio emission of a single relativistic electron scattering off the ``low-frequency waves'' produced by gap sparking should be linearly polarized and have no circular polarization at all. However, considering the coherency of the emission from a bunch of electrons, we found that the outgoing radiation from the inner part of the emission beam, i.e., that from the lower emission altitudes, preferentially has to have circular polarization. Computer simulations show that the polarization properties, such as the sense reversal of circular polarization near the pulse center, the S-shape of position angle swing of the linear polarization, and a strong linear polarization in conal components, can be reproduced in the ICS model.

  18. Multimodal x-ray scatter imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bunk, O; Menzel, A [Swiss Light Source, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Bech, M; Pfeiffer, F [Department Physik (E17), Technische Universitaet Muenchen, James-Franck-Strausse, 85748 Garching (Germany); Jensen, T H; Feidenhans' l, R [Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen (Denmark); Binderup, T [Rigshospitalet and Faculty of Health Science, University of Copenhagen, 2100 Copenhagen (Denmark)], E-mail:


    We describe a small-angle x-ray scattering-based imaging technique that reveals the distribution and orientation of nano-scale structures over extended areas. By combining two measurement and analysis schemes, complementary structural information is available which renders the technique suitable for a broad range of applications, e.g. in materials science and bio-imaging. Through a combination of current techniques and on-line analysis schemes, measurements with a so far unprecedented combination of speed, dynamic range and point density became feasible. This is illustrated by data recorded for a section of a mouse soleus muscle visualizing fine muscle and Achilles tendon structures down to the 10 nm range over a 10 mm{sup 2} sample area.

  19. Imaging of Gamma-ray Scatter from a Polymethyl-methacrylate Phantom Using a Compton Imaging Spectrometer. (United States)

    Frank, Samuel J; Kearfott, Kimberlee J


    Commercially available gamma-ray imaging spectrometers have been introduced recently and are currently undergoing investigations for various applications in nuclear power plants, environmental management, and medical environments. A Compton imaging gamma-ray spectrometer uses an array of detectors or a single position-sensitive crystal to create planar images of radionuclide distributions. The typical software included with these devices creates images of specific radionuclides using only the counts under their known gamma emission photopeaks. This approach prevents the direct imaging of scattered radiation, which is of interest for many radiation protection applications. In this paper, a technique for imaging radiation scatter or portions of the scatter spectrum is implemented. This involves the creation of a virtual radionuclide in software with peaks placed throughout the backscatter continuum of interest and then imaging that virtual radionuclide in the post-processing software. This technique is used to image the Compton scatter successfully from a polymethyl-methacrylate (PMMA) phantom placed in a Cs irradiator beam. Measured scatter energies were found to be within 15% of the expected values, sufficient to predict scatter behavior and individually measure separate sources of scatter at different angles.


    Energy Technology Data Exchange (ETDEWEB)

    Menezes, R. B.; Steiner, J. E.; Ricci, T. V., E-mail: [Instituto de Astronomia Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, Rua do Matao 1226, Cidade Universitaria, Sao Paulo, SP CEP 05508-090 (Brazil)


    We present an analysis of a data cube of the central region of M104, the Sombrero galaxy, obtained with the GMOS-IFU of the Gemini-South telescope, and report the discovery of collimation and scattering of the active galactic nucleus (AGN) emission in the circumnuclear region of this galaxy. Analysis with PCA Tomography and spectral synthesis revealed the existence of collimation and scattering of the AGN featureless continuum and also of a broad component of the H{alpha} emission line. The collimation and scattering of this broad H{alpha} component was also revealed by fitting the [N II] {lambda}{lambda}6548, 6583 and H{alpha} emission lines as a sum of Gaussian functions. The spectral synthesis, together with a V-I image obtained with the Hubble Space Telescope, showed the existence of circumnuclear dust, which may cause the light scattering. We also identify a dusty feature that may be interpreted as a torus/disk structure. The existence of two opposite regions with featureless continuum (P.A. = -18 Degree-Sign {+-} 13 Degree-Sign and P.A. = 162 Degree-Sign {+-} 13 Degree-Sign ) along a direction perpendicular to the torus/disk (P.A. = 72 Degree-Sign {+-} 14 Degree-Sign ) suggests that this structure is approximately edge-on and collimates the AGN emission. The edge-on torus/disk also hides the broad-line region. The proposed scenario is compatible with the unified model and explains why only a weak broad component of the H{alpha} emission line is visible and also why many previous studies detected no broad H{alpha}. The technique used here proved to be an efficient method not only for detecting scattered light, but also for testing the unified model in low-luminosity AGNs.

  1. Evaluation of scatter correction using a single isotope for simultaneous emission and transmission data

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J.; Kuikka, J.T.; Vanninen, E.; Laensimies, E. [Kuopio Univ. Hospital (Finland). Dept. of Clinical Physiology and Nuclear Medicine; Kauppinen, T.; Patomaeki, L. [Kuopio Univ. (Finland). Dept. of Applied Physics


    Photon scatter is one of the most important factors degrading the quantitative accuracy of SPECT images. Many scatter correction methods have been proposed. The single isotope method was proposed by us. Aim: We evaluate the scatter correction method of improving the quality of images by acquiring emission and transmission data simultaneously with single isotope scan. Method: To evaluate the proposed scatter correction method, a contrast and linearity phantom was studied. Four female patients with fibromyalgia (FM) syndrome and four with chronic back pain (BP) were imaged. Grey-to-cerebellum (G/C) and grey-to-white matter (G/W) ratios were determined by one skilled operator for 12 regions of interest (ROIs) in each subject. Results: The linearity of activity response was improved after the scatter correction (r=0.999). The y-intercept value of the regression line was 0.036 (p<0.0001) after scatter correction and the slope was 0.954. Pairwise correlation indicated the agreement between nonscatter corrected and scatter corrected images. Reconstructed slices before and after scatter correction demonstrate a good correlation in the quantitative accuracy of radionuclide concentration. G/C values have significant correlation coefficients between original and corrected data. Conclusion: The transaxial images of human brain studies show that the scatter correction using single isotope in simultaneous transmission and emission tomography provides a good scatter compensation. The contrasts were increased on all 12 ROIs. The scatter compensation enhanced details of physiological lesions. (orig.) [Deutsch] Die Photonenstreuung gehoert zu den wichtigsten Faktoren, die die quantitative Genauigkeit von SPECT-Bildern vermindern. Es wurde eine ganze Reihe von Methoden zur Streuungskorrektur vorgeschlagen. Von uns wurde die Einzelisotopen-Methode empfohlen. Ziel: Wir untersuchten die Streuungskorrektur-Methode zur Verbesserung der Bildqualitaet durch simultane Gewinnung von Emissions

  2. Pulsed holographic system for imaging through spatially extended scattering media (United States)

    Kanaev, A. V.; Judd, K. P.; Lebow, P.; Watnik, A. T.; Novak, K. M.; Lindle, J. R.


    Imaging through scattering media is a highly sought capability for military, industrial, and medical applications. Unfortunately, nearly all recent progress was achieved in microscopic light propagation and/or light propagation through thin or weak scatterers which is mostly pertinent to medical research field. Sensing at long ranges through extended scattering media, for example turbid water or dense fog, still represents significant challenge and the best results are demonstrated using conventional approaches of time- or range-gating. The imaging range of such systems is constrained by their ability to distinguish a few ballistic photons that reach the detector from the background, scattered, and ambient photons, as well as from detector noise. Holography can potentially enhance time-gating by taking advantage of extra signal filtering based on coherence properties of the ballistic photons as well as by employing coherent addition of multiple frames. In a holographic imaging scheme ballistic photons of the imaging pulse are reflected from a target and interfered with the reference pulse at the detector creating a hologram. Related approaches were demonstrated previously in one-way imaging through thin biological samples and other microscopic scale scatterers. In this work, we investigate performance of holographic imaging systems under conditions of extreme scattering (less than one signal photon per pixel signal), demonstrate advantages of coherent addition of images recovered from holograms, and discuss image quality dependence on the ratio of the signal and reference beam power.

  3. Energy dependence of scatter components in multispectral PET imaging. (United States)

    Bentourkia, M; Msaki, P; Cadorette, J; Lecomte, R


    High resolution images in PET based on small individual detectors are obtained at the cost of low sensitivity and increased detector scatter. These limitations can be partially overcome by enlarging discrimination windows to include more low-energy events and by developing more efficient energy-dependent methods to correct for scatter radiation from all sources. The feasibility of multispectral scatter correction was assessed by decomposing response functions acquired in multiple energy windows into four basic components: object, collimator and detector scatter, and trues. The shape and intensity of these components are different and energy-dependent. They are shown to contribute to image formation in three ways: useful (true), potentially useful (detector scatter), and undesirable (object and collimator scatter) information to the image over the entire energy range. With the Sherbrooke animal PET system, restoration of detector scatter in every energy window would allow nearly 90% of all detected events to participate in image formation. These observations suggest that multispectral acquisition is a promising solution for increasing sensitivity in high resolution PET. This can be achieved without loss of image quality if energy-dependent methods are made available to preserve useful events as potentially useful events are restored and undesirable events removed.

  4. Scatter correction for large non-human primate brain imaging using microPET

    Energy Technology Data Exchange (ETDEWEB)

    Naidoo-Variawa, S; Lehnert, W; Banati, R B; Meikle, S R, E-mail: [Discipline of Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, PO Box 170, Lidcombe, NSW 1825, Sydney (Australia)


    The baboon is well suited to pre-clinical evaluation of novel radioligands for positron emission tomography (PET). We have previously demonstrated the feasibility of using a high resolution animal PET scanner for this application in the baboon brain. However, the non-homogenous distribution of tissue density within the head may give rise to photon scattering effects that reduce contrast and compromise quantitative accuracy. In this study, we investigated the magnitude and distribution of scatter contributing to the final reconstructed image and its variability throughout the baboon brain using phantoms and Monte Carlo simulated data. The scatter fraction is measured up to 36% at the centre of the brain for a wide energy window (350-650 keV) and 19% for a narrow (450-650 keV) window. We observed less than 3% variation in the scatter fraction throughout the brain and found that scattered events arising from radioactivity outside the field of view contribute less than 1% of measured coincidences. In a contrast phantom, scatter and attenuation correction improved contrast recovery compared with attenuation correction on its own and reduced bias to less than 10% at the expense of the reduced signal-to-noise ratio. We conclude that scatter correction is a necessary step for ensuring high quality measurements of the radiotracer distribution in the baboon brain with a microPET scanner, while it is not necessary to model out of field of view scatter or a spatially variant scatter function.

  5. Linearized least-square imaging of internally scattered data

    KAUST Repository

    Aldawood, Ali


    Internal multiples deteriorate the quality of the migrated image obtained conventionally by imaging single scattering energy. However, imaging internal multiples properly has the potential to enhance the migrated image because they illuminate zones in the subsurface that are poorly illuminated by single-scattering energy such as nearly vertical faults. Standard migration of these multiples provide subsurface reflectivity distributions with low spatial resolution and migration artifacts due to the limited recording aperture, coarse sources and receivers sampling, and the band-limited nature of the source wavelet. Hence, we apply a linearized least-square inversion scheme to mitigate the effect of the migration artifacts, enhance the spatial resolution, and provide more accurate amplitude information when imaging internal multiples. Application to synthetic data demonstrated the effectiveness of the proposed inversion in imaging a reflector that is poorly illuminated by single-scattering energy. The least-square inversion of doublescattered data helped delineate that reflector with minimal acquisition fingerprint.

  6. Evaluation of scatter effects on image quality for breast tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Wu Gang; Mainprize, James G.; Boone, John M.; Yaffe, Martin J. [Imaging Research, Sunnybrook Health Sciences Centre, S-657, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada) and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M4N 3M5 (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario M4N 3M5 (Canada); Department of Radiology, X-ray Imaging Laboratory, U. C. Davis Medical Center, 4701 X Street, Sacramento, California 95817 and Department of Biomedical Engineering, University of California, Davis, California 95616 (United States); Imaging Research, Sunnybrook Health Sciences Centre, S-657, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada) and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M4N 3M5 (Canada)


    Digital breast tomosynthesis uses a limited number (typically 10-20) of low-dose x-ray projections to produce a pseudo-three-dimensional volume tomographic reconstruction of the breast. The purpose of this investigation was to characterize and evaluate the effect of scattered radiation on the image quality for breast tomosynthesis. In a simulation, scatter point spread functions generated by a Monte Carlo simulation method were convolved over the breast projection to estimate the distribution of scatter for each angle of tomosynthesis projection. The results demonstrate that in the absence of scatter reduction techniques, images will be affected by cupping artifacts, and there will be reduced accuracy of attenuation values inferred from the reconstructed images. The effect of x-ray scatter on the contrast, noise, and lesion signal-difference-to-noise ratio (SDNR) in tomosynthesis reconstruction was measured as a function of the tumor size. When a with-scatter reconstruction was compared to one without scatter for a 5 cm compressed breast, the following results were observed. The contrast in the reconstructed central slice image of a tumorlike mass (14 mm in diameter) was reduced by 30%, the voxel value (inferred attenuation coefficient) was reduced by 28%, and the SDNR fell by 60%. The authors have quantified the degree to which scatter degrades the image quality over a wide range of parameters relevant to breast tomosynthesis, including x-ray beam energy, breast thickness, breast diameter, and breast composition. They also demonstrate, though, that even without a scatter rejection device, the contrast and SDNR in the reconstructed tomosynthesis slice are higher than those of conventional mammographic projection images acquired with a grid at an equivalent total exposure.

  7. Evaluation of scatter effects on image quality for breast tomosynthesis. (United States)

    Wu, Gang; Mainprize, James G; Boone, John M; Yaffe, Martin J


    Digital breast tomosynthesis uses a limited number (typically 10-20) of low-dose x-ray projections to produce a pseudo-three-dimensional volume tomographic reconstruction of the breast. The purpose of this investigation was to characterize and evaluate the effect of scattered radiation on the image quality for breast tomosynthesis. In a simulation, scatter point spread functions generated by a Monte Carlo simulation method were convolved over the breast projection to estimate the distribution of scatter for each angle of tomosynthesis projection. The results demonstrate that in the absence of scatter reduction techniques, images will be affected by cupping artifacts, and there will be reduced accuracy of attenuation values inferred from the reconstructed images. The effect of x-ray scatter on the contrast, noise, and lesion signal-difference-to-noise ratio (SDNR) in tomosynthesis reconstruction was measured as a function of the tumor size. When a with-scatter reconstruction was compared to one without scatter for a 5 cm compressed breast, the following results were observed. The contrast in the reconstructed central slice image of a tumorlike mass (14 mm in diameter) was reduced by 30%, the voxel value (inferred attenuation coefficient) was reduced by 28%, and the SDNR fell by 60%. The authors have quantified the degree to which scatter degrades the image quality over a wide range of parameters relevant to breast tomosynthesis, including x-ray beam energy, breast thickness, breast diameter, and breast composition. They also demonstrate, though, that even without a scatter rejection device, the contrast and SDNR in the reconstructed tomosynthesis slice are higher than those of conventional mammographic projection images acquired with a grid at an equivalent total exposure.

  8. Microscope enabling multimodality imaging, angle-resolved scattering, and scattering spectroscopy. (United States)

    Cottrell, W J; Wilson, J D; Foster, T H


    We present the design, construction, and initial characterization of a multifunctional imaging/scattering spectroscopy system built around a commercial inverted microscope platform. The system enables co-registered brightfield, Fourier-filtered darkfield, and fluorescence imaging; monochromatic angle-resolved scattering measurements; and white-light wavelength-resolved scattering spectroscopy from the same field of view. A fiber-based illumination system provides illumination-wavelength flexibility and a good approximation to a point source. The performance of the system in its various data acquisition modes is experimentally verified using fluorescent microspheres. This multifunctional instrument provides a platform for studies on adherent cells from which the biophysical implications of subcellular light scattering can be studied in conjunction with sensitive fluorescence-based techniques.

  9. Optics for Advanced Neutron Imaging and Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Moncton, David E. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Khaykovich, Boris [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)


    During the report period, we continued the work as outlined in the original proposal. We have analyzed potential optical designs of Wolter mirrors for the neutron-imaging instrument VENUS, which is under construction at SNS. In parallel, we have conducted the initial polarized imaging experiment at Helmholtz Zentrum, Berlin, one of very few of currently available polarized-imaging facilities worldwide.

  10. Ultrafast spectral interferometry of resonant secondary emission from quantum wells: From Rayleigh scattering to coherent emission from biexcitons

    DEFF Research Database (Denmark)

    Birkedal, Dan; Shah, Jagdeep; Pfeiffer, L. N.


    Recent investigations of secondary emission from quantum well excitons following ultrafast resonant excitation have demonstrated an intricate interplay of coherent Rayleigh scattering and incoherent luminescence. We have very recently demonstrated that it is possible to isolate and time resolve t...

  11. Evaluation of scatter effects on image quality for breast tomosynthesis (United States)

    Wu, Gang; Mainprize, James G.; Boone, John M.; Yaffe, Martin J.


    Digital breast tomosynthesis uses a limited number of low-dose x-ray projections to produce a three-dimensional (3D) tomographic reconstruction of the breast. The purpose of this investigation was to characterize and evaluate the effect of scatter radiation on image quality for breast tomosynthesis. Generated by a Monte Carlo simulation method, scatter point spread functions (PSF) were convolved over the field of view (FOV) to estimate the distribution of scatter for each angle of tomosynthesis projection. The results demonstrated that in the absence of scatter reduction techniques, the scatter-to-primary ratio (SPR) levels for the average breast are quite high (~0.4 at the centre of mass), and increased with increased breast thickness and with larger FOV. Associated with such levels of x-ray scatter are cupping artifacts, as well as reduced accuracy in reconstruction values. The effect of x-ray scatter on the contrast, noise, and signal-difference-to-noise ratio (SDNR) in tomosynthesis reconstruction was measured as a function of tumour size. For example, the contrast in the reconstructed central slice of a tumour-like mass (14 mm in diameter) was degraded by 30% while the inaccuracy of the voxel value was 28%, and the reduction of SDNR was 60%. We have quantified the degree to which scatter degrades the image quality over a wide range of parameters, including x-ray beam energy, breast thickness, breast diameter, and breast composition. However, even without a scatter rejection device, the contrast and SDNR in the reconstructed tomosynthesis slice is higher than that of conventional mammographic projection images acquired with a grid at an equivalent total exposure.

  12. PSR B2111+46: a test of the inverse Compton scattering model of radio emission (United States)

    Zhang, H.; Qiao, G. J.; Han, J. L.; Lee, K. J.; Wang, H. G.


    The region in which pulsars radiate is very important to constrain pulsar emission mechanisms. A three-dimensional (3D) method to calculate emission heights is developed in this paper. As an example, radiation regions for different components at different frequencies have been calculated for PSR B2111+46. Emission components at seven frequencies are fitted with Gaussian components, then the radiation heights for emission components are calculated. We found that different emission components, even if at the same radio frequency, are radiated from different heights. This is probably a common phenomena and challenges any emission mechanisms. The inverse Compton scattering emission model for pulsar radio emission can explain these results well.

  13. Evaluation of scatter effects on image quality for breast tomosynthesis


    Wu, Gang; Mainprize, James G.; Boone, John M.; Yaffe, Martin J.


    Digital breast tomosynthesis uses a limited number (typically 10–20) of low-dose x-ray projections to produce a pseudo-three-dimensional volume tomographic reconstruction of the breast. The purpose of this investigation was to characterize and evaluate the effect of scattered radiation on the image quality for breast tomosynthesis. In a simulation, scatter point spread functions generated by a Monte Carlo simulation method were convolved over the breast projection to estimate the distribution...

  14. Dental caries imaging using hyperspectral stimulated Raman scattering microscopy (United States)

    Wang, Zi; Zheng, Wei; Jian, Lin; Huang, Zhiwei


    We report the development of a polarization-resolved hyperspectral stimulated Raman scattering (SRS) imaging technique based on a picosecond (ps) laser-pumped optical parametric oscillator system for label-free imaging of dental caries. In our imaging system, hyperspectral SRS images (512×512 pixels) in both fingerprint region (800-1800 cm-1) and high-wavenumber region (2800-3600 cm-1) are acquired in minutes by scanning the wavelength of OPO output, which is a thousand times faster than conventional confocal micro Raman imaging. SRS spectra variations from normal enamel to caries obtained from the hyperspectral SRS images show the loss of phosphate and carbonate in the carious region. While polarization-resolved SRS images at 959 cm-1 demonstrate that the caries has higher depolarization ratio. Our results demonstrate that the polarization resolved-hyperspectral SRS imaging technique developed allows for rapid identification of the biochemical and structural changes of dental caries.

  15. Imaging X-ray Thomson Scattering Spectrometer Design and Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Gamboa, E.J. [University of Michigan; Huntington, C.M. [University of Michigan; Trantham, M.R. [University of Michigan; Keiter, P.A [University of Michigan; Drake, R.P. [University of Michigan; Montgomery, David [Los Alamos National Laboratory; Benage, John F. [Los Alamos National Laboratory; Letzring, Samuel A. [Los Alamos National Laboratory


    In many laboratory astrophysics experiments, intense laser irradiation creates novel material conditions with large, one-dimensional gradients in the temperature, density, and ionization state. X-ray Thomson scattering is a powerful technique for measuring these plasma parameters. However, the scattered signal has previously been measured with little or no spatial resolution, which limits the ability to diagnose inhomogeneous plasmas. We report on the development of a new imaging x-ray Thomson spectrometer (IXTS) for the Omega laser facility. The diffraction of x-rays from a toroidally-curved crystal creates high-resolution images that are spatially resolved along a one-dimensional profile while spectrally dispersing the radiation. This focusing geometry allows for high brightness while localizing noise sources and improving the linearity of the dispersion. Preliminary results are presented from a scattering experiment that used the IXTS to measure the temperature profile of a shocked carbon foam.

  16. Tomographic imaging of bone composition using coherently scattered x rays (United States)

    Batchelar, Deidre L.; Dabrowski, W.; Cunningham, Ian A.


    Bone tissue consists primarily of calcium hydroxyapatite crystals (bone mineral) and collagen fibrils. Bone mineral density (BMD) is commonly used as an indicator of bone health. Techniques available at present for assessing bone health provide a measure of BMD, but do not provide information about the degree of mineralization of the bone tissue. This may be adequate for assessing diseases in which the collagen-mineral ratio remains constant, as assumed in osteoporosis, but is insufficient when the mineralization state is known to change, as in osteomalacia. No tool exists for the in situ examination of collagen and hydroxyapatite density distributions independently. Coherent-scatter computed tomography (CSCT) is a technique we are developing that produces images of the low- angle scatter properties of tissue. These depend on the molecular structure of the scatterer making it possible to produce material-specific maps of each component in a conglomerate. After corrections to compensate for exposure fluctuations, self-attenuation of scatter and the temporal response of the image intensifier, material-specific images of mineral, collagen, fat and water distributions are obtained. The gray-level in these images provides the volumetric density of each component independently.

  17. Characterization of Image Quality for 3D Scatter Corrected Breast CT Images. (United States)

    Pachon, Jan H; Shah, Jainil; Tornai, Martin P


    The goal of this study was to characterize the image quality of our dedicated, quasi-monochromatic spectrum, cone beam breast imaging system under scatter corrected and non-scatter corrected conditions for a variety of breast compositions. CT projections were acquired of a breast phantom containing two concentric sets of acrylic spheres that varied in size (1-8mm) based on their polar position. The breast phantom was filled with 3 different concentrations of methanol and water, simulating a range of breast densities (0.79-1.0g/cc); acrylic yarn was sometimes included to simulate connective tissue of a breast. For each phantom condition, 2D scatter was measured for all projection angles. Scatter-corrected and uncorrected projections were then reconstructed with an iterative ordered subsets convex algorithm. Reconstructed image quality was characterized using SNR and contrast analysis, and followed by a human observer detection task for the spheres in the different concentric rings. Results show that scatter correction effectively reduces the cupping artifact and improves image contrast and SNR. Results from the observer study indicate that there was no statistical difference in the number or sizes of lesions observed in the scatter versus non-scatter corrected images for all densities. Nonetheless, applying scatter correction for differing breast conditions improves overall image quality.

  18. Super-resolution photoacoustic imaging through a scattering wall

    CERN Document Server

    Conkey, Donald B; Dove, Jacob D; Ju, Hengyi; Murray, Todd W; Piestun, Rafael


    Imaging through opaque, highly scattering walls is a long sought after capability with potential applications in a variety of fields. The use of wavefront shaping to compensate for scattering has brought a renewed interest as a potential solution to this problem. A key to the practicality of any imaging technique is the capability to focus light without direct access behind the scattering wall. Here, we address this problem using photoacoustic feedback for wavefront optimization. By combining the spatially non-uniform sensitivity of the ultrasound transducer to the generated photoacoustic waves with an evolutionary competition among optical modes, the speckle field develops a single, high intensity focus significantly smaller than the acoustic focus used for feedback. Notably, this method is not limited by the size of the absorber to form a sub-acoustic optical focus. We demonstrate imaging behind a scattering medium with up to ten times improvement in signal-to-noise ratio (SNR) and five to six times sub-aco...

  19. Wide-field imaging through scattering media by scattered light fluorescence microscopy (United States)

    Zhou, Yulan; Li, Xun


    To obtain images through scattering media, scattered light fluorescence (SLF) microscopy that utilizes the optical memory effect has been developed. However, the small field of view (FOV) of SLF microscopy limits its application. In this paper, we have introduced a re-modulation method to achieve wide-field imaging through scattering media by SLF microscopy. In the re-modulation method, to raster scan the focus across the object plane, the incident wavefront is re-modulated via a spatial light modulator (SLM) in the updated phase compensation calculated using the optimized iterative algorithm. Compared with the conventional optical memory effect method, the re-modulation method can greatly increase the FOV of a SLF microscope. With the phase compensation theoretically calculated, the process of updating the phase compensation of a high speed SLM is fast. The re-modulation method does not increase the imaging time. The re-modulation method is, therefore, expected to make SLF microscopy have much wider applications in biology, medicine and physiology.

  20. Recent developments of inverse Compton scattering model of pulsar radio emission (United States)

    Qiao, G. J.; Xu, R. X.; Liu, J. F.; Zhang, B.; Han, J. L.

    Many theoretical efforts were made to understand the core and conal emission identified from observations by Rankin (1983) and Lyne and Manchester (1988). One of them, named as inverse Compton scattering (ICS) model (Qiao & Lin 1998), has been proposed. It is found in the model that: there are central or `core' emission beam, and one or two hollow conical emission beams; the different emission components are emitted at different heights; owing to different radiation components emitted from different height, the observed emission beams can be shifted from each other due to retardation and aberration effects; the sizes of emission components change with frequencies. Recent developments of the model include: simulations of pulse profiles at different frequencies; studying the basic polarization properties of inverse Compton scattering in strong magnetic fields; computing the polarizations and spectrum of core and cones. A new classification system was also proposed. The main results calculated from the model are consistent with the observations.

  1. Far-field superresolution by imaging of resonance scattering

    KAUST Repository

    Schuster, Gerard T.


    We show that superresolution imaging in the far-field region of the sources and receivers is theoretically and practically possible if migration of resonant multiples is employed. A resonant multiple is one that bounces back and forth between two scattering points; it can also be the multiple between two smoothly varying interfaces as long as the reflection wave paths partially overlap and reflect from the same Fresnel zone. For a source with frequency f, compared to a one-way trip, N round trips in propagating between two scatterers increase the effective frequency by 2N × f and decrease the effective wavelength by λ/(2N). Thus, multiples can, in principle, be used as high-frequency probes to estimate detailed properties of layers. Tests with both synthetic and field data validate this claim. Improved resolution by multiple imaging is not only feasible for crustal reflections, but might be applicable to mantle and core reverberations recorded by earthquake seismologists.

  2. Imaging Nonequilibrium Atomic Vibrations with X-ray Diffuse Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Trigo, M.; Chen, J.; Vishwanath, V.H.; /SLAC; Sheu, Y.M.; /Michigan U.; Graber, T.; Henning, R.; /U. Chicago; Reis, D; /SLAC /Stanford U., Appl. Phys. Dept.


    We use picosecond x-ray diffuse scattering to image the nonequilibrium vibrations of the lattice following ultrafast laser excitation. We present images of nonequilibrium phonons in InP and InSb throughout the Brillouin-zone which remain out of equilibrium up to nanoseconds. The results are analyzed using a Born model that helps identify the phonon branches contributing to the observed features in the time-resolved diffuse scattering. In InP this analysis shows a delayed increase in the transverse acoustic (TA) phonon population along high-symmetry directions accompanied by a decrease in the longitudinal acoustic (LA) phonons. In InSb the increase in TA phonon population is less directional.


    Energy Technology Data Exchange (ETDEWEB)

    Hung, Li-Wei; Arriaga, Pauline; Fitzgerald, Michael P.; Esposito, Thomas M. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Duchêne, Gaspard; Kalas, Paul G.; De Rosa, Robert J.; Graham, James R. [Astronomy Department, University of California, Berkeley CA 94720-3411 (United States); Maire, Jérôme; Chilcote, Jeffrey K. [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); Marois, Christian [National Research Council of Canada Herzberg, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Millar-Blanchaer, Maxwell A. [Department of Astronomy and Astrophysics, University of Toronto, Toronto ON M5S 3H4 (Canada); Bruzzone, Sebastian [Department of Physics and Astronomy, Centre for Planetary and Space Exploration, University of Western Ontario, London, ON N6A 3K7 (Canada); Rajan, Abhijith [School of Earth and Space Exploration, Arizona State University, P.O. Box 871404, Tempe, AZ 85287 (United States); Pueyo, Laurent; Wolff, Schuyler G.; Chen, Christine H. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Konopacky, Quinn [Center for Astrophysics and Space Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (United States); Ammons, S. Mark [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94040 (United States); Draper, Zachary H. [University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2 (Canada); and others


    We present the first scattered-light image of the debris disk around HD 131835 in the H band using the Gemini Planet Imager. HD 131835 is a ∼15 Myr old A2IV star at a distance of ∼120 pc in the Sco-Cen OB association. We detect the disk only in polarized light and place an upper limit on the peak total intensity. No point sources resembling exoplanets were identified. Compared to its mid-infrared thermal emission,  in scattered light the disk shows similar orientation but different morphology. The scattered-light disk extends from ∼75 to ∼210 AU in the disk plane with roughly flat surface density. Our Monte Carlo radiative transfer model can describe the observations with a model disk composed of a mixture of silicates and amorphous carbon. In addition to the obvious brightness asymmetry due to stronger forward scattering, we discover a weak brightness asymmetry along the major axis, with the northeast side being 1.3 times brighter than the southwest side at a 3σ level.

  4. Differential spectral imaging with gold nanorod light scattering labels (United States)

    Qiu, Le; Vitkin, Edward; Guo, Lianyu; Hanlon, Eugene B.; Itzkan, Irving; Perelman, Lev T.


    Gold nanorods have the potential to be employed as extremely bright molecular marker labels. However, samples containing a large number of gold nanorods usually exhibit relatively wide spectral lines. This linewidth limits the use of the nanorods since it would be rather difficult to image several types of nanorod markers simultaneously. We measured native scattering spectra of single gold nanorods with the CLASS microscope and found that single gold nanorods have a narrow spectrum as predicted by the theory. That suggests that nanorod-based molecular markers with controlled narrow aspect ratios should provide spectral lines sufficiently narrow for effective biomedical imaging.

  5. Imaging chromophores with undetectable fluorescence by stimulated emission microscopy. (United States)

    Min, Wei; Lu, Sijia; Chong, Shasha; Roy, Rahul; Holtom, Gary R; Xie, X Sunney


    Fluorescence, that is, spontaneous emission, is generally more sensitive than absorption measurement, and is widely used in optical imaging. However, many chromophores, such as haemoglobin and cytochromes, absorb but have undetectable fluorescence because the spontaneous emission is dominated by their fast non-radiative decay. Yet the detection of their absorption is difficult under a microscope. Here we use stimulated emission, which competes effectively with the nonradiative decay, to make the chromophores detectable, and report a new contrast mechanism for optical microscopy. In a pump-probe experiment, on photoexcitation by a pump pulse, the sample is stimulated down to the ground state by a time-delayed probe pulse, the intensity of which is concurrently increased. We extract the miniscule intensity increase with shot-noise-limited sensitivity by using a lock-in amplifier and intensity modulation of the pump beam at a high megahertz frequency. The signal is generated only at the laser foci owing to the nonlinear dependence on the input intensities, providing intrinsic three-dimensional optical sectioning capability. In contrast, conventional one-beam absorption measurement exhibits low sensitivity, lack of three-dimensional sectioning capability, and complication by linear scattering of heterogeneous samples. We demonstrate a variety of applications of stimulated emission microscopy, such as visualizing chromoproteins, non-fluorescent variants of the green fluorescent protein, monitoring lacZ gene expression with a chromogenic reporter, mapping transdermal drug distributions without histological sectioning, and label-free microvascular imaging based on endogenous contrast of haemoglobin. For all these applications, sensitivity is orders of magnitude higher than for spontaneous emission or absorption contrast, permitting nonfluorescent reporters for molecular imaging.

  6. Simulation study of the backward-scattering effect in Compton imager. (United States)

    Xiaofeng, Guo; Qingpei, Xiang; Dongfeng, Tian; Yi, Wang; Fanhua, Hao; Yingzeng, Zhang; Chengsheng, Chu; Na, Liang


    In the field of nuclear medicine, nuclear security and astrophysics, Compton imaging is a promising technique for gamma-ray source imaging. We are developing a Compton imager using two layers of CdZnTe pixel array detectors. In this paper, the backward-scattering effect within such imagers is numerically studied using Geant4 Monte Carlo Package. From images reconstructed based on forward-scattering and backward-scattering imaging events, the imaging precision was investigated in a comparative analysis, in regard to energy resolution and position resolution. Furthermore, to establish a method to use backward-scattering imaging events properly so that the imaging efficiency can be significantly improved, the difference between reconstruction from forward-scattering and backward-scattering imaging events was analyzed to uncover a causal mechanism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Light scattering and transmission measurement using digital imaging for online analysis of constituents in milk (United States)

    Jain, Pranay; Sarma, Sanjay E.


    Milk is an emulsion of fat globules and casein micelles dispersed in an aqueous medium with dissolved lactose, whey proteins and minerals. Quantification of constituents in milk is important in various stages of the dairy supply chain for proper process control and quality assurance. In field-level applications, spectrophotometric analysis is an economical option due to the low-cost of silicon photodetectors, sensitive to UV/Vis radiation with wavelengths between 300 - 1100 nm. Both absorption and scattering are witnessed as incident UV/Vis radiation interacts with dissolved and dispersed constituents in milk. These effects can in turn be used to characterize the chemical and physical composition of a milk sample. However, in order to simplify analysis, most existing instrument require dilution of samples to avoid effects of multiple scattering. The sample preparation steps are usually expensive, prone to human errors and unsuitable for field-level and online analysis. This paper introduces a novel digital imaging based method of online spectrophotometric measurements on raw milk without any sample preparation. Multiple LEDs of different emission spectra are used as discrete light sources and a digital CMOS camera is used as an image sensor. The extinction characteristic of samples is derived from captured images. The dependence of multiple scattering on power of incident radiation is exploited to quantify scattering. The method has been validated with experiments for response with varying fat concentrations and fat globule sizes. Despite of the presence of multiple scattering, the method is able to unequivocally quantify extinction of incident radiation and relate it to the fat concentrations and globule sizes of samples.

  8. Optical theorem for electromagnetic field scattering by dielectric structures and energy emission from the evanescent wave. (United States)

    Gulyaev, Yu V; Barabanenkov, Yu N; Barabanenkov, M Yu; Nikitov, S A


    We present an optical theorem for evanescent (near field) electromagnetic wave scattering by a dielectric structure. The derivation is based on the formalism of angular spectrum wave amplitudes and block scattering matrix. The optical theorem shows that an energy flux is emitted in the direction of the evanescent wave decay upon scattering. The energy emission effect from an evanescent wave is illustrated in two examples of evanescent wave scattering, first, by the electrical dipole and, second, one-dimensional grating with line-like rulings. Within the latter example, we show that an emitted energy flux upon evanescent wave scattering can travel through a dielectric structure even if the structure has a forbidden gap in the transmission spectrum of incident propagating waves.

  9. Stimulated light emission and inelastic scattering by a classical linear system of rotating particles. (United States)

    Asenjo-Garcia, Ana; Manjavacas, Alejandro; de Abajo, F Javier García


    The rotational dynamics of particles subject to external illumination is found to produce light amplification and inelastic scattering at high rotation velocities. Light emission at frequencies shifted with respect to the incident light by twice the rotation frequency dominates over elastic scattering within a wide range of light and rotation frequencies. Remarkably, net amplification of the incident light is produced in this classical linear system via stimulated emission. Large optically induced acceleration rates are predicted in vacuum accompanied by moderate heating of the particle, thus supporting the possibility of observing these effects under extreme rotation conditions. © 2011 American Physical Society

  10. Effective suppression of amplified spontaneous emission by stimulated Brillouin scattering phase conjugation (United States)

    Ni, C. K.; Kung, A. H.


    Backward stimulated Brillouin scattering was used to control the growth of amplified spontaneous emission (ASE), reducing the unwanted emission in a pulse-amplified cw Ti:sapphire laser system from 22% to less than 1 \\times 10-4 in the final output. Suppression of ASE substantially improved the spectral quality of the laser and broadened the range over which the laser is useful. The output duration was compressed, but the pulse remained nearly transform limited.

  11. Galactic Latitude Dependence of Near-infrared Diffuse Galactic Light: Thermal Emission or Scattered Light? (United States)

    Sano, K.; Matsuura, S.


    Near-infrared (IR) diffuse Galactic light (DGL) consists of scattered light and thermal emission from interstellar dust grains illuminated by the interstellar radiation field (ISRF). At 1.25 and 2.2 μ {{m}}, a recent observational study shows that intensity ratios of the DGL to interstellar 100 μ {{m}} dust emission steeply decrease toward high Galactic latitudes (b). In this paper, we investigate the origin(s) of the b-dependence on the basis of models of thermal emission and scattered light. Combining a thermal emission model with the regional variation of the polycyclic aromatic hydrocarbon abundance observed with Planck, we show that the contribution of the near-IR thermal emission component to the observed DGL is lower than ∼ 20 % . We also examine the b-dependence of the scattered light, assuming a plane–parallel Galaxy with smooth distributions of the ISRF and dust density along the vertical direction, and assuming a scattering phase function according to a recently developed model of interstellar dust. We normalize the scattered light intensity to the 100 μ {{m}} intensity corrected for deviation from the cosecant-b law according to the Planck observation. As the result, the present model that considers the b-dependence of dust and the ISRF properties can account for the observed b-dependence of the near-IR DGL. However, the uncertainty in the correction for the 100 μ {{m}} emission is large, and other normalizing quantities may be appropriate for a more robust analysis of the DGL.

  12. Correlation and image recognition with surface-scattered light. (United States)

    Christie, S; Kvasnik, F


    Image recognition by use of coherent optical processors and light diffusely scattered from the surface of an optically rough object is reported. A theoretical description is presented and shows that the image speckles are carriers for the Fourier spectra of the object at the matched spatial-filter plane. Experimental results of optical autocorrelation and cross correlation are given. The change in the intensity of the correlation peak that arises from the translation and the rotation of objects and from the lateral and axial movements of the matched filter are examined. The system is shown to be tolerant to misalignments in the positions of the object and matched filter. It is also shown that, when diffuse light is input into the coherent optical processor, the position of the Fourier plane is no longer precisely defined and spatial multiplexing would be possible.

  13. Classification of rainfall radar images using the scattering transform (United States)

    Lagrange, Mathieu; Andrieu, Hervé; Emmanuel, Isabelle; Busquets, Gerard; Loubrié, Stéphane


    The classification of rainfall fields has mainly focused on the split between convective and stratiform rainfall fields. In the present case study, the wavelet-based scattering transform is used to classify rainfall events observed by a weather radar. This very recent method has, to the best of the authors' knowledge, not yet been applied for such a purpose. This method considers the spatial properties of rainfall radar images. This case study regroups 34 rainfall periods recorded over the Nantes region (western France) during 23 days in both 2009 and 2012. These periods display different characteristics in terms of duration and type of rainfall field. A reference configuration of the scattering transform has been evaluated and compared to various configurations in order to approximate the application conditions most appropriate to this case study. This evaluation is performed by a leave-one-out cross validation. A global accuracy of 93.5% of well classified images is obtained in the reference conditions which is an encouraging result. The temporal sampling of the rainfall fields is an important aspect of the classification process.

  14. Molecular Breast Imaging Using Emission Tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Gopan, O. [University of Florida; Gilland, D. [University of Florida; Weisenberger, Andrew G. [JLAB; Kross, Brian J. [JLAB; Welch, Benjamin L. [Dilon Technologies


    Purpose: Tour objective is to design a novel SPECT system for molecular breast imaging (MBI) and evaluate its performance. The limited angle SPECT system, or emission tomosynthesis, is designed to achieve 3D images of the breast with high spatial resolution/sensitivity. The system uses a simplified detector motion and is conducive to on-board biopsy and mult-modal imaging with mammography. Methods: The novel feature of the proposed gamma camera is a variable-angle, slant-hole (VASH) collimator, which is well suited for limited angle SPECT of a mildly compressed breast. The collimator holes change slant angle while the camera surface remains flush against the compression paddle. This allows the camera to vary the angular view ({+-}30{degrees}, {+-}45{degrees}) for tomographic imaging while keeping the camera close to the object for high spatial resolution and/or sensitivity. Theoretical analysis and Monte Carlo simulations were performed assuming a point source and isolated breast phantom. Spatial resolution, sensitivity, contrast and SNR were measured. Results were compared to single-view, planar images and conventional SPECT. For both conventional SPECT and VASH, data were reconstructed using iterative algorithms. Finally, a proof-of-concept VASH collimator was constructed for experimental evaluation. Results: Measured spatial resolution/sensitivity with VASH showed good agreement with theory including depth-of-interaction (DOI) effects. The DOI effect diminished the depth resolution by approximately 2 mm. Increasing the slant angle range from {+-}30{degrees} to {+-}45{degrees} resulted in an approximately 1 mm improvement in the depth resolution. In the breast phantom images, VASH showed improved contrast and SNR over conventional SPECT and improved contrast over planar scintimmammography. Reconstructed images from the proof-of-concept VASH collimator demonstrated reasonable depth resolution capabilities using limited angle projection data. Conclusion: We

  15. Multiple scattering and nonlinear thermal emission of Yb3+, Er3+:Y2O3 nanopowders (United States)

    Redmond, S.; Rand, S. C.; Ruan, X. L.; Kaviany, M.


    Radiation transport and multiple scattering calculations are presented and compared with experimental observations to characterize light attenuation in high emissivity nanopowders irradiated with low power laser light at room temperature, and to explain the associated white light emission and the onset of melting. Using radiation tuned to an absorption resonance of Yb3+ dopants in Y2O3 nanopowder, we observed the onset of intense blackbody emission above a well-defined intensity threshold. Local melting of the compact above threshold leads to the formation of single crystal microtubes. Evidence is provided to show that two-flux transport theory and diffusion theory both significantly underestimate the absorption due to dependent, multiple scattering and that the threshold for the thermal runaway process responsible for this behavior is very sensitive to porosity of the random medium.

  16. The mathematical model reduces the effect of distance to the scatter images gray level (United States)

    Sun, Li-na


    In x-ray scanning system, scatter images are obtained to provide information on material density. The forward and backward scatter is related to solid angle. Scatter is therefore dependent on the distance of the scanned object from the x-ray source. In the real world, an object may be placed anywhere on the conveyer belt, so the measured intensity will contain errors relative to the ideal intensity. This makes classification results less reliable. Extraction of characteristic values L associated with the density; need to know the gray levels of scatter images, so how to base on forward scatter and back scatter images to determine the scatter image gray level is first necessary to solve the problem. The author combined with the forward scatter and backscatter images,then established higher order gray-level mathematical model of scattering images, to eliminate the impact of distance on the scatter images, to obtain more accurate gray level of scatter image. Then compare the error use of LMS algorithm and the LS algorithm to solving mathematical model parameters, LS algorithm ultimately prove less error and experimental validation of the superiority of the LS algorithm.

  17. Determination of Oxygen Saturation and Photoplethysmogram from Near Infrared Scattering Images

    CERN Document Server

    Ri, Yong-U; Sin, Kye-Ryong


    The near infrared scattering images of human muscle include some information on bloodstream and hemoglobin concentration according to skin depth and time. This paper addressed a method of determining oxygen saturation and photoplethysmogram from the near infrared (NIR) scattering images of muscle. Depending on the modified Beer-Lambert Law and the diffuse scattering model of muscular tissue, we determined an extinction coefficient matrix of hemoglobin from the near infrared scattering images and analyzed distribution of oxygen saturation of muscle with a depth from the extinction coefficient matrix. And we determined a dynamic attenuation variation curve with respect to fragmentary image frames sensitive to bloodstream from scattering image frames of muscle with time and then obtained the photoplethysmogram and heart rate by Fourier transformation and inverse transformation. This method based on the NIR scattering images can be applied in measurement of an average oxygen saturation and photoplethysmogram even...

  18. Cancer imaging using surface-enhanced resonance Raman scattering nanoparticles. (United States)

    Harmsen, Stefan; Wall, Matthew A; Huang, Ruimin; Kircher, Moritz F


    The unique spectral signatures and biologically inert compositions of surface-enhanced resonance Raman scattering (SERRS) nanoparticles make them promising contrast agents for in vivo cancer imaging. Our SERRS nanoparticles consist of a 60-nm gold nanoparticle core that is encapsulated in a 15-nm-thick silica shell wherein the resonant Raman reporter is embedded. Subtle aspects of their preparation can shift their limit of detection by orders of magnitude. In this protocol, we present the optimized, step-by-step procedure for generating reproducible SERRS nanoparticles with femtomolar (10-15 M) limits of detection. We provide ways of characterizing the optical properties of SERRS nanoparticles using UV/VIS and Raman spectroscopy, and their physicochemical properties using transmission electron microscopy and nanoparticle tracking analysis. We introduce several applications of these nanoprobes for biomedical research, with a focus on intraoperative cancer imaging via Raman imaging. A detailed account is provided for successful i.v. administration of SERRS nanoparticles such that delineation of cancerous lesions can be achieved in vivo and ex vivo on resected tissues without the need for specific biomarker targeting. This straightforward, yet comprehensive, protocol-from initial de novo gold nanoparticle synthesis to SERRS nanoparticle contrast-enhanced preclinical Raman imaging in animal models-takes ∼96 h.

  19. Effect of scatter on image quality in synchrotron radiation mammography (United States)

    Moeckli, Raphael; Verdun, Francis R.; Fiedler, Stefan; Pachoud, Marc; Schnyder, Pierre; Valley, Jean-Francois


    The display of low-contrast structures and fine microcalcifications is essential for the early diagnosis of breast cancer. In order to achieve a high image quality level with a minimum amount of radiation delivered to the patient, the use of different spectra (Mo or Rh anode and filters) was introduced. The European Synchrotron Radiation Facility is able to produce a monochromatic beam with a high photon flux. It is thus a powerful tool to study the effect of beam energy on image quality and dose in mammography. Our image quality assessment is based on the calculation of the size of the smallest microcalcification detectable on a radiograph, derived from the statistical decision theory. The mean glandular dose is simultaneously measured. Compared with conventional mammography units, the monochromaticity of synchrotron beams improves contrast and the use of a slit instead of an anti-scatter grid leads to a higher primary beam transmission. The relative contribution of these two effects on image quality and dose is discussed.

  20. A CMOS image sensor using high-speed lock-in pixels for stimulated Raman scattering (United States)

    Lioe, DeXing; Mars, Kamel; Takasawa, Taishi; Yasutomi, Keita; Kagawa, Keiichiro; Hashimoto, Mamoru; Kawahito, Shoji


    A CMOS image sensor using high-speed lock-in pixels for stimulated Raman scattering (SRS) spectroscopy is presented in this paper. The effective SRS signal from the stimulated emission of SRS mechanism is very small in contrast to the offset of a probing laser source, which is in the ratio of 10-4 to 10-5. In order to extract this signal, the common offset component is removed, and the small difference component is sampled using switched-capacitor integrator with a fully differential amplifier. The sampling is performed over many integration cycles to achieve appropriate amplification. The lock-in pixels utilizes high-speed lateral electric field charge modulator (LEFM) to demodulate the SRS signal which is modulated at high-frequency of 20MHz. A prototype chip is implemented using 0.11μm CMOS image sensor technology.

  1. Diesel combustion and emissions formation using multiple 2-D imaging diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Dec, J.E. [Sandia National Labs., Livermore, CA (United States)


    Understanding how emissions are formed during diesel combustion is central to developing new engines that can comply with increasingly stringent emission standards while maintaining or improving performance levels. Laser-based planar imaging diagnostics are uniquely capable of providing the temporally and spatially resolved information required for this understanding. Using an optically accessible research engine, a variety of two-dimensional (2-D) imaging diagnostics have been applied to investigators of direct-injection (DI) diesel combustion and emissions formation. These optical measurements have included the following laser-sheet imaging data: Mie scattering to determine liquid-phase fuel distributions, Rayleigh scattering for quantitative vapor-phase-fuel/air mixture images, laser induced incandescence (LII) for relative soot concentrations, simultaneous LII and Rayleigh scattering for relative soot particle-size distributions, planar laser-induced fluorescence (PLIF) to obtain early PAH (polyaromatic hydrocarbon) distributions, PLIF images of the OH radical that show the diffusion flame structure, and PLIF images of the NO radical showing the onset of NO{sub x} production. In addition, natural-emission chemiluminescence images were obtained to investigate autoignition. The experimental setup is described, and the image data showing the most relevant results are presented. Then the conceptual model of diesel combustion is summarized in a series of idealized schematics depicting the temporal and spatial evolution of a reacting diesel fuel jet during the time period investigated. Finally, recent PLIF images of the NO distribution are presented and shown to support the timing and location of NO formation hypothesized from the conceptual model.

  2. Double-Scatter Fast-Neutron Imaging for National Security Applications (United States)

    Polack, John


    Fast neutron imaging based on two (or more) elastic scatters provides more event-by-event information on incident neutron energy and direction than imaging based on single-scatter events. However, the requirement of two scatters in different detectors means that this information comes at the cost of lower intrinsic efficiency. Sandia National Laboratories has been involved in the development of several double-scatter neutron imagers over the past decade, including the Neutron Scatter Camera and MINER (Mobile Imager of Neutrons for Emergency Responders). Recent work has been focused on developing uncertainty quantification techniques to help leverage the rich information carried by double-scatter events and provide quantitative decision metrics for detection and diagnostic applications. Work is also underway to develop a single-volume scatter camera, based on utilizing multiple neutron scatters in a single scintillator volume, which will mitigate the typical loss in efficiency suffered by double-scatter imagers. This talk will present a brief overview of this ongoing work, with a focus on simulated response characterization of both traditional double-scatter imagers and the single-volume scatter camera. Preferred name is Kyle (middle name).

  3. Imaging the North Anatolian Fault using the scattered teleseismic wavefield (United States)

    Thompson, D. A.; Rost, S.; Houseman, G. A.; Cornwell, D. G.; Turkelli, N.; Teoman, U.; Kahraman, M.; Altuncu Poyraz, S.; Gülen, L.; Utkucu, M.; Frederiksen, A. W.; Rondenay, S.


    The North Anatolian Fault Zone (NAFZ) is a major continental strike-slip fault system, similar in size and scale to the San Andreas system, that extends ˜1200 km across Turkey. In 2012, a new multidisciplinary project (FaultLab) was instigated to better understand deformation throughout the entire crust in the NAFZ, in particular the expected transition from narrow zones of brittle deformation in the upper crust to possibly broader shear zones in the lower crust/upper mantle and how these features contribute to the earthquake loading cycle. This contribution will discuss the first results from the seismic component of the project, a 73 station network encompassing the northern and southern branches of the NAFZ in the Sakarya region. The Dense Array for North Anatolia (DANA) is arranged as a 6×11 grid with a nominal station spacing of 7 km, with a further 7 stations located outside of the main grid. With the excellent resolution afforded by the DANA network, we will present images of crustal structure using the technique of teleseismic scattering tomography. The method uses a full waveform inversion of the teleseismic scattered wavefield coupled with array processing techniques to infer the properties and location of small-scale heterogeneities (with scales on the order of the seismic wavelength) within the crust. We will also present preliminary results of teleseismic scattering migration, another powerful method that benefits from the dense data coverage of the deployed seismic network. Images obtained using these methods together with other conventional imaging techniques will provide evidence for how the deformation is distributed within the fault zone at depth, providing constraints that can be used in conjunction with structural analyses of exhumed fault segments and models of geodetic strain-rate across the fault system. By linking together results from the complementary techniques being employed in the FaultLab project, we aim to produce a comprehensive

  4. Bayesian image reconstruction: Application to emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, J.; Llacer, J.


    In this paper we propose a Maximum a Posteriori (MAP) method of image reconstruction in the Bayesian framework for the Poisson noise case. We use entropy to define the prior probability and likelihood to define the conditional probability. The method uses sharpness parameters which can be theoretically computed or adjusted, allowing us to obtain MAP reconstructions without the problem of the grey'' reconstructions associated with the pre Bayesian reconstructions. We have developed several ways to solve the reconstruction problem and propose a new iterative algorithm which is stable, maintains positivity and converges to feasible images faster than the Maximum Likelihood Estimate method. We have successfully applied the new method to the case of Emission Tomography, both with simulated and real data. 41 refs., 4 figs., 1 tab.

  5. MO-AB-BRA-02: A Novel Scatter Imaging Modality for Real-Time Image Guidance During Lung SBRT

    Energy Technology Data Exchange (ETDEWEB)

    Redler, G; Bernard, D; Templeton, A; Chu, J [Rush University Medical Center, Chicago, IL (United States); Nair, C Kumaran [University of Chicago, Chicago, IL (United States); Turian, J [Rush University Medical Center, Chicago, IL (United States); Rush Radiosurgery LLC, Chicago, IL (United States)


    Purpose: A novel scatter imaging modality is developed and its feasibility for image-guided radiation therapy (IGRT) during stereotactic body radiation therapy (SBRT) for lung cancer patients is assessed using analytic and Monte Carlo models as well as experimental testing. Methods: During treatment, incident radiation interacts and scatters from within the patient. The presented methodology forms an image of patient anatomy from the scattered radiation for real-time localization of the treatment target. A radiographic flat panel-based pinhole camera provides spatial information regarding the origin of detected scattered radiation. An analytical model is developed, which provides a mathematical formalism for describing the scatter imaging system. Experimental scatter images are acquired by irradiating an object using a Varian TrueBeam accelerator. The differentiation between tissue types is investigated by imaging simple objects of known compositions (water, lung, and cortical bone equivalent). A lung tumor phantom, simulating materials and geometry encountered during lung SBRT treatments, is fabricated and imaged to investigate image quality for various quantities of delivered radiation. Monte Carlo N-Particle (MCNP) code is used for validation and testing by simulating scatter image formation using the experimental pinhole camera setup. Results: Analytical calculations, MCNP simulations, and experimental results when imaging the water, lung, and cortical bone equivalent objects show close agreement, thus validating the proposed models and demonstrating that scatter imaging differentiates these materials well. Lung tumor phantom images have sufficient contrast-to-noise ratio (CNR) to clearly distinguish tumor from surrounding lung tissue. CNR=4.1 and CNR=29.1 for 10MU and 5000MU images (equivalent to 0.5 and 250 second images), respectively. Conclusion: Lung SBRT provides favorable treatment outcomes, but depends on accurate target localization. A comprehensive

  6. Studying time of flight imaging through scattering media across multiple size scales (Conference Presentation) (United States)

    Velten, Andreas


    Light scattering is a primary obstacle to optical imaging in a variety of different environments and across many size and time scales. Scattering complicates imaging on large scales when imaging through the atmosphere when imaging from airborne or space borne platforms, through marine fog, or through fog and dust in vehicle navigation, for example in self driving cars. On smaller scales, scattering is the major obstacle when imaging through human tissue in biomedical applications. Despite the large variety of participating materials and size scales, light transport in all these environments is usually described with very similar scattering models that are defined by the same small set of parameters, including scattering and absorption length and phase function. We attempt a study of scattering and methods of imaging through scattering across different scales and media, particularly with respect to the use of time of flight information. We can show that using time of flight, in addition to spatial information, provides distinct advantages in scattering environments. By performing a comparative study of scattering across scales and media, we are able to suggest scale models for scattering environments to aid lab research. We also can transfer knowledge and methodology between different fields.

  7. Effective suppression of amplified spontaneous emission by stimulated Brillouin scattering phase conjugation

    Energy Technology Data Exchange (ETDEWEB)

    Ni, C.K.; Kung, A.H. [Institute of Atomic and Molecular Sciences, Academia Sinica, P.O. Box 23-166, Taipei 10764 (Taiwan)


    Backward stimulated Brillouin scattering was used to control the growth of amplified spontaneous emission (ASE), reducing the unwanted emission in a pulse-amplified cw Ti:sapphire laser system from 22{percent} to less than 1{times}10{sup {minus}4} in the final output. Suppression of ASE substantially improved the spectral quality of the laser and broadened the range over which the laser is useful. The output duration was compressed, but the pulse remained nearly transform limited. {copyright} {ital 1996 Optical Society of America.}

  8. Quantum interferences induced by multiple scattering paths of the electron prior to emission in large molecules (United States)

    Agueny, H.; Makhoute, A.; Tökési, K.; Dubois, A.; Hansen, J. P.


    We theoretically investigate electron emission process from a dimer generated by swift highly charged ions. The process under consideration is dealt with a non-perturbative approach by solving the time-dependent Schrödinger equation on a two-dimensional spatial grid. Numerical calculations show rich structures related to the multiple scattering paths of the electron prior to emission. This manifests by the emergence of additional oscillations with high-frequency superimposed on the Young-type oscillatory structure in the observed electron-ejected spectrum. This is not the case when calculations are performed based on the superposition principle, in which the final wave function is just a coherent sum of component wave functions described the electron emission from two-independent atoms. Within this assumption, only a direct electron emission process is taken into account. We find that contributions arising from these multiple scattering paths modify the dynamic electron emission process, and therefore, show the incorrect applicability of the above-mentioned principle, in concordance with the recent findings based on a simple three-slit interference experiment, reported in Sawant et al. (2014).

  9. Imaging in scattering media using correlation image sensors and sparse convolutional coding

    KAUST Repository

    Heide, Felix


    Correlation image sensors have recently become popular low-cost devices for time-of-flight, or range cameras. They usually operate under the assumption of a single light path contributing to each pixel. We show that a more thorough analysis of the sensor data from correlation sensors can be used can be used to analyze the light transport in much more complex environments, including applications for imaging through scattering and turbid media. The key of our method is a new convolutional sparse coding approach for recovering transient (light-in-flight) images from correlation image sensors. This approach is enabled by an analysis of sparsity in complex transient images, and the derivation of a new physically-motivated model for transient images with drastically improved sparsity.

  10. Theory and Simulations of Refractive Substructure in Resolved Scatter-broadened Images (United States)

    Johnson, Michael D.; Gwinn, Carl R.


    At radio wavelengths, scattering in the interstellar medium distorts the appearance of astronomical sources. Averaged over a scattering ensemble, the result is a blurred image of the source. However, Narayan & Goodman and Goodman & Narayan showed that for an incomplete average, scattering introduces refractive substructure in the image of a point source that is both persistent and wideband. We show that this substructure is quenched but not smoothed by an extended source. As a result, when the scatter-broadening is comparable to or exceeds the unscattered source size, the scattering can introduce spurious compact features into images. In addition, we derive efficient strategies to numerically compute realistic scattered images, and we present characteristic examples from simulations. Our results show that refractive substructure is an important consideration for ongoing missions at the highest angular resolutions, and we discuss specific implications for RadioAstron and the Event Horizon Telescope.

  11. A New Approach for Scatter Removal and Attenuation Compensation from SPECT/CT Images

    Directory of Open Access Journals (Sweden)

    Shabnam Oloomi


    In conclusion, by applying the proposed formula we were able to correct attenuation and scatter via MLEM and improve the image quality, which is a necessary step for both qualitative and quantitative SPECT images.

  12. Interior tomographic imaging for x-ray coherent scattering (Conference Presentation) (United States)

    Pang, Sean; Zhu, Zheyuan


    Conventional computed tomography reconstructs the attenuation only high-dimensional images. Coherent scatter computed tomography, which reconstructs the angular dependent scattering profiles of 3D objects, can provide molecular signatures that improves the accuracy of material identification and classification. Coherent scatter tomography are traditionally acquired by setups similar to x-ray powder diffraction machine; a collimated source in combination with 2D or 1D detector collimation in order to localize the scattering point. In addition, the coherent scatter cross-section is often 3 orders of magnitude lower than that of the absorption cross-section for the same material. Coded aperture and structured illumination approaches has been shown to greatly improve the collection efficiency. In many applications, especially in security imaging and medical diagnosis, fast and accurate identification of the material composition of a small volume within the whole object would lead to an accelerated imaging procedure and reduced radiation dose. Here, we report an imaging method to reconstruct the material coherent scatter profile within a small volume. The reconstruction along one radial direction can reconstruct a scalar coherent scattering tomographic image. Our methods takes advantage of the finite support of the scattering profile in small angle regime. Our system uses a pencil beam setup without using any detector side collimation. Coherent scatter profile of a 10 mm scattering sample embedded in a 30 mm diameter phantom was reconstructed. The setup has small form factor and is suitable for various portable non-destructive detection applications.

  13. Pseudo colour visualization of fused multispectral laser scattering images for optical diagnosis of rheumatoid arthritis (United States)

    Zabarylo, U.; Minet, O.


    Investigations on the application of optical procedures for the diagnosis of rheumatism using scattered light images are only at the beginning both in terms of new image-processing methods and subsequent clinical application. For semi-automatic diagnosis using laser light, the multispectral scattered light images are registered and overlapped to pseudo-coloured images, which depict diagnostically essential contents by visually highlighting pathological changes.

  14. Determination of optical scattering properties of highly-scattering media in optical coherence tomography images

    DEFF Research Database (Denmark)

    Levitz, D.; Thrane, L.; Frosz, Michael Henoch


    We developed a new algorithm that fits optical coherence tomography (OCT) signals as a function of depth to a general theoretical OCT model which takes into account multiple scattering effects. With use of this algorithm, it was possible to extract both the scattering coefficient and anisotropy...

  15. [Validation of a scatter correction method for IMRT verification using portal imaging]. (United States)

    Kyas, Ina; Partridge, Mike; Hesse, Bernd-Michael; Oelfke, Uwe; Schlegel, Wolfgang


    Complex dose-delivery techniques, as currently applied in intensity-modulated radiation therapy (IMRT), require a highly efficient treatment-verification process. The present paper deals with the problem of the scatter correction for therapy verification by use of portal images obtained by an electronic portal imaging device (EPID) based on amorphous silicon. It also presents an iterative method for the scatter correction of portal images based on Monte Carlo-generated scatter kernels. First applications of this iterative scatter-correction method for the verification of intensity-modulated treatments are discussed on the basis of MVCT- and dose reconstruction. Several experiments with homogeneous and anthropomorphic phantoms were performed in order to validate the scatter correction method and to investigate the precision and relevance in view of its clinical applicability. It is shown that the devised concept of scatter correction significantly improves the results of MVCT- and dose reconstruction models, which is in turn essential for an exact online IMRT verification.

  16. Emission line imaging of 3CR quasars and radio galaxies

    NARCIS (Netherlands)

    Hes, R; Barthel, PD; Fosbury, RAE

    Optical emission line images and spectra of sixteen 3CR powerful radio galaxies and quasars are presented. Extended line emission is detected in both radio galaxies and quasars. We show that line luminosities, derived from the spatially integrated [OII]lambda 3727 narrow emission line, are on

  17. Imaging optical scattering of butterfly wing scales with a microscope. (United States)

    Fu, Jinxin; Yoon, Beom-Jin; Park, Jung Ok; Srinivasarao, Mohan


    A new optical method is proposed to investigate the reflectance of structurally coloured objects, such as Morpho butterfly wing scales and cholesteric liquid crystals. Using a reflected-light microscope and a digital single-lens reflex (DSLR) camera, we have successfully measured the two-dimensional reflection pattern of individual wing scales of Morpho butterflies. We demonstrate that this method enables us to measure the bidirectional reflectance distribution function (BRDF). The scattering image observed in the back focal plane of the objective is projected onto the camera sensor by inserting a Bertrand lens in the optical path of the microscope. With monochromatic light illumination, we quantify the angle-dependent reflectance spectra from the wing scales of Morpho rhetenor by retrieving the raw signal from the digital camera sensor. We also demonstrate that the polarization-dependent reflection of individual wing scales is readily observed using this method, using the individual wing scales of Morpho cypris. In an effort to show the generality of the method, we used a chiral nematic fluid to illustrate the angle-dependent reflectance as seen by this method.


    Directory of Open Access Journals (Sweden)

    Neethu M. Sasi


    Full Text Available Single photon emission computed tomography imaging is a popular nuclear medicine imaging technique which generates images by detecting radiations emitted by radioactive isotopes injected in the human body. Scattering of these emitted radiations introduces blur in this type of images. This paper proposes an image processing technique to enhance cardiac single photon emission computed tomography images by reducing the blur in the image. The algorithm works in two main stages. In the first stage a maximum likelihood estimate of the point spread function and the true image is obtained. In the second stage Lucy Richardson algorithm is applied on the selected wavelet coefficients of the true image estimate. The significant contribution of this paper is that processing of images is done in the wavelet domain. Pre-filtering is also done as a sub stage to avoid unwanted ringing effects. Real cardiac images are used for the quantitative and qualitative evaluations of the algorithm. Blur metric, peak signal to noise ratio and Tenengrad criterion are used as quantitative measures. Comparison against other existing de-blurring algorithms is also done. The simulation results indicate that the proposed method effectively reduces blur present in the image.

  19. Path-length-multiplexed scattering-angle-diverse optical coherence tomography for retinal imaging. (United States)

    Wang, Bingqing; Yin, Biwei; Dwelle, Jordan; Rylander, H Grady; Markey, Mia K; Milner, Thomas E


    A low-resolution path-length-multiplexed scattering angle diverse optical coherence tomography (PM-SAD-OCT) is constructed to investigate the scattering properties of the retinal nerve fiber layer (RNFL). Low-resolution PM-SAD-OCT retinal images acquired from a healthy human subject show the variation of RNFL scattering properties at retinal locations around the optic nerve head. The results are consistent with known retinal ganglion cell neural anatomy and principles of light scattering. Application of PM-SAD-OCT may provide potentially valuable diagnostic information for clinical retinal imaging.

  20. uper-resolution Axial Localization of Ultrasound Scatter Using Multi-focal Imaging

    DEFF Research Database (Denmark)

    Diamantis, Konstantinos; Greenaway, Alan H.; Anderson, Tom


    and the simple, aberration dependent, image sharpness metric of a single point scatterer. The localization of a point scatterer relies on the generation of multiple overlapping sharpness curves, created by deploying three foci during receive processing, and by assessing the sharpness values after each......This paper aims to develop a method for achieving micrometre axial scatterer localization for medical ultrasound, surpassing the inherent, pulse length dependence limiting ultrasound imaging. Methods: The method, directly translated from cellular microscopy, is based on multi-focal imaging...... to noise ratio in each image. Conclusion: Super-resolution axial imaging from optical microscopy has been successfully translated into ultrasound imaging by using raw ultrasound data and standard beamforming. Significance: The normalized sharpness method has the potential to be used in scatterer...

  1. Simultaneous in vivo positron emission tomography and magnetic resonance imaging


    Catana, Ciprian; Procissi, Daniel; Wu, Yibao; Judenhofer, Martin S.; Qi, Jinyi; Pichler, Bernd J.; Jacobs, Russell E.; Cherry, Simon R.


    Positron emission tomography (PET) and magnetic resonance imaging (MRI) are widely used in vivo imaging technologies with both clinical and biomedical research applications. The strengths of MRI include high-resolution, high-contrast morphologic imaging of soft tissues; the ability to image physiologic parameters such as diffusion and changes in oxygenation level resulting from neuronal stimulation; and the measurement of metabolites using chemical shift imaging. PET images the distribution o...

