WorldWideScience

Sample records for scarce meteorological information

  1. Spatial estimation of mean temperature and precipitation in areas of scarce meteorological information

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, J.D. [Universidad Autonoma Chapingo, Chapingo (Mexico)]. E-mail: dgomez@correo.chapingo.mx; Etchevers, J.D. [Instituto de Recursos Naturales, Colegio de Postgraduados, Montecillo, Edo. de Mexico (Mexico); Monterroso, A.I. [departamento de Suelos, Universidad Autonoma Chapingo, Chapingo (Mexico); Gay, G. [Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico); Campo, J. [Instituto de Ecologia, Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico); Martinez, M. [Instituto de Recursos Naturales, Montecillo, Edo. de Mexico (Mexico)

    2008-01-15

    In regions of complex relief and scarce meteorological information it becomes difficult to implement techniques and models of numerical interpolation to elaborate reliable maps of climatic variables essential for the study of natural resources using the new tools of the geographic information systems. This paper presents a method for estimating annual and monthly mean values of temperature and precipitation, taking elements from simple interpolation methods and complementing them with some characteristics of more sophisticated methods. To determine temperature, simple linear regression equations were generated associating temperature with altitude of weather stations in the study region, which had been previously subdivided in accordance with humidity conditions and then applying such equations to the area's digital elevation model to obtain temperatures. The estimation of precipitation was based on the graphic method through the analysis of the meteorological systems that affect the regions of the study area throughout the year and considering the influence of mountain ridges on the movement of prevailing winds. Weather stations with data in nearby regions were analyzed according to their position in the landscape, exposure to humid winds, and false color associated with vegetation types. Weather station sites were used to reference the amount of rainfall; interpolation was attained using analogies with satellite images of false color to which a model of digital elevation was incorporated to find similar conditions within the study area. [Spanish] En las regiones de relieve complejo y con escasa informacion meteorologica se dificulta la aplicacion de las diferentes tecnicas y modelos de interpolacion numericos para elaborar mapas de variables climaticas confiables, indispensables para realizar estudios de los recursos naturales, con la utilizacion de las nuevas herramientas de los sistemas de informacion geografica. En este trabajo se presenta un metodo para

  2. Recommender system based on scarce information mining.

    Science.gov (United States)

    Lu, Wei; Chung, Fu-Lai; Lai, Kunfeng; Zhang, Liang

    2017-09-01

    Guessing what user may like is now a typical interface for video recommendation. Nowadays, the highly popular user generated content sites provide various sources of information such as tags for recommendation tasks. Motivated by a real world online video recommendation problem, this work targets at the long tail phenomena of user behavior and the sparsity of item features. A personalized compound recommendation framework for online video recommendation called Dirichlet mixture probit model for information scarcity (DPIS) is hence proposed. Assuming that each clicking sample is generated from a representation of user preferences, DPIS models the sample level topic proportions as a multinomial item vector, and utilizes topical clustering on the user part for recommendation through a probit classifier. As demonstrated by the real-world application, the proposed DPIS achieves better performance in accuracy, perplexity as well as diversity in coverage than traditional methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Scarce information about breast cancer screening: An Italian websites analysis.

    Science.gov (United States)

    Attena, Francesco; Cancellieri, Mariagrazia; Pelullo, Concetta Paola

    2016-12-01

    Although the public should have complete and correct information about risk/benefit ratio of breast cancer screening, public knowledge appears generally scarce and oriented to overestimate benefits, with little awareness of possible disadvantages of the screening.We evaluated any document specifically addressed to the general female public and posted on internet by Italian public health services. The presence of false positive, false positive after biopsy, false negative, interval cancer, overdiagnosis, lead-time bias, exposure to irradiation, and mortality reduction was analyzed.Of the 255 websites consulted, 136 (53.3%) had sites addressed to the female public. The most commonly reported information points were the false-positive (30.8% of sites) and radiation exposure (29.4%) rates. Only 11 documents mentioned overdiagnosis, 2 mentioned risk of false positive with biopsy, and only 1 mentioned lead-time bias. Moreover, only 15 sites (11.0%) reported quantitative data for any risk variables.Most documents about breast cancer screening published on the web for the female public contained little or no information about risk/benefit ratio and were biased in favor of screening.

  4. Modeling actual evapotranspiration with routine meteorological variables in the data-scarce region of the Tibetan Plateau: Comparisons and implications

    Science.gov (United States)

    Ma, Ning; Zhang, Yinsheng; Xu, Chong-Yu; Szilagyi, Jozsef

    2015-08-01

    Quantitative estimation of actual evapotranspiration (ETa) by in situ measurements and mathematical modeling is a fundamental task for physical understanding of ETa as well as the feedback mechanisms between land and the ambient atmosphere. However, the ETa information in the Tibetan Plateau (TP) has been greatly impeded by the extremely sparse ground observation network in the region. Approaches for estimating ETa solely from routine meteorological variables are therefore important for investigating spatiotemporal variations of ETa in the data-scarce region of the TP. Motivated by this need, the complementary relationship (CR) and Penman-Monteith approaches were evaluated against in situ measurements of ETa on a daily basis in an alpine steppe region of the TP. The former includes the Nonlinear Complementary Relationship (Nonlinear-CR) as well as the Complementary Relationship Areal Evapotranspiration (CRAE) models, while the latter involves the Katerji-Perrier and the Todorovic models. Results indicate that the Nonlinear-CR, CRAE, and Katerji-Perrier models are all capable of efficiently simulating daily ETa, provided their parameter values were appropriately calibrated. The Katerji-Perrier model performed best since its site-specific parameters take the soil water status into account. The Nonlinear-CR model also performed well with the advantage of not requiring the user to choose between a symmetric and asymmetric CR. The CRAE model, even with a relatively low Nash-Sutcliffe efficiency (NSE) value, is also an acceptable approach in this data-scarce region as it does not need information of wind speed and ground surface conditions. In contrast, application of the Todorovic model was found to be inappropriate in the dry regions of the TP due to its significant overestimation of ETa as it neglects the effect of water stress on the bulk surface resistance. Sensitivity analysis of the parameter values demonstrated the relative importance of each parameter in the

  5. Urban Flood Risk Assessment Under Uncertain Conditions and Scarce Information

    Science.gov (United States)

    Rodríguez-Gaviria, E. M.; Botero-Fernandez, V.

    2015-12-01

    Flood risk management in small urban areas in Colombia has a great degree of uncertainty due to the low availability and quality of data, the non-existent personnel qualified in the collection and processing of data, and the insufficient information to evaluate the risk and vulnerability. It is because of this that two methods are developed: one for the generation of flood threat maps for different return periods combining historical, geomorphological, and hydrological hydraulic methods assisted by remote sensors and SIG through the use of data acquired through field campaigns, official hydrological networks, orthophotos, multitemporal topographic maps, and ASTER, STRM, and LiDAR images. And another method in which categorical variables are established, linking local physical, social, economical, environmental and political-institutional factors that are explored through different media such as reports, news, databases, transects, interviews, community workshops, and surveys conducted at homes. Such variables were included within an analysis of multiple correspondence to conduct a descriptive study of the exposure, susceptibility, and capacity conditions and to create a vulnerability index that was spatially plotted spatially on maps. The uncertainty is reduced in the measure in which local knowledge is used as a source of information acquisition, of validation of what already exists, and of calibration of the proposed methods. This research was applied to the urban centers of Caucasia (Antioquia) and Plato (Magdalena), which have been historically affected by slow flooding of the Magdalena and Cauca river, it being especially useful in the selection of best alternatives for risk management, planning for development, and land use management, with the possibility of replicating it to benefit other municipalities that experience the same reality.

  6. Adaptive Weather Forecasting using Local Meteorological Information

    NARCIS (Netherlands)

    Doeswijk, T.G.; Keesman, K.J.

    2005-01-01

    In general, meteorological parameters such as temperature, rain and global radiation are important for agricultural systems. Anticipating on future conditions is most often needed in these systems. Weather forecasts then become of substantial importance. As weather forecasts are subject to

  7. Reference evapotranspiration forecasting based on local meteorological and global climate information screened by partial mutual information

    Science.gov (United States)

    Fang, Wei; Huang, Shengzhi; Huang, Qiang; Huang, Guohe; Meng, Erhao; Luan, Jinkai

    2018-06-01

    In this study, reference evapotranspiration (ET0) forecasting models are developed for the least economically developed regions subject to meteorological data scarcity. Firstly, the partial mutual information (PMI) capable of capturing the linear and nonlinear dependence is investigated regarding its utility to identify relevant predictors and exclude those that are redundant through the comparison with partial linear correlation. An efficient input selection technique is crucial for decreasing model data requirements. Then, the interconnection between global climate indices and regional ET0 is identified. Relevant climatic indices are introduced as additional predictors to comprise information regarding ET0, which ought to be provided by meteorological data unavailable. The case study in the Jing River and Beiluo River basins, China, reveals that PMI outperforms the partial linear correlation in excluding the redundant information, favouring the yield of smaller predictor sets. The teleconnection analysis identifies the correlation between Nino 1 + 2 and regional ET0, indicating influences of ENSO events on the evapotranspiration process in the study area. Furthermore, introducing Nino 1 + 2 as predictors helps to yield more accurate ET0 forecasts. A model performance comparison also shows that non-linear stochastic models (SVR or RF with input selection through PMI) do not always outperform linear models (MLR with inputs screen by linear correlation). However, the former can offer quite comparable performance depending on smaller predictor sets. Therefore, efforts such as screening model inputs through PMI and incorporating global climatic indices interconnected with ET0 can benefit the development of ET0 forecasting models suitable for data-scarce regions.

  8. Bridging the Information Gap: Remote Sensing and Micro Hydropower Feasibility in Data-Scarce Regions

    Science.gov (United States)

    Muller, Marc Francois

    Access to electricity remains an impediment to development in many parts of the world, particularly in rural areas with low population densities and prohibitive grid extension costs. In that context, community-scale run-of-river hydropower---micro-hydropower---is an attractive local power generation option, particularly in mountainous regions, where appropriate slope and runoff conditions occur. Despite their promise, micro hydropower programs have generally failed to have a significant impact on rural electrification in developing nations. In Nepal, despite very favorable conditions and approximately 50 years of experience, the technology supplies only 4% of the 10 million households that do not have access to the central electricity grid. These poor results point towards a major information gap between technical experts, who may lack the incentives or local knowledge needed to design appropriate systems for rural villages, and local users, who have excellent knowledge of the community but lack technical expertise to design and manage infrastructure. Both groups suffer from a limited basis for evidence-based decision making due to sparse environmental data available to support the technical components of infrastructure design. This dissertation draws on recent advances in remote sensing data, stochastic modeling techniques and open source platforms to bridge that information gap. Streamflow is a key environmental driver of hydropower production that is particularly challenging to model due to its stochastic nature and the complexity of the underlying natural processes. The first part of the dissertation addresses the general challenge of Predicting streamflow in Ungauged Basins (PUB). It first develops an algorithm to optimize the use of rain gauge observations to improve the accuracy of remote sensing precipitation measures. It then derives and validates a process-based model to estimate streamflow distribution in seasonally dry climates using the stochastic

  9. Overall analysis of meteorological information in the Daeduk nuclear complex

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byung Woo; Lee, Young Bok; Han, Moon Hee; Kim, Eun Han; Suh, Kyung Suk; Hwang, Won Tae [Korea Atomic Energy Res. Inst., Taejon (Korea, Republic of)

    1994-01-01

    Inspection and repair of tower structure and lift, instrument calibration have been done with DAS (data aquisition system) updating. Wind direction, wind speed, temperature, humidity at 67m, 27m, and 10m height and temperature, humidity, atmospheric pressure, solar radiation, precipitation, and visibility at surface have been measured and analyzed with statistical methods. Wireless data transmission to MIPS (Meteorological Information Processing System) has been done after collection in the DAS where enviromental assessment can be done by the developed simulation programs in both cases of normal operation and emergency. The meteorological data as the result of this project had been used to report `Environmental Impact Assessment of the Korean Multi-purpose Research Reactor` and {sup S}ite Selection of Meteorological Tower and Environment Impact Assessment of the Cooling Tower of the Korean Multi-purpose Research Reactor{sup .} (Author).

  10. Implementation of operational meteorological information service for CARE REMDAS

    International Nuclear Information System (INIS)

    Oh, Sung Nam; Nam, Jae Cheol; Choi, Jae Chun; Lee, Byong Lyol; Lee, Bo Ram; Shin, Hyun Cheol; Park, Nan Ah; Song, Chang Keun; Park, Sang Jong

    1999-12-01

    The scope of this study consists of : improve of CARE REMDAS - identification of meteorolgical information required for nuclear emergency response and their efficient use on a real-time basis, review of the production and operation of KMA NWP nodels and their applications. Suggestions on the improvements in nuclear emergency response systme from the care studies of both domestic and foreign countries - case study of a domestic model for radioactivity T/D in terms of model dynamics and operation, investigation of promising support systems by reviewing the current status of T/D model in UK. Recommendations on a promising meteorological information sevices based on foreign cases - examinations of DWD system, including EU for nuclear emergency response, review on the meteorogical information support by DWD for NERS

  11. Implementation of operational meteorological information service for CARE REMDAS

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Sung Nam; Nam, Jae Cheol; Choi, Jae Chun [Meteorological Reaearch Institute, Seoul (Korea, Republic of); Lee, Byong Lyol; Lee, Bo Ram; Shin, Hyun Cheol; Park, Nan Ah [Korea Meteorological Administration, Seoul (Korea, Republic of); Song, Chang Keun; Park, Sang Jong [Seoul National Univ., Seoul (Korea, Republic of)

    1999-12-15

    The scope of this study consists of : improve of CARE REMDAS - identification of meteorolgical information required for nuclear emergency response and their efficient use on a real-time basis, review of the production and operation of KMA NWP nodels and their applications. Suggestions on the improvements in nuclear emergency response systme from the care studies of both domestic and foreign countries - case study of a domestic model for radioactivity T/D in terms of model dynamics and operation, investigation of promising support systems by reviewing the current status of T/D model in UK. Recommendations on a promising meteorological information sevices based on foreign cases - examinations of DWD system, including EU for nuclear emergency response, review on the meteorogical information support by DWD for NERS.

  12. Overall analysis of meteorological information in the Daeduk nuclear complex

    International Nuclear Information System (INIS)

    Kim, Eun Han; Lee, Yung Bok; Han, Moon Heui; Suh, Kyung Suk; Hwang Won Tae

    1995-01-01

    Inspection and repair of tower structure and lift, instrument calibration have been done. Wireless data transmission to MIPS(Meteorological Information Processing System) has been done after collection in the DAS where environmental assessment can be done by the developed simulation programs in both cases of normal operation and emergency. Wind direction, wind speed, temperature, humidity, at 67 m, 27 m, and 10 m height and temperature, humidity, atmospheric pressure, solar radiation, precipitation, and visibility at surface have been measured and analyzed with statistical methods. At the site, the prevailing wind directions were SW in spring and summer, N and NW in autumn and winter season. The calm distributed 13.6% at 67 m, 24.5% at 27 m, 40.8% at 10 m height. 4 figs, 9 tabs, 6 refs. (Author)

  13. Overall analysis of meteorological information in the Daeduk nuclear complex

    Energy Technology Data Exchange (ETDEWEB)

    Han, Moon Hee; Lee, Young Bok; Kim, Eun Han; Seo, Kyung Seok; Hwang, Wan Tae [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-12-01

    Inspection and repair of tower structure and lift, instrument calibration have been done. Wireless data transmission to MIPS(Meteorological Information Processing System) has been done after collection in the DAS where environmental assessment can be done by the developed simulation programs in both cases of normal operation and emergency. Wind direction, wind speed, temperature, humidity at 67m, 27m, and 10m height and temperature, humidity, atmospheric pressure, solar radiation, precipitation, and visibility at surface have been measured and analyzed with statistical methods. At the site, the prevailing wind directions were SW in spring and summer, NNW in winter season. The calm distributed 28.6% at 67m, 20.5% at 27m, 39.2% at 10m height. 9 tabs., 4 figs., 6 refs. (Author).

  14. Overall analysis of meteorological information in the Daeduk nuclear complex

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun Han; Lee, Yung Bok; Han, Moon Heui; Suh, Kyung Suk; Tae, Hwang Won [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-01-01

    Inspection and repair of tower structure and lift, instrument calibration have been done. Wireless data transmission to MIPS(Meteorological Information Processing System) has been done after collection in the DAS where environmental assessment can be done by the developed simulation programs in both cases of normal operation and emergency. Wind direction, wind speed, temperature, humidity, at 67 m, 27 m, and 10 m height and temperature, humidity, atmospheric pressure, solar radiation, precipitation, and visibility at surface have been measured and analyzed with statistical methods. At the site, the prevailing wind directions were SW in spring and summer, N and NW in autumn and winter season. The calm distributed 13.6% at 67 m, 24.5% at 27 m, 40.8% at 10 m height. 4 figs, 9 tabs, 6 refs. (Author).

  15. Overall analysis of meteorological information in the daeduk nuclear complex

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byung Woo; Lee, Young Bok; Han, Moon Hee; Kim, Eun Han; Suh, Kyung Suk; Hwang, Won Tae; Hong, Suk Boong [Korea Atomic Energy Res. Inst., Taejon (Korea, Republic of)

    1992-12-01

    Problem shooting in tower structure, sensor installation, earth, and cabling have been done with integrated field-test, establishment of data acquisition system, and instrument calibration since the completion of the main tower construction in this year. Procedure guide was also made for the effective management covering instrument operation, calibration and repair. Real measurement has been done during two months from this October after whole integration of equipments. Occurrence of nocturnal inversion layer, fogging, and frequent stable condition of atmospheric stability were shown as the analysis results of measured data which well represented seasonal and regional characteristics in the site. Wireless data transmission to MIPS(Meteorological Information Processing System) has been done after collection in the DAS(data acquision system) where environmental assessment can be done by the developed simulation programs in both cases of normal operation and emergency. (Author).

  16. Meteorological information in GPS-RO reflected signals

    Directory of Open Access Journals (Sweden)

    K. Boniface

    2011-07-01

    Full Text Available Vertical profiles of the atmosphere can be obtained globally with the radio-occultation technique. However, the lowest layers of the atmosphere are less accurately extracted. A good description of these layers is important for the good performance of Numerical Weather Prediction (NWP systems, and an improvement of the observational data available for the low troposphere would thus be of great interest for data assimilation. We outline here how supplemental meteorological information close to the surface can be extracted whenever reflected signals are available. We separate the reflected signal through a radioholographic filter, and we interpret it with a ray tracing procedure, analyzing the trajectories of the electromagnetic waves over a 3-D field of refractive index. A perturbation approach is then used to perform an inversion, identifying the relevant contribution of the lowest layers of the atmosphere to the properties of the reflected signal, and extracting some supplemental information to the solution of the inversion of the direct propagation signals. It is found that there is a significant amount of useful information in the reflected signal, which is sufficient to extract a stand-alone profile of the low atmosphere, with a precision of approximately 0.1 %. The methodology is applied to one reflection case.

  17. Improving how meteorological information is used by pastoralists through adequate communication tools

    DEFF Research Database (Denmark)

    Rasmussen, Laura Vang; Mertz, Ole; Rasmussen, Kjeld

    2015-01-01

    In West Africa, the channels for information flow from meteorological services to end-users, such as pastoralists, are relatively limited. As meteorological information is key to improving productivity for pastoralists, it represents a challenge at both local and national level to develop an effi......, and we propose that forecasts should be available as voice messages in local languages rather than text messages....

  18. Why Process-Orientation is Scarce: An Empirical Study of Process-oriented Information Systems in the Automotive Industry

    NARCIS (Netherlands)

    Mutschler, B.B.; Bumiller, J.; Reichert, M.U.

    2006-01-01

    Several studies have indicated that existing information systems (IS) often fail to provide adequate business process support. To systematically identify the reasons for this drawback, we conducted a case study in the automotive domain and a survey among 79 IT practitioners. This paper presents the

  19. Exploring the link between meteorological drought and streamflow to inform water resource management

    Science.gov (United States)

    Lennard, Amy; Macdonald, Neil; Hooke, Janet

    2015-04-01

    Drought indicators are an under-used metric in UK drought management. Standardised drought indicators offer a potential monitoring and management tool for operational water resource management. However, the use of these metrics needs further investigation. This work uses statistical analysis of the climatological drought signal based on meteorological drought indicators and observed streamflow data to explore the link between meteorological drought and hydrological drought to inform water resource management for a single water resource region. The region, covering 21,000 km2 of the English Midlands and central Wales, includes a variety of landscapes and climatological conditions. Analysis of the links between meteorological drought and hydrological drought performed using streamflow data from 'natural' catchments indicates a close positive relationship between meteorological drought indicators and streamflow, enhancing confidence in the application of drought indicators for monitoring and management. However, many of the catchments in the region are subject to modification through impoundments, abstractions and discharge. Therefore, it is beneficial to explore how climatological drought signal propagates into managed hydrological systems. Using a longitudinal study of catchments and sub-catchments that include natural and modified river reaches the relationship between meteorological and hydrological drought is explored. Initial statistical analysis of meteorological drought indicators and streamflow data from modified catchments shows a significantly weakened statistical relationship and reveals how anthropogenic activities may alter hydrological drought characteristics in modified catchments. Exploring how meteorological drought indicators link to streamflow across the water supply region helps build an understanding of their utility for operational water resource management.

  20. Academic Librarians in Data Information Literacy Instruction: A Case Study in Meteorology

    Science.gov (United States)

    Frank, Emily P.; Pharo, Nils

    2016-01-01

    E-science has reshaped meteorology due to the rate data is generated, collected, analyzed, and stored and brought data skills to a new prominence. Data information literacy--the skills needed to understand, use, manage, share, work with, and produce data--reflects the confluence of data skills with information literacy competencies. This research…

  1. Analysis and initialisation of starting meteorologic information and parameters of effluents of sources of harmful substances of Karachaganak petroleum condensate deposit

    International Nuclear Information System (INIS)

    Ajdosov, A.; Zaurbekova, N.D.

    1999-01-01

    Initial meteorologic information for mathematical simulation conducting is presented in form of standard meteorologic tables for district of the gas condensate deposit. Analysis of meteorologic data confirms the hypothesis about horizontal heterogeneity of meteorologic regime above near Earth surface in the region and allows to carry out typification of principal meteorologic situation by year seasons

  2. Prediction Model for Demands of the Health Meteorological Information Using a Decision Tree Method

    Directory of Open Access Journals (Sweden)

    Jina Oh, RN, PhD

    2010-09-01

    Conclusions: It can be effectively used as a reference model for future studies and is a suggested direction in health meteorological information service and policy development. We suggest health forecasting as a nursing service and a primary health care network for healthier and more comfortable life.

  3. Airline meteorological requirements

    Science.gov (United States)

    Chandler, C. L.; Pappas, J.

    1985-01-01

    A brief review of airline meteorological/flight planning is presented. The effects of variations in meteorological parameters upon flight and operational costs are reviewed. Flight path planning through the use of meteorological information is briefly discussed.

  4. Providing Meteorological Information for Controlled Burns at the Savannah River Site

    International Nuclear Information System (INIS)

    Buckley, R.

    1999-01-01

    Regional and local weather information are important for a variety of applications at the Savannah River Site (SRS), a Department of Energy (DOE) facility covering approximately 800 square kilometers of southwest South Carolina east of the Savannah River. For example, meteorological observations and forecasts are used to assess the consequences of an accidental radiological or chemical release. Traditionally, hazards posed by SRS operations have been associated with nuclear reactors, chemical reprocessing plants, fuel fabrication, or waste-vitrification facilities. However, recent events have shown site-specific meteorology to be a valuable tool to the United States Forest Service (USFS) in mitigating potential hazards from controlled burns that are conducted at the SRS. Prescribed burns at the SRS are important for a variety of reasons. The removal of thick undergrowth allows wildlife to more easily feed and migrate, accelerates the growth of young pine stands, and controls certain diseases that affect local pine forests (e.g. Adams et al. 1973). In addition, the removal of twigs, pine needles, or leaves (a fuel source) reduces the chance of serious wildfire damage. However, the threat of smoke inhalation and reduced visibility requires careful planning on the part of the fire professionals. At the SRS, approximately 100 square kilometers of land per year are burned in a controlled manner, mainly in the spring.To reduce the potentially harmful effects to any onsite activity, it is important that USFS personnel understand current and predicted weather patterns within the area. This paper discusses two sources of meteorological information that are provided to SRS-USFS personnel for use in planning forest burns: (1) a meteorological tower system which provides current data from a series of onsite locations, and (2) an operational prognostic mesoscale model used to generate forecast information. The forecast data supplements the basic National Weather Service (NWS

  5. Visualization of Information Based on Tweets from Meteorological, Climatological, and Geophysical Agency: BMKG

    Directory of Open Access Journals (Sweden)

    Mira Chandra Kirana

    2018-05-01

    Full Text Available Indonesia is a country with high rate of natural disaster, so any information about early warning of natural disaster are very important. Social media such as Twitter become one of tools for spreading information about natural disaster warning from account of  Meteorology, Climatology and Geophysics Agency (BMKG, therefore, the effectiveness of this kind of method for providing information have not known yet. The statement becomes the reason that the visualization is needed to analyze the information spread of natural disaster early warning with Twitter. This study is performed in 3 steps, which is retrieving, preprocessing then visualization. Retrieving process is used to get the tweet data of BMKG account in twitter then save into database, while preprocessing is done to process tweet data that has been saved in database by grouping the data according to the category, which includes Meteorology, Climatology, and Geophysics according to existing keyword, also reduce tweet data that is unimportant like BMKG's reply tweet toward other user's question. Visualization stage uses the result of preprocessing data into line chart graphic, bar chart and pie chart. Highest information spreading from BMKG tweet happened in Geophysics at March with 25987 re-tweets, while the highest peak happened at 2 March 2016 with information about 8.3 SR earthquake in Mentawai islands, West Sumatera with total of 6145 re-tweets.

  6. Fisher Information Based Meteorological Factors Introduction and Features Selection for Short-Term Load Forecasting

    Directory of Open Access Journals (Sweden)

    Shuping Cai

    2018-03-01

    Full Text Available Weather information is an important factor in short-term load forecasting (STLF. However, for a long time, more importance has always been attached to forecasting models instead of other processes such as the introduction of weather factors or feature selection for STLF. The main aim of this paper is to develop a novel methodology based on Fisher information for meteorological variables introduction and variable selection in STLF. Fisher information computation for one-dimensional and multidimensional weather variables is first described, and then the introduction of meteorological factors and variables selection for STLF models are discussed in detail. On this basis, different forecasting models with the proposed methodology are established. The proposed methodology is implemented on real data obtained from Electric Power Utility of Zhenjiang, Jiangsu Province, in southeast China. The results show the advantages of the proposed methodology in comparison with other traditional ones regarding prediction accuracy, and it has very good practical significance. Therefore, it can be used as a unified method for introducing weather variables into STLF models, and selecting their features.

  7. Virtual scarce water in China.

    Science.gov (United States)

    Feng, Kuishuang; Hubacek, Klaus; Pfister, Stephan; Yu, Yang; Sun, Laixiang

    2014-07-15

    Water footprints and virtual water flows have been promoted as important indicators to characterize human-induced water consumption. However, environmental impacts associated with water consumption are largely neglected in these analyses. Incorporating water scarcity into water consumption allows better understanding of what is causing water scarcity and which regions are suffering from it. In this study, we incorporate water scarcity and ecosystem impacts into multiregional input-output analysis to assess virtual water flows and associated impacts among 30 provinces in China. China, in particular its water-scarce regions, are facing a serious water crisis driven by rapid economic growth. Our findings show that inter-regional flows of virtual water reveal additional insights when water scarcity is taken into account. Consumption in highly developed coastal provinces is largely relying on water resources in the water-scarce northern provinces, such as Xinjiang, Hebei, and Inner Mongolia, thus significantly contributing to the water scarcity in these regions. In addition, many highly developed but water scarce regions, such as Shanghai, Beijing, and Tianjin, are already large importers of net virtual water at the expense of water resource depletion in other water scarce provinces. Thus, increasingly importing water-intensive goods from other water-scarce regions may just shift the pressure to other regions, but the overall water problems may still remain. Using the water footprint as a policy tool to alleviate water shortage may only work when water scarcity is taken into account and virtual water flows from water-poor regions are identified.

  8. Overall Analysis of Meteorological Information in the KAERI Site (2006 Annual Report)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, E. H.; Choi, G. S.; Choi, S. D

    2007-07-15

    Inspection and repair of tower structure and lift, instrument calibration have been done in the scope of 'Environmental Radiation Monitoring Around the Nuclear Facilities' project. Wind direction, wind speed, temperature, humidity at 67m, 27m, and 10m height and temperature, humidity, atmospheric pressure, solar radiation, precipitation, and visibility at surface have been measured and analyzed with statistical methods. At the site, the prevailing wind directions were N in winter, SW in 2nd, E in 3rd quaters. The calm distributed 14.7% at 67m, 33.2% at 27m, 57.3% at 10m height. Wireless data transmission to MIPS(Meteorological Information Processing System) has been done after collection in the DAS where environmental assessment can be done by the developed simulation programs in both cases of normal operation and emergency.

  9. Archive of Geosample Data and Information from the NOAA Atlantic Oceanographic and Meteorological Laboratories (AOML).

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. Department of Commerce, National Oceanic and Atmospheric Administration (NOAA) Atlantic Oceanograpic and Meteorological Laboratories (AOML) formerly...

  10. Use of meteorological information in the risk analysis of a mixed wind farm and solar

    Science.gov (United States)

    Mengelkamp, H.-T.; Bendel, D.

    2010-09-01

    Use of meteorological information in the risk analysis of a mixed wind farm and solar power plant portfolio H.-T. Mengelkamp*,** , D. Bendel** *GKSS Research Center Geesthacht GmbH **anemos Gesellschaft für Umweltmeteorologie mbH The renewable energy industry has rapidly developed during the last two decades and so have the needs for high quality comprehensive meteorological services. It is, however, only recently that international financial institutions bundle wind farms and solar power plants and offer shares in these aggregate portfolios. The monetary value of a mixed wind farm and solar power plant portfolio is determined by legal and technical aspects, the expected annual energy production of each wind farm and solar power plant and the associated uncertainty of the energy yield estimation or the investment risk. Building an aggregate portfolio will reduce the overall uncertainty through diversification in contrast to the single wind farm/solar power plant energy yield uncertainty. This is similar to equity funds based on a variety of companies or products. Meteorological aspects contribute to the diversification in various ways. There is the uncertainty in the estimation of the expected long-term mean energy production of the wind and solar power plants. Different components of uncertainty have to be considered depending on whether the power plant is already in operation or in the planning phase. The uncertainty related to a wind farm in the planning phase comprises the methodology of the wind potential estimation and the uncertainty of the site specific wind turbine power curve as well as the uncertainty of the wind farm effect calculation. The uncertainty related to a solar power plant in the pre-operational phase comprises the uncertainty of the radiation data base and that of the performance curve. The long-term mean annual energy yield of operational wind farms and solar power plants is estimated on the basis of the actual energy production and it

  11. Digital information and communication networks and scientific research substance: An investigation of meteorology

    Science.gov (United States)

    Shen, Yi

    This study investigated research meteorologists' current usage and evaluation of information and communication technologies (ICT) in performing research tasks and the current relationship between meteorologists' ICT use and content characteristics of their research outputs. It surveyed research meteorologists working in three NOAA funded research institutes based at universities. Follow-up interviews with two selective samples of the survey participants were conducted to provide additional evidence to survey results and make suggestions for future measurement development work. Multiple regression analysis was performed to test the hypothesized relationships between meteorologists' ICT use and two substantive characteristics of their research---data integration and intra-/interdisciplinarity. Descriptive statistics were calculated to discern inferences of the scientists' current state of use and their degree of satisfaction with ICT tools. Follow-up interviews were transcribed and analyzed qualitatively with open coding and axial coding. The study findings contradicted the two assumptions of ICT effects on meteorological research by showing that the greater frequency of networked ICT use is not significantly associated with either greater data integration in research analysis, or greater intra- or interdisciplinary research. The major ICT barrier is the lack of a data and information infrastructure and support system for integrated, standardized, specialized, and easily accessible data and information from distributed servers. Suggestions were provided on the improvements of technical, social, political, and educational settings to promote large-scale date integration and intra-/interdisciplinary research. By moving further from theoretical assumptions to practical examinations, the research findings provide empirical evidence of Bowker's theories on the social shaping and social impact of infrastructure in sciences and affirmed some of Bowker's arguments regarding

  12. Peculiarities of the Use of Satellite Information for Early Warning of Natural Meteorological and Hydrological Disasters in Georgia

    International Nuclear Information System (INIS)

    Shengelia, L.; Kordzakhia, G.; Tvauri, G.; Tatishvili, M.; Mkurnalidze, I.

    2009-01-01

    The peculiarities of the use of the information of the satellites for early warning of disasters of meteorological and hydrological origin for the territory of Georgia are investigated. The various characteristics of modern satellites and sensors installed are reviewed. The spheres of their implementation are indicated. The disasters that are typical of Georgia and to which the application of satellite information is effective are considered. (author)

  13. Integrated system of visualization of the meteorological information for the weather forecast - SIPROT

    International Nuclear Information System (INIS)

    Leon Aristizabal, Gloria Esperanza

    2006-01-01

    The SIPROT is an operating system in real time for the handling of weather data through of a tool; it gathers together GIS and geodatabases. The SIPROT has the capacity to receive, to analyze and to exhibit weather charts of many national and international weather data in alphanumeric and binary formats from meteorological stations and satellites, as well as the results of the simulations of global and regional meteorological and wave models. The SIPROT was developed by the IDEAM to facilitate the handling of million weather dataset that take place daily and are required like elements of judgment for the inherent workings to the analyses and weather forecast

  14. The importance of meteorology in the environmental impacts assessment of nuclear power plants: scenarios studies using geographic information system

    International Nuclear Information System (INIS)

    Leao, I.L.B.; Biagio, R.M.S.; Costa, E.M.; Alves, R.N.

    1999-01-01

    The Brazilian Nuclear Power Plant (CNAAA) is located in a very complex region of the state of Rio de Janeiro. The environmental impact caused by the normal operation of such installation can be better evaluated by using an integrated approach, in which a geographical information system plays a very important role. In this study, environmental scenarios are integrated with some extreme and representative meteorological situations. (author)

  15. Motivational Meteorology.

    Science.gov (United States)

    Benjamin, Lee

    1993-01-01

    Describes an introductory meteorology course for nonacademic high school students. The course is made hands-on by the use of an educational software program offered by Accu-Weather. The program contains a meteorology database and instructional modules. (PR)

  16. Estimating regional spatial and temporal variability of PM(2.5) concentrations using satellite data, meteorology, and land use information.

    Science.gov (United States)

    Liu, Yang; Paciorek, Christopher J; Koutrakis, Petros

    2009-06-01

    Studies of chronic health effects due to exposures to particulate matter with aerodynamic diameters meteorologic information to estimate ground-level PM(2.5) concentrations. We developed a two-stage generalized additive model (GAM) for U.S. Environmental Protection Agency PM(2.5) concentrations in a domain centered in Massachusetts. The AOD model represents conditions when AOD retrieval is successful; the non-AOD model represents conditions when AOD is missing in the domain. The AOD model has a higher predicting power judged by adjusted R(2) (0.79) than does the non-AOD model (0.48). The predicted PM(2.5) concentrations by the AOD model are, on average, 0.8-0.9 microg/m(3) higher than the non-AOD model predictions, with a more smooth spatial distribution, higher concentrations in rural areas, and the highest concentrations in areas other than major urban centers. Although AOD is a highly significant predictor of PM(2.5), meteorologic parameters are major contributors to the better performance of the AOD model. GOES aerosol/smoke product (GASP) AOD is able to summarize a set of weather and land use conditions that stratify PM(2.5) concentrations into two different spatial patterns. Even if land use regression models do not include AOD as a predictor variable, two separate models should be fitted to account for different PM(2.5) spatial patterns related to AOD availability.

  17. Meteorological satellite systems

    CERN Document Server

    Tan, Su-Yin

    2014-01-01

    Meteorological Satellite Systems” is a primer on weather satellites and their Earth applications. This book reviews historic developments and recent technological advancements in GEO and polar orbiting meteorological satellites. It explores the evolution of these remote sensing technologies and their capabilities to monitor short- and long-term changes in weather patterns in response to climate change. Satellites developed by various countries, such as U.S. meteorological satellites, EUMETSAT, and Russian, Chinese, Japanese and Indian satellite platforms are reviewed. This book also discusses international efforts to coordinate meteorological remote sensing data collection and sharing. This title provides a ready and quick reference for information about meteorological satellites. It serves as a useful tool for a broad audience that includes students, academics, private consultants, engineers, scientists, and teachers.

  18. Estimating spatiotemporal distribution of PM1 concentrations in China with satellite remote sensing, meteorology, and land use information.

    Science.gov (United States)

    Chen, Gongbo; Knibbs, Luke D; Zhang, Wenyi; Li, Shanshan; Cao, Wei; Guo, Jianping; Ren, Hongyan; Wang, Boguang; Wang, Hao; Williams, Gail; Hamm, N A S; Guo, Yuming

    2018-02-01

    PM 1 might be more hazardous than PM 2.5 (particulate matter with an aerodynamic diameter ≤ 1 μm and ≤2.5 μm, respectively). However, studies on PM 1 concentrations and its health effects are limited due to a lack of PM 1 monitoring data. To estimate spatial and temporal variations of PM 1 concentrations in China during 2005-2014 using satellite remote sensing, meteorology, and land use information. Two types of Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6 aerosol optical depth (AOD) data, Dark Target (DT) and Deep Blue (DB), were combined. Generalised additive model (GAM) was developed to link ground-monitored PM 1 data with AOD data and other spatial and temporal predictors (e.g., urban cover, forest cover and calendar month). A 10-fold cross-validation was performed to assess the predictive ability. The results of 10-fold cross-validation showed R 2 and Root Mean Squared Error (RMSE) for monthly prediction were 71% and 13.0 μg/m 3 , respectively. For seasonal prediction, the R 2 and RMSE were 77% and 11.4 μg/m 3 , respectively. The predicted annual mean concentration of PM 1 across China was 26.9 μg/m 3 . The PM 1 level was highest in winter while lowest in summer. Generally, the PM 1 levels in entire China did not substantially change during the past decade. Regarding local heavy polluted regions, PM 1 levels increased substantially in the South-Western Hebei and Beijing-Tianjin region. GAM with satellite-retrieved AOD, meteorology, and land use information has high predictive ability to estimate ground-level PM 1 . Ambient PM 1 reached high levels in China during the past decade. The estimated results can be applied to evaluate the health effects of PM 1 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. A new website with real-time dissemination of information on fire activity and meteorological fire danger in Portugal

    Science.gov (United States)

    DaCamara, Carlos; Trigo, Ricardo; Nunes, Sílvia; Pinto, Miguel; Oliveira, Tiago; Almeida, Rui

    2017-04-01

    In Portugal, like in Mediterranean Europe, fire activity is a natural phenomenon linking climate, humans and vegetation and is therefore conditioned by natural and anthropogenic factors. Natural factors include topography, vegetation cover and prevailing weather conditions whereas anthropogenic factors encompass land management practices and fire prevention policies. Land management practices, in particular the inadequate use of fire, is a crucial anthropogenic factor that accounts for about 90% of fire ignitions. Fire prevention policies require adequate and timely information about wildfire potential assessment, which is usually based on fire danger rating systems that provide indices to be used on an operational and tactical basis in decision support systems. We present a new website designed to provide the user community with relevant real-time information on fire activity and meteorological fire danger that will allow adopting the adequate measures to mitigate fire damage. The fire danger product consists of forecasts of fire danger over Portugal based on a statistical procedure that combines information about fire history derived from the Fire Radiative Power product disseminated by the Land Surface Analysis Satellite Application Facility (LSA SAF) with daily meteorological forecasts provided by the European Centre for Medium-Range Weather Forecasts (ECMWF). The aim of the website is fourfold; 1) to concentrate all information available (databases and maps) relevant to fire management in a unique platform so that access by end users becomes easier, faster and friendlier; 2) to supervise the access of users to the different products available; 3) to control and assist the access to the platform and obtain feedbacks from users for further improvements; 4) to outreach the operational community and foster the use of better information that increase efficiency in risk management. The website is sponsored by The Navigator Company, a leading force in the global pulp

  20. Meteorological Summaries

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Multi-year summaries of one or more meteorological elements at a station or in a state. Primarily includes Form 1078, a United States Weather Bureau form designed...

  1. Meteorology Online.

    Science.gov (United States)

    Kahl, Jonathan D. W.

    2001-01-01

    Describes an activity to learn about meteorology and weather using the internet. Discusses the National Weather Service (NWS) internet site www.weather.gov. Students examine maximum and minimum daily temperatures, wind speed, and direction. (SAH)

  2. New technology for using meteorological information in forest insect pest forecast and warning systems.

    Science.gov (United States)

    Qin, Jiang-Lin; Yang, Xiu-Hao; Yang, Zhong-Wu; Luo, Ji-Tong; Lei, Xiu-Feng

    2017-12-01

    Near surface air temperature and rainfall are major weather factors affecting forest insect dynamics. The recent developments in remote sensing retrieval and geographic information system spatial analysis techniques enable the utilization of weather factors to significantly enhance forest pest forecasting and warning systems. The current study focused on building forest pest digital data structures as a platform of correlation analysis between weather conditions and forest pest dynamics for better pest forecasting and warning systems using the new technologies. The study dataset contained 3 353 425 small polygons with 174 defined attributes covering 95 counties of Guangxi province of China currently registering 292 forest pest species. Field data acquisition and information transfer systems were established with four software licences that provided 15-fold improvement compared to the systems currently used in China. Nine technical specifications were established including codes of forest districts, pest species and host tree species, and standard practices of forest pest monitoring and information management. Attributes can easily be searched using ArcGIS9.3 and/or the free QGIS2.16 software. Small polygons with pest relevant attributes are a new tool of precision farming and detailed forest insect pest management that are technologically advanced. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  3. Meteorology and atomic energy

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The science of meteorology is useful in providing information that will be of assistance in the choice of favorable plant locations and in the evaluation of significant relations between meteorology and the design, construction, and operation of plant and facilities, especially those from which radioactive or toxic products could be released to the atmosphere. Under a continuing contract with the Atomic Energy Commission, the Weather Bureau has carried out this study. Some of the meteorological techniques that are available are summarized, and their applications to the possible atmospheric pollution deriving from the use of atomic energy are described. Methods and suggestions for the collection, analysis, and use of meteorological data are presented. Separate abstracts are included of 12 chapters in this publication for inclusion in the Energy Data Base

  4. A hierarchical Bayesian model for improving short-term forecasting of hospital demand by including meteorological information

    OpenAIRE

    Sahu, Sujit K.; Baffour, Bernard; Minty, John; Harper, Paul; Sarran, Christophe

    2013-01-01

    The effect of weather on health has been widely researched, and the ability to forecast meteorological events is able to offer valuable insights into the impact on public health services. In addition, better predictions of hospital demand that are more sensitive to fluctuations in weather can allow hospital administrators to optimise resource allocation and service delivery. Using historical hospital admission data and several seasonal and meteorological variables for a site near the hospital...

  5. A Meteorological Information Mining-Based Wind Speed Model for Adequacy Assessment of Power Systems With Wind Power

    DEFF Research Database (Denmark)

    Guo, Yifei; Gao, Houlei; Wu, Qiuwei

    2017-01-01

    Accurate wind speed simulation is an essential prerequisite to analyze the power systems with wind power. A wind speed model considering meteorological conditions and seasonal variations is proposed in this paper. Firstly, using the path analysis method, the influence weights of meteorological...... systems with wind power. The assessment results of the modified IEEE-RTS79 and IEEE-RTS96 demonstrated the effectiveness and accuracy of the proposed model....

  6. Morpheme matching based text tokenization for a scarce resourced language.

    Science.gov (United States)

    Rehman, Zobia; Anwar, Waqas; Bajwa, Usama Ijaz; Xuan, Wang; Chaoying, Zhou

    2013-01-01

    Text tokenization is a fundamental pre-processing step for almost all the information processing applications. This task is nontrivial for the scarce resourced languages such as Urdu, as there is inconsistent use of space between words. In this paper a morpheme matching based approach has been proposed for Urdu text tokenization, along with some other algorithms to solve the additional issues of boundary detection of compound words, affixation, reduplication, names and abbreviations. This study resulted into 97.28% precision, 93.71% recall, and 95.46% F1-measure; while tokenizing a corpus of 57000 words by using a morpheme list with 6400 entries.

  7. Virtual Meteorological Center

    Directory of Open Access Journals (Sweden)

    Marius Brinzila

    2007-10-01

    Full Text Available A virtual meteorological center, computer based with Internet possibility transmission of the information is presented. Circumstance data is collected with logging field meteorological station. The station collects and automatically save data about the temperature in the air, relative humidity, pressure, wind speed and wind direction, rain gauge, solar radiation and air quality. Also can perform sensors test, analyze historical data and evaluate statistical information. The novelty of the system is that it can publish data over the Internet using LabVIEW Web Server capabilities and deliver a video signal to the School TV network. Also the system performs redundant measurement of temperature and humidity and was improved using new sensors and an original signal conditioning module.

  8. Meteorological instrumentation

    International Nuclear Information System (INIS)

    1982-06-01

    RFS or ''Regles Fondamentales de Surete'' (Basic Safety Rules) applicable to certain types of nuclear facilities lay down requirements with which compliance, for the type of facilities and within the scope of application covered by the RFS, is considered to be equivalent to compliance with technical French regulatory practice. The object of the RFS is to take advantage of standardization in the field of safety , while allowing for technical progress in that field. They are designed to enable the operating utility and contractors to know the rules pertaining to various subjects which are considered to be acceptable by the ''Service Central de Surete des Installations Nucleaires'' or the SCSIN (Central Department for the Safety of Nuclear Facilities). These RFS should make safety analysis easier and lead to better understanding between experts and individuals concerned with the problems of nuclear safety. The SCSIN reserves the right to modify, when considered necessary any RFS and specify, if need be, the terms under which a modification is deemed retroactive. The purpose of this RFS is to specify the meteorological instrumentation required at the site of each nuclear power plant equipped with at least one pressurized water reactor

  9. Meteorological considerations in emergency response capability at nuclear power plant

    International Nuclear Information System (INIS)

    Fairobent, J.E.

    1985-01-01

    Meteorological considerations in emergency response at nuclear power plants are discussed through examination of current regulations and guidance documents, including discussion of the rationale for current regulatory requirements related to meteorological information for emergency response. Areas discussed include: major meteorological features important to emergency response; onsite meteorological measurements programs, including redundant and backup measurements; access to offsite sources of meteorological information; consideration of real-time and forecast conditions and atmospheric dispersion modeling

  10. Mapping the Martian Meteorology

    Science.gov (United States)

    Allison, M.; Ross, J. D.; Solomon, N.

    1999-01-01

    The Mars-adapted version of the NASA/GISS general circulation model (GCM) has been applied to the hourly/daily simulation of the planet's meteorology over several seasonal orbits. The current running version of the model includes a diurnal solar cycle, CO2 sublimation, and a mature parameterization of upper level wave drag with a vertical domain extending from the surface up to the 6microb level. The benchmark simulations provide a four-dimensional archive for the comparative evaluation of various schemes for the retrieval of winds from anticipated polar orbiter measurements of temperatures by the Pressure Modulator Infrared Radiometer. Additional information is contained in the original extended abstract.

  11. Exploring deep potential aquifer in water scarce crystalline rocks

    Indian Academy of Sciences (India)

    out to explore deep groundwater potential zone in a water scarce granitic area. As existing field condi- ... Decision support tool developed in granitic ter- .... cially in terms of fracture system, the aquifer char- acteristics ... Methodologies used.

  12. A statistical data assimilation method for seasonal streamflow forecasting to optimize hydropower reservoir management in data-scarce regions

    Science.gov (United States)

    Arsenault, R.; Mai, J.; Latraverse, M.; Tolson, B.

    2017-12-01

    Probabilistic ensemble forecasts generated by the ensemble streamflow prediction (ESP) methodology are subject to biases due to errors in the hydrological model's initial states. In day-to-day operations, hydrologists must compensate for discrepancies between observed and simulated states such as streamflow. However, in data-scarce regions, little to no information is available to guide the streamflow assimilation process. The manual assimilation process can then lead to more uncertainty due to the numerous options available to the forecaster. Furthermore, the model's mass balance may be compromised and could affect future forecasts. In this study we propose a data-driven approach in which specific variables that may be adjusted during assimilation are defined. The underlying principle was to identify key variables that would be the most appropriate to modify during streamflow assimilation depending on the initial conditions such as the time period of the assimilation, the snow water equivalent of the snowpack and meteorological conditions. The variables to adjust were determined by performing an automatic variational data assimilation on individual (or combinations of) model state variables and meteorological forcing. The assimilation aimed to simultaneously optimize: (1) the error between the observed and simulated streamflow at the timepoint where the forecasts starts and (2) the bias between medium to long-term observed and simulated flows, which were simulated by running the model with the observed meteorological data on a hindcast period. The optimal variables were then classified according to the initial conditions at the time period where the forecast is initiated. The proposed method was evaluated by measuring the average electricity generation of a hydropower complex in Québec, Canada driven by this method. A test-bed which simulates the real-world assimilation, forecasting, water release optimization and decision-making of a hydropower cascade was

  13. Air pollution meteorology

    Energy Technology Data Exchange (ETDEWEB)

    Shirvaikar, V V; Daoo, V J [Environmental Assessment Div., Bhabha Atomic Research Centre, Mumbai (India)

    2002-06-01

    This report is intended as a training cum reference document for scientists posted at the Environmental Laboratories at the Nuclear Power Station Sites and other sites of the Department of Atomic Energy with installations emitting air pollutants, radioactive or otherwise. Since a manual already exists for the computation of doses from radioactive air pollutants, a general approach is take here i.e. air pollutants in general are considered. The first chapter presents a brief introduction to the need and scope of air pollution dispersion modelling. The second chapter is a very important chapter discussing the aspects of meteorology relevant to air pollution and dispersion modelling. This chapter is important because without this information one really does not understand the phenomena affecting dispersion, the scope and applicability of various models or their limitations under various weather and site conditions. The third chapter discusses the air pollution models in detail. These models are applicable to distances of a few tens of kilometres. The fourth chapter discusses the various aspects of meteorological measurements relevant to air pollution. The chapters are followed by two appendices. Apendix A discusses the reliability of air pollution estimates. Apendix B gives some practical examples relevant to general air pollution. It is hoped that the document will prove very useful to the users. (author)

  14. Correlation Feature Selection and Mutual Information Theory Based Quantitative Research on Meteorological Impact Factors of Module Temperature for Solar Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Yujing Sun

    2016-12-01

    Full Text Available The module temperature is the most important parameter influencing the output power of solar photovoltaic (PV systems, aside from solar irradiance. In this paper, we focus on the interdisciplinary research that combines the correlation analysis, mutual information (MI and heat transfer theory, which aims to figure out the correlative relations between different meteorological impact factors (MIFs and PV module temperature from both quality and quantitative aspects. The identification and confirmation of primary MIFs of PV module temperature are investigated as the first step of this research from the perspective of physical meaning and mathematical analysis about electrical performance and thermal characteristic of PV modules based on PV effect and heat transfer theory. Furthermore, the quantitative description of the MIFs influence on PV module temperature is mathematically formulated as several indexes using correlation-based feature selection (CFS and MI theory to explore the specific impact degrees under four different typical weather statuses named general weather classes (GWCs. Case studies for the proposed methods were conducted using actual measurement data of a 500 kW grid-connected solar PV plant in China. The results not only verified the knowledge about the main MIFs of PV module temperatures, more importantly, but also provide the specific ratio of quantitative impact degrees of these three MIFs respectively through CFS and MI based measures under four different GWCs.

  15. Processing scarce biological samples for light and transmission electron microscopy

    Directory of Open Access Journals (Sweden)

    P Taupin

    2008-06-01

    Full Text Available Light microscopy (LM and transmission electron microscopy (TEM aim at understanding the relationship structure-function. With advances in biology, isolation and purification of scarce populations of cells or subcellular structures may not lead to enough biological material, for processing for LM and TEM. A protocol for preparation of scarce biological samples is presented. It is based on pre-embedding the biological samples, suspensions or pellets, in bovine serum albumin (BSA and bis-acrylamide (BA, cross-linked and polymerized. This preparation provides a simple and reproducible technique to process biological materials, present in limited quantities that can not be amplified, for light and transmission electron microscopy.

  16. Meteorological Monitoring Program

    International Nuclear Information System (INIS)

    Hancock, H.A. Jr.; Parker, M.J.; Addis, R.P.

    1994-01-01

    The purpose of this technical report is to provide a comprehensive, detailed overview of the meteorological monitoring program at the Savannah River Site (SRS) near Aiken, South Carolina. The principle function of the program is to provide current, accurate meteorological data as input for calculating the transport and diffusion of any unplanned release of an atmospheric pollutant. The report is recommended for meteorologists, technicians, or any personnel who require an in-depth understanding of the meteorological monitoring program

  17. Meteorological Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    Hancock, H.A. Jr. [ed.; Parker, M.J.; Addis, R.P.

    1994-09-01

    The purpose of this technical report is to provide a comprehensive, detailed overview of the meteorological monitoring program at the Savannah River Site (SRS) near Aiken, South Carolina. The principle function of the program is to provide current, accurate meteorological data as input for calculating the transport and diffusion of any unplanned release of an atmospheric pollutant. The report is recommended for meteorologists, technicians, or any personnel who require an in-depth understanding of the meteorological monitoring program.

  18. Surface meteorology and Solar Energy

    Science.gov (United States)

    Stackhouse, Paul W. (Principal Investigator)

    The Release 5.1 Surface meteorology and Solar Energy (SSE) data contains parameters formulated for assessing and designing renewable energy systems. Parameters fall under 11 categories including: Solar cooking, solar thermal applications, solar geometry, tilted solar panels, energy storage systems, surplus product storage systems, cloud information, temperature, wind, other meteorological factors, and supporting information. This latest release contains new parameters based on recommendations by the renewable energy industry and it is more accurate than previous releases. On-line plotting capabilities allow quick evaluation of potential renewable energy projects for any region of the world. The SSE data set is formulated from NASA satellite- and reanalysis-derived insolation and meteorological data for the 10-year period July 1983 through June 1993. Results are provided for 1 degree latitude by 1 degree longitude grid cells over the globe. Average daily and monthly measurements for 1195 World Radiation Data Centre ground sites are also available. [Mission Objectives] The SSE project contains insolation and meteorology data intended to aid in the development of renewable energy systems. Collaboration between SSE and technology industries such as the Hybrid Optimization Model for Electric Renewables ( HOMER ) may aid in designing electric power systems that employ some combination of wind turbines, photovoltaic panels, or diesel generators to produce electricity. [Temporal_Coverage: Start_Date=1983-07-01; Stop_Date=1993-06-30] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180].

