WorldWideScience

Sample records for scanning x-ray microdiffraction

  1. Magnetic x-ray microdiffraction

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Paul G [Computer-Aided Engineering Center, University of Wisconsin, Madison, WI 53706 (United States); Isaacs, Eric D [Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2006-08-07

    Magnetic x-ray microdiffraction uses the structural specificity of x-ray diffraction to probe complex magnetic structures at the length scales relevant to physical phenomena including domain dynamics and phase transitions. Conventional magnetic crystallography techniques such as neutron or x-ray diffraction lack this spatial resolution. The combination of both reciprocal space and real space resolution with a rich magnetic cross section allows new microscopy techniques to be developed and applied to magnetism at the scale of single domains. Potential applications include a wide range of magnetic problems in nanomagnetism, the interaction of strain, polarization and magnetization in complex oxides and spatially resolved studies of magnetic phase transitions. We present the physical basis for x-ray microdiffraction and magnetic scattering processes, review microdiffraction domain imaging techniques in antiferromagnetic and ferromagnetic materials and discuss potential directions for studies. (topical review)

  2. Microstructural homogeneity of support silk spun by Eriophora fuliginea (C.L. Koch) determined by scanning X-ray microdiffraction

    Science.gov (United States)

    Riekel, C.; Craig, C. L.; Burghammer, M.; Müller, M.

    2001-01-01

    Scanning X-ray microdiffraction (SXD) permits the 'imaging' in-situ of crystalline phases, crystallinity and texture in whole biopolymer samples on the micrometre scale. SXD complements transmission electron microscopy (TEM) techniques, which reach sub-nanometre lateral resolution but require thin sections and a vacuum environment. This is demonstrated using a support thread from a web spun by the orb-weaving spider Eriophora fuliginea (C.L. Koch). Scanning electron microscopy (SEM) shows a central thread composed of two fibres to which thinner fibres are loosely attached. SXD of a piece of support thread approximately 60 µm long shows in addition the presence of nanometre-sized crystallites with the β-poly(L-alanine) structure in all fibres. The crystallinity of the thin fibres appears to be higher than that of the central thread, which probably reflects a higher polyalanine content of the fibroins. The molecular axis of the polymer chains in the central thread is orientated parallel to the macroscopic fibre axis, but in the thin fibres the molecular axis is tilted by about 71° to the macroscopic fibre axis. A helical model is tentatively proposed to describe this morphology. The central thread has a homogeneous distribution of crystallinity along the macroscopic fibre axis.

  3. A hard X-ray scanning microprobe for fluorescence imaging and microdiffraction at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Cai, L.; Lai, B.; Yun, W.; Ilinski, P.; Legnini, D.; Maser, J.; Rodrigues, W.

    1999-01-01

    A hard x-ray scanning microprobe based on zone plate optics and undulator radiation, in the energy region from 6 to 20 keV, has reached a focal spot size (FWHM) of 0.15 microm (v) x 0.6 microm (h), and a photon flux of 4 x 10 9 photons/sec/0.01%BW. Using a slit 44 meters upstream to create a virtual source, a circular beam spot of 0.15 microm in diameter can be obtained with a photon flux of one order of magnitude less. During fluorescence mapping of trace elements in a single human ovarian cell, the microprobe exhibited an imaging sensitivity for Pt (L a line) of 80 attograms/microm 2 for a count rate of 10 counts per second. The x-ray microprobe has been used to map crystallographic strain and multiquantum well thickness in micro-optoelectronic devices produced with the selective area growth technique

  4. X-ray microdiffraction study of Cu interconnects

    International Nuclear Information System (INIS)

    Zhang, X.; Solak, H.; Cerrina, F.; Lai, B.; Cai, Z.; Ilinski, P.; Legnini, D.; Rodrigues, W.

    2000-01-01

    We have used x-ray microdiffraction to study the local structure and strain variation of copper interconnects. Different types of local microstructures have been found in different samples. Our data show that the Ti adhesion layer has a very dramatic effect on Cu microstructure. Strain measurement was conducted before and after electromigration test, Cu fluorescence was used to find the mass variations around voids and hillocks, and x-ray microdiffraction was used to measure the strain change around that interested region. (c) 2000 American Institute of Physics

  5. X-ray powder microdiffraction for routine analysis of paintings

    Czech Academy of Sciences Publication Activity Database

    Šímová, Veronika; Bezdička, Petr; Hradilová, J.; Hradil, David; Grygar, Tomáš

    2005-01-01

    Roč. 20, č. 3 (2005), s. 224-229 ISSN 0885-7156 R&D Projects: GA MŠk(CZ) LN00A028; GA ČR GA203/04/2091; GA AV ČR KJB1032401 Institutional research plan: CEZ:AV0Z40320502 Keywords : powder X-ray microdiffraction * artwork analysis Subject RIV: CA - Inorganic Chemistry Impact factor: 0.483, year: 2005

  6. A Superbend X-Ray Microdiffraction Beamline at the Advanced Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, N.; Kunz, M.; Chen, K.; Celestre, R.S.; MacDowell, A.A.; Warwick, T.

    2009-03-10

    Beamline 12.3.2 at the Advanced Light Source is a newly commissioned beamline dedicated to x-ray microdiffraction. It operates in both monochromatic and polychromatic radiation mode. The facility uses a superconducting bending magnet source to deliver an X-ray spectrum ranging from 5 to 22 keV. The beam is focused down to {approx} 1 um size at the sample position using a pair of elliptically bent Kirkpatrick-Baez mirrors enclosed in a vacuum box. The sample placed on high precision stages can be raster-scanned under the microbeam while a diffraction pattern is taken at each step. The arrays of diffraction patterns are then analyzed to derive distribution maps of phases, strain/stress and/or plastic deformation inside the sample.

  7. Current status of the Scanning X-ray Microscope at the ESRF

    International Nuclear Information System (INIS)

    Barrett, Ray; Kaulich, Burkhard; Salome, Murielle; Susini, Jean

    2000-01-01

    A short description of the Scanning X-ray Microscope of the ESRF ID21 X-ray microscopy beamline is given and the consequences of the relatively wide operating energy range discussed. The current capabilities of the instrument are demonstrated through images and spectra recorded from a variety of pilot experiments, including X-ray fluorescence imaging, microdiffraction and XANES measurements

  8. Application of X-ray microdiffraction in non-destructive microanalysis of colour layers and microtraces

    Czech Academy of Sciences Publication Activity Database

    Grünwaldová, Veronika; Kotrlý, M.; Bezdička, Petr; Kotulanová, Eva; Hradil, David

    2006-01-01

    Roč. 13, č. 3 (2006), s. 152-153 ISSN 1210-8529 R&D Projects: GA MV RN20052005001 Institutional research plan: CEZ:AV0Z40320502 Keywords : X-ray powder microdiffraction * pigments * colour layers of artworks Subject RIV: CA - Inorganic Chemistry

  9. Characterization of Local Strain around Through-Silicon Via Interconnects by Using X-ray Microdiffraction

    Science.gov (United States)

    Nakatsuka, Osamu; Kitada, Hideki; Kim, Youngsuk; Mizushima, Yoriko; Nakamura, Tomoji; Ohba, Takayuki; Zaima, Shigeaki

    2011-05-01

    We have demonstrated the characterization of the local strain structure in thinned Si layers for wafer-on-a-wafer (WOW) applications by using X-ray microdiffraction with a synchrotron radiation source. The microdiffraction reveals the fluctuation of strains in the thin Si layer around through-silicon via (TSV) interconnects with a sub-micrometer scale. We can separately estimated the in-plane and out-of-plane strain structures in the Si layer, and found that the anisotropic strain is induced in the Si layer between the TSV interconnects.

  10. X-ray powder microdiffraction in the analysis of art works

    Czech Academy of Sciences Publication Activity Database

    Šímová, Veronika; Bezdička, Petr; Hradilová, J.; Bayerová, T.; Hradil, David

    2004-01-01

    Roč. 11, 1a (2004), s. 43 ISSN 1211-5894. [European Powder Diffraction Conference /9./. Prague, 02.09.2004-05.09.2004] R&D Projects: GA MŠk LN00A028; GA ČR GA203/04/2091; GA AV ČR KJB1032401 Institutional research plan: CEZ:AV0Z4032918 Keywords : X-ray powder microdiffraction * pigments * colour layers of artworks Subject RIV: CA - Inorganic Chemistry

  11. Provenance study of Gothic paintings from North-East Slovakia by handheld x-ray fluorescence, microscopy and x-ray microdiffraction

    Czech Academy of Sciences Publication Activity Database

    Hradil, David; Hradilová, J.; Bezdička, Petr; Švarcová, Silvie

    2008-01-01

    Roč. 37, č. 4 (2008), s. 376-382 ISSN 0049-8246 R&D Projects: GA ČR(CZ) GA203/07/1324 Institutional research plan: CEZ:AV0Z40320502 Keywords : Gothic paintings * X-ray fluorescence * X-ray microdiffraction Subject RIV: CA - Inorganic Chemistry Impact factor: 1.390, year: 2008

  12. Probing Stress States in Silicon Nanowires During Electrochemical Lithiation Using In Situ Synchrotron X-Ray Microdiffraction

    Directory of Open Access Journals (Sweden)

    Imran Ali

    2018-04-01

    Full Text Available Silicon is considered as a promising anode material for the next-generation lithium-ion battery (LIB due to its high capacity at nanoscale. However, silicon expands up to 300% during lithiation, which induces high stresses and leads to fractures. To design silicon nanostructures that could minimize fracture, it is important to understand and characterize stress states in the silicon nanostructures during lithiation. Synchrotron X-ray microdiffraction has proven to be effective in revealing insights of mechanical stress and other mechanics considerations in small-scale crystalline structures used in many important technological applications, such as microelectronics, nanotechnology, and energy systems. In the present study, an in situ synchrotron X-ray microdiffraction experiment was conducted to elucidate the mechanical stress states during the first electrochemical cycle of lithiation in single-crystalline silicon nanowires (SiNWs in an LIB test cell. Morphological changes in the SiNWs at different levels of lithiation were also studied using scanning electron microscope (SEM. It was found from SEM observation that lithiation commenced predominantly at the top surface of SiNWs followed by further progression toward the bottom of the SiNWs gradually. The hydrostatic stress of the crystalline core of the SiNWs at different levels of electrochemical lithiation was determined using the in situ synchrotron X-ray microdiffraction technique. We found that the crystalline core of the SiNWs became highly compressive (up to -325.5 MPa once lithiation started. This finding helps unravel insights about mechanical stress states in the SiNWs during the electrochemical lithiation, which could potentially pave the path toward the fracture-free design of silicon nanostructure anode materials in the next-generation LIB.

  13. In-situ characterization of highly reversible phase transformation by synchrotron X-ray Laue microdiffraction

    International Nuclear Information System (INIS)

    Chen, Xian; Tamura, Nobumichi; MacDowell, Alastair; James, Richard D.

    2016-01-01

    The alloy Cu_2_5Au_3_0Zn_4_5 undergoes a huge first-order phase transformation (6% strain) and shows a high reversibility under thermal cycling and an unusual martensitc microstructure in sharp contrast to its nearby compositions. This alloy was discovered by systematically tuning the composition so that its lattice parameters satisfy the cofactor conditions (i.e., the kinematic conditions of compatibility between phases). It was conjectured that satisfaction of these conditions is responsible for the enhanced reversibility as well as the observed unusual fluid-like microstructure during transformation, but so far, there has been no direct evidence confirming that these observed microstructures are those predicted by the cofactor conditions. To verify this hypothesis, we use synchrotron X-ray Laue microdiffraction to measure the orientations and structural parameters of variants and phases near the austenite/martensite interface. The areas consisting of both austenite and multi-variants of martensite are scanned by microLaue diffraction. The cofactor conditions have been examined from the kinematic relation of lattice vectors across the interface. The continuity condition of the interface is precisely verified from the correspondent lattice vectors between two phases.

  14. Indentation Size Effects in Single Crystal Copper as Revealed by Synchrotron X-ray Microdiffraction

    Energy Technology Data Exchange (ETDEWEB)

    Feng, G.; Budiman, A. S.; Nix, W. D.; Tamura, N.; Patel, J. R.

    2007-11-19

    The indentation size effect (ISE) has been observed in numerous nanoindentation studies on crystalline materials; it is found that the hardness increases dramatically with decreasing indentation size - a 'smaller is stronger' phenomenon. Some have attributed the ISE to the existence of strain gradients and the geometrically necessary dislocations (GNDs). Since the GND density is directly related to the local lattice curvature, the Scanning X-ray Microdiffraction ({mu}SXRD) technique, which can quantitatively measure relative lattice rotations through the streaking of Laue diffractions, can used to study the strain gradients. The synchrotron {mu}SXRD technique we use - which was developed at the Advanced Light Source (ALS), Berkeley Lab - allows for probing the local plastic behavior of crystals with sub-micrometer resolution. Using this technique, we studied the local plasticity for indentations of different depths in a Cu single crystal. Broadening of Laue diffractions (streaking) was observed, showing local crystal lattice rotation due to the indentation-induced plastic deformation. A quantitative analysis of the streaking allows us to estimate the average GND density in the indentation plastic zones. The size dependence of the hardness, as found by nanoindentation, will be described, and its correlation to the observed lattice rotations will be discussed.

  15. Grain orientation mapping of passivated aluminum interconnect lines with X-ray micro-diffraction

    International Nuclear Information System (INIS)

    Chang, C.H.; Patel, J.R.; MacDowell, A.A.; Padmore, H.A.; Thompson, A.C.

    1998-01-01

    A micro x-ray diffraction facility is under development at the Advanced Light Source. Spot sizes are typically about 1-microm size generated by means of grazing incidence Kirkpatrick-Baez focusing mirrors. Photon energy is either white of energy range 6--14 keV or monochromatic generated from a pair of channel cut crystals. Laue diffraction pattern from a single grain in a passivated 2-microm wide bamboo structured Aluminum interconnect line has been recorded. Acquisition times are of the order of seconds. The Laue pattern has allowed the determination of the crystallographic orientation of individual grains along the line length. The experimental and analysis procedure used is described, as is the latest grain orientation result. The impact of x-ray micro-diffraction and its possible future direction are discussed in the context of other developments in the area of electromigration, and other technological problems

  16. Grain orientation mapping of passivated aluminum interconnect lines by x-ray micro-diffraction

    International Nuclear Information System (INIS)

    Chang, C. H.; Patel, J. R.; MacDowell, A. A.; Padmore, H. A.; Thompson, A. C.

    1998-01-01

    A micro x-ray diffraction facility is under development at the Advanced Light Source. Spot sizes are typically about 1-μm size generated by means of grazing incidence Kirkpatrick-Baez focusing mirrors. Photon energy is either white of energy range 6-14 keV or monochromatic generated from a pair of channel cut crystals. Laue diffraction pattern from a single grain in a passivated 2-μm wide bamboo structured Aluminum interconnect line has been recorded. Acquisition times are of the order of seconds. The Laue pattern has allowed the determination of the crystallographic orientation of individual grains along the line length. The experimental and analysis procedure used is described, as is the latest grain orientation result. The impact of x-ray micro-diffraction and its possible future direction are discussed in the context of other developments in the area of electromigration, and other technological problems

  17. Synchrotron X-Ray Microdiffraction Studies of Electromigration in Interconnect lines at the Advanced Light Source

    International Nuclear Information System (INIS)

    Tamura, Nobumichi; Chen, Kai; Kunz, Martin

    2009-01-01

    Synchrotron polychromatic X-ray microdiffraction is a particularly suitable technique to study in situ the effect of electromigration in metal interconnects as add spatial resolution to grain orientation and strain sensitivity. This technique has been extensively used at the Advanced Light Source to monitor changes in aluminum and copper interconnect test structures while high-density current is passed into them during accelerated tests at elevated temperature. One of the principal findings is the observation of electromigration-induced plasticity in the metal lines that appear during the very early stages of electromigration. In some of the lines, high density of geometrically necessary dislocation are formed leading to additional diffusion paths causing an enhancement of electromigration effect at test temperature. This paper presents an overview of the principal results obtained from X-ray microdiffraction studies of electromigration effects on aluminum and copper interconnects at the ALS throughout continuous efforts that spanned over a decade (1998-2008) from approximately 40 weeks of combined beamtime.

  18. Synchrotron X-Ray Microdiffraction Studies of Electromigration in Interconnect lines at the Advanced Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Nobumichi; Chen, Kai; Kunz, Martin

    2009-05-01

    Synchrotron polychromatic X-ray microdiffraction is a particularly suitable technique to study in situ the effect of electromigration in metal interconnects as add spatial resolution to grain orientation and strain sensitivity. This technique has been extensively used at the Advanced Light Source to monitor changes in aluminum and copper interconnect test structures while high-density current is passed into them during accelerated tests at elevated temperature. One of the principal findings is the observation of electromigration-induced plasticity in the metal lines that appear during the very early stages of electromigration. In some of the lines, high density of geometrically necessary dislocation are formed leading to additional diffusion paths causing an enhancement of electromigration effect at test temperature. This paper presents an overview of the principal results obtained from X-ray microdiffraction studies of electromigration effects on aluminum and copper interconnects at the ALS throughout continuous efforts that spanned over a decade (1998-2008) from approximately 40 weeks of combined beamtime.

  19. A dedicated superbend x-ray microdiffraction beamline for materials, geo-, and environmental sciences at the advanced light source

    Energy Technology Data Exchange (ETDEWEB)

    Advanced Light Source; Kunz, Martin; Tamura, Nobumichi; Chen, Kai; MacDowell, Alastair A.; Celestre, Richard S.; Church, Matthew M.; Fakra, Sirine; Domning, Edward E.; Glossinger, James M.; Kirschman, Jonathan L.; Morrison, Gregory Y.; Plate, Dave W.; Smith, Brian V.; Warwick, Tony; Padmore, Howard A.; Ustundag, Ersan; Yashchuk, Valeriy V.

    2009-03-24

    A new facility for microdiffraction strain measurements and microfluorescence mapping has been built on beamline 12.3.2 at the advanced light source of the Lawrence Berkeley National Laboratory. This beamline benefits from the hard x-radiation generated by a 6 T superconducting bending magnet (superbend) This provides a hard x-ray spectrum from 5 to 22 keV and a flux within a 1 mu m spot of ~;;5x109 photons/ s (0.1percent bandwidth at 8 keV). The radiation is relayed from the superbend source to a focus in the experimental hutch by a toroidal mirror. The focus spot is tailored bytwo pairs of adjustable slits, which serve as secondary source point. Inside the lead hutch, a pair of Kirkpatrick-Baez (KB) mirrors placed in a vacuum tank refocuses the secondary slit source onto the sample position. A new KB-bending mechanism with active temperature stabilization allows for more reproducible and stable mirror bending and thus mirror focusing. Focus spots around 1 um are routinely achieved and allow a variety of experiments, which have in common the need of spatial resolution. The effective spatial resolution (~;;0.2 mu m) is limited by a convolution of beam size, scan-stage resolution, and stage stability. A four-bounce monochromator consisting of two channel-cut Si(111) crystals placed between the secondary source and KB-mirrors allows for easy changes between white-beam and monochromatic experiments while maintaining a fixed beam position. High resolution stage scans are performed while recording a fluorescence emission signal or an x-ray diffraction signal coming from either a monochromatic or a white focused beam. The former allows for elemental mapping, whereas the latter is used to produce two-dimensional maps of crystal-phases, -orientation, -texture, and -strain/stress. Typically achieved strain resolution is in the order of 5x10-5 strain units. Accurate sample positioning in the x-ray focus spot is achieved with a commercial laser-triangulation unit. A Si

  20. High-Performance Parallel and Stream Processing of X-ray Microdiffraction Data on Multicores

    International Nuclear Information System (INIS)

    Bauer, Michael A; McIntyre, Stewart; Xie Yuzhen; Biem, Alain; Tamura, Nobumichi

    2012-01-01

    We present the design and implementation of a high-performance system for processing synchrotron X-ray microdiffraction (XRD) data in IBM InfoSphere Streams on multicore processors. We report on the parallel and stream processing techniques that we use to harvest the power of clusters of multicores to analyze hundreds of gigabytes of synchrotron XRD data in order to reveal the microtexture of polycrystalline materials. The timing to process one XRD image using one pipeline is about ten times faster than the best C program at present. With the support of InfoSphere Streams platform, our software is able to be scaled up to operate on clusters of multi-cores for processing multiple images concurrently. This system provides a high-performance processing kernel to achieve near real-time data analysis of image data from synchrotron experiments.

  1. Local layer structure of smectic liquid crystals by X-ray micro-diffraction

    CERN Document Server

    Takanishi, Y

    2003-01-01

    The local layer structure of smectic liquid crystal has been measured using time-resolved synchrotron X-ray micro-diffraction. Typical layer disorders observed in surface stabilized (anti-) ferroelectric liquid crystals, i.e. a stripe texture, a needed-like defect and a zigzag defect, are directly analyzed. The detailed analysis slows that the surface anchoring force due to the interaction between the liquid crystal molecule and the alignment thin film plays an important role to realize both the static and dynamic local layer structures. The layer structure of the circular domain observed in the liquid crystal of bent-shaped molecules found to depend on the applied electric field though the optical micrograph shows little difference. The frustrated, double and single layer structures of the bent-shaped molecule liquid crystal are determined depending on the terminal alkyl chain length. (author)

  2. Synchrotron X-Ray Microdiffraction Studies of Electromigration in Interconnect lines at the Advanced Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Nobumichi; Chen, Kai; Kunz, Martin

    2009-12-01

    Synchrotron polychromatic X-ray microdiffraction is a particularly suitable technique to study in situ the effect of electromigration in metal interconnects as add spatial resolution to grain orientation and strain sensitivity. This technique has been extensively used at the Advanced Light Source to monitor changes in aluminum and copper interconnect test structures while high-density current is passed into them during accelerated tests at elevated temperature. One of the principal findings is the observation of electromigration-induced plasticity in the metal lines that appear during the very early stages of electromigration. In some of the lines, high density of geometrically necessary dislocation are formed leading to additional diffusion paths causing an enhancement of electromigration effect at test temperature.

  3. Indentation size effects in single crystal copper as revealed by synchrotron x-ray microdiffraction

    Science.gov (United States)

    Feng, G.; Budiman, A. S.; Nix, W. D.; Tamura, N.; Patel, J. R.

    2008-08-01

    For a Cu single crystal, we find that indentation hardness increases with decreasing indentation depth, a phenomenon widely observed before and called the indentation size effect (ISE). To understand the underlying mechanism, we measure the lattice rotations in indentations of different sizes using white beam x-ray microdiffraction (μXRD); the indentation-induced lattice rotations are directly measured by the streaking of x-ray Laue spots associated with the indentations. The magnitude of the lattice rotations is found to be independent of indentation size, which is consistent with the basic tenets of the ISE model. Using the μXRD data together with an ISE model, we can estimate the effective radius of the indentation plastic zone, and the estimate is consistent with the value predicted by a finite element analysis. Using these results, an estimate of the average dislocation densities within the plastic zones has been made; the findings are consistent with the ISE arising from a dependence of the dislocation density on the depth of indentation.

  4. A Gas-Spring-Loaded X-Y-Z Stage System for X-ray Microdiffraction Sample Manipulation

    International Nuclear Information System (INIS)

    Shu Deming; Cai Zhonghou; Lai, Barry

    2007-01-01

    We have designed and constructed a gas-spring-loaded x-y-z stage system for x-ray microdiffraction sample manipulation at the Advanced Photon Source XOR 2-ID-D station. The stage system includes three DC-motor-driven linear stages and a gas-spring-based heavy preloading structure, which provides antigravity forces to ensure that the stage system keeps high-positioning performance under variable goniometer orientation. Microdiffraction experiments with this new stage system showed significant sample manipulation performance improvement

  5. X-ray Compton line scan tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kupsch, Andreas; Lange, Axel; Jaenisch, Gerd-Ruediger [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany). Fachgruppe 8.5 - Mikro-ZfP; Hentschel, Manfred P. [Technische Univ. Berlin (Germany); Kardjilov, Nikolay; Markoetter, Henning; Hilger, Andre; Manke, Ingo [Helmholtz-Zentrum Berlin (HZB) (Germany); Toetzke, Christian [Potsdam Univ. (Germany)

    2015-07-01

    The potentials of incoherent X-ray scattering (Compton) computed tomography (CT) are investigated. The imaging of materials of very different atomic number or density at once is generally a perpetual challenge for X-ray tomography or radiography. In a basic laboratory set-up for simultaneous perpendicular Compton scattering and direct beam attenuation tomography are conducted by single channel photon counting line scans. This results in asymmetric distortions of the projection profiles of the scattering CT data set. In a first approach, corrections of Compton scattering data by taking advantage of rotational symmetry yield tomograms without major geometric artefacts. A cylindrical sample composed of PE, PA, PVC, glass and wood demonstrates similar Compton contrast for all the substances, while the conventional absorption tomogram only reveals the two high order materials. Comparison to neutron tomography reveals astonishing similarities except for the glass component (without hydrogen). Therefore, Compton CT offers the potential to replace neutron tomography, which requires much more efforts.

  6. Plastic deformation in Al (Cu) interconnects stressed by electromigration and studied by synchrotron polychromatic X-ray microdiffraction

    Energy Technology Data Exchange (ETDEWEB)

    Advanced Light Source; UCLA; Chen, Kai; Chen, Kai; Tamura, Nobumichi; Valek, Bryan C.; Tu, King-Ning

    2008-05-14

    We report here an in-depth synchrotron radiation based white beam X-ray microdiffraction study of plasticity in individual grains of an Al (Cu) interconnect during the early stage of electromigration. The study shows a rearrangement of the geometrically necessary dislocations (GND) in bamboo typed grains during that stage. We find that about 90percent of the GNDs are oriented so that their line direction is the closest to the current flow direction. In non-bamboo typed grains, the Laue peak positions shift, indicating that the grains rotate. An analysis in terms of force directions has been carried out and is consistent with observed electromigration induced grain rotation and bending.

  7. Local structure of metallic chips examined by X-ray microdiffraction

    International Nuclear Information System (INIS)

    Saksl, K.; Rokicki, P.; Siemers, C.; Ostroushko, D.; Bednarčík, J.; Rütt, U.

    2013-01-01

    Highlights: •We present a detailed microstructure and phase analysis of chips produced by cutting. •3D analysis proved mixed nature of shear bands propagation to the material. •We examine phase composition of the chips by focused X-ray beam. •Crystallites in segment and shear band change their orientation up to 10°. -- Abstract: Nickel-base alloys are used in high-temperature applications whenever steels or titanium alloys cannot be applied anymore. This class of alloys is furthermore used in low-temperature applications in the oil or gas industry in case the corrosion resistance of stainless steels in related liquid media is not sufficient and titanium alloys would be too expensive. Nickel-base alloys, however, due to their high strength and toughness can be machined only at low cutting speeds as otherwise poor surface quality and enhanced tool wear is observed. From all aspects influencing the machinability, the chip formation mechanism is the key factor and only a thorough understanding of this mechanism can lead to an optimisation of the cutting process. In the current study, a detailed microstructure and phase analysis of Alloy 625 chips produced in an orthogonal cutting process at conventional cutting speeds is presented. Utilising hard monochromatic X-rays focused down to micrometre size, microstructural differences between distinct structural units of the chips, namely, the segments and shear bands, are investigated. Scanning cross sections of the chips with this small beam allowed us to determine misorientation between the segments and shear bands crystal lattices which as we found are not changing abruptly but continuously, with an absolute difference up to 10°

  8. Local structure of metallic chips examined by X-ray microdiffraction

    Energy Technology Data Exchange (ETDEWEB)

    Saksl, K., E-mail: ksaksl@imr.saske.sk [Institut of Materials Research, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice (Slovakia); Rokicki, P. [The Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, Al. Powstancow Warszawy 12, 35-959 Rzeszow (Poland); Siemers, C. [Institut fuer Werkstoffe, Technische Universitaet Braunschweig, Langer Kamp 8, 38106 Braunschweig (Germany); Ostroushko, D. [Faculty of Metallurgy and Materials Engineering, VŠB – Technical University of Ostrava, 17.listopadu 15, 708 33 Ostrava (Czech Republic); Bednarčík, J.; Rütt, U. [HASYLAB at DESY, Notkestr. 85, D-22607 Hamburg (Germany)

    2013-12-25

    Highlights: •We present a detailed microstructure and phase analysis of chips produced by cutting. •3D analysis proved mixed nature of shear bands propagation to the material. •We examine phase composition of the chips by focused X-ray beam. •Crystallites in segment and shear band change their orientation up to 10°. -- Abstract: Nickel-base alloys are used in high-temperature applications whenever steels or titanium alloys cannot be applied anymore. This class of alloys is furthermore used in low-temperature applications in the oil or gas industry in case the corrosion resistance of stainless steels in related liquid media is not sufficient and titanium alloys would be too expensive. Nickel-base alloys, however, due to their high strength and toughness can be machined only at low cutting speeds as otherwise poor surface quality and enhanced tool wear is observed. From all aspects influencing the machinability, the chip formation mechanism is the key factor and only a thorough understanding of this mechanism can lead to an optimisation of the cutting process. In the current study, a detailed microstructure and phase analysis of Alloy 625 chips produced in an orthogonal cutting process at conventional cutting speeds is presented. Utilising hard monochromatic X-rays focused down to micrometre size, microstructural differences between distinct structural units of the chips, namely, the segments and shear bands, are investigated. Scanning cross sections of the chips with this small beam allowed us to determine misorientation between the segments and shear bands crystal lattices which as we found are not changing abruptly but continuously, with an absolute difference up to 10°.

  9. Fluorescent scanning x-ray tomography with synchrotron radiation

    Science.gov (United States)

    Takeda, Tohoru; Maeda, Toshikazu; Yuasa, Tetsuya; Akatsuka, Takao; Ito, Tatsuo; Kishi, Kenichi; Wu, Jin; Kazama, Masahiro; Hyodo, Kazuyuki; Itai, Yuji

    1995-02-01

    Fluorescent scanning (FS) x-ray tomography was developed to detect nonradioactive tracer materials (iodine and gadolinium) in a living object. FS x-ray tomography consists of a silicon (111) channel cut monochromator, an x-ray shutter, an x-ray slit system and a collimator for detection, a scanning table for the target organ, and an x-ray detector with pure germanium. The minimal detectable dose of iodine in this experiment was 100 ng in a volume of 2 mm3 and a linear relationship was shown between the photon counts of a fluorescent x ray and the concentration of iodine contrast material. A FS x-ray tomographic image was clearly obtained with a phantom.

  10. Evaluation of laboratory powder X-ray micro-diffraction for applications in the fields of cultural heritage and forensic science

    Czech Academy of Sciences Publication Activity Database

    Švarcová, Silvie; Kočí, Eva; Bezdička, Petr; Hradil, David; Hradilová, J.

    2010-01-01

    Roč. 398, č. 2 (2010), s. 1061-1076 ISSN 1618-2642 R&D Projects: GA AV ČR KJB200320901 Institutional research plan: CEZ:AV0Z40320502 Keywords : powder X-ray micro-diffraction * quantitative phase analysis * forensic Subject RIV: CA - Inorganic Chemistry Impact factor: 3.841, year: 2010

  11. X-ray micro-diffraction analysis of reconstructed bone at Zr prosthetic surface with sub-micrometre spatial resolution

    International Nuclear Information System (INIS)

    Cedola, A; Stanic, V; Burghammer, M; Lagomarsino, S; Rustichelli, F; Giardino, R; Aldini, N Nicoli; Fini, M; Komlev, V; Fonzo, S Di

    2003-01-01

    The purpose of the present investigation is to demonstrate the power of the x-ray micro-diffraction technique in biological studies. In particular the reported experiment concerns the study of the interface between a Zr prosthetic device implanted in a rat femur and the newly-formed bone, with a spatial resolution of 0.5 μm. The obtained results give interesting information on the Zr deformation and on the crystallographic phase, the grain size and the orientation of the new bone. Moreover the study reveals a marked difference in the structure of the reconstructed bone with respect to the native bone, which cannot be appreciated with other techniques. (note)

  12. In-situ early stage electromigration study in Al line using synchrotron polychromatic X-ray microdiffraction

    International Nuclear Information System (INIS)

    Chen, Kai; Tamura, Nobumichi; Tu, King-Ning

    2007-01-01

    Electromigration is a phenomenon that has attracted much attention in the semiconductor industry because of its deleterious effects on electronic devices (such as interconnects) as they become smaller and current density passing through them increases. However, the effect of the electric current on the microstructure of interconnect lines during the very early stage of electromigration is not well documented. In the present report, we used synchrotron radiation based polychromatic X-ray microdiffraction for the in-situ study of the electromigration induced plasticity effects on individual grains of an Al (Cu) interconnect test structure. Dislocation slips which are activated by the electric current stressing are analyzed by the shape change of the diffraction peaks. The study shows polygonization of the grains due to the rearrangement of geometrically necessary dislocations (GND) in the direction of the current. Consequences of these findings are discussed

  13. Crystal plasticity in Cu damascene interconnect lines undergoing electromigration as revealed by synchrotron x-ray microdiffraction

    Science.gov (United States)

    Budiman, A. S.; Nix, W. D.; Tamura, N.; Valek, B. C.; Gadre, K.; Maiz, J.; Spolenak, R.; Patel, J. R.

    2006-06-01

    Plastic deformation was observed in damascene Cu interconnect test structures during an in situ electromigration experiment and before the onset of visible microstructural damage (voiding, hillock formation). We show here, using a synchrotron technique of white beam x-ray microdiffraction, that the extent of this electromigration-induced plasticity is dependent on the linewidth. In wide lines, plastic deformation manifests itself as grain bending and the formation of subgrain structures, while only grain rotation is observed in the narrower lines. The deformation geometry leads us to conclude that dislocations introduced by plastic flow lie predominantly in the direction of electron flow and may provide additional easy paths for the transport of point defects. Since these findings occur long before any observable voids or hillocks are formed, they may have direct bearing on the final failure stages of electromigration.

  14. In-situ early stage electromigration study in Al line using synchrotron polychromatic X-ray microdiffraction

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Kai; Tamura, Nobumichi; Tu, King-Ning

    2007-10-31

    Electromigration is a phenomenon that has attracted much attention in the semiconductor industry because of its deleterious effects on electronic devices (such as interconnects) as they become smaller and current density passing through them increases. However, the effect of the electric current on the microstructure of interconnect lines during the very early stage of electromigration is not well documented. In the present report, we used synchrotron radiation based polychromatic X-ray microdiffraction for the in-situ study of the electromigration induced plasticity effects on individual grains of an Al (Cu) interconnect test structure. Dislocation slips which are activated by the electric current stressing are analyzed by the shape change of the diffraction peaks. The study shows polygonization of the grains due to the rearrangement of geometrically necessary dislocations (GND) in the direction of the current. Consequences of these findings are discussed.

  15. Scanning Microscopes Using X Rays and Microchannels

    Science.gov (United States)

    Wang, Yu

    2003-01-01

    Scanning microscopes that would be based on microchannel filters and advanced electronic image sensors and that utilize x-ray illumination have been proposed. Because the finest resolution attainable in a microscope is determined by the wavelength of the illumination, the xray illumination in the proposed microscopes would make it possible, in principle, to achieve resolutions of the order of nanometers about a thousand times as fine as the resolution of a visible-light microscope. Heretofore, it has been necessary to use scanning electron microscopes to obtain such fine resolution. In comparison with scanning electron microscopes, the proposed microscopes would likely be smaller, less massive, and less expensive. Moreover, unlike in scanning electron microscopes, it would not be necessary to place specimens under vacuum. The proposed microscopes are closely related to the ones described in several prior NASA Tech Briefs articles; namely, Miniature Microscope Without Lenses (NPO-20218), NASA Tech Briefs, Vol. 22, No. 8 (August 1998), page 43; and Reflective Variants of Miniature Microscope Without Lenses (NPO-20610), NASA Tech Briefs, Vol. 26, No. 9 (September 2002) page 6a. In all of these microscopes, the basic principle of design and operation is the same: The focusing optics of a conventional visible-light microscope are replaced by a combination of a microchannel filter and a charge-coupled-device (CCD) image detector. A microchannel plate containing parallel, microscopic-cross-section holes much longer than they are wide is placed between a specimen and an image sensor, which is typically the CCD. The microchannel plate must be made of a material that absorbs the illuminating radiation reflected or scattered from the specimen. The microchannels must be positioned and dimensioned so that each one is registered with a pixel on the image sensor. Because most of the radiation incident on the microchannel walls becomes absorbed, the radiation that reaches the

  16. Development of X-ray excitable luminescent probes for scanning X-ray microscopy

    International Nuclear Information System (INIS)

    Moronne, M.M.

    1999-01-01

    Transmission soft X-ray microscopy is now capable of achieving resolutions that are typically 5 times better than the best-visible light microscopes. With expected improvements in zone plate optics, an additional factor of two may be realized within the next few years. Despite the high resolution now available with X-ray microscopes and the high X-ray contrast provided by biological molecules in the soft X-ray region (λ=2-5 nm), molecular probes for localizing specific biological targets have been lacking. To circumvent this problem, X-ray excitable molecular probes are needed that can target unique biological features. In this paper we report our initial results on the development of lanthanide-based fluorescent probes for biological labeling. Using scanning luminescence X-ray microscopy (SLXM, Jacobsen et al., J. Microscopy 172 (1993) 121-129), we show that lanthanide organo-polychelate complexes are sufficiently bright and radiation resistant to be the basis of a new class of X-ray excitable molecular probes capable of providing at least a fivefold improvement in resolution over visible light microscopy. Lanthanide probes, able to bind 80-100 metal ions per molecule, were found to give strong luminescent signals with X-ray doses exceeding 10 8 Gy, and were used to label actin stress fibers and in vitro preparations of polymerized tubulin. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  17. Multiscale structural study using scanning X-ray microscope

    International Nuclear Information System (INIS)

    Ohsumi, Hiroyuki; Arima, Taka-hisa

    2016-01-01

    Correspondence between structures at the atomic- and meso-scales can be given by scanning X-ray microscopy integrated with polarized X-ray diffractometry. Symmetry is the common structural feature available across multiple hierarchies. This article introduces a symmetry evaluation technique based on polarized X-ray diffractometry and describes two embodiments: chirality domain observation and antiferromagnetic domain observation. Multiscale structural studies would play an important role in uncovering universality of hierarchical structure. (author)

  18. X-Ray Microdiffraction as a Probe to Reveal Flux Divergences in Interconnects

    Science.gov (United States)

    Spolenak, R.; Tamura, N.; Patel, J. R.

    2006-02-01

    Most reliability issues in interconnect systems occur at a local scale and many of them include the local build-up of stresses. Typical failure mechanisms are electromigration and stress voiding in interconnect lines and fatigue in surface acoustic wave devices. Thus a local probe is required for the investigation of these phenomena. In this paper the application of the Laue microdiffraction technique to investigate flux divergences in interconnect systems will be described. The deviatoric strain tensor of single grains can be correlated with the local microstructure, orientation and defect density. Especially the latter led to recent results about the correlation of stress build-up and orientation in Cu lines and electromigration-induced grain rotation in Cu and Al lines.

  19. Microdiffraction: X-rays as a probe to reveal flux divergences ininterconnects

    Energy Technology Data Exchange (ETDEWEB)

    Spolenak, R.; Tamura, N.; Patel, J.R.

    2006-01-01

    Most reliability issues in interconnect systems occur at a local scale and many of them include the local build-up of stresses. Typical failure mechanisms are electromigration and stress voiding in interconnect lines and fatigue in surface acoustic wave devices. Thus a local probe is required for the investigation of these phenomena. In this paper the application of the Laue microdiffraction technique to investigate flux divergences in interconnect systems will be described. The deviatoric strain tensor of single grains can be correlated with the local microstructure, orientation and defect density. Especially the latter led to recent results about the correlation of stress build-up and orientation in Cu lines and electromigration-induced grain rotation in Cu and Al lines.

  20. X-ray microdiffraction on a small piece of skin of the world-famous 'OETZI' (Tyrolean mummified glacier man)

    International Nuclear Information System (INIS)

    Brechbuehl, J.; Kern, A.; Jakob, H.; Tessadri, R.

    2002-01-01

    Full text: Recently we performed microdiffraction measurements on a small piece of skin (2 mm x 2 mm) of the world-famous 'Oetzi' which is one of the best preserved mummified humans ever discovered (EDWARDS et al., 1996). He has been found in a glacial field in the Tyrolean Oetztaler Alps between Austria and Italy in 1991. His age is estimated to about 5300 years. An interesting mineralogical detail of the Iceman is the growth of the mineral vivianite Fe 3 (PO 4 ) 2 .8H 2 O on the skin in contact with the surrounding weathered rocks. Vivianite is not uncommon in connection with mummies from bogs (anaerobic, non oxidizing conditions); in the case of the Iceman this seems to be the first report of vivianite from mummified humans in glacier environment (TESSADRI et al., 1996). Measurements have been performed using the Bruker AXS D8 Discover with GADDS fitted with the HI-STAR area detector. This system allows the identification and characterisation of smallest phase amounts (a few micrograms in the present case) in the shortest time possible. The blue-coloured vivianite is not continuously dispersed over the skin of 'Oetzi'; it is concentrated in form of visible particles of microscopic dimensions. With the help of the laser-video-microscope of the GADDS these particles can be recognized and precisely adjusted for microdiffraction measurements with high local resolution. Unlikely to former powder measurements with conventional diffractometers we were able to detect much more diffraction lines than the strongest reflections of vivianite. The given results impressively demonstrate the efficiency and capability of the GADDS for the phase identification in micron regions even under unpropitious conditions (weak line intensities, high background radiation). Copyright (2002) Australian X-ray Analytical Association Inc

  1. Translate rotate scanning method for X-ray imaging

    International Nuclear Information System (INIS)

    Eberhard, J.W.; Kwog Cheong Tam.

    1990-01-01

    Rapid x-ray inspection of objects larger than an x-ray detector array is based on a translate rotate scanning motion of the object related to the fan beam source and detector. The scan for computerized tomography imaging is accomplished by rotating the object through 360 degrees at two or more positions relative to the source and detector array, in moving to another position the object is rotated and the object or source and detector are translated. A partial set of x-ray data is acquired at every position which are combined to obtain a full data set for complete image reconstruction. X-ray data for digital radiography imaging is acquired by scanning the object vertically at a first position at one view angle, rotating and translating the object relative to the source and detector to a second position, scanning vertically, and so on to cover the object field of view, and combining the partial data sets. (author)

  2. Method and apparatus for scanning x-ray tomography

    International Nuclear Information System (INIS)

    Albert, R.D.

    1988-01-01

    In a method of producing a tomographic image of a subject that includes the steps of generating X-rays at a moving origin point by directing a charged particle beam to a target surface, deflecting the charged particle beam to travel the origin point through a predetermined raster scan at the surface, detecting variations of X-ray intensity during the course of the raster scan at spaced apart detection points situated at the opposite side of the subject from the origin point, generating a first sequence of data values that is indicative of variations of X-ray intensity at a first of the detection points at successive times during the course of the raster scan and generating at least a second sequence of data values that is indicative of variations of X-ray intensity at a second of the detection points at successive times during the course of the same raster scan, the improvement is described comprising: combining successive individual data values of the first sequence that are generated by X-rays from successive particular locations in the raster scan with at least individual data values of the second sequence that are generated by X-rays from predetermined successive different locations in the same raster scan in order to produce a composite sequence of data values, and producing an image corresponding to at least a portion of the raster scan which depicts variations of the magnitude of successive data values of the composite sequence

  3. Nanoparticle-Assisted Scanning Focusing X-Ray Therapy with Needle Beam X Rays.

    Science.gov (United States)

    Davidson, R Andrew; Guo, Ting

    2016-01-01

    In this work, we show a new therapeutic approach using 40-120 keV X rays to deliver a radiation dose at the isocenter located many centimeters below the skin surface several hundred times greater than at the skin and how this dose enhancement can be augmented with nanomaterials to create several thousand-fold total dose enhancement effect. This novel approach employs a needle X-ray beam directed at the isocenter centimeters deep in the body while continuously scanning the beam to cover a large solid angle without overlapping at the skin. A Monte Carlo method was developed to simulate an X-ray dose delivered to the isocenter filled with X-ray absorbing and catalytic nanoparticles in a water phantom. An experimental apparatus consisting of a moving plastic phantom irradiated with a stationary 1 mm needle X-ray beam was built to test the theoretical predictions. X-ray films were used to characterize the dose profiles of the scanning X-ray apparatus. Through this work, it was determined that the X-ray dose delivered to the isocenter in a treatment voxel (t-voxel) underneath a 5 cm deep high-density polyethylene (HDPE) phantom was 295 ± 48 times greater than the surface dose. This measured value was in good agreement with the theoretical predicted value of 339-fold. Adding X-ray-absorbing nanoparticles, catalytic nanoparticles or both into the t-voxel can further augment the dose enhancement. For example, we predicted that adding 1 weight percentage (wp) of gold into water could increase the effective dose delivered to the target by onefold. Dose enhancement using 1 mm X-ray beam could reach about 1,600-fold in the t-voxel when 7.5 wp of 88 nm diameter silica-covered gold nanoparticles were added, which we showed in a previously published study can create a dose enhancement of 5.5 ± 0.46-fold without scanning focusing enhancement. Based on the experimental data from that study, mixing 0.02 wp 2.5 nm diameter small tetrakis hydroxymethyl phosphonium chloride (THPC

  4. Laboratory two-dimensional X-ray microdiffraction technique: a support for authentication of an unknown Ghirlandaio painting

    International Nuclear Information System (INIS)

    Bontempi, E.; Benedetti, D.; Zacco, A.; Borgese, L.; Depero, L.E.; Massardi, A.

    2008-01-01

    Europe has a very rich and diversified cultural heritage of art works, including buildings, monuments and objects of all sizes, involving a great variety of materials. The continuous discovery of new art works opens the problem of their authentication. Advanced analytical techniques can be fundamental to understand the way of life, the culture and the technical and intellectual know-how of the artists. Indeed, the authentication of an art work involves the identification of the used materials, their production techniques and procedures used for the work realization. It is possible to know the origin and provenance of materials, including the location of the natural sources. Advanced analytical techniques also help one to understand degradation processes, corrosion, weathering, and preservation-conservation protocols. In this paper we present a painting attributed to Domenico Ghirlandaio. Ghirlandaio is a well-known artist of fifteenth century who contributes to the apprenticeship of Michelangelo Buonarroti. The study of the pigments used in this painting, which belongs to a private collection, has been supported mainly by means of laboratory two-dimensional X-ray microdiffraction (μXRD 2 ). The possibility to obtain information about not only the phase, but also microstructure allows one to extract interesting consideration and to obtain evidence of the painter's style and intention. (orig.)

  5. Study of UO2 mechanical behaviour implanted with helium ions using X-ray micro-diffraction and mechanical modeling

    International Nuclear Information System (INIS)

    Ibrahim, Marcelle

    2015-01-01

    In order to study the mechanical behavior of nuclear fuel during direct long term storage, UO 2 polycrystals were implanted with Helium ions at a thin surface layer (1 μm approximately), which leads to stress and strain fields in the layer. Strains were measured, at the grains scale, by X-ray micro-diffraction, using synchrotron radiation (ESRF). Image analysis methods were developed for an automatic analysis of the large number of diffraction patterns. Applying statistical tools to Laue patterns allows an automatic detection of low quality images, and enhances the measurement precision. At low layer thickness, the mechanical interaction between grains can be neglected. At higher thickness, experimental results showed a higher mechanical interaction near grain boundaries that can be modeled using finite elements method. Geostatistical tools were used to quantify these interactions. The swelling and the elastic constants in the implanted layer can be estimated through the measured strains on a large number of grains with different orientations. This work allows the determination of the swelling of nuclear fuel in irradiation conditions, as well as the modification of its elastic properties. (author) [fr

  6. Grain orientation mapping of passivated aluminum interconnect wires with X-ray micro-diffraction

    International Nuclear Information System (INIS)

    MacDowell, A.A.; Padmore, H.A.; Thompson, A.C.; Chang, C.H.; Patel, J.R.

    1998-06-01

    A micro x-ray diffraction facility is under development at the Advanced Light source. Spot sizes are typically about 1-microm size generated by means of grazing incidence Kirkpatrick-Baez focusing mirrors. Photon energy is either white of energy range 6--14 keV or monochromatic generated from a pair of channel cut crystals. A Laue diffraction pattern from a single grain in passivated 2-microm wide bamboo structured Aluminum interconnect line has been recorded. Acquisition times are of the order of a few seconds. The Laue pattern has allowed the determination of the crystallographic orientation of individual grains along the line length. The experimental and analysis procedures used are described, as is a grain orientation result. The future direction of this program is discussed in the context of strain measurements in the area of electromigration

  7. Local Plasticity of Al Thin Films as Revealed by X-Ray Microdiffraction

    Science.gov (United States)

    Spolenak, R.; Brown, W. L.; Tamura, N.; MacDowell, A. A.; Celestre, R. S.; Padmore, H. A.; Valek, B.; Bravman, J. C.; Marieb, T.; Fujimoto, H.; Batterman, B. W.; Patel, J. R.

    2003-03-01

    Grain-to-grain interactions dominate the plasticity of Al thin films and establish effective length scales smaller than the grain size. We have measured large strain distributions and their changes under plastic strain in 1.5-μm-thick Al0.5%Cu films using a 0.8-μm-diameter white x-ray probe at the Advanced Light Source. Strain distributions arise not only from the distribution of grain sizes and orientation, but also from the differences in grain shape and from stress environment. Multiple active glide plane domains have been found within single grains. Large grains behave like multiple smaller grains even before a dislocation substructure can evolve.

  8. A combined scanning tunnelling microscope and x-ray interferometer

    Science.gov (United States)

    Yacoot, Andrew; Kuetgens, Ulrich; Koenders, Ludger; Weimann, Thomas

    2001-10-01

    A monolithic x-ray interferometer made from silicon and a scanning tunnelling microscope have been combined and used to calibrate grating structures with periodicities of 100 nm or less. The x-ray interferometer is used as a translation stage which moves in discrete steps of 0.192 nm, the lattice spacing of the silicon (220) planes. Hence, movements are traceable to the definition of the metre and the nonlinearity associated with the optical interferometers used to measure displacement in more conventional metrological scanning probe microscopes (MSPMs) removed.

  9. A compact scanning soft X-ray microscope

    International Nuclear Information System (INIS)

    Trail, J.A.

    1989-01-01

    Soft x-ray microscopes operating at wavelengths between 2.3 nm and 4.4 nm are capable of imaging wet biological cells with a resolution many times that of a visible light microscope. Several such soft x-ray microscopes have been constructed. However, with the exception of contact microscopes, all use synchrotrons as the source of soft x-ray radiation and Fresnel zone plates as the focusing optics. These synchrotron based microscopes are very successful but have the disadvantage of limited access. This dissertation reviews the construction and performance of a compact scanning soft x-ray microscope whose size and accessibility is comparable to that of an electron microscope. The microscope uses a high-brightness laser-produced plasma as the soft x-ray source and normal incidence multilayer-coated mirrors in a Schwarzschild configuration as the focusing optics. The microscope operates at a wavelength of 14 nm, has a spatial resolution of 0.5 μm, and has a soft x-ray photon flux through the focus of 10 4 -10 5 s -1 when operated with only 170 mW of average laser power. The complete system, including the laser, fits on a single 4' x 8' optical table. The significant components of the compact microscope are the laser-produced plasma (LPP) source, the multilayer coatings, and the Schwarzschild objective. These components are reviewed, both with regard to their particular use in the current microscope and with regard to extending the microscope performance to higher resolution, higher speed, and operation at shorter wavelengths. Measurements of soft x-ray emission and debris emission from our present LPP source are presented and considerations given for an optimal LPP source. The LPP source was also used as a broadband soft x-ray source for measurement of normal incidence multilayer mirror reflectance in the 10-25 nm spectral region

  10. Scanning electron microscopy-energy dispersive X-ray spectrometer ...

    African Journals Online (AJOL)

    The distribution of arsenic (As) and cadmium (Cd) in himematsutake was analyzed using scanning electron microscopy-energy dispersive X-ray spectrometer (SEM-EDX). The atomic percentage of the metals was confirmed by inductively coupled plasma-mass spectrometer (ICP-MS). Results show that the accumulation of ...

  11. Temperature dependence of helium-implantation-induced lattice swelling in polycrystalline tungsten: X-ray micro-diffraction and Eigenstrain modelling

    International Nuclear Information System (INIS)

    Broglie, I. de; Beck, C.E.; Liu, W.; Hofmann, F.

    2015-01-01

    Using synchrotron X-ray micro-diffraction and Eigenstrain analysis the distribution of lattice swelling near grain boundaries in helium-implanted polycrystalline tungsten is quantified. Samples heat-treated at up to 1473 K after implantation show less uniform lattice swelling that varies significantly from grain to grain compared to as-implanted samples. An increase in lattice swelling is found in the vicinity of some grain boundaries, even at depths beyond the implanted layer. These findings are discussed in terms of the evolution of helium-ion-implantation-induced defects

  12. X-ray scan detection for cargo integrity

    Science.gov (United States)

    Valencia, Juan; Miller, Steve

    2011-04-01

    The increase of terrorism and its global impact has made the determination of the contents of cargo containers a necessity. Existing technology allows non-intrusive inspections to determine the contents of a container rapidly and accurately. However, some cargo shipments are exempt from such inspections. Hence, there is a need for a technology that enables rapid and accurate means of detecting whether such containers were non-intrusively inspected. Non-intrusive inspections are most commonly performed utilizing high powered X-ray equipment. The challenge is creating a device that can detect short duration X-ray scans while maintaining a portable, battery powered, low cost, and easy to use platform. The Pacific Northwest National Laboratory (PNNL) has developed a methodology and prototype device focused on this challenge. The prototype, developed by PNNL, is a battery powered electronic device that continuously measures its X-ray and Gamma exposure, calculates the dose equivalent rate, and makes a determination of whether the device has been exposed to the amount of radiation experienced during an X-ray inspection. Once an inspection is detected, the device will record a timestamp of the event and relay the information to authorized personnel via a visual alert, USB connection, and/or wireless communication. The results of this research demonstrate that PNNL's prototype device can be effective at determining whether a container was scanned by X-ray equipment typically used for cargo container inspections. This paper focuses on laboratory measurements and test results acquired with the PNNL prototype device using several X-ray radiation levels.

  13. Soft X-ray scanning transmission X-ray microscopy (STXM) of actinide particles.

    Science.gov (United States)

    Nilsson, Hans J; Tyliszczak, Tolek; Wilson, Richard E; Werme, Lars; Shuh, David K

    2005-09-01

    A descriptive account is given of our most recent research on the actinide dioxides with the Advanced Light Source Molecular Environmental Science (ALS-MES) Beamline 11.0.2 soft X-ray scanning transmission X-ray microscope (STXM) at the Lawrence Berkeley National Laboratory (LBNL). The ALS-MES STXM permits near-edge X-ray absorption fine structure (NEXAFS) and imaging with 30-nm spatial resolution. The first STXM spectromicroscopy NEXAFS spectra at the actinide 4d5/2 edges of the imaged transuranic particles, NpO2 and PuO2, have been obtained. Radiation damage induced by the STXM was observed in the investigation of a mixed oxidation state particle (Np(V,VI)) and was minimized during collection of the actual spectra at the 4d5/2 edge of the Np(V,VI) solid. A plutonium elemental map was obtained from an irregular PuO2 particle with the dimensions of 650 x 650 nm. The Pu 4d5/2 NEXAFS spectra were collected at several different locations from the PuO2 particle and were identical. A representative oxygen K-edge spectrum from UO2 was collected and resembles the oxygen K-edge from the bulk material. The unique and current performance of the ALS-MES STXM at extremely low energies (ca. 100 eV) that may permit the successful measurement of the actinide 5d edge is documented. Finally, the potential of STXM as a tool for actinide investigations is briefly discussed.

  14. X-ray scanning of overhead aurorae from rockets

    International Nuclear Information System (INIS)

    Barcus, J.R.; Goldberg, R.A.