  2. A study of scattered radiation effect on digital radiography imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Cheol Ha [Dept. of Radiological Science, Dongseo University, Busan (Korea, Republic of)


    Scattered radiation is inherent phenomenon of x-ray, which occurs to the subject (or patient). Therefore it cannot be avoidable but also interacts as serious noise factor because the only meaningful information on x-ray radiography is primary x-ray photons. The purpose of this study was to quantify scattered radiation for various shooting parameters and to verify the effect of anti-scatter grid. We employed beam stopper method to characterize scatter to primary ratio. To evaluate effect on the projection images calculated contrast to noise ratio of given shooting parameters. From the experiments, we identified the scattered radiation increases in thicker patient and smaller air gap. Moreover, scattered radiation degraded contrast to noise ratio of the projection images. We find out that the anti-scatter grid rejected scattered radiation effectively, however there were not fewer than 100% of scatter to primary ratio in some shooting parameters. The results demonstrate that the scattered radiation was serious problem of medical x-ray system, we confirmed that the scattered radiation was not considerable factor of digital radiography.

  3. Observing Solvation Dynamics with Simultaneous Femtosecond X-ray Emission Spectroscopy and X-ray Scattering

    DEFF Research Database (Denmark)

    Haldrup, Kristoffer; Gawelda, Wojciech; Abela, Rafael


    In liquid phase chemistry dynamic solute solvent interactions often govern the path, ultimate outcome, and efficiency of chemical reactions. These steps involve many-body movements on subpicosecond time scales and thus ultrafast structural tools capable of capturing both intramolecular electronic......, confirming previous ab initio molecular dynamics simulations. Structural changes in the aqueous solvent associated with density and temperature changes occur with similar to 1 ps time constants, characteristic for structural dynamics in water. This slower time scale of the solvent response allows us...... rearrangement of the solute with X-ray emission spectroscopy, thus establishing time zero for the ensuing X-ray diffuse scattering analysis. The simultaneously recorded X-ray diffuse scattering atterns reveal slower subpicosecond dynamics triggered by the intramolecular structural dynamics of the photoexcited...

  4. Planet signatures in collisionally active debris discs: scattered light images (United States)

    Thebault, P.; Kral, Q.; Ertel, S.


    Context. Planet perturbations have been often invoked as a potential explanation for many spatial structures that have been imaged in debris discs. So far this issue has been mostly investigated with pure N-body numerical models, which neglect the crucial effect collisions within the disc can have on the disc's response to dynamical perturbations. Aims: We numerically investigate how the coupled effect of collisions and radiation pressure can affect the formation and survival of radial and azimutal structures in a disc perturbed by a planet. We consider two different set-ups: a planet embedded within an extended disc and a planet exterior to an inner debris ring. One important issue we want to address is under which conditions a planet's signature can be observable in a collisionally active disc. Methods: We use our DyCoSS code, which is designed to investigate the structure of perturbed debris discs at dynamical and collisional steady-state, and derive synthetic images of the system in scattered light. The planet's mass and orbit, as well as the disc's collisional activity (parameterized by its average vertical optical depth τ0) are explored as free parameters. Results: We find that collisions always significantly damp planet-induced spatial structures. For the case of an embedded planet, the planet's signature, mostly a density gap around its radial position, should remain detectable in head-on images if Mplanet ≥ MSaturn. If the system is seen edge-on, however, inferring the presence of the planet is much more difficult, as only weak asymmetries remain in a collisionally active disc, although some planet-induced signatures might be observable under very favourable conditions. For the case of an inner ring and an external planet, planetary perturbations cannot prevent collision-produced small fragments from populating the regions beyond the ring. The radial luminosity profile exterior to the ring is in most cases close to the one it should have in the absence

  5. Speckle-correlation imaging through highly scattering turbid media with LED illumination (United States)

    Shao, Xiaopeng; Dai, Weijia; Wu, Tengfei; Li, Huijuan; Wang, Lin


    We address an optical imaging method that allows imaging, which owing to the "memory-effect" for speckle correlations, through highly scattering turbid media with "Error Reduction - Hybid Input Ouput (ER-HIO)" algorithm. When light propagates through the opaque materials, such as white paint, paper or biological tissues, it will be scattered away due to the inhomogeneity of the refractive index. Multiple scattering of light in highly scattering media forms speckle field, which will greatly reduce the imaging depth and degrade the imaging quality. Some methods have been developed to solve this problem in recent years, including wavefront modulation method (WMM), transmission matrix method (TMM) and speckle correlations method (SCM). A novel approach is proposed to image through a highly scattering turbid medium, which combines speckle correlations method (SCM) with phase retrieval algorithm (PRA). Here, we show that, owing to the "optical memory effect" for speckle correlations, a single frame image of the speckle field, captured with a high performance detector, encodes sufficient information to image through highly scattering turbid media. Theoretical and experimental results show that, neither the light source, nor wave-front shaping is required in this method, and that the imaging can be easily realized here using just a simple optical system with the help of optical memory effect. Our method does not require coherent light source, which can be achieved with LED illumination, unlike previous approaches, and therefore is potentially suitable for more and more areas. Consequently, it will be beneficial to achieve imaging in currently inaccessible scenarios.


    Energy Technology Data Exchange (ETDEWEB)

    Follette, Katherine B.; Close, Laird M. [Steward Observatory, The University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721 (United States); Grady, Carol A. [Eureka Scientific, 2452 Delmer, Suite 100, Oakland, CA 96002 (United States); Swearingen, Jeremy R.; Sitko, Michael L.; Champney, Elizabeth H. [Department of Physics, University of Cincinnati, Cincinnati, OH 45221 (United States); Van der Marel, Nienke; Maaskant, Koen; Min, Michiel [Leiden Observatory, Leiden University, P.O. Box 9513, 2300-RA Leiden (Netherlands); Takami, Michihiro [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 106, Taiwan (China); Kuchner, Marc J; McElwain, Michael W. [NASA Goddard Space Flight Center, Exoplanets and Stellar Astrophysics Laboratory, Code 667, Greenbelt, MD 20771 (United States); Muto, Takayuki [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8551 (Japan); Mayama, Satoshi [The Graduate University for Advanced Studies (SOKENDAI), Shonan International Village, Hayama-cho, Miura-gun, Kanagawa 240-0193 (Japan); Fukagawa, Misato [Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Russell, Ray W. [The Aerospace Corporation, Los Angeles, CA 90009 (United States); Kudo, Tomoyuki [Subaru Telescope, 650 North A' ohoku Place, Hilo, HI 96720 (United States); Kusakabe, Nobuhiko [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Hashimoto, Jun [H. L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 West Brooks St., Norman, OK 73019 (United States); Abe, Lyu [Laboratoire Lagrange, UMR7293, Université de Nice-Sophia Antipolis, CNRS, Observatoire de la Côte d' Azur, 28 avenue Valrose, F-06108 Nice Cedex 2 (France); and others


    We present the first resolved near-infrared imagery of the transition disk Oph IRS 48 (WLY 2-48), which was recently observed with ALMA to have a strongly asymmetric submillimeter flux distribution. H-band polarized intensity images show a ∼60 AU radius scattered light cavity with two pronounced arcs of emission, one from northeast to southeast and one smaller, fainter, and more distant arc in the northwest. K-band scattered light imagery reveals a similar morphology, but with a clear third arc along the southwestern rim of the disk cavity. This arc meets the northwestern arc at nearly a right angle, revealing the presence of a spiral arm or local surface brightness deficit in the disk, and explaining the east-west brightness asymmetry in the H-band data. We also present 0.8-5.4 μm IRTF SpeX spectra of this object, which allow us to constrain the spectral class to A0 ± 1 and measure a low mass accretion rate of 10{sup –8.5} M {sub ☉} yr{sup –1}, both consistent with previous estimates. We investigate a variety of reddening laws in order to fit the multiwavelength spectral energy distribution of Oph IRS 48 and find a best fit consistent with a younger, higher luminosity star than previous estimates.

  7. Imaging prostate cancer: an update on positron emission tomography and magnetic resonance imaging

    DEFF Research Database (Denmark)

    Bouchelouche, Kirsten; Turkbey, Baris; Choyke, Peter


    , and molecular imaging information. Developments in imaging technologies, specifically magnetic resonance imaging (MRI) and positron emission tomography (PET)/computed tomography (CT), have improved the detection rate of prostate cancer. MRI has improved lesion detection and local staging. Furthermore, MRI...

  8. Stimulated-emission-depletion microscopy with a multicolor stimulated-Raman-scattering light source. (United States)

    Rankin, Brian R; Kellner, Robert R; Hell, Stefan W


    We describe a subdiffraction-resolution far-field fluorescence microscope employing stimulated emission depletion (STED) with a light source consisting of a microchip laser coupled into a standard single-mode fiber, which, via stimulated Raman scattering (SRS), yields a comb-like spectrum of seven discrete peaks extending from the fundamental wavelength at 532 nm to 620 nm. Each of the spectral peaks can be used as STED light for overcoming the diffraction barrier. This SRS light source enables the simple implementation of multicolor STED and provides a spectral output with multiple available wavelengths from green to red with potential for further expansion.

  9. Open Imaging Nephelometer Scattering Measurements from the 2014 Discover-AQ Field Mission (United States)

    Espinosa, R.; Orozco, D.; Dolgos, G.; Martins, J. V.


    After greenhouse gases, aerosols are thought to have the largest contribution to total atmospheric radiative forcing, but they are frequently cited as the single largest source of uncertainty among all anthropogenic radiative forcing components. Remote sensing allows for global measurements of aerosol properties, however validation of these measurements and the climatological assumptions used in their retrieval algorithms require high quality in situ sampling. The Laboratory for Aerosols, Clouds and Optics (LACO) at the University of Maryland Baltimore County (UMBC) has developed the Imaging Nephelometer, a novel and highly accurate instrument concept designed to significantly aid in situ optical scattering measurements. Imaging Nephelometers allow for measurements of scattering coefficient, phase function and polarized phase function over a wide angular range of 2 to 178 degrees with an angular resolution of less than half of a degree. The simple layout of these devices also permits the construction of an instrument that is compact enough to be deployed on a variety of airborne platforms. Additionally, a version of this instrument that is capable of in situ sampling in open-air, free from sample biases potentially introduced by an inlet or containment apparatus, has recently been constructed. This instrument, known as the Open Imaging NEPHelometer (OI-NEPH), was flown on the P3 aircraft in the summer of 2014 during the Colorado portion of the Discover-AQ field mission (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality). This presentation will focus on the results of the OI-NEPH's successful science flights during this field experiment. The P3's flights during this mission focused primarily on vehicle, agriculture, biomass burning and industrial processing emissions over the Colorado Front Range. Emphasis will be placed on any observed differences in scattering properties between the measurements

  10. Performance evaluation of wavelet scattering network in image texture classification in various color spaces


    Wu, Jiasong; Jiang, Longyu,; Han, Xu; Senhadji, Lotfi; Shu, Huazhong


    Texture plays an important role in many image analysis applications. In this paper, we give a performance evaluation of color texture classification by performing wavelet scattering network in various color spaces. Experimental results on the KTH_TIPS_COL database show that opponent RGB based wavelet scattering network outperforms other color spaces. Therefore, when dealing with the problem of color texture classification, opponent RGB based wavelet scattering network is recommended.

  11. X-Ray Scatter Correction on Soft Tissue Images for Portable Cone Beam CT

    Directory of Open Access Journals (Sweden)

    Sorapong Aootaphao


    Full Text Available Soft tissue images from portable cone beam computed tomography (CBCT scanners can be used for diagnosis and detection of tumor, cancer, intracerebral hemorrhage, and so forth. Due to large field of view, X-ray scattering which is the main cause of artifacts degrades image quality, such as cupping artifacts, CT number inaccuracy, and low contrast, especially on soft tissue images. In this work, we propose the X-ray scatter correction method for improving soft tissue images. The X-ray scatter correction scheme to estimate X-ray scatter signals is based on the deconvolution technique using the maximum likelihood estimation maximization (MLEM method. The scatter kernels are obtained by simulating the PMMA sheet on the Monte Carlo simulation (MCS software. In the experiment, we used the QRM phantom to quantitatively compare with fan-beam CT (FBCT data in terms of CT number values, contrast to noise ratio, cupping artifacts, and low contrast detectability. Moreover, the PH3 angiography phantom was also used to mimic human soft tissues in the brain. The reconstructed images with our proposed scatter correction show significant improvement on image quality. Thus the proposed scatter correction technique has high potential to detect soft tissues in the brain.

  12. Improved scatter correction with factor analysis for planar and SPECT imaging (United States)

    Knoll, Peter; Rahmim, Arman; Gültekin, Selma; Šámal, Martin; Ljungberg, Michael; Mirzaei, Siroos; Segars, Paul; Szczupak, Boguslaw


    Quantitative nuclear medicine imaging is an increasingly important frontier. In order to achieve quantitative imaging, various interactions of photons with matter have to be modeled and compensated. Although correction for photon attenuation has been addressed by including x-ray CT scans (accurate), correction for Compton scatter remains an open issue. The inclusion of scattered photons within the energy window used for planar or SPECT data acquisition decreases the contrast of the image. While a number of methods for scatter correction have been proposed in the past, in this work, we propose and assess a novel, user-independent framework applying factor analysis (FA). Extensive Monte Carlo simulations for planar and tomographic imaging were performed using the SIMIND software. Furthermore, planar acquisition of two Petri dishes filled with 99mTc solutions and a Jaszczak phantom study (Data Spectrum Corporation, Durham, NC, USA) using a dual head gamma camera were performed. In order to use FA for scatter correction, we subdivided the applied energy window into a number of sub-windows, serving as input data. FA results in two factor images (photo-peak, scatter) and two corresponding factor curves (energy spectra). Planar and tomographic Jaszczak phantom gamma camera measurements were recorded. The tomographic data (simulations and measurements) were processed for each angular position resulting in a photo-peak and a scatter data set. The reconstructed transaxial slices of the Jaszczak phantom were quantified using an ImageJ plugin. The data obtained by FA showed good agreement with the energy spectra, photo-peak, and scatter images obtained in all Monte Carlo simulated data sets. For comparison, the standard dual-energy window (DEW) approach was additionally applied for scatter correction. FA in comparison with the DEW method results in significant improvements in image accuracy for both planar and tomographic data sets. FA can be used as a user

  13. Characterizing the behavior of scattered radiation in multi-energy x-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sossin, Artur, E-mail: [CEA-LETI MINATEC Grenoble, F-38054 Grenoble (France); Rebuffel, V.; Tabary, J. [CEA-LETI MINATEC Grenoble, F-38054 Grenoble (France); Létang, J.M.; Freud, N. [Univ Lyon, INSA-Lyon, Université Lyon 1, UJM-Saint Etienne, CNRS, Inserm, Centre Léon Bérard, CREATIS UMR 5220 U1206, F-69373 Lyon (France); Verger, L. [CEA-LETI MINATEC Grenoble, F-38054 Grenoble (France)


    Scattered radiation results in various undesirable effects in medical diagnostics, non-destructive testing (NDT) and security x-ray imaging. Despite numerous studies characterizing this phenomenon and its effects, the knowledge of its behavior in the energy domain remains limited. The present study aims at summarizing some key insights on scattered radiation originating from the inspected object. In addition, various simulations and experiments with limited collimation on both simplified and realistic phantoms were conducted in order to study scatter behavior in multi-energy x-ray imaging. Results showed that the spectrum shape of the scatter component can be considered preserved in the first approximation across the image plane for various acquisition geometries and phantoms. The variations exhibited by the scatter spectrum were below 10% for most examined cases. Furthermore, the corresponding spectrum shape proved to be also relatively invariant for different experimental angular projections of one of the examined phantoms. The observed property of scattered radiation can potentially lead to the decoupling of spatial and energy scatter components, which can in turn enable speed ups in scatter simulations and reduce the complexity of scatter correction.

  14. Optical transistor action by nonlinear coupling of stimulated emission and coherent scattering (United States)

    Andrews, David L.; Bradshaw, David S.


    In the pursuit of improved platforms for computing, communications and internet connectivity, all-optical systems offer excellent prospects for a speed and fidelity of data transmission that will greatly surpass conventional electronics, alongside the anticipated benefits of reduced energy loss. With a diverse range of sources and fiber optical connections already in production, much current effort is being devoted towards forging optical components for signal switching, such as an all-optical transistor. Achievement of the desired characteristics for any practicable device can be expected to depend crucially on the engagement of a strongly nonlinear optical response. The innovative scheme proposed in the present work is based upon a third-order nonlinearity - its effect enhanced by stimulated emission - operating within a system designed to exploit the highly nonlinear response observed at the threshold for laser emission. Here, stimulated emission is strongly driven by coupling to the coherent scattering of a signal input beam whose optical frequency is purposely off-set from resonance. An electrodynamical analysis of the all-optical coupling process shows that the signal beam can significantly modify the kinetics of emission, and so lead to a dramatically enhanced output of resonant radiation. The underlying nonlinear optical mechanism is analyzed, model calculations are performed for realizable three-level laser systems, and the results exhibited graphically. The advantages of implementing this all-optical transistor scheme, compared to several previously envisaged proposals, are then outlined.

  15. Optimizing Imaging Instruments for Emission Mammography (United States)

    Weinberg, Irving N.


    Clinical studies have demonstrated that radiotracer methods can noninvasively detect breast cancers in vivo(L.P. Adler, J.P.Crowe, N.K. Al-Kaisis, et al, Radiology 187,743-750 (1993)) (I. Khalkhali, I. Mena, E. Jouanne, et al, J. Am. Coll. Surg. 178, 491-497 (1994)). Due to spatial resolution and count efficiency considerations, users of conventional nuclear medicine instruments have had difficulty in detecting subcentimeter cancers. This limitation is unfortunate, since cancer therapy is generally most efficacious when tumor diameter at detection is less than a centimeter. A more subtle limitation of conventional nuclear medicine imaging instruments is that they are poorly suited to guiding interventions. With the assistance of C.J. Thompson from McGill University, and the CEBAF Detector Physics Group, we have explored the possibility of configuring detectors for nuclear medicine imaging devices into geometries that resemble conventional x-ray mammography cameras(I.N. Weinberg, U.S.Patent 5,252,830 (1993)). Phantom and pilot clinical studies suggest that applying breast compression within such geometries may offer several advantages(C.J. Thompson, K. Murthy, I.N. Weinberg, et al, Med. Physics 21, 259-538 (1994)): For coincident detection of positron emitters, efficiency and spatial resolution are improved by bringing the detectors very close to the source (the breast tumor). For single-photon detection, attenuation due to overlying tissue is reduced. Since, for a high-efficiency collimator, spatial resolution worsens with increasing source to collimator distance, adoption of compression allows more efficient collimators to be employed. Economics are favorable in that detectors can be deployed in the region of interest, rather than around the entire body, and that such detectors can be mounted in conventional mammographic gantries. The application of conventional mammographic geometry promises to assist physicians in conducting radiotracer-guided biopsies, and in

  16. Imaging Localized Electric Fields with Nanometer Precision through Tip-Enhanced Raman Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Bhattarai, Ashish; El-Khoury, Patrick Z.


    Tip-enhanced Raman scattering (TERS) can be used to image plasmon-enhanced local electric field variations with extremely high spatial resolution under ambient conditions. This is illustrated through TERS images recorded using a silver atomic force microscope tip coated with strategically selected molecular reporters and used to image a sputtered silver film.

  17. Electromagnetic scattering and emission by a fixed multi-particle object in local thermal equilibrium: General formalism (United States)

    Mishchenko, Michael I.


    The majority of previous studies of the interaction of individual particles and multi-particle groups with electromagnetic field have focused on either elastic scattering in the presence of an external field or self-emission of electromagnetic radiation. In this paper we apply semi-classical fluctuational electrodynamics to address the ubiquitous scenario wherein a fixed particle or a fixed multi-particle group is exposed to an external quasi-polychromatic electromagnetic field as well as thermally emits its own electromagnetic radiation. We summarize the main relevant axioms of fluctuational electrodynamics, formulate in maximally rigorous mathematical terms the general scattering-emission problem for a fixed object, and derive such fundamental corollaries as the scattering-emission volume integral equation, the Lippmann-Schwinger equation for the dyadic transition operator, the multi-particle scattering-emission equations, and the far-field limit. We show that in the framework of fluctuational electrodynamics, the computation of the self-emitted component of the total field is completely separated from that of the elastically scattered field. The same is true of the computation of the emitted and elastically scattered components of quadratic/bilinear forms in the total electromagnetic field. These results pave the way to the practical computation of relevant optical observables.

  18. Nanoscale-resolved subsurface imaging by scattering-type near-field optical microscopy

    National Research Council Canada - National Science Library

    Thomas Taubner; F. Keilmann; R. Hillenbrand


    We demonstrate that scattering-type scanning near-field optical microscopy (s-SNOM) allows nanoscale-resolved imaging of objects below transparent surface layers at both visible and mid-infrared wavelengths...

  19. Contrast enhancement for portal images by combination of subtraction and reprojection processes for Compton scattering. (United States)

    Hariu, Masatsugu; Suda, Yuhi; Chang, Weishan; Myojoyama, Atsushi; Saitoh, Hidetoshi


    For patient setup of the IGRT technique, various imaging systems are currently available. MV portal imaging is performed in identical geometry with the treatment beam so that the portal image provides accurate geometric information. However, MV imaging suffers from poor image contrast due to larger Compton scatter photons. In this work, an original image processing algorithm is proposed to improve and enhance the image contrast without increasing the imaging dose. Scatter estimation was performed in detail by MC simulation based on patient CT data. In the image processing, scatter photons were eliminated and then they were reprojected as primary photons on the assumption that Compton interaction did not take place. To improve the processing efficiency, the dose spread function within the EPID was investigated and implemented on the developed code. Portal images with and without the proposed image processing were evaluated by the image contrast profile. By the subtraction process, the image contrast was improved but the EPID signal was weakened because 15.2% of the signal was eliminated due to the contribution of scatter photons. Hence, these scatter photons were reprojected in the reprojection process. As a result, the tumor, bronchi, mediastinal space and ribs were observed more clearly than in the original image. It was clarified that image processing with the dose spread functions provides stronger contrast enhancement while maintaining a sufficient signal-to-noise ratio. This work shows the feasibility of improving and enhancing the contrast of portal images. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  20. Non-labeled lensless micro-endoscopic approach for cellular imaging through highly scattering media. (United States)

    Wagner, Omer; Pandya, Aditya; Chemla, Yoav; Pinhas, Hadar; Schelkanova, Irina; Shahmoon, Asaf; Mandel, Yossi; Douplik, Alexandre; Zalevsky, Zeev


    We describe an imaging approach based on an optical setup made up of a miniature, lensless, minimally invasive endoscope scanning a sample and matching post processing techniques that enable enhanced imaging capabilities. The two main scopes of this article are that this approach enables imaging beyond highly scattering medium and increases the resolution and signal to noise levels reaching single cell imaging. Our approach has more advantages over ordinary endoscope setups and other imaging techniques. It is not mechanically limited by a lens, the stable but flexible fiber can acquire images over long time periods (unlike current imaging methods such as OCT etc.), and the imaging can be obtained at a certain working distance above the surface, without interference to the imaged object. Fast overlapping scans enlarge the region of interest, enhance signal to noise levels and can also accommodate post-processing, super-resolution algorithms. Here we present that due to the setup properties, the overlapping scans also lead to dramatic enhancement of non-scattered signal to scattered noise. This enables imaging through highly scattering medium. We discuss results obtained from in vitro investigation of weak signals of ARPE cells, rat retina, and scattered signals from polydimethylsiloxane (PDMS) microchannels filled with hemoglobin and covered by intralipids consequently mimicking blood capillaries and the epidermis of human skin. The development of minimally invasive procedures and methodologies for imaging through scattering medium such as tissues can vastly enhance biomedical diagnostic capabilities for imaging internal organs. We thereby propose that our method may be used for such tasks in vivo. © 2018 The Author(s).

  1. 3D imaging in volumetric scattering media using phase-space measurements. (United States)

    Liu, Hsiou-Yuan; Jonas, Eric; Tian, Lei; Zhong, Jingshan; Recht, Benjamin; Waller, Laura


    We demonstrate the use of phase-space imaging for 3D localization of multiple point sources inside scattering material. The effect of scattering is to spread angular (spatial frequency) information, which can be measured by phase space imaging. We derive a multi-slice forward model for homogenous volumetric scattering, then develop a reconstruction algorithm that exploits sparsity in order to further constrain the problem. By using 4D measurements for 3D reconstruction, the dimensionality mismatch provides significant robustness to multiple scattering, with either static or dynamic diffusers. Experimentally, our high-resolution 4D phase-space data is collected by a spectrogram setup, with results successfully recovering the 3D positions of multiple LEDs embedded in turbid scattering media.

  2. Down-scattered neutron imaging detector for areal density measurement of inertial confinement fusion. (United States)

    Arikawa, Y; Yamanoi, K; Nakazato, T; Estacio, E S; Shimizu, T; Sarukura, N; Nakai, M; Hosoda, H; Norimatsu, T; Hironaka, Y; Azechi, H; Izumi, N; Murata, T; Fujino, S; Yoshida, H; Kamada, K; Usuki, Y; Suyama, T; Yoshikawa, A; Satoh, N; Kan, H


    A custom developed (6)Li glass scintillator (APLF80+3Pr) for down-scattered neutron diagnostics in inertial confinement fusion experiments is presented. (6)Li provides an enhanced sensitivity for down-scattered neutrons in DD fusion and its experimentally observed 5-6 ns response time fulfills the requirement for down-scattered neutron detectors. A time-of-flight detector operating in the current mode using the APLF80+3Pr was designed and its feasibility observing down-scattered neutrons was demonstrated. Furthermore, a prototype design for a down-scattered neutron imaging detector was also demonstrated. This material promises viability as a future down-scattered neutron detector for the National Ignition Facility.

  3. Down-scattered neutron imaging detector for areal density measurement of inertial confinement fusion

    Energy Technology Data Exchange (ETDEWEB)

    Arikawa, Y.; Yamanoi, K.; Nakazato, T.; Estacio, E. S.; Shimizu, T.; Sarukura, N.; Nakai, M.; Hosoda, H.; Norimatsu, T.; Hironaka, Y.; Azechi, H. [Institute of Laser Engineering, Osaka University, 2-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Izumi, N. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States); Murata, T. [Institute of Laser Engineering, Osaka University, 2-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Kumamoto University, 2-40-1 Kurokami, Kumamoto 860-8555 (Japan); Fujino, S. [Kyushu University, 744 Nishiku, Motooka, Fukuoka 819-0395 (Japan); Yoshida, H. [Ceramic Research Center of Nagasaki, Hiekoba, Hisami, Higashisonogi 859-3726 (Japan); Kamada, K.; Usuki, Y. [Furukawa Co. Ltd., 1-25-13 Kannondai, Tsukuba, Ibaraki 305-0856 (Japan); Suyama, T. [Tokuyama Co. Ltd., 3-3-1 Shibuyaku, Shibuya, Tokyo 150-8383 (Japan); Yoshikawa, A. [Tohoku University, 2-1-1 Katahira, Aoyou, Sendai, Miyagi 980-8577 (Japan); Satoh, N. [Hamamatsu Photonics K.K., 5000 Hiraguchi, Hamakitaku, Hamamatsu, Shizuoka 434-8601 (Japan); and others


    A custom developed {sup 6}Li glass scintillator (APLF80+3Pr) for down-scattered neutron diagnostics in inertial confinement fusion experiments is presented. {sup 6}Li provides an enhanced sensitivity for down-scattered neutrons in DD fusion and its experimentally observed 5-6 ns response time fulfills the requirement for down-scattered neutron detectors. A time-of-flight detector operating in the current mode using the APLF80+3Pr was designed and its feasibility observing down-scattered neutrons was demonstrated. Furthermore, a prototype design for a down-scattered neutron imaging detector was also demonstrated. This material promises viability as a future down-scattered neutron detector for the National Ignition Facility.

  4. Electron cyclotron emission imaging diagnostic system for Rijnhuizen Tokamak Project

    NARCIS (Netherlands)

    Deng, B.H.; Hsia, R. P.; Domier, C.W.; Burns, S. R.; Hillyer, T. R.; N C Luhmann Jr.,; Oyevaar, T.; Donne, A. J. H.; R. T. P. Team,


    A 16-channel electron cyclotron emission (ECE) imaging diagnostic system has been developed and installed on the Rijnhuizen Tokamak Project for measuring plasma electron cyclotron emission with a temporal resolution of 2 mu s. The high spatial resolution of the system is achieved by utilizing a low

  5. ZnO nanorods as scatterers for random lasing emission from dye doped polymer films. (United States)

    Zhang, Dingke; Wang, Yanping; Ma, Dongge


    A random lasing emission from 4-(dicy-anomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) doped polystyrene (PS) thin films was realized by the scattering role of ZnO nanorods. The device was fabricated by spin-coating DCJTB doped PS on ZnO nanorods. The ZnO nanorods were grown on indium-tin-oxide (ITO) glass substrate by hydrothermal synthesis method. It can be seen that the device emits a resonance multimode peak at center wavelength of 630 nm with a mode line-width of less than 0.23 nm and exhibits threshold excitation intensity as low as 0.375 mJ pulse(-1) cm(-2). The agreement of the dependence of threshold pumped intensity on the excitation area with the random laser theory indicates that the lasing emission realized here is random laser. Our results demonstrate that the nanostructured ZnO nanorods are promising candidate as alternative sources of coherent light emission to realize organic lasers.

  6. Local scattering property scales flow speed estimation in laser speckle contrast imaging (United States)

    Miao, Peng; Chao, Zhen; Feng, Shihan; Yu, Hang; Ji, Yuanyuan; Li, Nan; Thakor, Nitish V.


    Laser speckle contrast imaging (LSCI) has been widely used in in vivo blood flow imaging. However, the effect of local scattering property (scattering coefficient µ s ) on blood flow speed estimation has not been well investigated. In this study, such an effect was quantified and involved in relation between speckle autocorrelation time τ c and flow speed v based on simulation flow experiments. For in vivo blood flow imaging, an improved estimation strategy was developed to eliminate the estimation bias due to the inhomogeneous distribution of the scattering property. Compared to traditional LSCI, a new estimation method significantly suppressed the imaging noise and improves the imaging contrast of vasculatures. Furthermore, the new method successfully captured the blood flow changes and vascular constriction patterns in rats’ cerebral cortex from normothermia to mild and moderate hypothermia.

  7. Differential electron-Cu{sup 5+} elastic scattering cross sections extracted from electron emission in ion-atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Liao, C.; Hagmann, S.; Bhalla, C.P.; Grabbe, S.R.; Cocke, C.L.; Richard, P. [J. R. Macdonald Laboratory, Kansas State University, Manhattan, Kansas 66506 (United States); Liao, C. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 (United States)


    We present a method of deriving energy and angle-dependent electron-ion elastic scattering cross sections from doubly differential cross sections for electron emission in ion-atom collisions. By analyzing the laboratory frame binary encounter electron production cross sections in energetic ion-atom collisions, we derive projectile frame differential cross sections for electrons elastically scattered from highly charged projectile ions in the range between 60{degree} and 180{degree}. The elastic scattering cross sections are observed to deviate strongly from the Rutherford cross sections for electron scattering from bare nuclei. They exhibit strong Ramsauer-Townsend electron diffraction in the angular distribution of elastically scattered electrons, providing evidence for the strong role of screening played in the collision. Experimental data are compared with partial-wave calculations using the Hartree-Fock model. {copyright} {ital 1999} {ital The American Physical Society}

  8. Accelerated x-ray scatter projection imaging using multiple continuously moving pencil beams (United States)

    Dydula, Christopher; Belev, George; Johns, Paul C.


    Coherent x-ray scatter varies with angle and photon energy in a manner dependent on the chemical composition of the scattering material, even for amorphous materials. Therefore, images generated from scattered photons can have much higher contrast than conventional projection radiographs. We are developing a scatter projection imaging prototype at the BioMedical Imaging and Therapy (BMIT) facility of the Canadian Light Source (CLS) synchrotron in Saskatoon, Canada. The best images are obtained using step-and-shoot scanning with a single pencil beam and area detector to capture sequentially the scatter pattern for each primary beam location on the sample. Primary x-ray transmission is recorded simultaneously using photodiodes. The technological challenge is to acquire the scatter data in a reasonable time. Using multiple pencil beams producing partially-overlapping scatter patterns reduces acquisition time but increases complexity due to the need for a disentangling algorithm to extract the data. Continuous sample motion, rather than step-and-shoot, also reduces acquisition time at the expense of introducing motion blur. With a five-beam (33.2 keV, 3.5 mm2 beam area) continuous sample motion configuration, a rectangular array of 12 x 100 pixels with 1 mm sampling width has been acquired in 0.4 minutes (3000 pixels per minute). The acquisition speed is 38 times the speed for single beam step-and-shoot. A system model has been developed to calculate detected scatter patterns given the material composition of the object to be imaged. Our prototype development, image acquisition of a plastic phantom and modelling are described.

  9. Imaging Atherosclerosis with Hybrid Positron Emission Tomography/Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Ripa, Rasmus Sejersten; Kjær, Andreas


    Noninvasive imaging of atherosclerosis could potentially move patient management towards individualized triage, treatment, and followup. The newly introduced combined positron emission tomography (PET) and magnetic resonance imaging (MRI) system could emerge as a key player in this context. Both ...

  10. Tissue Equivalent Phantom Design for Characterization of a Coherent Scatter X-ray Imaging System (United States)

    Albanese, Kathryn Elizabeth

    Scatter in medical imaging is typically cast off as image-related noise that detracts from meaningful diagnosis. It is therefore typically rejected or removed from medical images. However, it has been found that every material, including cancerous tissue, has a unique X-ray coherent scatter signature that can be used to identify the material or tissue. Such scatter-based tissue-identification provides the advantage of locating and identifying particular materials over conventional anatomical imaging through X-ray radiography. A coded aperture X-ray coherent scatter spectral imaging system has been developed in our group to classify different tissue types based on their unique scatter signatures. Previous experiments using our prototype have demonstrated that the depth-resolved coherent scatter spectral imaging system (CACSSI) can discriminate healthy and cancerous tissue present in the path of a non-destructive x-ray beam. A key to the successful optimization of CACSSI as a clinical imaging method is to obtain anatomically accurate phantoms of the human body. This thesis describes the development and fabrication of 3D printed anatomical scatter phantoms of the breast and lung. The purpose of this work is to accurately model different breast geometries using a tissue equivalent phantom, and to classify these tissues in a coherent x-ray scatter imaging system. Tissue-equivalent anatomical phantoms were designed to assess the capability of the CACSSI system to classify different types of breast tissue (adipose, fibroglandular, malignant). These phantoms were 3D printed based on DICOM data obtained from CT scans of prone breasts. The phantoms were tested through comparison of measured scatter signatures with those of adipose and fibroglandular tissue from literature. Tumors in the phantom were modeled using a variety of biological tissue including actual surgically excised benign and malignant tissue specimens. Lung based phantoms have also been printed for future

  11. Static lensless random scattering imagers via 3D printing (United States)

    LaCasse, Charles F.; Birch, Gabriel C.; Dagel, Amber L.; Woo, Bryana L.


    Computational imagers fundamentally enable new optical hardware through the use of both physical and algorithmic elements. We report on the creation of a static lensless computational imaging system enabled by this paradigm.

  12. An inverse Compton scattering (ICS) model of pulsar emission. II. Frequency behavior of pulse profiles (United States)

    Qiao, G. J.; Liu, J. F.; Zhang, B.; Han, J. L.


    The shapes of pulse profiles, especially their variations with respect to observing frequencies, are very important to understand emission mechanisms of pulsars. However, no previous attempt has been made to interpret their complicated phenomenology. In this paper, we present theoretical simulations for the integrated pulse profiles and their frequency evolution within the framework of the inverse Compton scattering (ICS) model proposed by Qiao (\\cite{Qiao88}) and Qiao & Lin (\\cite{Qiao98}). Using the phase positions of the pulse components predicted by the ``beam-frequency figure'' of the ICS model, we present Gaussian fits to the multi-frequency pulse profiles for some pulsars. It is shown that the model can reproduce various types of the frequency evolution behaviors of pulse profiles observed.

  13. A Review on Segmentation of Positron Emission Tomography Images (United States)

    Foster, Brent; Bagci, Ulas; Mansoor, Awais; Xu, Ziyue; Mollura, Daniel J.


    Positron Emission Tomography (PET), a non-invasive functional imaging method at the molecular level, images the distribution of biologically targeted radiotracers with high sensitivity. PET imaging provides detailed quantitative information about many diseases and is often used to evaluate inflammation, infection, and cancer by detecting emitted photons from a radiotracer localized to abnormal cells. In order to differentiate abnormal tissue from surrounding areas in PET images, image segmentation methods play a vital role; therefore, accurate image segmentation is often necessary for proper disease detection, diagnosis, treatment planning, and follow-ups. In this review paper, we present state-of-the-art PET image segmentation methods, as well as the recent advances in image segmentation techniques. In order to make this manuscript self-contained, we also briefly explain the fundamentals of PET imaging, the challenges of diagnostic PET image analysis, and the effects of these challenges on the segmentation results. PMID:24845019

  14. Incorporating quantitative single photon emission computed tomography into radiation therapy treatment planning for lung cancer: impact of attenuation and scatter correction on the single photon emission computed tomography-weighted mean dose and functional lung segmentation. (United States)

    Yin, Lingshu; Shcherbinin, Sergey; Celler, Anna; Thompson, Anna; Fua, Tsien-Fei; Liu, Mitchell; Duzenli, Cheryl; Gill, Brad; Sheehan, Finbar; Powe, John; Worsley, Daniel; Marks, Lawrence; Moiseenko, Vitali


    To assess the impact of attenuation and scatter corrections on the calculation of single photon emission computed tomography (SPECT)-weighted mean dose (SWMD) and functional volume segmentation as applied to radiation therapy treatment planning for lung cancer. Nine patients with lung cancer underwent a SPECT lung perfusion scan. For each scan, four image sets were reconstructed using the ordered subsets expectation maximization method with attenuation and scatter corrections ranging from none to a most comprehensive combination of attenuation corrections and direct scatter modeling. Functional volumes were segmented in each reconstructed image using 10%, 20%, …, 90% of maximum SPECT intensity as a threshold. Systematic effects of SPECT reconstruction methods on treatment planning using functional volume were studied by calculating size and spatial agreements of functional volumes, and V(20) for functional volume from actual treatment plans. The SWMD was calculated for radiation beams with a variety of possible gantry angles and field sizes. Functional volume segmentation is sensitive to the particular method of SPECT reconstruction used. Large variations in functional volumes, as high as >50%, were observed in SPECT images reconstructed with different attenuation/scatter corrections. However, SWMD was less sensitive to the type of scatter corrections. SWMD was consistent within 2% for all reconstructions as long as computed tomography-based attenuation correction was used. When using perfusion SPECT images during treatment planning optimization/evaluation, the SWMD may be the preferred figure of merit, as it is less affected by reconstruction technique, compared with threshold-based functional volume segmentation. 2010 Elsevier Inc. All rights reserved.

  15. Method for position emission mammography image reconstruction (United States)

    Smith, Mark Frederick


    An image reconstruction method comprising accepting coincidence datat from either a data file or in real time from a pair of detector heads, culling event data that is outside a desired energy range, optionally saving the desired data for each detector position or for each pair of detector pixels on the two detector heads, and then reconstructing the image either by backprojection image reconstruction or by iterative image reconstruction. In the backprojection image reconstruction mode, rays are traced between centers of lines of response (LOR's), counts are then either allocated by nearest pixel interpolation or allocated by an overlap method and then corrected for geometric effects and attenuation and the data file updated. If the iterative image reconstruction option is selected, one implementation is to compute a grid Siddon retracing, and to perform maximum likelihood expectation maiximization (MLEM) computed by either: a) tracing parallel rays between subpixels on opposite detector heads; or b) tracing rays between randomized endpoint locations on opposite detector heads.

  16. Elastic and inelastic scattering in core and valence emission from solids: Some new directions (United States)

    Fadley, Charles S.


    We review recent work from several groups that has led to some interesting new directions in the study of elastic and inelastic scattering of electrons in both core and valence x-ray photoemission (XPS) and core-initiated Auger emission from solids. The elastic diffraction of core photoelectrons as measured with high angular resolutions of approximately ±1° has been found for the example of c(2×2)S on Ni(001) to provide greater sensitivity to surface atomic structures, including interplanar relaxation in the Ni substrate. Both photoelectron diffraction and Auger electron diffraction have also recently been shown to have the potential for more direct structural determinations via holographic inversions of the data; so far, theoretical simulations have been carried out for c(2×2)S on Ni(001) and inversions of experimental data for Cu(001) and Cu(111) have also yielded encouraging results. The diffraction of inelastically scattered electrons has been found in recent work on Al(001), Ge(111), and W(110) to exhibit similar patterns to those of elastic electrons, but with significant reductions in intensity along low-index directions that can be explained by enhanced multiple scattering effects. The angular dependence of energy-integrated valence-band XPS spectra for Al(001) has furthermore been shown to provide further evidence for hole localization in the final state. This use of such spectra appears to depend on averaging over the entire Brillouin zone due to the effects of phonon-induced non-direct transitions and the analyzer angular acceptance. Finally, such zone-averaged valence spectra for AuCu3(001) have suggested a new method for estimating the atomic orbital makeup or partial densities of states of the initial valence states.

  17. A hybrid approach to simulate multiple photon scattering in X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Freud, N. [CNDRI, Laboratory of Nondestructive Testing using Ionizing Radiations, INSA-Lyon Scientific and Technical University, Bat. Antoine de Saint-Exupery, 20, avenue Albert Einstein, 69621 Villeurbanne Cedex (France)]. E-mail:; Letang, J.-M. [CNDRI, Laboratory of Nondestructive Testing using Ionizing Radiations, INSA-Lyon Scientific and Technical University, Bat. Antoine de Saint-Exupery, 20, avenue Albert Einstein, 69621 Villeurbanne Cedex (France); Babot, D. [CNDRI, Laboratory of Nondestructive Testing using Ionizing Radiations, INSA-Lyon Scientific and Technical University, Bat. Antoine de Saint-Exupery, 20, avenue Albert Einstein, 69621 Villeurbanne Cedex (France)


    A hybrid simulation approach is proposed to compute the contribution of scattered radiation in X- or {gamma}-ray imaging. This approach takes advantage of the complementarity between the deterministic and probabilistic simulation methods. The proposed hybrid method consists of two stages. Firstly, a set of scattering events occurring in the inspected object is determined by means of classical Monte Carlo simulation. Secondly, this set of scattering events is used as a starting point to compute the energy imparted to the detector, with a deterministic algorithm based on a 'forced detection' scheme. For each scattering event, the probability for the scattered photon to reach each pixel of the detector is calculated using well-known physical models (form factor and incoherent scattering function approximations, in the case of Rayleigh and Compton scattering respectively). The results of the proposed hybrid approach are compared to those obtained with the Monte Carlo method alone (Geant4 code) and found to be in excellent agreement. The convergence of the results when the number of scattering events increases is studied. The proposed hybrid approach makes it possible to simulate the contribution of each type (Compton or Rayleigh) and order of scattering, separately or together, with a single PC, within reasonable computation times (from minutes to hours, depending on the number of pixels of the detector). This constitutes a substantial benefit, compared to classical simulation methods (Monte Carlo or deterministic approaches), which usually requires a parallel computing architecture to obtain comparable results.

  18. 64Cu loaded liposomes as positron emission tomography imaging agents

    DEFF Research Database (Denmark)

    Petersen, Anncatrine Luisa; Binderup, Tina; Rasmussen, Palle


    We have developed a highly efficient method for utilizing liposomes as imaging agents for positron emission tomography (PET) giving high resolution images and allowing direct quantification of tissue distribution and blood clearance. Our approach is based on remote loading of a copper-radionuclid...

  19. Through-the-Wall Imaging from Electromagnetic Scattered Field Measurements (United States)


    make the subsitution of A and AT into equation II.9: Rα = (αV IV T + V SUTUSTV T)−1V STUT Because U and V matrices are formed from eigenvectors of...of the product of U and E ′inc, which is U convolved with E ′ inc in the frequency regime. Since our scattering model is a summation of Dirac Delta

  20. Imaging, Sensing, And Communication Through Highly Scattering Complex Media (United States)


    degrees of freedom (pixilation), and by other practical issues such as the need to control light with lenses and mirrors. While overall scattering loss...the speckle decorrelation characteristics. Now that we have connected the wavefront shaping efficiency to the speckle decorrelation, we can make...mean free path of 0.01 m. For the curves drawn here, the collection optic is assumed to be in contact with the medium. For standoff operation one

  1. Rapid identification of heterogeneous mixture components with hyperspectral coherent anti-Stokes Raman scattering imaging

    NARCIS (Netherlands)

    Garbacik, E.T.; Herek, Jennifer Lynn; Otto, Cornelis; Offerhaus, Herman L.


    For the rapid analysis of complicated heterogeneous mixtures, we have developed a method to acquire and intuitively display hyperspectral coherent anti-Stokes Raman scattering (CARS) images. The imaging is performed with a conventional optical setup based around an optical parametric oscillator.

  2. Polarized Imaging Nephelometer Scattering Measurements from the Winter of 2013 Discover-AQ Field Mission (United States)

    Espinosa, R.; Martins, J.; Dolgos, G.; Dubovik, O.; Ziemba, L. D.; Beyersdorf, A. J.


    After greenhouse gases, aerosols are thought to have the largest contribution to the total radiative forcing of the atmosphere, but they are frequently cited as the single largest source of uncertainty among all anthropogenic radiative forcing components. Remote sensing allows global measurements of aerosol properties, however validation of these measurements are crucial, and their retrieval algorithms require climatological assumptions that must be first measured in situ. In situ instruments are also needed to supplement remote sensing measurements, which frequently have a relatively low spatial resolution, particularly when assessing surface air quality. The Laboratory for Aerosols, Clouds and Optics (LACO) at the University of Maryland Baltimore County (UMBC) has developed an instrument called the Polarized Imaging NEPHelometer (PI-Neph) to significantly aid in situ particle optical scattering measurements. The PI-Neph is based on a novel polar nephelometer design that uses a high-powered laser and wide field of view optical detection system (CCD camera) to measure the intensity of scattered laser light as a function of scattering angle. This allows for the measurement of scattering coefficient, phase function and polarized phase function over an angular range of 2 to 178 degrees with an angular resolution of less than half of a degree. This simple layout also permits the construction of an instrument that is compact enough to be flown on a variety of airborne platforms. PI-Neph measurements have been validated by a variety of methods since its completion in the fall of 2011. Measurements of mono-disperse polystyrene spheres have yielded results that are in close agreement with Mie theory, while scattering coefficient measurements made in parallel with commercially available integrating nephelometers from TSI have agreed to within 5%. The PI-Neph has successfully participated in several field experiments, most recently completing the January/February portion of

  3. Simulation of an IXS imaging analyzer with an extended scattering source

    Energy Technology Data Exchange (ETDEWEB)

    Suvorov, Alexey [Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source II; Cai, Yong Q. [Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source II


    A concept of an inelastic x-ray scattering (IXS) spectrograph with an imaging analyzer was proposed recently and discussed in a number of publications (see e.g. Ref.1). The imaging analyzer as proposed combines x-ray lenses with highly dispersive crystal optics. It allows conversion of the x-ray energy spectrum into a spatial image with very high energy resolution. However, the presented theoretical analysis of the spectrograph did not take into account details of the scattered radiation source, i.e. sample, and its impact on the spectrograph performance. Using numerical simulations we investigated the influence of the finite sample thickness, the scattering angle and the incident energy detuning on the analyzer image and the ultimate resolution.

  4. Three-Dimensional Microwave Holographic Imaging Employing Forward-Scattered Waves Only

    Directory of Open Access Journals (Sweden)

    Reza K. Amineh


    Full Text Available We propose a three-dimensional microwave holographic imaging method based on the forward-scattered waves only. In the proposed method, one transmitter and multiple receivers perform together a two-dimensional scan on two planar apertures on opposite sides of the inspected domain. The ability to achieve three-dimensional imaging without back-scattered waves enables the imaging of high-loss objects, for example, tissues, where the back-scattered waves may not be available due to low signal-to-noise ratio or nonreciprocal measurement setup. The simulation and experimental results demonstrate the satisfactory performance of the proposed method in providing three-dimensional images. Resolution limits are derived and confirmed with simulation examples.

  5. Modeling of realistic raw data for image reconstruction: quantifying scattering noise in different CT geometries (United States)

    Schlattl, H.; Tischenko, O.; Hoeschen, C.


    An important step in assessing the quality of an image reconstruction algorithm is the simulation of the medical imaging process. For that purpose, the patient's anatomical structure is substituted in general by more or less simple geometrical objects, as, e.g., the Shepp-Logan phantom. Furthermore, the attenuation of the human body and thus the resulting detector image (e.g., the sinogram in CT) is often computed by integrating the attenuation coefficient along various rays without considering the contribution of scattered photons in the detector signal. We therefore decided to improve the simulation by using an existing Monte Carlo code (EGSnrc) to model the transport of numerous photons from the x-ray tube through the body to the detector. The deflection of photons and creation of secondary particles in scattering events occurs naturally in this program, but can also be avoided artificially. Besides the improved simulation of the irradiation process, this allows us to quantify the amount of scattered radiation in the detector image. The patient is represented by a so-called voxel phantom, which is based on tomographic image data of a real person, adopted to represent the ICRP Reference Man. Our improved modeling process is being applied to determine the amount of scatter radiation in helical multi-slice CT of the thorax compared to a planned circular CT with large flat panel detectors. The new reconstruction algorithm OPED (orthogonal polynomial expansion on disc), developed at GSF and the University of Oregon, might reduce the scatter radiation considerably.

  6. Autofluorescence insensitive imaging using upconverting nanocrystals in scattering media (United States)

    Xu, Can T.; Svensson, Niclas; Axelsson, Johan; Svenmarker, Pontus; Somesfalean, Gabriel; Chen, Guanying; Liang, Huijuan; Liu, Haichun; Zhang, Zhiguo; Andersson-Engels, Stefan


    Autofluorescence is a nuisance in the field of fluorescence imaging and tomography of exogenous molecular markers in tissue, degrading the quality of the collected data. In this letter, we report autofluorescence insensitive imaging using highly efficient upconverting nanocrystals (NaYF4:Yb3+/Tm3+) in a tissue phantom illuminated with near-infrared radiation of 85mW/cm2. It was found that imaging with such nanocrystals leads to an exceptionally high contrast compared to traditional downconverting fluorophores due to the absence of autofluorescence. Upconverting nanocrystals may be envisaged as important biological markers for tissue imaging purposes.

  7. Analysis of several ways to minimize the scatter contribution in radiographic digital images of offshore pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Edmilson M.; Silva, Ademir X.; Lopes, Ricardo T., E-mail: emonteiro@nuclear.ufrj.b, E-mail: ademir@nuclear.ufrj.b, E-mail: Ricardo@lin.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Correa, Samanda C.A., E-mail: [Comissao Nacional de Energia Nuclear (DIAPI/CGMI/CNEN), Rio de Janeiro, RJ (Brazil). Coordenacao Geral de Instalacoes Medicas e Industriais. Div. de Aplicacoes Industriais


    The aim of this work is to evaluate, through MCNPX simulations, several ways to minimize the scatter contribution in radiographic digital images of offshore pipelines. The influence of liquid inside the pipes and water surrounded the pipelines in the scatter contribution will be analyzed. The use of lead screen behind the detector to reduce the backscattered radiation and filter between the radiation source and the pipes will be discussed. (author)

  8. Optical Imaging of Cells with Gold Nanoparticle Clusters as Light Scattering Contrast Agents

    DEFF Research Database (Denmark)

    Tanev, Stoyan


    This chapter has two main objectives. First, to review a number of examples illustrating the application of the FDTD approach to the modeling of some typical light scattering configurations that could be associated with flow cytometry. Second, to provide a thorough discussion of these new...... developments in advanced cytometry research by pointing out potential new research directions. A brief description of the FDTD method focusing on the features associated with its application to modeling of light scattering and OPCM cell imaging experiments is provided. The examples include light scattering...

  9. Sources of errors in spatial frequency domain imaging of scattering media. (United States)

    Bodenschatz, Nico; Brandes, Arnd; Liemert, André; Kienle, Alwin


    Knowledge of the impact of potential sources of error in spatial frequency domain imaging (SFDI) is essential for the quantitative characterization of absorption and scattering in tissue and other turbid media. We theoretically investigate the error in the derived absorption and scattering parameter, subject to typical experimental and theoretical sources of errors. This provides a guideline to properly assess the significance of various parameters related to the measurement and the theoretical evaluation of spatial frequency domain reflectance data. At the same time, this study serves as a reference to estimate the overall precision of derived optical parameters of semi-infinite scattering media using SFDI.

  10. Scattering and emission from inhomogeneous vegetation canopy and alien target beneath by using three-dimensional vector radiative transfer (3D-VRT) equation

    Energy Technology Data Exchange (ETDEWEB)

    Jin Yaqiu [Center for Wave Scattering and Remote Sensing, Fudan University, Shanghai 200433 (China)]. E-mail:; Liang Zichang [Center for Wave Scattering and Remote Sensing, Fudan University, Shanghai 200433 (China)


    To solve the 3D-VRT equation for the model of spatially inhomogeneous scatter media, the finite enclosure of the scatter media is geometrically divided, in both vertical z and transversal (x,y) directions, to form very thin multi-boxes. The zeroth order emission, first-order Mueller matrix of each thin box and an iterative approach of high-order radiative transfer are applied to derive high-order scattering and emission of whole inhomogeneous scatter media. Numerical results of polarized brightness temperature at microwave frequency and under different radiometer resolutions from inhomogeneous scatter model such as vegetation canopy and alien target beneath canopy are simulated and discussed.

  11. Mammography image restoration based on a radiographic scattering model from a single projection: Experimental study (United States)

    Kim, Kyuseok; Park, Soyoung; Kim, Guna; Cho, Hyosung; Je, Uikyu; Park, Chulkyu; Lim, Hyunwoo; Lee, Dongyeon; Lee, Hunwoo; Kang, Seokyoon


    In conventional mammography, contrast sensitivity remains limited due to the superimposition of breast tissue and scattered X-rays, which induces low visibility of lesions in the breast and, thus, an excessive number of false-positive findings. Several methods, including digital breast tomosynthesis as a multiplanar imaging modality, air-gap and slot techniques for the reduction of scatters, phase-contrast imaging as another image-contrast modality, etc., have been investigated in attempt to overcome these difficulties. However, those techniques typically require a higher imaging dose or special equipment. In this work, as an alternative, we propose a new image restoration method based on a radiographic scattering model in which the intensity of scattered X-rays and the direct transmission function of a given medium are estimated from a single projection by using the dark-channel prior. We implemented the proposed algorithm and performed an experiment to demonstrate its viability. Our results indicate that most of the structures in the examined breast were very discernable even with no adjustment in the display-window level, thus preserving superior image features and edge sharpening.

  12. Live-cell stimulated Raman scattering imaging of alkyne-tagged biomolecules. (United States)

    Hong, Senlian; Chen, Tao; Zhu, Yuntao; Li, Ang; Huang, Yanyi; Chen, Xing


    Alkynes can be metabolically incorporated into biomolecules including nucleic acids, proteins, lipids, and glycans. In addition to the clickable chemical reactivity, alkynes possess a unique Raman scattering within the Raman-silent region of a cell. Coupling this spectroscopic signature with Raman microscopy yields a new imaging modality beyond fluorescence and label-free microscopies. The bioorthogonal Raman imaging of various biomolecules tagged with an alkyne by a state-of-the-art Raman imaging technique, stimulated Raman scattering (SRS) microscopy, is reported. This imaging method affords non-invasiveness, high sensitivity, and molecular specificity and therefore should find broad applications in live-cell imaging. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. UAV remote sensing atmospheric degradation image restoration based on multiple scattering APSF estimation (United States)

    Qiu, Xiang; Dai, Ming; Yin, Chuan-li


    Unmanned aerial vehicle (UAV) remote imaging is affected by the bad weather, and the obtained images have the disadvantages of low contrast, complex texture and blurring. In this paper, we propose a blind deconvolution model based on multiple scattering atmosphere point spread function (APSF) estimation to recovery the remote sensing image. According to Narasimhan analytical theory, a new multiple scattering restoration model is established based on the improved dichromatic model. Then using the L0 norm sparse priors of gradient and dark channel to estimate APSF blur kernel, the fast Fourier transform is used to recover the original clear image by Wiener filtering. By comparing with other state-of-the-art methods, the proposed method can correctly estimate blur kernel, effectively remove the atmospheric degradation phenomena, preserve image detail information and increase the quality evaluation indexes.

  14. Transmission and scattering matrix of polarization imaging for biological turbid medium (United States)

    Firdous, Shamaraz; Ikram, Masroor


    Laser transmittion and scattering technique, including depolarization of wave applied to biological particles provide a sample way for diagnostic and treatment of skin lesion and breast cancer. Laser polarization imaging system is described for non invasive and non radioactive detection. The system described in this paper generates 16 full out put Mueller matrix for characterization of turbid medium. In this work we describe the scattering and depolarization of electromagnetic radiation through biological turbid medium. This research work provides a base work for designing quick model of polarized laser tissues imaging.

  15. Comparative evaluation of scatter correction techniques in 3D positron emission tomography

    CERN Document Server

    Zaidi, H


    Much research and development has been concentrated on the scatter compensation required for quantitative 3D PET. Increasingly sophisticated scatter correction procedures are under investigation, particularly those based on accurate scatter models, and iterative reconstruction-based scatter compensation approaches. The main difference among the correction methods is the way in which the scatter component in the selected energy window is estimated. Monte Carlo methods give further insight and might in themselves offer a possible correction procedure. Methods: Five scatter correction methods are compared in this paper where applicable. The dual-energy window (DEW) technique, the convolution-subtraction (CVS) method, two variants of the Monte Carlo-based scatter correction technique (MCBSC1 and MCBSC2) and our newly developed statistical reconstruction-based scatter correction (SRBSC) method. These scatter correction techniques are evaluated using Monte Carlo simulation studies, experimental phantom measurements...

  16. Imaging Near-Earth Electron Densities Using Thomson Scattering (United States)


    telescopes (left and right squares). In these simulated images, we have assumed an input aperture diameter of 23.5 cm and a pixel plate scale of 270...diameter of 23.8 cm and a pixel plate scale of 120 km. The inner field of view begins near 320 km in altitude, which Imaging Near-Earth Electron...LFM) Global MHD Magnetospheric Simulation Code,” J. Atmos. Sol. Terres . Phys. 66, 1333. Meier, R.R., 1991. “Ultraviolet Spectroscopy and Remote

  17. Analysis of Spent Nuclear Fuel Imaging Using Multiple Coulomb Scattering of Cosmic Muons (United States)

    Chatzidakis, Stylianos; Choi, Chan K.; Tsoukalas, Lefteri H.


    Cosmic ray muons passing through matter lose energy from inelastic collisions with electrons and are deflected from nuclei due to multiple Coulomb scattering. The strong dependence of scattering on atomic number Z and the recent developments on position sensitive muon detectors indicate that multiple Coulomb scattering could be an excellent candidate for spent nuclear fuel imaging. Muons present significant advantages over existing monitoring and imaging techniques and can play a central role in monitoring nuclear waste and spent nuclear fuel stored in dense well shielded containers. The main purpose of this paper is to investigate the applicability of multiple Coulomb scattering for imaging of spent nuclear fuel dry casks stored within vertical and horizontal commercial storage dry casks. Calculations of muon scattering were performed for various scenarios, including vertical and horizontal fully loaded dry casks, half loaded dry casks, dry casks with one row of fuel assemblies missing, dry casks with one fuel assembly missing and empty dry casks. Various detector sizes (1.2 m ×1.2 m, 2.4 m ×2.4 m and 3.6 m ×3.6 m) and number of muons (105, 5 · 105, 106 and 107) were used to assess the effect on image resolution. The Point-of-Closest-Approach (PoCA) algorithm was used for the reconstruction of the stored contents. The results demonstrate that multiple Coulomb scattering can be used to successfully reconstruct the dry cask contents and allow identification of all scenarios with the exception of one fuel assembly missing. In this case, an indication exists that a fuel assembly is not present; however, the resolution of the imaging algorithm was not enough to identify exact location.


    Energy Technology Data Exchange (ETDEWEB)

    Grogan, Brandon R [ORNL


    This report presents a novel method for removing scattering effects from Nuclear Materials Identification System (NMIS) imaging. The NMIS uses fast neutron radiography to generate images of the internal structure of objects nonintrusively. If the correct attenuation through the object is measured, the positions and macroscopic cross sections of features inside the object can be determined. The cross sections can then be used to identify the materials, and a 3D map of the interior of the object can be reconstructed. Unfortunately, the measured attenuation values are always too low because scattered neutrons contribute to the unattenuated neutron signal. Previous efforts to remove the scatter from NMIS imaging have focused on minimizing the fraction of scattered neutrons that are misidentified as directly transmitted by electronically collimating and time tagging the source neutrons. The parameterized scatter removal algorithm (PSRA) approaches the problem from an entirely new direction by using Monte Carlo simulations to estimate the point scatter functions (PScFs) produced by neutrons scattering in the object. PScFs have been used to remove scattering successfully in other applications, but only with simple 2D detector models. This work represents the first time PScFs have ever been applied to an imaging detector geometry as complicated as the NMIS. By fitting the PScFs using a Gaussian function, they can be parameterized, and the proper scatter for a given problem can be removed without the need for rerunning the simulations each time. In order to model the PScFs, an entirely new method for simulating NMIS measurements was developed for this work. The development of the new models and the codes required to simulate them are presented in detail. The PSRA was used on several simulated and experimental measurements, and chi-squared goodness of fit tests were used to compare the corrected values to the ideal values that would be expected with no scattering. Using the

  19. The Development of a Parameterized Scatter Removal Algorithm for Nuclear Materials Identification System Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Grogan, Brandon Robert [Univ. of Tennessee, Knoxville, TN (United States)


    This dissertation presents a novel method for removing scattering effects from Nuclear Materials Identification System (NMIS) imaging. The NMIS uses fast neutron radiography to generate images of the internal structure of objects non-intrusively. If the correct attenuation through the object is measured, the positions and macroscopic cross-sections of features inside the object can be determined. The cross sections can then be used to identify the materials and a 3D map of the interior of the object can be reconstructed. Unfortunately, the measured attenuation values are always too low because scattered neutrons contribute to the unattenuated neutron signal. Previous efforts to remove the scatter from NMIS imaging have focused on minimizing the fraction of scattered neutrons which are misidentified as directly transmitted by electronically collimating and time tagging the source neutrons. The parameterized scatter removal algorithm (PSRA) approaches the problem from an entirely new direction by using Monte Carlo simulations to estimate the point scatter functions (PScFs) produced by neutrons scattering in the object. PScFs have been used to remove scattering successfully in other applications, but only with simple 2D detector models. This work represents the first time PScFs have ever been applied to an imaging detector geometry as complicated as the NMIS. By fitting the PScFs using a Gaussian function, they can be parameterized and the proper scatter for a given problem can be removed without the need for rerunning the simulations each time. In order to model the PScFs, an entirely new method for simulating NMIS measurements was developed for this work. The development of the new models and the codes required to simulate them are presented in detail. The PSRA was used on several simulated and experimental measurements and chi-squared goodness of fit tests were used to compare the corrected values to the ideal values that would be expected with no scattering. Using

  20. Fast scattering simulation tool for multi-energy x-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sossin, A., E-mail: [CEA-LETI MINATEC Grenoble, F-38054 Grenoble (France); Tabary, J.; Rebuffel, V. [CEA-LETI MINATEC Grenoble, F-38054 Grenoble (France); Létang, J.M.; Freud, N. [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard (France); Verger, L. [CEA-LETI MINATEC Grenoble, F-38054 Grenoble (France)


    A combination of Monte Carlo (MC) and deterministic approaches was employed as a means of creating a simulation tool capable of providing energy resolved x-ray primary and scatter images within a reasonable time interval. Libraries of Sindbad, a previously developed x-ray simulation software, were used in the development. The scatter simulation capabilities of the tool were validated through simulation with the aid of GATE and through experimentation by using a spectrometric CdTe detector. A simple cylindrical phantom with cavities and an aluminum insert was used. Cross-validation with GATE showed good agreement with a global spatial error of 1.5% and a maximum scatter spectrum error of around 6%. Experimental validation also supported the accuracy of the simulations obtained from the developed software with a global spatial error of 1.8% and a maximum error of around 8.5% in the scatter spectra.

  1. Electron cyclotron emission imaging diagnostic system for Rijnhuizen Tokamak Project

    Energy Technology Data Exchange (ETDEWEB)

    Deng, B.H.; Hsia, R.P.; Domier, C.W.; Burns, S.R.; Hillyer, T.R.; Luhmann, N.C. Jr. [University of California at Davis, 228 Walker Hall, Davis, California 95616 (United States); Oyevaar, T.; Donne, A.J. [FOM-Inst. voor Plasmafysica Rijnhuizen, Association Euratom-FOM (International organizations without location); RTP team


    A 16-channel electron cyclotron emission (ECE) imaging diagnostic system has been developed and installed on the Rijnhuizen Tokamak Project for measuring plasma electron cyclotron emission with a temporal resolution of 2 {mu}s. The high spatial resolution of the system is achieved by utilizing a low cost linear mixer/receiver array. Unlike conventional ECE diagnostics, the sample volumes of the ECE imaging system are aligned vertically, and can be shifted across the plasma cross-section by varying the local oscillator frequency, making possible 2D measurements of electron temperature profiles and fluctuations. The poloidal/radial wavenumber spectra and correlation lengths of T{sub e} fluctuations in the plasma core can also be obtained by properly positioning the focal plane of the imaging system. Due to these unique features, ECE imaging is an ideal tool for plasma transport study. Technical details of the system are described, together with preliminary experimental results. {copyright} {ital 1999 American Institute of Physics.}

  2. Full wavefield migration: Seismic imaging using multiple scattering effects

    NARCIS (Netherlands)

    Davydenko, M.


    Seismic imaging aims at revealing the structural information of the subsurface using the reflected wavefields captured by sensors usually located at the surface. Wave propagation is a complex phenomenon and the measured data contain a set of backscattered events including not only primary

  3. Two-nucleon emission in neutrino and electron scattering from nuclei: The modified convolution approximation (United States)

    Ruiz Simo, I.; Amaro, J. E.; Barbaro, M. B.; Caballero, J. A.; Megias, G. D.; Donnelly, T. W.


    The theoretical formalism of inclusive lepton-nucleus scattering in the two-nucleon emission channel is discussed in the context of a simplified approach, the modified convolution approximation. This allows one to write the 2p2h responses of the relativistic Fermi gas as a folding integral of two 1p1h responses with the energies and momenta transferred to each nucleon. The idea behind this method is to introduce different average momenta for the two initial nucleons in the matrix elements of the two-body current, with the innovation that they depend on the transferred energies and momenta. This method treats exactly the two-body phase space kinematics, and reduces the formulae of the response functions from seven-dimensional integrals over momenta to much simpler three-dimensional ones. The applicability of the method is checked by comparing with the full results within a model of electroweak meson-exchange currents. The predictions are accurate enough, especially in the low-energy threshold region where the average momentum approximation works the best.

  4. Use of measured scatter data for the attenuation correction of single photon emission tomography without transmission scanning. (United States)

    Cade, Sarah C; Arridge, Simon; Evans, Martyn J; Hutton, Brian F


    Attenuation correction is essential for reliable interpretation of emission tomography, however, the use of transmission measurements to generate attenuation maps is limited by availability of equipment and potential mismatches between the transmission and emission measurements. The authors present a first step toward a method of estimating an attenuation map from measured scatter data without a transmission scan. A scatter model has been developed that accurately predicts the distribution of photons which have been scattered once. The scatter model has been used as the basis of a maximum likelihood gradient ascent method to estimate an attenuation map from measured scatter data. In order to estimate both the attenuation map and activity distribution, iterations of the derived scatter based algorithm have been alternated with the maximum likelihood expectation maximization algorithm in a joint estimation process. For each iteration of the attenuation map estimation, the activity distribution is fixed at the values estimated during the previous activity iteration, and in each iteration of the activity distribution estimation the attenuation map is fixed at the values estimated during the previous attenuation iteration. The use of photopeak data to enhance the estimation of the attenuation map compared to the use of scatter data alone has also been considered. The algorithm derived has been used to reconstruct data simulated for an idealized two-dimensional situation and using a physical phantom. The reconstruction of idealized data demonstrated good reconstruction of both the activity distribution and attenuation map. The inclusion of information recorded in the photopeak energy window in the attenuation map estimation step demonstrated an improvement in the accuracy of the reconstruction, enabling an accurate attenuation map to be recovered. Validation of the results with physical phantom data demonstrated that different regions of attenuation could be

  5. Dark-field hyperlens: Super-resolution imaging of weakly scattering objects

    DEFF Research Database (Denmark)

    Repän, Taavi; Lavrinenko, Andrei; Zhukovsky, Sergei


    : We propose a device for subwavelength optical imaging based on a metal-dielectric multilayer hyperlens designed in such a way that only large-wavevector (evanescent) waves are transmitted while all propagating (small-wavevector) waves from the object area are blocked by the hyperlens. We numeri...... to enhance the subwavelength image contrast by more than two orders of magnitude. These findings are essential for optical imaging of weakly scattering subwavelength objects, such as real-time dynamic nanoscopy of label-free biological objects....... numerically demonstrate that as the result of such filtering, the image plane only contains scattered light from subwavelength features of the objects and is completely free from background illumination. Similar in spirit to conventional dark-field microscopy, the proposed dark-field hyperlens is shown...