  19. Lectures in Micro Meteorology

    DEFF Research Database (Denmark)

    Larsen, Søren Ejling

    This report contains the notes from my lectures on Micro scale meteorology at the Geophysics Department of the Niels Bohr Institute of Copenhagen University. In the period 1993-2012, I was responsible for this course at the University. At the start of the course, I decided that the text books...... available in meteorology at that time did not include enough of the special flavor of micro meteorology that characterized the work of the meteorology group at Risø (presently of the Institute of wind energy of the Danish Technical University). This work was focused on Boundary layer flows and turbulence...

  20. Video2vec Embeddings Recognize Events when Examples are Scarce

    NARCIS (Netherlands)

    Habibian, A.; Mensink, T.; Snoek, C.G.M.

    2017-01-01

    This paper aims for event recognition when video examples are scarce or even completely absent. The key in such a challenging setting is a semantic video representation. Rather than building the representation from individual attribute detectors and their annotations, we propose to learn the entire

  1. Meteorology as an infratechnology

    Science.gov (United States)

    Williams, G. A.; Smith, L. A.

    2003-04-01

    From an economists perspective, meteorology is an underpinning or infratechnology in the sense that in general it does not of its own accord lead to actual products. Its value added comes from the application of its results to the activities of other forms of economic and technological activity. This contribution discusses both the potential applications of meteorology as an ininfratechnology, and quantifying its socio-economic impact. Large economic and social benefits are both likely in theory and can be identified in practice. Case studies of particular weather dependent industries or particular episodes are suggested, based on the methodology developed by NIST to analyze the social impact of technological innovation in US industries (see www.nist.gov/director/planning/strategicplanning.htm ). Infratechnologies can provide economic benefits in the support of markets. Incomplete information is a major cause of market failure because it inhibits the proper design of contracts. The performance of markets in general can be influenced by strategies adopted by different firms within a market to regulate the performance of others especially suppliers or purchasers. This contribution will focus on benefits to society from mechanisms which enhance and enforce mitigating actions. When the market mechanism fails, who might social benefits be gained, for example, by widening the scope of authorities to ensure that those who could have taken mitigating action, given prior warning, cover the costs. This goes beyond the design and implementation of civil responses to severe weather warnings to include the design of legislative recourse in the event of negligence given prior knowledge, or the modification of insurance contracts. The aim here, for example, would be to avoid the loss of an oil tanker in heavy seas at a location where a high probability of heavy seas had been forecast for some time.

  2. Fire and forest meteorology

    Science.gov (United States)

    SA Ferguson; T.J. Brown; M. Flannigan

    2005-01-01

    The American Meteorological Society symposia series on Fire and Forest Meteorology provides biennial forums for atmospheric and fire scientists to introduce and discuss the latest and most relevant research on weather, climate and fire. This special issue highlights significant work that was presented at the Fifth Symposium in Orlando, Florida during 16-20 November...

  3. METRODOS: Meteorological preprocessor chain

    DEFF Research Database (Denmark)

    Astrup, P.; Mikkelsen, T.; Deme, S.

    2001-01-01

    The METRODOS meteorological preprocessor chain combines measured tower data and coarse grid numerical weather prediction (NWP) data with local scale flow models and similarity scaling to give high resolution approximations of the meteorological situation. Based on available wind velocity and dire...

  4. Wind Power Meteorology

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik; Mortensen, Niels Gylling; Landberg, Lars

    Wind power meteorology has evolved as an applied science, firmly founded on boundary-layer meteorology, but with strong links to climatology and geography. It concerns itself with three main areas: siting of wind turbines, regional wind resource assessment, and short-term prediction of the wind...... resource. The history, status and perspectives of wind power meteorology are presented, with emphasis on physical considerations and on its practical application. Following a global view of the wind resource, the elements of boundary layer meteorology which are most important for wind energy are reviewed......: wind profiles and shear, turbulence and gust, and extreme winds. The data used in wind power meteorology stem mainly from three sources: onsite wind measurements, the synoptic networks, and the re-analysis projects. Wind climate analysis, wind resource estimation and siting further require a detailed...

  5. Challenges of model transferability to data-scarce regions (Invited)

    Science.gov (United States)

    Samaniego, L. E.

    2013-12-01

    forcing 25x25 km2, FAO soil map 1:5000000) using parameters obtained with high resolution information (REGNIE forcing 1x1 km2, BUEK soil map 1:1000000) in different climatic regions indicate the potential of MPR for prediction in data-scarce regions. In this presentation, we will also discuss how the transferability of global model parameters across scales and locations helps to identify deficiencies in model structure and regionalization functions.

  6. VideoStory Embeddings Recognize Events when Examples are Scarce

    OpenAIRE

    Habibian, Amirhossein; Mensink, Thomas; Snoek, Cees G. M.

    2015-01-01

    This paper aims for event recognition when video examples are scarce or even completely absent. The key in such a challenging setting is a semantic video representation. Rather than building the representation from individual attribute detectors and their annotations, we propose to learn the entire representation from freely available web videos and their descriptions using an embedding between video features and term vectors. In our proposed embedding, which we call VideoStory, the correlati...

  7. Video2vec Embeddings Recognize Events when Examples are Scarce

    OpenAIRE

    Habibian, A.; Mensink, T.; Snoek, C.G.M.

    2017-01-01

    This paper aims for event recognition when video examples are scarce or even completely absent. The key in such a challenging setting is a semantic video representation. Rather than building the representation from individual attribute detectors and their annotations, we propose to learn the entire representation from freely available web videos and their descriptions using an embedding between video features and term vectors. In our proposed embedding, which we call Video2vec, the correlatio...

  8. Allocation of scarce resources during mass casualty events.

    Science.gov (United States)

    Timbie, Justin W; Ringel, Jeanne S; Fox, D Steven; Waxman, Daniel A; Pillemer, Francesca; Carey, Christine; Moore, Melinda; Karir, Veena; Johnson, Tiffani J; Iyer, Neema; Hu, Jianhui; Shanman, Roberta; Larkin, Jody Wozar; Timmer, Martha; Motala, Aneesa; Perry, Tanja R; Newberry, Sydne; Kellermann, Arthur L

    2012-06-01

    This systematic review sought to identify the best available evidence regarding strategies for allocating scarce resources during mass casualty events (MCEs). Specifically, the review addresses the following questions: (1) What strategies are available to policymakers to optimize the allocation of scarce resources during MCEs? (2) What strategies are available to providers to optimize the allocation of scarce resources during MCEs? (3) What are the public's key perceptions and concerns regarding the implementation of strategies to allocate scarce resources during MCEs? (4) What methods are available to engage providers in discussions regarding the development and implementation of strategies to allocate scarce resources during MCEs? We searched Medline, Scopus, Embase, CINAHL (Cumulative Index to Nursing and Allied Health Literature), Global Health, Web of Science®, and the Cochrane Database of Systematic Reviews from 1990 through 2011. To identify relevant non-peer-reviewed reports, we searched the New York Academy of Medicine's Grey Literature Report. We also reviewed relevant State and Federal plans, peer-reviewed reports and papers by nongovernmental organizations, and consensus statements published by professional societies. We included both English- and foreign-language studies. Our review included studies that evaluated tested strategies in real-world MCEs as well as strategies tested in drills, exercises, or computer simulations, all of which included a comparison group. We reviewed separately studies that lacked a comparison group but nonetheless evaluated promising strategies. We also identified consensus recommendations developed by professional societies or government panels. We reviewed existing State plans to examine the current state of planning for scarce resource allocation during MCEs. Two investigators independently reviewed each article, abstracted data, and assessed study quality. We considered 5,716 reports for this comparative effectiveness

  9. Modeling water and heat balance components of large territory for vegetation season using information from polar-orbital and geostationary meteorological satellites

    Science.gov (United States)

    Muzylev, Eugene; Startseva, Zoya; Uspensky, Alexander; Volkova, Elena; Kukharsky, Alexander; Uspensky, Sergey

    2015-04-01

    To date, physical-mathematical modeling processes of land surface-atmosphere interaction is considered to be the most appropriate tool for obtaining reliable estimates of water and heat balance components of large territories. The model of these processes (Land Surface Model, LSM) developed for vegetation period is destined for simulating soil water content W, evapotranspiration Ev, vertical latent LE and heat fluxes from land surface as well as vertically distributed soil temperature and moisture, soil surface Tg and foliage Tf temperatures, and land surface skin temperature (LST) Ts. The model is suitable for utilizing remote sensing data on land surface and meteorological conditions. In the study these data have been obtained from measurements by scanning radiometers AVHRR/NOAA, MODIS/EOS Terra and Aqua, SEVIRI/geostationary satellites Meteosat-9, -10 (MSG-2, -3). The heterogeneity of the land surface and meteorological conditions has been taken into account in the model by using soil and vegetation characteristics as parameters and meteorological characteristics as input variables. Values of these characteristics have been determined from ground observations and remote sensing information. So, AVHRR data have been used to build the estimates of effective land surface temperature (LST) Ts.eff and emissivity E, vegetation-air temperature (temperature at the vegetation level) Ta, normalized vegetation index NDVI, vegetation cover fraction B, the leaf area index LAI, and precipitation. From MODIS data the values of LST Tls, Å, NDVI, LAI have been derived. From SEVIRI data there have been retrieved Tls, E, Ta, NDVI, LAI and precipitation. All named retrievals covered the vast territory of the part of the agricultural Central Black Earth Region located in the steppe-forest zone of European Russia. This territory with coordinates 49°30'-54°N, 31°-43°E and a total area of 227,300 km2 has been chosen for investigation. It has been carried out for years 2009

  10. US Marine Meteorological Journals

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This series consists of volumes entitled 'Meteorological Journal' (a regulation Navy-issue publication) which were to be completed by masters of merchant vessels...

  11. Wave Meteorology and Soaring

    Science.gov (United States)

    Wiley, Scott

    2008-01-01

    This viewgraph document reviews some mountain wave turbulence and operational hazards while soaring. Maps, photographs, and satellite images of the meteorological phenomena are included. Additionally, photographs of aircraft that sustained mountain wave damage are provided.

  12. Climate and meteorology

    International Nuclear Information System (INIS)

    Hoitink, D.J.

    1995-01-01

    This section of the 1994 Hanford Site Environmental Report summarizes the significant activities conducted in 1994 to monitor the meteorology and climatology of the site. Meteorological measurements are taken to support Hanford Site emergency preparedness and response, Hanford Site operations, and atmospheric dispersion calculations. Climatological data are collected to help plan weather-dependent activities and are used as a resource to assess the environmental effects of Hanford Site operations

  13. Climate and meteorology

    Energy Technology Data Exchange (ETDEWEB)

    Hoitink, D.J.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the significant activities conducted in 1994 to monitor the meteorology and climatology of the site. Meteorological measurements are taken to support Hanford Site emergency preparedness and response, Hanford Site operations, and atmospheric dispersion calculations. Climatological data are collected to help plan weather-dependent activities and are used as a resource to assess the environmental effects of Hanford Site operations.

  14. Crowdsourcing Stream Stage in Data Scarce Regions: Applications of CrowdHydrology

    Science.gov (United States)

    Lowry, C.; Fienen, M. N.

    2013-12-01

    Crowdsourced data collection using citizen scientists and mobile phones is a promising way to collect supplemental information in data scarce or remote regions. The research presented here explore the possibilities and pitfalls of crowdsourcing hydrologic data via mobile phone text messaging through the example of CrowdHydrology, a distributed network of over 40 stream gages in four states. Signage at the CrowdHydrology gages ask citizen scientists to answer to a simple question via text message: 'What is the water height?'. While these data in no way replace more traditional measurements of stream stage, they do provide low cost supplemental measurements in data scarce regions. Results demonstrate the accuracy of crowdsourced data and provide insight for successful future crowdsourced data collection efforts. A less recognized benefit is that even in data rich areas, crowdsourced data collection is a cost-effective way to perform quality assurance on more sophisticated, and costly, data collection efforts.

  15. Meteorology Products - Naval Oceanography Portal

    Science.gov (United States)

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You are here: Home › FNMOC › Meteorology Products FNMOC Logo FNMOC Navigation Meteorology Products Oceanography Products Tropical Applications Climatology and Archived Data Info Meteorology Products Global

  16. Environmental safety issues for semiconductors (research on scarce materials recycling)

    International Nuclear Information System (INIS)

    Izumi, Shigekazu

    2004-01-01

    In the 21st century, in the fabrication of various industrial parts, particularly, current and future electronics devices in the semiconductor industry, environmental safety issues should be carefully considered. We coined a new term, environmental safety issues for semiconductors, considering our semiconductor research and technology which include environmental and ecological factors. The main object of this analysis is to address the present situation of environmental safety problems in the semiconductor industry; some of which are: (1) the generation and use of hazardous toxic gases in the crystal growth procedure such as molecular beam epitaxy (MBE) and metalorganic chemical vapor deposition (MOCVD), (2) the generation of industrial toxic wastes in the semiconductor process and (3) scarce materials recycling from wastes in the MBE and MOCVD growth procedure

  17. Jesuits' Contribution to Meteorology.

    Science.gov (United States)

    Udías, Agustín

    1996-10-01

    Starting in the middle of the nineteenth century, as part of their scientific tradition, Jesuits founded a considerable number of meteorological observatories throughout the world. In many countries, Jesuits established and maintained the first meteorological stations during the period from 1860 to 1950. The Jesuits' most important contribution to atmospheric science was their pioneer work related to the study and forecast of tropical hurricanes. That research was carried out at observatories of Belén (Cuba), Manila (Philippines), and Zikawei (China). B. Viñes, M. Decheyrens, J. Aigué, and C.E. Deppermann stood out in this movement.

  18. Meteorology in site operations

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    During the site selection and design phases of a plant, meteorological assistance must be based on past records, usually accumulated at stations not actually on the site. These preliminary atadvices will be averages and extremes that might be expected. After a location has been chosen and work has begun, current and forecast weather conditions become of immediate concern. On-site meteorological observations and forecasts have many applications to the operating program of an atomic energy site. Requirements may range from observations of the daily minimum temperatures to forecasts of radiation dosages from airborne clouds

  19. Applied Meteorology Unit (AMU)

    Science.gov (United States)

    Bauman, William; Crawford, Winifred; Barrett, Joe; Watson, Leela; Wheeler, Mark

    2010-01-01

    This report summarizes the Applied Meteorology Unit (AMU) activities for the first quarter of Fiscal Year 2010 (October - December 2009). A detailed project schedule is included in the Appendix. Included tasks are: (1) Peak Wind Tool for User Launch Commit Criteria (LCC), (2) Objective Lightning Probability Tool, Phase III, (3) Peak Wind Tool for General Forecasting, Phase II, (4) Upgrade Summer Severe Weather Tool in Meteorological Interactive Data Display System (MIDDS), (5) Advanced Regional Prediction System (ARPS) Data Analysis System (ADAS) Update and Maintainability, (5) Verify 12-km resolution North American Model (MesoNAM) Performance, and (5) Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) Graphical User Interface.

  20. Improving Flood Predictions in Data-Scarce Basins

    Science.gov (United States)

    Vimal, Solomon; Zanardo, Stefano; Rafique, Farhat; Hilberts, Arno

    2017-04-01

    Flood modeling methodology at Risk Management Solutions Ltd. has evolved over several years with the development of continental scale flood risk models spanning most of Europe, the United States and Japan. Pluvial (rain fed) and fluvial (river fed) flood maps represent the basis for the assessment of regional flood risk. These maps are derived by solving the 1D energy balance equation for river routing and 2D shallow water equation (SWE) for overland flow. The models are run with high performance computing and GPU based solvers as the time taken for simulation is large in such continental scale modeling. These results are validated with data from authorities and business partners, and have been used in the insurance industry for many years. While this methodology has been proven extremely effective in regions where the quality and availability of data are high, its application is very challenging in other regions where data are scarce. This is generally the case for low and middle income countries, where simpler approaches are needed for flood risk modeling and assessment. In this study we explore new methods to make use of modeling results obtained in data-rich contexts to improve predictive ability in data-scarce contexts. As an example, based on our modeled flood maps in data-rich countries, we identify statistical relationships between flood characteristics and topographic and climatic indicators, and test their generalization across physical domains. Moreover, we apply the Height Above Nearest Drainage (HAND)approach to estimate "probable" saturated areas for different return period flood events as functions of basin characteristics. This work falls into the well-established research field of Predictions in Ungauged Basins.

  1. Computer Exercises in Meteorology.

    Science.gov (United States)

    Trapasso, L. Michael; Conner, Glen; Stallins, Keith

    Beginning with Western Kentucky University's (Bowling Green) fall 1999 semester, exercises required for the geography and meteorology course used computers for learning. This course enrolls about 250 students per year, most of whom choose it to fulfill a general education requirement. Of the 185 geography majors, it is required for those who…

  2. Predicting Posttraumatic Stress Symptom Prevalence and Local Distribution after an Earthquake with Scarce Data.

    Science.gov (United States)

    Dussaillant, Francisca; Apablaza, Mauricio

    2017-08-01

    After a major earthquake, the assignment of scarce mental health emergency personnel to different geographic areas is crucial to the effective management of the crisis. The scarce information that is available in the aftermath of a disaster may be valuable in helping predict where are the populations that are in most need. The objectives of this study were to derive algorithms to predict posttraumatic stress (PTS) symptom prevalence and local distribution after an earthquake and to test whether there are algorithms that require few input data and are still reasonably predictive. A rich database of PTS symptoms, informed after Chile's 2010 earthquake and tsunami, was used. Several model specifications for the mean and centiles of the distribution of PTS symptoms, together with posttraumatic stress disorder (PTSD) prevalence, were estimated via linear and quantile regressions. The models varied in the set of covariates included. Adjusted R2 for the most liberal specifications (in terms of numbers of covariates included) ranged from 0.62 to 0.74, depending on the outcome. When only including peak ground acceleration (PGA), poverty rate, and household damage in linear and quadratic form, predictive capacity was still good (adjusted R2 from 0.59 to 0.67 were obtained). Information about local poverty, household damage, and PGA can be used as an aid to predict PTS symptom prevalence and local distribution after an earthquake. This can be of help to improve the assignment of mental health personnel to the affected localities. Dussaillant F , Apablaza M . Predicting posttraumatic stress symptom prevalence and local distribution after an earthquake with scarce data. Prehosp Disaster Med. 2017;32(4):357-367.

  3. Sustainable governance of scarce metals: the case of lithium.

    Science.gov (United States)

    Prior, Timothy; Wäger, Patrick A; Stamp, Anna; Widmer, Rolf; Giurco, Damien

    2013-09-01

    Minerals and metals are finite resources, and recent evidence suggests that for many, primary production is becoming more difficult and more expensive. Yet these resources are fundamentally important for society--they support many critical services like infrastructure, telecommunications and energy generation. A continued reliance on minerals and metals as service providers in modern society requires dedicated and concerted governance in relation to production, use, reuse and recycling. Lithium provides a good example to explore possible sustainable governance strategies. Lithium is a geochemically scarce metal (being found in a wide range of natural systems, but in low concentrations that are difficult to extract), yet recent studies suggest increasing future demand, particularly to supply the lithium in lithium-ion batteries, which are used in a wide variety of modern personal and commercial technologies. This paper explores interventions for sustainable governance and handling of lithium for two different supply and demand contexts: Australia as a net lithium producer and Switzerland as a net lithium consumer. It focuses particularly on possible nation-specific issues for sustainable governance in these two countries' contexts, and links these to the global lithium supply chain and demand scenarios. The article concludes that innovative business models, like 'servicizing' the lithium value chain, would hold sustainable governance advantages for both producer and consumer countries. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Self-Replication of Localized Vegetation Patches in Scarce Environments

    Science.gov (United States)

    Bordeu, Ignacio; Clerc, Marcel G.; Couteron, Piere; Lefever, René; Tlidi, Mustapha

    2016-09-01

    Desertification due to climate change and increasing drought periods is a worldwide problem for both ecology and economy. Our ability to understand how vegetation manages to survive and propagate through arid and semiarid ecosystems may be useful in the development of future strategies to prevent desertification, preserve flora—and fauna within—or even make use of scarce resources soils. In this paper, we study a robust phenomena observed in semi-arid ecosystems, by which localized vegetation patches split in a process called self-replication. Localized patches of vegetation are visible in nature at various spatial scales. Even though they have been described in literature, their growth mechanisms remain largely unexplored. Here, we develop an innovative statistical analysis based on real field observations to show that patches may exhibit deformation and splitting. This growth mechanism is opposite to the desertification since it allows to repopulate territories devoid of vegetation. We investigate these aspects by characterizing quantitatively, with a simple mathematical model, a new class of instabilities that lead to the self-replication phenomenon observed.

  5. Surface Meteorology and Solar Energy

    Data.gov (United States)

    National Aeronautics and Space Administration — Surface Meteorology and Solar Energy data - over 200 satellite-derived meteorology and solar energy parameters, monthly averaged from 22 years of data, global solar...

  6. Meteorological instrumentation for nuclear facilities

    International Nuclear Information System (INIS)

    Costa, A.C.L. da.

    1983-01-01

    The main requirements of regulatory agencies, concerning the meteorological instrumentation needed for the licensing of nuclear facilities are discussed. A description is made of the operational principles of sensors for the various meteorological parameters and associated electronic systems. An analysis of the problems associated with grounding of a typical meteorological station is presented. (Author) [pt

  7. Meteorological instrumentation for nuclear installations

    International Nuclear Information System (INIS)

    Costa, A.C.L. da.

    1983-01-01

    The main requirements of regulatory agencies, concerning the meteorological instrumentation needed for the licensing of nuclear facilities are discussed. A description is made of the operational principles of sensors for the various meteorological parameters and associated electronic systems. Finally, it is presented an analysis of the problems associated with grounding of a typical meteorological station. (Author) [pt

  8. Pantex Plant meteorological monitoring program

    International Nuclear Information System (INIS)

    Snyder, S.F.

    1993-07-01

    The current meteorological monitoring program of the US Department of Energy's Pantex Plant, Amarillo, Texas, is described in detail. Instrumentation, meteorological data collection and management, and program management are reviewed. In addition, primary contacts are noted for instrumentation, calibration, data processing, and alternative databases. The quality assurance steps implemented during each portion of the meteorological monitoring program are also indicated

  9. Extreme meteorological conditions

    International Nuclear Information System (INIS)

    Altinger de Schwarzkopf, M.L.

    1983-01-01

    Different meteorological variables which may reach significant extreme values, such as the windspeed and, in particular, its occurrence through tornadoes and hurricanes that necesarily incide and wich must be taken into account at the time of nuclear power plants' installation, are analyzed. For this kind of study, it is necessary to determine the basic phenomenum of design. Two criteria are applied to define the basic values of design for extreme meteorological variables. The first one determines the expected extreme value: it is obtained from analyzing the recurence of the phenomenum in a convened period of time, wich may be generally of 50 years. The second one determines the extreme value of low probability, taking into account the nuclear power plant's operating life -f.ex. 25 years- and considering, during said lapse, the occurrence probabilities of extreme meteorological phenomena. The values may be determined either by the deterministic method, which is based on the acknowledgement of the fundamental physical characteristics of the phenomena or by the probabilistic method, that aims to the analysis of historical statistical data. Brief comments are made on the subject in relation to the Argentine Republic area. (R.J.S.) [es

  10. Meteorological, hydrological and oceanographical information and data for the site investigation program in the communities of Oesthammar and Tierp in the northern part of Uppland

    Energy Technology Data Exchange (ETDEWEB)

    Larsson-McCann, Sonja; Karlsson, Anna; Nord, Margitta; Sjoegren, Jonas; Johansson, Lasse; Ivarsson, Mats; Kindell, Sven [Swedish Meteorological and Hydrological Inst., Norrkoeping (Sweden)

    2002-06-01

    been included in any easily accessed database. However, data was stored on magnetic tapes, of which some years have been located, but not evaluated. Together with this report one reference year with data was selected. At first, the years possible from a hydrological point of view were selected since hydrological data are scarcer than meteorological. The selected year should be as normal as possible, monthly averages and sums should approximately be according to corresponding values for the standard normal period 1961 - 1990. All meteorological parameters should refer to the same station if possible. The parameters, temperature and precipitation, are considered most important when the year is selected. On these conditions meteorological data for 1988 from Oerskaer was selected, except for air pressure and snow depth which was not measured at Oerskaer Data on air pressure are taken from Uppsala Airport which is regarded representative for Oerskaer. Data on snow cover are from Films kyrkby further inland. For discharge and water level the station Vattholma has been chosen. As oceanographic data over the year is incoherent we can not provide time series for an actual year for these parameters.

  11. Video2vec Embeddings Recognize Events When Examples Are Scarce.

    Science.gov (United States)

    Habibian, Amirhossein; Mensink, Thomas; Snoek, Cees G M

    2017-10-01

    This paper aims for event recognition when video examples are scarce or even completely absent. The key in such a challenging setting is a semantic video representation. Rather than building the representation from individual attribute detectors and their annotations, we propose to learn the entire representation from freely available web videos and their descriptions using an embedding between video features and term vectors. In our proposed embedding, which we call Video2vec, the correlations between the words are utilized to learn a more effective representation by optimizing a joint objective balancing descriptiveness and predictability. We show how learning the Video2vec embedding using a multimodal predictability loss, including appearance, motion and audio features, results in a better predictable representation. We also propose an event specific variant of Video2vec to learn a more accurate representation for the words, which are indicative of the event, by introducing a term sensitive descriptiveness loss. Our experiments on three challenging collections of web videos from the NIST TRECVID Multimedia Event Detection and Columbia Consumer Videos datasets demonstrate: i) the advantages of Video2vec over representations using attributes or alternative embeddings, ii) the benefit of fusing video modalities by an embedding over common strategies, iii) the complementarity of term sensitive descriptiveness and multimodal predictability for event recognition. By its ability to improve predictability of present day audio-visual video features, while at the same time maximizing their semantic descriptiveness, Video2vec leads to state-of-the-art accuracy for both few- and zero-example recognition of events in video.

  12. Sustainable governance of scarce metals: The case of lithium

    Energy Technology Data Exchange (ETDEWEB)

    Prior, Timothy, E-mail: tim.prior@sipo.gess.ethz.ch [Center for Security Studies (CSS), ETH Zürich (Switzerland); Institute for Sustainable Futures, University of Technology, Sydney (Australia); Wäger, Patrick A. [Technology and Society Laboratory, Empa - Swiss Federal Laboratories for Materials Science and Technology, St. Gallen (Switzerland); Stamp, Anna [Technology and Society Laboratory, Empa - Swiss Federal Laboratories for Materials Science and Technology, St. Gallen (Switzerland); Institute for Environmental Decisions, ETH Zürich (Switzerland); Widmer, Rolf [Technology and Society Laboratory, Empa - Swiss Federal Laboratories for Materials Science and Technology, St. Gallen (Switzerland); Giurco, Damien [Institute for Sustainable Futures, University of Technology, Sydney (Australia)

    2013-09-01

    Minerals and metals are finite resources, and recent evidence suggests that for many, primary production is becoming more difficult and more expensive. Yet these resources are fundamentally important for society—they support many critical services like infrastructure, telecommunications and energy generation. A continued reliance on minerals and metals as service providers in modern society requires dedicated and concerted governance in relation to production, use, reuse and recycling. Lithium provides a good example to explore possible sustainable governance strategies. Lithium is a geochemically scarce metal (being found in a wide range of natural systems, but in low concentrations that are difficult to extract), yet recent studies suggest increasing future demand, particularly to supply the lithium in lithium-ion batteries, which are used in a wide variety of modern personal and commercial technologies. This paper explores interventions for sustainable governance and handling of lithium for two different supply and demand contexts: Australia as a net lithium producer and Switzerland as a net lithium consumer. It focuses particularly on possible nation-specific issues for sustainable governance in these two countries' contexts, and links these to the global lithium supply chain and demand scenarios. The article concludes that innovative business models, like ‘servicizing’ the lithium value chain, would hold sustainable governance advantages for both producer and consumer countries. - Highlights: • Lithium is a geochemically scare metal, but demand is forecast to increase in future • We explore sustainable lithium governance implications for Australia and Switzerland • One governance mechanism is the ‘servicization’ of the lithium value chain • We explore one actual, and two hypothetical lithium service business models • ‘Servicizing’ a commodity would require fundamental innovations in minerals policy.

  13. Coping with hygiene in South Africa, a water scarce country.

    Science.gov (United States)

    Duse, A G; da Silva, M P; Zietsman, I

    2003-06-01

    The burden of infectious diseases may be reduced by adopting effective infection control measures. Some of these are dependent on the provision of adequate and safe water supplies for maintenance of basic standards of personal, domestic and healthcare hygiene. Consequences of scarce, and sometimes unsafe, waters supplies in South Africa are highlighted with reference to healthcare-associated infections, community acquired infectious intestinal diseases and domestic practices as infection sources. Availability of water in more than 67% of South African municipal hospitals and primary health care facilities (delivered by water tanker in 12.5% of satellite clinics, 5% from river or dam sources, 12.4% relying on rainwater) does not necessarily guarantee that it's quality is safe for utilisation. In the Northern Province and Mpumalanga, water needs to be purified prior to usage in 14.4 and 33% of satellite clinics respectively. Simple, low maintenance and low-cost interventions to maximise use and safety of limited water resources may be implemented: micro-organism (S. dysenteriae) inactivation by direct UV-exposure in sunlight abundant environments, water purification by filtration mechanisms and making use of iron pots in the community for pasteurisation, decontamination and boiling procedures. Education is paramount in promoting healthy domestic food handling practices, changing cultural perceptions of hygiene, hand-washing technique and mechanisms of domestic environmental decontamination. Water provision cannot be separated from other inter-related factors such as sanitation. Although the present government has taken initiatives to reduce the number of people not having access to water by 50% in 2002, provision of sanitation has been slower (>38% inadequate sanitation in 2002). Adoption of integrated environmental management approaches in conjunction with community participation (WASH Campaign--2002), by the government, aims to address the sanitation problems.

  14. Sustainable governance of scarce metals: The case of lithium

    International Nuclear Information System (INIS)

    Prior, Timothy; Wäger, Patrick A.; Stamp, Anna; Widmer, Rolf; Giurco, Damien

    2013-01-01

    Minerals and metals are finite resources, and recent evidence suggests that for many, primary production is becoming more difficult and more expensive. Yet these resources are fundamentally important for society—they support many critical services like infrastructure, telecommunications and energy generation. A continued reliance on minerals and metals as service providers in modern society requires dedicated and concerted governance in relation to production, use, reuse and recycling. Lithium provides a good example to explore possible sustainable governance strategies. Lithium is a geochemically scarce metal (being found in a wide range of natural systems, but in low concentrations that are difficult to extract), yet recent studies suggest increasing future demand, particularly to supply the lithium in lithium-ion batteries, which are used in a wide variety of modern personal and commercial technologies. This paper explores interventions for sustainable governance and handling of lithium for two different supply and demand contexts: Australia as a net lithium producer and Switzerland as a net lithium consumer. It focuses particularly on possible nation-specific issues for sustainable governance in these two countries' contexts, and links these to the global lithium supply chain and demand scenarios. The article concludes that innovative business models, like ‘servicizing’ the lithium value chain, would hold sustainable governance advantages for both producer and consumer countries. - Highlights: • Lithium is a geochemically scare metal, but demand is forecast to increase in future • We explore sustainable lithium governance implications for Australia and Switzerland • One governance mechanism is the ‘servicization’ of the lithium value chain • We explore one actual, and two hypothetical lithium service business models • ‘Servicizing’ a commodity would require fundamental innovations in minerals policy

  15. Event-based nonpoint source pollution prediction in a scarce data catchment

    Science.gov (United States)

    Chen, Lei; Sun, Cheng; Wang, Guobo; Xie, Hui; Shen, Zhenyao

    2017-09-01

    Quantifying the rainfall-runoff-pollutant (R-R-P) process is key to regulating non-point source (NPS) pollution; however, the impacts of scarce measured data on R-R-P simulations have not yet been reported. In this study, we conducted a comprehensive study of scarce data that addressed both rainfall-runoff and runoff-pollutant processes, whereby the impacts of data scarcity on two commonly used methods, including Unit Hydrograph (UH) and Loads Estimator (LOADEST), were quantified. A case study was performed in a typical small catchment of the Three Gorges Reservoir Region (TGRR) of China. Based on our results, the classification of rainfall patterns should be carried out first when analyzing modeling results. Compared to data based on a missing rate and a missing location, key information generates more impacts on the simulated flow and NPS loads. When the scarcity rate exceeds a certain threshold (20% in this study), measured data scarcity level has clear impacts on the model's accuracy. As the model of total nitrogen (TN) always performs better under different data scarcity conditions, researchers are encouraged to pay more attention to continuous the monitoring of total phosphorus (TP) for better NPS-TP predictions. The results of this study serve as baseline information for hydrologic forecasting and for the further control of NPS pollutants.

  16. Women in Meteorology.

    Science.gov (United States)

    Lemone, Margaret A.; Waukau, Patricia L.

    1982-11-01

    The names of 927 women who are or have been active in meteorology or closely related fields have been obtained from various sources. Of these women, at least 500 are presently active. An estimated 4-5% of the total number of Ph.D.s in meteorology are awarded to women. About 10% of those receiving B.S. and M.S. degrees are women.The work patterns, accomplishments, and salaries of employed women meteorologists have been summarized from 330 responses to questionnaires, as functions of age, family status, part- or full-time working status, and employing institutions. It was found that women meteorologists holding Ph.D.s are more likely than their male counterparts to be employed by universities. As increasing number of women were employed in operational meteorology, although few of them were married and fewer still responsible for children. Several women were employed by private industry and some had advanced into managerial positions, although at the present time, such positions remain out of the reach of most women.The subjective and objective effects of several gender-related factors have been summarized from the comments and responses to the questionnaires. The primary obstacles to advancement were found to be part-time work and the responsibility for children. Part-time work was found to have a clearly negative effect on salary increase as a function of age. prejudicated discrimination and rules negatively affecting women remain important, especially to the older women, and affirmative action programs are generally seen as beneficial.Surprisingly, in contrast to the experience of women in other fields of science, women Ph.D.s in meteorology earn salaries comparable of their employment in government or large corporations and universities where there are strong affirmative action programs and above-average salaries. Based on the responses to the questionnaire, the small size of the meteorological community is also a factor, enabling women to become recognized

  17. Meteorological data related to the Chernobyl accident

    International Nuclear Information System (INIS)

    Graziani, G.; Zarimpas, N.

    1989-01-01

    This report presents a detailed technical description of the JRC-Ispra comprehensive collection of meteorological information related to the Chernobyl accident and attempts an analysis of the data in order to perform an initial checking of their quality and facilitate a suitable and compact way of display

  18. Background of the Military Aviation Meteorological Service

    Directory of Open Access Journals (Sweden)

    V.I. Zshumatiy

    2016-09-01

    Full Text Available The article is devoted to the birth of aviation and its meteorological service in the early twentieth century. The article details the military aviation meteorological services in Italy, France, Germany, Austria, the USA and Russia. Are described the problems, which arose with the takeoff and landings of flight vehicles with complex weather conditions. It is shown that the information about the actual and forthcoming weather is capable of reducing a quantity of failures of flight vehicles, of increasing safety of pilots and accuracy of the defeat of enemy, of planning the application of aviation.

  19. A machine learning method to estimate PM2.5 concentrations across China with remote sensing, meteorological and land use information.

    Science.gov (United States)

    Chen, Gongbo; Li, Shanshan; Knibbs, Luke D; Hamm, N A S; Cao, Wei; Li, Tiantian; Guo, Jianping; Ren, Hongyan; Abramson, Michael J; Guo, Yuming

    2018-04-24

    Machine learning algorithms have very high predictive ability. However, no study has used machine learning to estimate historical concentrations of PM 2.5 (particulate matter with aerodynamic diameter ≤ 2.5 μm) at daily time scale in China at a national level. To estimate daily concentrations of PM 2.5 across China during 2005-2016. Daily ground-level PM 2.5 data were obtained from 1479 stations across China during 2014-2016. Data on aerosol optical depth (AOD), meteorological conditions and other predictors were downloaded. A random forests model (non-parametric machine learning algorithms) and two traditional regression models were developed to estimate ground-level PM 2.5 concentrations. The best-fit model was then utilized to estimate the daily concentrations of PM 2.5 across China with a resolution of 0.1° (≈10 km) during 2005-2016. The daily random forests model showed much higher predictive accuracy than the other two traditional regression models, explaining the majority of spatial variability in daily PM 2.5 [10-fold cross-validation (CV) R 2  = 83%, root mean squared prediction error (RMSE) = 28.1 μg/m 3 ]. At the monthly and annual time-scale, the explained variability of average PM 2.5 increased up to 86% (RMSE = 10.7 μg/m 3 and 6.9 μg/m 3 , respectively). Taking advantage of a novel application of modeling framework and the most recent ground-level PM 2.5 observations, the machine learning method showed higher predictive ability than previous studies. Random forests approach can be used to estimate historical exposure to PM 2.5 in China with high accuracy. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. The allocation of scarce resources in miscellaneous cases

    NARCIS (Netherlands)

    Hamsvoort, van der C.P.C.M.

    2006-01-01

    Key words: sustainable development, environmental utilization space (EUS),      auctions, conservation contracting, information asymmetry, agricultural land

  1. Atlantic Oceanographic and Meteorological Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Atlantic Oceanographic and Meteorological Laboratory conducts research to understand the physical, chemical, and biological characteristics and processes of the...

  2. Meteorology ans solar physics

    Science.gov (United States)

    Schwarz, Oliver

    When in the second half of the 19th century both solar physics and astrophysics came into existence, various solar phenomena were described by analogies encountered in the terrestrial atmosphere. For a certain time, meteorology played a central role in research on solar processes. At first glance, this may appear as a curious and old-fashioned specialty. However, solar physics owes its first insights into solar structure to various analogies in terrestrial atmospheric studies. The present investigation intends to elucidate this fact, to present details of the historical development, and to demonstrate how our present knowledge in certain fields is based on considerations which were originally taken from the description of the terrestrial atmosphere.

  3. The community speaks: understanding ethical values in allocation of scarce lifesaving resources during disasters.

    Science.gov (United States)

    Daugherty Biddison, Elizabeth L; Gwon, Howard; Schoch-Spana, Monica; Cavalier, Robert; White, Douglas B; Dawson, Timothy; Terry, Peter B; London, Alex John; Regenberg, Alan; Faden, Ruth; Toner, Eric S

    2014-06-01

    Pandemic influenza or other crises causing mass respiratory failure could easily overwhelm current North American critical care capacity. This threat has generated large-scale federal, state, and local efforts to prepare for a public health disaster. Few, however, have systematically engaged the public regarding which values are most important in guiding decisions about how to allocate scarce healthcare resources during such crises. The aims of this pilot study were (1) to test whether deliberative democratic methods could be used to promote engaged discussion about complex, ethically challenging healthcare-related policy issues and (2) to develop specific deliberative democratic procedures that could ultimately be used in a statewide process to inform a Maryland framework for allocating scarce healthcare resources during disasters. Using collaboratively developed focus group materials and multiple metrics for assessing outcomes, we held 5-hour pilot community meetings with a combined total of 68 community members in two locations in Maryland. The key outcomes used to assess the project were (1) the comprehensibility of the background materials and ethical principles, (2) the salience of the ethical principles, (3) the perceived usefulness of the discussions, (4) the degree to which participants' opinions evolved as a result of the discussions, and (5) the quality of participant engagement. Most participants were thoughtful, reflective, and invested in this pilot policy-informing process. Throughout the pilot process, changes were made to background materials, the verbal introduction, and pre- and post-surveys. Importantly, by holding pilot meetings in two distinct communities (an affluent suburb and inner city neighborhood), we discerned that participants' ethical reflections were framed in large part by their place-based life experiences. This pilot process, coupled with extensive feedback from participants, yielded a refined methodology suitable for wider

  4. Instruments for meteorological measurement

    International Nuclear Information System (INIS)

    1983-08-01

    The Fundamental Safety Rules applicable to certain types of nuclear installation are intended to clarify the conditions of which observance, for the type of installation concerned and for the subject that they deal with, is considered as equivalent to compliance with regulatory French technical practice. These Rules should facilitate safety analysises and the clear understanding between persons interested in matters related to nuclear safety. They in no way reduce the operator's liability and pose no obstacle to statutory provisions in force. For any installation to which a Fundamental Safety Rule applies according to the foregoing paragraph, the operator may be relieved from application of the Rule if he shows proof that the safety objectives set by the Rule are attained by other means that he proposes within the framework of statutory procedures. Furthermore, the Central Service for the Safety of Nuclear Installations reserves the right at all times to alter any Fundamental Safety Rule, as required, should it deem this necessary, while specifying the applicability conditions. This present rule has for objective to determine the means for meteorological measurement near a site of nuclear facility in which there is not a PWR power plant [fr

  5. Naval Meteorology and Oceanography Command exhibit entrance

    Science.gov (United States)

    2000-01-01

    StenniSphere at NASA's John C. Stennis Space Center in Hancock County, Miss., invites visitors to discover why America comes to Stennis Space Center before going into space. Designed to entertain while educating, StenniSphere includes informative displays and exhibits from NASA and other agencies located at Stennis, such as this one from the Naval Meteorology and Oceanography Command. Visitors can 'travel' three-dimensionally under the sea and check on the weather back home in the Weather Center.

  6. Naval Meteorology and Oceanography Command exhibit

    Science.gov (United States)

    2000-01-01

    Designed to entertain while educating, StenniSphere at the John C. Stennis Space Center in Hancock County, Miss., includes informative displays and exhibits from NASA and other agencies located at Stennis, such as this one from the Naval Meteorology and Oceanography Command. Visitors can 'travel' three-dimensionally under the sea and check on the weather back home in the Weather Center. StenniSphere is open free of charge from 9 a.m. to 5 p.m. daily.

  7. The meteorological data acquisition system

    International Nuclear Information System (INIS)

    Bouharrour, S.; Thomas, P.

    1975-07-01

    The 200 m meteorological tower of the Karlsruhe Nuclear Research Center has been equipped with 45 instruments measuring the meteorological parameters near the ground level. Frequent inquiry of the instruments implies data acquisition with on-line data reduction. This task is fulfilled by some peripheral units controlled by a PDP-8/I. This report presents details of the hardware configuration and a short description of the software configuration of the meteorological data acquisition system. The report also serves as an instruction for maintenance and repair work to be carried out at the system. (orig.) [de

  8. Mathematical problems in meteorological modelling

    CERN Document Server

    Csomós, Petra; Faragó, István; Horányi, András; Szépszó, Gabriella

    2016-01-01

    This book deals with mathematical problems arising in the context of meteorological modelling. It gathers and presents some of the most interesting and important issues from the interaction of mathematics and meteorology. It is unique in that it features contributions on topics like data assimilation, ensemble prediction, numerical methods, and transport modelling, from both mathematical and meteorological perspectives. The derivation and solution of all kinds of numerical prediction models require the application of results from various mathematical fields. The present volume is divided into three parts, moving from mathematical and numerical problems through air quality modelling, to advanced applications in data assimilation and probabilistic forecasting. The book arose from the workshop “Mathematical Problems in Meteorological Modelling” held in Budapest in May 2014 and organized by the ECMI Special Interest Group on Numerical Weather Prediction. Its main objective is to highlight the beauty of the de...

  9. Defense Meteorological Satellite Program (DMSP)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Defense Meteorological Satellite Program (DMSP) satellites collect visible and infrared cloud imagery as well as monitoring the atmospheric, oceanographic,...

  10. Day-Ahead Wind Power Forecasting Using a Two-Stage Hybrid Modeling Approach Based on SCADA and Meteorological Information, and Evaluating the Impact of Input-Data Dependency on Forecasting Accuracy

    Directory of Open Access Journals (Sweden)

    Dehua Zheng

    2017-12-01

    Full Text Available The power generated by wind generators is usually associated with uncertainties, due to the intermittency of wind speed and other weather variables. This creates a big challenge for transmission system operators (TSOs and distribution system operators (DSOs in terms of connecting, controlling and managing power networks with high-penetration wind energy. Hence, in these power networks, accurate wind power forecasts are essential for their reliable and efficient operation. They support TSOs and DSOs in enhancing the control and management of the power network. In this paper, a novel two-stage hybrid approach based on the combination of the Hilbert-Huang transform (HHT, genetic algorithm (GA and artificial neural network (ANN is proposed for day-ahead wind power forecasting. The approach is composed of two stages. The first stage utilizes numerical weather prediction (NWP meteorological information to predict wind speed at the exact site of the wind farm. The second stage maps actual wind speed vs. power characteristics recorded by SCADA. Then, the wind speed forecast in the first stage for the future day is fed to the second stage to predict the future day’s wind power. Comparative selection of input-data parameter sets for the forecasting model and impact analysis of input-data dependency on forecasting accuracy have also been studied. The proposed approach achieves significant forecasting accuracy improvement compared with three other artificial intelligence-based forecasting approaches and a benchmark model using the smart persistence method.

  11. Measuring scarce water saving from interregional virtual water flows in China

    Science.gov (United States)

    Zhao, X.; Li, Y. P.; Yang, H.; Liu, W. F.; Tillotson, M. R.; Guan, D.; Yi, Y.; Wang, H.

    2018-05-01

    Trade of commodities can lead to virtual water flows between trading partners. When commodities flow from regions of high water productivity to regions of low water productivity, the trade has the potential to generate water saving. However, this accounting of water saving does not account for the water scarcity status in different regions. It could be that the water saving generated from this trade occurs at the expense of the intensified water scarcity in the exporting region, and exerts limited effect on water stress alleviation in importing regions. In this paper, we propose an approach to measure the scarce water saving associated with virtual water trade (measuring in water withdrawal/use). The scarce water is quantified by multiplying the water use in production with the water stress index (WSI). We assessed the scarce water saving/loss through interprovincial trade within China using a multi-region input-output table from 2010. The results show that interprovincial trade resulted in 14.2 km3 of water loss without considering water stress, but only 0.4 km3 scarce water loss using the scarce water concept. Among the 435 total connections of virtual water flows, 254 connections contributed to 20.2 km3 of scarce water saving. Most of these connections are virtual water flows from provinces with lower WSI to that with higher WSI. Conversely, 175 connections contributed to 20.6 km3 of scarce water loss. The virtual water flow connections between Xinjiang and other provinces stood out as the biggest contributors, accounting for 66% of total scarce water loss. The results show the importance of assessing water savings generated from trade with consideration of both water scarcity status and water productivity across regions. Identifying key connections of scarce water saving is useful in guiding interregional economic restructuring towards water stress alleviation, a major goal of China’s sustainable development strategy.

  12. EVALUATION OF METEOROLOGICAL ALERT CHAIN IN CASTILLA Y LEÓN (SPAIN): How can the meteorological risk managers help researchers?

    Science.gov (United States)

    López, Laura; Guerrero-Higueras, Ángel Manuel; Sánchez, José Luis; Matía, Pedro; Ortiz de Galisteo, José Pablo; Rodríguez, Vicente; Lorente, José Manuel; Merino, Andrés; Hermida, Lucía; García-Ortega, Eduardo; Fernández-Manso, Oscar

    2013-04-01

    Evaluating the meteorological alert chain, or, how information is transmitted from the meteorological forecasters to the final users, passing through risk managers, is a useful tool that benefits all the links of the chain, especially the meteorology researchers and forecasters. In fact, the risk managers can help significantly to improve meteorological forecasts in different ways. Firstly, by pointing out the most appropriate type of meteorological format, and its characteristics when representing the meteorological information, consequently improving the interpretation of the already-existing forecasts. Secondly, by pointing out the specific predictive needs in their workplaces related to the type of significant meteorological parameters, temporal or spatial range necessary, meteorological products "custom-made" for each type of risk manager, etc. In order to carry out an evaluation of the alert chain in Castilla y León, we opted for the creation of a Panel of Experts made up of personnel specialized in risk management (Responsible for Protection Civil, Responsible for Alert Services and Hydrological Planning of Hydrographical Confederations, Responsible for highway maintenance, and management of fires, fundamentally). In creating this panel, a total of twenty online questions were evaluated, and the majority of the questions were multiple choice or open-ended. Some of the results show how the risk managers think that it would be interesting, or very interesting, to carry out environmental educational campaigns about the meteorological risks in Castilla y León. Another result is the elevated importance that the risk managers provide to the observation data in real-time (real-time of wind, lightning, relative humidity, combined indices of risk of avalanches, snowslides, index of fires due to convective activity, etc.) Acknowledgements The authors would like to thank the Junta de Castilla y León for its financial support through the project LE220A11-2.

  13. Proceedings of the USAEC Meteorological Information Meeting

    Energy Technology Data Exchange (ETDEWEB)

    Mawson, C. A. [ed.

    1967-07-01

    This has been the third of a series of conferences sponsored by the United States Atomic Energy Commission held at National Laboratories. The two previous ones, held at Hanford and Brookhaven, were in 1960 and 1964. An evolutionary trend can be discerned at each meeting. This conference is the first to have been held outside the United States and this time a large number of Canadians participated as well as meteorologists from overseas. Papers describing site programmes have been omitted from these proceedings which consequently are now entirely devoted to original research contributions and the discussion they provoked. (author)

  14. Proceedings of the USAEC Meteorological Information Meeting

    International Nuclear Information System (INIS)

    Mawson, C.A.

    1967-01-01

    This has been the third of a series of conferences sponsored by the United States Atomic Energy Commission held at National Laboratories. The two previous ones, held at Hanford and Brookhaven, were in 1960 and 1964. An evolutionary trend can be discerned at each meeting. This conference is the first to have been held outside the United States and this time a large number of Canadians participated as well as meteorologists from overseas. Papers describing site programmes have been omitted from these proceedings which consequently are now entirely devoted to original research contributions and the discussion they provoked. (author)

  15. Geospatial interpolation of reference evapotranspiration (ETo in areas with scarce data: case study in the South of Minas Gerais, Brazil

    Directory of Open Access Journals (Sweden)

    Silvio Jorge Coelho Simões

    2012-08-01

    Full Text Available The reference evapotranspiration is an important hydrometeorological variable; its measurement is scarce in large portions of the Brazilian territory, what demands the search for alternative methods and techniques for its quantification. In this sense, the present work investigated a method for the spatialization of the reference evapotranspiration using the geostatistical method of kriging, in regions with limited data and hydrometeorological stations. The monthly average reference evapotranspiration was calculated by the Penman-Monteith-FAO equation, based on data from three weather stations located in southern Minas Gerais (Itajubá, Lavras and Poços de Caldas, and subsequently interpolated by ordinary point kriging using the approach "calculate and interpolate." The meteorological data for a fourth station (Três Corações located within the area of interpolation were used to validate the reference evapotranspiration interpolated spatially. Due to the reduced number of stations and the consequent impossibility of carrying variographic analyzes, correlation coefficient (r, index of agreement (d, medium bias error (MBE, root mean square error (RMSE and t-test were used for comparison between the calculated and interpolated reference evapotranspiration for the Três Corações station. The results of this comparison indicated that the spatial kriging procedure, even using a few stations, allows to interpolate satisfactorily the reference evapotranspiration, therefore, it is an important tool for agricultural and hydrological applications in regions with lack of data.

  16. Scarce skills expatriates in South African universities: Rhetoric and realities of the “Messianic” academics

    Directory of Open Access Journals (Sweden)

    Mokoko Sebola

    2015-12-01

    Full Text Available This article investigates the reason for the continued scarce skills shortage, despite the recruitment of expatriates in academic institutions as an intervention measure. It argues that while the Human Resources Departments in South African universities motivate for the appointment of expatriates in the development of scarce skills, little monitoring is done to determine the effectiveness of this objective and, often, no performance instrument exists for such personnel. As such, the scarce skills to be developed continue to be wanting in the country. This article is conceptual and uses literature to argue about the hypothetical relation between the lack of a monitoring tool for expatriates and the continued scarce skills problems that universities cannot address. It concludes that the continued lack of a performance-monitoring instrument in South African universities for contracted expatriates will not solve the skills shortage problem experienced in South Africa.

  17. Estimation of the hydric supply with scarce information in strategic ecosystems

    International Nuclear Information System (INIS)

    Otaya Burbano, Leodan Andres; Vasquez Velasquez, Guillermo Leon; Bustamante Carmona, Guillermo de Jesus

    2008-01-01

    This study was conducted in the Paramo and High Andean Forest System of the Middle Northwest of Antioquia Special Management Area (SMA), located in the Department of Antioquia, Colombia. The SMA has a total extension of 34.358,74 ha. The main object of this investigation was to estimate the environmental supply of hydric resource that originate in this system and with secondary objectives the estimation of monthly and annual average originate in the system, as well as to estimate the annual minimal volume for different periods of return. To achieve these objectives the water accounting procedure to accomplish a detailed water balance according to Holdridge and the regionalization of the mean characteristics method were used. As results for the SMA, a precipitation of 665.288.946,00 m3 year 1 , a real evapo-transpiration of 242.363.796,00 m 3 year 1 and an annual run-off average of 422.925.149,57 m 3 year 1 . A run-off coefficient of 63,6% was obtained, which signifies that 63,6% of the precipitation becomes run-off and the 36,4% remainder is lost by evapotranspiration. As conclusion the study area has an annual precipitation mean, (1.847,4 mm), that is less than the annual precipitation average for Colombia (3.000 mm) and greater than the annual average of South America (1.600 mm); and the hydric availability (39,032 L s 1 km 2 ) of the studied system is less than the hydric availability mean for Colombia (58 L s 1 km 2 ) and greater than the hydric availability mean for South America (21 L s-1 km 2 )

  18. Meteorology/Oceanography Help - Naval Oceanography Portal

    Science.gov (United States)

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You are here: Home › Help › Meteorology/Oceanography Help USNO Logo USNO Info Meteorology/Oceanography Help Send an e-mail regarding meteorology or oceanography products. Privacy Advisory Your E-Mail

  19. Mapping Stormwater Retention in the Cities: A Flexible Model for Data-Scarce Environments

    Science.gov (United States)

    Hamel, P.; Keeler, B.