    1981-01-01

    Two Nike Tomahawk rocket payloads were launched into energetic auroral events to investigate their structure and effects on the atmosphere. The instrument complement included X-ray scintillation detectors with energy discrimination in four ranges to measure the deposition of bremsstrahlung produced X-rays within the stratosphere and mesosphere. For this purpose, each instrument was designed for wide angle viewing; however, properties of the rocket motion have permitted coarse observation of distinct spatial X-ray structure. The detectors were mounted at a 45 0 angle with respect to the payload axis to permit scanning of the upper hemisphere, with rocket spin rates near 5 c/s during the upleg portion of each flight. Here, atmospheric shielding reduced energetic particle contamination effects to insignificant values below 65 to 75 km. Iterative computer techniques were used to reconstruct X-ray source maps at 100 km, taking atmospheric absorption effects into account. Payload 18.178 was launched on 21 September (0302 LMT) into an aurora observed to have two distinct azimuthal regions of optical brightness. Payload 18.179 (23 September, 0147 LMT) was launched into an aurora of more diffuse character. The presence of a two component spectrum is indicated for each event with the hard component originating in the more diffuse, optically faint regions. (author)

  15. Characterizing automotive fuel cell materials by soft x-ray scanning transmission x-ray microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hitchcock, A. P., E-mail: aph@mcmaster.ca; Lee, V.; Wu, J.; Cooper, G. [Chemistry & Chemical Biology, McMaster University, Hamilton, ON, L8S 4M1 (Canada); West, M. M.; Berejnov, V. [Faculty of Health Sciences Electron Microscopy, McMaster University, Hamilton, ON L8N 3Z5 (Canada); Soboleva, T.; Susac, D.; Stumper, J. [Automotive Fuel Cell Cooperation Corp., Burnaby BC V5J 5J8 (Canada)

    2016-01-28

    Proton-Exchange Membrane Fuel Cell (PEM-FC) based engines are being developed rapidly for near-term implementation in hydrogen fueled, mass production, personal automobiles. Research is focused on understanding and controlling various degradation processes (carbon corrosion, Pt migration, cold start), and reducing cost by reducing or eliminating Pt catalyst. We are using soft X-ray scanning transmission X-ray microscopy (STXM) at the S 2p, C 1s, O 1s and F 1s edges to study a variety of issues related to optimization of PEM-FC materials for automotive applications. A method to efficiently and accurately measure perfluorosulfonic acid distributions was developed and is being used to better understand how different loadings and preparation methods affect the ionomer distribution in the cathode. Progress towards an environmental cell capable of controlling the temperature and humidity of a PEM-FC sample in the STXM is described. Methods for studying the 3D chemical structure of PEM-FC are outlined.

  16. Characterizing automotive fuel cell materials by soft x-ray scanning transmission x-ray microscopy

    International Nuclear Information System (INIS)

    Hitchcock, A. P.; Lee, V.; Wu, J.; Cooper, G.; West, M. M.; Berejnov, V.; Soboleva, T.; Susac, D.; Stumper, J.

    2016-01-01

    Proton-Exchange Membrane Fuel Cell (PEM-FC) based engines are being developed rapidly for near-term implementation in hydrogen fueled, mass production, personal automobiles. Research is focused on understanding and controlling various degradation processes (carbon corrosion, Pt migration, cold start), and reducing cost by reducing or eliminating Pt catalyst. We are using soft X-ray scanning transmission X-ray microscopy (STXM) at the S 2p, C 1s, O 1s and F 1s edges to study a variety of issues related to optimization of PEM-FC materials for automotive applications. A method to efficiently and accurately measure perfluorosulfonic acid distributions was developed and is being used to better understand how different loadings and preparation methods affect the ionomer distribution in the cathode. Progress towards an environmental cell capable of controlling the temperature and humidity of a PEM-FC sample in the STXM is described. Methods for studying the 3D chemical structure of PEM-FC are outlined

  17. Scanning X-ray microscopy of superconductor/ferromagnet bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Stahl, Claudia; Ruoss, Stephen; Weigand, Markus; Schuetz, Gisela [Max Planck Institute for Intelligent Systems, Stuttgart (Germany); Zahn, Patrick; Bayer, Jonas [Max Planck Institute for Intelligent Systems, Stuttgart (Germany); Research Institute for Innovative Surfaces, FINO, Aalen University (Germany); Albrecht, Joachim [Research Institute for Innovative Surfaces, FINO, Aalen University (Germany)

    2016-07-01

    The magnetic flux distribution arising from a high-T{sub c} superconductor is detected and visualized with high spatial resolution using scanning x-ray microscopy (SXM). Therefore, we introduce a sensor layer, namely, an amorphous, soft-magnetic CoFeB cover layer. The magnetic stray fields of the supercurrents lead to a local reorientation of the magnetic moments in the ferromagnet, which is visualized using the large x-ray magnetic circular dichroism (XMCD) effect of the Co and Fe L3-edge. We show that the XMCD contrast in the sensor layer corresponds to the in-plane magnetic flux distribution of the superconductor and can hence be used to image magnetic structures in superconductors with high spatial resolution. Using the total electron yield (TEY) mode the surface structure and the magnetic domains can be imaged simultaneously and can be correlated. The measurements are carried out at our scanning x-ray microscope MAXYMUS at Bessy II, Berlin with the new low temperature setup.

  18. Soft x-ray scanning microtomography with submicron resolution

    International Nuclear Information System (INIS)

    McNulty, I.; Haddad, W.S.; Trebes, J.E.; Anderson, E.H.

    1994-01-01

    Scanning soft x-ray microtomography was used to obtain high-resolution three-dimensional images of a microfabricated test object. Using a special rotation stage mounted on the scanning transmission x-ray microscope at the XIA Beamline at the National Synchrotron Light Source, we recorded nine two-dimensional projections of the 3D test object over an angular range of -50 degrees to +55 degrees. The x-ray wavelength was 3.6 nm and the radiation dose to the object per projection was approximately 2 x 10 6 Gy. The object consisted of two gold patterns supported on transparent silicon nitride membranes, separated by 4.75 Jim, with 100 to 300-nm wide and 65-nm thick features. We reconstructed a volumetric data set of the test object from the two-dimensional projections using an algebraic reconstruction technique algorithm. Features of the test object were resolved to ∼100 nm in transverse and longitudinal extent in three-dimensional images rendered from the volumetric set

  19. Soft x-ray scanning microtomography with submicrometer resolution

    International Nuclear Information System (INIS)

    McNulty, I.; Haddad, W.S.; Trebes, J.E.; Anderson, E.H.

    1995-01-01

    Scanning soft x-ray microtomography was used to obtain high-resolution three-dimensional images of a microfabricated test object. Using a special rotation stage mounted on the scanning transmission x-ray microscope at the X1A beamline at the National Synchrotron Light Source, we recorded nine two-dimensional projections of the 3D test object over an angular range of -50 degree to +55 degree. The x-ray wavelength was 3.6 nm and the radiation dose to the object per projection was approximately 2x10 6 Gy. The object consisted of two gold patterns supported on transparent silicon nitride membranes, separated by 4.75 μm, with 100- to 300-nm-wide and 65-nm-thick features. We reconstructed a volumetric data set of the test object from the two-dimensional projections using an algebraic reconstruction technique algorithm. Features of the test object were resolved to ∼100 nm in transverse and longitudinal extent with low artifact in three-dimensional images rendered from the volumetric set

  20. In situ measurement of electromigration-induced transient stress in Pb-free Sn-Cu solder joints by synchrotron radiation based X-ray polychromatic microdiffraction

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Kai; Tamura, Nobumichi; Kunz, Martin; Tu, King-Ning; Lai, Yi-Shao

    2009-12-01

    Electromigration-induced hydrostatic elastic stress in Pb-free SnCu solder joints was studied by in situ synchrotron X-ray white beam microdiffraction. The elastic stresses in two different grains with similar crystallographic orientation, one located at the anode end and the other at the cathode end, were analyzed based on the elastic anisotropy of the Beta-Sn crystal structure. The stress in the grain at the cathode end remained constant except for temperature fluctuations, while the compressive stress in the grain at the anode end was built-up as a function of time during electromigration until a steady state was reached. The measured compressive stress gradient between the cathode and the anode is much larger than what is needed to initiate Sn whisker growth. The effective charge number of Beta-Sn derived from the electromigration data is in good agreement with the calculated value.

  1. In situ measurement of electromigration-induced transient stress in Pb-free Sn-Cu solder joints by synchrotron radiation based X-ray polychromatic microdiffraction

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Kai; Tamura, Nobumichi; Kunz, Martin; Tu, King-Ning; Lai, Yi-Shao

    2009-05-15

    Electromigration-induced hydrostatic elastic stress in Pb-free SnCu solder joints was studied by in situ synchrotron X-ray white beam microdiffraction. The elastic stresses in two different grains with similar crystallographic orientation, one located at the anode end and the other at the cathode end, were analyzed based on the elastic anisotropy of the {beta}-Sn crystal structure. The stress in the grain at the cathode end remained constant except for temperature fluctuations, while the compressive stress in the grain at the anode end was built-up as a function of time during electromigration until a steady state was reached. The measured compressive stress gradient between the cathode and the anode is much larger than what is needed to initiate Sn whisker growth. The effective charge number of {beta}-Sn derived from the electromigration data is in good agreement with the calculated value.

  2. The Development of a Scanning Soft X-Ray Microscope.

    Science.gov (United States)

    Rarback, Harvey Miles

    We have developed a scanning soft X-ray microscope, which can be used to image natural biological specimens at high resolution and with less damage than electron microscopy. The microscope focuses a monochromatic beam of synchrotron radiation to a nearly diffraction limited spot with the aid of a high resolution Fresnel zone plate, specially fabricated for us at the IBM Watson Research Center. The specimen at one atmosphere is mechanically scanned through the spot and the transmitted radiation is efficiently detected with a flow proportional counter. A computer forms a realtime transmission image of the specimen which is displayed on a color monitor. Our first generation optics have produced images of natural wet specimens at a resolution of 300 nm.

  3. X-ray fluorescent scanning of the thyroid

    International Nuclear Information System (INIS)

    Jonckheer, M.H.; Deconinck, F.

    1983-01-01

    The main emphasis of the technical chapters of this monograph lies on the aspects which are of direct importance to thyroid scanning: the general principles of X-ray fluorescence, the choice and characteristics of appropriate sources and detectors, a stationary system, quantification problems, and the pitfalls in the interpretation of the intrathyroidal iodine imaging and quantification. The clinical part of the monograph consists of chapters on the role of stable iodine and the thyroid function, on endemic non-toxic goiter, on hyperthyroidism as a result of iodine overload, on feasibility of dynamic studies, on stable iodine stores in thyroiditis, and on a general review of the clinical usefulness of XRF in thyroid disease. (Auth.)

  4. Scanning small angle X-ray scattering investigations of bone

    International Nuclear Information System (INIS)

    Rinnerthaler, S.

    1998-06-01

    An important characteristic of bone is its strength, which is determined by bone mass, architecture and material quality. From a physical point of view bone is a composite material consisting of an organic matrix (collagen) and of inlets of mineral crystals (hydroxyapatite). These components build up a hierarchical, heterogeneous structure. The size of the mineral crystals lies in the nano-meter range and can be investigated by positionsensitive Small-Angle X-ray Scattering (Scanning-SAXS) in a non-destructive way. The average thickness, the degree and direction of the predominant orientation, as well as some information about shape and arrangement of the mineral crystals were determined in bones of humans, mice, and baboons by Scanning-SAXS with respect to age, bone diseases (osteogenesis imperfecta, pycnodysostosis) or medical treatments (fluoride or alendronate) of osteoporosis. The crystal thickness and the degree of orientation is much smaller in young individuals than in adults and the predominant orientation of the mineral crystals is different in a mixture of bone and mineralized cartilage compared to bone. Further, because position-resolved measurements are now possible, results from Scanning-SAXS measurements could be compared with the results of other position resolved methods. Due to this new feature it was possible, for the first time, to correlate directly 'mottled' bone visible in back-scattered electron imaging with small η-parameters evaluated from SAXS-patterns and the course of the collagen fibers with the predominant orientation of the mineral crystals. Scanning-SAXS proved to be a powerful tool to characterize bone nano-structure. (author)

  5. Texture, residual strain, and plastic deformation around scratches in alloy 600 using synchrotron X-ray Laue micro-diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Suominen Fuller, M.L. [Surface Science Western, Room G-1, Western Science Centre, University of Western Ontario, London, Ontario, N6A 5B7 (Canada)], E-mail: mfuller@uwo.ca; Klassen, R.J. [Department of Mechanical and Materials Engineering, Room 3002 Spencer Engineering Building, University of Western Ontario, London, Ontario, N6A 5B9 (Canada); McIntyre, N.S. [Surface Science Western, Room G-1, Western Science Centre, University of Western Ontario, London, Ontario, N6A 5B7 (Canada); Gerson, A.R. [Applied Centre for Structural and Synchrotron Studies, Mawson Lakes Campus, University of South Australia, Adelaide, South Australia 5095 (Australia); Ramamurthy, S. [Surface Science Western, Room G-1, Western Science Centre, University of Western Ontario, London, Ontario, N6A 5B7 (Canada); King, P.J. [Babcock and Wilcox Canada, 581 Coronation Blvd., Cambridge, Ontario, N1R5V3 (Canada); Liu, W. [Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States)

    2008-03-15

    Deformation around two scratches in Alloy 600 (A600) was studied nondestructively using synchrotron Laue differential aperture X-ray microscopy. The orientation of grains and elastic strain distribution around the scratches were measured. A complex residual deviatoric elastic strain state was found to exist around the scratches. Heavy plastic deformation was observed up to a distance of 20 {mu}m from the scratches. In the region 20-30 {mu}m from the scratches the diffraction spots were heavily streaked and split indicating misoriented dislocation cell structures.

  6. Evaluation of laboratory powder X-ray micro-diffraction for applications in the fields of cultural heritage and forensic science.

    Science.gov (United States)

    Svarcová, Silvie; Kocí, Eva; Bezdicka, Petr; Hradil, David; Hradilová, Janka

    2010-09-01

    The uniqueness and limited amounts of forensic samples and samples from objects of cultural heritage together with the complexity of their composition requires the application of a wide range of micro-analytical methods, which are non-destructive to the samples, because these must be preserved for potential late revision. Laboratory powder X-ray micro-diffraction (micro-XRD) is a very effective non-destructive technique for direct phase analysis of samples smaller than 1 mm containing crystal constituents. It compliments optical and electron microscopy with elemental micro-analysis, especially in cases of complicated mixtures containing phases with similar chemical composition. However, modification of X-ray diffraction to the micro-scale together with its application for very heterogeneous real samples leads to deviations from the standard procedure. Knowledge of both the limits and the phenomena which can arise during the analysis is crucial for the meaningful and proper application of the method. We evaluated basic limits of micro-XRD equipped with a mono-capillary with an exit diameter of 0.1 mm, for example the size of irradiated area, appropriate grain size, and detection limits allowing identification of given phases. We tested the reliability and accuracy of quantitative phase analysis based on micro-XRD data in comparison with conventional XRD (reflection and transmission), carrying out experiments with two-phase model mixtures simulating historic colour layers. Furthermore, we demonstrate the wide use of micro-XRD for investigation of various types of micro-samples (contact traces, powder traps, colour layers) and we show how to enhance data quality by proper choice of experiment geometry and conditions.

  7. A differential scanning calorimetric and X-ray diffraction

    Indian Academy of Sciences (India)

    X-ray diffraction analysis of the two groups demonstrated predominance of austenitic ... Discrete crystallographic structure and absence of multiple phases showed ... Division of Orthodontics, Indian Army, 10 Corps Dental Unit, C/O 56 APO, ...

  8. Final Report on Small Particle Speciation for Forensics Analysis by Soft X-ray Scanning Transmission X-ray Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pacold, J. I. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Altman, A. B. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Donald, S B [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dai, Z. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Davisson, M. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Holliday, K S [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Knight, K. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kristo, M. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Minasian, S. G. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Nelson, A J [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tyliszczak, T [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Booth, C. H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shuh, D. K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-09-30

    Materials of interest for nuclear forensic science are often highly heterogeneous, containing complex mixtures of actinide compounds in a wide variety of matrices. Scanning transmission X-ray microscopy (STXM) is ideally suited to study such materials, as it can be used to chemically image specimens by acquiring X-ray absorption near-edge spectroscopy (XANES) data with 25 nm spatial resolution. In particular, STXM in the soft X-ray synchrotron radiation regime (approximately 120 – 2000 eV) can collect spectroscopic information from the actinides and light elements in a single experiment. Thus, STXM combines the chemical sensitivity of X-ray absorption spectroscopy with high spatial resolution in a single non-destructive characterization method. This report describes the application of STXM to a broad range of nuclear materials. Where possible, the spectroscopic images obtained by STXM are compared with information derived from other analytical methods, and used to make inferences about the process history of each material. STXM measurements can yield information including the morphology of a sample, “elemental maps” showing the spatial distribution of major chemical constituents, and XANES spectra from localized regions of a sample, which may show spatial variations in chemical composition.

  9. X-ray phase scanning setup for non-destructive testing using Talbot-Lau interferometer

    Science.gov (United States)

    Bachche, S.; Nonoguchi, M.; Kato, K.; Kageyama, M.; Koike, T.; Kuribayashi, M.; Momose, A.

    2016-09-01

    X-ray grating interferometry has a great potential for X-ray phase imaging over conventional X-ray absorption imaging which does not provide significant contrast for weakly absorbing objects and soft biological tissues. X-ray Talbot and Talbot-Lau interferometers which are composed of transmission gratings and measure the differential X-ray phase shifts have gained popularity because they operate with polychromatic beams. In X-ray radiography, especially for nondestructive testing in industrial applications, the feasibility of continuous sample scanning is not yet completely revealed. A scanning setup is frequently advantageous when compared to a direct 2D static image acquisition in terms of field of view, exposure time, illuminating radiation, etc. This paper demonstrates an efficient scanning setup for grating-based Xray phase imaging using laboratory-based X-ray source. An apparatus consisting of an X-ray source that emits X-rays vertically, optical gratings and a photon-counting detector was used with which continuously moving objects across the field of view as that of conveyor belt system can be imaged. The imaging performance of phase scanner was tested by scanning a long continuous moving sample at a speed of 5 mm/s and absorption, differential-phase and visibility images were generated by processing non-uniform moire movie with our specially designed phase measurement algorithm. A brief discussion on the feasibility of phase scanner with scanning setup approach including X-ray phase imaging performance is reported. The successful results suggest a breakthrough for scanning objects those are moving continuously on conveyor belt system non-destructively using the scheme of X-ray phase imaging.

  10. High-speed X-ray phase tomography with Talbot interferometer and fringe scanning method

    International Nuclear Information System (INIS)

    Kibayashi, Shunsuke; Harasse, Sébastien; Yashiro, Wataru; Momose, Atsushi

    2012-01-01

    High-speed X-ray phase tomography based on the Fourier-transform method has been demonstrated with an X-ray Talbot interferometer using white synchrotron radiation. We report the experimental results of high-speed X-ray phase tomography with fringe-scanning method instead of Fourier-transform method to improve spatial resolution without a considerable increase of scan time. To apply fringe-scanning method to high speed tomography, we tested a scan that is a synchronous combination of one-way continuous movements of the sample rotation and the grating displacement. When this scanning method was combined with X-ray phase tomography, we were able to obtain a scan time of 5 s. A comparison of the image quality derived with the conventional approach and with the proposed approach using the fringe-scanning method showed that the latter had better spatial resolution.

  11. A simple methodology for obtaining X-ray color images in scanning electron microscopy

    International Nuclear Information System (INIS)

    Veiga, M.M. da; Pietroluongo, L.R.V.

    1985-01-01

    A simple methodology for obtaining at least 3 elements X-ray images in only one photography is described. The fluorescent X-ray image is obtained from scanning electron microscopy with energy dispersion analysis system. The change of detector analytic channels, color cellophane foils and color films are used sequentially. (M.C.K.) [pt

  12. Scanning tunneling microscopy studies of thin foil x-ray mirrors

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Besenbacher, Flemming; Garnaes, Jorgen

    1990-01-01

    In this paper scanning tunneling microscopy (STM) measurements of x-ray mirrors are presented. The x-ray mirrors are 0.3 mm thick dip-lacquered aluminum foils coated with gold by evaporation, as well as state-of-the-art polished surfaces coated with gold, platinum, or iridium. The measurements...

  13. Imaging properties and its improvements of scanning/imaging x-ray microscope

    International Nuclear Information System (INIS)

    Takeuchi, Akihisa; Uesugi, Kentaro; Suzuki, Yoshio

    2016-01-01

    A scanning / imaging X-ray microscope (SIXM) system has been developed at SPring-8. The SIXM consists of a scanning X-ray microscope with a one-dimensional (1D) X-ray focusing device and an imaging (full-field) X-ray microscope with a 1D X-ray objective. The motivation of the SIXM system is to realize a quantitative and highly-sensitive multimodal 3D X-ray tomography by taking advantages of both the scanning X-ray microscope using multi-pixel detector and the imaging X-ray microscope. Data acquisition process of a 2D image is completely different between in the horizontal direction and in the vertical direction; a 1D signal is obtained with the linear-scanning while the other dimensional signal is obtained with the imaging optics. Such condition have caused a serious problem on the imaging properties that the imaging quality in the vertical direction has been much worse than that in the horizontal direction. In this paper, two approaches to solve this problem will be presented. One is introducing a Fourier transform method for phase retrieval from one phase derivative image, and the other to develop and employ a 1D diffuser to produce an asymmetrical coherent illumination

  14. Simultaneous scanning tunneling microscopy and synchrotron X-ray measurements in a gas environment

    NARCIS (Netherlands)

    Mom, R.V.; Onderwaater, W.G.; Rost, M.J.; Jankowski, M.; Wenzel, S.; Jacobse, L.; Alkemade, P.F.A.; Vandalon, V.; van Spronsen, M.A.; van Weeren, M.; Crama, B.; van der Tuijn, P.; Felici, R.; Kessels, W.M.M.; Carlà, F.; Frenken, J.W.M.; Groot, I.M.N.

    2017-01-01

    A combined X-ray and scanning tunneling microscopy (STM) instrument is presented that enables the local detection of X-ray absorption on surfaces in a gas environment. To suppress the collection of ion currents generated in the gas phase, coaxially shielded STM tips were used. The conductive outer

  15. Physical methods for studying minerals and solid materials: X-ray, electron and neutron diffraction; scanning and transmission electron microscopy; X-ray, electron and ion spectrometry

    International Nuclear Information System (INIS)

    Eberhart, J.-P.

    1976-01-01

    The following topics are discussed: theoretical aspects of radiation-matter interactions; production and measurement of radiations (X rays, electrons, neutrons); applications of radiation interactions to the study of crystalline materials. The following techniques are presented: X-ray and neutron diffraction, electron microscopy, electron diffraction, X-ray fluorescence analysis, electron probe microanalysis, surface analysis by electron emission spectrometry (ESCA and Auger electrons), scanning electron microscopy, secondary ion emission analysis [fr

  16. Ultra-high vacuum compatible optical chopper system for synchrotron x-ray scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Hao, E-mail: hc000211@ohio.edu [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Nanoscale and Quantum Phenomena Institute, Physics & Astronomy Department, Ohio University, Athens, Ohio 45701 (United States); Cummings, Marvin; Shirato, Nozomi; Stripe, Benjamin; Preissner, Curt; Freeland, John W. [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Rosenmann, Daniel [Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Kersell, Heath; Hla, Saw-Wai [Nanoscale and Quantum Phenomena Institute, Physics & Astronomy Department, Ohio University, Athens, Ohio 45701 (United States); Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Rose, Volker, E-mail: vrose@anl.gov [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States)

    2016-01-28

    High-speed beam choppers are a crucial part of time-resolved x-ray studies as well as a necessary component to enable elemental contrast in synchrotron x-ray scanning tunneling microscopy (SX-STM). However, many chopper systems are not capable of operation in vacuum, which restricts their application to x-ray studies with high photon energies, where air absorption does not present a significant problem. To overcome this limitation, we present a fully ultra-high vacuum (UHV) compatible chopper system capable of operating at variable chopping frequencies up to 4 kHz. The lightweight aluminum chopper disk is coated with Ti and Au films to provide the required beam attenuation for soft and hard x-rays with photon energies up to about 12 keV. The chopper is used for lock-in detection of x-ray enhanced signals in SX-STM.

  17. Combining operando synchrotron X-ray tomographic microscopy and scanning X-ray diffraction to study lithium ion batteries

    Science.gov (United States)

    Pietsch, Patrick; Hess, Michael; Ludwig, Wolfgang; Eller, Jens; Wood, Vanessa

    2016-06-01

    We present an operando study of a lithium ion battery combining scanning X-ray diffraction (SXRD) and synchrotron radiation X-ray tomographic microscopy (SRXTM) simultaneously for the first time. This combination of techniques facilitates the investigation of dynamic processes in lithium ion batteries containing amorphous and/or weakly attenuating active materials. While amorphous materials pose a challenge for diffraction techniques, weakly attenuating material systems pose a challenge for attenuation-contrast tomography. Furthermore, combining SXRD and SRXTM can be used to correlate processes occurring at the atomic level in the crystal lattices of the active materials with those at the scale of electrode microstructure. To demonstrate the benefits of this approach, we investigate a silicon powder electrode in lithium metal half-cell configuration. Combining SXRD and SRXTM, we are able to (i) quantify the dissolution of the metallic lithium electrode and the expansion of the silicon electrode, (ii) better understand the formation of the Li15Si4 phase, and (iii) non-invasively probe kinetic limitations within the silicon electrode. A simple model based on the 1D diffusion equation allows us to qualitatively understand the observed kinetics and demonstrates why high-capacity electrodes are more prone to inhomogeneous lithiation reactions.

  18. Combining operando synchrotron X-ray tomographic microscopy and scanning X-ray diffraction to study lithium ion batteries

    Science.gov (United States)

    Pietsch, Patrick; Hess, Michael; Ludwig, Wolfgang; Eller, Jens; Wood, Vanessa

    2016-01-01

    We present an operando study of a lithium ion battery combining scanning X-ray diffraction (SXRD) and synchrotron radiation X-ray tomographic microscopy (SRXTM) simultaneously for the first time. This combination of techniques facilitates the investigation of dynamic processes in lithium ion batteries containing amorphous and/or weakly attenuating active materials. While amorphous materials pose a challenge for diffraction techniques, weakly attenuating material systems pose a challenge for attenuation-contrast tomography. Furthermore, combining SXRD and SRXTM can be used to correlate processes occurring at the atomic level in the crystal lattices of the active materials with those at the scale of electrode microstructure. To demonstrate the benefits of this approach, we investigate a silicon powder electrode in lithium metal half-cell configuration. Combining SXRD and SRXTM, we are able to (i) quantify the dissolution of the metallic lithium electrode and the expansion of the silicon electrode, (ii) better understand the formation of the Li15Si4 phase, and (iii) non-invasively probe kinetic limitations within the silicon electrode. A simple model based on the 1D diffusion equation allows us to qualitatively understand the observed kinetics and demonstrates why high-capacity electrodes are more prone to inhomogeneous lithiation reactions. PMID:27324109

  19. Compact scanning transmission x-ray microscope at the photon factory

    International Nuclear Information System (INIS)

    Takeichi, Yasuo; Inami, Nobuhito; Ono, Kanta; Suga, Hiroki; Takahashi, Yoshio

    2016-01-01

    We report the design and performance of a compact scanning transmission X-ray microscope developed at the Photon Factory. Piezo-driven linear stages are used as coarse stages of the microscope to realize excellent compactness, mobility, and vibrational and thermal stability. An X-ray beam with an intensity of ∼10 7 photons/s was focused to a diameter of ∼40 nm at the sample. At the soft X-ray undulator beamline used with the microscope, a wide range of photon energies (250–1600 eV) is available. The microscope has been used to research energy materials and in environmental sciences

  20. Stationary scanning x-ray source based on carbon nanotube field emitters

    International Nuclear Information System (INIS)

    Zhang, J.; Yang, G.; Cheng, Y.; Gao, B.; Qiu, Q.; Lee, Y.Z.; Lu, J.P.; Zhou, O.

    2005-01-01

    We report a field emission x-ray source that can generate a scanning x-ray beam to image an object from multiple projection angles without mechanical motion. The key component of the device is a gated carbon nanotube field emission cathode with an array of electron emitting pixels that are individually addressable via a metal-oxide-semiconductor field effect transistor-based electronic circuit. The characteristics of this x-ray source are measured and its imaging capability is demonstrated. The device can potentially lead to a fast data acquisition rate for laminography and tomosynthesis with a simplified experimental setup

  1. Development of fast parallel multi-technique scanning X-ray imaging at Synchrotron Soleil

    Science.gov (United States)

    Medjoubi, K.; Leclercq, N.; Langlois, F.; Buteau, A.; Lé, S.; Poirier, S.; Mercère, P.; Kewish, C. M.; Somogyi, A.

    2013-10-01

    A fast multimodal scanning X-ray imaging scheme is prototyped at Soleil Synchrotron. It permits the simultaneous acquisition of complementary information on the sample structure, composition and chemistry by measuring transmission, differential phase contrast, small-angle scattering, and X-ray fluorescence by dedicated detectors with ms dwell time per pixel. The results of the proof of principle experiments are presented in this paper.

  2. Video x-ray progressive scanning: new technique for decreasing x-ray exposure without decreasing image quality during cardiac catheterization

    International Nuclear Information System (INIS)

    Holmes, D.R. Jr.; Bove, A.A.; Wondrow, M.A.; Gray, J.E.

    1986-01-01

    A newly developed video x-ray progressive scanning system improves image quality, decreases radiation exposure, and can be added to any pulsed fluoroscopic x-ray system using a video display without major system modifications. With use of progressive video scanning, the radiation entrance exposure rate measured with a vascular phantom was decreased by 32 to 53% in comparison with a conventional fluoroscopic x-ray system. In addition to this substantial decrease in radiation exposure, the quality of the image was improved because of less motion blur and artifact. Progressive video scanning has the potential for widespread application to all pulsed fluoroscopic x-ray systems. Use of this technique should make cardiac catheterization procedures and all other fluoroscopic procedures safer for the patient and the involved medical and paramedical staff

  3. 3-d chemical imaging using angle-scan nanotomography in a soft X-ray scanning transmission X-ray microscope

    Energy Technology Data Exchange (ETDEWEB)

    Hitchcock, A.P.; Johansson, G.A. [McMaster, BIMR, Hamilton (Canada); Mitchell, G.E. [Dow Chemical, Analytical Science, Midland, MI (United States); Keefe, M.H. [Dow Chemical, Dow Latex, Midland, MI (United States); Tyliszcak, T. [LBNL, Advanced Light Source, Berkeley, CA (United States)

    2008-08-15

    Three-dimensional chemical mapping using angle scan nanotomography in a soft X-ray scanning transmission X-ray microscope (STXM) has been used to investigate the spatial distributions of a low density polyacrylate polyelectrolyte ionomer inside submicron sized polystyrene microspheres. Acquisition of tomograms at multiple photon energies provides true, quantifiable 3-d chemical sensitivity. Both pre-O 1s and C 1s results are shown. The study reveals aspects of the 3-d distribution of the polyelectrolyte that were inferred indirectly or had not been known prior to this study. The potential and challenges for extension of the technique to studies of other polymeric and to biological systems is discussed. (orig.)

  4. Coherent x-ray diffraction imaging of paint pigment particles by scanning a phase plate modulator

    International Nuclear Information System (INIS)

    Chu, Y.S.; Chen, B.; Zhang, F.; Berenguer, F.; Bean, R.; Kewish, C.; Vila-Comamala, J.; Rodenburg, J.; Robinson, I.

    2011-01-01

    We have implemented a coherent x-ray diffraction imaging technique that scans a phase plate to modulate wave-fronts of the x-ray beam transmitted by samples. The method was applied to measure a decorative alkyd paint containing iron oxide red pigment particles. By employing an iterative algorithm for wave-front modulation phase retrieval, we obtained an image of the paint sample that shows the distribution of the pigment particles and is consistent with the result obtained from a transmission x-ray microscope. The technique has been experimentally proven to be a feasible coherent x-ray imaging method with about 120 nm spatial resolution and was shown to work well with industrially relevant specimens.

  5. Simultaneous scanning tunneling microscopy and synchrotron X-ray measurements in a gas environment.

    Science.gov (United States)

    Mom, Rik V; Onderwaater, Willem G; Rost, Marcel J; Jankowski, Maciej; Wenzel, Sabine; Jacobse, Leon; Alkemade, Paul F A; Vandalon, Vincent; van Spronsen, Matthijs A; van Weeren, Matthijs; Crama, Bert; van der Tuijn, Peter; Felici, Roberto; Kessels, Wilhelmus M M; Carlà, Francesco; Frenken, Joost W M; Groot, Irene M N

    2017-11-01

    A combined X-ray and scanning tunneling microscopy (STM) instrument is presented that enables the local detection of X-ray absorption on surfaces in a gas environment. To suppress the collection of ion currents generated in the gas phase, coaxially shielded STM tips were used. The conductive outer shield of the coaxial tips can be biased to deflect ions away from the tip core. When tunneling, the X-ray-induced current is separated from the regular, 'topographic' tunneling current using a novel high-speed separation scheme. We demonstrate the capabilities of the instrument by measuring the local X-ray-induced current on Au(1 1 1) in 800 mbar Ar. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Ultrasound detection of pneumothorax compared with chest X-ray and computed tomography scan.

    Science.gov (United States)

    Nagarsheth, Khanjan; Kurek, Stanley

    2011-04-01

    Pneumothorax after trauma can be a life threatening injury and its care requires expeditious and accurate diagnosis and possible intervention. We performed a prospective, single blinded study with convenience sampling at a Level I trauma center comparing thoracic ultrasound with chest X-ray and CT scan in the detection of traumatic pneumothorax. Trauma patients that received a thoracic ultrasound, chest X-ray, and chest CT scan were included in the study. The chest X-rays were read by a radiologist who was blinded to the thoracic ultrasound results. Then both were compared with CT scan results. One hundred and twenty-five patients had a thoracic ultrasound performed in the 24-month period. Forty-six patients were excluded from the study due to lack of either a chest X-ray or chest CT scan. Of the remaining 79 patients there were 22 positive pneumothorax found by CT and of those 18 (82%) were found on ultrasound and 7 (32%) were found on chest X-ray. The sensitivity of thoracic ultrasound was found to be 81.8 per cent and the specificity was found to be 100 per cent. The sensitivity of chest X-ray was found to be 31.8 per cent and again the specificity was found to be 100 per cent. The negative predictive value of thoracic ultrasound for pneumothorax was 0.934 and the negative predictive value for chest X-ray for pneumothorax was found to be 0.792. We advocate the use of chest ultrasound for detection of pneumothorax in trauma patients.

  7. Design and performance of the 2-ID-B scanning x-ray microscope

    International Nuclear Information System (INIS)

    McNulty, I.

    1998-01-01

    We have constructed a high resolution scanning x-ray microscope at the 2-ID-B beamline at the Advanced Photon Source for 1-4 keV x-ray imaging and microspectroscopy experiments. The microscope uses a Fresnel zone plate to focus coherent x-ray undulator radiation to a 150 nm focal spot on a sample. The spectral flux in the focus is 10 8 ph/s/0.1% BW. X-ray photons transmitted by the sample are detected by an avalanche photodiode as the sample is scanned to form an absorption image. The sample stage has both coarse and fine translation axes for raster scanning and a rotation axis for microtomography experiments. The incident x-ray beam energy can also be scanned via the 2-ID-B monochromator while the sample is kept in focus to record spatially resolved absorption spectra. We have measured the performance of the instrument with various test objects. The microscope hardware, software, and performance are discussed in this paper

  8. Status of the Nanoscopium Scanning Hard X-ray Nanoprobe Beamline of Synchrotron Soleil

    Science.gov (United States)

    Somogyi, A.; Kewish, C. M.; Ribbens, M.; Moreno, T.; Polack, F.; Baranton, G.; Desjardins, K.; Samama, J. P.

    2013-10-01

    The Nanoscopium 155 m-long scanning hard X-ray nanoprobe beamline of Synchrotron Soleil (St Aubin, France) is dedicated to quantitative multi-modal 2D/3D imaging. The beamline aims to reach down to 30 nm spatial resolution in the 5-20 keV energy range. Two experimental stations working in consecutive operation mode will be dedicated to coherent diffractive imaging and scanning X-ray nanoprobe techniques. The beamline is in the construction phase, the first user experiments are expected in 2014. The main characteristics of the beamline and an overview of its status are given in this paper.

  9. Status of the Nanoscopium Scanning Hard X-ray Nanoprobe Beamline of Synchrotron Soleil

    International Nuclear Information System (INIS)

    Somogyi, A; Kewish, C M; Ribbens, M; Moreno, T; Polack, F; Baranton, G; Desjardins, K; Samama, J P

    2013-01-01

    The Nanoscopium 155 m-long scanning hard X-ray nanoprobe beamline of Synchrotron Soleil (St Aubin, France) is dedicated to quantitative multi-modal 2D/3D imaging. The beamline aims to reach down to 30 nm spatial resolution in the 5–20 keV energy range. Two experimental stations working in consecutive operation mode will be dedicated to coherent diffractive imaging and scanning X-ray nanoprobe techniques. The beamline is in the construction phase, the first user experiments are expected in 2014. The main characteristics of the beamline and an overview of its status are given in this paper

  10. Assembly of positioner of automated two-dimensional scan coupled to X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Silva, Leonardo Santiago Melgaço

    2011-01-01

    This work describes the design and assembling of a prototype automated positioner two-dimensional scanning coupled to X-ray fluorescence spectrometry. The work aims to achieve a portable and easy to use, device of broad utility in the analysis of samples by X-ray fluorescence area of expertise and research. The two-dimensional scanning of the positioner is by means of two stepper motors controlled by a microcontroller PIC 16F877A, encoder and optical sensors. The user interacts with the XY table through an interface program for the Windows operating system, which communicates with the microcontroller through the serial port. The system of Fluorescence Spectroscopy incorporated into the positioner consists of a system commercially available system from the company AMPTEK, where the primary source of excitation of the sample was a source of 241 Am of 59.5 KeV emissions. Resolution and accuracy of tests were performed in the XY scanning process and reproducibility of the same kit with the fluorescence spectrometry X-ray. Qualitative tests by X-ray fluorescence spectrometry in samples were performed to demonstrate the applicability and versatility of the project. It follows that the prototype illustrates a possible adequately to portable device for X-ray spectrometry of two-dimensional. (author)

  11. Collagen imaged by Coherent X-ray Diffraction: towards a complementary tool to conventional scanning SAXS

    International Nuclear Information System (INIS)

    Berenguer de la Cuesta, Felisa; Bean, Richard J; Bozec, Laurent; Robinson, Ian K; McCallion, Catriona; Wallace, Kris; Hiller, Jen C; Terrill, Nicholas J

    2010-01-01

    Third generation x-ray sources offer unique possibilities for exploiting coherence in the study of materials. New insights in the structure and dynamics of soft condensed matter and biological samples can be obtained by coherent x-ray diffraction (CXD). However, the experimental procedures for applying these methods to collagen tissues are still under development. We present here an investigation for the optimal procedure in order to obtain high quality CXD data from collagen tissues. Sample handling and preparation and adequate coherence defining apertures are among the more relevant factors to take into account. The impact of the results is also discussed, in particular in comparison with the information that can be extracted from conventional scanning small angle x-ray scattering (SAXS). Images of collagen tissues obtained by CXD reconstructions will give additional information about the local structure with higher resolution and will complement scanning SAXS images.

  12. Collagen imaged by Coherent X-ray Diffraction: towards a complementary tool to conventional scanning SAXS

    Energy Technology Data Exchange (ETDEWEB)

    Berenguer de la Cuesta, Felisa; Bean, Richard J; Bozec, Laurent; Robinson, Ian K [London Centre for Nanotechnology (LCN), University College London (UCL), London WC1H 0AH (United Kingdom); McCallion, Catriona; Wallace, Kris [Department of Physics and Astronomy, University College London (UCL), London WC1E 6BT (United Kingdom); Hiller, Jen C; Terrill, Nicholas J, E-mail: f.berenguer@ucl.ac.u [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom)

    2010-10-01

    Third generation x-ray sources offer unique possibilities for exploiting coherence in the study of materials. New insights in the structure and dynamics of soft condensed matter and biological samples can be obtained by coherent x-ray diffraction (CXD). However, the experimental procedures for applying these methods to collagen tissues are still under development. We present here an investigation for the optimal procedure in order to obtain high quality CXD data from collagen tissues. Sample handling and preparation and adequate coherence defining apertures are among the more relevant factors to take into account. The impact of the results is also discussed, in particular in comparison with the information that can be extracted from conventional scanning small angle x-ray scattering (SAXS). Images of collagen tissues obtained by CXD reconstructions will give additional information about the local structure with higher resolution and will complement scanning SAXS images.

  13. Investigation of optimal scanning protocol for X-ray computed tomography polymer gel dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Sellakumar, P. [Bangalore Institute of Oncology, 44-45/2, II Cross, RRMR Extension, Bangalore 560 027 (India)], E-mail: psellakumar@rediffmail.com; James Jebaseelan Samuel, E. [School of Science and Humanities, VIT University, Vellore 632 014 (India); Supe, Sanjay S. [Department of Radiation Physics, Kidwai Memorial Institute of Oncology, Hosur Road, Bangalore 560 027 (India)

    2007-11-15

    X-ray computed tomography is one of the potential tool used to evaluate the polymer gel dosimeters in three dimensions. The purpose of this study is to investigate the factors which affect the image noise for X-ray CT polymer gel dosimetry. A cylindrical water filled phantom was imaged with single slice Siemens Somatom Emotion CT scanner. The imaging parameters like tube voltage, tube current, slice scan time, slice thickness and reconstruction algorithm were varied independently to study the dependence of noise on each other. Reductions of noise with number of images to be averaged and spatial uniformity of the image were also investigated. Normoxic polymer gel PAGAT was manufactured and irradiated using Siemens Primus linear accelerator. The radiation induced change in CT number was evaluated using X-ray CT scanner. From this study it is clear that image noise is reduced with increase in tube voltage, tube current, slice scan time, slice thickness and also reduced with increasing the number of images averaged. However to reduce the tube load and total scan time, it was concluded that tube voltage of 130 kV, tube current of 200 mA, scan time of 1.5 s, slice thickness of 3 mm for high dose gradient and 5 mm for low dose gradient were optimal scanning protocols for this scanner. Optimum number of images to be averaged was concluded to be 25 for X-ray CT polymer gel dosimetry. Choice of reconstruction algorithm was also critical. From the study it is also clear that CT number increase with imaging tube voltage and shows the energy dependency of polymer gel dosimeter. Hence for evaluation of polymer gel dosimeters with X-ray CT scanner needs the optimization of scanning protocols to reduce the image noise.

  14. Quantitative phase tomography by using x-ray microscope with Foucault knife-edge scanning filter

    International Nuclear Information System (INIS)

    Watanabe, Norio; Tsuburaya, Yuji; Shimada, Akihiro; Aoki, Sadao

    2016-01-01

    Quantitative phase tomography was evaluated by using a differential phase microscope with a Foucault knife-edge scanning filter. A 3D x-ray phase image of polystyrene beads was obtained at 5.4 keV. The reconstructed refractive index was fairly good agreement with the Henke’s tabulated data

  15. Quantitative phase tomography by using x-ray microscope with Foucault knife-edge scanning filter

    Science.gov (United States)

    Watanabe, Norio; Tsuburaya, Yuji; Shimada, Akihiro; Aoki, Sadao

    2016-01-01

    Quantitative phase tomography was evaluated by using a differential phase microscope with a Foucault knife-edge scanning filter. A 3D x-ray phase image of polystyrene beads was obtained at 5.4 keV. The reconstructed refractive index was fairly good agreement with the Henke's tabulated data.

  16. Study of X-ray transients with Scanning Sky Monitor (SSM) onboard ...

    Indian Academy of Sciences (India)

    M. C. RAMADEVI

    MS received 1 September 2017; accepted 19 December 2017; published online 10 February 2018. Abstract. Scanning Sky Monitor (SSM) onboard AstroSat is an X-ray sky monitor in the ..... 31(2–3), 99. Ramadevi M. C., Seetha S., Babu V. C., Ashoka B. N., Sreeku- mar P. 2006, Optimization of Gas Proportional Coun-.

  17. Quantitative phase tomography by using x-ray microscope with Foucault knife-edge scanning filter

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Norio; Tsuburaya, Yuji; Shimada, Akihiro; Aoki, Sadao [Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8573 (Japan)

    2016-01-28

    Quantitative phase tomography was evaluated by using a differential phase microscope with a Foucault knife-edge scanning filter. A 3D x-ray phase image of polystyrene beads was obtained at 5.4 keV. The reconstructed refractive index was fairly good agreement with the Henke’s tabulated data.

  18. Visualization of magnetic dipolar interaction based on scanning transmission X-ray microscopy

    International Nuclear Information System (INIS)

    Ohtori, Hiroyuki; Iwano, Kaoru; Takeichi, Yasuo; Ono, Kanta; Mitsumata, Chiharu; Yano, Masao; Kato, Akira; Miyamoto, Noritaka; Shoji, Tetsuya; Manabe, Akira

    2014-01-01

    Using scanning transmission X-ray microscopy (STXM), in this report we visualized the magnetic dipolar interactions in nanocrystalline Nd-Fe-B magnets and imaged their magnetization distributions at various applied fields. We calculated the magnetic dipolar interaction by analyzing the interaction between the magnetization at each point and those at the other points on the STXM image.

  19. Thin-film thickness measurement using x-ray peak ratioing in the scanning electron microscope

    International Nuclear Information System (INIS)

    Elliott, N.E.; Anderson, W.E.; Archuleta, T.A.; Stupin, D.M.

    1981-01-01

    The procedure used to measure laser target film thickness using a scanning electron microscope is summarized. This method is generally applicable to any coating on any substrate as long as the electron energy is sufficient to penetrate the coating and the substrate produces an x-ray signal which can pass back through the coating and be detected

  20. X-ray optics for scanning fluorescence microscopy and other applications

    International Nuclear Information System (INIS)

    Ryon, R.W.; Warburton, W.K.

    1992-05-01

    Scanning x-ray fluorescence microscopy is analogous to scanning electron microscopy. Maps of chemical element distribution are produced by scanning with a very small x-ray beam. Goal is to perform such scanning microscopy with resolution in the range of <1 to 10 μm, using standard laboratory x-ray tubes. We are investigating mirror optics in the Kirkpatrick-Baez (K-B) configuration. K-B optics uses two curved mirrors mounted orthogonally along the optical axis. The first mirror provides vertical focus, the second mirror provides horizontal focus. We have used two types of mirrors: synthetic multilayers and crystals. Multilayer mirrors are used with lower energy radiation such as Cu Kα. At higher energies such as Ag Kα, silicon wafers are used in order to increase the incidence angles and thereby the photon collection efficiency. In order to increase the surface area of multilayers which reflects x-rays at the Bragg angle, we have designed mirrors with the spacing between layers graded along the optic axis in order to compensate for the changing angle of incidence. Likewise, to achieve a large reflecting surface with silicon, the wafers are placed on a specially designed lever arm which is bent into a log spiral by applying force at one end. In this way, the same diffracting angle is maintained over the entire surface of the wafer, providing a large solid angle for photon collection

  1. Surface x-ray scattering and scanning tunneling microscopy studies at the Au(111) electrode

    International Nuclear Information System (INIS)

    Ocko, B.M.; Magnussen, O.M.; Wang, J.X.; Adzic, R.R.

    1993-01-01

    This chapter reviews Surface X-ray Scattering and Scanning Tunneling Microscopy results carried out at the Au(111) surface under electrochemical conditions. Results are presented for the reconstructed surface, and for bromide and thallium monolayers. These examples are used to illustrate the complementary nature of the techniques

  2. The 2-ID-B intermediate-energy scanning X-ray microscope at the APS

    International Nuclear Information System (INIS)

    McNulty, I.; Paterson, D.; Arko, J.; Erdmann, M.; Goetze, K.; Ilinski, P.; Mooney, T.; Vogt, S.; Xu, S.; Frigo, S.P.; Stampfl, A.P.J.; Wang, Y.

    2002-01-01

    The intermediate-energy scanning x-ray microscope at beamline 2-ID-B at the Advanced Photon Source is a dedicated instrument for materials and biological research. The microscope uses a zone plate lens to focus coherent 1-4 keV x-rays to a 60 nm focal spot of 10 9 photons/s onto the sample. It records simultaneous transmission and energy-resolved fluorescence images. We have used the microscope for nano-tomography of chips and micro-spectroscopy of cells. (authors)

  3. Sensitivity Analysis of X-ray Spectra from Scanning Electron Microscopes

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Thomas Martin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Patton, Bruce W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Weber, Charles F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bekar, Kursat B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-10-01

    The primary goal of this project is to evaluate x-ray spectra generated within a scanning electron microscope (SEM) to determine elemental composition of small samples. This will be accomplished by performing Monte Carlo simulations of the electron and photon interactions in the sample and in the x-ray detector. The elemental inventories will be determined by an inverse process that progressively reduces the difference between the measured and simulated x-ray spectra by iteratively adjusting composition and geometric variables in the computational model. The intended benefit of this work will be to develop a method to perform quantitative analysis on substandard samples (heterogeneous phases, rough surfaces, small sizes, etc.) without involving standard elemental samples or empirical matrix corrections (i.e., true standardless quantitative analysis).

  4. Quantitative X-ray dark-field and phase tomography using single directional speckle scanning technique

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongchang, E-mail: hongchang.wang@diamond.ac.uk; Kashyap, Yogesh; Sawhney, Kawal [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom)

    2016-03-21

    X-ray dark-field contrast tomography can provide important supplementary information inside a sample to the conventional absorption tomography. Recently, the X-ray speckle based technique has been proposed to provide qualitative two-dimensional dark-field imaging with a simple experimental arrangement. In this letter, we deduce a relationship between the second moment of scattering angle distribution and cross-correlation degradation of speckle and establish a quantitative basis of X-ray dark-field tomography using single directional speckle scanning technique. In addition, the phase contrast images can be simultaneously retrieved permitting tomographic reconstruction, which yields enhanced contrast in weakly absorbing materials. Such complementary tomography technique can allow systematic investigation of complex samples containing both soft and hard materials.

  5. Scanning Transmission X-ray Microscopy: Applications in Atmospheric Aerosol Research

    Energy Technology Data Exchange (ETDEWEB)

    Moffet, Ryan C.; Tivanski, Alexei V.; Gilles, Mary K.

    2011-01-20

    Scanning transmission x-ray microscopy (STXM) combines x-ray microscopy and near edge x-ray absorption fine structure spectroscopy (NEXAFS). This combination provides spatially resolved bonding and oxidation state information. While there are reviews relevant to STXM/NEXAFS applications in other environmental fields (and magnetic materials) this chapter focuses on atmospheric aerosols. It provides an introduction to this technique in a manner approachable to non-experts. It begins with relevant background information on synchrotron radiation sources and a description of NEXAFS spectroscopy. The bulk of the chapter provides a survey of STXM/NEXAFS aerosol studies and is organized according to the type of aerosol investigated. The purpose is to illustrate the current range and recent growth of scientific investigations employing STXM-NEXAFS to probe atmospheric aerosol morphology, surface coatings, mixing states, and atmospheric processing.

  6. Two-dimensional in situ metrology of X-ray mirrors using the speckle scanning technique

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongchang, E-mail: hongchang.wang@diamond.ac.uk; Kashyap, Yogesh; Laundy, David; Sawhney, Kawal [Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom)

    2015-06-06

    The two-dimensional slope error of an X-ray mirror has been retrieved by employing the speckle scanning technique, which will be valuable at synchrotron radiation facilities and in astronomical telescopes. In situ metrology overcomes many of the limitations of existing metrology techniques and is capable of exceeding the performance of present-day optics. A novel technique for precisely characterizing an X-ray bimorph mirror and deducing its two-dimensional (2D) slope error map is presented. This technique has also been used to perform fast optimization of a bimorph mirror using the derived 2D piezo response functions. The measured focused beam size was significantly reduced after the optimization, and the slope error map was then verified by using geometrical optics to simulate the focused beam profile. This proposed technique is expected to be valuable for in situ metrology of X-ray mirrors at synchrotron radiation facilities and in astronomical telescopes.

  7. First images from the Stanford tabletop scanning soft x-ray microscope

    International Nuclear Information System (INIS)

    Trail, J.A.; Byer, R.L.

    1988-01-01

    The authors have constructed a scanning soft x-ray microscope which uses a laser-produced plasma as the soft x-ray source and normal incidence multilayer coated mirrors in a Schwarzschild configuration as the focusing optics. The microscope operates at a wavelength of 140 angstrom, has a spatial resolution of 0.5 μm, and has a soft x-ray photon flux through the focus of 10 4 s -1 when operated with only 170 mW of average laser power. The microscope is compact; the complete system, including the laser, fits on a single optical table. In this paper they describe the microscope and present images of metallic microstructures

  8. Probing Phase Transformations and Microstructural Evolutions at the Small Scales: Synchrotron X-ray Microdiffraction for Advanced Applications in [Phase 3 Memory,] 3D IC (Integrated Circuits) and Solar PV (Photovoltaic) Devices

    Energy Technology Data Exchange (ETDEWEB)

    Radchenko, I. [Singapore Univ. of Technology and Design (SUTD) (Singapore); Tippabhotla, S. K. [Singapore Univ. of Technology and Design (SUTD) (Singapore); Tamura, N. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Budiman, A. S. [Singapore Univ. of Technology and Design (SUTD) (Singapore)

    2016-10-21

    Synchrotron x-ray microdiffraction (μXRD) allows characterization of a crystalline material in small, localized volumes. Phase composition, crystal orientation and strain can all be probed in few-second time scales. Crystalline changes over a large areas can be also probed in a reasonable amount of time with submicron spatial resolution. However, despite all the listed capabilities, μXRD is mostly used to study pure materials but its application in actual device characterization is rather limited. This article will explore the recent developments of the μXRD technique illustrated with its advanced applications in microelectronic devices and solar photovoltaic systems. Application of μXRD in microelectronics will be illustrated by studying stress and microstructure evolution in Cu TSV (through silicon via) during and after annealing. Here, the approach allowing study of the microstructural evolution in the solder joint of crystalline Si solar cells due to thermal cycling will be also demonstrated.

  9. Possibilities and Challenges of Scanning Hard X-ray Spectro-microscopy Techniques in Material Sciences

    Directory of Open Access Journals (Sweden)

    Andrea Somogyi

    2015-06-01

    Full Text Available Scanning hard X-ray spectro-microscopic imaging opens unprecedented possibilities in the study of inhomogeneous samples at different length-scales. It gives insight into the spatial variation of the major and minor components, impurities and dopants of the sample, and their chemical and electronic states at micro- and nano-meter scales. Measuring, modelling and understanding novel properties of laterally confined structures are now attainable. The large penetration depth of hard X-rays (several keV to several 10 keV beam energy makes the study of layered and buried structures possible also in in situ and in operando conditions. The combination of different X-ray analytical techniques complementary to scanning spectro-microscopy, such as X-ray diffraction, X-ray excited optical luminescence, secondary ion mass spectrometry (SIMS and nano-SIMS, provides access to optical characteristics and strain and stress distributions. Complex sample environments (temperature, pressure, controlled atmosphere/vacuum, chemical environment are also possible and were demonstrated, and allow as well the combination with other analysis techniques (Raman spectroscopy, infrared imaging, mechanical tensile devices, etc. on precisely the very same area of the sample. The use of the coherence properties of X-rays from synchrotron sources is triggering emerging experimental imaging approaches with nanometer lateral resolution. New fast analytical possibilities pave the way towards statistically significant studies at multi- length-scales and three dimensional tomographic investigations. This paper gives an overview of these techniques and their recent achievements in the field of material sciences.

  10. Scanning electron microscope/energy dispersive x ray analysis of impact residues in LDEF tray clamps

    Science.gov (United States)

    Bernhard, Ronald P.; Durin, Christian; Zolensky, Michael E.

    1993-01-01

    Detailed optical scanning of tray clamps is being conducted in the Facility for the Optical Inspection of Large Surfaces at JSC to locate and document impacts as small as 40 microns in diameter. Residues from selected impacts are then being characterized by Scanning Electron Microscopy/Energy Dispersive X-ray Analysis at CNES. Results from this analysis will be the initial step to classifying projectile residues into specific sources.

  11. Scanning transmission x-ray microscope for materials science spectromicroscopy at the ALS

    Energy Technology Data Exchange (ETDEWEB)

    Warwick, T.; Seal, S.; Shin, H. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    The brightness of the Advanced Light Source will be exploited by several new instruments for materials science spectromicroscopy over the next year or so. The first of these to become operational is a scanning transmission x-ray microscope with which near edge x-ray absorption spectra (NEXAFS) can be measured on spatial features of sub-micron size. Here the authors describe the instrument as it is presently implemented, its capabilities, some studies made to date and the developments to come. The Scanning Transmission X-ray Microscope makes use of a zone plate lens to produce a small x-ray spot with which to perform absorption spectroscopy through thin samples. The x-ray beam from ALS undulator beamline 7.0 emerges into the microscope vessel through a silicon nitride vacuum window 160nm thick and 300{mu}m square. The vessel is filled with helium at atmospheric pressure. The zone plate lens is illuminated 1mm downstream from the vacuum window and forms an image in first order of a pinhole which is 3m upstream in the beamline. An order sorting aperture passes the first order converging light and blocks the unfocused zero order. The sample is at the focus a few mm downstream of the zone plate and mounted from a scanning piezo stage which rasters in x and y so that an image is formed, pixel by pixel, by an intensity detector behind the sample. Absorption spectra are measured point-by-point as the photon energy is scanned by rotating the diffraction grating in the monochromator and changing the undulator gap.

  12. Assessing the registration of CT-scan data to intraoperative x rays by fusing x rays and preoperative information

    Science.gov (United States)

    Gueziec, Andre P.