  6. A dark-field scanning spectroscopy platform for localized scatter and fluorescence imaging of tissue (United States)

    Krishnaswamy, Venkataramanan; Laughney, Ashley M.; Paulsen, Keith D.; Pogue, Brian W.


    Tissue ultra-structure and molecular composition provide native contrast mechanisms for discriminating across pathologically distinct tissue-types. Multi-modality optical probe designs combined with spatially confined sampling techniques have been shown to be sensitive to this type of contrast but their extension to imaging has only been realized recently. A modular scanning spectroscopy platform has been developed to allow imaging localized morphology and molecular contrast measures in breast cancer surgical specimens. A custom designed dark-field telecentric scanning spectroscopy system forms the core of this imaging platform. The system allows imaging localized elastic scatter and fluorescence measures over fields of up to 15 mm x 15 mm at 100 microns resolution in tissue. Results from intralipid and blood phantom measurements demonstrate the ability of the system to quantify localized scatter parameters despite significant changes in local absorption. A co-registered fluorescence spectroscopy mode is also demonstrated in a protophorphyrin-IX phantom.

  7. Planar small-angle x-ray scattering imaging of phantoms and biological samples (United States)

    Choi, M.; Badano, A.


    Coherent small-angle x-ray scattering (SAXS) provides molecular and nanometer-scale structural information. By capturing SAXS data at multiple locations across a sample, we obtained planar images and observed improved contrast given by the difference in the material scattering cross sections. We use phantoms made with 3D printing techniques, with tissue-mimicking plastic (PMMA), and with a highly scattering reference material (AgBe), which were chosen because of their well characterized scattering cross section to demonstrate and characterize the planar imaging of a laboratory SAXS system. We measure 1.07 and 2.14 nm-1 angular intensity maps for AgBe, 9.5 nm-1 for PMMA, and 12.3 nm-1 for Veroclear. The planar SAXS images show material discrimination based on their cross sectional features. The image signal-to-noise ratio (SNR) of each q image was dependent on exposure time and x-ray flux. We observed a lower SNR (91 ± 48) at q angles where no characteristic peaks for either material exist. To improve the visualization of the acquired data by utilizing all q-binned data, we describe a weighted-sum presentation method with a priori knowledge of relevant cross sections to improve the SNR (10 000 ± 6400) over the SNR from a single q-image at 1.07 nm-1 (1100 ± 620). In addition, we describe planar SAXS imaging of a mouse brain slice showing differentiation of tissue types as compared to a conventional absorption-based x-ray imaging technique.

  8. Optical Coherence Tomography and Biomolecular Imaging with Coherent Raman Scattering Microscopy

    DEFF Research Database (Denmark)

    Andersson-Engels, Stefan; Andersen, Peter E.


    The Special Section on Selected Topics in Biophotonics: Optical Coherence Tomography and Biomolecular Imaging with Coherent Raman Scattering Microscopy comprises two invited review papers and several contributed papers from the summer school Biophotonics ’13, as well as contributed papers within...

  9. Speckle-based hyperspectral imaging combining multiple scattering and compressive sensing in nanowire mats


    Muskens, Otto; French, Rebecca; Gigan, Sylvain


    Dataset containing measurement and simulation results in ascii format, including matlab figures.Dataset supports: French, R., Gigan, S., & Muskens, O. L. (2017). Speckle-based hyperspectral imaging combining multiple scattering and compressive sensing in nanowire mats. Optics Letters, 42(9), 1820.

  10. Scatter reduction for grid-less mammography using the convolution-based image post-processing technique (United States)

    Marimón, Elena; Nait-Charif, Hammadi; Khan, Asmar; Marsden, Philip A.; Diaz, Oliver


    X-ray Mammography examinations are highly affected by scattered radiation, as it degrades the quality of the image and complicates the diagnosis process. Anti-scatter grids are currently used in planar mammography examinations as the standard physical scattering reduction technique. This method has been found to be inefficient, as it increases the dose delivered to the patient, does not remove all the scattered radiation and increases the price of the equipment. Alternative scattering reduction methods, based on post-processing algorithms, are being investigated to substitute anti-scatter grids. Methods such as the convolution-based scatter estimation have lately become attractive as they are quicker and more flexible than pure Monte Carlo (MC) simulations. In this study we make use of this specific method, which is based on the premise that the scatter in the system is spatially diffuse, thus it can be approximated by a two-dimensional low-pass convolution filter of the primary image. This algorithm uses the narrow pencil beam method to obtain the scatter kernel used to convolve an image, acquired without anti-scatter grid. The results obtained show an image quality comparable, in the worst case, to the grid image, in terms of uniformity and contrast to noise ratio. Further improvement is expected when using clinically-representative phantoms.

  11. Method and apparatus for detecting and/or imaging clusters of small scattering centers in the body (United States)

    Perez-Mendez, V.; Sommer, F.G.


    An ultrasonic method and apparatus are provided for detecting and imaging clusters of small scattering centers in the breast wherein periodic pulses are applied to an ultrasound emitting transducer and projected into the body, thereafter being received by at least one receiving transducer positioned to receive scattering from the scattering center clusters. The signals are processed to provide an image showing cluster extent and location. 6 figs.

  12. Neutron Imaging of Laser Melted SS316 Test Objects with Spatially Resolved Small Angle Neutron Scattering

    Directory of Open Access Journals (Sweden)

    Adam J. Brooks


    Full Text Available A novel neutron far field interferometer is explored for sub-micron porosity detection in laser sintered stainless steel alloy 316 (SS316 test objects. The results shown are images and volumes of the first quantitative neutron dark-field tomography at various autocorrelation lengths, ξ . In this preliminary work, the beam defining slits were adjusted to an uncalibrated opening of 0.5 mm horizontal and 5 cm vertical; the images are blurred along the vertical direction. In spite of the blurred attenuation images, the dark-field images reveal structural information at the micron-scale. The topics explored include: the accessible size range of defects, potentially 338 nm to 4.5 μ m, that can be imaged with the small angle scattering images; the spatial resolution of the attenuation image; the maximum sample dimensions compatible with interferometry optics and neutron attenuation; the procedure for reduction of the raw interferogram images into attenuation, differential phase contrast, and small angle scattering (dark-field images; and the role of neutron far field interferometry in additive manufacturing to assess sub-micron porosity.

  13. Wavelength dependent SHG imaging and scattering probes of extracellular matrix (ECM) alterations in ovarian cancer (Conference Presentation) (United States)

    Campagnola, Paul J.; Tilbury, Karissa B.; Campbell, Kirby R.; Eliceiri, Kevin W.; Patankar, Manish


    Ovarian cancer remains the most deadly gynecological cancer with a poor aggregate survival rate. To improve upon this situation, we utilized collagen-specific Second Harmonic Generation (SHG) imaging microscopy and optical scattering measurements to probe structural differences in the extracellular matrix of normal stroma, benign tumors, endometrioid tumors, and low and high-grade serous (LGS and HGS) tumors. The SHG signatures of the emission directionality and conversion efficiency as well as the optical scattering are related to the organization of collagen on the sub-micron size. The wavelength dependence of these readouts adds additional characterization of the size and distribution of collagen fibrils/fibers relative to the interrogating wavelengths. We found strong wavelength dependent dependencies of these metrics that were different between the different tumors that are related to respective structural attributes in the collagen organization. These sub-resolution determinations are consistent with the dualistic classification of type I and II serous tumors. However, type I endometrioid tumors have strongly differing ECM architecture than the serous malignancies. Moreover, our analyses are further consistent with LGS and benign tumors having similar etiology. We identified optimal wavelengths for the SHG metrics as well as optical scattering measurements. The SHG metrics and optical scattering measurements were then used to form a linear discriminant model to classify the tissues, and we obtained high accuracy ( 90%) between the tissue types. This delineation is superior to current clinical performance and has potential applicability in supplementing histological analysis, understanding the etiology, as well as development of an in vivo screening tool.

  14. Intraoperative Imaging of Positron Emission Tomographic Radiotracers Using Cerenkov Luminescence Emissions

    Directory of Open Access Journals (Sweden)

    Jason P. Holland


    Full Text Available Imaging the location and extent of cancer provides invaluable information before, during, and after surgery. The majority of “image-guided” methods that use, for example, positron emission tomography (PET involve preoperative imaging and do not provide real-time information during surgery. It is now well established that the inherent optical emissions (Cerenkov radiation from various β-emitting radionuclides can be visualized by Cerenkov luminescence imaging (CLI. Here we report the full characterization of CLI using the positron-emitting radiotracer 89Zr-DFO-trastuzumab for target-specific, quantitative imaging of HER2/neu-positive tumors in vivo. We also provide the first demonstration of the feasibility of using CLI for true image-guided, intraoperative surgical resection of tumors. Analysis of optical CLIs provided accurate, quantitative information on radiotracer biodistribution and tissue uptake that correlated well with the concordant PET images. CLI, PET, and biodistribution studies revealed target-specific uptake of 89Zr-DFO-trastuzumab in BT-474 (HER2/neu positive versus MDA-MB-468 (HER2/neu negative xenografts in the same mice. Competitive inhibition (blocking studies followed by CLI also confirmed the in vivo immunoreactivity and specificity of 89Zr-DFO-trastuzumab for HER2/neu. Overall, these results strongly support the continued development of CLI as a preclinical and possible clinical tool for use in molecular imaging and surgical procedures for accurately defining tumor margins.

  15. Imaging of Scattered Wavefields in Passive and Controlled-source Seismology

    KAUST Repository

    AlTheyab, Abdullah


    Seismic waves are used to study the Earth, exploit its hydrocarbon resources, and understand its hazards. Extracting information from seismic waves about the Earth’s subsurface, however, is becoming more challenging as our questions become more complex and our demands for higher resolution increase. This dissertation introduces two new methods that use scattered waves for improving the resolution of subsurface images: natural migration of passive seismic data and convergent full-waveform inversion. In the first part of this dissertation, I describe a method where the recorded seismic data are used to image subsurface heterogeneities like fault planes. This method, denoted as natural migration of backscattered surface waves, provides higher resolution images for near-surface faults that is complementary to surface-wave tomography images. Our proposed method differ from contemporary methods in that it does not (1) require a velocity model of the earth, (2) assumes weak scattering, or (3) have a high computational cost. This method is applied to ambient noise recorded by the US-Array to map regional faults across the American continent. Natural migration can be formulated as a least-squares inversion to furtherer enhance the resolution and the quality of the fault images. This inversion is applied to ambient noise recorded in Long Beach, California to reveal a matrix of shallow subsurface faults. The second part of this dissertation describes a convergent full waveform inversion method for controlled source data. A controlled source excites waves that scatter from subsurface reflectors. The scattered waves are recorded by a large array of geophones. These recorded waves can be inverted for a high-resolution image of the subsurface by FWI, which is typically convergent for transmitted arrivals but often does not converge for deep reflected events. I propose a preconditioning approach that extends the ability of FWI to image deep parts of the velocity model, which

  16. Imaging opiate receptors with positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Frost, J.J.; Dannals, R.F.; Ravert, H.T.; Wilson, A.A.; Wong, D.F.; Links, J.M.; Burns, H.D.; Kuhar, M.J.; Snyder, S.H.; Wagner, H.N. Jr.


    Opiate receptors exist in the mammalian brain and are thought to meditate the diverse pharmacological actions of the opiates, such as analgesia, euphoria, and sedation. The 4-carbomethoxyl derivatives of fentanyl, such as lofentanil and R31833 (4-carbomethoxyfentanyl) bind to the opiate receptor with high affinity. C-11 R31833 was synthesized by reacting C-11 methyl iodide with the appropriate carboxylate. Male ICR mice were injected intravenously with C-11 R31833 (, killed 30 minutes later, and the brains rapidly dissected. The thalami, striata, and cerebral cortex are rich in opiate receptors, but the cerebellum contains a very low concentration of opiate receptors. The thalamus/cerebellum and striatum/cerebellum activity ratios, calculated per mg of wet tissue, were 4.1 and 5.2 respectively. Coinjection of 5mg/kg naloxone reduced the ratios to 1.1, which indicates that the preferential localization of C-11 R31833 in the thalami and striata is due to binding to opiate is due to binding to opiate receptors. A 22 kg anesthetized male baboon was imaged using the NeuroECAT after injection of 18.9 mCi of C-11 R13833 (0.50, specific activity 616 Ci/mmole at time of injection). From 15-70 minutes after injection preferential accumulation of activity could be seen in the thalami, caudate nuclei, and cerebral cortex and, conversely, low activity was demonstrated in the cerebellum. At one hour postinjection the maximum measured caudate/cerebellum activity ratio per pixel was 2.9. For the NeuroECAT the recovery coefficient for the baboon caudate is ca. 0.2-0.3, and therefore the actual caudate/cerebellum ratio is ca. 10-15.

  17. Calibration of a Microwave Imaging System Using a Known Scatterer

    DEFF Research Database (Denmark)

    Rubæk, Tonny; Zhurbenko, Vitaliy


    that the low-amplitude RF signals, available at the terminals of the antennas, only need to travel a very short distance to get to the low-noise amplifier, while the RF as well as the IF signals running to and from the transceiver modules all have significant amplitudes. However, some leakage between...... the effect of noise. At the Technical University of Denmark, a 32-channel microwave imaging system for breast cancer screening has been under development for some time. In this system, each antenna is equipped with its own transceiver module, containing amplifiers, switches, and a mixer. This design ensures...... presented here is that the time needed for doing the calibration is very low compared to a more rigorous and classic type of calibration in which measurements should be made for all combinations of transmitters and receivers with and without the antennas connected to the transceiver modules to allow...

  18. A model of primary and scattered photon fluence for mammographic x-ray image quantification (United States)

    Tromans, Christopher E.; Cocker, Mary R.; Brady, Michael, Sir


    We present an efficient method to calculate the primary and scattered x-ray photon fluence component of a mammographic image. This can be used for a range of clinically important purposes, including estimation of breast density, personalized image display, and quantitative mammogram analysis. The method is based on models of: the x-ray tube; the digital detector; and a novel ray tracer which models the diverging beam emanating from the focal spot. The tube model includes consideration of the anode heel effect, and empirical corrections for wear and manufacturing tolerances. The detector model is empirical, being based on a family of transfer functions that cover the range of beam qualities and compressed breast thicknesses which are encountered clinically. The scatter estimation utilizes optimal information sampling and interpolation (to yield a clinical usable computation time) of scatter calculated using fundamental physics relations. A scatter kernel arising around each primary ray is calculated, and these are summed by superposition to form the scatter image. Beam quality, spatial position in the field (in particular that arising at the air-boundary due to the depletion of scatter contribution from the surroundings), and the possible presence of a grid, are considered, as is tissue composition using an iterative refinement procedure. We present numerous validation results that use a purpose designed tissue equivalent step wedge phantom. The average differences between actual acquisitions and modelled pixel intensities observed across the adipose to fibroglandular attenuation range vary between 5% and 7%, depending on beam quality and, for a single beam quality are 2.09% and 3.36% respectively with and without a grid.

  19. Deterministic simulation of first-order scattering in virtual X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Freud, N. E-mail:; Duvauchelle, P.; Pistrui-Maximean, S.A.; Letang, J.-M.; Babot, D


    A deterministic algorithm is proposed to compute the contribution of first-order Compton- and Rayleigh-scattered radiation in X-ray imaging. This algorithm has been implemented in a simulation code named virtual X-ray imaging. The physical models chosen to account for photon scattering are the well-known form factor and incoherent scattering function approximations, which are recalled in this paper and whose limits of validity are briefly discussed. The proposed algorithm, based on a voxel discretization of the inspected object, is presented in detail, as well as its results in simple configurations, which are shown to converge when the sampling steps are chosen sufficiently small. Simple criteria for choosing correct sampling steps (voxel and pixel size) are established. The order of magnitude of the computation time necessary to simulate first-order scattering images amounts to hours with a PC architecture and can even be decreased down to minutes, if only a profile is computed (along a linear detector). Finally, the results obtained with the proposed algorithm are compared to the ones given by the Monte Carlo code Geant4 and found to be in excellent accordance, which constitutes a validation of our algorithm. The advantages and drawbacks of the proposed deterministic method versus the Monte Carlo method are briefly discussed.

  20. Three-dimensional imaging of flat natural and cultural heritage objects by a Compton scattering modality (United States)

    Guerrero Prado, Patricio; Nguyen, Mai K.; Dumas, Laurent; Cohen, Serge X.


    Characterization and interpretation of flat ancient material objects, such as those found in archaeology, paleoenvironments, paleontology, and cultural heritage, have remained a challenging task to perform by means of conventional x-ray tomography methods due to their anisotropic morphology and flattened geometry. To overcome the limitations of the mentioned methodologies for such samples, an imaging modality based on Compton scattering is proposed in this work. Classical x-ray tomography treats Compton scattering data as noise in the image formation process, while in Compton scattering tomography the conditions are set such that Compton data become the principal image contrasting agent. Under these conditions, we are able, first, to avoid relative rotations between the sample and the imaging setup, and second, to obtain three-dimensional data even when the object is supported by a dense material by exploiting backscattered photons. Mathematically this problem is addressed by means of a conical Radon transform and its inversion. The image formation process and object reconstruction model are presented. The feasibility of this methodology is supported by numerical simulations.

  1. Out-of-plane light-scattering polarimetric imaging of a thread surface (United States)

    Liu, Cheng-Yang; Chang, Li-Jen


    A novel polarimetric measurement based on hemispherical light-scattering for the assessment of superficial screw is presented. The optical system is capable of capturing polarized light images. The effect of the thread surface backscattering is estimated with the use of in-plane and out-of-plane illumination. The angular distributions of polarized light scattered by the ISO metric screws are measured for light incident from a green laser. A partial Stokes vector imaging detector is mounted on a motorized rotating arm at an oblique angle to the sample normal and consists of a 10-bit scientific camera, an object lens, and a polarizer. The partial Stokes vector images of light scattered towards the camera are generated for each direction and a useful decomposition of the partial Stokes vector is presented. The thread surface effects can be minimized using out-of-plane polarized illumination in conjunction with polarized images. The experimental result may provide a new polarized imaging technique for using visible light to inspect the key features of a screw in automated optical inspection system.

  2. Simultaneous strain and coherent imaging using coupled photorefractive holography and shearography through scattering media. (United States)

    Rosso, Vanessa; Béland, Rémy; Lecler, Sylvain; Renotte, Yvon; Habraken, Serge; Lion, Yves; Charette, Paul


    The direct simultaneous acquisition of coherent imaging and strain information is of particular importance in the biomechanical characterization of biological tissue. This type of simultaneous information acquisition can be accomplished using a coupled photorefractive holography and shearography system for imaging and strain measurements, respectively. Optical scattering in a conventional speckle shearing interferometer rapidly reduces the contrast of the shearing fringes, thereby limiting the use of such interferometers with opaque surfaces. By coupling photorefractive holography with speckle shearing interferometry, properties of the photorefractive effect (spatial high-pass filtering and temporal low-pass filtering) combine to restore the shearing fringe contrast and enable strain imaging in diffusing media. This effect is demonstrated using synthetic scattering phantoms built from suspensions of silica spheres in water.

  3. Influence of X-ray scatter radiation on image quality in Digital Breast Tomosynthesis (DBT) (United States)

    Rodrigues, M. J.; Di Maria, S.; Baptista, M.; Belchior, A.; Afonso, J.; Venâncio, J.; Vaz, P.


    Digital breast tomosynthesis (DBT) is a quasi-three-dimensional imaging technique that was developed to solve the principal limitation of mammography, namely the overlapping tissue effect. This issue in standard mammography (SM) leads to two main problems: low sensitivity (difficulty to detect lesions) and low specificity (non-negligible percentage of false positives). Although DBT is now being introduced in clinical practice the features of this technique have not yet been fully and accurately assessed. Consequently, optimization studies in terms of choosing the most suitable parameters which maximize image quality according to the known limits of breast dosimetry are currently performing. In DBT, scatter radiation can lead to a loss of contrast and to an increase of image noise by reducing the signal-to-difference-noise ratio (SDNR) of a lesion. Moreover the use of an anti-scatter grid is a concern due to the low exposure of the photon flux available per projection. For this reason the main aim of this study was to analyze the influence of the scatter radiation on image quality and the dose delivered to the breast. In particular a detailed analysis of the scatter radiation on the optimal energy that maximizes the SDNR was performed for different monochromatic energies and voltages. To reach this objective the PenEasy Monte Carlo (MC) simulation tool imbedded in the general-purpose main program PENELOPE, was used. After a successful validation of the MC model with measurements, 2D projection images of primary, coherent and incoherent photons were obtained. For that, a homogeneous breast phantom (2, 4, 6, 8 cm) with 25%, 50% and 75% glandular compositions was used, including a 5 mm thick tumor. The images were generated for each monochromatic X-ray energies in the range from 16 keV to 32 keV. For each angular projection considered (25 angular projections covering an arc of 50°) the scatter-to-primary ratio (SPR), the mean glandular dose (MGD) and the signal

  4. Near-field imaging of out-of-plane light scattering in photonic crystal slabs

    DEFF Research Database (Denmark)

    Volkov, Valentyn; Bozhevolnyi, Sergey; Taillaert, Dirk


    A collection scanning near-field optical microscope (SNOM) is used to image the propagating of light at telecommunication wavelengths (1520-1570 nm) along photonic crystal (PC) slabs, which combine slab waveguides with in-plane PCs consisting of one- and two-dimensional gratings. The efficient out......-of-plane light scattering is directly observed for both 1D and 2D gratings (period 590 nm) fabricated on silicon-on-insulator wafers and the corresponding SNOM images are presented. Using the obtained SNOM images, we analyze light intensity distributions along PC gratings measured at different wavelengths and...

  5. Near-infrared emission Ba3(PO4)2:Mn5+ phosphor and potential application in vivo fluorescence imaging (United States)

    Cao, RenPing; Yu, Xiaoguang; Sun, Xinyuan; Cao, Chunyan; Qiu, JianRong


    Fluorescence imaging in the second near-infrared window (NIR-II, 1000-1350 nm) is attracting attention due to negligible tissue scattering and lower tissue autofluorescence, etc. Here, Ba3(PO4)2:Mn5+ phosphor is prepared via solid state reaction method in air, and NIR emission band peaking at ∼1191 nm in the NIR-II region is observed. According to experiment results, Ba3(PO4)2:Mn5+ phosphor has a great potential for the study of the NIR-II fluorescence imaging in vivo.

  6. Measurement of pressure ridges in SAR images of sea ice - Preliminary results on scattering theory (United States)

    Vesecky, J. F.; Smith, M. P.; Daida, J. M.; Samadani, R.; Camiso, J. C.


    Sea ice ridges and keels (hummocks and bummocks) are important in sea ice research for both scientific and practical reasons. A long-term objective is to make quantitative measurements of sea ice ridges using synthetic aperture radar (SAR) images. The preliminary results of a scattering model for sea ice ridge are reported. The approach is through the ridge height variance spectrum Psi(K), where K is the spatial wavenumber, and the two-scale scattering model. The height spectrum model is constructed to mimic height statistics observed with an airborne optical laser. The spectrum model is used to drive a two-scale scattering model. Model results for ridges observed at C- and X-band yield normalized radar cross sections that are 10 to 15 dB larger than the observed cross sections of multiyear ice over the range of angles of incidence from 10 to 70 deg.

  7. Monte-Carlo simulations and image reconstruction for novel imaging scenarios in emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Gillam, John E. [The University of Sydney, Faculty of Health Sciences and The Brain and Mind Centre, Camperdown (Australia); Rafecas, Magdalena, E-mail: [University of Lubeck, Institute of Medical Engineering, Ratzeburger Allee 160, 23538 Lübeck (Germany)


    Emission imaging incorporates both the development of dedicated devices for data acquisition as well as algorithms for recovering images from that data. Emission tomography is an indirect approach to imaging. The effect of device modification on the final image can be understood through both the way in which data are gathered, using simulation, and the way in which the image is formed from that data, or image reconstruction. When developing novel devices, systems and imaging tasks, accurate simulation and image reconstruction allow performance to be estimated, and in some cases optimized, using computational methods before or during the process of physical construction. However, there are a vast range of approaches, algorithms and pre-existing computational tools that can be exploited and the choices made will affect the accuracy of the in silico results and quality of the reconstructed images. On the one hand, should important physical effects be neglected in either the simulation or reconstruction steps, specific enhancements provided by novel devices may not be represented in the results. On the other hand, over-modeling of device characteristics in either step leads to large computational overheads that can confound timely results. Here, a range of simulation methodologies and toolkits are discussed, as well as reconstruction algorithms that may be employed in emission imaging. The relative advantages and disadvantages of a range of options are highlighted using specific examples from current research scenarios.

  8. Design and calibration of a digital Fourier holographic microscope for particle sizing via goniometry and optical scatter imaging in transmission. (United States)

    Rossi, Vincent M; Jacques, Steven L


    Goniometry and optical scatter imaging have been used for optical determination of particle size based upon optical scattering. Polystyrene microspheres in suspension serve as a standard for system validation purposes. The design and calibration of a digital Fourier holographic microscope (DFHM) are reported. Of crucial importance is the appropriate scaling of scattering angle space in the conjugate Fourier plane. A detailed description of this calibration process is described. Spatial filtering of the acquired digital hologram to use photons scattered within a restricted angular range produces an image. A pair of images, one using photons narrowly scattered within 8 - 15° (LNA), and one using photons broadly scattered within 8 - 39° (HNA), are produced. An image based on the ratio of these two images, OSIR = HNA/LNA, following Boustany et al. (2002), yields a 2D Optical Scatter Image (OSI) whose contrast is based on the angular dependence of photon scattering and is sensitive to the microsphere size, especially in the 0.5-1.0µm range. Goniometric results are also given for polystyrene microspheres in suspension as additional proof of principle for particle sizing via the DFHM.

  9. Phase-shift effect of amplitude spread function on spectrum and image formation in coherent Raman scattering microspectroscopy. (United States)

    Fukutake, Naoki


    Coherent Raman scattering microspectroscopy, which includes coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) microspectroscopy, permits label-free hyperspectral imaging. We report the theoretical study of the phase-shift effect of the impulse response function on the spectral and image-forming properties of coherent Raman scattering microspectroscopy. We show that the spectrum and image are influenced by not only the NA of objective for excitation (NA(ex)) but also that for signal collection (NA(col)), in association with the phase-shift effect. We discuss that, under the condition NA(ex)≠NA(col), both the spectrum and the image become deformed by the phase-shift effect, which can be applied to the direct measurement of the imaginary part of the nonlinear susceptibility in CARS spectroscopy. We point out that, even in SRS microscopy, the nonresonant background can contribute to the image formation and cause the artifact in the image.

  10. Classification of rice grain varieties arranged in scattered and heap fashion using image processing (United States)

    Bhat, Sudhanva; Panat, Sreedath; N, Arunachalam


    Inspection and classification of food grains is a manual process in many of the food grain processing industries. Automation of such a process is going to be beneficial for industries facing shortage of skilled workforce. Machine Vision techniques are some of the popular approaches for developing such automations. Most of the existing works on the topic deal with identification of the rice variety by analyzing images of well separated and isolated rice grains from which a lot of geometrical features can be extracted. This paper proposes techniques to estimate geometrical parameters from the images of scattered as well as heaped rice grains where the grain boundaries are not clearly identifiable. A methodology based on convexity is proposed to separate touching rice grains in the scattered rice grain images and get their geometrical parameters. And in case of heaped arrangement a Pixel-Distance Contribution Function is defined and is used to get points inside rice grains and then to find the boundary points of rice grains. These points are fit with the equation of an ellipse to estimate their lengths and breadths. The proposed techniques are applied on images of scattered and heaped rice grains of different varieties. It is shown that each variety gives a unique set of results.

  11. Beamstop-based low-background ptychography to image weakly scattering objects. (United States)

    Reinhardt, Juliane; Hoppe, Robert; Hofmann, Georg; Damsgaard, Christian D; Patommel, Jens; Baumbach, Christoph; Baier, Sina; Rochet, Amélie; Grunwaldt, Jan-Dierk; Falkenberg, Gerald; Schroer, Christian G


    In recent years, X-ray ptychography has been established as a valuable tool for high-resolution imaging. Nevertheless, the spatial resolution and sensitivity in coherent diffraction imaging are limited by the signal that is detected over noise and over background scattering. Especially, coherent imaging of weakly scattering specimens suffers from incoherent background that is generated by the interaction of the central beam with matter along its propagation path in particular close to and inside of the detector. Common countermeasures entail evacuated flight tubes or detector-side beamstops, which improve the experimental setup in terms of background reduction or better coverage of high dynamic range in the diffraction patterns. Here, we discuss an alternative approach: we combine two ptychographic scans with and without beamstop and reconstruct them simultaneously taking advantage of the complementary information contained in the two scans. We experimentally demonstrate the potential of this scheme for hard X-ray ptychography by imaging a weakly scattering object composed of catalytic nanoparticles and provide the analysis of the signal-to-background ratio in the diffraction patterns. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Imaging of emission patterns in a T-shaped quantum wire laser


    Takahashi, Yasushi; Watanabe, Shinichi; Yoshita, Masahiro; Itoh, Hirotake; Hayamizu, Yuhei; Akiyama, Hidefumi; Pfeiffer, Loren N.; West, Ken W.


    Spatially and spectrally resolved microscopic images of spontaneous and stimulated emissions are imaged at the mirror facets of a GaAs T-shaped quantum wire laser with high uniformity. Laser emission from the one-dimensional ground state reveals a circular image located at the core of a T-shaped optical waveguide but significantly smaller in area than the low power spontaneous emission from the same waveguide. These images unambiguously allow assignment of all spontaneous and laser emissions ...

  13. Effect of static scatterers in laser speckle contrast imaging: an experimental study on correlation and contrast. (United States)

    Vaz, Pedro Guilherme; Humeau-Heurtier, Anne; Figueiras, Edite; Correia, Carlos; Cardoso, Joao M R


    Laser speckle contrast imaging (LSCI) is a non-invasive microvascular blood flow assessment technique with good temporal and spatial resolutions. Most LSCI systems, including commercials devices, can only perform qualitative blood flow evaluation which is a major limitation of this technique. There are several factors that prevent LSCI to be a quantitative technique. Among these factors we can highlight the effect of static scatterers. The goal of this work was to study the influence of different static and dynamic scatterers concentrations on laser speckle correlation and contrast. In order to achieve this, a laser speckle prototype was developed and tested using an optical phantom with different concentrations of static and dynamic scatterers. It has been found that the laser speckle correlation can be used to estimate the relative concentration of static/dynamic scatterers within a sample. Moreover, the speckle correlation proved to be independent of the dynamic scatterers velocity which is a fundamental characteristic to be used as contrast correction method. Creative Commons Attribution license.

  14. Simultaneous in vivo positron emission tomography and magnetic resonance imaging. (United States)

    Catana, Ciprian; Procissi, Daniel; Wu, Yibao; Judenhofer, Martin S; Qi, Jinyi; Pichler, Bernd J; Jacobs, Russell E; Cherry, Simon R


    Positron emission tomography (PET) and magnetic resonance imaging (MRI) are widely used in vivo imaging technologies with both clinical and biomedical research applications. The strengths of MRI include high-resolution, high-contrast morphologic imaging of soft tissues; the ability to image physiologic parameters such as diffusion and changes in oxygenation level resulting from neuronal stimulation; and the measurement of metabolites using chemical shift imaging. PET images the distribution of biologically targeted radiotracers with high sensitivity, but images generally lack anatomic context and are of lower spatial resolution. Integration of these technologies permits the acquisition of temporally correlated data showing the distribution of PET radiotracers and MRI contrast agents or MR-detectable metabolites, with registration to the underlying anatomy. An MRI-compatible PET scanner has been built for biomedical research applications that allows data from both modalities to be acquired simultaneously. Experiments demonstrate no effect of the MRI system on the spatial resolution of the PET system and PET scanner inside the MRI. The signal-to-noise ratio and uniformity of the MR images, with the exception of one particular pulse sequence, were little affected by the presence of the PET scanner. In vivo simultaneous PET and MRI studies were performed in mice. Proof-of-principle in vivo MR spectroscopy and functional MRI experiments were also demonstrated with the combined scanner.

  15. First correlated measurements of the shape and light scattering properties of cloud particles using the new Particle Habit Imaging and Polar Scattering (PHIPS probe

    Directory of Open Access Journals (Sweden)

    A. Abdelmonem


    Full Text Available Studying the radiative impact of cirrus clouds requires knowledge of the relationship between their microphysics and the single scattering properties of cloud particles. Usually, this relationship is obtained by modeling the optical scattering properties from in situ measurements of ice crystal size distributions. The measured size distribution and the assumed particle shape might be erroneous in case of non-spherical ice particles. We present here a novel optical sensor (the Particle Habit Imaging and Polar Scattering probe, PHIPS designed to measure simultaneously the 3-D morphology and the corresponding optical and microphysical parameters of individual cloud particles. Clouds containing particles ranging from a few micrometers to about 800 μm diameter in size can be characterized systematically with an optical resolution power of 2 μm and polar scattering resolution of 1° for forward scattering directions (from 1° to 10° and 8° for side and backscattering directions (from 18° to 170°. The maximum acquisition rates for scattering phase functions and images are 262 KHz and 10 Hz, respectively. Some preliminary results collected in two ice cloud campaigns conducted in the AIDA cloud simulation chamber are presented. PHIPS showed reliability in operation and produced size distributions and images comparable to those given by other certified cloud particles instruments. A 3-D model of a hexagonal ice plate is constructed and the corresponding scattering phase function is compared to that modeled using the Ray Tracing with Diffraction on Facets (RTDF program. PHIPS is a highly promising novel airborne optical sensor for studying the radiative impact of cirrus clouds and correlating the particle habit-scattering properties which will serve as a reference for other single, or multi-independent, measurement instruments.

  16. Impact on dose and image quality of a software-based scatter correction in mammography. (United States)

    Monserrat, Teresa; Prieto, Elena; Barbés, Benigno; Pina, Luis; Elizalde, Arlette; Fernández, Belén


    Background In 2014, Siemens developed a new software-based scatter correction (Progressive Reconstruction Intelligently Minimizing Exposure [PRIME]), enabling grid-less digital mammography. Purpose To compare doses and image quality between PRIME (grid-less) and standard (with anti-scatter grid) modes. Material and Methods Contrast-to-noise ratio (CNR) was measured for various polymethylmethacrylate (PMMA) thicknesses and dose values provided by the mammograph were recorded. CDMAM phantom images were acquired for various PMMA thicknesses and inverse Image Quality Figure (IQF inv ) was calculated. Values of incident entrance surface air kerma (ESAK) and average glandular dose (AGD) were obtained from the DICOM header for a total of 1088 pairs of clinical cases. Two experienced radiologists compared subjectively the image quality of a total of 149 pairs of clinical cases. Results CNR values were higher and doses were lower in PRIME mode for all thicknesses. IQF inv values in PRIME mode were lower for all thicknesses except for 40 mm of PMMA equivalent, in which IQF inv was slightly greater in PRIME mode. A mean reduction of 10% in ESAK and 12% in AGD in PRIME mode with respect to standard mode was obtained. The clinical image quality in PRIME and standard acquisitions resulted to be similar in most of the cases (84% for the first radiologist and 67% for the second one). Conclusion The use of PRIME software reduces, in average, the dose of radiation to the breast without affecting image quality. This reduction is greater for thinner and denser breasts.

  17. Note: Grazing incidence small and wide angle x-ray scattering combined with imaging ellipsometry

    Energy Technology Data Exchange (ETDEWEB)

    Koerstgens, V.; Meier, R.; Ruderer, M. A.; Guo, S.; Chiang, H.-Y.; Mueller-Buschbaum, P. [Technische Universitaet Muenchen, Physik-Department, Lehrstuhl fuer Funktionelle Materialien, James-Franck-Str. 1, 85748 Garching (Germany); Perlich, J.; Roth, S. V.; Gehrke, R. [HASYLAB, DESY, Notkestr. 85, 22607, Hamburg (Germany)


    The combination of grazing incidence small angle x-ray scattering (GISAXS) and grazing incidence wide angle x-ray scattering (GIWAXS) with optical imaging ellipsometry is presented as an upgrade of the available measurement techniques at the wiggler beamline BW4 of the Hamburger Synchrotronstrahlungslabor. The instrument is introduced with the description of the alignment procedure to assure the measurement of imaging ellipsometry and GISAXS/GIWAXS on the same sample spot. To demonstrate the possibilities of the new instrument examples of morphological investigation on films made of poly(3-hexylthiophene) and [6,6]-phenyl-C{sub 61} butyric acid methyl ester as well as textured poly(9,9-dioctylfluorene-alt-benzo-thia-diazole) are shown.

  18. Holographic Imaging and Iterative Phase Optimization Methods for Focusing and Transmitting Light in Scattering Media (United States)

    Purcell, Michael James

    Existing methods for focusing and imaging through strongly scattering materials are often limited by speed, the need for invasive feedback, and the shallow depth of penetration of photons into the material. These limitations have motivated the present research into the development of a new iterative phase optimization method for improving transmission of light through a sample of strongly scattering material. A new method, based on the detection of back-scattered light combined with active (phase-only) wavefront control was found to be partially successful, decreasing the power of backscattered incident light at 488 nm wavelength by approximately 35% in a 626 mum thick sample of Yttria (Y2O3) nanopowder (mean particle size 26 nm) in clear epoxy with transport mean free path length ˜116 mum. However, the observed transmitted power did not show simultaneous improvement. The conclusion was reached that scattering to the sides of the sample and polarization scrambling were responsible for the lack of improved transmission with this method. Some ideas for improvement are discussed in the thesis. This research subsequently led to the development of a lensless holographic imaging method based on a rotating diffuser for statistical averaging of the optical signal for overcoming speckle caused by reflection from a rough surface. This method made it possible to reduce background variations of intensity due to speckle and improve images reflected from rough, immobile surfaces with no direct path for photons between the object and camera. Improvements in the images obtained with this technique were evaluated quantitatively by comparing SSIM indices and were found to offer practical advances for transmissive and reflective geometries alike.

  19. NONLINEAR OPTICS: Statistical analysis of the parameters of stimulated Brillouin scattering under conditions of stimulated emission from spontaneous noise (United States)

    Dianov, Evgenii M.; Karasik, Aleksandr Ya; Luchnikov, A. V.; Senatorov, A. K.


    A description is given of a new approach to an analysis of the statistics of fluctuations of stimulated scattering which are due to the noise nature of spontaneous radiation. The approach is based on amplification of spontaneous noise in a given excitation field under conditions of stimulated Brillouin scattering (STBS) and on a statistical analysis of noise fluctuations by two methods: in real time and after a fixed time delay when the number of realizations is large. A report is given of experiments carried out at T = 300 K in long single-mode glass fiber waveguides where a transverse distribution of optical fields could be controlled rigorously and kept constant throughout the zone of interaction between the waves. An exponential distribution of the stimulated scattering intensity was established, indicating constancy of the exponential statistics of fluctuations of the intensity of spontaneous radiation in the course of its amplification. This made it possible to calculate the STBS emission spectrum. A determination of the STBS gain increment demonstrated a good agreement between the theory and experiment. A time relationship established between the pump intensity spectrum and the emission spectrum made it possible to find the relaxation time of hypersound in a glassy medium.

  20. Microbubbles as x-ray scattering contrast agents using analyzer-based imaging

    Energy Technology Data Exchange (ETDEWEB)

    Arfelli, F [Department of Physics, University of Trieste, Via Valerio 2, 34127 Trieste (Italy); Rigon, L [Istituto Nazionale di Fisica Nucleare-Sezione di Trieste, Via Valerio 2, 34127 Trieste (Italy); Menk, R H [Sincrotrone Trieste S.C.p.A., Strada Statale 14-km 163.5 in AREA Science Park, 34012 Basovizza, Trieste (Italy)


    Conventional contrast agents utilized in diagnostic radiology are based on x-ray absorption properties; alternative physical principles capable of providing a contrast enhancement in radiographs have never been applied. This study exploits the possibility of using a novel type of contrast media based on x-ray scattering. The contrast agents consist of microbubble echo-enhancing agents, usually applied in ultrasound examinations, which are invisible with conventional x-ray absorption techniques. The experiment was carried out at the medical beamline of the synchrotron radiation laboratory ELETTRA in Trieste, Italy. A flat silicon analyzer crystal typically used for diffraction-enhanced imaging was utilized as a tool for detecting the scattering properties of the contrast agents. In analyzer-based imaging, it is possible to detect the scattering properties of the sample by shifting the analyzer crystal to selected positions of its reflectivity curve. In particular, when the sample consists of a large number of micro-particles an overall effect can be observed. Phantoms containing contrast agents based on microbubbles were imaged at different angular positions of the analyzer crystal. High visibility of the details was demonstrated, and a strong contrast enhancement was measured compared to normal x-ray absorption techniques.

  1. Sub-diffusive spatial frequency domain imaging: light scattering as a biomarker (Conference Presentation) (United States)

    McClatchy, David M.; Rizzo, Elizabeth J.; Kanick, Stephen C.; Krishnaswamy, Venkataramanan; Elliott, Jonathan T.; Wells, Wendy A.; Paulsen, Keith D.; Pogue, Brian W.


    In spatial frequency domain imaging (SFDI), a spatially modulated intensity pattern is projected on to tissue, with the demodulated reflectance having more superficial sensitivity with increasing spatial modulation frequency. With sub-diffusive SFDI, very high (>0.5 mm-1) spatial modulation frequencies are projected yielding sensitivity to the directionality of light scattering with only few scattering events occurring and sub-millimeter penetration depth and spatial resolution. This technique has been validated in a series of phantom experiments, where fractal distributions of polystyrene spheres were imaged, and through a model based inversion, the size scale distribution versus overall density of these particles could be separated and visualized in spatially resolved maps. With sensitivity to localized light scattering over a wide field of view (11 cm x 14 cm), this technique is being translated for the application of intraoperative breast tumor margin assessment. To test sensitivity to changes in human breast tissue morphology, a cohort of over 30 freshly excised human breast tissue specimens, including adipose, fibroglandular, fibroadenoma, and invasive carcinoma, have been imaged and co-registered to whole specimen histology. Statistical analysis of the distributions of both textual raw reflectance parameters and model based optical properties for each type of tissue will be presented. Furthermore, classification algorithm development and analysis to predicted likelihood of cancer on the surface of the tissue will also be presented. Reflectance maps, optical property maps, and probability likelihood maps of spatially heterogeneous samples with multiple tissue types will also be shown.

  2. Investigating Seismic Wave Scattering in Heterogeneous Environments and Implications for Seismic Imaging (United States)

    Bongajum, Emmanuel Leinyuy


    Inhomogeneities in the earth (fractures, layering, shape, composition) are responsible for seismic wave scattering and contribute towards amplitude, travel time, frequency and spectral fluctuations observed in seismic records. This thesis presents findings that complement our understanding of seismic scattering and imaging in heterogeneous media. Interest focused on probing the correlation between spatial variations in attributes that characterize the state (physical, chemical) of rocks and seismic waveform data with consideration towards potential implications for seismic survey design to optimize imaging, imaging with converted waves, microseismic monitoring, velocity modeling and imaging of lithological boundaries. The highlights of the research strategy include: • The use of stochastic methods to build realistic earth models that characterize the 1D, 2D and 3D spatial variations in rock properties. These petrophysical earth models are conditioned by experimental ("hard") data such as geology, wave velocities and density from case study areas like the Bosumtwi impact crater and the base metal deposits in Nash Creek (Canada) and Thompson (Canada). The distributions of the sulfide mineralization at Nash Creek and at Thompson represent two end members of the heterogeneity spectrum. While the sulfide mineralization at Nash Creek is highly disseminated in nature, the sulfide rich zones at Thompson occur as well defined volumes (lens-shaped) having a strong density contrast with respect to the host rocks. • Analysis of modeled forward (transmitted) and backward scattered wave propagation in the heterogeneous earth models. As a result of a study aimed at correlating resonant frequencies to scale length parameters, it is observed that the efficiency of the spectral ratio method is undermined by its sensitivity to the interference between P- and S-waves as well as the impedance contrast. It is also demonstrated that travel time of direct arrivals (transmitted waves

  3. Time and direction of arrival detection and filtering for imaging in strongly scattering random media

    CERN Document Server

    Borcea, Liliana; Tsogka, Chrysoula


    We study detection and imaging of small reflectors in heavy clutter, using an array of transducers that emits and receives sound waves. Heavy clutter means that multiple scattering of the waves in the heterogeneous host medium is strong and overwhelms the arrivals from the small reflectors. Building on the adaptive time-frequency filter of [1], we propose a robust method for detecting the direction of arrival of the direct echoes from the small reflectors, and suppressing the unwanted clutter backscatter. This improves the resolution of imaging. We illustrate the performance of the method with realistic numerical simulations in a non-destructive testing setup.

  4. Real-time imaging through strongly scattering media: seeing through turbid media, instantly (United States)

    Sudarsanam, Sriram; Mathew, James; Panigrahi, Swapnesh; Fade, Julien; Alouini, Mehdi; Ramachandran, Hema


    Numerous everyday situations like navigation, medical imaging and rescue operations require viewing through optically inhomogeneous media. This is a challenging task as photons propagate predominantly diffusively (rather than ballistically) due to random multiple scattering off the inhomogenieties. Real-time imaging with ballistic light under continuous-wave illumination is even more challenging due to the extremely weak signal, necessitating voluminous data-processing. Here we report imaging through strongly scattering media in real-time and at rates several times the critical flicker frequency of the eye, so that motion is perceived as continuous. Two factors contributed to the speedup of more than three orders of magnitude over conventional techniques - the use of a simplified algorithm enabling processing of data on the fly, and the utilisation of task and data parallelization capabilities of typical desktop computers. The extreme simplicity of the technique, and its implementation with present day low-cost technology promises its utility in a variety of devices in maritime, aerospace, rail and road transport, in medical imaging and defence. It is of equal interest to the common man and adventure sportsperson like hikers, divers, mountaineers, who frequently encounter situations requiring realtime imaging through obscuring media. As a specific example, navigation under poor visibility is examined.

  5. Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media (United States)

    Edrei, Eitan; Scarcelli, Giuliano


    High-resolution imaging through turbid media is a fundamental challenge of optical sciences that has attracted a lot of attention in recent years for its wide range of potential applications. Here, we demonstrate that the resolution of imaging systems looking behind a highly scattering medium can be improved below the diffraction-limit. To achieve this, we demonstrate a novel microscopy technique enabled by the optical memory effect that uses a deconvolution image processing and thus it does not require iterative focusing, scanning or phase retrieval procedures. We show that this newly established ability of direct imaging through turbid media provides fundamental and practical advantages such as three-dimensional refocusing and unambiguous object reconstruction.

  6. Effects of tissue fixation on coherent anti-Stokes Raman scattering images of brain (United States)

    Galli, Roberta; Uckermann, Ortrud; Koch, Edmund; Schackert, Gabriele; Kirsch, Matthias; Steiner, Gerald


    Coherent anti-Stokes Raman scattering (CARS) microscopy is an emerging multiphoton technique for the label-free histopathology of the central nervous system, by imaging the lipid content within the tissue. In order to apply the technique on standard histology sections, it is important to know the effects of tissue fixation on the CARS image. Here, we report the effects of two common fixation methods, namely with formalin and methanol-acetone, on mouse brain and human glioblastoma tissue. The variations induced by fixation on the CARS contrast and intensity were compared and interpreted using Raman microspectroscopy. The results show that, whenever unfixed cryosections cannot be used, fixation with formalin constitutes an alternative which does not deteriorate substantially the contrast generated by the different brain structures in the CARS image. Fixation with methanol-acetone strongly modifies the tissue lipid content and is therefore incompatible with the CARS imaging.

  7. Cancer imaging using Surface-Enhanced Resonance Raman Scattering (SERRS) nanoparticles (United States)

    Harmsen, Stefan; Wall, Matthew A.; Huang, Ruimin


    The unique spectral signatures and biologically inert compositions of surface-enhanced (resonance) Raman scattering (SE(R)RS) nanoparticles make them promising contrast agents for in vivo cancer imaging. Subtle aspects of their preparation can shift their limit of detection by orders of magnitude. In this protocol, we present the optimized, step-by-step procedure for generating reproducible SERRS nanoparticles with femtomolar (10−15 M) limits of detection. We introduce several applications of these nanoprobes for biomedical research, with a focus on intraoperative cancer imaging via Raman imaging. A detailed account is provided for successful intravenous administration of SERRS nanoparticles such that delineation of cancerous lesions may be achieved without the need for specific biomarker targeting. The time estimate for this straightforward, yet comprehensive protocol from initial de novo gold nanoparticle synthesis to SE(R)RS nanoparticle contrast-enhanced preclinical Raman imaging in animal models is ~96 h. PMID:28686581

  8. Effect of attenuation correction on image quality in emission tomography (United States)

    Denisova, N. V.; Ondar, M. M.


    In this paper, mathematical modeling and computer simulations of myocardial perfusion SPECT imaging are performed. The main factors affecting the quality of reconstructed images in SPECT are anatomical structures, the diastolic volume of a myocardium and attenuation of gamma rays. The purpose of the present work is to study the effect of attenuation correction on image quality in emission tomography. The basic 2D model describing a Tc-99m distribution in a transaxial slice of the thoracic part of a patient body was designed. This model was used to construct four phantoms simulated various anatomical shapes: 2 male and 2 female patients with normal, obese and subtle physique were included in the study. Data acquisition model which includes the effect of non-uniform attenuation, collimator-detector response and Poisson statistics was developed. The projection data were calculated for 60 views in accordance with the standard myocardial perfusion SPECT imaging protocol. Reconstructions of images were performed using the OSEM algorithm which is widely used in modern SPECT systems. Two types of patient's examination procedures were simulated: SPECT without attenuation correction and SPECT/CT with attenuation correction. The obtained results indicate a significant effect of the attenuation correction on the SPECT images quality.

  9. Ultrasmall Organic Nanoparticles with Aggregation-Induced Emission and Enhanced Quantum Yield for Fluorescence Cell Imaging. (United States)

    Xu, Suying; Bai, Xilin; Ma, Jingwen; Xu, Minmin; Hu, Gaofei; James, Tony D; Wang, Leyu


    The use of fluorescence probes for biomedical imaging has attracted significant attention over recent years owing to their high resolution at cellular level. The probes are available in many formats including small particle size based imaging agents which are considered to be promising candidates, due to their excellent stabilities. Yet, concerns over the potential cytotoxicity effects of inorganic luminescent particles have led to questions about their suitability for imaging applications. Exploration of alternatives inspired us to use organic fluorophores with aggregation-induced emission (AIE), prepared by functionalizing the amine group on tetraphenylethene with 3,5-bis(trifluoromethyl)phenyl isocyanate. The as-synthesized novel AIE fluorophore (TPE-F) display enhanced quantum yield and longer lifetime as compared with its counterparts (4,4',4″,4‴-(ethene-1,1,2,2-tetrayl)tetraaniline, TPE-AM). Furthermore, the TPE-F was encapsulated into small-size organic nanoparticles (NPs; dynamic light scattering size, ∼10 nm) with polysuccinimide (PSI). The biocompatibility, excellent stability, bright fluorescence, and selective cell targeting of these NPs enable the as-prepared TPE-F NPs to be suitable for specific fluorescence cell imaging.

  10. Correction of motion artefacts and pseudo colour visualization of multispectral light scattering images for optical diagnosis of rheumatoid arthritis (United States)

    Minet, Olaf; Scheibe, Patrick; Beuthan, Jürgen; Zabarylo, Urszula


    State-of-the-art image processing methods offer new possibilities for diagnosing diseases using scattered light. The optical diagnosis of rheumatism is taken as an example to show that the diagnostic sensitivity can be improved using overlapped pseudo-coloured images of different wavelengths, provided that multispectral images are recorded to compensate for any motion related artefacts which occur during examination.

  11. Imaging the intact mouse cornea using coherent anti-stokes Raman scattering (CARS). (United States)

    Ammar, David A; Lei, Tim C; Kahook, Malik Y; Masihzadeh, Omid


    The aim of this study was to image the cellular and noncellular structures of the cornea and limbus in an intact mouse eye using the vibrational oscillation of the carbon-hydrogen bond in lipid membranes and autofluorescence as label-free contrast agents. Freshly enucleated mouse eyes were imaged using two nonlinear optical techniques: coherent anti-Stokes Raman scattering (CARS) and two-photon autofluorescence (TPAF). Sequential images were collected through the full thickness of the cornea and limbal regions. Line scans along the transverse/sagittal axes were also performed. Analysis of multiple CARS/TPAF images revealed that corneal epithelial and endothelial cells could be identified by the lipid-rich plasma membrane CARS signal. The fluorescent signal from the collagen fibers of the corneal stroma was evident in the TPAF channel. The transition from the cornea to sclera at the limbus was marked by a change in collagen pattern (TPAF channel) and thickness of surface cells (CARS channel). Regions within the corneal stroma that lack collagen autofluorescence coincided with CARS signal, indicating the presence of stromal fibroblasts or nerve fibers. The CARS technique was successful in imaging cells in the intact mouse eye, both at the surface and within corneal tissue. Multiphoton images were comparable to histologic sections. The methods described here represent a new avenue for molecular specific imaging of the mouse eye. The lack of need for tissue fixation is unique compared with traditional histology imaging techniques.

  12. Three-dimensional coherent X-ray surface scattering imaging near total external reflection (United States)

    Sun, Tao; Jiang, Zhang; Strzalka, Joseph; Ocola, Leonidas; Wang, Jin


    Lensless X-ray coherent diffraction imaging (CDI) has emerged as a thriving field promising applications in materials and biological sciences with a theoretical imaging resolution only limited by the X-ray wavelength. Most CDI methods use transmission geometry, which is not suitable for nanostructures grown on opaque substrates or for objects of interest comprising only surfaces or interfaces. Attempts have been made to perform CDI experiments in reflection geometry, both optically and with X-rays, but the reconstruction resulted in mostly planar images, with less success in the third dimension. Here, we discuss the development of coherent surface scattering imaging in grazing-incidence geometry that takes advantage of enhanced X-ray surface scattering and interference near total external reflection. We demonstrate the successful reconstruction of substrate-supported non-periodic surface patterns in three dimensions with nanometre resolution in the direction normal to the substrate, promising wide applications in elucidating structures in substrate-supported and buried nanoelectronics and photonics.

  13. Electromagnetic Time-Reversal Imaging and Tracking Techniques for Inverse Scattering and Wireless Communications (United States)

    Fouda, Ahmed E.

    Time-reversal (TR) was originated in acoustics as a technique for re-focusing waves around their source location. Under certain conditions, the wave equation is invariant under TR, therefore, waves emanated from a source or scattered from a passive target, and recorded by a transceivers array, will retrace their forward path and automatically focus at the source/target location if back propagated in a time-reversed (last-in first-out) fashion from that array. Focusing resolution of time-reversed back propagation in rich scattering environments beats that in free space, yielding what is known as 'superresolution'. Moreover, under ultrawideband (UWB) operation, TR exhibits the distinctive property of 'statistical stability', which makes it an attractive technique for imaging in disordered media whose characteristics are not known deterministically (random media). Over the past few years, TR has been exploited in a variety of electromagnetic sensing and imaging applications such as ground penetrating radar, breast cancer detection, nondestructive testing, and through-wall imaging. In addition, TR has been extensively applied in UWB wireless communication providing myriad of advantages including reduced receiver complexity, power saving, increased system capacity, and enhanced information secrecy. In this work, we introduce new TR-based signal processing techniques for imaging, tracking, and communicating with targets/users embedded in rich scattering environments. We start by demonstrating, both numerically and experimentally, the statistical stability of UWB TR imaging in inhomogeneous random media, under different combinations of random medium parameters and interrogating signal properties. We examine conditions under which frequency decorrelation in random media provides a more effective 'self-averaging' and therefore better statistical stability. Then, we devise a technique for detecting and tracking multiple moving targets in cluttered environments based on

  14. Confocal Light Absorption and Scattering Spectroscopic (CLASS) imaging: From cancer detection to sub-cellular function (United States)

    Qiu, Le

    Light scattering spectroscopy (LSS), an optical technique that relates the spectroscopic properties of light elastically scattered by small particles to their size, refractive index and shape, has been recently successfully employed for sensing morphological and biochemical properties of epithelial tissues and cells in vivo. LSS does not require exogenous markers, is non-invasive, and, due to its multispectral nature, can sense biological structures well beyond the diffraction limit. All that makes LSS be a very good candidate to be used both in clinical medicine for in vivo detection of disease and in cell biology to monitor cell function on the organelle scale. Recently we developed two LSS-based imaging modalities: clinical Polarized LSS (PLSS) Endoscopic Technique for locating early pre-cancerous changes in GI tract and Confocal Light Absorption and Scattering Spectroscopic (CLASS) Microscopy for studying cells in vivo without exogenous markers. One important application of the clinical PLSS endoscopic instrument, a noncontact scanning imaging device compatible with the standard clinical endoscopes and capable of detecting dysplastic changes, is to serve as a guide for biopsy in Barrett's esophagus (BE). The instrument detects parallel and perpendicular components of the polarized light, backscattered from epithelial tissues, and determines characteristics of epithelial nuclei from the residual spectra. It also can find tissue oxygenation, hemoglobin content and other properties from the diffuse light component. By rapidly scanning esophagus the PLSS endoscopic instrument makes sure the entire BE portion is scanned and examined for the presence of dysplasia. CLASS microscopy, on the other hand, combines principles of light scattering spectroscopy (LSS) with confocal microscopy. Its main purpose is to image cells on organelle scale in vivo without the use of exogenous labels which may affect the cell function. The confocal geometry selects specific region and

  15. Depth imaging in highly scattering underwater environments using time-correlated single-photon counting (United States)

    Maccarone, Aurora; McCarthy, Aongus; Halimi, Abderrahim; Tobin, Rachael; Wallace, Andy M.; Petillot, Yvan; McLaughlin, Steve; Buller, Gerald S.


    This paper presents an optical depth imaging system optimized for highly scattering environments such as underwater. The system is based on the time-correlated single-photon counting (TCSPC) technique and the time-of-flight approach. Laboratory-based measurements demonstrate the potential of underwater depth imaging, with specific attention given to environments with a high level of scattering. The optical system comprised a monostatic transceiver unit, a fiber-coupled supercontinuum laser source with a wavelength tunable acousto-optic filter (AOTF), and a fiber-coupled single-element silicon single-photon avalanche diode (SPAD) detector. In the optical system, the transmit and receive channels in the transceiver unit were overlapped in a coaxial optical configuration. The targets were placed in a 1.75 meter long tank, and raster scanned using two galvo-mirrors. Laboratory-based experiments demonstrate depth profiling performed with up to nine attenuation lengths between the transceiver and target. All of the measurements were taken with an average laser power of less than 1mW. Initially, the data was processed using a straightforward pixel-wise cross-correlation of the return timing signal with the system instrumental timing response. More advanced algorithms were then used to process these cross-correlation results. These results illustrate the potential for the reconstruction of images in highly scattering environments, and to permit the investigation of much shorter acquisition time scans. These algorithms take advantage of the data sparseness under the Discrete Cosine Transform (DCT) and the correlation between adjacent pixels, to restore the depth and reflectivity images.

  16. First Scattered-light Images of the Gas-rich Debris Disk around 49 Ceti

    Energy Technology Data Exchange (ETDEWEB)

    Choquet, Élodie [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Milli, Julien; Wahhaj, Zahed [European Southern Observatory, Alonso de Còrdova 3107, Vitacura, Casilla 19001, Santiago (Chile); Soummer, Rémi; Chen, Christine H.; Debes, John H. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Roberge, Aki [Exoplanets and Stellar Astrophysics Laboratory, NASA Goddard Space Flight Center, Code 667, Greenbelt, MD 20771 (United States); Augereau, Jean-Charles [Univ. Grenoble Alpes, CNRS, IPAG, F-38000 Grenoble (France); Booth, Mark [Astrophysikalisches Institut und Universitätssternwarte, Friedrich-Schiller-Universität Jena, Schillergäßchen 2-3, D-07745 Jena (Germany); Absil, Olivier [Space sciences, Technologies and Astrophysics Research (STAR) Institute, Université de Liège, 19 Allée du Six Août, B-4000 Liège (Belgium); Boccaletti, Anthony [LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité, 5 place Jules Janssen, F-92195 Meudon (France); Burgo, Carlos del, E-mail: [Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis Enrique Erro 1, Sta. Ma. Tonantzintla, Puebla (Mexico); and others


    We present the first scattered-light images of the debris disk around 49 Ceti, a ∼40 Myr A1 main-sequence star at 59 pc, famous for hosting two massive dust belts as well as large quantities of atomic and molecular gas. The outer disk is revealed in reprocessed archival Hubble Space Telescope NICMOS-F110W images, as well as new coronagraphic H-band images from the Very Large Telescope SPHERE instrument. The disk extends from 1.″1 (65 au) to 4.″6 (250 au) and is seen at an inclination of 73°, which refines previous measurements at lower angular resolution. We also report no companion detection larger than 3 M {sub Jup} at projected separations beyond 20 au from the star (0.″34). Comparison between the F110W and H-band images is consistent with a gray color of 49 Ceti’s dust, indicating grains larger than ≳2 μ m. Our photometric measurements indicate a scattering efficiency/infrared excess ratio of 0.2–0.4, relatively low compared to other characterized debris disks. We find that 49 Ceti presents morphological and scattering properties very similar to the gas-rich HD 131835 system. From our constraint on the disk inclination we find that the atomic gas previously detected in absorption must extend to the inner disk, and that the latter must be depleted of CO gas. Building on previous studies, we propose a schematic view of the system describing the dust and gas structure around 49 Ceti and hypothetical scenarios for the gas nature and origin.

  17. A model-based radiography restoration method based on simple scatter-degradation scheme for improving image visibility (United States)

    Kim, K.; Kang, S.; Cho, H.; Kang, W.; Seo, C.; Park, C.; Lee, D.; Lim, H.; Lee, H.; Kim, G.; Park, S.; Park, J.; Kim, W.; Jeon, D.; Woo, T.; Oh, J.


    In conventional planar radiography, image visibility is often limited mainly due to the superimposition of the object structure under investigation and the artifacts caused by scattered x-rays and noise. Several methods, including computed tomography (CT) as a multiplanar imaging modality, air-gap and grid techniques for the reduction of scatters, phase-contrast imaging as another image-contrast modality, etc., have extensively been investigated in attempt to overcome these difficulties. However, those methods typically require higher x-ray doses or special equipment. In this work, as another approach, we propose a new model-based radiography restoration method based on simple scatter-degradation scheme where the intensity of scattered x-rays and the transmission function of a given object are estimated from a single x-ray image to restore the original degraded image. We implemented the proposed algorithm and performed an experiment to demonstrate its viability. Our results indicate that the degradation of image characteristics by scattered x-rays and noise was effectively recovered by using the proposed method, which improves the image visibility in radiography considerably.

  18. Label-free imaging of human breast tissues using coherent anti-Stokes Raman scattering microscopy (United States)

    Yang, Yaliang; Gao, Liang; Wang, Zhiyong; Thrall, Michael J.; Luo, Pengfei; Wong, Kelvin K.; Wong, Stephen T.


    Breast cancer is a common disease in women. Current imaging and diagnostic methods for breast cancer confront several limitations, like time-consuming, invasive and with a high cost. Alternative strategies are in high demand to alleviate patients' trauma and lower medical expenses. Coherent anti-Stokes Raman scattering (CARS) imaging technique offers many advantages, including label-free, sub-wavelength spatial resolution and video-rate imaging speed. Therefore, it has been demonstrated as a powerful tool for various biomedical applications. In this study, we present a label-free fast imaging method to identify breast cancer and its subtypes using CARS microscopy. Human breast tissues, including normal, benign and invasive carcinomas, were imaged ex vivo using a custom-built CARS microscope. Compared with results from corresponding hematoxylin and eosin (H&E) stains, the CARS technique has demonstrated its capability in identifying morphological features in a similar way as in H&E stain. These features can be used to distinguish breast cancer from normal and benign tissues, and further separate cancer subtypes from each other. Our pilot study suggests that CARS microscopy could be used as a routine examination tool to characterize breast cancer ex vivo. Moreover, its label-free and fast imaging properties render this technique as a promising approach for in vivo and real-time imaging and diagnosis of breast cancer.

  19. Scattering angle resolved optical coherence tomography for in vivo murine retinal imaging (United States)

    Gardner, Michael R.; Katta, Nitesh; McElroy, Austin; Baruah, Vikram; Rylander, H. G.; Milner, Thomas E.


    Optical coherence tomography (OCT) retinal imaging contributes to understanding central nervous system (CNS) diseases because the eye is an anatomical "window to the brain" with direct optical access to nonmylenated retinal ganglion cells. However, many CNS diseases are associated with neuronal changes beyond the resolution of standard OCT retinal imaging systems. Though studies have shown the utility of scattering angle resolved (SAR) OCT for particle sizing and detecting disease states ex vivo, a compact SAR-OCT system for in vivo rodent retinal imaging has not previously been reported. We report a fiber-based SAR-OCT system (swept source at 1310 nm +/- 65 nm, 100 kHz scan rate) for mouse retinal imaging with a partial glass window (center aperture) for angular discrimination of backscattered light. This design incorporates a dual-axis MEMS mirror conjugate to the ocular pupil plane and a high collection efficiency objective. A muring retina is imaged during euthanasia, and the proposed SAR-index is examined versus time. Results show a positive correlation between the SAR-index and the sub-cellular hypoxic response of neurons to isoflurane overdose during euthanasia. The proposed SAR-OCT design and image process technique offer a contrast mechanism able to detect sub-resolution neuronal changes for murine retinal imaging.

  20. Image processing methods for noise reduction in the TJ-II Thomson Scattering diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Dormido-Canto, S., E-mail: [Departamento de Informatica y Automatica, UNED, Madrid 28040 (Spain); Farias, G. [Pontificia Universidad Catolica de Valparaiso, Valparaiso (Chile); Vega, J.; Pastor, I. [Asociacion EURATOM/CIEMAT para Fusion, Madrid 28040 (Spain)


    Highlights: Black-Right-Pointing-Pointer We describe an approach in order to reduce or mitigate the stray-light on the images and show the exceptional results. Black-Right-Pointing-Pointer We analyze the parameters to take account in the proposed process. Black-Right-Pointing-Pointer We report a simplified exampled in order to explain the proposed process. - Abstract: The Thomsom Scattering diagnostic of the TJ-II stellarator provides temperature and density profiles. The CCD camera acquires images corrupted with noise that, in some cases, can produce unreliable profiles. The main source of noise is the so-called stray-light. In this paper we describe an approach that allows mitigation of the effects that stray-light has on the images: extraction regions with connected-components. In addition, the robustness and effectiveness of the noise reduction technique is validated in two ways: (1) supervised classification and (2) comparison of electron temperature profiles.

  1. Alternative optical concept for electron cyclotron emission imaging. (United States)

    Liu, J X; Milbourne, T; Bitter, M; Delgado-Aparicio, L; Dominguez, A; Efthimion, P C; Hill, K W; Kramer, G J; Kung, C; Kubota, S; Kasparek, W; Lu, J; Pablant, N A; Park, H; Tobias, B


    The implementation of advanced electron cyclotron emission imaging (ECEI) systems on tokamak experiments has revolutionized the diagnosis of magnetohydrodynamic (MHD) activities and improved our understanding of instabilities, which lead to disruptions. It is therefore desirable to have an ECEI system on the ITER tokamak. However, the large size of optical components in presently used ECEI systems have, up to now, precluded the implementation of an ECEI system on ITER. This paper describes a new optical ECEI concept that employs a single spherical mirror as the only optical component and exploits the astigmatism of such a mirror to produce an image with one-dimensional spatial resolution on the detector. Since this alternative approach would only require a thin slit as the viewing port to the plasma, it would make the implementation of an ECEI system on ITER feasible. The results obtained from proof-of-principle experiments with a 125 GHz microwave system are presented.