    2014-12-01

    There is a growing demand for understanding and mapping urban hydrological ecosystem services, including stormwater retention for flood mitigation and water quality improvement. Progress in integrated urban water management and low impact development in Western countries increased our understanding of how grey and green infrastructure interact to enhance these services. However, valuation methods that account for a diverse group of beneficiaries are typically not made explicit in urban water management models. In addition, the lack of spatial data on the stormwater network in developing countries makes it challenging to apply state-of-the-art models needed to understand both the magnitude and spatial distribution of the stormwater retention service. To fill this gap, we designed the Urban InVEST stormwater retention model, a tool that complements the suite of InVEST software models to quantify and map ecosystem services. We present the model structure emphasizing the data requirements from a user's perspective and the representation of services and beneficiaries. We illustrate the model application with two case studies in a data-rich (New York City) and data-scarce environment. We discuss the difference in the level of information obtained when less resources (data, time, or expertise) are available, and how this affects multiple ecosystem service assessments that the tool is ultimately designed for.

  20. Systematic review of strategies to manage and allocate scarce resources during mass casualty events.

    Science.gov (United States)

    Timbie, Justin W; Ringel, Jeanne S; Fox, D Steven; Pillemer, Francesca; Waxman, Daniel A; Moore, Melinda; Hansen, Cynthia K; Knebel, Ann R; Ricciardi, Richard; Kellermann, Arthur L

    2013-06-01

    distribution. Second, as a strategy to optimize use of existing resources, commonly used field triage systems do not perform consistently during actual mass casualty events. The number of high-quality studies addressing other strategies was insufficient to support conclusions about their effectiveness because of differences in study context, comparison groups, and outcome measures. Our literature search may have missed key resource management and allocation strategies because of their extreme heterogeneity. Interrater reliability was not assessed for quality assessments or strength of evidence ratings. Publication bias is likely, given the large number of studies reporting positive findings. The current evidence base is inadequate to inform providers and policymakers about the most effective strategies for managing or allocating scarce resources during mass casualty events. Consensus on methodological standards that encompass a range of study designs is needed to guide future research and strengthen the evidence base. Evidentiary standards should be developed to promote consensus interpretations of the evidence supporting individual strategies. Copyright © 2013 American College of Emergency Physicians. Published by Mosby, Inc. All rights reserved.

  1. Operative meteorological data base in Forsmark

    International Nuclear Information System (INIS)

    Appelgren, A.; Hallberg, B.; Nordlinder, S.

    1990-01-01

    This report describes how data collected during a field measurement campaign were analysed and compiled to create a data base for operative use. The data base gives information about the wind and the atmospheric stability at five locations around the Forsmark nuclear power plant. In the measurement campaign, sodar systems and a 100 m high tower at Forsmark were used. Temperature, wind speed and wind direction were measured by sensors on the tower, while wind speed and direction, and the standard deviation of the vertical wind, were monitored by the sodar systems. This gave meteorological data from several heights. At Forsmark, the temperature difference and the wind speed from the tower were used to determine the atmospheric stability. At the sodar locations, the stability was deduced by employing a scheme which considered the season, the time of day, the wind direction and the wind speed. To create the operative data base, the wind speeds and wind directions, respectively, from two locations at the time were correlated. A code for graphical and numerical presentation of the data from the data base was developed. A special system of warnings was included, featuring notification about phenomena such as sea breeze, warnings about large variation in the wind conditions within the area, and warnings for situations in which the meteorological conditions make the results from the atmospheric dispersion calculations uncertain. This feature was implemented to alert the user to the fact that ordinary dispersion and dose calculations, using meteorological data from a single point, might give erroneous results. The operative data base and the presentation code were integrated with the dispersion and dose calculation code AIRPAC/EMMA, which is to be used in case of increased releases from nuclear power plants. The possibility to use the data from the operative data base in the dispersion calculations was investigated. It was found that a modification of AIRPAC/EMMA, in such a

  2. PREVIMER : Meteorological inputs and outputs

    Science.gov (United States)

    Ravenel, H.; Lecornu, F.; Kerléguer, L.

    2009-09-01

    PREVIMER is a pre-operational system aiming to provide a wide range of users, from private individuals to professionals, with short-term forecasts about the coastal environment along the French coastlines bordering the English Channel, the Atlantic Ocean, and the Mediterranean Sea. Observation data and digital modelling tools first provide 48-hour (probably 96-hour by summer 2009) forecasts of sea states, currents, sea water levels and temperatures. The follow-up of an increasing number of biological parameters will, in time, complete this overview of coastal environment. Working in partnership with the French Naval Hydrographic and Oceanographic Service (Service Hydrographique et Océanographique de la Marine, SHOM), the French National Weather Service (Météo-France), the French public science and technology research institute (Institut de Recherche pour le Développement, IRD), the European Institute of Marine Studies (Institut Universitaire Européen de la Mer, IUEM) and many others, IFREMER (the French public institute fo marine research) is supplying the technologies needed to ensure this pertinent information, available daily on Internet at http://www.previmer.org, and stored at the Operational Coastal Oceanographic Data Centre. Since 2006, PREVIMER publishes the results of demonstrators assigned to limited geographic areas and to specific applications. This system remains experimental. The following topics are covered : Hydrodynamic circulation, sea states, follow-up of passive tracers, conservative or non-conservative (specifically of microbiological origin), biogeochemical state, primary production. Lastly, PREVIMER provides researchers and R&D departments with modelling tools and access to the database, in which the observation data and the modelling results are stored, to undertake environmental studies on new sites. The communication will focus on meteorological inputs to and outputs from PREVIMER. It will draw the lessons from almost 3 years during

  3. Application of logical analysis of data to machinery-related accident prevention based on scarce data

    International Nuclear Information System (INIS)

    Jocelyn, Sabrina; Chinniah, Yuvin; Ouali, Mohamed-Salah; Yacout, Soumaya

    2017-01-01

    This paper deals with the application of Logical Analysis of Data (LAD) to machinery-related occupational accidents, using belt-conveyor-related accidents as an example. LAD is a pattern recognition and classification approach. It exploits the advancement in information technology and computational power in order to characterize the phenomenon under study. The application of LAD to machinery-related accident prevention is innovative. Ideally, accidents do not occur regularly, and as a result, companies have little data about them. The first objective of this paper is to demonstrate the feasibility of using LAD as an algorithm to characterize a small sample of machinery-related accidents with an adequate average classification accuracy. The second is to show that LAD can be used for prevention of machinery-related accidents. The results indicate that LAD is able to characterize different types of accidents with an average classification accuracy of 72–74%, which is satisfactory when compared with other studies dealing with large amounts of data where such a level of accuracy is considered adequate. The paper shows that the quantitative information provided by LAD about the patterns generated can be used as a logical way to prioritize risk factors. This prioritization helps safety practitioners make decisions regarding safety measures for machines. - Highlights: • LAD is presented as an innovative approach to prevent machinery-related accidents. • LAD is applied to a very small database of belt-conveyor-related accidents. • Despite scarce data, LAD generates patterns with adequate classification accuracy. • The patterns characterize different types of belt-conveyor-related accidents. • The patterns are useful to belt conveyor risk identification and risk estimation.

  4. Meteorological tracers in regional planning

    International Nuclear Information System (INIS)

    Mueller, K.H.

    1974-11-01

    Atmospheric tracers can be used as indicators to study both the ventilation of an urban region and its dispersion meteorology for air pollutants. A correlation analysis applied to the space-time dependent tracer concentrations is able to give transfer functions, the structure and characteristic parameters of which describe the meteorological and topographical situation of the urban region and its surroundings in an integral manner. To reduce the number of persons usually involved in a tracer experiment an automatic air sampling system had to be developed

  5. Evaporation in hydrology and meteorology

    NARCIS (Netherlands)

    Brandsma, T.

    1990-01-01

    In this paper the role of evaporation in hydrology and meteorology is discussed, with the emphasis on hydrology. The basic theory of evaporation is given and methods to determine evaporation are presented. Some applications of evaporation studies in literature are given in order to illustrate the

  6. Crisis Team Management in a Scarce Resource Setting: Angkor Hospital for Children in Siem Reap, Cambodia

    Directory of Open Access Journals (Sweden)

    Richard Alynn Henker

    2017-07-01

    Full Text Available IntroductionA crisis team management (CTM simulation course was developed by volunteers from Health Volunteers Overseas for physicians and nurses at Angkor Hospital for Children (AHC in Siem Reap, Cambodia. The framework for the course was adapted from crisis resource management (1, 2, crisis team training (3, and TeamSTEPPs© models (4. The CTM course focused on teaching physicians and nurses on the development of team performance knowledge, skills, and attitudes. Challenges to providing this course at AHC included availability of simulation equipment, cultural differences in learning, and language barriers. The purpose of this project was to evaluate the impact of a CTM simulation course at AHC on attitudes and perceptions of participants on concepts related to team performance.MethodsEach of the CTM courses consisted of three lectures, including team performance concepts, communication, and debriefing followed by rotation through four simulation scenarios. The evaluation instrument used to evaluate the AHC CTM course was developed for Cambodian staff at AHC based on TeamSTEPPs© instruments evaluating attitude and perceptions of team performance (5. CTM team performance concepts included in lectures, debriefing sessions, and the evaluation instrument were: team structure, leadership, situation monitoring, mutual support, and communication. The Wilcoxon signed-rank test was used to analyze pre- and post-test paired data from participants in the course.ResultsOf the 54 participants completing the three CTM courses at AHC, 27 were nurses, 6 were anesthetists, and 21 were physicians. Attitude and perception scores were found to significantly improve (p < 0.05 for team structure, leadership, situation monitoring, and communication. Team performance areas that improved the most were: discussion of team performance, communication, and exchange of information.ConclusionTeaching of non-technical skills can be effective in a setting with scarce

  7. Crisis Team Management in a Scarce Resource Setting: Angkor Hospital for Children in Siem Reap, Cambodia.

    Science.gov (United States)

    Henker, Richard Alynn; Henker, Hiroko; Eng, Hor; O'Donnell, John; Jirativanont, Tachawan

    2017-01-01

    A crisis team management (CTM) simulation course was developed by volunteers from Health Volunteers Overseas for physicians and nurses at Angkor Hospital for Children (AHC) in Siem Reap, Cambodia. The framework for the course was adapted from crisis resource management (1, 2), crisis team training (3), and TeamSTEPPs© models (4). The CTM course focused on teaching physicians and nurses on the development of team performance knowledge, skills, and attitudes. Challenges to providing this course at AHC included availability of simulation equipment, cultural differences in learning, and language barriers. The purpose of this project was to evaluate the impact of a CTM simulation course at AHC on attitudes and perceptions of participants on concepts related to team performance. Each of the CTM courses consisted of three lectures, including team performance concepts, communication, and debriefing followed by rotation through four simulation scenarios. The evaluation instrument used to evaluate the AHC CTM course was developed for Cambodian staff at AHC based on TeamSTEPPs© instruments evaluating attitude and perceptions of team performance (5). CTM team performance concepts included in lectures, debriefing sessions, and the evaluation instrument were: team structure, leadership, situation monitoring, mutual support, and communication. The Wilcoxon signed-rank test was used to analyze pre- and post-test paired data from participants in the course. Of the 54 participants completing the three CTM courses at AHC, 27 were nurses, 6 were anesthetists, and 21 were physicians. Attitude and perception scores were found to significantly improve ( p  < 0.05) for team structure, leadership, situation monitoring, and communication. Team performance areas that improved the most were: discussion of team performance, communication, and exchange of information. Teaching of non-technical skills can be effective in a setting with scarce resources in a Southeastern Asian country.

  8. Performance of High Resolution Satellite Rainfall Products over Data Scarce Parts of Eastern Ethiopia

    Directory of Open Access Journals (Sweden)

    Shimelis B. Gebere

    2015-09-01

    Full Text Available Accurate estimation of rainfall in mountainous areas is necessary for various water resource-related applications. Though rain gauges accurately measure rainfall, they are rarely found in mountainous regions and satellite rainfall data can be used as an alternative source over these regions. This study evaluated the performance of three high-resolution satellite rainfall products, the Tropical Rainfall Measuring Mission (TRMM 3B42, the Global Satellite Mapping of Precipitation (GSMaP_MVK+, and the Precipitation Estimation from Remotely-Sensed Information using Artificial Neural Networks (PERSIANN at daily, monthly, and seasonal time scales against rain gauge records over data-scarce parts of Eastern Ethiopia. TRMM 3B42 rain products show relatively better performance at the three time scales, while PERSIANN did much better than GSMaP. At the daily time scale, TRMM correctly detected 88% of the rainfall from the rain gauge. The correlation at the monthly time scale also revealed that the TRMM has captured the observed rainfall better than the other two. For Belg (short rain and Kiremt (long rain seasons, the TRMM did better than the others by far. However, during Bega (dry season, PERSIANN showed a relatively good estimate. At all-time scales, noticing the bias, TRMM tends to overestimate, while PERSIANN and GSMaP tend to underestimate the rainfall. The overall result suggests that monthly and seasonal TRMM rainfall performed better than daily rainfall. It has also been found that both GSMaP and PERSIANN performed better in relatively flat areas than mountainous areas. Before the practical use of TRMM, the RMSE value needs to be improved by considering the topography of the study area or adjusting the bias.

  9. Virtual scarce water embodied in inter-provincial electricity transmission in China

    International Nuclear Information System (INIS)

    Zhang, Chao; Zhong, Lijin; Liang, Sai; Sanders, Kelly T.; Wang, Jiao; Xu, Ming

    2017-01-01

    Highlights: • Virtual water in inter-provincial electricity transmission in China is calculated. • A Water Stress Index is used to reflect relative scarcity of water consumption. • West Inner Mongolia is the largest exporter of scarce water. • Hebei, Beijing and Shandong are the three largest receivers of scarce water. - Abstract: Intra-national electricity transmission drives virtual water transfer from electricity production regions to electricity consumption regions. In China, the water-intensive thermoelectric power industry is expanding quickly in many water-scarce energy production hubs in northern and northwestern provinces. This study constructed a node-flow model of inter-provincial electricity transmission to investigate the virtual water and scarcity-adjusted virtual water (or virtual scarce water) embodied in the electricity transmission network. It is revealed that total inter-provincial virtual water transfer embodied in electricity transmission was 623 million m"3 in 2011, equivalent to 12.7% of the national total thermoelectric water consumption. The top three largest single virtual water flows are West Inner Mongolia-to-Beijing (44 million m"3), East Inner Mongolia-to-Liaoning (39 million m"3), and Guizhou-to-Guangdong (37 million m"3). If the actual volumes of consumptive water use are translated into scarcity-adjusted water consumption based on Water Stress Index, West Inner Mongolia (81 million m"3), Shanxi (63 million m"3) and Ningxia (30 million m"3) become the top three exporters of virtual scarce water. Many ongoing long-distance electricity transmission projects in China will enlarge the scale of scarce water outflows from northwestern regions and potentially increase their water stress.

  10. Defense Meteorological Satellite Program (DMSP) Film

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The United States Air Force Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) is a polar orbiting meteorological sensor with two...

  11. The Meteorological Monitoring program at a former nuclear weapons plant

    International Nuclear Information System (INIS)

    Maxwell, D.R.; Bowen, B.M.

    1994-01-01

    The purpose of the Meteorological Monitoring program at Rocky Flats Plant (RFP) is to provide meteorological information for use in assessing the transport, and diffusion, and deposition of effluent actually or potentially released into the atmosphere by plant operations. Achievement of this objective aids in protecting health and safety of the public, employees, and environment, and directly supports Emergency Response programs at RFP. Meteorological information supports the design of environmental monitoring networks for impact assessments, environmental surveillance activities, remediation activities, and emergency responses. As the mission of the plant changes from production of nuclear weapons parts to environmental cleanup and economic development, smaller releases resulting from remediation activities become more likely. These possible releases could result from airborne fugitive dust, evaporation from collection ponds, or grass fires

  12. Glacier changes and climate trends derived from multiple sources in the data scarce Cordillera Vilcanota region, southern Peruvian Andes

    Science.gov (United States)

    Salzmann, N.; Huggel, C.; Rohrer, M.; Silverio, W.; Mark, B. G.; Burns, P.; Portocarrero, C.

    2013-01-01

    The role of glaciers as temporal water reservoirs is particularly pronounced in the (outer) tropics because of the very distinct wet/dry seasons. Rapid glacier retreat caused by climatic changes is thus a major concern, and decision makers demand urgently for regional/local glacier evolution trends, ice mass estimates and runoff assessments. However, in remote mountain areas, spatial and temporal data coverage is typically very scarce and this is further complicated by a high spatial and temporal variability in regions with complex topography. Here, we present an approach on how to deal with these constraints. For the Cordillera Vilcanota (southern Peruvian Andes), which is the second largest glacierized cordillera in Peru (after the Cordillera Blanca) and also comprises the Quelccaya Ice Cap, we assimilate a comprehensive multi-decadal collection of available glacier and climate data from multiple sources (satellite images, meteorological station data and climate reanalysis), and analyze them for respective changes in glacier area and volume and related trends in air temperature, precipitation and in a more general manner for specific humidity. While we found only marginal glacier changes between 1962 and 1985, there has been a massive ice loss since 1985 (about 30% of area and about 45% of volume). These high numbers corroborate studies from other glacierized cordilleras in Peru. The climate data show overall a moderate increase in air temperature, mostly weak and not significant trends for precipitation sums and probably cannot in full explain the observed substantial ice loss. Therefore, the likely increase of specific humidity in the upper troposphere, where the glaciers are located, is further discussed and we conclude that it played a major role in the observed massive ice loss of the Cordillera Vilcanota over the past decades.

  13. Glacier changes and climate trends derived from multiple sources in the data scarce Cordillera Vilcanota region, southern Peruvian Andes

    Directory of Open Access Journals (Sweden)

    N. Salzmann

    2013-01-01

    Full Text Available The role of glaciers as temporal water reservoirs is particularly pronounced in the (outer tropics because of the very distinct wet/dry seasons. Rapid glacier retreat caused by climatic changes is thus a major concern, and decision makers demand urgently for regional/local glacier evolution trends, ice mass estimates and runoff assessments. However, in remote mountain areas, spatial and temporal data coverage is typically very scarce and this is further complicated by a high spatial and temporal variability in regions with complex topography. Here, we present an approach on how to deal with these constraints. For the Cordillera Vilcanota (southern Peruvian Andes, which is the second largest glacierized cordillera in Peru (after the Cordillera Blanca and also comprises the Quelccaya Ice Cap, we assimilate a comprehensive multi-decadal collection of available glacier and climate data from multiple sources (satellite images, meteorological station data and climate reanalysis, and analyze them for respective changes in glacier area and volume and related trends in air temperature, precipitation and in a more general manner for specific humidity. While we found only marginal glacier changes between 1962 and 1985, there has been a massive ice loss since 1985 (about 30% of area and about 45% of volume. These high numbers corroborate studies from other glacierized cordilleras in Peru. The climate data show overall a moderate increase in air temperature, mostly weak and not significant trends for precipitation sums and probably cannot in full explain the observed substantial ice loss. Therefore, the likely increase of specific humidity in the upper troposphere, where the glaciers are located, is further discussed and we conclude that it played a major role in the observed massive ice loss of the Cordillera Vilcanota over the past decades.

  14. Meteorological data fields 'in perspective'

    Science.gov (United States)

    Hasler, A. F.; Pierce, H.; Morris, K. R.; Dodge, J.

    1985-01-01

    Perspective display techniques can be applied to meteorological data sets to aid in their interpretation. Examples of a perspective display procedure applied to satellite and aircraft visible and infrared image pairs and to stereo cloud-top height analyses are presented. The procedure uses a sophisticated shading algorithm that produces perspective images with greatly improved comprehensibility when compared with the wire-frame perspective displays that have been used in the past. By changing the 'eye-point' and 'view-point' inputs to the program in a systematic way, movie loops that give the impression of flying over or through the data field have been made. This paper gives examples that show how several kinds of meteorological data fields are more effectively illustrated using the perspective technique.

  15. `X meteograph and MO.D.A.`: two information systems for processing meteorological data for air quality assessment; X{sub M}eteograph e MO.D.A.: due sistemi informativi per la visualizzazione ed elaborazione interattiva di dati meteorologici e di qualita` dell`aria

    Energy Technology Data Exchange (ETDEWEB)

    Caiaffa, Emanuela; Pellegrini, Andrea [ENEA, Centro Ricerche Casaccia, Roma (Italy). Dipt. Ambiente

    1997-03-01

    This paper introduces the Information System named `X{sub M}eteograph`, which enables an interactive processing of meteorological data stored in the `Meteodata` database, which is housed at the `Research Centre Casaccia` of ENEA, on a VAX computer. The `MO.D.A.` Information System is also described; this system allows the user to visualize and to apply some statistical processing to the a.m. meteorological data, and to air quality data. Both systems have been developed in co-operation between AMB/INF and AMB/SAF Sectors of ENEA - Environment Department. Co-operation included software design (concerning MO.D.A.) and sharing of costs. As a result of this activity, we provide the user with software packages easy to use, which enable retrieval, processing and rendering of meteorological data from the Meteodata database and air quality data from external sources; rendering is done in the form of tables, graphs and plotting of contours and symbols on geographical maps.

  16. Technology and Meteorology. An Action Research Paper.

    Science.gov (United States)

    Taggart, Raymond F.

    Meteorology, the science of weather and weather conditions, has traditionally been taught via textbook and rote demonstration. This study was intended to determine to what degree utilizing technology in the study of meteorology improves students' attitudes towards science and to measure to what extent technology in meteorology increases…

  17. Syllabi for Instruction in Agricultural Meteorology.

    Science.gov (United States)

    De Villiers, G. D. B.; And Others

    A working group of the Commission for Agricultural Meteorology has prepared this report to fill a need for detailed syllabi for instruction in agricultural meteorology required by different levels of personnel. Agrometeorological personnel are classified in three categories: (1) professional meteorological personnel (graduates with basic training…

  18. Epicurean Meteorology: Sources, method, scope and organization

    NARCIS (Netherlands)

    Bakker, F.A.

    2016-01-01

    In Epicurean Meteorology Frederik Bakker discusses the meteorology as laid out by Epicurus (341-270 BCE) and Lucretius (1st century BCE). Although in scope and organization their ideas are clearly rooted in the Peripatetic tradition, their meteorology sets itself apart from this tradition by its

  19. Journal of Meteorology and Climate Science

    African Journals Online (AJOL)

    The Journal of Meteorology and Climate Science publishes rigorous theoretical reasoning and advanced empirical research in all areas of Meteorology and Climate Sciences. We welcome articles or proposals from all perspectives and on all subjects pertaining to Meteorology, Agriculture, Humanity, Physics, Geography, ...

  20. Evaporation in hydrology and meteorology

    OpenAIRE

    Brandsma, T.

    1990-01-01

    In this paper the role of evaporation in hydrology and meteorology is discussed, with the emphasis on hydrology. The basic theory of evaporation is given and methods to determine evaporation are presented. Some applications of evaporation studies in literature are given in order to illustrate the theory. Further, special conditions in evaporation are considered, followed by a fotmulation of the difficulties in determining evaporation, The last part of the paper gives a short discussion about ...

  1. Modeling Multi-Event Non-Point Source Pollution in a Data-Scarce Catchment Using ANN and Entropy Analysis

    Directory of Open Access Journals (Sweden)

    Lei Chen

    2017-06-01

    Full Text Available Event-based runoff–pollutant relationships have been the key for water quality management, but the scarcity of measured data results in poor model performance, especially for multiple rainfall events. In this study, a new framework was proposed for event-based non-point source (NPS prediction and evaluation. The artificial neural network (ANN was used to extend the runoff–pollutant relationship from complete data events to other data-scarce events. The interpolation method was then used to solve the problem of tail deviation in the simulated pollutographs. In addition, the entropy method was utilized to train the ANN for comprehensive evaluations. A case study was performed in the Three Gorges Reservoir Region, China. Results showed that the ANN performed well in the NPS simulation, especially for light rainfall events, and the phosphorus predictions were always more accurate than the nitrogen predictions under scarce data conditions. In addition, peak pollutant data scarcity had a significant impact on the model performance. Furthermore, these traditional indicators would lead to certain information loss during the model evaluation, but the entropy weighting method could provide a more accurate model evaluation. These results would be valuable for monitoring schemes and the quantitation of event-based NPS pollution, especially in data-poor catchments.

  2. Automated data system for emergency meteorological response

    International Nuclear Information System (INIS)

    Kern, C.D.

    1975-01-01

    The Savannah River Plant (SRP) releases small amounts of radioactive nuclides to the atmosphere as a consequence of the production of radioisotopes. The potential for larger accidental releases to the atmosphere also exists, although the probability for most accidents is low. To provide for emergency meteorological response to accidental releases and to conduct research on the transport and diffusion of radioactive nuclides in the routine releases, a series of high-quality meteorological sensors have been located on towers in and about SRP. These towers are equipped with instrumentation to detect and record temperature and wind turbulence. Signals from the meterological sensors are brought by land-line to the SRL Weather Center-Analysis Laboratory (WC-AL). At the WC-AL, a Weather Information and Display (WIND) system has been installed. The WIND system consists of a minicomputer with graphical displays in the WC-AL and also in the emergency operating center (EOC) of SRP. In addition, data are available to the system from standard weat []er teletype services, which provide both routine surface weather observations and routine upper air wind and temperature observations for the southeastern United States. Should there be an accidental release to the atmosphere, available recorded data and computer codes would allow the calculation and display of the location, time, and downwind concentration of the atmospheric release. These data are made available to decision makers in near real-time to permit rapid decisive action to limit the consequences of such accidental releases. (auth)

  3. design, construction and evaluation of a meteorological mobile mast

    African Journals Online (AJOL)

    Vincent

    gathering meteorological information through the use of radiosondes [3]. Earlier measurements of wind and air pressure were done by launching balloons which climb through the denser air close to the earth to the thinner air in the upper atmosphere and the instruments carried collect data about wind in the different layers ...

  4. Meteorological buoy measurements in the Iceland Sea, 2007-2009

    Science.gov (United States)

    Nína Petersen, Guðrún

    2017-10-01

    The Icelandic Meteorological Office (IMO) conducted meteorological buoy measurements in the central Iceland Sea in the time period 2007-2009, specifically in the northern Dreki area on the southern segment of the Jan Mayen Ridge. Due to difficulties in deployment and operations, in situ measurements in this region are sparse. Here the buoy, deployment and measurements are described with the aim of giving a future user of the data set information that is as comprehensive as possible. The data set has been quality-checked, suspect data removed and the data set made publicly available from PANGAEA Data Publisher (PANGAEA.876206" target="_blank">https://doi.org/10.1594/PANGAEA.876206).

  5. Generation of typical meteorological year for different climates of China

    International Nuclear Information System (INIS)

    Jiang, Yingni

    2010-01-01

    Accurate prediction of building energy performance requires precise information of the local climate. Typical weather year files like typical meteorological year (TMY) are commonly used in building simulation. They are also essential for numerical analysis of sustainable and renewable energy systems. The present paper presents the generation of typical meteorological year (TMY) for eight typical cities representing the major climate zones of China. The data set, which includes global solar radiation data and other meteorological parameters referring to dry bulb temperature, relative humidity, wind speed, has been analyzed. The typical meteorological year is generated from the available meteorological data recorded during the period 1995-2004, using the Finkelstein-Schafer statistical method. The cumulative distribution function (CDF) for each year is compared with the CDF for the long-term composite of all the years in the period. Typical months for each of the 12 calendar months from the period of years are selected by choosing the one with the smallest deviation from the long-term CDF. The 12 typical months selected from the different years are used for the formulation of a TMY.

  6. Using high resolution GPS tracking data of bird flight for meteorological observations

    NARCIS (Netherlands)

    Treep, J.; Bohrer, G.; Shamoun-Baranes, J.; Duriez, O.; Prata de Moraes Frasson, R.; Bouten, W.

    2016-01-01

    Bird flight is strongly influenced by local meteorological conditions. With increasing amounts of high-frequency GPS data of bird movement becoming available, as tags become cheaper and lighter, opportunities are created to obtain large datasets of quantitative meteorological information from

  7. Should Non Department of Defense Meteorological Satellites Be Used to Meet Department of Defense Environmental Requirements?

    Science.gov (United States)

    2003-06-06

    Information Support laboratory, Geostationary Operational Meteorological Satellite. (Moscow, RU: SMIS IKI RAN and SRC PLANETA , January 2003); Internet...Operational Meteorological Satellite. Moscow, RU: SMIS IKI RAN and SRC PLANETA , January 2003. Squitieri, Tom. “In Bosnia, Weather is primary Foe”. USA Today

  8. Automated emergency meteorological response system

    International Nuclear Information System (INIS)

    Pepper, D.W.

    1980-01-01

    A sophisticated emergency response system was developed to aid in the evaluation of accidental releases of hazardous materials from the Savannah River Plant to the environment. A minicomputer system collects and archives data from both onsite meteorological towers and the National Weather Service. In the event of an accidental release, the computer rapidly calculates the trajectory and dispersion of pollutants in the atmosphere. Computer codes have been developed which provide a graphic display of predicted concentration profiles downwind from the source, as functions of time and distance

  9. Meteorología y clima

    OpenAIRE

    Alarcón Jordán, Marta; Casas Castillo, M. del Carmen

    1999-01-01

    Este libro constituye una introducción al estudio de la atmósfera en los campos de la meteorología y la climatología. Se ha concebido especialmente como herramienta de apoyo para los estudiantes de ciencias y tecnología que inician los estudios de estos temas. El libro incorpora un programa informático de simulación del cambio climático. En él se exponen las características generales de la atmósfera, su estructura física y la composición química y también se hace una introducción al proble...

  10. A Merging Framework for Rainfall Estimation at High Spatiotemporal Resolution for Distributed Hydrological Modeling in a Data-Scarce Area

    Directory of Open Access Journals (Sweden)

    Yinping Long

    2016-07-01

    Full Text Available Merging satellite and rain gauge data by combining accurate quantitative rainfall from stations with spatial continuous information from remote sensing observations provides a practical method of estimating rainfall. However, generating high spatiotemporal rainfall fields for catchment-distributed hydrological modeling is a problem when only a sparse rain gauge network and coarse spatial resolution of satellite data are available. The objective of the study is to present a satellite and rain gauge data-merging framework adapting for coarse resolution and data-sparse designs. In the framework, a statistical spatial downscaling method based on the relationships among precipitation, topographical features, and weather conditions was used to downscale the 0.25° daily rainfall field derived from the Tropical Rainfall Measuring Mission (TRMM Multisatellite Precipitation Analysis (TMPA precipitation product version 7. The nonparametric merging technique of double kernel smoothing, adapting for data-sparse design, was combined with the global optimization method of shuffled complex evolution, to merge the downscaled TRMM and gauged rainfall with minimum cross-validation error. An indicator field representing the presence and absence of rainfall was generated using the indicator kriging technique and applied to the previously merged result to consider the spatial intermittency of daily rainfall. The framework was applied to estimate daily precipitation at a 1 km resolution in the Qinghai Lake Basin, a data-scarce area in the northeast of the Qinghai-Tibet Plateau. The final estimates not only captured the spatial pattern of daily and annual precipitation with a relatively small estimation error, but also performed very well in stream flow simulation when applied to force the geomorphology-based hydrological model (GBHM. The proposed framework thus appears feasible for rainfall estimation at high spatiotemporal resolution in data-scarce areas.

  11. Urban meteorological modelling for nuclear emergency preparedness

    International Nuclear Information System (INIS)

    Baklanov, Alexander; Sorensen, Jens Havskov; Hoe, Steen Cordt; Amstrup, Bjarne

    2006-01-01

    The main objectives of the current EU project 'Integrated Systems for Forecasting Urban Meteorology, Air Pollution and Population Exposure' (FUMAPEX) are the improvement of meteorological forecasts for urban areas, the connection of numerical weather prediction (NWP) models to urban air pollution and population dose models, the building of improved urban air quality information and forecasting systems, and their application in cities in various European climates. In addition to the forecast of the worst air-pollution episodes in large cities, the potential use of improved weather forecasts for nuclear emergency management in urban areas, in case of hazardous releases from nuclear accidents or terror acts, is considered. Such use of NWP data is tested for the Copenhagen metropolitan area and the Oresund region. The Danish Meteorological Institute (DMI) is running an experimental version of the HIRLAM NWP model over Zealand including the Copenhagen metropolitan area with a horizontal resolution of 1.4 km, thus approaching the city-scale. This involves 1-km resolution physiographic data with implications for the urban surface parameters, e.g. surface fluxes, roughness length and albedo. For the city of Copenhagen, the enhanced high-resolution NWP forecasting will be provided to demonstrate the improved dispersion forecasting capabilities of the Danish nuclear emergency preparedness decision-support system, the Accident Reporting and Guidance Operational System (ARGOS), used by the Danish Emergency Management Agency (DEMA). Recently, ARGOS has been extended with a capability of real-time calculation of regional-scale atmospheric dispersion of radioactive material from accidental releases. This is effectuated through on-line interfacing with the Danish Emergency Response Model of the Atmosphere (DERMA), which is run at DMI. For local-scale modelling of atmospheric dispersion, ARGOS utilises the Local-Scale Model Chain (LSMC), which makes use of high-resolution DMI

  12. Some directions in laser meteorology

    International Nuclear Information System (INIS)

    Derr, V.E.

    1977-01-01

    Applications of lidar systems in studies of pollution meteorology are discussed. It is pointed out that lidar can contribute to the determination of characteristics of particulate pollutants and also the study of the dynamics of dispersion. Agricultural and energy related problems require both short and longer term forecasting. It is as yet not completely clear whether lidar will be significant in longer term forecasts, of benefit to agriculture and conservation, or whether its usefulness will be primarily in the study of basic atmospheric processes involving the effect of clouds and aerosols on radiation balance. However, recent studies indicate that lidar will be important, in the future, in global wind sensing from satellites. Lidar and radar systems for cloud observations are compared

  13. Development of Load Duration Curve System in Data Scarce Watersheds Based on a Distributed Hydrological Model

    Science.gov (United States)

    WANG, J.

    2017-12-01

    In stream water quality control, the total maximum daily load (TMDL) program is very effective. However, the load duration curves (LDC) of TMDL are difficult to be established because no sufficient observed flow and pollutant data can be provided in data-scarce watersheds in which no hydrological stations or consecutively long-term hydrological data are available. Although the point sources or a non-point sources of pollutants can be clarified easily with the aid of LDC, where does the pollutant come from and to where it will be transported in the watershed cannot be traced by LDC. To seek out the best management practices (BMPs) of pollutants in a watershed, and to overcome the limitation of LDC, we proposed to develop LDC based on a distributed hydrological model of SWAT for the water quality management in data scarce river basins. In this study, firstly, the distributed hydrological model of SWAT was established with the scarce-hydrological data. Then, the long-term daily flows were generated with the established SWAT model and rainfall data from the adjacent weather station. Flow duration curves (FDC) was then developed with the aid of generated daily flows by SWAT model. Considering the goal of water quality management, LDC curves of different pollutants can be obtained based on the FDC. With the monitored water quality data and the LDC curves, the water quality problems caused by the point or non-point source pollutants in different seasons can be ascertained. Finally, the distributed hydrological model of SWAT was employed again to tracing the spatial distribution and the origination of the pollutants of coming from what kind of agricultural practices and/or other human activities. A case study was conducted in the Jian-jiang river, a tributary of Yangtze river, of Duyun city, Guizhou province. Results indicate that this kind of method can realize the water quality management based on TMDL and find out the suitable BMPs for reducing pollutant in a watershed.

  14. Blast forecasting guide for the Site 300 Meteorology Center

    International Nuclear Information System (INIS)

    Odell, B.N.; Pfeifer, H.E.; Arganbright, V.E.

    1978-01-01

    These step-by-step procedures enable an occasional operator to run the Site 300 Meteorological Center. The primary function of the Center is to determine the maximum weight of high explosives that can be fired at Site 300 under any given meteorological conditions. A secondary function is to supply weather data for other programs such as ARAC (Atmospheric Release Advisory Capability). Included in the primary function are radar and theodolite operations for balloon tracking; calculation of temperatures for various altitudes using Oakland weather obtained from a teletype; computer terminal operation to obtain wind directions, wind velocities, temperatures, and pressure at various altitudes; and methods to determine high-explosive weight limits for simple inversions and focus conditions using pressure-versus-altitude information obtained from the computer. General information is included such as names, telephone numbers, and addresses of maintenance personnel, additional sources of weather information, chart suppliers, balloons, spare parts, etc

  15. Blast forecasting guide for the Site 300 Meteorology Center

    Energy Technology Data Exchange (ETDEWEB)

    Odell, B.N.; Pfeifer, H.E.; Arganbright, V.E.

    1978-06-01

    These step-by-step procedures enable an occasional operator to run the Site 300 Meteorological Center. The primary function of the Center is to determine the maximum weight of high explosives that can be fired at Site 300 under any given meteorological conditions. A secondary function is to supply weather data for other programs such as ARAC (Atmospheric Release Advisory Capability). Included in the primary function are radar and theodolite operations for balloon tracking; calculation of temperatures for various altitudes using Oakland weather obtained from a teletype; computer terminal operation to obtain wind directions, wind velocities, temperatures, and pressure at various altitudes; and methods to determine high-explosive weight limits for simple inversions and focus conditions using pressure-versus-altitude information obtained from the computer. General information is included such as names, telephone numbers, and addresses of maintenance personnel, additional sources of weather information, chart suppliers, balloons, spare parts, etc.

  16. 48 CFR 801.602-73 - Review requirements for scarce medical specialist contracts and contracts for health-care resources.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Review requirements for scarce medical specialist contracts and contracts for health-care resources. 801.602-73 Section 801.602... Responsibilities 801.602-73 Review requirements for scarce medical specialist contracts and contracts for health...

  17. Multifractal Conceptualisation of Hydro-Meteorological Extremes

    Science.gov (United States)

    Tchiguirinskaia, I.; Schertzer, D.; Lovejoy, S.

    2009-04-01

    Hydrology and more generally sciences involved in water resources management, technological or operational developments face a fundamental difficulty: the extreme variability of hydro-meteorological fields. It clearly appears today that this variability is a function of the observation scale and yield hydro-meteorological hazards. Throughout the world, the development of multifractal theory offers new techniques for handling such non-classical variability over wide ranges of time and space scales. The resulting stochastic simulations with a very limited number of parameters well reproduce the long range dependencies and the clustering of rainfall extremes often yielding fat tailed (i.e., an algebraic type) probability distributions. The goal of this work was to investigate the ability of using very short or incomplete data records for reliable statistical predictions of the extremes. In particular we discuss how to evaluate the uncertainty in the empirical or semi-analytical multifractal outcomes. We consider three main aspects of the evaluation, such as the scaling adequacy, the multifractal parameter estimation error and the quantile estimation error. We first use the multiplicative cascade model to generate long series of multifractal data. The simulated samples had to cover the range of the universal multifractal parameters widely available in the scientific literature for the rainfall and river discharges. Using these long multifractal series and their sub-samples, we defined a metric for parameter estimation error. Then using the sets of estimated parameters, we obtained the quantile values for a range of excedance probabilities from 5% to 0.01%. Plotting the error bars on a quantile plot enable an approximation of confidence intervals that would be particularly important for the predictions of multifractal extremes. We finally illustrate the efficiency of such concept on its application to a large database (more than 16000 selected stations over USA and

  18. ECOCLIMAP-II/Europe: a twofold database of ecosystems and surface parameters at 1-km resolution based on satellite information for use in land surface, meteorological and climate models

    Science.gov (United States)

    Faroux, S.; Kaptué Tchuenté, A. T.; Roujean, J.-L.; Masson, V.; Martin, E.; Le Moigne, P.

    2012-11-01

    The overall objective of the present study is to introduce the new ECOCLIMAP-II database for Europe, which is an upgrade for this region of the former initiative, ECOCLIMAP-I, already implemented at global scale. The ECOCLIMAP programme is a dual database at 1-km resolution that includes an ecosystem classification and a coherent set of land surface parameters that are primarily mandatory in meteorological modelling (notably leaf area index and albedo). Hence, the aim of this innovative physiography is to enhance the quality of initialisation and impose some surface attributes within the scope of weather forecasting and climate related studies. The strategy for implementing ECOCLIMAP-II is to depart from prevalent land cover products such as CLC2000 (Corine Land Cover) and GLC2000 (Global Land Cover) by splitting existing classes into new classes that possess a better regional character by virtue of the climatic environment (latitude, proximity to the sea, topography). The leaf area index (LAI) from MODIS and NDVI from SPOT/Vegetation yield the two proxy variables that were considered here in order to perform a multi-year trimmed analysis between 1999 and 2005 using the K-means method. Further, meteorological applications require each land cover type to appear as a partition of fractions of 4 main surface types or tiles (nature, water bodies, sea, urban areas) and, inside the nature tile, fractions of 12 Plant Functional Types (PFTs) representing generic vegetation types - principally broadleaf forest, needleleaf forest, C3 and C4 crops, grassland and bare land - as incorporated by the SVAT model ISBA developed at Météo France. This landscape division also forms the cornerstone of a validation exercise. The new ECOCLIMAP-II can be verified with auxiliary land cover products at very fine and coarse resolutions by means of versatile land occupation nomenclatures.

  19. ECOCLIMAP-II/Europe: a twofold database of ecosystems and surface parameters at 1 km resolution based on satellite information for use in land surface, meteorological and climate models

    Science.gov (United States)

    Faroux, S.; Kaptué Tchuenté, A. T.; Roujean, J.-L.; Masson, V.; Martin, E.; Le Moigne, P.

    2013-04-01

    The overall objective of the present study is to introduce the new ECOCLIMAP-II database for Europe, which is an upgrade for this region of the former initiative, ECOCLIMAP-I, already implemented at global scale. The ECOCLIMAP programme is a dual database at 1 km resolution that includes an ecosystem classification and a coherent set of land surface parameters that are primarily mandatory in meteorological modelling (notably leaf area index and albedo). Hence, the aim of this innovative physiography is to enhance the quality of initialisation and impose some surface attributes within the scope of weather forecasting and climate related studies. The strategy for implementing ECOCLIMAP-II is to depart from prevalent land cover products such as CLC2000 (Corine Land Cover) and GLC2000 (Global Land Cover) by splitting existing classes into new classes that possess a better regional character by virtue of the climatic environment (latitude, proximity to the sea, topography). The leaf area index (LAI) from MODIS and normalized difference vegetation index (NDVI) from SPOT/Vegetation (a global monitoring system of vegetation) yield the two proxy variables that were considered here in order to perform a multi-year trimmed analysis between 1999 and 2005 using the K-means method. Further, meteorological applications require each land cover type to appear as a partition of fractions of 4 main surface types or tiles (nature, water bodies, sea, urban areas) and, inside the nature tile, fractions of 12 plant functional types (PFTs) representing generic vegetation types - principally broadleaf forest, needleleaf forest, C3 and C4 crops, grassland and bare land - as incorporated by the SVAT model ISBA (Interactions Surface Biosphere Atmosphere) developed at Météo France. This landscape division also forms the cornerstone of a validation exercise. The new ECOCLIMAP-II can be verified with auxiliary land cover products at very fine and coarse resolutions by means of versatile land

  20. WDC-A Meteorological and Oceanographic Data from Chernobyl for 1986

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — WDCA Chernobyl Data consists of digital data set DSI-9681, archived at the National Centers for Environmental Information (NCEI). World Data Center for Meteorology...

  1. Observation and Estimation of Evapotranspiration from an Irrigated Green Roof in a Rain-Scarce Environment

    Directory of Open Access Journals (Sweden)

    Youcan Feng

    2018-03-01

    Full Text Available While the rain-driven evapotranspiration (ET process has been well-studied in the humid climate, the mixed irrigation and rain-driven ET process is less understood for green roof implementations in dry regions, where empirical observations and model parameterizations are lacking. This paper presents an effort of monitoring and simulating the ET process for an irrigated green roof in a rain-scarce environment. Annual ET rates for three weighing lysimeter test units with non-vegetated, sedums, and grass covers were 2.01, 2.52, and 2.69 mm d−1, respectively. Simulations based on the three Penman–Monteith equation-derived models achieved accuracy within the reported range of previous studies. Compared to the humid climate, the overestimation of high ET rates by existing models is expected to cause a larger error in dry environments, where the enhanced ET process caused by repeated irrigations overlapped with hot, dry conditions often occurs during summer. The studied sedum species did not show significantly lower ET rates than native species, and could not effectively take advantage of the deep moisture storage. Therefore, native species, instead of the shallow-rooted species commonly recommended in humid climates, might be a better choice for green roofs in rain-scarce environments.

  2. Meteorology and dispersion forecast in nuclear emergency in Argentina

    International Nuclear Information System (INIS)

    Kunst, Juan J.; Boutet, Luis I.; Jordan, Osvaldo D.; Hernandez, Daniel G.; Guichandut, M.E.; Chiappesoni, H.

    2008-01-01

    The 'Nuclear Regulatory Authority (NRA) (ARN in Spanish)' and the 'National Meteorological Office (NMO) (SMN in Spanish)' of Argentine has been working together on the improvement of both meteorological forecasting and dispersion prediction. In the pre-release phase of a nuclear emergency, it is very important to know the wind direction and the forecast of it, to establish the area, around the installation, where the emergency state is declared and to foresee the modification of this area. Information is also needed about deterministic effects, to begin the evacuation. At this time, meteorological forecast of wind direction and speed, and the real time meteorological information is available in the nuclear power plant (NPP) and in the Nuclear Emergency Control Centre at the ARN headquarters, together with the short-range dose calculation provided by our dispersion code, SEDA. By means of the SEDA code, we can estimate the optimum place to measure the radioactive material concentration in air, needed do to reduce evaluation uncertainties due, among others, to poor knowledge of the source term. The SEDA code allows considering atmospheric condition, and the need to reduced doses of the measuring team in charge of the measurements. For the evaluation in the medium range, we participate in the project IXP, which provides four hours and about 50 kilometres forecast. In the long-range movement of air borne radioactivity, the World Meteorological Organization (WMO), whose contact point in Argentina is the SMN, can assist us. We have developed together, with the SMN, a detailed procedure to request assistance from the WMO. In this work, we describe the combined tasks that were carried out with the SMN to define the procedures and the concepts for their application during a real emergency. The results of an application exercise carried out in 2006 are also described. (author)

  3. Lloyd Berkner: Catalyst for Meteorology's Fabulous Fifties

    Science.gov (United States)

    Lewis, J. M.

    2002-05-01

    In the long sweep of meteorological history - from Aristotle's Meteorologica to the threshold of the third millennium - the 1950s will surely be recognized as a defining decade. The contributions of many individuals were responsible for the combination of vision and institution building that marked this decade and set the stage for explosive development during the subsequent forty years. In the minds of many individuals who were active during those early years, however, one name stands out as a prime mover par excellence: Lloyd Viel Berkner. On May 1, 1957, Berkner addressed the National Press Club. The address was entitled, "Horizons of Meteorology". It reveals Berkner's insights into meteorology from his position as Chairman of the Committee on Meteorology of the National Academy of Sciences, soon to release the path-breaking report, Research and Education in Meteorology (1958). The address also reflects the viewpoint of an individual deeply involved in the International Geophysical Year (IGY). It is an important footnote to meteorological history. We welcome this opportunity to profile Berkner and to discuss "Horizons of Meteorology" in light of meteorology's state-of-affairs in the 1950s and the possible relevance to Berkner's ideas to contemporary issues.

  4. DESCARTES AND THE METEOROLOGY OF THE WORLD

    Directory of Open Access Journals (Sweden)

    Patrick BRISSEY

    2012-11-01

    Full Text Available Descartes claimed that he thought he could deduce the assumptions of his Meteorology by the contents of the Discourse. He actually began the Meteorology with assumptions. The content of the Discourse, moreover, does not indicate how he deduced the assumptions of the Meteorology. We seem to be left in a precarious position. We can examine the text as it was published, independent of Descartes’ claims, which suggests that he incorporated a presumptive or hypothetical method. On the other hand, we can take Descartes’ claims as our guide and search for the epistemic foundations of the Meteorology independent of the Discourse. In this paper, I will pursue the latter route. My aim is to explain why, and how, Descartes thought that he had deduced the assumptions of the Meteorology. My interest, in this case, is solely Descartes’ physical foundation for the Meteorology, in the physics and physiology that resulted in Descartes’ explanation. With this aim, I provide an interpretation of Descartes’ World where many of its conclusions serve as evidence for the assumptions of the Meteorology. I provisionally conclude that Descartes thought that his World was the epistemic foundation for his Meteorology.

  5. Meteorological Factors Affecting Evaporation Duct Height Climatologies.

    Science.gov (United States)

    1980-07-01

    Italy Maritime Meteorology Division Japan Meteorological Agency Ote-Machi 1-3-4 Chiyoda-Ku Tokyo, Japan Instituto De Geofisica U.N.A.M. Biblioteca ...Torre De Ciencias, 3ER Piso Ciudad Universitaria Mexico 20, D.F. Koninklijk Nederlands Meteorologisch Instituu. Postbus 201 3730 AE Debilt Netherlands

  6. Using routine meteorological data to derive sky conditions

    Directory of Open Access Journals (Sweden)

    D. Pagès

    Full Text Available Sky condition is a matter of interest for public and weather predictors as part of weather analyses. In this study, we apply a method that uses total solar radiation and other meteorological data recorded by an automatic station for deriving an estimation of the sky condition. The impetus of this work is the intention of the Catalan Meteorological Service (SMC to provide the public with real-time information about the sky condition. The methodology for deriving sky conditions from meteorological records is based on a supervised classification technique called maximum likelihood method. In this technique we first need to define features which are derived from measured variables. Second, we must decide which sky conditions are intended to be distinguished. Some analyses have led us to use four sky conditions: (a cloudless or almost cloudless sky, (b scattered clouds, (c mostly cloudy – high clouds, (d overcast – low clouds. An additional case, which may be treated separately, corresponds to precipitation (rain or snow. The main features for estimating sky conditions are, as expected, solar radiation and its temporal variability. The accuracy of this method of guessing sky conditions compared with human observations is around 70% when applied to four sites in Catalonia (NE Iberian Peninsula. The agreement increases if we take into account the uncertainty both in the automatic classifier and in visual observations.

    Key words. Meteorological and atmospheric dynamics (instruments and techniques; radiative processes – Atmospheric composition and structure (cloud physics and chemistry

  7. Using routine meteorological data to derive sky conditions

    Directory of Open Access Journals (Sweden)

    D. Pagès

    2003-03-01

    Full Text Available Sky condition is a matter of interest for public and weather predictors as part of weather analyses. In this study, we apply a method that uses total solar radiation and other meteorological data recorded by an automatic station for deriving an estimation of the sky condition. The impetus of this work is the intention of the Catalan Meteorological Service (SMC to provide the public with real-time information about the sky condition. The methodology for deriving sky conditions from meteorological records is based on a supervised classification technique called maximum likelihood method. In this technique we first need to define features which are derived from measured variables. Second, we must decide which sky conditions are intended to be distinguished. Some analyses have led us to use four sky conditions: (a cloudless or almost cloudless sky, (b scattered clouds, (c mostly cloudy – high clouds, (d overcast – low clouds. An additional case, which may be treated separately, corresponds to precipitation (rain or snow. The main features for estimating sky conditions are, as expected, solar radiation and its temporal variability. The accuracy of this method of guessing sky conditions compared with human observations is around 70% when applied to four sites in Catalonia (NE Iberian Peninsula. The agreement increases if we take into account the uncertainty both in the automatic classifier and in visual observations.Key words. Meteorological and atmospheric dynamics (instruments and techniques; radiative processes – Atmospheric composition and structure (cloud physics and chemistry

  8. An evaluation of meteorologic data differences between the Pantex Plant and Amarillo, Texas

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, S.F.

    1993-06-01

    Meteorologic data from the Pantex Plant and from the nearby National Weather Service (NWS) station at the Amarillo, Texas, International Airport were evaluated to determine if the NWS data adequately represented meteorologic conditions at the Pantex Plant. Annual site environmental dose calculations for the Pantex Plant have previously used the NWS data; information from this data comparison helped determine if future environmental dose calculations should use site-specific Pantex meteorologic data. The meteorologic data evaluated were wind speed, wind direction, and atmospheric stability class. Atmospheric stability class data were compared for years 1990 and 1991 and found to be very similar. Stability class designations were identical and one class different in 63% and 30%, respectively, of the paired hourly data. An unexpected finding was the preponderance of Class D stability, which occurred approximately 62% of the time in both data sets. The overall effect of meteorological differences between the two locations was evaluated by performing environmental dose assessments using the GENII dose assessment computer code. Acute and chronic releases of {sup 3}H and {sup 239}Pu were evaluated. Results using the NWS Amarillo meteorologic data were approximately one-half of those generated using Pantex meteorologic data. The two-fold difference in dose results is within the uncertainty expected from current dose assessment codes; therefore, the two meteorologic databases can be used interchangeably and prior dose calculation results using the NWS Amarillo data are acceptable.

  9. Preliminary analysis of the results and description of the meteorological experiments I and II performed at Aramar Experimental Center

    International Nuclear Information System (INIS)

    Molnary, L. de

    1992-01-01

    This paper describes the experimental program in Applied Meteorology that has been developed at Aramar Experimental Center (CEA) located in Ipero, S.P - Brazil. The program intends to study the meteorological systems and the regional circulation around Aramar to use the information in atmospheric transport and diffusion of radionuclides studies, as soon, analysis of impacts on the environment at Aramar site. The results collected during the first and second Meteorological Experiment are examined. (author)

  10. Modeling landslide susceptibility in data-scarce environments using optimized data mining and statistical methods

    Science.gov (United States)

    Lee, Jung-Hyun; Sameen, Maher Ibrahim; Pradhan, Biswajeet; Park, Hyuck-Jin

    2018-02-01

    This study evaluated the generalizability of five models to select a suitable approach for landslide susceptibility modeling in data-scarce environments. In total, 418 landslide inventories and 18 landslide conditioning factors were analyzed. Multicollinearity and factor optimization were investigated before data modeling, and two experiments were then conducted. In each experiment, five susceptibility maps were produced based on support vector machine (SVM), random forest (RF), weight-of-evidence (WoE), ridge regression (Rid_R), and robust regression (RR) models. The highest accuracy (AUC = 0.85) was achieved with the SVM model when either the full or limited landslide inventories were used. Furthermore, the RF and WoE models were severely affected when less landslide samples were used for training. The other models were affected slightly when the training samples were limited.