    1999-05-01

    This paper addresses a key issue of providing clinicians with visual feedback to validate a computer-generated registration of pre-operative and intra-operative data. With this feedback information, the clinician may decide to proceed with a computer-assisted intervention, revert to a manual intervention, or potentially provide information to the computer system to improve the registration. The paper focuses on total hip replacement (THR) surgery, but similar techniques could be applied to other types of interventions or therapy, including orthopedics, neurosurgery, and radiation therapy. Pre-operative CT data is used to plane the surgery (select an implant type, size and precise position), and is registered to intra-operative X-ray images, allowing to execute the plan: mill a cavity with the implant's shape. (Intra-operative X-ray images must be calibrated with respect to the surgical device executing the plan). One novel technique presented in this paper consists of simulating a post-operative X-ray image of the tissue of interest before doing the procedure, by projecting the registered implant onto an intra-operative X- ray image (corrected for distortion or not), providing clinicians with familiar and easy to interpret images. As an additional benefit, this method provides new means for comparing various strategies for registering pre-operative data to the physical space of the operating room.

  13. LabVIEW control software for scanning micro-beam X-ray fluorescence spectrometer.

    Science.gov (United States)

    Wrobel, Pawel; Czyzycki, Mateusz; Furman, Leszek; Kolasinski, Krzysztof; Lankosz, Marek; Mrenca, Alina; Samek, Lucyna; Wegrzynek, Dariusz

    2012-05-15

    Confocal micro-beam X-ray fluorescence microscope was constructed. The system was assembled from commercially available components - a low power X-ray tube source, polycapillary X-ray optics and silicon drift detector - controlled by an in-house developed LabVIEW software. A video camera coupled to optical microscope was utilized to display the area excited by X-ray beam. The camera image calibration and scan area definition software were also based entirely on LabVIEW code. Presently, the main area of application of the newly constructed spectrometer is 2-dimensional mapping of element distribution in environmental, biological and geological samples with micrometer spatial resolution. The hardware and the developed software can already handle volumetric 3-D confocal scans. In this work, a front panel graphical user interface as well as communication protocols between hardware components were described. Two applications of the spectrometer, to homogeneity testing of titanium layers and to imaging of various types of grains in air particulate matter collected on membrane filters, were presented. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Non-scanning x-ray fluorescence microscope: application to real time micro-imaging

    International Nuclear Information System (INIS)

    Sakurai, K.; Eba, H.

    2000-01-01

    So far, x-ray fluorescence (XRF) micro-imaging has been performed by a 2D positional scan of a sample against a collimated beam. Obtaining information on specific elements in a nondestructive manner is an attractive prospect for many scientific applications. Furthermore, a synchrotron micro-beam can enhance the spatial resolution down to 0.1 μm. However, the total measuring time becomes quite long (a few hours to a half day), since one needs a number of scanning points in order to obtain a high-quality image. It is possible to obtain an x-ray image with 1 M pixels and with 20 μm resolution in a very short time of 20 sec - 3 min using a non-scanning XRF microscope, which is based on completely different concept. In the present report, we discuss the application of this technique to real time micro-imaging. The experiments were carried out at BL-4A, Photon Factory, Tsukuba, Japan. We employed a grazing-incidence arrangement to make primary x-rays illuminate the whole sample surface. We adopted parallel-beam optics and extremely-close-geometry in order to detect x-ray fluorescence with a CCD camera. The selective-excitation capability of tunable monochromatic synchrotron radiation is a feasible method for distinguishing the elements of interest. One can obtain an image of each element by differentiating the images obtained above and below the absorption edges of interest. The growth of metallic dendrites from a solution dropped on a substrate was studied successfully. Several different growth patterns, corresponding to concentration and other conditions for diffusion, were observed as x-ray images. Since the present technique requires only 40 sec for each shot, it is possible to record a growing process through repeated exposures like a movie. The authors would like to thank Prof. A. Iida (Photon Factory) for his valuable comments. (author)

  15. Scanning-beam digital x-ray (SBDX) technology for interventional and diagnostic cardiac angiography

    International Nuclear Information System (INIS)

    Speidel, Michael A.; Wilfley, Brian P.; Star-Lack, Josh M.; Heanue, Joseph A.; Van Lysel, Michael S.

    2006-01-01

    The scanning-beam digital x-ray (SBDX) system is designed for x-ray dose reduction in cardiac angiographic applications. Scatter reduction, efficient detection of primary x-rays, and an inverse beam geometry are the main components of the entrance dose reduction strategy. This paper reports the construction of an SBDX prototype, image reconstruction techniques, and measurements of spatial resolution and x-ray output. The x-ray source has a focal spot that is electronically scanned across a large-area transmission target. A multihole collimator beyond the target defines a series of x-ray beams directed at a distant small-area detector array. The prototype has a 23 cmx23 cm target, 100x100 focal spot positions, and a 5 cmx5 cm CdTe detector positioned 150 cm from the target. With this nonmechanical method of beam scanning, patient images with low detected scatter are generated at up to 30 frame/s. SBDX data acquisition is tomosynthetic. The prototype simultaneously reconstructs 16 planes spaced throughout the cardiac volume using shift-and-add backprojection. Image frames analogous to conventional projection images are generated with a multiplane compositing algorithm. Single-plane versus multiplane reconstruction of contrast-filled coronary arteries is demonstrated with images of the porcine heart. Phantom and porcine imaging studies show multiplane reconstruction is practicable under clinically realistic levels of patient attenuation and cardiac motion. The modulation transfer function for an in-plane slit at mechanical isocenter measured 0.41-0.56 at 1 cycle/mm, depending on the detector element to image pixel interpolation technique. Modeling indicates that desired gains in spatial resolution are achievable by halving the detector element width. The x-ray exposure rate 15 cm below isocenter, without table or patient in the beam, measured 11.5 R/min at 120 kVp, 24.3 kWp and 3.42 R/min at 70 kVp, 14.2 kWp

  16. Comparative investigations of high resolution scanning systems for digitising X-ray films

    International Nuclear Information System (INIS)

    Wessel, H.; Rose, P.

    1992-01-01

    The visual or computer-aided evaluation of digitised X-ray films in non-destructive material testing requires highly sensitive scanning systems. They must be able to resolve differences in blackening and convert them into digital data without loss, if possible. Only in this way is the detection of the finest cracks in weld seams or contraction in areas of great sudden changes in blackening of cast parts guaranteed. In the context of this work, measurements were carried out which describe the reproduction properties of different scanning systems. After a short explanation of the different scanning systems, the results of the measurements are shown and evaluated. (orig.) [de

  17. Functional characterization of planar sensors with active edges using laser and X-ray beam scans

    International Nuclear Information System (INIS)

    Povoli, M.; Bagolini, A.; Boscardin, M.; Dalla Betta, G.-F.; Giacomini, G.; Hasi, J.; Oh, A.; Zorzi, N.

    2013-01-01

    We report on the functional characterization of planar sensors with active edges fabricated at Fondazione Bruno Kessler (FBK), Trento, Italy. The measurements here reported were performed by means of laser and X-ray beam scans mainly focusing on the signal efficiency of the edge region of the devices. Results are very encouraging and show very good sensitivity up to few microns away from the device physical edge

  18. Functional characterization of planar sensors with active edges using laser and X-ray beam scans

    Energy Technology Data Exchange (ETDEWEB)

    Povoli, M., E-mail: povoli@disi.unitn.it [Dipartimento di Ingegneria e Scienza dell' Informazione, Università di Trento, Via Sommarive, 14, I-38123 Povo di Trento (Italy); INFN, Sezione di Padova (Gruppo Collegato di Trento),Via Sommarive, 14, I-38123 Povo di Trento (Italy); Bagolini, A.; Boscardin, M. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Via Sommarive, 18, I-38123 Povo di Trento (Italy); Dalla Betta, G.-F. [Dipartimento di Ingegneria e Scienza dell' Informazione, Università di Trento, Via Sommarive, 14, I-38123 Povo di Trento (Italy); INFN, Sezione di Padova (Gruppo Collegato di Trento),Via Sommarive, 14, I-38123 Povo di Trento (Italy); Giacomini, G. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Via Sommarive, 18, I-38123 Povo di Trento (Italy); Hasi, J. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025-7015 (United States); Oh, A. [The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Zorzi, N. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Via Sommarive, 18, I-38123 Povo di Trento (Italy)

    2013-08-01

    We report on the functional characterization of planar sensors with active edges fabricated at Fondazione Bruno Kessler (FBK), Trento, Italy. The measurements here reported were performed by means of laser and X-ray beam scans mainly focusing on the signal efficiency of the edge region of the devices. Results are very encouraging and show very good sensitivity up to few microns away from the device physical edge.

  19. Scanning three-dimensional x-ray diffraction microscopy using a high-energy microbeam

    International Nuclear Information System (INIS)

    Hayashi, Y.; Hirose, Y.; Seno, Y.

    2016-01-01

    A scanning three-dimensional X-ray diffraction (3DXRD) microscope apparatus with a high-energy microbeam was installed at the BL33XU Toyota beamline at SPring-8. The size of the 50 keV beam focused using Kirkpatrick-Baez mirrors was 1.3 μm wide and 1.6 μm high in full width at half maximum. The scanning 3DXRD method was tested for a cold-rolled carbon steel sheet sample. A three-dimensional orientation map with 37 "3 voxels was obtained.

  20. Scanning three-dimensional x-ray diffraction microscopy using a high-energy microbeam

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Y., E-mail: y-hayashi@mosk.tytlabs.co.jp; Hirose, Y.; Seno, Y. [Toyota Central R& D Toyota Central R& D Labs., Inc., 41-1 Nagakute Aichi 480-1192 Japan (Japan)

    2016-07-27

    A scanning three-dimensional X-ray diffraction (3DXRD) microscope apparatus with a high-energy microbeam was installed at the BL33XU Toyota beamline at SPring-8. The size of the 50 keV beam focused using Kirkpatrick-Baez mirrors was 1.3 μm wide and 1.6 μm high in full width at half maximum. The scanning 3DXRD method was tested for a cold-rolled carbon steel sheet sample. A three-dimensional orientation map with 37 {sup 3} voxels was obtained.

  1. Slow scan sit detector for x-ray diffraction studies using synchrotron radiation

    International Nuclear Information System (INIS)

    Milch, J.R.

    1978-01-01

    A TV-type x-ray detector using a SIT vidicon has been used for biological diffraction studies at the EMBL outstation at DESY, Hamburg, Germany. The detector converts the two-dimensional diffraction pattern to a charge pattern on the vidicon target, which is read out in the slow-scan mode. This detector has high DOE, no count-rate limit, and is simple and inexpensive to construct. Radiation from the storage ring DORIS was used to study the structure of live muscle at various phases of contraction. Typically the count-rate on the detector was 10 6 x-rays/sec and a total exposure of a few seconds was needed to record the weak diffraction from muscle. This compares with usual exposure times of several hours using a rotating anode generator and film

  2. Design of scanning motion control system for high-energy X-ray industrial CT

    International Nuclear Information System (INIS)

    Duan Liming

    2008-01-01

    A scanning motion control system was developed for the high-energy X-ray industrial computerized tomography (CT). The system consists of an industrial control computer, a counter card, a control card, servo drivers, servo motors, working platforms, gratings and control software. Based on windows driver model(WDM) mode, the composition of the driver pro- gram for the system was studied. Took the motor control card as an example, the method to develop the driver program was researched, and the intercourse process between the device driver program and the user-program was analyzed. The real-time control of the system was implemented using the WDM driver. The real-time performance and reliability of the system can satisfy the requirement of high-energy X-ray industrial CT. (authors)

  3. Instrumentation for in situ flow electrochemical Scanning Transmission X-ray Microscopy (STXM)

    Science.gov (United States)

    Prabu, Vinod; Obst, Martin; Hosseinkhannazer, Hooman; Reynolds, Matthew; Rosendahl, Scott; Wang, Jian; Hitchcock, Adam P.

    2018-06-01

    We report the design and performance of a 3-electrode device for real time in situ scanning transmission X-ray microscopy studies of electrochemical processes under both static (sealed, non-flow) conditions and with a continuous flow of electrolytes. The device was made using a combination of silicon microfabrication and 3D printing technologies. The performance is illustrated by results of a study of copper deposition and stripping at a gold working electrode. X-ray absorption spectromicroscopy at the Cu 2p edge was used to follow the evolution as a function of potential and time of the spatial distributions of Cu(0) and Cu(i) species electro-deposited from an aqueous solution of copper sulphate. The results are interpreted in terms of competing mechanisms for the reduction of Cu(ii).

  4. Time resolved X-ray micro-diffraction measurements of the dynamic local layer response to electric field in antiferroelectric liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Yumiko; Iida, Atuso E-mail: atsuo.iida@kek.jp; Takanishi, Yoichi; Ogasawara, Toyokazu; Takezoe, Hideo

    2001-07-21

    The time-resolved synchrotron X-ray microbeam diffraction experiment has been carried out to reveal the local layer response to the electric field in the antiferroelectric liquid crystal. The X-ray microbeam of a few {mu}m spatial resolution was obtained with Kirkpatrick-Baez optics. The time-resolved small angle diffraction experiment was performed with a time resolution ranging from 10 {mu}s to a few ms. The reversible local layer change between the horizontal chevron and the quasi-bookshelf structure was confirmed by the triangular wave form. The transient layer response for the step form electric field was observed. The layer response closely related with an electric field induced antiferroelectric to ferroelectric phase transition.

  5. Time resolved X-ray micro-diffraction measurements of the dynamic local layer response to electric field in antiferroelectric liquid crystals

    International Nuclear Information System (INIS)

    Takahashi, Yumiko; Iida, Atuso; Takanishi, Yoichi; Ogasawara, Toyokazu; Takezoe, Hideo

    2001-01-01

    The time-resolved synchrotron X-ray microbeam diffraction experiment has been carried out to reveal the local layer response to the electric field in the antiferroelectric liquid crystal. The X-ray microbeam of a few μm spatial resolution was obtained with Kirkpatrick-Baez optics. The time-resolved small angle diffraction experiment was performed with a time resolution ranging from 10 μs to a few ms. The reversible local layer change between the horizontal chevron and the quasi-bookshelf structure was confirmed by the triangular wave form. The transient layer response for the step form electric field was observed. The layer response closely related with an electric field induced antiferroelectric to ferroelectric phase transition

  6. X-ray analysis of a single aerosol particle with combination of scanning electron microscope and synchrotron radiation X-ray microscope

    International Nuclear Information System (INIS)

    Toyoda, Masatoshi; Kaibuchi, Kazuki; Nagasono, Mitsuru; Terada, Yasuko; Tanabe, Teruo; Hayakawa, Shinjiro; Kawai, Jun

    2004-01-01

    We developed a microscope by a combination of synchrotron radiation X-ray fluorescence (SR-XRF) microscope and scanning electron microscope (SEM) with an energy dispersive X-ray spectrometer (EDX). SR-XRF is appropriate to detect trace and micro amount of elements and sensitive to heavy elements in an analyte but it cannot observe the real time image. SEM-EDX can observe the secondary electron image of a single particle in real time and is appropriate to detect lighter elements. This combination microscope can ensure the identification of the XRF spectrum to the SEM image without transferring the sample. For aerosol analysis, it is important to analyze each particle. The present method makes feasible to analyze not only the average elemental composition as the total particles but also elemental composition of each particle, which is dependent on the particle shape and size. The microscope was applied to an individual aerosol particle study. The X-ray spectra were different among the particles, but also different between SR-XRF and SEM-EDX for the same particle, due to the difference in fluorescence yields between X-ray excitation and electron excitation

  7. Microscale reconstruction of biogeochemical substrates using multimode X-ray tomography and scanning electron microscopy

    Science.gov (United States)

    Miller, M.; Miller, E.; Liu, J.; Lund, R. M.; McKinley, J. P.

    2012-12-01

    X-ray computed tomography (CT), scanning electron microscopy (SEM), electron microprobe analysis (EMP), and computational image analysis are mature technologies used in many disciplines. Cross-discipline combination of these imaging and image-analysis technologies is the focus of this research, which uses laboratory and light-source resources in an iterative approach. The objective is to produce images across length scales, taking advantage of instrumentation that is optimized for each scale, and to unify them into a single compositional reconstruction. Initially, CT images will be collected using both x-ray absorption and differential phase contrast modes. The imaged sample will then be physically sectioned and the exposed surfaces imaged and characterized via SEM/EMP. The voxel slice corresponding to the physical sample surface will be isolated computationally, and the volumetric data will be combined with two-dimensional SEM images along CT image planes. This registration step will take advantage of the similarity between the X-ray absorption (CT) and backscattered electron (SEM) coefficients (both proportional to average atomic number in the interrogated volume) as well as the images' mutual information. Elemental and solid-phase distributions on the exposed surfaces, co-registered with SEM images, will be mapped using EMP. The solid-phase distribution will be propagated into three-dimensional space using computational methods relying on the estimation of compositional distributions derived from the CT data. If necessary, solid-phase and pore-space boundaries will be resolved using X-ray differential phase contrast tomography, x-ray fluorescence tomography, and absorption-edge microtomography at a light-source facility. Computational methods will be developed to register and model images collected over varying scales and data types. Image resolution, physically and dynamically, is qualitatively different for the electron microscopy and CT methodologies. Routine

  8. Precision scan-imaging for paperboard quality inspection utilizing X-ray fluorescence

    Science.gov (United States)

    Norlin, B.; Reza, S.; Fröjdh, C.; Nordin, T.

    2018-01-01

    Paperboard is typically made up of a core of cellulose fibers [C6H10O5] and a coating layer of [CaCO3]. The uniformity of these layers is a critical parameter for the printing quality. Current quality control methods include chemistry based visual inspection methods as well as X-ray based methods to measure the coating thickness. In this work we combine the X-ray fluorescence signals from the Ca atoms (3.7 keV) in the coating and from a Cu target (8.0 keV) placed behind the paper to simultaneously measure both the coating and the fibers. Cu was selected as the target material since its fluorescence signal is well separated from the Ca signal while its fluorescence's still are absorbed sufficiently in the paper. A laboratory scale setup is built using stepper motors, a silicon drift detector based spectrometer and a collimated X-ray beam. The spectroscopic image is retrieved by scanning the paperboard surface and registering the fluorescence signals from Ca and Cu. The exposure time for this type of setups can be significantly improved by implementing spectroscopic imaging sensors. The material contents in the layers can then be retrieved from the absolute and relative intensities of these two signals.

  9. Dose distribution calculation for in-vivo X-ray fluorescence scanning

    International Nuclear Information System (INIS)

    Figueroa, R. G.; Lozano, E.; Valente, M.

    2013-01-01

    In-vivo X-ray fluorescence constitutes a useful and accurate technique, worldwide established for constituent elementary distribution assessment. Actually, concentration distributions of arbitrary user-selected elements can be achieved along sample surface with the aim of identifying and simultaneously quantifying every constituent element. The method is based on the use of a collimated X-ray beam reaching the sample. However, one common drawback for considering the application of this technique for routine clinical examinations was the lack of information about associated dose delivery. This work presents a complete study of the dose distribution resulting from an in-vivo X-ray fluorescence scanning for quantifying biohazard materials on human hands. Absorbed dose has been estimated by means of dosimetric models specifically developed to this aim. In addition, complete dose distributions have been obtained by means of full radiation transport calculations in based on stochastic Monte Carlo techniques. A dedicated subroutine has been developed using the Penelope 2008 main code also integrated with dedicated programs -Mat Lab supported- for 3 dimensional dose distribution visualization. The obtained results show very good agreement between approximate analytical models and full descriptions by means of Monte Carlo simulations. (Author)

  10. An environmental sample chamber for reliable scanning transmission x-ray microscopy measurements under water vapor

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Stephen T.; Nigge, Pascal; Prakash, Shruti; Gilles, Mary K. [Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Laskin, Alexander; Wang, Bingbing [William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Tyliszczak, Tolek [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Leone, Stephen R. [Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Chemistry and Department of Physics, University of California, Berkeley, California 94720 (United States)

    2013-07-15

    We have designed, fabricated, and tested a compact gas-phase reactor for performing in situ soft x-ray scanning transmission x-ray microscopy (STXM) measurements. The reactor mounts directly to the existing sample holder used in the majority of STXM instruments around the world and installs with minimal instrument reconfiguration. The reactor accommodates many gas atmospheres, but was designed specifically to address the needs of measurements under water vapor. An on-board sensor measures the relative humidity and temperature inside the reactor, minimizing uncertainties associated with measuring these quantities outside the instrument. The reactor reduces x-ray absorption from the process gas by over 85% compared to analogous experiments with the entire STXM instrument filled with process gas. Reduced absorption by the process gas allows data collection at full instrumental resolution, minimizes radiation dose to the sample, and results in much more stable imaging conditions. The reactor is in use at the STXM instruments at beamlines 11.0.2 and 5.3.2.2 at the Advanced Light Source.

  11. Confocal soft X-ray scanning transmission microscopy: setup, alignment procedure and limitations

    International Nuclear Information System (INIS)

    Späth, Andreas; Raabe, Jörg; Fink, Rainer H.

    2015-01-01

    A conventional STXM setup has been upgraded with a second micro zone plate and aligned to confocal geometry. Two confocal geometries (in-line and off-axis) have been evaluated and a discussion on prospects and limitations is presented. Zone-plate-based scanning transmission soft X-ray microspectroscopy (STXM) is a well established technique for high-contrast imaging of sufficiently transparent specimens (e.g. ultrathin biological tissues, polymer materials, archaeometric specimens or magnetic thin films) with spatial resolutions in the regime of 20 nm and high spectroscopic or chemical sensitivity. However, due to the relatively large depth of focus of zone plates, the resolution of STXM along the optical axis so far stays unambiguously behind for thicker X-ray transparent specimens. This challenge can be addressed by the implementation of a second zone plate in the detection pathway of the beam, resulting in a confocal arrangement. Within this paper a first proof-of-principle study for a confocal STXM (cSTXM) and an elaborate alignment procedure in transmission and fluorescence geometry are presented. Based on first confocal soft X-ray micrographs of well known specimens, the advantage and limitation of cSTXM as well as further development potentials for future applications are discussed

  12. Confocal soft X-ray scanning transmission microscopy: setup, alignment procedure and limitations

    Energy Technology Data Exchange (ETDEWEB)

    Späth, Andreas [Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Egerlandstraße 3, 91058 Erlangen (Germany); Raabe, Jörg [Paul Scherrer Institut, 5232 Villigen (Switzerland); Fink, Rainer H., E-mail: rainer.fink@fau.de [Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Egerlandstraße 3, 91058 Erlangen (Germany); Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Egerlandstraße 3, 91058 Erlangen (Germany)

    2015-01-01

    A conventional STXM setup has been upgraded with a second micro zone plate and aligned to confocal geometry. Two confocal geometries (in-line and off-axis) have been evaluated and a discussion on prospects and limitations is presented. Zone-plate-based scanning transmission soft X-ray microspectroscopy (STXM) is a well established technique for high-contrast imaging of sufficiently transparent specimens (e.g. ultrathin biological tissues, polymer materials, archaeometric specimens or magnetic thin films) with spatial resolutions in the regime of 20 nm and high spectroscopic or chemical sensitivity. However, due to the relatively large depth of focus of zone plates, the resolution of STXM along the optical axis so far stays unambiguously behind for thicker X-ray transparent specimens. This challenge can be addressed by the implementation of a second zone plate in the detection pathway of the beam, resulting in a confocal arrangement. Within this paper a first proof-of-principle study for a confocal STXM (cSTXM) and an elaborate alignment procedure in transmission and fluorescence geometry are presented. Based on first confocal soft X-ray micrographs of well known specimens, the advantage and limitation of cSTXM as well as further development potentials for future applications are discussed.

  13. Monte Carlo Simulation of Complete X-Ray Spectra for Use in Scanning Electron Microscopy Analysis

    International Nuclear Information System (INIS)

    Roet, David; Van Espen, Piet

    2003-01-01

    Full Text: The interactions of keV electrons and photons with matter can be simulated accurately with the aid of the Monte Carlo (MC) technique. In scanning electron microscopy x-ray analysis (SEM-EDX) such simulations can be used to perform quantitative analysis using a Reverse Monte Carlo method even if the samples have irregular geometry. Alternatively the MC technique can generate spectra of standards for use in quantization with partial least squares regression. The feasibility of these alternatives to the more classical ZAF or phi-rho-Z quantification methods has been proven already. In order to be applicable for these purposes the MC-code needs to generate accurately only the characteristic K and L x-ray lines, but also the Bremsstrahlung continuum, i.e. the complete x-ray spectrum need to be simulated. Currently two types of MC simulation codes are available. Programs like Electron Flight Simulator and CASINO simulate characteristic x-rays due to electron interaction in a fast and efficient way but lack provision for the simulation of the continuum. On the other hand, programs like EGS4, MCNP4 and PENELOPE, originally developed for high energy (MeV- GeV) applications, are more complete but difficult to use and still slow, even on todays fastest computers. We therefore started the development of a dedicated MC simulation code for use in quantitative SEM-EDX work. The selection of the most appropriate cross section for the different interactions will be discussed and the results obtained will be compared with those obtained with existing MC programs. Examples of the application of MC simulations for quantitative analysis of samples with various composition will be given

  14. Is scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDS) quantitative?

    Science.gov (United States)

    Newbury, Dale E; Ritchie, Nicholas W M

    2013-01-01

    Scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDS) is a widely applied elemental microanalysis method capable of identifying and quantifying all elements in the periodic table except H, He, and Li. By following the "k-ratio" (unknown/standard) measurement protocol development for electron-excited wavelength dispersive spectrometry (WDS), SEM/EDS can achieve accuracy and precision equivalent to WDS and at substantially lower electron dose, even when severe X-ray peak overlaps occur, provided sufficient counts are recorded. Achieving this level of performance is now much more practical with the advent of the high-throughput silicon drift detector energy dispersive X-ray spectrometer (SDD-EDS). However, three measurement issues continue to diminish the impact of SEM/EDS: (1) In the qualitative analysis (i.e., element identification) that must precede quantitative analysis, at least some current and many legacy software systems are vulnerable to occasional misidentification of major constituent peaks, with the frequency of misidentifications rising significantly for minor and trace constituents. (2) The use of standardless analysis, which is subject to much broader systematic errors, leads to quantitative results that, while useful, do not have sufficient accuracy to solve critical problems, e.g. determining the formula of a compound. (3) EDS spectrometers have such a large volume of acceptance that apparently credible spectra can be obtained from specimens with complex topography that introduce uncontrolled geometric factors that modify X-ray generation and propagation, resulting in very large systematic errors, often a factor of ten or more. © Wiley Periodicals, Inc.

  15. A new flexible monochromator setup for quick scanning x-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Stoetzel, J.; Luetzenkirchen-Hecht, D.; Frahm, R. [Fachbereich C, Physik, Bergische Universitaet Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany)

    2010-07-15

    A new monochromator setup for quick scanning x-ray absorption spectroscopy in the subsecond time regime is presented. Novel driving mechanics allow changing the energy range of the acquired spectra by remote control during data acquisition for the first time, thus dramatically increasing the flexibility and convenience of this method. Completely new experiments are feasible due to the fact that time resolution, edge energy, and energy range of the acquired spectra can be changed continuously within seconds without breaking the vacuum of the monochromator vessel and even without interrupting the measurements. The advanced mechanics are explained in detail and the performance is characterized with x-ray absorption spectra of pure metal foils. The energy scale was determined by a fast and accurate angular encoder system measuring the Bragg angle of the monochromator crystal with subarcsecond resolution. The Bragg angle range covered by the oscillating crystal can currently be changed from 0 deg. to 3.0 deg. within 20 s, while the mechanics are capable to move with frequencies of up to ca. 35 Hz, leading to ca. 14 ms/spectrum time resolution. A new software package allows performing programmed scan sequences, which enable the user to measure stepwise with alternating parameters in predefined time segments. Thus, e.g., switching between edges scanned with the same energy range is possible within one in situ experiment, while also the time resolution can be varied simultaneously. This progress makes the new system extremely user friendly and efficient to use for time resolved x-ray absorption spectroscopy at synchrotron radiation beamlines.

  16. Epitaxial clusters studied by synchrotron x-ray diffraction and scanning tunneling microscopy

    DEFF Research Database (Denmark)

    Nielsen, M.; Feidenhans'l, R.; Rasmussen, F.B.

    1998-01-01

    Nanoscale clusters are often formed during heteroepitaxial crystal growth. Misfit between the lattice parameter of the substrate and the adsorbate stimulates the formation of regular clusters with a characteristic size. The well-known "hut-clusters" formed during the growth of Ge on Si(001) are a...... similar to the "hut clusters". We demonstrate that X-ray diffraction in combination with scanning tunneling microscopy can be used to determine the fundamental properties of such clusters. (C) 1998 Elsevier Science B.V. All rights reserved....

  17. High-reliability, 4. pi. -scan, leakage-x-ray dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, T; Iida, H; Yoshida, T; Sugimoto, H [Tokyo Shibaura Electric Co. Ltd., Kawasaki, Kanagawa (Japan). Tamagawa Works

    1978-04-01

    A world-wide movement is growing for the protection of living bodies against leakage radiations. In Japan, detailed regulations have been established for the enforcement of the law in regard to this problem. The substances of the measurement provided in the regulations are extremely diversified, much affecting the reliability and the economic efficiency of the equipment. Now a new 4..pi..-scan X-ray dosimeter with high reliability has been developed and proved to effect qualitative improvement of measurement as well as elevation of productivity.

  18. Phase zone plates as condensers for the Gottingen scanning x-ray microscope

    International Nuclear Information System (INIS)

    Hilkenbach, R.; Thieme

    1987-01-01

    With the Gottingen scanning x-ray microscope the synchrotron source is image by x-ray optics into a monochromatic small scan spot, through which a specimen can be moved. Hereby one part of the optics, the condenser zone plate and a pinhole, works as a linear monochromator in the wavelength region of λ = 2.36 nm to λ = 4.5 nm. The efficiency of such a condenser should be as high as possible to minimize the loss of radiation. Phase zone plates have a four times higher efficiency in the first order of diffraction than amplitude zone plates. Two condenser zone plates, KZP4 and KZP5, have been constructed so that they are well suited for the use in the scanning microscope. These zone plates have been made holographically by superposing two wavefronts of laser light in an specific designed optical arrangement and exposing the zone plate structure into a photoresist. Using reactive ion etching (RIE) the structure has been transformed into Germanium. The thickness of the zone plate has been chosen to show at λ = 2.36 nm a phase effect. The efficiency has been measured at the Berliner Elektronenspeircherring Gesellschaft fur Synchrotronstrahlung m.b.H., Berlin

  19. Application of X-ray scanning and tomography to evaluate the filtercake removal efficiency

    International Nuclear Information System (INIS)

    Lopes, R.T.; Oliveira, L.F. de; Miranda, C.R.; Leite, J.C.

    2004-01-01

    The removal of the filtercake formed during the drilling operation is essential for a successful cementing job. Nowadays, the use of synthetic base fluids brings the necessity of proceeding new evaluations of the efficiency of the washes in removing the filtercake and to guarantee the wettability inversion of the formation from oil to waterwet. It is presented here the application of X-ray tomographic scanning to evaluate the filtercake removal efficiency performed by different washes. This technique uses a natural core with a perforation, where a filtercake is formed by circulating a drilling fluid. The wash is circulated through this perforation and the filtercake removal efficiency is measured precisely by computer tomography scanning. This procedure enables the filtercake removal visualization during the wash circulation through the formation and from the data obtained from the X-ray tomography it is possible to select the most appropriate wash for a given drilling fluid, as well as to predict the necessary contact time between the wash and the formation to achieve an appropriate filtercake removal

  20. Multispecies Biofilms Transform Selenium Oxyanions into Elemental Selenium Particles: Studies Using Combined Synchrotron X-ray Fluorescence Imaging and Scanning Transmission X-ray Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Soo In; George, Graham N.; Lawrence, John R.; Kaminskyj, Susan G. W.; Dynes, James J.; Lai, Barry; Pickering, Ingrid J.

    2016-10-04

    Selenium (Se) is an element of growing environmental concern, because low aqueous concentrations can lead to biomagnification through the aquatic food web. Biofilms, naturally occurring microbial consortia, play numerous important roles in the environment, especially in biogeochemical cycling of toxic elements in aquatic systems. The complexity of naturally forming multispecies biofilms presents challenges for characterization because conventional microscopic techniques require chemical and physical modifications of the sample. Here, multispecies biofilms biotransforming selenium oxyanions were characterized using X-ray fluorescence imaging (XFI) and scanning transmission X-ray microscopy (STXM). These complementary synchrotron techniques required minimal sample preparation and were applied correlatively to the same biofilm areas. Sub-micrometer XFI showed distributions of Se and endogenous metals, while Se K-edge X-ray absorption spectroscopy indicated the presence of elemental Se (Se0). Nanoscale carbon K-edge STXM revealed the distributions of microbial cells, extracellular polymeric substances (EPS), and lipids using the protein, saccharide, and lipid signatures, respectively, together with highly localized Se0 using the Se LIII edge. Transmission electron microscopy showed the electron-dense particle diameter to be 50–700 nm, suggesting Se0 nanoparticles. The intimate association of Se0 particles with protein and polysaccharide biofilm components has implications for the bioavailability of selenium in the environment.

  1. Mapping metals in Parkinson's and normal brain using rapid-scanning x-ray fluorescence

    International Nuclear Information System (INIS)

    Popescu, Bogdan F Gh; George, Martin J; McCrea, Richard P E; Devon, Richard M; George, Graham N; Hanson, Akela D; Chapman, L Dean; Nichol, Helen; Bergmann, Uwe; Garachtchenko, Alex V; Luening, Katharina; Kelly, Michael E; Harder, Sheri M; Pickering, Ingrid J

    2009-01-01

    Rapid-scanning x-ray fluorescence (RS-XRF) is a synchrotron technology that maps multiple metals in tissues by employing unique hardware and software to increase scanning speed. RS-XRF was validated by mapping and quantifying iron, zinc and copper in brain slices from Parkinson's disease (PD) and unaffected subjects. Regions and structures in the brain were readily identified by their metal complement and each metal had a unique distribution. Many zinc-rich brain regions were low in iron and vice versa. The location and amount of iron in brain regions known to be affected in PD agreed with analyses using other methods. Sample preparation is simple and standard formalin-fixed autopsy slices are suitable. RS-XRF can simultaneously and non-destructively map and quantify multiple metals and holds great promise to reveal metal pathologies associated with PD and other neurodegenerative diseases as well as diseases of metal metabolism.

  2. Research on defect detection from incomplete scanning of X-ray

    International Nuclear Information System (INIS)

    Zhang Shunli; Zhang Dinghua; Cheng Yunyong; Li Xiaolin

    2011-01-01

    Computed tomography (CT) is an advanced means of non-destructive testing, which has been widely used in medical and industrial fields. Aiming at the non-destructive testing problem of large industrial components, It presents a defect detection method from incomplete scanning of X-ray. Firstly, a set of incomplete scanning projection data before using the component has been obtained, then reconstruct them by algebraic re- construction technique (ART), and take the reconstructed images as the norm images. Then, the incomplete projection data of different times during the use of the component has been obtained, and reconstruct them by ART algorithm. Finally, It makes digital subtraction operation by the reconstructed images and the norm images, the defection can be detected clearly and intuitively from the subtraction image. Experimental result shows the proposed method is effective. (authors)

  3. Development of a scanning transmission x-ray microscope for the beamline P04 at PETRA III DESY

    International Nuclear Information System (INIS)

    Andrianov, Konstantin; Ewald, Johannes; Nisius, Thomas; Wilhein, Thomas; Lühl, Lars; Malzer, Wolfgang; Kanngießer, Birgit

    2016-01-01

    We present a scanning transmission x-ray microscope (STXM) built on top of our existing modular platform for high resolution imaging experiments. This platform consists of up to three separate vacuum chambers and custom designed piezo stages. These piezo stages are able to move precisely in x-, y- and z-direction, this makes it possible to adjust the components for different imaging modes. During recent experiments the endstation was operated mainly as a transmission x-ray microscope (TXM) [1, 2

  4. First result from x-ray pulse height analyzer with radial scanning system for LHD

    Science.gov (United States)

    Muto, Sadatsugu; Morita, Shigeru

    2001-01-01

    Radial profiles of x-ray spectrum have been successfully obtained using an assembly of x-ray pulse height analyzer in large helical device. The observed profile is obtained from plasma heated by ICRF and neutral beam injection (NBI). As a detector, Si(Li) semiconductor is used with a histogramming memory and analog-to-digital converter (ADC) basically working at high counting rate up to 500 kcps. In routine operation a count rate of 62 kcps has been normally obtained with energy resolution better than 400 eV at iron Kα line. The assembly is equipped with four detectors and a radial scanning system which modulates sight lines of the detectors in major radius direction. The profiles of electron temperature and the intensity of metallic impurities have been obtained with a spatial resolution of a few centimeters. Measured electron temperature is in good agreement with that from Thomson scattering. The system is applicable to steady-state discharge. The design philosophy of the assembly and recent results on the performance tests are also presented.

  5. A comparative study of radionuclide bone scan, X-ray and MRI on early femoral head necrosis in adults

    International Nuclear Information System (INIS)

    Liu Jihua; Ji Qinglian; Xu Aide; Zuo Shuyao; Gao Zhenhua

    2004-01-01

    Objective: To summarize radionuclide bone scan signs in the early femoral head necrosis (FHN) in adults, to compare them with MRI and X-ray findings and to discuss the pathological basis of radionuclide bone scan findings from the view of MRI. Methods: Forty cases (63 hips) with early FHN in adult patients proved by follow-up studies or pathology were analyzed. All patients underwent radionuclide bone scan, MRI and X-ray examination within a period of less than 7 d separately. Results: 1) Radionuclide bone scan manifestations of the early FHN corresponding to different MRI signs included: focally decreased uptake of radioisotope, focally increased uptake, atypical or typical doughnut sign, mildly increased uptake in the superior part of femoral head with band-like region of obviously increased uptake in inferior part of femoral head or femoral neck, and diffused increase of uptake in the whole head. 2) In 40 cases (63 hips), there was statistical difference in diagnosis early FHN in adults not only between radionuclide bone scan and X-ray but also between MRI and X-ray in sensitivity (P 0.05). Conclusions: 1) The atypical or typical doughnut sign and mildly increased uptake in the superior part of femoral head with band-like region of obviously increased uptake in inferior part of femoral head or neck are specific signs for diagnosing early FHN. 2) For sensitivity, radionuclide bone scan and MRI are equally superior to X-ray. (authors)

  6. Nanoscopium: a Scanning Hard X-ray Nanoprobe Beamline at Synchrotron Soleil

    Science.gov (United States)

    Somogyi, A.; Polack, F.; Moreno, T.

    2010-06-01

    Nanoscopium is the single scanning hard X-ray nano-probe beamline planned at SOLEIL. This ˜155 m long beamline will fully exploit the high brilliance and coherence characteristics of the X-ray beam both for diffraction limited focusing and for contrast formation. It will offer the most advanced imaging techniques in multimodal mode and will be a research tool for a wide user community working in the fields of earth-, environmental-, and life-sciences. The different μ-μnano-probe techniques offered by the beamline will permit elemental mapping at trace (ppm) levels (scanning XRF), speciation mapping (XANES), phase gradient mapping (scanning differential phase contrast), and density-contrast based imaging of internal structures (coherent diffraction imaging) in the 30 nm to 1 μm spatial resolution range, also in "in situ conditions". Nanoscopium will cover the 5-20 keV energy range. The stability of the nanobeam will be ensured by horizontally reflecting beamline optics (a sagitally and a tangentially pre-focusing mirror, horizontally reflecting monochromators) in front of the overfilled secondary source. Trade-off between high energy resolution (ΔE/E˜10-4) and high flux (1011 ph/s with ΔE/E˜10-2) will be achieved by two interchangeable monochromators (a double crystal and a double multilayer one). KB mirror and FZP lenses will be used as focusing devices. The beamline is in the design and construction phase. It is foreseen to be open for users at the beginning of 2013.

  7. Characterization of the local layer structure of a broad wall in a surface stabilized ferroelectric liquid crystal using synchrotron X-ray micro-diffraction

    International Nuclear Information System (INIS)

    Iida, Atsuo; Noma, Takashi; Miyata, Hirokatsu.

    1996-01-01

    The local layer structure of the broad wall of a zig-zag defect in a thin-surface stabilized ferroelectric liquid crystal cell was characterized using a synchrotron X-ray microbeam of less than 5 μm spatial resolution. By using a rocking curve measurement at the broad wall, multiple or broad peaks were observed between a pair of peaks due to a chevron structure. These new peaks are clear evidence of a modified pseudo-bookshelf structure at the wall. For 1.5 μm thick cells, a bookshelf layer is relatively flat, but is accompanied by small areas of inclined layer connecting the bookshelf and the chevron structures. For 10 μm thick cells, the pseudo-bookshelf structure bends or undulates both perpendicular and parallel to the rubbing direction. No appreciable change in the layer spacing was observed in the modified pseudo-bookshelf structure. The temperature dependence of the broad wall layer structure was also measured. (author)

  8. Characterization of the local layer structure of a broad wall in a surface stabilized ferroelectric liquid crystal using synchrotron X-ray micro-diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Iida, Atsuo [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan); Noma, Takashi; Miyata, Hirokatsu

    1996-01-01

    The local layer structure of the broad wall of a zig-zag defect in a thin-surface stabilized ferroelectric liquid crystal cell was characterized using a synchrotron X-ray microbeam of less than 5 {mu}m spatial resolution. By using a rocking curve measurement at the broad wall, multiple or broad peaks were observed between a pair of peaks due to a chevron structure. These new peaks are clear evidence of a modified pseudo-bookshelf structure at the wall. For 1.5 {mu}m thick cells, a bookshelf layer is relatively flat, but is accompanied by small areas of inclined layer connecting the bookshelf and the chevron structures. For 10 {mu}m thick cells, the pseudo-bookshelf structure bends or undulates both perpendicular and parallel to the rubbing direction. No appreciable change in the layer spacing was observed in the modified pseudo-bookshelf structure. The temperature dependence of the broad wall layer structure was also measured. (author)

  9. Development of Scanning-Imaging X-Ray Microscope for Quantitative Three-Dimensional Phase Contrast Microimaging

    International Nuclear Information System (INIS)

    Takeuchi, Akihisa; Suzuki, Yoshio; Uesugi, Kentaro

    2013-01-01

    A novel x-ray microscope system has been developed for the purpose of quantitative and sensitive three-dimensional (3D) phase-contrast x-ray microimaging. The optical system is a hybrid that consists of a scanning microscope optics with a one-dimensional (1D) focusing (line-focusing) device and an imaging microscope optics with a 1D objective. These two optics are orthogonally arranged regarding their common optical axis. Each is used for forming each dimension of two-dimensional (2D) image. The same data acquisition process as that of the scanning microscope system enables quantitative and sensitive x-ray imaging such as phase contrast and absorption contrast. Because a 2D image is measured with only 1D translation scan, much shorter measurement time than that of conventional scanning optics has been realized. By combining a computed tomography (CT) technique, some 3D CT application examples are demonstrated

  10. The Characterisation of Settled Dust by Scanning Electron Microscopy and Energy Dispersive X-ray Analysis

    International Nuclear Information System (INIS)

    Shilton, Vaughan; Giess, Paul; Mitchell, David; Williams, Craig

    2002-01-01

    Settled dust has been collected inside the main foyers oft hree University buildings in Wolverhampton City Centre,U.K. Two of the three buildings are located in a street canyon used almost exclusively by heavy duty diesel vehicles. The dust was collected on adhesive carbonspectro-tabs to be in a form suitable for analysis by scanning electron microscope and energy dispersive X-ray analysis. Using these analytical techniques, individual particle analysis was undertaken for morphology and chemistry. Seasonal variations and variations due to location were observed in both the morphological measurements and chemical analysis. Many of the differences appear attributable to the influence of road traffic, in particular, the heavy duty diesel vehicles, travelling along the street canyon

  11. Validity of dual X-ray absorptiometry scanning for determination of body composition in IDDM patients

    DEFF Research Database (Denmark)

    Rosenfalck, A M; Almdal, T; Gotfredsen, A

    1995-01-01

    Data on body composition in patients with insulin-dependent diabetes mellitus (IDDM) are scarce. Dual X-ray absorptiometry (DXA) scanning has proved useful for this purpose in other groups of patients. We tested the validity of the DXA scanner for the determination of fat-free mass (FFM) and fat......, 5 males and 8 females, aged 34.2 years +/- SD 10.4, and 11 IDDM patients, 5 males, 6 females, aged 28.1 years +/- 7.3, diabetes duration 4.2 +/- 2.9 (1.0-9.9), were examined. The patients had no long-term diabetic complications and they had normal ophthalmoscopy and urine albumin excretion...

  12. Validity of dual X-ray absorptiometry scanning for determination of body composition in IDDM patients

    DEFF Research Database (Denmark)

    Rosenfalck, A M; Almdal, Thomas Peter; Gotfredsen, A

    1995-01-01

    Data on body composition in patients with insulin-dependent diabetes mellitus (IDDM) are scarce. Dual X-ray absorptiometry (DXA) scanning has proved useful for this purpose in other groups of patients. We tested the validity of the DXA scanner for the determination of fat-free mass (FFM) and fat....... The agreement between FFM estimated by DXA and the other methods, expressed as mean difference +/- 2 SD was; for DXA vs. TBK, 0.09 +/- 6.26 and 0.50 +/- 5.26 kg for controls and IDDM patients respectively; DXA vs. TBW, -2.07 +/- 2.56 and -1.07 +/- 4.58 kg; DXA vs. Ucrea, -2.62 +/- 8.02 and 2.00 +/- 10.0 kg; DXA...

  13. Prediction of intramuscular fat levels in Texel lamb loins using X-ray computed tomography scanning.

    Science.gov (United States)

    Clelland, N; Bunger, L; McLean, K A; Conington, J; Maltin, C; Knott, S; Lambe, N R

    2014-10-01

    For the consumer, tenderness, juiciness and flavour are often described as the most important factors for meat eating quality, all of which have a close association with intramuscular fat (IMF). X-ray computed tomography (CT) can measure fat, muscle and bone volumes and weights, in vivo in sheep and CT predictions of carcass composition have been used in UK sheep breeding programmes over the last few decades. This study aimed to determine the most accurate combination of CT variables to predict IMF percentage of M. longissimus lumborum in Texel lambs. As expected, predicted carcass fat alone accounted for a moderate amount of the variation (R(2)=0.51) in IMF. Prediction accuracies were significantly improved (Adj R(2)>0.65) using information on fat and muscle densities measured from three CT reference scans, showing that CT can provide an accurate prediction of IMF in the loin of purebred Texel sheep. Copyright © 2014. Published by Elsevier Ltd.

  14. Clinical applications of scanning electron microscopy and X-ray microanalysis in dermatology

    Energy Technology Data Exchange (ETDEWEB)

    Forslind, B.

    1984-01-01

    Scanning electron microscopy is frequently applied to dermatological problems, as is evident from a review of the recent literature. In this paper, preparation methods and new techniques allowing experimental studies on the integumentary system are emphasized. Quantitative analysis in the electron microscope by use of energy-dispersive X-ray microanalysis (EDX) has become an important accessory technique. EDX can, for instance, be used to study problems involving physiological changes induced in skin by agents causing contact reactions. Recently, it has been shown that treatment with DNCB, chromate and nickel causes changes in elemental distribution in guinea-pig skin. In addition, elemental uptake in the integumentary system and in pathological inclusions in skin can be analyzed.

  15. Clinical applications of scanning electron microscopy and X-ray microanalysis in dermatology

    International Nuclear Information System (INIS)

    Forslind, B.

    1984-01-01

    Scanning electron microscopy is frequently applied to dermatological problems, as is evident from a review of the recent literature. In this paper, preparation methods and new techniques allowing experimental studies on the integumentary system are emphasized. Quantitative analysis in the electron microscope by use of energy-dispersive X-ray microanalysis (EDX) has become an important accessory technique. EDX can, for instance, be used to study problems involving physiological changes induced in skin by agents causing contact reactions. Recently, it has been shown that treatment with DNCB, chromate and nickel causes changes in elemental distribution in guinea-pig skin. In addition, elemental uptake in the integumentary system and in pathological inclusions in skin can be analyzed

  16. Linear scans of hair strands for trace elements by proton induced x-ray emission

    International Nuclear Information System (INIS)

    Jolly, R.K.; Pehrson, G.R.; Gupta, S.K.; Buckle, D.C.; Aceto, H. Jr.

    1974-01-01

    Hair strands obtained from school children in the 10 to 12 year age group were analyzed for trace element concentration as a function of distance from the root by proton-induced x-ray emission to study the history of exposure of the donors to toxic trace metals. These samples were collected from the vicinity of a copper smelter where high levels of As, Cd, Sb, and Pb have been noted. Scans show a continual build-up of Pb as a function of distance from the root, while As shows a reproducible and distinct maximum approximately 10 cm from the root. The concentration of Zn was found to be constant in all samples (without exception) to within the uncertainties of our measurements

  17. Design and performance of a compact scanning transmission X-ray microscope at the Photon Factory

    Energy Technology Data Exchange (ETDEWEB)

    Takeichi, Y., E-mail: yasuo.takeichi@kek.jp; Mase, K.; Ono, K. [Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba 305-0801 (Japan); Department of Materials Structure Science, SOKENDAI (The Graduate University for Advanced Studies), 1-1 Oho, Tsukuba 305-0801 (Japan); Inami, N. [Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba 305-0801 (Japan); Suga, H. [Department of Earth and Planetary Systems Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526 (Japan); Miyamoto, C. [Department of Earth and Planetary Systems Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku 113-0033 (Japan); Ueno, T. [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Takahashi, Y. [Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba 305-0801 (Japan); Department of Earth and Planetary Systems Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526 (Japan); Department of Earth and Planetary Systems Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku 113-0033 (Japan)

    2016-01-15

    We present a new compact instrument designed for scanning transmission X-ray microscopy. It has piezo-driven linear stages, making it small and light. Optical components from the virtual source point to the detector are located on a single optical table, resulting in a portable instrument that can be operated at a general-purpose spectroscopy beamline without requiring any major reconstruction. Careful consideration has been given to solving the vibration problem common to high-resolution microscopy, so as not to affect the spatial resolution determined by the Fresnel zone plate. Results on bacteriogenic iron oxides, single particle aerosols, and rare-earth permanent magnets are presented as examples of its performance under diverse applications.

  18. Scanning electron microscope/energy dispersive x ray analysis of impact residues on LDEF tray clamps

    Science.gov (United States)

    Bernhard, Ronald P.; Durin, Christian; Zolensky, Michael E.

    1992-01-01

    To better understand the nature of particulates in low-Earth orbit (LEO), and their effects on spacecraft hardware, we are analyzing residues found in impacts on the Long Duration Exposure Facility (LDEF) tray clamps. LDEF experiment trays were held in place by 6 to 8 chromic-anodized aluminum (6061-T6) clamps that were fastened to the spacecraft frame using three stainless steel hex bolts. Each clamp exposed an area of approximately 58 sq cm (4.8 cm x 12.7 cm x .45 cm, minus the bolt coverage). Some 337 out of 774 LDEF tray clamps were archived at JSC and are available through the Meteoroid & Debris Special Investigation Group (M&D SIG). Optical scanning of clamps, starting with Bay/Row A01 and working toward H25, is being conducted at JSC to locate and document impacts as small as 40 microns. These impacts are then inspected by Scanning Electron Microscopy/Energy Dispersive X-ray Analysis (SEM/EDXA) to select those features which contain appreciable impact residue material. Based upon the composition of projectile remnants, and using criteria developed at JSC, we have made a preliminary discrimination between micrometeoroid and space debris residue-containing impact features. Presently, 13 impacts containing significant amounts of unmelted and semi-melted micrometeoritic residues were forwarded to Centre National d'Etudes Spatiales (CNES) in France. At the CNES facilities, the upgraded impacts were analyzed using a JEOL T330A SEM equipped with a NORAN Instruments, Voyager X-ray Analyzer. All residues were quantitatively characterized by composition (including oxygen and carbon) to help understand interplanetary dust as possibly being derived from comets and asteroids.

  19. PINPIN a-Si:H based structures for X-ray image detection using the laser scanning technique

    Science.gov (United States)

    Fernandes, M.; Vygranenko, Y.; Vieira, M.

    2015-05-01

    Conventional film based X-ray imaging systems are being replaced by their digital equivalents. Different approaches are being followed by considering direct or indirect conversion, with the later technique dominating. The typical, indirect conversion, X-ray panel detector uses a phosphor for X-ray conversion coupled to a large area array of amorphous silicon based optical sensors and a couple of switching thin film transistors (TFT). The pixel information can then be readout by switching the correspondent line and column transistors, routing the signal to an external amplifier. In this work we follow an alternative approach, where the electrical switching performed by the TFT is replaced by optical scanning using a low power laser beam and a sensing/switching PINPIN structure, thus resulting in a simpler device. The optically active device is a PINPIN array, sharing both front and back electrical contacts, deposited over a glass substrate. During X-ray exposure, each sensing side photodiode collects photons generated by the scintillator screen (560 nm), charging its internal capacitance. Subsequently a laser beam (445 nm) scans the switching diodes (back side) retrieving the stored charge in a sequential way, reconstructing the image. In this paper we present recent work on the optoelectronic characterization of the PINPIN structure to be incorporated in the X-ray image sensor. The results from the optoelectronic characterization of the device and the dependence on scanning beam parameters are presented and discussed. Preliminary results of line scans are also presented.

  20. Approach to treatment for obstructive jaundice of PTCD guided by combining ultrasound with X-ray scan

    International Nuclear Information System (INIS)

    Tang Huanliang; Cao Haoqian; Fei Jianguo

    2008-01-01

    Objective: To investigate the technical and clinical value of PTCD in patients with obstructive jaundice by the guiding of ultrasound combined with X-ray scan. Methods PTCD was performed in 58 patients with obstructive jaundice, with 47 patients malignant diseases and 11 patients benign diseases, guided by combining ultrasound and X-ray scan. 51 patients were punctured to right bile ducts and 7 cases were left bile ducts. Cholangiography was routinely used. Results: Technical success was obtained in all patients. No bleeding and biliary peritonitis were found after procedures. The bilirubin was reduced by 75.4ummol/L one week after operation. Conclusion: The technique of PTCD guided by combining ultrasound with X-ray scan was safe, simple, cost saving and less complications for obstructive jaundice. (authors)

  1. X-ray and scanning electron microscopic investigation of porous silicon and silicon epitaxial layers grown on porous silicon

    International Nuclear Information System (INIS)

    Wierzchowski, W.; Pawlowska, M.; Nossarzewska-Orlowska, E.; Brzozowski, A.; Wieteska, K.; Graeff, W.

    1998-01-01

    The 1 to 5 μm thick layers of porous silicon and epitaxial layers grown on porous silicon were studied by means of X-ray diffraction methods, realised with a wide use of synchrotron source and scanning microscopy. The results of x-ray investigation pointed the difference of lateral periodicity between the porous layer and the substrate. It was also found that the deposition of epitaxial layer considerably reduced the coherence of porous fragments. A number of interface phenomena was also observed in section and plane wave topographs. The scanning electron microscopic investigation of cleavage faces enabled direct evaluation of porous layer thickness and revealed some details of their morphology. The scanning observation of etched surfaces of epitaxial layers deposited on porous silicon revealed dislocations and other defects not reasonable in the X-ray topographs. (author)

  2. X-rays computed tomographic scans of lower limb and trunk muscles in facioscapulohumeral muscular dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Horikawa, Hirosei; Mano, Yukio; Takayanagi, Tetsuya [Nara Medical Univ., Kashihara (Japan); Takahashi, Keiichi; Nishio, Hisahide

    1992-10-01

    X-rays computed tomographic (CT) scans of muscles of the lower limbs and the trunk in 14 patients with facioscapulohumeral muscular dystrophy (FSH) were studied. The CT scans showed that the affected muscles were decreased in density and size. The laterality of muscular involvement was sometimes observed. The muscular lesions in the lower limbs showed proximal distribution. In the thigh, the hamstrings were affected first, the adductor muscles second, and then the muscular involvement progressed to the quadriceps femoris muscle. In the lower leg, the gastrocnemius and soleus muscles were relatively spared as compared with the tibialis anterior muscle. In the lumbar girdle, the abdominal muscles were involved first, the gluteal muscles second, the back muscles third, and the psoas major muscle were relatively spared. The muscular weakness of this distribution exacerbated lumbar lordosis. The neck muscles were less affected than those of the lumbar girdle. The CT scans in FSH demonstrated the characteristic pattern of muscular involvement, which differed from the inherited muscular diseases such as Duchenne muscular dystrophy, myotonic dystrophy, and others. (author).

  3. X-rays computed tomographic scans of lower limb and trunk muscles in facioscapulohumeral muscular dystrophy

    International Nuclear Information System (INIS)

    Horikawa, Hirosei; Mano, Yukio; Takayanagi, Tetsuya; Takahashi, Keiichi; Nishio, Hisahide.