  2. Improved cross-calibration of Thomson scattering and electron cyclotron emission with ECH on DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Brookman, M. W., E-mail: [Institute for Fusion Studies, University of Texas at Austin, Austin, Texas 78712 (United States); Austin, M. E.; McLean, A. G. [Lawrence Livermore National Lab, Livermore, California 94500 (United States); Carlstrom, T. N.; Hyatt, A. W.; Lohr, J. [General Atomics, San Diego, California 92122 (United States)


    Thomson scattering produces n{sub e} profiles from measurement of scattered laser beam intensity. Rayleigh scattering provides a first calibration of the relation n{sub e} ∝ I{sub TS}, which depends on many factors (e.g., laser alignment and power, optics, and measurement systems). On DIII-D, the n{sub e} calibration is adjusted against an absolute n{sub e} from the density-driven cutoff of the 48 channel 2nd harmonic X-mode electron cyclotron emission system. This method has been used to calibrate Thomson n{sub e} from the edge to near the core (r/a > 0.15). Application of core electron cyclotron heating improves the quality of cutoff and depth of its penetration into the core, and also changes underlying MHD activity, minimizing crashes which confound calibration. Less fueling is needed as “ECH pump-out” generates a plasma ready to take up gas. On removal of gyrotron power, cutoff penetrates into the core as channels fall successively and smoothly into cutoff.

  3. Imaging, scattering, and spectroscopic systems for biomedical optics: Tools for bench top and clinical applications (United States)

    Cottrell, William J.

    Optical advances have had a profound impact on biology and medicine. The capabilities range from sensing biological analytes to whole animal and subcellular imaging and clinical therapies. The work presented in this thesis describes three independent and multifunctional optical systems, which explore clinical therapy at the tissue level, biological structure at the cell/organelle level, and the function of underlying fundamental cellular processes. First, we present a portable clinical instrument for delivering delta-aminolevulinic acid photodynamic therapy (ALA-PDT) while performing noninvasive spectroscopic monitoring in vivo. Using an off-surface probe, the instrument delivered the treatment beam to a user-defined field on the skin and performed reflectance and fluorescence spectroscopies at two regions within this field. The instrument was used to monitor photosensitizer fluorescence photobleaching, fluorescent photoproduct kinetics, and blood oxygen saturation during a clinical ALA-PDT trial on superficial basal cell carcinoma (sBCC). Protoporphyrin IX and photoproduct fluorescence excited by the 632.8 nm PDT treatment laser was collected between 665 and 775 nm. During a series of brief treatment interruptions at programmable time points, white-light reflectance spectra between 475 and 775 nm were acquired. Fluorescence spectra were corrected for the effects of absorption and scattering, informed by the reflectance measurements, and then decomposed into known fluorophore contributions in real time using a robust singular-value decomposition fitting routine. Reflectance spectra additionally provided information on hemoglobin oxygen saturation. We next describe the incorporation of this instrument into clinical trials at Roswell Park Cancer Institute (Buffalo, NY). In this trial we examined the effects of light irradiance on photodynamic efficiency and pain. The rate of singlet-oxygen production depends on the product of irradiance and photosensitizer and oxygen

  4. Classification of Polarimetric SAR Image Based on Support Vector Machine Using Multiple-Component Scattering Model and Texture Features

    Directory of Open Access Journals (Sweden)

    Lamei Zhang


    Full Text Available The classification of polarimetric SAR image based on Multiple-Component Scattering Model (MCSM and Support Vector Machine (SVM is presented in this paper. MCSM is a potential decomposition method for a general condition. SVM is a popular tool for machine learning tasks involving classification, recognition, or detection. The scattering powers of single-bounce, double-bounce, volume, helix, and wire scattering components are extracted from fully polarimetric SAR images. Combining with the scattering powers of MCSM and the selected texture features from Gray-level cooccurrence matrix (GCM, SVM is used for the classification of polarimetric SAR image. We generate a validity test for the proposed method using Danish EMISAR L-band fully polarimetric data of Foulum Area (DK, Denmark. The preliminary result indicates that this method can classify most of the areas correctly.

  5. Imaging the inelastic scattering of water with helium. Comparison of experiment and theory. (United States)

    Yang, Chung-Hsin; Sarma, Gautam; Ter Meulen, J J; Parker, David H; Buck, Udo; Wiesenfeld, Laurent


    State-to-state differential cross sections for rotationally inelastic He-H(2)O scattering have been measured at 53.3 meV (429 cm(-1)) collision energy, using the crossed molecular beam technique. The inelastic events are detected by velocity map imaging of nascent H(2)O(+) ions, which are formed by state-selective (2 + 1) resonance enhanced multiphoton ionization (REMPI) of the scattered H(2)O molecules. Raw density images are converted to flux images and the extracted differential cross sections are compared with full close-coupling calculations of state-to-state cross sections for rotational excitation based on a previously published ab initio potential. A hard-shell ellipsoid model is also employed to yield a more physical insight useful in interpreting the results. The excellent agreement of fully quantum theory and experiment found here for water collisions with helium at a collision energy relevant to that of the interstellar media place the theoretically determined potential energy surface and the collision cross sections extracted using this surface on a firmer basis.

  6. Single Photon Emission Tomography Imaging in Parkinsonian Disorders: A Review

    Directory of Open Access Journals (Sweden)

    Paul D. Acton


    Full Text Available Parkinsonian symptoms are associated with a number of neurodegenerative disorders, such as Parkinson’s disease, multiple system atrophy and progressive supranuclear palsy. Pathological evidence has shown clearly that these disorders are associated with a loss of neurons, particularly in the nigrostriatal dopaminergic pathway. Positron emission tomography (PET and single photon emission tomography (SPECT now are able to visualise and quantify changes in cerebral blood flow, glucose metabolism, and dopaminergic function produced by parkinsonian disorders. Both PET and SPECT have become important tools in the differential diagnosis of these diseases, and may have sufficient sensitivity to detect neuronal changes before the onset of clinical symptoms. Imaging is now being utilised to elucidate the genetic contribution to Parkinson’s disease, and in longitudinal studies to assess the efficacy and mode of action of neuroprotective drug and surgical treatments. This review summarises recent applications of SPECT imaging in the study of parkinsonian disorders, with particular reference to the increasing role it is playing in the understanding, diagnosis and management of these diseases.

  7. Positron Emission Tomography imaging with the SmartPET system

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.J. [Department of Physics, University of Liverpool, Liverpool, Merseyside L69 7ZE (United Kingdom)], E-mail:; Boston, A.J.; Boston, H.C.; Cresswell, J.R.; Grint, A.N.; Harkness, L.J.; Nolan, P.J.; Oxley, D.C.; Scraggs, D.P.; Mather, A.R. [Department of Physics, University of Liverpool, Liverpool, Merseyside L69 7ZE (United Kingdom); Lazarus, I.; Simpson, J. [STFC Daresbury Laboratory, Daresbury, Warrington, Cheshire WA4 4AD (United Kingdom)


    The Small Animal Reconstruction Tomograph for Positron Emission Tomography (SmartPET) project is the development of a small animal Positron Emission Tomography (PET) demonstrator based on the use of High-Purity Germanium (HPGe) detectors and state of the art digital electronics. The experimental results presented demonstrate the current performance of this unique system. By performing high precision measurements of one of the SmartPET HPGe detectors with a range of finely collimated gamma-ray beams the response of the detector as a function of gamma-ray interaction position has been quantified, facilitating the development of parametric Pulse Shape Analysis (PSA) techniques and algorithms for the correction of imperfections in detector performance. These algorithms have then been applied to data from PET imaging measurements using two such detectors in conjunction with a specially designed rotating gantry. In this paper we show how the use of parametric PSA approaches allows over 60% of coincident events to be processed and how the nature and complexity of an event has direct implications for the quality of the resulting image.

  8. Scatter correction, intermediate view estimation and dose characterization in megavoltage cone-beam CT imaging (United States)

    Sramek, Benjamin Koerner

    The ability to deliver conformal dose distributions in radiation therapy through intensity modulation and the potential for tumor dose escalation to improve treatment outcome has necessitated an increase in localization accuracy of inter- and intra-fractional patient geometry. Megavoltage cone-beam CT imaging using the treatment beam and onboard electronic portal imaging device is one option currently being studied for implementation in image-guided radiation therapy. However, routine clinical use is predicated upon continued improvements in image quality and patient dose delivered during acquisition. The formal statement of hypothesis for this investigation was that the conformity of planned to delivered dose distributions in image-guided radiation therapy could be further enhanced through the application of kilovoltage scatter correction and intermediate view estimation techniques to megavoltage cone-beam CT imaging, and that normalized dose measurements could be acquired and inter-compared between multiple imaging geometries. The specific aims of this investigation were to: (1) incorporate the Feldkamp, Davis and Kress filtered backprojection algorithm into a program to reconstruct a voxelized linear attenuation coefficient dataset from a set of acquired megavoltage cone-beam CT projections, (2) characterize the effects on megavoltage cone-beam CT image quality resulting from the application of Intermediate View Interpolation and Intermediate View Reprojection techniques to limited-projection datasets, (3) incorporate the Scatter and Primary Estimation from Collimator Shadows (SPECS) algorithm into megavoltage cone-beam CT image reconstruction and determine the set of SPECS parameters which maximize image quality and quantitative accuracy, and (4) evaluate the normalized axial dose distributions received during megavoltage cone-beam CT image acquisition using radiochromic film and thermoluminescent dosimeter measurements in anthropomorphic pelvic and head and

  9. Cryo-field emission scanning electron microscopy imaging of a rigid surfactant mesophase. (United States)

    Tan, Grace; Xu, Peng; John, Vijay T; He, Jibao; McPherson, Gary L; Agarwal, Vivek; Bose, Arijit


    The aerosol OT/ L-alpha-phosphatidylcholine/isooctane/water system forms a rigid mesophase that transitions from reverse hexagonal to multilamellar in structure at specific water contents. This study shows that characteristics of ordered liquid-crystalline mesophases can be distinguished and imaged in high clarity using cryo-field emission scanning electron microscopy (cryo-FESEM). The reverse hexagonal phase consists of bundles of long cylinders, some with length scales of over 2 microm, that are randomly oriented as part of a larger domain. Cryo-imaging allows the visualization of the intercylinder spacings and the details of transitions from one domain to another. The multilamellar structured mesophase consists of spherical vesicles of 100 nm to 10 microm in diameter, with intervening noncrystalline isotropic regions. Coexistence regions containing both the reverse hexagonal and lamellar structures are also observed in the transition from the reverse hexagonal to the lamellar phase. These results complement and qualitatively verify our earlier studies with small-angle neutron scattering, high-field nuclear magnetic resonance spectroscopy, and freeze-fracture direct imaging transmission electron microscopy. The information is useful in understanding materials templating in these rigid systems.

  10. Enhancement of image quality with a fast iterative scatter and beam hardening correction method for kV CBCT

    Energy Technology Data Exchange (ETDEWEB)

    Reitz, Irmtraud; Hesse, Bernd-Michael; Nill, Simeon; Tuecking, Thomas; Oelfke, Uwe [DKFZ, Heidelberg (Germany)


    The problem of the enormous amount of scattered radiation in kV CBCT (kilo voltage cone beam computer tomography) is addressed. Scatter causes undesirable streak- and cup-artifacts and results in a quantitative inaccuracy of reconstructed CT numbers, so that an accurate dose calculation might be impossible. Image contrast is also significantly reduced. Therefore we checked whether an appropriate implementation of the fast iterative scatter correction algorithm we have developed for MV (mega voltage) CBCT reduces the scatter contribution in a kV CBCT as well. This scatter correction method is based on a superposition of pre-calculated Monte Carlo generated pencil beam scatter kernels. The algorithm requires only a system calibration by measuring homogeneous slab phantoms with known water-equivalent thicknesses. In this study we compare scatter corrected CBCT images of several phantoms to the fan beam CT images acquired with a reduced cone angle (a slice-thickness of 14 mm in the isocenter) at the same system. Additional measurements at a different CBCT system were made (different energy spectrum and phantom-to-detector distance) and a first order approach of a fast beam hardening correction will be introduced. The observed, image quality of the scatter corrected CBCT images is comparable concerning resolution, noise and contrast-to-noise ratio to the images acquired in fan beam geometry. Compared to the CBCT without any corrections the contrast of the contrast-and-resolution phantom with scatter correction and additional beam hardening correction is improved by a factor of about 1.5. The reconstructed attenuation coefficients and the CT numbers of the scatter corrected CBCT images are close to the values of the images acquired in fan beam geometry for the most pronounced tissue types. Only for extreme dense tissue types like cortical bone we see a difference in CT numbers of 5.2%, which can be improved to 4.4% with the additional beam hardening correction. Cupping

  11. Enhancement of image quality with a fast iterative scatter and beam hardening correction method for kV CBCT. (United States)

    Reitz, Irmtraud; Hesse, Bernd-Michael; Nill, Simeon; Tücking, Thomas; Oelfke, Uwe


    The problem of the enormous amount of scattered radiation in kV CBCT (kilo voltage cone beam computer tomography) is addressed. Scatter causes undesirable streak- and cup-artifacts and results in a quantitative inaccuracy of reconstructed CT numbers, so that an accurate dose calculation might be impossible. Image contrast is also significantly reduced. Therefore we checked whether an appropriate implementation of the fast iterative scatter correction algorithm we have developed for MV (mega voltage) CBCT reduces the scatter contribution in a kV CBCT as well. This scatter correction method is based on a superposition of pre-calculated Monte Carlo generated pencil beam scatter kernels. The algorithm requires only a system calibration by measuring homogeneous slab phantoms with known water-equivalent thicknesses. In this study we compare scatter corrected CBCT images of several phantoms to the fan beam CT images acquired with a reduced cone angle (a slice-thickness of 14 mm in the isocenter) at the same system. Additional measurements at a different CBCT system were made (different energy spectrum and phantom-to-detector distance) and a first order approach of a fast beam hardening correction will be introduced. The observed image quality of the scatter corrected CBCT images is comparable concerning resolution, noise and contrast-to-noise ratio to the images acquired in fan beam geometry. Compared to the CBCT without any corrections the contrast of the contrast-and-resolution phantom with scatter correction and additional beam hardening correction is improved by a factor of about 1.5. The reconstructed attenuation coefficients and the CT numbers of the scatter corrected CBCT images are close to the values of the images acquired in fan beam geometry for the most pronounced tissue types. Only for extreme dense tissue types like cortical bone we see a difference in CT numbers of 5.2%, which can be improved to 4.4% with the additional beam hardening correction. Cupping is

  12. Analytic image reconstruction from partial data for a single-scan cone-beam CT with scatter correction

    Energy Technology Data Exchange (ETDEWEB)

    Min, Jonghwan; Pua, Rizza; Cho, Seungryong, E-mail: [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Kim, Insoo; Han, Bumsoo [EB Tech, Co., Ltd., 550 Yongsan-dong, Yuseong-gu, Daejeon 305-500 (Korea, Republic of)


    Purpose: A beam-blocker composed of multiple strips is a useful gadget for scatter correction and/or for dose reduction in cone-beam CT (CBCT). However, the use of such a beam-blocker would yield cone-beam data that can be challenging for accurate image reconstruction from a single scan in the filtered-backprojection framework. The focus of the work was to develop an analytic image reconstruction method for CBCT that can be directly applied to partially blocked cone-beam data in conjunction with the scatter correction. Methods: The authors developed a rebinned backprojection-filteration (BPF) algorithm for reconstructing images from the partially blocked cone-beam data in a circular scan. The authors also proposed a beam-blocking geometry considering data redundancy such that an efficient scatter estimate can be acquired and sufficient data for BPF image reconstruction can be secured at the same time from a single scan without using any blocker motion. Additionally, scatter correction method and noise reduction scheme have been developed. The authors have performed both simulation and experimental studies to validate the rebinned BPF algorithm for image reconstruction from partially blocked cone-beam data. Quantitative evaluations of the reconstructed image quality were performed in the experimental studies. Results: The simulation study revealed that the developed reconstruction algorithm successfully reconstructs the images from the partial cone-beam data. In the experimental study, the proposed method effectively corrected for the scatter in each projection and reconstructed scatter-corrected images from a single scan. Reduction of cupping artifacts and an enhancement of the image contrast have been demonstrated. The image contrast has increased by a factor of about 2, and the image accuracy in terms of root-mean-square-error with respect to the fan-beam CT image has increased by more than 30%. Conclusions: The authors have successfully demonstrated that the

  13. High-speed Brillouin imaging via continuous-wave stimulated Brillouin scattering (Conference Presentation) (United States)

    Remer, Itay; Bilenca, Alberto


    Brillouin spectroscopy is a noncontact technique for characterizing the mechanical properties of materials. Typically, Brillouin spectrometers have been realized using scanning Fabry-Perot spectrometers that measure, with long acquisition times, spontaneous Brillouin scattering from the samples. In the last few years, the use of virtually imaged phase array (VIPA) etalons for constructing Brillouin spectrometers has enabled to acquire spontaneous Brillouin spectra times. We will show that this improvement, combined with micrometer-step-size spatial scanning of the sample, provides precise Brillouin profiles of layered liquids at 30-milliseconds pixel-dwell-time, facilitating Brillouin profilometry analysis of materials at high speed.

  14. Beamstop-based low-background ptychography to image weakly scattering objects

    DEFF Research Database (Denmark)

    Reinhardt, Juliane; Hoppe, Robert; Hofmann, Georg


    of the complementary information contained in the two scans. We experimentally demonstrate the potential of this scheme for hard X-ray ptychography by imaging a weakly scattering object composed of catalytic nanoparticles and provide the analysis of the signal-to-background ratio in the diffraction patterns......., which improve the experimental setup in terms of background reduction or better coverage of high dynamic range in the diffraction patterns. Here, we discuss an alternative approach: we combine two ptychographic scans with and without beamstop and reconstruct them simultaneously taking advantage...

  15. Raman scattering enhanced by plasmonic clusters and its application to single-molecule imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yasuike, Tomokazu [The Open University of Japan, Wakaba 2-11, Mihama-ku, Chiba 261-8586 (Japan); ESICB, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto 615-8530 (Japan); Nobusada, Katsuyuki [Institute for Molecular Science and SOKENDAI, Nishigonaka 38, Okazaki, 444-8585 (Japan); ESICB, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto 615-8530 (Japan)


    The optical response of the linear Au{sub 8} cluster is investigated by the linear response theory based on the density functional theory. It is revealed that the observed many peaks in the visible region originate from the interaction of the ideal plasmonic excitation along the molecular axis with the background d-electron excitations, i.e., the Landau damping. In spite of the existence of the damping, the Raman scattering is shown to be enhanced remarkably by the incident light resonant to the visible excitations. The novel imaging experiment with the atomic resolution is proposed by utilizing a plasmonic cluster as the probing tip.

  16. Towards simultaneous single emission microscopy and magnetic resonance imaging (United States)

    Cai, Liang

    In recent years, the combined nuclear imaging and magnetic resonance imaging (MRI) has drawn extensive research effort. They can provide simultaneously acquired anatomical and functional information inside the human/small animal body in vivo. In this dissertation, the development of an ultrahigh resolution MR-compatible SPECT (Single Photon Emission Computed Tomography) system that can be operated inside a pre-existing clinical MR scanner for simultaneous dual-modality imaging of small animals will be discussed. This system is constructed with 40 small pixel CdTe detector modules assembled in a fully stationary ring SPECT geometry. Series of experiments have demonstrated that this system is capable of providing an imaging resolution of CdTe detector module that we recently developed. Each module consists of CdTe detectors having an overall size of 2.2 cm x 1.1 cm, divided into 64 x 32 pixels of 350 mum in size. A novel hybrid pixel-waveform (HPWF) readout system is also designed to alleviate several challenges for using small-pixel CdTe detectors in ultrahigh-resolution SPECT imaging applications. The HPWF system utilizes a modified version of a 2048-channel 2-D CMOS ASIC to readout the anode pixel, and a digitizing circuitry to sample the signal waveform induced on the cathode. The cathode waveform acquired with the HPWF circuitry offers excellent spatial resolution, energy resolution and depth of interaction (DOI) information, even with the presence of excessive charge-sharing/charge-loss between the small anode pixels. The HPWF CdTe detector is designed and constructed with a minimum amount of ferromagnetic materials, to ensure the MR-compatibility. To achieve sub-500?m imaging resolution, two special designed SPECT apertures have been constructed with different pinhole sizes of 300?m and 500?m respectively. It has 40 pinhole inserts that are made of cast platinum (90%)-iridium (10%) alloy, which provides the maximum stopping power and are compatible with MR

  17. Model-based correction for scatter and tailing effects in simultaneous 99mTc and 123I imaging for a CdZnTe cardiac SPECT camera. (United States)

    Holstensson, M; Erlandsson, K; Poludniowski, G; Ben-Haim, S; Hutton, B F


    An advantage of semiconductor-based dedicated cardiac single photon emission computed tomography (SPECT) cameras when compared to conventional Anger cameras is superior energy resolution. This provides the potential for improved separation of the photopeaks in dual radionuclide imaging, such as combined use of (99m)Tc and (123)I . There is, however, the added complexity of tailing effects in the detectors that must be accounted for. In this paper we present a model-based correction algorithm which extracts the useful primary counts of (99m)Tc and (123)I from projection data. Equations describing the in-patient scatter and tailing effects in the detectors are iteratively solved for both radionuclides simultaneously using a maximum a posteriori probability algorithm with one-step-late evaluation. Energy window-dependent parameters for the equations describing in-patient scatter are estimated using Monte Carlo simulations. Parameters for the equations describing tailing effects are estimated using virtually scatter-free experimental measurements on a dedicated cardiac SPECT camera with CdZnTe-detectors. When applied to a phantom study with both (99m)Tc and (123)I, results show that the estimated spatial distribution of events from (99m)Tc in the (99m)Tc photopeak energy window is very similar to that measured in a single (99m)Tc phantom study. The extracted images of primary events display increased cold lesion contrasts for both (99m)Tc and (123)I.

  18. A practical cone-beam CT scatter correction method with optimized Monte Carlo simulations for image-guided radiation therapy (United States)

    Xu, Yuan; Bai, Ti; Yan, Hao; Ouyang, Luo; Pompos, Arnold; Wang, Jing; Zhou, Linghong; Jiang, Steve B.; Jia, Xun


    Cone-beam CT (CBCT) has become the standard image guidance tool for patient setup in image-guided radiation therapy. However, due to its large illumination field, scattered photons severely degrade its image quality. While kernel-based scatter correction methods have been used routinely in the clinic, it is still desirable to develop Monte Carlo (MC) simulation-based methods due to their accuracy. However, the high computational burden of the MC method has prevented routine clinical application. This paper reports our recent development of a practical method of MC-based scatter estimation and removal for CBCT. In contrast with conventional MC approaches that estimate scatter signals using a scatter-contaminated CBCT image, our method used a planning CT image for MC simulation, which has the advantages of accurate image intensity and absence of image truncation. In our method, the planning CT was first rigidly registered with the CBCT. Scatter signals were then estimated via MC simulation. After scatter signals were removed from the raw CBCT projections, a corrected CBCT image was reconstructed. The entire workflow was implemented on a GPU platform for high computational efficiency. Strategies such as projection denoising, CT image downsampling, and interpolation along the angular direction were employed to further enhance the calculation speed. We studied the impact of key parameters in the workflow on the resulting accuracy and efficiency, based on which the optimal parameter values were determined. Our method was evaluated in numerical simulation, phantom, and real patient cases. In the simulation cases, our method reduced mean HU errors from 44 to 3 HU and from 78 to 9 HU in the full-fan and the half-fan cases, respectively. In both the phantom and the patient cases, image artifacts caused by scatter, such as ring artifacts around the bowtie area, were reduced. With all the techniques employed, we achieved computation time of less than 30 s including the

  19. Automated ensemble segmentation of epithelial proliferation, necrosis, and fibrosis using scatter tumor imaging (United States)

    Garcia-Allende, P. Beatriz; Conde, Olga M.; Krishnaswamy, Venkataramanan; Hoopes, P. Jack; Pogue, Brian W.; Mirapeix, Jesus; Lopez-Higuera, Jose M.


    Conventional imaging systems used today in surgical settings rely on contrast enhancement based on color and intensity and they are not sensitive to morphology changes at the microscopic level. Elastic light scattering spectroscopy has been shown to distinguish ultra-structural changes in tissue. Therefore, it could provide this intrinsic contrast being enormously useful in guiding complex surgical interventions. Scatter parameters associated with epithelial proliferation, necrosis and fibrosis in pancreatic tumors were previously estimated in a quantitative manner. Subtle variations were encountered across the distinct diagnostic categories. This work proposes an automated methodology to correlate these variations with their corresponding tumor morphologies. A new approach based on the aggregation of the predictions of K-nearest neighbors (kNN) algorithm and Artificial Neural Networks (ANNs) has been developed. The major benefit obtained from the combination of the distinct classifiers is a significant increase in the number of pixel localizations whose corresponding tissue type is reliably assured. Pseudo-color diagnosis images are provided showing a strong correlation with sample segmentations performed by a veterinary pathologist.

  20. Estimation of bulk optical properties of turbid media from hyperspectral scatter imaging measurements: metamodeling approach. (United States)

    Aernouts, Ben; Erkinbaev, Chyngyz; Watté, Rodrigo; Van Beers, Robbe; Do Trong, Nghia Nguyen; Nicolai, Bart; Saeys, Wouter


    In many research areas and application domains, the bulk optical properties of biological materials are of great interest. Unfortunately, these properties cannot be obtained easily for complex turbid media. In this study, a metamodeling approach has been proposed and applied for the fast and accurate estimation of the bulk optical properties from contactless and non-destructive hyperspectral scatter imaging (HSI) measurements. A set of liquid optical phantoms, based on intralipid, methylene blue and water, were prepared and the Vis/NIR bulk optical properties were characterized with a double integrating sphere and unscattered transmittance setup. Accordingly, the phantoms were measured with the HSI technique and metamodels were constructed, relating the Vis/NIR reflectance images to the reference bulk optical properties of the samples. The independent inverse validation showed good prediction performance for the absorption coefficient and the reduced scattering coefficient, with R(2)(p) values of 0.980 and 0.998, and RMSE(P) values of 0.032 cm(-1) and 0.197 cm(-1) respectively. The results clearly support the potential of this approach for fast and accurate estimation of the bulk optical properties of turbid media from contactless HSI measurements.

  1. Wide-field color imaging of scatter-based tissue contrast using both high spatial frequency illumination and cross-polarization gating. (United States)

    Carlson, Mackenzie L; McClatchy, David M; Gunn, Jason R; Elliott, Jonathan T; Paulsen, Keith D; Kanick, Stephen C; Pogue, Brian W


    This study characterizes the scatter-specific tissue contrast that can be obtained by high spatial frequency (HSF) domain imaging and cross-polarization (CP) imaging, using a standard color imaging system, and how combining them may be beneficial. Both HSF and CP approaches are known to modulate the sensitivity of epi-illumination reflectance images between diffuse multiply scattered and superficially backscattered photons, providing enhanced contrast from microstructure and composition than what is achieved by standard wide-field imaging. Measurements in tissue-simulating optical phantoms show that CP imaging returns localized assessments of both scattering and absorption effects, while HSF has uniquely specific sensitivity to scatter-only contrast, with a strong suppression of visible contrast from blood. The combination of CP and HSF imaging provided an expanded sensitivity to scatter compared with CP imaging, while rejecting specular reflections detected by HSF imaging. ex vivo imaging of an atlas of dissected rodent organs/tissues demonstrated the scatter-based contrast achieved with HSF, CP and HSF-CP imaging, with the white light spectral signal returned by each approach translated to a color image for intuitive encoding of scatter-based contrast within images of tissue. The results suggest that visible CP-HSF imaging could have the potential to aid diagnostic imaging of lesions in skin or mucosal tissues and organs, where just CP is currently the standard practice imaging modality. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Large contribution of virtual Delbrueck scattering to the emission of photons by relativistic nuclei in nucleus-nucleus and electron-nucleus collisions


    Ginzburg, I. F.; Jentschura, U. D.; Serbo, V G


    Delbrueck scattering is an elastic scattering of a photon in the Coulomb field of a nucleus via a virtual electron loop. The contribution of this virtual subprocess to the emission of a photon in the collision of ultra-relativistic nuclei Z_1 Z_2 -> Z_1 Z_2 gamma is considered. We identify the incoming virtual photon as being generated by one of the relativistic nuclei involved in the binary collision and the scattered photon as being emitted in the process. The energy and angular distributio...

  3. Numerical correction of anti-symmetric aberrations in single HRTEM images of weakly scattering 2D-objects. (United States)

    Lehtinen, Ossi; Geiger, Dorin; Lee, Zhongbo; Whitwick, Michael Brian; Chen, Ming-Wei; Kis, Andras; Kaiser, Ute


    Here, we present a numerical post-processing method for removing the effect of anti-symmetric residual aberrations in high-resolution transmission electron microscopy (HRTEM) images of weakly scattering 2D-objects. The method is based on applying the same aberrations with the opposite phase to the Fourier transform of the recorded image intensity and subsequently inverting the Fourier transform. We present the theoretical justification of the method, and its verification based on simulated images in the case of low-order anti-symmetric aberrations. Ultimately the method is applied to experimental hardware aberration-corrected HRTEM images of single-layer graphene and MoSe₂ resulting in images with strongly reduced residual low-order aberrations, and consequently improved interpretability. Alternatively, this method can be used to estimate by trial and error the residual anti-symmetric aberrations in HRTEM images of weakly scattering objects. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Evidence for the Importance of Resonance Scattering in X-Ray Emission Line Profiles of the O Star Zeta Puppis

    Energy Technology Data Exchange (ETDEWEB)

    Leutenegger, M.A.; /Columbia U.; Owocki, S.P.; /Bartol Research Inst.; Kahn, S.M.; /KIPAC, Menlo Park; Paerels, F.B.S.; /Columbia U.


    We fit the Doppler profiles of the He-like triplet complexes of O VII and N VI in the X-ray spectrum of the O star {zeta} Pup, using XMM-Newton RGS data collected over {approx} 400 ks of exposure. We find that they cannot be well fit if the resonance and intercombination lines are constrained to have the same profile shape. However, a significantly better fit is achieved with a model incorporating the effects of resonance scattering, which causes the resonance line to become more symmetric than the intercombination line for a given characteristic continuum optical depth {tau}{sub *}. We discuss the plausibility of this hypothesis, as well as its significance for our understanding of Doppler profiles of X-ray emission lines in O stars.

  5. Possible Detection of an Emission Cyclotron Resonance Scattering Feature from the Accretion-Powered Pulsar 4U 1626-67 (United States)

    Iwakiri, W. B.; Terada, Y.; Tashiro, M. S.; Mihara, T.; Angelini, L.; Yamada, S.; Enoto, T.; Makishima, K.; Nakajima, M.; Yoshida, A.


    We present analysis of 4U 1626-67, a 7.7 s pulsar in a low-mass X-ray binary system, observed with the hard X-ray detector of the Japanese X-ray satellite Suzaku in 2006 March for a net exposure of 88 ks. The source was detected at an average 10-60 keY flux of approx 4 x 10-10 erg / sq cm/ s. The phase-averaged spectrum is reproduced well by combining a negative and positive power-law times exponential cutoff (NPEX) model modified at approx 37 keY by a cyclotron resonance scattering feature (CRSF). The phase-resolved analysis shows that the spectra at the bright phases are well fit by the NPEX with CRSF model. On the other hand. the spectrum in the dim phase lacks the NPEX high-energy cutoff component, and the CRSF can be reproduced by either an emission or an absorption profile. When fitting the dim phase spectrum with the NPEX plus Gaussian model. we find that the feature is better described in terms of an emission rather than an absorption profile. The statistical significance of this result, evaluated by means of an F test, is between 2.91 x 10(exp -3) and 1.53 x 10(exp -5), taking into account the systematic errors in the background evaluation of HXD-PIN. We find that the emission profile is more feasible than the absorption one for comparing the physical parameters in other phases. Therefore, we have possibly detected an emission line at the cyclotron resonance energy in the dim phase.

  6. Estimation and application of 2-D scattering matrices for sparse array imaging of simulated damage in composite panels (United States)

    Williams, Westin B.; Michaels, Thomas E.; Michaels, Jennifer E.


    Reliable detection of damage in composites is critically important for failure prevention in the aerospace industry since these materials are more frequently being used in high stress applications. Structural health monitoring (SHM) via guided wave sensors mounted on or embedded within a composite structure can help detect and localize damage in real-time while potentially reducing overall maintenance costs. One approach to guided wave SHM is sparse array imaging via the minimum variance algorithm, and it has been shown in prior work that incorporating expected scattering from defects of interest can improve the quality of damage localization and characterization. For this study, simulated damage in the form of attached magnets was used for estimating scattering from recorded wavefield data. Data were recorded on a circle centered at the damage location from multiple incident directions before and after the magnets were attached. Baseline subtraction is used to estimate scattering patterns for each incident direction, and these patterns are combined and interpolated to form a full 2-D scattering matrix. This matrix is then incorporated into the minimum variance imaging algorithm, and the efficacy of this scattering estimation methodology is evaluated by comparing the resulting sparse array images to those generated using simpler scattering assumptions.

  7. Central benzodiazepine receptor imaging and quantitation with single photon emission computerised tomography

    DEFF Research Database (Denmark)

    Okocha, C I; Kapczinski, F; Lassen, N


    This review discusses the current use of single photon emission computerised tomography (SPECT) for central benzodiazepine receptor imaging and quantitation. The general principles underlying SPECT imaging and receptor quantitation methods such as the kinetic, pseudo-equilibrium and steady...

  8. Optical scatter imaging: a microscopic modality for the rapid morphological assay of living cells (United States)

    Boustany, Nada N.


    Tumors derived from epithelial cells comprise the majority of human tumors and their growth results from the accumulation of multiple mutations affecting cellular processes critical for tissue homeostasis, including cell proliferation and cell death. To understand these processes and address the complexity of cancer cell function, multiple cellular responses to different experimental conditions and specific genetic mutations must be analyzed. Fundamental to this endeavor is the development of rapid cellular assays in genetically defined cells, and in particular, the development of optical imaging methods that allow dynamic observation and real-time monitoring of cellular processes. In this context, we are developing an optical scatter imaging technology that is intended to bridge the gap between light and electron microscopy by rapidly providing morphometric information about the relative size and shape of non-spherical organelles, with sub-wavelength resolution. Our goal is to complement current microscopy techniques used to study cells in-vitro, especially in long-term time-lapse studies of living cells, where exogenous labels can be toxic, and electron microscopy will destroy the sample. The optical measurements are based on Fourier spatial filtering in a standard microscope, and could ultimately be incorporated into existing high-throughput diagnostic platforms for cancer cell research and histopathology of neoplastic tissue arrays. Using an engineered epithelial cell model of tumor formation, we are currently studying how organelle structure and function are altered by defined genetic mutations affecting the propensity for cell death and oncogenic potential, and by environmental conditions promoting tumor growth. This talk will describe our optical scatter imaging technology and present results from our studies on apoptosis, and the function of BCL-2 family proteins.

  9. Simultaneous laser speckle imaging and positron emission tomography (United States)

    Gramer, M.; Feuerstein, D.; Backes, H.; Takagaki, M.; Kumagai, T.; Graf, R.


    Complex biological systems often require measurements of multiple parameters with high temporal and spatial resolution. Multimodal approaches and the combination of methods are therefore a powerful tool to address such scientific questions. Laser speckle imaging (LSI) is an optical method that monitors dynamic changes in cortical blood flow (CBF) with high temporal resolution. Positron emission tomography (PET) allows for quantitative imaging of physiological processes and is a gold standard method to determine absolute cerebral blood flow. We developed a setup that allows simultaneous measurement with both modalities. Here, we simultaneously measured CBF with PET and LSI in rats and analyzed how the correlation of PET and LSI is modified when (1) different methods are used for the calculation of speckle inverse correlation time (ICT), (2) speckle data is acquired through thinned or craniectomized skull, (3) influence of surface vessels is removed from the speckle data. For the latter, a method for automated vessel segmentation from LSI data was developed. We obtained the best correlation (R² = 0.890, pICT. Thus, LSI provides CBF in absolute units at high temporal resolution.

  10. Molecular Imaging Probes for Positron Emission Tomography and Optical Imaging of Sentinel Lymph Node and Tumor (United States)

    Qin, Zhengtao

    Molecular imaging is visualizations and measurements of in vivo biological processes at the molecular or cellular level using specific imaging probes. As an emerging technology, biocompatible macromolecular or nanoparticle based targeted imaging probes have gained increasing popularities. Those complexes consist of a carrier, an imaging reporter, and a targeting ligand. The active targeting ability dramatically increases the specificity. And the multivalency effect may further reduce the dose while providing a decent signal. In this thesis, sentinel lymph node (SLN) mapping and cancer imaging are two research topics. The focus is to develop molecular imaging probes with high specificity and sensitivity, for Positron Emission Tomography (PET) and optical imaging. The objective of this thesis is to explore dextran radiopharmaceuticals and porous silicon nanoparticles based molecular imaging agents. Dextran polymers are excellent carriers to deliver imaging reporters or therapeutic agents due to its well established safety profile and oligosaccharide conjugation chemistry. There is also a wide selection of dextran polymers with different lengths. On the other hand, Silicon nanoparticles represent another class of biodegradable materials for imaging and drug delivery. The success in fluorescence lifetime imaging and enhancements of the immune activation potency was briefly discussed. Chapter 1 begins with an overview on current molecular imaging techniques and imaging probes. Chapter 2 presents a near-IR dye conjugated probe, IRDye 800CW-tilmanocept. Fluorophore density was optimized to generate the maximum brightness. It was labeled with 68Ga and 99mTc and in vivo SLN mapping was successfully performed in different animals, such as mice, rabbits, dogs and pigs. With 99mTc labeled IRDye 800CW-tilmanocept, chapter 3 introduces a two-day imaging protocol with a hand-held imager. Chapter 4 proposed a method to dual radiolabel the IRDye 800CW-tilmanocept with both 68Ga and

  11. Far-red to near infrared emission and scattering spectroscopy for biomedical applications (United States)

    Zhang, Gang


    The thesis investigates the far-red and near infrared (NIR) spectral region from biomedical tissue samples for monitoring the state of tissues. The NIR emission wing intensity is weak in comparison to the emission in the visible spectral region. The wing emission from biomedical samples has revealed meaningful information about the state of the tissues. A model is presented to explain the shape of the spectral wing based on a continuum of energy levels. The wing can be used to classify different kinds of tissues; especially it can be used to differentiate cancer part from normal human breast tissues. The research work of the far-red emission from thermal damaged tissue samples shows that the emission intensity in this spectral region is proportional to the extent of the thermal damage of the tissue. Near infrared spectral absorption method is used to investigate blood hemodynamics (perfusion and oxygenation) in brain during sleep-wake transition. The result of the research demonstrates that the continuous wave (CW) type near infrared spectroscopy (NIRS) device can be used to investigate brain blood perfusion and oxygenation with a similar precision with frequency domain (FD) type device. The human subject sleep and wake transition, has been monitored by CW type NIRS instrument with traditional electroencephalograph (EEG) method. Parallel change in oxy-Hb and deoxy-Hb is a discrete event that occurs in the transition from both sleep to wakefulness and wakefulness to sleep. These hemodynamic switches are generally about few seconds delayed from the human decided transition point between sleep and wake on the polygraph EEG recording paper. The combination of NIRS and EEG methods monitor the brain activity, gives more information about the brain activity. The sleep apnea investigation was associated with recurrent apneas, insufficient nasal continuous positive airway pressure (CPAP) and the different response of the peripheral and central compartments to breathing

  12. Compton scatter tomography in TOF-PET (United States)

    Hemmati, Hamidreza; Kamali-Asl, Alireza; Ay, Mohammadreza; Ghafarian, Pardis


    Scatter coincidences contain hidden information about the activity distribution on the positron emission tomography (PET) imaging system. However, in conventional reconstruction, the scattered data cause the blurring of images and thus are estimated and subtracted from detected coincidences. List mode format provides a new aspect to use time of flight (TOF) and energy information of each coincidence in the reconstruction process. In this study, a novel approach is proposed to reconstruct activity distribution using the scattered data in the PET system. For each single scattering coincidence, a scattering angle can be determined by the recorded energy of the detected photons, and then possible locations of scattering can be calculated based on the scattering angle. Geometry equations show that these sites lie on two arcs in 2D mode or the surface of a prolate spheroid in 3D mode, passing through the pair of detector elements. The proposed method uses a novel and flexible technique to estimate source origin locations from the possible scattering locations, using the TOF information. Evaluations were based on a Monte-Carlo simulation of uniform and non-uniform phantoms at different resolutions of time and detector energy. The results show that although the energy uncertainties deteriorate the image spatial resolution in the proposed method, the time resolution has more impact on image quality than the energy resolution. With progress of the TOF system, the reconstruction using the scattered data can be used in a complementary manner, or to improve image quality in the next generation of PET systems.

  13. SISGR: Room Temperature Single-Molecule Detection and Imaging by Stimulated Emission Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Xiaoliang Sunney [Harvard Univ., Cambridge, MA (United States). Dept. of Chemistry and Chemical Biology


    Single-molecule spectroscopy has made considerable impact on many disciplines including chemistry, physics, and biology. To date, most single-molecule spectroscopy work is accomplished by detecting fluorescence. On the other hand, many naturally occurring chromophores, such as retinal, hemoglobin and cytochromes, do not have detectable fluorescence. There is an emerging need for single-molecule spectroscopy techniques that do not require fluorescence. In the last proposal period, we have successfully demonstrated stimulated emission microscopy, single molecule absorption, and stimulated Raman microscopy based on a high-frequency modulation transfer technique. These first-of-a- kind new spectroscopy/microscopy methods tremendously improved our ability to observe molecules that fluorescence weakly, even to the limit of single molecule detection for absorption measurement. All of these methods employ two laser beams: one (pump beam) excites a single molecule to a real or virtual excited state, and the other (probe beam) monitors the absorption/emission property of the single. We extract the intensity change of the probe beam with high sensitivity by implementing a high-frequency phase-sensitive detection scheme, which offers orders of magnitude improvement in detection sensitivity over direct absorption/emission measurement. However, single molecule detection based on fluorescence or absorption is fundamentally limited due to their broad spectral response. It is important to explore other avenues in single molecule detection and imaging which provides higher molecular specificity for studying a wide variety of heterogeneous chemical and biological systems. This proposal aimed to achieve single-molecule detection sensitivity with near resonance stimulated Raman scattering (SRS) microscopy. SRS microscopy was developed in our lab as a powerful technique for imaging heterogeneous samples based on their intrinsic vibrational contrasts, which provides much higher molecular

  14. Double-Pass Retina Point Imaging for the Evaluation of Optical Light Scatter, Retinal Image Quality, and Staging of Keratoconus. (United States)

    Leonard, Anthony P; Gardner, Scott D; Rocha, Karolinne M; Zeldin, Evan R; Tremblay, David M; Waring, George O


    To measure retinal image quality using point spread function (PSF) analysis by double-pass retina point imaging in patients with keratoconus and to correlate visual quality with disease severity. Patients diagnosed as having keratoconus by clinical examination, topography, and tomography and normal eyes were included in this study. A commercially available double-pass retina point imaging instrument (OQAS 108 II AcuTarget HD; Visiometrics S.L., Terrassa, Spain) was used to collect Objective Scatter Index (OSI) values in 21 keratoconic and 22 normal eyes. Eyes were also subjected to corneal topography and tomography, and staged using the Keratoconus Severity Score (KSS) and Amsler-Krumeich (AK) scales. The OSI was increased in keratoconic eyes (5.85 ± 0.98) versus control eyes (0.83 ± 0.12; mean ± SEM), in AK stages 1 to 4, and KSS stages 3 and 4. Receiver-operator characteristic analysis obtained an area under the curve (AUC) of 0.859 when evaluating the OSI as a unimodal diagnostic indicator for any KSS stage and 0.993 for KSS stages 3 and higher. An AUC of 0.949 was obtained in comparing eyes with lower severity topographic aberrations (KSS 1 and 2) versus mild to moderate keratoconus (KSS 3 and 4). Increasing corneal steepening patterns on tomography and topography were associated with PSF broadening and increased OSI. Double-pass retina point imaging is useful in correlating retinal image quality with keratoconus severity. The OSI may represent a clinically significant parameter for staging keratoconus with a unique ability to directly evaluate quality of vision in this population. [J Refract Surg. 2016;32(11):760-765.]. Copyright 2016, SLACK Incorporated.

  15. Multimodal image registration using floating regressors in the joint intensity scatter plot. (United States)

    Orchard, Jeff


    This paper presents a new approach for multimodal medical image registration and compares it to normalized mutual information (NMI) and the correlation ratio (CR). Like NMI and CR, the new method's measure of registration quality is based on the distribution of points in the joint intensity scatter plot (JISP); compact clusters indicate good registration. This method iteratively fits the JISP clusters with regressors (in the form of points and line segments), and uses those regressors to efficiently compute the next motion increment. The result is a striking, dynamic process in which the regressors float around the JISP, tracking groups of points as they contract into tight clusters. One of the method's strengths is that it is intuitive and customizable, offering a multitude of ways to incorporate prior knowledge to guide the registration process. Moreover, the method is adaptive, and can adjust itself to fit data that does not quite match the prior model. Finally, the method is efficiently expandable to higher-dimensional scatter plots, avoiding the "curse of dimensionality" inherent in histogram-based registration methods such as MI and NMI. In two sets of experiments, a simple implementation of the new registration framework is shown to be comparable to (if not superior to) state-of-the-art implementations of NMI and CR in both accuracy and convergence robustness.

  16. Study of ethanol and gasoline fuel sprays using mie-scatter and schlieren imaging (United States)

    Bouchard, Lauren; Bittle, Joshua; Puzinauskas, Paul


    Many cars today are capable of running on both gasoline and ethanol, however it is not clear how well optimized the engines are for the multiple fuels. This experiment looks specifically at the fuel spray in a direct injection system. The length and angle of direct injection sprays were characterized and a comparison between ethanol and gasoline sprays was made. Fuels were tested using a modified diesel injector in a test chamber at variable ambient pressures and temperatures in order to simulate both high and low load combustion chamber conditions. Rainbow schlieren and mie-scatter imaging were both used to investigate the liquid and vapor portions of the sprays. The sprays behaved as expected with temperature and pressure changes. There was no noticeable fuel effect on the liquid portion of the spray (mie-scatter), though the gasoline vapor spray angles were wider than ethanol spray angles (possible a result of the distillation curves of the two fuels). Funding from NSF REU site Grant EEC 1358991 is greatly appreciated.

  17. Extended wavelength anisotropy resolved multidimensional emission spectroscopy (ARMES) measurements: better filters, validation standards, and Rayleigh scatter removal methods (United States)

    Casamayou-Boucau, Yannick; Ryder, Alan G.


    Anisotropy resolved multidimensional emission spectroscopy (ARMES) provides valuable insights into multi-fluorophore proteins (Groza et al 2015 Anal. Chim. Acta 886 133-42). Fluorescence anisotropy adds to the multidimensional fluorescence dataset information about the physical size of the fluorophores and/or the rigidity of the surrounding micro-environment. The first ARMES studies used standard thin film polarizers (TFP) that had negligible transmission between 250 and 290 nm, preventing accurate measurement of intrinsic protein fluorescence from tyrosine and tryptophan. Replacing TFP with pairs of broadband wire grid polarizers enabled standard fluorescence spectrometers to accurately measure anisotropies between 250 and 300 nm, which was validated with solutions of perylene in the UV and Erythrosin B and Phloxine B in the visible. In all cases, anisotropies were accurate to better than ±1% when compared to literature measurements made with Glan Thompson or TFP polarizers. Better dual wire grid polarizer UV transmittance and the use of excitation-emission matrix measurements for ARMES required complete Rayleigh scatter elimination. This was achieved by chemometric modelling rather than classical interpolation, which enabled the acquisition of pure anisotropy patterns over wider spectral ranges. In combination, these three improvements permit the accurate implementation of ARMES for studying intrinsic protein fluorescence.

  18. Passive 3D imaging of nuclear waste containers with Muon Scattering Tomography (United States)

    Thomay, C.; Velthuis, J.; Poffley, T.; Baesso, P.; Cussans, D.; Frazão, L.


    The non-invasive imaging of dense objects is of particular interest in the context of nuclear waste management, where it is important to know the contents of waste containers without opening them. Using Muon Scattering Tomography (MST), it is possible to obtain a detailed 3D image of the contents of a waste container on reasonable timescales, showing both the high and low density materials inside. We show the performance of such a method on a Monte Carlo simulation of a dummy waste drum object containing objects of different shapes and materials. The simulation has been tuned with our MST prototype detector performance. In particular, we show that both a tungsten penny of 2 cm radius and 1 cm thickness, and a uranium sheet of 0.5 cm thickness can be clearly identified. We also show the performance of a novel edge finding technique, by which the edges of embedded objects can be identified more precisely than by solely using the imaging method.

  19. Quantitative chemical imaging and unsupervised analysis using hyperspectral coherent anti-Stokes Raman scattering microscopy. (United States)

    Masia, Francesco; Glen, Adam; Stephens, Phil; Borri, Paola; Langbein, Wolfgang


    In this work, we report a method to acquire and analyze hyperspectral coherent anti-Stokes Raman scattering (CARS) microscopy images of organic materials and biological samples resulting in an unbiased quantitative chemical analysis. The method employs singular value decomposition on the square root of the CARS intensity, providing an automatic determination of the components above noise, which are retained. Complex CARS susceptibility spectra, which are linear in the chemical composition, are retrieved from the CARS intensity spectra using the causality of the susceptibility by two methods, and their performance is evaluated by comparison with Raman spectra. We use non-negative matrix factorization applied to the imaginary part and the nonresonant real part of the susceptibility with an additional concentration constraint to obtain absolute susceptibility spectra of independently varying chemical components and their absolute concentration. We demonstrate the ability of the method to provide quantitative chemical analysis on known lipid mixtures. We then show the relevance of the method by imaging lipid-rich stem-cell-derived mouse adipocytes as well as differentiated embryonic stem cells with a low density of lipids. We retrieve and visualize the most significant chemical components with spectra given by water, lipid, and proteins segmenting the image into the cell surrounding, lipid droplets, cytosol, and the nucleus, and we reveal the chemical structure of the cells, with details visualized by the projection of the chemical contrast into a few relevant channels.

  20. Hyperspectral stimulated Raman scattering imaging facilitates accurate diagnosis of human prostate cancer (United States)

    Cui, Sishan; Wang, Ping; Yue, Shuhua


    Due to the subject nature of histopathology, there is a significant inter-observer discordance for the differentiation between low-risk prostate cancer (Gleason score Gleason score >6), which requires active treatment. Our previous study using Raman spectromicroscopy reveals that cholesteryl ester accumulation underlies human prostate cancer aggressiveness. However, Raman spectromicroscopy could only provide compositional information of certain lipid droplets of interest, which overlooked cell-to-cell variation and hindered translation to accurate automated diagnosis. Here, we demonstrated quantitative mapping of cholesteryl ester molar percentage in human prostate cancer tissues using hyperspectral stimulated Raman scattering microscopy that renders compositional information for every pixel in the image. Specifically, hundreds of SRS images at Raman shift between 2800 3000 cm-1 were taken, and multivariate curve resolution algorism was used to retrieve concentration images of lipid, lipofuscin, and protein. We found that the height ratio between the prominent cholesterol band at 2870 cm-1 and the CH2 stretching band at 2850 cm-1 was proportional to the molar percentage of cholesteryl ester present in the total lipids. Based on the calibration curve, we were able to quantitatively map cholesteryl ester level in intact prostate cancer tissues. Our data showed that not only the amount of cholesteryl ester-rich lipid droplets, but also the CE molar percentage, was significantly greater in prostate cancer tissues with Gleason score > 6 compared to the ones with Gleason score <= 6. Our study offers an opportunity towards more accurate prostate cancer diagnosis.

  1. Three-dimensional chemical imaging of skin using stimulated Raman scattering microscopy (United States)

    Drutis, Dane M.; Hancewicz, Thomas M.; Pashkovski, Eugene; Feng, Lin; Mihalov, Dawn; Holtom, Gary; Ananthapadmanabhan, Kavssery P.; Xie, X. Sunney; Misra, Manoj


    Stimulated Raman scattering (SRS) microscopy is used to generate structural and chemical three-dimensional images of native skin. We employed SRS microscopy to investigate the microanatomical features of skin and penetration of topically applied materials. Image depth stacks are collected at distinct wavelengths corresponding to vibrational modes of proteins, lipids, and water in the skin. We observed that corneocytes in stratum corneum are grouped together in clusters, 100 to 250 μm in diameter, separated by 10- to 25-μm-wide microanatomical skin-folds called canyons. These canyons occasionally extend down to depths comparable to that of the dermal-epidermal junction below the flat surface regions in porcine and human skin. SRS imaging shows the distribution of chemical species within cell clusters and canyons. Water is predominately located within the cell clusters, and its concentration rapidly increases at the transition from stratum corneum to viable epidermis. Canyons do not contain detectable levels of water and are rich in lipid material. Oleic acid-d34 applied to the skin surface lines the canyons down to a depth of 50 μm below the surface of the skin. This observation could have implications on the evaluation of penetration profiles of bioactive materials measured using traditional methods, such as tape-stripping.

  2. Imaging of Biological Materials and Cells by X-ray Scattering and Diffraction. (United States)

    Hémonnot, Clément Y J; Köster, Sarah


    Cells and biological materials are large objects in comparison to the size of internal components such as organelles and proteins. An understanding of the functions of these nanoscale elements is key to elucidating cellular function. In this review, we describe the advances in X-ray scattering and diffraction techniques for imaging biological systems at the nanoscale. We present a number of principal technological advances in X-ray optics and development of sample environments. We identify radiation damage as one of the most severe challenges in the field, thus rendering the dose an important parameter when putting different X-ray methods in perspective. Furthermore, we describe different successful approaches, including scanning and full-field techniques, along with prominent examples. Finally, we present a few recent studies that combined several techniques in one experiment in order to collect highly complementary data for a multidimensional sample characterization.

  3. Detection of early carious lesions using contrast enhancement with coherent light scattering (speckle imaging) (United States)

    Deana, A. M.; Jesus, S. H. C.; Koshoji, N. H.; Bussadori, S. K.; Oliveira, M. T.


    Currently, dental caries still represent one of the chronic diseases with the highest prevalence and present in most countries. The interaction between light and teeth (absorption, scattering and fluorescence) is intrinsically connected to the constitution of the dental tissue. Decay induced mineral loss introduces a shift in the optical properties of the affected tissue; therefore, study of these properties may produce novel techniques aimed at the early diagnosis of carious lesions. Based on the optical properties of the enamel, we demonstrate the application of first-order spatial statistics in laser speckle imaging, allowing the detection of carious lesions in their early stages. A highlight of this noninvasive, non-destructive, real time and cost effective approach is that it allows a dentist to detect a lesion even in the absence of biofilm or moisture.

  4. Chemical imaging and microspectroscopy with spectral focusing coherent anti-Stokes Raman scattering (United States)

    Chen, Bi-Chang; Sung, Jiha; Wu, Xiaoxi; Lim, Sang-Hyun


    We demonstrate two different coherent anti-Stokes Raman scattering (CARS) microscopy and microspectroscopy methods based on the spectral focusing mechanism. The first method uses strongly chirped broadband pulses from a single Ti:sapphire laser and generates CARS signals at the fingerprint region. Fast modulation of the time delay between the pump and Stokes laser pulses coupled with lock-in signal detection significantly reduces the nonresonant background and produces Raman-like CARS signals with a spectral resolution of 20 cm-1. The second method generates CARS signals in the CH (carbon-hydrogen) stretching region with IR supercontinuum pulses from a photonic crystal fiber. The spectral resolution of 30 cm-1 is achieved. Maximum entropy method is used to retrieve a Raman-equivalent CARS spectrum from lipid membranes. Chemical imaging and microspectroscopy are demonstrated with various samples.

  5. Sparse-sampling with time-encoded (TICO) stimulated Raman scattering for fast image acquisition (United States)

    Hakert, Hubertus; Eibl, Matthias; Karpf, Sebastian; Huber, Robert


    Modern biomedical imaging modalities aim to provide researchers a multimodal contrast for a deeper insight into a specimen under investigation. A very promising technique is stimulated Raman scattering (SRS) microscopy, which can unveil the chemical composition of a sample with a very high specificity. Although the signal intensities are enhanced manifold to achieve a faster acquisition of images if compared to standard Raman microscopy, there is a trade-off between specificity and acquisition speed. Commonly used SRS concepts either probe only very few Raman transitions as the tuning of the applied laser sources is complicated or record whole spectra with a spectrometer based setup. While the first approach is fast, it reduces the specificity and the spectrometer approach records whole spectra -with energy differences where no Raman information is present-, which limits the acquisition speed. Therefore, we present a new approach based on the TICO-Raman concept, which we call sparse-sampling. The TICO-sparse-sampling setup is fully electronically controllable and allows probing of only the characteristic peaks of a Raman spectrum instead of always acquiring a whole spectrum. By reducing the spectral points to the relevant peaks, the acquisition time can be greatly reduced compared to a uniformly, equidistantly sampled Raman spectrum while the specificity and the signal to noise ratio (SNR) are maintained. Furthermore, all laser sources are completely fiber based. The synchronized detection enables a full resolution of the Raman signal, whereas the analogue and digital balancing allows shot noise limited detection. First imaging results with polystyrene (PS) and polymethylmethacrylate (PMMA) beads confirm the advantages of TICO sparse-sampling. We achieved a pixel dwell time as low as 35 μs for an image differentiating both species. The mechanical properties of the applied voice coil stage for scanning the sample currently limits even faster acquisition.

  6. Monitoring the Stability of Perfluorocarbon Nanoemulsions by Cryo-TEM Image Analysis and Dynamic Light Scattering.

    Directory of Open Access Journals (Sweden)

    Christoph Grapentin

    Full Text Available Perfluorocarbon nanoemulsions (PFC-NE are disperse systems consisting of nanoscale liquid perfluorocarbon droplets stabilized by an emulsifier, usually phospholipids. Perfluorocarbons are chemically inert and non-toxic substances that are exhaled after in vivo administration. The manufacture of PFC-NE can be done in large scales by means of high pressure homogenization or microfluidization. Originally investigated as oxygen carriers for cases of severe blood loss, their application nowadays is more focused on using them as marker agents in 19F Magnetic Resonance Imaging (19F MRI. 19F is scarce in organisms and thus PFC-NE are a promising tool for highly specific and non-invasive imaging of inflammation via 19F MRI. Neutrophils, monocytes and macrophages phagocytize PFC-NE and subsequently migrate to inflamed tissues. This technique has proven feasibility in numerous disease models in mice, rabbits and mini pigs. The translation to clinical trials in human needs the development of a stable nanoemulsion whose droplet size is well characterized over a long storage time. Usually dynamic light scattering (DLS is applied as the standard method for determining particle sizes in the nanometer range. Our study uses a second method, analysis of transmission electron microscopy images of cryo-fixed samples (Cryo-TEM, to evaluate stability of PFC-NE in comparison to DLS. Four nanoemulsions of different composition are observed for one year. The results indicate that DLS alone cannot reveal the changes in particle size, but can even mislead to a positive estimation of stability. The combination with Cryo-TEM images gives more insight in the particulate evolution, both techniques supporting one another. The study is one further step in the development of analytical tools for the evaluation of a clinically applicable perfluorooctylbromide nanoemulsion.

  7. Evans blue dye-enhanced imaging of the brain microvessels using spectral focusing coherent anti-Stokes Raman scattering microscopy.

    Directory of Open Access Journals (Sweden)

    Bo-Ram Lee

    Full Text Available We performed dye-enhanced imaging of mouse brain microvessels using spectral focusing coherent anti-Stokes Raman scattering (SF-CARS microscopy. The resonant signals from C-H stretching in forward CARS usually show high background intensity in tissues, which makes CARS imaging of microvessels difficult. In this study, epi-detection of back-scattered SF-CARS signals showed a negligible background, but the overall intensity of resonant CARS signals was too low to observe the network of brain microvessels. Therefore, Evans blue (EB dye was used as contrasting agent to enhance the back-scattered SF-CARS signals. Breakdown of brain microvessels by inducing hemorrhage in a mouse was clearly visualized using backward SF-CARS signals, following intravenous injection of EB. The improved visualization of brain microvessels with EB enhanced the sensitivity of SF-CARS, detecting not only the blood vessels themselves but their integrity as well in the brain vasculature.

  8. Extraction of optical scattering parameters and attenuation compensation in optical coherence tomography images of multi-layered tissue structures

    DEFF Research Database (Denmark)

    Thrane, Lars; Frosz, Michael Henoch; Tycho, Andreas


    A recently developed analytical optical coherence tomography (OCT) model [Thrane et al., J. Opt. Soc. Am. A 17, 484 (2000)] allows the extraction of optical scattering parameters from OCT images, thereby permitting attenuation compensation in those images. By expanding this theoretical model, we...... have developed a new method for extracting optical scattering parameters from multilayered tissue structures in vivo. To verify this, we used a Monte Carlo (MC) OCT model as a numerical phantom to simulate the OCT signal for het-erogeneous multilayered tissue. Excellent agreement between the extracted...... values of the optical scattering properties of the different layers and the corresponding input reference values of the MC simulation was obtained, which demonstrates the feasibility of the method for in vivo applications. This is to our knowledge the first time such verification has been obtained...

  9. A comprehensive model for x-ray projection imaging system efficiency and image quality characterization in the presence of scattered radiation (United States)

    Monnin, P.; Verdun, F. R.; Bosmans, H.; Rodríguez Pérez, S.; Marshall, N. W.


    This work proposes a method for assessing the detective quantum efficiency (DQE) of radiographic imaging systems that include both the x-ray detector and the antiscatter device. Cascaded linear analysis of the antiscatter device efficiency (DQEASD) with the x-ray detector DQE is used to develop a metric of system efficiency (DQEsys); the new metric is then related to the existing system efficiency parameters of effective DQE (eDQE) and generalized DQE (gDQE). The effect of scatter on signal transfer was modelled through its point spread function (PSF), leading to an x-ray beam transfer function (BTF) that multiplies with the classical presampling modulation transfer function (MTF) to give the system MTF. Expressions are then derived for the influence of scattered radiation on signal-difference to noise ratio (SDNR) and contrast-detail (c-d) detectability. The DQEsys metric was tested using two digital mammography systems, for eight x-ray beams (four with and four without scatter), matched in terms of effective energy. The model was validated through measurements of contrast, SDNR and MTF for poly(methyl)methacrylate thicknesses covering the range of scatter fractions expected in mammography. The metric also successfully predicted changes in c-d detectability for different scatter conditions. Scatter fractions for the four beams with scatter were established with the beam stop method using an extrapolation function derived from the scatter PSF, and validated through Monte Carlo (MC) simulations. Low-frequency drop of the MTF from scatter was compared to both theory and MC calculations. DQEsys successfully quantified the influence of the grid on SDNR and accurately gave the break-even object thickness at which system efficiency was improved by the grid. The DQEsys metric is proposed as an extension of current detector characterization methods to include a performance evaluation in the presence of scattered radiation, with an antiscatter device in place.

  10. Quantitative imaging of epithelial cell scattering identifies specific inhibitors of cell motility and cell-cell dissociation

    NARCIS (Netherlands)

    Loerke, D.; le Duc, Q.; Blonk, I.; Kerstens, A.; Spanjaard, E.; Machacek, M.; Danuser, G.; de Rooij, J.


    The scattering of cultured epithelial cells in response to hepatocyte growth factor (HGF) is a model system that recapitulates key features of metastatic cell behavior in vitro, including disruption of cell-cell adhesions and induction of cell migration. We have developed image analysis tools that

  11. Bioorthogonal chemical imaging of metabolic activities in live mammalian hippocampal tissues with stimulated Raman scattering (United States)

    Hu, Fanghao; Lamprecht, Michael R.; Wei, Lu; Morrison, Barclay; Min, Wei


    Brain is an immensely complex system displaying dynamic and heterogeneous metabolic activities. Visualizing cellular metabolism of nucleic acids, proteins, and lipids in brain with chemical specificity has been a long-standing challenge. Recent development in metabolic labeling of small biomolecules allows the study of these metabolisms at the global level. However, these techniques generally require nonphysiological sample preparation for either destructive mass spectrometry imaging or secondary labeling with relatively bulky fluorescent labels. In this study, we have demonstrated bioorthogonal chemical imaging of DNA, RNA, protein and lipid metabolism in live rat brain hippocampal tissues by coupling stimulated Raman scattering microscopy with integrated deuterium and alkyne labeling. Heterogeneous metabolic incorporations for different molecular species and neurogenesis with newly-incorporated DNA were observed in the dentate gyrus of hippocampus at the single cell level. We further applied this platform to study metabolic responses to traumatic brain injury in hippocampal slice cultures, and observed marked upregulation of protein and lipid metabolism particularly in the hilus region of the hippocampus within days of mechanical injury. Thus, our method paves the way for the study of complex metabolic profiles in live brain tissue under both physiological and pathological conditions with single-cell resolution and minimal perturbation.

  12. Measuring subsurface defect depth and metal loss by thermal wave imaging and inverse scattering of photon density waves (United States)

    Han, Xiaoyan

    Since late 1980s, thermal wave imaging has becoming a more and more powerful technique for nondestructive testing (NDT), sometimes called "nondestructive evaluation" (NDE) due to its unique characteristics: fast, non-contact and non-invasive, covers wide areas, and operates easily with single sided access to the item being inspected. This new NDT technique has been used to identify subsurface defects in various samples which are made from materials with different thermal properties, such as metals, alloys, plastics, ceramics, and composites. Several years ago we started to study the early-time behavior of thermal waves and work on the quantitative measurement of subsurface defects. As a result, we found a useful parameter for measuring the absolute depth of subsurface defects, regardless of their lateral sizes. Under the driving force of measuring corrosion thinning on aircraft, we developed another method to measure the relative thickness of good thermal conductors like aluminum. The resulting algorithms from both of the methods have been put into a thermal wave imaging software package and have been successfully applied to real-world NDE. Thermal wave imaging systems have been taken to the FAA-Center for Aviation System Reliability at Sandia, Boeing, Northwest Airlines, etc., for detecting defects and estimation of corrosion metal loss. The theory associated with these two methods are given in this dissertation, so are the theoretical and experimental results, as well as the comparison. As the second part of this dissertation, inverse scattering of photon density waves is described. Image reconstruction has always been a very important area of research. It has been used in many different fields. We all know that due to thermal diffusion, thermal wave images of deep subsurface structures get blurred. To reconstruct the subsurface structures, an inverse scattering algorithm was developed several years ago, and was successfully used in recovering scatterer shapes

  13. Investigating the Threshold and Strength of Emission Lines Generated by Magnetized Stimulated Brillouin Scatter (MSBS) using HAARP facilities (United States)

    Mahmoudian, A.; Scales, W.; Bernhardt, P. A.