  11. A Meteorological Supersite for Aviation and Cold Weather Applications

    Science.gov (United States)

    Gultepe, Ismail; Agelin-Chaab, M.; Komar, J.; Elfstrom, G.; Boudala, F.; Zhou, B.

    2018-05-01

    The goal of this study is to better understand atmospheric boundary layer processes and parameters, and to evaluate physical processes for aviation applications using data from a supersite observing site. Various meteorological sensors, including a weather and environmental unmanned aerial vehicle (WE-UAV), and a fog and snow tower (FSOS) observations are part of the project. The PanAm University of Ontario Institute of Technology (UOIT) Meteorological Supersite (PUMS) observations are being collected from April 2015 to date. The FSOS tower gathers observations related to rain, snow, fog, and visibility, aerosols, solar radiation, and wind and turbulence, as well as surface and sky temperature. The FSOSs are located at three locations at about 450-800 m away from the PUMS supersite. The WE-UAV measurements representing aerosol, wind speed and direction, as well as temperature (T) and relative humidity (RH) are provided during clear weather conditions. Other measurements at the PUMS site include cloud backscattering profiles from CL51 ceilometer, MWR observations of liquid water content (LWC), T, and RH, and Microwave Rain Radar (MRR) reflectivity profile, as well as the present weather type, snow water depth, icing rate, 3D-ultrasonic wind and turbulence, and conventional meteorological observations from compact weather stations, e.g., WXTs. The results based on important weather event studies, representing fog, snow, rain, blowing snow, wind gust, planetary boundary layer (PBL) wind research for UAV, and icing conditions are given. The microphysical parameterizations and analysis processes for each event are provided, but the results should not be generalized for all weather events and be used cautiously. Results suggested that integrated observing systems based on data from a supersite as well as satellite sites can provide better information applicable to aviation meteorology, including PBL weather research, validation of numerical weather model predictions, and

  12. Integrated hydrologic and hydrodynamic modeling to assess water exchange in a data-scarce reservoir

    Science.gov (United States)

    Wu, Binbin; Wang, Guoqiang; Wang, Zhonggen; Liu, Changming; Ma, Jianming

    2017-12-01

    Integrated hydrologic and hydrodynamic modeling is useful in evaluating hydrodynamic characteristics (e.g. water exchange processes) in data-scarce water bodies, however, most studies lack verification of the hydrologic model. Here, water exchange (represented by water age) was investigated through integrated hydrologic and hydrodynamic modeling of the Hongfeng Reservoir, a poorly gauged reservoir in southwest China. The performance of the hydrologic model and parameter replacement among sub-basins with hydrological similarity was verified by historical data. Results showed that hydrological similarity based on the hierarchical cluster analysis and topographic index probability density distribution was reliable with satisfactory performance of parameter replacement. The hydrodynamic model was verified using daily water levels and water temperatures from 2009 and 2010. The water exchange processes in the Hongfeng Reservoir are very complex with temporal, vertical, and spatial variations. The temporal water age was primarily controlled by the variable inflow and outflow, and the maximum and minimum ages for the site near the dam were 406.10 d (15th June) and 90.74 d (3rd August), respectively, in 2010. Distinct vertical differences in water age showed that surface flow, interflow, and underflow appeared alternately, depending on the season and water depth. The worst water exchange situation was found in the central areas of the North Lake with the highest water ages in the bottom on both 15th June and 3rd August, in 2010. Comparison of the spatial water ages revealed that the more favorable hydraulic conditions on 3rd August mainly improved the water exchange in the dam areas and most areas of the South Lake, but had little effect on the bottom layers of the other deepest areas in the South and North Lakes. The presented framework can be applied in other data-scarce waterbodies worldwide to provide better understanding of water exchange processes.

  13. Meteorological Data Analysis Using MapReduce

    Directory of Open Access Journals (Sweden)

    Wei Fang

    2014-01-01

    Full Text Available In the atmospheric science, the scale of meteorological data is massive and growing rapidly. K-means is a fast and available cluster algorithm which has been used in many fields. However, for the large-scale meteorological data, the traditional K-means algorithm is not capable enough to satisfy the actual application needs efficiently. This paper proposes an improved MK-means algorithm (MK-means based on MapReduce according to characteristics of large meteorological datasets. The experimental results show that MK-means has more computing ability and scalability.

  14. Training programme for the dissemination of climatological and meteorological applications using GIS technology

    Directory of Open Access Journals (Sweden)

    T. De Filippis

    2006-01-01

    Full Text Available IBIMET-CNR is involved in making different research projects and in managing operational programmes on national and international level and has acquired a relevant training competence to sustain partner countries and improve their methodological and operational skills by using innovative tools, such as Geographical Information Systems focused on the development of meteorological and climatological applications. Training activities are mainly addressed to National Meteorological and Hydrological Services of Partner-Countries and/or to other Specialized Centers in the frame of Cooperation Programmes promoted by the Italian Ministry of Foreign Affairs mainly in favour of the Less Developing Countries (LDC of World Meteorological Organisation (WMO Regional Association I (Africa. The Institute, as a branch of the WMO-Regional Meteorological Training Centre for Region VI (Europe, organizes also international training courses of high-level in Meteorology, Climatology and Remote Sensing applied to environment and agriculture fields. Moreover, considering the increasing evolution of the GIS functions for meteorological information users, IBIMET has promoted in 2005 the EU COST Action 719 Summer School on "GIS applications in meteorology and climatology''. The paper offers an overview of the main institute training programmes organised to share the results of research activities and operational projects, through the exploitation of innovative technologies and tools like GIS.

  15. Communicating meteorology through popular music

    Science.gov (United States)

    Brown, Sally; Aplin, Karen; Jenkins, Katie; Mander, Sarah; Walsh, Claire; Williams, Paul

    2015-04-01

    Previous studies of weather-inspired classical music showed that all forms of music (as well as visual arts and literature) reflect the significance of the environment in society. Here we quantify the extent to which weather has inspired popular musicians, and how weather is represented in English-language pop music. Our work is in press at Weather. Over 750 songs have been identified which were found to refer to meteorological phenomena, mainly in their lyrics, but also in the title of the song, name of the band or songwriter and occasionally in the song's music or sound effects. Over one third of the songs analysed referred to either sun or rain, out of a possible 20 weather categories. It was found that artists use weather to describe emotion, for example, to mirror the changes in a relationship. In this context, rain was broadly seen negatively, and might be used to signify the end of a relationship. Rain could also be perceived in a positive way, such as in songs from more agricultural communities. Wind was the next most common weather phenomenon, but did not represent emotions as much as sun or rain. However, it was the most frequently represented weather type in the music itself, such as in instrumental effects, or non-verbally in choruses. From the limited evidence available, we found that artists were often inspired by a single weather event in writing lyrics, whereas the outcomes were less clearly identifiable from longer periods of good or bad weather. Some artists were influenced more by their environment than others, but they were often inspired to write many songs about their surroundings as part of every-day life, rather than weather in particular. Popular singers and songwriters can therefore emotionally connect their listeners to the environment; this could be exploited to communicate environmental science to a broad audience.

  16. Inversion of GPS meteorology data

    Directory of Open Access Journals (Sweden)

    K. Hocke

    Full Text Available The GPS meteorology (GPS/MET experiment, led by the Universities Corporation for Atmospheric Research (UCAR, consists of a GPS receiver aboard a low earth orbit (LEO satellite which was launched on 3 April 1995. During a radio occultation the LEO satellite rises or sets relative to one of the 24 GPS satellites at the Earth's horizon. Thereby the atmospheric layers are successively sounded by radio waves which propagate from the GPS satellite to the LEO satellite. From the observed phase path increases, which are due to refraction of the radio waves by the ionosphere and the neutral atmosphere, the atmospheric parameter refractivity, density, pressure and temperature are calculated with high accuracy and resolution (0.5–1.5 km. In the present study, practical aspects of the GPS/MET data analysis are discussed. The retrieval is based on the Abelian integral inversion of the atmospheric bending angle profile into the refractivity index profile. The problem of the upper boundary condition of the Abelian integral is described by examples. The statistical optimization approach which is applied to the data above 40 km and the use of topside bending angle profiles from model atmospheres stabilize the inversion. The retrieved temperature profiles are compared with corresponding profiles which have already been calculated by scientists of UCAR and Jet Propulsion Laboratory (JPL, using Abelian integral inversion too. The comparison shows that in some cases large differences occur (5 K and more. This is probably due to different treatment of the upper boundary condition, data runaways and noise. Several temperature profiles with wavelike structures at tropospheric and stratospheric heights are shown. While the periodic structures at upper stratospheric heights could be caused by residual errors of the ionospheric correction method, the periodic temperature fluctuations at heights below 30 km are most likely caused by atmospheric waves (vertically

  17. Early Warning System Ghana: how to successfully implement a disaster early warning system in a data scarce region

    Science.gov (United States)

    Udo, Job; Jungermann, Nicole

    2016-04-01

    Ghana is a country frequently struck by natural disasters like floods and droughts. Timely warning or detection of such disasters will mitigate the negative impact on lives and property. However, local data and monitoring systems necessary to provide such a warning are hardly available. The availability and improvement of internet, mobile phones and satellites has provided new possibilities for disaster warning systems in data scarce regions such as Ghana. Our presentation describes the development of an early warning system (EWS) in Ghana completely based on satellite based open data. The EWS provides a flood or drought hazard warning on sub-catchment level and links the warning to a more detailed flood or drought risk map, to enable the disaster coordinator to send warnings or relieve more efficiently to areas that have the highest risk. This is especially relevant because some areas for which the system is implemented are very remote. The system is developed and tested to be robust and operational especially in remote areas. This means that the necessary information is also available under limited internet conditions and not dependent on local computer facilities. In many rural areas in Ghana communities rely on indigenous knowledge when it comes to flood or drought disaster forecasting. The EWS has a feature that allows indigenous knowledge indicators to be taken into account in the warning and makes easy comparison possible with the satellite based warnings.

  18. Modern history of meteorological services with pictures for a century

    International Nuclear Information System (INIS)

    2004-07-01

    This book deals with modern history of meteorological services with pictures for a century. It is divided into twelve chapters, which mention meteorological services before the Joseon Dynasty period, meteorological observation about surface weather observation, aero logical observation, meteorological satellite, seismometry, observation on yellow dust, and observation on the falling of thunderbolt, weather forecast, meteorological telecommunication, education for weather, research for weather, promotion on weather, international cooperation, main events, special aid on meteorological services, meteorological disaster and the list of the offices for meteorological services.

  19. How to Fairly Allocate Scarce Medical Resources: Ethical Argumentation under Scrutiny by Health Professionals and Lay People.

    Directory of Open Access Journals (Sweden)

    Pius Krütli

    Full Text Available Societies are facing medical resource scarcities, inter alia due to increased life expectancy and limited health budgets and also due to temporal or continuous physical shortages of resources like donor organs. This makes it challenging to meet the medical needs of all. Ethicists provide normative guidance for how to fairly allocate scarce medical resources, but legitimate decisions require additionally information regarding what the general public considers to be fair. The purpose of this study was to explore how lay people, general practitioners, medical students and other health professionals evaluate the fairness of ten allocation principles for scarce medical resources: 'sickest first', 'waiting list', 'prognosis', 'behaviour' (i.e., those who engage in risky behaviour should not be prioritized, 'instrumental value' (e.g., health care workers should be favoured during epidemics, 'combination of criteria' (i.e., a sequence of the 'youngest first', 'prognosis', and 'lottery' principles, 'reciprocity' (i.e., those who provided services to the society in the past should be rewarded, 'youngest first', 'lottery', and 'monetary contribution'.1,267 respondents to an online questionnaire were confronted with hypothetical situations of scarcity regarding (i donor organs, (ii hospital beds during an epidemic, and (iii joint replacements. Nine allocation principles were evaluated in terms of fairness for each type of scarcity along 7-point Likert scales. The relationship between demographic factors (gender, age, religiosity, political orientation, and health status and fairness evaluations was modelled with logistic regression.Medical background was a major predictor of fairness evaluations. While general practitioners showed different response patterns for all three allocation situations, the responses by lay people were very similar. Lay people rated 'sickest first' and 'waiting list' on top of all allocation principles-e.g., for donor organs 83

  20. How to Fairly Allocate Scarce Medical Resources: Ethical Argumentation under Scrutiny by Health Professionals and Lay People.

    Science.gov (United States)

    Krütli, Pius; Rosemann, Thomas; Törnblom, Kjell Y; Smieszek, Timo

    2016-01-01

    Societies are facing medical resource scarcities, inter alia due to increased life expectancy and limited health budgets and also due to temporal or continuous physical shortages of resources like donor organs. This makes it challenging to meet the medical needs of all. Ethicists provide normative guidance for how to fairly allocate scarce medical resources, but legitimate decisions require additionally information regarding what the general public considers to be fair. The purpose of this study was to explore how lay people, general practitioners, medical students and other health professionals evaluate the fairness of ten allocation principles for scarce medical resources: 'sickest first', 'waiting list', 'prognosis', 'behaviour' (i.e., those who engage in risky behaviour should not be prioritized), 'instrumental value' (e.g., health care workers should be favoured during epidemics), 'combination of criteria' (i.e., a sequence of the 'youngest first', 'prognosis', and 'lottery' principles), 'reciprocity' (i.e., those who provided services to the society in the past should be rewarded), 'youngest first', 'lottery', and 'monetary contribution'. 1,267 respondents to an online questionnaire were confronted with hypothetical situations of scarcity regarding (i) donor organs, (ii) hospital beds during an epidemic, and (iii) joint replacements. Nine allocation principles were evaluated in terms of fairness for each type of scarcity along 7-point Likert scales. The relationship between demographic factors (gender, age, religiosity, political orientation, and health status) and fairness evaluations was modelled with logistic regression. Medical background was a major predictor of fairness evaluations. While general practitioners showed different response patterns for all three allocation situations, the responses by lay people were very similar. Lay people rated 'sickest first' and 'waiting list' on top of all allocation principles-e.g., for donor organs 83.8% (95% CI

  1. Interim report on the meteorological database

    International Nuclear Information System (INIS)

    Stage, S.A.; Ramsdell, J.V.; Simonen, C.A.; Burk, K.W.

    1993-01-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project is estimating radiation doses that individuals may have received from operations at Hanford from 1944 to the present. An independent Technical Steering Panel (TSP) directs the project, which is being conducted by the Battelle, Pacific Northwest Laboratories in Richland, Washington. The goals of HEDR, as approved by the TSP, include dose estimates and determination of confidence ranges for these estimates. This letter report describes the current status of the meteorological database. The report defines the meteorological data available for use in climate model calculations, describes the data collection procedures and the preparation and control of the meteorological database. This report also provides an initial assessment of the data quality. The available meteorological data are adequate for atmospheric calculations. Initial checks of the data indicate the data entry accuracy meets the data quality objectives

  2. Index of Meteorological Observations Publication (Before 1890)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Index of meteorological observations in the United States made prior to January 1, 1890, organized by state. Includes station name, coordinates, elevation, period of...

  3. A marine meteorological data acquisition system

    Digital Repository Service at National Institute of Oceanography (India)

    Desai, R.G.P.; Desa, E.; Vithayathil, G.

    A marine meteorological data acquisition system has been developed for long term unattended measurements at remote coastal sites, ocean surface platforms and for use on board research vessels. The system has an open and modular configuration...

  4. NDBC Standard Meteorological Buoy Data, 1970-present

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) distributes meteorological data from moored buoys maintained by NDBC and others. Moored buoys are the weather sentinels of the...

  5. Ionospheric irregularities in periods of meteorological disturbances

    Science.gov (United States)

    Borchevkina, O. P.; Karpov, I. V.

    2017-09-01

    The results of observations of the total electron content (TEC) in periods of storm disturbances of meteorological situation are presented in the paper. The observational results have shown that a passage of a meteorological storm is accompanied by a substantial decrease in values of TEC and critical frequencies of the ionospheric F2 region. The decreases in values of these ionospheric parameters reach 50% and up to 30% in TEC and critical frequency of the F2 layer, respectively, as compared to meteorologically quiet days. Based on qualitative analysis, it is found that the processes related to formation of local regions of thermospheric heating due to a dissipation of AGW coming into the upper atmosphere from the region of the meteorological disturbance in the lower atmosphere are a possible cause of these ionospheric disturbances.

  6. Meteorological interpretation of transient LOD changes

    Science.gov (United States)

    Masaki, Y.

    2008-04-01

    The Earth’s spin rate is mainly changed by zonal winds. For example, seasonal changes in global atmospheric circulation and episodic changes accompanied with El Nĩ os are clearly detected n in the Length-of-day (LOD). Sub-global to regional meteorological phenomena can also change the wind field, however, their effects on the LOD are uncertain because such LOD signals are expected to be subtle and transient. In our previous study (Masaki, 2006), we introduced atmospheric pressure gradients in the upper atmosphere in order to obtain a rough picture of the meteorological features that can change the LOD. In this presentation, we compare one-year LOD data with meteorological elements (winds, temperature, pressure, etc.) and make an attempt to link transient LOD changes with sub-global meteorological phenomena.

  7. Reference crop evapotranspiration estimate using high-resolution meteorological network's data

    Directory of Open Access Journals (Sweden)

    C. Lussana

    2009-10-01

    Full Text Available Water management authorities need detailed information about each component of the hydrological balance. This document presents a method to estimate the evapotranspiration rate, initialized in order to obtain the reference crop evapotranspiration rate (ET0. By using an Optimal Interpolation (OI scheme, the hourly observations of several meteorological variables, measured by a high-resolution local meteorological network, are interpolated over a regular grid. The analysed meteorological fields, containing detailed meteorological information, enter a model for turbulent heat fluxes estimation based on Monin-Obukhov surface layer similarity theory. The obtained ET0 fields are then post-processed and disseminated to the users.

  8. On the predictability of land surface fluxes from meteorological variables

    Science.gov (United States)

    Haughton, Ned; Abramowitz, Gab; Pitman, Andy J.

    2018-01-01

    Previous research has shown that land surface models (LSMs) are performing poorly when compared with relatively simple empirical models over a wide range of metrics and environments. Atmospheric driving data appear to provide information about land surface fluxes that LSMs are not fully utilising. Here, we further quantify the information available in the meteorological forcing data that are used by LSMs for predicting land surface fluxes, by interrogating FLUXNET data, and extending the benchmarking methodology used in previous experiments. We show that substantial performance improvement is possible for empirical models using meteorological data alone, with no explicit vegetation or soil properties, thus setting lower bounds on a priori expectations on LSM performance. The process also identifies key meteorological variables that provide predictive power. We provide an ensemble of empirical benchmarks that are simple to reproduce and provide a range of behaviours and predictive performance, acting as a baseline benchmark set for future studies. We reanalyse previously published LSM simulations and show that there is more diversity between LSMs than previously indicated, although it remains unclear why LSMs are broadly performing so much worse than simple empirical models.

  9. The 1989 progress report: dynamic meteorology

    International Nuclear Information System (INIS)

    Sadourny, R.

    1989-01-01

    The 1989 progress report of the laboratory of Dynamic Meteorology of the Polytechnic School (France) is presented. The aim of the research programs is the dynamic study of climate and environment in relationship with the global athmospheric behavior. The investigations reported were performed in the fields of: climate modelling, dynamic study of Turbulence, analysis of atmospheric radiation and nebulosity, tropical meteorology and climate, Earth radioactive balance, lidar measurements, middle atmosphere studies. The published papers, the conferences and Laboratory staff are listed [fr

  10. Meteorological circumstances during the 'Chernobyl-period'

    International Nuclear Information System (INIS)

    Ivens, R.; Lablans, W.N.; Wessels, H.R.A.

    1987-01-01

    The progress of the meteorological circumstances and air flows in Europe from 26th April up to 8th May 1986, which caused the spread of contaminated air originating from Chernobyl is outlined and mapped out. Furthermore a global survey is presented of the precipitation in the Netherlands during the period 2nd May to 10th May based on observations of various observation stations of the Royal Dutch Meteorologic Institute (KNMI). 11 figs.; 1 table (H.W.)

  11. Meteorological measurements at nuclear power plants

    International Nuclear Information System (INIS)

    1995-01-01

    On-site meteorological measurements are necessary for evaluating atmospheric dispersion of gaseous effluents. Radiation doses in a plant's vicinity due to these effluents are calculated from the results of dispersion evaluations. The guide addresses the requirements for on-site meteorological measurement systems. Guide YVL 7.3 addresses atmospheric dispersion evaluations and calculation methods, Guide YVL 7.2 radiation dose calculations and Guide YVL 7.8 environmental data reporting. (5 refs.)

  12. Meteorological buoy measurements in the Iceland Sea, 2007–2009

    Directory of Open Access Journals (Sweden)

    G. N. Petersen

    2017-10-01

    Full Text Available The Icelandic Meteorological Office (IMO conducted meteorological buoy measurements in the central Iceland Sea in the time period 2007–2009, specifically in the northern Dreki area on the southern segment of the Jan Mayen Ridge. Due to difficulties in deployment and operations, in situ measurements in this region are sparse. Here the buoy, deployment and measurements are described with the aim of giving a future user of the data set information that is as comprehensive as possible. The data set has been quality-checked, suspect data removed and the data set made publicly available from PANGAEA Data Publisher (https://doi.org/10.1594/PANGAEA.876206.

  13. Technical Work Plan For: Meteorological Monitoring and Data Analysis

    International Nuclear Information System (INIS)

    C.T. Bastian

    2003-01-01

    The meteorological monitoring and analysis program has three overall objectives. First, the program will acquire qualified meteorological data from monitoring activities in the Environmental Safety and Health (ES and H) network, including appropriate controls on measuring and test equipment. All work will be completed in accordance with U.S. Department of Energy (DOE) Office of Repository Development (ORD) administrative procedures and Bechtel SAIC Co., LLC (BSC) line procedures. The continuously operating monitoring program includes measuring and test equipment calibrations, operational checks, preventive and corrective maintenance, and data collection. Second, the program will process the raw monitoring data collected in the field and submit technically reviewed, traceable data to the Technical Data Management System (TDMS) and the Records Processing Center. Third, reports containing analyses or calculations could be created to provide information to data requesters

  14. Technical Data Management Center: a focal point for meteorological and other environmental transport computing technology

    International Nuclear Information System (INIS)

    McGill, B.; Maskewitz, B.F.; Trubey, D.K.

    1981-01-01

    The Technical Data Management Center, collecting, packaging, analyzing, and distributing information, computer technology and data which includes meteorological and other environmental transport work is located at the Oak Ridge National Laboratory, within the Engineering Physics Division. Major activities include maintaining a collection of computing technology and associated literature citations to provide capabilities for meteorological and environmental work. Details of the activities on behalf of TDMC's sponsoring agency, the US Nuclear Regulatory Commission, are described

  15. European Meteorological Society and education in atmospheric sciences

    Science.gov (United States)

    Halenka, T.; Belda, M.

    2010-09-01

    EMS is supporting the exchange of information in the area of education in atmospheric sciences as one of its priority and organizing the educational sessions during EMS annual meetings as a good occasion for such an exchange. Brief thought will be given to the fate of the series of International Conferences on School and Popular Meteorological and Oceanographic Education - EWOC (Education in Weather, Ocean and Climate) and to the project oriented basis of further cooperation in education in atmospheric sciences across Europe. Another tool of EMS is the newly established and developed EDU portal of EMS. In most European countries the process of integration of education at university level was started after Bologna Declaration with the objective to have the system where students on some level could move to another school, or rather university. The goal is to achieve the compatibility between the systems and levels in individual countries to have no objections for students when transferring between the European countries. From this point of view EMS is trying to provide the information about the possibility of education in meteorology and climatology in different countries in centralised form, with uniform shape and content, but validated on national level. In most European countries the necessity of education in Science and Mathematics to achieve higher standard and competitiveness in research and technology development has been formulated after the Lisboa meeting. The European Meteorological Society is trying to follow this process with implication to atmospheric sciences. One of the important task of the EMS is the activity to promote public understanding of meteorology (and sciences related to it), and the ability to make use of it, through schools and more generally. One of the elements of EMS activity is the analysis of the position of atmospheric science in framework of curricula in educational systems of European countries as well as in more general sense, the

  16. Concurrent processes scheduling with scarce resources in small and medium enterprises

    Institute of Scientific and Technical Information of China (English)

    马嵩华

    2016-01-01

    Scarce resources , precedence and non-determined time-lag are three constraints commonly found in small and medium manufacturing enterprises (SMEs), which are deemed to block the ap-plication of workflow management system ( WfMS ) .To tackle this problem , a workflow scheduling approach is proposed based on timing workflow net (TWF-net) and genetic algorithm (GA).The workflow is modelled in a form of TWF-net in favour of process simulation and resource conflict checking .After simplifying and reconstructing the set of workflow instance , the conflict resolution problem is transformed into a resource-constrained project scheduling problem ( RCPSP ) , which could be efficiently solved by a heuristic method , such as GA.Finally, problems of various sizes are utilized to test the performance of the proposed algorithm and to compare it with first-come-first-served ( FCFS) strategy.The evaluation demonstrates that the proposed method is an overwhelming and effective approach for scheduling the concurrent processes with precedence and resource con -straints .

  17. Forest fire occurrence increases the distribution of a scarce forest type in the Mediterranean Basin

    Science.gov (United States)

    Arnan, Xavier; Quevedo, Lídia; Rodrigo, Anselm

    2013-01-01

    Here we report how fire recurrence increases the distribution of a scarce forest type in NE Spain that is dominated by the resprouter tree species Arbutus unedo. We used a combination of GIS and field surveys to determine the effect of fire and pre-fire vegetation on the appearance of A. unedo forests. In the field, we also analyzed the factors that promote fire and lead to the appearance of A. unedo forests. Our results reveal an increased occurrence of A. unedo forests in NE Spain in recent years; this phenomenon was strongly related to fire recurrence and the vegetation type present prior to fire. Most Pinus halepensis forests that burned more than once gave rise to A. unedo forests. Our results indicate that these conversions were related to a reduction in pine density coupled with increases in the density and size of A. unedo trees due to recurrent fires. Given that fires are increasing in number and magnitude in the Mediterranean, we predict a major change in landscape structure and composition at the regional scale.

  18. A study on the ethics of microallocation of scarce resources in health care.

    Science.gov (United States)

    Fortes, P A de Carvalho; Zoboli, E L C P

    2002-08-01

    This study attempts to analyse the ethical dilemmas arising from the microallocation of scarce health care resources, in terms of deontology and utilitarianism. A group of 395 people were interviewed in the region of Diadema, greater San Paulo, Brazil, while visiting patients in the only state hospital in town. Each interviewee was given a list of eight simulated emergencies (see appendix). In each of the eight cases the interviewee had to choose which of the two patients described, both of whom suffered from exactly the same problem, should receive the only hospital bed currently available. The differences between the hypothetical patients were as follows: age, gender, family dependency, and lifestyle. Each interviewee was asked to justify one of their responses. These responses were then analysed. The results pointed to the co-existence of deontological and utilitarian orientations among the people interviewed. A tendency to give priority to the destitute was revealed throughout the research, contradicting the idea that society, valuing only productive people, wishes only such people to receive the most resources, thus maximising the benefits to be gained from resources. The results showed that people's disapproval of the alcoholic was stronger than that of the nicotine abuser.

  19. Developing a methodological framework for estimating water productivity indicators in water scarce regions

    Science.gov (United States)

    Mubako, S. T.; Fullerton, T. M.; Walke, A.; Collins, T.; Mubako, G.; Walker, W. S.

    2014-12-01

    Water productivity is an area of growing interest in assessing the impact of human economic activities on water resources, especially in arid regions. Indicators of water productivity can assist water users in evaluating sectoral water use efficiency, identifying sources of pressure on water resources, and in supporting water allocation rationale under scarcity conditions. This case study for the water-scarce Middle Rio Grande River Basin aims to develop an environmental-economic accounting approach for water use in arid river basins through a methodological framework that relates water use to human economic activities impacting regional water resources. Water uses are coupled to economic transactions, and the complex but mutual relations between various water using sectors estimated. A comparison is made between the calculated water productivity indicators and representative cost/price per unit volume of water for the main water use sectors. Although it contributes very little to regional economic output, preliminary results confirm that Irrigation is among the sectors with the largest direct water use intensities. High economic value and low water use intensity economic sectors in the study region include Manufacturing, Mining, and Steam Electric Power. Water accounting challenges revealed by the study include differences in water management regimes between jurisdictions, and little understanding of the impact of major economic activities on the interaction between surface and groundwater systems in this region. A more comprehensive assessment would require the incorporation of environmental and social sustainability indicators to the calculated water productivity indicators.

  20. The H,G_1,G_2 photometric system with scarce observational data

    Science.gov (United States)

    Penttilä, A.; Granvik, M.; Muinonen, K.; Wilkman, O.

    2014-07-01

    The H,G_1,G_2 photometric system was officially adopted at the IAU General Assembly in Beijing, 2012. The system replaced the H,G system from 1985. The 'photometric system' is a parametrized model V(α; params) for the magnitude-phase relation of small Solar System bodies, and the main purpose is to predict the magnitude at backscattering, H := V(0°), i.e., the (absolute) magnitude of the object. The original H,G system was designed using the best available data in 1985, but since then new observations have been made showing certain features, especially near backscattering, to which the H,G function has troubles adjusting to. The H,G_1,G_2 system was developed especially to address these issues [1]. With a sufficient number of high-accuracy observations and with a wide phase-angle coverage, the H,G_1,G_2 system performs well. However, with scarce low-accuracy data the system has troubles producing a reliable fit, as would any other three-parameter nonlinear function. Therefore, simultaneously with the H,G_1,G_2 system, a two-parameter version of the model, the H,G_{12} system, was introduced [1]. The two-parameter version ties the parameters G_1,G_2 into a single parameter G_{12} by a linear relation, and still uses the H,G_1,G_2 system in the background. This version dramatically improves the possibility to receive a reliable phase-curve fit to scarce data. The amount of observed small bodies is increasing all the time, and so is the need to produce estimates for the absolute magnitude/diameter/albedo and other size/composition related parameters. The lack of small-phase-angle observations is especially topical for near-Earth objects (NEOs). With these, even the two- parameter version faces problems. The previous procedure with the H,G system in such circumstances has been that the G-parameter has been fixed to some constant value, thus only fitting a single-parameter function. In conclusion, there is a definitive need for a reliable procedure to produce

  1. The complementary relationship (CR) approach aids evapotranspiration estimation in the data scarce region of Tibetan Plateau: symmetric and asymmetric perspectives

    Science.gov (United States)

    Ma, N.; Zhang, Y.; Szilagyi, J.; Xu, C. Y.

    2015-12-01

    While the land surface latent and sensible heat release in the Tibetan Plateau (TP) could greatly influence the Asian monsoon circulation, the actual evapotranspiration (ETa) information in the TP has been largely hindered by its extremely sparse ground observation network. Thus the complementary relationship (CR) theory lends great potential in estimating the ETa since it relies on solely routine meteorological observations. With the in-situ energy/water flux observation over the highest semiarid alpine steppe in the TP, the modifications of specific components within the CR were first implemented. We found that the symmetry of the CR could be achieved for dry regions of TP when (i) the Priestley-Taylor coefficient, (ii) the slope of the saturation vapor pressure curve and (iii) the wind function were locally calibrated by using the ETa observations in wet days, an estimate of the wet surface temperature and the Monin-Obukhov Similarity (MOS) theory, respectively. In this way, the error of the simulated ETa by the symmetric AA model could be decreased to a large extent. Besides, the asymmetric CR was confirmed in TP when the D20 above-ground and/or E601B sunken pan evaporation (Epan) were used as a proxy of the ETp. Thus daily ETa could also be estimated by coupling D20 above-ground and/or E601B sunken pans through CR. Additionally, to overcome the modification of the specific components in the CR, we also evaluated the Nonlinear-CR model and the Morton's CRAE model. The former does not need the pre-determination of the asymmetry of CR, while the latter does not require the wind speed data as input. We found that both models are also able to simulate the daily ETa well provided their parameter values have been locally calibrated. The sensitivity analysis shows that, if the measured ETa data are absence to calibrate the models' parameter values, the Nonlinear-CR model may be a particularly good way for estimating ETabecause of its mild sensitivity to the parameter

  2. Meteorological Data Visualization in Multi-User Virtual Reality

    Science.gov (United States)

    Appleton, R.; van Maanen, P. P.; Fisher, W. I.; Krijnen, R.

    2017-12-01

    Due to their complexity and size, visualization of meteorological data is important. It enables the precise examining and reviewing of meteorological details and is used as a communication tool for reporting, education and to demonstrate the importance of the data to policy makers. Specifically for the UCAR community it is important to explore all of such possibilities.Virtual Reality (VR) technology enhances the visualization of volumetric and dynamical data in a more natural way as compared to a standard desktop, keyboard mouse setup. The use of VR for data visualization is not new but recent developments has made expensive hardware and complex setups unnecessary. The availability of consumer of the shelf VR hardware enabled us to create a very intuitive and low cost way to visualize meteorological data. A VR viewer has been implemented using multiple HTC Vive head sets and allows visualization and analysis of meteorological data in NetCDF format (e.g. of NCEP North America Model (NAM), see figure). Sources of atmospheric/meteorological data include radar and satellite as well as traditional weather stations. The data includes typical meteorological information such as temperature, humidity, air pressure, as well as those data described by the climate forecast (CF) model conventions (http://cfconventions.org). Other data such as lightning-strike data and ultra-high-resolution satellite data are also becoming available. The users can navigate freely around the data which is presented in a virtual room at a scale of up to 3.5 X 3.5 meters. The multiple users can manipulate the model simultaneously. Possible mutations include scaling/translating, filtering by value and using a slicing tool to cut-off specific sections of the data to get a closer look. The slicing can be done in any direction using the concept of a `virtual knife' in real-time. The users can also scoop out parts of the data and walk though successive states of the model. Future plans are (a.o.) to

  3. Desarrollo de metgis, un sistema combinado de información geográfica, meteorológica y de cobertura de nieve de alta resolución, para la región andina Development of metgis, a combined high-resolution system of geographic, meteorological and snow cover information for the andes region

    Directory of Open Access Journals (Sweden)

    Gerald Spreitzhofer

    2006-12-01

    Full Text Available En el marco de un proyecto de investigación interdisciplinario e internacional con participación de institutos de investigación de montaña y universidades de Estados Unidos, Austria, Suiza y Japón se construye MetGIS (Meteorological and Geographic Information System, un sistema Java de información geográfica y meteorológica para Sudamérica, focalizado en la región andina de Argentina, Chile y Perú. La sección geográfica incluye una topografía basada en datos SRTM (Shuttle Radar Topographic Missión e información sobre las carreteras, las vías férreas, los ríos, las fronteras y las ciudades. Las gráficas de la topografía del terreno (la altitud, la pendiente y la orientación del mismo sirven como fondo para la información meteorológica y nivológica. Con éste sistema será posible visualizar en forma combinada las observaciones de varias redes, los resultados de los pronósticos numéricos de modelos como el MM5 y los errores de dichos modelos. Los campos analizados y pronosticados pueden ser transformados a escalas de mayor resolución, usando métodos apropiados tales como el de "downscaling" (VERA = Viena Enhanced Resolution Analysis. Respecto a los rasgos del sistema, relacionados específicamente con áreas de montaña, los datos SRTM combinados con VERA permiten dar una buena estimación de las áreas con temperaturas bajo cero y acumulación de nieve. Se planea integrar en el futuro el modelo suizo SNOWPACK que realiza simulaciones de la cubierta de nieve.Within the framework of an interdisciplinary international research project with contributions from mountain research institutes and universities of the USA, Austria, Switzerland and Japan, a Java-based combined meteorological and geographic information system (named MetGIS for South America is under development, with a special focus on the Andes region of Argentina, Chile and Peru. The geographic part of the system includes a topography based on data of the

  4. Making the best of climatic variability: options for upgrading rainfed farming in water scarce regions.

    Science.gov (United States)

    Rockström, J

    2004-01-01

    Coping with climatic variability for livelihood security is part of everyday life for rural communities in semi-arid and dry sub-humid savannas. Water scarcity caused by rainfall fluctuations is common, causing meteorological droughts and dry spells. However, this paper indicates, based on experiences in sub-Saharan Africa and India, that the social impact on rural societies of climatically induced droughts is exaggerated. Instead, water scarcity causing food deficits is more often caused by management induced droughts and dry spells. A conceptual framework to distinguish between manageable and unmanageable droughts is presented. It is suggested that climatic droughts require focus on social resilience building instead of land and water resource management. Focus is then set on the manageable part of climatic variability, namely the almost annual occurrence of dry spells, short 2-4 week periods of no rainfall, affecting farmer yields. On-farm experiences in savannas of sub-Saharan Africa of water harvesting systems for dry spell mitigation are presented. It is shown that bridging dry spells combined with soil fertility management can double and even triple on-farm yield levels. Combined with innovative systems to ensure maximum plant water availability and water uptake capacity, through adoption of soil fertility improvement and conservation tillage systems, there is a clear opportunity to upgrade rainfed farming systems in vulnerable savanna environments, through appropriate local management of climatic variability.

  5. The Fleet Numerical Meteorology and Oceanography Center (FNMOC) - Naval

    Science.gov (United States)

    Meteorology Oceanography Ice You are here: Home › FNMOC FNMOC Logo FNMOC Navigation Meteorology Products Oceanography Products Tropical Applications Climatology and Archived Data Info The Fleet Numerical Meteorology and Oceanography Center (FNMOC) The Fleet Numerical Meteorology and Oceanography Center (FNMOC

  6. Meteorological Controls on Local and Regional Volcanic Ash Dispersal.

    Science.gov (United States)

    Poulidis, Alexandros P; Phillips, Jeremy C; Renfrew, Ian A; Barclay, Jenni; Hogg, Andrew; Jenkins, Susanna F; Robertson, Richard; Pyle, David M

    2018-05-02

    Volcanic ash has the capacity to impact human health, livestock, crops and infrastructure, including international air traffic. For recent major eruptions, information on the volcanic ash plume has been combined with relatively coarse-resolution meteorological model output to provide simulations of regional ash dispersal, with reasonable success on the scale of hundreds of kilometres. However, to predict and mitigate these impacts locally, significant improvements in modelling capability are required. Here, we present results from a dynamic meteorological-ash-dispersion model configured with sufficient resolution to represent local topographic and convectively-forced flows. We focus on an archetypal volcanic setting, Soufrière, St Vincent, and use the exceptional historical records of the 1902 and 1979 eruptions to challenge our simulations. We find that the evolution and characteristics of ash deposition on St Vincent and nearby islands can be accurately simulated when the wind shear associated with the trade wind inversion and topographically-forced flows are represented. The wind shear plays a primary role and topographic flows a secondary role on ash distribution on local to regional scales. We propose a new explanation for the downwind ash deposition maxima, commonly observed in volcanic eruptions, as resulting from the detailed forcing of mesoscale meteorology on the ash plume.

  7. Helicobacter pylori HopE and HopV porins present scarce expression among clinical isolates

    Science.gov (United States)

    Lienlaf, Maritza; Morales, Juan Pablo; Díaz, María Inés; Díaz, Rodrigo; Bruce, Elsa; Siegel, Freddy; León, Gloria; Harris, Paul R; Venegas, Alejandro

    2010-01-01

    AIM: To evaluate how widely Helicobacter pylori (H. pylori) HopE and HopV porins are expressed among Chilean isolates and how seroprevalent they are among infected patients in Chile. METHODS: H. pylori hopE and hopV genes derived from strain CHCTX-1 were cloned by polymerase chain reaction (PCR), sequenced and expressed in Escherichia coli AD494 (DE3). Gel-purified porins were used to prepare polyclonal antibodies. The presence of both genes was tested by PCR in a collection of H. pylori clinical isolates and their expression was detected in lysates by immunoblotting. Immune responses against HopE, HopV and other H. pylori antigens in sera from infected and non-infected patients were tested by Western blotting using these sera as first antibody on recombinant H. pylori antigens. RESULTS: PCR and Western blotting assays revealed that 60 and 82 out of 130 Chilean isolates carried hopE and hopV genes, respectively, but only 16 and 9, respectively, expressed these porins. IgG serum immunoreactivity evaluation of 69 H. pylori-infected patients revealed that HopE and HopV were infrequently recognized (8.7% and 10.1% respectively) compared to H. pylori VacA (68.1%) and CagA (59.5%) antigens. Similar values were detected for IgA serum immunoreactivity against HopE (11.6%) and HopV (10.5%) although lower values for VacA (42%) and CagA (17.4%) were obtained when compared to the IgG response. CONCLUSION: A scarce expression of HopE and HopV among Chilean isolates was found, in agreement with the infrequent seroconversion against these antigens when tested in infected Chilean patients. PMID:20082477

  8. Leveraging Scarce Resources With Bone Health TeleECHO to Improve the Care of Osteoporosis.

    Science.gov (United States)

    Lewiecki, E Michael; Rochelle, Rachelle; Bouchonville, Matthew F; Chafey, David H; Olenginski, Thomas P; Arora, Sanjeev

    2017-12-01

    Osteoporosis is a common condition with serious consequences because of fractures. Despite availability of treatments to reduce fracture risk, there is a large osteoporosis treatment gap that has reached crisis proportions. There are too few specialists to provide services for patients who need them. Bone Health Extension for Community Health Care Outcomes (TeleECHO) is a strategy using real-time ongoing videoconferencing technology to mentor health care professionals in rural and underserved communities to achieve an advanced level of knowledge for the care of patients with skeletal diseases. Over the first 21 months of weekly Bone Health TeleECHO programs, there were 263 registered health care professionals in the United States and several other countries, with 221 attending at least 1 online clinic and typically 35 to 40 attendees at each session at the end of the reported period. Assessment of self-confidence in 20 domains of osteoporosis care showed substantial improvement with the ECHO intervention ( P = 0.005). Bone Health TeleECHO can contribute to mitigating the crisis in osteoporosis care by leveraging scarce resources, providing motivated practitioners with skills to provide better skeletal health care, closer to home, with greater convenience, and lower cost than referral to a specialty center. Bone Health TeleECHO can be replicated in any location worldwide to reach anyone with Internet access, allowing access in local time zones and languages. The ECHO model of learning can be applied to other aspects of bone care, including the education of fracture liaison service coordinators, residents and fellows, and physicians with an interest in rare bone diseases.

  9. Meteorological Drivers of Extreme Air Pollution Events

    Science.gov (United States)

    Horton, D. E.; Schnell, J.; Callahan, C. W.; Suo, Y.

    2017-12-01

    The accumulation of pollutants in the near-surface atmosphere has been shown to have deleterious consequences for public health, agricultural productivity, and economic vitality. Natural and anthropogenic emissions of ozone and particulate matter can accumulate to hazardous concentrations when atmospheric conditions are favorable, and can reach extreme levels when such conditions persist. Favorable atmospheric conditions for pollutant accumulation include optimal temperatures for photochemical reaction rates, circulation patterns conducive to pollutant advection, and a lack of ventilation, dispersion, and scavenging in the local environment. Given our changing climate system and the dual ingredients of poor air quality - pollutants and the atmospheric conditions favorable to their accumulation - it is important to characterize recent changes in favorable meteorological conditions, and quantify their potential contribution to recent extreme air pollution events. To facilitate our characterization, this study employs the recently updated Schnell et al (2015) 1°×1° gridded observed surface ozone and particulate matter datasets for the period of 1998 to 2015, in conjunction with reanalysis and climate model simulation data. We identify extreme air pollution episodes in the observational record and assess the meteorological factors of primary support at local and synoptic scales. We then assess (i) the contribution of observed meteorological trends (if extant) to the magnitude of the event, (ii) the return interval of the meteorological event in the observational record, simulated historical climate, and simulated pre-industrial climate, as well as (iii) the probability of the observed meteorological trend in historical and pre-industrial climates.

  10. An Alternative Flight Software Trigger Paradigm: Applying Multivariate Logistic Regression to Sense Trigger Conditions Using Inaccurate or Scarce Information

    Science.gov (United States)

    Smith, Kelly M.; Gay, Robert S.; Stachowiak, Susan J.

    2013-01-01

    In late 2014, NASA will fly the Orion capsule on a Delta IV-Heavy rocket for the Exploration Flight Test-1 (EFT-1) mission. For EFT-1, the Orion capsule will be flying with a new GPS receiver and new navigation software. Given the experimental nature of the flight, the flight software must be robust to the loss of GPS measurements. Once the high-speed entry is complete, the drogue parachutes must be deployed within the proper conditions to stabilize the vehicle prior to deploying the main parachutes. When GPS is available in nominal operations, the vehicle will deploy the drogue parachutes based on an altitude trigger. However, when GPS is unavailable, the navigated altitude errors become excessively large, driving the need for a backup barometric altimeter to improve altitude knowledge. In order to increase overall robustness, the vehicle also has an alternate method of triggering the parachute deployment sequence based on planet-relative velocity if both the GPS and the barometric altimeter fail. However, this backup trigger results in large altitude errors relative to the targeted altitude. Motivated by this challenge, this paper demonstrates how logistic regression may be employed to semi-automatically generate robust triggers based on statistical analysis. Logistic regression is used as a ground processor pre-flight to develop a statistical classifier. The classifier would then be implemented in flight software and executed in real-time. This technique offers improved performance even in the face of highly inaccurate measurements. Although the logistic regression-based trigger approach will not be implemented within EFT-1 flight software, the methodology can be carried forward for future missions and vehicles.

  11. An Alternative Flight Software Paradigm: Applying Multivariate Logistic Regression to Sense Trigger Conditions using Inaccurate or Scarce Information

    Science.gov (United States)

    Smith, Kelly; Gay, Robert; Stachowiak, Susan

    2013-01-01

    In late 2014, NASA will fly the Orion capsule on a Delta IV-Heavy rocket for the Exploration Flight Test-1 (EFT-1) mission. For EFT-1, the Orion capsule will be flying with a new GPS receiver and new navigation software. Given the experimental nature of the flight, the flight software must be robust to the loss of GPS measurements. Once the high-speed entry is complete, the drogue parachutes must be deployed within the proper conditions to stabilize the vehicle prior to deploying the main parachutes. When GPS is available in nominal operations, the vehicle will deploy the drogue parachutes based on an altitude trigger. However, when GPS is unavailable, the navigated altitude errors become excessively large, driving the need for a backup barometric altimeter to improve altitude knowledge. In order to increase overall robustness, the vehicle also has an alternate method of triggering the parachute deployment sequence based on planet-relative velocity if both the GPS and the barometric altimeter fail. However, this backup trigger results in large altitude errors relative to the targeted altitude. Motivated by this challenge, this paper demonstrates how logistic regression may be employed to semi-automatically generate robust triggers based on statistical analysis. Logistic regression is used as a ground processor pre-flight to develop a statistical classifier. The classifier would then be implemented in flight software and executed in real-time. This technique offers improved performance even in the face of highly inaccurate measurements. Although the logistic regression-based trigger approach will not be implemented within EFT-1 flight software, the methodology can be carried forward for future missions and vehicles

  12. Air pollutants, meteorology and plant injury

    Energy Technology Data Exchange (ETDEWEB)

    Mukammal, E I; Brandt, C S; Neuwirth, R; Pack, D H; Swinbank, W C

    1968-01-01

    The study of the effect of air pollutants on plant growth inevitably involves meteorological factors, and the World Meteorological Organization has therefore been giving much attention to this matter for some time. Within the Organization, responsibility for this work naturally fell to the Commission for Agricultural Meteorology (CAgM), and following the time-honored procedure in such cases, the Commission established in 1962 a small international group of acknowledged experts to study plant injury and reduction of yield by non-radioactive air pollutants, and charged it with the specific task of preparing a review of present knowledge of the subjects involved. After several years' work, the group fulfilled its appointed task and the resulting report is now published in this WMO Technical Note. 95 references.

  13. Meteorological aspects of siting large wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Hiester, T.R.; Pennell, W.T.

    1981-01-01

    This report, which focuses on the meteorological aspects of siting large wind turbines (turbines with a rated output exceeding 100 kW), has four main goals. The first is to outline the elements of a siting strategy that will identify the most favorable wind energy sites in a region and that will provide sufficient wind data to make responsible economic evaluations of the site wind resource possible. The second is to critique and summarize siting techniques that were studied in the Department of Energy (DOE) Wind Energy Program. The third goal is to educate utility technical personnel, engineering consultants, and meteorological consultants (who may have not yet undertaken wind energy consulting) on meteorological phenomena relevant to wind turbine siting in order to enhance dialogues between these groups. The fourth goal is to minimize the chances of failure of early siting programs due to insufficient understanding of wind behavior.

  14. Plasticity of rhizosphere hydraulic properties as a key for efficient utilization of scarce resources

    Science.gov (United States)

    Carminati, Andrea; Vetterlein, Doris

    2013-01-01

    experimental methods need to be developed and applied to different plant species and soil types, in order to understand whether such dualism in rhizosphere properties is an important mechanism for efficient utilization of scarce resources and drought tolerance. PMID:23235697

  15. Temperature Discontinuity Caused by Relocation of Meteorological Stations in Taiwan

    Directory of Open Access Journals (Sweden)

    Chih-wen Hung

    2009-01-01

    Full Text Available With global warming upon us, it has be come increasingly important to identify the extent of this warming trend and in doing so be able to rank mean temperature changes in particular seasons and years. This requires a need for homogeneous climate data, which do not reflect individual anomalies in instruments, station locations or local environments (urbanization. Ac curate homogeneous long-term meteorological data helps show how temperature variations have truly occurred in the climate. Many possible factors contribute to artificial abrupt changes or sharp discontinuities in long time series data, such as the impact of station relocation, changes in observational schedules and instrumentation. Homogeneity adjustments of in situ climate data are very important processes for preparing observational data to be used in further analysis and research. Users require a well-documented history of stations to make appropriate homogeneity adjustments because precise historical back ground records of stations can provide researchers with knowledge of when artificial discontinuity has occurred and its causes. With out such de tailed historical data for each meteorological station, abrupt changes are difficult to interpret. Unfortunately, no homogeneity adjustments for temperature records have been con ducted previously in Tai wan, and present available sources of the history of Taiwan's meteorological stations exhibit in consistencies. In this study, information pertaining to station history, especially relocation records, is pro vided. This information is essential for anal y sis of continuous time series data for temperature and climate warming studies. Temperature data from several stations is given in this study to show how artificial discontinuity occurs due to station relocation. Al though there is no homogeneous adjusted climate data provided in this preliminary work, the summarizing of information regarding station relocations should be of assistance

  16. Water allocation assessment in low flow river under data scarce conditions: a study of hydrological simulation in Mediterranean basin.

    Science.gov (United States)

    Bangash, Rubab F; Passuello, Ana; Hammond, Michael; Schuhmacher, Marta

    2012-12-01

    River Francolí is a small river in Catalonia (northeastern Spain) with an average annual low flow (~2 m(3)/s). The purpose of the River Francolí watershed assessments is to support and inform region-wide planning efforts from the perspective of water protection, climate change and water allocation. In this study, a hydrological model of the Francolí River watershed was developed for use as a tool for watershed planning, water resource assessment, and ultimately, water allocation purposes using hydrological data from 2002 to 2006 inclusive. The modeling package selected for this application is DHI's MIKE BASIN. This model is a strategic scale water resource management simulation model, which includes modeling of both land surface and subsurface hydrological processes. Topographic, land use, hydrological, rainfall, and meteorological data were used to develop the model segmentation and input. Due to the unavailability of required catchment runoff data, the NAM rainfall-runoff model was used to calculate runoff of all the sub-watersheds. The results reveal a potential pressure on the availability of groundwater and surface water in the lower part of River Francolí as was expected by the IPCC for Mediterranean river basins. The study also revealed that due to the complex hydrological regime existing in the study area and data scarcity, a comprehensive physically based method was required to better represent the interaction between groundwater and surface water. The combined ArcGIS/MIKE BASIN models appear as a useful tool to assess the hydrological cycle and to better understand water allocation to different sectors in the Francolí River watershed. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Space-time trends in U.S. meteorological droughts

    Directory of Open Access Journals (Sweden)

    Poulomi Ganguli

    2016-12-01

    New hydrological insights for the region: The paper finds spatial coverage of extreme meteorological drought in the recent years (post-2010 exceeds that of the iconic droughts of the 1930s (the Dust Bowl era, and the 1950s. These results are in contrast with trends in spatial variance that does not exhibit any statistically significant trend. In addition, we find drought persistence remains relatively stationary over the last half century. The findings can inform drought monitoring and planning, and improve future drought resilience.

  18. Mapping evapotranspiration trends using MODIS and SEBAL model in a data scarce and heterogeneous landscape in Eastern Africa

    NARCIS (Netherlands)

    Kiptala, J.K.; Mohamedi, Y.; Mul, M.L.; Van der Zaag, P.

    2013-01-01

    Evapotranspiration (ET) accounts for a substantial amount of the water use in river basins particular in the tropics and arid regions. However, accurate estimation still remains a challenge especially in large spatially heterogeneous and data scarce areas including the Upper Pangani River Basin in

  19. The value of holding scarce wind resource—A cause of overinvestment in wind power capacity in China

    International Nuclear Information System (INIS)

    Liu, Xuemei

    2013-01-01

    China's wind power capacity has increased dramatically in recent years, but about 30% of the installed capacity sits idle, so overinvestment in wind power capacity seems to be a serious problem. This paper explores reasons for the overinvestment. The economic analysis shows that, given uncertain future policy on wind power, it is optimal for power companies to invest more than the amount in a certain world. A part of the “overinvestment” has a real value, which can be interpreted as the value of holding scarce wind resource. This value exists because the wind-rich sites with convenient locations to connect to the grids are scarce resource, and also because the specific government policies that are essential for promoting wind power are uncertain in the future. This value should be taken into account in the investment decision, but it results in the phenomenon of “overinvestment”. The concept of the value of holding scarce resource can be generally applied to the resources that are scarce and for which the future policy is uncertain

  20. 38 CFR 17.142 - Authority to approve sharing agreements, contracts for scarce medical specialist services and...

    Science.gov (United States)

    2010-07-01

    ... sharing agreements, contracts for scarce medical specialist services and contracts for other medical... medical specialist services and contracts for other medical services. The Under Secretary for Health is... specialist services at Department of Veterans Affairs health care facilities (including, but not limited to...