    1992-01-01

    X-rays computed tomographic (CT) scans of muscles of the lower limbs and the trunk in 14 patients with facioscapulohumeral muscular dystrophy (FSH) were studied. The CT scans showed that the affected muscles were decreased in density and size. The laterality of muscular involvement was sometimes observed. The muscular lesions in the lower limbs showed proximal distribution. In the thigh, the hamstrings were affected first, the adductor muscles second, and then the muscular involvement progressed to the quadriceps femoris muscle. In the lower leg, the gastrocnemius and soleus muscles were relatively spared as compared with the tibialis anterior muscle. In the lumbar girdle, the abdominal muscles were involved first, the gluteal muscles second, the back muscles third, and the psoas major muscle were relatively spared. The muscular weakness of this distribution exacerbated lumbar lordosis. The neck muscles were less affected than those of the lumbar girdle. The CT scans in FSH demonstrated the characteristic pattern of muscular involvement, which differed from the inherited muscular diseases such as Duchenne muscular dystrophy, myotonic dystrophy, and others. (author)

  4. Detector, collimator and real-time reconstructor for a new scanning-beam digital x-ray (SBDX) prototype.

    Science.gov (United States)

    Speidel, Michael A; Tomkowiak, Michael T; Raval, Amish N; Dunkerley, David A P; Slagowski, Jordan M; Kahn, Paul; Ku, Jamie; Funk, Tobias

    Scanning-beam digital x-ray (SBDX) is an inverse geometry fluoroscopy system for low dose cardiac imaging. The use of a narrow scanned x-ray beam in SBDX reduces detected x-ray scatter and improves dose efficiency, however the tight beam collimation also limits the maximum achievable x-ray fluence. To increase the fluence available for imaging, we have constructed a new SBDX prototype with a wider x-ray beam, larger-area detector, and new real-time image reconstructor. Imaging is performed with a scanning source that generates 40,328 narrow overlapping projections from 71 × 71 focal spot positions for every 1/15 s scan period. A high speed 2-mm thick CdTe photon counting detector was constructed with 320×160 elements and 10.6 cm × 5.3 cm area (full readout every 1.28 μs), providing an 86% increase in area over the previous SBDX prototype. A matching multihole collimator was fabricated from layers of tungsten, brass, and lead, and a multi-GPU reconstructor was assembled to reconstruct the stream of captured detector images into full field-of-view images in real time. Thirty-two tomosynthetic planes spaced by 5 mm plus a multiplane composite image are produced for each scan frame. Noise equivalent quanta on the new SBDX prototype measured 63%-71% higher than the previous prototype. X-ray scatter fraction was 3.9-7.8% when imaging 23.3-32.6 cm acrylic phantoms, versus 2.3-4.2% with the previous prototype. Coronary angiographic imaging at 15 frame/s was successfully performed on the new SBDX prototype, with live display of either a multiplane composite or single plane image.

  5. PINPIN a-Si:H based structures for X-ray image detection using the laser scanning technique

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, M., E-mail: mfernandes@isel.pt [Electronics Telecommunication and Computer Dept., ISEL, R.Conselheiro Emídio Navarro, 1959-007 Lisboa (Portugal); CTS-UNINOVA Quinta da Torre, Monte da Caparica, 2829-516 Caparica (Portugal); Vygranenko, Y.; Vieira, M. [Electronics Telecommunication and Computer Dept., ISEL, R.Conselheiro Emídio Navarro, 1959-007 Lisboa (Portugal); CTS-UNINOVA Quinta da Torre, Monte da Caparica, 2829-516 Caparica (Portugal)

    2015-05-01

    Highlights: • We present novel structure for X-ray image sensor based on the laser scanned technique. • Amorphous silicon based tandem structure characterization results are presented and discussed. • Results from preliminary tests of the imaging application are promising for very large area image sensing. - Abstract: Conventional film based X-ray imaging systems are being replaced by their digital equivalents. Different approaches are being followed by considering direct or indirect conversion, with the later technique dominating. The typical, indirect conversion, X-ray panel detector uses a phosphor for X-ray conversion coupled to a large area array of amorphous silicon based optical sensors and a couple of switching thin film transistors (TFT). The pixel information can then be readout by switching the correspondent line and column transistors, routing the signal to an external amplifier. In this work we follow an alternative approach, where the electrical switching performed by the TFT is replaced by optical scanning using a low power laser beam and a sensing/switching PINPIN structure, thus resulting in a simpler device. The optically active device is a PINPIN array, sharing both front and back electrical contacts, deposited over a glass substrate. During X-ray exposure, each sensing side photodiode collects photons generated by the scintillator screen (560 nm), charging its internal capacitance. Subsequently a laser beam (445 nm) scans the switching diodes (back side) retrieving the stored charge in a sequential way, reconstructing the image. In this paper we present recent work on the optoelectronic characterization of the PINPIN structure to be incorporated in the X-ray image sensor. The results from the optoelectronic characterization of the device and the dependence on scanning beam parameters are presented and discussed. Preliminary results of line scans are also presented.

  6. X-ray CT Scanning Reveals Long-Term Copper Pollution Effects on Functional Soil Structure

    DEFF Research Database (Denmark)

    Naveed, Muhammad; Møldrup, Per; Homstrup, Martin

    Soil structure plays the main role in the ability of the soil to fulfill essential soil functions such as the root growth, rate of water infiltration and retention, transport of gaseous and chemicals/pollutants through the soil. Soil structure is a dynamic soil property and affected by various...... factors such as soil type, land use, and soil contamination. In this study, we quantified the soil structure using X-ray CT scanning and revealed the effect of a long history of Copper (Cu) pollution on it. A fallow field at Hygum Denmark provides this opportunity as it had a long history of Copper...... sulphate contamination in a gradient with Cu content varies from 21 mg kg-1 to 3837 mg kg-1. Total 20 intact soil columns (diameter of 10 cm and height of 8 cm) were sampled at five locations along the Cu-gradient from a depth of 5 to 15 cm below surface level. The soil columns were scanned at a voxel...

  7. Clinical applications of scanning electron microscopy and energy dispersive X-ray analysis in dermatology--an up-date

    International Nuclear Information System (INIS)

    Forslind, B.

    1988-01-01

    Dermatological papers comprising scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis data published 1983 through 1986 in international journals are reviewed, as an update to our 1984 paper on Clinical applications of scanning electron microscopy and X-ray microanalysis in dermatology. The present paper not only deals with a review of recent publications in this area but also presents the application of microincineration to hair and cryosectioned freeze-dried skin specimens. Examples of the increased contrast obtained in hair cross sections are presented and a discussion on the feasibility of microincineration at analysis of hair and skin cross sections is given. Particle probe analysis (EDX: energy dispersive X-ray analysis and PMP: proton microprobe analysis) as applied to hair and skin samples are presented with stress put on the proton probe analysis. The complementarity of EDX and PMP is demonstrated and future applications are suggested. 75 references

  8. Advanced Nanoscale Characterization of Cement Based Materials Using X-Ray Synchrotron Radiation: A Review

    KAUST Repository

    Chae, Sejung R.

    2013-05-22

    We report various synchrotron radiation laboratory based techniques used to characterize cement based materials in nanometer scale. High resolution X-ray transmission imaging combined with a rotational axis allows for rendering of samples in three dimensions revealing volumetric details. Scanning transmission X-ray microscope combines high spatial resolution imaging with high spectral resolution of the incident beam to reveal X-ray absorption near edge structure variations in the material nanostructure. Microdiffraction scans the surface of a sample to map its high order reflection or crystallographic variations with a micron-sized incident beam. High pressure X-ray diffraction measures compressibility of pure phase materials. Unique results of studies using the above tools are discussed-a study of pores, connectivity, and morphology of a 2,000 year old concrete using nanotomography; detection of localized and varying silicate chain depolymerization in Al-substituted tobermorite, and quantification of monosulfate distribution in tricalcium aluminate hydration using scanning transmission X-ray microscopy; detection and mapping of hydration products in high volume fly ash paste using microdiffraction; and determination of mechanical properties of various AFm phases using high pressure X-ray diffraction. © 2013 The Author(s).

  9. Scanning electron-microscopic and X-ray-microanalytic observation of diesel-emission particles associated with mutagenicity

    International Nuclear Information System (INIS)

    Nakashima, K.; Yoshitsugu, K.; Tokiwa, H.; Fukuoka Environmental Research Center

    1983-01-01

    The particles formed by diesel combustion, which may contain various mutagenic chemicals like polycyclic aromatic hydrocarbons (PAH), are analyzed in their morphology by scanning electron microscopy; their sulfur content is detected by X-ray microanalysis, and mutagenicity is tested with a Salmonella typhimurium bioassay. The authors find a close correlation between sulfur content and mutagenicity of PAH. (Auth.)

  10. Determination of lead in clay enameled by X-ray fluorescence technique in Total reflection and by Scanning Electron Microscopy

    International Nuclear Information System (INIS)

    Zarazua O, G.; Carapia M, L.

    2000-01-01

    This work has the objective of determining lead free in the glazed commercial stewing pans using the X-ray fluorescence technique in Total reflection (FRX) and the observation and semiquantitative determination of lead by Analytical Scanning Electron Microscopy (ASEM). (Author)

  11. Validity of dual X-ray absorptiometry scanning for determination of body composition in IDDM patients

    DEFF Research Database (Denmark)

    Rosenfalck, A M; Almdal, Thomas Peter; Gotfredsen, A

    1995-01-01

    Data on body composition in patients with insulin-dependent diabetes mellitus (IDDM) are scarce. Dual X-ray absorptiometry (DXA) scanning has proved useful for this purpose in other groups of patients. We tested the validity of the DXA scanner for the determination of fat-free mass (FFM) and fat...... mass in IDDM patients and control subjects, as compared to other reference methods, i.e. total body potassium by 40K whole body counting (TBK), total body water by tritiated water (TBW), bioelectrical impedance analysis (BIA) and 24-h urinary creatinine excretion (Ucrea). A total of 13 healthy controls....... The agreement between FFM estimated by DXA and the other methods, expressed as mean difference +/- 2 SD was; for DXA vs. TBK, 0.09 +/- 6.26 and 0.50 +/- 5.26 kg for controls and IDDM patients respectively; DXA vs. TBW, -2.07 +/- 2.56 and -1.07 +/- 4.58 kg; DXA vs. Ucrea, -2.62 +/- 8.02 and 2.00 +/- 10.0 kg; DXA...

  12. Scanning transmission X-ray microscopy as a speciation tool for natural organic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Rothe, J.; Plaschke, M.; Denecke, M.A. [Inst. fuer Nukleare Entsorgung, Forschungszentrum Karlsruhe, Karlsruhe (Germany)

    2004-07-01

    A molecular-scale understanding of the basic processes affecting stability and transport behavior of actinide cations, complexes or hydroxide ('eigencolloid') species is prerequisite to performance assessment of nuclear waste disposal in geological formations. Depending on their functional group chemistry and macromolecular structure, naturally occurring organic molecules (NOM) possess a high tendency towards actinide complexation reactions. However, the compositional and structural heterogeneity of NOM and mixed aggregates with inorganic phases makes speciation by spectromicroscopy techniques highly desirable. The applicability of Scanning Transmission X-ray Microscopy (STXM) as a speciation tool for the characterization of NOM is demonstrated for a multifunctional natural organic acid (chlorogenic acid), Eu(III)-loaded humic acid (HA) aggregates and Eu(III)-oxo/hydroxide/HA hetero-aggregates. It is shown that in situ probing of HA functional group chemistry down to a spatial resolution < 100 nm (i.e., less than femto-liter sampled volumes) is feasible, at the same time revealing morphological details on NOM aggregates and NOM/mineral associations. (orig.)

  13. Forensic applications of scanning electron microscopy/energy dispersive X-ray analyser in Hong Kong.

    Science.gov (United States)

    Wong, Y S

    1982-01-01

    Scanning Electron Microscopy - Energy Dispersive X-Ray Analysis (SEM/EDX) has been applied in casework for more than a year in the Forensic Division, Government Laboratory of Hong Kong. The types of samples being analysed are summarised and three cases of scientific interest are described. The first case applies SEM/EDX to characterize microscopic gold particles recovered from clothing of suspects involved in goldsmith robberies. Both elemental and morphological results obtained were used as supporting evidence. The second case describes the three types of beaded ends on fibres found in a single cloth sample. These beaded ends are different in shape and surface features and can be used as an additional parameter in fibre identification. The final case shows the application of vacuum evaporation of graphite on a document sample to reveal the area of paper which has been skillfully mechanically erased. Both the image intensity and the composition of the ink are used to differentiate between original and altered characters on the document.

  14. Scanning of Adsorption Hysteresis In Situ with Small Angle X-Ray Scattering.

    Directory of Open Access Journals (Sweden)

    Athanasios Ch Mitropoulos

    Full Text Available Everett's theorem-6 of the domain theory was examined by conducting adsorption in situ with small angle x-ray scattering (SAXS supplemented by the contrast matching technique. The study focuses on the spectrum differences of a point to which the system arrives from different scanning paths. It is noted that according to this theorem at a common point the system has similar macroscopic properties. Furthermore it was examined the memory string of the system. We concluded that opposite to theorem-6: a at a common point the system can reach in a finite (not an infinite number of ways, b a correction for the thickness of the adsorbed film prior to capillary condensation is necessary, and c the scattering curves although at high-Q values coincide, at low-Q values are different indicating different microscopic states. That is, at a common point the system holds different metastable states sustained by hysteresis effects. These metastable states are the ones which highlight the way of a system back to a return point memory (RPM. Entering the hysteresis loop from different RPMs different histories are implanted to the paths toward the common point. Although in general the memory points refer to relaxation phenomena, they also constitute a characteristic feature of capillary condensation. Analogies of the no-passing rule and the adiabaticity assumption in the frame of adsorption hysteresis are discussed.

  15. Production of muscovite-feldspathic glass composite: scanning electron microscopy and X-ray diffraction analysis

    International Nuclear Information System (INIS)

    Costa, F.P.F.; Ogasawara, T.; Santos, S.F.

    2009-01-01

    The objective of this work was to find the sintering conditions for the feldspathic glass + muscovite mixture to produce a dense composite block for manufacturing dental prosthesis by using CAD-CAM. Each 20g of the glass-frit had : 15.55g of Armil-feldspar; 0.53g of Al 2 O 3 ; 1.56g of Na 2 CO 3 ; 0.5g of borax; 1.74g of K 2 CO 3 ; 0.13g of CeO 2 . Frit's powder finer than 350 Tyler mesh was mixed with 0 wt%, 10 wt%, 20 wt% and 100 wt% of muscovite pressed cylinders (5600 pounds force) 16mm in diameter and sintered under vacuum Vacumat (VITA) furnace at 850 deg C, 900 deg C, 950 deg C, 1000 deg C, 1050 deg C, 1100 deg C and 1150 deg C. X-ray diffraction analysis and scanning electron microscopy were carried out. The necessary temperature for high densification depended on the composition of the mixture: 850 deg C (for pure frit); 1050 deg C (for 10 wt% mica) and 1150 deg C (for 20 wt% mica); pure mica degraded during sintering. (author)

  16. Scanning of Adsorption Hysteresis In Situ with Small Angle X-Ray Scattering

    Science.gov (United States)

    Mitropoulos, Athanasios Ch.; Favvas, Evangelos P.; Stefanopoulos, Konstantinos L.; Vansant, Etienne F.

    2016-01-01

    Everett’s theorem-6 of the domain theory was examined by conducting adsorption in situ with small angle x-ray scattering (SAXS) supplemented by the contrast matching technique. The study focuses on the spectrum differences of a point to which the system arrives from different scanning paths. It is noted that according to this theorem at a common point the system has similar macroscopic properties. Furthermore it was examined the memory string of the system. We concluded that opposite to theorem-6: a) at a common point the system can reach in a finite (not an infinite) number of ways, b) a correction for the thickness of the adsorbed film prior to capillary condensation is necessary, and c) the scattering curves although at high-Q values coincide, at low-Q values are different indicating different microscopic states. That is, at a common point the system holds different metastable states sustained by hysteresis effects. These metastable states are the ones which highlight the way of a system back to a return point memory (RPM). Entering the hysteresis loop from different RPMs different histories are implanted to the paths toward the common point. Although in general the memory points refer to relaxation phenomena, they also constitute a characteristic feature of capillary condensation. Analogies of the no-passing rule and the adiabaticity assumption in the frame of adsorption hysteresis are discussed. PMID:27741263

  17. Can X-ray spectrum imaging replace backscattered electrons for compositional contrast in the scanning electron microscope?

    Science.gov (United States)

    Newbury, Dale E; Ritchie, Nicholas W M

    2011-01-01

    The high throughput of the silicon drift detector energy dispersive X-ray spectrometer (SDD-EDS) enables X-ray spectrum imaging (XSI) in the scanning electron microscope to be performed in frame times of 10-100 s, the typical time needed to record a high-quality backscattered electron (BSE) image. These short-duration XSIs can reveal all elements, except H, He, and Li, present as major constituents, defined as 0.1 mass fraction (10 wt%) or higher, as well as minor constituents in the range 0.01-0.1 mass fraction, depending on the particular composition and possible interferences. Although BSEs have a greater abundance by a factor of 100 compared with characteristic X-rays, the strong compositional contrast in element-specific X-ray maps enables XSI mapping to compete with BSE imaging to reveal compositional features. Differences in the fraction of the interaction volume sampled by the BSE and X-ray signals lead to more delocalization of the X-ray signal at abrupt compositional boundaries, resulting in poorer spatial resolution. Improved resolution in X-ray elemental maps occurs for the case of a small feature composed of intermediate to high atomic number elements embedded in a matrix of lower atomic number elements. XSI imaging strongly complements BSE imaging, and the SDD-EDS technology enables an efficient combined BSE-XSI measurement strategy that maximizes the compositional information. If 10 s or more are available for the measurement of an area of interest, the analyst should always record the combined BSE-XSI information to gain the advantages of both measures of compositional contrast. Copyright © 2011 Wiley Periodicals, Inc.

  18. High-resolution dichroic imaging of magnetic flux distributions in superconductors with scanning x-ray microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ruoss, Stephen; Stahl, Claudia; Weigand, Markus; Schuetz, Gisela [Max-Planck-Institut fuer Intelligente Systeme, Stuttgart (Germany); Albrecht, Joachim [Research Institute for Innovative Surfaces, FINO, Aalen University (Germany)

    2015-07-01

    The penetration of magnetic flux into the high-temperature superconductor YBCO has been observed using a new high-resolution technique based on X-ray magnetic circular dichroism (XMCD). Superconductors coated with thin soft magnetic layers of CoFeB are observed in a scanning x-ray microscope providing cooling of the sample down to 83 K under the influence of external magnetic fields. Resulting electrical currents create an inhomogeneous magnetic field distribution above the superconductor which leads to a local reorientation of the ferromagnetic layer. X-ray absorption measurements with circular polarized radiation allows the analysis of the magnetic flux distribution in the superconductor via the ferromagnetic layer. In this work we present first images taken at 83K with high spatial resolution in the nanoscale.

  19. Reading a radiologist's mind: monitoring rising and falling interest levels while scanning chest x-rays

    Science.gov (United States)

    Alzubaidi, Mohammad; Patel, Ameet; Panchanathan, Sethuraman; Black, John A., Jr.

    2010-02-01

    Radiological images constitute a special class of images that are captured (or computed) specifically for the purpose of diagnosing patients. However, because these are not "natural" images, radiologists must be trained to interpret them through a process called "perceptual learning". However, because perceptual learning is implicit, experienced radiologists may sometimes find it difficult to explicitly (i.e. verbally) train less experienced colleagues. As a result, current methods of training can take years before a new radiologist is fully competent to independently interpret medical images. We hypothesize that eye tracking technology (coupled with multimedia technology) can be used to accelerate the process of perceptual training, through a Hebbian learning process. This would be accomplished by providing a radiologist-in-training with real-time feedback as he/she is fixating on important regions of an image. Of course this requires that the training system have information about what regions of an image are important - information that could presumably be solicited from experienced radiologists. However, our previous work has suggested that experienced radiologists are not always aware of those regions of an image that attract their attention, but are not clinically significant - information that is very important to a radiologist in training. This paper discusses a study in which local entropy computations were done on scan path data, and were found to provide a quantitative measure of the moment-by-moment interest level of radiologists as they scanned chest x-rays. The results also showed a striking contrast between the moment-by-moment deployment of attention between experienced radiologists and radiologists in training.

  20. Refinement of clinical X-ray computed tomography (CT) scans containing metal implants.

    Science.gov (United States)

    Treece, Graham

    2017-03-01

    X-ray computed tomography (CT) data contains artefacts from many sources, with sufficient prominence to affect diagnostic utility when metal is present in the scans. These artefacts can be reduced, usually by the removal and in-filling of any sinogram data which has been affected by metal, and several such techniques have been proposed. Most of them are prone to introducing new artefacts into the CT data or may take a long time to correct the data. It is the purpose of this paper to introduce a new technique which is fast, yet can effectively remove most artefacts without introducing significant new ones. The new metal artefact reduction technique (RMAR) consists of an iterative refinement of the CT data by alternately forward- and back-projecting the part of the reconstruction near to metal. The forward-projection is corrected by making use of a prior derived from the reconstructed data which is independently estimated for each projection angle, and smoothed using a newly developed Bitonic filter. The new technique is compared with previously published (LI, NMAR, MDT) and commercial (O-MAR, IMAR) alternatives, quantitatively on phantom data, and qualitatively on a selection of clinical scans, mostly of the hip. The phantom data is from two recently published studies, enabling direct comparison with previous results. The results show an increased reduction of artefacts on the four phantom data sets tested. On two of the phantom data sets, RMAR is significantly better (pCT data, RMAR can correct each image in 3-8s, which is more than one hundred times faster than MDT. The new technique is demonstrated to have performance at least as good as MDT, with both out-performing other approaches. However, it is much faster then the latter technique, and shows better preservation of data very close to metal. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Direct observation of X-ray induced atomic motion using scanning tunneling microscope combined with synchrotron radiation.

    Science.gov (United States)

    Saito, Akira; Tanaka, Takehiro; Takagi, Yasumasa; Hosokawa, Hiromasa; Notsu, Hiroshi; Ohzeki, Gozo; Tanaka, Yoshihito; Kohmura, Yoshiki; Akai-Kasaya, Megumi; Ishikawa, Tetsuya; Kuwahara, Yuji; Kikuta, Seishi; Aono, Masakazu

    2011-04-01

    X-ray induced atomic motion on a Ge(111)-c(2 x 8) clean surface at room temperature was directly observed with atomic resolution using a synchrotron radiation (SR)-based scanning tunneling microscope (STM) system under ultra high vacuum condition. The atomic motion was visualized as a tracking image by developing a method to merge the STM images before and after X-ray irradiation. Using the tracking image, the atomic mobility was found to be strongly affected by defects on the surface, but was not dependent on the incident X-ray energy, although it was clearly dependent on the photon density. The atomic motion can be attributed to surface diffusion, which might not be due to core-excitation accompanied with electronic transition, but a thermal effect by X-ray irradiation. The crystal surface structure was possible to break even at a lower photon density than the conventionally known barrier. These results can alert X-ray studies in the near future about sample damage during measurements, while suggesting the possibility of new applications. Also the obtained results show a new availability of the in-situ SR-STM system.

  2. Dual energy X-ray absorptiometry spine scans to determine abdominal fat in postmenopausal women.

    Science.gov (United States)

    Bea, J W; Blew, R M; Going, S B; Hsu, C-H; Lee, M C; Lee, V R; Caan, B J; Kwan, M L; Lohman, T G

    2016-11-01

    Body composition may be a better predictor of chronic disease risk than body mass index (BMI) in older populations. We sought to validate spine fat fraction (%) from dual energy X-ray absorptiometry (DXA) spine scans as a proxy for total abdominal fat. Total body DXA scan abdominal fat regions of interest (ROI) that have been previously validated by magnetic resonance imaging were assessed among healthy, postmenopausal women who also had antero-posterior spine scans (n = 103). ROIs were (1) lumbar vertebrae L2-L4 and (2) L2-Iliac Crest (L2-IC), manually selected by two independent raters, and (3) trunk, auto-selected by DXA software. Intra-class correlation coefficients evaluated intra and inter-rater reliability on a random subset (N = 25). Linear regression models, validated by bootstrapping, assessed the relationship between spine fat fraction (%) and total abdominal fat (%) ROIs. Mean age, BMI, and total body fat were 66.1 ± 4.8 y, 25.8 ± 3.8 kg/m 2 and 40.0 ± 6.6%, respectively. There were no significant differences within or between raters. Linear regression models adjusted for several participant and scan characteristics were equivalent to using only BMI and spine fat fraction. The model predicted L2-L4 (Adj. R 2 : 0.83) and L2-IC (Adj. R 2 : 0.84) abdominal fat (%) well; the adjusted R 2 for trunk fat (%) was 0.78. Model validation demonstrated minimal over-fitting (Adj. R 2 : 0.82, 0.83, and 0.77 for L2-L4, L2-IC, and trunk fat, respectively). The strong correlation between spine fat fraction and DXA abdominal fat measures make it suitable for further development in postmenopausal chronic disease risk prediction models. Am. J. Hum. Biol. 28:918-926, 2016. © 2016Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Instrumental fundamental parameters and selected applications of the microfocus X-ray fluorescence analysis at a scanning electron microscope

    International Nuclear Information System (INIS)

    Rackwitz, Vanessa

    2012-01-01

    For a decade X-ray sources have been commercially available for the microfocus X-ray fluorescence analysis (μ-XRF) and offer the possibility of extending the analytics at a scanning electron microscope (SEM) with an attached energy dispersive X-ray spectrometer (EDS). By using the μ-XRF it is possible to determine the content of chemical elements in a microscopic sample volume in a quantitative, reference-free and non-destructive way. For the reference-free quantification with the XRF the Sherman equation is referred to. This equation deduces the intensity of the detected X-ray intensity of a fluorescence peak to the content of the element in the sample by means of fundamental parameters. The instrumental fundamental parameters of the μ-XRF at a SEM/EDS system are the excitation spectrum consisting of X-ray tube spectrum and the transmission of the X-ray optics, the geometry and the spectrometer efficiency. Based on a calibrated instrumentation the objectives of this work are the development of procedures for the characterization of all instrumental fundamental parameters as well as the evaluation and reduction of their measurement uncertainties: The algorithms known from the literature for the calculation of X-ray tube spectrum are evaluated with regard to their deviations in the spectral distribution. Within this work a novel semi-empirical model is improved with respect to its uncertainties and enhanced in the low energy range as well as extended for another three anodes. The emitted X-ray tube spectrum is calculated from the detected one, which is measured at an especially developed setup for the direct measurement of X-ray tube spectra. This emitted X-ray tube spectrum is compared to the one calculated on base of the model of this work. A procedure for the determination of the most important parameters of an X-ray semi-lens in parallelizing mode is developed. The temporal stability of the transmission of X-ray full lenses, which have been in regular use at

  4. Depth profiling: RBS versus energy-dispersive X-ray imaging using scanning transmission electron microscopy

    International Nuclear Information System (INIS)

    Markwitz, Andreas

    2000-01-01

    Rutherford backscattering spectrometry (RBS) is known to be one of the techniques ideal for analysis of thin films. Elemental concentrations of matrix components and impurities can be investigated as well as depth profiles of almost each element of the periodic table. Best of all, RBS has both a high sensitivity and a high depth resolution, and is a non-destructive analysis technique that does not require specific sample preparation. Solid-state samples are mounted without preparation inside a high-vacuum analysis chamber. However, depth-related interpretation of elemental depth profiles requires the material density of the specimen and stopping power values to be taken into consideration. In many cases, these parameters can be estimated with sufficient precision. However, the assumed density can be inaccurate for depth scales in the nanometer range. For example, in the case of Ge nanoclusters in 500 nm thick SiO 2 layers, uncertainty is related to the actual position of a very thin Ge nanocluster band. Energy-dispersive X-ray emission (EDX) spectroscopy, using a high-resolution scanning transmission electron microscope (STEM) can assist in removing this uncertainty. By preparing a thin section of the specimen, EDX can be used to identify the position of the Ge nanocluster band very precisely, by correlating the Ge profile with the depth profiles of silicon and oxygen. However, extraction of the concentration profiles from STEM-EDX spectra is in general not straightforward. Therefore, a combination of the two very different analysis techniques is often the best and only successful way to extract high-resolution concentration profiles

  5. Bimetallic Catalysts and Platinum Surfaces Studied by X-ray Absorption Spectroscopy and Scanning Tunnelling Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Roenning, Magnus

    2000-07-01

    Bimetallic catalyst systems used in Fischer-Tropsch synthesis (Co-Re/Al{sub 2}O{sub 3}) and in the naphtha reforming process (Pt-Re/Al{sub 2}O{sub 3}) have been studied in situ using X-ray absorption spectroscopy (EXAFS). Additionally, the adsorption of ethene on platinum single crystal surfaces has been investigated using scanning tunnelling microscopy. In situ EXAFS at the cobalt K absorption edge have been carried out at 450{sup o}C on the hydrogen reduction of a rhenium-promoted Co{sub 3}O{sub 4}/Al{sub 2}O{sub 3} catalyst. Reductions carried out using 100% hydrogen and 5% hydrogen in helium gave different results. Whereas the reduction using dilute hydrogen leads to bulk-like metallic cobalt particles (hcp or fcc), reaction with pure hydrogen yields a more dispersed system with smaller cobalt metal particles (< 40 A). The results are rationalised in terms of different degrees of reoxidation of cobalt by the higher and lower concentrations of water generated during the reduction of cobalt oxide by 100% and 5% hydrogen, respectively. Additionally, in both reduction protocols a small fraction (3 -4 wt%) of the cobalt content is randomly dispersed over the tetrahedral vacancies of the alumina support. This dispersion occurs during reduction and not calcination. The cobalt in these sites cannot be reduced at 450 {sup o}C. The local environments about the rhenium atoms in Co-Re/{gamma}-A1{sub 2}O{sub 3} catalyst after different reduction periods have been studied by X-ray absorption spectroscopy. A bimetallic catalyst containing 4.6 wt% cobalt and 2 wt% rhenium has been compared with a corresponding monometallic sample with 2 wt% rhenium on the same support. The rhenium L{sub III} EXAFS analysis shows that bimetallic particles are formed after reduction at 450{sup o}C with the average particle size being 10-15 A. Rhenium is shown to be reduced at a later stage than cobalt. The fraction of cobalt atoms entering the support obstructs the access to the support for the

  6. Multi-scale characteristics of coal structure by x-ray computed tomography (x-ray CT), scanning electron microscope (SEM) and mercury intrusion porosimetry (MIP)

    Science.gov (United States)

    Cai, Ting-ting; Feng, Zeng-chao; Zhou, Dong

    2018-02-01

    It is of great benefit to study the material and structural heterogeneity of coal for better understanding the coalbed methane (CBM) storage and enrichment. In this paper, multi-scale X-ray computed tomography (CT), scanning electron microscope (SEM) and mercury intrusion porosimetry (MIP) at multi scales were conducted to thoroughly study the material distribution, heterogeneity, pore development, porosity and permeability of coal. It is suitable and reasonable to divide the testing samples into three structural categories by average density and heterogeneity degree, and the meso structure in the three categories accords with the morphology on SEM images. The pore size distribution and pore development of each subsample cannot be correspondingly related to their respective structure category or morphology due to different observation scales, while the macro pore size development, accumulated macro pore volume and macro pores porosity accord with the meso structure category and morphology information by CT and SEM at the same scale very well. Given the effect of macro pores on permeability and the contribution of micro pores to CBM storage capacity, reservoirs with developed micro pores and macro pores may be the most suitable coal reservoir for CBM exploitation.

  7. Cable control and take-up mechanisms and x-ray scanning apparatus incorporating such mechanisms

    International Nuclear Information System (INIS)

    Braden, A.B.; Lekan, J.J.; Taylor, S.K.; Richey, J.B.

    1977-01-01

    In this patent, an invention for cable control and take-up mechanisms for elongated, flexible cables is described. Such cables are used in X-ray scanner apparatus to provide power, electronic signals and fluids. A detailed design and description is given of the cable harness, control and take-up mechanism that would be used in conjunction with an X-ray scanner. As a result of this invention, the cables are prevented from becoming prematurely worn or entangled in the X-ray apparatus during the rotational and translational movements necessary in tomographic examinations. This invention is also applicable to other types of apparatus and environments where a number of different positions is required and where it is necessary to control the take-up of elongated, flexible, cable-like members. (U.K.)

  8. Determination of solid surface composition by the X-ray fluorescence method under total external reflection with angular scanning

    International Nuclear Information System (INIS)

    Krasnolutskij, V.P.

    2000-01-01

    Possibilities of determination of composition of surface layers by X-ray fluorescence analysis under total reflection of incident radiation with angular scanning of a target are investigated. For the case of the GaAs target it is shown that the sensibility of this method is sufficient for a control of element composition in layer of thickness 1 nm. A simple method for solution of inverse task of analysis of a two component medium is considered [ru

  9. Combined bilateral idiopathic necrosis of the humerus and femur heads: Bone scan, X-ray, CT, and MRI findings

    International Nuclear Information System (INIS)

    Piepenburg, R.; Hahn, K.; Doll, G.; Grimm, J.

    1992-01-01

    Untreated aseptic bone necroses close to a joint commonly leads to severe secondary arthrosis and destruction of the joint within a short time. Therefore, only a diagnosis in an early stage of the disease offers the chance of a successful joint- preserving therapy. In cases of clinically suspected aseptic bone necrosis but still negative or doubtful X-ray findings, bone scans or MRI are reliable methods of verifying the diagnosis. (orig./MG) [de

  10. Crystallization Kinetics of Nanocrystalline Materials by Combined X-ray Diffraction and Differential Scanning Calorimetry Experiments

    Czech Academy of Sciences Publication Activity Database

    Gil-González, E.; Perejón, A.; Sánchez-Jiménez, P. E.; Medina-Carrasco, S.; Kupčík, Jaroslav; Šubrt, Jan; Criado, J. M.; Pérez-Maqueda, L. A.

    2018-01-01

    Roč. 18, č. 5 (2018), s. 3107-3116 ISSN 1528-7483 Institutional support: RVO:61388980 Keywords : nanocrysalline alloys * combined X ray diffraction * crystallization kinetics Subject RIV: CA - Inorganic Chemistry OBOR OECD: Inorganic and nuclear chemistry Impact factor: 4.055, year: 2016

  11. Patient dose simulations for scanning-beam digital x-ray tomosynthesis of the lungs

    International Nuclear Information System (INIS)

    Nelson, Geoff; Fahrig, Rebecca; Yoon, Sungwon; Krishna, Ganesh; Wilfley, Brian

    2013-01-01

    location. When tumor SNR is held constant (i.e., x-ray fluence is scaled appropriately), SBDX gives 2–10 times less dose than fluoroscopy for the same conditions within the typical range of patient locations. The relative position of the patient (as a percent of SDD) has a much more significant impact on dose than either SDD or patient position. The patient position providing the minimum dose for a given tumor SNR and SDD is approximately the same as the position of maximum tomographic angle.Conclusions: SBDX offers a significant dose advantage over currently used C-arm fluoroscopy. The patient location with lowest dose coincides with the location of maximum tomographic angle. In order to provide adequate space for the patient and for the pulmonologists’ equipment, a SDD of 100 cm is recommended

  12. Patient dose simulations for scanning-beam digital x-ray tomosynthesis of the lungs

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Geoff; Fahrig, Rebecca [Department of Radiology, Stanford University, Stanford, California 94305 (United States); Yoon, Sungwon [Varian Medical Systems, Palo Alto, California 94304 (United States); Krishna, Ganesh [Palo Alto Medical Foundation, Mountain View, California 94040 (United States); Wilfley, Brian [Triple Ring Technologies, Inc., Newark, California 94560 (United States)

    2013-11-15

    location. When tumor SNR is held constant (i.e., x-ray fluence is scaled appropriately), SBDX gives 2–10 times less dose than fluoroscopy for the same conditions within the typical range of patient locations. The relative position of the patient (as a percent of SDD) has a much more significant impact on dose than either SDD or patient position. The patient position providing the minimum dose for a given tumor SNR and SDD is approximately the same as the position of maximum tomographic angle.Conclusions: SBDX offers a significant dose advantage over currently used C-arm fluoroscopy. The patient location with lowest dose coincides with the location of maximum tomographic angle. In order to provide adequate space for the patient and for the pulmonologists’ equipment, a SDD of 100 cm is recommended.

  13. Composition measurement in substitutionally disordered materials by atomic resolution energy dispersive X-ray spectroscopy in scanning transmission electron microscopy.

    Science.gov (United States)

    Chen, Z; Taplin, D J; Weyland, M; Allen, L J; Findlay, S D

    2017-05-01

    The increasing use of energy dispersive X-ray spectroscopy in atomic resolution scanning transmission electron microscopy invites the question of whether its success in precision composition determination at lower magnifications can be replicated in the atomic resolution regime. In this paper, we explore, through simulation, the prospects for composition measurement via the model system of Al x Ga 1-x As, discussing the approximations used in the modelling, the variability in the signal due to changes in configuration at constant composition, and the ability to distinguish between different compositions. Results are presented in such a way that the number of X-ray counts, and thus the expected variation due to counting statistics, can be gauged for a range of operating conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. X-ray diffraction, XAFS and scanning electron microscopy study of otolith of a crevalle jack fish (caranx hippos)

    Energy Technology Data Exchange (ETDEWEB)

    Pattanaik, Sidhartha [Bailey Hall 703, Illinois Institute of Technology, 3101 S. Wabash Avenue, Chicago, IL 60616 (United States)]. E-mail: sidpattanaik@yahoo.com

    2005-04-01

    The otolith of a crevalle jack fish (caranx hippos) has been investigated by means of X-ray diffraction, X-ray absorption fine structure spectroscopy and scanning electron microscopy techniques. The results suggest that the biomineralization of otolith occurs predominantly in the aragonite phase. A detailed X-ray Rietveld analysis showed that the first shell Ca-O distances in otolith lay in the range 2.371-2.652 A, with each calcium atom coordinated to 9 oxygen atoms. While the average Ca-O distance remains same in both otolith and aragonite, certain Ca-O distances in otolith differ markedly from those in aragonite. Such difference reflects the remarkable degree of control that the protein matrix exercised over packing of calcium and carbonate ions to promote growth of rarer aragonite otolith. In view of the complex coordination chemistry of calcium in otoliths, the EXAFS analysis was limited to obtaining local atomic environment about calcium up to the first Ca-O shell. EXAFS data showed an asymmetric distribution of Ca-O bond distances with the centroid of distribution at 2.48 A, which is closer to the average Ca-O distance in aragonite than in calcite. The asymmetry in the Ca-O peak is consistent with an apparent departure of Ca-O distances from a near regular distribution, as expected of an aragonite otolith.

  15. X-ray diffraction, XAFS and scanning electron microscopy study of otolith of a crevalle jack fish (caranx hippos)

    International Nuclear Information System (INIS)

    Pattanaik, Sidhartha

    2005-01-01

    The otolith of a crevalle jack fish (caranx hippos) has been investigated by means of X-ray diffraction, X-ray absorption fine structure spectroscopy and scanning electron microscopy techniques. The results suggest that the biomineralization of otolith occurs predominantly in the aragonite phase. A detailed X-ray Rietveld analysis showed that the first shell Ca-O distances in otolith lay in the range 2.371-2.652 A, with each calcium atom coordinated to 9 oxygen atoms. While the average Ca-O distance remains same in both otolith and aragonite, certain Ca-O distances in otolith differ markedly from those in aragonite. Such difference reflects the remarkable degree of control that the protein matrix exercised over packing of calcium and carbonate ions to promote growth of rarer aragonite otolith. In view of the complex coordination chemistry of calcium in otoliths, the EXAFS analysis was limited to obtaining local atomic environment about calcium up to the first Ca-O shell. EXAFS data showed an asymmetric distribution of Ca-O bond distances with the centroid of distribution at 2.48 A, which is closer to the average Ca-O distance in aragonite than in calcite. The asymmetry in the Ca-O peak is consistent with an apparent departure of Ca-O distances from a near regular distribution, as expected of an aragonite otolith

  16. Workshop on the coupling of synchrotron radiation IR and X-rays with tip based scanning probe microscopies X-TIP

    Energy Technology Data Exchange (ETDEWEB)

    Comin, F.; Martinez-Criado, G.; Mundboth, K.; Susini, J. [European Synchrotron Radiation Facility (ESRF), 38 - Grenoble (France); Purans, J.; Sammelselg, V. [Tartu Univ. (Estonia); Chevrier, J.; Huant, S. [Universite Joseph-Fourier, Grenoble I, LEPES, 38 (France); Hamilton, B. [School of Electrical Engineering and Electronics, Manchester (United Kingdom); Saito, A. [Osaka Univ., RIKEN/SPring8 (Japan); Dhez, O. [OGG, INFM/CNR, 38 - Grenoble (France); Brocklesby, W.S. [Southampton Univ., Optoelectronics Research Centre (United Kingdom); Alvarez-Prado, L.M. [Ovieado, Dept. de Fisica (Spain); Kuzmin, A. [Institute of Solid State Physics - Riga (Latvia); Pailharey, D. [CRMC-N - CNRS, 13 - Marseille (France); Tonneau, D. [CRMCN - Faculte des sciences de Luminy, 13 - Marseille (France); Chretien, P. [Laboratoire de Genie Electrique de Paris, 75 - Paris (France); Cricenti, A. [ISM-CNR, Rome (Italy); DeWilde, Y. [ESPCI, 75 - Paris (France)

    2005-07-01

    The coupling of scanning probe microscopy (SPM) with synchrotron radiation is attracting increasing attention from nano-science community. By combining these 2 tools one can visualize, for example, the sample nano-structure prior to any X-ray characterization. Coupled with focusing devices or independently, SPM can provide spatial resolution below the optical limits. Furthermore, the possibility of employing SPM to manipulate nano-objects under X-ray beams is another exciting perspective. This document gathers the transparencies of 6 of the presentations made at the workshop: 1) the combination of atomic force microscopy and X-ray beam - experimental set-up and objectives; 2) the combination of scanning probe microscope and X-rays for detection of electrons; 3) towards soft X-ray scanning microscopy using tapered capillaries and laser-based high harmonic sources; 4) near-field magneto-optical microscopy; 5) near-field scanning optical microscopy - a brief overview -; and 6) from aperture-less near-field optical microscopy to infra-red near-field night vision. 4 posters entitled: 1) development of laboratory setup for X-ray/AFM experiments, 2) towards X-ray diffraction on single islands, 3) nano-XEOL using near-field detection, and 4) local collection with a STM tip of photoelectrons emitted by a surface irradiated by visible of UV laser beam, are included in the document.

  17. Workshop on the coupling of synchrotron radiation IR and X-rays with tip based scanning probe microscopies X-TIP

    International Nuclear Information System (INIS)

    Comin, F.; Martinez-Criado, G.; Mundboth, K.; Susini, J.; Purans, J.; Sammelselg, V.; Chevrier, J.; Huant, S.; Hamilton, B.; Saito, A.; Dhez, O.; Brocklesby, W.S.; Alvarez-Prado, L.M.; Kuzmin, A.; Pailharey, D.; Tonneau, D.; Chretien, P.; Cricenti, A.; DeWilde, Y.

    2005-01-01

    The coupling of scanning probe microscopy (SPM) with synchrotron radiation is attracting increasing attention from nano-science community. By combining these 2 tools one can visualize, for example, the sample nano-structure prior to any X-ray characterization. Coupled with focusing devices or independently, SPM can provide spatial resolution below the optical limits. Furthermore, the possibility of employing SPM to manipulate nano-objects under X-ray beams is another exciting perspective. This document gathers the transparencies of 6 of the presentations made at the workshop: 1) the combination of atomic force microscopy and X-ray beam - experimental set-up and objectives; 2) the combination of scanning probe microscope and X-rays for detection of electrons; 3) towards soft X-ray scanning microscopy using tapered capillaries and laser-based high harmonic sources; 4) near-field magneto-optical microscopy; 5) near-field scanning optical microscopy - a brief overview -; and 6) from aperture-less near-field optical microscopy to infra-red near-field night vision. 4 posters entitled: 1) development of laboratory setup for X-ray/AFM experiments, 2) towards X-ray diffraction on single islands, 3) nano-XEOL using near-field detection, and 4) local collection with a STM tip of photoelectrons emitted by a surface irradiated by visible of UV laser beam, are included in the document

  18. Scanning and transmission electron microscopy of a craniopharyngioma: x-ray microanalytical study of the intratumoral mineralized deposits

    Energy Technology Data Exchange (ETDEWEB)

    Vilches, J.; Lopez, A.; Martinez, M.C.; Gomez, J.; Barbera, J.

    This paper discusses the value of scanning electron microscopy (SEM) and x-ray microanalysis in the classification of craniopharyngiomas. This neoplasm shows epithelial nest, cords of cuboid cells, foci of squamous metaplasia, and microcystic degeneration. SEM reveals that the epithelial cysts are lined with elongated cells that possess numerous microvilli and blebs and that some cysts are lined with polyhedral cells. The microvilli are interpreted as characteristic of the fast growing craniopharyngiomas. A microanalytical study of the calcified areas reveals the presence of magnesium, phosphorus, and calcium.

  19. Fluorescence imaging of reactive oxygen species by confocal laser scanning microscopy for track analysis of synchrotron X-ray photoelectric nanoradiator dose: X-ray pump-optical probe.

    Science.gov (United States)

    Jeon, Jae Kun; Han, Sung Mi; Kim, Jong Ki

    2016-09-01

    Bursts of emissions of low-energy electrons, including interatomic Coulomb decay electrons and Auger electrons (0-1000 eV), as well as X-ray fluorescence produced by irradiation of large-Z element nanoparticles by either X-ray photons or high-energy ion beams, is referred to as the nanoradiator effect. In therapeutic applications, this effect can damage pathological tissues that selectively take up the nanoparticles. Herein, a new nanoradiator dosimetry method is presented that uses probes for reactive oxygen species (ROS) incorporated into three-dimensional gels, on which macrophages containing iron oxide nanoparticles (IONs) are attached. This method, together with site-specific irradiation of the intracellular nanoparticles from a microbeam of polychromatic synchrotron X-rays (5-14 keV), measures the range and distribution of OH radicals produced by X-ray emission or superoxide anions ({\\rm{O}}_2^-) produced by low-energy electrons. The measurements are based on confocal laser scanning of the fluorescence of the hydroxyl radical probe 2-[6-(4'-amino)phenoxy-3H-xanthen-3-on-9-yl] benzoic acid (APF) or the superoxide probe hydroethidine-dihydroethidium (DHE) that was oxidized by each ROS, enabling tracking of the radiation dose emitted by the nanoradiator. In the range 70 µm below the irradiated cell, ^\\bullet{\\rm{OH}} radicals derived mostly from either incident X-ray or X-ray fluorescence of ION nanoradiators are distributed along the line of depth direction in ROS gel. In contrast, {\\rm{O}}_2^- derived from secondary electron or low-energy electron emission by ION nanoradiators are scattered over the ROS gel. ROS fluorescence due to the ION nanoradiators was observed continuously to a depth of 1.5 mm for both oxidized APF and oxidized DHE with relatively large intensity compared with the fluorescence caused by the ROS produced solely by incident primary X-rays, which was limited to a depth of 600 µm, suggesting dose enhancement as well as more

  20. Characterization of sintered samples of La/Sr/Cu/O by X-ray diffraction, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS)

    International Nuclear Information System (INIS)

    Gonzalez, C.O. de; Polla, Griselda; Manghi, Estela

    1987-01-01

    Samples of La/Sr/Cu/O were sinterized by solid state reaction starting from a nominal composition of La 1 .8, Sr 0 .2, CuO 4 . They presented superconductive properties with T c = 40.9 K (onset) and δ T c = 17 K. Two phases were observed by X-ray diffraction and the more abundant was the tetragonal phase. The mean grain size was 1-5 μm. The X-ray photoelectron spectroscopy measurements were carried out using Mg kα (1486.6 eV) as incident radiation. Sample temperature was varied between -180 deg C and 420 deg C, approximately. The temperature variation produces a change in the atomic concentration of the surface components. Deconvolutions of the O 1s peaks show three components with binding energies (B.E.). The decomposition of Cu 2p 3 /2 peaks presents two components corresponding to Cu + and Cu 2+ . (Author) [es

  1. Temporal dynamics for soil aggregates determined using X-ray CT scanning

    DEFF Research Database (Denmark)

    Garbout, Amin; Munkholm, Lars Juhl; Hansen, Søren Baarsgaard

    2013-01-01

    Soil structure plays a key role in the ability of soil to fulfil essential soil functions and services in relation to e.g. root growth, gas and water transport and organic matter turnover. However, soils are not a very easy object to study as they are highly complex and opaque to the human eye...... aggregate properties such as volume, surface area and sphericity based on 3D images. We tested the methods on aggregates from different treatments and quantified changes over time. A total of 32 collections of aggregates, enclosed in mesocosms, were incubated in soil to follow the structural changes over....... Traditionally, they have been studied using invasive or destructive techniques. The advantage of using X-ray computed tomography (CT) in soil morphology is that it enables non-destructive quantification of soil structure in three dimensions (3D). The prime objective of the present study was to characterize soil...

  2. Effect of processing on the microstructure of finger millet by X-ray diffraction and scanning electron microscopy.

    Science.gov (United States)

    Dharmaraj, Usha; Parameswara, P; Somashekar, R; Malleshi, Nagappa G

    2014-03-01

    Finger millet is one of the important minor cereals, and carbohydrates form its major chemical constituent. Recently, the millet is processed to prepare hydrothermally treated (HM), decorticated (DM), expanded (EM) and popped (PM) products. The present research aims to study the changes in the microstructure of carbohydrates using X-ray diffraction and scanning electron microscopy. Processing the millet brought in significant changes in the carbohydrates. The native millet exhibited A-type pattern of X-ray diffraction with major peaks at 2θ values of 15.3, 17.86 and 23.15°, whereas, all other products showed V-type pattern with single major peak at 2θ values ranging from 19.39 to 19.81°. The corresponding lattice spacing and the number of unit cells in a particular direction of reflection also reduced revealing that crystallinity of starch has been decreased depending upon the processing conditions. Scanning electron microscopic studies also revealed that the orderly pattern of starch granules changed into a coherent mass due to hydrothermal treatment, while high temperature short time treatment rendered a honey-comb like structure to the product. However, the total carbohydrates and non-starch polysaccharide contents almost remained the same in all the products except for DM and EM, but the individual carbohydrate components changed significantly depending on the type of processing.

  3. X-ray tubes

    International Nuclear Information System (INIS)

    Young, R.W.

    1979-01-01

    A form of x-ray tube is described which provides satisfactory focussing of the electron beam when the beam extends for several feet from gun to target. Such a tube can be used for computerised tomographic scanning. (UK)

  4. Errors in dual-energy X-ray scanning of the hip because of nonuniform fat distribution.

    Science.gov (United States)

    Tothill, Peter; Weir, Nicholas; Loveland, John

    2014-01-01

    The variable proportion of fat in overlying soft tissue is a potential source of error in dual-energy X-ray absorptiometry (DXA) measurements of bone mineral. The effect on spine scanning has previously been assessed from cadaver studies and from computed tomography (CT) scans of soft tissue distribution. We have now applied the latter technique to DXA hip scanning. The CT scans performed for clinical purposes were used to derive mean adipose tissue thicknesses over bone and background areas for total hip and femoral neck. The former was always lower. More importantly, the fat thickness differences varied among subjects. Errors because of bone marrow fat were deduced from CT measurements of marrow thickness and assumed fat proportions of marrow. The effect of these differences on measured bone mineral density was deduced from phantom measurements of the bone equivalence of fat. Uncertainties of around 0.06g/cm(2) are similar to those previously reported for spine scanning and the results from cadaver measurements. They should be considered in assessing the diagnostic accuracy of DXA scanning. Copyright © 2014 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  5. Reproducibility of trabecular bone score with different scan modes using dual-energy X-ray absorptiometry: a phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Bandirali, Michele; Messina, Carmelo [Universita degli Studi di Milano, Scuola di Specializzazione in Radiodiagnostica, Milano (Italy); Di Leo, Giovanni [Unita di Radiologia, IRCCS Policlinico San Donato, San Donato Milanese (Italy); Pastor Lopez, Maria Juana; Ulivieri, Fabio M. [Servizio di Medicina Nucleare, Ospedale Maggiore, Mineralometria Ossea Computerizzata e Ambulatorio Malattie Metabolismo Minerale e Osseo, Milano (Italy); Mai, Alessandro [Universita degli Studi di Milano, Tecniche di Radiologia Medica, per Immagini e Radioterapia, Milano (Italy); Sardanelli, Francesco [Unita di Radiologia, IRCCS Policlinico San Donato, San Donato Milanese (Italy); Universita degli Studi di Milano, Dipartimento di Scienze Biomediche per la Salute, San Donato Milanese (Italy)

    2014-08-12

    The trabecular bone score (TBS) accounts for the bone microarchitecture and is calculated on dual-energy X-ray absorptiometry (DXA). We estimated the reproducibility of the TBS using different scan modes compared to the reproducibility bone mineral density (BMD). A spine phantom was used with a Hologic QDR-Discovery A densitometer. For each scan mode [fast array, array, high definition (HD)], 25 scans were automatically performed without phantom repositioning; a further 25 scans were performed with phantom repositioning. For each scan, the TBS was obtained. The coefficient of variation (CoV) was calculated as the ratio between standard deviation and mean; percent least significant change (LSC%) as 2.8 x CoV; reproducibility as the complement to 100 % of LSC%. Differences among scan modes were assessed using ANOVA. Without phantom repositioning, the mean TBS (mm{sup -1}) was: 1.352 (fast array), 1.321 (array), and 1.360 (HD); with phantom repositioning, it was 1.345, 1.332, and 1.362, respectively. Reproducibility of the TBS without phantom repositioning was 97.7 % (fast array), 98.3 % (array), and 98.2 % (HD); with phantom repositioning, it was 97.9 %, 98.7 %, and 98.4 %, respectively. LSC% was ≤2.26 %. Differences among scan modes were all statistically significant (p ≤ 0.019). Reproducibility of BMD was 99.1 % with all scan modes, while LSC% was from 0.86 % to 0.91 %. Reproducibility error of the TBS was 2-3-fold higher than that of BMD. Although statistically significant, differences in TBS among scan modes were within the highest LSC%. Thus, the three scan modes can be considered interchangeable. (orig.)

  6. X-ray microanalysis with transition edge sensors. The future of material analysis with scanning electron microscopes

    Energy Technology Data Exchange (ETDEWEB)

    Hollerith, C.

    2006-07-05

    In current experiments and technical applications the demand for new and advanced concepts for the detection of radiation and particle is increasing. Low temperature detectors such as Transition Edge Sensors (TES) have been developed as ultrahigh-resolution radiation and particle detectors offering advantages in manifold applications. They were designed primarily for astrophysical experiments such as the dark matter search. In material analysis they have been introduced to revolutionize mass spectroscopy of biological molecules and Energy Dispersive X-ray Spectroscopy (EDS). EDS is the determination of the elemental constitution of samples in scanning electron microscopes (SEMs) with characteristic X-ray radiation excited by the electron beam. The use of TES detectors improves the EDS analysis of small volumes such as particles or thin layers. This is especially important for the semiconductor industry because of the continual shrinking of device size. Current structure sizes of 65 nm are already demanding new approaches in analytic methodology. In this thesis the introduction and improvement of a fully automated TES detector system in the industrial environment of a semiconductor failure analysis lab is described. This system, marketed under the trade name of 'Polaris' by the manufacturer, is based on a mechanical pulse tube cooler in combination with an adiabatic demagnetization refrigerator (ADR) for cooling the TES detector to its operating temperature. Several large improvements had to be made to the system during the total system integration. The energy resolution could be improved significantly thus enabling a better peak separation and the measurement of chemical shifts. Due to the small area of TES detectors compared with conventional EDS detectors the efficiency of the system proved to be too low for everyday use. A polycapillary X-ray lens was added to the system in order to solve this problem. The application of the lens, however, brought its

  7. Diagnostic accuracy of full-body linear X-ray scanning in multiple trauma patients in comparison to computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Joeres, A.P.W.; Heverhagen, J.T.; Bonel, H. [Inselspital - University Hospital Bern (Switzerland). Univ. Inst. of Diagnostic, Interventional and Pediatric Radiology; Exadaktylos, A. [Inselspital - University Hospital Bern (Switzerland). Dept. of Emergency Medicine; Klink, T. [Inselspital - University Hospital Bern (Switzerland). Univ. Inst. of Diagnostic, Interventional and Pediatric Radiology; Wuerzburg Univ. (Germany). Inst. of Diagnostic and Interventional Radiology

    2016-02-15

    The purpose of this study was to evaluate the diagnostic accuracy of full-body linear X-ray scanning (LS) in multiple trauma patients in comparison to 128-multislice computed tomography (MSCT). 106 multiple trauma patients (female: 33; male: 73) were retrospectively included in this study. All patients underwent LS of the whole body, including extremities, and MSCT covering the neck, thorax, abdomen, and pelvis. The diagnostic accuracy of LS for the detection of fractures of the truncal skeleton and pneumothoraces was evaluated in comparison to MSCT by two observers in consensus. Extremity fractures detected by LS were documented. The overall sensitivity of LS was 49.2%, the specificity was 93.3%, the positive predictive value was 91%, and the negative predictive value was 57.5%. The overall sensitivity for vertebral fractures was 16.7%, and the specificity was 100%. The sensitivity was 48.7% and the specificity 98.2% for all other fractures. Pneumothoraces were detected in 12 patients by CT, but not by LS.40 extremity fractures were detected by LS, of which 4 fractures were dislocated, and 2 were fully covered by MSCT. The diagnostic accuracy of LS is limited in the evaluation of acute trauma of the truncal skeleton. LS allows fast whole-body X-ray imaging, and may be valuable for detecting extremity fractures in trauma patients in addition to MSCT.