    The High-Frequency Active Auroral Research Program (HAARP) in Gakona, Alaska provides effective radiated powers in the megawatt range that have allowed researchers to study many non-linear effects of wave-plasma interactions. Stimulated Electromagnetic Emission (SEE) is of interest to the ionospheric community for its diagnostic purposes. In recent HAARP heating experiments, it has been shown that during the Magnetized Stimulated Brillouin Scattering MSBS instability, the pumped electromagnetic wave may decay into an electromagnetic wave and a low frequency electrostatic wave (either ion acoustic IA wave or electrostatic ion cyclotron EIC wave). According to the matching conditions, the O-mode electromagnetic wave can excite either an ion-acoustic wave with a frequency less than the ion cyclotron frequency that propagates along the magnetic field or an electrostatic ion cyclotron (EIC) wave with frequency just above the ion cyclotron frequency that propagates at an angle with respect to the magnetic field. Using Stimulated Electromagnetic Emission (SEE) spectral features, side bands which extend above and below the pump frequency can yield significant diagnostics for the modified ionosphere. It has been shown that the IA wave frequency offsets can be used to measure electron temperature in the heated ionosphere and EIC wave offsets can be used as a sensitive method to determine the ion species by measuring ion mass using the ion gyro-frequency offset. In this presentation the results of SEE experiment at 2010 PARS summer school and 2011 SSRC will be discussed. The experiment was performed at the 3rd electron gyro harmonic with frequency sweeping, power stepping and beam angle variation. Three diagnostics were implemented to study the SEE. There were 1) A 4 channel spectrum analyzer SEE receiver, 2) the University of Alaska SuperDARN radar facility and, 3) the MUIR incoherent scatter radar. The experimental results aimed to show the threshold for transmitter power

  14. A novel hybrid reconstruction algorithm for first generation incoherent scatter CT (ISCT) of large objects with potential medical imaging applications. (United States)

    Alpuche Aviles, Jorge E; Pistorius, Stephen; Gordon, Richard; Elbakri, Idris A


    This work presents a first generation incoherent scatter CT (ISCT) hybrid (analytic-iterative) reconstruction algorithm for accurate ρ{e}imaging of objects with clinically relevant sizes. The algorithm reconstructs quantitative images of ρ{e} within a few iterations, avoiding the challenges of optimization based reconstruction algorithms while addressing the limitations of current analytical algorithms. A 4π detector is conceptualized in order to address the issue of directional dependency and is then replaced with a ring of detectors which detect a constant fraction of the scattered photons. The ISCT algorithm corrects for the attenuation of photons using a limited number of iterations and filtered back projection (FBP) for image reconstruction. This results in a hybrid reconstruction algorithm that was tested with sinograms generated by Monte Carlo (MC) and analytical (AN) simulations. Results show that the ISCT algorithm is weakly dependent on the ρ{e} initial estimate. Simulation results show that the proposed algorithm reconstruct ρ{e} images with a mean error of -1% ± 3% for the AN model and from -6% to -8% for the MC model. Finally, the algorithm is capable of reconstructing qualitatively good images even in the presence of multiple scatter. The proposed algorithm would be suitable for in-vivo medical imaging as long as practical limitations can be addressed. © 2011 – IOS Press and the authors. All rights reserved

  15. Metadata-assisted nonuniform atmospheric scattering model of image haze removal for medium-altitude unmanned aerial vehicle (United States)

    Liu, Chunlei; Ding, Wenrui; Li, Hongguang; Li, Jiankun


    Haze removal is a nontrivial work for medium-altitude unmanned aerial vehicle (UAV) image processing because of the effects of light absorption and scattering. The challenges are attributed mainly to image distortion and detail blur during the long-distance and large-scale imaging process. In our work, a metadata-assisted nonuniform atmospheric scattering model is proposed to deal with the aforementioned problems of medium-altitude UAV. First, to better describe the real atmosphere, we propose a nonuniform atmospheric scattering model according to the aerosol distribution, which directly benefits the image distortion correction. Second, considering the characteristics of long-distance imaging, we calculate the depth map, which is an essential clue to modeling, on the basis of UAV metadata information. An accurate depth map reduces the color distortion compared with the depth of field obtained by other existing methods based on priors or assumptions. Furthermore, we use an adaptive median filter to address the problem of fuzzy details caused by the global airlight value. Experimental results on both real flight and synthetic images demonstrate that our proposed method outperforms four other existing haze removal methods.

  16. Combining deep learning and coherent anti-Stokes Raman scattering imaging for automated differential diagnosis of lung cancer (United States)

    Weng, Sheng; Xu, Xiaoyun; Li, Jiasong; Wong, Stephen T. C.


    Lung cancer is the most prevalent type of cancer and the leading cause of cancer-related deaths worldwide. Coherent anti-Stokes Raman scattering (CARS) is capable of providing cellular-level images and resolving pathologically related features on human lung tissues. However, conventional means of analyzing CARS images requires extensive image processing, feature engineering, and human intervention. This study demonstrates the feasibility of applying a deep learning algorithm to automatically differentiate normal and cancerous lung tissue images acquired by CARS. We leverage the features learned by pretrained deep neural networks and retrain the model using CARS images as the input. We achieve 89.2% accuracy in classifying normal, small-cell carcinoma, adenocarcinoma, and squamous cell carcinoma lung images. This computational method is a step toward on-the-spot diagnosis of lung cancer and can be further strengthened by the efforts aimed at miniaturizing the CARS technique for fiber-based microendoscopic imaging.

  17. Low-Dose and Scatter-Free Cone-Beam CT Imaging Using a Stationary Beam Blocker in a Single Scan: Phantom Studies

    Directory of Open Access Journals (Sweden)

    Xue Dong


    Full Text Available Excessive imaging dose from repeated scans and poor image quality mainly due to scatter contamination are the two bottlenecks of cone-beam CT (CBCT imaging. Compressed sensing (CS reconstruction algorithms show promises in recovering faithful signals from low-dose projection data but do not serve well the needs of accurate CBCT imaging if effective scatter correction is not in place. Scatter can be accurately measured and removed using measurement-based methods. However, these approaches are considered unpractical in the conventional FDK reconstruction, due to the inevitable primary loss for scatter measurement. We combine measurement-based scatter correction and CS-based iterative reconstruction to generate scatter-free images from low-dose projections. We distribute blocked areas on the detector where primary signals are considered redundant in a full scan. Scatter distribution is estimated by interpolating/extrapolating measured scatter samples inside blocked areas. CS-based iterative reconstruction is finally carried out on the undersampled data to obtain scatter-free and low-dose CBCT images. With only 25% of conventional full-scan dose, our method reduces the average CT number error from 250 HU to 24 HU and increases the contrast by a factor of 2.1 on Catphan 600 phantom. On an anthropomorphic head phantom, the average CT number error is reduced from 224 HU to 10 HU in the central uniform area.

  18. Molecular Imaging of Transporters with Positron Emission Tomography (United States)

    Antoni, Gunnar; Sörensen, Jens; Hall, Håkan

    Positron emission tomography (PET) visualization of brain components in vivo is a rapidly growing field. Molecular imaging with PET is also increasingly used in drug development, especially for the determination of drug receptor interaction for CNS-active drugs. This gives the opportunity to relate clinical efficacy to per cent receptor occupancy of a drug on a certain targeted receptor and to relate drug pharmacokinetics in plasma to interaction with target protein. In the present review we will focus on the study of transporters, such as the monoamine transporters, the P-glycoprotein (Pgp) transporter, the vesicular monoamine transporter type 2, and the glucose transporter using PET radioligands. Neurotransmitter transporters are presynaptically located and in vivo imaging using PET can therefore be used for the determination of the density of afferent neurons. Several promising PET ligands for the noradrenaline transporter (NET) have been labeled and evaluated in vivo including in man, but a really useful PET ligand for NET still remains to be identified. The most promising tracer to date is (S,S)-[18F]FMeNER-D2. The in vivo visualization of the dopamine transporter (DAT) may give clues in the evaluation of conditions related to dopamine, such as Parkinson's disease and drug abuse. The first PET radioligands based on cocaine were not selective, but more recently several selective tracers such as [11C]PE2I have been characterized and shown to be suitable as PET radioligands. Although there are a large number of serotonin transporter inhibitors used today as SSRIs, it was not until very recently, when [11C]McN5652 was synthesized, that this transporter was studied using PET. New candidates as PET radioligands for the SERT have subsequently been developed and [11C]DASB and [11C]MADAM and their analogues are today the most promising ligands. The existing radioligands for Pgp transporters seem to be suitable tools for the study of both peripheral and central drug

  19. Remediation of scattered light in NEAR-Shoemaker MSI imager; study of Martian debris aprons (United States)

    Li, Han

    Asteroids contain the most pristine record of our solar nebular. NEAR- Shoemaker, the first mission to orbit an asteroid, 433 Eros, provided important information on the physical and spectral properties of near-Earth asteroids. Because part of the burn products condensed on the outer optics of the instrument Multispectral Imager (MSI), images were severely degraded. In this thesis I present a digital image processing technique for remediation of the scattered light problem in the MSI and show results, by implementation of an optimal filter algorithm. This procedure resulted in scientifically useful images of the asteroid Eros. Debris aprons are thick, lobate-shaped deposits within 30-60° latitude of both the martian northern and southern hemispheres. Thought to be a geomorphological indicator of ground ice, they indicate on-going terrain erosion at the martian crustal dichotomy boundary and at mid- to high latitude regions on the highlands. I employed images from Mars Global Surveyor (MGS) and Odyssey, altimetry from MGS, and developed idealized rheological models to study 36 debris aprons in the northern hemisphere. I estimated the lower limit of ice concentration (40% by volume) in debris aprons by comparing observed topography with predictions of simple plastic and power law models. With the northern typical apron measuring 400 × 12,000 × 60,000 meters, the volume of ice could reach 5.6 ×10 10 m 3 for 40% concentration. The abundant ice preserved in aprons represents potentially exploitable reservoirs to sustain future operations on Mars. Abundant ice and the young surface ages (<100 Ma) of debris aprons derived from crater density suggest that the climate of Mars in the late Amazonian differed from that today, and at that time it likely resembled the current terrestrial periglacial climate. For comparison, I analyzed the formation and evolution of 50 debris aprons in the southern hemisphere, characterized by higher elevations and more diverse topographic

  20. Multimodality Imaging Probe for Positron Emission Tomography and Fluorescence Imaging Studies

    Directory of Open Access Journals (Sweden)

    Suresh K. Pandey


    Full Text Available Our goal is to develop multimodality imaging agents for use in cell tracking studies by positron emission tomography (PET and optical imaging (OI. For this purpose, bovine serum albumin (BSA was complexed with biotin (histologic studies, 5(6- carboxyfluorescein, succinimidyl ester (FAM SE (OI studies, and diethylenetriamine pentaacetic acid (DTPA for chelating gallium 68 (PET studies. For synthesis of BSA-biotin-FAM-DTPA, BSA was coupled to (+-biotin N-hydroxysuccinimide ester (biotin-NHSI. BSA- biotin was treated with DTPA-anhydride and biotin-BSA-DTPA was reacted with FAM. The biotin-BSA-DTPA-FAM was reacted with gallium chloride 3 to 5 mCi eluted from the generator using 0.1 N HCl and was passed through basic resin (AG 11 A8 and 150 mCi (100 μL, pH 7–8 was incubated with 0.1 mg of FAM conjugate (100 μL at room temperature for 15 minutes to give 66Ga-BSA-biotin-DTPA-FAM. A shaved C57 black mouse was injected with FAM conjugate (50 μL at one flank and FAM-68Ga (50 μL, 30 mCi at the other. Immediately after injection, the mouse was placed in a fluorescence imaging system (Kodak In-Vivo F, Bruker Biospin Co., Woodbridge, CT and imaged (Λex: 465 nm, Λem: 535 nm, time: 8 seconds, Xenon Light Source, Kodak. The same mouse was then placed under an Inveon microPET scanner (Siemens Medical Solutions, Knoxville, TN injected (intravenously with 25 μCi of 18F and after a half-hour (to allow sufficient bone uptake was imaged for 30 minutes. Molecular weight determined using matrix-associated laser desorption ionization (MALDI for the BSA sample was 66,485 Da and for biotin-BSA was 67,116 Da, indicating two biotin moieties per BSA molecule; for biotin-BSA-DTPA was 81,584 Da, indicating an average of 30 DTPA moieties per BSA molecule; and for FAM conjugate was 82,383 Da, indicating an average of 1.7 fluorescent moieties per BSA molecule. Fluorescence imaging clearly showed localization of FAM conjugate and FAM-68Ga at respective flanks of the mouse

  1. A method for 3D electron density imaging using single scattered x-rays with application to mammographic screening

    Energy Technology Data Exchange (ETDEWEB)

    Van Uytven, Eric [National Research Council Institute for Biodiagnostics, 435 Ellice Ave, Winnipeg, Manitoba, R3B 1Y6 (Canada); Pistorius, Stephen [Division of Medical Physics, CancerCare Manitoba, 675 McDermot Ave, Winnipeg, Manitoba, R3A 1R9 (Canada); Gordon, Richard [Department of Radiology, University of Manitoba, Winnipeg, Manitoba (Canada)], E-mail:, E-mail:, E-mail:


    Screening mammography is the current standard in detecting breast cancer. However, its fundamental disadvantage is that it projects a 3D object into a 2D image. Small lesions are difficult to detect when superimposed over layers of normal, heterogeneous tissue. In this work, we examine the potential of single scattered photon electron density imaging in a mammographic environment. Simulating a low-energy (<20 keV) scanning pencil beam, we have developed an algorithm capable of producing 3D electron density images from a single projection. We have tested the algorithm by imaging parts of a simulated mammographic accreditation phantom containing lesions of various sizes. The results indicate that the group of imaged lesions differ significantly from background breast tissue (p < 0.005), confirming that electron density imaging may be a useful diagnostic test for the presence of breast cancer.

  2. Positron Emission Tomography: Current Challenges and Opportunities for Technological Advances in Clinical and Preclinical Imaging Systems. (United States)

    Vaquero, Juan José; Kinahan, Paul


    Positron emission tomography (PET) imaging is based on detecting two time-coincident high-energy photons from the emission of a positron-emitting radioisotope. The physics of the emission, and the detection of the coincident photons, give PET imaging unique capabilities for both very high sensitivity and accurate estimation of the in vivo concentration of the radiotracer. PET imaging has been widely adopted as an important clinical modality for oncological, cardiovascular, and neurological applications. PET imaging has also become an important tool in preclinical studies, particularly for investigating murine models of disease and other small-animal models. However, there are several challenges to using PET imaging systems. These include the fundamental trade-offs between resolution and noise, the quantitative accuracy of the measurements, and integration with X-ray computed tomography and magnetic resonance imaging. In this article, we review how researchers and industry are addressing these challenges.

  3. Image reconstruction for a Positron Emission Tomograph optimized for breast cancer imaging

    Energy Technology Data Exchange (ETDEWEB)

    Virador, Patrick R.G. [Univ. of California, Berkeley, CA (United States)


    The author performs image reconstruction for a novel Positron Emission Tomography camera that is optimized for breast cancer imaging. This work addresses for the first time, the problem of fully-3D, tomographic reconstruction using a septa-less, stationary, (i.e. no rotation or linear motion), and rectangular camera whose Field of View (FOV) encompasses the entire volume enclosed by detector modules capable of measuring Depth of Interaction (DOI) information. The camera is rectangular in shape in order to accommodate breasts of varying sizes while allowing for soft compression of the breast during the scan. This non-standard geometry of the camera exacerbates two problems: (a) radial elongation due to crystal penetration and (b) reconstructing images from irregularly sampled data. Packing considerations also give rise to regions in projection space that are not sampled which lead to missing information. The author presents new Fourier Methods based image reconstruction algorithms that incorporate DOI information and accommodate the irregular sampling of the camera in a consistent manner by defining lines of responses (LORs) between the measured interaction points instead of rebinning the events into predefined crystal face LORs which is the only other method to handle DOI information proposed thus far. The new procedures maximize the use of the increased sampling provided by the DOI while minimizing interpolation in the data. The new algorithms use fixed-width evenly spaced radial bins in order to take advantage of the speed of the Fast Fourier Transform (FFT), which necessitates the use of irregular angular sampling in order to minimize the number of unnormalizable Zero-Efficiency Bins (ZEBs). In order to address the persisting ZEBs and the issue of missing information originating from packing considerations, the algorithms (a) perform nearest neighbor smoothing in 2D in the radial bins (b) employ a semi-iterative procedure in order to estimate the unsampled data

  4. A deconvolution technique to correct deep images of galaxies from instrumental scattered light (United States)

    Karabal, E.; Duc, P.-A.; Kuntschner, H.; Chanial, P.; Cuillandre, J.-C.; Gwyn, S.


    Deep imaging of the diffuse light that is emitted by stellar fine structures and outer halos around galaxies is often now used to probe their past mass assembly. Because the extended halos survive longer than the relatively fragile tidal features, they trace more ancient mergers. We use images that reach surface brightness limits as low as 28.5-29 mag arcsec-2 (g-band) to obtain light and color profiles up to 5-10 effective radii of a sample of nearby early-type galaxies. These were acquired with MegaCam as part of the CFHT MATLAS large programme. These profiles may be compared to those produced using simulations of galaxy formation and evolution, once corrected for instrumental effects. Indeed they can be heavily contaminated by the scattered light caused by internal reflections within the instrument. In particular, the nucleus of galaxies generates artificial flux in the outer halo, which has to be precisely subtracted. We present a deconvolution technique to remove the artificial halos that makes use of very large kernels. The technique, which is based on PyOperators, is more time efficient than the model-convolution methods that are also used for that purpose. This is especially the case for galaxies with complex structures that are hard to model. Having a good knowledge of the point spread function (PSF), including its outer wings, is critical for the method. A database of MegaCam PSF models corresponding to different seeing conditions and bands was generated directly from the deep images. We show that the difference in the PSFs in different bands causes artificial changes in the color profiles, in particular a reddening of the outskirts of galaxies having a bright nucleus. The method is validated with a set of simulated images and applied to three representative test cases: NGC 3599, NGC 3489, and NGC 4274, which exhibits a prominent ghost halo for two of them. This method successfully removes this. The library of PSFs (FITS files) is only available at the

  5. Intracellular imaging of docosanol in living cells by coherent anti-Stokes Raman scattering microscopy (United States)

    You, Sixian; Liu, Yuan; Arp, Zane; Zhao, Youbo; Chaney, Eric J.; Marjanovic, Marina; Boppart, Stephen A.


    Docosanol is an over-the-counter topical agent that has proved to be one of the most effective therapies for treating herpes simplex labialis. However, the mechanism by which docosanol suppresses lesion formation remains poorly understood. To elucidate its mechanism of action, we investigated the uptake of docosanol in living cells using coherent anti-Stokes Raman scattering microscopy. Based on direct visualization of the deuterated docosanol, we observed highly concentrated docosanol inside living cells 24 h after drug treatment. In addition, different spatial patterns of drug accumulation were observed in different cell lines. In keratinocytes, which are the targeted cells of docosanol, the drug molecules appeared to be docking at the periphery of the cell membrane. In contrast, the drug molecules in fibroblasts appeared to accumulate in densely packed punctate regions throughout the cytoplasm. These results suggest that this molecular imaging approach is suitable for the longitudinal tracking of drug molecules in living cells to identify cell-specific trafficking and may also have implications for elucidating the mechanism by which docosanol suppresses lesion formation.

  6. Spatiotemporal Imaging of Chemical Reactions: Making Molecular Movies with Femtosecond X-Ray Scattering (United States)

    Budarz, J. M.; Minitti, M. P.; Kirrander, A.; Hastings, J. B.; Weber, P. M.


    The study of ultrafast reaction dynamics of molecular systems has benefited from the rapid development of spectroscopic and imaging techniques that follow their temporal evolution on a sub-picosecond time scale. More complete understanding of molecular behavior, however, is expected to arise from a full observation of electronic and nuclear motions during reactions. Our recent experiments at the Linac Coherent Light Source (LCLS) have allowed us to develop and implement a method wherein the ultrafast reaction dynamics of molecules in dilute gases (4 Torr) are captured by time-resolved X-ray scattering. Using a pump-probe scheme with 267 nm excitation laser and 8.3 keV X-ray probe pulses, we performed a series of measurements on the interatomic positions at variable delay times to produce a `molecular movie.' In our experiments, 1,3-cyclohexadiene (CHD) is prepared on an excited state surface, causing the molecule to accelerate down several potential energy surfaces coupled by conical intersections, to open into 1,3,5-hexatriene within 80 fs. The resulting `movie' has been supplemented with molecular trajectory calculations to separate the multiple pathways the excited molecule takes toward the open ring. In this talk, the experimental methods and designs that made these experiments possible will be presented together with the first results describing the photochemical reaction dynamics of CHD.

  7. Contribution of Metal Layer Thickness for Quantitative Backscattered Electron Imaging of Field Emission Scanning Electron Microscopy

    National Research Council Canada - National Science Library

    Kim, Hyonchol; Takei, Hiroyuki; Negishi, Tsutomu; Kudo, Masato; Terazono, Hideyuki; Yasuda, Kenji


    ...) imaging in field emission scanning electron microscopy (FE-SEM) were studied to evaluate the potential of using these particles as simultaneously distinguishable labels of target molecules in FE-SEM studies...

  8. Label-Free Biomedical Imaging Using High-Speed Lock-In Pixel Sensor for Stimulated Raman Scattering. (United States)

    Mars, Kamel; Lioe, De Xing; Kawahito, Shoji; Yasutomi, Keita; Kagawa, Keiichiro; Yamada, Takahiro; Hashimoto, Mamoru


    Raman imaging eliminates the need for staining procedures, providing label-free imaging to study biological samples. Recent developments in stimulated Raman scattering (SRS) have achieved fast acquisition speed and hyperspectral imaging. However, there has been a problem of lack of detectors suitable for MHz modulation rate parallel detection, detecting multiple small SRS signals while eliminating extremely strong offset due to direct laser light. In this paper, we present a complementary metal-oxide semiconductor (CMOS) image sensor using high-speed lock-in pixels for stimulated Raman scattering that is capable of obtaining the difference of Stokes-on and Stokes-off signal at modulation frequency of 20 MHz in the pixel before reading out. The generated small SRS signal is extracted and amplified in a pixel using a high-speed and large area lateral electric field charge modulator (LEFM) employing two-step ion implantation and an in-pixel pair of low-pass filter, a sample and hold circuit and a switched capacitor integrator using a fully differential amplifier. A prototype chip is fabricated using 0.11 μm CMOS image sensor technology process. SRS spectra and images of stearic acid and 3T3-L1 samples are successfully obtained. The outcomes suggest that hyperspectral and multi-focus SRS imaging at video rate is viable after slight modifications to the pixel architecture and the acquisition system.

  9. Label-Free Biomedical Imaging Using High-Speed Lock-In Pixel Sensor for Stimulated Raman Scattering

    Directory of Open Access Journals (Sweden)

    Kamel Mars


    Full Text Available Raman imaging eliminates the need for staining procedures, providing label-free imaging to study biological samples. Recent developments in stimulated Raman scattering (SRS have achieved fast acquisition speed and hyperspectral imaging. However, there has been a problem of lack of detectors suitable for MHz modulation rate parallel detection, detecting multiple small SRS signals while eliminating extremely strong offset due to direct laser light. In this paper, we present a complementary metal-oxide semiconductor (CMOS image sensor using high-speed lock-in pixels for stimulated Raman scattering that is capable of obtaining the difference of Stokes-on and Stokes-off signal at modulation frequency of 20 MHz in the pixel before reading out. The generated small SRS signal is extracted and amplified in a pixel using a high-speed and large area lateral electric field charge modulator (LEFM employing two-step ion implantation and an in-pixel pair of low-pass filter, a sample and hold circuit and a switched capacitor integrator using a fully differential amplifier. A prototype chip is fabricated using 0.11 μm CMOS image sensor technology process. SRS spectra and images of stearic acid and 3T3-L1 samples are successfully obtained. The outcomes suggest that hyperspectral and multi-focus SRS imaging at video rate is viable after slight modifications to the pixel architecture and the acquisition system.

  10. Scattered light characterization of FORTIS (United States)

    McCandliss, Stephan R.; Carter, Anna; Redwine, Keith; Teste, Stephane; Pelton, Russell; Hagopian, John; Kutyrev, Alexander; Li, Mary J.; Moseley, S. Harvey


    We describe our efforts to build a Wide-Field Lyman alpha Geocoronal simulator (WFLaGs) for characterizing the end-to-end sensitivity of FORTIS (Far-UV Off Rowland-circle Telescope for Imaging and Spectroscopy) to scattered Lyman α emission from outside of the nominal (1/2 degree)2 field-of-view. WFLaGs is a 50 mm diameter F/1 aluminum parabolic collimator fed by a hollow cathode discharge lamp with a 80 mm clear MgF2 window housed in a vacuum skin. It creates emission over a 10 degree FOV. WFLaGS will allow us to validate and refine a recently developed scattered light model and verify our scatter light mitigation strategies, which will incorporate low scatter baffle materials, and possibly 3-d printed light traps, covering exposed scatter centers. We present measurements of scattering intensity of Lyman alpha as a function of angle with respect to the specular reflectance direction for several candidate baffle materials. Initial testing of WFLaGs will be described.

  11. Two-beam-coupling correlator for synthetic aperture radar image recognition with power-law scattering centers preenhancement. (United States)

    Haji-Saeed, Bahareh; Woods, Charles L; Kierstead, John; Khoury, Jed


    Synthetic radar image recognition is an area of interest for military applications including automatic target recognition, air traffic control, and remote sensing. Here a dynamic range compression two-beam-coupling joint transform correlator for detecting synthetic aperture radar targets is utilized. The joint input image consists of a prepower-law, enhanced scattering center of the input image and a linearly synthesized power-law-enhanced scattering center template. Enhancing the scattering center of both the synthetic template and the input image furnishes the conditions for achieving dynamic range compression correlation in two-beam coupling. Dynamic range compression (a) enhances the signal-to-noise ratio, (b) enhances the high frequencies relative to low frequencies, and (c) converts the noise to high frequency components. This improves the correlation-peak intensity to the mean of the surrounding noise significantly. Dynamic range compression correlation has already been demonstrated to outperform many optimal correlation filters in detecting signals in severe noise environments. The performance is evaluated via established metrics such as peak-to-correlation energy, Horner efficiency, and correlation-peak intensity. The results showed significant improvement as the power increased.

  12. Physiologic positron emission tomography/CT imaging of an integrated orbital implant. (United States)

    Graue, Gerardo F; Finger, Paul T


    A 46-year-old woman with a T4N0M0 choroidal melanoma was staged for metastatic disease with whole-body positron emission tomography/CT imaging. She underwent enucleation of the right eye and placement of a 20-mm MEDPOR spherical implant. Four months after surgery, follow-up positron emission tomography/CT imaging revealed physiologic metabolic activity in the MEDPOR implant with no evidence of orbital melanoma or chronic inflammation.

  13. Proton elastic scattering and proton induced {gamma}-ray emission cross-sections on Na from 2 to 5 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Caciolli, A.; Calzolai, G. [Department of Physics, University of Florence and INFN, Florence, via Sansone 1, I-50019 Sesto Fiorentino (Firenze) (Italy); Chiari, M. [Department of Physics, University of Florence and INFN, Florence, via Sansone 1, I-50019 Sesto Fiorentino (Firenze) (Italy)], E-mail:; Climent-Font, A.; Garcia, G. [CMAM, Universidad Autonoma de Madrid, Madrid (Spain); Lucarelli, F.; Nava, S. [Department of Physics, University of Florence and INFN, Florence, via Sansone 1, I-50019 Sesto Fiorentino (Firenze) (Italy)


    Differential cross-sections for proton elastic scattering on sodium and for {gamma}-ray emission from the reactions {sup 23}Na(p,p'{gamma}){sup 23}Na (E{sub {gamma}} = 440 keV and E{sub {gamma}} = 1636 keV) and {sup 23}Na(p,{alpha}'{gamma}){sup 20}Ne (E{sub {gamma}} = 1634 keV) were measured for proton energies from 2.2 to 5.2 MeV using a 63 {mu}g/cm{sup 2} NaBr target evaporated on a self-supporting thin C film. The {gamma}-rays were detected by a 38% relative efficiency Ge detector placed at an angle of 135 deg. with respect to the beam direction, while the backscattered protons were collected by a Si surface barrier detector placed at a scattering angle of 150 deg. Absolute differential cross-sections were obtained with an overall uncertainty estimated to be better than {+-}6.0% for elastic scattering and {+-}12% for {gamma}-ray emission, at all the beam energies. To provide a convincing test of the overall validity of the measured elastic scattering cross-section, thick target benchmark experiments at several proton energies are presented.

  14. Electronic Excitations in Vanadium Oxide Phthalocyanine Studied via Resonant Soft X-ray Emission and Resonant Inelastic X-ray Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Zhang,Y.; Wang, S.; Learmonth, T.; Plucinski, L.; Matsuura, A.; Bernardis, S.; ODonnell, C.; Downes, J.; Smith, K.


    The electronic structure of the organic semiconductor vanadium oxide phthalocyanine has been studied using resonant inelastic X-ray scattering and X-ray emission spectroscopy. The vanadyl species in the films is shown to be highly localized, and good agreement between the measurements and a density functional calculation is obtained. Both dipole forbidden V 3d to V 3d*, and O 2p to V 3d* charge transfer transitions are observed, and explained in a local molecular orbital model.

  15. Magnitude and effects of X-ray scatter of a cone-beam micro-CT for small animal imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Y.C. [Institute of Nuclear Energy Research, Longtan 32546, Taiwan (China); Jan, M.L. [Institute of Nuclear Energy Research, Longtan 32546, Taiwan (China); Chen, K.W. [Institute of Nuclear Energy Research, Longtan 32546, Taiwan (China); Cheng, Y.D. [Department of Nuclear Science, National Tsing-Hua University, Hsinchu 30043, Taiwan (China); Chuang, K.S. [Department of Nuclear Science, National Tsing-Hua University, Hsinchu 30043, Taiwan (China); Fu, Y.K. [Institute of Nuclear Energy Research, Longtan 32546, Taiwan (China)]. E-mail:


    We have developed a micro-CT system to provide high-resolution and anatomic information to combine with a microPET'' (registered) R4 system. This study was to evaluate the magnitude and effects of scatter for low kVp X-ray in this cone-beam micro-CT system. Slit collimators were used to simulate fan-beam micro-CT for comparison. The magnitudes of X-ray scatter were measured using the beam-stop method and were estimated by polynomial-fitting extrapolation to 0 mm size of stoppers. The scatter-to-primary ratio at center of the cone-beam system were 45% and 20% for rat and mouse phantoms, respectively, and were reduced to 5.86% and 4.2% in fan-beam geometric setup. The effects of X-ray scatter on image uniformity and contrast ratio were evaluated also. The uniformity response was examined by the profile of the reconstructed image. The degrees of 'cupping' in the fan-beam and cone-beam conditions were 1.75% and 3.81%, respectively, in rat phantom. A contrast phantom consisting of four inserts with physical densities similar to that of acrylic was used for measuring the effect of X-ray scatter on image contrast. Contrast ratios of the inserts and acrylic in cone-beam setup degraded 36.9% in average compared with fan-beam setup. A tumor-bearing mouse was scanned by the micro-CT system. The tumor-to-background contrast ratios were measured to be 0.331 and 0.249, respectively, with fan-beam and cone-beam setups.

  16. Spatial imaging of hydrogen Lyman-alpha emission from Jupiter (United States)

    Clarke, J. T.; Weaver, H. A.; Feldman, P. D.; Moos, H. W.; Fastie, W. G.; Opal, C. B.


    A sounding rocket measurement of the H I L-alpha emission from Jupiter made on Dec. 1, 1978 shows limb darkening and an average disk brightness of 13 kR. This brightness is significantly higher than in previous measurements, and was confirmed by an IUE observation on Dec. 10, 1978. Comparison with a plane-parallel hydrogen layer model indicates that there is enhanced emission from the equatorial regions, reaching a peak near 80 deg longitude.

  17. Dynamic mineral clouds on HD 189733b. II. Monte Carlo radiative transfer for 3D cloudy exoplanet atmospheres: combining scattering and emission spectra (United States)

    Lee, G. K. H.; Wood, K.; Dobbs-Dixon, I.; Rice, A.; Helling, Ch.


    Context. As the 3D spatial properties of exoplanet atmospheres are being observed in increasing detail by current and new generations of telescopes, the modelling of the 3D scattering effects of cloud forming atmospheres with inhomogeneous opacity structures becomes increasingly important to interpret observational data. Aims: We model the scattering and emission properties of a simulated cloud forming, inhomogeneous opacity, hot Jupiter atmosphere of HD 189733b. We compare our results to available Hubble Space Telescope (HST) and Spitzer data and quantify the effects of 3D multiple scattering on observable properties of the atmosphere. We discuss potential observational properties of HD 189733b for the upcoming Transiting Exoplanet Survey Satellite (TESS) and CHaracterising ExOPlanet Satellite (CHEOPS) missions. Methods: We developed a Monte Carlo radiative transfer code and applied it to post-process output of our 3D radiative-hydrodynamic, cloud formation simulation of HD 189733b. We employed three variance reduction techniques, I.e. next event estimation, survival biasing, and composite emission biasing, to improve signal to noise of the output. For cloud particle scattering events, we constructed a log-normal area distribution from the 3D cloud formation radiative-hydrodynamic results, which is stochastically sampled in order to model the Rayleigh and Mie scattering behaviour of a mixture of grain sizes. Results: Stellar photon packets incident on the eastern dayside hemisphere show predominantly Rayleigh, single-scattering behaviour, while multiple scattering occurs on the western hemisphere. Combined scattered and thermal emitted light predictions are consistent with published HST and Spitzer secondary transit observations. Our model predictions are also consistent with geometric albedo constraints from optical wavelength ground-based polarimetry and HST B band measurements. We predict an apparent geometric albedo for HD 189733b of 0.205 and 0.229, in the

  18. Pulse sliced picosecond Ballistic Imaging and two planar elastic scattering: Development of the techniques and their application to diesel sprays (United States)

    Duran, Sean Patrick Hynes

    A line of sight imaging technique was developed which utilized pulse slicing of laser pulses to shorten the duration of the parent laser pulse, thereby making time gating more effective at removing multiple scattered light. This included the development of an optical train which utilized a Kerr cell to selectively pass the initial part of the laser pulse while rejecting photons contained later within the pulse. This line of sight ballistic imaging technique was applied to image high-pressure fuel sprays injected into conditions typically encountered in a diesel combustion chamber. Varying the environmental conditions into which the fuel was injected revealed trends in spray behavior which depend on both temperature and pressure. Different fuel types were also studied in this experiment which demonstrated remarkably different shedding structures from one another. Additional experiments were performed to characterize the imaging technique at ambient conditions. The technique was modified to use two wavelengths to allow further rejection of scattered light. The roles of spatial, temporal and polarization filtration were examined by imaging an USAF 1951 line-pair target through a highly scattering field of polystyrene micro-spheres. The optical density of the scattering field was varied by both the optical path length and number densities of the spheres. The equal optical density, but with variable path length results demonstrated the need for an aggressively shorter pulse length to effectively image the distance scales typical encountered in the primary breakup regions of diesel sprays. Results indicate that the system performance improved via the use of two wavelengths. A final investigation was undertaken to image coherent light which has elastically scattered orthogonal to the direction of the laser pulse. Two wavelengths were focused into ˜150 micron sheets via a cylindrical lens and passed under the injector nozzle. The two sheets were adjustable spatially to

  19. First Order Statistics of Speckle around a Scatterer Volume Density Edge and Edge Detection in Ultrasound Images. (United States)

    Li, Yue


    Ultrasonic imaging plays an important role in medical imaging. But the images exhibit a granular structure, commonly known as speckle. The speckle tends to mask the presence of low-contrast lesions and reduces the ability of a human observer to resolve fine details. Our interest in this research is to examine the problem of edge detection and come up with methods for improving the visualization of organ boundaries and tissue inhomogeneity edges. An edge in an image can be formed either by acoustic impedance change or by scatterer volume density change (or both). The echo produced from these two kinds of edges has different properties. In this work, it has been proved that the echo from a scatterer volume density edge is the Hilbert transform of the echo from a rough impedance boundary (except for a constant) under certain conditions. This result can be used for choosing the correct signal to transmit to optimize the performance of edge detectors and characterizing an edge. The signal to noise ratio of the echo produced by a scatterer volume density edge is also obtained. It is found that: (1) By transmitting a signal with high bandwidth ratio and low center frequency, one can obtain a higher signal to noise ratio. (2) For large area edges, the farther the transducer is from the edge, the larger is the signal to noise ratio. But for small area edges, the nearer the transducer is to the edge, the larger is the signal to noise ratio. These results enable us to maximize the signal to noise ratio by adjusting these parameters. (3) The signal to noise ratio is not only related to the ratio of scatterer volume densities at the edge, but also related to the absolute value of scatterer volume densities. Some of these results have been proved through simulation and experiment. Different edge detection methods have been used to detect simulated scatterer volume density edges to compare their performance. A so-called interlaced array method has been developed for speckle

  20. Experimental study of TJ-1 plasma using scattering and radiation emission techniques; Analisis experimental del plasma TJ-1 con tecnicas de scattering y emision de radiacion

    Energy Technology Data Exchange (ETDEWEB)

    Pardo, C.; Zurro, B.


    The Thomson scattering system of TJ-1 is described in detail. The radial profiles of Te and ne obtained in TJ-1 discharges are presented. This data make possible to deduce characteristic parameters of the plasma confinement in this machine, as energy confinement times, Zeff B. Using also radiation measurements (global and in the visible range) we obtained the particle confinement time and Zeff without non experimental assumptions. (Author) 52 refs.

  1. Size-dependent endocytosis of gold nanoparticles studied by three-dimensional mapping of plasmonic scattering images

    Directory of Open Access Journals (Sweden)

    Lee Chia-Wei


    Full Text Available Abstract Background Understanding the endocytosis process of gold nanoparticles (AuNPs is important for the drug delivery and photodynamic therapy applications. The endocytosis in living cells is usually studied by fluorescent microscopy. The fluorescent labeling suffers from photobleaching. Besides, quantitative estimation of the cellular uptake is not easy. In this paper, the size-dependent endocytosis of AuNPs was investigated by using plasmonic scattering images without any labeling. Results The scattering images of AuNPs and the vesicles were mapped by using an optical sectioning microscopy with dark-field illumination. AuNPs have large optical scatterings at 550-600 nm wavelengths due to localized surface plasmon resonances. Using an enhanced contrast between yellow and blue CCD images, AuNPs can be well distinguished from cellular organelles. The tracking of AuNPs coated with aptamers for surface mucin glycoprotein shows that AuNPs attached to extracellular matrix and moved towards center of the cell. Most 75-nm-AuNPs moved to the top of cells, while many 45-nm-AuNPs entered cells through endocytosis and accumulated in endocytic vesicles. The amounts of cellular uptake decreased with the increase of particle size. Conclusions We quantitatively studied the endocytosis of AuNPs with different sizes in various cancer cells. The plasmonic scattering images confirm the size-dependent endocytosis of AuNPs. The 45-nm-AuNP is better for drug delivery due to its higher uptake rate. On the other hand, large AuNPs are immobilized on the cell membrane. They can be used to reconstruct the cell morphology.

  2. Music algorithm for imaging of a sound-hard arc in limited-view inverse scattering problem (United States)

    Park, Won-Kwang


    MUltiple SIgnal Classification (MUSIC) algorithm for a non-iterative imaging of sound-hard arc in limited-view inverse scattering problem is considered. In order to discover mathematical structure of MUSIC, we derive a relationship between MUSIC and an infinite series of Bessel functions of integer order. This structure enables us to examine some properties of MUSIC in limited-view problem. Numerical simulations are performed to support the identified structure of MUSIC.

  3. Imaging Jupiter's aurorae from H3+ emissions in the 3-4 micrometers band (United States)

    Baron, R.; Joseph, R. D.; Owen, T.; Tennyson, J.; Miller, S.; Ballester, G. E.


    Since H3+ was first spectroscopically detected on Jupiter, there has been considerable interest in using this simple molecular ion to probe conditions existing in the planet's auroral regions. Here we present a series of images of Jupiter recorded at wavelengths sensitive to emission by H3+, which reveal the spatial distribution of excited H3+ molecular ions in the jovian ionosphere, as seen from Earth. We believe that they provide high-spatial-resolution images of polar aurorae on Jupiter. They suggest that the intensity of the auroral emission can vary on a timescale of an hour, a shorter period than had previously been noted. We also find that the spatial distribution of H3+ emissions correlates only partially with the loci of auroral activity inferred from ultraviolet and longer-wavelength infrared observations. The H3+ emission may therefore be controlled by auroral processes that are different from those responsible for the ultraviolet and infrared emissions.

  4. New imaging-based biomarkers for melanoma diagnosis using coherent Raman Scattering microscopy (Conference Presentation) (United States)

    Wang, Hequn; Osseiran, Sam; Roider, Elisabeth; Fisher, David E.; Evans, Conor L.


    Recently, pheomelanin has been found to play a critical role in melanoma progression given its pro-oxidant chemical properties as well as its marked presence in pre-cancerous and malignant melanoma lesions, even in the absence of ultraviolet radiation. In addition, epidemiological evidence indicates a strong correlation between melanoma incidence and skin type, with the highest incidence occurring in individuals of the red-haired/fair-skinned phenotype. Interestingly, nevus count correlates well with melanoma incidence and skin type, except in the population most prone to developing melanoma, where nevus count strikingly drops. As such, a current hypothesis proposes that fair-skinned red-haired individuals, who are unable to stimulate production of eumelanin due to a mutation in MC1R in melanocytes, may actually harbor numerous "invisible", pheomelanin-rich nevi that evade clinical detection, supporting the high incidence of melanoma in that population. Here, we show for the very first time that melanocytes extracted from genetically modified MC1R-mutant, red-haired mice displayed bright perinuclear distributions of signal within the cells under coherent anti-Stokes Raman scattering (CARS) microscopy. Changes in pheomelanin production in siRNA knockdowns of cultured human melanoma cells were also sensed. We then successfully imaged pheomelanin distributions in both ex vivo and in vivo mouse ear skin. Finally, melanosomes within amelanotic melanoma patient tissue sections were found to show bright pheomelanin signals. This is the first time, to our knowledge, that pheomelanin has been found spatially localized in a human amelanotic melanoma sample. These pheomelanotic CARS features may be used as potential biomarkers for melanoma detection, especially for amelanotic melanomas.

  5. Plasmon Mapping in Metallic Nanostructures and its Application to Single Molecule Surface Enhanced Raman Scattering: Imaging Electromagnetic Hot-Spots and Analyte Location

    Energy Technology Data Exchange (ETDEWEB)

    Camden, Jon P. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemistry


    A major component of this proposal is to elucidate the connection between optical and electron excitation of plasmon modes in metallic nanostructures. These accomplishments are reported: developed a routine protocol for obtaining spatially resolved, low energy EELS spectra, and resonance Rayleigh scattering spectra from the same nanostructures; correlated optical scattering spectra and plasmon maps obtained using STEM/EELS; and imaged electromagnetic hot spots responsible for single-molecule surface-enhanced Raman scattering (SMSERS).

  6. Acceleration of Monte Carlo-based scatter compensation for cardiac SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Sohlberg, A; Watabe, H; Iida, H [National Cardiovascular Center Research Institute, 5-7-1 Fujishiro-dai, Suita City, 565-8565 Osaka (Japan)], E-mail:


    Single proton emission computed tomography (SPECT) images are degraded by photon scatter making scatter compensation essential for accurate reconstruction. Reconstruction-based scatter compensation with Monte Carlo (MC) modelling of scatter shows promise for accurate scatter correction, but it is normally hampered by long computation times. The aim of this work was to accelerate the MC-based scatter compensation using coarse grid and intermittent scatter modelling. The acceleration methods were compared to un-accelerated implementation using MC-simulated projection data of the mathematical cardiac torso (MCAT) phantom modelling {sup 99m}Tc uptake and clinical myocardial perfusion studies. The results showed that when combined the acceleration methods reduced the reconstruction time for 10 ordered subset expectation maximization (OS-EM) iterations from 56 to 11 min without a significant reduction in image quality indicating that the coarse grid and intermittent scatter modelling are suitable for MC-based scatter compensation in cardiac SPECT. (note)

  7. Mie scattering imaging of a transverse, sonic jet in supersonic flow (United States)

    Hermanson, J. C.; Winter, M.


    The structure of a nonreacting transverse sonic jet in a supersonic primary stream was visualized by single-shot planar Mie scattering and conventional spark schlieren photography. Sites for Mie scattering were provided by the condensation of ethanol vapor premixed with the transverse jet injectant gas. The planar, time-resolved Mie scattering technique readily reveals large-scale turbulent structure in the transverse jet that cannot be resolved using the schlieren method. The structure appears to be characterized by regions of unmixed gas that penetrate well across the jet centerline. The observed structure persists far downstream (at least 25 orifice diameters) of the jet injector site.

  8. On the impact of neutron beam divergence and scattering on the quality of transmission acquired tomographic images (United States)

    Silvani, Maria Ines; Lopes, Ricardo T.; de Almeida, Gevaldo L.; Gonçalves, Marcelo José; Furieri, Rosanne C. A. A.


    The impact of the divergence of a thermal neutron beam and the scattered neutrons on the quality of tomographic images acquired by transmission have been evaluated by using a third generation tomographic system incorporating neutron collimators under several different arrangements. The system equipped with a gaseous position sensitive detector has been placed at the main channel outlet of the Argonauta Research Reactor in Instituto de Engenharia Nuclear (CNEN-Brazil) which furnishes a thermal neutron flux of 2.3 × 105 n cm-2 s-1. Experiments have then been conducted using test-objects with well-known inner structure and composition to assess the influence of the collimators arrangement on the quality of the acquired images. Both, beam divergence and scattering - expected to spoil the image quality - have been reduced by using properly positioned collimators between the neutron source and the object, and in the gap between the object and the detector, respectively. The shadow cast by this last collimator on the projections used to reconstruct the tomographic images has been eliminated by a proper software specifically written for this purpose. Improvement of the tomographic images has been observed, demonstrating the effectiveness of the proposed approach to improve their quality by using properly positioned collimators.

  9. Amyloid-β positron emission tomography imaging probes

    DEFF Research Database (Denmark)

    Kepe, Vladimir; Moghbel, Mateen C; Långström, Bengt


    The rapidly rising prevalence and cost of Alzheimer's disease in recent decades has made the imaging of amyloid-β deposits the focus of intense research. Several amyloid imaging probes with purported specificity for amyloid-β plaques are currently at various stages of FDA approval. However...

  10. Scatter and crosstalk corrections for {sup 99m}Tc/{sup 123}I dual-radionuclide imaging using a CZT SPECT system with pinhole collimators

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Peng [Department of Diagnostic Radiology, Yale University, New Haven, Connecticut 06520 and Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Hutton, Brian F. [Institute of Nuclear Medicine, University College London, London WC1E 6BT, United Kingdom and Centre for Medical Radiation Physics, University of Wollongong, New South Wales 2522 (Australia); Holstensson, Maria [Department of Nuclear Medicine, Karolinska University Hospital, Stockholm 14186 (Sweden); Ljungberg, Michael [Department of Medical Radiation Physics, Lund University, Lund 222 41 (Sweden); Hendrik Pretorius, P. [Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655 (United States); Prasad, Rameshwar; Liu, Chi, E-mail: [Department of Diagnostic Radiology, Yale University, New Haven, Connecticut 06520 (United States); Ma, Tianyu; Liu, Yaqiang; Wang, Shi [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Thorn, Stephanie L.; Stacy, Mitchel R.; Sinusas, Albert J. [Department of Internal Medicine, Yale Translational Research Imaging Center, Yale University, New Haven, Connecticut 06520 (United States)


    Purpose: The energy spectrum for a cadmium zinc telluride (CZT) detector has a low energy tail due to incomplete charge collection and intercrystal scattering. Due to these solid-state detector effects, scatter would be overestimated if the conventional triple-energy window (TEW) method is used for scatter and crosstalk corrections in CZT-based imaging systems. The objective of this work is to develop a scatter and crosstalk correction method for {sup 99m}Tc/{sup 123}I dual-radionuclide imaging for a CZT-based dedicated cardiac SPECT system with pinhole collimators (GE Discovery NM 530c/570c). Methods: A tailing model was developed to account for the low energy tail effects of the CZT detector. The parameters of the model were obtained using {sup 99m}Tc and {sup 123}I point source measurements. A scatter model was defined to characterize the relationship between down-scatter and self-scatter projections. The parameters for this model were obtained from Monte Carlo simulation using SIMIND. The tailing and scatter models were further incorporated into a projection count model, and the primary and self-scatter projections of each radionuclide were determined with a maximum likelihood expectation maximization (MLEM) iterative estimation approach. The extracted scatter and crosstalk projections were then incorporated into MLEM image reconstruction as an additive term in forward projection to obtain scatter- and crosstalk-corrected images. The proposed method was validated using Monte Carlo simulation, line source experiment, anthropomorphic torso phantom studies, and patient studies. The performance of the proposed method was also compared to that obtained with the conventional TEW method. Results: Monte Carlo simulations and line source experiment demonstrated that the TEW method overestimated scatter while their proposed method provided more accurate scatter estimation by considering the low energy tail effect. In the phantom study, improved defect contrasts were

  11. A Temperature and Emissivity Separation Technique for Thermal Hyperspectral Imagers (United States)


    ISSTES algorithm. This algorithm has subsequently been studied thoroughly by Ingram and Muse [2]. In our technique, we use the downwelling irradiance...technique’s difference from ISSTES lies in the method used for selecting the right temperature and its corresponding emissivity. That difference leads to

  12. Emission Line Imaging and Spectroscopy of Distant Galaxies

    DEFF Research Database (Denmark)

    Zabl, Johannes Florian

    for the gas surrounding a galaxy. Around some objects the extended Ly αemission is so strong that it can be detected for individual objects. In this thesis extremely deep VLT/XSHOOTER rest-frame far-UV spectroscopy is presented for Himiko, a gigantic Ly α emitter at redshift z = 6.6 or a time when...

  13. Subarcsecond imaging of the water emission in Arp 220 (United States)

    König, S.; Martín, S.; Muller, S.; Cernicharo, J.; Sakamoto, K.; Zschaechner, L. K.; Humphreys, E. M. L.; Mroczkowski, T.; Krips, M.; Galametz, M.; Aalto, S.; Vlemmings, W. H. T.; Ott, J.; Meier, D. S.; Fuente, A.; García-Burillo, S.; Neri, R.


    Aims: Extragalactic observations of water emission can provide valuable insight into the excitation of the interstellar medium. In particular they allow us to investigate the excitation mechanisms in obscured nuclei, that is, whether an active galactic nucleus or a starburst dominates. Methods: We use subarcsecond resolution observations to tackle the nature of the water emission in Arp 220. ALMA Band 5 science verification observations of the 183 GHz H2O 313 - 220 line, in conjunction with new ALMA Band 7 H2O 515 - 422 data at 325 GHz, and supplementary 22 GHz H2O 616 - 523 VLA observations, are used to better constrain the parameter space in the excitation modeling of the water lines. Results: We detect 183 GHz H2O and 325 GHz water emission toward the two compact nuclei at the center of Arp 220, being brighter in Arp 220 West. The emission at these two frequencies is compared to previous single-dish data and does not show evidence of variability. The 183 and 325 GHz lines show similar spectra and kinematics, but the 22 GHz profile is significantly different in both nuclei due to a blend with an NH3 absorption line. Conclusions: Our findings suggest that the most likely scenario to cause the observed water emission in Arp 220 is a large number of independent masers originating from numerous star-forming regions. Based on observations carried in ALMA programs ADS/JAO.ALMA#2011.0.00018.SV and ADS/JAO.ALMA#2012.1.00453.S, with the IRAM 30 m telescope under project numbers 189-12 and 186-13.We dedicate this work to the memory of Fred Lo.

  14. Testing the Feasibility of Using PERM to Apply Scattering-Angle Filtering in the Image-Domain for FWI Applications

    KAUST Repository

    Alzahrani, Hani Ataiq


    ABSTRACT Testing the Feasibility of Using PERM to Apply Scattering-Angle Filtering in the Image-Domain for FWI Applications Hani Ataiq Alzahrani Full Waveform Inversion (FWI) is a non-linear optimization problem aimed to estimating subsurface parameters by minimizing the mis t between modeled and recorded seismic data using gradient descent methods, which are the only practical choice because of the size of the problem. Due to the high non-linearity of the problem, gradient methods will converge to a local minimum if the starting model is not close to the true one. The accuracy of the long-wavelength components of the initial model controls the level of non-linearity of the inversion. In order for FWI to converge to the global minimum, we have to obtain the long wavelength components of the model before inverting for the short wavelengths. Ultra-low temporal frequencies are sensitive to the smooth (long wavelength) part of the model, and can be utilized by waveform inversion to resolve that part. Un- fortunately, frequencies in this range are normally missing in eld data due to data- acquisition limitations. The lack of low frequencies can be compensated for by uti- lizing wide-aperture data, as they include arrivals that are especially sensitive to the long wavelength components of the model. The higher the scattering angle of a 5 recorded event, the higher the model wavelength it can resolve. Based on this prop- erty, a scattering-angle ltering algorithm is proposed to start the inversion process with events corresponding to the highest scattering angle available in the data, and then include lower scattering angles progressively. The large scattering angles will resolve the smooth part of the model and reduce the non-linearity of the problem, then the lower ones will enhance the resolution of the model. Recorded data is rst migrated using Pre-stack Exploding Re ector Migration (PERM), then the resulting pre-stack image is transformed into angle gathers to which

  15. The SEEDS Direct Imaging Survey for Planets and Scattered Dust Emission in Debris Disk Systems

    NARCIS (Netherlands)

    Janson, M.; et al., [Unknown; Thalmann, C.


    Debris disks around young main-sequence stars often have gaps and cavities which for a long time have been interpreted as possibly being caused by planets. In recent years, several giant planet discoveries have been made in systems hosting disks of precisely this nature, further implying that

  16. Noise Reduction Method for Quantifying Nanoparticle Light Scattering in Low Magnification Dark-Field Microscope Far-Field Images. (United States)

    Sun, Dali; Fan, Jia; Liu, Chang; Liu, Yang; Bu, Yang; Lyon, Christopher J; Hu, Ye


    Nanoparticles have become a powerful tool for cell imaging and biomolecule, cell and protein interaction studies, but are difficult to rapidly and accurately measure in most assays. Dark-field microscope (DFM) image analysis approaches used to quantify nanoparticles require high-magnification near-field (HN) images that are labor intensive due to a requirement for manual image selection and focal adjustments needed when identifying and capturing new regions of interest. Low-magnification far-field (LF) DFM imagery is technically simpler to perform but cannot be used as an alternate to HN-DFM quantification, since it is highly sensitive to surface artifacts and debris that can easily mask nanoparticle signal. We now describe a new noise reduction approach that markedly reduces LF-DFM image artifacts to allow sensitive and accurate nanoparticle signal quantification from LF-DFM images. We have used this approach to develop a "Dark Scatter Master" (DSM) algorithm for the popular NIH image analysis program ImageJ, which can be readily adapted for use with automated high-throughput assay analyses. This method demonstrated robust performance quantifying nanoparticles in different assay formats, including a novel method that quantified extracellular vesicles in patient blood sample to detect pancreatic cancer cases. Based on these results, we believe our LF-DFM quantification method can markedly decrease the analysis time of most nanoparticle-based assays to impact both basic research and clinical analyses.

  17. Dark-field light scattering imaging of living cancer cell component from birth through division using bioconjugated gold nanoprobes. (United States)

    Qian, Wei; Huang, Xiaohua; Kang, Bin; El-Sayed, Mostafa A


    Novel methods and technologies that could extend and complement the capabilities of the prevailing fluorescence microscope in following the cell cycle under different perturbations are highly desirable in the area of biological and biomedical imaging. We report a newly designed instrument for long-term light scattering live cell imaging based on integrating a homebuilt environmental cell incubation minichamber and an angled dark-field illumination system into a conventional inverted light microscope. Peptide-conjugated gold nanoparticles that are selectively delivered to either the cytoplasmic or nuclear region of the cell are used as light scattering contrast agents. The new system enables us to carry out continuous and intermittence-free dark-field live cell imaging over several tens of hours. A variety of applications of this imaging system are demonstrated, such as monitoring the nuclear uptake of peptide-conjugated gold nanoparticles, tracking the full cycle of cancer cells from birth to division, following the chromosome dynamics during cell mitosis, and observing the intracellular distribution of gold nanoparticles after cell division. We also discuss the overall effect of nuclear targeting gold nanoparticles on the cell viability of parent and daughter cells.

  18. Optimized parametric skin modelling for diagnosis of skin abnormalities by combining light back-scatter and laser speckle imaging. (United States)

    Orun, A B; Goodyer, E; Seker, H; Smith, G; Uslan, V; Chauhan, D


    Optical and parametric skin imaging methods which can efficiently identify invisible sub-skin features or subtle changes in skin layers are very important for accurate optical skin modelling. In this study, a hybrid method is introduced that helps develop a parametric optical skin model by utilizing interdisciplinary techniques including light back-scatter analysis, laser speckle imaging, image-texture analysis and Bayesian inference methods. The model aims to detect subtle skin changes and hence very early signs of skin abnormalities/diseases. Light back-scatter and laser speckle image textural analysis are applied onto the normal and abnormal skin regions (lesions) to generate set of attributes/parameters. These are then optimized by Bayesian inference method in order to build an optimized parametric model. The attributes selected by Bayesian inference method in the optimization stage were used to build an optimized model and then successfully verified. It was clearly proven that Bayesian inference based optimization process yields good results to build an optimized skin model. The outcome of this study clearly shows the applicability of this hybrid method in the analysis of skin features and is therefore expected to lead development of non-invasive and low-cost instrument for early detection of skin changes. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Label-free biomolecular characterization of human breast cancer tissue with stimulated Raman scattering (SRS) spectral imaging (Conference Presentation) (United States)

    Lu, Fa-Ke F.; Calligaris, David; Suo, Yuanzhen; Santagata, Sandro; Golby, Alexandra J.; Xie, X. Sunney; Mallory, Melissa A.; Golshan, Mehra; Dillon, Deborah A.; Agar, Nathalie Y. R.


    Stimulated Raman scattering (SRS) microscopy has been used for rapid label-free imaging of various biomolecules and drugs in living cells and tissues (Science, doi:10.1126/science.aaa8870). Our recent work has demonstrated that lipid and protein mapping of cancer tissue renders pathology-like images, providing essential histopathological information with subcellular resolution of the entire specimen (Cancer Research, doi: 10.1158/0008-5472.CAN-16-027). We have also established the first SRS imaging Atlas of human brain tumors (Harvard Dataverse, doi: (doi:10.7910/DVN/EZW4EK). SRS imaging of tissue could provide invaluable information for cancer diagnosis and surgical guidance in two aspects: rapid surgical pathology and quantitative biomolecular characterization. In this work, we present the use of SRS microscopy for characterization of a few essential biomolecules in breast cancer. Human breast cancer tissue specimens at the tumor core, tumor margin and normal area (5 cm away from the tumor) from surgical cases will be imaged with SRS at multiple Raman shifts, including the peaks for lipid, protein, blood (absorption), collagen, microcalcification (calcium phosphates and calcium oxalate) and carotenoids. Most of these Raman shifts have relatively strong Raman cross sections, which ensures high-quality and fast imaging. This proof-of-principle study is sought to demonstrate the feasibility and potential of SRS imaging for ambient diagnosis and surgical guidance of breast cancer.

  20. Imaging the inelastic scattering of vibrationally excited NO (v = 1) with Ar (United States)

    Kamasah, Alexander; Li, Hongwei; Onvlee, Jolijn; van der Avoird, Ad; Parker, David H.; Suits, Arthur G.


    The inelastic scattering of vibrationally excited NO (v = 1) with Ar at a collision energy of 3.0 kcal mol-1 was investigated in crossed beams. Vibrationally excited NO was generated by flash heating and rotationally cooled by the supersonic expansion. The differential cross sections were compared to those of the vibrational ground state NO (v = 0) with Ar, which were also compared to theoretical calculations for scattering from the ground vibrational level. The differential cross sections show a similar strong j dependence of the rotational rainbow maxima from the inelastic scattering for both NO (v = 0) and (v = 1) but no significant differences between NO (v = 0) and (v = 1) were seen.

  1. Development of a Simple Image Processing Application that Makes Abdominopelvic Tumor Visible on Positron Emission Tomography/Computed Tomography Image. (United States)

    Pandey, Anil Kumar; Saroha, Kartik; Sharma, Param Dev; Patel, Chetan; Bal, Chandrashekhar; Kumar, Rakesh


    In this study, we have developed a simple image processing application in MATLAB that uses suprathreshold stochastic resonance (SSR) and helps the user to visualize abdominopelvic tumor on the exported prediuretic positron emission tomography/computed tomography (PET/CT) images. A brainstorming session was conducted for requirement analysis for the program. It was decided that program should load the screen captured PET/CT images and then produces output images in a window with a slider control that should enable the user to view the best image that visualizes the tumor, if present. The program was implemented on personal computer using Microsoft Windows and MATLAB R2013b. The program has option for the user to select the input image. For the selected image, it displays output images generated using SSR in a separate window having a slider control. The slider control enables the user to view images and select one which seems to provide the best visualization of the area(s) of interest. The developed application enables the user to select, process, and view output images in the process of utilizing SSR to detect the presence of abdominopelvic tumor on prediuretic PET/CT image.

  2. Imaging the proton via hard exclusive production in diffractive pp scattering

    Energy Technology Data Exchange (ETDEWEB)

    Charles Hyde; Leonid Frankfurt; Mark Strikman; Christian Weiss


    We discuss the prospects for probing Generalized Parton Distributions (GPDs) via exclusive production of a high-mass system (H = heavy quarkonium, di-photon, di-jet, Higgs boson) in diffractive pp scattering, pp -> p + H + p. In such processes the interplay of hard and soft interactions gives rise to a diffraction pattern in the final-state proton transverse momenta, which is sensitive to the transverse spatial distribution of partons in the colliding protons. We comment on the plans for diffractive pp measurements at RHIC and LHC. Such studies could complement future measurements of GPDs in hard exclusive ep scattering (JLab, COMPASS, EIC).

  3. Positron Emission Tomography Molecular Imaging in Late-Life Depression


    Hirao, Kentaro; Smith, Gwenn S.


    Molecular imaging represents a bridge between basic and clinical neuroscience observations and provides many opportunities for translation and identifying mechanisms that may inform prevention and intervention strategies in late-life depression (LLD). Substantial advances in instrumentation and radiotracer chemistry have resulted in improved sensitivity and spatial resolution and the ability to study in vivo an increasing number of neurotransmitters, neuromodulators, and, importantly, neuropa...

  4. Imaging Emission Spectra with Handheld and Cellphone Cameras (United States)

    Sitar, David


    As point-and-shoot digital camera technology advances it is becoming easier to image spectra in a laboratory setting on a shoestring budget and get immediate results. With this in mind, I wanted to test three cameras to see how their results would differ. Two undergraduate physics students and I used one handheld 7.1 megapixel (MP) digital Cannon…

  5. Amplified Spontaneous Emission Reduction by Use of Stimulated Brillouin Scattering: 2-ns Pulses from a Ti:Al 2 O 3 Amplifier chain (United States)

    Ni, Chi-Kung; Kung, A. H.


    We constructed a cw Ti:Al2 O3 master oscillator -dye preamplifier -Ti:Al2 O3 power amplifier system that generates <2-ns, 100-mJ pulses. The system is tunable from 750 to 890 nm and has a repetition rate of 30 Hz. The output pulse has a near Fourier-transform-limited bandwidth of ~240 MHz. Backward stimulated Brillouin scattering is used to control the growth of amplified spontaneous emission (ASE). The content of ASE in the final output is under our detection limit ( <10-4 ) for the entire tuning range.

  6. Amplified Spontaneous Emission Reduction by Use of Stimulated Brillouin Scattering: 2-ns Pulses from a Ti:Al(2)O(3) Amplifier chain. (United States)

    Ni, C K; Kung, A H


    We constructed a cw Ti:Al(2)O(3) master oscillator-dye preamplifier-Ti:Al(2)O(3) power amplifier system that generates <2-ns, 100-mJ pulses. The system is tunable from 750 to 890 nm and has a repetition rate of 30 Hz. The output pulse has a near Fourier-transform-limited bandwidth of ~240 MHz. Backward stimulated Brillouin scattering is used to control the growth of amplified spontaneous emission (ASE). The content of ASE in the final output is under our detection limit (<10(-4)) for the entire tuning range.

  7. Ciphertext-only attack on optical cryptosystem with spatially incoherent illumination: from the view of imaging through scattering medium (United States)

    Liao, Meihua; He, Wenqi; Lu, Dajiang; Peng, Xiang


    Security analysis is important and necessary for a new cryptosystem. In this paper, we evaluate the security risk of the optical cryptosystem with spatially incoherent illumination from the view of imaging through scattering medium and then demonstrate that it is vulnerable to ciphertext-only attack. The proposed ciphertext-only attack method relies on the optical memory effect for speckle correlations, which reveals a fact that the ciphertext’s autocorrelation is essentially identical to the plaintext’s own autocorrelation. Furthermore, by employing of an improved dynamic hybrid input-output phase-retrieval algorithm, we show that a plaintext image can be directly reconstructed from the autocorrelation of its corresponding ciphertext without any prior knowledge about the plaintext or the phase keys. Meanwhile, the theory analysis and experiment results will also be provided to verify the validity and feasibility of our proposed ciphertext-only attack method. To the best of our knowledge, this is the first time to report optical cryptanalysis from the point of view of imaging through scattering medium and we believe this contribution will open up an avenue to deepen the investigation of optical cryptosystems.

  8. Ciphertext-only attack on optical cryptosystem with spatially incoherent illumination: from the view of imaging through scattering medium. (United States)

    Liao, Meihua; He, Wenqi; Lu, Dajiang; Peng, Xiang


    Security analysis is important and necessary for a new cryptosystem. In this paper, we evaluate the security risk of the optical cryptosystem with spatially incoherent illumination from the view of imaging through scattering medium and then demonstrate that it is vulnerable to ciphertext-only attack. The proposed ciphertext-only attack method relies on the optical memory effect for speckle correlations, which reveals a fact that the ciphertext's autocorrelation is essentially identical to the plaintext's own autocorrelation. Furthermore, by employing of an improved dynamic hybrid input-output phase-retrieval algorithm, we show that a plaintext image can be directly reconstructed from the autocorrelation of its corresponding ciphertext without any prior knowledge about the plaintext or the phase keys. Meanwhile, the theory analysis and experiment results will also be provided to verify the validity and feasibility of our proposed ciphertext-only attack method. To the best of our knowledge, this is the first time to report optical cryptanalysis from the point of view of imaging through scattering medium and we believe this contribution will open up an avenue to deepen the investigation of optical cryptosystems.

  9. Image scanning fluorescence emission difference microscopy based on a detector array. (United States)

    Li, Y; Liu, S; Liu, D; Sun, S; Kuang, C; Ding, Z; Liu, X


    We propose a novel imaging method that enables the enhancement of three-dimensional resolution of confocal microscopy significantly and achieve experimentally a new fluorescence emission difference method for the first time, based on the parallel detection with a detector array. Following the principles of photon reassignment in image scanning microscopy, images captured by the detector array were arranged. And by selecting appropriate reassign patterns, the imaging result with enhanced resolution can be achieved with the method of fluorescence emission difference. Two specific methods are proposed in this paper, showing that the difference between an image scanning microscopy image and a confocal image will achieve an improvement of transverse resolution by approximately 43% compared with that in confocal microscopy, and the axial resolution can also be enhanced by at least 22% experimentally and 35% theoretically. Moreover, the methods presented in this paper can improve the lateral resolution by around 10% than fluorescence emission difference and 15% than Airyscan. The mechanism of our methods is verified by numerical simulations and experimental results, and it has significant potential in biomedical applications. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  10. Surface enhanced raman scattering on tardigrada - Towards monitoring and imaging molecular structures in live cryptobiotic organisms

    DEFF Research Database (Denmark)

    Kneipp, Harald; Møbjerg, Nadja; Jørgensen, Aslak


    Tardigrades are microscopic metazoans which are able to survive extreme physical and chemical conditions by entering a stress tolerant state called cryptobiosis. At present, the molecular mechanisms behind cryptobiosis are still poorly understood. We show that surface enhanced Raman scattering su...

  11. Coherent anti-Stokes Raman scattering (CARS) microscopy driving the future of loaded mesoporous silica imaging

    NARCIS (Netherlands)

    Fussell, A.L.; Mah, Pei Ting; Offerhaus, Herman L.; Niemi, Sanna-Mari; Salonen, Jarno; Santos, Helder A.; Strachan, Clare


    This study reports the use of variants of coherent anti-Stokes Raman scattering (CARS) microscopy as a novel method for improved physicochemical characterization of drug-loaded silica particles. Ordered mesoporous silica is a biomaterial that can be loaded to carry a number of biochemicals,

  12. A Novel Scanning Land Mine Detector Based on the Technique of Neutron Back Scattering Imaging

    NARCIS (Netherlands)

    Bom, V.; Osman, A.M.; Monem, A.M.A.


    The neutron back-scattering (NBS) technique is a well established method to find hydrogen in objects. It can be applied in land mine detection taking advantage of the fact that land mines are abundant in hydrogen. The NBS technique is suitable for land mine scanning e.g., seeking for land mines with

  13. Combined optical and single photon emission imaging: preliminary results. (United States)

    Boschi, Federico; Spinelli, Antonello E; D'Ambrosio, Daniela; Calderan, Laura; Marengo, Mario; Sbarbati, Andrea


    In vivo optical imaging instruments are generally devoted to the acquisition of light coming from fluorescence or bioluminescence processes. Recently, an instrument was conceived with radioisotopic detection capabilities (Kodak in Vivo Multispectral System F) based on the conversion of x-rays from the phosphorus screen. The goal of this work is to demonstrate that an optical imager (IVIS 200, Xenogen Corp., Alameda, USA), designed for in vivo acquisitions of small animals in bioluminescent and fluorescent modalities, can even be employed to detect signals due to radioactive tracers. Our system is based on scintillator crystals for the conversion of high-energy rays and a collimator. No hardware modifications are required. Crystals alone permit the acquisition of photons coming from an in vivo 20 g nude mouse injected with a solution of methyl diphosphonate technetium 99 metastable (Tc99m-MDP). With scintillator crystals and collimators, a set of measurements aimed to fully characterize the system resolution was carried out. More precisely, system point spread function and modulation transfer function were measured at different source depths. Results show that system resolution is always better than 1.3 mm when the source depth is less than 10 mm. The resolution of the images obtained with radioactive tracers is comparable with the resolution achievable with dedicated techniques. Moreover, it is possible to detect both optical and nuclear tracers or bi-modal tracers with only one instrument.