  1. Meteorological factors for PM10 concentration levels in Northern Spain

    Science.gov (United States)

    Santurtún, Ana; Mínguez, Roberto; Villar-Fernández, Alejandro; González Hidalgo, Juan Carlos; Zarrabeitia, María Teresa

    2013-04-01

    models, iii) fitting of a times series model (Autoregressive moving average, ARMA) to the transformed historical values in order to eliminate the temporal autocorrelation structure of each stochastic process, obtaining a white noise for each variable, and finally, iv) the calculation of cross correlations between white noises at different time lags. These cross correlations allow characterization of the true correlation between signals, avoiding the problems induced by data scaling or autocorrelations inherent to each signal. Results provide the relationship and possible contribution to PM10 concentration levels associated with each meteorological variable. This information can be used to improve PM10 concentration levels forecasting using existing meteorological forecasts.

  2. Meteorological influences on coastal new particle formation

    NARCIS (Netherlands)

    Leeuw, G. de; Kunz, G.J.; Buzorius, G.; O`Dowd, C.D.

    2002-01-01

    The meteorological situation at the midlatitude coastal station of Mace Head, Ireland, is described based on observations during the New Particle Formation and Fate in the Coastal Environment (PARFORCE) experiments in September 1998 and June 1999. Micrometeorological sensors were mounted near the

  3. assessment and monitoring of meteorological and hydrological ...

    African Journals Online (AJOL)

    F. Djellouli, A. Bouanani and K. Babahamed

    2016-09-01

    Sep 1, 2016 ... en meteorological drought indices was found for 9-month time step ... Drought severity is expected to increase further in the next 50 years [20]. ... In the present study, our interest to examine the applicability of various drought ...

  4. Meteorological features associated with unprecedented precipitation ...

    Indian Academy of Sciences (India)

    56

    India Meteorological Department, Lodi Road, New Delhi-110003 .... adjoining Iran & Arabian Sea with temperature gradient of order 5 Kelvin on 28th February, 2015. (Fig. 4a). On 1st .... Indian Region on 00 UTC of 1st March and seen in two patches, one over north Pakistan & .... Accordingly, the precipitation belt also.

  5. Integrating meteorology into research on migration.

    Science.gov (United States)

    Shamoun-Baranes, Judy; Bouten, Willem; van Loon, E Emiel

    2010-09-01

    Atmospheric dynamics strongly influence the migration of flying organisms. They affect, among others, the onset, duration and cost of migration, migratory routes, stop-over decisions, and flight speeds en-route. Animals move through a heterogeneous environment and have to react to atmospheric dynamics at different spatial and temporal scales. Integrating meteorology into research on migration is not only challenging but it is also important, especially when trying to understand the variability of the various aspects of migratory behavior observed in nature. In this article, we give an overview of some different modeling approaches and we show how these have been incorporated into migration research. We provide a more detailed description of the development and application of two dynamic, individual-based models, one for waders and one for soaring migrants, as examples of how and why to integrate meteorology into research on migration. We use these models to help understand underlying mechanisms of individual response to atmospheric conditions en-route and to explain emergent patterns. This type of models can be used to study the impact of variability in atmospheric dynamics on migration along a migratory trajectory, between seasons and between years. We conclude by providing some basic guidelines to help researchers towards finding the right modeling approach and the meteorological data needed to integrate meteorology into their own research. © The Author 2010. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved.

  6. Atmospheric Science: It's More than Meteorology.

    Science.gov (United States)

    Smith, David R.; Krockover, Gerald H.

    1988-01-01

    Indicates that atmospheric science is not just forcasting the weather. Gives an overview of current topics in meteorology including ozone depletion, acid precipitation, winter cyclones, severe local storms, the greenhouse effect, wind shear and microbursts. Outlines the Atmospheric Sciences Education Program at Purdue University to produce…

  7. Problem-Based Learning Approaches in Meteorology

    Science.gov (United States)

    Charlton-Perez, Andrew James

    2013-01-01

    Problem-Based Learning, despite recent controversies about its effectiveness, is used extensively as a teaching method throughout higher education. In meteorology, there has been little attempt to incorporate Problem-Based Learning techniques into the curriculum. Motivated by a desire to enhance the reflective engagement of students within a…

  8. How To...Activities in Meteorology.

    Science.gov (United States)

    Nimmer, Donald N.; Sagness, Richard L.

    This series of experiments seeks to provide laboratory exercises which demonstrate concepts in Earth Science, particularly meteorology. Materials used in the experiments are easily obtainable. Examples of experiments include: (1) making a thermometer; (2) air/space relationship; (3) weight of air; (4) barometers; (5) particulates; (6) evaporation;…

  9. assessment and monitoring of meteorological and hydrological ...

    African Journals Online (AJOL)

    During the last century, Algeria experienced a rainfall deficit was recorded in 1944, then successive drought periods since 1975 to the present day in Northen and Eastern. The most recent has repercussions on water resources and on agriculture. In this paper, we focus on the meteorological and hydrological drought.

  10. Meteorological Development Laboratory Student Career Experience Program

    Science.gov (United States)

    McCalla, C., Sr.

    2007-12-01

    The National Oceanic and Atmospheric Administration's (NOAA) National Weather Service (NWS) provides weather, hydrologic, and climate forecasts and warnings for the protection of life and property and the enhancement of the national economy. The NWS's Meteorological Development Laboratory (MDL) supports this mission by developing meteorological prediction methods. Given this mission, NOAA, NWS, and MDL all have a need to continually recruit talented scientists. One avenue for recruiting such talented scientist is the Student Career Experience Program (SCEP). Through SCEP, MDL offers undergraduate and graduate students majoring in meteorology, computer science, mathematics, oceanography, physics, and statistics the opportunity to alternate full-time paid employment with periods of full-time study. Using SCEP as a recruiting vehicle, MDL has employed students who possess some of the very latest technical skills and knowledge needed to make meaningful contributions to projects within the lab. MDL has recently expanded its use of SCEP and has increased the number of students (sometimes called co- ops) in its program. As a co-op, a student can expect to develop and implement computer based scientific techniques, participate in the development of statistical algorithms, assist in the analysis of meteorological data, and verify forecasts. This presentation will focus on describing recruitment, projects, and the application process related to MDL's SCEP. In addition, this presentation will also briefly explore the career paths of students who successfully completed the program.

  11. NASA's aviation safety - meteorology research programs

    Science.gov (United States)

    Winblade, R. L.

    1983-01-01

    The areas covering the meteorological hazards program are: severe storms and the hazards to flight generated by severe storms; clear air turbulence; icing; warm fog dissipation; and landing systems. Remote sensing of ozone by satellites, and the use of satellites as data relays is also discussed.

  12. Calibration of a parsimonious distributed ecohydrological daily model in a data-scarce basin by exclusively using the spatio-temporal variation of NDVI

    Science.gov (United States)

    Ruiz-Pérez, Guiomar; Koch, Julian; Manfreda, Salvatore; Caylor, Kelly; Francés, Félix

    2017-12-01

    Ecohydrological modeling studies in developing countries, such as sub-Saharan Africa, often face the problem of extensive parametrical requirements and limited available data. Satellite remote sensing data may be able to fill this gap, but require novel methodologies to exploit their spatio-temporal information that could potentially be incorporated into model calibration and validation frameworks. The present study tackles this problem by suggesting an automatic calibration procedure, based on the empirical orthogonal function, for distributed ecohydrological daily models. The procedure is tested with the support of remote sensing data in a data-scarce environment - the upper Ewaso Ngiro river basin in Kenya. In the present application, the TETIS-VEG model is calibrated using only NDVI (Normalized Difference Vegetation Index) data derived from MODIS. The results demonstrate that (1) satellite data of vegetation dynamics can be used to calibrate and validate ecohydrological models in water-controlled and data-scarce regions, (2) the model calibrated using only satellite data is able to reproduce both the spatio-temporal vegetation dynamics and the observed discharge at the outlet and (3) the proposed automatic calibration methodology works satisfactorily and it allows for a straightforward incorporation of spatio-temporal data into the calibration and validation framework of a model.

  13. First application of the meteorological Mini-UAV 'M{sup 2}AV'

    Energy Technology Data Exchange (ETDEWEB)

    Spiess, T.; Bange, J.; Buschmann, M.; Voersmann, P. [Braunschweig Univ. (Germany). Inst. fuer Luft- und Raumfahrttechnik

    2007-04-15

    The limitations of manned airborne meteorological measurements led to a new unmanned system, the Meteorological Mini-UAV (M{sup 2}AV), recently developed by the Institute of Aerospace Systems, Technical University of Braunschweig. The task was to develop, test and verify a meteorological sensor package as payload for an already available carrier aircraft, the UAV 'Carolo T200'. Thereby the limitations in size and mass had to be respected. The M{sup 2}AV is capable of performing turbulence and wind vector measurements within the atmospheric boundary layer and permits very short measurement cycles as an economic supplement during meteorological campaigns. The article gives details on the technical items. Results from meteorological data sets measured by the M{sup 2}AV are used for data quality assessment. In October 2005 the M{sup 2}AV participated in the meteorological field experiment 'LAUNCH 2005' in Lindenberg near Berlin. The M{sup 2}AV data were compared with lidar and sodar/RASS measurements. Furthermore, an in situ comparison of temperature, humidity and wind vector data with the helicopter-borne turbulence probe Helipod was analysed and gave information about the M{sup 2}AV data quality. (orig.)

  14. Determining paths by which farmers can adapt effectively to scarce freshwater resources

    Science.gov (United States)

    Watson, R.; Hornberger, G.; Carrico, A. R.

    2012-12-01

    Stress on freshwater resources is a significant risk associated with climatic change. The risk is even greater given the expected changes in overall resource use as the developing world develops, as the world's population continues to grow, and as land use changes dramatically. Effective water management has implications for food security, health, and political stability worldwide. This is particularly true in developing regions heavily dependent on agriculture, and where agriculture depends on irrigation. Adaptation to water stress requires both managing water allocation among competing users and ensuring that each user is efficient in his or her use of a limited allotment: the problem is a quintessential common-pool resource (CPR) dilemma. In the future even more so than in the past, adaptation will be essential as the world evolves. The problem that we identify—determining paths by which farmers can adapt effectively to increasingly scarce freshwater resources—is one of great scientific and societal importance. The issue lies at the intersection of water-cycle processes and social-psychological processes that influence and are influenced by water availability and use. This intersection harbors intriguing unresolved scientific questions; advances in natural and social sciences will stem from attacks on the overall problem. The issue is societally compelling because the ability of the world to supply adequate food for a population expected to grow to over 9 billion by 2050 may well be determined by how farmers, consumers, and government institutions adapt to changing conditions of water availability. Major strides have been made in recent decades in understanding why Hardin's envisioned "tragedy of the commons" is avoided under certain circumstances, in some cases through self-organization rather than government intervention originally considered a necessity. Furthermore, we now know that the impacts of decisions about allocation and use of water can be

  15. Optimizing the Quality of Dynamic Context Subscriptions for Scarce Network Resources

    DEFF Research Database (Denmark)

    Shawky, Ahmed; Olsen, Rasmus Løvenstein; Pedersen, Jens Myrup

    2012-01-01

    Scalable access to dynamic context information is a key challenge for future context-sensitive systems. When increasing the access frequency, the information accuracy can improve but at the same time the additional context management traffic may reduce network performance, which creates...... the opposite effect on information reliability. In order to understand and control this trade-off, this paper develops a model that allows to calculate context reliability, captured by the so-called mismatch probability, in relation to the network load. The model is subsequently used for a real time algorithm...

  16. Regional variability of farmer decision making and irrigation water use: insights from a data-scarce region of North India

    Science.gov (United States)

    O'Keeffe, Jimmy; Buytaert, Wouter; Brozović, Nick; Mijic, Ana

    2014-05-01

    Over the last fifty years, changes in agriculture brought about by the Green Revolution have transformed India from a famine-prone, drought-susceptible country into the worlds' third largest grain producer and one of the most intensively irrigated parts of the globe. Regionally, cheap energy, subsidised seeds and fertilisers, and in some areas Government purchase guarantees for grain promote the intensification of farming. While this allows farmers to survive, it also aggravates the drain agriculture is having on resources, particularly energy and water. Analysis at a regional scale, however, masks the considerable spatial variability that exists on a more localised level and must be taken into consideration to understand correctly aggregate system response to policy, hydrologic, and climatic change. In this study we present and analyse the results from over 100 farmer interviews conducted in the data-scarce districts of Jalaun and Sitapur on the Gangetic Plains of Uttar Pradesh during the post monsoon period of 2013. Variables such as the volumes and timing of irrigation water applied, sources of water, methods of abstraction and irrigation, and costs incurred are mapped, using qualitative data analysis and GIS. Large differences between the districts emerge, for instance in the region of Jalaun where cheaper canal water is available in addition to groundwater. This has enabled farmers to afford more water efficient technologies such as sprinklers, a practice not found in Sitapur which depends almost exclusively on more expensive diesel pumps. Results are used to delineate the spatial variability in water use practices, along with farmer behaviour and decision making. The primary data are compared with socio-economic information taken from regionally produced statistical abstracts. The combined data are used to identify the main drivers that influence farmer decision-making, which is in turn leading to groundwater overdraught in many parts of North India. Finally

  17. Data Assimilation for Applied Meteorology

    Science.gov (United States)

    Haupt, S. E.

    2012-12-01

    Although atmospheric models provide a best estimate of the future state of the atmosphere, due to sensitivity to initial condition, it is difficult to predict the precise future state. For applied problems, however, users often depend on having accurate knowledge of that future state. To improve prediction of a particular realization of an evolving flow field requires knowledge of the current state of that field and assimilation of local observations into the model. This talk will consider how dynamic assimilation can help address the concerns of users of atmospheric forecasts. First, we will look at the value of assimilation for the renewable energy industry. If the industry decision makers can have confidence in the wind and solar power forecasts, they can build their power allocations around the expected renewable resource, saving money for the ratepayers as well as reducing carbon emissions. We will assess the value to that industry of assimilating local real-time observations into the model forecasts and the value that is provided. The value of the forecasts with assimilation is important on both short (several hour) to medium range (within two days). A second application will be atmospheric transport and dispersion problems. In particular, we will look at assimilation of concentration data into a prediction model. An interesting aspect of this problem is that the dynamics are a one-way coupled system, with the fluid dynamic equations affecting the concentration equation, but not vice versa. So when the observations are of the concentration, one must infer the fluid dynamics. This one-way coupled system presents a challenge: one must first infer the changes in the flow field from observations of the contaminant, then assimilate that to recover both the advecting flow and information on the subgrid processes that provide the mixing. To accomplish such assimilation requires a robust method to match the observed contaminant field to that modeled. One approach is

  18. ICON - Port Everglades 2015 Meteorological Observations (NCEI Accession 0156578)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  19. Research Ship Oceanus Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Ship Oceanus Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  20. NOAA Ship Okeanos Explorer Underway Meteorological Data, Near Real Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Okeanos Explorer Underway Meteorological Data (Near Real Time, updated daily) are from the Shipboard Automated Meteorological and Oceanographic System...

  1. Research Ship Melville Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Ship Melville Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  2. Research Ship Atlantic Explorer Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Ship Atlantic Explorer Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic...

  3. NOAA Ship Nancy Foster Underway Meteorological Data, Near Real Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Nancy Foster Underway Meteorological Data (Near Real Time, updated daily) are from the Shipboard Automated Meteorological and Oceanographic System (SAMOS)...

  4. Research Ship Healy Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Ship Healy Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  5. Research Ship Knorr Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Ship Knorr Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  6. Research Ship Nathaniel B. Palmer Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Ship Nathaniel B. Palmer Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and...

  7. NOAA Ship Delaware II Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Delaware II Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  8. Research Ship Atlantis Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Ship Atlantis Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  9. NOAA Ship Pisces Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Pisces Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System (SAMOS)...

  10. Research Ship Robert Gordon Sproul Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Ship Robert Gordon Sproul Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and...

  11. Research Ship Roger Revelle Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Ship Roger Revelle Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic...

  12. NOAA Ship Fairweather Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Fairweather Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  13. NOAA Ship Bell M. Shimada Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Bell M. Shimada Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic...

  14. NOAA Ship Hi'ialakai Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Hi'ialakai Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  15. Research Ship New Horizon Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Ship New Horizon Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic...

  16. NOAA Ship Ronald Brown Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Ronald Brown Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  17. Research Ship Aurora Australis Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Ship Aurora Australis Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic...

  18. NOAA Ship Miller Freeman Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Miller Freeman Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  19. NOAA Ship David Starr Jordan Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship David Starr Jordan Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic...

  20. NOAA Ship Gordon Gunter Underway Meteorological Data, Near Real Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Gordon Gunter Underway Meteorological Data (Near Real Time, updated daily) are from the Shipboard Automated Meteorological and Oceanographic System (SAMOS)...

  1. NOAA Ship Henry B. Bigelow Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Henry B. Bigelow Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic...

  2. NOAA Ship Oregon II Underway Meteorological Data, Near Real Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Oregon II Underway Meteorological Data (Near Real Time, updated daily) are from the Shipboard Automated Meteorological and Oceanographic System (SAMOS)...

  3. NOAA Ship Oscar Dyson Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Oscar Dyson Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  4. NOAA Ship Oscar Elton Sette Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Oscar Elton Sette Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic...

  5. NOAA Ship Fairweather Underway Meteorological Data, Near Real Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Fairweather Underway Meteorological Data (Near Real Time, updated daily) are from the Shipboard Automated Meteorological and Oceanographic System (SAMOS)...

  6. Research Ship Kilo Moana Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Ship Kilo Moana Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  7. NOAA Ship Nancy Foster Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Nancy Foster Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  8. NOAA Ship Gordon Gunter Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Gordon Gunter Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  9. Research Ship Southern Surveyor Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Ship Southern Surveyor Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic...

  10. NOAA Ship Rainier Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Rainier Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  11. Research Ship Tangaroa Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Ship Tangaroa Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  12. NOAA Ship Ka'imimoana Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Ka'imimoana Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  13. NOAA Ship Oregon II Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Oregon II Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  14. ICON - Media Luna Reef 2009 Meteorological and Oceanographic Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  15. NOAA Ship Rainier Underway Meteorological Data, Near Real Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Rainier Underway Meteorological Data (Near Real Time, updated daily) are from the Shipboard Automated Meteorological and Oceanographic System (SAMOS)...

  16. NOAA Ship Pisces Underway Meteorological Data, Near Real Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Pisces Underway Meteorological Data (Near Real Time, updated daily) are from the Shipboard Automated Meteorological and Oceanographic System (SAMOS)...

  17. ICON - Port Everglades 2014 Meteorological Observations (NCEI Accession 0137094)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  18. ICON - Salt River Bay 2010 Meteorological and Oceanographic Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  19. ICON - Port Everglades 2013 Meteorological Observations (NODC Accession 0124002)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  20. ICON - Little Cayman, Cayman Islands 2009 Meteorological and Oceanographic Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  1. ICON - Salt River Bay 2009 Meteorological and Oceanographic Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  2. Research Ship T. G. Thompson Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Ship T. G. Thompson Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic...

  3. Research Ship Laurence M. Gould Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Ship Laurence M. Gould Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic...

  4. NOAA Ship Ronald Brown Underway Meteorological Data, Near Real Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Ronald Brown Underway Meteorological Data (Near Real Time, updated daily) are from the Shipboard Automated Meteorological and Oceanographic System (SAMOS)...

  5. NOAA Ship Okeanos Explorer Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Okeanos Explorer Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic...

  6. NOAA Ship Oscar Dyson Underway Meteorological Data, Near Real Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Oscar Dyson Underway Meteorological Data (Near Real Time, updated daily) are from the Shipboard Automated Meteorological and Oceanographic System (SAMOS)...

  7. ICON - Port Everglades 2012 Meteorological Observations (NODC Accession 0117727)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  8. Instrumentation for high-frequency meteorological observations from research vessel

    Digital Repository Service at National Institute of Oceanography (India)

    VijayKumar, K.; Khalap, S.; Mehra, P.

    Ship provides an attractive platform from which high-frequency meteorological observations (e.g., wind components, water vapor density, and air temperature) can be made accurately. However, accurate observations of meteorological variables depend...

  9. ICON - Salt River Bay 2005 Meteorological and Oceanographic Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  10. Frequency modulator. Transmission of meteorological signals in LVC

    International Nuclear Information System (INIS)

    Rivero G, P.T.; Ramirez S, R.; Gonzalez M, J.L.; Rojas N, P.; Celis del Angel, L.

    2007-01-01

    The development of the frequency modulator and demodulator circuit for transmission of meteorological signals by means of fiber optics of the meteorology station to the nuclear reactor unit 1 in the Laguna Verde Central in Veracruz is described. (Author)

  11. ICON - North Norman's Patch Reef 2004 Meteorological and Oceanographic Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  12. Microfluidics Enables Small-Scale Tissue-Based Drug Metabolism Studies With Scarce Human Tissue

    NARCIS (Netherlands)

    van Midwoud, Paul M.; Verpoorte, Elisabeth; Groothuis, Geny M. M.; Merema, M.T.

    2011-01-01

    Early information on the metabolism and toxicity properties of new drug candidates is crucial for selecting the right candidates for further development. Preclinical trials rely on cell-based in vitro tests and animal studies to characterize the in vivo behavior of drug candidates, although neither

  13. Great ape skeletal collections: making the most of scarce and irreplaceable resources in the digital age.

    Science.gov (United States)

    Gordon, Adam D; Marcus, Emily; Wood, Bernard

    2013-12-01

    Information about primate genomes has re-emphasized the importance of the great apes (Pan, Gorilla, and Pongo) as, for most purposes, the appropriate comparators when generating hypotheses about the most recent common ancestor of the hominins and panins, or the most recent common ancestor of the hominin clade. Great ape skeletal collections are thus an important and irreplaceable resource for researchers conducting these types of comparative analyses, yet the integrity of these collections is threatened by unnecessary use and their availability is threatened by financial pressures on the institutions in which the collections reside. We discuss the general history of great ape skeletal collections, and in order to get a better sense of the utility and potential of these important sources of data we assemble the equivalent of a biography of the Powell-Cotton Collection. We explore the history of how this collection of chimpanzee and gorilla skeletons was accumulated, how it came to be recognized as a potentially important source of comparative information, who has made use of it, and what types of data have been collected. We present a protocol for collecting information about each individual animal (e.g., which bones are preserved, their condition, etc.) and have made that information about the Powell-Cotton Collection freely available in an online relational database (Human Origins Database, www.humanoriginsdatabase.org). As an illustration of the practical application of these data, we developed a tabular summary of ontogenetic information about each individual (see Appendices A and B). Collections like the Powell-Cotton are irreplaceable sources of material regarding the hard-tissue evidence and recent history of the closest living relatives of modern humans. We end this contribution by suggesting ways that curators and the researchers who use and rely on these reference collections could work together to help preserve and protect them so that future generations

  14. Statistics of meteorological data at Tokai Research Establishment in JAERI

    International Nuclear Information System (INIS)

    Sekita, Tsutomu; Tachibana, Haruo; Matsuura, Kenichi; Yamaguchi, Takenori

    2003-12-01

    The meteorological observation data at Tokai site were analyzed statistically based on a 'Guideline of meteorological statistics for the safety analysis of nuclear power reactor' (Nuclear Safety Commission on January 28, 1982; revised on March 29, 2001). This report shows the meteorological analysis of wind direction, wind velocity and atmospheric stability etc. to assess the public dose around the Tokai site caused by the released gaseous radioactivity. The statistical period of meteorological data is every 5 years from 1981 to 1995. (author)

  15. A Methodological Inter-Comparison of Gridded Meteorological Products

    Science.gov (United States)

    Newman, A. J.; Clark, M. P.; Longman, R. J.; Giambelluca, T. W.; Arnold, J.

    2017-12-01

    Here we present a gridded meteorology inter-comparison using the state of Hawaíi as a testbed. This inter-comparison is motivated by two general goals: 1) the broad user community of gridded observation based meteorological fields should be aware of inter-product differences and the reasons they exist, which allows users to make informed choices on product selection to best meet their specific application(s); 2) we want to demonstrate the utility of inter-comparisons to meet the first goal, yet highlight that they are limited to mostly generic statements regarding attribution of differences that limits our understanding of these complex algorithms and obscures future research directions. Hawaíi is a useful testbed because it is a meteorologically complex region with well-known spatial features that are tied to specific physical processes (e.g. the trade wind inversion). From a practical standpoint, there are now several monthly climatological and daily precipitation and temperature datasets available that are being used for impact modeling. General conclusions that have emerged are: 1) differences in input station data significantly influence product differences; 2) prediction of precipitation occurrence is crucial across multiple metrics; 3) derived temperature statistics (e.g. diurnal temperature range) may have large spatial differences across products; and 4) attribution of differences to methodological choices is difficult and may limit the outcomes of these inter-comparisons, particularly from a development viewpoint. Thus, we want to continue to move the community towards frameworks that allow for multiple options throughout the product generation chain and allow for more systematic testing.

  16. Meteorological services annual data report for 2015

    Energy Technology Data Exchange (ETDEWEB)

    Heiser, John [Brookhaven National Lab. (BNL), Upton, NY (United States); Smith, Scott [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-01-25

    This document presents the meteorological data collected at Brookhaven National Laboratory (BNL) by Meteorological Services (Met Services) for the calendar year 2015. The purpose is to publicize the data sets available to emergency personnel, researchers and facility operations. Met services has been collecting data at BNL since 1949. Data from 1994 to the present is available in digital format. Data is presented in monthly plots of one-minute data. This allows the reader the ability to peruse the data for trends or anomalies that may be of interest to them. Full data sets are available to BNL personnel and to a limited degree outside researchers. The full data sets allow plotting the data on expanded time scales to obtain greater details (e.g., daily solar variability, inversions, etc.).

  17. Meteorological services annual data report for 2016

    Energy Technology Data Exchange (ETDEWEB)

    Heiser, John [Brookhaven National Lab. (BNL), Upton, NY (United States); Smith, S.

    2017-01-18

    This document presents the meteorological data collected at Brookhaven National Laboratory (BNL) by Meteorological Services (Met Services) for the calendar year 2016. The purpose is to publicize the data sets available to emergency personnel, researchers and facility operations. Met services has been collecting data at BNL since 1949. Data from 1994 to the present is available in digital format. Data is presented in monthly plots of one-minute data. This allows the reader the ability to peruse the data for trends or anomalies that may be of interest to them. Full data sets are available to BNL personnel and to a limited degree outside researchers. The full data sets allow plotting the data on expanded time scales to obtain greater details (e.g., daily solar variability, inversions, etc.).

  18. Meteorological Automatic Weather Station (MAWS) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Holdridge, Donna J [Argonne National Lab. (ANL), Argonne, IL (United States); Kyrouac, Jenni A [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-08-01

    The Meteorological Automatic Weather Station (MAWS) is a surface meteorological station, manufactured by Vaisala, Inc., dedicated to the balloon-borne sounding system (BBSS), providing surface measurements of the thermodynamic state of the atmosphere and the wind speed and direction for each radiosonde profile. These data are automatically provided to the BBSS during the launch procedure and included in the radiosonde profile as the surface measurements of record for the sounding. The MAWS core set of measurements is: Barometric Pressure (hPa), Temperature (°C), Relative Humidity (%), Arithmetic-Averaged Wind Speed (m/s), and Vector-Averaged Wind Direction (deg). The sensors that collect the core variables are mounted at the standard heights defined for each variable.

  19. Meteorological observatory for Antarctic data collection

    International Nuclear Information System (INIS)

    Grigioni, P.; De Silvestri, L.

    1996-01-01

    In the last years, a great number of automatic weather stations was installed in Antarctica, with the aim to examine closely the weather and climate of this region and to improve the coverage of measuring points on the Antarctic surface. In 1987 the Italian Antarctic Project started to set up a meteorological network, in an area not completely covered by other countries. Some of the activities performed by the meteorological observatory, concerning technical functions such as maintenance of the AWS's and the execution of radio soundings, or relating to scientific purposes such as validation and elaboration of collected data, are exposed. Finally, some climatological considerations on the thermal behaviour of the Antarctic troposphere such as 'coreless winter', and on the wind field, including katabatic flows in North Victoria Land are described

  20. Meteorological services annual data report for 2017

    Energy Technology Data Exchange (ETDEWEB)

    Heiser, John

    2018-01-18

    This document presents the meteorological data collected at Brookhaven National Laboratory (BNL) by Meteorological Services (Met Services) for the calendar year 2017. The purpose is to publicize the data sets available to emergency personnel, researchers and facility operations. Met services has been collecting data at BNL since 1949. Data from 1994 to the present is available in digital format. Data is presented in monthly plots of one-minute data. This allows the reader the ability to peruse the data for trends or anomalies that may be of interest to them. Full data sets are available to BNL personnel and to a limited degree outside researchers. The full data sets allow plotting the data on expanded time scales to obtain greater details (e.g., daily solar variability, inversions, etc.).

  1. Autonomous Aerial Sensors for Wind Power Meteorology

    DEFF Research Database (Denmark)

    Giebel, Gregor; Schmidt Paulsen, Uwe; Reuder, Joachim

    2011-01-01

    , UAVs could be quite cost-effective. In order to test this assumption and to test the limits of UAVs for wind power meteorology, this project assembles four different UAVs from four participating groups. Risø has built a lighter-than-air kite with a long tether, Bergen University flies a derivative......This paper describes a new approach for measurements in wind power meteorology using small unmanned flying platforms. Large-scale wind farms, especially offshore, need an optimisation between installed wind power density and the losses in the wind farm due to wake effects between the turbines. Good...... movement. In any case, a good LIDAR or SODAR will cost many tenthousands of euros. Another current problem in wind energy is the coming generation of wind turbines in the 10-12MW class, with tip heights of over 200m. Very few measurement masts exist to verify our knowledge of atmospheric physics, and most...

  2. Uncertainty in dispersion forecasts using meteorological ensembles

    International Nuclear Information System (INIS)

    Chin, H N; Leach, M J

    1999-01-01

    The usefulness of dispersion forecasts depends on proper interpretation of results. Understanding the uncertainty in model predictions and the range of possible outcomes is critical for determining the optimal course of action in response to terrorist attacks. One of the objectives for the Modeling and Prediction initiative is creating tools for emergency planning for special events such as the upcoming the Olympics. Meteorological forecasts hours to days in advance are used to estimate the dispersion at the time of the event. However, there is uncertainty in any meteorological forecast, arising from both errors in the data (both initial conditions and boundary conditions) and from errors in the model. We use ensemble forecasts to estimate the uncertainty in the forecasts and the range of possible outcomes

  3. How well do meteorological indicators represent agricultural and forest drought across Europe?

    Science.gov (United States)

    Bachmair, S.; Tanguy, M.; Hannaford, J.; Stahl, K.

    2018-03-01

    Drought monitoring and early warning (M&EW) systems are an important component of agriculture/silviculture drought risk assessment. Many operational information systems rely mostly on meteorological indicators, and a few incorporate vegetation state information. However, the relationships between meteorological drought indicators and agricultural/silvicultural drought impacts vary across Europe. The details of this variability have not been elucidated sufficiently on a continental scale in Europe to inform drought risk management at administrative scales. The objective of this study is to fill this gap and evaluate how useful the variety of meteorological indicators are to assess agricultural/silvicultural drought across Europe. The first part of the analysis systematically linked meteorological drought indicators to remote sensing based vegetation indices (VIs) for Europe at NUTs3 administrative regions scale using correlation analysis for crops and forests. In a second step, a stepwise multiple linear regression model was deployed to identify variables explaining the spatial differences observed. Finally, corn crop yield in Germany was chosen as a case study to verify VIs’ representativeness of agricultural drought impacts. Results show that short accumulation periods of SPI and SPEI are best linked to crop vegetation stress in most cases, which further validates the use of SPI3 in existing operational drought monitors. However, large regional differences in correlations are also revealed. Climate (temperature and precipitation) explained the largest proportion of variance, suggesting that meteorological indices are less informative of agricultural/silvicultural drought in colder/wetter parts of Europe. These findings provide important context for interpreting meteorological indices on widely used national to continental M&EW systems, leading to a better understanding of where/when such M&EW tools can be indicative of likely agricultural stress and impacts.

  4. Glacier changes and climate trends derived from multiple sources in the data scarce Cordillera Vilcanota region, Southern Peruvian Andes

    OpenAIRE

    N. Salzmann; C. Huggel; M. Rohrer; W. Silverio; B. G. Mark; P. Burns; C. Portocarrero

    2012-01-01

    The role of glaciers as temporal water reservoirs is particularly pronounced in the (outer) tropics because of the very distinct wet/dry seasons. Rapid glacier retreat caused by climatic changes is thus a major concern, and decision makers demand urgently for regional/local glacier evolution trends, ice mass estimates and runoff assessments. However, in remote mountain areas, spatial and temporal data coverage is typically very scarce and this is further complicated by a high spatial and temp...

  5. A comparative analysis of ecosystem services valuation approaches for application at the local scale and in data scarce regions

    OpenAIRE

    Pandeya, B.; Buytaert, W.; Zulkafli, Z.; Karpouzoglou, T.; Mao, F.; Hannah, D.M.

    2016-01-01

    Despite significant advances in the development of the ecosystem services concept across the science and policy arenas, the valuation of ecosystem services to guide sustainable development remains challenging, especially at a local scale and in data scarce regions. In this paper, we review and compare major past and current valuation approaches and discuss their key strengths and weaknesses for guiding policy decisions. To deal with the complexity of methods used in different valuation approa...

  6. Integrating Current Meteorological Research Through Club Fundraising

    Science.gov (United States)

    Gill, S. S.; Kauffman, C. M.

    2003-12-01

    Earth science programs whose focus is primarily an undergraduate education do not often have the funding to take students to very many conferences which could expose the student to new research as well as possible graduate programs and employment opportunities. Conferences also give the more enthusiastic and hardworking students a venue in which to present their research to the meteorological community. In addition, the California University services largely lower income counties, which make student attendance at conferences even more difficult even though the student in SW PA may be individually motivated. This issue is compounded by the fact that the Meteorology Concentration within the Earth Science department at Cal U is composed of only two full-time Professors, which limits the amount of research students can be exposed to within a classroom setting. New research ideas presented at conferences are thus an important mechanism for broadening what could be an isolated program. One way in which the meteorology program has circumvented the funding problem to a certain extent is through an active student club. With nearly 60 majors (3/4 of which are active in club activities, the meteorology club is able to execute a variety of fundraising activities. Money that is raised can then request from student services matching funds. Further money is given to clubs, which are very active not only in fundraising, but using that money for academic related activities. For the last 3 years the club budget has been in the neighborhood of \\$4500. The money has then been used to partially finance student registration and accommodation costs making conference attendance much more affordable. Normally 8-16 students attend conferences that they would otherwise not be able to attend without great expense. There are times when more than 16 students wish to attend, but travel arrangements prohibit more than 16. Moreover club money is also use to supplement student costs on a summer

  7. Uncertainty analysis of hydro-meteorological forecasts

    OpenAIRE

    Grythe, Karl Kristian; Gao, Yukun

    2010-01-01

    Masteroppgave i informasjons- og kommunikasjonsteknologi 2010 – Universitetet i Agder, Grimstad Meteorological and hydrological forecasts are very important to human’s life which concerns agriculture, industry, transport, etc. The Nordic hydropower industry use and develop hydrological forecasting models to make predictions of rivers steam flow. The quantity of incoming stream flow is important to the electricity production because excessive water in reservoir will cause flood ...

  8. Meteorological experiments for emergency preparedness. part 1

    International Nuclear Information System (INIS)

    Leao, I.L.B.; Nicolli, D.

    1993-12-01

    Since the preliminary studies for the Angra dos Reis Nuclear Power Plant (NPP) siting, by an American consultant company, it was verified that the micro scale and mesoscale meteorological conditions in the region show a unique complex pattern, so that no similar nuclear installation site could be found for reference. Therefore, it was recommended to install onsite a correspondingly complex meteorological data acquisition system which comprises a 100-meter tower with instruments at three different levels and three 15-meter satellite towers on the hills around. In this report, are described the equipment and instruments sent by the IAEA to CNEN as well as the procedures and particular computer programming developed by the staff. It is also reported on the bureaucratic problems and meager budget allocation for the Project which delayed the installation of the two meteorological stations and hindered the implementation of the Project. The equipment for the atmospheric boundary layer sounding were used for the first time in September 1993, when CNEN provided some resource for the purchase of gas and batteries. The first atmospheric sounding campaign showed the occurrence of strong night winds and intense thermal inversion at the higher level of the boundary layer, until now unknown by the Brazilian meteorologists. By way of this report, the staff of meteorologists tries to show the status of Project BRA/09/031 and the know-how gained with it. (author)

  9. Mesoscale meteorological measurements characterizing complex flows

    International Nuclear Information System (INIS)

    Hubbe, J.M.; Allwine, K.J.

    1993-09-01

    Meteorological measurements are an integral and essential component of any emergency response system for addressing accidental releases from nuclear facilities. An important element of the US Department of Energy's (DOE's) Atmospheric Studies in Complex Terrain (ASCOT) program is the refinement and use of state-of-the-art meteorological instrumentation. ASCOT is currently making use of ground-based remote wind sensing instruments such as doppler acoustic sounders (sodars). These instruments are capable of continuously and reliably measuring winds up to several hundred meters above the ground, unattended. Two sodars are currently measuring the winds, as part of ASCOT's Front Range Study, in the vicinity of DOE's Rocky Flats Plant (RFP) near Boulder, Colorado. A brief description of ASCOT's ongoing Front Range Study is given followed by a case study analysis that demonstrates the utility of the meteorological measurement equipment and the complexity of flow phenomena that are experienced near RFP. These complex flow phenomena can significantly influence the transport of the released material and consequently need to be identified for accurate assessments of the consequences of a release

  10. Use of a scenario-neutral approach to identify the key hydro-meteorological attributes that impact runoff from a natural catchment

    Science.gov (United States)

    Guo, Danlu; Westra, Seth; Maier, Holger R.

    2017-11-01

    Scenario-neutral approaches are being used increasingly for assessing the potential impact of climate change on water resource systems, as these approaches allow the performance of these systems to be evaluated independently of climate change projections. However, practical implementations of these approaches are still scarce, with a key limitation being the difficulty of generating a range of plausible future time series of hydro-meteorological data. In this study we apply a recently developed inverse stochastic generation approach to support the scenario-neutral analysis, and thus identify the key hydro-meteorological variables to which the system is most sensitive. The stochastic generator simulates synthetic hydro-meteorological time series that represent plausible future changes in (1) the average, extremes and seasonal patterns of rainfall; and (2) the average values of temperature (Ta), relative humidity (RH) and wind speed (uz) as variables that drive PET. These hydro-meteorological time series are then fed through a conceptual rainfall-runoff model to simulate the potential changes in runoff as a function of changes in the hydro-meteorological variables, and runoff sensitivity is assessed with both correlation and Sobol' sensitivity analyses. The method was applied to a case study catchment in South Australia, and the results showed that the most important hydro-meteorological attributes for runoff were winter rainfall followed by the annual average rainfall, while the PET-related meteorological variables had comparatively little impact. The high importance of winter rainfall can be related to the winter-dominated nature of both the rainfall and runoff regimes in this catchment. The approach illustrated in this study can greatly enhance our understanding of the key hydro-meteorological attributes and processes that are likely to drive catchment runoff under a changing climate, thus enabling the design of tailored climate impact assessments to specific

  11. Information retrieval from wide-band meteorological data - An example

    Science.gov (United States)

    Adelfang, S. I.; Smith, O. E.

    1983-01-01

    The methods proposed by Smith and Adelfang (1981) and Smith et al. (1982) are used to calculate probabilities over rectangles and sectors of the gust magnitude-gust length plane; probabilities over the same regions are also calculated from the observed distributions and a comparison is also presented to demonstrate the accuracy of the statistical model. These and other statistical results are calculated from samples of Jimsphere wind profiles at Cape Canaveral. The results are presented for a variety of wavelength bands, altitudes, and seasons. It is shown that wind perturbations observed in Jimsphere wind profiles in various wavelength bands can be analyzed by using digital filters. The relationship between gust magnitude and gust length is modeled with the bivariate gamma distribution. It is pointed out that application of the model to calculate probabilities over specific areas of the gust magnitude-gust length plane can be useful in aerospace design.

  12. Ecological and meteorological drought monitoring in East Asia

    Science.gov (United States)

    Kim, J. B.; Um, M. J.; Kim, Y.; Chae, Y.

    2016-12-01

    This study aims to how well the ecological drought index can capture the drought status in the East Asia. We estimated the drought severe index (DSI), which uses the evapotranspiration, potential evapotranspiration and the normalized difference vegetation index (NDVI), suggested by Mu et al. (2013) to define the ecological drought. In addition, the meteorological drought index, which is standardized precipitation and evapotranspiration index (SPEI), are estimated and compared to the DSI. The satellite data by moderate resolution imaging spectroradiometer (MODIS) and advanced very-high-resolution radiometer (AVHRR) are used to analyze the DSI and the monthly precipitation and temperature data in the climate research unit (CRU) are applied to estimate the SPEI for 2000-2013 in the East Asia. We conducted the statistical analyses to investigate the drought characteristics of the ecological and meteorological drought indices (i.e. the DSI and SPEI, respectively) and then compared those characteristics drought indices depending on the drought status. We found the DSI did not well captured the drought status when the categories originally suggested by Mu et al. (2013) are applied to divide the drought status in the study area. Consequently, the modified categories for the DSI in this study is suggested and then applied to define the drought status. The modified categories in this study show the great improvement to capture the drought status in the East Asia even though the results cannot be acquired around Taklamakan desert due to the lack of the satellite data. These results illustrate the ecological drought index, such as the DSI, can be applied for the monitoring of the drought in the East Asia and then can give the detailed information of drought status because the satellite data have the relatively high spatial resolutions compared to the observations such as the CRU data. Reference Mu Q, Zhao M, Kimball JS, McDowell NG, Running SW (2013) A remotely sensed global

  13. Application of remote sensing techniques for conserving scarce water resources: a case study from Pakistan

    International Nuclear Information System (INIS)

    Shakoor, A; Alam, N; Asghar, M.N.

    2005-01-01

    Pakistan, which was once a water surplus, is now a water deficit country according to Malin Falkenmark criteria. The conventional wisdom of managing canal water supplies, which usually results in over- or under-irrigation, is not sufficient to meet the challenge of water demand in future. This paper introduces the use of modem tools like Remote Sensing (RS), Geographic Information Systems (GIS) and CROPWAT to improve the management of the existing irrigation systems. This study was conducted for the Pehure High Level Canal (PHLC) and the Upper Swat Canal (USC) system in the North Western Frontier Province (NWFP) of Pakistan. Crop identification at distributary level was made from multi-temporal Remote Sensing satellite images, using various image processing techniques, such as supervised, unsupervised classification and spectral mixture analysis. Cropped areas were calculated for each individual crop from these classified images, and then crop water requirement at distributary level was estimated using CROPWAT. Assuming all other parameters of the CROPWAT model optimistic, the calculated crop area was of major concern. The supervised classification with support of unsupervised classification and ground truth information has proven to be the best option and cost-effective technique for calculating the actual cropped area. The results of this study can be used while devising guidelines for water managers to release the canal supplies based, on crop water requirement. This practice will help in avoiding wastage of canal water at farm level, which can be optimally used for increasing irrigated areas and crop productivity in the area. (author)

  14. Meteorological risks as drivers of innovation for agroecosystem management

    Science.gov (United States)

    Gobin, Anne; Van de Vyver, Hans; Zamani, Sepideh; Curnel, Yannick; Planchon, Viviane; Verspecht, Ann; Van Huylenbroeck, Guido

    2015-04-01

    season. A methodology for identifying agro-ecosystem vulnerability was developed using spatially explicit information and was tested for arable crop production in Belgium. The different components of vulnerability for a region include spatial information on meteorology, soil available water content, soil erosion, the degree of waterlogging, crop share and the diversity of potato varieties. The level of vulnerability and resilience of an agro-ecosystem is also determined by risk management. The types of agricultural risk and their relative importance differ across sectors and farm types. Risk types are further distinguished according to production, market, institutional, financial and liability risks. Strategies are often combined in the risk management strategy of a farmer and include reduction and prevention, mitigation, coping and impact reduction. Based on an extensive literature review, a portfolio of potential strategies was identified at farm, market and policy level. Research hypotheses were tested using an on-line questionnaire on knowledge of agricultural risk, measuring the general risk aversion of the farmer and risk management strategies. The "chain of risk" approach adopted as a research methodology allows for investigating the hypothesis that meteorological risks act as drivers for agricultural innovation. Risks related to extreme weather events in Belgium are mainly caused by heat, frost, excess rainfall, drought and storms, and their impact is predominantly felt by arable, horticultural and extensive dairy farmers. Quantification of the risk is evaluated in terms of probability of occurrence, magnitude, frequency and extent of impact on several agro-ecosystems services. The spatial extent of vulnerability is developed by integrating different layers of geo-information, while risk management is analysed using questionnaires and economic modelling methods. Future work will concentrate on the further development and testing of the currently developed

  15. The introduction of horizontal inhomogeneity of meteorological conditions in the EOSTAR propagation model

    NARCIS (Netherlands)

    Eijk, A.M.J. van; Kunz, G.J.

    2006-01-01

    The effective field-of-view of an electro-optical sensor in a given meteorological scenario can be evaluated using a ray-tracer. The resulting ray trace diagram also provides information pertinent to the quality (distortion, mirages) of the image being viewed by the sensor. The EOSTAR (Electro

  16. Regionalising MUSLE factors for application to a data-scarce catchment

    Science.gov (United States)

    Gwapedza, David; Slaughter, Andrew; Hughes, Denis; Mantel, Sukhmani

    2018-04-01

    The estimation of soil loss and sediment transport is important for effective management of catchments. A model for semi-arid catchments in southern Africa has been developed; however, simplification of the model parameters and further testing are required. Soil loss is calculated through the Modified Universal Soil Loss Equation (MUSLE). The aims of the current study were to: (1) regionalise the MUSLE erodibility factors and; (2) perform a sensitivity analysis and validate the soil loss outputs against independently-estimated measures. The regionalisation was developed using Geographic Information Systems (GIS) coverages. The model was applied to a high erosion semi-arid region in the Eastern Cape, South Africa. Sensitivity analysis indicated model outputs to be more sensitive to the vegetation cover factor. The simulated soil loss estimates of 40 t ha-1 yr-1 were within the range of estimates by previous studies. The outcome of the present research is a framework for parameter estimation for the MUSLE through regionalisation. This is part of the ongoing development of a model which can estimate soil loss and sediment delivery at broad spatial and temporal scales.

  17. Pulse EPR-enabled interpretation of scarce pseudocontact shifts induced by lanthanide binding tags

    Energy Technology Data Exchange (ETDEWEB)

    Abdelkader, Elwy H.; Yao, Xuejun [Australian National University, Research School of Chemistry (Australia); Feintuch, Akiva [Weizmann Institute of Science, Department of Chemical Physics (Israel); Adams, Luke A.; Aurelio, Luigi; Graham, Bim [Monash University, Monash Institute of Pharmaceutical Sciences (Australia); Goldfarb, Daniella [Weizmann Institute of Science, Department of Chemical Physics (Israel); Otting, Gottfried, E-mail: gottfried.otting@anu.edu.au [Australian National University, Research School of Chemistry (Australia)

    2016-01-15

    Pseudocontact shifts (PCS) induced by tags loaded with paramagnetic lanthanide ions provide powerful long-range structure information, provided the location of the metal ion relative to the target protein is known. Usually, the metal position is determined by fitting the magnetic susceptibility anisotropy (Δχ) tensor to the 3D structure of the protein in an 8-parameter fit, which requires a large set of PCSs to be reliable. In an alternative approach, we used multiple Gd{sup 3+}-Gd{sup 3+} distances measured by double electron–electron resonance (DEER) experiments to define the metal position, allowing Δχ-tensor determinations from more robust 5-parameter fits that can be performed with a relatively sparse set of PCSs. Using this approach with the 32 kDa E. coli aspartate/glutamate binding protein (DEBP), we demonstrate a structural transition between substrate-bound and substrate-free DEBP, supported by PCSs generated by C3-Tm{sup 3+} and C3-Tb{sup 3+} tags attached to a genetically encoded p-azidophenylalanine residue. The significance of small PCSs was magnified by considering the difference between the chemical shifts measured with Tb{sup 3+} and Tm{sup 3+} rather than involving a diamagnetic reference. The integrative sparse data approach developed in this work makes poorly soluble proteins of limited stability amenable to structural studies in solution, without having to rely on cysteine mutations for tag attachment.

  18. Predicting the Heat Consumption in District Heating Systems using Meteorological Forecasts

    DEFF Research Database (Denmark)

    Nielsen, Henrik Aalborg, orlov 31.07.2008; Madsen, Henrik

    that meteorological forecasts are available on-line. Such a service has recently been introduced by the Danish Meteorological Institute. However, actual meteorological forecasts has not been available for the work described here. Assuming the climate to be known the mean absolute relative prediction error for 72 hour......Methods for on-line prediction of heat consumption in district heating systems hour by hour for horizons up to 72 hours are considered in this report. Data from the district heating system Vestegnens Kraftvarmeselskab I/S is used in the investigation. During the development it has been assumed......, this is somewhat contrary to practice. The work presented is a demonstration of the value of the so called gray box approach where theoretical knowledge about the system under consideration is combined with information from measurements performed on the system in order to obtain a mathematical description...

  19. Why is the Arkavathy River drying? A multiple hypothesis approach in a data scarce region

    Science.gov (United States)

    Srinivasan, V.; Thompson, S.; Madhyastha, K.; Penny, G.; Jeremiah, K.; Lele, S.

    2015-01-01

    The developing world faces unique challenges in achieving water security as it is disproportionately exposed to stressors such as climate change while also undergoing demographic growth, agricultural intensification and industrialization. Investigative approaches are needed that can inform sound policy development and planning to address the water security challenge in the context of data scarcity. We investigated the "predictions under change" problem in the Thippagondanahalli (TG Halli) catchment of the Arkavathy sub-basin in South India. River inflows into the TG Halli reservoir have declined since the 1970s, and the reservoir is currently operating at only 20% of its built capacity. The mechanisms responsible for the drying of the river are not understood, resulting in uncoordinated and potentially counter-productive management responses. The objective of this study was to investigate potential explanations of the drying trend and thus obtain predictive insight. We used a multiple working hypothesis approach to investigate the decline in inflow into TG Halli reservoir. Five hypotheses were tested using data from field surveys and reliable secondary sources: (1) changes in rainfall amount, timing and storm intensity, (2) rising temperatures, (3) increased groundwater extraction, (4) expansion of eucalyptus plantations, and (5) increased fragmentation of the river channel. Our results indicate that proximate anthropogenic drivers of change such as groundwater pumping, expansion of eucalyptus plantations, and to a lesser extent channel fragmentation, are much more likely to have caused the decline in surface flows in the TG Halli catchment than changing climate. The case study shows that direct human interventions play a significant role in altering the hydrology of watersheds. The multiple working hypotheses approach presents a systematic way to quantify the relative contributions of anthropogenic drivers to hydrologic change. The approach not only yields a

  20. Court’s Precious Time: Transparency, Honor and Judicial Scarce Resources

    Directory of Open Access Journals (Sweden)

    Boaz Shnoor

    2017-12-01

    Full Text Available While many judicial systems in the Western World are coping with a shortage of judges, the public is not always aware of the overload and its reasons. Our claim is that the reason for this, is the fact that the judicial system preferred to preserve an ideal image of the judiciary and control all information about it, rather than to publicize the judicial overload problem. In this paper, we aim to show that until recently, the issue of “judicial overload” was hidden from the public eye. We deal with the importance and advantageous of presenting the relevant facts to the public. We shall empirically show, that the judicial system has begun to legitimize the exposure of judicial overload to the public.Si bien es cierto que muchos sistemas judiciales del mundo occidental están lidiando con la escasez de jueces, también lo es que el público no siempre es consciente de la sobrecarga de trabajo y de sus razones. Nosotros afirmamos que la razón de ello es que el sistema judicial ha preferido preservar una imagen ideal de la judicatura y controlar toda la información acerca de ella antes que hacer público el problema de la sobrecarga de trabajo de los jueces. En este artículo, pretendemos mostrar que, hasta hace poco, la cuestión de la "sobrecarga de los jueces" ha permanecido oculta a ojos del público. Tratamos el tema de la importancia y la ventaja que supone presentar los hechos relevantes al público, y demostraremos empíricamente que el sistema judicial ha comenzado a aprobar la exposición de la sobrecarga judicial al público. DOWNLOAD THIS PAPER FROM SSRN: http://ssrn.com/abstract=3039584

  1. The role of the Finnish Meteorological Institute

    International Nuclear Information System (INIS)

    Savolainen, A.L.; Valkama, I.

    1993-01-01

    The Finnish Meteorological Institute is responsible for the dispersion forecasts for the radiation control in Finland. In addition to the normal weather forecasts the duty forecaster has the work station based three dimensional trajectory model and the short range dispersion model YDINO at his disposal. For expert use, dispersion and dose model TRADOS is available. The TRADOS, developed by the Finnish Meteorological Institute and by the Technical Research Centre of Finland, includes a meteorological data base that utilizes the numerical forecasts of the High Resolution Limited Area Model (HIRLAM) weather prediction model. The transport is described by three-dimensional air-parcel trajectories. For each time step the integrated air concentrations as well as dry and wet deposition for selected groups of radionuclides are computed. In the operational emergency application only external dose rates are computed. In the statistical version also individual and population dose estimates via several external and internal pathways can be made. The TRADOS is currently run under two separate user interfaces. The trajectory and dispersion model interface includes ready-made lists of the nuclear power plants and other installations. The dose model has a set of release terms for several groups of radionuclides. There is also a graphical module that enables the computed results to be presented in grid or also isolines. A new graphical user interface and presentation lay-outs redesigned as visual and end-user friendly as possible and with the aim of possible and with the aim of possible adoption as a Nordic standard will be installed in the near future. (orig.)

  2. Autonomous Operation of Mars Meteorological Network

    Science.gov (United States)

    Schmidt, W.; Harri, A.-M.; Vázquez, L.; Linkin, V.; Alexashkin, S.

    2012-09-01

    In the next years a series of small landing vehicles concentrating on Martian meteorology should be deployed to the surface of Mars. As commanding from Earth will not be possible most of the time, the station software has to be capable of adapting to any foreseeable conditions and optimize the science return as much as feasible. In this paper we outline the constraints and strategies implemented into the control system of the MetNet Landers. For details to the mission and its instruments see the mission home page [1].