  8. Scanning transmission x-ray microscopy of polymer nanoparticles: probing morphology on sub-10 nm length scales.

    Science.gov (United States)

    Burke, Kerry B; Stapleton, Andrew J; Vaughan, Ben; Zhou, Xiaojing; Kilcoyne, A L David; Belcher, Warwick J; Dastoor, Paul C

    2011-07-01

    Water-processable nanoparticle dispersions of semiconducting polymers offer an attractive approach to the fabrication of organic electronic devices since they offer: (1) control of nanoscale morphology and (2) environmentally friendly fabrication. Although the nature of phase segregation in these polymer nanoparticles is critical to device performance, to date there have been no techniques available to directly determine their intra-particle structure, which consequently has been poorly understood. Here, we present scanning transmission x-ray microscopy (STXM) compositional maps for nanoparticles fabricated from poly(9,9-dioctyl-fluorene-2,7-diyl-co-bis-N, N'-(4-butylphenyl)-bis-N, N'-phenyl-1,4-phenylenedi-amine) (PFB) and poly(9,9-dioctylfluorene-2,7-diyl-co-benzothiadiazole) (F8BT) 1:1 blend mixtures. The images show distinct phase segregation within the nanoparticles. The compositional data reveals that, within these nanoparticles, PFB and F8BT segregate into a core-shell morphology, with an F8BT-rich core and a PFB-rich shell. Structural modelling demonstrates that the STXM technique is capable of quantifying morphological features on a sub-10 nm length scale; below the spot size of the incident focused x-ray beam. These results have important implications for the development of water-based 'solar paints' fabricated from microemulsions of semiconducting polymers.

  9. Scanning transmission x-ray microscopy of polymer nanoparticles: probing morphology on sub-10 nm length scales

    Science.gov (United States)

    Burke, Kerry B.; Stapleton, Andrew J.; Vaughan, Ben; Zhou, Xiaojing; Kilcoyne, A. L. David; Belcher, Warwick J.; Dastoor, Paul C.

    2011-07-01

    Water-processable nanoparticle dispersions of semiconducting polymers offer an attractive approach to the fabrication of organic electronic devices since they offer: (1) control of nanoscale morphology and (2) environmentally friendly fabrication. Although the nature of phase segregation in these polymer nanoparticles is critical to device performance, to date there have been no techniques available to directly determine their intra-particle structure, which consequently has been poorly understood. Here, we present scanning transmission x-ray microscopy (STXM) compositional maps for nanoparticles fabricated from poly(9,9-dioctyl-fluorene-2,7-diyl-co-bis-N, N'-(4-butylphenyl)-bis-N, N'-phenyl-1,4-phenylenedi-amine) (PFB) and poly(9,9-dioctylfluorene-2,7-diyl-co-benzothiadiazole) (F8BT) 1:1 blend mixtures. The images show distinct phase segregation within the nanoparticles. The compositional data reveals that, within these nanoparticles, PFB and F8BT segregate into a core-shell morphology, with an F8BT-rich core and a PFB-rich shell. Structural modelling demonstrates that the STXM technique is capable of quantifying morphological features on a sub-10 nm length scale; below the spot size of the incident focused x-ray beam. These results have important implications for the development of water-based 'solar paints' fabricated from microemulsions of semiconducting polymers.

  10. Scanning transmission x-ray microscopy of polymer nanoparticles: probing morphology on sub-10 nm length scales

    International Nuclear Information System (INIS)

    Burke, Kerry B; Stapleton, Andrew J; Vaughan, Ben; Zhou Xiaojing; Belcher, Warwick J; Dastoor, Paul C; Kilcoyne, A L David

    2011-01-01

    Water-processable nanoparticle dispersions of semiconducting polymers offer an attractive approach to the fabrication of organic electronic devices since they offer: (1) control of nanoscale morphology and (2) environmentally friendly fabrication. Although the nature of phase segregation in these polymer nanoparticles is critical to device performance, to date there have been no techniques available to directly determine their intra-particle structure, which consequently has been poorly understood. Here, we present scanning transmission x-ray microscopy (STXM) compositional maps for nanoparticles fabricated from poly(9,9-dioctyl-fluorene-2,7-diyl-co-bis-N, N ' -(4-butylphenyl)-bis-N, N ' -phenyl-1,4-phenylenedi-amine) (PFB) and poly(9,9-dioctylfluorene-2,7-diyl-co-benzothiadiazole) (F8BT) 1:1 blend mixtures. The images show distinct phase segregation within the nanoparticles. The compositional data reveals that, within these nanoparticles, PFB and F8BT segregate into a core-shell morphology, with an F8BT-rich core and a PFB-rich shell. Structural modelling demonstrates that the STXM technique is capable of quantifying morphological features on a sub-10 nm length scale; below the spot size of the incident focused x-ray beam. These results have important implications for the development of water-based 'solar paints' fabricated from microemulsions of semiconducting polymers.

  11. Scanning transmission x-ray microscopy of polymer nanoparticles: probing morphology on sub-10 nm length scales

    Energy Technology Data Exchange (ETDEWEB)

    Burke, Kerry B; Stapleton, Andrew J; Vaughan, Ben; Zhou Xiaojing; Belcher, Warwick J; Dastoor, Paul C [Centre for Organic Electronics, University of Newcastle, Callaghan, NSW 2308 (Australia); Kilcoyne, A L David, E-mail: Paul.Dastoor@newcastle.edu.au [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2011-07-01

    Water-processable nanoparticle dispersions of semiconducting polymers offer an attractive approach to the fabrication of organic electronic devices since they offer: (1) control of nanoscale morphology and (2) environmentally friendly fabrication. Although the nature of phase segregation in these polymer nanoparticles is critical to device performance, to date there have been no techniques available to directly determine their intra-particle structure, which consequently has been poorly understood. Here, we present scanning transmission x-ray microscopy (STXM) compositional maps for nanoparticles fabricated from poly(9,9-dioctyl-fluorene-2,7-diyl-co-bis-N, N{sup '}-(4-butylphenyl)-bis-N, N{sup '}-phenyl-1,4-phenylenedi-amine) (PFB) and poly(9,9-dioctylfluorene-2,7-diyl-co-benzothiadiazole) (F8BT) 1:1 blend mixtures. The images show distinct phase segregation within the nanoparticles. The compositional data reveals that, within these nanoparticles, PFB and F8BT segregate into a core-shell morphology, with an F8BT-rich core and a PFB-rich shell. Structural modelling demonstrates that the STXM technique is capable of quantifying morphological features on a sub-10 nm length scale; below the spot size of the incident focused x-ray beam. These results have important implications for the development of water-based 'solar paints' fabricated from microemulsions of semiconducting polymers.

  12. Improving limited-projection-angle fluorescence molecular tomography using a co-registered x-ray computed tomography scan.

    Science.gov (United States)

    Radrich, Karin; Ale, Angelique; Ermolayev, Vladimir; Ntziachristos, Vasilis

    2012-12-01

    We examine the improvement in imaging performance, such as axial resolution and signal localization, when employing limited-projection-angle fluorescence molecular tomography (FMT) together with x-ray computed tomography (XCT) measurements versus stand-alone FMT. For this purpose, we employed living mice, bearing a spontaneous lung tumor model, and imaged them with FMT and XCT under identical geometrical conditions using fluorescent probes for cancer targeting. The XCT data was employed, herein, as structural prior information to guide the FMT reconstruction. Gold standard images were provided by fluorescence images of mouse cryoslices, providing the ground truth in fluorescence bio-distribution. Upon comparison of FMT images versus images reconstructed using hybrid FMT and XCT data, we demonstrate marked improvements in image accuracy. This work relates to currently disseminated FMT systems, using limited projection scans, and can be employed to enhance their performance.

  13. Reflective Optics for Microdiffraction

    International Nuclear Information System (INIS)

    Ice, G.E.

    2007-01-01

    Nondispersive optics are essential for emerging microdiffraction and nanobeam research. Here we describe extensions to traditional Kirkpatrick Baez optics required to develop nondispersive microdiffraction and nanoprobe optics with 1-10 nm spatial resolution

  14. 3-D x-ray mirror metrology with a vertical scanning long trace profiler

    International Nuclear Information System (INIS)

    Takacs, P.Z.; Li, H.; Li, X.; Grindel, M.W.

    1996-01-01

    The long trace profiler (LTP) was originally developed at Brookhaven National Laboratory for the specific purpose of measuring the surface figure of large cylindrical mirrors used at grazing incidence in synchrotron radiation (SR) beamlines. In its original configuration, it could measure only along one line down the center of the cylinder. A single linear profile is often sufficient to gauge the quality of the optical surface on these kinds of mirrors. For some applications it is necessary to measure the topography of the entire surface, not just along one line but over a grid that covers the entire surface area. We have modified a standard LTP to enable measurement of the complete surface of Wolter telescope optics in a vertical configuration. The vertical scanning LTP (VSLTP) is capable of producing a complete 3-D map of the surface topography errors relative to the ideal desired surface on complete segments of paraboloids and hyperboloids. The instrument uses a penta prism assembly to scan the probe beam in the longitudinal direction parallel to the mirror symmetry axis and uses a precision rotary stage to provide scans in the azimuthal direction. A Risley prism pair and a dove prism are used to orient the probe beam in the proper direction for the azimuthal scans. The repeatability of the prototype instrument is better than 20 nm over trace lengths of 35 mm with a slope measurement accuracy of about 1 microradian. copyright 1996 American Institute of Physics

  15. Deformable motion reconstruction for scanned proton beam therapy using on-line x-ray imaging

    NARCIS (Netherlands)

    Zhang, Ye; Knopf, A; Tanner, Colby; Boye, Dirk; Lomax, Antony J.

    2013-01-01

    Organ motion is a major problem for any dynamic radiotherapy delivery technique, and is particularly so for spot scanned proton therapy. On the other hand, the use of narrow, magnetically deflected proton pencil beams is potentially an ideal delivery technique for tracking tumour motion on-line. At

  16. Studies of x-ray localization and thickness dependence in atomic-scale elemental mapping by STEM energy-dispersive x-ray spectroscopy using single-frame scanning method.

    Science.gov (United States)

    Lu, Ping; Moya, Jaime M; Yuan, Renliang; Zuo, Jian Min

    2018-03-01

    The delocalization of x-ray signals limits the spatial resolution in atomic-scale elemental mapping by scanning transmission electron microscopy (STEM) using energy-dispersive x-ray spectroscopy (EDS). In this study, using a SrTiO 3 [001] single crystal, we show that the x-ray localization to atomic columns is strongly dependent on crystal thickness, and a thin crystal is critical for improving the spatial resolution in atomic-scale EDS mapping. A single-frame scanning technique is used in this study instead of the multiple-frame technique to avoid peak broadening due to tracking error. The strong thickness dependence is realized by measuring the full width at half maxima (FWHM) as well as the peak-to-valley (P/V) ratio of the EDS profiles for Ti K and Sr K + L, obtained at several crystal thicknesses. A FWHM of about 0.16 nm and a P/V ratio of greater than 7.0 are obtained for Ti K for a crystal thickness of less than 20 nm. With increasing crystal thickness, the FWHM and P/V ratio increases and decreases, respectively, indicating the advantage of using a thin crystal for high-resolution EDS mapping. Published by Elsevier B.V.

  17. A new Scanning Transmission X-ray Microscope at the ALS for operation up to 2500eV

    International Nuclear Information System (INIS)

    Kilcoyne, David; Ade, Harald; Attwood, David; Hitchcock, Adam; McKean, Pat; Mitchell, Gary; Monteiro, Paulo; Tyliszczak, Tolek; Warwick, Tony

    2010-01-01

    We report on the design and construction of a higher energy Scanning Transmission X-ray Microscope on a new bend magnet beam line at the Advanced Light Source. Previously we have operated such an instrument on a bend magnet for C, N and O 1s NEXAFS spectroscopy. The new instrument will have similar performance at higher energies up to and including the S 1s edge at 2472eV. A new microscope configuration is planned. A more open geometry will allow a fluorescence detector to count emitted photons from the front surface of the sample. There will be a capability for zone plate scanning in addition to the more conventional sample scanning mode. This will add the capability for imaging a massive sample at high resolution over a limited field of view, so that heavy reaction cells may be used to study processes in-situ, exploiting the longer photon attenuation length and the longer zone plate working distances available at higher photon energy. The energy range will extend down to include the C1s edge at 300eV, to allow high energy NEXAFS microscopic studies to correlate with the imaging of organics in the same sample region of interest.

  18. Motion estimation for cardiac functional analysis using two x-ray computed tomography scans.

    Science.gov (United States)

    Fung, George S K; Ciuffo, Luisa; Ashikaga, Hiroshi; Taguchi, Katsuyuki

    2017-09-01

    This work concerns computed tomography (CT)-based cardiac functional analysis (CFA) with a reduced radiation dose. As CT-CFA requires images over the entire heartbeat, the scans are often performed at 10-20% of the tube current settings that are typically used for coronary CT angiography. A large image noise then degrades the accuracy of motion estimation. Moreover, even if the scan was performed during the sinus rhythm, the cardiac motion observed in CT images may not be cyclic with patients with atrial fibrillation. In this study, we propose to use two CT scan data, one for CT angiography at a quiescent phase at a standard dose and the other for CFA over the entire heart beat at a lower dose. We have made the following four modifications to an image-based cardiac motion estimation method we have previously developed for a full-dose retrospectively gated coronary CT angiography: (a) a full-dose prospectively gated coronary CT angiography image acquired at the least motion phase was used as the reference image; (b) a three-dimensional median filter was applied to lower-dose retrospectively gated cardiac images acquired at 20 phases over one heartbeat in order to reduce image noise; (c) the strength of the temporal regularization term was made adaptive; and (d) a one-dimensional temporal filter was applied to the estimated motion vector field in order to decrease jaggy motion patterns. We describe the conventional method iME1 and the proposed method iME2 in this article. Five observers assessed the accuracy of the estimated motion vector field of iME2 and iME1 using a 4-point scale. The observers repeated the assessment with data presented in a new random order 1 week after the first assessment session. The study confirmed that the proposed iME2 was robust against the mismatch of noise levels, contrast enhancement levels, and shapes of the chambers. There was a statistically significant difference between iME2 and iME1 (accuracy score, 2.08 ± 0.81 versus 2.77

  19. Assessment of Brain absorbed X-ray dose during CT- Scan using ImPACT software in Tehran Univeristy hospitals

    Directory of Open Access Journals (Sweden)

    Khalilpour M

    2009-07-01

    Full Text Available "n Normal 0 false false false EN-US X-NONE AR-SA MicrosoftInternetExplorer4 st1":*{behavior:url(#ieooui } /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi;} Background: CT scan was first introduced into clinical practice in 1972, and since then has grown into one of the predominant diagnostic procedures. In 1998, the UK National Radiological Protection Board reported that 20% of the national collective dose from medical X-ray examinations derived from CT-scans, although it represented only 2% of all X- ray examinations the aim of this study was to determine the X-ray dosage received by patients in brain CT scan."n"n Methods: In this work, we have estimated patient dose arising from CT examination of brain in five hospitals in Tehran. Organ and effective doses were estimated for 150 patients who underwent CT examination of brain. "ImPACT" version 0.99v was used to estimate organ and effective dose. Brain examinations were performed with fixed Kvp, mAs and T (slice thickness for each scanner. "n"n Results: Patients, who were scanned by CT of emam Khomeini center (Toshiba Xvision /EX Scanner, received maximum organ dose (brain and minimum organ dose was delivered to patients who were scanned by CT of amir alam center (Toshiba Xvision /EX Scanner. Maximum effective dose was 1.7 mSv acquired in this study for emam Khomeini haspital, smaller than

  20. Direct observation of characteristic dissociation behaviors of hydrate-bearing cores by rapid-scanning X-ray CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ebinuma, T.; Oyama, H.; Utiumi, T.; Nagao, J.; Narita, H. [National Inst. of Advanced Industrial Science and Technology, Toyohiraku, Sapporo (Japan)

    2008-07-01

    Methane hydrate has significant potential as a new source of energy. Major considerations in developing production methods of methane from hydrates are the fundamental properties of hydrate-bearing sediments, and the dissociation behavior of methane hydrate and the gas and water flow generated by its dissociation in sediments. Marine methane hydrates occur several hundred meters below the sea floor, in a variety of forms. The pore-space filling-type is considered to be the most suited to exploitation, as it is contained within the pore spaces of sandy sediments, and has relatively larger gas permeability compared to other forms. However, shallow sandy sediments are not usually consolidated, and methane hydrate is unstable at normal pressure and temperature. Therefore, common methods are not suitable, and new experimental methods have been developed to study the properties of hydrate-bearing sediment and its dissociation process. This paper presented the results of an experimental study involving the dissociation of artificial methane-hydrate-bearing sediments. The experiment was performed using X-ray computed tomography in order to directly observe dissociation behavior in the sediments and the gas and water flows generated by dissociation. The paper described the depressurization process and presented a schematic diagram of rapid scanning X-ray computed tomography scanner and core holder with tri-axial structure. The experimental apparatus for dissociation of methane hydrate was also illustrated. The thermal stimulation process and hot water injection process were explained. It was concluded that dissociation by depressurization demonstrated that the temperature reduction induced by depressurization depended on the phase equilibrium state of methane hydrate, and that dissociation preferentially occurred at the periphery of the core. This behavior was due to the heat flux from the outside of the core, where the heat flux controlled the dissociation rate. 10 refs

  1. Small area analysis using micro-diffraction techniques

    International Nuclear Information System (INIS)

    Goehner, Raymond P.; Tissot, Ralph G. Jr.; Michael, Joseph R.

    2000-01-01

    An overall trend toward smaller electronic packages and devices makes it increasingly important and difficult to obtain meaningful diffraction information from small areas. X-ray micro-diffraction, electron back-scattered diffraction (EBSD) and Kossel are micro-diffraction techniques used for crystallographic analysis including texture, phase identification and strain measurements. X-ray micro-diffraction primarily is used for phase analysis and residual strain measurements. X-ray micro-diffraction primarily is used for phase analysis and residual strain measurements of areas between 10 microm to 100 microm. For areas this small glass capillary optics are used for producing a usable collimated x-ray beam. These optics are designed to reflect x-rays below the critical angle therefore allowing for larger solid acceptance angle at the x-ray source resulting in brighter smaller x-ray beams. The determination of residual strain using micro-diffraction techniques is very important to the semiconductor industry. Residual stresses have caused voiding of the interconnect metal which then destroys electrical continuity. Being able to determine the residual stress helps industry to predict failures from the aging effects of interconnects due to this stress voiding. Stress measurements would be impossible using a conventional x-ray diffractometer; however, utilizing a 30 microm glass capillary these small areas are readily assessable for analysis. Kossel produces a wide angle diffraction pattern from fluorescent x-rays generated in the sample by an e-beam in a SEM. This technique can yield very precise lattice parameters for determining strain. Fig. 2 shows a Kossel pattern from a Ni specimen. Phase analysis on small areas is also possible using an energy dispersive spectrometer (EBSD) and x-ray micro-diffraction techniques. EBSD has the advantage of allowing the user to observe the area of interest using the excellent imaging capabilities of the SEM. An EDS detector has been

  2. Internal structure of a vermicular ironstone as determined by X-ray computed tomography scanning

    Energy Technology Data Exchange (ETDEWEB)

    Zinn, Yuri Lopes, E-mail: ylzinn@dcs.ufla.br [Universidade Federal de Lavras (UFLA), Lavras, MG (Brazil). Departamento de Ciencia do Solo; Carducci, Carla Eloize [Universidade Federal de Santa Catarina (UFSC), Curitibanos, SC (Brazil). Departamento de Agronomia; Araujo, Marla Alessandra [Universidade Federal de Lavras (UFLA), Lavras, MG (Brazil). Programa de Pos-graduacao em Ciencia do Solo

    2015-03-15

    Ironstones or petroplinthites are common materials in soils under humid tropical climate, generally defined as the result of Fe oxide accumulation in areas where the water table oscillates, and may exhibit considerable morphological variability. The aim of this study was to examine the internal structure and porosity of an ironstone fragment from a Petroferric Acrudox in Minas Gerais, Brazil, by computed tomography (CT) and conventional techniques. The sample analyzed had total porosity of 59.5 %, with large macropores in the form of tubular channels and irregular vughs, the latter with variable degrees of infilling by material released from the ironstone walls or the soil matrix. The CT scan also showed that the ironstone has wide variation in the density of the solid phase, most likely due to higher concentrations or thick intergrowths of hematite and magnetite/maghemite, especially in its outer rims. The implications of these results for water retention and soil formation in ironstone environments are briefly discussed. (author)

  3. A new approach in performing microdiffraction analysis

    International Nuclear Information System (INIS)

    Winter, D.J.; Squires, B.A.

    1995-01-01

    Microdiffraction is defined as the x-ray diffraction analysis performed on small samples or MD areas of large samples. Since smallness is a relative term, microdiffraction is considered the technique of choice when samples are too small for the optics and precision of conventional instrumentation. The limit on the size of the sample is dependent upon the accuracy of the instrumentation, which is measured by such variables as the diameter of the incident beam and the sphere of confusion of the goniometer (accuracy of the circle centers). If the sample area of interest is part of a multiphase material, it is necessary for the diameter of the incident x-ray beam to be smaller than the sample area in order to assure that the diffraction pattern produced is from the sample area of interest only. Today, microdiffraction is being performed on samples as small as a few microns in diameter. Common applications for microdiffraction include composite materials such as wafers and pads used in the semiconductor industry, inclusions on laser disks and forensic studies. The analysis is often complicated by the fact that the sample areas can be a few grains or even a single crystal. Conventional powder diffractometers are very well suited for analyzing large volumes of polycrystalline material, however, they require much longer counting times when the sample volume is very small. Ideally, what is needed is the optics of a single crystal diffractometer with the performance of a conventional powder diffractometer. 6 figs

  4. INTERNAL STRUCTURE OF A VERMICULAR IRONSTONE AS DETERMINED BY X-RAY COMPUTED TOMOGRAPHY SCANNING

    Directory of Open Access Journals (Sweden)

    Yuri Lopes Zinn

    2015-04-01

    Full Text Available Ironstones or petroplinthites are common materials in soils under humid tropical climate, generally defined as the result of Fe oxide accumulation in areas where the water table oscillates, and may exhibit considerable morphological variability. The aim of this study was to examine the internal structure and porosity of an ironstone fragment from a Petroferric Acrudox in Minas Gerais, Brazil, by computed tomography (CT and conventional techniques. The sample analyzed had total porosity of 59.5 %, with large macropores in the form of tubular channels and irregular vughs, the latter with variable degrees of infilling by material released from the ironstone walls or the soil matrix. The CT scan also showed that the ironstone has wide variation in the density of the solid phase, most likely due to higher concentrations or thick intergrowths of hematite and magnetite/maghemite, especially in its outer rims. The implications of these results for water retention and soil formation in ironstone environments are briefly discussed.

  5. Personal experience with whole-body, low-dosage, digital X-ray scanning (LODOX-Statscan in trauma

    Directory of Open Access Journals (Sweden)

    Zimmermann Heinz

    2009-09-01

    Full Text Available Abstract Background Lodox-Statscan is a whole-body, skeletal and soft-tissue, low-dose X-ray scanner Anterior-posterior and lateral thoraco-abdominal studies are obtained in 3-5 minutes with only about one-third of the radiation required for conventional radiography. Since its approval by the Food and Drug Administration (FDA in the USA, several trauma centers have incorporated this technology into their Advanced Trauma Life Support protocols. This review provides a brief overview of the system, and describes the authors' own experience with the system. Methods We performed a PubMed search to retrieve all references with 'Lodox' and 'Stat-scan' used as search terms. We furthermore used the google search engine to identify existing alternatives. To the best of our knowledge, this is the only FDA-approved device of its kind currently used in trauma. Results and Conclusion The intention of our review has been to sensitize the readership that such alternative devices exist. The key message is that low dosage full body radiography may be an alternative to conventional resuscitation room radiography which is usually a prelude to CT scanning (ATLS algorithm. The combination of both is radiation intensive and therefore we consider any reduction of radiation a success. But only the future will show whether LS will survive in the face of low-dose radiation CT scanners and magnetic resonance imaging devices that may eventually completely replace conventional radiography.

  6. Three-dimensional analysis of rodent paranasal sinus cavities from X-ray computed tomography (CT) scans

    Science.gov (United States)

    Phillips, Jonathan E.; Ji, Lunan; Rivelli, Maria A.; Chapman, Richard W.; Corboz, Michel R.

    2009-01-01

    Continuous isometric microfocal X-ray computed tomography (CT) scans were acquired from an AKR/J mouse, Brown-Norway rat, and Hartley guinea pig. The anatomy and volume of the paranasal sinus cavities were defined from 2-dimensional (2-D) and 3-dimensional (3-D) CT images. Realistic 3-D images were reconstructed and used to determine the anterior maxillary, posterior maxillary, and ethmoid sinus cavity airspace volumes (mouse: 0.6, 0.7, and 0.7 mm3, rat: 8.6, 7.7, and 7.0 mm3, guinea pig: 63.5, 46.6 mm3, and no ethmoid cavity, respectively). The mouse paranasal sinus cavities are similar to the corresponding rat cavities, with a reduction in size, while the corresponding maxillary sinus cavities in the guinea pig are different in size, location, and architecture. Also, the ethmoid sinus cavity is connected by a common drainage pathway to the posterior maxillary sinus in mouse and rat while a similar ethmoid sinus was not present in the guinea pig. We conclude that paranasal sinus cavity airspace opacity (2-D) or volume (3-D) determined by micro-CT scanning may be used to conduct longitudinal studies on the patency of the maxillary sinus cavities of rodents. This represents a potentially useful endpoint for developing and testing drugs in a small animal model of sinusitis. PMID:19794893

  7. X-ray phase-contrast micro-tomography and image analysis of wood microstructure

    International Nuclear Information System (INIS)

    Mayo, Sheridan; Evans, Robert; Chen, Fiona; Lagerstrom, Ryan

    2009-01-01

    A number of commercially important properties of wood depend on details of the wood micro- and nano- structure. CSIRO Forest Biosciences have developed SilviScan, an analytical instrument which uses a number of high-speed techniques for analyzing these properties. X-ray micro-tomographic analysis of wood samples provides detailed 3D reconstructions of the wood microstructure which can be used to validate results from SilviScan measurements. A series of wood samples was analysed using laboratory-based phase-contrast x-ray micro-tomography. Image analysis techniques were applied to the 3D data sets to extract significant features and statistical properties of the specimens. These data provide a means of verification of results from the more rapid SilviScan techniques, and will clarify the results of micro-diffraction studies of wood microfibrils.

  8. Dual energy X-ray absorptiometry spine scans to determine abdominal fat in post-menopausal women

    Science.gov (United States)

    Bea, J. W.; Blew, R. M.; Going, S. B.; Hsu, C-H; Lee, M. C.; Lee, V. R.; Caan, B.J.; Kwan, M.L.; Lohman, T. G.

    2016-01-01

    Body composition may be a better predictor of chronic disease risk than body mass index (BMI) in older populations. Objectives We sought to validate spine fat fraction (%) from dual energy X-ray absorptiometry (DXA) spine scans as a proxy for total abdominal fat. Methods Total body DXA scan abdominal fat regions of interest (ROI) that have been previously validated by magnetic resonance imaging were assessed among healthy, postmenopausal women who also had antero-posterior spine scans (n=103). ROIs were 1) lumbar vertebrae L2-L4 and 2) L2-Iliac Crest (L2-IC), manually selected by two independent raters, and 3) trunk, auto-selected by DXA software. Intra-class correlation coefficients evaluated intra and inter-rater reliability on a random subset (N=25). Linear regression models, validated by bootstrapping, assessed the relationship between spine fat fraction (%) and total abdominal fat (%) ROIs. Results Mean age, BMI and total body fat were: 66.1 ± 4.8y, 25.8 ± 3.8kg/m2 and 40.0 ± 6.6%, respectively. There were no significant differences within or between raters. Linear regression models adjusted for several participant and scan characteristics were equivalent to using only BMI and spine fat fraction. The model predicted L2-L4 (Adj. R2: 0.83) and L2-IC (Adj.R2:0.84) abdominal fat (%) well; the adjusted R2 for trunk fat (%) was 0.78. Model validation demonstrated minimal over-fitting (Adj. R2: 0.82, 0.83, and 0.77 for L2-L4, L2-IC, and trunk fat respectively). Conclusions The strong correlation between spine fat fraction and DXA abdominal fat measures make it suitable for further development in post-menopausal chronic disease risk prediction models. PMID:27416964

  9. Compaction bands in shale revealed through digital volume correlation of time-resolved X-ray tomography scans

    Science.gov (United States)

    McBeck, J.; Kobchenko, M.; Hall, S.; Tudisco, E.; Cordonnier, B.; Renard, F.

    2017-12-01

    Previous studies have identified compaction bands primarily within sandstones, and in fewer instances, within other porous rocks and sediments. Using Digital Volume Correlation (DVC) of X-ray microtomography scans, we find evidence of localized zones of high axial contraction that form tabular structures sub-perpendicular to maximum compression, σ1, in Green River shale. To capture in situ strain localization throughout loading, two shale cores were deformed in the HADES triaxial deformation apparatus installed on the X-ray microtomography beamline ID19 at the European Synchrotron Radiation Facility. In these experiments, we increase σ1 in increments of two MPa, with constant confining pressure (20 MPa), until the sample fails in macroscopic shear. After each stress step, a 3D image of the sample inside the rig is acquired at a voxel resolution of 6.5 μm. The evolution of lower density regions within 3D reconstructions of linear attenuation coefficients reveal the development of fractures that fail with some opening. If a fracture produces negligible dilation, it may remain undetected in image segmentation of the reconstructions. We use the DVC software TomoWarp2 to identify undetected fractures and capture the 3D incremental displacement field between each successive pair of microtomography scans acquired in each experiment. The corresponding strain fields reveal localized bands of high axial contraction that host minimal shear strain, and thus match the kinematic definition of compaction bands. The bands develop sub-perpendicular to σ1 in the two samples in which pre-existing bedding laminations were oriented parallel and perpendicular to σ1. As the shales deform plastically toward macroscopic shear failure, the number of bands and axial contraction within the bands increase, while the spacing between the bands decreases. Compaction band development accelerates the rate of overall axial contraction, increasing the mean axial contraction throughout the sample

  10. X-ray tube

    International Nuclear Information System (INIS)

    Webley, R.S.

    1975-01-01

    The object of the invention described is to provide an X-ray tube providing a scanned X-ray output which does not require a scanned electron beam. This is obtained by an X-ray tube including an anode which is rotatable about an axis, and a source of a beam of energy, for example an electron beam, arranged to impinge on a surface of the anode to generate X-radiation substantially at the region of incidence on the anode surface. The anode is rotatable about the axis to move the region of incidence over the surface. The anode is so shaped that the rotation causes the region of incidence to move in a predetermined manner relative to fixed parts of the tube so that the generated X-radiation is scanned in a predetermined manner relative to the tube. (UK)

  11. Damage in solids irradiated by a single shot of XUV free-electron laser: irreversible changes investigated using X-ray microdiffraction, atomic force microscopy and Nomarski optical microscopy

    Czech Academy of Sciences Publication Activity Database

    Pelka, J. B.; Sobierajski, R.; Klinger, D.; Paszkowicz, W.; Krzywinski, J.; Jurek, M.; Zymierska, D.; Wawro, A.; Petroutchik, A.; Juha, Libor; Hájková, Věra; Cihelka, Jaroslav; Chalupský, Jaromír; Burian, T.; Vyšín, Luděk; Toleikis, S.; Sokolowski-Tinten, K.; Stojanovic, N.; Zastrau, U.; London, R.; Hau-Riege, S.; Riekel, C.; Davies, R.; Burghammer, M.; Dynowska, E.; Szuszkiewicz, W.; Caliebe, W.; Nietubyc, R.

    2009-01-01

    Roč. 78, Suppl. 10 (2009), S46-S52 ISSN 0969-806X R&D Projects: GA AV ČR KAN300100702; GA MŠk LC510; GA MŠk(CZ) LC528; GA MŠk LA08024; GA AV ČR IAA400100701 Institutional research plan: CEZ:AV0Z10100523 Keywords : XUV FEL * radiation damage * ablation * structure modifications * x-ray diffraction Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.149, year: 2009

  12. Scanning electron microscopy and X-ray energy dispersive spectroscopy - useful tools in the analysis of pharmaceutical products

    Science.gov (United States)

    Sarecka-Hujar, Beata; Balwierz, Radoslaw; Ostrozka-Cieslik, Aneta; Dyja, Renata; Lukowiec, Dariusz; Jankowski, Andrzej

    2017-11-01

    The quality of the drug, its purity and identification of degradation products provide the highest quality of pharmaceutical products. The energy dispersive spectroscopy (EDS) method analyses the percentage of each element form as well as their distribution, and morphological characteristics of the drug form. We analysed the usefulness of EDS method in testing orally disintegrating tablets (ODT) with trimetazidine hydrochloride with high resolution scanning electron microscopy (SEM, SUPRA25 Carl Zeiss company) with spectrophotometer equipped with an X-ray energy dispersion (EDAX Company). The samples of the analysed tablets were imaged after applying conductive layers of gold on their surface. In the EDS analysis the compositions of each sample of the obtained tablets were observed to be virtually identical. The differences in the content of carbon and oxygen came from differences in the composition of particular tablets. The presence of gold in the composition resulted from the sputtering the surface of tablets with gold during the analysis. Knowing the composition of the tablet, SEM-EDS method helps to locate and identify the impurities and degradation products of the compounds, leading to a better understanding of the mechanisms of their formation.

  13. Classification of Multiple Types of Organic Carbon Composition in Atmospheric Particles by Scanning Transmission X-Ray Microscopy Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kilcoyne, Arthur L; Takahama, S.; Gilardoni, S.; Russell, L.M.; Kilcoyne, A.L.D.

    2007-05-16

    A scanning transmission X-ray microscope at the Lawrence Berkeley National Laboratory is used to measure organic functional group abundance and morphology of atmospheric aerosols. We present a summary of spectra, sizes, and shapes observed in 595 particles that were collected and analyzed between 2000 and 2006. These particles ranged between 0.1 and 12 mm and represent aerosols found in a large range of geographical areas, altitudes, and times. They include samples from seven different field campaigns: PELTI, ACE-ASIA, DYCOMS II, Princeton, MILAGRO (urban), MILAGRO (C-130), and INTEX-B. At least 14 different classes of organic particles show different types of spectroscopic signatures. Different particle types are found within the same region while the same particle types are also found in different geographical domains. Particles chemically resembling black carbon, humic-like aerosols, pine ultisol, and secondary or processed aerosol have been identified from functional group abundance and comparison of spectra with those published in the literature.

  14. Automated scanning electron microscopy and x-ray microanalysis for in situ quantification of gadolinium deposits in skin

    International Nuclear Information System (INIS)

    Thakral, Charu; Abraham, Jerrold L.

    2007-01-01

    Gadolinium (Gd) has been identified as a possible causative agent of an emerging cutaneous and systemic fibrosing disorder, nephrogenic systemic fibrosis (NSF), which can cause serious disability and even death. To date, there are only two known associations with this disorder - renal insufficiency and Gd enhanced magnetic resonance imaging (MRI). We developed an automated quantitative scanning electron microscopy (SEM) and Energy dispersive x-ray spectroscopy (EDS) method for Gd in tissue of NSF patients. Freshly cut paraffin block surfaces examined using the variable pressure mode under standardized conditions and random search of the tissue area allow in situ detection and semiquantitative morphometric (volumetric) analysis of insoluble higher atomic number features using backscattered electron imaging. We detected Gd ranging from 1 to 2270 cps/mm 2 in 57 cutaneous biopsies of NSF. Gd was associated with P, Ca, and usually Na in tissue deposits. Our method reproducibly determines the elemental composition, relative concentration, and spatial distribution of detected features within the tissue. However, we cannot detect features below our spatial resolution, nor concentrations below the detection limit of our SEM/EDS system. The findings confirm transmetallation and release of toxic Gd ions in NSF and allow dose-response analysis at the histologic level. (author)

  15. Charge state mapping of mixed valent iron and manganese mineral particles using Scanning Transmission X-ray Microscopy (STXM)

    International Nuclear Information System (INIS)

    Pecher, K.; Nealson, K.; Kneedler, E.; Rothe, J.; Meigs, G.; Warwick, T.; Tonner, B.

    2000-01-01

    The interfaces between solid mineral particles and water play a crucial role in partitioning and chemical transformation of many inorganic as well as organic pollutants in environmental systems. Among environmentally significant minerals, mixed-valent oxides and hydroxides of iron (e.g. magnetite, green rusts) and manganese (hausmanite, birnessite) have been recognized as particularly strong sorbents for metal ions. In addition, minerals containing Fe(II) have recently been proven to be powerful reductants for a wide range of pollutants. Chemical properties of these minerals strongly depend on the distribution and availability of reactive sites and little is known quantitatively about the nature of these sites. We have investigated the bulk distribution of charge states of manganese (Mn (II, III, IV)) and iron (Fe(II, III)) in single particles of natural manganese nodules and synthetic green rusts using Scanning Transmission X-ray SpectroMicroscopy (STXM). Pixel resolved spectra (XANES) extracted from stacks of images taken at different wave lengths across the metal absorption edge were fitted to total electron yield (TEY) spectra of single valent reference compounds. Two dimensional maps of bulk charge state distributions clearly reveal domains of different oxidation states within single particles of Mn-nodules and green rust precipitates. Changes of oxidation states of iron were followed as a result of reductive transformation of an environmental contaminant (CCl 4 ) using green rust as the only reductant

  16. Characterization of wood dust from furniture by scanning electron microscopy and energy-dispersive x-ray analysis.

    Science.gov (United States)

    Gómez Yepes, Milena Elizabeth; Cremades, Lázaro V

    2011-01-01

    Study characterized and analyzed form factor, elementary composition and particle size of wood dust, in order to understand its harmful health effects on carpenters in Quindío (Colombia). Once particle characteristics (size distributions, aerodynamic equivalent diameter (D(α)), elemental composition and shape factors) were analyzed, particles were then characterized via scanning electron microscopy (SEM) in conjunction with energy dispersive X-ray analysis (EDXRA). SEM analysis of particulate matter showed: 1) cone-shaped particle ranged from 2.09 to 48.79 µm D(α); 2) rectangular prism-shaped particle from 2.47 to 72.9 µm D(α); 3) cylindrically-shaped particle from 2.5 to 48.79 µm D(α); and 4) spherically-shaped particle from 2.61 to 51.93 µm D(α). EDXRA reveals presence of chemical elements from paints and varnishes such as Ca, K, Na and Cr. SEM/EDXRA contributes in a significant manner to the morphological characterization of wood dust. It is obvious that the type of particles sampled is a complex function of shapes and sizes of particles. Thus, it is important to investigate the influence of particles characteristics, morphology, shapes and D(α) that may affect the health of carpenters in Quindío.

  17. Value of chest X-ray combined with perfusion scan versus ventilation/perfusion scan in acute pulmonary embolism

    NARCIS (Netherlands)

    de Groot, M. R.; Turkstra, F.; van Marwijk Kooy, M.; Oostdijk, A. H.; van Beek, E. J.; Büller, H. R.

    2000-01-01

    The main purpose of ventilation scanning, as adjunct to perfusion lung scintigraphy, in acute pulmonary embolism is to allow for the classification of segmental perfusion defects as mismatched, which is generally accepted as proof for the presence of pulmonary embolism. We examined whether this

  18. Analytical electron microscope based on scanning transmission electron microscope with wavelength dispersive x-ray spectroscopy to realize highly sensitive elemental imaging especially for light elements

    International Nuclear Information System (INIS)

    Koguchi, Masanari; Tsuneta, Ruriko; Anan, Yoshihiro; Nakamae, Koji

    2017-01-01

    An analytical electron microscope based on the scanning transmission electron microscope with wavelength dispersive x-ray spectroscopy (STEM-WDX) to realize highly sensitive elemental imaging especially for light elements has been developed. In this study, a large-solid-angle multi-capillary x-rays lens with a focal length of 5 mm, long-time data acquisition (e.g. longer than 26 h), and a drift-free system made it possible to visualize boron-dopant images in a Si substrate at a detection limit of 0.2 atomic percent. (paper)

  19. Characterisation of corrosion processes of using electron micro-probe, scanning probe microscopy and synchrotron-generated x-ray fluorescence imaging

    International Nuclear Information System (INIS)

    Neufeld, A.K.; Cole, I.S.; Furman, S.A.; Isaacs, H.S.

    2002-01-01

    Full text: With recent advances in computerized technology, the study of chemical reactions can now be visualized as they occur in real time and has resulted in analytical techniques with orders of magnitude greater sensitivity and resolution. This ability offers the corrosion scientist a unique opportunity to study the processes relevant to degradation science which could only be theoretically considered. Neufeld el al (1,2) have attempted to explain in great detail the mechanism of corrosion initiation of zinc by using X-ray micro-probe, Scanning Kelvin probe, and more recently by using synchrotron-generated X-rays and X-ray fluorescence imaging. New results are presented from the synchrotron studies where the transport of ions in-situ has been investigated. The synthesis of information from the techniques will also be discussed in its relevance to atmospheric corrosion processes. Copyright (2002) Australian Society for Electron Microscopy Inc

  20. Study of non stoichiometric pure and Zr-Doped yttria surfaces by X-Ray photoelectron spectroscopy and scanning electron microscopy

    International Nuclear Information System (INIS)

    Gautier, M.; Duraud, J.P.; Jollet, F.; Thromat, N.; Maire, P.; Le Gressus, C.

    1988-01-01

    Surfaces of oxygen-deficient yttrium oxide, pure or Zr-doped, have been studied by means of X-ray photoelectron spectroscopy and scanning electron microscopy. The bulk local geometric structure of these non-stoichiometric compounds was previously determined around the Y atom by an EXAFS (Extended X-ray absorption fine structure) study. The local electronic structure around both Y and O, at the surface, was investigated by X-ray photoelectron spectroscopy. The partial transfer of the electronic distribution between the anion and the cation was probed using the Auger parameter. Coupling of these experiments with microscopic observations show that: - In the pure oxygen-deficient sample, the concentration of oxygen vacancies appears to be increased at the grain boundaries. - The Auger parameter shows upon reduction an evolution of the Y-O bond towards a more covalent one, this evolution being modulated with the presence of Zr0 2

  1. Correlative analysis of longitudinal changes in bronchoalveolar lavage, 67Gallium scanning, serum angiotensin-converting enzyme activity, chest x-ray, and pulmonary function tests in pulmonary sarcoidosis

    International Nuclear Information System (INIS)

    Okada, Mitsuko; Takahashi, Hideki; Nukiwa, Toshihiro; Matsuoka, Rokuro; Furuse, Makoto; Kitamura, Satoshi; Kira, Shiro.

    1987-01-01

    Despite the relatively high cost and complicated procedures, Gallium-67 ( 67 Ga) scanning and bronchoalveolar lavage (BAL) are increasingly advocated as more sensitive indicators of disease activity in sarcoidosis than chest X-ray and serum angiotensin-converting enzyme activity (SACE). To evaluate the clinical usefulness of 67 Ga scanning and BAL, we followed 31 patients with pulmonary sarcoidosis, using these four parameters, at 9- to 24-month intervals over periods of 9 to 48 months. We obtained 68 complete evaluations. Close correlations were observed among chest X-ray, 67 Ga scanning, SACE, and the percent-age of lymphocytes in BAL fluid (p 67 Ga scanning and BAL are not necessarily indicated in the long-term management of pulmonary sarcoidosis. (author)

  2. Diagnosis of electrocution: The application of scanning electron microscope and energy-dispersive X-ray spectroscopy in five cases.

    Science.gov (United States)

    Visonà, S D; Chen, Y; Bernardi, P; Andrello, L; Osculati, A

    2018-03-01

    Deaths from electricity, generally, do not have specific findings at the autopsy. The diagnosis is commonly based on the circumstances of the death and the morphologic findings, above all the current mark. Yet, the skin injury due to an electrocution and other kinds of thermal injuries often cannot be differentiated with certainty. Therefore, there is a great interest in finding specific markers of electrocution. The search for the metallization of the skin through Scanning Electron Microscope equipped with Energy Dispersive X-Ray Spectroscopy (EDS) probe is of special importance in order to achieve a definite diagnosis in case of suspected electrocution. We selected five cases in which the electrocution was extremely likely considering the circumstances of the death. In each case a forensic autopsy was performed. Then, the skin specimens were stained with Hematoxylin Eosin and Perls. On the other hand, the skin lesions were examined with a scanning electron microscope equipped with EDS probe in order to evaluate the morphological ultrastructural features and the presence of deposits on the surface of the skin. The typical skin injury of the electrocution (current mark) were macroscopically detected in all of the cases. The microscopic examination of the skin lesions revealed the typical spherical vacuoles in the horny layer and, in the epidermis, the elongation of the cell nuclei as well as necrosis. Perls staining was negative in 4 out 6 cases. Ultrastructural morphology revealed the evident vacuolization of the horny layer, elongation of epidermic cells, coagulation of the elastic fibers. In the specimens collected from the site of contact with the conductor of case 1 and 2, the presence of the Kα peaks of iron was detected. In the corresponding specimens taken from cases 2, 4, 5 the microanalysis showed the Kα peaks of titanium. In case 3, titanium and carbon were found. In the suspicion of electrocution, the integrated use of different tools is recommended

  3. Determination of the Effective Detector Area of an Energy-Dispersive X-Ray Spectrometer at the Scanning Electron Microscope Using Experimental and Theoretical X-Ray Emission Yields.

    Science.gov (United States)

    Procop, Mathias; Hodoroaba, Vasile-Dan; Terborg, Ralf; Berger, Dirk

    2016-12-01

    A method is proposed to determine the effective detector area for energy-dispersive X-ray spectrometers (EDS). Nowadays, detectors are available for a wide range of nominal areas ranging from 10 up to 150 mm2. However, it remains in most cases unknown whether this nominal area coincides with the "net active sensor area" that should be given according to the related standard ISO 15632, or with any other area of the detector device. Moreover, the specific geometry of EDS installation may further reduce a given detector area. The proposed method can be applied to most scanning electron microscope/EDS configurations. The basic idea consists in a comparison of the measured count rate with the count rate resulting from known X-ray yields of copper, titanium, or silicon. The method was successfully tested on three detectors with known effective area and applied further to seven spectrometers from different manufacturers. In most cases the method gave an effective area smaller than the area given in the detector description.

  4. Skull x-ray

    Science.gov (United States)

    X-ray - head; X-ray - skull; Skull radiography; Head x-ray ... There is low radiation exposure. X-rays are monitored and regulated to provide the minimum amount of radiation exposure needed to produce the image. Most ...

  5. Neck x-ray

    Science.gov (United States)

    X-ray - neck; Cervical spine x-ray; Lateral neck x-ray ... There is low radiation exposure. X-rays are monitored so that the lowest amount of radiation is used to produce the image. Pregnant women and ...

  6. Using the scanning electron microscope and energy dispersive x-ray spectrometer to do mineral identification and compositional point counting on unconsolidated marine sediments

    International Nuclear Information System (INIS)

    Robson, S.H.

    1982-01-01

    This paper describes a rapid and accurate method of point-counting sands and silt-size in unconsolidated open-ocean sediments. As traditional techniques for this operation cannot be employed on the fine-grained material which frequently forms the bulk of deep sea marine sediments, an alternative method has been sought. The method described makes use of equipment known as QUANTEX-RAY comprising a computerised data acquisition and reduction system designed for use in X-ray energy spectrometry and used in conjunction with a scanning electron microscope (SEM). Grains that cannot be identified by their visual morphology in the scanning electron microscope are analysed by X-ray spectrometry. Spectra are acquired in 200 seconds or less and processed by a sequence of software routines under semi-automatic control producing a listing of oxide concentrations as the final result. Each user must customize the control programme and operating conditions to suit his requirements

  7. Prospective study of the reproducibility of X-rays and CT scans for assessing trochanteric fracture comminution in the elderly: a series of 110 cases.

    Science.gov (United States)

    Isida, Ronald; Bariatinsky, Varenka; Kern, Gregory; Dereudre, Gregoire; Demondion, Xavier; Chantelot, Christophe

    2015-10-01

    Trochanteric fractures are common but difficult to analyse in the elderly on plain X-rays. Fixation failures are related to the severity of the comminution, but comminution and the degree of instability are not easy to determine on standard X-rays. Use of computed tomography (CT) improves assessment of complex fractures, but this finding has not been confirmed versus intraoperative data. The primary objective of this prospective study was to determine the error rate when evaluating comminution on X-rays and CT scans. The secondary objectives were to determine whether CT data on comminution and stability were consistent with intraoperative findings and to define the fracture characteristics. Standard X-ray assessment underestimates the complexity of trochanteric fractures and is not very reproducible. Between January and December 2013, all proximal femur fractures in the trochanter area of patients aged 75 years or older (mean age 85) were analysed prospectively with standard X-rays and computed tomography (CT). One hundred and ten patients (88 women and 22 men) with trochanteric fractures were included in the study. Fracture stability was evaluated using the Müller AO classification; the other fracture characteristics were evaluated independently. A senior surgeon evaluated the anonymised X-rays. A radiologist specialised in musculoskeletal imaging interpreted the CT scan images. All patients underwent total hip arthroplasty (110 patients) and 104 fixations of the greater trochanter. The X-ray and CT findings were compared to the intraoperative findings (gold standard) to evaluate their reproducibility. The reproducibility of the X-ray evaluation was poor for comminution, with a kappa of 0.4, sensitivity of 44 % and a negative predictive value of 29 % but a positive predictive value and specificity of 100 %. The CT evaluation had a kappa of 0.94, sensitivity of 95 % and negative predictive value of 79 %. According to the AO classification, unstable fractures were

  8. At the limit of polychromatic microdiffraction

    Energy Technology Data Exchange (ETDEWEB)

    Ice, Gene E., E-mail: IceGE@ornl.gov [MST Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6118 (United States); Pang, Judy W.L.; Larson, Bennett C.; Budai, John D.; Tischler, Jonathan Z. [MST Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6118 (United States); Choi, Jae-Young [Pohang Accelerator Laboratory, Pohang (Korea, Republic of); Liu Wenjun; Liu Chian; Assoufid, Lahsen; Shu Deming; Khounsary, Ali [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2009-10-25

    With a high-energy 3rd generation source like the Advanced Photon Source (APS), it is possible to push the performance of polychromatic microdiffraction far beyond current levels and to approach the intrinsic limit of the technique based on sample damage and the diffraction limit of X-rays. We describe ongoing efforts to improve the spatial, temporal and momentum transfer resolution of polychromatic microdiffraction on beamline 34-ID-E at the APS. The goal of this effort is to provide high-resolution images of 3D crystal structures over sufficient volumes and with sufficient detail to clarify the underlying physics of inhomogeneous structure and evolution on mesoscopic length scales. The performance of a high-speed amorphous Si area detector system and the ongoing development of advanced focusing optics will be described and discussed in light of the ultimate limits set by the physics of X-rays and materials, and in light of opportunities to field specialized insertion devices and optics for polychromatic microdiffraction.

  9. Method for dose-reduced 3D catheter tracking on a scanning-beam digital x-ray system using dynamic electronic collimation

    Science.gov (United States)

    Dunkerley, David A. P.; Funk, Tobias; Speidel, Michael A.

    2016-03-01

    Scanning-beam digital x-ray (SBDX) is an inverse geometry x-ray fluoroscopy system capable of tomosynthesis-based 3D catheter tracking. This work proposes a method of dose-reduced 3D tracking using dynamic electronic collimation (DEC) of the SBDX scanning x-ray tube. Positions in the 2D focal spot array are selectively activated to create a regionof- interest (ROI) x-ray field around the tracked catheter. The ROI position is updated for each frame based on a motion vector calculated from the two most recent 3D tracking results. The technique was evaluated with SBDX data acquired as a catheter tip inside a chest phantom was pulled along a 3D trajectory. DEC scans were retrospectively generated from the detector images stored for each focal spot position. DEC imaging of a catheter tip in a volume measuring 11.4 cm across at isocenter required 340 active focal spots per frame, versus 4473 spots in full-FOV mode. The dose-area-product (DAP) and peak skin dose (PSD) for DEC versus full field-of-view (FOV) scanning were calculated using an SBDX Monte Carlo simulation code. DAP was reduced to 7.4% to 8.4% of the full-FOV value, consistent with the relative number of active focal spots (7.6%). For image sequences with a moving catheter, PSD was 33.6% to 34.8% of the full-FOV value. The root-mean-squared-deviation between DEC-based 3D tracking coordinates and full-FOV 3D tracking coordinates was less than 0.1 mm. The 3D distance between the tracked tip and the sheath centerline averaged 0.75 mm. Dynamic electronic collimation can reduce dose with minimal change in tracking performance.

  10. DESIGN NOTE: From nanometre to millimetre: a feasibility study of the combination of scanning probe microscopy and combined optical and x-ray interferometry

    Science.gov (United States)

    Yacoot, Andrew; Koenders, Ludger

    2003-09-01

    This feasibility study investigates the potential combination of an x-ray interferometer and optical interferometer as a one-dimensional long range high resolution scanning stage for an atomic force microscope (AFM) in order to overcome the problems of non-linearity associated with conventional AFMs and interferometers. Preliminary results of measurements of the uniformity of the period of a grating used as a transfer standards show variations in period at the nanometre level.

  11. Calcium detection in secretion granules of avian oviduct by scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDX)

    International Nuclear Information System (INIS)

    Makita, T.; Hatsuoka, M.; Sugi, Y.

    1983-01-01

    Secretion granules in the shell gland, isthmus, and albumin-secreting region of the hen oviduct were analyzed with WET-scanning electron microscopy (SEM) and EDX, a combination of wide-angle backscattered electron detector (BED) and energy-dispersive X-ray microanalyzer (EDX). Glutaraldehyde-fixed but unhydrated, unstained, and uncoated samples were analyzed; Ca was localized in all secretion granules in all three sections of the hen oviduct studied

  12. A critical evaluation of quantitative and qualitative analysis by means of energy-dispersive X-ray measurement in a scanning electron microscope

    International Nuclear Information System (INIS)

    Blum, F.

    1978-12-01

    The bombardment of solids in the scanning electron microscope (SEM) by means of energetic electrons results in the generation and emission of various signals that carry information about the characteristics of the target. Those signals which are related to the present context, e.g. the secondary and backscattered electrons as well as the characteristic and continuous X-radiation, are discussed. The brief description of the SEM and the energy dispersive X-ray (EDX) spectrometer is followed by a discussion of various obstacles affecting the reliability of X-ray intensity measurements and data reduction procedures. The observed relative X-ray intensities from pure elements were determined as a function of the atomic number. These functional dependence curves, which were established under standard conditions, served as reliable reference data for the purpose of quantitative corrections. The performance limits of a typical SEM-EDX analytical system were assessed by analysing quantitatively various types of standard reference materials and inhomogeneous samples. A brief discussion of the X-ray source is given in order to estimate whether the recorded X-ray intensities are representative of the electron bombarded areas. This is of importance when microanalyses are performed on inclusions or near phase boundaries. The use of oxide glasses which are suitable to evaluate and interrelative SEM-EDX systems is discussed. The analysis of metal alloys, which developed exaggerated surface topography when sputtered in an ion microprobe mass analyser or glow discharge lamp, is presented as a typical example for the investigation of rough-surface samples [af

  13. X-ray powder diffraction in forensic practice

    Czech Academy of Sciences Publication Activity Database

    Kotrlý, M.; Bezdička, Petr

    2006-01-01

    Roč. 13, č. 3 (2006), s. 153-155 ISSN 1210-8529 R&D Projects: GA MV RN20052005001 Institutional research plan: CEZ:AV0Z40320502 Keywords : X-ray powder microdiffraction * pigments * forensic practice Subject RIV: CA - Inorganic Chemistry

  14. Improving the Raster Scanning Methods used with X-ray Fluorescence to See the Ancient Greek Text of Archimedes (SULI Paper)

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, Isabella B.; /Norfolk State U. /SLAC, SSRL

    2006-01-04

    X-ray fluorescence is being used to detect the ancient Greek copy of Archimedes work. The copy of Archimedes text was erased with a weak acid and written over to make a prayer book in the Middle Ages. The ancient parchment, made of goat skin, has on it some of Archimedes most valuable writings. The ink in the text contains iron which will fluoresce under x-ray radiation. My research project deals with the scanning and imaging process. The palimpsest is put in a stage that moves in a raster format. As the beam hits the parchment, a germanium detector detects the iron atoms and discriminates against other elements. Since the computer scans in both forwards and backwards directions, it is imperative that each row of data lines up exactly on top of the next row. There are several parameters to consider when scanning the parchment. These parameters include: speed, count time, shutter time, x-number of points, and acceleration. Formulas were made to relate these parameters together. During the actual beam time of this project, the scanning was very slow going; it took 30 hours to scan 1/2 of a page. Using the formulas, the scientists doubled distance and speed to scan the parchment faster; however, the grey scaled data was not lined up properly causing the images to look blurred. My project was is to find out why doubling the parameters caused blurred images, and to fix the problem if it is fixable.