  14. Combined optical and single photon emission imaging: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Boschi, Federico; Calderan, Laura; Sbarbati, Andrea [Department of Morphological-Biomedical Sciences, Section of Anatomy and Histology, University of Verona, Verona (Italy); Spinelli, Antonello E [Medical Physics Department, San Raffaele Scientific Institute, Milan (Italy); D' Ambrosio, Daniela; Marengo, Mario [Medical Physics Department, S. Orsola Malpighi Hospital, Bologna (Italy)], E-mail:


    In vivo optical imaging instruments are generally devoted to the acquisition of light coming from fluorescence or bioluminescence processes. Recently, an instrument was conceived with radioisotopic detection capabilities (Kodak in Vivo Multispectral System F) based on the conversion of x-rays from the phosphorus screen. The goal of this work is to demonstrate that an optical imager (IVIS 200, Xenogen Corp., Alameda, USA), designed for in vivo acquisitions of small animals in bioluminescent and fluorescent modalities, can even be employed to detect signals due to radioactive tracers. Our system is based on scintillator crystals for the conversion of high-energy rays and a collimator. No hardware modifications are required. Crystals alone permit the acquisition of photons coming from an in vivo 20 g nude mouse injected with a solution of methyl diphosphonate technetium 99 metastable (Tc99m-MDP). With scintillator crystals and collimators, a set of measurements aimed to fully characterize the system resolution was carried out. More precisely, system point spread function and modulation transfer function were measured at different source depths. Results show that system resolution is always better than 1.3 mm when the source depth is less than 10 mm. The resolution of the images obtained with radioactive tracers is comparable with the resolution achievable with dedicated techniques. Moreover, it is possible to detect both optical and nuclear tracers or bi-modal tracers with only one instrument. (letter to the editor)

  15. Ground-based satellite-type images of the upper-atmosphere emissive layer (United States)

    Pautet, Dominique; Moreels, Guy


    With the introduction of infrared (IR) retina sensors used as focal-plane arrays in large telescopes, astronomical observations are now frequently located in the near-IR part of the spectrum. In this region the upper atmosphere introduces in the 0.7-3-μm range an additional component due to the OH vibrational band emission that should be subtracted from the astronomical data. Observations of this upper-atmosphere emission performed at the Pic de Cha‸teaurenard (altitude of 2989 m) are presented here. A panoramic image of the emission is constructed by use of a set of 48 images obtained with a CCD camera mounted on an alt-azimuthal platform. After a numerical filter is used to suppress the star images, the atmospheric emission shows two distinct sets of arches vanishing at two opposite points in the WNW and ESE azimuths. The emissive layer, caused by the ozone-hydrogen reaction, is thin and located at the altitude of 85 km. By use of these data, the perspective effect that produces the panoramic arches is inverted in introducing the concept of a virtual camera. The Van Rhijn effect and the refraction correction are taken into account. The three punctual transformations that use matrix algorithms are analyzed. The result is a satellite-type view of the emissive layer that appears as a disk having a radius of ~1100 km. This disk is limited by the summit line of the Alps surrounding the Pic de Cha‸teaurenard. The field of view covers a large part of Europe, the Mediterranean Sea, and North Africa. It shows an extended wave system. The images presented show that the upper-atmospheric layer is an efficient tracer of the dynamic processes at that level. Satellite-type views can be calculated without the drawback of looking downward from a satellite and measuring the numerous emissions from cities, oil fields, and other luminous sources.

  16. Effect of scattering on coherent anti-Stokes Raman scattering (CARS) signals. (United States)

    Ranasinghesagara, Janaka C; De Vito, Giuseppe; Piazza, Vincenzo; Potma, Eric O; Venugopalan, Vasan


    We develop a computational framework to examine the factors responsible for scattering-induced distortions of coherent anti-Stokes Raman scattering (CARS) signals in turbid samples. We apply the Huygens-Fresnel wave-based electric field superposition (HF-WEFS) method combined with the radiating dipole approximation to compute the effects of scattering-induced distortions of focal excitation fields on the far-field CARS signal. We analyze the effect of spherical scatterers, placed in the vicinity of the focal volume, on the CARS signal emitted by different objects (2μm diameter solid sphere, 2μm diameter myelin cylinder and 2μm diameter myelin tube). We find that distortions in the CARS signals arise not only from attenuation of the focal field but also from scattering-induced changes in the spatial phase that modifies the angular distribution of the CARS emission. Our simulations further show that CARS signal attenuation can be minimized by using a high numerical aperture condenser. Moreover, unlike the CARS intensity image, CARS images formed by taking the ratio of CARS signals obtained using x- and y-polarized input fields is relatively insensitive to the effects of spherical scatterers. Our computational framework provide a mechanistic approach to characterizing scattering-induced distortions in coherent imaging of turbid media and may inspire bottom-up approaches for adaptive optical methods for image correction.

  17. Seasonal variation, spatial distribution and source apportionment for polycyclic aromatic hydrocarbons (PAHs) at nineteen communities in Xi'an, China: The effects of suburban scattered emissions in winter. (United States)

    Wang, Jingzhi; Cao, Junji; Dong, Zhibao; Guinot, Benjamin; Gao, Meiling; Huang, Rujin; Han, Yongming; Huang, Yu; Ho, Steven Sai Hang; Shen, Zhenxing


    Seasonal variation and spatial distribution of PM2.5 bound polycyclic aromatic hydrocarbons (PAHs) were investigated at urban residential, commercial area, university, suburban region, and industry in Xi'an, during summer and winter time at 2013. Much higher levels of total PAHs were obtained in winter. Spatial distributions by kriging interpolations principle showed that relative high PAHs were detected in western Xi'an in both summer and winter, with decreasing trends in winter from the old city wall to the 2(nd)-3rd ring road except for the suburban region and industry. Coefficients of diversity and statistics by SPSS method demonstrated that PAHs in suburban have significant differences (t < 0.05) with those in urban residential in both seasons. The positive Matrix Factorization (PMF) modeling indicated that biomass burning (31.1%) and vehicle emissions (35.9%) were main sources for PAHs in winter and summer in urban, which different with the suburban. The coal combustion was the main source for PAHs in suburban region, which accounted for 46.6% in winter and sharp decreased to 19.2% in summer. Scattered emissions from uncontrolled coal combustion represent an important source of PAHs in suburban in winter and there were about 135 persons in Xi'an will suffer from lung cancer for lifetime exposure at winter levels. Further studies are needed to specify the effluence of the scattered emission in suburban to the city and to develop a strategy for controlling those emissions and lighten possible health effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Metastatic meningioma: positron emission tomography CT imaging findings.

    LENUS (Irish Health Repository)

    Brennan, C


    The imaging findings of a case of metastasing meningioma are described. The case illustrates a number of rare and interesting features. The patient presented with haemoptysis 22 years after the initial resection of an intracranial meningioma. CT demonstrated heterogeneous masses with avid peripheral enhancement without central enhancement. Blood supply to the larger lesion was partially from small feeding vessels from the inferior pulmonary vein. These findings correlate with a previously published case in which there was avid uptake of fluoro-18-deoxyglucose peripherally with lesser uptake centrally. The diagnosis of metastasing meningioma was confirmed on percutaneous lung tissue biopsy.

  19. Inspection of copper canisters for spent nuclear fuel by means of ultrasound. Ultrasonic imaging, FSW monitoring with acoustic emission

    Energy Technology Data Exchange (ETDEWEB)

    Stepinski, Tadeusz (ed.); Olofsson, Tomas; Wennerstroem, Erik [Uppsala Univ., Dept. of Technical Sciences (Sweden). Signals and Systems


    This report contains the research results concerning advanced ultrasound for the inspection of copper canisters for spent nuclear fuel obtained at Signals and Systems, Uppsala University in years 2005/2006. In the first part of the report we propose a concept of monitoring of the friction stir welding (FSW) process by means of acoustic emission (AE) technique. First, we introduce the AE technique and then we present the principle of the system for monitoring the FSW process in cylindrical symmetry specific for the SKB canisters. We propose an omnidirectional circular array of ultrasonic transducers for receiving the AE signals generated by the FSW tool and the releases of the residual stress at canister's circumference. Finally, we review the theory of uniform circular arrays. The second part of the report is concerned with synthetic aperture focusing technique (SAFT) characterized by enhanced spatial resolution. We evaluate three different approaches to perform imaging with less computational cost than that of the extended SAFT (ESAFT) method proposed in our previous reports. First, a sparse version of ESAFT is presented, which solves the reconstruction problem only for a small set of the most probable scatterers in the image. A frequency domain the {omega}-k SAFT algorithm, which relies on the far-field approximation is presented in the second part. Finally, a detailed analysis of the most computationally intense step in the ESAFT and the sparse 2D deconvolution is presented. In the final part of the report we introduce basics of the 3D ultrasonic imaging that has a great potential in the inspection of the FSW welds. We discuss in some detail the three interrelated steps involved in the 3D ultrasonic imaging: data acquisition, 3D reconstruction, and 3D visualization.

  20. Proton emission in inelastic scattering of Ca-40 on Ca-40 at 50 MeV/nucleon

    NARCIS (Netherlands)

    Scarpaci, JA; Lamehi-Rachti, M; Roynette, JC; Blumenfeld, Y; Chomaz, P; Frascaria, N; Garron, JP; Suomijarvi, T; Beaumel, D; Lhenry, [No Value; Alamanos, N; Gillibert, A; van der Woude, A


    Inelastic scattering of Ca-40 on Ca-40 at 50 MeV/nucleon has been measured in coincidence with Light charged particles detected over a large angular domain. The giant resonance region of the inelastic spectrum is shown to be dominated by the isoscalar giant quadrupole resonance. The characteristics

  1. Acquisition parameters optimization of a transmission electron forward scatter diffraction system in a cold-field emission scanning electron microscope for nanomaterials characterization. (United States)

    Brodusch, Nicolas; Demers, Hendrix; Trudeau, Michel; Gauvin, Raynald


    Transmission electron forward scatter diffraction (t-EFSD) is a new technique providing crystallographic information with high resolution on thin specimens by using a conventional electron backscatter diffraction (EBSD) system in a scanning electron microscope. In this study, the impact of tilt angle, working distance, and detector distance on the Kikuchi pattern quality were investigated in a cold-field emission scanning electron microscope (CFE-SEM). We demonstrated that t-EFSD is applicable for tilt angles ranging from -20° to -40°. Working distance (WD) should be optimized for each material by choosing the WD for which the EBSD camera screen illumination is the highest, as the number of detected electrons on the screen is directly dependent on the scattering angle. To take advantage of the best performances of the CFE-SEM, the EBSD camera should be close to the sample and oriented towards the bottom to increase forward scattered electron collection efficiency. However, specimen chamber cluttering and beam/mechanical drift are important limitations in the CFE-SEM used in this work. Finally, the importance of t-EFSD in materials science characterization was illustrated through three examples of phase identification and orientation mapping. © Wiley Periodicals, Inc.

  2. Radar Image Simulation: Validation of the Point Scattering Method. Volume 2 (United States)


    Different Digitizing Sessions D-14 Table E-i Pickwick Test Site Planimetry Categories 2 i COMPUTER PROGRAMS APPENDIX TR TITLE PURPOSE A 319-1 FAKE ...have been included. AI2 TR 319-I Listing of Computer Program to Construct Geometric Data Bases PROGRAM TITLE: FAKE AUTHOR: E. Komp IMPLEMENTED ON...Course Milo Marshes, open and woody Wheat Water Orchards Roads, various degrees of Small Scattered Garden Plots Improvement Bare Ground This

  3. A single-sided homogeneous Green's function representation for holographic imaging, inverse scattering, time-reversal acoustics and interferometric Green's function retrieval

    NARCIS (Netherlands)

    Wapenaar, C.P.A.; Thorbecke, J.W.; van der Neut, J.R.


    Green's theorem plays a fundamental role in a diverse range of wavefield imaging applications, such as holographic imaging, inverse scattering, time-reversal acoustics and interferometric Green's function retrieval. In many of those applications, the homogeneous Green's function (i.e. the Green's

  4. Upgrade of the automatic analysis system in the TJ-II Thomson Scattering diagnostic: New image recognition classifier and fault condition detection

    NARCIS (Netherlands)

    Makili, L.; Vega, J.; Dormido-Canto, S.; Pastor, I.; Pereira, A.; Farias, G.; Portas, A.; Perez-Risco, D.; Rodriguez-Fernandez, M. C.; Busch, P.


    An automatic image classification system based on support vector machines (SVM) has been in operation for years in the TJ-II Thomson Scattering diagnostic. It recognizes five different types of images: CCD camera background, measurement of stray light without plasma or in a collapsed discharge,

  5. Multiplex coherent anti-Stokes Raman scattering microspectroscopy of brain tissue with higher ranking data classification for biomedical imaging (United States)

    Pohling, Christoph; Bocklitz, Thomas; Duarte, Alex S.; Emmanuello, Cinzia; Ishikawa, Mariana S.; Dietzeck, Benjamin; Buckup, Tiago; Uckermann, Ortrud; Schackert, Gabriele; Kirsch, Matthias; Schmitt, Michael; Popp, Jürgen; Motzkus, Marcus


    Multiplex coherent anti-Stokes Raman scattering (MCARS) microscopy was carried out to map a solid tumor in mouse brain tissue. The border between normal and tumor tissue was visualized using support vector machines (SVM) as a higher ranking type of data classification. Training data were collected separately in both tissue types, and the image contrast is based on class affiliation of the single spectra. Color coding in the image generated by SVM is then related to pathological information instead of single spectral intensities or spectral differences within the data set. The results show good agreement with the H&E stained reference and spontaneous Raman microscopy, proving the validity of the MCARS approach in combination with SVM.

  6. Magnetic resonance-based motion correction for positron emission tomography imaging. (United States)

    Ouyang, Jinsong; Li, Quanzheng; El Fakhri, Georges


    Positron emission tomography (PET) image quality is limited by patient motion. Emission data are blurred owing to cardiac and/or respiratory motion. Although spatial resolution is 4 mm for standard clinical whole-body PET scanners, the effective resolution can be as low as 1 cm owing to motion. Additionally, the deformation of attenuation medium causes image artifacts. Previously, gating has been used to "freeze" the motion, but led to significantly increased noise level. Simultaneous PET/magnetic resonance (MR) modality offers a new way to perform PET motion correction. MR can be used to measure 3-dimensional motion fields, which can then be incorporated into the iterative PET reconstruction to obtain motion-corrected PET images. In this report, we present MR imaging techniques to acquire dynamic images, a nonrigid image registration algorithm to extract motion fields from acquired MR images, and a PET reconstruction algorithm with motion correction. We also present results from both phantom and in vivo animal PET/MR studies. We demonstrate that MR-based PET motion correction using simultaneous PET/MR improves image quality and lesion detectability compared with gating and no motion correction. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Positron emission tomography for serial imaging of the contused adult rat spinal cord.

    NARCIS (Netherlands)

    Nandoe, R.D.S.; Yu, J.; Seidel, J.; Rahiem, S.T.; Hurtado, A.; Tsui, B.M.; Grotenhuis, J.A.; Pomper, M.G.; Oudega, M.


    We investigated whether small-animal positron emission tomography (PET) could be used in combination with computed tomography (CT) imaging techniques for longitudinal monitoring of the injured spinal cord. In adult female Sprague-Dawley rats (n = 6), the ninth thoracic (T9) spinal cord segment was

  8. Small animal positron emission tomography imaging and in vivo studies of atherosclerosis

    DEFF Research Database (Denmark)

    Hag, Anne Mette Fisker; Ripa, Rasmus Sejersten; Pedersen, Sune Folke


    Atherosclerosis is a growing health challenge globally, and despite our knowledge of the disease has increased over the last couple of decades, many unanswered questions remain. As molecular imaging can be used to visualize, characterize and measure biological processes at the molecular and cellu...... knowledge obtained from in vivo positron emission tomography studies of atherosclerosis performed in small animals....

  9. Phenomenology of optical scattering from plasmonic aggregates for application to biological imaging and clinical therapeutics (United States)

    Travis, Kort; Aaron, Jesse; Harrison, Nathan; Sokolov, Konstantin


    Near-field coupling between plasmonic resonant nanoparticles and the associated shifts in scattering spectra enables the accomplishment of unprecedented observation of the co-localization dynamics of in-situ biomolecules on nanometer length-scales. We have recently shown that resonant nanoparticles conjugated to antibodies for cell-surface receptors provide a sensitive probe allowing the unambiguous resolution of not only the time sequence, but also the details of the intracellular pathway, for receptor-mediated endocytosis in live cells. In terms of general principles, the classical electrodynamics determining the scattering cross-section for nanoparticle aggregates is straightforward. However, the specifics of the angular dependence of the differential cross-section at a single wavelength, the wavelength dependence of this cross-section, and the correct implementation and interpretation of statistical averages of cross-section properties over an ensemble of aggregate morphologies are generally quite complicated, and in fact are often misinterpreted in the literature. Despite this complexity, we have constructed a set of few-parameter formulae describing optical scattering from nanoparticle aggregates by judicious combination of experimental results with extensive, near-exact simulation using the T-matrix technique. These phenomenological results facilitate the practical use of nanoparticle aggregates for biological measurement and clinical therapeutic applications.

  10. Refractometry of melanocyte cell nuclei using optical scatter images recorded by digital Fourier microscopy. (United States)

    Seet, Katrina Y T; Nieminen, Timo A; Zvyagin, Andrei V


    The cell nucleus is the dominant optical scatterer in the cell. Neoplastic cells are characterized by cell nucleus polymorphism and polychromism-i.e., the nuclei exhibits an increase in the distribution of both size and refractive index. The relative size parameter, and its distribution, is proportional to the product of the nucleus size and its relative refractive index and is a useful discriminant between normal and abnormal (cancerous) cells. We demonstrate a recently introduced holographic technique, digital Fourier microscopy (DFM), to provide a sensitive measure of this relative size parameter. Fourier holograms were recorded and optical scatter of individual scatterers were extracted and modeled with Mie theory to determine the relative size parameter. The relative size parameter of individual melanocyte cell nuclei were found to be 16.5+/-0.2, which gives a cell nucleus refractive index of 1.38+/-0.01 and is in good agreement with previously reported data. The relative size parameters of individual malignant melanocyte cell nuclei are expected to be greater than 16.5.

  11. Analysis of MUSIC-type imaging functional for single, thin electromagnetic inhomogeneity in limited-view inverse scattering problem (United States)

    Ahn, Chi Young; Jeon, Kiwan; Park, Won-Kwang


    This study analyzes the well-known MUltiple SIgnal Classification (MUSIC) algorithm to identify unknown support of thin penetrable electromagnetic inhomogeneity from scattered field data collected within the so-called multi-static response matrix in limited-view inverse scattering problems. The mathematical theories of MUSIC are partially discovered, e.g., in the full-view problem, for an unknown target of dielectric contrast or a perfectly conducting crack with the Dirichlet boundary condition (Transverse Magnetic-TM polarization) and so on. Hence, we perform further research to analyze the MUSIC-type imaging functional and to certify some well-known but theoretically unexplained phenomena. For this purpose, we establish a relationship between the MUSIC imaging functional and an infinite series of Bessel functions of integer order of the first kind. This relationship is based on the rigorous asymptotic expansion formula in the existence of a thin inhomogeneity with a smooth supporting curve. Various results of numerical simulation are presented in order to support the identified structure of MUSIC. Although a priori information of the target is needed, we suggest a least condition of range of incident and observation directions to apply MUSIC in the limited-view problem.

  12. Superficial dosimetry imaging of Čerenkov emission in electron beam radiotherapy of phantoms (United States)

    Zhang, Rongxiao; Fox, Colleen J.; Glaser, Adam K.; Gladstone, David J.; Pogue, Brian W.


    Čerenkov emission is generated from ionizing radiation in tissue above 264 keV energy. This study presents the first examination of this optical emission as a surrogate for the absorbed superficial dose. Čerenkov emission was imaged from the surface of flat tissue phantoms irradiated with electrons, using a range of field sizes from 6 cm × 6 cm to 20 cm × 20 cm, incident angles from 0° to 50°, and energies from 6 to 18 MeV. The Čerenkov images were compared with the estimated superficial dose in phantoms from direct diode measurements, as well as calculations by Monte Carlo and the treatment planning system. Intensity images showed outstanding linear agreement (R2 = 0.97) with reference data of the known dose for energies from 6 to 18 MeV. When orthogonal delivery was carried out, the in-plane and cross-plane dose distribution comparisons indicated very little difference (±2-4% differences) between the different methods of estimation as compared to Čerenkov light imaging. For an incident angle 50°, the Čerenkov images and Monte Carlo simulation show excellent agreement with the diode data, but the treatment planning system had a larger error (OPT = ±1˜2%, diode = ±2˜3%, TPS = ±6-8% differences) as would be expected. The sampling depth of superficial dosimetry based on Čerenkov radiation has been simulated in a layered skin model, showing the potential of sampling depth tuning by spectral filtering. Taken together, these measurements and simulations indicate that Čerenkov emission imaging might provide a valuable method of superficial dosimetry imaging from incident radiotherapy beams of electrons.

  13. Wide-field microscopic FRET imaging using simultaneous spectral unmixing of excitation and emission spectra. (United States)

    Du, Mengyan; Zhang, Lili; Xie, Shusen; Chen, Tongsheng


    Simultaneous spectral unmixing of excitation and emission spectra (ExEm unmixing) has the inherent ability to resolve donor emission, fluorescence resonance energy transfer (FRET)-sensitized acceptor emission and directly excited acceptor emission. We here develop an ExEm unmixing-based quantitative FRET measurement method (EES-FRET) independent of excitation intensity and detector parameter setting. The ratio factor (rK), predetermined using a donor-acceptor tandem construct, of total acceptor absorption to total donor absorption in excitation wavelengths used is introduced for determining the concentration ratio of acceptor to donor. We implemented EES-FRET method on a wide-field microscope to image living cells expressing tandem FRET constructs with different donor-acceptor stoichiometry.

  14. Core-size regulated aggregation/disaggregation of citrate-coated gold nanoparticles (5-50 nm) and dissolved organic matter: Extinction, emission, and scattering evidence (United States)

    Esfahani, Milad Rabbani; Pallem, Vasanta L.; Stretz, Holly A.; Wells, Martha J. M.


    Knowledge of the interactions between gold nanoparticles (GNPs) and dissolved organic matter (DOM) is significant in the development of detection devices for environmental sensing, studies of environmental fate and transport, and advances in antifouling water treatment membranes. The specific objective of this research was to spectroscopically investigate the fundamental interactions between citrate-stabilized gold nanoparticles (CT-GNPs) and DOM. Studies indicated that 30 and 50 nm diameter GNPs promoted disaggregation of the DOM. This result-disaggregation of an environmentally important polyelectrolyte-will be quite useful regarding antifouling properties in water treatment and water-based sensing applications. Furthermore, resonance Rayleigh scattering results showed significant enhancement in the UV range which can be useful to characterize DOM and can be exploited as an analytical tool to better sense and improve our comprehension of nanomaterial interactions with environmental systems. CT-GNPs having core size diameters of 5, 10, 30, and 50 nm were studied in the absence and presence of added DOM at 2 and 8 ppm at low ionic strength and near neutral pH (6.0-6.5) approximating surface water conditions. Interactions were monitored by cross-interpretation among ultraviolet (UV)-visible extinction spectroscopy, excitation-emission matrix (EEM) spectroscopy (emission and Rayleigh scattering), and dynamic light scattering (DLS). This comprehensive combination of spectroscopic analyses lends new insights into the antifouling behavior of GNPs. The CT-GNP-5 and -10 controls emitted light and aggregated. In contrast, the CT-GNP-30 and CT-GNP-50 controls scattered light intensely, but did not aggregate and did not emit light. The presence of any CT-GNP did not affect the extinction spectra of DOM, and the presence of DOM did not affect the extinction spectra of the CT-GNPs. The emission spectra (visible range) differed only slightly between calculated and actual

  15. SO2 emissions from Popocatépetl volcano: emission rates and plume imaging using optical remote sensing techniques (United States)

    Grutter, M.; Basaldud, R.; Rivera, C.; Harig, R.; Junkerman, W.; Caetano, E.; Delgado-Granados, H.


    Sulfur dioxide emissions from the Popocatépetl volcano in central Mexico were measured during the MILAGRO field campaign in March 2006. A stationary scanning DOAS (Differential Optical Absorption Spectrometer) was used to monitor the SO2 emissions from the volcano and the results were compared with traverses done with a COSPEC from the ground and a DOAS instrument on board an ultra-light aircraft. Daytime evolutions as well as day-to-day variation of the SO2 emissions are reported. A value of 2.45±1.39 Gg/day of SO2 is reported from all the daily averages obtained during the month of March 2006, with large variation in maximum and minimum daily averages of 5.97 and 0.56 Gg/day, respectively. The large short-term fluctuations in the SO2 emissions obtained could be confirmed through 2-D visualizations of the SO2 plume measured with a scanning imaging infrared spectrometer. This instrument, based on the passive detection of thermal radiation from the volcanic gas and analysis with FTIR spectrometry, is used for the first time for plume visualization of a specific volcanic gas. A 48-h forward trajectory analysis indicates that the volcanic plume was predominantly directed towards the Puebla/Tlaxcala region (63%), followed by the Mexico City and Cuernavaca/Cuautla regions with 19 and 18% occurrences, respectively. 25% of the modeled trajectories going towards the Puebla region reached altitudes lower than 4000 m a.s.l. but all trajectories remained over this altitude for the other two regions.

  16. Single photon image from position emission tomography with insertable collimator for boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Joo Young; Yoo, Do Kun; Suh, Tae Suk [Dept. of Biomedical Engineering and Research Institute of Biomedical Engineering, College of Medicine, Catholic University of Korea, Seoul (Korea, Republic of); Hong, Key Jo [Molecular Imaging Program at Stanford (MIPS), Dept. of Radiology, Stanford University, Stanford (United States)


    The aim of our proposed system is to confirm the feasibility of extraction of two types of images from one positron emission tomography (PET) module with an insertable collimator for brain tumor treatment during the boron neutron capture therapy (BNCT). The BNCT theory and conceptual diagram of our proposed system are shown fig.1. Data from the PET module, neutron source, and collimator was entered in the Monte Carlon-particle extende source code. We attempted to acquire the PET and SPECT images simultaneously using only PET without an additional isotope. Single photon images were acquired using an insertable collimator on a PET detector.

  17. Real time implementation of anti-scatter grid artifact elimination method for high resolution x-ray imaging CMOS detectors using Graphics Processing Units (GPUs) (United States)

    Rana, R.; Setlur Nagesh, S. V.; Bednarek, D. R.; Rudin, S.


    Scatter is one of the most important factors effecting image quality in radiography. One of the best scatter reduction methods in dynamic imaging is an anti-scatter grid. However, when used with high resolution imaging detectors these grids may leave grid-line artifacts with increasing severity as detector resolution improves. The presence of such artifacts can mask important details in the image and degrade image quality. We have previously demonstrated that, in order to remove these artifacts, one must first subtract the residual scatter that penetrates through the grid followed by dividing out a reference grid image; however, this correction must be done fast so that corrected images can be provided in real-time to clinicians. In this study, a standard stationary Smit-Rontgen x-ray grid (line density - 70 lines/cm, grid ratio - 13:1) was used with a high-resolution CMOS detector, the Dexela 1207 (pixel size - 75 micron) to image anthropomorphic head phantoms. For a 15 x 15 cm field-of-view (FOV), scatter profiles of the anthropomorphic head phantoms were estimated then iteratively modified to minimize the structured noise due to the varying grid-line artifacts across the FOV. Images of the head phantoms taken with the grid, before and after the corrections, were compared, demonstrating almost total elimination of the artifact over the full FOV. This correction is done fast using Graphics Processing Units (GPUs), with 7-8 iterations and total time taken to obtain the corrected image of only 87 ms, hence, demonstrating the virtually real-time implementation of the grid-artifact correction technique.

  18. Light Emission Requires Exposure to the Atmosphere in Ex Vivo Bioluminescence Imaging

    Directory of Open Access Journals (Sweden)

    Yusuke Inoue


    Full Text Available The identification of organs bearing luciferase activity by in vivo bioluminescence imaging (BLI is often difficult, and ex vivo imaging of excised organs plays a complementary role. This study investigated the importance of exposure to the atmosphere in ex vivo BLI. Mice were inoculated with murine pro-B cell line Ba/F3 transduced with firefly luciferase and p190 BCR-ABL. They were killed following in vivo BLI, and whole-body imaging was done after death and then after intraperitoneal air injection. In addition, the right knee was exposed and imaged before and after the adjacent bones were cut. Extensive light signals were seen on in vivo imaging. The luminescence disappeared after the animal was killed, and air injection restored the light emission from the abdomen only, suggesting a critical role of atmospheric oxygen in luminescence after death. Although no substantial light signal at the right knee was seen before bone cutting, light emission was evident after cutting. In conclusion, in ex vivo BLI, light emission requires exposure to the atmosphere. Bone destruction is required to demonstrate luciferase activity in the bone marrow after death.

  19. Applications of mesoscopic physics to novel correlations and fluctuations of speckle patterns: Imaging and tomography with multiply scattered classical waves. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Shechao Charles


    This is the final report on the grant, entitled `applications of mesoscopic physics to novel correlations and fluctuations of speckle patterns: imaging and tomography with multiply scattered classical waves`, which expired on September 14, 1994. The author summarizes the highlights of this research program, and lists the publications supported by this grant. The report is divided into sections, titled: application of mesoscopic fluctuations theory to correlations and fluctuations of multiply scattered light; quantum transport in localized electronic systems; electron-phonon inelastic scattering rate and the temperature scaling exponent in integer quantum Hall effect; high frequency quantum transport in quantum well devices.

  20. Scattering of electromagnetic waves from 3D multilayer random rough surfaces based on the second-order small perturbation method: energy conservation, reflectivity, and emissivity. (United States)

    Sanamzadeh, Mohammadreza; Tsang, Leung; Johnson, Joel T; Burkholder, Robert J; Tan, Shurun


    A theoretical investigation of energy conservation, reflectivity, and emissivity in the scattering of electromagnetic waves from 3D multilayer media with random rough interfaces using the second-order small perturbation method (SPM2) is presented. The approach is based on the extinction theorem and develops integral equations for surface fields in the spectral domain. Using the SPM2, we calculate the scattered and transmitted coherent fields and incoherent fields. Reflected and transmitted powers are then found in the form of 2D integrations over wavenumber in the spectral domain. In the integrand, there is a summation over the spectral densities of each of the rough interfaces with each weighted by a corresponding kernel function. We show in this paper that there exists a "strong" condition of energy conservation in that the kernel functions multiplying the spectral density of each interface obey energy conservation exactly. This means that energy is conserved independent of the roughness spectral densities of the rough surfaces. Results of this strong condition are illustrated numerically for up to 50 rough interfaces without requiring specification of surface roughness properties. Two examples are illustrated. One is a multilayer configuration having weak contrasts between adjacent layers, random layer thicknesses, and randomly generated permittivity profiles. The second example is a photonic crystal of periodically alternating permittivities of larger dielectric contrast. The methodology is applied to study the effect of roughness on the brightness temperatures of the Antarctic ice sheet, which is characterized by layers of ice with permittivity fluctuations in addition to random rough interfaces. The results show that the influence of roughness can significantly increase horizontally polarized thermal emission while leaving vertically polarized emissions relatively unaffected.

  1. Micro-focused Brillouin light scattering: imaging spin waves at the nanoscale

    Directory of Open Access Journals (Sweden)

    Thomas eSebastian


    Full Text Available Spin waves constitute an important part of research in the field of magnetization dynamics. Spin waves are the elementary excitations of the spin system in a magnetically ordered material state and magnons are their quasi particles. In the following article, we will discuss the optical method of Brillouin light scattering (BLS spectroscopy which is a now a well established tool for the characterization of spin waves. BLS is the inelastic scattering of light from spin waves and confers several benefits: the ability to map the spin wave intensity distribution with spatial resolution and high sensitivity as well as the potential to simultaneously measure the frequency and the wave vector and, therefore, the dispersion properties.For several decades, the field of spin waves gained huge interest by the scientific community due to its relevance regarding fundamental issues of spindynamics in the field of solid states physics. The ongoing research in recent years has put emphasis on the high potential of spin waves regarding information technology. In the emerging field of textit{magnonics}, several concepts for a spin-wave based logic have been proposed and realized. Opposed to charge-based schemes in conventional electronics and spintronics, magnons are charge-free currents of angular momentum, and, therefore, less subject to scattering processes that lead to heating and dissipation. This fact is highlighted by the possibility to utilize spin waves as information carriers in electrically insulating materials. These developments have propelled the quest for ways and mechanisms to guide and manipulate spin-wave transport. In particular, a lot of effort is put into the miniaturization of spin-wave waveguides and the excitation of spin waves in structures with sub-micrometer dimensions.For the further development of potential spin-wave-based devices, the ability to directly observe spin-wave propagation with spatial resolution is crucial. As an optical

  2. Scatter Correction with Combined Single-Scatter Simulation and Monte Carlo Simulation Scaling Improved the Visual Artifacts and Quantification in 3-Dimensional Brain PET/CT Imaging with 15O-Gas Inhalation. (United States)

    Magota, Keiichi; Shiga, Tohru; Asano, Yukari; Shinyama, Daiki; Ye, Jinghan; Perkins, Amy E; Maniawski, Piotr J; Toyonaga, Takuya; Kobayashi, Kentaro; Hirata, Kenji; Katoh, Chietsugu; Hattori, Naoya; Tamaki, Nagara


    In 3-dimensional PET/CT imaging of the brain with 15O-gas inhalation, high radioactivity in the face mask creates cold artifacts and affects the quantitative accuracy when scatter is corrected by conventional methods (e.g., single-scatter simulation [SSS] with tail-fitting scaling [TFS-SSS]). Here we examined the validity of a newly developed scatter-correction method that combines SSS with a scaling factor calculated by Monte Carlo simulation (MCS-SSS). Methods: We performed phantom experiments and patient studies. In the phantom experiments, a plastic bottle simulating a face mask was attached to a cylindric phantom simulating the brain. The cylindric phantom was filled with 18F-FDG solution (3.8-7.0 kBq/mL). The bottle was filled with nonradioactive air or various levels of 18F-FDG (0-170 kBq/mL). Images were corrected either by TFS-SSS or MCS-SSS using the CT data of the bottle filled with nonradioactive air. We compared the image activity concentration in the cylindric phantom with the true activity concentration. We also performed 15O-gas brain PET based on the steady-state method on patients with cerebrovascular disease to obtain quantitative images of cerebral blood flow and oxygen metabolism. Results: In the phantom experiments, a cold artifact was observed immediately next to the bottle on TFS-SSS images, where the image activity concentrations in the cylindric phantom were underestimated by 18%, 36%, and 70% at the bottle radioactivity levels of 2.4, 5.1, and 9.7 kBq/mL, respectively. At higher bottle radioactivity, the image activity concentrations in the cylindric phantom were greater than 98% underestimated. For the MCS-SSS, in contrast, the error was within 5% at each bottle radioactivity level, although the image generated slight high-activity artifacts around the bottle when the bottle contained significantly high radioactivity. In the patient imaging with 15O2 and C15O2 inhalation, cold artifacts were observed on TFS-SSS images, whereas no

  3. Mineral element analysis of carious and sound rat dentin by electron probe microanalyzer combined with back-scattered electron image. (United States)

    Tjäderhane, L; Hietala, E L; Larmas, M


    We recently demonstrated the advantages of back-scattered electron images (COMPO) in the visualization of dentinal caries, and the relationship of the change in the dentin fluorescence pattern in caries lesions. However, the exact nature of these changes is not known. In this paper, the nature of the changes in the areas with reduced mineral content in COMPO images was investigated. We examined the relation of changes in mineral elements and the appearance of soft carious and sound dentin in COMPO images using a scanning electron microscope (SEM) equipped with an electron probe microanalyzer (EPMA). Rat molars with small dentinal caries lesions just under the DEJ were chosen for the study. The Ca, P, Na, Mg, Zn, F, and total contents were determined by EPMA from five different dentin sites, and the Ca/P and Mg/Ca ratios were calculated. Generally, the lowest contents were found in caries lesions and highest in mantle dentin, with the exceptions of Mg and Zn. The Ca/P ratio was lowest in mantle dentin and highest in carious dentin. The results confirm that the change in fluorescence in the dentinal caries lesion is correlated with the very initial changes in mineral content, and that EPMA used in combination with COMPO images is a useful tool for determining small changes in mineral elements in the carious and adjacent areas of dentin.

  4. A First-Principles Spectral Model for Blazar Jet Acceleration and Emission with Klein-Nishina Scattering of Multiple Broad Line Region Emission Lines (United States)

    Lewis, Tiffany R.; Finke, Justin; Becker, Peter A.


    Blazars are a sub-class of active galactic nuclei, with a polar jet aligned along our line of sight. Emission from blazar jets is observed across the electromagnetic spectrum. In our model we assume that the emission emanates from one homogeneous zone in the jet, which is in the process of passing through the Broad Line Region (BLR). We start from first-principles to build up a particle transport model, whose solution is the electron distribution, rather than assuming a convenient functional form. Our transport model considers shock acceleration, adiabatic expansion, stochastic acceleration, Bohm diffusion, synchrotron radiation, and Klein-Nishina radiation pulling seed photons from the BLR and dusty torus. We obtain the steady-state electron distribution computationally, and calculate individual spectral contributions due to synchrotron with self-absorption, disk, synchrotron self-Compton, and external-Compton emission, using numerical integration. We compare the resulting radiation spectrum with multi-wavelength data for 3C 279, during quiescence and two flares. Our preliminary results suggest that the jet emission is produced in a region with a sub-equipartition magnetic field, and that the magnetic field in the jet decreases during flaring events, implying that reconnection may play a role in blazar flares.

  5. Quantitative fuel vapor/air mixing imaging in droplet/gas regions of an evaporating spray flow using filtered Rayleigh scattering. (United States)

    Allison, Patton M; McManus, Thomas A; Sutton, Jeffrey A


    This Letter demonstrates the application of filtered Rayleigh scattering (FRS) for quantitative two-dimensional fuel vapor/air mixing measurements in an evaporating hydrocarbon fuel spray flow. Using the FRS approach, gas-phase measurements are made in the presence of liquid-phase droplets without interference. Effective suppression of the liquid-phase droplet scattering using FRS is enabled by the high spectral purity of the current Nd:YAG laser system. Simultaneous Mie-scattering imaging is used to visualize the droplet field and illustrate the droplet loading under which the FRS imaging is applied in the current spray flows. The initial quantification of the FRS imaging is based on calibration measurements from a flow cell of known fuel vapor/air mixtures, while future work targets the utilization of a Rayleigh-Brillouin spectral model for quantification of the FRS signals.

  6. Stimulated Emission Computed Tomography (NSECT) images enhancement using a linear filter in the frequency domain

    Energy Technology Data Exchange (ETDEWEB)

    Viana, Rodrigo S.S.; Tardelli, Tiago C.; Yoriyaz, Helio, E-mail: hyoriyaz@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Jackowski, Marcel P., E-mail: mjack@ime.usp.b [University of Sao Paulo (USP), SP (Brazil). Dept. of Computer Science


    In recent years, a new technique for in vivo spectrographic imaging of stable isotopes was presented as Neutron Stimulated Emission Computed Tomography (NSECT). In this technique, a fast neutrons beam stimulates stable nuclei in a sample, which emit characteristic gamma radiation. The photon energy is unique and is used to identify the emitting nuclei. The emitted gamma energy spectra can be used for reconstruction of the target tissue image and for determination of the tissue elemental composition. Due to the stochastic nature of photon emission process by irradiated tissue, one of the most suitable algorithms for tomographic reconstruction is the Expectation-Maximization (E-M) algorithm, once on its formulation are considered simultaneously the probabilities of photons emission and detection. However, a disadvantage of this algorithm is the introduction of noise in the reconstructed image as the number of iterations increases. This increase can be caused either by features of the algorithm itself or by the low sampling rate of projections used for tomographic reconstruction. In this work, a linear filter in the frequency domain was used in order to improve the quality of the reconstructed images. (author)

  7. Monte Carlo modeling of cavity imaging in pure iron using back-scatter electron scanning microscopy (United States)

    Yan, Qiang; Gigax, Jonathan; Chen, Di; Garner, F. A.; Shao, Lin


    Backscattered electrons (BSE) in a scanning electron microscope (SEM) can produce images of subsurface cavity distributions as a nondestructive characterization technique. Monte Carlo simulations were performed to understand the mechanism of void imaging and to identify key parameters in optimizing void resolution. The modeling explores an iron target of different thicknesses, electron beams of different energies, beam sizes, and scan pitch, evaluated for voids of different sizes and depths below the surface. The results show that the void image contrast is primarily caused by discontinuity of energy spectra of backscattered electrons, due to increased outward path lengths for those electrons which penetrate voids and are backscattered at deeper depths. Size resolution of voids at specific depths, and maximum detection depth of specific voids sizes are derived as a function of electron beam energy. The results are important for image optimization and data extraction.

  8. Imaging and Scattering Measurements for Diesel Spray Combustion: Optical Development and Phenomenological Studies (United States)


    imaging offers an opportunity to investigate the optically dense region of the spray by producing shadowgraph- or schlieren -style images of structures...including evaporation of the dichloroethane from the dye circulator. The original design was poorly sealed and leaked the carcinogenic vapors into the lab...A custom, in- house design was built and incorporated Swagelock® fittings and appropriate O-ring seals to minimize the escape of vapors . In

  9. Blood group typing based on recording the elastic scattering of laser radiation using the method of digital imaging

    Energy Technology Data Exchange (ETDEWEB)

    Dolmashkin, A A; Dubrovskii, V A; Zabenkov, I V [V.I.Razumovsky Saratov State Medical University, Saratov (Russian Federation)


    The possibility is demonstrated to determine the human blood group by recording the scattering of laser radiation with the help of the digital imaging method. It is experimentally shown that the action of a standing ultrasound wave leads to acceleration of the agglutination reaction of red blood cells, to formation of larger immune complexes of red blood cells, and, as a consequence, to acceleration of their sedimentation. In the absence of agglutination of red blood cells the ultrasound does not enhance the relevant processes. This difference in the results of ultrasound action on the mixture of blood and serum allows a method of blood typing to be offered. Theoretical modelling of the technique of the practical blood typing, carried out on the basis of the elastic light scattering theory, agrees well with the experimental results, which made it possible to plan further improvement of the proposed method. The studies of specific features of sedimentation of red blood cells and their immune complexes were aimed at the optimisation of the sample preparation, i.e., at the search for such experimental conditions that provide the maximal resolution of the method and the device for registering the reaction of red blood cells agglutination. The results of the study may be used in designing the instrumentation for blood group assessment in humans.

  10. Blood group typing based on recording the elastic scattering of laser radiation using the method of digital imaging (United States)

    Dolmashkin, A. A.; Dubrovskii, V. A.; Zabenkov, I. V.


    The possibility is demonstrated to determine the human blood group by recording the scattering of laser radiation with the help of the digital imaging method. It is experimentally shown that the action of a standing ultrasound wave leads to acceleration of the agglutination reaction of red blood cells, to formation of larger immune complexes of red blood cells, and, as a consequence, to acceleration of their sedimentation. In the absence of agglutination of red blood cells the ultrasound does not enhance the relevant processes. This difference in the results of ultrasound action on the mixture of blood and serum allows a method of blood typing to be offered. Theoretical modelling of the technique of the practical blood typing, carried out on the basis of the elastic light scattering theory, agrees well with the experimental results, which made it possible to plan further improvement of the proposed method. The studies of specific features of sedimentation of red blood cells and their immune complexes were aimed at the optimisation of the sample preparation, i.e., at the search for such experimental conditions that provide the maximal resolution of the method and the device for registering the reaction of red blood cells agglutination. The results of the study may be used in designing the instrumentation for blood group assessment in humans.

  11. Bioorthogonal chemical imaging of metabolic changes during epithelial-mesenchymal transition of cancer cells by stimulated Raman scattering microscopy (United States)

    Zhang, Luyuan; Min, Wei


    Study of metabolic changes during epithelial-mesenchymal transition (EMT) of cancer cells is important for basic understanding and therapeutic management of cancer progression. We here used metabolic labeling and stimulated Raman scattering (SRS) microscopy, a strategy of bioorthogonal chemical imaging, to directly visualize changes in anabolic metabolism during cancer EMT at a single-cell level. MCF-7 breast cancer cell is employed as a model system. Four types of metabolites (amino acids, glucose, fatty acids, and choline) are labeled with either deuterium or alkyne (C≡C) tag. Their intracellular incorporations into MCF-7 cells before or after EMT are visualized by SRS imaging targeted at the signature vibration frequency of C-D or C≡C bonds. Overall, after EMT, anabolism of amino acids, glucose, and choline is less active, reflecting slower protein and membrane synthesis in mesenchymal cells. Interestingly, we also observed less incorporation of glucose and palmitate acids into membrane lipids, but more of them into lipid droplets in mesenchymal cells. This result indicates that, although mesenchymal cells synthesize fewer membrane lipids, they are actively storing energy into lipid droplets, either through de novo lipogenesis from glucose or direct scavenging of exogenous free fatty acids. Hence, metabolic labeling coupled with SRS can be a straightforward method in imaging cancer metabolism.

  12. New insight of squaraine-based biocompatible surface-enhanced Raman scattering nanotag for cancer-cell imaging. (United States)

    Ramya, An; Samanta, Animesh; Nisha, N; Chang, Young-Tae; Maiti, Kaustabh Kumar


    Development of highly sensitive diagnostic nanoprobe for cancer imaging based on surface-enhanced Raman scattering (SERS) platform. Synthesis of novel squaraine dyes as a Raman signature molecule denoted as lipoic-squaraine-lipoic (LSL), propyl-squaraine-lipoic (PSL) and propyl-squaraine-propyl (PSP). The SERS-nanotag constructed with a Raman signature molecule which is attached on gold nanoparticle and further encapsulated with heterofunctionalized PEG. Antibody conjugation with best SERS-nanotag for target specific recognition. SERS nanotag Au-LSL-PEG showed significant signal intensity and remarkable stability. Anti-EGF receptor and Her2-conjugated Au-LSL-PEG-nanotag were successfully applied for selective recognition of cancer cells like A549, OSCC and MCF7. The newly developed SERS-nanotag Au-LSL-PEG serves as a valuable tool for diagnostic detection of cancer cells, and may find potential applications for cancer screening in real patient samples.

  13. Three-dimensional coherent diffraction imaging of Mie-scattering spheres by laser single-orientation measurement (United States)

    Zhang, Jian; Fan, Jia-Dong; Zhang, Jian-Hua; Sun, Zhi-Bin; Huang, Qing-Jie; Jiang, Huai-Dong


    Three-dimensional imaging with single orientation is a potential and novel technique. We successfully demonstrate that three-dimensional (3D) structure can be determined by a single orientation diffraction measurement for a phase object of double-layer Mie-scattering silica spheres on a Si3N4 membrane. Coherent diffraction pattern at high numerical aperture was acquired with an optical laser, and the oversampled pattern was projected from a planar detector onto the Ewald sphere. The double-layered spheres are reconstructed from the spherical diffraction pattern and a 2D curvature-corrected pattern, which improve convergence speed and stability of reconstruction. Project supported by the Major State Basic Research Development Program of China (Grant No. 2014CB910401) and the National Natural Science Foundation of China (Grant Nos. 31430031, 21390414, and U1332118).

  14. Two-Loop N_F =1 QED Bhabha Scattering: Soft Emission and Numerical Evaluation of the Differential Cross-section

    CERN Document Server

    Bonciani, R.; Mastrolia, P.; Remiddi, E.; van der Bij, J.J.


    Recently, we evaluated the virtual cross-section for Bhabha scattering in pure QED, up to corrections of order alpha^4 (N_F =1). This calculation is valid for arbitrary values of the squared center of mass energy s and momentum transfer t; the electron and positron mass m was considered a finite, non vanishing quantity. In the present work, we supplement the previous calculation by considering the contribution of the soft photon emission diagrams to the differential cross-section, up to and including terms of order alpha^4 (N_F=1). Adding the contribution of the real corrections to the renormalized virtual ones, we obtain an UV and IR finite differential cross-section; we evaluate this quantity numerically for a significant set of values of the squared center of mass energy s.

  15. Digital contrast enhancement of (18)Fluorine-fluorodeoxyglucose positron emission tomography images in hepatocellular carcinoma. (United States)

    Pandey, Anil Kumar; Sharma, Sanjay Kumar; Agarwal, Krishan Kant; Sharma, Punit; Bal, Chandrasekhar; Kumar, Rakesh


    The role of (18)fluorodeoxyglucose positron emission tomography (PET) is limited for detection of primary hepatocellular carcinoma (HCC) due to low contrast to the tumor, and normal hepatocytes (background). The aim of the present study was to improve the contrast between the tumor and background by standardizing the input parameters of a digital contrast enhancement technique. A transverse slice of PET image was adjusted for the best possible contrast, and saved in JPEG 2000 format. We processed this image with a contrast enhancement technique using 847 possible combinations of input parameters (threshold "m" and slope "e"). The input parameters which resulted in an image having a high value of 2(nd) order entropy, and edge content, and low value of absolute mean brightness error, and saturation evaluation metrics, were considered as standardized input parameters. The same process was repeated for total nine PET-computed tomography studies, thus analyzing 7623 images. The selected digital contrast enhancement technique increased the contrast between the HCC tumor and background. In seven out of nine images, the standardized input parameters "m" had values between 150 and 160, and for other two images values were 138 and 175, respectively. The value of slope "e" was 4 in 4 images, 3 in 3 images and 1 in 2 images. It was found that it is important to optimize the input parameters for the best possible contrast for each image; a particular value was not sufficient for all the HCC images. The use of above digital contrast enhancement technique improves the tumor to background ratio in PET images of HCC and appears to be useful. Further clinical validation of this finding is warranted.

  16. Concept of an upright wearable positron emission tomography imager in humans. (United States)

    Bauer, Christopher E; Brefczynski-Lewis, Julie; Marano, Gary; Mandich, Mary-Beth; Stolin, Alexander; Martone, Peter; Lewis, James W; Jaliparthi, Gangadhar; Raylman, Raymond R; Majewski, Stan


    Positron Emission Tomography (PET) is traditionally used to image patients in restrictive positions, with few devices allowing for upright, brain-dedicated imaging. Our team has explored the concept of wearable PET imagers which could provide functional brain imaging of freely moving subjects. To test feasibility and determine future considerations for development, we built a rudimentary proof-of-concept prototype (Helmet_PET) and conducted tests in phantoms and four human volunteers. Twelve Silicon Photomultiplier-based detectors were assembled in a ring with exterior weight support and an interior mechanism that could be adjustably fitted to the head. We conducted brain phantom tests as well as scanned four patients scheduled for diagnostic F(18-) FDG PET/CT imaging. For human subjects the imager was angled such that field of view included basal ganglia and visual cortex to test for typical resting-state pattern. Imaging in two subjects was performed ~4 hr after PET/CT imaging to simulate lower injected F(18-) FDG dose by taking advantage of the natural radioactive decay of the tracer (F(18) half-life of 110 min), with an estimated imaging dosage of 25% of the standard. We found that imaging with a simple lightweight ring of detectors was feasible using a fraction of the standard radioligand dose. Activity levels in the human participants were quantitatively similar to standard PET in a set of anatomical ROIs. Typical resting-state brain pattern activation was demonstrated even in a 1 min scan of active head rotation. To our knowledge, this is the first demonstration of imaging a human subject with a novel wearable PET imager that moves with robust head movements. We discuss potential research and clinical applications that will drive the design of a fully functional device. Designs will need to consider trade-offs between a low weight device with high mobility and a heavier device with greater sensitivity and larger field of view.

  17. Parametric imaging via kinetics-induced filter for dynamic positron emission tomography. (United States)

    Bian, Zhaoying; Huang, Jing; Lu, Lijun; Ma, Jianhua; Zeng, Dong; Feng, Qianjin; Chen, Wufan


    Due to the noisy measurement of the voxel-wise time activity curve (TAC), parametric imaging for dynamic positron emission tomography (PET) is a challenging task. To address this problem, some spatial filters, such as Gaussian filter, bilateral filter, wavelet-based filter, and so on, are often performed to reduce the noise of each frame. However, these filters usually just consider local properties of each frame without exploring the kinetic information. In this paper, aiming to improve the quantitative accuracy of parametric imaging, we present a kinetics-induced filter to lower the noise of dynamic PET images by incorporating the kinetic information. The present kinetics-induced filter is designed via the similarity between voxel-wise TACs under the framework of bilateral filter. Experimental results with a simulation study demonstrate that the present kinetics-induced filter can achieve noticeable gains than other existing methods for parametric images in terms of quantitative accuracy measures.

  18. Parallel excitation-emission multiplexed fluorescence lifetime confocal microscopy for live cell imaging. (United States)

    Zhao, Ming; Li, Yu; Peng, Leilei


    We present a novel excitation-emission multiplexed fluorescence lifetime microscopy (FLIM) method that surpasses current FLIM techniques in multiplexing capability. The method employs Fourier multiplexing to simultaneously acquire confocal fluorescence lifetime images of multiple excitation wavelength and emission color combinations at 44,000 pixels/sec. The system is built with low-cost CW laser sources and standard PMTs with versatile spectral configuration, which can be implemented as an add-on to commercial confocal microscopes. The Fourier lifetime confocal method allows fast multiplexed FLIM imaging, which makes it possible to monitor multiple biological processes in live cells. The low cost and compatibility with commercial systems could also make multiplexed FLIM more accessible to biological research community.

  19. Imaging metazoan nuclear pore complexes by field emission scanning electron microscopy. (United States)

    Fichtman, Boris; Shaulov, Lihi; Harel, Amnon


    High resolution three-dimensional surface images of nuclear pore complexes (NPCs) can be obtained by field emission scanning electron microscopy. We present a short retrospective view starting from the early roots of microscopy, through the discovery of the cell nucleus and the development of some modern techniques for sample preparation and imaging. Detailed protocols are presented for assembling anchored nuclei in a Xenopus cell-free reconstitution system and for the exposure of the nuclear surface in mammalian cell nuclei. Immunogold labeling of metazoan NPCs and a promising new technique for delicate coating with iridium are also discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Imaging of Carbon Translocation to Fruit Using Carbon-11-Labeled Carbon Dioxide and Positron Emission Tomography (United States)

    Kawachi, Naoki; Kikuchi, Kaori; Suzui, Nobuo; Ishii, Satomi; Fujimaki, Shu; Ishioka, Noriko S.; Watabe, Hiroshi


    Carbon kinetics into the fruit is an agricultural issue on the growth and development of the sink organs to be harvested. Particularly, photoassimilate translocation and distribution are important topics for understanding the mechanism. In the present work, carbon-11 (11C) labeled photoassimilate translocation into fruits of tomato has been imaged using carbon-11-labeled carbon dioxide and the positron emission tomography (PET). Dynamice PET data of gradual increasing of 11C activity and its distribution is acquired quantitatively in intact plant body. This indicates that the 3-D photoassimilate translocation into the fruits is imaged successfully and carbon kinetics is analyzable to understand the plant physiology and nutrition.

  1. Conduction-Zone Measurements Using X-Ray Self-Emission Images (United States)

    Davis, A. K.; Michel, D. T.; Sefkow, A.; Ding, Y. H.; Epstein, R.; Hu, S. X.; Knauer, J. P.; Froula, D. H.


    Time-gated soft x-ray self-emission images of directly driven implosions were measured to probe the hydrodynamic conditions between the critical-density surface and the ablation front of a CH target (conduction zone) at the beginning of a laser pulse. The self-emission at each point in the coronal plasma depends on the local electron temperature and the ion density, and the intensity measured at the diagnostic plane is the line-integrated emissivity through the target. Measured 2-D images of spherically symmetric implosions were angularly averaged and compared with synthetic self-emission profiles generated from 1-D hydrodynamic simulations to benchmark the hydrodynamic parameters in the corona. This comparison was performed for a range of times early in the implosion to study the formation and evolution of the conduction zone. This measurement is significant for inertial confinement fusion since it governs the length of time that the plasma is too small to provide substantial beam smoothing through thermal conduction, determining the laser imprint efficiency. The conduction zone has previously proven challenging to probe because the density is too high for optical diagnostics and because the temperature is too high for x-ray radiography. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  2. Imaging prostate cancer: an update on positron emission tomography and magnetic resonance imaging

    DEFF Research Database (Denmark)

    Bouchelouche, Kirsten; Turkbey, Baris; Choyke, Peter


    Prostate cancer is a common cancer in men and continues to be a major health problem. Imaging plays an essential role in the clinical management of patients. An important goal for prostate cancer imaging is more accurate disease characterization through the synthesis of anatomic, functional....../CT imaging of prostate cancer. Among these, choline (labeled with (18)F or (11)C), (11)C-acetate, and (18)F-fluoride have demonstrated promising results, and other new radiopharmaceuticals are currently under evaluation in preclinical and clinical studies....

  3. Estrogen Sulfotransferase-Mediated Imaging with Positron Emission Tomography in Moyamoya Syndrome


    Surmak, Andrew John


    Moyamoya syndrome presents a cerebrovascular pathology that progressively introduces chronic ischemia. The network of collateral vessels created in response to arterial stenosis causes hypoperfusion and stimulates inflammatory insults that jeopardize the brain. Within this study, we used positron emission tomography (PET) to image inflammatory responses in patients with moyamoya syndrome and present the first report of [11C]-PiB in moyamoya patients. [11C]-PiB has a high affinity for estrogen...

  4. Using axicons for depth discrimination in excitation-emission laser scanning imaging systems (United States)

    Iglesias, Ignacio


    Besides generating good approximations to zero-order Bessel beams, an axicon lens coupled to a spatial filter can be used to collect light while preserving information on the depth coordinate of the source location. To demonstrate the principle, we describe an experimental excitation-emission fluorescence imaging system that uses an axicon twice: to generate an excitation Bessel beam and to collect the emitted light.

  5. Ultraviolet Rayleigh Scatter Imaging for Spatial Temperature Profiles in Atmospheric Microdischarges (United States)


    initially neutral gas when an applied voltage is high enough to allow for an electron avalanche to initiate the breakdown of the particular gas, which... deposited by the discharge. Next, using the image projected by the OES collection optics, the fiber optic sensor head was positioned so that it was nominally

  6. Observation of image pair creation and annihilation from superluminal scattering sources. (United States)

    Clerici, Matteo; Spalding, Gabriel C; Warburton, Ryan; Lyons, Ashley; Aniculaesei, Constantin; Richards, Joseph M; Leach, Jonathan; Henderson, Robert; Faccio, Daniele


    The invariance of the speed of light is one of the foundational pillars of our current understanding of the universe. It implies a series of consequences related to our perception of simultaneity and, ultimately, of time itself. Whereas these consequences are experimentally well studied in the case of subluminal motion, the kinematics of superluminal motion lack direct evidence or even a clear experimental approach. We investigate kinematic effects associated with the superluminal motion of a light source. By using high-temporal-resolution imaging techniques, we directly demonstrate that if the source approaches an observer at superluminal speeds, the temporal ordering of events is inverted and its image appears to propagate backward. Moreover, for a source changing its speed and crossing the interface between subluminal and superluminal propagation regions, we observe image pair annihilation and creation, depending on the crossing direction. These results are very general and show that, regardless of the emitter speed, it is not possible to unambiguously determine the kinematics of an event from imaging and time-resolved measurements alone. This has implications not only for light, but also, for example, for sound and other wave phenomena.

  7. SU-F-I-53: Coded Aperture Coherent Scatter Spectral Imaging of the Breast: A Monte Carlo Evaluation of Absorbed Dose

    Energy Technology Data Exchange (ETDEWEB)

    Morris, R [Durham, NC (United States); Lakshmanan, M; Fong, G; Kapadia, A [Carl E Ravin Advanced Imaging Laboratories, Durham, NC (United States); Greenberg, J [Duke University, Durham, NC (United States)


    Purpose: Coherent scatter based imaging has shown improved contrast and molecular specificity over conventional digital mammography however the biological risks have not been quantified due to a lack of accurate information on absorbed dose. This study intends to characterize the dose distribution and average glandular dose from coded aperture coherent scatter spectral imaging of the breast. The dose deposited in the breast from this new diagnostic imaging modality has not yet been quantitatively evaluated. Here, various digitized anthropomorphic phantoms are tested in a Monte Carlo simulation to evaluate the absorbed dose distribution and average glandular dose using clinically feasible scan protocols. Methods: Geant4 Monte Carlo radiation transport simulation software is used to replicate the coded aperture coherent scatter spectral imaging system. Energy sensitive, photon counting detectors are used to characterize the x-ray beam spectra for various imaging protocols. This input spectra is cross-validated with the results from XSPECT, a commercially available application that yields x-ray tube specific spectra for the operating parameters employed. XSPECT is also used to determine the appropriate number of photons emitted per mAs of tube current at a given kVp tube potential. With the implementation of the XCAT digital anthropomorphic breast phantom library, a variety of breast sizes with differing anatomical structure are evaluated. Simulations were performed with and without compression of the breast for dose comparison. Results: Through the Monte Carlo evaluation of a diverse population of breast types imaged under real-world scan conditions, a clinically relevant average glandular dose for this new imaging modality is extrapolated. Conclusion: With access to the physical coherent scatter imaging system used in the simulation, the results of this Monte Carlo study may be used to directly influence the future development of the modality to keep breast dose to

  8. HST far-ultraviolet imaging of DG Tauri. Fluorescent molecular hydrogen emission from the wide opening-angle outflow (United States)

    Schneider, P. C.; Eislöffel, J.; Güdel, M.; Günther, H. M.; Herczeg, G.; Robrade, J.; Schmitt, J. H. M. M.


    One of the most thoroughly studied jets from all young stellar objects is the jet of DG Tau, which we imaged in the far-ultraviolet with the Hubble Space Telescope for the first time. These high spatial resolution images were obtained with long-pass filters and allow us to construct images tracing mainly H2 and C iv emission. We find that the H2 emission appears as a limb-brightened cone with additional emission close to the jet axis. The length of the rims is about 0.″3 or 42 AU before their brightness strongly drops, and the opening angle is about 90°. Comparing our far-ultraviolet data with near-infrared data we find that the fluorescent H2 emission probably traces the outer, cooler part of the disk wind while an origin of the H2 emission in the surface layers (atmosphere) of the (flared) disk is unlikely. Furthermore, the spatial shape of the H2 emission shows little variation over six years which suggests that the outer part of the disk wind is rather stable and probably not associated with the formation of individual knots. The C iv image shows that the emission is concentrated towards the jet axis. We find no indications for additional C iv emission at larger distances, which strengthens the association with the X-ray emission observed to originate within the DG Tau jet.

  9. Color resolution improvement of the dark-field microscopy imaging of single light scattering plasmonic nanoprobes for microRNA visual detection. (United States)

    Zhou, Jun; Gao, Peng Fei; Zhang, Hong Zhi; Lei, Gang; Zheng, Lin Ling; Liu, Hui; Huang, Cheng Zhi


    Imaging of light scattering plasmonic nanoparticles (PNPs) with the aid of the dark-field microscopy imaging (iDFM) technique has attracted wide attention owing to its high signal-to-noise ratio, but to improve the color resolution and contrast of dark-field microscopy (DFM) images of single light scattering PNPs in a small spectral variation environment is still a challenge. In this study, a new color analytical method for resolving the resolution and contrast in DFM images has been developed and further applied for colorimetric analysis using the digital image processing technique. The color of single light scattering PNP images is automatically coded at first with the hue values of the HSI color model, and then amplified using the MATLAB program even for marginal spectral changes, leading to significant improvement of the color resolution of DFM images and easy detection with the naked eye. As a proof of concept, this method is then applied to distinguish single PNPs with various sizes and to visually detect hepatocellular carcinoma-associated microRNA. As it greatly improved the color resolution of iDFM and its detection sensitivity, this method shows promise to serve as a better alternative for sensitive visual analysis and spectrometer-based spectral analysis.

  10. Single-Molecule Surface-Enhanced Raman Scattering: Can STEM/EELS Image Electromagnetic Hot Spots? (United States)

    Mirsaleh-Kohan, Nasrin; Iberi, Vighter; Simmons, Philip D; Bigelow, Nicholas W; Vaschillo, Alex; Rowland, Meng M; Best, Michael D; Pennycook, Stephen J; Masiello, David J; Guiton, Beth S; Camden, Jon P


    Since the observation of single-molecule surface-enhanced Raman scattering (SMSERS) in 1997, questions regarding the nature of the electromagnetic hot spots responsible for such observations still persist. For the first time, we employ electron-energy-loss spectroscopy (EELS) in a scanning transmission electron microscope (STEM) to obtain maps of the localized surface plasmon modes of SMSERS-active nanostructures, which are resolved in both space and energy. Single-molecule character is confirmed by the bianalyte approach using two isotopologues of Rhodamine 6G. Surprisingly, the STEM/EELS plasmon maps do not show any direct signature of an electromagnetic hot spot in the gaps between the nanoparticles. The origins of this observation are explored using a fully three-dimensional electrodynamics simulation of both the electron-energy-loss probability and the near-electric field enhancements. The calculations suggest that electron beam excitation of the hot spot is possible, but only when the electron beam is located outside of the junction region.

  11. Phase imaging and detection in pseudo-heterodyne scattering scanning near-field optical microscopy measurements. (United States)

    Moreno, Camilo; Alda, Javier; Kinzel, Edward; Boreman, Glenn


    When considering the pseudo-heterodyne mode for detection of the modulus and phase of the near field from scattering scanning near-field optical microscopy (s-SNOM) measurements, processing only the modulus of the signal may produce an undesired constraint in the accessible values of the phase of the near field. A two-dimensional analysis of the signal provided by the data acquisition system makes it possible to obtain phase maps over the whole [0, 2π) range. This requires post-processing of the data to select the best coordinate system in which to represent the data along the direction of maximum variance. The analysis also provides a quantitative parameter describing how much of the total variance is included within the component selected for calculation of the modulus and phase of the near field. The dependence of the pseudo-heterodyne phase on the mean position of the reference mirror is analyzed, and the evolution of the global phase is extracted from the s-SNOM data. The results obtained from this technique compared well with the expected maps of the near-field phase obtained from simulations.

  12. Gd2O3-doped silica @ Au nanoparticles for in vitro imaging cancer biomarkers using surface-enhanced Raman scattering (United States)

    Xiao, Lifu; Tian, Xiumei; Harihar, Sitaram; Li, Qifei; Li, Li; Welch, Danny R.; Zhou, Anhong


    There has been an interest in developing multimodal approaches to combine the advantages of individual imaging modalities, as well as to compensate for respective weaknesses. We previously reported a composite nano-system composed of gadolinium-doped mesoporous silica nanoparticle and gold nanoparticle (Gd-Au NPs) as an efficient MRI contrast agent for in vivo cancer imaging. However, MRI lacks sensitivity and is unsuitable for in vitro cancer detection. Thus, here we performed a study to use the Gd-Au NPs for detection and imaging of a widely recognized human cancer biomarker, epidermal growth factor receptor (EGFR), in individual human cancer cells with surface-enhanced Raman scattering (SERS). The Gd-Au NPs were sequentially conjugated with a monoclonal antibody recognizing EGFR and a Raman reporter molecule, 4-meraptobenzoic acid (MBA), to generate a characteristic SERS signal at 1075 cm- 1. By spatially mapping the SERS intensity at 1075 cm- 1, cellular distribution of EGFR and its relocalization on the plasma membrane were measured in situ. In addition, the EGFR expression levels in three human cancer cell lines (S18, A431 and A549) were measured using this SERS probe, which were consistent with the comparable measurements using immunoblotting and immunofluorescence. Our SERS results show that functionalized Gd-Au NPs successfully targeted EGFR molecules in three human cancer cell lines and monitored changes in single cell EGFR distribution in situ, demonstrating its potential to study cell activity under physiological conditions. This SERS study, combined with our previous MRI study, suggests the Gd-Au nanocomposite is a promising candidate contrast agent for multimodal cancer imaging.

  13. Imaging of SO2 emissions from anthropogenic sources as part of AROMAT campaign (United States)

    Brenot, H. H.; Merlaud, A.; Meier, A.; Ruhtz, T.; Van Roozendael, M.; Stebel, K.; Constantin, D.; Belegante, L.; Dekemper, E.; Theys, N.; Campion, R.; Schuettemeyer, D.