  3. Defense meteorological satellite measurements of total ozone

    International Nuclear Information System (INIS)

    Lovill, J.E.; Ellis, J.S.; Luther, F.M.; Sullivan, R.J.; Weichel, R.L.

    1992-01-01

    A multichannel filter radiometer (MFR) on Defense Meteorological Satellites (DMS) that measured total ozone on a global-scale from March 1977 - February 1980 is described. The total ozone data measured by the MFR were compared with total ozone data taken by surfaced-based Dobson spectrophotometers. When comparisons were made for five months, the Dobson spectrophotometer measured 2-5% more total ozone than the MFR. Comparisons between the Dobson spectrophotometer and the MFR showed a reduced RMS difference as the comparisons were made at closer proximity. A Northern Hemisphere total ozone distribution obtained from MFR data is presented

  4. Free data access: the experience of the Israel Meteorological Service

    Directory of Open Access Journals (Sweden)

    Avner Furshpan

    2017-06-01

    Full Text Available This paper illustrates the benefits of changing from a commercial to an open access to climate data policy in the Israel Meteorological Service (IMS. The former commercial policy failed to provide expected economical revenues and notably increased the work time devoted to the management of the commercial structure and involved processes. At the same time, many companies and institutions tended to use data freely available in the Internet in spite of their worse quality or resolution in order to avoid the fees required to obtain data provided by the IMS. Changing to a free access to these data now allows an optimum use of climatic information and a significant reduction of bureaucratic tasks, freeing resources for research and development of new products.

  5. Viking-1 meteorological measurements - First impressions

    Science.gov (United States)

    Hess, S. L.; Henry, R. M.; Leovy, C. B.; Tillman, J. E.; Ryan, J. A.

    1976-01-01

    A preliminary evaluation is given of in situ meteorological measurements made by Viking 1 on Mars. The data reported show that: (1) the atmosphere has approximate volume mixing ratios of 1.5% argon, 3% nitrogen, and 95% carbon dioxide; (2) the diurnal temperature range is large and regular, with a sunrise minimum of about 188 K and a midafternoon maximum near 244 K; (3) air and ground temperatures coincide quite closely during the night, but ground temperature exceeds air temperature near midday by as much as 25 C; (4) the winds exhibit a marked diurnal cycle; and (5) a large diurnal pressure variation with an afternoon minimum and an early-morning maximum parallels the wind pattern. The variations are explained in terms of familiar meteorological processes. It is suggested that latent heat is unlikely to play an important role on Mars because no evidence has been observed for traveling synoptic-scale disturbances such as those that occur in the terrestrial tropics.

  6. What is so important about completing lives? A critique of the modified youngest first principle of scarce resource allocation.

    Science.gov (United States)

    Gamlund, Espen

    2016-04-01

    Ruth Tallman has recently offered a defense of the modified youngest first principle of scarce resource allocation [1]. According to Tallman, this principle calls for prioritizing adolescents and young adults between 15-40 years of age. In this article, I argue that Tallman's defense of the modified youngest first principle is vulnerable to important objections, and that it is thus unsuitable as a basis for allocating resources. Moreover, Tallman makes claims about the badness of death for individuals at different ages, but she lacks an account of the loss involved in dying to support her claims. To fill this gap in Tallman's account, I propose a view on the badness of death that I call 'Deprivationism'. I argue that this view explains why death is bad for those who die, and that it has some advantages over Tallman's complete lives view in the context of scarce resource allocation. Finally, I consider some objections to the relevance of Deprivationism to resource allocation, and offer my responses.

  7. Selecting Candidates for Liver Transplantation: A Medical Ethics Perspective on the Microallocation of a Scarce and Rationed Resource

    Directory of Open Access Journals (Sweden)

    Eric M Yoshida

    1998-01-01

    Full Text Available Liver transplantation has evolved over the past 35 years from an experimental procedure with high perioperative mortality to an accepted form of treatment with an approximate 85% one-year and 80% three-year patient survival rate. Following the success and acceptance of transplantation in the treatment of end-stage liver disease, there has been a progressive increase in the number of patients seeking a limited supply of donor organs. The ethical focus, on a microallocation level, has therefore changed from that of the 1960s, when the question was whether the procedure should be offered at all, to that of the 1990s and beyond, when the focus is on the proper allocation of a scarce, life-saving resource. The ethical issues concerning fair allocation surrounding liver transplantation are explored, from both the referring physician's perspective and the perspective of the transplant physician. In particular, the contrasting viewpoints of bioethicists Nicholas Rescher and James Childress, with respect to nonmedical and social criteria in the selection of patients for scarce, life-saving therapies, are explored. Lastly, some alternative ethical models for patient selection are reviewed.

  8. Priority of a Hesitant Fuzzy Linguistic Preference Relation with a Normal Distribution in Meteorological Disaster Risk Assessment.

    Science.gov (United States)

    Wang, Lihong; Gong, Zaiwu

    2017-10-10

    As meteorological disaster systems are large complex systems, disaster reduction programs must be based on risk analysis. Consequently, judgment by an expert based on his or her experience (also known as qualitative evaluation) is an important link in meteorological disaster risk assessment. In some complex and non-procedural meteorological disaster risk assessments, a hesitant fuzzy linguistic preference relation (HFLPR) is often used to deal with a situation in which experts may be hesitant while providing preference information of a pairwise comparison of alternatives, that is, the degree of preference of one alternative over another. This study explores hesitation from the perspective of statistical distributions, and obtains an optimal ranking of an HFLPR based on chance-restricted programming, which provides a new approach for hesitant fuzzy optimisation of decision-making in meteorological disaster risk assessments.

  9. Design of a redundant meteorological station for a BWR reactor

    International Nuclear Information System (INIS)

    Ramirez S, R.; Celis del Angel, L.; Bucio, F.; Rivero, T.; Palacios, J.

    2008-01-01

    In this work the design of a meteorological station for a reactor type BWR is proposed. Two independent channels of data acquisition that allow him to have a bigger readiness is exposed. It is incorporate sensors without mobile parts to measure speed, wind direction and pluvial precipitation. It also counts, with sensors of global solar radiation, net radiation, barometric pressure, relative humidity and ambient temperature; with them they are possible to be calculated, moreover, other variables as temperature differential, dew point and atmospheric stability. The sensors are placed on a tower to different heights and send their information (each second) to a local registration system, the one which in turn, it remits the data to the monitoring office so that a computer is linked with the system, display and management the information in real time and automatic way. The redundant structure allows that in the event of maintenance the data acquisition is not interrupted, even if the information is transferred to another place. In all the station sections it is used protocols of standard communication to allow that a great quantity of devices can be connected without major problem. The above-mentioned would allow to the operators in the control room to have reliable information during the whole time of the reactor operation. (Author)

  10. Large-scale Meteorological Patterns Associated with Extreme Precipitation Events over Portland, OR

    Science.gov (United States)

    Aragon, C.; Loikith, P. C.; Lintner, B. R.; Pike, M.

    2017-12-01

    Extreme precipitation events can have profound impacts on human life and infrastructure, with broad implications across a range of stakeholders. Changes to extreme precipitation events are a projected outcome of climate change that warrants further study, especially at regional- to local-scales. While global climate models are generally capable of simulating mean climate at global-to-regional scales with reasonable skill, resiliency and adaptation decisions are made at local-scales where most state-of-the-art climate models are limited by coarse resolution. Characterization of large-scale meteorological patterns associated with extreme precipitation events at local-scales can provide climatic information without this scale limitation, thus facilitating stakeholder decision-making. This research will use synoptic climatology as a tool by which to characterize the key large-scale meteorological patterns associated with extreme precipitation events in the Portland, Oregon metro region. Composite analysis of meteorological patterns associated with extreme precipitation days, and associated watershed-specific flooding, is employed to enhance understanding of the climatic drivers behind such events. The self-organizing maps approach is then used to characterize the within-composite variability of the large-scale meteorological patterns associated with extreme precipitation events, allowing us to better understand the different types of meteorological conditions that lead to high-impact precipitation events and associated hydrologic impacts. A more comprehensive understanding of the meteorological drivers of extremes will aid in evaluation of the ability of climate models to capture key patterns associated with extreme precipitation over Portland and to better interpret projections of future climate at impact-relevant scales.

  11. Analysis of traffic and meteorology on airborne particulate matter in Münster, northwest Germany.

    Science.gov (United States)

    Gietl, Johanna K; Klemm, Otto

    2009-07-01

    The importance of street traffic and meteorological conditions on the concentrations of particulate matter (PM) with an aerodynamic diameter smaller than 10 microm (PM10) was studied in the city of Münster in northwest Germany. The database consisted of meteorological data, data of PM10 mass concentrations and fine particle number (6-225 nm diameter) concentrations, and traffic intensity data as counted with tally hand counters at a four- to six-lane road. On working days, a significant correlation could be found between the diurnal mean PM10 mass concentration and vehicle number. The lower number of heavy-duty vehicles compared with passenger cars contributed more to the particle number concentration on working days than on weekend days. On weekends, when the vehicle number was very low, the correlation between PM10 mass concentration and vehicle number changed completely. Other sources of PM and the meteorology dominated the PM concentration. Independent of the weekday, by decreasing the traffic by approximately 99% during late-night hours, the PM10 concentration was reduced by 12% of the daily mean value. A correlation between PM10 and the particle number concentration was found for each weekday. In this study, meteorological parameters, including the atmospheric stability of the boundary layer, were also accounted for. The authors deployed artificial neural networks to achieve more information on the influence of various meteorological parameters, traffic, and the day of the week. A multilayer perceptron network showed the best results for predicting the PM10 concentration, with the correlation coefficient being 0.72. The influence of relative humidity, temperature, and wind was strong, whereas the influence of atmospheric stability and the traffic parameters was weak. Although traffic contributes a constant amount of particles in a daily and weekly cycle, it is the meteorology that drives most of the variability.

  12. Information

    International Nuclear Information System (INIS)

    Boyard, Pierre.

    1981-01-01

    The fear for nuclear energy and more particularly for radioactive wastes is analyzed in the sociological context. Everybody agree on the information need, information is available but there is a problem for their diffusion. Reactions of the public are analyzed and journalists, scientists and teachers have a role to play [fr

  13. GPM GROUND VALIDATION METEOROLOGICAL TOWER ENVIRONMENT CANADA GCPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Meteorological Tower Environment Canada GCPEx dataset provides temperature, relative humidity, 10 m winds, pressure and solar radiation...

  14. Monitoring Forsmark. Meteorological monitoring at Forsmark, January-December 2010

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Cari; Jones, Joergen (Swedish Meteorological and Hydrological Institute (SMHI), Norrkoeping (Sweden))

    2011-01-15

    In the Forsmark area, SKB's meteorological monitoring started in 2003 at the sites Storskaeret and Hoegmasten. However, since July 1, 2007 measurements are only performed at Hoegmasten. Measured and calculated parameters at Hoegmasten are precipitation and corrected precipitation, air temperature, barometric pressure, wind speed and direction, air humidity, global radiation and potential evapotranspiration. The Swedish Meteorological and Hydrological Institute, SMHI, has been responsible for planning and design, as well as for the operation of the stations used for meteorological monitoring. In general, the quality of the meteorological measurements during the period concerned, starting January 1, 2010, and ending December 31, 2010, has shown to be good

  15. Nowcasting Surface Meteorological Parameters Using Successive Correction Method

    National Research Council Canada - National Science Library

    Henmi, Teizi

    2002-01-01

    The successive correction method was examined and evaluated statistically as a nowcasting method for surface meteorological parameters including temperature, dew point temperature, and horizontal wind vector components...

  16. Meteorological perspective on intermediate range atmospheric dispersion

    International Nuclear Information System (INIS)

    Van der Hoven, I.

    1981-01-01

    The intermediate range of atmospheric transport and diffusion is defined as those dispersion processes which take place at downwind distances of 10 to 100 kilometers from pollutant sources. Meteorologists often define this range as the mesoscale. It is the range of distances where certain environmental assessments are of concern such as the determination of significant deterioration of visibility, the effect of effluent releases from tall stacks, and the effect of pollutant sources in rural settings upon the more distant urban centers. Atmospheric diffusion theory is based on steady state conditions and spatial homogeniety. Techniques must be developed to measure the inhomogenieties, models must be devised to account for the complexities, and a data base consisting of appropriate measured meteorological parameters concurrent with tracer gas concentrations should be collected

  17. Meteorological research studies at Jervis Bay, Australia

    International Nuclear Information System (INIS)

    Clark, G.H.; Bendun, E.O.K.

    1974-07-01

    A climatological study of the winds and temperature from the Jervis Bay region which commenced in October 1970 has shown the presence of a coastal sea breeze and secondary bay breeze circulation system. In an attempt to define the influence of the Murray's Beach site on the local atmospheric dispersion, special smoke plume photography studies were conducted in the lower atmosphere. In June 1972 a meteorological acoustic sounding research programme was initiated at the Jervis Bay settlement. The aims of the research are to calibrate the sounder in terms of surface wind, turbulence and temperature measurements pertinent to a description of the lower atmospheric dispersion potential. Preliminary results on six months' data have shown encouraging correlations between the acoustic sounder patterns and particularly the wind direction turbulence traces. (author)

  18. Forecasting rain events - Meteorological models or collective intelligence?

    Science.gov (United States)

    Arazy, Ofer; Halfon, Noam; Malkinson, Dan

    2015-04-01

    Collective intelligence is shared (or group) intelligence that emerges from the collective efforts of many individuals. Collective intelligence is the aggregate of individual contributions: from simple collective decision making to more sophisticated aggregations such as in crowdsourcing and peer-production systems. In particular, collective intelligence could be used in making predictions about future events, for example by using prediction markets to forecast election results, stock prices, or the outcomes of sport events. To date, there is little research regarding the use of collective intelligence for prediction of weather forecasting. The objective of this study is to investigate the extent to which collective intelligence could be utilized to accurately predict weather events, and in particular rainfall. Our analyses employ metrics of group intelligence, as well as compare the accuracy of groups' predictions against the predictions of the standard model used by the National Meteorological Services. We report on preliminary results from a study conducted over the 2013-2014 and 2014-2015 winters. We have built a web site that allows people to make predictions on precipitation levels on certain locations. During each competition participants were allowed to enter their precipitation forecasts (i.e. 'bets') at three locations and these locations changed between competitions. A precipitation competition was defined as a 48-96 hour period (depending on the expected weather conditions), bets were open 24-48 hours prior to the competition, and during betting period participants were allowed to change their bets with no limitation. In order to explore the effect of transparency, betting mechanisms varied across study's sites: full transparency (participants able to see each other's bets); partial transparency (participants see the group's average bet); and no transparency (no information of others' bets is made available). Several interesting findings emerged from

  19. The Science Behind Moravian Meteorological Observations for Late-18th Century Labrador

    Science.gov (United States)

    Newell, Dianne; Lüdecke, Cornelia; Matiu, Michael; Menzel, Annette

    2017-04-01

    From the time they established their first shelter among the Inuit population of the northern coast of Labrador in 1771, the brethren of the Moravian Church began producing series of daily instrumental and qualitative meteorological observations of significance to science networks of the day (Macpherson, 1987, Demarée & Ogilvie, 2008). Contrary to what is understood, missionaries did not make these observations for their own purposes. Rather, they responded to requests from scientists who commissioned the data. Scientists also equipped these undertakings. The enlightened observers provided handwritten copies that were publicized in England and continental Europe by individuals and their philosophical and scientific institutions. This pattern of producing reliable records specifically for scientists was true for the 15-year span of Moravian meteorological observations for all 3 Labrador stations in the late 18th century; the 40-year span of records for 10 Moravian stations in Labrador and Greenland in the mid-19th century; and the observations from 5 Labrador stations commissioned for the 1st international Polar Year, 1882, and continuing for several decades afterward, and longer in the case of Nain. When Nain data is combined with that from the Canadian meteorological service, we have a relatively straight run from 1882 to 2015. In this paper, we examine the late-18th century Moravian meteorological observations for qualitative information of interest to modern scientific research. The daily entries comprise not only measurements of temperature and air pressure, but also other weather observations, such as wind direction, estimated wind speed, cloudiness, information which has already allowed us to begin tracking polar lows travelling from Labrador to Greenland across the Labrador Sea. The annual missionary reports of Moravians provide critical supplementary data identifying recurring local phenological events in nature, which offer an integrated signal of weather

  20. 60 years of UK visibility measurements: impact of meteorology and atmospheric pollutants on visibility

    Science.gov (United States)

    Singh, Ajit; Bloss, William J.; Pope, Francis D.

    2017-02-01

    Reduced visibility is an indicator of poor air quality. Moreover, degradation in visibility can be hazardous to human safety; for example, low visibility can lead to road, rail, sea and air accidents. In this paper, we explore the combined influence of atmospheric aerosol particle and gas characteristics, and meteorology, on long-term visibility. We use visibility data from eight meteorological stations, situated in the UK, which have been running since the 1950s. The site locations include urban, rural and marine environments. Most stations show a long-term trend of increasing visibility, which is indicative of reductions in air pollution, especially in urban areas. Additionally, the visibility at all sites shows a very clear dependence on relative humidity, indicating the importance of aerosol hygroscopicity on the ability of aerosol particles to scatter radiation. The dependence of visibility on other meteorological parameters, such as wind speed and wind direction, is also investigated. Most stations show long-term increases in temperature which can be ascribed to climate change, land-use changes (e.g. urban heat island effects) or a combination of both; the observed effect is greatest in urban areas. The impact of this temperature change upon local relative humidity is discussed. To explain the long-term visibility trends and their dependence on meteorological conditions, the measured data were fitted to a newly developed light-extinction model to generate predictions of historic aerosol and gas scattering and absorbing properties. In general, an excellent fit was achieved between measured and modelled visibility for all eight sites. The model incorporates parameterizations of aerosol hygroscopicity, particle concentration, particle scattering, and particle and gas absorption. This new model should be applicable and is easily transferrable to other data sets worldwide. Hence, historical visibility data can be used to assess trends in aerosol particle

  1. Medical Meteorology: the Relationship between Meteorological Parameters (Humidity, Rainfall, Wind, and Temperature and Brucellosis in Zanjan Province

    Directory of Open Access Journals (Sweden)

    Yousefali Abedini

    2016-06-01

    Full Text Available Background: Brucellosis (Malta fever is a major contagious zoonotic disease, with economic and public health importance. Methods To assess the effect of meteorological (temperature, rainfall, humidity, and wind and climate parameters on incidence of brucellosis, brucellosis distribution and meteorological zoning maps of Zanjan Province were prepared using Inverse Distance Weighting (IDW and Kriging technique in Arc GIS medium. Zoning maps of mean temperature, rainfall, humidity, and wind were compared to brucellosis distribution maps. Results: Correlation test showed no relationship between the mean number of patients with brucellosis and any of the four meteorological parameters. Conclusion: It seems that in Zanjan province there is no correlation between brucellosis and meteorological parameters.

  2. Comparison of methods for generating typical meteorological year using meteorological data from a tropical environment

    Energy Technology Data Exchange (ETDEWEB)

    Janjai, S.; Deeyai, P. [Laboratory of Tropical Atmospheric Physics, Department of Physics, Faculty of Science, Silpakorn University, Nakhon Pathom 73000 (Thailand)

    2009-04-15

    This paper presents the comparison of methods for generating typical meteorological year (TMY) data set using a 10-year period of meteorological data from four stations in a tropical environment of Thailand. These methods are the Sadia National Laboratory method, the Danish method and the Festa and Ratto method. In investigating their performance, these methods were employed to generate TMYs for each station. For all parameters of the TMYs and the stations, statistical test indicates that there is no significant difference between the 10-year average values of these parameters and the corresponding average values from TMY generated from each method. The TMY obtained from each method was also used as input data to simulate two solar water heating systems and two photovoltaic systems with different sizes at the four stations by using the TRNSYS simulation program. Solar fractions and electrical output calculated using TMYs are in good agreement with those computed employing the 10-year period hourly meteorological data. It is concluded that the performance of the three methods has no significant difference for all stations under this investigation. Due to its simplicity, the method of Sandia National Laboratories is recommended for the generation of TMY for this tropical environment. The TMYs developed in this work can be used for solar energy and energy conservation applications at the four locations in Thailand. (author)

  3. Statistical analysis of aerosol species, trace gasses, and meteorology in Chicago.

    Science.gov (United States)

    Binaku, Katrina; O'Brien, Timothy; Schmeling, Martina; Fosco, Tinamarie

    2013-09-01

    Both canonical correlation analysis (CCA) and principal component analysis (PCA) were applied to atmospheric aerosol and trace gas concentrations and meteorological data collected in Chicago during the summer months of 2002, 2003, and 2004. Concentrations of ammonium, calcium, nitrate, sulfate, and oxalate particulate matter, as well as, meteorological parameters temperature, wind speed, wind direction, and humidity were subjected to CCA and PCA. Ozone and nitrogen oxide mixing ratios were also included in the data set. The purpose of statistical analysis was to determine the extent of existing linear relationship(s), or lack thereof, between meteorological parameters and pollutant concentrations in addition to reducing dimensionality of the original data to determine sources of pollutants. In CCA, the first three canonical variate pairs derived were statistically significant at the 0.05 level. Canonical correlation between the first canonical variate pair was 0.821, while correlations of the second and third canonical variate pairs were 0.562 and 0.461, respectively. The first canonical variate pair indicated that increasing temperatures resulted in high ozone mixing ratios, while the second canonical variate pair showed wind speed and humidity's influence on local ammonium concentrations. No new information was uncovered in the third variate pair. Canonical loadings were also interpreted for information regarding relationships between data sets. Four principal components (PCs), expressing 77.0 % of original data variance, were derived in PCA. Interpretation of PCs suggested significant production and/or transport of secondary aerosols in the region (PC1). Furthermore, photochemical production of ozone and wind speed's influence on pollutants were expressed (PC2) along with overall measure of local meteorology (PC3). In summary, CCA and PCA results combined were successful in uncovering linear relationships between meteorology and air pollutants in Chicago and

  4. Annual report of the Dynamic Meteorology Laboratory, 1986

    International Nuclear Information System (INIS)

    1987-01-01

    Research on climate simulation; data assimilation and forecasting; nonlinear dynamics and atmospheric turbulence; wave dynamics in the middle atmosphere; African and tropical meteorology and climatology; spectroscopy and modeling of atmospheric radiation; satellite meteorology and climatology; and active lidar remote sensing is presented [fr

  5. Brookhaven National Laboratory meteorological services instrument calibration plan and procedures

    Energy Technology Data Exchange (ETDEWEB)

    Heiser, John [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2013-02-16

    This document describes the Meteorological Services (Met Services) Calibration and Maintenance Schedule and Procedures, The purpose is to establish the frequency and mechanism for the calibration and maintenance of the network of meteorological instrumentation operated by Met Services. The goal is to maintain the network in a manner that will result in accurate, precise and reliable readings from the instrumentation.

  6. Climatic condition of Calabar as typified by some meteorological ...

    African Journals Online (AJOL)

    This study aims at analysing some meteorological data collected by the meteorological department of the Margaret Ekpo International Airport, Calabar between 1985 and 2003. The main objectives were to provide average figures and curves of Calabar climate, and to identify possible trends since 1985. Results show that ...

  7. Meteorological aspects of site selection for nuclear power plants

    International Nuclear Information System (INIS)

    Artemova, N.E.

    1983-01-01

    Factors are considered that characterize the NPP safe layout in a specified region and the physicogeographical conditions determining the meteorological dilution coefficient of NPP radioactive wastes in the atmosphere. A three-point scale system is proposed for estimating physicogeographical factors in three ''fitness'' classes. The data required for calculating meteorological dilution coefficient are given

  8. 10 CFR 960.5-2-3 - Meteorology.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Meteorology. 960.5-2-3 Section 960.5-2-3 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Preclosure Guidelines Preclosure Radiological Safety § 960.5-2-3 Meteorology. (a) Qualifying...

  9. Meteorological Observations Available for the State of Utah

    Energy Technology Data Exchange (ETDEWEB)

    Wharton, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-12

    The National Weather Service’s Meteorological Assimilation Data Ingest System (MADIS) contains a large number of station networks of surface and upper air meteorological observations for the state of Utah. In addition to MADIS, observations from individual station networks may also be available. It has been confirmed that LLNL has access to the data sources listed below.

  10. Insight into runoff characteristics using hydrological modeling in the data-scarce southern Tibetan Plateau: Past, present, and future.

    Science.gov (United States)

    Cai, Mingyong; Yang, Shengtian; Zhao, Changsen; Zhou, Qiuwen; Hou, Lipeng

    2017-01-01

    Regional hydrological modeling in ungauged regions has attracted growing attention in water resources research. The southern Tibetan Plateau often suffers from data scarcity in watershed hydrological simulation and water resources assessment. This hinders further research characterizing the water cycle and solving international water resource issues in the area. In this study, a multi-spatial data based Distributed Time-Variant Gain Model (MS-DTVGM) is applied to the Yarlung Zangbo River basin, an important international river basin in the southern Tibetan Plateau with limited meteorological data. This model is driven purely by spatial data from multiple sources and is independent of traditional meteorological data. Based on the methods presented in this study, daily snow cover and potential evapotranspiration data in the Yarlung Zangbo River basin in 2050 are obtained. Future (2050) climatic data (precipitation and air temperature) from the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR5) are used to study the hydrological response to climate change. The result shows that river runoff will increase due to precipitation and air temperature changes by 2050. Few differences are found between daily runoff simulations from different Representative Concentration Pathway (RCP) scenarios (RCP2.6, RCP4.5 and RCP8.5) for 2050. Historical station observations (1960-2000) at Nuxia and model simulations for two periods (2006-2009 and 2050) are combined to study inter-annual and intra-annual runoff distribution and variability. The inter-annual runoff variation is stable and the coefficient of variation (CV) varies from 0.21 to 0.27. In contrast, the intra-annual runoff varies significantly with runoff in summer and autumn accounting for more than 80% of the total amount. Compared to the historical period (1960-2000), the present period (2006-2009) has a slightly uneven intra-annual runoff temporal distribution, and becomes more balanced in

  11. Insight into runoff characteristics using hydrological modeling in the data-scarce southern Tibetan Plateau: Past, present, and future.

    Directory of Open Access Journals (Sweden)

    Mingyong Cai

    Full Text Available Regional hydrological modeling in ungauged regions has attracted growing attention in water resources research. The southern Tibetan Plateau often suffers from data scarcity in watershed hydrological simulation and water resources assessment. This hinders further research characterizing the water cycle and solving international water resource issues in the area. In this study, a multi-spatial data based Distributed Time-Variant Gain Model (MS-DTVGM is applied to the Yarlung Zangbo River basin, an important international river basin in the southern Tibetan Plateau with limited meteorological data. This model is driven purely by spatial data from multiple sources and is independent of traditional meteorological data. Based on the methods presented in this study, daily snow cover and potential evapotranspiration data in the Yarlung Zangbo River basin in 2050 are obtained. Future (2050 climatic data (precipitation and air temperature from the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR5 are used to study the hydrological response to climate change. The result shows that river runoff will increase due to precipitation and air temperature changes by 2050. Few differences are found between daily runoff simulations from different Representative Concentration Pathway (RCP scenarios (RCP2.6, RCP4.5 and RCP8.5 for 2050. Historical station observations (1960-2000 at Nuxia and model simulations for two periods (2006-2009 and 2050 are combined to study inter-annual and intra-annual runoff distribution and variability. The inter-annual runoff variation is stable and the coefficient of variation (CV varies from 0.21 to 0.27. In contrast, the intra-annual runoff varies significantly with runoff in summer and autumn accounting for more than 80% of the total amount. Compared to the historical period (1960-2000, the present period (2006-2009 has a slightly uneven intra-annual runoff temporal distribution, and becomes more

  12. Estimation of reservoir inflow in data scarce region by using Sacramento rainfall runoff model - A case study for Sittaung River Basin, Myanmar

    Science.gov (United States)

    Myo Lin, Nay; Rutten, Martine

    2017-04-01

    The Sittaung River is one of four major rivers in Myanmar. This river basin is developing fast and facing problems with flood, sedimentation, river bank erosion and salt intrusion. At present, more than 20 numbers of reservoirs have already been constructed for multiple purposes such as irrigation, domestic water supply, hydro-power generation, and flood control. The rainfall runoff models are required for the operational management of this reservoir system. In this study, the river basin is divided into (64) sub-catchments and the Sacramento Soil Moisture Accounting (SAC-SMA) models are developed by using satellite rainfall and Geographic Information System (GIS) data. The SAC-SMA model has sixteen calibration parameters, and also uses a unit hydrograph for surface flow routing. The Sobek software package is used for SAC-SMA modelling and simulation of river system. The models are calibrated and tested by using observed discharge and water level data. The statistical results show that the model is applicable to use for data scarce region. Keywords: Sacramento, Sobek, rainfall runoff, reservoir

  13. The Potential Role of Neglected and Underutilised Crop Species as Future Crops under Water Scarce Conditions in Sub-Saharan Africa

    Science.gov (United States)

    Chivenge, Pauline; Mabhaudhi, Tafadzwanashe; Modi, Albert T.; Mafongoya, Paramu

    2015-01-01

    Modern agricultural systems that promote cultivation of a very limited number of crop species have relegated indigenous crops to the status of neglected and underutilised crop species (NUCS). The complex interactions of water scarcity associated with climate change and variability in sub-Saharan Africa (SSA), and population pressure require innovative strategies to address food insecurity and undernourishment. Current research efforts have identified NUCS as having potential to reduce food and nutrition insecurity, particularly for resource poor households in SSA. This is because of their adaptability to low input agricultural systems and nutritional composition. However, what is required to promote NUCS is scientific research including agronomy, breeding, post-harvest handling and value addition, and linking farmers to markets. Among the essential knowledge base is reliable information about water utilisation by NUCS with potential for commercialisation. This commentary identifies and characterises NUCS with agronomic potential in SSA, especially in the semi-arid areas taking into consideration inter alia: (i) what can grow under water-scarce conditions, (ii) water requirements, and (iii) water productivity. Several representative leafy vegetables, tuber crops, cereal crops and grain legumes were identified as fitting the NUCS category. Agro-biodiversity remains essential for sustainable agriculture. PMID:26016431

  14. The Potential Role of Neglected and Underutilised Crop Species as Future Crops under Water Scarce Conditions in Sub-Saharan Africa

    Directory of Open Access Journals (Sweden)

    Pauline Chivenge

    2015-05-01

    Full Text Available Modern agricultural systems that promote cultivation of a very limited number of crop species have relegated indigenous crops to the status of neglected and underutilised crop species (NUCS. The complex interactions of water scarcity associated with climate change and variability in sub-Saharan Africa (SSA, and population pressure require innovative strategies to address food insecurity and undernourishment. Current research efforts have identified NUCS as having potential to reduce food and nutrition insecurity, particularly for resource poor households in SSA. This is because of their adaptability to low input agricultural systems and nutritional composition. However, what is required to promote NUCS is scientific research including agronomy, breeding, post-harvest handling and value addition, and linking farmers to markets. Among the essential knowledge base is reliable information about water utilisation by NUCS with potential for commercialisation. This commentary identifies and characterises NUCS with agronomic potential in SSA, especially in the semi-arid areas taking into consideration inter alia: (i what can grow under water-scarce conditions, (ii water requirements, and (iii water productivity. Several representative leafy vegetables, tuber crops, cereal crops and grain legumes were identified as fitting the NUCS category. Agro-biodiversity remains essential for sustainable agriculture.

  15. Informe

    Directory of Open Access Journals (Sweden)

    Egon Lichetenberger

    1950-10-01

    Full Text Available Informe del doctor Egon Lichetenberger ante el Consejo Directivo de la Facultad, sobre el  curso de especialización en Anatomía Patológica patrocinado por la Kellogg Foundation (Departamento de Patología

  16. Reliability analysis of meteorological data registered during nuclear power plant normal operation

    International Nuclear Information System (INIS)

    Amado, V.; Ulke, A.; Marino, B.; Thomas, L.

    2011-01-01

    The atmosphere is the environment in which gaseous radioactive discharges from nuclear power plants are transported. It is therefore essential to have reliable meteorological information to characterize the dispersion and feed evaluation models and radiological environmental impact during normal operation of the plant as well as accidental releases. In this way it is possible to determine the effects on the environment and in humans. The basic data needed to represent adequately the local weather include air temperature, wind speed and direction, rainfall, humidity and pressure. On the other hand, specific data consistent with the used model is required to determine the turbulence, for instance, radiation, cloud cover and vertical temperature gradient. It is important that the recorded data are representative of the local meteorology. This requires, first, properly placed instruments, that should be kept in operation and undergoing maintenance on a regular basis. Second, but equally substantial, a thorough analysis of its reliability must be performed prior to storage and/or data processing. In this paper we present the main criteria to consider choosing the location of a meteorological tower in the area of a nuclear power plant and propose a methodology for assessing the reliability of recorded data. The methodology was developed from the analysis of meteorological data registered in nuclear power plants in Argentina. (authors) [es

  17. PROMET - The Journal of Meteorological Education issued by DWD

    Science.gov (United States)

    Rapp, J.

    2009-09-01

    Promet is published by the German Meteorological Service (DWD) since 1971 to improve meteorologists and weather forecasters skills. The journal comprises mainly contributions to topics like biometeorology, the NAO, or meteorology and insurance business. The science-based articles should illustrate the special issue in an understandable and transparent way. In addition, the journal contains portraits of other national meteorological services and university departments, book reviews, list of university degrees, and other individual papers. Promet is published only in German language, but included English titles and abstracts. The journal is peer-reviewed by renowned external scientists. It is distributed free of charge by DWD to the own meteorological staff. On the other hand, DMG (the German Meteorological Society) hand it out to all members of the society. The current issues deal with "Modern procedures of weather forecasting in DWD” and "E-Learning in Meteorology”.

  18. The data collection component of the Hanford Meteorology Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    Glantz, C.S.; Islam, M.M.

    1988-09-01

    An intensive program of meteorological monitoring is in place at the US Department of Energy's Hanford Site. The Hanford Meteorology Monitoring Program involves the measurement, observation, and storage of various meteorological data; continuous monitoring of regional weather conditions by a staff of professional meteorologists; and around-the-clock forecasting of weather conditions for the Hanford Site. The objective of this report is to document the data collection component of the program. In this report, each meteorological monitoring site is discussed in detail. Each site's location and instrumentation are described and photographs are presented. The methods for processing and communicating data to the Hanford Meteorology Station are also discussed. Finally, the procedures followed to maintain and calibrate these instruments are presented. 2 refs., 83 figs., 15 tabs.

  19. Synopsis of TC4 Missions and Meteorology

    Science.gov (United States)

    Starr, D.; Pfister, L.; Selkirk, H.; Nguyen, L.

    2007-12-01

    The TC4 (Tropical Composition, Clouds and Climate Coupling) Experiment conducted 26 aircraft sorties on 13 flight days from July 17 to August 8, 2007 (23 days). Quality science observations were also obtained during the transit flights to/from from San Jose, Costa Rica, where the mission was based. On 9 days, coordinated aircraft missions were flown with the NASA ER-2 and DC-8, and with the NASA WB-57 on 3 occasions (and transit flights). The ER-2 served as an A-Train simulator (MODIS, CloudSat, CALIPSO, AIRS/TES, partial AMSR-E) while the WB-57 provided in-situ measurements of upper tropospheric cloud particles, aerosols and trace gases. The DC-8 provided both in-situ and remote sensing measurements, where the latter were focused on Aura validation, and also including a down-looking scanning precipitation radar (TRMM PR simulator). This paper will provide a synopsis of the science observations that were obtained, as regards the clouds and cloud systems sampled, from a meteorological perspective. A diversity of clouds were sampled and the meteorology proved more interesting than expected, at least to this author. Upper tropospheric cirrus outflows were sampled from a number of convective cloud systems including ITCZ-type systems as well as systems close to and affected by land. The low level inflows to these systems were also sampled in some cases (DC-8) and missions were flown to sample stratocumulus clouds over the Pacific Ocean exploiting the unique instrumentation on the DC-8 to add to the knowledge of these clouds which are so important to the Earth radiation budget. Measurements were made in the tropical Tropopause Transition Layer (TTL) by the WB-57. Upper tropospheric clouds and TTL properties and processes were central TC4 objectives. Excellent data were also obtained on the fate of the Saharan Air Layer and its aerosols over the Caribbean and Central America, as well as samples of plumes from volcanoes in Ecuador and Columbia and biogenic emissions over

  20. The meteorological monitoring audit, preventative maintenance and quality assurance programs at a former nuclear weapons facility

    International Nuclear Information System (INIS)

    Maxwell, D.R.

    1995-01-01

    The purposes of the meteorological monitoring audit, preventative maintenance, and quality assurance programs at the Rocky Flats Environmental Technology Site (Site), are to (1) support Emergency Preparedness (EP) programs at the Site in assessing the transport, dispersion, and deposition of effluents actually or potentially released into the atmosphere by Site operations; and (2) provide information for onsite and offsite projects concerned with the design of environmental monitoring networks for impact assessments, environmental surveillance activities, and remediation activities. The risk from the Site includes chemical and radioactive emissions historically related to nuclear weapons component production activities that are currently associated with storage of large quantities of radionuclides (plutonium) and radioactive waste forms. The meteorological monitoring program provides information for site-specific weather forecasting, which supports Site operations, employee safety, and Emergency Preparedness operations

  1. Operational early warning platform for extreme meteorological events

    Science.gov (United States)

    Mühr, Bernhard; Kunz, Michael

    2015-04-01

    Operational early warning platform for extreme meteorological events Most natural disasters are related to extreme weather events (e.g. typhoons); weather conditions, however, are also highly relevant for humanitarian and disaster relief operations during and after other natural disaster like earthquakes. The internet service "Wettergefahren-Frühwarnung" (WF) provides various information on extreme weather events, especially when these events are associated with a high potential for large damage. The main focus of the platform is on Central Europe, but major events are also monitored worldwide on a daily routine. WF provides high-resolution forecast maps for many weather parameters which allow detailed and reliable predictions about weather conditions during the next days in the affected areas. The WF service became operational in February 2004 and is part of the Center for Disaster Management and Risk Reduction Technology (CEDIM) since 2007. At the end of 2011, CEDIM embarked a new type of interdisciplinary disaster research termed as forensic disaster analysis (FDA) in near real time. In case of an imminent extreme weather event WF plays an important role in CEDIM's FDA group. It provides early and precise information which are always available and updated several times during a day and gives advice and assists with articles and reports on extreme events.

  2. Sea-air boundary meteorological sensor

    Science.gov (United States)

    Barbosa, Jose G.

    2015-05-01

    The atmospheric environment can significantly affect radio frequency and optical propagation. In the RF spectrum refraction and ducting can degrade or enhance communications and radar coverage. Platforms in or beneath refractive boundaries can exploit the benefits or suffer the effects of the atmospheric boundary layers. Evaporative ducts and surface-base ducts are of most concern for ocean surface platforms and evaporative ducts are almost always present along the sea-air interface. The atmospheric environment also degrades electro-optical systems resolution and visibility. The atmospheric environment has been proven not to be uniform and under heterogeneous conditions substantial propagation errors may be present for large distances from homogeneous models. An accurate and portable atmospheric sensor to profile the vertical index of refraction is needed for mission planning, post analysis, and in-situ performance assessment. The meteorological instrument used in conjunction with a radio frequency and electro-optical propagation prediction tactical decision aid tool would give military platforms, in real time, the ability to make assessments on communication systems propagation ranges, radar detection and vulnerability ranges, satellite communications vulnerability, laser range finder performance, and imaging system performance predictions. Raman lidar has been shown to be capable of measuring the required atmospheric parameters needed to profile the atmospheric environment. The atmospheric profile could then be used as input to a tactical decision aid tool to make propagation predictions.

  3. Meteorological and snow distribution data in the Izas Experimental Catchment (Spanish Pyrenees) from 2011 to 2017

    Science.gov (United States)

    Revuelto, Jesús; Azorin-Molina, Cesar; Alonso-González, Esteban; Sanmiguel-Vallelado, Alba; Navarro-Serrano, Francisco; Rico, Ibai; López-Moreno, Juan Ignacio

    2017-12-01

    This work describes the snow and meteorological data set available for the Izas Experimental Catchment in the Central Spanish Pyrenees, from the 2011 to 2017 snow seasons. The experimental site is located on the southern side of the Pyrenees between 2000 and 2300 m above sea level, covering an area of 55 ha. The site is a good example of a subalpine environment in which the evolution of snow accumulation and melt are of major importance in many mountain processes. The climatic data set consists of (i) continuous meteorological variables acquired from an automatic weather station (AWS), (ii) detailed information on snow depth distribution collected with a terrestrial laser scanner (TLS, lidar technology) for certain dates across the snow season (between three and six TLS surveys per snow season) and (iii) time-lapse images showing the evolution of the snow-covered area (SCA). The meteorological variables acquired at the AWS are precipitation, air temperature, incoming and reflected solar radiation, infrared surface temperature, relative humidity, wind speed and direction, atmospheric air pressure, surface temperature (snow or soil surface), and soil temperature; all were taken at 10 min intervals. Snow depth distribution was measured during 23 field campaigns using a TLS, and daily information on the SCA was also retrieved from time-lapse photography. The data set (https://doi.org/10.5281/zenodo.848277) is valuable since it provides high-spatial-resolution information on the snow depth and snow cover, which is particularly useful when combined with meteorological variables to simulate snow energy and mass balance. This information has already been analyzed in various scientific studies on snow pack dynamics and its interaction with the local climatology or topographical characteristics. However, the database generated has great potential for understanding other environmental processes from a hydrometeorological or ecological perspective in which snow dynamics play a

  4. An Ethical Framework for Allocating Scarce Life-Saving Chemotherapy and Supportive Care Drugs for Childhood Cancer.

    Science.gov (United States)

    Unguru, Yoram; Fernandez, Conrad V; Bernhardt, Brooke; Berg, Stacey; Pyke-Grimm, Kim; Woodman, Catherine; Joffe, Steven

    2016-06-01

    Shortages of life-saving chemotherapy and supportive care agents for children with cancer are frequent. These shortages directly affect patients' lives, compromise both standard of care therapies and clinical research, and create substantial ethical challenges. Efforts to prevent drug shortages have yet to gain traction, and existing prioritization frameworks lack concrete guidance clinicians need when faced with difficult prioritization decisions among equally deserving children with cancer. The ethical framework proposed in this Commentary is based upon multidisciplinary expert opinion, further strengthened by an independent panel of peer consultants. The two-step allocation process includes strategies to mitigate existing shortages by minimizing waste and addresses actual prioritization across and within diseases according to a modified utilitarian model that maximizes total benefit while respecting limited constraints on differential treatment of individuals. The framework provides reasoning for explicit decision-making in the face of an actual drug shortage. Moreover, it minimizes bias that might occur when individual clinicians or institutions are forced to make bedside rationing and prioritization decisions and addresses the challenge that individual clinicians face when confronted with bedside decisions regarding allocation. Whenever possible, allocation decisions should be supported by evidence-based recommendations. "Curability," prognosis, and the incremental importance of a particular drug to a given patient's outcome are the critical factors to consider when deciding how to allocate scarce life-saving cancer drugs. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Valuing lives and allocating resources: a defense of the modified youngest first principle of scarce resource distribution.

    Science.gov (United States)

    Tallman, Ruth

    2014-06-01

    In this paper, I argue that the 'modified youngest first' principle provides a morally appropriate criterion for making decisions regarding the distribution of scarce medical resources, and that it is morally preferable to the simple 'youngest first' principle. Based on the complete lives system's goal of maximizing complete lives rather than individual life episodes, I argue that essential to the value we see in complete lives is the first person value attributed by the experiencer of that life. For a life to be 'complete' or 'incomplete,' the subject of that life must be able to understand the concept of a complete life, to have started goals and projects, and to know what it would be for that life to be complete. As the very young are not able to do this, it can reasonably be said that their characteristically human lives have not yet begun, giving those accepting a complete lives approach good reason to accept the modified youngest first principle over a simple 'youngest first' approach. © 2012 John Wiley & Sons Ltd.

  6. Round table discussion " Development of qualification framework in meteorology (TEMPUS QUALIMET)"

    Science.gov (United States)

    Bashmakova, I.; Belotserkovsky, A.; Karlin, L.; Petrosyan, A.; Serditova, N.; Zilitinkevich, S.

    2010-09-01

    The international consortium has started implementing a project aimed at the development of unified framework of qualifications in meteorology (QualiMet), setting a system of recognition and award of qualifications up to Doctoral level based on standards of knowledge, skill and competence acquired by learners is underway. The QualiMet has the following specific objectives: 1. To develop standards of knowledge, skills and competence for all qualifications up to Doctoral level needed in all possible occupations meteorology learner can undertake, by July 2011 2. To develop reciprocally recognized rubrics, criteria, methods and tools for assessing the compliance with the developed standards (quality assurance), by July 2012 3. To set the network of Centers of Excellence as the primary designer of sample education programs and learning experiences, both in brick-and-mortar and distant setting of delivery, leading to achievement of the developed standards, by December 2012 4. To set a system of mutual international recognition and award of qualifications in meteorology based on the developed procedures and establishment of self-regulatory public organization, by December 2012 The main beneficiaries of the project are: 1. Meteorology learners from the consortium countries. They will be able to make informed decisions about available qualification choices and progression options and provided an opportunity for students and graduates to participate in the system of international continuous education. 2. Meteorology employers from the consortium countries, They will be able to specify the level of knowledge, skill and competence required for occupational roles, evaluate qualifications presented, connect training and development with business needs. 3. Students and academic staff of all the consortium members, who will gain the increased mobility and exchange the fluxes of culturally and institutionally diversified lecturers and qualified specialists

  7. European meteorological data: contribution to research, development, and policy support

    Science.gov (United States)

    Biavetti, Irene; Karetsos, Sotiris; Ceglar, Andrej; Toreti, Andrea; Panagos, Panos

    2014-08-01

    The Joint Research Centre of the European Commission has developed Interpolated Meteorological Datasets available on a regular 25x25km grid both to the scientific community and the general public. Among others, the Interpolated Meteorological Datasets include daily maximum/minimum temperature, cumulated daily precipitation, evapotranspiration and wind speed. These datasets can be accessed through a web interface after a simple registration procedure. The Interpolated Meteorological Datasets also serve the Crop Growth Monitoring System (CGMS) at European level. The temporal coverage of the datasets is more than 30 years and the spatial coverage includes EU Member States, neighboring European countries, and the Mediterranean countries. The meteorological data are highly relevant for the development, implementation and assessment of a number of European Union (EU) policy areas: agriculture, soil protection, environment, agriculture, food security, energy, climate change. An online user survey has been carried out in order to assess the impact of the Interpolated Meteorological Datasets on research developments. More than 70% of the users have used the meteorological datasets for research purposes and more than 50% of the users have used those sources as main input for their models. The usefulness of the data scored more than 70% and it is interesting to note that around 25% of the users have published their scientific outputs based on the Interpolated Meteorological Datasets. Finally, the user feedback focuses mostly on improving the data distribution process as well as the visibility of the web platform.

  8. On the early history of the Finnish Meteorological Institute

    Science.gov (United States)

    Nevanlinna, H.

    2014-03-01

    This article is a review of the foundation (in 1838) and later developments of the Helsinki (Finland) magnetic and meteorological observatory, today the Finnish Meteorological Institute (FMI). The main focus of the study is in the early history of the FMI up to the beginning of the 20th century. The first director of the observatory was Physics Professor Johan Jakob Nervander (1805-1848). He was a famous person of the Finnish scientific, academic and cultural community in the early decades of the 19th century. Finland was an autonomously part of the Russian Empire from 1809 to 1917, but the observatory remained organizationally under the University of Helsinki, independent of Russian scientific institutions, and funded by the Finnish Government. Throughout the late-19th century the Meteorological Institute was responsible of nationwide meteorological, hydrological and marine observations and research. The observatory was transferred to the Finnish Society of Sciences and Letters under the name the Central Meteorological Institute in 1881. The focus of the work carried out in the Institute was changed gradually towards meteorology. Magnetic measurements were still continued but in a lower level of importance. The culmination of Finnish geophysical achievements in the 19th century was the participation to the International Polar Year programme in 1882-1883 by setting up a full-scale meteorological and magnetic observatory in Sodankylä, Lapland.

  9. Real-time meteorological data flow in support of TVA's radiological emergency plan

    International Nuclear Information System (INIS)

    Hunter, C.H.; Pittman, D.E.; Malo, J.E.

    1985-01-01

    The Tennessee Valley Authority (TVA) presently operates two nuclear power plants - Browns Ferry (3 units) and Sequoyah (2 units). Two additional plants are under construction. These are Watts Bar scheduled for commercial operation later this year, and Bellefonte (2 units), scheduled for operation near the end of the decade. Under regulations promulgated under 10 CFR Part 50, TVA has developed a Radiological Emergency Plan (REP) to facilitate assessment of the effects of a radiological accident at any of the operational plants. As part of the REP, TVA has developed a system for collecting, displaying, and reviewing, and disseminating real-time meteorological information collected at the nuclear plant sites. The flow of this information must be reliable and continuous so that prompt, informed decisions are possible. This system has been designed using guidance provided in applicable Nuclear Regulatory Commission (NRC) documents, most notably Supplement 1 to NUREG-0737 and Regularoty Guide (R.G.) 1.23. This paper presents a brief description of the REP meteorological support. Meteorological support for nuclear plant emergency preparedness at TVA nuclear plants has been provided for several years. The system has undergone numerous changes during this time, reflecting changes in regulatory guidance and experience gained in implementing the system through numerous drills and exercises. A brief discussion of some of this experience is also presented

  10. Six- and three-hourly meteorological observations from 223 USSR stations

    Energy Technology Data Exchange (ETDEWEB)

    Razuvaev, V.N.; Apasova, E.B.; Martuganov, R.A. [All-Russian Research Inst. of Hydrometeorologicl Information, Obninsk (Russia). World Data Centre; Kaiser, D.P. [Oak Ridge National Lab., TN (United States)

    1995-04-01

    This document describes a database containing 6- and 3-hourly meteorological observations from a 223-station network of the former Soviet Union. These data have been made available through cooperation between the two principal climate data centers of the United States and Russia: the National Climatic Data Center (NCDC), in Asheville, North Carolina, and the All-Russian Research Institute of Hydrometeorological Information -- World Data Centre (RIHMI-WDC) in Obninsk. Station records consist of 6- and 3-hourly observations of some 24 meteorological variables including temperature, weather type, precipitation amount, cloud amount and type, sea level pressure, relative humidity, and wind direction and speed. The 6-hourly observations extend from 1936 to 1965; the 3-hourly observations extend from 1966 through the mid-1980s (1983, 1984, 1985, or 1986; depending on the station). These data have undergone extensive quality assurance checks by RIHMI-WDC, NCDC, and the Carbon Dioxide Information Analysis Center (CDIAC). The database represents a wealth of meteorological information for a large and climatologically important portion of the earth`s land area, and should prove extremely useful for a wide variety of regional climate change studies. These data are available free of charge as a numeric data package (NDP) from CDIAC. The NDP consists of this document and 40 data files that are available via the Internet or on 8mm tape. The total size of the database is {approximately}2.6 gigabytes.

  11. Meteorology and lidar data from the URAHFREP field trials

    DEFF Research Database (Denmark)

    Ott, Søren; Ejsing Jørgensen, Hans

    2002-01-01

    to the HF release. The instrumentation included various types of HF sensors, thermocouple arrays, a fully instrumented release rig, a passive smokemachine, a meteorological mast and a lidar backscatter system. This report deals exclusively with the meteorological data and the lidar data. The trials cover...... a range meteorological conditions. These include neutral conditions with relatively highwindspeed and low humidity as well as unstable conditions with low windspeed and high humidity, the most favorable conditions for lift-off to occur. The lidar was used to scan vertical cross-plume slices 100 meter...

  12. Evolutionary Forecast Engines for Solar Meteorology

    Science.gov (United States)

    Coimbra, C. F.

    2012-12-01

    A detailed comparison of non-stationary regression and stochastic learning methods based on k-Nearest Neighbor (kNN), Artificial Neural Networks (ANN) and Genetic Algorithm (GA) approaches is carried out in order to develop high-fidelity solar forecast engines for several time horizons of interest. A hybrid GA/ANN method emerges as the most robust stochastic learning candidate. The GA/ANN approach In general the following decisions need to be made when creating an ANN-based solar forecast model: the ANN architecture: number of layers, numbers of neurons per layer; the preprocessing scheme; the fraction and distribution between training and testing data, and the meteorological and radiometric inputs. ANNs are very well suited to handle multivariate forecasting models due to their overall flexibility and nonlinear pattern recognition abilities. However, the forecasting skill of ANNs depends on a new set of parameters to be optimized within the context of the forecast model, which is the selection of input variables that most directly impact the fidelity of the forecasts. In a data rich scenario where irradiation, meteorological, and cloud cover data are available, it is not always evident which variables to include in the model a priori. New variables can also arise from data preprocessing such as smoothing or spectral decomposition. One way to avoid time-consuming trial-and-error approaches that have limited chance to result in optimal ANN topology and input selection is to couple the ANN with some optimization algorithm that scans the solution space and "evolves" the ANN structure. Genetic Algorithms (GAs) are well suited for this task. Results and Discussion The models built upon the historical data of 2009 and 2010 are applied to the 2011 data without modifications or retraining. We consider 3 solar variability seasons or periods, which are subsets of the total error evaluation data set. The 3 periods are defined based on the solar variability study as: - a high

  13. Site evaluation using measured meteorology data

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R. E.; Rusche, B. C. [Savannah River Lab., E.I. du Pont de Nemours and Co., Aiken, South Carolina (United States)

    1967-07-01

    A key factor in reactor site evaluation is the frequency of occurrence of various dispersion conditions and this relationship to potential off-site doses following a reactor accident. Detailed measurements of the wind speed, wind direction, and temperature at heights up to 1200 ft at the Savannah River Plant form the basis for a comprehensive analysis of the frequency of occurrence of potential off-site doses. A complete set of data was taken about every five minutes, and 107,000 sets (about one year of data) were analyzed. The meteorology data were converted to ordinary dispersion parameters through correlating equations developed at Brookhaven National Laboratory. The results were expressed on curves in dose per unit release of activity vs distance from the reactor with probability of occurrence as a parameter. Separate sets of curves were calculated for releases of noble gas and of halogens and at release heights of 200 ft (a nominal stack height) and of 850 ft (about the height of the tallest power plant stacks). Additional curves were developed to show dose as a function of direction and probability of occurrence. In addition to the dose frequency distribution analyses performed as a function of height of release, direction, and distance; more conventional frequency distributions of wind speed, wind direction, and thermal stability were developed as a function of height. All the analyses were carried out on the IBM 360/65. These results represent the first known analysis utilizing data up to 1200 ft and taken often enough to develop reliable frequency distributions for a short term release. (author)

  14. Meteorological phenomena in Western classical orchestral music

    Science.gov (United States)

    Williams, P. D.; Aplin, K. L.