  15. Comparison of vessel contrast measured with a scanning-beam digital x-ray system and an image intensifier/television system

    International Nuclear Information System (INIS)

    Speidel, Michael A.; Wilfley, Brian P.; Heanue, Joseph A.; Betts, Timothy D.; Van Lysel, Michael S.

    2001-01-01

    Vessel contrast was measured in the fluoroscopic images produced by a scanning-beam digital x-ray (SBDX) system and an image intensifier/television (II/TV) based system. The SBDX system electronically scans a series of pencil x-ray beams across the patient, each of which is directed at a distant small-area detector array. The reduction in detected scatter achieved with this geometry was expected to provide an increase in image contrast. Vessel contrast was evaluated from images of a phantom containing iodinated tubes. The vessels were inserted into an acrylic stack to provide a patient-mimicking scattering medium. Vessel diameter ranged from 0.3 to 3.1 mm. Images were acquired at 100 kVp with the SBDX and II/TV systems and averaged to reduce x-ray noise. The II/TV system was operated in the 6-in. image intensifier mode with an anti-scatter grid. The increase in contrast in the SBDX images, expressed as a ratio of the measured SBDX and II/TV contrasts, ranged from 1.63 to 1.79 for individual vessels. This agreed well with a prediction of the contrast improvement ratio for this experiment, based on measurements of the scatter fraction, object-plane line spread functions, and consideration of the source spectrum and detector absorption properties. The predicted contrast improvement ratio for SBDX relative to II/TV images was 1.62 to 1.77

  16. Determination of some elements along the length of pine needles by means of the scanning energy dispersive x-ray fluorescence (EDXRF) method

    International Nuclear Information System (INIS)

    Viksna, A.; Katkevics, J.; Nulle, S.

    1998-01-01

    The scanning energy dispersive X-ray fluorescence (EDXDF) is used to measure the distribution of trace elements along the length of single pine needles. The current set up allows simultaneous determination up to 15 trace elements. The pilot experiments showed that the distribution of some elements varied along length of the pine needle. Concentration variations of trace elements with the needle age and needle position within the foliage crown were also observed. This could be one way of studying the annual physiological cycle of needles. The scanning EDXRF method was compared with graphite furnace atomic absorption spectrometry (GFAAS). (authors)

  17. Solid-state characterization of triamcinolone acetonide nanosuspensiones by X-ray spectroscopy, ATR Fourier transforms infrared spectroscopy and differential scanning calorimetry analysis

    Directory of Open Access Journals (Sweden)

    Eva García-Millán

    2017-12-01

    Full Text Available The data presented in this article describe the physical state of the triamcinolone acetonide (TA in nanosuspension stabilized with polyvinyl alcohol (PVA and poloxamer 407 (PL. The data were assessed by X-ray spectroscopy, ATR Fourier transforms infrared spectroscopy measurements (FTIR, and Differential scanning calorimetry (DSC analysis. PVA, PL and polymeric mixture (PVA and PL were compared with nanosuspension and the interactions between drug triamcinolone acetonide and polymers were studied. The data are related and are complementary to the research article entitle “Improved release of triamcinolone acetonide from medicated soft contact lenses loaded with drug nanosuspensions” (García-Millán et al., 2017 [1]. Keywords: Triamcinolona acetonide nanosuspensiones, X-ray spectroscopy, FTIR spectroscopy, DSC

  18. Thermal dehydration of cobalt and zinc formate dihydrates by controlled-rate thermogravimetry (CRTG) and simultaneous X-ray diffractometry-differential scanning calorimetry (XRD-DSC)

    International Nuclear Information System (INIS)

    Arii, T.; Kishi, A.

    1999-01-01

    The thermal dehydration study of the similar hydrated salts, cobalt and zinc formate dihydrates, have been carried out successfully by means of X-ray diffractometry-differential scanning calorimetry (XRD-DSC) and controlled-rate thermogravimetry (CRTG). X-ray diffraction analysis recorded simultaneously indicates that the resulting anhydrous product, Zn(HCO 2 ) 2 , was crystalline, while Co(HCO 2 ) 2 was amorphous.The XRD-DSC data are proven to be invaluable in verifying the interpretation of overlapping processes in thermal events. In addition, these differences in the resulting anhydrous products can be explained from kinetic analysis results based on the CRTG data. The kinetic mechanism governing the dehydration of zinc formate dihydrate is a nucleation and growth process, while in the case of cobalt formate dihydrate a phase boundary controlled reaction is the governing mechanism. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  19. Application of in-situ nano-scanning calorimetry and X-ray diffraction to characterize Ni–Ti–Hf high-temperature shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    McCluskey, Patrick J., E-mail: mccluske@ge.com [GE Global Research, One Research Circle, Niskayuna, NY 12309 (United States); Xiao, Kechao [School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA 02138 (United States); Gregoire, John M. [Joint Center for Artificial Photosynthesis, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Dale, Darren [Cornell High Energy Synchrotron Source, Ithaca, NY 14853 (United States); Vlassak, Joost J. [School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA 02138 (United States)

    2015-03-10

    Combinatorial nanocalorimetry and synchrotron X-ray diffraction were combined to study the martensite–austenite (M–A) phase transformation behavior of Ni–Ti–Hf shape memory alloys. A thin-film library of Ni–Ti–Hf samples with a range of compositions was deposited on a parallel nano-scanning calorimeter device using sputter deposition. Crystallization of each amorphous as-deposited sample by local heating at approximately 10{sup 4} K/s produced a nanoscale grain structure of austenite and martensite. Individual samples were then cycled through the M–A transformation, while the transformation enthalpy was measured by nanocalorimetry and the low- and high-temperature phase compositions were determined by X-ray diffraction. The techniques enable correlation of the observed behavior during thermal cycling with the thermodynamic and structural properties of the samples.

  20. Nanofocusing Parabolic Refractive X-Ray Lenses

    International Nuclear Information System (INIS)

    Schroer, C.G.; Kuhlmann, M.; Hunger, U.T.; Guenzler, T.F.; Kurapova, O.; Feste, S.; Lengeler, B.; Drakopoulos, M.; Somogyi, A.; Simionovici, A. S.; Snigirev, A.; Snigireva, I.

    2004-01-01

    Parabolic refractive x-ray lenses with short focal distance can generate intensive hard x-ray microbeams with lateral extensions in the 100nm range even at short distance from a synchrotron radiation source. We have fabricated planar parabolic lenses made of silicon that have a focal distance in the range of a few millimeters at hard x-ray energies. In a crossed geometry, two lenses were used to generate a microbeam with a lateral size of 330nm by 110nm at 25keV in a distance of 41.8m from the synchrotron radiation source. First microdiffraction and fluorescence microtomography experiments were carried out with these lenses. Using diamond as lens material, microbeams with lateral size down to 20nm and below are conceivable in the energy range from 10 to 100keV

  1. X-ray Microprobe for Fluorescence and Diffraction Analysis

    International Nuclear Information System (INIS)

    Ice, G.E.

    2005-01-01

    microdiffraction analysis techniques some of the most powerful techniques available for the nondestructive measurement of chemical and crystallographic distributions in materials. This unit reviews the physics, advantages, and scientific applications of hard x-ray (E > 3 keV) microfluorescence and x-ray microdiffraction analysis. Because practical x-ray microbeam instruments are extremely rare, a special emphasis will be placed on instrumentation, accessibility, and experimental needs which justify the use of x-ray microbeam analysis.

  2. A Scanning Transmission X-ray Microscopy Study of Cubic and Orthorhombic C3A and Their Hydration Products in the Presence of Gypsum

    Directory of Open Access Journals (Sweden)

    Vanessa Rheinheimer

    2016-08-01

    Full Text Available This paper shows the microstructural differences and phase characterization of pure phases and hydrated products of the cubic and orthorhombic (Na-doped polymorphs of tricalcium aluminate (C3A, which are commonly found in traditional Portland cements. Pure, anhydrous samples were characterized using scanning transmission X-ray microscopy (STXM, X-ray photoelectron spectroscopy (XPS and X-ray diffraction (XRD and demonstrated differences in the chemical and mineralogical composition as well as the morphology on a micro/nano-scale. C3A/gypsum blends with mass ratios of 0.2 and 1.9 were hydrated using a water/C3A ratio of 1.2, and the products obtained after three days were assessed using STXM. The hydration process and subsequent formation of calcium sulfate in the C3A/gypsum systems were identified through the changes in the LIII edge fine structure for Calcium. The results also show greater Ca LII binding energies between hydrated samples with different gypsum contents. Conversely, the hydrated samples from the cubic and orthorhombic C3A at the same amount of gypsum exhibited strong morphological differences but similar chemical environments.

  3. Rigorous quantitative elemental microanalysis by scanning electron microscopy/energy dispersive x-ray spectrometry (SEM/EDS) with spectrum processing by NIST DTSA-II

    Science.gov (United States)

    Newbury, Dale E.; Ritchie, Nicholas W. M.

    2014-09-01

    Quantitative electron-excited x-ray microanalysis by scanning electron microscopy/silicon drift detector energy dispersive x-ray spectrometry (SEM/SDD-EDS) is capable of achieving high accuracy and high precision equivalent to that of the high spectral resolution wavelength dispersive x-ray spectrometer even when severe peak interference occurs. The throughput of the SDD-EDS enables high count spectra to be measured that are stable in calibration and resolution (peak shape) across the full deadtime range. With this high spectral stability, multiple linear least squares peak fitting is successful for separating overlapping peaks and spectral background. Careful specimen preparation is necessary to remove topography on unknowns and standards. The standards-based matrix correction procedure embedded in the NIST DTSA-II software engine returns quantitative results supported by a complete error budget, including estimates of the uncertainties from measurement statistics and from the physical basis of the matrix corrections. NIST DTSA-II is available free for Java-platforms at: http://www.cstl.nist.gov/div837/837.02/epq/dtsa2/index.html).

  4. Examining the ground layer of St. Anthony from Padua 19th century oil painting by Raman spectroscopy, scanning electron microscopy and X-ray diffraction

    International Nuclear Information System (INIS)

    Vančo, Ľubomír; Kadlečíková, Magdaléna; Breza, Juraj; Čaplovič, Ľubomír; Gregor, Miloš

    2013-01-01

    Highlights: ► Raman spectroscopic examination of uncovered and covered paint layers of a real painting. ► Deconvolution of Raman peaks of lead white. ► Comparison of results with energy-dispersive analysis and X-ray diffraction. - Abstract: In this paper we studied the material composition of the ground layer of a neoclassical painting. We used Raman spectroscopy (RS) as a prime method. Thereafter scanning electron microscopy combined with energy dispersive spectroscopy (SEM–EDS) and X-ray powder diffraction (XRD) were employed as complementary techniques. The painting inspected was of the side altar in King St. Stephen's Church in Galanta (Slovakia), signed and dated by Jos. Chr. Mayer 1870. Analysis was carried out on both covered and uncovered ground layers. Four principal compounds (barite, lead white, calcite, dolomite) and two minor compounds (sphalerite, quartz) were identified. This ground composition is consistent with the 19th century painting technique used in Central Europe consisting of white pigments and white fillers. Transformation of lead white occurred under laser irradiation. Subdominant Raman peaks of the components were measured. The observed results elucidate useful partnership of RS and SEM–EDS measurements supported by X-ray powder diffraction as well as possibilities and limitations of non-destructive analysis of covered lower layers by RS.

  5. Mapping Henry: Synchrotron-sourced X-ray fluorescence mapping and ultra-high-definition scanning of an early Tudor portrait of Henry VIII

    Energy Technology Data Exchange (ETDEWEB)

    Dredge, Paula; Ives, Simon [Art Gallery of New South Wales (AGNSW), Sydney, NSW (Australia); Howard, Daryl L.; Spiers, Kathryn M. [Australian Synchrotron, Clayton, VIC (Australia); Yip, Andrew [Art Gallery of New South Wales (AGNSW), Sydney, NSW (Australia); University of New South Wales, Laboratory for Innovation in Galleries, Libraries, Archives and Museums (iGLAM), National Institute for Experimental Arts, Sydney, NSW (Australia); Kenderdine, Sarah [University of New South Wales, Laboratory for Innovation in Galleries, Libraries, Archives and Museums (iGLAM), National Institute for Experimental Arts, Sydney, NSW (Australia)

    2015-11-15

    A portrait of Henry VIII on oak panel c. 1535 has recently undergone technical examination to inform questions regarding authorship and the painting's relationship to a group of similar works in the collections of the National Portrait Gallery, London, and the Society of Antiquaries. Due to previous conservation treatments of the painting, the conventional transmission X-radiograph image was difficult to interpret. As a result, the painting underwent high-definition X-ray fluorescence (XRF) elemental mapping on the X-ray fluorescence microscopy beamline of the Australian Synchrotron. Scans were conducted at 12.6 and 18.5 keV, below and above the lead (Pb) L edges, respectively. Typical scan parameters were 120 μm pixel size at 7 ms dwell time, with the largest scan covering an area 545 x 287 mm{sup 2} collected in 23 h (10.8 MP). XRF mapping of the panel has guided the conservation treatment of the painting and the revelation of previously obscured features. It has also provided insight into the process of making of the painting. The informative and detailed elemental maps, alongside ultra-high-definition scans of the painting undertaken before and after varnish and over-paint removal, have assisted in comparison of the finely painted details with the London paintings. The resolution offered by the combination of imaging techniques identifies pigment distribution at an extremely fine scale, enabling a new understanding of the artist's paint application. (orig.)

  6. Mapping Henry: Synchrotron-sourced X-ray fluorescence mapping and ultra-high-definition scanning of an early Tudor portrait of Henry VIII

    International Nuclear Information System (INIS)

    Dredge, Paula; Ives, Simon; Howard, Daryl L.; Spiers, Kathryn M.; Yip, Andrew; Kenderdine, Sarah

    2015-01-01

    A portrait of Henry VIII on oak panel c. 1535 has recently undergone technical examination to inform questions regarding authorship and the painting's relationship to a group of similar works in the collections of the National Portrait Gallery, London, and the Society of Antiquaries. Due to previous conservation treatments of the painting, the conventional transmission X-radiograph image was difficult to interpret. As a result, the painting underwent high-definition X-ray fluorescence (XRF) elemental mapping on the X-ray fluorescence microscopy beamline of the Australian Synchrotron. Scans were conducted at 12.6 and 18.5 keV, below and above the lead (Pb) L edges, respectively. Typical scan parameters were 120 μm pixel size at 7 ms dwell time, with the largest scan covering an area 545 x 287 mm 2 collected in 23 h (10.8 MP). XRF mapping of the panel has guided the conservation treatment of the painting and the revelation of previously obscured features. It has also provided insight into the process of making of the painting. The informative and detailed elemental maps, alongside ultra-high-definition scans of the painting undertaken before and after varnish and over-paint removal, have assisted in comparison of the finely painted details with the London paintings. The resolution offered by the combination of imaging techniques identifies pigment distribution at an extremely fine scale, enabling a new understanding of the artist's paint application. (orig.)

  7. Utilization of dual-source X-ray tomography for reduction of scanning time of wooden samples

    Czech Academy of Sciences Publication Activity Database

    Fíla, Tomáš; Kumpová, Ivana; Jandejsek, Ivan; Kloiber, Michal; Tureček, D.; Vavřík, Daniel

    2015-01-01

    Roč. 10, č. 5 (2015), C05008 ISSN 1748-0221. [International workshop on radiation imaging detectors. Trieste, 22.06.2014-26.06.2014] R&D Projects: GA MK(CZ) DF11P01OVV001 Keywords : computerized tomography (CT) * computed radiography (CR) * overall mechanics design * inspection with X-rays Subject RIV: AL - Art, Architecture, Cultural Heritage Impact factor: 1.310, year: 2015 http://iopscience.iop.org/article/10.1088/1748-0221/10/05/C05008

  8. X-ray Fluorescence Core Scanning of Oman Drilling Project Holes BT1B and GT3A Cores on D/V CHIKYU

    Science.gov (United States)

    Johnson, K. T. M.; Kelemen, P. B.; Michibayashi, K.; Greenberger, R. N.; Koepke, J.; Beinlich, A.; Morishita, T.; Jesus, A. P. M.; Lefay, R.

    2017-12-01

    The JEOL JSX-3600CA1 energy dispersive X-ray fluorescence core logger (XRF-CL) on the D/V Chikyu provides quantitative element concentrations of scanned cores. Scans of selected intervals are made on an x-y grid with point spacing of 5 mm. Element concentrations for Si, Al, Ti, Ca, Mg, Mn, Fe, Na, K, Cr, Ni, S and Zn are collected for each point on the grid. Accuracy of element concentrations provided by the instrument software is improved by applying empirical correction algorithms. Element concentrations were collected for 9,289 points from twenty-seven core intervals in Hole BT1B (basal thrust) and for 6,389 points from forty core intervals in Hole GT3A (sheeted dike-gabbro transition) of the Oman Drilling Project on the D/V Chikyu XRF-CL during Leg 2 of the Oman Drilling Project in August-September, 2017. The geochemical data are used for evaluating downhole compositional details associated with lithological changes, unit contacts and mineralogical variations and are particularly informative when plotted as concentration contour maps or downhole concentration diagrams. On Leg 2 additional core scans were made with X-ray Computed Tomography (X-ray CT) and infrared images from the visible-shortwave infrared imaging spectroscopy (IR) systems on board. XRF-CL, X-ray CT and IR imaging plots used together provide detailed information on rock compositions, textures and mineralogy that assist naked eye visual observations. Examples of some uses of XRF-CL geochemical maps and downhole data are shown. XRF-CL and IR scans of listvenite clearly show zones of magnesite, dolomite and the Cr-rich mica, fuchsite that are subdued in visual observation, and these scans can be used to calculate variations in proportions of these minerals in Hole BT1B cores. In Hole GT3A XRF-CL data can be used to distinguish compositional changes in different generations of sheeted dikes and gabbros and when combined with visual observations of intrusive relationships the detailed geochemical

  9. X-Ray

    Science.gov (United States)

    ... enema. What you can expect During the X-ray X-rays are performed at doctors' offices, dentists' offices, ... as those using a contrast medium. Your child's X-ray Restraints or other techniques may be used to ...

  10. Abdominal x-ray

    Science.gov (United States)

    Abdominal film; X-ray - abdomen; Flat plate; KUB x-ray ... There is low radiation exposure. X-rays are monitored and regulated to provide the minimum amount of radiation exposure needed to produce the image. Most ...

  11. Chest X-Ray

    Medline Plus

    Full Text Available ... talk with you about chest radiography also known as chest x-rays. Chest x-rays are the ... treatment for a variety of lung conditions such as pneumonia, emphysema and cancer. A chest x-ray ...

  12. X-ray astronomy

    International Nuclear Information System (INIS)

    Giacconi, R.; Gursky, H.

    1974-01-01

    This text contains ten chapters and three appendices. Following an introduction, chapters two through five deal with observational techniques, mechanisms for the production of x rays in a cosmic setting, the x-ray sky and solar x-ray emission. Chapters six through ten include compact x-ray sources, supernova remnants, the interstellar medium, extragalactic x-ray sources and the cosmic x-ray background. Interactions of x rays with matter, units and conversion factors and a catalog of x-ray sources comprise the three appendices. (U.S.)

  13. Development of an image intensifier-TV digital imaging system with a multiple-slit scanning x-ray beam

    International Nuclear Information System (INIS)

    Kume, Y.; Doi, K.

    1986-01-01

    The authors are developing a new digital x-ray imaging system employing a multiple-slit assembly (MSA) and an image intensifier (II)-TV digital system. The final image consisting of primary radiation is digitally reconstructed from multiple slit images obtained with the MSA. This system can significantly reduce the scattered radiation from an object and the veiling glare from II-TV system. The quality of the reconstructed image is related to many parameters, such as slit width, the number of image frames, and the image reconstruction algorithm. They present the effect of these various parameters on basic imaging properties and the practicability of the method in comparison with conventional wide beam imaging

  14. The use of synchrotron radiation for trace element analysis and element mapping by scanning X-ray fluorescence

    International Nuclear Information System (INIS)

    Davies, S.T.

    1983-01-01

    Synchrotron Radiation excited X-Ray Fluorescence is a potentially powerful tool for the routine quantitative chemical analysis of materials, with minimum detection limits typically of the order of a tenth of a ppm, and with the added advantages of simultaneous multi-element detection capability, spatial resolution on a micron scale, large signal to noise ratios and short analysis times. This paper presents a brief review of the use of Synchrotron Radiation in Trace Element Analysis and discusses the requirements for a microprobe for chemical analysis utilising SR. Data obtained at the Synchrotron Radiation Source, Daresbury Laboratory include XRF spectra of standard reference materials and an application of the technique to the study of ion implanted layers in semiconductors is outlined. (author)

  15. A comparison of rapid-scanning X-ray fluorescence mapping and magnetic resonance imaging to localize brain iron distribution

    International Nuclear Information System (INIS)

    McCrea, Richard P.E.; Harder, Sheri L.; Martin, Melanie; Buist, Richard; Nichol, Helen

    2008-01-01

    The clinical diagnosis of many neurodegenerative disorders relies primarily or exclusively on observed behaviors rather than measurable physical tests. One of the hallmarks of Alzheimer disease (AD) is the presence of amyloid-containing plaques associated with deposits of iron, copper and/or zinc. Work in other laboratories has shown that iron-rich plaques can be seen in the mouse brain in vivo with magnetic resonance imaging (MRI) using a high-field strength magnet but this iron cannot be visualized in humans using clinical magnets. To improve the interpretation of MRI, we correlated iron accumulation visualized by X-ray fluorescence spectroscopy, an element-specific technique with T1, T2, and susceptibility weighted MR (SWI) in a mouse model of AD. We show that SWI best shows areas of increased iron accumulation when compared to standard sequences

  16. Microdiffraction imaging—a suitable tool to characterize organic electronic devices

    Directory of Open Access Journals (Sweden)

    Clemens Liewald

    2015-10-01

    Full Text Available Tailoring device architecture and active film morphology is crucial for improving organic electronic devices. Therefore, knowledge about the local degree of crystallinity is indispensable to gain full control over device behavior and performance. In this article, we report on microdiffraction imaging as a new tool to characterize organic thin films on the sub-micron length scale. With this technique, which was developed at the ID01 beamline at the ESRF in Grenoble, a focused X-ray beam (300 nm diameter, 12.5 keV energy is scanned over a sample. The beam size guarantees high resolution, while material and structure specificity is gained by the choice of Bragg condition.Here, we explore the possibilities of microdiffraction imaging on two different types of samples. First, we measure the crystallinity of a pentacene thin film, which is partially buried beneath thermally deposited gold electrodes and a second organic film of fullerene C60. The data shows that the pentacene film structure is not impaired by the subsequent deposition and illustrates the potential of the technique to characterize artificial structures within fully functional electronic devices. Second, we investigate the local distribution of intrinsic polymorphism of pentacene thin films, which is very likely to have a substantial influence on electronic properties of organic electronic devices. An area of 40 μm by 40 μm is scanned under the Bragg conditions of the thin-film phase and the bulk phase of pentacene, respectively. To find a good compromise between beam footprint and signal intensity, third order Bragg condition is chosen. The scans show complementary signal distribution and hence demonstrate details of the crystalline structure with a lateral resolution defined by the beam footprint (300 nm by 3 μm.The findings highlight the range of applications of microdiffraction imaging in organic electronics, especially for organic field effect transistors and for organic solar

  17. Chest X-Ray

    Medline Plus

    Full Text Available ... about chest radiography also known as chest x-rays. Chest x-rays are the most commonly performed x-ray exams and use a very small dose of ... of the inside of the chest. A chest x-ray is used to evaluate the lungs, heart and ...

  18. X-ray sky

    International Nuclear Information System (INIS)

    Gruen, M.; Koubsky, P.

    1977-01-01

    The history is described of the discoveries of X-ray sources in the sky. The individual X-ray detectors are described in more detail, i.e., gas counters, scintillation detectors, semiconductor detectors, and the principles of X-ray spectrometry and of radiation collimation aimed at increased resolution are discussed. Currently, over 200 celestial X-ray sources are known. Some were identified as nebulae, in some pulsations were found or the source was identified as a binary star. X-ray bursts of novae were also observed. The X-ray radiation is briefly mentioned of spherical star clusters and of extragalactic X-ray sources. (Oy)

  19. Development of Kossel micro-diffraction for strain and stress analysis at the micrometer scale: applications to crystalline materials

    International Nuclear Information System (INIS)

    Bouscaud, D.

    2012-01-01

    X-ray diffraction is a non-destructive method frequently used in materials science to analyse the stress state at a macroscopic scale. Due to the growing complexity of new materials and their applications, it is necessary to know the strain and stress state at a lower scale. Thus, a Kossel micro-diffraction experimental set-up was developed inside a scanning electron microscope. It allows to obtain the crystallographic orientation as well as the strains and stresses within a volume of a few cubic micrometers. Some experiments were also performed using a synchrotron radiation. An experimental procedure was developed to optimize the acquisition of Kossel line patterns and their post-processing. The stress calculation from Kossel patterns was validated by comparing the stress state of single crystals during in situ mechanical loading, obtained by Kossel micro-diffraction and with classical diffraction methods. Then Kossel micro-diffraction was applied to polycrystalline samples by gradually decreasing the grain size. Intergranular stress heterogeneities were for example measured in an interstitial-free steel. Experiments were finally carried out in thin layer samples representative of microelectronic components. (author)

  20. Characterization of particulate matter from the Metropolitan Zone of the Valley of Mexico by scanning electron microscopy and energy-dispersive x-ray analysis

    International Nuclear Information System (INIS)

    Martiez, T.; Lartigue, J.; Avila-Perez, P.; Carapio-Morales, L.; Zarazua, G.; Tejeda, S.

    2005-01-01

    The urban air pollution issue is a concern in many Mega cities, because of hazardous effect to human health. The Metropolitan Zone of the Valley of Mexico (MZMV) is one of the ten largest urban areas around the World with a population of 24.4 million people by the year 2000. One or the 'six criteria pollutants' regulated by Norm (because the hazardous effect to human health) are those commonly designed as Total Suspended Particles (TSP) and Respirable Particles (RP) lower than 10 μm (coarse, PM10 and fine PM2.5). Particulate matter consists of solids or liquid aerosol particles suspended in the air and has diverse chemical composition related to the sources. Under ambient conditions of sampling analysis particulate matter exists almost exclusively in solid phase but can include liquid aerosols such as the heavier components of diesel combustion products and nitric acid. In general particulate matter includes dust, dirt, soot, smoke and liquid droplets emitted in the air by sources such as factories, power plants, cars, fire, construction activities, aircrafts and winds blown dust. In this work the survey of TSP particles an PM10 was carried out with an automatic high volume sampler with an average flow rate of 1.5 m 3 min -1 during 24 h in five monitoring stations of the national network system chosen trying to cover the fourth cardinal directions and the central zone: Xalostoc (XAL) at NE; Tlanepantla (TLA) at NW; Merced (MER) at the downtown; Cerro de la Estrella (CES) at SE and Pedregal (PED) at SW. A sample of l cm 2 was cut from each filter and mounted with a graphite tape on an aluminum sample-holder. The analysis of 100 induvidual particles of each sample were done by scanning electron microscopy and energy-dispersive X-ray microanalysis (EDX). The analysis was performed using a scanning electron microscope PHILLIPS Model XL-30. X-ray analysis is carried out with an energy-dispersive Si(Li) detector Model Saphire, SUTW (super ultra thin window), allowing

  1. Estimation of stature and length of limb segments in children and adolescents from whole-body dual-energy X-ray absorptiometry scans

    International Nuclear Information System (INIS)

    Abrahamyan, Davit O.; Gazarian, Aram; Braillon, Pierre M.

    2008-01-01

    Anthropometric standards vary among different populations, and renewal of these reference values is necessary. To produce formulae for the assessment of limb segment lengths. Whole-body dual-energy X-ray absorptiometry scans of 413 Caucasian children and adolescents (170 boys, 243 girls) aged from 6 to 18 years were retrospectively analysed. Body height and the lengths of four long bones (humerus, radius, femur and tibia) were measured. The validity (concurrent validity) and reproducibility (intraobserver reliability) of the measurement technique were tested. High linear correlations (r > 0.9) were found between the mentioned five longitudinal measures. Corresponding linear regression equations for the most important relationships were derived. The tests of validity and reproducibility revealed a good degree of precision of the applied technique. The reference formulae obtained from the analysis of whole-body DEXA scans will be useful for anthropologists, and forensic and nutrition specialists, as well as for prosthetists and paediatric orthopaedic surgeons. (orig.)

  2. Dimyristoylphosphatidylcholine/C16 : 0-ceramide binary liposomes studied by differential scanning calorimetry and wide- and small-angle X-ray scattering

    DEFF Research Database (Denmark)

    Holopainen, J. M.; Lemmich, Jesper; Richter, F.

    2000-01-01

    hydrated binary membranes composed of dimyristoylphosphatidylcholine (DMPC) and N-palmitoyl-ceramide (C16:0-ceramide, up to a mole fraction X-cer = 0.35) were resolved in further detail by high-sensitivity differential scanning calorimetry (DSC) and x-ray diffraction. Both methods reveal very strong...... hysteresis in the thermal phase behavior of ceramide-containing membranes. A partial phase diagram was constructed based on results from a combination of these two methods. DSC heating scans show that with increased X-cer the pretransition temperature T-P first increases, whereafter at X-cer > 0.06 it can...... no longer be resolved. The main transition enthalpy Delta H remains practically unaltered while its width increases significantly, and the upper phase boundary temperature of the mixture shifts to similar to 63 degrees C at X-cer = 0.30. Upon cooling, profound phase separation is evident, and for all...

  3. High resolution microdiffraction studies using synchrotron radiation

    Science.gov (United States)

    Spolenak, R.; Tamura, N.; Valek, B. C.; MacDowell, A. A.; Celestre, R. S.; Padmore, H. A.; Brown, W. L.; Marieb, T.; Batterman, B. W.; Patel, J. R.

    2002-04-01

    The advent of third generation synchrotron light sources in combination with x-ray focusing devices such as Kirkpatrick-Baez mirrors make Laue diffraction on a submicron length scale possible. Analysis of Laue images enables us to determine the deviatoric part of the 3D strain tensor to an accuracy of 2×10-4 in strain with a spatial resolution comparable to the grain size in our thin films. In this paper the application of x-ray microdiffraction to the temperature dependence of the mechanical behavior of a sputtered blanket Cu film and of electroplated damascene Cu lines will be presented. Microdiffraction reveals very large variations in the strain of a film or line from grain to grain. When the strain is averaged over a macroscopic region the results are in good agreement with direct macroscopic stress measurements. However, the strain variations are so large that in some cases in which the average stress is tensile there are some grains actually under compression. The full implications of these observations are still being considered, but it is clear that the mechanical properties of thin film materials are now accessible with new visibility.

  4. X-ray radiotherapy

    International Nuclear Information System (INIS)

    Tronc, D.

    1995-01-01

    major medical equipment companies manufacture X-ray therapy systems - General Electric, Mitsubishi, Philips, Siemens and Varian. In this crowded marketplace where the useful lifespan of machines exceeds 10 years, purchase prices are less than $1 million per unit. X-ray therapy remains the most common and cheapest form of accelerator therapy. Ongoing technical developments aim to achieve better matching of dose delivery to tumour volume; multileaf collimators shape the X-ray field to the biomedical target, and portal imaging from behind the patient can control positioning and dose delivery. Combined compact X-ray sources are being developed with both treatment and realtime dosimetry control, incorporating CT scanning into one single device. Integrated diagnosis and therapy is the direction for R&D investment, and this should lead to smaller hospital space requirements, lower operating costs, and elimination of external data handling, resulting in simpler and more cost effective clinical procedures

  5. Einstein pictures the x-ray sky

    International Nuclear Information System (INIS)

    Hartline, B.K.

    1979-01-01

    The second High Energy Astronomy Observatory (HEAO-2, Einstein) is revolutionizing x-ray astronomy just as its namesake revolutionized physics. Earlier x-ray observatories, including HEAO-1, were designed to scan the sky for x-ray emitters. With Einstein, the challenge has shifted from discovering x-ray sources to understanding the processes producing the x-rays. But having 500 times the sensitivity of previous detectors, Einstein makes more than its share of discoveries, too. For example, it sees distant quasars and clusters of galaxies that can barely be detected by the largest optical telescopes

  6. Si(Li) X-ray detector

    International Nuclear Information System (INIS)

    Yuan Xianglin; Li Zhiyong; Hong Xiuse

    1990-08-01

    The fabrication technology of the 10∼80 mm 2 Si(Li) X-ray detectors are described and some problems concerning technology and measurement are discussed. The specifications of the detectors are shown as well. The Si(Li) X-ray detector is a kind of low energy X-ray detectors. Owing to very high energy resolution, fine linearity and high detection efficiency in the range of low energy X-rays, it is widely used in the fields of nuclear physics, medicine, geology and environmental protection, etc,. It is also a kernel component for the scanning electron microscope and X-ray fluorescence analysis systems

  7. EPS composition and calcification potential of tufa-dominating cyanobacteria investigated by Scanning Transmission X-ray Microscopy (STXM) and Laser Scanning Microscopy (LSM)

    Science.gov (United States)

    Zippel, Barbara; Dynes, James J.; Obst, Martin; Lawrence, John R.; Neu, Thomas R.

    2010-05-01

    Tufa deposits in freshwater habitats are the result of calcium carbonate precipitation within interfacial microbial ecosystems. Calcite precipitation is influenced by the saturation index and the occurrence of extracellular polymeric substances (EPS) which are produced by a variety of microorganisms. In theory, the first important step of biologically induced calcification processes is the adsorption of calcium ions by extracellular polymeric substances (EPS) produced by cyanobacteria. In the present study we take advantage of Laser Scanning Microscopy (LSM) and combine it with Synchrotron imaging using Scanning Transmission X-ray Microscopy (STXM). STXM represents a technique that allows simultaneous analysis of inorganic and organic constituents as a scale of 50 nm. By means of STXM it is possible to differentiate between calcium carbonate phases at the Ca L-edge. Furthermore, STXM has also been used at the C K-edge to map the major biomolecules (proteins, lipids, and polysaccharides). The purpose of this study is to find out if there are differences in calcium adsorption depending on specific composition of the EPS produced by filamentous cyanobacteria isolated from a German hard water creek (Westerhöfer Bach, Harz Mountains). The goal was to elucidate the potential of biofilms constituents, including microbial cell surfaces as well as extracellular polymeric substances, in triggering the formation of calcium carbonate in tufa systems. For this purpose three filamentous cyanobacteria (Pseudanabaena sp., Leptolyngbya sp. and Nostoc sp.) were cultivated in creek-adapted as well as standard media (BG11) on polycarbonate slides. In situ EPS composition was detected by means of fluorescence lectin-binding approach (FLBA) using 23 commercially available lectins with different specificities for mono- and disaccharides and amino sugars. For CaCO3 nucleation experiments cyanobacterial biofilms grown on polycarbonate slides were deposited in NaHCO3/CaCl2 solutions

  8. Frequent Computed Tomography Scanning Due to Incomplete Three-View X-Ray Imaging of the Cervical Spine

    NARCIS (Netherlands)

    Saltzherr, Teun Peter; Beenen, Ludo F. M.; Reitsma, Johannes B.; Luitse, Jan S. K.; Vandertop, W. Peter; Goslings, J. Carel

    2010-01-01

    Background: Conventional C-spine imaging (3-view series) is still widely used in trauma patients, although the utilization of computed tomography (CT) scanning is increasing. The aim of this study was to analyze the value of conventional radiography and the frequency of subsequent CT scanning due to

  9. Characterization of gold mineralizations of Cuba by means of scanning electron microscopy with X-ray analyzer and con focal Raman microscopy

    International Nuclear Information System (INIS)

    Toledo Sanchez, Carlos Alfredo; Santa Cruz Pacheco, Maria; Lopez Kramer, Jesus M.; Lisabet Sarracen, Evelio; Aguirre Guillot, Graciela; Capote Marrero, Carbeny; Llanes Castro, Angelica I.; Milia Gonzalez, Ines

    2016-01-01

    The technology selection for gold ore processing requires the characterization, not only of the gold carrier minerals but also its associations, so it is necessary to find out the mineral nature, morphology, particle size, purity and gold concentration, other factors to consider are liberation grade, minerals in association, surface accessibility and form to present themselves. In this research it is exposed the utilization of the optical and electron microscopy, with Raman and X ray micro analyzers, in order to obtain useful information about different gold mineralization of the country, including those of Delita, Meloneras-Descanso, Oro Jacinto and Oro Barita. It describes how the scanning electron microscopy with x-ray analyzer allowed the study of gold particles from nanometer order, determining its size, morphology, surface condition and purity. It was found that in some places the gold grains have a purity exceeding 99%, while in others the content of silver, copper and mercury are increasing, surpassing gold just 30% in some cases, resulting in other mineralogical forms. It was also observed variability in the degree of release of the gold particles. Moreover Raman con focal microscope allowed analyzes minerals micrometric volumes under study, particularly rock-forming. Being a structural technique, it was possible to identify minerals without causing damage to the samples, which usually is not achieved with other techniques. (Author)

  10. In Depth Analyses of LEDs by a Combination of X-ray Computed Tomography (CT) and Light Microscopy (LM) Correlated with Scanning Electron Microscopy (SEM).

    Science.gov (United States)

    Meyer, Jörg; Thomas, Christian; Tappe, Frank; Ogbazghi, Tekie

    2016-06-16

    In failure analysis, device characterization and reverse engineering of light emitting diodes (LEDs), and similar electronic components of micro-characterization, plays an important role. Commonly, different techniques like X-ray computed tomography (CT), light microscopy (LM) and scanning electron microscopy (SEM) are used separately. Similarly, the results have to be treated for each technique independently. Here a comprehensive study is shown which demonstrates the potentials leveraged by linking CT, LM and SEM. In depth characterization is performed on a white emitting LED, which can be operated throughout all characterization steps. Major advantages are: planned preparation of defined cross sections, correlation of optical properties to structural and compositional information, as well as reliable identification of different functional regions. This results from the breadth of information available from identical regions of interest (ROIs): polarization contrast, bright and dark-field LM images, as well as optical images of the LED cross section in operation. This is supplemented by SEM imaging techniques and micro-analysis using energy dispersive X-ray spectroscopy.

  11. Examining the ground layer of St. Anthony from Padua 19th century oil painting by Raman spectroscopy, scanning electron microscopy and X-ray diffraction

    Science.gov (United States)

    Vančo, Ľubomír; Kadlečíková, Magdaléna; Breza, Juraj; Čaplovič, Ľubomír; Gregor, Miloš

    2013-01-01

    In this paper we studied the material composition of the ground layer of a neoclassical painting. We used Raman spectroscopy (RS) as a prime method. Thereafter scanning electron microscopy combined with energy dispersive spectroscopy (SEM-EDS) and X-ray powder diffraction (XRD) were employed as complementary techniques. The painting inspected was of the side altar in King St. Stephen's Church in Galanta (Slovakia), signed and dated by Jos. Chr. Mayer 1870. Analysis was carried out on both covered and uncovered ground layers. Four principal compounds (barite, lead white, calcite, dolomite) and two minor compounds (sphalerite, quartz) were identified. This ground composition is consistent with the 19th century painting technique used in Central Europe consisting of white pigments and white fillers. Transformation of lead white occurred under laser irradiation. Subdominant Raman peaks of the components were measured. The observed results elucidate useful partnership of RS and SEM-EDS measurements supported by X-ray powder diffraction as well as possibilities and limitations of non-destructive analysis of covered lower layers by RS.

  12. Direct comparison between X-ray nanotomography and scanning electron microscopy for the microstructure characterization of a solid oxide fuel cell anode

    International Nuclear Information System (INIS)

    Quey, R.; Suhonen, H.; Laurencin, J.; Cloetens, P.; Bleuet, P.

    2013-01-01

    X-ray computed nanotomography (nano-CT) and scanning electron microscopy (SEM) have been applied to characterize the microstructure of a Solid Oxide Fuel Cell (SOFC) anode. A direct comparison between the results of both methods is conducted on the same region of the microstructure to assess the spatial resolution of the nano-CT microstructure, SEM being taken as a reference. A registration procedure is proposed to find out the position of the SEM image within the nano-CT volume. It involves a second SEM observation, which is taken along an orthogonal direction and gives an estimate reference SEM image position, which is then refined by an automated optimization procedure. This enables an unbiased comparison between the cell porosity morphologies provided by both methods. In the present experiment, nano-CT is shown to underestimate the number of pores smaller than 1 μm and overestimate the size of the pores larger than 1.5 μm. - Highlights: ► X-ray computed nanotomography (nano-CT) and SEM are used to characterize an SOFC anode. ► A methodology is proposed to compare the nano-CT and SEM data on the same region. ► The spatial resolution of the nano-CT data is assessed from that comparison

  13. A simple method for detection of gunshot residue particles from hands, hair, face, and clothing using scanning electron microscopy/wavelength dispersive X-ray (SEM/WDX).

    Science.gov (United States)

    Kage, S; Kudo, K; Kaizoji, A; Ryumoto, J; Ikeda, H; Ikeda, N

    2001-07-01

    We devised a simple and rapid method for detection of gunshot residue (GSR) particles, using scanning electron microscopy/wavelength dispersive X-ray (SEM/WDX) analysis. Experiments were done on samples containing GSR particles obtained from hands, hair, face, and clothing, using double-sided adhesive coated aluminum stubs (tape-lift method). SEM/WDX analyses for GSR were carried out in three steps: the first step was map analysis for barium (Ba) to search for GSR particles from lead styphnate primed ammunition, or tin (Sn) to search for GSR particles from mercury fulminate primed ammunition. The second step was determination of the location of GSR particles by X-ray imaging of Ba or Sn at a magnification of x 1000-2000 in the SEM, using data of map analysis, and the third step was identification of GSR particles, using WDX spectrometers. Analysis of samples from each primer of a stub took about 3 h. Practical applications were shown for utility of this method.

  14. Decomposition of tetraalkylammonium thiotungstates characterized by thermoanalysis, mass spectrometry, X-ray diffractometry and scanning electron microscopy

    International Nuclear Information System (INIS)

    Poisot, M.; Bensch, W.

    2007-01-01

    Thermal decomposition reactions of tetraalkylammonium thiotungstates (R 4 N) 2 WS 4 (R = methyl to heptyl), were investigated with DSC and DTA-TG coupled with mass spectroscopy (MS). The results demonstrate that the complexity of thermal decomposition reactions is significantly influenced by the alkyl group, i.e., more complex steps are observed for the materials with longer alkyl chain lengths. Tetraethyl and tetrapropyl complexes show reversible and irreversible phase transitions detected by DSC experiments combined with thermodiffractometry. The tetrapentyl compound undergoes an irreversible phase transition while the tetraheptyl sample exhibits a glass-like transition and melting prior to decomposition. The whole series of compounds decompose without forming sulfur rich WS n (n = 3 or 4) intermediates. The final WS 2 products are nearly stoichiometric for R = methyl to pentyl but for hexyl and heptyl samples the sulfur content is significantly reduced with a W/S ratio of about 1.5. The residual carbon and hydrogen contents increase in the final decomposition products in the same order as the number of C atoms in R 4 N increase. For the N content no clear trend is obvious. A general thermal decomposition mechanism is suggested which follows a bimolecular nucleophilic substitution reaction. In the SEM images only for R = heptyl the formation of macro-pores with a sponge-like morphology is seen, but for the other precursors compact materials are formed which in part display a well developed morphology. X-ray diffraction analysis of the final products shows the formation of amorphous WS 2 up to the tetrapentyl precursor. But for the tetrahexyl and tetraheptyl materials the W:S ratio is significantly smaller than 1:2 and large amounts of C and H are determined by chemical analyses. In accordance with previously reported results it can be assumed that a carbosulfide phase is formed by a mixed C-W-S sandwich layered structure

  15. Speeding up the Raster Scanning Methods used in theX-Ray Fluorescence Imaging of the Ancient Greek Text of Archimedes

    Energy Technology Data Exchange (ETDEWEB)

    Turner, Manisha; /Norfolk State U.

    2006-08-24

    Progress has been made at the Stanford Linear Accelerator Center (SLAC) toward deciphering the remaining 10-20% of ancient Greek text contained in the Archimedes palimpsest. The text is known to contain valuable works by the mathematician, including the ''Method of Mechanical Theorems, the Equilibrium of Planes, On Floating Bodies'', and several diagrams as well. The only surviving copy of the text was recycled into a prayer book in the Middle Ages. The ink used to write on the goat skin parchment is partly composed of iron, which is visible by x-ray radiation. To image the palimpsest pages, the parchment is framed and placed in a stage that moves according to the raster method. When an x-ray beam strikes the parchment, the iron in the ink is detected by a germanium detector. The resulting signal is converted to a gray-scale image on the imaging program, Rasplot. It is extremely important that each line of data is perfectly aligned with the line that came before it because the image is scanned in two directions. The objectives of this experiment were to determine the best parameters for producing well-aligned images and to reduce the scanning time. Imaging half a page of parchment during previous beam time for this project was achieved in thirty hours. Equations were produced to evaluate count time, shutter time, and the number of pixels in this experiment. On Beamline 6-2 at the Stanford Synchrotron Radiation Laboratory (SSRL), actual scanning time was reduced by one fourth. The remaining pages were successfully imaged and sent to ancient Greek experts for translation.

  16. Speeding up the Raster Scanning Methods used in the X-Ray Fluorescence Imaging of the Ancient Greek Text of Archimedes

    International Nuclear Information System (INIS)

    Turner, Manisha; Norfolk State U.

    2006-01-01

    Progress has been made at the Stanford Linear Accelerator Center (SLAC) toward deciphering the remaining 10-20% of ancient Greek text contained in the Archimedes palimpsest. The text is known to contain valuable works by the mathematician, including the ''Method of Mechanical Theorems, the Equilibrium of Planes, On Floating Bodies'', and several diagrams as well. The only surviving copy of the text was recycled into a prayer book in the Middle Ages. The ink used to write on the goat skin parchment is partly composed of iron, which is visible by x-ray radiation. To image the palimpsest pages, the parchment is framed and placed in a stage that moves according to the raster method. When an x-ray beam strikes the parchment, the iron in the ink is detected by a germanium detector. The resulting signal is converted to a gray-scale image on the imaging program, Rasplot. It is extremely important that each line of data is perfectly aligned with the line that came before it because the image is scanned in two directions. The objectives of this experiment were to determine the best parameters for producing well-aligned images and to reduce the scanning time. Imaging half a page of parchment during previous beam time for this project was achieved in thirty hours. Equations were produced to evaluate count time, shutter time, and the number of pixels in this experiment. On Beamline 6-2 at the Stanford Synchrotron Radiation Laboratory (SSRL), actual scanning time was reduced by one fourth. The remaining pages were successfully imaged and sent to ancient Greek experts for translation

  17. Exceptional case of bone resorption in an osteo-odonto-keratoprosthesis. A scanning electron microscopy and X-ray microanalysis study

    International Nuclear Information System (INIS)

    Caiazza, S.; Falcinelli, G.; Pintucci, S.

    1990-01-01

    This article reports the findings of investigations on an osteo-odonto-keratoprosthesis in an eye that was enucleated owing to severe complications 12 years after implantation. Scanning electron microscopy and electron probe X-ray microanalysis showed extensive resorption of the bone that was used as a supporting element in the kind of transcorneal prosthesis developed by Strampelli. The destructive process, in addition to surgical trauma, has been associated with the early and recurrent bacterial infections relating to the presence of Staphylococcus epidermidis. The need to control the occurrence of primary bacterial infections in traumatized tissues during operations as well as further infectious situations, given the enhanced antibiotic-resistence of bacteria, is emphasized

  18. Revealing the synergetic effects in Ni nanoparticle-carbon nanotube hybrids by scanning transmission X-ray microscopy and their application in the hydrolysis of ammonia borane.

    Science.gov (United States)

    Zhao, Guanqi; Zhong, Jun; Wang, Jian; Sham, Tsun-Kong; Sun, Xuhui; Lee, Shuit-Tong

    2015-06-07

    The hybrids of carbon nanotubes (CNTs) and the supported Ni nanoparticles (NPs) have been studied by scanning transmission X-ray microscopy (STXM) and tested by the hydrolysis reaction of ammonia borane (AB, NH3BH3). Data clearly showed the existence of a strong interaction between Ni NPs and thin CNTs (C-O-Ni bonds), which favored the tunable (buffer) electronic structure of Ni NPs facilitating the catalytic process. The hydrolysis process of AB confirmed the hypothesis that the hybrids with a strong interfacial interaction would show superior catalytic performance, while the hybrids with a weak interfacial interaction show poor performance. Our results provide a wealth of detailed information regarding the electronic structure of the NP-CNT hybrids and provide guidance towards the rational design of high-performance catalysts for energy applications.

  19. Exceptional case of bone resorption in an osteo-odonto-keratoprosthesis. A scanning electron microscopy and X-ray microanalysis study

    Energy Technology Data Exchange (ETDEWEB)

    Caiazza, S.; Falcinelli, G.; Pintucci, S. (Istituto Superiore di Sanita, Rome (Italy))

    1990-01-01

    This article reports the findings of investigations on an osteo-odonto-keratoprosthesis in an eye that was enucleated owing to severe complications 12 years after implantation. Scanning electron microscopy and electron probe X-ray microanalysis showed extensive resorption of the bone that was used as a supporting element in the kind of transcorneal prosthesis developed by Strampelli. The destructive process, in addition to surgical trauma, has been associated with the early and recurrent bacterial infections relating to the presence of Staphylococcus epidermidis. The need to control the occurrence of primary bacterial infections in traumatized tissues during operations as well as further infectious situations, given the enhanced antibiotic-resistence of bacteria, is emphasized.

  20. Three-dimensional fabric analysis for anisotropic material using multi-directional scanning line. Application to x-ray CI image

    International Nuclear Information System (INIS)

    Takemura, Takato; Takahashi, Manabu; Oda, Masanobu; Hirai, Hidekazu; Murakoshi, Atsushi; Miura, Makoto

    2007-01-01

    In microscopic analysis, materials are characterized by a three-dimensional (3D) microstructure which is composed of constituent elements such as pores, voids and cracks. A material's mechanical and hydrological properties are strongly dependent on its microstructure. In order to discuss the mechanics of geomaterials on a microstructural level, detailed information on their 3D macrostructure is required. X-ray computed tomography is a powerful non-destructive method for determining the microstructure, however it can be difficult to determine a material's microstructure from the reconstructed 3D image. We successfully evaluated the 3D microstructural anisotropy of porous and fibrous materials using a multi-directional scanning line method that employs straightforward image analysis, and its results were visualized using stereonet projection. (author)

  1. Studies on silica deposition in sugarcane (Saccharum spp. ) using scanning electron microscopy, energy-dispersive X-ray analysis, neutron activation analysis, and light microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kaufman, P B; Takeoka, Y; Carlson, T J; Bigelow, W C; Jones, J D; Moore, P H; Ghosheh, N S [Michigan Univ., Ann Arbor (USA)

    1979-06-01

    Marked differences in silicon content in internodes of two sugarcane cultivars as revealed by neutron activation analysis, were closely correlated with number of silica cells per unit area in the epidermal system of the internodes of the two cultivars, as indicated by scanning electron microscopy and X-ray analysis. Light microscopy of epidermal peels showed that silica cells are capable of transmitting significantly more light through themselves than do other types of adjacent epidermal cells. This could be of great significance to total amount of carbon fixed by photosynthesizing mesophyll cells in leaves and cortical cells in internodes below the epidermis, especially in sugarcane cultivars with high densities of silica cells in their shoot epidermal systems. This has led to propose a window hypothesis, which indicates that silica cells in sugarcane, and in other grasses, act like windows in the epidermal system, allowing more light to be transmitted to photosynthetic tissue below than would occur if silica cells were absent.

  2. Structure, Mobility, and Composition of Transition Metal Catalyst Surfaces. High-Pressure Scanning Tunneling Microscopy and Ambient-Pressure X-ray Photoelectron Spectroscopy Studies

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zhongwei [Univ. of California, Berkeley, CA (United States)

    2013-12-06

    Surface structure, mobility, and composition of transition metal catalysts were studied by high-pressure scanning tunneling microscopy (HP-STM) and ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) at high gas pressures. HP-STM makes it possible to determine the atomic or molecular rearrangement at catalyst surfaces, particularly at the low-coordinated active surface sites. AP-XPS monitors changes in elemental composition and chemical states of catalysts in response to variations in gas environments. Stepped Pt and Cu single crystals, the hexagonally reconstructed Pt(100) single crystal, and Pt-based bimetallic nanoparticles with controlled size, shape and composition, were employed as the model catalysts for experiments in this thesis.

  3. Si Nanoribbons on Ag(110) Studied by Grazing-Incidence X-Ray Diffraction, Scanning Tunneling Microscopy, and Density-Functional Theory: Evidence of a Pentamer Chain Structure.

    Science.gov (United States)

    Prévot, Geoffroy; Hogan, Conor; Leoni, Thomas; Bernard, Romain; Moyen, Eric; Masson, Laurence

    2016-12-30

    We report a combined grazing incidence x-ray diffraction (GIXD), scanning tunneling microscopy (STM), and density-functional theory (DFT) study which clearly elucidates the atomic structure of the Si nanoribbons grown on the missing-row reconstructed Ag(110) surface. Our study allows us to discriminate between the theoretical models published in the literature, including the most stable atomic configurations and those based on a missing-row reconstructed Ag(110) surface. GIXD measurements unambiguously validate the pentamer model grown on the reconstructed surface, obtained from DFT. This pentamer atomistic model accurately matches the high-resolution STM images of the Si nanoribbons adsorbed on Ag(110). Our study closes the long-debated atomic structure of the Si nanoribbons grown on Ag(110) and definitively excludes a honeycomb structure similar to that of freestanding silicene.

  4. Nanometer-scale, quantitative composition mappings of InGaN layers from a combination of scanning transmission electron microscopy and energy dispersive x-ray spectroscopy

    International Nuclear Information System (INIS)

    Pantzas, K; Voss, P L; Ougazzaden, A; Patriarche, G; Largeau, L; Mauguin, O; Troadec, D; Gautier, S; Moudakir, T; Suresh, S

    2012-01-01

    Using elastic scattering theory we show that a small set of energy dispersive x-ray spectroscopy (EDX) measurements is sufficient to experimentally evaluate the scattering function of electrons in high-angle annular dark field scanning transmission microscopy (HAADF-STEM). We then demonstrate how to use this function to transform qualitative HAADF-STEM images of InGaN layers into precise, quantitative chemical maps of the indium composition. The maps obtained in this way combine the resolution of HAADF-STEM and the chemical precision of EDX. We illustrate the potential of such chemical maps by using them to investigate nanometer-scale fluctuations in the indium composition and their impact on the growth of epitaxial InGaN layers. (paper)

  5. Small scale soft x-ray lasers

    International Nuclear Information System (INIS)

    Skinner, C.H.; DiCicco, D.S.; Kim, D.; Voorhees, D.; Suckewer, S.

    1990-01-01

    The widespread application of soft x-ray laser technology is contingent on the development of small scale soft x-ray lasers that do not require large laser facilities. Progress in the development of soft x-ray lasers pumped by a Nd laser of energy 6-12J is reported below. Application of an existing soft x-ray laser to x-ray microscopy has begun. A soft x-ray laser of output energy 1-3 mJ at 18,2 nm has been used to record high resolution images of biological specimens. The contact images were recorded on photoresist which was later viewed in a scanning electron microscope. The authors present a composite optical x-ray laser microscope design

  6. X-ray fluorescence imaging with polycapillary X-ray optics

    International Nuclear Information System (INIS)

    Yonehara, Tasuku; Yamaguchi, Makoto; Tsuji, Kouichi

    2010-01-01

    X-ray fluorescence spectrometry imaging is a powerful tool to provide information about the chemical composition and elemental distribution of a specimen. X-ray fluorescence spectrometry images were conventionally obtained by using a μ-X-ray fluorescence spectrometry spectrometer, which requires scanning a sample. Faster X-ray fluorescence spectrometry imaging would be achieved by eliminating the process of sample scanning. Thus, we developed an X-ray fluorescence spectrometry imaging instrument without sample scanning by using polycapillary X-ray optics, which had energy filter characteristics caused by the energy dependence of the total reflection phenomenon. In the present paper, we show that two independent straight polycapillary X-ray optics could be used as an energy filter of X-rays for X-ray fluorescence. Only low energy X-rays were detected when the angle between the two optical axes was increased slightly. Energy-selective X-ray fluorescence spectrometry images with projection mode were taken by using an X-ray CCD camera equipped with two polycapillary optics. It was shown that Fe Kα (6.40 keV) and Cu Kα (8.04 keV) could be discriminated for Fe and Cu foils.