    This study presents field campaign measurements of SO2 emissions from pollution source in Romania. Three types of instruments (SO2 camera, whisk and push broom imager) proceeded ground-based and airborne data acquisition as part of the AROMAT ESA project (monitoring of SO2 plume from a large thermoelectric plant). The SO2 camera used is an imaging system composed of two UV cameras (synchronised in space and time) allowing fast acquisitions of intensity. Each camera is equipped with the same lens and a specific narrow band-pass filter (one at the wavelength at which SO2 absorbs and one at an off-band wavelength). The combination of two UV cameras provides a 2D image of the integrated content of SO2. The Small Whisk broom Imager for trace gases monitoriNG (SWING) used in this study and developed at the Belgian Institute for Space Aeronomy (BIRA), is based on a compact ultra-violet visible spectrometer and a scanning mirror. The Airborne imaging instrument for Measurements of Atmospheric Pollution (AirMAP) constructed at the Institute of Environmental Physics of the University of Bremen (IUP), performed SO2 measurements in the UV-visible spectral range. Both whisk and push broom scanner use the DOAS technique, that is based on the relationship between the quantity of light absorbed and the number of SO2 molecules in the light path. SWING and AirMAP instruments provide scans of SO2 column density. Quantification of 2D field contents and fluxes of anthropogenic SO2 emissions from Turceni power station (Romania) are shown. Preparatory results from data acquisition in the harbour of Antwerp (monitoring of SO2 emissions from refinery and chemical industry) are also presented.

  14. Patient-specific scatter correction in clinical cone beam computed tomography imaging made possible by the combination of Monte Carlo simulations and a ray tracing algorithm

    DEFF Research Database (Denmark)

    Slot Thing, Rune; Bernchou, Uffe; Mainegra-Hing, Ernesto


    _cbct), was used to perform MC simulations of an Elekta XVI CBCT imaging system. A 60keV x-ray source was used, and air kerma scored at the detector plane. Several variance reduction techniques (VRTs) were used to increase the scatter calculation efficiency. Three patient phantoms based on CT scans were simulated...... being fully implemented in a clinical setting. This study investigates the combination of using fast MC simulations to predict scatter distributions with a ray tracing algorithm to allow calibration between simulated and clinical CBCT images. Material and methods. An EGSnrc-based user code (egs......, namely a brain, a thorax and a pelvis scan. A ray tracing algorithm was used to calculate the detector signal due to primary photons. A total of 288 projections were simulated, one for each thread on the computer cluster used for the investigation. Results. Scatter distributions for the brain, thorax...

  15. Simultaneous in vivo imaging of diffuse optical reflectance, optoacoustic pressure and ultrasonic scattering (Conference Presentation) (United States)

    Subochev, Pavel V.; Orlova, Anna G.; Turchin, Ilya V.


    We will present reflection-mode bioimaging system providing complementary optical, photoacsoutic and acoustic measurements by acoustic detector after each laser pulse with 2kHz repetition rate. The photons absorbed within the biological tissue provide optoacoustic (OA) signals, the photons absorbed by the external electrode of a detector provide the measurable diffuse reflectance (DR) from the sample and the probing ultrasonic (US) pulse. To demonstrate the in vivo capabilities of the system we performed complementary DR/OA/US imaging of small laboratory animals and human palm with 3.5mm/50μm/35μm lateral resolution at up to 3 mm diagnostic depth. Functional OA and DR imaging demonstrated the levels of tissue vascularization and blood supply. Structural US imaging was essential for understanding the position of vessels and zones with different perfusion. Before BiOS-2017 we plan to accomplish more in vivo experiments validating the developed triple-modality system as diagnostic tool to detect vascularization as well as mechanisms of vascular changes when monitoring response to therapy.

  16. [Effects of high-strip density anti-scatter grid on image quality and radiation dose]. (United States)

    Wamser, G; Maier, W; Aichinger, H; Bohndorf, K


    Using a new type of a stationary high strip density grid (13/75) for plain films of the abdomen, the effect was evaluated with regard to quality and patient dose in comparison with an established moving radiographic grid (12/40). The high strip density grid (13/75) was compared with a 12/40 grid using test objects and 100 patients per each grid type for plain films of the abdomen. The examinations were carried out via the screen-film system, speed class (SC) 400. Patients' weight, age and dose measurements were recorded. The image quality was evaluated via a multi-reader study using delineation of anatomical structures and a rating scale (score 1-5 or 1-3). Both measurements with test objects and patients abdominal plain films showed a decrease in radiation dose of 17% using the 13/75 grid, and 24%, respectively. The delineation of 4 out of 7 anatomical structures was slightly reduced with the new high strip density grid (maximum score reduction: 0.4), the image contrast, as well as the radiologists' subjective rating. Apart from an acceptable loss in image quality compared with the 12/40 grid, the new high strip density grid (13/ 75) enables a clear reduction in radiation dose.

  17. Imaging microscopic distribution of antifungal agents in dandruff treatments with stimulated Raman scattering microscopy (United States)

    Garrett, Natalie L.; Singh, Bhumika; Jones, Andrew; Moger, Julian


    Treatment of dandruff condition usually involves use of antidandruff shampoos containing antifungal agents. Different antifungal agents show variable clinical efficacy based on their cutaneous distribution and bioavailability. Using stimulated Raman scattering (SRS), we mapped the distribution of unlabeled low-molecular weight antifungal compounds zinc pyrithione (ZnPT) and climbazole (CBZ) on the surface of intact porcine skin with cellular precision. SRS has sufficient chemical selectivity and sensitivity to detect the agents on the skin surface based on their unique chemical motifs that do not occur naturally in biological tissues. Moreover, SRS is able to correlate the distribution of the agents with the morphological features of the skin using the CH2 stretch mode, which is abundant in skin lipids. This is a significant strength of the technique since it allows the microscopic accumulation of the agents to be correlated with physiological features and their chemical environment without the use of counter stains. Our findings show that due to its lower solubility, ZnPT coats the surface of the skin with a sparse layer of crystals in the size range of 1 to 4 μm. This is consistent with the current understanding of the mode of action of ZnPT. In contrast, CBZ being more soluble and hydrophobic resulted in diffuse homogeneous distribution. It predominantly resided in microscopic lipid-rich crevasses and penetrated up to 60 μm into the infundibular spaces surrounding the hair shaft. The ability of the SRS to selectively map the distribution of agents on the skin's surface has the potential to provide insight into the mechanisms underpinning the topical application of antifungal or skin-active agents that could lead to the rational engineering of enhanced formulations.

  18. Beam emission spectroscopy turbulence imaging system for the MAST spherical tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Field, A. R.; Gaffka, R.; Shibaev, S. [EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Dunai, D.; Kiss, I.; Meszaros, B.; Krizsanoczi, T.; Zoletnik, S. [KFKI-RMKI, Association EURATOM, P.O. Box 49, H-1525 Budapest (Hungary); Ghim, Y.-C. [Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford (United Kingdom)


    A new beam emission spectroscopy turbulence imaging system has recently been installed onto the MAST spherical tokamak. The system utilises a high-throughput, direct coupled imaging optics, and a single large interference filter for collection of the Doppler shifted D{sub {alpha}} emission from the {approx}2 MW heating beam of {approx}70 keV injection energy. The collected light is imaged onto a 2D array detector with 8 x 4 avalanche photodiode sensors which is incorporated into a custom camera unit to perform simultaneous 14-bit digitization at 2 MHz of all 32 channels. The array is imaged at the beam to achieve a spatial resolution of {approx}2 cm in the radial (horizontal) and poloidal (vertical) directions, which is sufficient for detection of the ion-scale plasma turbulence. At the typical photon fluxes of {approx}10{sup 11} s{sup -1} the achieved signal-to-noise ratio of {approx}300 at the 0.5 MHz analogue bandwidth is sufficient for detection of relative density fluctuations at the level of a few 0.1%. The system is to be utilised for the study of the characteristics of the broadband, ion-scale turbulence, in particular its interaction with flow shear, as well as coherent fluctuations due to various types of MHD activity.

  19. Imaging with ultra-small-angle X-ray scattering using a Laue-case analyzer and its application to human breast tumors. (United States)

    Shimao, Daisuke; Sunaguchi, Naoki; Sasaya, Tenta; Yuasa, Tetsuya; Ichihara, Shu; Kawasaki, Tomonori; Ando, Masami


    In this study, we demonstrate a novel imaging technique, based on ultra-small-angle X-ray scattering (USAXS) that uses a Laue-case Si wafer as the angle analyzer. We utilized the (1 1 1) diffraction plane of a 356 μm thick, symmetrically cut Si wafer as the angle analyzer, denoted by A[L]. With this device, we performed USAXS imaging experiments using 19.8 keV synchrotron X-rays. The objects we imaged were formalin-fixed, paraffin-embedded breast tumors (an invasive carcinoma and an intraductal papilloma). During image acquisition by a charge-coupled device (CCD) camera, we varied the rotation angle of the analyzer in 0.02″ steps from -2.40″ to +2.40″ around the Bragg angle. The exposure time for each image was 2 s. We determined the amount of ultra-small-angle X-ray scattering from the width of the intensity curve obtained for each local pixel during the rotation of the analyzer. We acquired USAXS images of malignant and benign breast tumor specimens using the A[L] analyzer; regions with larger USAXS form brighter areas in the image. We varied the sensitivity of the USAXS image by changing the threshold level of the object rocking curve. The USAXS images can provide information about the internal distribution of closely packed scattering bodies in a sample with reasonable sensitivity. This information differs from that obtainable through refraction-contrast imaging. Although further validation studies will be necessary, we conclude that USAXS imaging using a Laue-case analyzer may have significant potential as a new diagnosis technique. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  20. Imaging plant nuclei and membrane-associated cytoskeleton by field emission scanning electron microscopy. (United States)

    Fišerová, Jindřiška; Goldberg, Martin W


    Scanning electron microscopy (SEM) is a powerful technique that can image exposed surfaces in 3D. Modern scanning electron microscopes, with field emission electron sources and in-lens specimen chambers, achieve resolutions of better than 0.5 nm and thus offer views of ultrastructural details of subcellular structures or even macromolecular complexes. Obtaining a reliable image is, however, dependent on sample preparation methods that robustly but accurately preserve biological structures. In plants, exposing the object of interest may be difficult due to the existence of a cell wall. This protocol shows how to isolate plant nuclei for SEM imaging of the nuclear envelope and associated structures from both sides of the nuclear envelope in cultured cells as well as in leaf or root cells. Further, it provides a method for uncovering membrane-associated cytoskeletal structures.

  1. Multi-images deconvolution improves signal-to-noise ratio on gated stimulated emission depletion microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Castello, Marco [Nanobiophotonics, Nanophysics, Istituto Italiano di Tecnologia, Via Morego 30, Genoa, 16163 (Italy); DIBRIS, University of Genoa, Via Opera Pia 13, Genoa 16145 (Italy); Diaspro, Alberto [Nanobiophotonics, Nanophysics, Istituto Italiano di Tecnologia, Via Morego 30, Genoa, 16163 (Italy); Nikon Imaging Center, Via Morego 30, Genoa 16163 (Italy); Vicidomini, Giuseppe, E-mail: [Nanobiophotonics, Nanophysics, Istituto Italiano di Tecnologia, Via Morego 30, Genoa, 16163 (Italy)


    Time-gated detection, namely, only collecting the fluorescence photons after a time-delay from the excitation events, reduces complexity, cost, and illumination intensity of a stimulated emission depletion (STED) microscope. In the gated continuous-wave- (CW-) STED implementation, the spatial resolution improves with increased time-delay, but the signal-to-noise ratio (SNR) reduces. Thus, in sub-optimal conditions, such as a low photon-budget regime, the SNR reduction can cancel-out the expected gain in resolution. Here, we propose a method which does not discard photons, but instead collects all the photons in different time-gates and recombines them through a multi-image deconvolution. Our results, obtained on simulated and experimental data, show that the SNR of the restored image improves relative to the gated image, thereby improving the effective resolution.

  2. Innovations in optical coupling of the KSTAR electron cyclotron emission imaging diagnostic. (United States)

    Liang, T; Tobias, B; Kong, X; Domier, C W; Luhmann, N C; Lee, W; Yun, G S; Park, H K


    The installation of a new electron cyclotron emission imaging diagnostic for the Korea Superconducting Tokamak Advanced Research (KSTAR) is underway, making use of a unique optical port cassette design, which allows placement of refractive elements inside the cryostat region without adverse effects. The result is unprecedented window access for the implementation of a state of the art imaging diagnostic. A dual-array optical design has been developed, capable of simultaneously imaging the high and low field sides of the plasma with independent features of focal plane translation, vertical zoom, and radial channel spacing. The number of translating optics has been minimized by making use of a zoom lens triplet and parabolic plasma facing lens for maximum channel uniformity over a continuous vertical zoom range of 3:1. The simulated performance of this design is presented along with preliminary laboratory characterization data.

  3. Definition of Scatterer in Electromagnetic Wave Propagation Environment Using Image Processing Based on FDTD Method

    Directory of Open Access Journals (Sweden)

    Mahmood Falah


    Full Text Available In this paper, we implement real irregular terrain model in computer program by using image processing. We show how this approach can be used in simulation of E.M. wave propagation on irregular earth’s surface in a realistic manner. Some simulations are performed for implementation of longitudinal height differences over the propagation path as PEC surface .We also describe that how this approach can be used for any boundary condition in computational space. The results observed in Snapshots of the field profiles taken at different simulation times, validates capability of this method.

  4. 3D registration method based on scattered point cloud from B-model ultrasound image (United States)

    Hu, Lei; Xu, Xiaojun; Wang, Lifeng; Guo, Na; Xie, Feng


    The paper proposes a registration method on 3D point cloud of the bone tissue surface extracted by B-mode ultrasound image and the CT model . The B-mode ultrasound is used to get two-dimensional images of the femur tissue . The binocular stereo vision tracker is used to obtain spatial position and orientation of the optical positioning device fixed on the ultrasound probe. The combining of the two kind of data generates 3D point cloud of the bone tissue surface. The pixel coordinates of the bone surface are automatically obtained from ultrasound image using an improved local phase symmetry (phase symmetry, PS) . The mapping of the pixel coordinates on the ultrasound image and 3D space is obtained through a series of calibration methods. In order to detect the effect of registration, six markers are implanted on a complete fresh pig femoral .The actual coordinates of the marks are measured with two methods. The first method is to get the coordinates with measuring tools under a coordinate system. The second is to measure the coordinates of the markers in the CT model registered with 3D point cloud using the ICP registration algorithm under the same coordinate system. Ten registration experiments are carried out in the same way. Error results are obtained by comparing the two sets of mark point coordinates obtained by two different methods. The results is that a minimum error is 1.34mm, the maximum error is 3.22mm,and the average error of 2.52mm; ICP registration algorithm calculates the average error of 0.89mm and a standard deviation of 0.62mm.This evaluation standards of registration accuracy is different from the average error obtained by the ICP registration algorithm. It can be intuitive to show the error caused by the operation of clinical doctors. Reference to the accuracy requirements of different operation in the Department of orthopedics, the method can be apply to the bone reduction and the anterior cruciate ligament surgery.

  5. Multifunctional superparamagnetic nanoshells: combining two-photon luminescence imaging, surface-enhanced Raman scattering and magnetic separation (United States)

    Jin, Xiulong; Li, Haiyan; Wang, Shanshan; Kong, Ni; Xu, Hong; Fu, Qihua; Gu, Hongchen; Ye, Jian


    With the increasing need for multi-purpose analysis in the biomedical field, traditional single diagnosis methods cannot meet the requirements. Therefore new multifunctional technologies and materials for the integration of sample collection, sensing and imaging are in great demand. Core-shell nanoparticles offer a unique platform to combine multifunctions in a single particle. In this work, we have constructed a novel type of core-shell superparamagnetic nanoshell (Fe3O4@SiO2@Au), composed of a Fe3O4 cluster core, a thin Au shell and a SiO2 layer in between. The obtained multifunctional nanoparticles combine the magnetic properties and plasmonic optical properties effectively, which were well investigated by a number of experimental characterization methods and theoretical simulations. We have demonstrated that Fe3O4@SiO2@Au nanoparticles can be utilized for two-photon luminescence (TPL) imaging, near-infrared surface-enhanced Raman scattering (NIR SERS) and cell collection by magnetic separation. The TPL intensity could be further greatly enhanced through the plasmon coupling effect in the self-assembled nanoparticle chains, which were triggered by an external magnetic field. In addition, Fe3O4@SiO2@Au nanoparticles may have great potential applications such as enhanced magnetic resonance imaging (MRI) and photo-thermotherapy. Successful combination of multifunctions including magnetic response, biosensing and bioimaging in single nanoparticles allows further manipulation, real-time tracking, and intracellular molecule analysis of live cells at a single-cell level.With the increasing need for multi-purpose analysis in the biomedical field, traditional single diagnosis methods cannot meet the requirements. Therefore new multifunctional technologies and materials for the integration of sample collection, sensing and imaging are in great demand. Core-shell nanoparticles offer a unique platform to combine multifunctions in a single particle. In this work, we have

  6. SLIME: scattering labeled imaging of microvasculature in excised tissues using OCT (Conference Presentation) (United States)

    Liu, Yehe; Gu, Shi; Watanabe, Michiko; Rollins, Andrew M.; Jenkins, Michael W.


    Abnormal coronary development causes various health problems. However, coronary development remains one of the highly neglected areas in developmental cardiology due to limited technology. Currently, there is not a robust method available to map the microvasculature throughout the entire embryonic heart in 3D. This is a challenging task because it requires both micron level resolution over a large field of view and sufficient imaging depth. Speckle-variance optical coherence tomography (OCT) has reasonable resolution for coronary vessel mapping, but limited penetration depth and sensitivity to bulk motion made it impossible to apply this method to late-stage beating hearts. Some success has been achieved with coronary dye perfusion, but smaller vessels are not efficiently stained and penetration depth is still an issue. To address this problem, we present an OCT imaging procedure using optical clearing and a contrast agent (titanium dioxide) that enables 3D mapping of the coronary microvasculature in developing embryonic hearts. In brief, the hearts of stage 36 quail embryos were perfused with a low viscosity mixture of polyvinyl acetate (PVA) and titanium dioxide through the aorta using micropipette injection. After perfusion, the viscosity of the solution was increased by crosslinking the PVA polymer chains with borate ions. The tissue was then optically cleared. The titanium dioxide particles remaining in the coronaries provided a strong OCT signal, while the rest of the cardiac structures became relatively transparent. Using this technique, we are able to investigate coronary morphologies in different disease models.

  7. Scar imaging using multislice computed tomography versus metabolic imaging by F-18 FDG positron emission tomography: a pilot study. (United States)

    Dwivedi, Girish; Al-Shehri, Halia; deKemp, Robert A; Ali, Iftikhar; Alghamdi, Abdul Aziz; Klein, Ran; Scullion, Andrew; Ruddy, Terrence D; Beanlands, Rob S; Chow, Benjamin J W


    F-18 fluorodeoxyglucose (FDG) positron emission tomography (PET) FDG PET is an established metabolic imaging technique to assess myocardial viability. Delayed iodinated contrast enhancement (DE) of myocardium on computed tomography (CT) has also been shown to be an anatomical marker of nonviable myocardium. A pilot study was undertaken to determine quantitative and qualitative agreement between metabolic viability imaging and scar imaging using FDG PET and multislice CT respectively. Fifteen patients with coronary artery disease and left ventricular dysfunction were recruited in the study. All patients underwent same day FDG PET and DECT to evaluate myocardial viability. The images were analyzed quantitatively and qualitatively using a 17 segment model. DECT diagnosed viability in 57% (146/255) whilst PET in 51% (129/255) of segments. The per-segment agreement between DECT and FDG PET on qualitative analysis was 70% (Kappa: 0.40). The agreement in quantitative measurements between the two techniques for viability showed modest correlation [Pearson ρ: 0.63; Pcorrelate modestly with metabolic FDG PET, both qualitatively and quantitatively. Although in our study quantitative analysis offered superior agreement compared to qualitative with DECT, further studies are needed to determine its incremental value. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  8. Small-Animal Imaging Using Clinical Positron Emission Tomography/Computed Tomography and Super-Resolution

    Directory of Open Access Journals (Sweden)

    Frank P. DiFilippo


    Full Text Available Considering the high cost of dedicated small-animal positron emission tomography/computed tomography (PET/CT, an acceptable alternative in many situations might be clinical PET/CT. However, spatial resolution and image quality are of concern. The utility of clinical PET/CT for small-animal research and image quality improvements from super-resolution (spatial subsampling were investigated. National Electrical Manufacturers Association (NEMA NU 4 phantom and mouse data were acquired with a clinical PET/CT scanner, as both conventional static and stepped scans. Static scans were reconstructed with and without point spread function (PSF modeling. Stepped images were postprocessed with iterative deconvolution to produce super-resolution images. Image quality was markedly improved using the super-resolution technique, avoiding certain artifacts produced by PSF modeling. The 2 mm rod of the NU 4 phantom was visualized with high contrast, and the major structures of the mouse were well resolved. Although not a perfect substitute for a state-of-the-art small-animal PET/CT scanner, a clinical PET/CT scanner with super-resolution produces acceptable small-animal image quality for many preclinical research studies.

  9. Ultraviolet and Extreme-Ultraviolet Emissions at the Flare Footpoints Observed by Atmosphere Imaging Assembly (United States)

    Qiu, Jiong; Sturrock, Zoe; Longcope, Dana W.; Klimchuk, James A.; Liu, Wen-Juan


    A solar flare is composed of impulsive energy release events by magnetic reconnection, which forms and heats flare loops. Recent studies have revealed a two-phase evolution pattern of UV 1600 A emission at the feet of these loops: a rapid pulse lasting for a few seconds to a few minutes, followed by a gradual decay on timescales of a few tens of minutes. Multiple band EUV observations by the Atmosphere Imaging Assembly further reveal very similar signatures. These two phases represent different but related signatures of an impulsive energy release in the corona. The rapid pulse is an immediate response of the lower atmosphere to an intense thermal conduction flux resulting from the sudden heating of the corona to high temperatures (we rule out energetic particles due to a lack of significant hard X-ray emission). The gradual phase is associated with the cooling of hot plasma that has been evaporated into the corona. The observed footpoint emission is again powered by thermal conduction (and enthalpy), but now during a period when approximate steady-state conditions are established in the loop. UV and EUV light curves of individual pixels may therefore be separated into contributions from two distinct physical mechanisms to shed light on the nature of energy transport in a flare.We demonstrate this technique using coordinated, spatially resolved observations of UV and EUV emissions from the footpoints of a C3.2 thermal flare.

  10. Near-infrared-emissive polymersomes: Self-assembled soft matter for in vivo optical imaging (United States)

    Ghoroghchian, P. Peter; Frail, Paul R.; Susumu, Kimihiro; Blessington, Dana; Brannan, Aaron K.; Bates, Frank S.; Chance, Britton; Hammer, Daniel A.; Therien, Michael J.


    We demonstrate that synthetic soft materials can extend the utility of natural vesicles, from predominantly hydrophilic reservoirs to functional colloidal carriers that facilitate the biomedical application of large aqueous-insoluble compounds. Near-infrared (NIR)-emissive polymersomes (50-nm- to 50-μm-diameter polymer vesicles) were generated through cooperative self assembly of amphiphilic diblock copolymers and conjugated multi(porphyrin)-based NIR fluorophores (NIRFs). When compared with natural vesicles comprised of phospholipids, polymersomes were uniquely capable of incorporating and uniformly distributing numerous large hydrophobic NIRFs exclusively in their lamellar membranes. Within these sequestered compartments, long polymer chains regulate the mean fluorophore–fluorophore interspatial separation as well as the fluorophore-localized electronic environment. Porphyrin-based NIRFs manifest photophysical properties within the polymersomal matrix akin to those established for these high-emission dipole strength fluorophores in organic solvents, thereby yielding uniquely emissive vesicles. Furthermore, the total fluorescence emanating from the assemblies gives rise to a localized optical signal of sufficient intensity to penetrate through the dense tumor tissue of a live animal. Robust NIR-emissive polymersomes thus define a soft matter platform with exceptional potential to facilitate deep-tissue fluorescence-based imaging for in vivo diagnostic and drug-delivery applications. PMID:15708979

  11. Temperature and emissivity separation via sparse representation with thermal airborne hyperspectral imager data (United States)

    Li, Chengyi; Tian, Shufang; Li, Shijie; Yin, Mei


    The thermal airborne hyperspectral imager (TASI), which has 32 channels that provide continuous spectral coverage within wavelengths of 8 to 11.5 μm, is very beneficial for land surface temperature and land surface emissivity (LSE) retrieval. In remote sensing applications, emissivity is important for features classification and temperature is important for environmental monitoring, global climate change, and target recognition studies. This paper proposed a temperature and emissivity separation method via sparse representation (SR-TES) with TASI data, which employs a sparseness differences point of view whereby the atmospheric spectrum cannot be considered SR under the LSE spectral dictionary. We built the dictionary from Johns Hopkins University's spectral library as an overcomplete base, and the dictionary learning K-SVD algorithm was adopted. The simulation results showed that SR-TES performed better than the TES algorithm in the case of noise impact, and the results from TASI data for the Liuyuan research region were reasonable; partial validation revealed a root mean square error of 0.0144 for broad emissivity, which preliminarily proves that this method is feasible.

  12. Is Optical Gas Imaging Effective for Detecting Fugitive Methane Emissions? - A Technological and Policy Perspective (United States)

    Ravikumar, A. P.; Wang, J.; Brandt, A. R.


    Mitigating fugitive methane emissions from the oil and gas industry has become an important concern for both businesses and regulators. While recent studies have improved our understanding of emissions from all sectors of the natural gas supply chain, cost-effectively identifying leaks over expansive natural gas infrastructure remains a significant challenge. Recently, the Environmental Protection Agency (EPA) has recommended the use of optical gas imaging (OGI) technologies to be used in industry-wide leak detection and repair (LDAR) programs. However, there has been little to no systematic study of the effectiveness of infrared-camera-based OGI technology for leak detection applications. Here, we develop a physics-based model that simulates a passive infrared camera imaging a methane leak against varying background and ambient conditions. We verify the simulation tool through a series of large-volume controlled release field experiments wherein known quantities of methane were released and imaged from a range of distances. After simulator verification, we analyze the effects of environmental conditions like temperature, wind, and imaging background on the amount of methane detected from a statistically representative survey program. We also examine the effects of LDAR design parameters like imaging distance, leak size distribution, and gas composition. We show that imaging distance strongly affects leak detection - EPA's expectation of a 60% reduction in fugitive emissions based on a semi-annual LDAR survey will be realized only if leaks are imaged at a distance less than 10 m from the source under ideal environmental conditions. Local wind speed is also shown to be important. We show that minimum detection limits are 3 to 4 times higher for wet-gas compositions that contain a significant fraction of ethane and propane, resulting a significantly large leakage rate. We also explore the importance of `super-emitters' on the performance of an OGI-based leak

  13. New approaches to intracellular drug imaging by stimulated Raman scattering microscopy (United States)

    Lee, M.; Tipping, W. J.; Serrels, A.; Hulme, A. N.; Brunton, V. G.


    A range of proposed alkyne Raman tags are examined in-silico for activity and then synthesised generating a library of analogues of the natural product, anisomycin. We report the use of bisaryl butadiyne-anisomycin (BADY-anisomycin) in intracellular SRS microscopy studies of uptake and localisation within live and fixed cells. Following rational design and synthesis, BADY-anisomycin was shown to produce an intense Raman band at 2219 cm-1, that is centrally located within the cellular silent region and is approximately 60 times more Raman active than the corresponding propargylanisomycin. Finally, we demonstrate two-colour imaging utilising EdU, an alkyne-containing proliferation probe and BADY-anisomycin.

  14. Understanding Polymer-Fullerene Morphology in Organic Solar Cells via Photoluminescence, Raman Scattering, and Spectroscopic Imaging (United States)

    Carach, Christopher Andrew

    Understanding and controlling carrier transport in conjugated polymer films and composites is critical to the development and application of plastic solar cells. Recent efforts have focused on "bulk heterojunction" structures where a conjugated polymer donor is mixed at the nanoscale with a fullerene acceptor to achieve large interfacial areas for exciton splitting. In these systems, fabrication protocols dramatically affect device efficiency and charge transport is intimately tied to film morphology through local order, domain formation, and compositional heterogeneity. We employ both far-field and confocal/near-field optical spectroscopy (absorbance, low-temperature photoluminescence, Raman) to study chain order (aggregation, pi-stacking), photo-oxidation, and local morphology in conjugated polymer (PPV and polythiophene) -- fullerene (PCBM) blends. Through quantitative analysis of exciton bandwidths, emission intensity, and vibronic lineshapes, we demonstrate that competition exists between the chemical "disordering" effect of photo-degradation and the physical "ordering" effect of aggregation, each of which dominate under different processing conditions. Large changes in photoluminescence and Raman show that PCBM begins to significantly hinder intra-chain planarization and inter-chain pi-overlap at a critical PCBM weight fraction. Furthermore, the critical weight fraction is a function of the polymer regiochemistry, occurring at lower PCBM weight fractions for a more regio-random polymer. Mild thermal annealing of blended films was seen to restore order, which results from PCBM phase segregation (lower dispersion) and growth of polymer aggregates. Spatially resolved spectral analysis of photoluminescence was also used to map fullerene diffusion and agglomeration as well as detect local changes in interfacial contact between donor and acceptor domains due to thermal annealing.

  15. Modeling clustered activity increase in amyloid-beta positron emission tomographic images with statistical descriptors

    Directory of Open Access Journals (Sweden)

    Shokouhi S


    Full Text Available Sepideh Shokouhi,1 Baxter P Rogers,1 Hakmook Kang,2 Zhaohua Ding,1 Daniel O Claassen,3 John W Mckay,1 William R Riddle1On behalf of the Alzheimer’s Disease Neuroimaging Initiative1Department of Radiology and Radiological Sciences, Vanderbilt University Institute of Imaging Science, 2Department of Biostatistics, 3Department of Neurology, Vanderbilt University, Nashville, TN, USABackground: Amyloid-beta (Aβ imaging with positron emission tomography (PET holds promise for detecting the presence of Aβ plaques in the cortical gray matter. Many image analyses focus on regional average measurements of tracer activity distribution; however, considerable additional information is available in the images. Metrics that describe the statistical properties of images, such as the two-point correlation function (S2, have found wide applications in astronomy and materials science. S2 provides a detailed characterization of spatial patterns in images typically referred to as clustering or flocculence. The objective of this study was to translate the two-point correlation method into Aβ-PET of the human brain using 11C-Pittsburgh compound B (11C-PiB to characterize longitudinal changes in the tracer distribution that may reflect changes in Aβ plaque accumulation.Methods: We modified the conventional S2 metric, which is primarily used for binary images and formulated a weighted two-point correlation function (wS2 to describe nonbinary, real-valued PET images with a single statistical function. Using serial 11C-PiB scans, we calculated wS2 functions from two-dimensional PET images of different cortical regions as well as three-dimensional data from the whole brain. The area under the wS2 functions was calculated and compared with the mean/median of the standardized uptake value ratio (SUVR. For three-dimensional data, we compared the area under the wS2 curves with the subjects’ cerebrospinal fluid measures.Results: Overall, the longitudinal changes in wS2

  16. Electron beam confinement and image contrast enhancement in near field emission scanning electron microscopy. (United States)

    Kirk, T L; De Pietro, L G; Pescia, D; Ramsperger, U


    In conventional scanning electron microscopy (SEM), the lateral resolution is limited by the electron beam diameter impinging on the specimen surface. Near field emission scanning electron microscopy (NFESEM) provides a simple means of overcoming this limit; however, the most suitable field emitter remains to be determined. NFESEM has been used in this work to investigate the W (110) surface with single-crystal tungsten tips of (310), (111), and (100)-orientations. The topographic images generated from both the electron intensity variations and the field emission current indicate higher resolution capabilities with decreasing tip work function than with polycrystalline tungsten tips. The confinement of the electron beam transcends the resolution limitations of the geometrical models, which are determined by the minimum beam width.

  17. Interference filter spectral imaging of twilight O+(2P-2D emission

    Directory of Open Access Journals (Sweden)

    R. H. Wiens

    Full Text Available A spectral imager specifically designed to measure the O+(2P-2D emission in the thermosphere during twilight has been constructed and tested in Toronto (43.8°N, 79.3°W, and found to show promise for long-term and campaign-mode operations. A modification of the mesopause oxygen rotational temperature imager (MORTI, it consists basically of a narrow-band interference filter (0.14 nm bandwidth to separate wavelengths as a function of off-axis angle, a lens to focus the spectrum into a series of concentric rings, and a focal plane array (CCD to record the spectral images in digital form. The instrument was built with two fields of view, one for the zenith and one for 20° above the horizon, movable to track the azimuth of the Sun, in order to provide appropriate data for inversion. Data gathered during June 1991 provided measurements of the column-integrated emission rate with a precision of about 3%. An atomic oxygen profile was deduced that showed good agreement with that predicted by the MSIS-90 model atmosphere. Geomagnetically induced variations of the O+ lines, calcium spectra resulting from meteor showers, and OH nightglow were also observed.

  18. Interference filter spectral imaging of twilight O+(2P-2D emission

    Directory of Open Access Journals (Sweden)

    Y. Ma


    Full Text Available A spectral imager specifically designed to measure the O+(2P-2D emission in the thermosphere during twilight has been constructed and tested in Toronto (43.8°N, 79.3°W, and found to show promise for long-term and campaign-mode operations. A modification of the mesopause oxygen rotational temperature imager (MORTI, it consists basically of a narrow-band interference filter (0.14 nm bandwidth to separate wavelengths as a function of off-axis angle, a lens to focus the spectrum into a series of concentric rings, and a focal plane array (CCD to record the spectral images in digital form. The instrument was built with two fields of view, one for the zenith and one for 20° above the horizon, movable to track the azimuth of the Sun, in order to provide appropriate data for inversion. Data gathered during June 1991 provided measurements of the column-integrated emission rate with a precision of about 3%. An atomic oxygen profile was deduced that showed good agreement with that predicted by the MSIS-90 model atmosphere. Geomagnetically induced variations of the O+ lines, calcium spectra resulting from meteor showers, and OH nightglow were also observed.

  19. Positron emission tomography myocardial perfusion imaging in children with suspected coronary abnormalities. (United States)

    Singh, T P; Muzik, O; Forbes, T F; Di Carli, M F


    Positron emission tomography (PET) myocardial perfusion imaging has higher spatial resolution than conventional single photon emission computed tomography (SPECT) imaging and allows accurate and reproducible quantification of myocardial blood flow (MBF). In this article, we describe the role of PET myocardial perfusion imaging in clinical decision making in children with suspected coronary abnormalities. We performed a PET myocardial perfusion study using N-13 ammonia in 10 children (median age, 14 years; range, 1-17 years). The indications included exercise-induced chest pain and ST segment changes during exercise testing, coronary artery ectasia, hypertrophic cardiomyopathy with myocardial bridging of the left anterior descending coronary artery, and suspected left coronary stenosis in an infant with William's syndrome. MBF was assessed at baseline and during adenosine hyperemia in all 10 patients and postexercise in 8 patients. Myocardial perfusion was homogeneous at baseline in all 10 patients, during adenosine perfusion in 9 of 10 patients, and postexercise in all 8 patients. Three patients with homogeneous rest and stress perfusion had impaired myocardial flow reserve. The infant with William's syndrome developed a large, reversible perfusion defect in the left coronary territory during adenosine stress and underwent surgical repair. Myocardial flow reserve findings were valuable for clinical decision making in individual patients. We conclude that MBF quantification with N-13 ammonia and PET provides supplemental perfusion information and is helpful in clinical decision making in children with suspected coronary abnormalities.

  20. A multiresolution image based approach for correction of partial volume effects in emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Boussion, N; Hatt, M; Lamare, F; Bizais, Y; Turzo, A; Rest, C Cheze-Le; Visvikis, D [INSERM U650, Laboratoire du Traitement de l' Information Medicale (LaTIM), CHU Morvan, Brest (France)


    Partial volume effects (PVEs) are consequences of the limited spatial resolution in emission tomography. They lead to a loss of signal in tissues of size similar to the point spread function and induce activity spillover between regions. Although PVE can be corrected for by using algorithms that provide the correct radioactivity concentration in a series of regions of interest (ROIs), so far little attention has been given to the possibility of creating improved images as a result of PVE correction. Potential advantages of PVE-corrected images include the ability to accurately delineate functional volumes as well as improving tumour-to-background ratio, resulting in an associated improvement in the analysis of response to therapy studies and diagnostic examinations, respectively. The objective of our study was therefore to develop a methodology for PVE correction not only to enable the accurate recuperation of activity concentrations, but also to generate PVE-corrected images. In the multiresolution analysis that we define here, details of a high-resolution image H (MRI or CT) are extracted, transformed and integrated in a low-resolution image L (PET or SPECT). A discrete wavelet transform of both H and L images is performed by using the 'a trous' algorithm, which allows the spatial frequencies (details, edges, textures) to be obtained easily at a level of resolution common to H and L. A model is then inferred to build the lacking details of L from the high-frequency details in H. The process was successfully tested on synthetic and simulated data, proving the ability to obtain accurately corrected images. Quantitative PVE correction was found to be comparable with a method considered as a reference but limited to ROI analyses. Visual improvement and quantitative correction were also obtained in two examples of clinical images, the first using a combined PET/CT scanner with a lymphoma patient and the second using a FDG brain PET and corresponding T1

  1. K-space model of motion artifacts in synthetic transmit aperture ultrasound imaging

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Jensen, Jørgen Arendt


    Synthetic transmit aperture (STA) imaging gives the possibility to acquire an image with only few emissions and is appealing for 3D ultrasound imaging. Even though the number of emissions is low, the change in position of the scatterers prohibits the coherent summations of ultrasound echoes...

  2. Low Light CMOS Contact Imager with an Integrated Poly-Acrylic Emission Filter for Fluorescence Detection

    Directory of Open Access Journals (Sweden)

    Yonathan Dattner


    Full Text Available This study presents the fabrication of a low cost poly-acrylic acid (PAA based emission filter integrated with a low light CMOS contact imager for fluorescence detection. The process involves the use of PAA as an adhesive for the emission filter. The poly-acrylic solution was chosen due its optical transparent properties, adhesive properties, miscibility with polar protic solvents and most importantly its bio-compatibility with a biological environment. The emission filter, also known as an absorption filter, involves dissolving an absorbing specimen in a polar protic solvent and mixing it with the PAA to uniformly bond the absorbing specimen and harden the filter. The PAA is optically transparent in solid form and therefore does not contribute to the absorbance of light in the visible spectrum. Many combinations of absorbing specimen and polar protic solvents can be derived, yielding different filter characteristics in different parts of the spectrum. We report a specific combination as a first example of implementation of our technology. The filter reported has excitation in the green spectrum and emission in the red spectrum, utilizing the increased quantum efficiency of the photo sensitive sensor array. The thickness of the filter (20 μm was chosen by calculating the desired SNR using Beer-Lambert’s law for liquids, Quantum Yield of the fluorophore and the Quantum Efficiency of the sensor array. The filters promising characteristics make it suitable for low light fluorescence detection. The filter was integrated with a fully functional low noise, low light CMOS contact imager and experimental results using fluorescence polystyrene micro-spheres are presented.

  3. Design and construction of a imaging instrument for studying ion emission from pure ion emitters

    Energy Technology Data Exchange (ETDEWEB)

    Olson, John E. [Idaho State Univ., Pocatello, ID (United States)


    The development of new ion sources is important in the area of surface analysis to make it easier to perform more sensitive and accurate analyses. In surface analysis a primary ion beam composed of a single species can help when predicting and interpreting the results. Therefore, much interest and effort has been focused on producing pure ion emitters. An instrument has been designed and constructed to view the current densities of the ions being emitted from pure ion emitters. The instrument electrostatically accelerates and focuses the ion beam onto a microchannel plate detector equipped with a phosphor screen for viewing the images. These images are used to identify areas of enhanced ion emission. Once these areas are identified, the investigator can use other instruments to analyze them, and hopefully develop a better understanding of the chemistry and physics involved in the ion emission process. A computer based control system has been integrated into the system to simplify the operation of the instrument and provide safety features to protect the hardware from damage. A closed-circuit video camera system is used to allow the images to be remotely viewed during imaging procedures. Experiments show that the instrument has a lower detection limit of 7.45 x 103 ions/sec/mm2 and a spatial resolution of approximately 3 - 4 μm. Results from imaging cesium zeolite and perrhenate ion sources indicate that the ions are primarily being emitted from the surface of the sources and not from the interfacial region between the substrate and the emitter material.

  4. ScatterJn: An ImageJ Plugin for Scatterplot-Matrix Analysis and Classification of Spatially Resolved Analytical Microscopy Data

    Directory of Open Access Journals (Sweden)

    Fabian Zeitvogel


    Full Text Available We present ScatterJn, an ImageJ (and Fiji plugin for scatterplot-based exploration and analysis of analytical microscopy data. In contrast to commonly used scatterplot tools, it handles more than two input images (or image stacks, respectively by creating a matrix of pairwise scatterplots. The tool offers the possibility to manually classify pixels by selecting regions of datapoints in the scatterplots as well as in the spatial domain. We demonstrate its functioning using a set of elemental maps acquired by SEM-EDX mapping of a soil sample. The plugin is available at

  5. [The Quality Assurance (QA) and the Quality Control (QC) of Positron Emission Tomography (PET) Image]. (United States)

    Iimori, Takashi


    Positron emission tomography (PET) is widely used for image diagnostics; making judgments for early diagnostics, differential diagnostics, staging and treatment effect. As for undertaking the large clinical trial and the multicenter study using several diagnostics, the quantitative standardization of PET images is important. We should maintain the safety and the accuracy of daily clinical images. Moreover, we have to develop a safety treatment manual for instruments, apparatus and radiopharmaceuticals in order to produce PET studies of the highest diagnostic accuracy. In addition, daily quality assurance (QA) and quality control (QC) are very important in order to achieve efficiency and safety of PET studies. The importance of the QA and the QC have been recognized from the view of clinical incident protection points. PET will become more advanced in the future, and therefore the QA and the QC for PET images will continue to important in our work. In the view-risk management, we should reaffirm the importance of both QA and QC. Furthermore, we underline the importance of the constant management system and organization in order to gain the quality enhancement of PET imaging.

  6. Upgrade of the automatic analysis system in the TJ-II Thomson Scattering diagnostic: New image recognition classifier and fault condition detection

    Energy Technology Data Exchange (ETDEWEB)

    Makili, L. [Dpto. Informatica y Automatica - UNED, Madrid (Spain); Vega, J. [Asociacion EURATOM/CIEMAT para Fusion, Madrid (Spain); Dormido-Canto, S., E-mail: sebas@dia.uned.e [Dpto. Informatica y Automatica - UNED, Madrid (Spain); Pastor, I.; Pereira, A. [Asociacion EURATOM/CIEMAT para Fusion, Madrid (Spain); Farias, G. [Dpto. Informatica y Automatica - UNED, Madrid (Spain); Portas, A.; Perez-Risco, D.; Rodriguez-Fernandez, M.C. [Asociacion EURATOM/CIEMAT para Fusion, Madrid (Spain); Busch, P. [FOM Institut voor PlasmaFysica Rijnhuizen, Nieuwegein (Netherlands)


    An automatic image classification system based on support vector machines (SVM) has been in operation for years in the TJ-II Thomson Scattering diagnostic. It recognizes five different types of images: CCD camera background, measurement of stray light without plasma or in a collapsed discharge, image during ECH phase, image during NBI phase and image after reaching the cut off density during ECH heating. Each kind of image implies the execution of different application software. Due to the fact that the recognition system is based on a learning system and major modifications have been carried out in both the diagnostic (optics) and TJ-II plasmas (injected power), the classifier model is no longer valid. A new SVM model has been developed with the current conditions. Also, specific error conditions in the data acquisition process can automatically be detected and managed now. The recovering process has been automated, thereby avoiding the loss of data in ensuing discharges.

  7. Radiolabeled phosphonium salts as mitocondrial voltage sensors for positron emission tomography myocardial imaging agents

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Yon; Min, Jung Joon [Dept. of Nuclear Medicine,Chonnam National University Medical School and Hwasun Hospital, Gwangju (Korea, Republic of)


    Despite substantial advances in the diagnosis of cardiovascular disease, {sup 18}F-labeled positron emission tomography (PET) radiopharmaceuticals remain necessary to diagnose heart disease because clinical use of current PET tracers is limited by their short half-life. Lipophilic cations such as phosphonium salts penetrate the mitochondrial membranes and accumulate in mitochondria of cardiomyocytes in response to negative inner-transmembrane potentials. Radiolabeled tetraphenyl phosphonium cation derivatives have been developed as myocardial imaging agents for PET. In this review, a general overview of these radiotracers, including their radiosynthesis, in vivo characterization, and evaluation is provided and clinical perspectives are discussed.

  8. Radiolabeled Phosphonium Salts as Mitochondrial Voltage Sensors for Positron Emission Tomography Myocardial Imaging Agents. (United States)

    Kim, Dong-Yeon; Min, Jung-Joon


    Despite substantial advances in the diagnosis of cardiovascular disease, (18)F-labeled positron emission tomography (PET) radiopharmaceuticals remain necessary to diagnose heart disease because clinical use of current PET tracers is limited by their short half-life. Lipophilic cations such as phosphonium salts penetrate the mitochondrial membranes and accumulate in mitochondria of cardiomyocytes in response to negative inner-transmembrane potentials. Radiolabeled tetraphenylphosphonium cation derivatives have been developed as myocardial imaging agents for PET. In this review, a general overview of these radiotracers, including their radiosynthesis, in vivo characterization, and evaluation is provided and clinical perspectives are discussed.

  9. Imaging the atomic orbitals of carbon atomic chains with field-emission electron microscopy (United States)

    Mikhailovskij, I. M.; Sadanov, E. V.; Mazilova, T. I.; Ksenofontov, V. A.; Velicodnaja, O. A.


    A recently developed high-field technique of atomic chains preparation has made it possible to attain the ultrahigh resolution of field-emission electron microscopy (FEEM), which can be used to direct imaging the intra-atomic electronic structure. By applying cryogenic FEEM, we are able to resolve the spatial configuration of atomic orbitals, which correspond to quantized states of the end atom in free-standing carbon atomic chains. Knowledge of the intra-atomic structure will make it possible to visualize generic aspects of quantum mechanics and also lead to approaches for a wide range of nanotechnological applications.

  10. Imaging the intracellular distribution of tyrosine kinase inhibitors in living cells with quantitative hyperspectral stimulated Raman scattering (United States)

    Fu, Dan; Zhou, Jing; Zhu, Wenjing Suzanne; Manley, Paul W.; Wang, Y. Karen; Hood, Tami; Wylie, Andrew; Xie, X. Sunney


    ABL1 tyrosine-kinase inhibitors (TKI) are front-line therapy for chronic myelogenous leukaemia and are among the best-known examples of targeted cancer therapeutics. However, the dynamic uptake into cells of TKIs of low molecular weight and their intracellular behaviour is unknown because of the difficulty of observing non-fluorescent small molecules at subcellular resolution. Here we report the direct label-free visualization and quantification of two TKI drugs (imatinib and nilotinib) inside living cells using hyperspectral stimulated Raman scattering imaging. Concentrations of both drugs were enriched over 1,000-fold in lysosomes as a result of their lysosomotropic properties. In addition, low solubility appeared to contribute significantly to the surprisingly large accumulation of nilotinib. We further show that the lysosomal trapping of imatinib was reduced more than tenfold when chloroquine is used simultaneously, which suggests that chloroquine may increase the efficacy of TKIs through lysosome-mediated drug-drug interaction in addition to the commonly proposed autophagy-inhibition mechanism.

  11. Imaging characterization of the rapid adiabatic passage in a source-rotatable, crossed-beam scattering experiment (United States)

    Pan, Huilin; Mondal, Sohidul; Yang, Chung-Hsin; Liu, Kopin


    In order to achieve a more efficient preparation of a specific ro-vibrationally excited reactant state for reactive scattering experiments, we implemented the rapid adiabatic passage (RAP) scheme to our pulsed crossed-beam machine, using a single-mode, continuous-wave mid-infrared laser. The challenge for this source-rotatable apparatus lies in the non-orthogonal geometry between the molecular beam and the laser propagation directions. As such, the velocity spread of the supersonic beam results in a significantly broader Doppler distribution that needs to be activated for RAP to occur than the conventional orthogonal configuration. In this report, we detail our approach to shifting, locking, and stabilizing the absolute mid-infrared frequency. We exploited the imaging detection technique to characterize the RAP process and to quantify the excitation efficiency. We showed that with appropriate focusing of the IR laser, a nearly complete population transfer can still be achieved in favorable cases. Compared to our previous setup—a pulsed optical parametric oscillator/amplifier in combination with a multipass ring reflector for saturated absorption, the present RAP scheme with a single-pass, continuous-wave laser yields noticeably higher population-transfer efficiency.

  12. Multifocal sparganosis mimicking lymphoma involvement: Multimodal imaging findings of ultrasonography, CT, MRI, and position emission tomography-computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Heo, So Young; Park, Ji Yeon; Park, Noh Hyuck; Park, Chan Sub; Kim, Tae Jung [Myongji Hospital, Seonam University College of Medicine, Goyang (Korea, Republic of); Yi, Seong Yoon [Dev. of Hematology-Omcology, Dept. of Internal Medicine, Inje University Ilsan Paik Hospital, Goyang (Korea, Republic of); Jun, Hyun Jung [Dev. of Hematology-Omcology, Dept. of Internal Medicine, Seoul Medical Center, Seoul (Korea, Republic of)


    Sparganosis is a rare parasitic disease caused by the migrating plerocercoid larva of Spirometra species tapeworms. The most frequent clinical manifestation is a subcutaneous nodule resembling a neoplasm. In this study, we presented multimodal findings of ultrasonography, computed tomography, magnetic resonance imaging, positron emission tomography-computed tomography and follow-up imagings on multifocal sparganosis, mimicking lymphoma involvement in a patient with lymphoma.

  13. Trends in radiation protection of positron emission tomography/computed tomography imaging. (United States)

    Alenezi, A; Soliman, K


    Over the past decade, the number of positron emission tomography/computed tomography (PET/CT) imaging procedures has increased substantially. This imaging technique provides accurate functional and anatomical information, particularly for oncological applications. Separately, both PET and CT are considered as high-dose imaging modalities. With the increased use of PET/CT, one could expect an increase in radiation doses to staff and patients. As such, major efforts have been made to reduce radiation dose in PET/CT facilities. Variations in working techniques have made it difficult to compare published results. This study aimed to review the literature on proposed methods to reduce patient and staff dose in clinical PET/CT imaging. A brief overview of some published information on staff and patient doses will be analysed and presented. Recent trends regarding radiation protection in PET/CT imaging will be discussed, and practical recommendations for reducing radiation doses to staff and patients will be discussed and summarised. Generally, the CT dose component is often higher in magnitude than the dose from PET alone; as such, focusing on CT dose reduction will decrease the overall patient dose in PET/CT imaging studies. The following factors should be considered in order to reduce the patient's dose from CT alone: proper justification for ordering contrast-enhanced CT; use of automatic exposure control features; use of adaptive statistical iterative reconstruction algorithms; and optimisation of scan parameters, especially scan length. The PET dose component can be reduced by administration of lower activity to the patient, optimisation of the workflow, and appropriate use of protective devices and engineered systems. At the international level, there is wide variation in work practices among institutions. The current observed trends are such that the annual dose limits for radiation workers in PET/CT imaging are unlikely to be exceeded. © Author(s) 2014.

  14. Carbon-11 and Fluorine-18 Labeled Amino Acid Tracers for Positron Emission Tomography Imaging of Tumors

    Directory of Open Access Journals (Sweden)

    Aixia Sun


    Full Text Available Tumor cells have an increased nutritional demand for amino acids (AAs to satisfy their rapid proliferation. Positron-emitting nuclide labeled AAs are interesting probes and are of great importance for imaging tumors using positron emission tomography (PET. Carbon-11 and fluorine-18 labeled AAs include the [1-11C] AAs, labeling alpha-C- AAs, the branched-chain of AAs and N-substituted carbon-11 labeled AAs. These tracers target protein synthesis or amino acid (AA transport, and their uptake mechanism mainly involves AA transport. AA PET tracers have been widely used in clinical settings to image brain tumors, neuroendocrine tumors, prostate cancer, breast cancer, non-small cell lung cancer (NSCLC and hepatocellular carcinoma. This review focuses on the fundamental concepts and the uptake mechanism of AAs, AA PET tracers and their clinical applications.

  15. The Number of Accumulated Photons and the Quality of Stimulated Emission Depletion Lifetime Images

    Energy Technology Data Exchange (ETDEWEB)

    Syed, Aleem [Ames Laboratory; Lesoine, Michael D [Ames Laboratory; Bhattacharjee, Ujjal [Ames Laboratory; Petrich, Jacob W [Ames Laboratory; Smith, Emily A [Ames Laboratory


    Time binning is used to increase the number of photon counts in the peak channel of stimulated emission depletion (STED) fluorescence lifetime decay curves to determine how it affects the resulting lifetime image. The fluorescence lifetime of the fluorophore, Alexa Fluor 594 phalloidin, bound to F-actin is probed in cultured S2 cells at a spatial resolution of ~40 nm. This corresponds to a tenfold smaller probe volume compared to confocal imaging, and a reduced number of photons contributing to the signal. Pixel-by-pixel fluorescence lifetime measurements and error analysis show that an average of 40 ± 30 photon counts in the peak channel with a signal-to-noise ratio of 20 is enough to calculate a reliable fluorescence lifetime from a single exponential fluorescence decay. No heterogeneity in the actin cytoskeleton in different regions of the cultured cells was measured in the 40- to 400-nm spatial regime.

  16. Deep-red emissive crescent-shaped fluorescent dyes: substituent effect on live cell imaging. (United States)

    Liu, Weimin; Zhou, Bingjiang; Niu, Guangle; Ge, Jiechao; Wu, Jiasheng; Zhang, Hongyan; Xu, Haitao; Wang, Pengfei


    A series of crescent-shaped fluorescent dyes (CP1-CP6) were synthesized by hybridizing coumarin and pyronin moieties with different amino substituents at both ends. The molecular structures and photophysical properties of these fluorescent dyes were investigated through X-ray diffraction, absorption spectroscopy, and fluorescence spectroscopy. Results show that the fluorescent dyes exhibited crescent-shaped structures, deep-red emissions (approximately 650 nm), and significant Stokes shifts. In live-cell-imaging experiments, CP1 stains mitochondria, whereas CP3 and CP6 stain the lysosomes in a cytoplasm and the RNA in nucleoli. The relationships between different amino substituent groups and the imaging properties of CP dyes were discussed as well. Additionally, findings from the cytotoxicity and photostability experiments on living cells indicated the favorable biocompatibility and high photostability of the CP dyes.

  17. Calculation of Positron Distribution in the Presence of a Uniform Magnetic Field for the Improvement of Positron Emission Tomography (PET Imaging Using GEANT4 Toolkit

    Directory of Open Access Journals (Sweden)

    Mohsen Mashayekhi


    Full Text Available Introduction Range and diffusion of positron-emitting radiopharmaceuticals are important parameters for image resolution in positron emission tomography (PET. In this study, GEANT4 toolkit was applied to study positron diffusion in soft tissues with and without a magnetic field for six commonly used isotopes in PET imaging including 11C, 13N, 15O, 18F, 68Ga, and 82Rb. Materials and Methods GEANT4 toolkit was used to simulate the transport and interactions of positrons. Calculations were performed for the soft tissue phantom (8 mm ×8 mm × 8 mm. Positrons were emitted isotropically from the center of the phantom. By the application of a magnetic field perpendicular to the path of positrons, lateral scattering of positrons could be prevented due to Lorentz force. When the positron energy was below the cut-off threshold (0.001 MeV, the simulation was terminated. Results The findings showed that the presence of a magnetic field increased the rate of positron annihilation. At magnetic field strengths of 3, 7, and 10 Tesla, 18F with the lowest decay energy showed improvements in the ratio of full width at half maximum (FWHM resolution to the peak of curve by 3.64%, 3.89%, and 5.96%, respectively. In addition, at magnetic field strengths of 3, 7 and 10 Tesla, 82Rb with the highest decay energy showed improvements in resolution by 33%, 85%, and 99%, respectively. Conclusion Application of a magnetic field perpendicular to the positron diffusion plane prevented the scattering of positrons, and consequently, improved the intrinsic spatial resolution of PET imaging, caused by positron range effects.

  18. Myocardial imaging with {sup 18}F-fluoro-2-deoxyglucose positron emission tomography and magnetic resonance imaging in sarcoidosis

    Energy Technology Data Exchange (ETDEWEB)

    Ohira, Hiroshi; Tsujino, Ichizo; Ishimaru, Shinji; Sakaue, Shinji; Nishimura, Masaharu [Hokkaido University School of Medicine, First Department of Medicine, Sapporo, Hokkaido (Japan); Oyama, Noriko [Hokkaido University School of Medicine, Department of Radiology, Sapporo, Hokkaido (Japan); Takei, Toshiki; Tsukamoto, Eriko; Tamaki, Nagara [Hokkaido University School of Medicine, Department of Nuclear Medicine, Sapporo, Hokkaido (Japan); Miura, Masatake [Hokkaido University School of Medicine, Department of Cardiovascular Medicine, Sapporo, Hokkaido (Japan)


    Despite accumulating reports on the clinical value of {sup 18}F-fluoro-2-deoxyglucose positron emission tomography ({sup 18}F-FDG PET) and magnetic resonance imaging (MRI) in the assessment of cardiac sarcoidosis, no studies have systematically compared the images of these modalities. Twenty-one consecutive patients with suspected cardiac sarcoidosis underwent cardiac examinations that included {sup 18}F-FDG PET and MRI. The association of {sup 18}F-FDG PET and MRI findings with blood sampling data such as serum angiotensin converting enzyme levels was also evaluated. Eight of 21 patients were diagnosed as having cardiac sarcoidosis according to the Japanese Ministry of Health and Welfare Guidelines for Diagnosing Cardiac Sarcoidosis. Sensitivity and specificity for diagnosing cardiac sarcoidosis were 87.5 and 38.5%, respectively, for {sup 18}F-FDG PET, and 75 and 76.9%, respectively, for MRI. When the {sup 18}F-FDG PET and MRI images were compared, 16 of 21 patients showed positive findings in one (n = 8) or both (n = 8) of the two modalities. In eight patients with positive findings on both images, the distribution of the findings differed among all eight cases. The presence of positive findings on {sup 18}F-FDG PET was associated with elevated serum angiotensin-converting enzyme levels; this association was not demonstrated on MRI. Both {sup 18}F-FDG PET and MRI provided high sensitivity for diagnosing cardiac sarcoidosis in patients with suspected cardiac involvement, but the specificity of {sup 18}F-FDG PET was not as high as previously reported. The different distributions of the findings in the two modalities suggest the potential of {sup 18}F-FDG PET and MRI in detecting different pathological processes in the heart. (orig.)

  19. Measurement of electron density and electron temperature of a cascaded arc plasma using laser Thomson scattering compared to an optical emission spectroscopic approach (United States)

    Yong, WANG; Cong, LI; Jielin, SHI; Xingwei, WU; Hongbin, DING


    As advanced linear plasma sources, cascaded arc plasma devices have been used to generate steady plasma with high electron density, high particle flux and low electron temperature. To measure electron density and electron temperature of the plasma device accurately, a laser Thomson scattering (LTS) system, which is generally recognized as the most precise plasma diagnostic method, has been established in our lab in Dalian University of Technology. The electron density has been measured successfully in the region of 4.5 × 1019 m-3 to 7.1 × 1020 m-3 and electron temperature in the region of 0.18 eV to 0.58 eV. For comparison, an optical emission spectroscopy (OES) system was established as well. The results showed that the electron excitation temperature (configuration temperature) measured by OES is significantly higher than the electron temperature (kinetic electron temperature) measured by LTS by up to 40% in the given discharge conditions. The results indicate that the cascaded arc plasma is recombining plasma and it is not in local thermodynamic equilibrium (LTE). This leads to significant error using OES when characterizing the electron temperature in a non-LTE plasma.

  20. Characteristics of 1.9-μm laser emission from hydrogen-filled hollow-core fiber by vibrational stimulated Raman scattering (United States)

    Gu, Bo; Chen, Yubin; Wang, Zefeng


    We report here the characteristics of 1.9-μm laser emission from a gas-filled hollow-core fiber by stimulated Raman scattering (SRS). A 6.5-m hydrogen-filled ice-cream negative curvature hollow-core fiber is pumped with a high peak-power, narrow linewidth, linearly polarized subnanosecond pulsed 1064-nm microchip laser, generating a pulsed vibrational Stokes wave at 1908.5 nm. The maximum quantum efficiency of about 48% is obtained, which is mainly limited by the mode mismatch between the pump laser beam and the Stokes wave in the hollow-core fiber. The linewidths of the pump laser and the first-order vibrational Stokes wave are measured to be about 1 and 2 GHz, respectively, by a scanning Fabry-Perot interferometer. The pressure selection phenomenon of the vibrational anti-Stokes waves is also investigated. The pulse duration of the vibrational Stokes wave is recorded to be narrower than that of the pump laser. The polarization properties of the hollow-core fiber and the polarization dependence of the vibrational and the rotational SRS are also studied. The beam profile of the vibrational Stokes wave shows good quality.

  1. Variable Dynamics in the Inner Disk of HD 135344B Revealed with Multi-epoch Scattered Light Imaging (United States)

    Stolker, Tomas; Sitko, Mike; Lazareff, Bernard; Benisty, Myriam; Dominik, Carsten; Waters, Rens; Min, Michiel; Perez, Sebastian; Milli, Julien; Garufi, Antonio; de Boer, Jozua; Ginski, Christian; Kraus, Stefan; Berger, Jean-Philippe; Avenhaus, Henning


    We present multi-epoch Very Large Telescope/Spectro-Polarimetric High-contrast Exoplanet REsearch (VLT/SPHERE) observations of the protoplanetary disk around HD 135344B (SAO 206462). The J-band scattered light imagery reveal, with high spatial resolution (˜41 mas, 6.4 au), the disk surface beyond ˜20 au. Temporal variations are identified in the azimuthal brightness distributions of all epochs, presumably related to the asymmetrically shading dust distribution in the inner disk. These shadows manifest themselves as narrow lanes, cast by localized density enhancements, and broader features which possibly trace the larger scale dynamics of the inner disk. We acquired visible and near-infrared photometry which shows variations up to 10% in the JHK bands, possibly correlated with the presence of the shadows. Analysis of archival Very Large Telescope Interferometer/Precision Integrated-Optics Near-infrared Imaging ExpeRiment (VLTI/PIONIER) H-band visibilities constrain the orientation of the inner disk to I=18\\buildrel{\\circ}\\over{.} {2}-4.1+3.4 and {PA}=57\\buildrel{\\circ}\\over{.} 3+/- 5\\buildrel{\\circ}\\over{.} 7, consistent with an alignment with the outer disk or a minor disk warp of several degrees. The latter scenario could explain the broad, quasi-stationary shadowing in north-northwest direction in case the inclination of the outer disk is slightly larger. The correlation between the shadowing and the near-infrared excess is quantified with a grid of radiative transfer models. The variability of the scattered light contrast requires extended variations in the inner disk atmosphere (H/r≲ 0.2). Possible mechanisms that may cause asymmetric variations in the optical depth ({{Δ }}τ ≲ 1) through the atmosphere of the inner disk include turbulent fluctuations, planetesimal collisions, or a dusty disk wind, possibly enhanced by a minor disk warp. A fine temporal sampling is required to follow day-to-day changes of the shadow patterns which may be a face

  2. Retrieval of Garstang's emission function from all-sky camera images (United States)

    Kocifaj, Miroslav; Solano Lamphar, Héctor Antonio; Kundracik, František


    The emission function from ground-based light sources predetermines the skyglow features to a large extent, while most mathematical models that are used to predict the night sky brightness require the information on this function. The radiant intensity distribution on a clear sky is experimentally determined as a function of zenith angle using the theoretical approach published only recently in MNRAS, 439, 3405-3413. We have made the experiments in two localities in Slovakia and Mexico by means of two digital single lens reflex professional cameras operating with different lenses that limit the system's field-of-view to either 180º or 167º. The purpose of using two cameras was to identify variances between two different apertures. Images are taken at different distances from an artificial light source (a city) with intention to determine the ratio of zenith radiance relative to horizontal irradiance. Subsequently, the information on the fraction of the light radiated directly into the upward hemisphere (F) is extracted. The results show that inexpensive devices can properly identify the upward emissions with adequate reliability as long as the clear sky radiance distribution is dominated by a largest ground-based light source. Highly unstable turbidity conditions can also make the parameter F difficult to find or even impossible to retrieve. The measurements at low elevation angles should be avoided due to a potentially parasitic effect of direct light emissions from luminaires surrounding the measuring site.

  3. Characteristics of Smoothing Filters to Achieve the Guideline Recommended Positron Emission Tomography Image without Harmonization

    Directory of Open Access Journals (Sweden)

    Yuji Tsutsui


    Full Text Available Objective(s: The aim of this study is to examine the effect of different smoothing filters on the image quality and SUVmax to achieve the guideline recommended positron emission tomography (PET image without harmonization. Methods: We used a Biograph mCT PET scanner. A National Electrical Manufacturers Association (NEMA the International Electrotechnical Commission (IEC body phantom was filled with 18F solution with a background activity of 2.65 kBq/mL and a sphere-to-background ratio of 4. PET images obtained with the Biograph mCT PET scanner were reconstructed using the ordered subsets-expectation maximization (OSEM algorithm with time-of-flight (TOF models (iteration, 2; subset, 21; smoothing filters including the Gaussian, Butterworth, Hamming, Hann, Parzen, and Shepp-Logan filters with various full width at half maximum (FWHM values (1-15 mm were applied. The image quality was physically assessed according to the percent contrast (QH,10, background variability (N10, standardized uptake value (SUV, and recovery coefficient (RC. The results were compared with the guideline recommended range proposed by the Japanese Society of Nuclear Medicine and the Japanese Society of Nuclear Medicine Technology. The PET digital phantom was developed from the digital reference object (DRO of the NEMA IEC body phantom smoothed using a Gaussian filter with a 10-mm FWHM and defined as the reference image. The difference in the SUV between the PET image and the reference image was evaluated according to the root mean squared error (RMSE. Results: The FWHMs of the Gaussian, Butterworth, Hamming, Hann, Parzen, and Shepp-Logan filters that satisfied the image quality of the FDG-PET/CT standardization guideline criteria were 8-12 mm, 9-11 mm, 9-13 mm, 10-13 mm, 9-11 mm, and 12- 15 mm, respectively. The FWHMs of the Gaussian, Butterworth, Hamming, Hann, Parzen, and Shepp-Logan filters that provided the smallest RMSE between the PET images and the 3D digital phantom

  4. Whole-body magnetic resonance imaging and positron emission tomography-computed tomography in oncology. (United States)

    Schmidt, Gerwin P; Kramer, Harald; Reiser, Maximilian F; Glaser, Christian


    The advent of positron emission tomography-computed tomography (PET-CT) and whole-body magnetic resonance imaging (WB-MRI) has introduced tumor imaging with a systemic and functional approach compared with established sequential, multimodal diagnostic algorithms.Whole-body PET with [18F]-fluoro-2-desoxy-glucose is a useful imaging procedure for tumor staging and monitoring that can visualize active tumor tissue by detecting pathological glucose metabolism. The combination of PET with the detailed anatomical information of multislice computed tomography as dual-modality scanners has markedly increased lesion localization and diagnostic accuracy compared with both modalities as standalone applications.Hardware innovations, such as the introduction of multi-receiver channel whole-body MRI scanners at 1.5 and, recently, 3 T, combined with acquisition acceleration techniques, have made high-resolution WB-MRI clinically feasible. Now, a dedicated assessment of individual organs with various soft tissue contrast, spatial resolution, and contrast media dynamics can be combined with whole-body anatomical coverage in a multiplanar imaging approach. More flexible protocols (eg, T1-weighted turbo spin-echo and short inversion recovery imaging, dedicated lung imaging or dynamic contrast-enhanced studies of the abdomen) can be performed within 45 minutes.Whole-body magnetic resonance imaging has recently been proposed for tumor screening of asymptomatic individuals, and potentially life-changing diagnoses, such as formerly unknown malignancy, have been reported. However, larger patient cohort studies will have to show the cost efficiency and the clinical effectiveness of such an approach.For initial tumor staging, PET-CT has proved more accurate for the definition of T-stage and lymph node assessment, mainly because of the missing metabolic information in WB-MRI. However, new applications, such as magnetic resonance whole-body diffusion-weighted imaging or lymphotropic contrast

  5. Positron emission tomography molecular imaging of dopaminergic system in drug addiction. (United States)

    Hou, Haifeng; Tian, Mei; Zhang, Hong


    Dopamine (DA) is involved in drug reinforcement, but its role in drug addiction remains unclear. Positron emission tomography (PET) is the first technology used for the direct measurement of components of the dopaminergic system in the living human brain. In this article, we reviewed the major findings of PET imaging studies on the involvement of DA in drug addiction, especially in heroin addiction. Furthermore, we summarized PET radiotracers that have been used to study the role of DA in drug addiction. To investigate presynaptic function in drug addiction, PET tracers have been developed to measure DA synthesis and transport. For the investigation of postsynaptic function, several radioligands targeting dopamine one (D1) receptor and dopamine two (D2) receptor are extensively used in PET imaging studies. Moreover, we also summarized the PET imaging findings of heroin addiction studies, including heroin-induced DA increases and the reinforcement, role of DA in the long-term effects of heroin abuse, DA and vulnerability to heroin abuse and the treatment implications. PET imaging studies have corroborated the role of DA in drug addiction and increase our understanding the mechanism of drug addiction. Copyright © 2012 Wiley Periodicals, Inc.