    2012-12-01

    The creative output of composers, writers, and artists is often influenced by their surroundings. To give a literary example, it has been claimed recently that some of the characters in Oliver Twist and A Christmas Carol were based on real-life people who lived near Charles Dickens in London. Of course, an important part of what we see and hear is not only the people with whom we interact, but also our geophysical surroundings. Of all the geophysical phenomena to influence us, the weather is arguably the most significant, because we are exposed to it directly and daily. The weather was a great source of inspiration for Monet, Constable, and Turner, who are known for their scientifically accurate paintings of the skies. But to what extent does weather inspire composers? The authors of this presentation, who are atmospheric scientists by day but amateur classical musicians by night, have been contemplating this question. We have built a systematic musical database, which has allowed us to catalogue and analyze the frequencies with which weather is depicted in a sample of classical orchestral music. The depictions vary from explicit mimicry using traditional and specialized orchestral instruments, through to subtle suggestions. We have found that composers are generally influenced by their own environment in the type of weather they choose to represent. As befits the national stereotype, British composers seem disproportionately keen to depict the UK's variable weather patterns and stormy coastline. Reference: Aplin KL and Williams PD (2011) Meteorological phenomena in Western classical orchestral music. Weather, 66(11), pp 300-306. doi:10.1002/wea.765

  15. Lightning Jump Algorithm and Relation to Thunderstorm Cell Tracking, GLM Proxy and Other Meteorological Measurements

    Science.gov (United States)

    Schultz, Christopher J.; Carey, Lawrence D.; Cecil, Daniel J.; Bateman, Monte

    2012-01-01

    The lightning jump algorithm has a robust history in correlating upward trends in lightning to severe and hazardous weather occurrence. The algorithm uses the correlation between the physical principles that govern an updraft's ability to produce microphysical and kinematic conditions conducive for electrification and its role in the development of severe weather conditions. Recent work has demonstrated that the lightning jump algorithm concept holds significant promise in the operational realm, aiding in the identification of thunderstorms that have potential to produce severe or hazardous weather. However, a large amount of work still needs to be completed in spite of these positive results. The total lightning jump algorithm is not a stand-alone concept that can be used independent of other meteorological measurements, parameters, and techniques. For example, the algorithm is highly dependent upon thunderstorm tracking to build lightning histories on convective cells. Current tracking methods show that thunderstorm cell tracking is most reliable and cell histories are most accurate when radar information is incorporated with lightning data. In the absence of radar data, the cell tracking is a bit less reliable but the value added by the lightning information is much greater. For optimal application, the algorithm should be integrated with other measurements that assess storm scale properties (e.g., satellite, radar). Therefore, the recent focus of this research effort has been assessing the lightning jump's relation to thunderstorm tracking, meteorological parameters, and its potential uses in operational meteorology. Furthermore, the algorithm must be tailored for the optically-based GOES-R Geostationary Lightning Mapper (GLM), as what has been observed using Very High Frequency Lightning Mapping Array (VHF LMA) measurements will not exactly translate to what will be observed by GLM due to resolution and other instrument differences. Herein, we present some of

  16. Application of WRF/Chem-MADRID and WRF/Polyphemus in Europe - Part 1: Model description, evaluation of meteorological predictions, and aerosol-meteorology interactions

    Science.gov (United States)

    Zhang, Y.; Sartelet, K.; Wu, S.-Y.; Seigneur, C.

    2013-07-01

    Comprehensive model evaluation and comparison of two 3-D air quality modeling systems (i.e., the Weather Research and Forecast model (WRF)/Polyphemus and WRF with chemistry and the Model of Aerosol Dynamics, Reaction, Ionization, and Dissolution (MADRID) (WRF/Chem-MADRID)) are conducted over Western Europe. Part 1 describes the background information for the model comparison and simulation design, the application of WRF for January and July 2001 over triple-nested domains in Western Europe at three horizontal grid resolutions: 0.5°, 0.125°, and 0.025°, and the effect of aerosol/meteorology interactions on meteorological predictions. Nine simulated meteorological variables (i.e., downward shortwave and longwave radiation fluxes (SWDOWN and LWDOWN), outgoing longwave radiation flux (OLR), temperature at 2 m (T2), specific humidity at 2 m (Q2), relative humidity at 2 m (RH2), wind speed at 10 m (WS10), wind direction at 10 m (WD10), and precipitation (Precip)) are evaluated using available observations in terms of spatial distribution, domainwide daily and site-specific hourly variations, and domainwide performance statistics. The vertical profiles of temperature, dew points, and wind speed/direction are also evaluated using sounding data. WRF demonstrates its capability in capturing diurnal/seasonal variations and spatial gradients and vertical profiles of major meteorological variables. While the domainwide performance of LWDOWN, OLR, T2, Q2, and RH2 at all three grid resolutions is satisfactory overall, large positive or negative biases occur in SWDOWN, WS10, and Precip even at 0.125° or 0.025° in both months and in WD10 in January. In addition, discrepancies between simulations and observations exist in T2, Q2, WS10, and Precip at mountain/high altitude sites and large urban center sites in both months, in particular, during snow events or thunderstorms. These results indicate the model's difficulty in capturing meteorological variables in complex terrain and

  17. Application of WRF/Chem-MADRID and WRF/Polyphemus in Europe – Part 1: Model description, evaluation of meteorological predictions, and aerosol–meteorology interactions

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2013-07-01

    Full Text Available Comprehensive model evaluation and comparison of two 3-D air quality modeling systems (i.e., the Weather Research and Forecast model (WRF/Polyphemus and WRF with chemistry and the Model of Aerosol Dynamics, Reaction, Ionization, and Dissolution (MADRID (WRF/Chem-MADRID are conducted over Western Europe. Part 1 describes the background information for the model comparison and simulation design, the application of WRF for January and July 2001 over triple-nested domains in Western Europe at three horizontal grid resolutions: 0.5°, 0.125°, and 0.025°, and the effect of aerosol/meteorology interactions on meteorological predictions. Nine simulated meteorological variables (i.e., downward shortwave and longwave radiation fluxes (SWDOWN and LWDOWN, outgoing longwave radiation flux (OLR, temperature at 2 m (T2, specific humidity at 2 m (Q2, relative humidity at 2 m (RH2, wind speed at 10 m (WS10, wind direction at 10 m (WD10, and precipitation (Precip are evaluated using available observations in terms of spatial distribution, domainwide daily and site-specific hourly variations, and domainwide performance statistics. The vertical profiles of temperature, dew points, and wind speed/direction are also evaluated using sounding data. WRF demonstrates its capability in capturing diurnal/seasonal variations and spatial gradients and vertical profiles of major meteorological variables. While the domainwide performance of LWDOWN, OLR, T2, Q2, and RH2 at all three grid resolutions is satisfactory overall, large positive or negative biases occur in SWDOWN, WS10, and Precip even at 0.125° or 0.025° in both months and in WD10 in January. In addition, discrepancies between simulations and observations exist in T2, Q2, WS10, and Precip at mountain/high altitude sites and large urban center sites in both months, in particular, during snow events or thunderstorms. These results indicate the model's difficulty in capturing meteorological variables in complex

  18. Tornado frequency in the USA - meteorological and non-meteorological factors of a downward trend

    Directory of Open Access Journals (Sweden)

    Mihajlović Jovan

    2015-01-01

    Full Text Available Citing numerical simulations, climate alarmists believe that global warming will lead to more frequent and more intensive tornadoes. Considering temperature increase data in the contiguous USA, this study has investigated the trend of strong tornadoes in F3+ category in the 1954-2012 period. Statistically significant decrease of tornadoes per year at an average rate of 0.44 has been recorded, that is, 4.4 tornadoes per decade. Tornado increase has been recorded with F0 and F1 categories and the cause of this increase lies in meteorological and non-meteorological factors. By using upper and lower standard deviation values, the stages of tornado activity have been singled out. The 1957-1974 period may be considered as an active stage and the 1978-2009 period as an inactive stage. Upward trend of air temperature increase does not correspond with the downward trend of the number of F3+ tornado category, while the correlation coefficient between these two variables is R = −0.14. This fact does not correspond with the simulation results and output data of various numerical models anticipating an increase in the number and intensity of tornado events in the conditions of surface air temperature growth.

  19. Assessing food security in water scarce regions by Life Cycle Analysis: a case study in the Gaza strip

    Science.gov (United States)

    Recanati, Francesca; Castelletti, Andrea; Melià, Paco; Dotelli, Giovanni

    2013-04-01

    Food security is a major issue in Palestine for both political and physical reasons, with direct effects on the local population living conditions: the nutritional level of people in Gaza is classified by FAO as "insecure". As most of the protein supply comes from irrigated agricultural production and aquaculture, freshwater availability is a limiting factor to food security, and the primary reason for frequent conflicts among food production processes (e.g. aquaculture, land livestock or different types of crops). In this study we use Life Cycle Analysis to assess the environmental impacts associated to all the stages of water-based protein production (from agriculture and aquaculture) in the Gaza strip under different agricultural scenarios and hydroclimatic variability. As reported in several recent studies, LCA seems to be an appropriate methodology to analyze agricultural systems and assess associated food security in different socio-economic contexts. However, we argue that the inherently linear and static nature of LCA might prove inadequate to tackle with the complex interaction between water cycle variability and the food production system in water-scarce regions of underdeveloped countries. Lack of sufficient and reliable data to characterize the water cycle is a further source of uncertainty affecting the robustness of the analysis. We investigate pros and cons of LCA and LCA-based option planning in an average size farm in Gaza strip, where farming and aquaculture are family-based and integrated by reuse of fish breeding water for irrigation. Different technological solutions (drip irrigation system, greenhouses etc.) are evaluated to improve protein supply and reduce the pressure on freshwater, particularly during droughts. But this use of technology represent also a contribution in increasing sustainability in agricultural processes, and therefore in economy, of Gaza Strip (reduction in chemical fertilizers and pesticides etc.).

  20. Development of a hydrogeological conceptual wetland model in the data-scarce north-eastern region of Kilombero Valley, Tanzania

    Science.gov (United States)

    Burghof, Sonja; Gabiri, Geofrey; Stumpp, Christine; Chesnaux, Romain; Reichert, Barbara

    2018-02-01

    Understanding groundwater/surface-water interactions in wetlands is crucial because wetlands provide not only a high potential for agricultural production, but also sensitive and valuable ecosystems. This is especially true for the Kilombero floodplain wetland in Tanzania, which represents a data-scarce region in terms of hydrological and hydrogeological data. A comprehensive approach combining hydrogeological with tracer-based assessments was conducted, in order to develop a conceptual hydrogeological wetland model of the area around the city of Ifakara in the north-eastern region of Kilombero catchment. Within the study site, a heterogeneous porous aquifer, with a range of hydraulic conductivities, is underlain by a fractured-rock aquifer. Groundwater chemistry is mainly influenced by silicate weathering and depends on groundwater residence times related to the hydraulic conductivities of the porous aquifer. Groundwater flows from the hillside to the river during most of the year. While floodwater close to the river is mainly derived from overbank flow of the river, floodwater at a greater distance from the river mainly originates from precipitation and groundwater discharge. Evaporation effects in floodwater increase with increasing distance from the river. In general, the contribution of flood and stream water to groundwater recharge is negligible. In terms of an intensification of agricultural activities in the wetland, several conclusions can be drawn from the conceptual model. Results of this study are valuable as a base for further research related to groundwater/surface-water interactions and the conceptual model can be used in the future to set up numerical flow and transport models.

  1. Relationships between regional economic sectors and water use in a water-scarce area in China: A quantitative analysis

    Science.gov (United States)

    Wang, Weiping; Gao, Lei; Liu, Pin; Hailu, Atakelty

    2014-07-01

    Northern China has been facing severe water scarcity as a result of vigorous economic growth, population expansion and changing lifestyles. A typical case is Shandong province whose water resources per capita is approximately only a sixth of the national average and a twentieth of the global average. It is useful to assess the implications of the province’s growth and trade patterns for water use and water conservation strategies. This study quantitatively analyses relationships between regional economic sectors and water use in Shandong using an input-output model for virtual water resources. The changes in key indicators for 1997-2007 are tracked and the effects of water-saving policies on these changes are examined. The results highlight the benefits of applying a virtual water trade analysis on a water-scarce region where water resources exhibit highly heterogeneous temporal and geographical distributions. The net export of virtual water in Shandong was initially large, but this declined over the years and the province has recently become a net importer. Between 1997 and 2002, water use in most sectors increased due to rapid urbanisation and industrialisation. Since then, water use in all Shandong economic sectors exhibit a downward trend despite continued increases in goods and services net exports, a trend which can be attributed to the vigorous implementation of water-saving policies and measures, especially water use quotas. Economic sectors consume water directly and indirectly and understanding the pattern of virtual water trade implied by sectoral relationships is important for managing water scarcity problems. This study fills the knowledge gap in the existing literature created by the lack of case studies that dynamically assess virtual water trade and analyse the effects of water-saving policies and measures. The study draws policy recommendations that are relevant for future water planning in Shandong and other regions in northern China.

  2. Diagnostic Yield of Bronchoalveolar Lavage Gene Xpert in Smear-Negative and Sputum-Scarce Pulmonary Tuberculosis

    International Nuclear Information System (INIS)

    Khalil, K. F.; Butt, T.

    2015-01-01

    Objective: To measure the diagnostic yield of Bronchoalveolar Lavage (BAL) gene Xpert (Xpert MTB/RIF assay), to detect Mycobacterium tuberculosis (MTB) and rifampicin resistance and compare it with that of mycobacterial cultures in a suspected case of pulmonary tuberculosis. Study Design: An analytical study. Place and Duration of Study: Department of Pulmonology, Fauji Foundation Hospital (FFH), Rawalpindi, from December 2012 to August 2013. Methodology: BAL specimens of 93 patients with suspected pulmonary tuberculosis with smear-negative or sputumscarce disease, who presented to the Department of Pulmonology, FFH, Rawalpindi were inducted. A smear-negative case was one in whom three consecutive early morning sputum samples did not reveal acid fast bacilli when examined by microscopy with Zeihl Nelson (ZN) stain. Patients who had sputum amount less than 1 ml were defined to have sputumscarce disease. The same was evaluated with ZN stain, gene Xpert and mycobacterial cultures. Sensitivity analysis was carried out using culture as the gold standard. Results: The frequency of positive mycobacterial cultures was 85 (91.4%). The sensitivity, specificity, positive predictive value and negative predictive values of BAL gene Xpert to detect Mycobacterium tuberculosis were 91.86%, 71.42%, 97.53% and 41.66% respectively. Xpert MTB/RIF assay had a sensitivity and specificity of 83.33% and 100% to detect rifampicin resistance. Conclusion: Bronchoalveolar lavage gene Xpert had a superior diagnostic yield in patients with either smear-negative or sputum-scarce pulmonary tuberculosis. Hence a positive Xpert MTB/RIF assay may be a useful adjunct to diagnosis and detection of MDR-TB in bronchoalveolar lavage specimens. (author)

  3. Forecast of Antarctic Sea Ice and Meteorological Fields

    Science.gov (United States)

    Barreira, S.; Orquera, F.

    2017-12-01

    Since 2001, we have been forecasting the climatic fields of the Antarctic sea ice (SI) and surface air temperature, surface pressure and precipitation anomalies for the Southern Hemisphere at the Meteorological Department of the Argentine Naval Hydrographic Service with different techniques that have evolved with the years. Forecast is based on the results of Principal Components Analysis applied to SI series (S-Mode) that gives patterns of temporal series with validity areas (these series are important to determine which areas in Antarctica will have positive or negative SI anomalies based on what happen in the atmosphere) and, on the other hand, to SI fields (T-Mode) that give us the form of the SI fields anomalies based on a classification of 16 patterns. Each T-Mode pattern has unique atmospheric fields associated to them. Therefore, it is possible to forecast whichever atmosphere variable we decide for the Southern Hemisphere. When the forecast is obtained, each pattern has a probability of occurrence and sometimes it is necessary to compose more than one of them to obtain the final result. S-Mode and T-Mode are monthly updated with new data, for that reason the forecasts improved with the increase of cases since 2001. We used the Monthly Polar Gridded Sea Ice Concentrations database derived from satellite information generated by NASA Team algorithm provided monthly by the National Snow and Ice Data Center of USA that begins in November 1978. Recently, we have been experimenting with multilayer Perceptron (neuronal network) with supervised learning and a back-propagation algorithm to improve the forecast. The Perceptron is the most common Artificial Neural Network topology dedicated to image pattern recognition. It was implemented through the use of temperature and pressure anomalies field images that were associated with a the different sea ice anomaly patterns. The variables analyzed included only composites of surface air temperature and pressure anomalies

  4. Trends and variability of meteorological drought over the districts of ...

    Indian Academy of Sciences (India)

    4

    Keywords: Meteorological drought, standardized precipitation index, monsoon, sea ... Drought is one of the most serious problem for human societies and ecosystems. ... They found that SPI satisfactorily explains the development of conditions.

  5. Hyperion technology enables unified meteorological and radiological monitoring

    International Nuclear Information System (INIS)

    Zigic, A.; Saponjic, D.; Arandjelovic, V.; Zunic, Z. . E-mail address of corresponding author: alex@vin.bg.ac.yu; Zigic, A.)

    2005-01-01

    The present state of meteorological and radiological measurement and monitoring are quite localized to smaller areas which implies the difficulties in knowing the measurement results in the wider region instantly. The need for establishing a distributed, flexible, modular and centralized measurement system for both meteorological and radiological parameters of environment is arising. The measurement and monitoring of radiological parameters of environment are not sufficient since there is a strong correlation between radiological and meteorological parameters which implies a unified distributed automatic monitoring system. The unified monitoring system makes it possible to transfer, process and store measured data in local and central databases. Central database gives a possibility of easy access to all measured data for authorized personnel and institutions. Stored measured data in central database gives a new opportunity to create a base for meteorological and radiological modelling and studies. (author)

  6. Arctic Sea Ice Charts from Danish Meteorological Institute, 1893 - 1956

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — From 1893 to 1956, the Danish Meteorological Institute (DMI) created charts of observed and inferred sea ice extent for each summer month. These charts are based on...

  7. Meteorology observations in the Athabasca oil sands region

    International Nuclear Information System (INIS)

    1996-01-01

    Meteorological data was collected in the Athabasca oil sands area of Alberta in support of Syncrude' application for approval to develop and operate the Aurora Mine. Meteorology controls the transport and dispersion of gaseous and particulate emissions which are vented into the atmosphere. Several meteorological monitoring stations have been set up in the Fort McMurray and Fort McKay area. The study was part of Suncor's commitment to Alberta Environmental Protection to substantially reduce SO 2 emissions by July 1996. Also, as a condition of approval of the proposed Aurora Mine, the company was required to develop additional ambient air quality, sulphur deposition and biomonitoring programs. Background reports were prepared for: (1) source characterization, (2) ambient air quality observations, (3) meteorology observations, and (4) air quality monitoring. The following factors were incorporated into dispersion modelling: terrain, wind, turbulence, temperature, net radiation and mixing height, relative humidity and precipitation. 15 refs., 9 tabs., 40 figs

  8. Meteorological Data from the Russian Arctic, 1961-2000

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains monthly means of meteorological observation data from Russian stations from 1961-2000 (for most stations). The Russian station observations...

  9. Assessment of Meteorological Drought Hazard Area using GIS in ...

    African Journals Online (AJOL)

    Michael Horsfall

    The purpose of this study was to make a model of the meteorological drought hazard area using GIS. ... overlaying different hazard indicator maps in the GIS, deploying the new model. The final ..... Northeast Thailand Project Bangkok. Min. of.

  10. ISLSCP II Reanalysis Near-Surface Meteorology Data

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set for the ISLSCP Initiative II data collection provides near surface meteorological variables, fluxes of heat, moisture and momentum at the surface, and...

  11. ISLSCP II Reanalysis Near-Surface Meteorology Data

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set for the ISLSCP Initiative II data collection provides near surface meteorological variables, fluxes of heat, moisture and momentum at the...

  12. Analysis of some meteorological parameters using artificial neural ...

    African Journals Online (AJOL)

    Analysis of some meteorological parameters using artificial neural network method for ... The mean daily data for sunshine hours, maximum temperature, cloud cover and ... The study used artificial neural networks (ANN) for the estimation.

  13. Meteorological safeguarding of nuclear power plant operation in Czechoslovakia

    International Nuclear Information System (INIS)

    Rak, J.; Skulec, S.

    1976-01-01

    A meteorological tower 200 m high has to be built for meteorological control of the operation of the A-1 nuclear power plant at Jaslovske Bohunice. This meteorological station will measure the physical properties of the lower layers of the atmosphere, carry out experimental verifications of the models of air pollution, investigate the effects of waste heat and waste water from the nuclear power plant on the microclimate, provide the theoretical processing of measured data with the aim of selecting the most favourable model for conditions prevailing in the Czechoslovak Socialist Republic, perform basic research of the physical properties of the ground and boundary layers of the atmosphere and the coordination of state-wide plans in the field of securing the operation of nuclear power plants with regard to meteorology. (Z.M.)

  14. CAMEX-4 DC-8 METEOROLOGICAL MEASUREMENT SYSTEM (MMS) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA DC-8 Meteorological Measurement System consists of three major systems: an air-motion sensing system to measure air velocity with respect to the aircraft,...

  15. CAMEX-3 DC-8 METEOROLOGICAL MEASUREMENT SYSTEM (MMS) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The CAMEX-3 Meteorological Measurement System (MMS) dataset consists of atmospheric parameters measured by the MMS instruments aboard NASA DC-8 aircraft. The MMS...

  16. CAMEX-4 DC-8 METEOROLOGICAL MEASUREMENT SYSTEM (MMS) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The CAMEX-4 DC-8 Meteorological Measurement System (MMS) was collected by the MMS, which consists of three major systems: an air-motion sensing system to measure air...

  17. Developing International Standards for Meteorological Balloon to Facilitate Industrial Progress

    Institute of Scientific and Technical Information of China (English)

    Deng Yizhi

    2011-01-01

    Meteorological balloon is made of natural rubber latex with a special process.On natural conditions,it carries the air sounding instrument into the high air to detect the meteorological elements in the air.As a means of delivery used in the aerological sounding,it is widely used in the meteorological,sailing,aeronautical,aerospace and other fields,and plays an extremely important role in the weather report,disaster prevention,disaster relief,guaranteeing ships and aircrafts to leave ports safely,and scientific research in relevant spaces,etc.Especially,the role of meteorological balloons is not ignorable in the forecast of extremely adverse weather frequently occurring around the world in recent years.

  18. Defense Meteorological Satellite Program (DMSP) - Space Weather Sensors

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Defense Meteorological Satellite Program (DMSP) maintains a constellation of sun-synchronous, near-polar orbiting satellites. The orbital period is 101 minutes...

  19. Large Scale Meteorological Pattern of Extreme Rainfall in Indonesia

    Science.gov (United States)

    Kuswanto, Heri; Grotjahn, Richard; Rachmi, Arinda; Suhermi, Novri; Oktania, Erma; Wijaya, Yosep

    2014-05-01

    Extreme Weather Events (EWEs) cause negative impacts socially, economically, and environmentally. Considering these facts, forecasting EWEs is crucial work. Indonesia has been identified as being among the countries most vulnerable to the risk of natural disasters, such as floods, heat waves, and droughts. Current forecasting of extreme events in Indonesia is carried out by interpreting synoptic maps for several fields without taking into account the link between the observed events in the 'target' area with remote conditions. This situation may cause misidentification of the event leading to an inaccurate prediction. Grotjahn and Faure (2008) compute composite maps from extreme events (including heat waves and intense rainfall) to help forecasters identify such events in model output. The composite maps show large scale meteorological patterns (LSMP) that occurred during historical EWEs. Some vital information about the EWEs can be acquired from studying such maps, in addition to providing forecaster guidance. Such maps have robust mid-latitude meteorological patterns (for Sacramento and California Central Valley, USA EWEs). We study the performance of the composite approach for tropical weather condition such as Indonesia. Initially, the composite maps are developed to identify and forecast the extreme weather events in Indramayu district- West Java, the main producer of rice in Indonesia and contributes to about 60% of the national total rice production. Studying extreme weather events happening in Indramayu is important since EWEs there affect national agricultural and fisheries activities. During a recent EWE more than a thousand houses in Indramayu suffered from serious flooding with each home more than one meter underwater. The flood also destroyed a thousand hectares of rice plantings in 5 regencies. Identifying the dates of extreme events is one of the most important steps and has to be carried out carefully. An approach has been applied to identify the

  20. Literary Fiction or Ancient Astronomical and Meteorological Observations in the Work of Maria Valtorta?

    Directory of Open Access Journals (Sweden)

    Emilio Matricciani

    2017-06-01

    Full Text Available In The Gospel as revealed to me, Maria Valtorta reports a lot of information on the Holy Land at the time of Jesus: historical, archaeological, astronomical, geographical, meteorological. She states she has written what seen “in vision”. By a detailed astronomical analysis of explicit and implicit calendar information reported while she narrates detailed episodes concerning the three years of Jesus’ public life—possible because of many references to lunar phases, constellations, planets visible in the night sky in her writings—it is ascertained that every event described implies a precise date—day, month, year—without being explicitly reported by her. For example, Jesus’ crucifixion should have occurred on Friday April 23 of the year 34, a date proposed by Isaac Newton. She has also recorded the occurrence of rain so that the number of rainy days reported can be compared to the current meteorological data, supposing random observations and no important changes in rainfall daily frequency in the last 2000 years, the latter issue discussed in the paper. Unexpectedly, both the annual and monthly averages of rainy days deduced from the data available from the Israel Meteorological Service and similar averages deduced from her writings agree very well.

  1. Meteorological fluid dynamics asymptotic modelling, stability and chaotic atmospheric motion

    CERN Document Server

    Zeytounian, Radyadour K

    1991-01-01

    The author considers meteorology as a part of fluid dynamics. He tries to derive the properties of atmospheric flows from a rational analysis of the Navier-Stokes equations, at the same time analyzing various types of initial and boundary problems. This approach to simulate nature by models from fluid dynamics will be of interest to both scientists and students of physics and theoretical meteorology.

  2. Reactor operation environmental information document

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, L.R.; Hayes, D.W.; Hunter, C.H.; Marter, W.L.; Moyer, R.A.

    1989-12-01

    This volume is a reactor operation environmental information document for the Savannah River Plant. Topics include meteorology, surface hydrology, transport, environmental impacts, and radiation effects. 48 figs., 56 tabs. (KD)

  3. Homogeneity study of fixed-point continuous marine environmental and meteorological data: a review

    Science.gov (United States)

    Yang, Jinkun; Yang, Yang; Miao, Qingsheng; Dong, Mingmei; Wan, Fangfang

    2018-02-01

    The principle of inhomogeneity and the classification of homogeneity test methods are briefly described, and several common inhomogeneity methods and relative merits are described in detail. Then based on the applications of the different homogeneity methods to the ground meteorological data and marine environment data, the present status and the progress are reviewed. At present, the homogeneity research of radiosonde and ground meteorological data is mature at home and abroad, and the research and application in the marine environmental data should also be given full attention. To carry out a variety of test and correction methods combined with the use of multi-mode test system, will make the results more reasonable and scientific, and also can be used to provide accurate first-hand information for the coastal climate change researches.

  4. The graphic system Star 4 and their application in the obtaining of meteorological products for the analysis and weather forecast

    International Nuclear Information System (INIS)

    Zea Mazo, Jorge Anibal; Leon Aristizabal Gloria Esperanza

    2001-01-01

    The Instituto de Estudios Ambientales (IDEAM, Institute of Environmental Studies) has acquired a graphing system called Star4 for displaying meteorological information provided on a grid by the general circulation model MRF/AVN. Details to ease its use in complying with different tasks at the institute are provided

  5. The trajectory model tranco as applied to the Chernobyl accident using E.C.M.W.F. meteorological data

    International Nuclear Information System (INIS)

    Zarimpas, N.

    1989-01-01

    This report presents the TRANCO (trajectory analysis) code and discusses its application to model atmospheric transport during and after the Chernobyl accident. The archived-processed meteorological information from the ECMWF, which is used for the purposes of this study, is also described. Finally, results are discussed and compared with those produced by similar models

  6. Latin American Network of students in Atmospheric Sciences and Meteorology

    Science.gov (United States)

    Cuellar-Ramirez, P.

    2017-12-01

    The Latin American Network of Students in Atmospheric Sciences and Meteorology (RedLAtM) is a civil nonprofit organization, organized by students from Mexico and some Latin- American countries. As a growing organization, providing human resources in the field of meteorology at regional level, the RedLAtM seeks to be a Latin American organization who helps the development of education and research in Atmospheric Sciences and Meteorology in order to engage and promote the integration of young people towards a common and imminent future: Facing the still unstudied various weather and climate events occurring in Latin America. The RedLAtM emerges from the analysis and observation/realization of a limited connection between Latin American countries around research in Atmospheric Sciences and Meteorology. The importance of its creation is based in cooperation, linking, research and development in Latin America and Mexico, in other words, to join efforts and stablish a regional scientific integration who leads to technological progress in the area of Atmospheric Sciences and Meteorology. As ultimate goal the RedLAtM pursuit to develop climatic and meteorological services for those countries unable to have their own programs, as well as projects linked with the governments of Latin American countries and private companies for the improvement of prevention strategies, research and decision making. All this conducing to enhance the quality of life of its inhabitants facing problems such as poverty and inequality.

  7. Development of regional meteorological and atmospheric diffusion simulation system

    International Nuclear Information System (INIS)

    Kubota, Ryuji; Iwashige, Kengo; Kasano, Toshio

    2002-01-01

    Regional atmospheric diffusion online network (RADON) with atmospheric diffusion analysis code (ADAC) : a simulation program of diffusion of radioactive materials, volcanic ash, pollen, NOx and SOx was developed. This system can be executed in personal computer (PC) and note PC on Windows. Emission data consists of online, offline and default data. It uses the meteorology data sources such as meteorological forecasting mesh data, automated meteorological data acquisition system (AMeDAS) data, meteorological observation data in site and municipality observation data. The meteorological forecasting mesh data shows forecasting value of temperature, wind speed, wind direction and humidity in about two days. The nuclear environmental monitoring center retains the online data (meteorological data, emission source data, monitoring station data) in its PC server and can run forecasting or repeating calculation using these data and store and print out the calculation results. About 30 emission materials can be calculated simultaneously. This system can simulate a series of weather from the past and real time to the future. (S.Y.)

  8. Machine learning modeling of plant phenology based on coupling satellite and gridded meteorological dataset

    Science.gov (United States)

    Czernecki, Bartosz; Nowosad, Jakub; Jabłońska, Katarzyna

    2018-04-01

    Changes in the timing of plant phenological phases are important proxies in contemporary climate research. However, most of the commonly used traditional phenological observations do not give any coherent spatial information. While consistent spatial data can be obtained from airborne sensors and preprocessed gridded meteorological data, not many studies robustly benefit from these data sources. Therefore, the main aim of this study is to create and evaluate different statistical models for reconstructing, predicting, and improving quality of phenological phases monitoring with the use of satellite and meteorological products. A quality-controlled dataset of the 13 BBCH plant phenophases in Poland was collected for the period 2007-2014. For each phenophase, statistical models were built using the most commonly applied regression-based machine learning techniques, such as multiple linear regression, lasso, principal component regression, generalized boosted models, and random forest. The quality of the models was estimated using a k-fold cross-validation. The obtained results showed varying potential for coupling meteorological derived indices with remote sensing products in terms of phenological modeling; however, application of both data sources improves models' accuracy from 0.6 to 4.6 day in terms of obtained RMSE. It is shown that a robust prediction of early phenological phases is mostly related to meteorological indices, whereas for autumn phenophases, there is a stronger information signal provided by satellite-derived vegetation metrics. Choosing a specific set of predictors and applying a robust preprocessing procedures is more important for final results than the selection of a particular statistical model. The average RMSE for the best models of all phenophases is 6.3, while the individual RMSE vary seasonally from 3.5 to 10 days. Models give reliable proxy for ground observations with RMSE below 5 days for early spring and late spring phenophases. For

  9. A comprehensive estimation of the economic effects of meteorological services based on the input-output method.

    Science.gov (United States)

    Wu, Xianhua; Wei, Guo; Yang, Lingjuan; Guo, Ji; Lu, Huaguo; Chen, Yunfeng; Sun, Jian

    2014-01-01

    Concentrating on consuming coefficient, partition coefficient, and Leontief inverse matrix, relevant concepts and algorithms are developed for estimating the impact of meteorological services including the associated (indirect, complete) economic effect. Subsequently, quantitative estimations are particularly obtained for the meteorological services in Jiangxi province by utilizing the input-output method. It is found that the economic effects are noticeably rescued by the preventive strategies developed from both the meteorological information and internal relevance (interdependency) in the industrial economic system. Another finding is that the ratio range of input in the complete economic effect on meteorological services is about 1 : 108.27-1 : 183.06, remarkably different from a previous estimation based on the Delphi method (1 : 30-1 : 51). Particularly, economic effects of meteorological services are higher for nontraditional users of manufacturing, wholesale and retail trades, services sector, tourism and culture, and art and lower for traditional users of agriculture, forestry, livestock, fishery, and construction industries.

  10. A Comprehensive Estimation of the Economic Effects of Meteorological Services Based on the Input-Output Method

    Directory of Open Access Journals (Sweden)

    Xianhua Wu

    2014-01-01

    Full Text Available Concentrating on consuming coefficient, partition coefficient, and Leontief inverse matrix, relevant concepts and algorithms are developed for estimating the impact of meteorological services including the associated (indirect, complete economic effect. Subsequently, quantitative estimations are particularly obtained for the meteorological services in Jiangxi province by utilizing the input-output method. It is found that the economic effects are noticeably rescued by the preventive strategies developed from both the meteorological information and internal relevance (interdependency in the industrial economic system. Another finding is that the ratio range of input in the complete economic effect on meteorological services is about 1 : 108.27–1 : 183.06, remarkably different from a previous estimation based on the Delphi method (1 : 30–1 : 51. Particularly, economic effects of meteorological services are higher for nontraditional users of manufacturing, wholesale and retail trades, services sector, tourism and culture, and art and lower for traditional users of agriculture, forestry, livestock, fishery, and construction industries.

  11. A Comprehensive Estimation of the Economic Effects of Meteorological Services Based on the Input-Output Method

    Science.gov (United States)

    Wu, Xianhua; Yang, Lingjuan; Guo, Ji; Lu, Huaguo; Chen, Yunfeng; Sun, Jian

    2014-01-01

    Concentrating on consuming coefficient, partition coefficient, and Leontief inverse matrix, relevant concepts and algorithms are developed for estimating the impact of meteorological services including the associated (indirect, complete) economic effect. Subsequently, quantitative estimations are particularly obtained for the meteorological services in Jiangxi province by utilizing the input-output method. It is found that the economic effects are noticeably rescued by the preventive strategies developed from both the meteorological information and internal relevance (interdependency) in the industrial economic system. Another finding is that the ratio range of input in the complete economic effect on meteorological services is about 1 : 108.27–1 : 183.06, remarkably different from a previous estimation based on the Delphi method (1 : 30–1 : 51). Particularly, economic effects of meteorological services are higher for nontraditional users of manufacturing, wholesale and retail trades, services sector, tourism and culture, and art and lower for traditional users of agriculture, forestry, livestock, fishery, and construction industries. PMID:24578666

  12. Dune mobility in the St. Anthony Dune Field, Idaho, USA: Effects of meteorological variables and lag time

    Science.gov (United States)

    Hoover, R. H.; Gaylord, D. R.; Cooper, C. M.

    2018-05-01

    The St. Anthony Dune Field (SADF) is a 300 km2 expanse of active to stabilized transverse, barchan, barchanoid, and parabolic sand dunes located in a semi-arid climate in southeastern Idaho. The northeastern portion of the SADF, 16 km2, was investigated to examine meteorological influences on dune mobility. Understanding meteorological predictors of sand-dune migration for the SADF informs landscape evolution and impacts assessment of eolian activity on sensitive agricultural lands in the western United States, with implications for semi-arid environments globally. Archival aerial photos from 1954 to 2011 were used to calculate dune migration rates which were subsequently compared to regional meteorological data, including temperature, precipitation and wind speed. Observational analyses based on aerial photo imagery and meteorological data indicate that dune migration is influenced by weather for up to 5-10 years and therefore decadal weather patterns should be taken into account when using dune migration rates as proxies from climate fluctuation. Statistical examination of meteorological variables in this study indicates that 24% of the variation of sand dune migration rates is attributed to temperature, precipitation and wind speed, which is increased to 45% when incorporating lag time.

  13. Comparative analysis of meteorological performance of coupled chemistry-meteorology models in the context of AQMEII phase 2

    Science.gov (United States)

    Air pollution simulations critically depend on the quality of the underlying meteorology. In phase 2 of the Air Quality Model Evaluation International Initiative (AQMEII-2), thirteen modeling groups from Europe and four groups from North America operating eight different regional...

  14. Potential Analysis of Thunderstorm Occurrence Using SWEAT Method at Meteorology Station Sultan Iskandar Muda

    Directory of Open Access Journals (Sweden)

    Ulfah Kurnia

    2018-01-01

    Full Text Available Salah satu hal penting dalam mengutamakan keselamatan penerbangan ialah informasi meteorologi yang tepat dan akurat terutama mengenai kondisi cuaca buruk seperti thunderstorm. Oleh karena itu, perlu dilakukan prakiraan potensi terjadinya thunderstorm, sehingga pihak maskapai penerbangan dapat menyesuaikan prosedur keselamatan baik pada saat take off, on the route, maupun landing. Pada penelitian ini dilakukan analisis data radiosonde pada 2 (dua musim, yaitu musim kemarau dan musim hujan untuk memprakirakan potensi terjadinya thunderstorm selama periode April-Desember 2016 dan Januari-Maret 2017. Data radiosonde tersebut diperoleh dari Stasiun Meteorologi Sultan Iskandar Muda yang telah diukur setiap dua kali dalam satu hari. Waktu pengukurannya ialah pada pukul 00Z dan pukul 12Z. Dengan menggunakan Software Rawinsonde Observation (RAOB versi 5.7, dilakukan pengolahan data radiosonde sehingga diperoleh informasi parameter atmosfer seperti temperatur, titik embun, dan kecepatan angin. Parameter atmosfer tersebut dapat digunakan untuk memprakirakan potensi terjadinya thunderstorm selama dua belas jam kedepan, yaitu dengan menggunakan metode SWEAT (Severe Weather Threat sehingga diperoleh SWEAT Indeks untuk setiap pengukuran radiosonde. Berdasarkan penelitian yang telah dilakukan, diketahui SWEAT Indeks untuk wilayah Stasiun Meteorologi Sultan Iskandar Muda berkisar antara 39,8 - 355,4. Hasil analisis metode SWEAT diverifikasi dengan data aktual (data synop yang diamati di Stasiun Meteorologi Sultan Iskandar Muda dan diketahui persentase kesesuaian antara data prakiraan dengan kondisi aktual yaitu 58,62-66,67%.   One of the most important things in aviation safety is the accurate information of meteorology especially on bad weather conditions as thunderstorm. Therefore, need to forecast about potential occurrence of thunderstorm, so the airlines can adjust safety aviation when take of, an the route, and landing. In this research was analysis of

  15. The influence of meteorology on the spread of influenza: survival analysis of an equine influenza (A/H3N8) outbreak.

    Science.gov (United States)

    Firestone, Simon M; Cogger, Naomi; Ward, Michael P; Toribio, Jenny-Ann L M L; Moloney, Barbara J; Dhand, Navneet K

    2012-01-01

    The influences of relative humidity and ambient temperature on the transmission of influenza A viruses have recently been established under controlled laboratory conditions. The interplay of meteorological factors during an actual influenza epidemic is less clear, and research into the contribution of wind to epidemic spread is scarce. By applying geostatistics and survival analysis to data from a large outbreak of equine influenza (A/H3N8), we quantified the association between hazard of infection and air temperature, relative humidity, rainfall, and wind velocity, whilst controlling for premises-level covariates. The pattern of disease spread in space and time was described using extraction mapping and instantaneous hazard curves. Meteorological conditions at each premises location were estimated by kriging daily meteorological data and analysed as time-lagged time-varying predictors using generalised Cox regression. Meteorological covariates time-lagged by three days were strongly associated with hazard of influenza infection, corresponding closely with the incubation period of equine influenza. Hazard of equine influenza infection was higher when relative humidity was 30 km hour(-1) from the direction of nearby infected premises were associated with increased hazard of infection. Through combining detailed influenza outbreak and meteorological data, we provide empirical evidence for the underlying environmental mechanisms that influenced the local spread of an outbreak of influenza A. Our analysis supports, and extends, the findings of studies into influenza A transmission conducted under laboratory conditions. The relationships described are of direct importance for managing disease risk during influenza outbreaks in horses, and more generally, advance our understanding of the transmission of influenza A viruses under field conditions.

  16. Medical Meteorology: the Relationship between Meteorological Parameters (Humidity, Rainfall, Wind, and Temperature) and Brucellosis in Zanjan Province

    OpenAIRE

    Yousefali Abedini; Nahideh Mohammadi; Koorosh Kamali; Mohsen Ahadnejad; Mehdi Azari

    2016-01-01

    Background: Brucellosis (Malta fever) is a major contagious zoonotic disease, with economic and public health importance. Methods To assess the effect of meteorological (temperature, rainfall, humidity, and wind) and climate parameters on incidence of brucellosis, brucellosis distribution and meteorological zoning maps of Zanjan Province were prepared using Inverse Distance Weighting (IDW) and Kriging technique in Arc GIS medium. Zoning maps of mean temperature, rainfall, humidity, and win...

  17. Developing the Model for the GIS Applications in National Hydro-Meteorological Service in Poland

    Science.gov (United States)

    Kubacka, D.; Barszczynska, M.; Madej, P.

    2003-04-01

    Institute of Meteorology and Water Management (IMWM) manages the national hydrological-meteorological service, the task of which is to maintain the network of stations, process data, as well issue warnings, reports and announcements. There are 5 divisions of IMWM scattered all over Poland. Each division includes numerous stations and the scientific-research departments. The data gathered, processed and analysed in IMWM are space-related, therefore spatial information systems are indispensable for its processing and visualisation. The project of GIS application in (IMWM) will be discussed in the presentation. With the divisions being so dispersed, numerous and heterogeneous in structure, GIS implementation is very complicated. On the one hand GIS should enable advanced spatial analyses to be carried out by the research, as well as data processing departments. On the other hand, it should provide passive access to a limited scope of information (e.g. for outside customers). Need analysis was carried out first. It resulted in proposals concerning the content of shared resources of geometrical data and connections with attribute data, as well as in proposals of GIS use in routine works. A model was prepared using various types of GIS software depending on the requirements of each division. It is based on standard solutions involving professional GIS, desktop GIS and simple tools for data presentation. In some departments the specialised software had to be taken into account (e.g. satellite data processing). It is necessary to develop and implement dedicated research methods for some individual tasks. The analysis of mapping requirements showed that there is a need to prepare thematic maps at least at two levels of detail. Presently, the works are concentrated on assembling thematic layers for a general map (at 1: 500000 scale) sufficient for many applications, including data visualisation in the Internet and IMWM publications, as well as the tool for measurements and

  18. Uncovering genes and ploidy involved in the high diversity in root hair density, length and response to local scarce phosphate in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Markus G Stetter

    Full Text Available Plant root hairs increase the root surface to enhance the uptake of sparingly soluble and immobile nutrients, such as the essential nutrient phosphorus, from the soil. Here, root hair traits and the response to scarce local phosphorus concentration were studied in 166 accessions of Arabidopsis thaliana using split plates. Root hair density and length were correlated, but highly variable among accessions. Surprisingly, the well-known increase in root hair density under low phosphorus was mostly restricted to genotypes that had less and shorter root hairs under P sufficient conditions. By contrast, several accessions with dense and long root hairs even had lower hair density or shorter hairs in local scarce phosphorus. Furthermore, accessions with whole-genome duplications developed more dense but phosphorus-insensitive root hairs. The impact of genome duplication on root hair density was confirmed by comparing tetraploid accessions with their diploid ancestors. Genome-wide association mapping identified candidate genes potentially involved in root hair responses tp scarce local phosphate. Knock-out mutants in identified candidate genes (CYR1, At1g32360 and RLP48 were isolated and differences in root hair traits in the mutants were confirmed. The large diversity in root hair traits among accessions and the diverse response when local phosphorus is scarce is a rich resource for further functional analyses.

  19. Radiation protection at the RA Reactor in 1998, Part -2, Annex 4, meteorology measurements

    International Nuclear Information System (INIS)

    Grsic, Z.; Adamovic, M.

    1998-01-01

    Meteorology measurements are part of the control of Institute environment, and are performed according to the regulations about methods, scope and time-limits for measuring the radioactivity levels in the vicinity of nuclear facilities. Since April 15 1997 meteorology measurements, data acquisition and processing are done by automated meteorology station. The meteorology bulletin for the Vinca Institute is completed every day by computer codes developed by the meteorology staff in the Institute. This Annex contains tables and diagrams of meteorology data collected at the special meteorology station located at the Vinca Institute [sr

  20. Radiation protection at the RA Reactor in 1999, Part -2, Annex 4, meteorology measurements

    International Nuclear Information System (INIS)

    Grsic, Z.; Adamovic, M.

    1999-01-01

    Meteorology measurements are part of the control of Institute environment, and are performed according to the regulations about methods, scope and time-limits for measuring the radioactivity levels in the vicinity of nuclear facilities. Since April 15 1997 meteorology measurements, data acquisition and processing are done by automated meteorology station. The meteorology bulletin for the Vinca Institute is completed every day by computer codes developed by the meteorology staff in the Institute. This Annex contains tables and diagrams of meteorology data collected at the special meteorology station located at the Vinca Institute [sr

  1. Radiation protection at the RA Reactor in 2000, Part 2, Annex 4, meteorology measurements

    International Nuclear Information System (INIS)

    Grsic, Z.; Adamovic, M.

    2000-01-01

    Meteorology measurements are part of the control of Institute environment, and are performed according to the regulations about methods, scope and time-limits for measuring the radioactivity levels in the vicinity of nuclear facilities. Since April 15, 1997 meteorology measurements, data acquisition and processing are done by automated meteorology station. The meteorology bulletin for the Vinca Institute is completed every day by computer codes developed by the meteorology staff in the Institute. This Annex contains tables and diagrams of meteorology data collected at the special meteorology station located at the Vinca Institute [sr

  2. Development of adequate meteorological monitoring standards for safety analysis of nuclear facilities

    International Nuclear Information System (INIS)

    Alp, E.; Lewis, P.J.

    1985-09-01

    The aim of this report is to identify what constitutes adequate meteorological information for airborne dispersion calculations in case of releases from nuclear facilities during 'normal operation', 'design postulated accidents', and 'emergency situations'. The models used for estimating downwind dispersion are reviewed, including short-range simple terrain, short-range complex terrain and medium to long range models with emphasis on Lagrangian models. The meteorogolical input parameters required for running these models are identified. The methods by which these parameters may be obtained from raw meteorological data are then considered. Emphasis is placed on well-tried and recommended methods rather than those which are currently being developed and lack long-term field tests. The meteorological data required to calculate the parameters that are in turn input to dispersion calculation methods can be obtained mainly from tower measurements. Recommended tower height is 50 m, with two levels of instruments (10 and 50 m) for wind speed, wind direction and temperature. Data for precipitation and solar radiation, that may be required under certain conditions and for special calculations, may be estimated from nearby representative weather stations (if available). For simple terrain, a single tower is sufficient. For complex terrain, such as coastal regions, two towers are desirable for accurate characterization of the turbulence regime in the vicinity of a release site. The report provides the necessary accuracy specifications for instruments required for the meteorological measurements. Data monitoring and recording, maintenance, quality control and assurance are also discussed. Error propagation analyses are recommended to determine the full implications of instrument accuracies on the accuracy of dispersion model predictions. 82 refs

  3. Hydro-meteorological extreme events in the 18th century in Portugal

    Science.gov (United States)

    Fragoso, Marcelo; João Alcoforado, Maria; Taborda, João Paulo

    2013-04-01

    The present work is carried out in the frame of the KLIMHIST PROJECT ("Reconstruction and model simulations of past climate in Portugal using documentary and early instrumental sources, 17th-19th century)", and is devoted to the study of hydro-meteorological extreme events during the last 350 years, in order to understand how they have changed in time and compare them with current analogues. More specifically, the results selected to this presentation will focus on some hydro-meteorological extreme events of the 18th century, like severe droughts, heavy precipitation episodes and windstorms. One of the most noteworthy events was the winterstorm Bárbara (3rd to 6th December 1739), already studied in prior investigations (Taborda et al, 2004; Pfister et al, 2010), a devastating storm with strong impacts in Portugal caused by violent winds and heavy rainfall. Several other extreme events were detected by searching different documentary archives, including individual, administrative and ecclesiastic sources. Moreover, a more detailed insight to the 1783-1787 period will be made with regard the Lisbon region, taking into consideration the availability of information for daily meteorological observations as well as documentary evidences, like descriptions from Gazeta de Lisboa, the periodic with more continuous publication in the 18thcentury. Key-words: Instrumental data, Documentary data, Extreme events, Klimhist Project, Portugal References Pfister, C., Garnier, E., Alcoforado, M.J., Wheeler, D. Luterbacher, J. Nunes, M.F., Taborda, J.P. (2010) The meteorological framework and the cultural memory of three severe winter-storms in early eighteenth-century Europe, Climatic Change, 101, 1-2, 281-310 Taborda, JP; Alcoforado, MJ and Garcia, JC (2004) O Clima do Sul de Portugal no Séc.XVIII, Centro de Estudos Geográficos, Área de de Investigação de Geo-Ecologia, relatório no 2

  4. Meteorological uncertainty of atmospheric dispersion model results (MUD)

    Energy Technology Data Exchange (ETDEWEB)

    Havskov Soerensen, J.; Amstrup, B.; Feddersen, H. [Danish Meteorological Institute, Copenhagen (Denmark)] [and others

    2013-08-15

    The MUD project addresses assessment of uncertainties of atmospheric dispersion model predictions, as well as possibilities for optimum presentation to decision makers. Previously, it has not been possible to estimate such uncertainties quantitatively, but merely to calculate the 'most likely' dispersion scenario. However, recent developments in numerical weather prediction (NWP) include probabilistic forecasting techniques, which can be utilised also for long-range atmospheric dispersion models. The ensemble statistical methods developed and applied to NWP models aim at describing the inherent uncertainties of the meteorological model results. These uncertainties stem from e.g. limits in meteorological observations used to initialise meteorological forecast series. By perturbing e.g. the initial state of an NWP model run in agreement with the available observational data, an ensemble of meteorological forecasts is produced from which uncertainties in the various meteorological parameters are estimated, e.g. probabilities for rain. Corresponding ensembles of atmospheric dispersion can now be computed from which uncertainties of predicted radionuclide concentration and deposition patterns can be derived. (Author)

  5. Future directions of meteorology related to air-quality research.

    Science.gov (United States)

    Seaman, Nelson L

    2003-06-01

    Meteorology is one of the major factors contributing to air-pollution episodes. More accurate representation of meteorological fields has been possible in recent years through the use of remote sensing systems, high-speed computers and fine-mesh meteorological models. Over the next 5-20 years, better meteorological inputs for air quality studies will depend on making better use of a wealth of new remotely sensed observations in more advanced data assimilation systems. However, for fine mesh models to be successful, parameterizations used to represent physical processes must be redesigned to be more precise and better adapted for the scales at which they will be applied. Candidates for significant overhaul include schemes to represent turbulence, deep convection, shallow clouds, and land-surface processes. Improvements in the meteorological observing systems, data assimilation and modeling, coupled with advancements in air-chemistry modeling, will soon lead to operational forecasting of air quality in the US. Predictive capabilities can be expected to grow rapidly over the next decade. This will open the way for a number of valuable new services and strategies, including better warnings of unhealthy atmospheric conditions, event-dependent emissions restrictions, and now casting support for homeland security in the event of toxic releases into the atmosphere.

  6. Meteorological uncertainty of atmospheric dispersion model results (MUD)

    International Nuclear Information System (INIS)

    Havskov Soerensen, J.; Amstrup, B.; Feddersen, H.

    2013-08-01

    The MUD project addresses assessment of uncertainties of atmospheric dispersion model predictions, as well as possibilities for optimum presentation to decision makers. Previously, it has not been possible to estimate such uncertainties quantitatively, but merely to calculate the 'most likely' dispersion scenario. However, recent developments in numerical weather prediction (NWP) include probabilistic forecasting techniques, which can be utilised also for long-range atmospheric dispersion models. The ensemble statistical methods developed and applied to NWP models aim at describing the inherent uncertainties of the meteorological model results. These uncertainties stem from e.g. limits in meteorological observations used to initialise meteorological forecast series. By perturbing e.g. the initial state of an NWP model run in agreement with the available observational data, an ensemble of meteorological forecasts is produced from which uncertainties in the various meteorological parameters are estimated, e.g. probabilities for rain. Corresponding ensembles of atmospheric dispersion can now be computed from which uncertainties of predicted radionuclide concentration and deposition patterns can be derived. (Author)

  7. Temporal variations of reference evapotranspiration and its sensitivity to meteorological factors in Heihe River Basin, China

    OpenAIRE

    Zhao, Jie; Xu, Zong-xue; Zuo, De-peng; Wang, Xu-ming

    2015-01-01

    On the basis of daily meteorological data from 15 meteorological stations in the Heihe River Basin (HRB) during the period from 1959 to 2012, long-term trends of reference evapotranspiration (ET0) and key meteorological factors that affect ET0 were analyzed using the Mann-Kendall test. The evaporation paradox was also investigated at 15 meteorological stations. In order to explore the contribution of key meteorological factors to the temporal variation of ET0, a sensitivity coefficient method...

  8. The Creation of an Historical Meteorological Database for Dose Reconstruction

    International Nuclear Information System (INIS)

    Weber, A.H.