  7. X-ray microscopy in Aarhus

    International Nuclear Information System (INIS)

    Uggerhoej, Erik; Abraham-Peskir, Joanna V.

    2000-01-01

    The Aarhus imaging soft X-ray microscope is now a busy multi-user facility. The optical set-up will be described and project highlights discussed. a) Metal-induced structural changes in whole cells in solution. The effects of aluminum, copper, nickel and zinc on protozoa investigated by using a combination of light microscopy, confocal scanning laser microscopy and X-ray microscopy. b) Botanical studies by X-ray microscopy used to compliment electron microscopy studies. c) Sludge morphology and iron precipitation in Danish freshwater plants by combining X-ray, scanning electron and transmission electron microscopy

  8. Characterization of Burnt Clays by X-ray Diffraction Analysis, Chemical Analysis and Environmental Scanning Electron Microscopy

    Czech Academy of Sciences Publication Activity Database

    Navrátilová, Eva; Neděla, Vilém

    2016-01-01

    Roč. 22, S3 (2016), s. 1862-1863 ISSN 1431-9276 Institutional support: RVO:68081731 Keywords : burnt clays * pozzolanic activity * amorphous phase * environmental scanning electron microscope Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.891, year: 2016

  9. Chest X-Ray

    Medline Plus

    Full Text Available ... some concerns about chest x-rays. However, it’s important to consider the likelihood of benefit to your health. While a chest x-ray use a ... posted: How to Obtain and Share ...

  10. Chest X-Ray

    Medline Plus

    Full Text Available ... X-ray Transcript Welcome to Radiology Info dot org! Hello, I’m Dr. Geoffrey Rubin, a radiologist ... about chest x-rays, visit Radiology Info dot org. Thank you for your time! Spotlight Recently posted: ...

  11. X-ray apparatus

    International Nuclear Information System (INIS)

    Sell, L.J.

    1981-01-01

    A diagnostic x-ray device, readily convertible between conventional radiographic and tomographic operating modes, is described. An improved drive system interconnects and drives the x-ray source and the imaging device through coordinated movements for tomography

  12. X-ray - skeleton

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003381.htm X-ray - skeleton To use the sharing features on this ... Degenerative bone conditions Osteomyelitis Risks There is low radiation exposure. X-rays machines are set to provide the smallest ...

  13. Size effect in X-ray and electron diffraction patterns from hydroxyapatite particles

    International Nuclear Information System (INIS)

    Suvorova, E.I.; Buffat, P.-A.

    2001-01-01

    High-resolution transmission electron microscopy (HRTEM), electron microdiffraction, and X-ray diffraction were used to study hydroxyapatite specimens with particle sizes from a few nanometers to several hundreds of nanometers. Diffuse scattering (without clear reflections in transmission diffraction patterns) or strongly broadened peaks in X-ray diffraction patterns are characteristic for agglomerated hydroxyapatite nanocrystals. However, HRTEM and microdiffraction showed that this cannot be considered as an indication of the amorphous state of the matter but rather as the demonstration of size effect and the morphological and structural features of hydroxyapatite nanocrystals

  14. Chest X-Ray

    Medline Plus

    Full Text Available ... I’d like to talk with you about chest radiography also known as chest x-rays. Chest x-rays are the most ... far outweighs any risk. For more information about chest x-rays, visit Radiology Info dot org. Thank you for your time! ...

  15. Chest X-Ray

    Medline Plus

    Full Text Available ... by Image/Video Gallery Your Radiologist Explains Chest X-ray Transcript Welcome to Radiology Info dot org! Hello, ... you about chest radiography also known as chest x-rays. Chest x-rays are the most commonly performed ...

  16. X-ray spectrometry

    International Nuclear Information System (INIS)

    Markowicz, A.A.; Van Grieken, R.E.

    1986-01-01

    In the period under review, i.e, through 1984 and 1985, some 600 articles on XRS (X-ray spectrometry) were published; most of these have been scanned and the most fundamental ones are discussed. All references will refer to English-language articles, unless states otherwise. Also general books have appeared on quantitative EPXMA (electron-probe X-ray microanalysis) and analytical electron microscopy (AEM) as well as an extensive review on the application of XRS to trace analysis of environmental samples. In the period under review no radically new developments have been seen in XRS. However, significant improvements have been made. Gain in intensities has been achieved by more efficient excitation, higher reflectivity of dispersing media, and better geometry. Better understanding of the physical process of photon- and electron-specimen interactions led to complex but more accurate equations for correction of various interelement effects. Extensive use of micro- and minicomputers now enables fully automatic operation, including qualitative analysis. However, sample preparation and presentation still put a limit to further progress. Although some authors find XRS in the phase of stabilization or even stagnation, further gradual developments are expected, particularly toward more dedicated equipment, advanced automation, and image analysis systems. Ways are outlined in which XRS has been improved in the 2 last years by excitation, detection, instrumental, methodological, and theoretical advances. 340 references

  17. Subgroup report on hard x-ray microprobes

    International Nuclear Information System (INIS)

    Ice, G.E.; Barbee, T.; Bionta, R.; Howells, M.; Thompson, A.C.; Yun, W.

    1994-01-01

    The increasing availability of synchrotron x-ray sources has stimulated the development of advanced hard x-ray (E≥5 keV) microprobes. New x-ray optics have been demonstrated which show promise for achieving intense submicron hard x-ray probes. These probes will be used for extraordinary elemental detection by x-ray fluorescence/absorption and for microdiffraction to identify phase and strain. The inherent elemental and crystallographic sensitivity of an x-ray microprobe and its inherently nondestructive and penetrating nature makes the development of an advanced hard x-ray microprobe an important national goal. In this workshop state-of-the-art hard x-ray microprobe optics were described and future directions were discussed. Gene Ice, Oak Ridge National Laboratory (ORNL), presented an overview of the current status of hard x-ray microprobe optics and described the use of crystal spectrometers to improve minimum detectable limits in fluorescent microprobe experiments. Al Thompson, Lawrence Berkeley Laboratory (LBL), described work at the Center for X-ray Optics to develop a hard x-ray microprobe based on Kirkpatrick-Baez (KB) optics. Al Thompson also showed the results of some experimental measurements with their KB optics. Malcolm Howells presented a method for bending elliptical mirrors and Troy Barbee commented on the use of graded d spacings to achieve highest efficiency in KB multilayer microfocusing. Richard Bionta, Lawrence Livermore National Laboratory (LLNL), described the development of the first hard x-ray zone plates and future promise of so called open-quotes jelly rollclose quotes or sputter slice zone plates. Wenbing Yun, Argonne National Laboratory (ANL), described characterization of jelly roll and lithographically produced zone plates and described the application of zone plates to focus extremely narrow bandwidths by nuclear resonance. This report summarizes the presentations of the workshop subgroup on hard x-ray microprobes

  18. Hard x-ray microimaging techniques based on phase zone plates

    International Nuclear Information System (INIS)

    Lai, B.; Yun, W.B.; Legnini, D.; Xiao, Y.H.; Chrzas, J.

    1992-01-01

    Phase zone plates of high focusing efficiency and submicron resolution have been demonstrated in the hard x-ray region. A scanning microscope based on these focusing optics will create many new applications. Preliminary results in the applications of the microscope are reported here. In the area of imaging, we have utilized absorption contrast to clearly identify the locations of Au and Ni constituents in a sample of two interleaved grids. Micro-EXAFS spectra has also been obtained on a Ni foil. Fluorescence from a nuclear fuel sample, as an example of microanalysis, has revealed the elemental distribution at the interfaces. Lastly, microdiffraction from AgBr crystallites has been studied. 5 figs, 7 refs

  19. Enhancement of the vibration stability of a microdiffraction goniometer

    International Nuclear Information System (INIS)

    Lee, S. H.; Preissner, C.; Lai, B.; Cai, Z.; Shu, D.

    2002-01-01

    High-precision instrumentation, such as that for x-ray diffraction, electron microscopy, scanning probe microscopy, and other optical micropositioning systems, requires the stability that comes from vibration-isolated support structures. Structure-born vibrations impede the acquisition of accurate experimental data through such high-precision instruments. At the Advanced Photon Source, a multiaxis goniometer is installed in the 2-ID-D station for synchrotron microdiffraction investigations. However, ground vibration can excite the kinematic movements of the goniometer linkages, resulting in critically contaminated experimental data. In this paper, the vibration behavior of the goniometer has been considered. Experimental vibration measurements were conducted to define the present vibration levels and determine the threshold sensitivity of the equipment. In addition, experimental modal tests were conducted and used to guide an analytical finite element analysis. Both results were used for finding the best way to reduce the vibration levels and to develop a vibration damping/isolation structure for the 2-ID-D goniometer. The device that was designed and tested could be used to reduce local vibration levels for the vibration isolation of similar high-precision instruments

  20. X-ray image coding

    International Nuclear Information System (INIS)

    1974-01-01

    The invention aims at decreasing the effect of stray radiation in X-ray images. This is achieved by putting a plate between source and object with parallel zones of alternating high and low absorption coefficients for X-radiation. The image is scanned with the help of electronic circuits which decode the signal space coded by the plate, thus removing the stray radiation

  1. Characterization of copper oxides, iron oxides, and zinc copper ferrite desulfurization sorbents by X-ray photoelectron spectroscopy and scanning electron microscopy

    Science.gov (United States)

    Siriwardane, Ranjani V.; Poston, James A.

    1993-05-01

    Characterization of copper oxides, iron oxides, and zinc copper ferrite desulfurization sorbents was performed by X-ray photoelectron spectroscopy and scanning electron microscopy/energy-dispersive spectroscopy at temperatures of 298 to 823 K. Analysis of copper oxides indicated that the satellite structure of the Cu22p region was absent in the Cu(I) state but was present in the Cu(II) state. Reduction of CuO at room temperature was observed when the ion gauge was placed close to the sample. The satellite structure was absent in all the copper oxides at 823 K in vacuum. Differentiation of the oxidation state of copper utilizing both Cu(L 3M 4,5M 4,5) X-ray-induced Auger lines and Cu2p satellite structure, indicated that the copper in zinc copper ferrite was in the + 1 oxidation state at 823 K. This + 1 state of copper was not significantly changed after exposure to H 2, CO, and H 2O. There was an increase in Cu/Zn ratio and a decrease in Fe/Zn ratio on the surface of zinc copper ferrite at 823 K compared to that at room temperature. These conditions of copper offered the best sulfidation equilibrium for the zinc copper ferrite desulfurization sorbent. Analysis of iron oxides indicated that there was some reduction of both Fe 2O 3 and FeO at 823K. The iron in zinc copper ferrite was similar to that of Fe 2O 3 at room temperature but there was some reduction of this Fe(III) state to Fe(II) at 823 K. This reduction was more enhanced in the presence of H 2 and CO. Reduction to Fe(II) may not be desirable for the lifetime of the sorbent.

  2. Assembly of positioner of automated two-dimensional scan coupled to X-ray fluorescence spectrometry; Montagem de posicionador de varredura bidimensional automatizada acoplado a espectrometria de fluorescência de raios-X

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Leonardo Santiago Melgaço

    2011-07-01

    This work describes the design and assembling of a prototype automated positioner two-dimensional scanning coupled to X-ray fluorescence spectrometry. The work aims to achieve a portable and easy to use, device of broad utility in the analysis of samples by X-ray fluorescence area of expertise and research. The two-dimensional scanning of the positioner is by means of two stepper motors controlled by a microcontroller PIC 16F877A, encoder and optical sensors. The user interacts with the XY table through an interface program for the Windows operating system, which communicates with the microcontroller through the serial port. The system of Fluorescence Spectroscopy incorporated into the positioner consists of a system commercially available system from the company AMPTEK, where the primary source of excitation of the sample was a source of {sup 241}Am of 59.5 KeV emissions. Resolution and accuracy of tests were performed in the XY scanning process and reproducibility of the same kit with the fluorescence spectrometry X-ray. Qualitative tests by X-ray fluorescence spectrometry in samples were performed to demonstrate the applicability and versatility of the project. It follows that the prototype illustrates a possible adequately to portable device for X-ray spectrometry of two-dimensional. (author)

  3. Flash X-ray

    International Nuclear Information System (INIS)

    Sato, Eiichi

    2003-01-01

    Generation of quasi-monochromatic X-ray by production of weakly ionized line plasma (flash X-ray), high-speed imaging by the X-ray and high-contrast imaging by the characteristic X-ray absorption are described. The equipment for the X-ray is consisted from the high-voltage power supply and condenser, turbo molecular pump, and plasma X-ray tube. The tube has a long linear anticathode to produce the line plasma and flash X-ray at 20 kA current at maximum. X-ray spectrum is measured by the imaging plate equipped in the computed radiography system after diffracted by a LiF single crystal bender. Cu anticathode generates sharp peaks of K X-ray series. The tissue images are presented for vertebra, rabbit ear and heart, and dog heart by X-ray fluoroscopy with Ce anticathode. Generation of K-orbit characteristic X-ray with extremely low bremsstrahung is to be attempted for medical use. (N.I.)

  4. Effect of fluoride and cobalt on forming enamel: scanning electron microscope and X-ray microanalysis study

    International Nuclear Information System (INIS)

    Ashrafi, S.H.; Eisenmann, D.R.; Zaki, A.E.; Liss, R.

    1988-01-01

    The forming surfaces of enamel of rat incisors were examined by scanning electron microscope one hour after injection of either 5 mg/100 g body weight of sodium fluoride or 12 mg/100 g body weight of cobalt chloride. The cell debris from the surfaces of the separated incisors was either gently wiped off with soft facial tissues or chemically removed by treating with NaOH, NaOCl or trypsin. Best results to remove cell debris were obtained from 0.25% trypsin treatment. SEM studies revealed that the surface of the normal secretory enamel was characteristic in appearance with well-developed smooth prism outlines. In fluoride specimens the prism outlines were feathery in appearance, laced with protruding spine-shaped clusters of mineral crystals. In the case of cobalt treatment, prism outlines were less uniform and in some areas they were incomplete. The calcium concentration of surface enamel was significantly lower in the cobalt-treated specimens than those from control and fluoride-treated animals. The Ca:Mg ratio was also lower in cobalt-treated specimens as compared to control and fluoride-treated ones

  5. Relationship between Weight, Body Mass Index, and Bone Mineral Density in Men Referred for Dual-Energy X-Ray Absorptiometry Scan in Isfahan, Iran.

    Science.gov (United States)

    Salamat, Mohammad Reza; Salamat, Amir Hossein; Abedi, Iraj; Janghorbani, Mohsen

    2013-01-01

    Objective. Although several studies have investigated the association between body mass index (BMI) and bone mineral density (BMD), the results are inconsistent. The aim of this study was to further investigate the relation between BMI, weight and BMD in an Iranian men population. Methods. A total of 230 men 50-79 years old were examined. All men underwent a standard BMD scans of hip (total hip, femoral neck, trochanter, and femoral shaft) and lumbar vertebrae (L2-L4) using a Dual-Energy X-ray Absorptiometry (DXA) scan and examination of body size. Participants were categorised in two BMI group: normal weight obese, BMI ≥ 25 kg/m(2). Results. Compared to men with BMI ≥ 25, the age-adjusted odds ratio of osteopenia was 2.2 (95% CI 0.85, 5.93) and for osteoporosis was 4.4 (1.51, 12.87) for men with BMI osteoporosis. Conclusions. These data indicate that both BMI and weight are associated with BMD of hip and vertebrae and overweight and obesity decreased the risk for osteoporosis. The results of this study highlight the need for osteoporosis prevention strategies in elderly men as well as postmenopausal women.

  6. Relationship between Weight, Body Mass Index, and Bone Mineral Density in Men Referred for Dual-Energy X-Ray Absorptiometry Scan in Isfahan, Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Salamat

    2013-01-01

    Full Text Available Objective. Although several studies have investigated the association between body mass index (BMI and bone mineral density (BMD, the results are inconsistent. The aim of this study was to further investigate the relation between BMI, weight and BMD in an Iranian men population. Methods. A total of 230 men 50-79 years old were examined. All men underwent a standard BMD scans of hip (total hip, femoral neck, trochanter, and femoral shaft and lumbar vertebrae (L2-L4 using a Dual-Energy X-ray Absorptiometry (DXA scan and examination of body size. Participants were categorised in two BMI group: normal weight <25.0 kg/m2 and overweight and obese, BMI ≥ 25 kg/m2. Results. Compared to men with BMI ≥ 25, the age-adjusted odds ratio of osteopenia was 2.2 (95% CI 0.85, 5.93 and for osteoporosis was 4.4 (1.51, 12.87 for men with BMI < 25. It was noted that BMI and weight was associated with a high BMD, compatible with a diagnosis of osteoporosis. Conclusions. These data indicate that both BMI and weight are associated with BMD of hip and vertebrae and overweight and obesity decreased the risk for osteoporosis. The results of this study highlight the need for osteoporosis prevention strategies in elderly men as well as postmenopausal women.

  7. X-ray astronomy

    International Nuclear Information System (INIS)

    Culhane, J.L.; Sanford, P.W.

    1981-01-01

    X-ray astronomy has been established as a powerful means of observing matter in its most extreme form. The energy liberated by sources discovered in our Galaxy has confirmed that collapsed stars of great density, and with intense gravitational fields, can be studied by making observations in the X-ray part of the electromagnetic spectrum. The astronomical objects which emit detectable X-rays include our own Sun and extend to quasars at the edge of the Universe. This book describes the history, techniques and results obtained in the first twenty-five years of exploration. Space rockets and satellites are essential for carrying the instruments above the Earth's atmosphere where it becomes possible to view the X-rays from stars and nebulae. The subject is covered in chapters, entitled: the birth of X-ray astronomy; the nature of X-radiation; X-rays from the Sun; solar-flare X-rays; X-rays from beyond the solar system; supernovae and their remnants; X-rays from binary stars; white dwarfs and neutron stars; black holes; X-rays from galaxies and quasars; clusters of galaxies; the observatories of the future. (author)

  8. Optical systems for synchrotron radiation: lecture 4. Soft x-ray imaging systems

    International Nuclear Information System (INIS)

    Howells, M.R.

    1986-04-01

    The history and present techniques of soft x-ray imaging are reviewed briefly. The physics of x-ray imaging is described, including the temporal and spatial coherence of x-ray sources. Particular technologies described are: contact x-ray microscopy, zone plate imaging, scanned image zone plate microscopy, scanned image reflection microscopy, and soft x-ray holography and diffraction

  9. The Characteristics of Turbidite Beds of Southwest Ryukyu Trench Floor: A new Approach From the X-ray Fluorescence Core Scanning Analysis

    Science.gov (United States)

    Hsiung, K. H.; Kanamatsu, T.; Ikehara, K.; Usami, K.; Saito, S.; Murayama, M.

    2017-12-01

    The southwest Ryukyu Trench near Taiwan is an ideal place for source-to-sink studies based on the distinctive sediment transport route between the terrestrial sediment source in Taiwan and the marine sink in the Ryukyu Trench. Using the bathymetric and seismic reflection data, we develop a sediment transport routes for understanding the ultimate sink of the southwest Ryukyu Trench floor. The southwest Ryukyu Trench floor can be regarded as the most distal depositional basin and isolated from the Ryukyu forearc basins. In addition, part of sediment from the proximal sources of the Ryukyu Islands and Yaeyama accretionary prism could be transported to the trench floor. We collected the piston core, PC04, from the southwest Ryukyu Trench floor of 6,147 m water depth in 3.23 m core length from cruise KR15-18, 2015. The coring site locates behind the natural levee of an obvious channel in the Ryukyu trench floor. The PC04 is composed of gray silty clay interbedded with numerous silt layers. Most of the silt layers are less than 2 cm in thickness. Based upon the core observation, X-ray fluorescence core scanning analysis and 14C age determinations, thirty-seven individual and thin beds were determined as turbidites. The results of X-ray fluorescence core scanning analysis provide continuous and high-resolution (1.0 mm of each point) assessment of relative change in the elemental ratios. Ca/Fe is a proxy for the terrigenous component of the sediment, indicating the High Ca and low Fe of each turbidite layers. Zr/Rb ratios of the marine sediments commonly used in the reflection of the original grain size variation. A large part of deep-sea turbidite beds are characterized by high Ca/Fe and Zr/Rb ratio values. These turbidite beds can be linked spatially over a distance of ˜200 km via submarine canyons within the Taiwan orogen. However, it is difficult to be linked temporally to certain events.

  10. Structural evolution of regenerated silk fibroin under shear: Combined wide- and small-angle x-ray scattering experiments using synchrotron radiation

    International Nuclear Information System (INIS)

    Rossle, Manfred; Panine, Pierre; Urban, Volker S.; Riekel, Christine

    2004-01-01

    The structural evolution of regenerated Bombyx mori silk fibroin during shearing with a Couette cell has been studied in situ by synchrotron radiation small- and wide-angle x-ray scattering techniques. An elongation of fibroin molecules was observed with increasing shear rate, followed by an aggregation phase. The aggregates were found to be amorphous with β-conformation according to infrared spectroscopy. Scanning x-ray microdiffraction with a 5 (micro)m beam on aggregated material, which had solidified in air, showed silk II reflections and a material with equatorial reflections close to the silk I structure reflections, but with strong differences in reflection intensities. This silk I type material shows up to two low-angle peaks suggesting the presence of water molecules that might be intercalated between hydrogen-bonded sheets.

  11. Structural evolution of regenerated silk fibroin under shear: Combined wide- and small-angle x-ray scattering experiments using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Rossle, Manfred [European Molecular Biology Laboratory (EMBL), France; Panine, Pierre [European Synchrotron Radiation Facility (ESRF); Urban, Volker S [ORNL; Riekel, Christine [European Synchrotron Radiation Facility (ESRF)

    2004-04-01

    The structural evolution of regenerated Bombyx mori silk fibroin during shearing with a Couette cell has been studied in situ by synchrotron radiation small- and wide-angle x-ray scattering techniques. An elongation of fibroin molecules was observed with increasing shear rate, followed by an aggregation phase. The aggregates were found to be amorphous with {beta}-conformation according to infrared spectroscopy. Scanning x-ray microdiffraction with a 5 {micro}m beam on aggregated material, which had solidified in air, showed silk II reflections and a material with equatorial reflections close to the silk I structure reflections, but with strong differences in reflection intensities. This silk I type material shows up to two low-angle peaks suggesting the presence of water molecules that might be intercalated between hydrogen-bonded sheets.

  12. Data precision of X-ray fluorescence (XRF) scanning of discrete samples with the ITRAX XRF core-scanner exemplified on loess-paleosol samples

    Science.gov (United States)

    Profe, Jörn; Ohlendorf, Christian

    2017-04-01

    XRF-scanning is the state-of-the-art technique for geochemical analyses in marine and lacustrine sedimentology for more than a decade. However, little attention has been paid to data precision and technical limitations so far. Using homogenized, dried and powdered samples (certified geochemical reference standards and samples from a lithologically-contrasting loess-paleosol sequence) minimizes many adverse effects that influence the XRF-signal when analyzing wet sediment cores. This allows the investigation of data precision under ideal conditions and documents a new application of the XRF core-scanner technology at the same time. Reliable interpretations of XRF results require data precision evaluation of single elements as a function of X-ray tube, measurement time, sample compaction and quality of peak fitting. Ten-fold measurement of each sample constitutes data precision. Data precision of XRF measurements theoretically obeys Poisson statistics. Fe and Ca exhibit largest deviations from Poisson statistics. The same elements show the least mean relative standard deviations in the range from 0.5% to 1%. This represents the technical limit of data precision achievable by the installed detector. Measurement times ≥ 30 s reveal mean relative standard deviations below 4% for most elements. The quality of peak fitting is only relevant for elements with overlapping fluorescence lines such as Ba, Ti and Mn or for elements with low concentrations such as Y, for example. Differences in sample compaction are marginal and do not change mean relative standard deviation considerably. Data precision is in the range reported for geochemical reference standards measured by conventional techniques. Therefore, XRF scanning of discrete samples provide a cost- and time-efficient alternative to conventional multi-element analyses. As best trade-off between economical operation and data quality, we recommend a measurement time of 30 s resulting in a total scan time of 30 minutes

  13. X-ray holography

    International Nuclear Information System (INIS)

    Faigel, G.; Tegze, M.; Belakhovsky, M.; Marchesini, S.; Bortel, G.

    2003-01-01

    In the last decade holographic methods using hard X-rays were developed. They are able to resolve atomic distances, and can give the 3D arrangement of atoms around a selected element. Therefore, hard X-ray holography has potential applications in chemistry, biology and physics. In this article we give a general description of these methods and discuss the developments in the experimental technique. The capabilities of hard X-ray holography are demonstrated by examples

  14. Phosphor Scanner For Imaging X-Ray Diffraction

    Science.gov (United States)

    Carter, Daniel C.; Hecht, Diana L.; Witherow, William K.

    1992-01-01

    Improved optoelectronic scanning apparatus generates digitized image of x-ray image recorded in phosphor. Scanning fiber-optic probe supplies laser light stimulating luminescence in areas of phosphor exposed to x rays. Luminescence passes through probe and fiber to integrating sphere and photomultiplier. Sensitivity and resolution exceed previously available scanners. Intended for use in x-ray crystallography, medical radiography, and molecular biology.

  15. Determination of lead in clay enameled by X-ray fluorescence technique in Total reflection and by Scanning Electron Microscopy; Determinacion de plomo en esmaltado de barro por Fluorescencia de rayos X en reflexion total y Microscopia Electronica de Barrido

    Energy Technology Data Exchange (ETDEWEB)

    Zarazua O, G.; Carapia M, L. [Instituto Nacional de Investigaciones Nucleares, C.P. 52045 Estado de Mexico (Mexico)

    2000-07-01

    This work has the objective of determining lead free in the glazed commercial stewing pans using the X-ray fluorescence technique in Total reflection (FRX) and the observation and semiquantitative determination of lead by Analytical Scanning Electron Microscopy (ASEM). (Author)

  16. Hard X-ray imaging with a slat collimated telescope

    International Nuclear Information System (INIS)

    Lu Zhuguo; Kotov, Yu.D.; Suslov, A.Yu.

    1995-01-01

    Imaging experiments with a slat collimated hard X-ray telescope are described in this paper demonstrating the feasibility of the direct demodulation imaging method used in hard X-ray scanning modulation experiments. On 25 September 1993 an X-ray raster scan observation of Cyg X-1 was performed in a balloon flight with the hard X-ray telescope HAPI-4. An experiment to image radioactive X-ray sources was performed in the laboratory before. In both experiments the expected X-ray images were obtained, confirming the imaging capability of this method. (orig.)

  17. The histories of capillary optics for x-rays and ion beams in Russia, USA, and Japan

    International Nuclear Information System (INIS)

    Umezawa, Kenji

    2009-01-01

    This article introduces the history of X-ray lens and the present situation of ion beam focusing with glass capillaries systems. The basic technology of X-ray lens using glass capillaries was independently developed over 20 years by Prof. Kumakhov in the former Soviet Union and Dr. Soejima in Japan, respectively. In the 1990's, Prof. W.M. Gibson and his coworkers intensively studied X-rays and neutron optics in Albany, NY, USA. X-ray optics with glass capillaries, in these days is well known in the world. This unique technique was fabricated to collimate X-rays. Also, new ion beam analysis technique with glass capillaries systems has been intensively developed by Dr. Nebiki and Prof. Narusawa in Kochi, Japan. These X-rays and ion beams techniques have brought new application for many fields; X-ray detector, X-ray lithography, X-ray astronomy, microdiffraction, medical therapy and biological applications. (author)

  18. Providing x-rays

    International Nuclear Information System (INIS)

    Mallozzi, P.J.; Epstein, H.M.

    1985-01-01

    This invention provides an apparatus for providing x-rays to an object that may be in an ordinary environment such as air at approximately atmospheric pressure. The apparatus comprises: means (typically a laser beam) for directing energy onto a target to produce x-rays of a selected spectrum and intensity at the target; a fluid-tight enclosure around the target; means for maintaining the pressure in the first enclosure substantially below atmospheric pressure; a fluid-tight second enclosure adjoining the first enclosure, the common wall portion having an opening large enough to permit x-rays to pass through but small enough to allow the pressure reducing means to evacuate gas from the first enclosure at least as fast as it enters through the opening; the second enclosure filled with a gas that is highly transparent to x-rays; the wall of the second enclosure to which the x-rays travel having a portion that is highly transparent to x-rays (usually a beryllium or plastic foil), so that the object to which the x-rays are to be provided may be located outside the second enclosure and adjacent thereto and thus receive the x-rays substantially unimpeded by air or other intervening matter. The apparatus is particularly suited to obtaining EXAFS (extended x-ray fine structure spectroscopy) data on a material

  19. Scanning transmission X-ray microscopy probe for in situ mechanism study of graphene-oxide-based resistive random access memory.

    Science.gov (United States)

    Nho, Hyun Woo; Kim, Jong Yun; Wang, Jian; Shin, Hyun-Joon; Choi, Sung-Yool; Yoon, Tae Hyun

    2014-01-01

    Here, an in situ probe for scanning transmission X-ray microscopy (STXM) has been developed and applied to the study of the bipolar resistive switching (BRS) mechanism in an Al/graphene oxide (GO)/Al resistive random access memory (RRAM) device. To perform in situ STXM studies at the C K- and O K-edges, both the RRAM junctions and the I0 junction were fabricated on a single Si3N4 membrane to obtain local XANES spectra at these absorption edges with more delicate I0 normalization. Using this probe combined with the synchrotron-based STXM technique, it was possible to observe unique chemical changes involved in the BRS process of the Al/GO/Al RRAM device. Reversible oxidation and reduction of GO induced by the externally applied bias voltages were observed at the O K-edge XANES feature located at 538.2 eV, which strongly supported the oxygen ion drift model that was recently proposed from ex situ transmission electron microscope studies.

  20. Characterization of the ashes from the 2014-2015 Turrialba Volcano eruptions by means of scanning electron microscopy and energy dispersive X-Ray spectroscopy

    International Nuclear Information System (INIS)

    Lucke, Oscar H.; Calderon, Ariadna

    2016-01-01

    The Turrialba Volcano is a stratovolcano located approximately 35 km northwest from San Jose, Costa Rica's capital city. A series of eruptions since October 29, 2014 until at least late 2015, has represented the most significant activity of this volcano since the 1860s. A significant volume of ash was dispersed with this eruptions that reached the most populous areas of the country. The characteristics of the ash particles are analyzed in order to establish the nature of the eruptive events that occurred on 2014 and 2015, and to monitor the evolution of the eruptive processes. The analysis was carried out utilizing optical microscopy and stereomicroscopy techniques, as well as novel scanning electron microscopy (SEM) methods that involve imaging and element composition analysis by means of Energy Dispersive X-Ray Spectroscopy (EDX). The evolution of the Turrialba eruptions is showed from phreatic events in 2014, with ashes composed entirely of non-juvenile fragments, to phreatomagmatic events starting on March 12, 2015 with the appearance of a significant fraction of juvenile components in the ash. (author)

  1. Study of the carburization of an austenitic steel through optical and scanning electron microscopy, microhardness and X ray microanalysis of C

    International Nuclear Information System (INIS)

    Champigny, Michel; Gauvain, Danielle; Meny, Lucienne

    1977-01-01

    Carburization tests of 316 L stainless steel have been performed in liquid sodium at 550, 600 and 650 0 C; the depth of penetration of carbon is of the order of 300 μm. The structure of the carburized layer has been studied through optical and scanning electron microscopy: the carbides precipitate first within the grain boundaries, making a nearly continuous superficial carbide layer. The Vickers and Knoop (under 50 g load) microhardness measurements determine the depth of carburization with an error of +-50μm. Though the tensile strength does not vary much with the carburization, the striction, and then the deformation capability, is highly decreased. The variation of the concentration in carbon versus distance has been measured by quantitative X ray microanalysis, using diamond as a standard; the best experimental conditions, regarding the overlapping of the Cr 2 Lα and Ni 3 Lα lines with CK line have been chosen, and the minimum contamination during the measurements has been performed. The results have been confirmed by the analysis of carbon in Fe Ni standards containing less than 1 w/o carbon. The results are discussed with the published data. This work shows that: the increase of microhardness is not related in a simple way with the carbon content of the stainless steel; the carbon concentration can be measured quickly with an error of +-5% when 0,2 [fr

  2. Morphological and chemical changes in dentin after using endodontic agents: Fourier transform Raman spectroscopy, energy-dispersive x-ray fluorescence spectrometry, and scanning electron microscopy study

    Science.gov (United States)

    Pascon, Fernanda Miori; Kantovitz, Kamila Rosamilia; Soares, Luís Eduardo Silva; Santo, Ana Maria do Espírito; Martin, Airton Abraha~o.; Puppin-Rontani, Regina Maria

    2012-07-01

    We examine the morphological and chemical changes in the pulp chamber dentin after using endodontic agents by scanning electron microscopy (SEM), Fourier transform Raman spectroscopy (FT-Raman), and micro energy-dispersive x-ray fluorescence spectrometry (μEDXRF). Thirty teeth were sectioned exposing the pulp chamber and divided by six groups (n=5): NT-no treatment; CHX-2% chlorhexidine; CHXE-2% chlorhexidine+17% EDTA E-17% EDTA; SH5-5.25% NaOCl; SH5E-5.25% NaOCl+17% EDTA. The inorganic and organic content was analyzed by FT-Raman. μEDXRF examined calcium (Ca) and phosphorus (P) content as well as Ca/P ratio. Impressions of specimens were evaluated by SEM. Data were submitted to Kruskal-Wallis and Dunn tests (pNT=SH5E>CHX>E>CHXE). CHXE and E presented the highest Ca/P ratio values compared to the other groups (p<0.05). The SEM images in the EDTA-treated groups had the highest number of open tubules. Erosion in the tubules was observed in CHX and SH5E groups. Endodontic agents change the inorganic and organic content of pulp chamber dentin. NaOCl used alone, or in association with EDTA, was the most effective agent considering chemical and morphological approaches.

  3. Scanning Electron Microscopy and Energy-Dispersive X-Ray Microanalysis of Set CEM Cement after Application of Different Bleaching Agents.

    Science.gov (United States)

    Samiei, Mohammad; Janani, Maryam; Vahdati, Amin; Alemzadeh, Yalda; Bahari, Mahmoud

    2017-01-01

    The present study evaluated the element distribution in completely set calcium-enriched mixture (CEM) cement after application of 35% carbamide peroxide, 40% hydrogen peroxide and sodium perborate as commercial bleaching agents using an energy-dispersive x-ray microanalysis (EDX) system. The surface structure was also observed using the scanning electron microscope (SEM). Twenty completely set CEM cement samples, measuring 4×4 mm 2 , were prepared in the present in vitro study and randomly divided into 4 groups based on the preparation technique as follows: the control group; 35% carbamide peroxide group in contact for 30-60 min for 4 times; 40% hydrogen peroxide group with contact time of 15-20 min for 3 times; and sodium perborate group, where the powder and liquid were mixed and placed on CEM cement surface 4 times. Data were analyzed at a significance level of 0.05 through the one Way ANOVA and Tukey's post hoc tests. EDX showed similar element distribution of oxygen, sodium, calcium and carbon in CEM cement with the use of carbamide peroxide and hydroxide peroxide; however, the distribution of silicon was different ( P structure. Sodium perborate was similar to control group due to its weak oxidizing properties. Globular structures and numerous woodpecker holes were observed on the even surface on the carbamide peroxide group. The mean elemental distribution of completely set CEM cement was different when exposed to sodium perborate, carbamide peroxide and hydrogen peroxide.

  4. Characterization of thermal reaction of aluminum/copper (II) oxide/poly(tetrafluoroethene) nanocomposite by thermogravimetric analysis, differential scanning calorimetry, mass spectrometry and X-ray diffraction

    International Nuclear Information System (INIS)

    Li, Xiangyu; Yang, Hongtao; Li, Yan-chun

    2015-01-01

    Highlights: • The thermal reaction properties of the Al/CuO/PTFE nanocomposite were investigated. • The Al/PTFE and CuO/PTFE nanocomposites were prepared and tested for comparison. • TG/DSC–MS and XRD analysis were performed. • PTFE is oxidizing Al and reducing CuO during the thermal decomposition. - Abstract: The application of fluoropolymers as reactive agent in energetic materials have attracted significant interest recently. In this study, the thermal reaction properties of the aluminum nanoparticles/copper (II) oxide nanoparticles/poly(tetrafluoroethene) (Al-NPs/CuO-NPs/PTFE) nanocomposite (mass ratio of Al-NPs/CuO-NPs/PTFE = 20/60/20) were investigated by means of thermogravimetry/differential scanning calorimetry–mass spectrometry (TG/DSC–MS) and X-ray diffraction (XRD) analyses. The Al-NPs/PTFE (mass ratio of Al-NPs/PTFE = 50/50) and CuO-NPs/PTFE (mass ratio of CuO-NPs/PTFE = 75/25) nanocomposites were also prepared and tested for comparison. It is observed that PTFE is acting as both oxidizer and reducer during the thermal decomposition process of Al-NPs/CuO-NPs/PTFE nanocomposites. Before 615 °C, PTFE is oxidized by CuO-NPs and oxidizing Al-NPs, resulting mass reduction. After 615 °C, the excessive aluminum and copper (I)/copper (II) oxide will proceed the exothermic condensed phase reaction.

  5. Scanning Electron Microscopy and X-Ray Microanalysis for Chemical and Morphological Characterisation of the Inorganic Component of Gunshot Residue: Selected Problems

    Directory of Open Access Journals (Sweden)

    Zuzanna Brożek-Mucha

    2014-01-01

    Full Text Available Chosen aspects of examinations of inorganic gunshot particles by means of scanning electron microscopy and energy dispersive X-ray spectrometry technique are presented. The research methodology of particles was worked out, which included a precise and repeatable procedure of the automatic detection and identification of particles as well as the representation of the obtained analytical data in the form of the frequencies of occurrence of particles of certain chemical or morphological class within the whole population of particles revealed in a specimen. On this basis, there were established relationships between the chemical and morphological properties of populations of particles and factors, such as the type of ammunition, the distance from the gun muzzle to the target, the type of a substrate the particles sediment on, and the time between shooting and collecting the specimens. Each of these aspects of examinations of particles revealed a great potential of being utilised in casework, while establishing various circumstances of shooting incidents leads to the reconstruction of the course of the studied incident.

  6. Surface and bulk 3D analysis of natural and processed ruby using electron probe micro analyzer and X-ray micro CT scan

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, Rakesh K., E-mail: rakesh.materialscience@gmail.com; Singh, Saroj K.; Mishra, B.K.

    2016-08-15

    Highlights: • Firm linking between two advance techniques: Micro-CT and EPMA for mineral analysis. • Attempt to identify and differentiate the treated gem stone from natural counterpart. • 3D structural and surface elemental analysis of the natural gem stone. - Abstract: The change in surface compositional and bulk structural characteristics of the natural ruby stone, before and after heat treatment with lead oxide has been analyzed using two advance characterization techniques like: X-ray micro CT scan (μ-CT) and electron probe micro analyzer (EPMA). The analytical correlation between these two techniques in identification as well as in depth study of the ores and minerals before and after processing has been presented. Also, we describe the aesthetic enhancement of a low quality defective ruby stone by lead oxide filling and the sequential analysis of this ruby stone before and after treatment using these two advanced techniques to identify and to confirm the change in its aesthetic value. The cracks healing and pores filling by the metal oxide on the surface of the ruby have been analyzed using μ-CT and EPMA. Moreover, in this work we describe the advance characterization of the repaired gem stones especially ruby stones. This work will light up the path for in-depth understanding of diffusion mechanism and abstract information of impurity particles inside the minerals. Based on these observations, EPMA and micro CT are shown to be powerful tools for the identification as well as research in gem stones.

  7. Quantifying low amorphous or crystalline amounts of alpha-lactose-monohydrate using X-ray powder diffraction, near-infrared spectroscopy, and differential scanning calorimetry.

    Science.gov (United States)

    Fix, I; Steffens, K J

    2004-05-01

    Efficient and accurate quantification of low amorphous and crystalline contents within pharmaceutical materials still remains a challenging task in the pharmaceutical industry. Since X-ray powder diffraction (XRPD) equipment has improved in recent years, our aim was 1) to investigate the possibility of substantially lowering the detection limits of amorphous or crystalline material to about 1% or 0.5% w/w respectively by applying conventional Bragg Brentano optics, combined with a fast and simple evaluation technique; 2) to perform these measurements within a short time to make it suitable for routine analysis; and 3) to subject the same data sets to a partial least squares regression (PLSR) in order to investigate whether it is possible to improve accuracy and precision compared to the standard integration method. Near-infrared spectroscopy (NIRS) and differential scanning calorimetry (DSC) were chosen as reference method. As model substance, alpha lactose monohydrate was chosen to create calibration curves based on predetermined mixtures of highly crystalline and amorphous substance. In contrast to DSC, XRPD and NIRS revealed an excellent linearity, precision, and accuracy with the percent of crystalline amount and a detectability down to about 0.5% w/w. Chemometric evaluation (partial least squares regression) applied to the XRPD data further improved the quality of our calibration.

  8. Investigations on chloride-induced high temperature corrosion of iron-, nickel-, cobalt-base alloys by scanning electron microscopy and energy dispersive X-ray microspot analysis

    International Nuclear Information System (INIS)

    Ross, W.; Umland, F.

    1984-01-01

    The direct oxidation at 900 0 C in air and the corrosion of alloys in air after short exposure to chloride have been compared under identical conditions. Chloride destroys the original oxide layers by recristallisation and modifies the following scale growing in such a manner that no firmly sticking layers can be rebuilt. After a chloride induction therefore all other following corrosions will be enhanced. Experiments in a closed system, a so called transport furnace, showed that the chloride also acts as a gas phase carrier transporting firstly the oxide layer, under reducing conditions metals, too, as volatile chloro metal gas complexes in this case from hot to cold region of the furnace. Cobalt base alloys are less attacked than iron or nickel base alloys. As chloride is not found implicitly on the treated surface the identification of the chloride induced corrosion is difficult. However the scanning electron microscopy combined with quantitative energy dispersive X-ray analysis has been proved as an appropriate method for early detection. As the phenomena depend on the type of alloy, respectively, an illustration and interpretation catalogue is necessary. (orig.) [de

  9. X-ray fluorescence (conventional and 3D) and scanning electron microscopy for the investigation of Portuguese polychrome glazed ceramics: Advances in the knowledge of the manufacturing techniques

    Energy Technology Data Exchange (ETDEWEB)

    Guilherme, A. [Departamento de Fisica da Faculdade de Ciencias, Centro de Fisica Atomica da Universidade de Lisboa, Av. Prof. Gama Pinto, 2, 1649-003 Lisboa (Portugal); Coroado, J. [Instituto Politecnico Tomar, Dep. Arte Conservacao and Restauro, P-2300313 Tomar (Portugal); Santos, J.M.F. dos [GIAN, Departamento de Fisica, Universidade de Coimbra, 3004-516 Coimbra (Portugal); Luehl, L.; Wolff, T.; Kanngiesser, B. [Institut fuer Optik und Atomare Physik, Technische Universitaet Berlin, Hardenbergstr. 36 D-10623 Berlin (Germany); Carvalho, M.L., E-mail: luisa@cii.fc.ul.pt [Departamento de Fisica da Faculdade de Ciencias, Centro de Fisica Atomica da Universidade de Lisboa, Av. Prof. Gama Pinto, 2, 1649-003 Lisboa (Portugal)

    2011-05-15

    This work shows the first analytical results obtained by X-Ray Fluorescence (XRF) (conventional and 3D) and Scanning Electron Microscopy with Energy Dispersive System (SEM-EDS) on original Portuguese ceramic pieces produced between the 16th and 18th centuries in Coimbra and Lisbon. Experts distinguished these productions based only on the color, texture and brightness, which originates mislabeling in some cases. Thanks to lateral and spatial resolution in the micrometer regime, the results obtained with {mu}-XRF were essential in determining the glaze and pigment thicknesses by monitoring the profile of the most abundant element in each 'layer'. Furthermore, the dissemination of these elements throughout the glaze is different depending on the glaze composition, firing temperature and on the pigment itself. Hence, the crucial point of this investigation was to analyze and understand the interfaces color/glaze and glaze/ceramic support. Together with the XRF results, images captured by SEM and the corresponding semi-quantitative EDS data revealed different manufacturing processes used by the two production centers. Different capture modes were suitable to distinguish different crystals from the minerals that confer the color of the pigments used and to enhance the fact that some of them are very well spread through the glassy matrix, sustaining the theory of an evolved and careful procedure in the manufacturing process of the glaze.

  10. A modulated differential scanning calorimetry and small-angle x-ray scattering study of the interfacial region in structured latices

    Directory of Open Access Journals (Sweden)

    Hourston Douglas J.

    2001-01-01

    Full Text Available The interfacial structure of poly(styrene (PS-poly(methyl acrylate (PMA structured latices has been investigated by means of modulated-temperature differential scanning calorimetry (M-TDSC and small-angle x-ray scattering (SAXS. The differential of heat capacity, dCp/dT, signal from M-TDSC was used to quantify the weight fraction of interface in these latices. For PS-PMA (50:50 by weight structured latices in which the PS component had different crosslink densities (0, 1, 3, 5 and 10 mol% of crosslinking agent, the weight fraction of interface was about 13%. With increasing crosslink density, the fraction of interface increased only slightly. A core-shell model has been used to analyse SAXS data for these PS-PMA latices. M-TDSC can only provide information about the weight fraction of interface, but the combination of M-TDSC and SAXS can provide much more information on the morphology of such structured latices.

  11. Application of particle-induced X-ray emission, backscattering spectrometry and scanning electron microscopy in the evaluation of orthodontic materials

    International Nuclear Information System (INIS)

    Gihwala, D.; Mars, J.A.; Pineda-Vargas, C.

    2013-01-01

    The focus of this investigation was on orthodontic materials used in the manufacture of dental brackets. The properties of these dental materials are subjected to various physical parameters such as elongation, yield strength and elasticity that justify their application. In turn, these parameters depend on the quantitative elemental concentration distribution (QECD) in the materials used in the manufacture. For compositional analysis, proton-induced X-ray emission (PIXE), backscatter spectrometry (BS) and scanning electron microscopy (SEM) were applied. QECD analysis was performed to correlate the physical parameters with the composition and to quantify imperfections in the materials. PIXE and BS analyses were performed simultaneously with a 3 MeV proton beam while electrons accelerated at 25 keV were used for the SEM analysis. From the QECDs it was observed that: (1) the major elements Cr, Fe and Ni were homogeneously distributed in the orthodontic plate; (2) the distribution of Mo and O correlated with one another; (3) there was a spread of Cr around regions of high C concentration; and, (4) areas of high concentrations of Mo and O corresponded to a decrease in C concentrations. Elemental concentration correlations are shown to indicate the similarities and differences in the ease of formation of phases, based on the tangent of linearity. (author)

  12. A Study of the Oxidation Behaviour of Pile Grade A (PGA) Nuclear Graphite Using Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM) and X-Ray Tomography (XRT).

    Science.gov (United States)

    Payne, Liam; Heard, Peter J; Scott, Thomas B

    2015-01-01

    Pile grade A (PGA) graphite was used as a material for moderating and reflecting neutrons in the UK's first generation Magnox nuclear power reactors. As all but one of these reactors are now shut down there is a need to understand the residual state of the material prior to decommissioning of the cores, in particular the location and concentration of key radio-contaminants such as 14C. The oxidation behaviour of unirradiated PGA graphite was studied, in the temperature range 600-1050°C, in air and nitrogen using thermogravimetric analysis, scanning electron microscopy and X-ray tomography to investigate the possibility of using thermal degradation techniques to examine 14C distribution within irradiated material. The thermal decomposition of PGA graphite was observed to follow the three oxidation regimes historically identified by previous workers with limited, uniform oxidation at temperatures below 600°C and substantial, external oxidation at higher temperatures. This work demonstrates that the different oxidation regimes of PGA graphite could be developed into a methodology to characterise the distribution and concentration of 14C in irradiated graphite by thermal treatment.

  13. Scanning Electron Microscopy-Energy-Dispersive X-Ray (SEM/EDX): A Rapid Diagnostic Tool to Aid the Identification of Burnt Bone and Contested Cremains.

    Science.gov (United States)

    Ellingham, Sarah T D; Thompson, Tim J U; Islam, Meez

    2018-03-01

    This study investigates the use of Scanning electron microscopy-energy-dispersive X-ray (SEM-EDX) as a diagnostic tool for the determination of the osseous origin of samples subjected to different temperatures. Sheep (Ovis aries) ribs of two experimental groups (fleshed and defleshed) were burned at temperatures of between 100°C and 1100°C in 100°C increments and subsequently analyzed with the SEM-EDX to determine the atomic percentage of present elements. Three-factor ANOVA analysis showed that neither the exposure temperature, nor whether the burning occurred with or without soft tissue present had any significant influence on the bone's overall elemental makeup (p > 0.05). The Ca/P ratio remained in the osseous typical range of between 1.6 and 2.58 in all analyzed samples. This demonstrates that even faced with high temperatures, the overall gross elemental content and atomic percentage of elements in bone remain stable, creating a unique "fingerprint" for osseous material, even after exposure to extreme conditions. © 2017 American Academy of Forensic Sciences.

  14. Use of dual-energy X-ray absorptiometry in obese individuals: The possibility to estimate whole body composition from DXA half-body scans

    International Nuclear Information System (INIS)

    Lundqvist, K.; Neovius, M.; Grigorenko, A.; Nordenstroem, J.; Roessner, S.

    2009-01-01

    Background: Because of its high accuracy, dual-energy X-ray absorptiometry (DXA) has become one of the most frequently used methods for estimating human body composition. One limiting factor concerning measuring obese people with the DXA technique is the size of the scanning area. Objective: To explore the possibility of estimating whole body composition from half-body scans before and after weight reduction, and compare the results with densitometry measurements. Design: Intervention study of 15 obese adults (age 47.2 ± 13.4; BMI 35.9 ± 3.1) who were measured with full- and half-body DXA scans before and after a 7-week weight loss program. On both occasions, body composition was also assessed with air-displacement plethysmography (ADP). Results: The mean weight loss at follow-up was 14.9 ± 4.1 kg (5.0 kg/m 2 ), corresponding to a 14% decrease in body weight. When comparing the results from full- and half-body DXA, between 96% and 98% of the variance was explained. At baseline, %Body Fat (%BF) did not differ significantly between full and half-body measurements (0.6, -0.1-1.3), but the half-body method overestimated it by 1.0% (0.2-1.8) at follow-up. On the contrary, the difference between DXA and ADP in the assessment of %BF was both significant and of large magnitude (5.2; 2.4-8.0) at baseline, while non-significant and near zero (0.4; -1.3-2.2) at follow-up when the subjects had lost a significant amount of weight. Conclusion: The results obtained from half-body DXA scans can accurately predict whole body composition, as measured by full-body DXA, before and after significant weight reduction, in obese patients who barely fit into the scanning area. However, increasing discordance between DXA and ADP with increasing adiposity was seen, indicating that the measurements might not be as reliable on extreme obese subjects as on normal and overweight ditto

  15. Use of dual-energy X-ray absorptiometry in obese individuals: The possibility to estimate whole body composition from DXA half-body scans

    Energy Technology Data Exchange (ETDEWEB)

    Lundqvist, K. [Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm (Sweden)], E-mail: kent.lundqvist@karolinska.se; Neovius, M. [Obesity Unit, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, SE-141 86 Stockholm (Sweden); Grigorenko, A. [Research and Development Unit, YLab Wellcare Institute, SE-113 60 Stockholm (Sweden); Nordenstroem, J. [Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm (Sweden); Roessner, S. [Obesity Unit, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, SE-141 86 Stockholm (Sweden)

    2009-02-15

    Background: Because of its high accuracy, dual-energy X-ray absorptiometry (DXA) has become one of the most frequently used methods for estimating human body composition. One limiting factor concerning measuring obese people with the DXA technique is the size of the scanning area. Objective: To explore the possibility of estimating whole body composition from half-body scans before and after weight reduction, and compare the results with densitometry measurements. Design: Intervention study of 15 obese adults (age 47.2 {+-} 13.4; BMI 35.9 {+-} 3.1) who were measured with full- and half-body DXA scans before and after a 7-week weight loss program. On both occasions, body composition was also assessed with air-displacement plethysmography (ADP). Results: The mean weight loss at follow-up was 14.9 {+-} 4.1 kg (5.0 kg/m{sup 2}), corresponding to a 14% decrease in body weight. When comparing the results from full- and half-body DXA, between 96% and 98% of the variance was explained. At baseline, %Body Fat (%BF) did not differ significantly between full and half-body measurements (0.6, -0.1-1.3), but the half-body method overestimated it by 1.0% (0.2-1.8) at follow-up. On the contrary, the difference between DXA and ADP in the assessment of %BF was both significant and of large magnitude (5.2; 2.4-8.0) at baseline, while non-significant and near zero (0.4; -1.3-2.2) at follow-up when the subjects had lost a significant amount of weight. Conclusion: The results obtained from half-body DXA scans can accurately predict whole body composition, as measured by full-body DXA, before and after significant weight reduction, in obese patients who barely fit into the scanning area. However, increasing discordance between DXA and ADP with increasing adiposity was seen, indicating that the measurements might not be as reliable on extreme obese subjects as on normal and overweight ditto.

  16. Localized corrosion evaluation of the ASTM F139 stainless steel marked by laser using scanning vibrating electrode technique, X-ray photoelectron spectroscopy and Mott–Schottky techniques

    International Nuclear Information System (INIS)

    Pieretti, Eurico F.; Manhabosco, Sara M.; Dick, Luís F.P.; Hinder, Steve; Costa, Isolda

    2014-01-01

    Graphical abstract: SEM image of pits found at the centred marked area, where the laser beam focused twice. - Highlights: • The effect of laser engraving on the corrosion resistance of the ASTM F139 was studied. • Scanning vibrating electrode technique was used to identify the anodic zone. • Laser engraving of austenitic stainless steels produces highly defective surfaces. • Laser engraving causes large chemical modification of the surface. • Pitting nucleates at the interface between laser affected and unaffected areas. - Abstract: The effect of laser engraving on the corrosion resistance of ASTM F139 stainless steel (SS) has been investigated by electrochemical techniques. The nucleation of localized corrosion on this biomaterial was evaluated by scanning vibrating electrode technique (SVET) in a phosphate buffered saline solution (PBS) of pH 7.4. The Mott–Schottky approach was used to determine the electronic properties of the passive film, also chemically characterized by X-ray photoelectron spectroscopy (XPS). SVET allowed the identification of the anodic zones on the surface of the SS marked by laser technique that were associated with the heat-affected areas. Metallic drops solidified on the laser marked surface dissolved actively at OCP and favoured the nucleation of crevice corrosion, while at the pitting potential, pits nucleate preferentially on the laser marks. XPS results showed that laser engraving caused large chemical modification of the surface. Mott–Schottky results indicated a more defective oxide layer with a larger number of donors on the laser marked surface comparatively to that without marks

  17. X-ray interferometers

    International Nuclear Information System (INIS)

    Franks, A.

    1980-01-01

    An improved type of amplitude-division x-ray interferometer is described. The wavelength at which the interferometer can operate is variable, allowing the instrument to be used to measure x-ray wavelength, and the angle of inclination is variable for sample investigation. (U.K.)

  18. Extremity x-ray

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003461.htm Extremity x-ray To use the sharing features on this page, ... in the body Risks There is low-level radiation exposure. X-rays are monitored and regulated to provide the ...

  19. X-rays utilization

    International Nuclear Information System (INIS)

    Rebigan, F.

    1979-03-01

    The modality of X-ray utilization in different activities and economy is given. One presents firstly quantities and units used in radiation dosimetry and other fields. One gives the generation of X-rays, their properties as well as the elements of radiation protection. The utilization characteristics of these radiations in different fields are finally given. (author)

  20. Chest X-Ray

    Medline Plus

    Full Text Available ... by Image/Video Gallery Your Radiologist Explains Chest X-ray Transcript Welcome to Radiology Info dot org! Hello, ... d like to talk with you about chest radiography also known as chest x-rays. Chest x- ...