  6. From the physics of secondary electron emission to image contrasts in scanning electron microscopy. (United States)

    Cazaux, Jacques


    Image formation in scanning electron microscopy (SEM) is a combination of physical processes, electron emissions from the sample, and of a technical process related to the detection of a fraction of these electrons. For the present survey of image contrasts in SEM, simplified considerations in the physics of the secondary electron emission yield, δ, are combined with the effects of a partial collection of the emitted secondary electrons. Although some consideration is initially given to the architecture of modern SEM, the main attention is devoted to the material contrasts with the respective roles of the sub-surface and surface compositions of the sample, as well as with the roles of the field effects in the vacuum gap. The recent trends of energy filtering in normal SEM and the reduction of the incident energy to a few electron volts in very low-energy electron microscopy are also considered. For an understanding by the SEM community, the mathematical expressions are explained with simple physical arguments.

  7. Amplified Fluorescence from Polyfluorene Nanoparticles with Dual State Emission and Aggregation Caused Red Shifted Emission for Live Cell Imaging and Cancer Theranostics. (United States)

    Muthuraj, Balakrishnan; Mukherjee, Sudip; Patra, Chitta Ranjan; Iyer, Parameswar Krishnan


    A newly synthesized polyfluorene derivative with pendant di(2-picolyl)amine (PF-DPA) shows dual state emission and aggregation caused red shifted emission that was utilized for cell imaging and cancer theranostics. PF-DPA was nontoxic to normal cells but showed cytotoxicity against cancer cells, suggesting its utility for cancer therapy. PF-DPA exhibits a large and unique red shifted emission at 556 nm at higher water ratio of THF:H2O (10:90) due to the formation of polymer nanoparticles or PDots spontaneously by intra- and intermolecular self-assembly induced aggregation. Dual state emission and aggregation caused red shifted emission (>100 nm) in PF-DPA homopolymer nanoparticles is very unique and attributed to the combined effect of intramolecular planarization and J-type aggregate formation in the PDots (25 ± 5 nm). The PF-DPA PDots exhibit bright green and orange fluorescence with exceptional live cell imaging properties and potential applications in cancer theranostics due to their selective cytotoxic nature toward cancer cells.

  8. Light emission efficiency and imaging properties of YAP:Ce granular phosphor screens (United States)

    Kalivas, N.; Valais, I.; Nikolopoulos, D.; Konstantinidis, A.; Gaitanis, A.; Cavouras, D.; Nomicos, C. D.; Panayiotakis, G.; Kandarakis, I.


    Phosphor materials are used in medical imaging combined with radiographic film or other photodetectors. Cerium (Ce3+) -doped scintillators are of particular interest for medical imaging, because of their very fast response. YAP:Ce scintillator-based image detectors have already been evaluated in single-crystal form and under conditions of positron emission tomography and synchrotron or γ-ray irradiation. Furthermore, YAP:Ce phosphor has been evaluated in conjunction with radiographic films. The present work reports experimental and theoretical data concerning the light output absolute luminescence efficiency (AE) of the YAP:Ce screens under irradiation conditions employed in medical X-ray projection imaging (i.e., in diagnostic radiology). projection imaging (i.e., in diagnostic radiology). YAP:Ce phosphor screens with surface densities ranging between 53 and 110 mg/cm2 were prepared by sedimentation on fused silica substates in our laboratory. The resulted surface density of the screens was determined by dividing the phosphor mass deposited on the screen surface with the area of the surface. Additionally this work addresses the imaging performance of YAP:Ce by estimation of the detective quantum efficiency (DQE), i.e., the square of the signal to noise ratio transfer. Absolute efficiency was found to decrease with X-ray tube voltage for for YAP:Ce phosphor. The highest experimental efficiency was obtained for the 53.7 mg/cm2 and 88.0 mg/cm2 YAP:Ce screens. The highest DQE value was found for the 88.0 mg/cm2 screen irradiated at 60 kVp.

  9. Usefulness of myocardial positron emission tomography/nuclear imaging in Takotsubo cardiomyopathy. (United States)

    Testa, Marzia; Feola, Mauro


    To analyse and summarize all the articles related to positron emission tomography and Takotsubo cardiomyopathy (TTC). We performed a systematic review of the existing literature on positron emission tomography/nuclear imaging and Takotsubo cardiomyopathy using PUBMED database. We combined search terms such as "takotsubo", "takotsubo syndrome", "myocardial positron emission tomography", "positron emission tomography". All case reports were excluded. The list included only four articles which were reviewed by two independent investigators. It was not possible to undertake a formal meta-analysis because of the heterogeneity of the studies; therefore, we made a narrative synthesis of the collected data. Nuclear medicine techniques can be useful employed in the differential diagnosis of TTC from an acute coronary syndrome (ACS). In fact, transient left ventricular (LV) apical ballooning is a syndrome frequently misdiagnosed as an ACS and can mimic symptoms of myocardial infarction with ST-T segments changes on electrocardiography (ECG), a limited release of myocardial enzyme, mainly reported after sudden emotional or physical stress, and an akinesis or dyskinesis of the left ventricle apex which are completely reversible in a few weeks. In the studies included in this review, nuclear medicine techniques have demonstrated a discrepancy between normal perfusion and a reduced glucose utilization in TTC, commonly known as "inverse flow metabolism mismatch". This suggests that apical ballooning represents a transient metabolic disorder on the cellular level, rather than a structural contractile disease of the myocardium, due to a transient decrease of glucose metabolism that might be related to a coronary microcirculation impairment followed by prolonged myocardial stunning. Nuclear medicine techniques can be usefully used for the diagnosis of TTC and can increase our knowledge of the pathophysiological mechanisms of TTC.

  10. Ultra High Resolution Imaging of Enceladus Tiger Stripe Thermal Emission with Cassini CIRS (United States)

    Spencer, John R.; Gorius, Nicolas; Howett, Carly; Verbiscer, Anne J.; Cassini CIRS Team


    In October 2015, Cassini flew within 48 km of Enceladus’ south pole. The spacecraft attitude was fixed during the flyby, but the roll angle of the spacecraft was chosen so that the remote sensing instrument fields of view passed over Damascus, Baghdad, and Cairo Sulci. The Composite Infrared Spectrometer (CIRS) instrument obtained a single interferometer scan during the flyby, using a special mode, enabled by a flight software update, which bypassed numerical filters to improve the fidelity of the interferograms. This generated a total of 11 interferograms, at 5 contiguous spatial locations for each of the 7 - 9 micron (FP4) and 9 - 17 micron (FP3) focal planes, and a single larger field of view for the 17 - 500 micron focal plane (FP1). Strong spikes were seen in the interferograms when crossing each of the sulci, due to the rapid passage of warm material through the field of view. For FP3 and FP4, the temporal variations of the signals from the 5 contiguous detectors can be used to generated 5-pixel-wide images of the thermal emission, which show excellent agreement between the two focal planes. FP3 and FP4 spatial resolution, limited along track by the 5 msec time sampling of the interferogram, and across track by the CIRS field of view, is a remarkable 40 x 40 meters. At this resolution, the tiger stripe thermal emission shows a large amount of structure, including both continuous emission along the fractures, discrete hot spots less than 100 meters across, and extended emission with complex structure.

  11. Inversion of CO and NOx emissions using the adjoint of the IMAGES model

    Directory of Open Access Journals (Sweden)

    J.-F. Müller


    Full Text Available We use ground-based observations of CO mixing ratios and vertical column abundances together with tropospheric NO2 columns from the GOME satellite instrument as constraints for improving the global annual emission estimates of CO and NOx for the year 1997. The agreement between concentrations calculated by the global 3-dimensional CTM IMAGES and the observations is optimized using the adjoint modelling technique, which allows to invert for CO and NOx fluxes simultaneously, taking their chemical interactions into account. Our analysis quantifies a total of 39 flux parameters, comprising anthropogenic and biomass burning sources over large continental regions, soil and lightning emissions of NOx, biogenic emissions of CO and non-methane hydrocarbons, as well as the deposition velocities of both CO and NOx. Comparison between observed, prior and optimized CO mixing ratios at NOAA/CMDL sites shows that the inversion performs well at the northern mid- and high latitudes, and that it is less efficient in the Southern Hemisphere, as expected due to the scarsity of measurements over this part of the globe. The inversion, moreover, brings the model much closer to the measured NO2 columns over all regions. Sensitivity tests show that anthropogenic sources exhibit weak sensitivity to changes of the a priori errors associated to the bottom-up inventory, whereas biomass burning sources are subject to a strong variability. Our best estimate for the 1997 global top-down CO source amounts to 2760 Tg CO. Anthropogenic emissions increase by 28%, in agreement with previous inverse modelling studies, suggesting that the present bottom-up inventories underestimate the anthropogenic CO emissions in the Northern Hemisphere. The magnitude of the optimized NOx global source decreases by 14% with respect to the prior, and amounts to 42.1 Tg N, out of which 22.8 Tg N are due to anthropogenic sources. The NOx emissions increase over Tropical regions, whereas they decrease

  12. Double Photon Emission Coincidence Imaging using GAGG-SiPM pixel detectors (United States)

    Shimazoe, K.; Uenomachi, M.; Mizumachi, Y.; Takahashi, H.; Masao, Y.; Shoji, Y.; Kamada, K.; Yoshikawa, A.


    Single photon emission computed tomography(SPECT) is a useful medical imaging modality using single photon detection from radioactive tracers, such as 99Tc and 111In, however further development of increasing the contrast in the image is still under investigation. A novel method (Double Photon Emission CT / DPECT) using a coincidence detection of two cascade gamma-rays from 111In is proposed and characterized in this study. 111In, which is well-known and commonly used as a SPECT tracer, emits two cascade photons of 171 keV and 245 keV with a short delay of approximately 85 ns. The coincidence detection of two gamma-rays theoretically determines the position in a single point compared with a line in single photon detection and increases the signal to noise ratio drastically. A fabricated pixel detector for this purpose consists of 8 × 8 array of high-resolution type 1.5 mm thickness Ce:GAGG (3.9% @ 662 keV, 6.63g/cm3, C&A Co. Ce:Gd3Ga2.7Al2.3O12 2.5 × 2.5 × 1.5 mm3) crystals coupled a 3 mm pixel SiPM array (Hamamatsu MPPC S13361-2050NS-08). The signal from each pixel is processed and readout using time over threshold (TOT) based parallel processing circuit to extract the energy and timing information. The coincidence was detected by FPGA with the frequency of 400 MHz. Two pixel detectors coupled to parallel-hole collimators are located at the degree of 90 to determine the position and coincidence events (time window =1 μs) are detected and used for making back-projection image. The basic principle of DPECT is characterized including the detection efficiency and timing resolution.

  13. ALMA imaging of C2H emission in the disk of NGC 1068 (United States)

    García-Burillo, S.; Viti, S.; Combes, F.; Fuente, A.; Usero, A.; Hunt, L. K.; Martín, S.; Krips, M.; Aalto, S.; Aladro, R.; Ramos Almeida, C.; Alonso-Herrero, A.; Casasola, V.; Henkel, C.; Querejeta, M.; Neri, R.; Costagliola, F.; Tacconi, L. J.; van der Werf, P. P.


    Aims: We study the feedback of star formation and nuclear activity on the chemistry of molecular gas in NGC 1068, a nearby (D = 14 Mpc) Seyfert 2 barred galaxy, by analyzing whether the abundances of key molecular species such as ethynyl (C2H), which is a classical tracer of photon dominated regions (PDR), change in the different environments of the disk of the galaxy. Methods: We used the Atacama Large Millimeter Array (ALMA) to map the emission of the hyperfine multiplet of C2H(N = 1-0) and its underlying continuum emission in the central r ≃ 35″ (2.5 kpc) region of the disk of NGC 1068 with a spatial resolution 1.̋0 × 0.̋7 (≃ 50-70 pc). We used maps of the dust continuum emission obtained at 349 GHz by ALMA to derive the H2 gas column densities and combined these with the C2H map at matched spatial resolution to estimate the fractional abundance of this species. We developed a set of time-dependent chemical models, which include shocks, gas-phase PDRs, and gas-grain chemical models to determine the origin of the C2H gas. Results: A sizeable fraction of the total C2H line emission is detected from the r ≃ 1.3 kpc starburst (SB) ring, which is a region that concentrates the bulk of the recent massive star formation in the disk traced by the Paα emission complexes imaged by the Hubble Space Telescope (HST). However, the brightest C2H emission originates from a r ≃ 200 pc off-centered circumnuclear disk (CND), where evidence of a molecular outflow has been previously found in other molecular tracers imaged by ALMA. We also detect significant emission that connects the CND with the outer disk in a region that probes the interface between the molecular disk and ionized gas outflow out to r ≃ 400 pc. We derived the fractional abundances of C2H (X(C2H)) assuming local thermodynamic equilibrium (LTE) conditions and a set of excitation temperatures (Tex) constrained by the previous multiline CO studies of the galaxy. Our estimates range from X(C2H) ≃ a

  14. In vivo imaging of schistosomes to assess disease burden using positron emission tomography (PET). (United States)

    Salem, Nicolas; Balkman, Jason D; Wang, Jing; Wilson, David L; Lee, Zhenghong; King, Christopher L; Basilion, James P


    Schistosomes are chronic intravascular helminth parasites of humans causing a heavy burden of disease worldwide. Diagnosis of schistosomiasis currently requires the detection of schistosome eggs in the feces and urine of infected individuals. This method unreliably measures disease burden due to poor sensitivity and wide variances in egg shedding. In vivo imaging of schistosome parasites could potentially better assess disease burden, improve management of schistosomiasis, facilitate vaccine development, and enhance study of the parasite's biology. Schistosoma mansoni (S. mansoni) have a high metabolic demand for glucose. In this work we investigated whether the parasite burden in mice could be assessed by positron emission tomography (PET) imaging with 2-deoxy-2[(18)F]fluoro-D-glucose (FDG). Live adult S. mansoni worms FDG uptake in vitro increased with the number of worms. Athymic nude mice infected with S. mansoni 5-6 weeks earlier were used in the imaging studies. Fluorescence molecular tomography (FMT) imaging with Prosense 680 was first performed. Accumulation of the imaging probe in the lower abdomen correlated with the number of worms in mice with low infection burden. The total FDG uptake in the common portal vein and/or regions of elevated FDG uptake in the liver linearly correlated to the number of worms recovered from infected animals (R(2) =0.58, Pworm burden in mice with more than 50 worms (R(2) = 0.85, Pworms in a mouse with a high infection burden were in the portal vein, but not in a mouse with a low infection burden. FDG uptake in recovered worms measured by well counting closely correlated with worm number (R(2) = 0.85, Pworm burden in schistosomiasis-infected animals. Future investigations aiming at minimizing non-specific FDG uptake and to improve the recovery of signal from worms located in the lower abdomen will include the development of more specific radiotracers.

  15. Label-free real-time imaging of myelination in the Xenopus laevis tadpole by in vivo stimulated Raman scattering microscopy (United States)

    Hu, Chun-Rui; Zhang, Delong; Slipchenko, Mikhail N.; Cheng, Ji-Xin; Hu, Bing


    The myelin sheath plays an important role as the axon in the functioning of the neural system, and myelin degradation is a hallmark pathology of multiple sclerosis and spinal cord injury. Electron microscopy, fluorescent microscopy, and magnetic resonance imaging are three major techniques used for myelin visualization. However, microscopic observation of myelin in living organisms remains a challenge. Using a newly developed stimulated Raman scattering microscopy approach, we report noninvasive, label-free, real-time in vivo imaging of myelination by a single-Schwann cell, maturation of a single node of Ranvier, and myelin degradation in the transparent body of the Xenopus laevis tadpole.

  16. W-Band Polarimetric Scattering Features of a Tactical Ground Target Using a 1.56THz 3D Imaging Compact Range (United States)


    differences in the amplitudes of scatterers (due primarily to elevation related phasing and aperture dependent pixel division) the PSMs of the TSAR images...on a T8OB with the TSAR data is shown in Figure 2. Figure 2a is an image made by projecting the 3D data onto a top view of the target. Figure 2b TSAR data set taken at thesame angle. The TSAR measurements were made in a separate 1.56THz compact range where the model target is fully

  17. Including the effect of molecular interference in the coherent x-ray scattering modeling in MC-GPU and PENELOPE for the study of novel breast imaging modalities (United States)

    Ghammraoui, B.; Peng, R.; Suarez, I.; Bettolo, C.; Badal, A.


    Purpose: To present upgraded versions of MC-GPU and PenEASY Imaging, two open-source Monte Carlo codes for the simulation of radiographic projections and CT. The codes have been extended with the aim of studying breast imaging modalities that rely on the accurate modeling of coherent x-ray scatter. Methods: The simulation codes were extended to account for the effect of molecular interference in coherent scattering using experimentally measured molecular interference functions. The validity of the new model was tested experimentally using the Energy Dispersive X-Ray Diffraction (EDXRD) technique with a polychromatic x-ray source and an energy-resolved Germanium detector at a fixed scattering angle. Experiments and simulations of a full field digital mammography system with and without a 1D focused antiscatter grid were conducted for additional validation. The modified MC-GPU code was also used to examine the possibility of characterizing breast cancer within a mathematical breast phantom using the EDXRD technique. Results: The measured EDXRD spectra were correctly reproduced by the simulation with the modified code while the previous code using the Independent Atomic Approximation led to large errors in the predicted diffraction spectra. There was good agreement between the simulated and measured rejection factor for the 1D focused antiscatter grid with both models. The simulation study in a whole breast showed that the x-ray scattering profiles of adipose, fibrosis, cancer and benign tissues are differentiable. Conclusion: MC-GPU and PENELOPE were successfully extended and validated for accurate modeling of coherent x-ray scatter. The EDXRD technique with pencil-cone geometry in a whole breast was investigated by a simulation study and it was concluded that this technique has potential to characterize breast cancer lesions.

  18. Imaging of high-energy x-ray emission from cryogenic thermonuclear fuel implosions on the NIF. (United States)

    Ma, T; Izumi, N; Tommasini, R; Bradley, D K; Bell, P; Cerjan, C J; Dixit, S; Döppner, T; Jones, O; Kline, J L; Kyrala, G; Landen, O L; LePape, S; Mackinnon, A J; Park, H-S; Patel, P K; Prasad, R R; Ralph, J; Regan, S P; Smalyuk, V A; Springer, P T; Suter, L; Town, R P J; Weber, S V; Glenzer, S H


    Accurately assessing and optimizing the implosion performance of inertial confinement fusion capsules is a crucial step to achieving ignition on the NIF. We have applied differential filtering (matched Ross filter pairs) to provide broadband time-integrated absolute x-ray self-emission images of the imploded core of cryogenic layered implosions. This diagnostic measures the temperature- and density-sensitive bremsstrahlung emission and provides estimates of hot spot mass, mix mass, and pressure.

  19. Positron Emission Tomography for Serial Imaging of the Contused Adult Rat Spinal Cord

    Directory of Open Access Journals (Sweden)

    Rishi D.S. Nandoe Tewarie


    Full Text Available We investigated whether small-animal positron emission tomography (PET could be used in combination with computed tomography (CT imaging techniques for longitudinal monitoring of the injured spinal cord. In adult female Sprague-Dawley rats (n = 6, the ninth thoracic (T9 spinal cord segment was exposed by laminectomy and subsequently contused using the Infinite Horizon impactor (Precision System and Instrumentation, Lexington, KY at 225 kDyn. In control rats (n = 4, the T9 spinal cord was exposed by laminectomy but not contused. At 0.5 hours and 3, 7, and 21 days postinjury, 2-[18F]fluoro-2-deoxy-d-glucose ([18F]FDG was given intravenously followed 1 hour later by sequential PET and CT. Regions of interest (ROIs at T9 (contused and T6 (uninjured spinal cord segments were manually defined on CT images and aided by fiduciary markers superimposed onto the coregistered PET images. Monte Carlo simulation revealed that about 33% of the activity in the ROIs was due to spillover from adjacent hot areas. A simulation-based partial-volume compensation (PVC method was developed and used to correct for this spillover effect. With PET-CT, combined with PVC, we were able to serially measure standardized uptake values of the T9 and T6 spinal cord segments and reveal small, but significant, differences. This approach may become a tool to assess the efficacy of spinal cord repair strategies.

  20. In Vivo Dendritic Cell Tracking Using Fluorescence Lifetime Imaging and Near-Infrared-Emissive Polymersomes (United States)

    Christian, Natalie A.; Benencia, Fabian; Milone, Michael C.; Li, Guizhi; Frail, Paul R.; Therien, Michael J.; Coukos, George; Hammer, Daniel A.


    Purpose: Noninvasive in vivo cell-tracking techniques are necessary to advance the field of cellular-based therapeutics as well as to elucidate mechanisms governing in vivo cell biology. Fluorescence is commonly used for in vitro and postmortem biomedical studies but has been limited by autofluorescence at the whole-animal level. Procedures: In this report, we demonstrate the ability of in vivo fluorescent lifetime imaging to remove autofluorescence and thereby enable in vivo dendritic cell tracking in naïve mice. Specifically, we track mature dendritic cells (DCs) labeled internally with near-infrared-emissive polymersomes (NIR-DCs). Results: We establish the ability to detect labeled cells in vivo and image NIR-DC trafficking after both intravenous and subcutaneous delivery. In addition, we demonstrate the longitudinal capacity of this method by characterizing NIR-DC migration kinetics in the popliteal lymph node. Conclusions: This work provides a tool to evaluate dendritic-cell-based immunotherapy and generates novel opportunities for in vivo fluorescence imaging. PMID:19194761

  1. The sensitivity of 18-fluorodopa positron emission tomography and magnetic resonance imaging in Parkinson's disease. (United States)

    Heiss, W-D; Hilker, R


    Parkinson's disease (PD) as the most important movement disorder is characterized by a progressive loss of nigral dopamine neurons and a subsequent degeneration within several other transmitter systems. Functional brain imaging with positron emission tomography (PET) and the radiotracer 18-fluorodopa (FDOPA) is capable to quantify the deficiency of dopamine synthesis and storage within pre-synaptic striatal nerve terminals. Therefore, FDOPA-PET allows the diagnosis of PD in early disease stages and the differentiation of clinically unclear cases from other movement disorders, e.g. essential tremor. Additionally, FDOPA-PET imaging permits the follow-up of disease progression, the assessment of medical and surgical PD therapy strategies with possible neuroprotective properties and the detection of pre-clinical disease in subjects at risk for the disorder. The classical domain of morphological magnetic resonance imaging (MRI) is the differentiation of symptomatic Parkinsonism from PD. However, recent advances in MRI data acquisition and analysis techniques demonstrated MRI to be also a valuable tool for detection of nigral pathology in PD and for differentiation of neurodegenerative disorders with atypical Parkinsonism.

  2. Positron emission tomography with additional γ-ray detectors for multiple-tracer imaging. (United States)

    Fukuchi, Tomonori; Okauchi, Takashi; Shigeta, Mika; Yamamoto, Seiichi; Watanabe, Yasuyoshi; Enomoto, Shuichi


    Positron emission tomography (PET) is a useful imaging modality that quantifies the physiological distributions of radiolabeled tracers in vivo in humans and animals. However, this technique is unsuitable for multiple-tracer imaging because the annihilation photons used for PET imaging have a fixed energy regardless of the selection of the radionuclide tracer. This study developed a multi-isotope PET (MI-PET) system and evaluated its imaging performance. Our MI-PET system is composed of a PET system and additional γ-ray detectors. The PET system consists of pixelized gadolinium orthosilicate (GSO) scintillation detectors and has a ring geometry that is 95 mm in diameter with an axial field of view of 37.5 mm. The additional detectors are eight bismuth germanium oxide (BGO) scintillation detectors, each of which is 50 × 50 × 30 mm(3) , arranged into two rings mounted on each side of the PET ring with a 92-mm-inner diameter. This system can distinguish between different tracers using the additional γ-ray detectors to observe prompt γ-rays, which are emitted after positron emission and have an energy intrinsic to each radionuclide. Our system can simultaneously acquire double- (two annihilation photons) and triple- (two annihilation photons and a prompt γ-ray) coincidence events. The system's efficiency for detecting prompt de-excitation γ-rays was measured using a positron-γ emitter, (22) Na. Dual-radionuclide ((18) F and (22) Na) imaging of a rod phantom and a mouse was performed to demonstrate the performance of the developed system. Our system's basic performance was evaluated by reconstructing two images, one containing both tracers and the other containing just the second tracer, from list-mode data sets that were categorized by the presence or absence of the prompt γ-ray. The maximum detection efficiency for 1275 keV γ-rays emitted from (22) Na was approximately 7% at the scanner's center, and the minimum detection efficiency was 5.1% at the

  3. Hyperspectral imaging and characterization of live cells by broadband coherent anti-Stokes Raman scattering (CARS) microscopy with singular value decomposition (SVD) analysis. (United States)

    Khmaladze, Alexander; Jasensky, Joshua; Price, Erika; Zhang, Chi; Boughton, Andrew; Han, Xiaofeng; Seeley, Emily; Liu, Xinran; Banaszak Holl, Mark M; Chen, Zhan


    Coherent anti-Stokes Raman scattering (CARS) microscopy can be used as a powerful imaging technique to identify chemical compositions of complex samples in biology, biophysics, medicine, and materials science. In this work we developed a CARS microscopic system capable of hyperspectral imaging. By employing an ultrafast laser source, a photonic crystal fiber, and a scanning laser microscope together with spectral detection by a highly sensitive back-illuminated cooled charge-coupled device (CCD) camera, we were able to rapidly acquire and process hyperspectral images of live cells with chemical selectivity. We discuss various aspects of hyperspectral CARS image analysis and demonstrate the use of singular value decomposition methods to characterize the cellular lipid content.

  4. Light scattering reviews 8 radiative transfer and light scattering

    CERN Document Server

    Kokhanovsky, Alexander A


    Light scattering review (vol 8) is aimed at the presentation of recent advances in radiative transfer and light scattering optics. The topics to be covered include: scattering of light by irregularly shaped particles suspended in atmosphere (dust, ice crystals), light scattering by particles much larger as compared the wavelength of incident radiation, atmospheric radiative forcing, astrophysical radiative transfer, radiative transfer and optical imaging in biological media, radiative transfer of polarized light, numerical aspects of radiative transfer.

  5. Data acquisition and processing system of the electron cyclotron emission imaging system of the KSTAR tokamak. (United States)

    Kim, J B; Lee, W; Yun, G S; Park, H K; Domier, C W; Luhmann, N C


    A new innovative electron cyclotron emission imaging (ECEI) diagnostic system for the Korean Superconducting Tokamak Advanced Research (KSTAR) produces a large amount of data. The design of the data acquisition and processing system of the ECEI diagnostic system should consider covering the large data production and flow. The system design is based on the layered structure scalable to the future extension to accommodate increasing data demands. Software architecture that allows a web-based monitoring of the operation status, remote experiment, and data analysis is discussed. The operating software will help machine operators and users validate the acquired data promptly, prepare next discharge, and enhance the experiment performance and data analysis in a distributed environment.

  6. New compact and efficient local oscillator optic system for the KSTAR electron cyclotron emission imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Y. B., E-mail:; Yun, G. S. [Department of Physics, Pohang University of Science and Technology, Pohang 37673 (Korea, Republic of); Lee, D. J.; Lee, J.; Lee, W. [Ulsan National Institute of Science and Technology, Ulsan 44919 (Korea, Republic of); Kim, C. [Pennsylvania State University, Old Main, State College, Pennsylvania 16801 (United States); Park, H. K. [Ulsan National Institute of Science and Technology, Ulsan 44919 (Korea, Republic of); National Fusion Research Institute, Daejeon 34133 (Korea, Republic of)


    Electron cyclotron emission imaging (ECEI) diagnostic on Korean Superconducting Tokamak Advanced Research utilizes quasi-optical heterodyne-detection method to measure 2D (vertical and radial) T{sub e} fluctuations from two toroidally separated poloidal cross section of the plasma. A cylindrical lens local oscillator (LO) optics with optical path length (OPL) 2–2.5 m has been used in the current ECEI system to couple the LO source to the 24 vertically aligned array of ECE detectors. For efficient and compact LO optics employing the Powell lens is proposed so that the OPL of the LO source is significantly reduced from ∼2.0 m to 0.4 m with new optics. The coupling efficiency of the LO source is expected to be improved especially at the edge channels. Results from the optical simulation together with the laboratory test of the prototype optics will be discussed in this paper.

  7. Mechanism analysis of Gen Ⅲ LLL image intensifier GaAs cathode photoelectric emission disability (United States)

    Xu, Jiangtao; Yan, Lei; Cheng, Yaojin; Han, Kunye; Liu, Beibei; Zhang, Taimin


    The focus of the third generation image intensifier photocathode sensitivity decreases in the GaAs are analyzed, and proposed solutions,experimental results show that the tube microchannel plate(mcp), screen GaAs cathode discharge gas is caused by decreased sensitivity of the main reasons. Paper used two-layer model, and even negative electron affinity(NET) interface barrier theory of the photoelectric cathode drop mechanism was discussed , when the photocathode emission levels of CO adsorption and other harmful gas, chemical adsorption layer of ionic bond formation will lead to production of cathode surface barrier interfaces. Cathode surface adsorption of the pollutants more ,the interface barrier becomes thicker, the smaller the electron surface escape probability, when the cathode interface thicker barrier to the electron surface escape is zero, the cathode photoemission end of life.

  8. Tetraphenylethene-based aggregation-induced emission fluorescent organic nanoparticles: facile preparation and cell imaging application. (United States)

    Zhang, Xiqi; Liu, Meiying; Yang, Bin; Zhang, Xiaoyong; Wei, Yen


    Tetraphenylethene-based (TPE) aggregation-induced emission fluorescent organic nanoparticles (FONs) were facilely prepared via Schiff base condensation with ɛ-polylysine (Ply) and subsequent reduction to form stable CN covalent bond. Thus obtained TPE-Ply FONs were characterized by a series of techniques including fluorescent spectroscopy, Fourier transform infrared spectroscopy and transmission electron microscopy. Biocompatibility evaluation and cell uptake behavior of TPE-Ply FONs were further investigated to explore their potential biomedical application. We demonstrated that such FONs showed high water dispersibility, intense fluorescence, uniform morphology (100-200nm) and excellent biocompatibility, making them promising for cell imaging application. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. The role of symmetry in the theory of inelastic high-energy electron scattering and its application to atomic-resolution core-loss imaging

    Energy Technology Data Exchange (ETDEWEB)

    Dwyer, C., E-mail: [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Jülich D-52425 (Germany); Peter Grünberg Institute, Forschungszentrum Jülich, Jülich D-52425 (Germany)


    The inelastic scattering of a high-energy electron in a solid constitutes a bipartite quantum system with an intrinsically large number of excitations, posing a considerable challenge for theorists. It is demonstrated how and why the utilization of symmetries, or approximate symmetries, can lead to significant improvements in both the description of the scattering physics and the efficiency of numerical computations. These ideas are explored thoroughly for the case of core-loss excitations, where it is shown that the coupled angular momentum basis leads to dramatic improvements over the bases employed in previous work. The resulting gains in efficiency are demonstrated explicitly for K-, L- and M-shell excitations, including such excitations in the context of atomic-resolution imaging in the scanning transmission electron microscope. The utilization of other symmetries is also discussed. - Highlights: • It is explained how and why symmetry improves the efficiency of inelastic scattering calculations in general. • This includes approximate symmetries, which are often easier to specify. • Specific examples are given for core-loss scattering in STEM. • The utilization of approximate symmetries associated with ELNES, the detector geometry, and the energy loss are also discussed.

  10. Evaluation of Positron Emission Tomographic Tracers for Imaging of Papillomavirus-Induced Tumors in Rabbits

    Directory of Open Access Journals (Sweden)

    Sonja Probst


    Full Text Available In this study, simultaneous positron emission tomography (PET/magnetic resonance (MR imaging was employed to evaluate the feasibility of the PET tracers 2-deoxy-2-18F-fluoro-D-glucose (18F-FDG, 11C-choline, and 18F-fluorothymidine (18F-FLT to detect papillomavirus-induced tumors in an established rabbit model system. The combined PET/MR allowed the analysis of tracer uptake of the tumors using the morphologic information acquired by MR. New Zealand White rabbits were infected with cottontail rabbit papillomavirus genomes and were imaged for up to 10 months with a simultaneous PET/MR system during the course of infection. The uptake characteristics of the PET tracers 11C-choline and 18F-FLT of tumors and reference tissues were examined relative to the clinical standard, 18F-FDG. Tracer biodistribution of various organs was measured by gamma-counting after the last PET scan and compared to the in vivo PET/MR 18F-FDG uptake. Increased tracer uptake was found 2 months postinfection in primary tumors with 18F-FDG and 11C-choline, whereas 18F-FLT failed to detect the tumors at all measured time points. Our data show that the PET tracer 18F-FDG is superior for imaging papillomavirus-induced tumors in rabbits compared to 11C-choline and 18F-FLT. However, 11C-choline imaging, which has previously been applied to detect various tumor entities in patients, appears to be an alternative to 18F-FDG.

  11. Individual integration of positron emission tomography and high-resolution magnetic resonance imaging. (United States)

    Steinmetz, H; Huang, Y; Seitz, R J; Knorr, U; Schlaug, G; Herzog, H; Hackländer, T; Freund, H J


    We have developed, validated, and employed a technique of retrospective spatial alignment and integrated display of positron emission tomographic (PET) and high-resolution magnetic resonance (MR) brain images. The method was designed to improve the anatomical evaluation of functional images obtained from single subjects. In the first computational step, alignment of PET and MR data sets is achieved by iteratively matching in three orthogonal views the outermost scalp contours derived from front-to-back projections of each data set. This procedure avoids true three-dimensional modeling, runs without user interaction, and tolerates missing parts of the head circumference in the image volume, as usually the case with PET. Thereafter, high-resolution MR sections corresponding to the PET slices are reconstructed from the spatially transformed MR data. In a phantom study of this method, PET/MR alignment of the phantom's surface was accurate with average residual misfits of 2.17 to 2.32 mm as determined in three orthogonal planes. In-plane alignment of the phantom's insertion holes was accurate with an average residual misfit of 2.30 mm. In vivo application in six subjects allowed the individual anatomical localization of regional CBF (rCBF) responses obtained during unilateral manual exploration. In each subject, the maxima of the rCBF activations in the hand area were precisely allocated to gray matter in the anterior or posterior wall of the central sulcus. The configuration of the rCBF responses closely followed the gyral structures. The technique provided a better topographical understanding of rCBF changes in subtraction images of PET activation studies. It opens the perspective for studies of structural-functional relationships in individual subjects.

  12. Quantification of regional myocardial oxygenation by magnetic resonance imaging: validation with positron emission tomography. (United States)

    McCommis, Kyle S; Goldstein, Thomas A; Abendschein, Dana R; Herrero, Pilar; Misselwitz, Bernd; Gropler, Robert J; Zheng, Jie


    A comprehensive evaluation of myocardial ischemia requires measures of both oxygen supply and demand. Positron emission tomography (PET) is currently the gold standard for such evaluations, but its use is limited because of its ionizing radiation, limited availability, and high cost. A cardiac MRI method was developed for assessing myocardial oxygenation. The purpose of this study was to evaluate and validate this technique compared with PET during pharmacological stress in a canine model of coronary artery stenosis. Twenty-one beagles and small mongrel dogs without coronary artery stenosis (controls) or with moderate to severe acute coronary artery stenosis underwent MRI and PET imaging at rest and during dipyridamole vasodilation or dobutamine stress to induce a wide range of changes in cardiac perfusion and oxygenation. MRI first-pass perfusion imaging was performed to quantify myocardial blood flow and volume. The MRI blood oxygen level-dependent technique was used to determine the myocardial oxygen extraction fraction during pharmacological hyperemia. Myocardial oxygen consumption was determined by the Fick law. In the same dogs, (15)O-water and (11)C-acetate were used to measure myocardial blood flow and myocardial oxygen consumption, respectively, by PET. Regional assessments were performed for both MR and PET. MRI data correlated nicely with PET values for myocardial blood flow (R(2)=0.79, P<0.001), myocardial oxygen consumption (R(2)=0.74, P<0.001), and oxygen extraction fraction (R(2)=0.66, P<0.01). Cardiac MRI methods may provide an alternative to radionuclide imaging in settings of myocardial ischemia. Our newly developed quantitative MRI oxygenation imaging technique may be a valuable noninvasive tool to directly evaluate myocardial energetics and efficiency.

  13. Multispectral Emissions of Lanthanide-Doped Gadolinium Oxide Nanophosphors for Cathodoluminescence and Near-Infrared Upconversion/Downconversion Imaging (United States)

    Thi Kim Dung, Doan; Fukushima, Shoichiro; Furukawa, Taichi; Niioka, Hirohiko; Sannomiya, Takumi; Kobayashi, Kaori; Yukawa, Hiroshi; Baba, Yoshinobu; Hashimoto, Mamoru; Miyake, Jun


    Comprehensive imaging of a biological individual can be achieved by utilizing the variation in spatial resolution, the scale of cathodoluminescence (CL), and near-infrared (NIR), as favored by imaging probe Gd2O3 co-doped lanthanide nanophosphors (NPPs). A series of Gd2O3:Ln3+/Yb3+ (Ln3+: Tm3+, Ho3+, Er3+) NPPs with multispectral emission are prepared by the sol-gel method. The NPPs show a wide range of emissions spanning from the visible to the NIR region under 980 nm excitation. The dependence of the upconverting (UC)/downconverting (DC) emission intensity on the dopant ratio is investigated. The optimum ratios of dopants obtained for emissions in the NIR regions at 810 nm, 1200 nm, and 1530 nm are applied to produce nanoparticles by the homogeneous precipitation (HP) method. The nanoparticles produced from the HP method are used to investigate the dual NIR and CL imaging modalities. The results indicate the possibility of using Gd2O3 co-doped Ln3+/Yb3+ (Ln3+: Tm3+, Ho3+, Er3+) in correlation with NIR and CL imaging. The use of Gd2O3 promises an extension of the object dimension to the whole-body level by employing magnetic resonance imaging (MRI). PMID:28335291

  14. Multispectral Emissions of Lanthanide-Doped Gadolinium Oxide Nanophosphors for Cathodoluminescence and Near-Infrared Upconversion/Downconversion Imaging

    Directory of Open Access Journals (Sweden)

    Doan Thi Kim Dung


    Full Text Available Comprehensive imaging of a biological individual can be achieved by utilizing the variation in spatial resolution, the scale of cathodoluminescence (CL, and near-infrared (NIR, as favored by imaging probe Gd2O3 co-doped lanthanide nanophosphors (NPPs. A series of Gd2O3:Ln3+/Yb3+ (Ln3+: Tm3+, Ho3+, Er3+ NPPs with multispectral emission are prepared by the sol-gel method. The NPPs show a wide range of emissions spanning from the visible to the NIR region under 980 nm excitation. The dependence of the upconverting (UC/downconverting (DC emission intensity on the dopant ratio is investigated. The optimum ratios of dopants obtained for emissions in the NIR regions at 810 nm, 1200 nm, and 1530 nm are applied to produce nanoparticles by the homogeneous precipitation (HP method. The nanoparticles produced from the HP method are used to investigate the dual NIR and CL imaging modalities. The results indicate the possibility of using Gd2O3 co-doped Ln3+/Yb3+ (Ln3+: Tm3+, Ho3+, Er3+ in correlation with NIR and CL imaging. The use of Gd2O3 promises an extension of the object dimension to the whole-body level by employing magnetic resonance imaging (MRI.

  15. Simultaneous Tc-99m and I-123 dual-radionuclide imaging with a solid-state detector-based brain-SPECT system and energy-based scatter correction. (United States)

    Takeuchi, Wataru; Suzuki, Atsuro; Shiga, Tohru; Kubo, Naoki; Morimoto, Yuichi; Ueno, Yuichiro; Kobashi, Keiji; Umegaki, Kikuo; Tamaki, Nagara


    A brain single-photon emission computed tomography (SPECT) system using cadmium telluride (CdTe) solid-state detectors was previously developed. This CdTe-SPECT system is suitable for simultaneous dual-radionuclide imaging due to its fine energy resolution (6.6 %). However, the problems of down-scatter and low-energy tail due to the spectral characteristics of a pixelated solid-state detector should be addressed. The objective of this work was to develop a system for simultaneous Tc-99m and I-123 brain studies and evaluate its accuracy. A scatter correction method using five energy windows (FiveEWs) was developed. The windows are Tc-lower, Tc-main, shared sub-window of Tc-upper and I-lower, I-main, and I-upper. This FiveEW method uses pre-measured responses for primary gamma rays from each radionuclide to compensate for the overestimation of scatter by the triple-energy window method that is used. Two phantom experiments and a healthy volunteer experiment were conducted using the CdTe-SPECT system. A cylindrical phantom and a six-compartment phantom with five different mixtures of Tc-99m and I-123 and a cold one were scanned. The quantitative accuracy was evaluated using 18 regions of interest for each phantom. In the volunteer study, five healthy volunteers were injected with Tc-99m human serum albumin diethylene triamine pentaacetic acid (HSA-D) and scanned (single acquisition). They were then injected with I-123 N-isopropyl-4-iodoamphetamine hydrochloride (IMP) and scanned again (dual acquisition). The counts of the Tc-99m images for the single and dual acquisitions were compared. In the cylindrical phantom experiments, the percentage difference (PD) between the single and dual acquisitions was 5.7 ± 4.0 % (mean ± standard deviation). In the six-compartment phantom experiment, the PDs between measured and injected activity for Tc-99m and I-123 were 14.4 ± 11.0 and 2.3 ± 1.8 %, respectively. In the volunteer study, the PD between the single

  16. Imaging of brain oxygenation with magnetic resonance imaging: A validation with positron emission tomography in the healthy and tumoural brain. (United States)

    Valable, Samuel; Corroyer-Dulmont, Aurélien; Chakhoyan, Ararat; Durand, Lucile; Toutain, Jérôme; Divoux, Didier; Barré, Louisa; MacKenzie, Eric T; Petit, Edwige; Bernaudin, Myriam; Touzani, Omar; Barbier, Emmanuel L


    The partial pressure in oxygen remains challenging to map in the brain. Two main strategies exist to obtain surrogate measures of tissue oxygenation: the tissue saturation studied by magnetic resonance imaging (S t O 2 -MRI) and the identification of hypoxia by a positron emission tomography (PET) biomarker with 3-[ 18 F]fluoro-1-(2-nitro-1-imidazolyl)-2-propanol ([ 18 F]-FMISO) as the leading radiopharmaceutical. Nonetheless, a formal validation of S t O 2 -MRI against FMISO-PET has not been performed. The objective of our studies was to compare the two approaches in (a) the normal rat brain when the rats were submitted to hypoxemia; (b) animals implanted with four tumour types differentiated by their oxygenation. Rats were submitted to normoxic and hypoxemic conditions. For the brain tumour experiments, U87-MG, U251-MG, 9L and C6 glioma cells were orthotopically inoculated in rats. For both experiments, S t O 2 -MRI and [ 18 F]-FMISO PET were performed sequentially. Under hypoxemia conditions, S t O 2 -MRI revealed a decrease in oxygen saturation in the brain. Nonetheless, [ 18 F]-FMISO PET, pimonidazole immunohistochemistry and molecular biology were insensitive to hypoxia. Within the context of tumours, S t O 2 -MRI was able to detect hypoxia in the hypoxic models, mimicking [ 18 F]-FMISO PET with high sensitivity/specificity. Altogether, our data clearly support that, in brain pathologies, S t O 2 -MRI could be a robust and specific imaging biomarker to assess hypoxia.

  17. Facile synthesis of terminal-alkyne bioorthogonal molecules for live -cell surface-enhanced Raman scattering imaging through Au-core and silver/dopamine-shell nanotags. (United States)

    Chen, Meng; Zhang, Ling; Yang, Bo; Gao, Mingxia; Zhang, Xiangmin


    Alkyne is unique, specific and biocompatible in the Raman-silent region of the cell, but there still remains a challenge to achieve ultrasensitive detection in living systems due to its weak Raman scattering. Herein, a terminal alkyne ((E)-2-[4-(ethynylbenzylidene)amino]ethane-1-thiol (EBAE)) with surface-enhanced Raman scattering is synthesized. The EBAE molecule possesses S- and C-termini, which can be directly bonded to gold nanoparticles and dopamine/silver by forming the Au-S chemical bond and the carbon-metal bond, respectively. The distance between Raman reporter and AuNPs/AgNPs can be reduced, contributing to forming hot-spot-based SERS substrate. The alkyne functionalized nanoparticles are based on Au core and encapsulating polydopamine shell, defined as Au-core and dopamine/Ag-shell (ACDS). The bimetallic ACDS induce strong SERS signals for molecular imaging that arise from the strong electromagnetic field. Furthermore, the EBAE provides a distinct peak in the cellular Raman-silent region with nearly zero background interference. The EBAE Raman signals could be tremendously enhanced when the Raman reporter is located at the middle of the Au-core and dopamine/Ag-shell. Therefore, this work could have huge potential benefits for the highly sensitive detection of intercellular information delivery by connecting the recognition molecules in biomedical diagnostics. Graphical abstract Terminal-alkyne-functionalized Au-core and silver/dopamine-shell nanotags for live-cell surface-enhanced Raman scattering imaging.

  18. In vivo imaging of schistosomes to assess disease burden using positron emission tomography (PET.

    Directory of Open Access Journals (Sweden)

    Nicolas Salem


    Full Text Available Schistosomes are chronic intravascular helminth parasites of humans causing a heavy burden of disease worldwide. Diagnosis of schistosomiasis currently requires the detection of schistosome eggs in the feces and urine of infected individuals. This method unreliably measures disease burden due to poor sensitivity and wide variances in egg shedding. In vivo imaging of schistosome parasites could potentially better assess disease burden, improve management of schistosomiasis, facilitate vaccine development, and enhance study of the parasite's biology. Schistosoma mansoni (S. mansoni have a high metabolic demand for glucose. In this work we investigated whether the parasite burden in mice could be assessed by positron emission tomography (PET imaging with 2-deoxy-2[(18F]fluoro-D-glucose (FDG.Live adult S. mansoni worms FDG uptake in vitro increased with the number of worms. Athymic nude mice infected with S. mansoni 5-6 weeks earlier were used in the imaging studies. Fluorescence molecular tomography (FMT imaging with Prosense 680 was first performed. Accumulation of the imaging probe in the lower abdomen correlated with the number of worms in mice with low infection burden. The total FDG uptake in the common portal vein and/or regions of elevated FDG uptake in the liver linearly correlated to the number of worms recovered from infected animals (R(2 =0.58, P<0.001, n = 40. FDG uptake showed a stronger correlation with the worm burden in mice with more than 50 worms (R(2 = 0.85, P<0.001, n = 17. Cryomicrotome imaging confirmed that most of the worms in a mouse with a high infection burden were in the portal vein, but not in a mouse with a low infection burden. FDG uptake in recovered worms measured by well counting closely correlated with worm number (R(2 = 0.85, P<0.001, n = 21. Infected mice showed a 32% average decrease in total FDG uptake after three days of praziquantel treatment (P = 0.12. The total FDG uptake in untreated mice increased

  19. Intellectual function and radiological images in patients with amyotrophic lateral sclerosis. Special reference to single photon emission computed tomography images

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, Hiroo; Kanda, Mikio; Fukui, Toshiya; Sugita, Koujiro [Showa Univ., Tokyo (Japan). School of Medicine


    To clarify cognitive decline in amyotrophic lateral sclerosis (ALS), we compared cognitive and motor signs with neuroradiological features, with special reference to single photon emission computed tomography (SPECT), in 23 patients with ALS. Of these 23 patients, five demented patients (ALS-D) showed a decrease in voluntary speech output, abnormal behavior or character change. SPECT images in these patients were specifically characterized by marked uptake reduction in the frontal lobes. ALS patients with normal mentality (ALS-N) showed either a normal pattern or non-specific patchy uptake reduction on SPECT, but never showed the diffuse frontal uptake reduction that was observed in ALS-D patients. None of the ALS-N patients showed cognitive decline or frontal uptake reduction during the follow-up period of up to 29 months. There was no relation in either ALS-D or ALS-N patients between the degree of tracer uptake reduction and clinical features of ALS including severity and duration of illness. Clinical and neuroradiological features in ALS-D patients were compatible with those of `frontal lobe dementia`. ALS-D patients may compose a distinct group because cognitive decline is unlikely to occur in ALS-N patients with a long clinical course. ALS-D patients may be differentiated from other non-demented ALS patients in the early clinical course by the characteristic diffuse frontal uptake reduction on SPECT. (author).

  20. Simulation of image detectors in radiology for determination of scatter-to-primary ratios using Monte Carlo radiation transport code MCNP/MCNPX

    Energy Technology Data Exchange (ETDEWEB)

    Smans, Kristien; Zoetelief, Johannes; Verbrugge, Beatrijs; Haeck, Wim; Struelens, Lara; Vanhavere, Filip; Bosmans, Hilde [SCKCEN, Mol 2400, Belgium and University Hospitals of Leuven, Leuven 3000 (Belgium); Delft University of Technology, 2628 CN Delft (Netherlands); University Hospitals of Leuven, Leuven 3000 (Belgium); IRSN, 92262 Fontenay-aux-Roses (France); SCKCEN, Mol 2400, Belgium, Leuven 3000 (Belgium); University Hospitals of Leuven, Leuven 3000 (Belgium)


    Purpose: The purpose of this study was to compare and validate three methods to simulate radiographic image detectors with the Monte Carlo software MCNP/MCNPX in a time efficient way. Methods: The first detector model was the standard semideterministic radiography tally, which has been used in previous image simulation studies. Next to the radiography tally two alternative stochastic detector models were developed: A perfect energy integrating detector and a detector based on the energy absorbed in the detector material. Validation of three image detector models was performed by comparing calculated scatter-to-primary ratios (SPRs) with the published and experimentally acquired SPR values. Results: For mammographic applications, SPRs computed with the radiography tally were up to 44% larger than the published results, while the SPRs computed with the perfect energy integrating detectors and the blur-free absorbed energy detector model were, on the average, 0.3% (ranging from -3% to 3%) and 0.4% (ranging from -5% to 5%) lower, respectively. For general radiography applications, the radiography tally overestimated the measured SPR by as much as 46%. The SPRs calculated with the perfect energy integrating detectors were, on the average, 4.7% (ranging from -5.3% to -4%) lower than the measured SPRs, whereas for the blur-free absorbed energy detector model, the calculated SPRs were, on the average, 1.3% (ranging from -0.1% to 2.4%) larger than the measured SPRs. Conclusions: For mammographic applications, both the perfect energy integrating detector model and the blur-free energy absorbing detector model can be used to simulate image detectors, whereas for conventional x-ray imaging using higher energies, the blur-free energy absorbing detector model is the most appropriate image detector model. The radiography tally overestimates the scattered part and should therefore not be used to simulate radiographic image detectors.

  1. The impact of optimal respiratory gating and image noise on evaluation of intra-tumor heterogeneity in 18F-FDG positron emission tomography imaging of lung cancer

    NARCIS (Netherlands)

    Grootjans, W.; Tixier, F.; Vos, C.S. van der; Vriens, D.; Rest, C.C. Le; Bussink, J.; Oyen, W.J.G.; Geus-Oei, L.-F. de; Visvikis, D.; Visser, E.P.


    Assessment of measurement accuracy of intra-tumor heterogeneity using texture features in positron emission tomography (PET) images is essential to characterize cancer lesions with high precision. In this study, we investigated the influence of respiratory motion and varying noise levels on

  2. Synthesis, surface modification and biological imaging of aggregation-induced emission (AIE) dye doped silica nanoparticles (United States)

    Mao, Liucheng; Liu, Meiying; Xu, Dazhuang; Wan, Qing; Huang, Qiang; Jiang, Ruming; Shi, Yingge; Deng, Fengjie; Zhang, Xiaoyong; Wei, Yen


    Fluorescent silica nanoparticles (FSNPs) have been extensively investigated for various biomedical applications in recently years. However, the aggregation of organic dyes in silica nanoparticles also leads the significant fluorescence quenching owing to the aggregation caused quenching effects of organic dyes. Herein, we developed a rather facile strategy to fabricate FSNPs with desirable fluorescent properties through non-covalent incorporation of fluorophores with aggregation-induced emission (AIE) feature into silica nanoparticles, which were subsequently modified with functional polymers. The resultant FSNPs polymer nanocomposites (named as FSNPs-poly(IA-co-PEGMA)) exhibited uniform spherical morphology, high water dispersiity, and bright red fluorescence. Cytotoxicity results indicate that FSNPs-poly(IA-co-PEGMA) possess excellent biocompatibility. Cell uptake behavior suggests FSNPs-poly(IA-co-PEGMA) are of great potential for biological imaging applications. Taken together, we have reported a facile method for the fabrication of FSNPs through non-covalent encapsulation using an AIE-active dye. These FSNPs can be further functionalized with functional polymers through ring-opening reaction and the resultant FSNPs-poly(IA-co-PEGMA) showed great potential for biological imaging. More importantly, we believe that many other functional components could also be integrated into these FSNPs through the facile ring-opening reaction. Therefore, this method should be a facile and general tool for fabrication of polymer functionalized AIE-active FSNPs.

  3. Radiolabelled molecules for imaging the translocator protein (18 kDa) using positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Dolle, F.; Luus, C.; Reynolds, A.; Kassiou, M. [CEA, Institut d' Imagerie BioMedicale, Service Hospitalier Frederic Joliot, Orsay (France)


    The translocator protein (18 kDa) (TSPO), formerly known as the peripheral benzodiazepine receptor (PBR), was originally identified as an alternate binding site for the central benzodiazepine receptor (CBR) ligand, diazepam, in the periphery, but has now been distinguished as a novel site. The TSPO is ubiquitously expressed in peripheral tissues but only minimally in the healthy brain and increased levels of TSPO expression have been noted in neuro inflammatory conditions such as Alzheimer's disease, Parkinson's disease and stroke. This increase in TSPO expression has been reported to coincide with the process of micro-glial activation, whereby the brain's intrinsic immune system becomes active. Therefore, by using recently developed high affinity, selective TSPO ligands in conjunction with functional imaging modalities such as positron emission tomography (PET), it becomes possible to study the process of micro-glial activation in the living brain. A number of high affinity ligands, the majority of which are C, N-substituted acetamide derivatives, have been successfully radiolabelled and used in in vivo studies of the TSPO and the process of micro-glial activation. This review highlights recent achievements (up to December 2008) in the field of functional imaging of the TSPO as well as the radio-syntheses involved in such studies. (authors)

  4. Design of the 2D electron cyclotron emission imaging instrument for the J-TEXT tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Pan, X. M.; Yang, Z. J., E-mail:; Ma, X. D.; Ruan, B. W.; Zhuang, G. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Zhu, Y. L. [School of Physics, University of Science and Technology of China, Anhui 230026 (China); Luhmann, N. C.; Domier, C. W. [Davis Millimeter Wave Research Center, University of California, Davis, California 95616 (United States)


    A new 2D Electron Cyclotron Emission Imaging (ECEI) diagnostic is being developed for the J-TEXT tokamak. It will provide the 2D electron temperature information with high spatial, temporal, and temperature resolution. The new ECEI instrument is being designed to support fundamental physics investigations on J-TEXT including MHD, disruption prediction, and energy transport. The diagnostic contains two dual dipole antenna arrays corresponding to F band (90-140 GHz) and W band (75-110 GHz), respectively, and comprises a total of 256 channels. The system can observe the same magnetic surface at both the high field side and low field side simultaneously. An advanced optical system has been designed which permits the two arrays to focus on a wide continuous region or two radially separate regions with high imaging spatial resolution. It also incorporates excellent field curvature correction with field curvature adjustment lenses. An overview of the diagnostic and the technical progress including the new remote control technique are presented.

  5. Toward Fourier interferometry fluorescence excitation/emission imaging of malignant cells combined with photoacoustic microscopy (United States)

    Kohen, Elli; Hirschberg, Joseph G.; Berry, John P.; Ozkutuk, Nuri; Ornek, Ceren; Monti, Marco; Leblanc, Roger M.; Schachtschabel, Dietrich O.; Haroon, Sumaira


    Dual excitation fluorescence imaging has been used as a first step towards multi-wavelength excitation/emission fluorescence spectral imaging. Target cells are transformed keratinocytes, and other osteosarcoma, human breast and color cancer cells. Mitochondrial membrane potential probes, e.g. TMRM (tetramethylrhodamine methyl ester), Mitotracker Green (Molecular Probes, Inc., Eugene OR,USA; a recently synthesized mitochondrial oxygen probe, [PRE,P1"- pyrene butyl)-2-rhodamine ester] allow dual excitation in the UV plus in teh blue-green spectral regions. Also, using the natural endogenous probe NAD(P)H, preliminary results indicate mitochondrial responses to metabolic challenges (e.g. glucose addition), plus changes in mitochonrial distribution and morphology. In terms of application to biomedicine (for diagnostiscs, prognostsics and drug trials) three parameters have been selected in addition to the natural probe NAD(P)H, i.e. vital fluorescence probing of mitochondria, lysosomes and Golgi apparatus. It is hoped that such a multiparameter approach will allow malignant cell characterization and grading. A new area being introduced is the use of similar methodology for biotechnical applications such as the study of the hydrogen-producing alga Chlamydomonas Reinhardtii, and possible agricultural applications, such as Saccharomyces yeast for oenology. Complementation by Photoacoustic Microscopy is also contemplated, to study the internal conversion component which follows the excitation by photons.

  6. Dual-mode super-resolution imaging with stimulated emission depletion microscopy and fluorescence emission difference microscopy. (United States)

    Wang, Yifan; Ma, Ye; Kuang, Cuifang; Fang, Yue; Xu, Yingke; Liu, Xu; Ding, Zhihua


    Dual-mode super-resolution imaging system with two different super-resolution imaging methods, STED and FED, is presented. Electrical shutters controlled by the host computer are introduced to switch the two imaging modes. Principles of both methods are analyzed theoretically, and enhancements in the lateral resolution and SNR are demonstrated theoretically and experimentally. Results show that both imaging methods offered by the proposed system can break the diffraction barrier. Furthermore, the presented system provides a meaningful way to image fluorescent samples by a corresponding imaging mode according to the specific characteristics of samples analyzed for study. For samples that can endure high-power illumination, it is appropriate to use the STED mode to achieve a better resolution, while for samples that are vulnerable to high intensity, the FED method is a better choice because no high-power beam is needed, and the FED method can provide better resolution than STED when no high-power beam is allowed. The flexible switching of the two super-resolution imaging modes can help researchers to make most of the advantages of each imaging method. It is believed that the presented system has the potential to be widely used in future nanoscale investigations.

  7. Phenomenological scattering-rate model for the simulation of the current density and emission power in mid-infrared quantum cascade lasers

    Energy Technology Data Exchange (ETDEWEB)

    Kurlov, S. S. [Department of Physics, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin (Germany); Institute of Semiconductor Physics, National Academy of Sciences, pr. Nauki 45, Kiev-03028 (Ukraine); Flores, Y. V.; Elagin, M.; Semtsiv, M. P.; Masselink, W. T. [Department of Physics, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin (Germany); Schrottke, L.; Grahn, H. T. [Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5–7, 10117 Berlin (Germany); Tarasov, G. G. [Institute of Semiconductor Physics, National Academy of Sciences, pr. Nauki 45, Kiev-03028 (Ukraine)


    A phenomenological scattering-rate model introduced for terahertz quantum cascade lasers (QCLs) [Schrottke et al., Semicond. Sci. Technol. 25, 045025 (2010)] is extended to mid-infrared (MIR) QCLs by including the energy dependence of the intersubband scattering rates for energies higher than the longitudinal optical phonon energy. This energy dependence is obtained from a phenomenological fit of the intersubband scattering rates based on published lifetimes of a number of MIR QCLs. In our approach, the total intersubband scattering rate is written as the product of the exchange integral for the squared moduli of the envelope functions and a phenomenological factor that depends only on the transition energy. Using the model to calculate scattering rates and imposing periodical boundary conditions on the current density, we find a good agreement with low-temperature data for current-voltage, power-current, and energy-photon flux characteristics for a QCL emitting at 5.2 μm.

  8. Second-Generation Triple Reporter for Bioluminescence, Micro–Positron Emission Tomography, and Fluorescence Imaging

    Directory of Open Access Journals (Sweden)

    Aparna H. Kesarwala


    Full Text Available Bioluminescence, positron emission tomography (PET, and fluorescence modalities are currently available for noninvasive imaging in vivo, each with its own merits. To exploit the combined strengths of each and facilitate multimodality imaging, we engineered a dual-reporter construct in which firefly luciferase (FLuc and a 12–amino acid nonstructural linker were fused in frame to the N-terminus of a mutant herpes simplex virus thymidine kinase (mNLS-SR39TK kinetically enhanced for positron emission tomography (PET. Furthermore, a triple-reporter construct was developed in which monster green fluorescent protein (MGFP, a recently available enhanced fluorescent protein, was introduced into the fusion vector downstream of an internal ribosome entry site (IRES to allow analysis by fluorescence microscopy or flow cytometry without compromising the specific activities of the upstream fusion components. FLuc bioluminescence was measured with a cooled charge-coupled device camera and mNLS-SR39TK activity by 9-[4-[18F]fluoro-3-(hydroxymethyl butyl guanine (18F-FHBG microPET or 3H-penciclovir net accumulation. Importantly, HeLa cells transiently transfected with the FLuc-mNLS-SR39TK-IRES-MGFP triple reporter retained the same specific activities of the FLuc-mNLS-SR39TK heteroenzyme and the individual unfused enzymes with no change in protein half-lives. The presence of the IRES-MGFP modestly decreased upstream heteroprotein expression. In living mice, somatic gene transfer of a ubiquitin promoter-driven FLuc-mNLS-SR39TK-IRES-MGFP plasmid showed a > 1,000-fold increase in liver photon flux and a > 2-fold increase in liver retention of 18F-FHBG by microPET compared with mice treated with control plasmid. Multifocal hepatocellular fluorescence was readily observed by standard confocal microscopy. This second-generation triple reporter incorporating enhanced components enables bioluminescence, PET, and fluorescence imaging of cells and living animals.

  9. Small animal positron emission tomography with gas detectors. Simulations, prototyping, and quantitative image reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Vernekohl, Don


    plain surfaces, predicted by simulations, was observed. Third, as the production of photon converters is time consuming and expensive, it was investigated whether or not thin gas detectors with single-lead-layer-converters would be an alternative to the HIDAC converter design. Following simulations, those concepts potentially offer impressive coincidence sensitivities up to 24% for plain lead foils and up to 40% for perforated lead foils. Fourth, compared to other PET scanner systems, the HIDAC concept suffers from missing energy information. Consequently, a substantial amount of scatter events can be found within the measured data. On the basis of image reconstruction and correction techniques the influence of random and scatter events and their characteristics on several simulated phantoms were presented. It was validated with the HIDAC simulator that the applied correction technique results in perfectly corrected images. Moreover, it was shown that the simulator is a credible tool to provide quantitatively improved images. Fifth, a new model for the non-collinearity of the positronium annihilation was developed, since it was observed that the model implemented in the GATE simulator does not correspond to the measured observation. The input parameter of the new model was trimmed to match to a point source measurement. The influence of both models on the spatial resolution was studied with three different reconstruction methods. Furthermore, it was demonstrated that the reduction of converter depth, proposed for increased sensitivity, also has an advantage on the spatial resolution and that a reduction of the FOV from 17 cm to 4 cm (with only 2 detector heads) results in a remarkable sensitivity increase of 150% and a substantial increase in spatial resolution. The presented simulations for the spatial resolution analysis used an intrinsic detector resolution of 0.125 x 0.125 x 3.2 mm{sup 3} and were able to reach fair resolutions down to 0.9-0.5 mm, which is an

  10. Development of Traceable Phantoms for Improved Image Quantification in Positron Emission Tomography (United States)

    Zimmerman, Brian


    Clinical trials for new drugs increasingly rely on imaging data to monitor patient response to the therapy being studied. In the case of radiopharmaceutical applications, imaging data are also used to estimate organ and tumor doses in order to arrive at the optimal dosage for safe and effective treatment. Positron Emission Tomography (PET) is one of the most commonly used imaging modalities for these types of applications. In large, multicenter trials it is crucial to minimize as much as possible the variability that arises due to use of different types of scanners and other instrumentation so that the biological response can be more readily evaluated. This can be achieved by ensuring that all the instruments are calibrated to a common standard and that their performance is continuously monitored throughout the trial. Maintaining links to a single standard also enables the comparability of data acquired on a heterogeneous collection of instruments in different clinical settings. As the standards laboratory for the United States, the National Institute of Standards and Technology (NIST) has been developing a suite of phantoms having traceable activity content to enable scanner calibration and performance testing. The configurations range from small solid cylindrical sources having volumes from 1 mL to 23 mL to large cylinders having a total volume of 9 L. The phantoms are constructed with 68Ge as a long-lived substitute for the more clinically useful radionuclide 18F. The contained activity values are traceable to the national standard for 68Ge and are also linked to the standard for 18F through a careful series of comparisons. The techniques that have been developed are being applied to a variety of new phantom configurations using different radionuclides. Image-based additive manufacturing techniques are also being investigated to create fillable phantoms having irregular shapes which can better mimic actual organs and tumors while still maintaining traceability

  11. Exploiting the Metal-Chelating Properties of the Drug Cargo for In Vivo Positron Emission Tomography Imaging of Liposomal Nanomedicines

    DEFF Research Database (Denmark)

    Edmonds, Scott; Volpe, Alessia; Shmeeda, Hilary


    The clinical value of current and future nanomedicines can be improved by introducing patient selection strategies based on noninvasive sensitive whole-body imaging techniques such as positron emission tomography (PET). Thus, a broad method to radiolabel and track preformed nanomedicines such as ...

  12. A fluorine-18 labeled progestin as an imaging agent for progestin receptor positive tumors with positron emission tomography

    NARCIS (Netherlands)

    Verhagen, Aalt; Elsinga, Philippus; DEGROOT, TJ; Paans, Anne; DEGOEIJ, CCJ; SLUYSER, M; Vaalburg, Willem

    The potential of the fluorine-18 labeled progestin 21-[F-18]fluoro-16-alpha-ethyl-19-norpregn-4-ene-3,20-dione ([F-18]FENP) as an imaging agent for the in vivo assessment of progestin receptor (PR) positive neoplasms with positron emission tomography has been investigated. Tissue distribution

  13. Intergalactic medium emission observations with the cosmic web imager. II. Discovery of extended, kinematically linked emission around SSA22 Lyα BLOB 2

    Energy Technology Data Exchange (ETDEWEB)

    Christopher Martin, D.; Chang, Daphne; Matuszewski, Matt; Morrissey, Patrick; Rahman, Shahin [Cahill Center for Astrophysics, California Institute of Technology, 1216 East California Boulevard, Mail Code 278-17, Pasadena, CA 91125 (United States); Moore, Anna [Caltech Optical Observatories, Cahill Center for Astrophysics, California Institute of Technology, 1216 East California Boulevard, Mail Code 11-17, Pasadena, CA 91125 (United States); Steidel, Charles C.; Matsuda, Yuichi, E-mail: [Cahill Center for Astrophysics, California Institute of Technology, 1216 East California Boulevard, Mail Code 249-17, Pasadena, CA 91125 (United States)


    The intergalactic medium (IGM) is the dominant reservoir of baryons, delineates the large-scale structure of the universe at low to moderate overdensities, and provides gas from which galaxies form and evolve. Simulations of a cold-dark-matter- (CDM-) dominated universe predict that the IGM is distributed in a cosmic web of filaments and that galaxies should form along and at the inter