    2001-01-01

    Wind measurement towers did not exist at the Savannah River Site (SRS) until the early 1970s. Three relatively simple methods were used to create a 1955-61 meteorological database for the SRS for a dose reconstruction project. The winds were estimated from onsite measurements in the 1990s and National Weather Service (NWS) observations in the 1990s and 1950s using (1) a linear regression method, (2) a similarity theory approach, and (3) a simple statistical differences method. The criteria for determining success were based on (1) how well the mean values and standard deviations of the predicted wind speed agree with the known SRS values from the 1990s, (2) the shape of the predicted frequency distribution functions for wind speed, and (3) how closely the predicted windroses resembled the SRS windrose for the 1990s. The linear regression model's wind speed distribution function was broad, flat, and skewed too much toward higher wind speeds. The similarity theory approach produced a wind speed distribution function that contained excess predicted speeds in the range 0-1.54 m s-1 (0-3 kts) and had ''excluded'' bins caused by predictions being made from integer values of knots in the NWS data. The distribution function from the mean difference method was smooth with a shape like a Weibull distribution and appeared to resemble closely the SRS 1992-96 distribution. The wind directions for all three methods of approach were successfully based on the mean difference method. It was difficult to discern differences among the wind roses produced by the three methods so the wind speed distribution functions need to be examined in order to make an informed choice for dose reconstruction

  9. An assessment of global meteorological droughts based on HAPPI experiments

    Science.gov (United States)

    Liu, Wenbin; Sun, Fubao; Lim, Wee Ho; Zhang, Jie

    2017-04-01

    Droughts caused water shortages could lead to serious consequences on the socioeconomic and environmental well-being. In the context of changing climate, droughts monitoring, attributions and impact assessments have been performed using observations (e.g., Sun et al., 2012; Zhang et al., 2016) and climate model projections (e.g., Liu et al., 2016, 2017); with expectation that such scientific knowledge would feed into long-term adaptation and mitigation plans to tackle potentially unfavorable future drought impacts in a warming world. Inspired by the 2015 Paris Agreement, the HAPPI (Half a degree Additional warming, Projections, Prognosis and Impacts) experiments were set up to better inform international policymakers about the socioeconomic and environmental impacts under less severe global warming conditions. This study aims to understand the potential shift in meteorological droughts from the past into the future on a global scale. Based on the HAPPI data, we evaluate the change in drought related indices (i.e., PET/P, PDSI) from the past to the future scenarios (1.5 and 2 degrees Celsius warming). Here we present some early results (MIROC5 as demonstration) on identified hotspots and discuss the differences in severity of droughts between these warming worlds and associated consequences. References: Liu W, and Sun F, 2017. Projecting and attributing future changes of evaporative demand over China in CMIP5 climate models, Journal of Hydrometeorology, doi: 10.1175/JHM-D-16-0204.1 Liu W, and Sun F, 2016. Assessing estimates of evaporative demand in climate models using observed pan evaporation over China. Journal of Geophysical Research-Atmosphere 121, 8329-8349 Zhang J, Sun F, Xu J, Chen Y, Sang Y, -F, and Liu C, 2016. Dependence of trends in and sensitivity of drought over China (1961-2013) on potential evaporation model. Geophysical Research Letters 43, 206-213 Sun F, Roderick M, Farquhar G, 2012. Changes in the variability of global land precipitation

  10. Application of nonlinear forecasting techniques for meteorological modeling

    Directory of Open Access Journals (Sweden)

    V. Pérez-Muñuzuri

    2000-10-01

    Full Text Available A nonlinear forecasting method was used to predict the behavior of a cloud coverage time series several hours in advance. The method is based on the reconstruction of a chaotic strange attractor using four years of cloud absorption data obtained from half-hourly Meteosat infrared images from Northwestern Spain. An exhaustive nonlinear analysis of the time series was carried out to reconstruct the phase space of the underlying chaotic attractor. The forecast values are used by a non-hydrostatic meteorological model ARPS for daily weather prediction and their results compared with surface temperature measurements from a meteorological station and a vertical sounding. The effect of noise in the time series is analyzed in terms of the prediction results.Key words: Meterology and atmospheric dynamics (mesoscale meteorology; general – General (new fields

  11. Application of nonlinear forecasting techniques for meteorological modeling

    Directory of Open Access Journals (Sweden)

    V. Pérez-Muñuzuri

    Full Text Available A nonlinear forecasting method was used to predict the behavior of a cloud coverage time series several hours in advance. The method is based on the reconstruction of a chaotic strange attractor using four years of cloud absorption data obtained from half-hourly Meteosat infrared images from Northwestern Spain. An exhaustive nonlinear analysis of the time series was carried out to reconstruct the phase space of the underlying chaotic attractor. The forecast values are used by a non-hydrostatic meteorological model ARPS for daily weather prediction and their results compared with surface temperature measurements from a meteorological station and a vertical sounding. The effect of noise in the time series is analyzed in terms of the prediction results.

    Key words: Meterology and atmospheric dynamics (mesoscale meteorology; general – General (new fields

  12. Applications of complex terrain meteorological models to emergency response management

    International Nuclear Information System (INIS)

    Yamada, Tetsuji; Leone, J.M. Jr.; Rao, K.S.; Dickerson, M.H.; Bader, D.C.; Williams, M.D.

    1989-01-01

    The Office of Health and Environmental Research (OHER), US Department of Energy (DOE), has supported the development of mesoscale transport and diffusion and meteorological models for several decades. The model development activities are closely tied to the OHER field measurement program which has generated a large amount of meteorological and tracer gas data that have been used extensively to test and improve both meteorological and dispersion models. This paper briefly discusses the history of the model development activities associated with the OHER atmospheric science program. The discussion will then focus on how results from this program have made their way into the emergency response community in the past, and what activities are presently being pursued to improve real-time emergency response capabilities. Finally, fruitful areas of research for improving real-time emergency response modeling capabilities are suggested. 35 refs., 5 figs

  13. Invited perspectives: Hydrological perspectives on precipitation intensity-duration thresholds for landslide initiation: proposing hydro-meteorological thresholds

    Science.gov (United States)

    Bogaard, Thom; Greco, Roberto

    2018-01-01

    Many shallow landslides and debris flows are precipitation initiated. Therefore, regional landslide hazard assessment is often based on empirically derived precipitation intensity-duration (ID) thresholds and landslide inventories. Generally, two features of precipitation events are plotted and labeled with (shallow) landslide occurrence or non-occurrence. Hereafter, a separation line or zone is drawn, mostly in logarithmic space. The practical background of ID is that often only meteorological information is available when analyzing (non-)occurrence of shallow landslides and, at the same time, it could be that precipitation information is a good proxy for both meteorological trigger and hydrological cause. Although applied in many case studies, this approach suffers from many false positives as well as limited physical process understanding. Some first steps towards a more hydrologically based approach have been proposed in the past, but these efforts received limited follow-up.Therefore, the objective of our paper is to (a) critically analyze the concept of precipitation ID thresholds for shallow landslides and debris flows from a hydro-meteorological point of view and (b) propose a trigger-cause conceptual framework for lumped regional hydro-meteorological hazard assessment based on published examples and associated discussion. We discuss the ID thresholds in relation to return periods of precipitation, soil physics, and slope and catchment water balance. With this paper, we aim to contribute to the development of a stronger conceptual model for regional landslide hazard assessment based on physical process understanding and empirical data.

  14. Coupling meteorological and hydrological models for flood forecasting

    Directory of Open Access Journals (Sweden)

    Bartholmes

    2005-01-01

    Full Text Available This paper deals with the problem of analysing the coupling of meteorological meso-scale quantitative precipitation forecasts with distributed rainfall-runoff models to extend the forecasting horizon. Traditionally, semi-distributed rainfall-runoff models have been used for real time flood forecasting. More recently, increased computer capabilities allow the utilisation of distributed hydrological models with mesh sizes from tenths of metres to a few kilometres. On the other hand, meteorological models, providing the quantitative precipitation forecast, tend to produce average values on meshes ranging from slightly less than 10 to 200 kilometres. Therefore, to improve the quality of flood forecasts, the effects of coupling the meteorological and the hydrological models at different scales were analysed. A distributed hydrological model (TOPKAPI was developed and calibrated using a 1x1 km mesh for the case of the river Po closed at Ponte Spessa (catchment area c. 37000 km2. The model was then coupled with several other European meteorological models ranging from the Limited Area Models (provided by DMI and DWD with resolutions from 0.0625° * 0.0625°, to the ECMWF ensemble predictions with a resolution of 1.85° * 1.85°. Interesting results, describing the coupled model behaviour, are available for a meteorological extreme event in Northern Italy (Nov. 1994. The results demonstrate the poor reliability of the quantitative precipitation forecasts produced by meteorological models presently available; this is not resolved using the Ensemble Forecasting technique, when compared with results obtainable with measured rainfall.

  15. Wind power variations under humid and arid meteorological conditions

    International Nuclear Information System (INIS)

    Şen, Zekâi

    2013-01-01

    Highlights: • It indicates the role of weather parameters’ roles in the wind energy calculation. • Meteorological variables are more significant in arid regions for wind power. • It provides opportunity to take into consideration air density variability. • Wind power is presented in terms of the wind speed, temperature and pressure. - Abstract: The classical wind power per rotor area per time is given as the half product of the air density by third power of the wind velocity. This approach adopts the standard air density as constant (1.23 g/cm 3 ), which ignores the density dependence on air temperature and pressure. Weather conditions are not taken into consideration except the variations in wind velocity. In general, increase in pressure and decrease in temperature cause increase in the wind power generation. The rate of increase in the pressure has less effect on the wind power as compared with the temperature rate. This paper provides the wind power formulation based on three meteorological variables as the wind velocity, air temperature and air pressure. Furthermore, from the meteorology point of view any change in the wind power is expressed as a function of partial changes in these meteorological variables. Additionally, weather conditions in humid and arid regions differ from each other, and it is interesting to see possible differences between the two regions. The application of the methodology is presented for two meteorology stations in Istanbul, Turkey, as representative of the humid regions and Al-Madinah Al-Monawwarah, Kingdom of Saudi Arabia, for arid region, both on daily record bases for 2010. It is found that consideration of air temperature and pressure in the average wind power calculation gives about 1.3% decrease in Istanbul, whereas it is about 13.7% in Al-Madinah Al-Monawwarah. Hence, consideration of meteorological variables in wind power calculations becomes more significant in arid regions

  16. Atmospheric corrosion in Gran Canaria specifically meteorological and pollution conditions

    International Nuclear Information System (INIS)

    Gonzalez, J.E.G.; Valles, M.L.; Mirza R, J.C.

    1998-01-01

    Carbon steel, copper, zinc and aluminium samples were exposed in different sizes with known ambient parameters in Gran Canaria Island and atmospheric corrosion was investigated. Weight-loss measurements used to determine corrosion damage were complemented with metallographic and XP S determination in order to characterize the structure and morphology of surface corrosion products. The ambient aggressiveness could be well evaluated from meteorological and pollution data. All atmospheric corrosion and environmental data were statistically processed for establishing general corrosion damage functions for carbon steel, copper, aluminium and zinc in terms of Gran Canaria extreme meteorological and pollution parameters. (Author)

  17. Barrier island forest ecosystem: role of meteorologic nutrient inputs.

    Science.gov (United States)

    Art, H W; Bormann, F H; Voigt, G K; Woodwell, G M

    1974-04-05

    The Sunken Forest, located on Fire Island, a barrier island in the Atlantic Ocean off Long Island, New York, is an ecosystem in which most of the basic cation input is in the form of salt spray. This meteorologic input is sufficient to compensate for the lack of certain nutrients in the highly weathered sandy soils. In other ecosystems these nutrients are generally supplied by weathering of soil particles. The compensatory effect of meteorologic input allows for primary production rates in the Sunken Forest similar to those of inland temperate forests.

  18. Natural radioactive environmental pollution and meteorological characteristics of Faisalabad environment

    International Nuclear Information System (INIS)

    Shahid, M.A.K.; Sharif, R.; Hussain, K.

    1999-01-01

    This study is about Faisalabad, the third largest and industrial city of Pakistan, where the maximum temperature in summer reaches up to 50 deg. C and in winter it may fall below the freezing point. In this study on attempt has been made to find co-relation between local weather conditions and natural radioactive concentrations. The natural radioactivity was found to have no co-relation with meteorological parameters. Thus the natural activity is independent of meteorological characteristics, which confirms the random nature of radioactivity. (author)

  19. Numerical simulation of meteorological conditions for peak pollution in Paris

    Energy Technology Data Exchange (ETDEWEB)

    Carissimo, B. [Electricite de France (EDF), 78 - Chatou (France). Direction des Etudes et Recherches

    1997-06-01

    Results obtained on the simulation of meteorological conditions during two episodes of peak pollution in Paris are presented, one in the winter, the other in the summer. The A3UR air quality modelling system is first described followed by the MERCURE mesoscale meteorological model. The conditions of simulation are described. The results obtained on these two causes show satisfactory agreement, for example on the magnitude of the urban heat island which is correctly reproduced. In this study, several areas of progress have been identified: improvement of the altitude measurement network around cities, the simulation of light wind conditions and the simulation of formation and dissipation of fog. (author) 24 refs.

  20. Towards A Grid Infrastructure For Hydro-Meteorological Research

    Directory of Open Access Journals (Sweden)

    Michael Schiffers

    2011-01-01

    Full Text Available The Distributed Research Infrastructure for Hydro-Meteorological Study (DRIHMS is a coordinatedaction co-funded by the European Commission. DRIHMS analyzes the main issuesthat arise when designing and setting up a pan-European Grid-based e-Infrastructure for researchactivities in the hydrologic and meteorological fields. The main outcome of the projectis represented first by a set of Grid usage patterns to support innovative hydro-meteorologicalresearch activities, and second by the implications that such patterns define for a dedicatedGrid infrastructure and the respective Grid architecture.

  1. Multivariate analysis between air pollutants and meteorological variables in Seoul

    International Nuclear Information System (INIS)

    Kim, J.; Lim, J.

    2005-01-01

    Multivariate analysis was conducted to analyze the relationship between air pollutants and meteorological variables measured in Seoul from January 1 to December 31, 1999. The first principal component showed the contrast effect between O 3 and the other pollutants. The second principal component showed the contrast effect between CO, SO 2 , NO 2 , and O 3 , PM 10 , TSP. Based on the cluster analysis, three clusters represented different air pollution levels, seasonal characteristics of air pollutants, and meteorological conditions. Discriminant analysis with air environment index (AEI) was carried out to develop an air pollution index function. (orig.)

  2. ROMANIAN AERONAUTICAL METEOROLOGY APPLICABLE LEGAL FRAMEWORK –BRIEFING

    Directory of Open Access Journals (Sweden)

    CATALIN POPA

    2012-05-01

    Full Text Available The purpose of this briefing is toprovide an overview of the aeronautical meteorology legal framework in Romania. In this context, the role and importance of aeronautical meteorology in international air traffic management will be underlined, with focus on the civil aviation activity in Romania. The international legal framework and modalities of implementing these rules at national level will constitute a significant part of the present study., Specific accent will be put on the national regulatory framework and structure, means of updating it, and how it responds to changing regulatory requirements.

  3. Kaiseraugst nuclear power station: meteorological effects of the cooling towers

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Considerations of water conservation persuaded the German Government in 1971 not to allow the use of the Aar and Rhine for direct cooling of nuclear power stations. The criticism is often made that the Kaiseraugst cooling towers were built without full consideration of the resulting meteorological effects. The criticism is considered unjustified because the Federal Cooling Tower Commission considered all the relevant aspects before making its recommendations in 1972. Test results and other considerations show that the effect of the kaiseraugst cooling towers on meteorological and climatic conditions is indeed minimal and details are given. (P.G.R.)

  4. Application of meteorology to safety at nuclear plants

    International Nuclear Information System (INIS)

    1968-01-01

    This report was prepared on behalf of the International Atomic Energy Agency by an international panel of experts who met at the Agency's headquarters from 10 to 14 April 1967. The application of meteorology to safety at nuclear plants is discussed in connection with site selection, design and construction, operation, and emergency planning and action. The final chapter considers the training to be given to operators and health and safety personnel on meteorology problems. The appendix gives a simple method for computing air concentration values at ground level. An extensive bibliography is also included.

  5. Average wind statistics for SRP area meteorological towers

    International Nuclear Information System (INIS)

    Laurinat, J.E.

    1987-01-01

    A quality assured set of average wind Statistics for the seven SRP area meteorological towers has been calculated for the five-year period 1982--1986 at the request of DOE/SR. A Similar set of statistics was previously compiled for the years 1975-- 1979. The updated wind statistics will replace the old statistics as the meteorological input for calculating atmospheric radionuclide doses from stack releases, and will be used in the annual environmental report. This report details the methods used to average the wind statistics and to screen out bad measurements and presents wind roses generated by the averaged statistics

  6. Meteorological data assimilation for real-time emergency response

    International Nuclear Information System (INIS)

    Sugiyama, G.; Chan, S.T.

    1996-11-01

    The US Department of Energy's Atmospheric Release Advisory Capability (ARAC) provides real-time dose assessments of airborne pollutant releases. Diverse data assimilation techniques are required to meet the needs of a new generation of ARAC models and to take advantage of the rapidly expanding availability of meteorological data. We are developing a hierarchy of algorithms to provide gridded meteorological fields which can be used to drive dispersion codes or to provide initial fields for mesoscale models. Data to be processed include winds, temperature, moisture, and turbulence

  7. Inherent uncertainties in meteorological parameters for wind turbine design

    Science.gov (United States)

    Doran, J. C.

    1982-01-01

    Major difficulties associated with meteorological measurments such as the inability to duplicate the experimental conditions from one day to the next are discussed. This lack of consistency is compounded by the stochastic nature of many of the meteorological variables of interest. Moreover, simple relationships derived in one location may be significantly altered by topographical or synoptic differences encountered at another. The effect of such factors is a degree of inherent uncertainty if an attempt is made to describe the atmosphere in terms of universal laws. Some of these uncertainties and their causes are examined, examples are presented and some implications for wind turbine design are suggested.

  8. Abstraction the public from scientific - applied meteorological-climatologic data

    Science.gov (United States)

    Trajanoska, L.

    2010-09-01

    Mathematical and meteorological statistic processing of meteorological-climatologic data, which includes assessment of the exactness, level of confidence of the average and extreme values, frequencies (probabilities) of the occurrence of each meteorological phenomenon and element e.t.c. helps to describe the impacts climate may have on different social and economic activities (transportation, heat& power generation), as well as on human health. Having in mind the new technology and the commercial world, during the work with meteorological-climatologic data we have meet many different challenges. Priority in all of this is the quality of the meteorological-climatologic set of data. First, we need compatible modern, sophisticated measurement and informatics solution for data. Results of this measurement through applied processing and analyze is the second branch which is very important also. Should we all (country) need that? Today we have many unpleasant events connected with meteorology, many questions which are not answered and all of this has too long lasting. We must give the answers and solve the real and basic issue. In this paper the data issue will be presented. We have too much of data but so little of real and quality applied of them, Why? There is a data for: -public applied -for jurisdiction needs -for getting fast decision-solutions (meteorological-dangerous phenomenon's) -for getting decisions for long-lasting plans -for explore in different sphere of human living So, it is very important for what kind of data we are talking. Does the data we are talking are with public or scientific-applied character? So,we have two groups. The first group which work with the data direct from the measurement place and instrument. They are store a quality data base and are on extra help to the journalists, medical workers, human civil engineers, electromechanical engineers, agro meteorological and forestry engineer e.g. The second group do work with all scientific

  9. Sorghum yield and associated satellite-derived meteorological ...

    African Journals Online (AJOL)

    Sorghum yield and associated satellite-derived meteorological parameters in semi-arid Botswana. ... African Crop Science Journal ... Sorghum (Sorghum bicolor) yield for five seasons (2005/6 to 2009/10) from the Botswana Department of Crop ... Key Words: Coefficient of determination, NDVI, Pearson correlation ...

  10. Mesoscale meteorological model based on radioactive explosion cloud simulation

    International Nuclear Information System (INIS)

    Zheng Yi; Zhang Yan; Ying Chuntong

    2008-01-01

    In order to simulate nuclear explosion and dirty bomb radioactive cloud movement and concentration distribution, mesoscale meteorological model RAMS was used. Particles-size, size-active distribution and gravitational fallout in the cloud were considered. The results show that the model can simulate the 'mushroom' clouds of explosion. Three-dimension fluid field and radioactive concentration field were received. (authors)

  11. Meteorology and Wind Energy Department annual report 1996

    Energy Technology Data Exchange (ETDEWEB)

    Hauge Madsen, P.; Dannemand Andersen, P.; Skrumsager, B. [eds.

    1997-07-01

    In 1996 the Meteorology and Wind Energy Department has performed research within the programme areas: (1) wind energy and (2) atmospheric processes. The objectives are through research in boundary layer meteorology, fluid dynamics, aerodynamics and structural mechanics to contribute with new knowledge within (1) wind energy in relation to development, manufacturing, operation and export as well as testing and certification of wind turbines, and (2) aspects of boundary-layer meteorology related to environmental and energy problems of society. The work is supported by the research programs of the Ministry of Environment and Energy, the Nordic Council of Ministers, EU as well as by industry. Through our research and development work we develop and provide methodologies including computer models for use by industry, institutions, and governmental authorities. In the long view we are developing facilities and programs enabling us to serve as a national and European centre for wind-energy and boundary-layer meteorological research. A summary of our activities in 1996 is presented. (au) 4 tabs., 5 ills.

  12. Seasonal variation of meteorological factors on air parameters and ...

    African Journals Online (AJOL)

    The impacts of gas flaring on meteorological factors at Ibeno, Eket, Onna, Esit Eket and Umudike - Nigeria were investigated by measuring air quality parameters. The results show that the mean concentration of air parameters value were below Federal Environmental Protection Agency (FEPA) and United States ...

  13. Effects of meteorological factors on the incidence of meningococcal ...

    African Journals Online (AJOL)

    Background and Objectives: Substantial climate changes have led to the emergence and re-emergence of various infectious diseases worldwide, presenting an imperative need to explore the effects of meteorological factors on serious contagious disease incidences such as that of meningococcal meningitis (MCM).

  14. The Effect of Meteorological Factors on the Population Dynamics of ...

    African Journals Online (AJOL)

    Michael Horsfall

    Regression equations of fly incidence with all the meteorological parameters were also determined. Results of the present investigation may be utilized in chalking out sustainable pest management strategy in the agro-ecological system under consideration. @ JASEM. Fruit flies are important pests of fruits, vegetables and.

  15. Thermometric convection coefficients for rocket meteorological sensors (tables)

    Science.gov (United States)

    Staffanson, F. L.

    1974-01-01

    Values of the convective heat transfer coefficient h, and the recovery factor r, for miniature beads, fine wires, and films in rarefied air flow are shown. Data provide a standard reference for computing consistent operational corrections to rocket meteorological measurements, and for predicting the performance of existing and proposed sensor systems.

  16. Influence of the Meteorology Mast on a Cup Anemometer

    DEFF Research Database (Denmark)

    Hansen, Martin O. L.; Pedersen, B.M.

    1999-01-01

    The actuator disc model is applied on lattice-type meteorological masts to estimate the influence of the tower on the accuracy of the measured wind speed. Combining the results with corrections for the boom, on which the anemometer is mounted, good agreement is found for measurements made on the ...

  17. Mutual Coupling Between Meteorological Parameters and Secondary Microseisms

    Czech Academy of Sciences Publication Activity Database

    Holub, Karel; Kalenda, Pavel; Rušajová, Jana

    2013-01-01

    Roč. 24, č. 6 (2013), s. 933-949 ISSN 1017-0839 R&D Projects: GA MŠk LM2010008 Institutional support: RVO:68145535 ; RVO:67985891 Keywords : secondary microseisms * meteorological elements * statistics Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.061, year: 2013 http://tao.cgu.org.tw/pdf/v246p933.pdf

  18. Utilization of Agro-meteorological Services among Arable Crop ...

    African Journals Online (AJOL)

    Thomas Kehinde Adesina

    The study assessed arable crop farmers' utilization of agro-meteorological services in ... The Intergovernmental Panel on Climate Change, IPCC's Fourth ... the patterns of impact of climate change on agriculture can be classified into ... temperature rise causing fish to inhabit in different ranges. ..... Journal of Human Ecology.

  19. Design, construction and evaluation of a meteorological mobile mast ...

    African Journals Online (AJOL)

    A 30 metre meteorological mobile mast has been designed and constructed for upper air profile measurements. The parameters to be measured are wind speed, wind direction, temperature and relative humidity. The sensors for each parameter to be measured are constructed with locally available materials.

  20. Automatic, Multiple Assessment Options in Undergraduate Meteorology Education

    Science.gov (United States)

    Kahl, Jonathan D. W.

    2017-01-01

    Since 2008, automatic, multiple assessment options have been utilised in selected undergraduate meteorology courses at the University of Wisconsin--Milwaukee. Motivated by a desire to reduce stress among students, the assessment methodology includes examination-heavy and homework-heavy alternatives, differing by an adjustable 15% of the overall…

  1. Weather or Not To Teach Junior High Meteorology.

    Science.gov (United States)

    Knorr, Thomas P.

    1984-01-01

    Presents a technique for teaching meteorology allowing students to observe and analyze consecutive weather maps and relate local conditions; a model illustrating the three-dimensional nature of the atmosphere is employed. Instructional methods based on studies of daily weather maps to trace systems sweeping across the United States are discussed.…

  2. Site-specific meteorology identification for DOE facility accident analysis

    International Nuclear Information System (INIS)

    Rabin, S.B.

    1995-01-01

    Currently, chemical dispersion calculations performed for safety analysis of DOE facilities assume a Pasquill D-Stability Class with a 4.5 m/s windspeed. These meteorological conditions are assumed to conservatively address the source term generation mechanism as well as the dispersion mechanism thereby resulting in a net conservative downwind consequence. While choosing this Stability Class / Windspeed combination may result in an overall conservative consequence, the level of conservative can not be quantified. The intent of this paper is to document a methodology which incorporates site-specific meteorology to determine a quantifiable consequence of a chemical release. A five-year meteorological database, appropriate for the facility location, is utilized for these chemical consequence calculations, and is consistent with the approach used for radiological releases. The hourly averages of meteorological conditions have been binned into 21 groups for the chemical consequence calculations. These 21 cases each have a probability of occurrence based on the number of times each case has occurred over the five year sampling period. A code has been developed which automates the running of all the cases with a commercially available air modeling code. The 21 cases are sorted by concentration. A concentration may be selected by the user for a quantified level of conservatism. The methodology presented is intended to improve the technical accuracy and defensability of Chemical Source Term / Dispersion Safety Analysis work. The result improves the quality of safety analyses products without significantly increasing the cost

  3. Meteorology--An Interdisciplinary Base for Science Learning.

    Science.gov (United States)

    Howell, David C.

    1980-01-01

    Described is a freshman science program at Deerfield Academy (Deerfield, Mass.) in meteorology, designed as the first part of a three-year unified science sequence. Merits of the course, in which particular emphasis is placed on observation skills and making predictions, are enumerated. (CS)

  4. Impact of inherent meteorology uncertainty on air quality ...

    Science.gov (United States)

    It is well established that there are a number of different classifications and sources of uncertainties in environmental modeling systems. Air quality models rely on two key inputs, namely, meteorology and emissions. When using air quality models for decision making, it is important to understand how uncertainties in these inputs affect the simulated concentrations. Ensembles are one method to explore how uncertainty in meteorology affects air pollution concentrations. Most studies explore this uncertainty by running different meteorological models or the same model with different physics options and in some cases combinations of different meteorological and air quality models. While these have been shown to be useful techniques in some cases, we present a technique that leverages the initial condition perturbations of a weather forecast ensemble, namely, the Short-Range Ensemble Forecast system to drive the four-dimensional data assimilation in the Weather Research and Forecasting (WRF)-Community Multiscale Air Quality (CMAQ) model with a key focus being the response of ozone chemistry and transport. Results confirm that a sizable spread in WRF solutions, including common weather variables of temperature, wind, boundary layer depth, clouds, and radiation, can cause a relatively large range of ozone-mixing ratios. Pollutant transport can be altered by hundreds of kilometers over several days. Ozone-mixing ratios of the ensemble can vary as much as 10–20 ppb

  5. Techniques for Improved Retrospective Fine-scale Meteorology

    Science.gov (United States)

    Pleim-Xiu Land-Surface model (PX LSM) was developed for retrospective meteorological simulations to drive chemical transport models. One of the key features of the PX LSM is the indirect soil moisture and temperature nudging. The idea is to provide a three hourly 2-m temperature ...

  6. Impact of inherent meteorology uncertainty on air quality model predictions

    Science.gov (United States)

    It is well established that there are a number of different classifications and sources of uncertainties in environmental modeling systems. Air quality models rely on two key inputs, namely, meteorology and emissions. When using air quality models for decision making, it is impor...

  7. Modelling the meteorological forest fire niche in heterogeneous pyrologic conditions.

    Science.gov (United States)

    De Angelis, Antonella; Ricotta, Carlo; Conedera, Marco; Pezzatti, Gianni Boris

    2015-01-01

    Fire regimes are strongly related to weather conditions that directly and indirectly influence fire ignition and propagation. Identifying the most important meteorological fire drivers is thus fundamental for daily fire risk forecasting. In this context, several fire weather indices have been developed focussing mainly on fire-related local weather conditions and fuel characteristics. The specificity of the conditions for which fire danger indices are developed makes its direct transfer and applicability problematic in different areas or with other fuel types. In this paper we used the low-to-intermediate fire-prone region of Canton Ticino as a case study to develop a new daily fire danger index by implementing a niche modelling approach (Maxent). In order to identify the most suitable weather conditions for fires, different combinations of input variables were tested (meteorological variables, existing fire danger indices or a combination of both). Our findings demonstrate that such combinations of input variables increase the predictive power of the resulting index and surprisingly even using meteorological variables only allows similar or better performances than using the complex Canadian Fire Weather Index (FWI). Furthermore, the niche modelling approach based on Maxent resulted in slightly improved model performance and in a reduced number of selected variables with respect to the classical logistic approach. Factors influencing final model robustness were the number of fire events considered and the specificity of the meteorological conditions leading to fire ignition.

  8. Statistical variability of hydro-meteorological variables as indicators ...

    African Journals Online (AJOL)

    Statistical variability of hydro-meteorological variables as indicators of climate change in north-east Sokoto-Rima basin, Nigeria. ... water resources development including water supply project, agriculture and tourism in the study area. Key word: Climate change, Climatic variability, Actual evapotranspiration, Global warming ...

  9. Changes in meteorological parameters in Nigeria by different ...

    African Journals Online (AJOL)

    The annual mean solar indices of MgII core to core wing ratio, solar flux 10.7 cm and sunspot number over an eleven (11) year period, 2000 – 2010, were correlated with the annual mean rainfall, maximum temperature, relati-ve humidity, cloud cover and wind speed of 8 meteorological stations in Nigeria. Correlation ...

  10. Spatial clustering and meteorological drivers of summer ozone in Europe

    Science.gov (United States)

    Carro-Calvo, Leopoldo; Ordóñez, Carlos; García-Herrera, Ricardo; Schnell, Jordan L.

    2017-10-01

    We have applied the k-means clustering technique on a maximum daily 8-h running average near-surface ozone (MDA8 O3) gridded dataset over Europe at 1° × 1° resolution for summer 1998-2012. This has resulted in a spatial division of nine regions where ozone presents coherent spatiotemporal patterns. The role of meteorology in the variability of ozone at different time scales has been investigated by using daily meteorological fields from the NCEP-NCAR meteorological reanalysis. In the five regions of central-southern Europe ozone extremes (exceedances of the summer 95th percentile) occur mostly under anticyclonic circulation or weak sea level pressure gradients which trigger elevated temperatures and the recirculation of air masses. In the four northern regions extremes are associated with high-latitude anticyclones that divert the typical westerly flow at those latitudes and cause the advection of aged air masses from the south. The impact of meteorology on the day-to-day variability of ozone has been assessed by means of two different types of multiple linear models. These include as predictors meteorological fields averaged within the regions (;region-based; approach) or synoptic indices indicating the degree of resemblance between the daily meteorological fields over a large domain (25°-70° N, 35° W - 35° E) and their corresponding composites for extreme ozone days (;index-based; approach). With the first approach, a reduced set of variables, always including daily maximum temperature within the region, explains 47-66% of the variability (adjusted R2) in central-southern Europe, while more complex models are needed to explain 27-49% of the variability in the northern regions. The index-based approach yields better results for the regions of northern Europe, with adjusted R2 = 40-57%. Finally, both methodologies have also been applied to reproduce the interannual variability of ozone, with the best models explaining 66-88% of the variance in central

  11. Analysis of the effect of meteorological factors on dewfall

    International Nuclear Information System (INIS)

    Xiao, Huijie; Meissner, Ralph; Seeger, Juliane; Rupp, Holger; Borg, Heinz; Zhang, Yuqing

    2013-01-01

    To get an insight into when dewfall will occur and how much to expect we carried out extensive calculations with the energy balance equation for a crop surface to 1) identify the meteorological factors which determine dewfall, 2) establish the relationship between dewfall and each of them, and 3) analyse how these relationships are influenced by changes in these factors. The meteorological factors which determine dewfall were found to be air temperature (T a ), cloud cover (N), wind speed (u), soil heat flux (G), and relative humidity (h r ). Net radiation is also a relevant factor. We did not consider it explicitly, but indirectly through the effect of temperature on the night-time radiation balance. The temperature of the surface (T s ) where dew forms on is also important. However, it is not a meteorological factor, but determined by the aforementioned parameters. All other conditions being equal our study revealed that dewfall increases linearly with decreasing N or G, and with increasing h r . The effect of T a and u on dewfall is non-linear: dewfall initially increases with increasing T a or u, and then decreases. All five meteorological factors can lead to variations in dewfall between 0 and 25 W m −2 over the range of their values we studied. The magnitude of the variation due to one factor depends on the value of the others. Dewfall is highest at N = 0, G = 0, and h r = 1. T a at which dewfall is highest depends on u and vice versa. The change in dewfall for a unit change in N, G or h r is not affected by the value of N, G or h r , but increases as T a or u increase. The change in dewfall for a unit change in T a or u depends on the value of the other four meteorological factors. - Highlights: • Process of dewfall is examined for a wide range of meteorological conditions. • Effect of meteorological factors on dewfall is individually elucidated. • Interaction between factors and their combined effect on dewfall is assessed. • Extensive

  12. Extreme meteorological events and nuclear facilities safety

    International Nuclear Information System (INIS)

    Almeida, Patricia Moco Princisval

    2006-01-01

    An External Event is an event that originates outside the site and whose effects on the Nuclear Power Plants (NPP) should be considered. Such events could be of natural or human induced origin and should be identified and selected for design purposes during the site evaluation process. This work shows that the subtropics and mid latitudes of South America east of the Andes Mountain Range have been recognized as prone to severe convective weather. In Brazil, the events of tornadoes are becoming frequent; however there is no institutionalized procedure for a systematic documentation of severe weather. The information is done only for some scientists and by the newspapers. Like strong wind can affect the structural integrity of buildings or the pressure differential can affect the ventilation system, our concern is the safety of NPP and for this purpose the recommendations of International Atomic Energy Agency, Nuclear Regulatory Commission and Comissao Nacional de Energia Nuclear are showed and also a data base of tornadoes in Brazil is done. (author)

  13. A gap analysis of meteorological requirements for commercial space operators

    Science.gov (United States)

    Stapleton, Nicholas James

    Commercial space companies will soon be the primary method of launching people and supplies into orbit. Among the critical aspects of space launches are the meteorological concerns. Laws and regulations pertaining to meteorological considerations have been created to ensure the safety of the space industry and those living around spaceports; but, are they adequate? Perhaps the commercial space industry can turn to the commercial aviation industry to help answer that question. Throughout its history, the aviation industry has dealt with lessons learned from mishaps due to failures in understanding the significance of weather impacts on operations. Using lessons from the aviation industry, the commercial space industry can preempt such accidents and maintain viability as an industry. Using Lanicci's Strategic Planning Model, this study identified the weather needs of the commercial space industry by conducting three gap analyses. First, a comparative analysis was done between laws and regulations in commercial aviation and those in the commercial space industry pertaining to meteorological support, finding a "legislative gap" between the two industries, as no legal guarantee is in place to ensure weather products remain available to the commercial space industry. A second analysis was conducted between the meteorological services provided for the commercial aviation industry and commercial space industry, finding a gap at facilities not located at an established launch facility or airport. At such facilities, many weather observational technologies would not be present, and would need to be purchased by the company operating the spaceport facility. A third analysis was conducted between the meteorological products and regulations that are currently in existence, and those needed for safe operations within the commercial space industry, finding gaps in predicting lightning, electric field charge, and space weather. Recommendations to address these deficiencies have

  14. Forecasting skills of the ensemble hydro-meteorological system for the Po river floods

    Science.gov (United States)

    Ricciardi, Giuseppe; Montani, Andrea; Paccagnella, Tiziana; Pecora, Silvano; Tonelli, Fabrizio

    2013-04-01

    The Po basin is the largest and most economically important river-basin in Italy. Extreme hydrological events, including floods, flash floods and droughts, are expected to become more severe in the next future due to climate change, and related ground effects are linked both with environmental and social resilience. A Warning Operational Center (WOC) for hydrological event management was created in Emilia Romagna region. In the last years, the WOC faced challenges in legislation, organization, technology and economics, achieving improvements in forecasting skill and information dissemination. Since 2005, an operational forecasting and modelling system for flood modelling and forecasting has been implemented, aimed at supporting and coordinating flood control and emergency management on the whole Po basin. This system, referred to as FEWSPo, has also taken care of environmental aspects of flood forecast. The FEWSPo system has reached a very high level of complexity, due to the combination of three different hydrological-hydraulic chains (HEC-HMS/RAS - MIKE11 NAM/HD, Topkapi/Sobek), with several meteorological inputs (forecasted - COSMOI2, COSMOI7, COSMO-LEPS among others - and observed). In this hydrological and meteorological ensemble the management of the relative predictive uncertainties, which have to be established and communicated to decision makers, is a debated scientific and social challenge. Real time activities face professional, modelling and technological aspects but are also strongly interrelated with organization and human aspects. The authors will report a case study using the operational flood forecast hydro-meteorological ensemble, provided by the MIKE11 chain fed by COSMO_LEPS EQPF. The basic aim of the proposed approach is to analyse limits and opportunities of the long term forecast (with a lead time ranging from 3 to 5 days), for the implementation of low cost actions, also looking for a well informed decision making and the improvement of

  15. METEOROLOGICAL INFLUENCES ON VAPOR INCIDENTS IN THE 200 EAST and 200 WEST TANK FARMS FROM CY1995 TO CY2004

    International Nuclear Information System (INIS)

    HOCKING, M.J.

    2005-01-01

    Revised for a more comprehensive overview of vapor incidents reported at the Hanford Tank Farms. Investigation into the meteorological influences on vapor incidents in the tank farm to determine what, if any, meteorological influences contribute to the reporting of odors, smells, vapors, and other gases. Weather phenomena, specifically barometric pressure, and wind velocity and direction can potentially cause or exacerbate a vapor release within the farm systems. The purpose of this document is to gather and evaluate the meteorological and weather information for the Tank Farms Shift Log Vapor Incident entries and determine what, if any, meteorological influences contribute to the reporting of odors, smells, vapors, and other gases such as propane. A part of the evaluation will be determining which of the incidents are related to actual ''intrusive'' work, and which are ''transient.'' Transient vapor incidents are herein defined as those vapors encountered during walkdowns, surveys, or other activities that did not require working directly with the tanks, pits, transfer lines, etc. Another part of the investigation will involve determining if there are barometric pressures or other weather related phenomena that might cause or contribute vapors being released when there are no ''intrusive'' activities. A final purpose is to evaluate whether there is any correlation between the 242-A Evaporator operations and Vapor Incidents entered on the Shift Log

  16. METEOROLOGICAL INFLUENCES ON VAPOR INCIDENTS IN THE 200 EAST & 200 WEST TANK FARMS FROM CY1995 TO CY2004

    Energy Technology Data Exchange (ETDEWEB)

    HOCKING, M.J.

    2005-01-31

    Revised for a more comprehensive overview of vapor incidents reported at the Hanford Tank Farms. Investigation into the meteorological influences on vapor incidents in the tank farm to determine what, if any, meteorological influences contribute to the reporting of odors, smells, vapors, and other gases. Weather phenomena, specifically barometric pressure, and wind velocity and direction can potentially cause or exacerbate a vapor release within the farm systems. The purpose of this document is to gather and evaluate the meteorological and weather information for the Tank Farms Shift Log Vapor Incident entries and determine what, if any, meteorological influences contribute to the reporting of odors, smells, vapors, and other gases such as propane. A part of the evaluation will be determining which of the incidents are related to actual ''intrusive'' work, and which are ''transient.'' Transient vapor incidents are herein defined as those vapors encountered during walkdowns, surveys, or other activities that did not require working directly with the tanks, pits, transfer lines, etc. Another part of the investigation will involve determining if there are barometric pressures or other weather related phenomena that might cause or contribute vapors being released when there are no ''intrusive'' activities. A final purpose is to evaluate whether there is any correlation between the 242-A Evaporator operations and Vapor Incidents entered on the Shift Log.

  17. In search of colonial El Niño events and a brief history of meteorology in Ecuador

    Directory of Open Access Journals (Sweden)

    A. Terneus

    2006-01-01

    Full Text Available This study shows a brief overview of the development of meteorology in Ecuador from historical documentation of climatic events in the Colonial era through to modern data collection. In the colonial era (16th century-1824, historical documents of rogation ceremonies and municipal proceedings, from the Quito area, provide a rich source of climate information, including El Niño events. Our preliminary findings show that very few of the historically documented catastrophes and other marked environmental events in Quito match known El Niño episodes. Independently, the first meteorological data was collected in Ecuador (beginning with La Condamine in 1738, followed by the earliest attempts to build a national meteorological network in the 1860's, linked closely to President Gabriel García Moreno and the Jesuits. The 1925 El Niño phenomenon was the first important meteorological episode recorded with scientific instrumentation in Ecuador, with newspapers providing complementary archives about the extreme impact of this event.

  18. In search of colonial El Niño events and a brief history of meteorology in Ecuador

    Science.gov (United States)

    Terneus, A.; Gioda, A.

    2006-02-01

    This study shows a brief overview of the development of meteorology in Ecuador from historical documentation of climatic events in the Colonial era through to modern data collection. In the colonial era (16th century-1824), historical documents of rogation ceremonies and municipal proceedings, from the Quito area, provide a rich source of climate information, including El Niño events. Our preliminary findings show that very few of the historically documented catastrophes and other marked environmental events in Quito match known El Niño episodes. Independently, the first meteorological data was collected in Ecuador (beginning with La Condamine in 1738), followed by the earliest attempts to build a national meteorological network in the 1860's, linked closely to President Gabriel García Moreno and the Jesuits. The 1925 El Niño phenomenon was the first important meteorological episode recorded with scientific instrumentation in Ecuador, with newspapers providing complementary archives about the extreme impact of this event.

  19. Database of meteorological and radiation measurements made in Belarus during the first three months following the Chernobyl accident

    International Nuclear Information System (INIS)

    Drozdovitch, Vladimir; Zhukova, Olga; Germenchuk, Maria; Khrutchinsky, Arkady; Kukhta, Tatiana; Luckyanov, Nickolas; Minenko, Victor; Podgaiskaya, Marina; Savkin, Mikhail; Vakulovsky, Sergey; Voillequé, Paul; Bouville, André

    2013-01-01

    Results of all available meteorological and radiation measurements that were performed in Belarus during the first three months after the Chernobyl accident were collected from various sources and incorporated into a single database. Meteorological information such as precipitation, wind speed and direction, and temperature in localities were obtained from meteorological station facilities. Radiation measurements include gamma-exposure rate in air, daily fallout, concentration of different radionuclides in soil, grass, cow's milk and water as well as total beta-activity in cow's milk. Considerable efforts were made to evaluate the reliability of the measurements that were collected. The electronic database can be searched according to type of measurement, date, and location. The main purpose of the database is to provide reliable data that can be used in the reconstruction of thyroid doses resulting from the Chernobyl accident. - Highlights: ► Meteorological and radiation measurements done after the Chernobyl accident in Belarus were collected. ► Data were verified and incorporated into a single database. ► Results of this study is being used to improve the thyroid dose estimates after the Chernobyl accident.

  20. Assessing storm events for energy meteorology: using media and scientific reports to track a North Sea autumn storm.

    Science.gov (United States)

    Kettle, Anthony

    2016-04-01

    Important issues for energy meteorology are to assess meteorological conditions for normal operating conditions and extreme events for the ultimate limit state of engineering structures. For the offshore environment in northwest Europe, energy meteorology encompasses weather conditions relevant for petroleum production infrastructure and also the new field of offshore wind energy production. Autumn and winter storms are an important issue for offshore operations in the North Sea. The weather in this region is considered as challenging for extreme meteorological events as the Gulf of Mexico with its attendant hurricane risk. The rise of the Internet and proliferation of digital recording devices has placed a much greater amount of information in the public domain than was available to national meteorological agencies even 20 years ago. This contribution looks at reports of meteorology and infrastructure damage from a storm in the autumn of 2006 to trace the spatial and temporal record of meteorological events. Media reports give key information to assess the events of the storm. The storm passed over northern Europe between Oct.31-Nov. 2, 2006, and press reports from the time indicate that its most important feature was a high surge that inundated coastal areas. Sections of the Dutch and German North Sea coast were affected, and there was record flooding in Denmark and East Germany in the southern Baltic Sea. Extreme wind gusts were also reported that were strong enough to damage roofs and trees, and there was even tornado recorded near the Dutch-German border. Offshore, there were a series of damage reports from ship and platforms that were linked with sea state, and reports of rogue waves were explicitly mentioned. Many regional government authorities published summaries of geophysical information related to the storm, and these form part of a regular series of online winter storm reports that started as a public service about 15 years ago. Depending on the

  1. Remote Sensing of Surficial Process Responses to Extreme Meteorological Events

    Science.gov (United States)

    Brakenridge, G. Robert

    1997-01-01

    Changes in the frequency and magnitude of extreme meteorological events are associated with changing environmental means. Such events are important in human affairs, and can also be investigated by orbital remote sensing. During the course of this project, we applied ERS-1, ERS-2, Radarsat, and an airborne sensor (AIRSAR-TOPSAR) to measure flood extents, flood water surface profiles, and flood depths. We established a World Wide Web site (the Dartmouth Flood Observatory) for publishing remote sensing-based maps of contemporary floods worldwide; this is also an online "active archive" that presently constitutes the only global compilation of extreme flood events. We prepared an article for EOS concerning SAR imaging of the Mississippi Valley flood; an article for the International Journal of Remote Sensing on measurement of a river flood wave using ERS-2, began work on an article (since completed and published) on the Flood Observatory for a Geoscience Information Society Proceedings volume, and presented lectures at several Geol. Soc. of America Natl. Meetings, an Assoc. of Amer. Geographers Natl. Meeting, and a Binghamton Geomorphology Symposium (all on SAR remote sensing of the Mississippi Valley flood). We expanded in-house modeling capabilities by installing the latest version of the Army Corps of Engineers RMA two-dimensional hydraulics software and BYU Engineering Graphics Lab's Surface Water Modeling System (finite elements based pre- and post-processors for RMA work) and also added watershed modeling software. We are presently comparing the results of the 2-d flow models with SAR image data. The grant also supported several important upgrades of pc-based remote sensing infrastructure at Dartmouth. During work on this grant, we collaborated with several workers at the U.S. Army Corps of Engineers, Remote Sensing/GIS laboratory (for flood inundation mapping and modeling; particularly of the Illinois River using the AIRSAR/TOPSAR/ERS-2 combined data), with Dr

  2. Gap-filling meteorological variables with Empirical Orthogonal Functions

    Science.gov (United States)

    Graf, Alexander

    2017-04-01

    Gap-filling or modelling surface-atmosphere fluxes critically depends on an, ideally continuous, availability of their meteorological driver variables, such as e.g. air temperature, humidity, radiation, wind speed and precipitation. Unlike for eddy-covariance-based fluxes, data gaps are not unavoidable for these measurements. Nevertheless, missing or erroneous data can occur in practice due to instrument or power failures, disturbance, and temporary sensor or station dismounting for e.g. agricultural management or maintenance. If stations with similar measurements are available nearby, using their data for imputation (i.e. estimating missing data) either directly, after an elevation correction or via linear regression, is usually preferred over linear interpolation or monthly mean diurnal cycles. The popular implementation of regional networks of (partly low-cost) stations increases both, the need and the potential, for such neighbour-based imputation methods. For repeated satellite imagery, Beckers and Rixen (2003) suggested an imputation method based on empirical orthogonal functions (EOFs). While exploiting the same linear relations between time series at different observation points as regression, it is able to use information from all observation points to simultaneously estimate missing data at all observation points, provided that never all observations are missing at the same time. Briefly, the method uses the ability of the first few EOFs of a data matrix to reconstruct a noise-reduced version of this matrix; iterating missing data points from an initial guess (the column-wise averages) to an optimal version determined by cross-validation. The poster presents and discusses lessons learned from adapting and applying this methodology to station data. Several years of 10-minute averages of air temperature, pressure and humidity, incoming shortwave, longwave and photosynthetically active radiation, wind speed and precipitation, measured by a regional (70 km by

  3. Prospects of application of survey satellite image for meteorology

    Science.gov (United States)

    Kapochkina, A. B.; Kapochkin, B. B.; Kucherenko, N. V.

    The maximal interest is represented with the information from geostationary satellites. These satellites repeat shootings the chosen territories, allowing to study dynamics of images. Most interesting shootings in IR a range. Studying of survey image is applied to studying linear elements of clouds (LEC). It is established, that "LEC " arise only above breaks of an earth's crust. In research results of the complex analysis of the satellite data, hydrometeorological supervision, seismicity, supervision over deformations of a surface of the Earth are used. It is established that before formation "LEC " in a ground layer arise anomalies of temperature and humidity. The situation above Europe 16 May, 2001 is considered. "LEC " in Europe block carry of air weights from the west to the east. Synoptic conditions above the Great Britain July, 7-10, 2000 is considered. Moving "LEC" trace distribution of deformation waves to an earth's crust. Satellite shootings Europe before earthquake in Greece 14.08.2003 are considered. These days ground supervision were conducted and the data of the geostationary satellite were analyzed. During moving "LEC " occur failures (destruction houses & of gas mains), earthquake. The situation above Iberian peninsula 12-16.11.2001 is considered. "LEC" arose before flooding in Europe. The situation before flooding in Germany June, 6-8, 2002 and flooding on the river Kuban June, 16-23, 2002 is considered. In case of occurrence of tectonic compression of an earth's crust there are "LEC ", tracer intensive movements of air upwards and downwards above negative and positive anomalies of the form of a terrestrial surface, accordingly. Such meteorological situations are dangerous to flights of aircraft, the fast gravitational anomalies influencing into orbits of movement of satellites trace. The situation above equatorial Atlantic 26.03.2003 years is considered. At tectonic compression of continental scale overcast covers the whole continents for more

  4. Isotope based assessment of groundwater renewal in water scarce regions. Proceedings of a final research co-ordination meeting

    International Nuclear Information System (INIS)

    2001-10-01

    The isotopic composition and chemical constituents of water infiltrating through the soil zone (unsaturated zone, or zone of aeration) into groundwater can be employed to determine the moisture transport in the unsaturated zone, thus enabling estimation of the water infiltration rate to the underlying aquifer. This was the basis on which this CRP was initiated in 1996. The overall results obtained from three years of applied field research related to study of moisture transport dynamics and estimation of natural recharge through use of isotope/hydrochemical depth profiles of the soil moisture in the unsaturated zone were presented and discussed at the final Research Co-ordination Meeting held in Vienna from 18 to 21 October 1999. A total of 44 sites were involved in the project on which detailed information on physiography, lithology, rainfall, unsaturated moisture content and a variety of chemical and isotopic determinants is now available. This publication contains 11 individual reports presented by CRP participants at the Meeting. Each of the reports have been indexed separately

  5. ICON - Salt River Bay 2006 Meteorological and Oceanographic Observations (NODC Accession 0049446)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  6. ICON - West Fore Reef, Discovery Bay, Jamaica 2008 Meteorological and Oceanographic Observations (NODC Accession 0054499)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  7. ICON - Molasses Reef (secondary) 2013 Meteorological and Oceanographic Observations (NODC Accession 0123999)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  8. NOAA Ship Ka'imimoana Underway Meteorological Data, Near Real Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Ka'imimoana Underway Meteorological Data (Near Real Time, updated daily) are from the Shipboard Automated Meteorological and Oceanographic System (SAMOS)...

  9. NOAA Ship Bell M. Shimada Underway Meteorological Data, Near Real Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Bell M. Shimada Underway Meteorological Data (Near Real Time, updated daily) are from the Shipboard Automated Meteorological and Oceanographic System...

  10. NOAA Ship Henry B. Bigelow Underway Meteorological Data, Near Real Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Henry B. Bigelow Underway Meteorological Data (Near Real Time, updated daily) are from the Shipboard Automated Meteorological and Oceanographic System...

  11. NOAA Ship McArthurII Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship McArthur II Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  12. NOAA Ship Oscar Elton Sette Underway Meteorological Data, Near Real Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Oscar Elton Sette Underway Meteorological Data (Near Real Time, updated daily) are from the Shipboard Automated Meteorological and Oceanographic System...

  13. ICON - Salt River Bay 2012 Meteorological and Oceanographic Observations (NODC Accession 0117726)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  14. ICON - Buccoo Reef 2013 Meteorological and Oceanographic Observations (NODC Accession 0123996)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  15. ICON - Media Luna Reef 2011 Meteorological and Oceanographic Observations (NODC Accession 0098078)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  16. ICON - Media Luna Reef 2006 Meteorological and Oceanographic Observations (NODC Accession 0049876)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  17. ICON - Angel's Reef 2013 Meteorological and Oceanographic Observations (NODC Accession 0123995)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  18. ICON - Angel's Reef 2015 Meteorological and Oceanographic Observations (NCEI Accession 0156578)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  19. ICON - Lao Lao Bay, Saipan 2011 Meteorological and Oceanographic Observations (NODC Accession 0098076)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  20. ICON - Puerto Plata 2015 Meteorological and Oceanographic Observations (NCEI Accession 0156578)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...