  1. Habit modification of nearly perfect single crystals of potassium dihydrogen phosphate (KDP) by trivalent manganese ions studied using synchrotron radiation X-ray multiple diffraction in Renninger scanning mode

    OpenAIRE

    Lai, X; Roberts, KJ; Avanci, LH; Cardoso, LP; Sasaki, JM

    2003-01-01

    The X-ray multiple diffraction technique using synchrotron radiation is applied in the preliminary study of the habit modification of KDP samples as induced by incorporation of the trivalent transition metal cation Mn3+. High-resolution Renninger scans of pure and doped KDP were carried out using 400 as the primary reflection, echoing the fact that these impurity species were segregated in the {100} growth sector. The analysis of the Renninger scans of the doped KDP crystals is consistent wit...

  2. Comparison of Tc-99m HM-PAO SPECT brain scan and x-ray CT in the detection of brain metastases

    International Nuclear Information System (INIS)

    Abdel-Dayem, H.M.; Sadek, S.; Sahwell, A.; Kubasek, H.; El-Sayed, M.; Ziada, G.; Mobarak, L.; Al-Huda, F.; Omar, Y.T.

    1986-01-01

    Tc-99m HM-PAO imaging was compared with x-ray CT in 14 patients with known or suspected brain metastases. Both studies were done within 3 days of each other. Static and single photon emission CT (SPECT) images were acquired after intravenous injection of 13 mCi of Tc-99m HM-PAO. All 14 patients underwent static and SPECT Tc-99m HM-PAO imaging and x-ray CT. Studies were positive in 7, 12, and 10 patients, respectively, by static, SPECT, and x-ray CT imaging, and negative in 7, 2, and 2. The number of lesions identified was 0 (static imaging), 32 (SPECT), and 26(x-ray CT). There were no ''suspicious'' studies by any modality. This study indicates that Tc-99m HM-PAO SPECT cerebral blood flow imaging is more sensitive than x-ray CT for detecting brain metastases, that biplane imaging is not sensitive and SPECT is essential, and that for Tc-99m HM-PAO SPECT brain imaging to regain its importance with respect to x-ray CT, acquisition time must be 10 minutes or less and determination of percentage brain uptake of the injected dose, and of regional distribution, is necessary

  3. Instrumental fundamental parameters and selected applications of the microfocus X-ray fluorescence analysis at a scanning electron microscope; Instrumentelle Fundamentalparameter und ausgewaehlte Anwendungen der Mikrofokus-Roentgenfluoreszenzanalyse am Rasterelektronenmikroskop

    Energy Technology Data Exchange (ETDEWEB)

    Rackwitz, Vanessa

    2012-05-30

    For a decade X-ray sources have been commercially available for the microfocus X-ray fluorescence analysis ({mu}-XRF) and offer the possibility of extending the analytics at a scanning electron microscope (SEM) with an attached energy dispersive X-ray spectrometer (EDS). By using the {mu}-XRF it is possible to determine the content of chemical elements in a microscopic sample volume in a quantitative, reference-free and non-destructive way. For the reference-free quantification with the XRF the Sherman equation is referred to. This equation deduces the intensity of the detected X-ray intensity of a fluorescence peak to the content of the element in the sample by means of fundamental parameters. The instrumental fundamental parameters of the {mu}-XRF at a SEM/EDS system are the excitation spectrum consisting of X-ray tube spectrum and the transmission of the X-ray optics, the geometry and the spectrometer efficiency. Based on a calibrated instrumentation the objectives of this work are the development of procedures for the characterization of all instrumental fundamental parameters as well as the evaluation and reduction of their measurement uncertainties: The algorithms known from the literature for the calculation of X-ray tube spectrum are evaluated with regard to their deviations in the spectral distribution. Within this work a novel semi-empirical model is improved with respect to its uncertainties and enhanced in the low energy range as well as extended for another three anodes. The emitted X-ray tube spectrum is calculated from the detected one, which is measured at an especially developed setup for the direct measurement of X-ray tube spectra. This emitted X-ray tube spectrum is compared to the one calculated on base of the model of this work. A procedure for the determination of the most important parameters of an X-ray semi-lens in parallelizing mode is developed. The temporal stability of the transmission of X-ray full lenses, which have been in regular

  4. X-ray crystallography

    Science.gov (United States)

    2001-01-01

    X-rays diffracted from a well-ordered protein crystal create sharp patterns of scattered light on film. A computer can use these patterns to generate a model of a protein molecule. To analyze the selected crystal, an X-ray crystallographer shines X-rays through the crystal. Unlike a single dental X-ray, which produces a shadow image of a tooth, these X-rays have to be taken many times from different angles to produce a pattern from the scattered light, a map of the intensity of the X-rays after they diffract through the crystal. The X-rays bounce off the electron clouds that form the outer structure of each atom. A flawed crystal will yield a blurry pattern; a well-ordered protein crystal yields a series of sharp diffraction patterns. From these patterns, researchers build an electron density map. With powerful computers and a lot of calculations, scientists can use the electron density patterns to determine the structure of the protein and make a computer-generated model of the structure. The models let researchers improve their understanding of how the protein functions. They also allow scientists to look for receptor sites and active areas that control a protein's function and role in the progress of diseases. From there, pharmaceutical researchers can design molecules that fit the active site, much like a key and lock, so that the protein is locked without affecting the rest of the body. This is called structure-based drug design.

  5. X-Ray diffraction and scanning electron microscopy-energy dispersive spectroscopic analysis of ceramõmetal interface at different firing temperatures

    Directory of Open Access Journals (Sweden)

    Monika Saini

    2010-01-01

    Full Text Available Objective: Porcelain chipping from porcelain fused to metal restoration has been Achilles heel till date. There has been advent of newer ceramics in past but but none of them has been a panacea for Porcelain fracture. An optimal firing is thus essential for the clinical success of the porcelain-fused to metal restoration. The aim of the present study was to evaluate ceramo-metal interface at different firing temperature using XRD and SEM-EDS analysis. Clinical implication of the study was to predict the optimal firing temperature at which porcelain should be fused with metal in order to possibly prevent the occasional failure of the porcelain fused to metal restorations. Materials and Methods: To meet the above-mentioned goal, porcelain was fused to metal at different firing temperatures (930-990°C in vacuum. The microstructural observations of interface between porcelain and metal were evaluated using X-ray diffraction and scanning electron microscopy with energy dispersive spectroscopy. Results: Based on the experimental investigation of the interaction zone of porcelain fused to metal samples, it was observed that as the firing temperature was increased, the pores became less in number as well as the size of the pores decreased at the porcelain/metal interface upto 975°C but increased in size at 990°C. The least number of pores with least diameter were found in samples fired at 975°C. Several oxides like Cr 2 O 3 , NiO, and Al 2 O 3 and intermetallic compounds (CrSi 2 , AlNi 3 were also formed in the interaction zone. Conclusions : It is suggested that the presence of pores may trigger the crack propagation along the interface, causing the failure of the porcelain fused to metal restoration during masticatory action.

  6. Effect of polymers on the nanostructure and on the carbonation of calcium silicate hydrates: a scanning transmission X-ray microscopy study

    KAUST Repository

    Ha, J.

    2011-09-07

    This study investigated the effects of organic polymers (polyethylene glycol and hexadecyltrimethylammonium) on structures of calcium silicate hydrates (C-S-H) which is the major product of Portland cement hydration. Increased surface areas and expansion of layers were observed for all organic polymer modified C-S-H. The results from attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopic measurements also suggest lowered water contents in the layered structures for the C-S-H samples that are modified by organic polymers. Scanning transmission X-ray microscopy (STXM) results further supports this observation. We also observed difference in the extent of C-S-H carbonation due to the presence of organic polymers. No calcite formed in the presence of HDTMA whereas formation of calcite was observed with C-S-H sample modified with PEG. We suggest that the difference in the carbonation reaction is possibly due to the ease of penetration and diffusion of the CO 2. This observation suggests that CO 2 reaction strongly depends on the presence of organic polymers and the types of organic polymers incorporated within the C-S-H structure. This is the first comprehensive study using STXM to quantitatively characterize the level of heterogeneity in cementitious materials at high spatial and spectral resolutions. The results from BET, XRD, ATR-FTIR, and STXM measurements are consistent and suggest that C-S-H layer structures are significantly modified due to the presence of organic polymers, and that the chemical composition and structural differences among the organic polymers determine the extent of the changes in the C-S-H nanostructures as well as the extent of carbonation reaction. © 2011 Springer Science+Business Media, LLC.

  7. Orthogonal identification of gunshot residue with complementary detection principles of voltammetry, scanning electron microscopy, and energy-dispersive X-ray spectroscopy: sample, screen, and confirm.

    Science.gov (United States)

    O'Mahony, Aoife M; Samek, Izabela A; Sattayasamitsathit, Sirilak; Wang, Joseph

    2014-08-19

    Field-deployable voltammetric screening coupled with complementary laboratory-based analysis to confirm the presence of gunshot residue (GSR) from the hands of a subject who has handled, loaded, or discharged a firearm is described. This protocol implements the orthogonal identification of the presence of GSR utilizing square-wave stripping voltammetry (SWSV) as a rapid screening tool along with scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) to confirm the presence of the characteristic morphology and metal composition of GSR particles. This is achieved through the judicious modification of the working electrode of a carbon screen-printed electrode (CSPE) with carbon tape (used in SEM analysis) to fix and retain a sample. A comparison between a subject who has handled and loaded a firearm and a subject who has had no contact with GSR shows the significant variations in voltammetric signals and the presence or absence of GSR-consistent particles and constituent metals. This initial electrochemical screening has no effect on the integrity of the metallic particles, and SEM/EDX analysis conducted prior to and postvoltammetry show no differences in analytical output. The carbon tape is instrumental in retaining the GSR sample after electrochemical analysis, supported by comparison with orthogonal detection at a bare CSPE. This protocol shows great promise as a two-tier detection system for the presence of GSR from the hands of a subject, whereby initial screening can be conducted rapidly onsite by minimally trained operators; confirmation can follow at the same substrate to substantiate the voltammetric results.

  8. Characterization of wet precipitation by X-ray diffraction (XRD) and scanning electron microscopy (SEM) in the metropolitan area of Porto Alegre, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Montanari Migliavacca, Daniela [Instituto de Biociencias, Programa de Pos-Graduacao em Ecologia, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, 91509-900 Porto Alegre, RS (Brazil); Fundacao Estadual de Protecao Ambiental Henrique Luis Roessler, RS. Rua Carlos Chagas 55/802, 90030-020 Porto Alegre, RS (Brazil); Calesso Teixeira, Elba, E-mail: gerpro.pesquisa@fepam.rs.gov.br [Fundacao Estadual de Protecao Ambiental Henrique Luis Roessler, RS. Rua Carlos Chagas 55/802, 90030-020 Porto Alegre, RS (Brazil); Gervasoni, Fernanda; Vieira Conceicao, Rommulo [Instituto de Geociencias, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, 91509-900 Porto Alegre, RS (Brazil); Raya Rodriguez, Maria Teresa [Instituto de Biociencias, Programa de Pos-Graduacao em Ecologia, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, 91509-900 Porto Alegre, RS (Brazil)

    2009-11-15

    The purpose of this study is to assess the composition of wet precipitation in three sites of the metropolitan area of Porto Alegre. Besides the variables usually considered, such as pH, conductivity, major ions (Cl{sup -}, NO{sub 3}{sup -}, F{sup -}, SO{sub 4}{sup 2-}, Na{sup +}, K{sup +}, Mg{sup 2+}, NH{sub 4}{sup +} and Ca{sup 2+}) and metallic elements (Cd, Co, Cr, Cu, Fe, Mn and Ni), the suspended matter was examined by X-ray diffraction (XRD) and scanning electron microscopy (SEM), with energy dispersive system (EDS), for better identification of possible anthropogenic material in this wet precipitation. Results showed an alkaline pH in the samples analyzed and higher concentrations for Na{sup +}, Cl{sup -} and SO{sub 4}{sup 2-}. The acidification and neutralization potential between anions (SO{sub 4}{sup 2-} + NO{sub 3}{sup -}) and cations (Ca{sup 2+} + Mg{sup 2+} + K{sup +} + NH{sub 4}{sup +}) showed a good correlation (0.922). The metallic elements with highest values were Zn, Fe and Mn. Results of XRD identified the presence of some minerals such as quartz, feldspar, mica, clay, carbonates and sulfates. In samples analyzed with SEM, we detected pyroxene, biotite, amphibole and oxides. Cluster analysis (CA) was applied to the data matrix to identify potential pollution sources of metals (natural or anthropogenic) and the association with minerals found in the analysis of SEM.

  9. From Trioleoyl glycerol to extra virgin olive oil through multicomponent triacylglycerol mixtures: Crystallization and polymorphic transformation examined with differential scanning calorimetry and X-ray diffration techniques.

    Science.gov (United States)

    Bayés-García, L; Calvet, T; Cuevas-Diarte, M A; Ueno, S

    2017-09-01

    The polymorphic crystallization and transformation behavior of extra virgin olive oil (EVOO) was examined by using differential scanning calorimetry (DSC) and X-ray diffraction with both laboratory-scale (XRD) and synchrotron radiation source (SR-XRD). The complex behavior observed was studied by previously analyzing mixtures composed by its main 2 to 6 triacylglycerol (TAG) components. Thus, component TAGs were successively added to simulate EVOO composition, until reaching a 6 TAGs mixture, composed by trioleoyl glycerol (OOO), 1-palmitoyl-2,3-dioleoyl glycerol (POO), 1,2-dioleoyl-3-linoleoyl glycerol (OOL), 1-palmitoyl-2-oleoyl-3-linoleoyl glycerol (POL), 1,2-dipalmitoyl-3-oleoyl glycerol (PPO) and 1-stearoyl-2,3-dioleoyl glycerol (SOO). Molten samples were cooled from 25°C to -80°C at a controlled rate of 2°C/min and subsequently heated at the same rate. The polymorphic behavior observed in multicomponent TAG mixtures was interpreted by considering three main groups of TAGs with different molecular structures: triunsaturated OOO and OOL, saturated-unsaturated-unsaturated POO, POL and SOO, and saturated-saturated-unsaturated PPO. As confirmed by our previous work, TAGs belonging to the same structural group displayed a highly similar polymorphic behavior. EVOO exhibited two different β'-2L polymorphic forms (β' 2 -2L and β' 1 -2L), which transformed into β'-3L when heated. Equivalent polymorphic pathways were detected when the same experimental conditions were applied to the 6 TAG components mixture. Hence, minor components may not exert a strong influence in this case. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Crystallization kinetics of Fe-B based amorphous alloys studied in-situ using X-rays diffraction and differential scanning calorimetry

    Directory of Open Access Journals (Sweden)

    Santos D.R. dos

    2001-01-01

    Full Text Available The crystallization processes for the amorphous metallic alloys Fe74B17Si2Ni4Mo3 and Fe86B6Zr7Cu1 (at. % were investigated using X-rays diffraction measurements performed in-situ during Joule-heating, with simultaneous monitoring of the electrical resistance. We determined the main structural transitions and crystalline phases formed during heating, and correlated these results to the observed resistance variations. As the annealing current is increased, the resistance shows an initial decrease due to stress relaxation, followed by a drop to a minimum value due to massive nucleation and growth of alpha-Fe nanocrystals. Further annealing causes the formation of small fractions of Fe-B, B2Zr or ZrO2, while the resistance increases due to temperature enhancement. In situ XRD measurements allowed the identification of metastable phases, as the gamma-Fe phase which occurs at high temperatures. The exothermal peaks observed in the differential scanning calorimetry (DSC for each alloy corroborate the results. We also have performed DSC measurements with several heating rates, which allowed the determination of the Avrami exponent and crystallization activation energy for each alloy. The obtained activation energies (362 and 301 kJ/mol for Fe-B-Zr-Cu; 323 kJ/mol for Fe-B-Si-Ni-Mo are comparable to reported values for amorphous iron alloys, while the Avrami exponent values (n = 1.0 or n = 1.2 are consistent with diffusion controlled crystallization processes with nucleation rates close to zero.

  11. Weathering properties of treated southern yellow pine wood examined by X-ray photoelectron spectroscopy, scanning electron microscopy and physical characterization

    Energy Technology Data Exchange (ETDEWEB)

    Salaita, Ghaleb N.; Ma, Frank M.S.; Parker, Trudy C. [Dow Chemical Company, Technical Center, 3200 Kanawha Turnpike, South Charleston, WV 25303 (United States); Hoflund, Gar B. [Department of Chemical Engineering, University of Florida, P.O. Box 116005, Gainesville, FL 32611 (United States)], E-mail: garho@hotmail.com

    2008-04-30

    In this study the weathering behavior of southern yellow pine (SYP) wood samples pretreated in different solutions has been examined using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and various types of physical characterization regarding material loss and discoloration. The treatment solutions include water as a control, a commercially available water repellent (WR) wood treating additive and polyethylene glycol (PEG) products including PEG PLUS{sup TM}, PEG 8000 solutions and Compound 20M in varying concentrations. All contained the wood preservative chromated copper arsenate (CCA). One sample was treated with a CCA solution only. The treatments were carried out at 20 deg. C and 150 psig for 1/2 h after exposure to vacuum (28 mmHg) for 15 min. Simulated weathering was achieved in an Atlas 65-W Weather-Ometer for 2000 h with both light and dark periods and rain. The temperature ranged from 23 deg. C during the dark cycle to 35 deg. C during the light cycle. With weathering the XPS O/C ratios increase due to oxidation of the surface. Exposure to UV light results in bond breakage and reaction with oxygen in the presence of air to form organic functional groups such as , , C=O and/or O-C-O. These oxidized products can protect the underlying wood from deterioration if they are insoluble in water and remain on the surface as a protective coating. If soluble, rain washes the compounds away and assists in the degradation. Correlated changes are observed in the XPS O/C ratios, the high-resolution XPS C 1s spectra, the SEM micrographs and physical measurements including thickness alteration, weight loss, and discoloration by yellowing or whitening of the weathered wood. The PEG treatments are effective in protecting wood with the 2% PEG PLUS treatment providing the best weathering behavior similar to that of the CCA treatment. The WR and water treatments yield the poorest weathering properties.

  12. Weathering properties of treated southern yellow pine wood examined by X-ray photoelectron spectroscopy, scanning electron microscopy and physical characterization

    International Nuclear Information System (INIS)

    Salaita, Ghaleb N.; Ma, Frank M.S.; Parker, Trudy C.; Hoflund, Gar B.

    2008-01-01

    In this study the weathering behavior of southern yellow pine (SYP) wood samples pretreated in different solutions has been examined using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and various types of physical characterization regarding material loss and discoloration. The treatment solutions include water as a control, a commercially available water repellent (WR) wood treating additive and polyethylene glycol (PEG) products including PEG PLUS TM , PEG 8000 solutions and Compound 20M in varying concentrations. All contained the wood preservative chromated copper arsenate (CCA). One sample was treated with a CCA solution only. The treatments were carried out at 20 deg. C and 150 psig for 1/2 h after exposure to vacuum (28 mmHg) for 15 min. Simulated weathering was achieved in an Atlas 65-W Weather-Ometer for 2000 h with both light and dark periods and rain. The temperature ranged from 23 deg. C during the dark cycle to 35 deg. C during the light cycle. With weathering the XPS O/C ratios increase due to oxidation of the surface. Exposure to UV light results in bond breakage and reaction with oxygen in the presence of air to form organic functional groups such as , , C=O and/or O-C-O. These oxidized products can protect the underlying wood from deterioration if they are insoluble in water and remain on the surface as a protective coating. If soluble, rain washes the compounds away and assists in the degradation. Correlated changes are observed in the XPS O/C ratios, the high-resolution XPS C 1s spectra, the SEM micrographs and physical measurements including thickness alteration, weight loss, and discoloration by yellowing or whitening of the weathered wood. The PEG treatments are effective in protecting wood with the 2% PEG PLUS treatment providing the best weathering behavior similar to that of the CCA treatment. The WR and water treatments yield the poorest weathering properties

  13. In-situ white beam microdiffraction study of the deformation behavior in polycrystalline magnesium alloy during uniaxial loading

    International Nuclear Information System (INIS)

    Advanced Light Source; Tamura, Nobumichi; Lynch, P.A.; Stevenson, A.W.; Liang, D.; Parry, D.; Wilkins, S.; Madsen, I.C.; Bettles, C.; Tamura, N.; Geandier, G.

    2007-01-01

    Scanning white beam X-ray microdiffraction has been used to study the heterogeneous grain deformation in a polycrystalline Mg alloy (MgAZ31). The high spatial resolution achieved on beamline 7.3.3 at the Advanced Light Source provides a unique method to measure the elastic strain and orientation of single grains as a function of applied load. To carry out in-situ measurements a light weight (∼0.5kg) tensile stage, capable of providing uniaxial loads of up to 600kg, was designed to collect diffraction data on the loading and unloading cycle. In-situ observation of the deformation process provides insight about the crystallographic deformation mode via twinning and dislocation slip

  14. X-ray lasers

    CERN Document Server

    Elton, Raymond C

    2012-01-01

    The first in its field, this book is both an introduction to x-ray lasers and a how-to guide for specialists. It provides new entrants and others interested in the field with a comprehensive overview and describes useful examples of analysis and experiments as background and guidance for researchers undertaking new laser designs. In one succinct volume, X-Ray Lasers collects the knowledge and experience gained in two decades of x-ray laser development and conveys the exciting challenges and possibilities still to come._Add on for longer version of blurb_M>The reader is first introduced

  15. X-ray apparatus

    International Nuclear Information System (INIS)

    Bernstein, S.; Stagg, L.; Lambert, T.W.; Griswa, P.J.

    1976-01-01

    A patient support system for X-ray equipment in arteriographic studies of the heart is described in detail. The support system has been designed to overcome many of the practical problems encountered in using previous types of arteriographic X-ray equipment. The support system is capable of horizontal movement and, by a series of shafts attached to the main support system, the X-ray source and image intensifier or detector may be rotated through the same angle. The system is highly flexible and details are given of several possible operational modes. (U.K.)

  16. X-ray detector

    International Nuclear Information System (INIS)

    Whetten, N.R.; Houston, J.M.

    1977-01-01

    An ionization chamber for use in determining the spatial distribution of x-ray photons in tomography systems comprises a plurality of substantially parallel, planar anodes separated by parallel, planar cathodes and enclosed in a gas of high atomic weight at a pressure from approximately 10 atmospheres to approximately 50 atmospheres. The cathode and anode structures comprise metals which are substantially opaque to x-ray radiation and thereby tend to reduce the resolution limiting effects of x-ray fluoresence in the gas. In another embodiment of the invention the anodes comprise parallel conductive bars disposed between two planar cathodes. Guard rings eliminate surface leakage currents between adjacent electrodes. 8 figures

  17. X-ray apparatus

    International Nuclear Information System (INIS)

    Grady, J.K.

    1985-01-01

    X-ray apparatus is described which has a shutter between the X-ray source and the patient. The shutter controls the level of radiation to which the patient is exposed instead of merely discontinuing the electric power supplied to the source. When the shutter is opened a radiation sensor senses the level of X-radiation. When a preset quantity of X-radiation has been measured an exposure control closes the shutter. Instead of using the radiation sensor, the integrated power supplied to the anode of the X-ray source may be measured. (author)

  18. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very small ... X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is a noninvasive medical ...

  19. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very small dose ... limitations of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is ...

  20. X-ray examination apparatus

    NARCIS (Netherlands)

    2000-01-01

    The invention relates to an X-ray apparatus which includes an adjustable X-ray filter. In order to adjust an intensity profile of the X-ray beam, an X-ray absorbing liquid is transported to filter elements of the X-ray filter. Such transport is susceptible to gravitational forces which lead to an

  1. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very ... of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is a noninvasive ...

  2. Bone X-Ray (Radiography)

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very small ... of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is a noninvasive ...

  3. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very small ... of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is a noninvasive ...

  4. Abdomen X-Ray (Radiography)

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Abdomen Abdominal x-ray uses a very small ... of an abdominal x-ray? What is abdominal x-ray? An x-ray (radiograph) is a noninvasive medical ...

  5. X-ray optics and X-ray microscopes: new challenges

    International Nuclear Information System (INIS)

    Susini, J.

    2004-01-01

    Soon after the discovery of X-rays in 1895 by W. Roentgen, it became rapidly clear that the methods traditionally used in the visible light regime, namely refraction, diffraction and reflection were difficult to apply for X-ray optics. The physical origins of these difficulties are closely linked to the very nature of interaction of X-rays with matter. The small deviation δ of the refractive index of condensed matter from unity makes it difficult to extend refraction-based optics from the optical spectral region to the X-ray region because the refraction angle is proportional to δ. Similarly it is very challenging to extend diffraction-based focusing techniques to X-rays because the diffraction angle scales inversely with wavelength. Finally, the use of reflection-based optics is also limited by the very small critical angle for total reflection. All those fundamental limitations prevented for almost one century, the development of X-ray microscopy whereas electron microscopy became a standard tool. In the past twenty years, interests for X-ray microscopy revived, mainly because of several major advances in X-ray sources and X-ray optics. X-ray microscopy techniques are now emerging as powerful and complementary tools for submicron investigations. Soft X-ray microscopes offer traditionally the possibility to form direct images of thick hydrated biological material in near-native environment, at a spatial resolution well beyond that achievable with visible light microscopy. Natural contrast is available in the soft X-ray region, in the so-called ''water-window'', due to the presence of absorption edges of the major constituents (C,N,O). Recent advances in manufacturing techniques have enlarged the accessible energy range of micro-focussing optics and offer new applications in a broad range of disciplines. X-ray microscopy in the 1 - 30 keV energy range is better suited for fluorescence to map trace elements, tomography for 3D imaging and micro-diffraction. The

  6. X-ray examination equipment for heart diagnostics

    International Nuclear Information System (INIS)

    Kok, P.W.

    1979-01-01

    For heart catheterization the X-ray tube and the image intensifier can be shifted parallel to the scanning plane. Without moving the patient it is also possible to displace the system X-ray tube/image intensifier arbitrarily in space, while keeping up the direction of the X-ray beam. (RW) [de

  7. Chest X-Ray

    Medline Plus

    Full Text Available ... Disorders Video: The Basketball Game: An MRI Story Radiology and You Sponsored by Image/Video Gallery Your Radiologist Explains Chest X-ray Transcript Welcome to Radiology Info dot org! Hello, I’m Dr. Geoffrey ...

  8. Chest X-Ray

    Medline Plus

    Full Text Available ... also be useful to help diagnose and monitor treatment for a variety of lung conditions such as pneumonia, emphysema and cancer. A chest x-ray requires no special preparation. ...

  9. Chest X-Ray

    Medline Plus

    Full Text Available ... breath, persistent cough, fever, chest pain or injury. It may also be useful to help diagnose and ... have some concerns about chest x-rays. However, it’s important to consider the likelihood of benefit to ...

  10. Chest X-Ray

    Medline Plus

    Full Text Available ... An MRI Story Radiology and You Sponsored by Image/Video Gallery Your Radiologist Explains Chest X-ray ... posted: How to Obtain and Share Your Medical Images Movement Disorders Video: The Basketball Game: An MRI ...

  11. Chest X-Ray

    Medline Plus

    Full Text Available ... accurate diagnosis far outweighs any risk. For more information about chest x-rays, visit Radiology Info dot ... Inc. (RSNA). To help ensure current and accurate information, we do not permit copying but encourage linking ...

  12. Chest X-Ray

    Medline Plus

    Full Text Available ... Site Index A-Z Spotlight Recently posted: Pancreatic Cancer The Limitations of Online Dose Calculators Video: The ... of lung conditions such as pneumonia, emphysema and cancer. A chest x-ray requires no special preparation. ...

  13. Chest X-Ray

    Medline Plus

    Full Text Available ... exams and use a very small dose of ionizing radiation to produce pictures of the inside of the ... chest x-ray use a tiny dose of ionizing radiation, the benefit of an accurate diagnosis far outweighs ...

  14. Chest X-Ray

    Medline Plus

    Full Text Available ... However, it’s important to consider the likelihood of benefit to your health. While a chest x-ray use a tiny dose of ionizing radiation, the benefit of an accurate diagnosis far outweighs any risk. ...

  15. Chest X-Ray

    Medline Plus

    Full Text Available ... June is Men's Health Month Recently posted: Pancreatic Cancer The Limitations of Online Dose Calculators Video: The ... of lung conditions such as pneumonia, emphysema and cancer. A chest x-ray requires no special preparation. ...

  16. X-ray sources

    International Nuclear Information System (INIS)

    Masswig, I.

    1986-01-01

    The tkb market survey comparatively evaluates the X-ray sources and replacement tubes for stationary equipment currently available on the German market. It lists the equipment parameters of 235 commercially available X-ray sources and their replacement tubes and gives the criteria for purchase decisions. The survey has been completed with December 1985, and offers good information concerning medical and technical aspects as well as those of safety and maintenance. (orig.) [de

  17. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... of knee x-rays. A portable x-ray machine is a compact apparatus that can be taken ... of the body being examined, an x-ray machine produces a small burst of radiation that passes ...

  18. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... that might interfere with the x-ray images. Women should always inform their physician and x-ray ... Safety page for more information about radiation dose. Women should always inform their physician or x-ray ...

  19. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... ray examination. X-rays usually have no side effects in the typical diagnostic range for this exam. ... x-rays. A Word About Minimizing Radiation Exposure Special care is taken during x-ray examinations to ...

  20. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... drawer under the table holds the x-ray film or image recording plate . Sometimes the x-ray ... extended over the patient while an x-ray film holder or image recording plate is placed beneath ...

  1. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... are the limitations of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray ( ... leg (shin), ankle or foot. top of page What are some common uses of the procedure? A ...

  2. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose ...

  3. Technical Note: Scanning of parallel-plate ionization chamber and diamond detector for measurements of water-dose profiles in the vicinity of a narrow x-ray microbeam.

    Science.gov (United States)

    Nariyama, Nobuteru

    2017-12-01

    Scanning of dosimeters facilitates dose distribution measurements with fine spatial resolutions. This paper presents a method of conversion of the scanning results to water-dose profiles and provides an experimental verification. An Advanced Markus chamber and a diamond detector were scanned at a resolution of 6 μm near the beam edges during irradiation with a 25-μm-wide white narrow x-ray beam from a synchrotron radiation source. For comparison, GafChromic films HD-810 and HD-V2 were also irradiated. The conversion procedure for the water dose values was simulated with Monte Carlo photon-electron transport code as a function of the x-ray incidence position. This method was deduced from nonstandard beam reference-dosimetry protocols used for high-energy x-rays. Among the calculated nonstandard beam correction factors, P wall , which is the ratio of the absorbed dose in the sensitive volume of the chamber with water wall to that with a polymethyl methacrylate wall, was found to be the most influential correction factor in most conditions. The total correction factor ranged from 1.7 to 2.7 for the Advanced Markus chamber and from 1.15 to 1.86 for the diamond detector as a function of the x-ray incidence position. The water dose values obtained with the Advanced Markus chamber and the HD-810 film were in agreement in the vicinity of the beam, within 35% and 18% for the upper and lower sides of the beam respectively. The beam width obtained from the diamond detector was greater, and the doses out of the beam were smaller than the doses of the others. The comparison between the Advanced Markus chamber and HD-810 revealed that the dose obtained with the scanned chamber could be converted to the water dose around the beam by applying nonstandard beam reference-dosimetry protocols. © 2017 American Association of Physicists in Medicine.

  4. Combined bilateral idiopathic necrosis of the humerus and femur heads: Bone scan, X-ray, CT, and MRI findings. Kombinierte beidseitige idiopathische Nekrose der Humerus- und Femurkoepfe: Skelettszintigraphie, Roentgen-, CT- und MRT-Befunde

    Energy Technology Data Exchange (ETDEWEB)

    Piepenburg, R.; Hahn, K. (Mainz Univ. (Germany). Klinik fuer Nuklearmedizin); Doll, G. (Mainz Univ. (Germany). Klinik fuer Roentgendiagnostik); Grimm, J. (Mainz Univ. (Germany). Orthopaedische Klinik)

    1992-12-01

    Untreated aseptic bone necroses close to a joint commonly leads to severe secondary arthrosis and destruction of the joint within a short time. Therefore, only a diagnosis in an early stage of the disease offers the chance of a successful joint- preserving therapy. In cases of clinically suspected aseptic bone necrosis but still negative or doubtful X-ray findings, bone scans or MRI are reliable methods of verifying the diagnosis. (orig./MG).

  5. High Pressure Scanning Tunneling Microscopy and High PressureX-ray Photoemission Spectroscopy Studies of Adsorbate Structure,Composition and Mobility during Catalytic Reactions on A Model SingleCrystal

    Energy Technology Data Exchange (ETDEWEB)

    Montano, Max O. [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    Our research focuses on taking advantage of the ability of scanning tunneling microscopy (STM) to operate at high-temperatures and high-pressures while still providing real-time atomic resolution images. We also utilize high-pressure x-ray photoelectron spectroscopy (HPXPS) to monitor systems under identical conditions thus giving us chemical information to compare and contrast with the structural and dynamic data provided by STM.

  6. Characterizing a discrete-to-discrete X-ray transform for iterative image reconstruction with limited angular-range scanning in CT

    DEFF Research Database (Denmark)

    Sidky, Emil; Jørgensen, Jakob Heide; Pan, Xiaochuan

    2012-01-01

    Iterative image reconstruction in computed tomography often employs a discrete-to-discrete (DD) linear data model, and many of the aspects of the image recovery relate directly to the properties of this linear model. While much is known about the properties of the continuous X-ray, the correspond...

  7. The oblique view for spondylolysis in the growing period. X-ray projection angle to spondylolytic lumbar vertebra based on CT scanning

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Yoshimitsu; Minato, Izumi; Nagano, Junji; Inoue, Yoshiya; Takahashi, Yuji; Saito, Hidehiko [Seirei Hamamatsu General Hospital, Shizuoka (Japan)

    1996-02-01

    In this study, CT images of 239 vertebrae from 227 patients with spondylolysis in the growing period were obtained to analyze x-ray oblique separation images based on the relationship between x-ray incidence angle and CT. The age of the subjects ranged from 5 to 23 years (average 14.8 years), of which 224 patients were 18 years or lower. The CT images obtained were classified into four according to our classification, i.e., Type Ia, 112 vertebrae; Type Ib, 175; Type II, 66; Type III, 67. All patients underwent plain x-ray from 4 directions including 45deg. The angle of separation line and posterior margin of the vertebral body was obtained and the average angle of all slices was determined as separation angle. As a result, depiction level of separation line was better in 30deg oblique images than 45deg oblique images in Ia, Ib, and III groups. It is thus desirable to take the relationship between incidence angle of x-ray, separation angle, and CT classification into consideration. (S.Y.).

  8. The oblique view for spondylolysis in the growing period. X-ray projection angle to spondylolytic lumbar vertebra based on CT scanning

    International Nuclear Information System (INIS)

    Kobayashi, Yoshimitsu; Minato, Izumi; Nagano, Junji; Inoue, Yoshiya; Takahashi, Yuji; Saito, Hidehiko

    1996-01-01

    In this study, CT images of 239 vertebrae from 227 patients with spondylolysis in the growing period were obtained to analyze x-ray oblique separation images based on the relationship between x-ray incidence angle and CT. The age of the subjects ranged from 5 to 23 years (average 14.8 years), of which 224 patients were 18 years or lower. The CT images obtained were classified into four according to our classification, i.e., Type Ia, 112 vertebrae; Type Ib, 175; Type II, 66; Type III, 67. All patients underwent plain x-ray from 4 directions including 45deg. The angle of separation line and posterior margin of the vertebral body was obtained and the average angle of all slices was determined as separation angle. As a result, depiction level of separation line was better in 30deg oblique images than 45deg oblique images in Ia, Ib, and III groups. It is thus desirable to take the relationship between incidence angle of x-ray, separation angle, and CT classification into consideration. (S.Y.)

  9. Characterization of early-age hydration processes in lime-ceramic binders using isothermal calorimetry, X-ray diffraction and scanning electron microscopy

    International Nuclear Information System (INIS)

    Jerman, Miloš; Tydlitát, Vratislav; Keppert, Martin; Čáchová, Monika; Černý, Robert

    2016-01-01

    Highlights: • Early age hydration processes in lime-ceramic binders are analyzed within a wide range of component ratios. • The applied waste ceramic dust exhibits partial hydraulic properties, ettringite and calcite are formed. • Transition from tobermorite- to jennite-like structures is identified by SEM within the first 48 h. • The highest specific hydration heat after 300 h, 63 J/g, is measured for the binder containing 70% ceramic. • Substantial effect of the heat of wetting is observed, ranging from 10 J/g for lime to 3.9 J/g for ceramic. - Abstract: Early-age hydration processes in a lime-ceramic-water system are analyzed within the whole range of possible lime/ceramic ratios. The isothermal calorimetry shows a substantial effect of the heat of wetting on the total heat evolved, ranging from 10 J/g for lime to 3.9 J/g for ceramic. The highest specific hydration heat of 63 J/g during the analyzed 300-h hydration period exhibits the blended binder containing 70% ceramic and 30% lime which correlates well with the highest compressive and bending strengths of the paste prepared using this blend. Portlandite, ettringite and calcite are the main phases identified by the X-ray diffraction analysis after the hydration of ceramic-rich blends. According to the results of scanning electron microscopy, the initial course of pozzolanic reaction is for this type of binders characterized by the transition from tobermorite-like calcium-silicate-hydrate structures into jennite-like structures within the first 48 h. Blends with the ceramic content lower than 70% show a high portion of portlandite, calcite is present in low amount, and the jennite-like structures are observed after 48 h, following the initial formation of components with a very high Ca content. The favorable properties of the ceramic-rich blended binders can be explained by the partial hydraulic character of the ceramic. With the specific hydration heat of 29 J/g after 300 h and compressive strength

  10. Characterization of early-age hydration processes in lime-ceramic binders using isothermal calorimetry, X-ray diffraction and scanning electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jerman, Miloš; Tydlitát, Vratislav; Keppert, Martin; Čáchová, Monika; Černý, Robert, E-mail: cernyr@fsv.cvut.cz

    2016-06-10

    Highlights: • Early age hydration processes in lime-ceramic binders are analyzed within a wide range of component ratios. • The applied waste ceramic dust exhibits partial hydraulic properties, ettringite and calcite are formed. • Transition from tobermorite- to jennite-like structures is identified by SEM within the first 48 h. • The highest specific hydration heat after 300 h, 63 J/g, is measured for the binder containing 70% ceramic. • Substantial effect of the heat of wetting is observed, ranging from 10 J/g for lime to 3.9 J/g for ceramic. - Abstract: Early-age hydration processes in a lime-ceramic-water system are analyzed within the whole range of possible lime/ceramic ratios. The isothermal calorimetry shows a substantial effect of the heat of wetting on the total heat evolved, ranging from 10 J/g for lime to 3.9 J/g for ceramic. The highest specific hydration heat of 63 J/g during the analyzed 300-h hydration period exhibits the blended binder containing 70% ceramic and 30% lime which correlates well with the highest compressive and bending strengths of the paste prepared using this blend. Portlandite, ettringite and calcite are the main phases identified by the X-ray diffraction analysis after the hydration of ceramic-rich blends. According to the results of scanning electron microscopy, the initial course of pozzolanic reaction is for this type of binders characterized by the transition from tobermorite-like calcium-silicate-hydrate structures into jennite-like structures within the first 48 h. Blends with the ceramic content lower than 70% show a high portion of portlandite, calcite is present in low amount, and the jennite-like structures are observed after 48 h, following the initial formation of components with a very high Ca content. The favorable properties of the ceramic-rich blended binders can be explained by the partial hydraulic character of the ceramic. With the specific hydration heat of 29 J/g after 300 h and compressive strength

  11. Information-theoretical feature selection using data obtained by Scanning Electron Microscopy coupled with and Energy Dispersive X-ray spectrometer for the classification of glass traces

    International Nuclear Information System (INIS)

    Ramos, Daniel; Zadora, Grzegorz

    2011-01-01

    Highlights: → A selection of the best features for multivariate forensic glass classification using SEM-EDX was performed. → The feature selection process was carried out by means of an exhaustive search, with an Empirical Cross-Entropy objective function. → Results show remarkable accuracy of the best variables selected following the proposed procedure for the task of classifying glass fragments into windows or containers. - Abstract: In this work, a selection of the best features for multivariate forensic glass classification using Scanning Electron Microscopy coupled with an Energy Dispersive X-ray spectrometer (SEM-EDX) has been performed. This has been motivated by the fact that the databases available for forensic glass classification are sparse nowadays, and the acquisition of SEM-EDX data is both costly and time-consuming for forensic laboratories. The database used for this work consists of 278 glass objects for which 7 variables, based on their elemental compositions obtained with SEM-EDX, are available. Two categories are considered for the classification task, namely containers and car/building windows, both of them typical in forensic casework. A multivariate model is proposed for the computation of the likelihood ratios. The feature selection process is carried out by means of an exhaustive search, with an Empirical Cross-Entropy (ECE) objective function. The ECE metric takes into account not only the discriminating power of the model in use, but also its calibration, which indicates whether or not the likelihood ratios are interpretable in a probabilistic way. Thus, the proposed model is applied to all the 63 possible univariate, bivariate and trivariate combinations taken from the 7 variables in the database, and its performance is ranked by its ECE. Results show remarkable accuracy of the best variables selected following the proposed procedure for the task of classifying glass fragments into windows (from cars or buildings) or containers

  12. Real-time out-of-plane artifact subtraction tomosynthesis imaging using prior CT for scanning beam digital x-ray system

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Meng, E-mail: mengwu@stanford.edu [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Fahrig, Rebecca [Department of Radiology, Stanford University, Stanford, California 94305 (United States)

    2014-11-01

    Purpose: The scanning beam digital x-ray system (SBDX) is an inverse geometry fluoroscopic system with high dose efficiency and the ability to perform continuous real-time tomosynthesis in multiple planes. This system could be used for image guidance during lung nodule biopsy. However, the reconstructed images suffer from strong out-of-plane artifact due to the small tomographic angle of the system. Methods: The authors propose an out-of-plane artifact subtraction tomosynthesis (OPAST) algorithm that utilizes a prior CT volume to augment the run-time image processing. A blur-and-add (BAA) analytical model, derived from the project-to-backproject physical model, permits the generation of tomosynthesis images that are a good approximation to the shift-and-add (SAA) reconstructed image. A computationally practical algorithm is proposed to simulate images and out-of-plane artifacts from patient-specific prior CT volumes using the BAA model. A 3D image registration algorithm to align the simulated and reconstructed images is described. The accuracy of the BAA analytical model and the OPAST algorithm was evaluated using three lung cancer patients’ CT data. The OPAST and image registration algorithms were also tested with added nonrigid respiratory motions. Results: Image similarity measurements, including the correlation coefficient, mean squared error, and structural similarity index, indicated that the BAA model is very accurate in simulating the SAA images from the prior CT for the SBDX system. The shift-variant effect of the BAA model can be ignored when the shifts between SBDX images and CT volumes are within ±10 mm in the x and y directions. The nodule visibility and depth resolution are improved by subtracting simulated artifacts from the reconstructions. The image registration and OPAST are robust in the presence of added respiratory motions. The dominant artifacts in the subtraction images are caused by the mismatches between the real object and the prior CT

  13. Scattered X-ray beam nondestructive testing

    International Nuclear Information System (INIS)

    Harding, G.; Kosanetzky, J.

    1988-01-01

    X-ray scatter interactions generally dominate the linear attenuation coefficient at the photon energies typical of medical and industrial radiography. Specific advantages of X-ray scatter imaging, including a flexible choice of measurement geometry, direct 3D-imaging capability (tomography) and improved information for material characterization, are illustrated with results from Compton and coherent scatter devices. Applications of a Compton backscatter scanner (ComScan) in the aerospace industry and coherent scatter imaging in security screening are briefly considered [pt

  14. X-Ray Absorption with Transmission X-Ray Microscopes

    NARCIS (Netherlands)

    de Groot, F.M.F.

    2016-01-01

    In this section we focus on the use of transmission X-ray microscopy (TXM) to measure the XAS spectra. In the last decade a range of soft X-ray and hard X-ray TXM microscopes have been developed, allowing the measurement of XAS spectra with 10–100 nm resolution. In the hard X-ray range the TXM

  15. X-ray astronomy

    International Nuclear Information System (INIS)

    Giacconi, R.; Setti, G.

    1980-01-01

    This book contains the lectures, and the most important seminars held at the NATO meeting on X-Ray astronomy in Erice, July 1979. The meeting was an opportune forum to discuss the results of the first 8-months of operation of the X-ray satellite, HEAO-2 (Einstein Observatory) which was launched at the end of 1978. Besides surveying these results, the meeting covered extragalactic astronomy, including the relevant observations obtained in other portions of the electromagnetic spectrum (ultra-violet, optical, infrared and radio). The discussion on galactic X-ray sources essentially covered classical binaries, globular clusters and bursters and its significance to extragalactic sources and to high energy astrophysics was borne in mind. (orig.)

  16. Flash x-ray

    International Nuclear Information System (INIS)

    Johnson, Q.; Pellinen, D.

    1976-01-01

    The complementary techniques of flash x-ray radiography (FXR) and flash x-ray diffraction (FXD) provide access to a unique domain in nondestructive materials testing. FXR is useful in studies of macroscopic properties during extremely short time intervals, and FXD, the newer technique, is used in studies of microscopic properties. Although these techniques are similar in many respects, there are some substantial differences. FXD generally requires low-voltage, line-radiation sources and extremely accurate timing; FXR is usually less demanding. Phenomena which can be profitably studied by FXR often can also be studied by FXD to permit a complete materials characterization

  17. X-ray astronomy

    International Nuclear Information System (INIS)

    Narayanan, M.S.

    1976-01-01

    The deployment of detectors outside the deleterious effects of the atmosphere by sending them in space vehicles, has been explained. This has thrown open the entire spectrum of the electromagnetic and particle radiation to direct observations, thus enlarging the vistas of the field of astronomy and astrophysics. The discovery of strong emitters of X-rays such as SCO X-1, NorX-2, transient sources such as Cen X-2, Cen X-4, Cen X-1, Supernova remnants Tan X-1, etc., are reported. The background of the X-ray spectrum as measured during two rocket flights over Thumba, India is presented. (K.B.)

  18. X-ray masks

    International Nuclear Information System (INIS)

    Greenwood, J.C.; Satchell, D.W.

    1984-01-01

    In semiconductor manufacture, where X-ray irradiation is used, a thin silicon membrane can be used as an X-ray mask. This membrane has areas on which are patterns to define the regions to be irradiated. These regions are of antireflection material. With the thin, in the order of 3 microns, membranes used, fragility is a problem. Hence a number of ribs of silicon are formed integral with the membrane, and which are relatively thick, 5 to 10 microns. The ribs may be formed by localised deeper boron deposition followed by a selective etch. (author)

  19. X-ray detector

    International Nuclear Information System (INIS)

    Houston, J.M.; Whetten, N.R.

    1981-01-01

    An ionization chamber for use in determining the spatial distribution of x-ray photons in tomography systems comprises a plurality of substantially parallel, planar anodes separated by parallel, planar cathodes and enclosed in a gas of high atomic weight at a pressure from approximately 10 atmospheres to approximately 50 atmospheres. The cathode and anode structures comprise metals which are substantially opaque to x-ray radiation and thereby tend to reduce the resolution limiting effects of xray fluoresence in the gas. In another embodiment of the invention the anodes comprise parallel conductive bars disposed between two planar cathodes. Guard rings eliminate surface leakage currents between adjacent electrodes

  20. Panoramic Dental X-Ray

    Science.gov (United States)

    ... Physician Resources Professions Site Index A-Z Panoramic Dental X-ray Panoramic dental x-ray uses a very small dose of ... x-ray , is a two-dimensional (2-D) dental x-ray examination that captures the entire mouth ...

  1. Subluminous X-ray binaries

    NARCIS (Netherlands)

    Armas Padilla, M.

    2013-01-01

    The discovery of the first X-ray binary, Scorpius X-1, by Giacconi et al. (1962), marked the birth of X-ray astronomy. Following that discovery, many additional X-ray sources where found with the first generation of X-ray rockets and observatories (e.g., UHURU and Einstein). The short-timescale

  2. X-Ray Exam: Pelvis

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Pelvis KidsHealth / For Parents / X-Ray Exam: ... Ray Exam: Hip Broken Bones Getting an X-ray (Video) X-Ray (Video) View more Partner Message About Us ...

  3. X-Ray Exam: Forearm

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Forearm KidsHealth / For Parents / X-Ray Exam: ... Muscles, and Joints Broken Bones Getting an X-ray (Video) X-Ray (Video) View more Partner Message About Us ...

  4. X-Ray Exam: Foot

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Foot KidsHealth / For Parents / X-Ray Exam: ... Muscles, and Joints Broken Bones Getting an X-ray (Video) X-Ray (Video) View more Partner Message About Us ...

  5. X-Ray Exam: Wrist

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Wrist KidsHealth / For Parents / X-Ray Exam: ... Muscles, and Joints Broken Bones Getting an X-ray (Video) X-Ray (Video) View more Partner Message About Us ...

  6. Thoracic spine x-ray

    Science.gov (United States)

    Vertebral radiography; X-ray - spine; Thoracic x-ray; Spine x-ray; Thoracic spine films; Back films ... There is low radiation exposure. X-rays are monitored and regulated to provide the minimum amount of radiation exposure needed to produce the image. Most ...

  7. X-Ray Exam: Finger

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Finger KidsHealth / For Parents / X-Ray Exam: ... Muscles, and Joints Broken Bones Getting an X-ray (Video) X-Ray (Video) View more Partner Message About Us ...

  8. CRL X-ray tube

    International Nuclear Information System (INIS)

    Kolchevsky, N.N.; Petrov, P.V.

    2015-01-01

    A novel types of X-ray tubes with refractive lenses are proposed. CRL-R X-ray tube consists of Compound Refractive Lens- CRL and Reflection X-ray tube. CRL acts as X-ray window. CRL-T X-ray consists of CRL and Transmission X-ray tube. CRL acts as target for electron beam. CRL refractive lens acts as filter, collimator, waveguide and focusing lens. Properties and construction of the CRL X-ray tube are discussed. (authors)

  9. X rays and condensed matter

    International Nuclear Information System (INIS)

    Daillant, J.

    1997-01-01

    After a historical review of the discovery and study of X rays, the various interaction processes between X rays and matter are described: Thomson scattering, Compton scattering, X-photon absorption through photoelectric effect, and magnetic scattering. X ray sources such as the European Synchrotron Radiation Facility (ESRF) are described. The various X-ray applications are presented: imagery such as X tomography, X microscopy, phase contrast; X-ray photoelectron spectroscopy and X-ray absorption spectroscopy; X-ray scattering and diffraction techniques

  10. Effects of X-Ray Dose On Rhizosphere Studies Using X-Ray Computed Tomography

    Science.gov (United States)

    Zappala, Susan; Helliwell, Jonathan R.; Tracy, Saoirse R.; Mairhofer, Stefan; Sturrock, Craig J.; Pridmore, Tony; Bennett, Malcolm; Mooney, Sacha J.

    2013-01-01

    X-ray Computed Tomography (CT) is a non-destructive imaging technique originally designed for diagnostic medicine, which was adopted for rhizosphere and soil science applications in the early 1980s. X-ray CT enables researchers to simultaneously visualise and quantify the heterogeneous soil matrix of mineral grains, organic matter, air-filled pores and water-filled pores. Additionally, X-ray CT allows visualisation of plant roots in situ without the need for traditional invasive methods such as root washing. However, one routinely unreported aspect of X-ray CT is the potential effect of X-ray dose on the soil-borne microorganisms and plants in rhizosphere investigations. Here we aimed to i) highlight the need for more consistent reporting of X-ray CT parameters for dose to sample, ii) to provide an overview of previously reported impacts of X-rays on soil microorganisms and plant roots and iii) present new data investigating the response of plant roots and microbial communities to X-ray exposure. Fewer than 5% of the 126 publications included in the literature review contained sufficient information to calculate dose and only 2.4% of the publications explicitly state an estimate of dose received by each sample. We conducted a study involving rice roots growing in soil, observing no significant difference between the numbers of root tips, root volume and total root length in scanned versus unscanned samples. In parallel, a soil microbe experiment scanning samples over a total of 24 weeks observed no significant difference between the scanned and unscanned microbial biomass values. We conclude from the literature review and our own experiments that X-ray CT does not impact plant growth or soil microbial populations when employing a low level of dose (<30 Gy). However, the call for higher throughput X-ray CT means that doses that biological samples receive are likely to increase and thus should be closely monitored. PMID:23840640

  11. X-ray beam generator

    International Nuclear Information System (INIS)

    Koller, T.J.; Randmer, J.A.

    1977-01-01

    A method of minimizing the preferential angular absorption of the divergent beam from an X-ray generator is described. The generator consists of an X-ray shielded housing with an X-ray transmissive window symmetrically placed in radial alignment with a focal spot area on a sloped target surface of an X-ray tube in the housing. The X-ray tube may be of the stationary anode type or of the rotating anode type. (U.K.)

  12. Chest X-Ray

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos ... x-ray is used to evaluate the lungs, heart and chest wall and may be used to ...

  13. X-ray sources

    International Nuclear Information System (INIS)

    Bonse, U.

    1979-11-01

    The author describes several possibilities for the production of X-radiation. Especially he discusses the use of bremsstrahlung at electron impact on solid targets and the synchrotron radiation. He presents some equations for the calculation of X-ray intensities. Especially the X-radiation from the DORIS storage ring is discussed. (HSI)

  14. Medical x-ray

    International Nuclear Information System (INIS)

    Abd Aziz Mhd Ramli; Gui Ah Auu; Husaini Salleh; Idris Besar; Mohd Ashhar Khalid; Muhammad Jamal Md Isa; Shaharuddin Mohd; Siti Najila Mohd Janib; Mohamed Ali Abdul Khader; Mahalatchimi Dave; Mohd Fazly Abdul Rahim; Ng Chee Moon; Ram Piari; Teoh Hoon Heng; Lee Peter

    2004-01-01

    This book describes the fundamental subject about medical radiography. It is a multidisciplinary field that requires cross professional input from scientists, engineers and medical doctors. However, it is presented in simple language to suit different levels of readers from x-ray operators and radiographers to physists, general practitioners and radiology specialists.The book is written in accordance to the requirements of the standard syllabus approved by the Ministry of Health Malaysia for the training of medical x-ray operator and general practitioners. In general, the content is not only designed to provide relevant and essential subject for related professionals in medical radiological services such as x-ray operator, radiographer and radiologists, but also to address those in associated radiological services including nurses, medical technologists and physicists.The book is organized and arranged sequentially into 3 parts for easy reference: Radiation safety; X-ray equipment and associated facilities; Radiography practices. With proper grasping of all these parts, the radiological services could be provided with confident and the highest professional standard. Thus, medical imaging with highest quality that can provide useful diagnostic information at minimum doses and at cost effective could be assured

  15. Chest X-Ray

    Medline Plus

    Full Text Available ... change into a gown. You may have some concerns about chest x-rays. However, it’s important to ... You Sponsored by About Us | Contact Us | FAQ | Privacy | Terms of Use | Links | Site Map Copyright © 2018 ...

  16. Characterization of toners and inkjets by laser ablation spectrochemical methods and Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy

    Science.gov (United States)

    Trejos, Tatiana; Corzo, Ruthmara; Subedi, Kiran; Almirall, José

    2014-02-01

    Detection and sourcing of counterfeit currency, examination of counterfeit security documents and determination of authenticity of medical records are examples of common forensic document investigations. In these cases, the physical and chemical composition of the ink entries can provide important information for the assessment of the authenticity of the document or for making inferences about common source. Previous results reported by our group have demonstrated that elemental analysis, using either Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) or Laser Ablation Induced Breakdown Spectroscopy (LIBS), provides an effective, practical and robust technique for the discrimination of document substrates and writing inks with minimal damage to the document. In this study, laser-based methods and Scanning Electron Microscopy-Energy Dispersive X-Ray Spectroscopy (SEM-EDS) methods were developed, optimized and validated for the forensic analysis of more complex inks such as toners and inkjets, to determine if their elemental composition can differentiate documents printed from different sources and to associate documents that originated from the same printing source. Comparison of the performance of each of these methods is presented, including the analytical figures of merit, discrimination capability and error rates. Different calibration strategies resulting in semi-quantitative and qualitative analysis, comparison methods (match criteria) and data analysis and interpretation tools were also developed. A total of 27 black laser toners originating from different manufacturing sources and/or batches were examined to evaluate the discrimination capability of each method. The results suggest that SEM-EDS offers relatively poor discrimination capability for this set (~ 70.7% discrimination of all the possible comparison pairs or a 29.3% type II error rate). Nonetheless, SEM-EDS can still be used as a complementary method of analysis since it has

  17. Characterization of toners and inkjets by laser ablation spectrochemical methods and Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy

    International Nuclear Information System (INIS)

    Trejos, Tatiana; Corzo, Ruthmara; Subedi, Kiran; Almirall, José

    2014-01-01

    Detection and sourcing of counterfeit currency, examination of counterfeit security documents and determination of authenticity of medical records are examples of common forensic document investigations. In these cases, the physical and chemical composition of the ink entries can provide important information for the assessment of the authenticity of the document or for making inferences about common source. Previous results reported by our group have demonstrated that elemental analysis, using either Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) or Laser Ablation Induced Breakdown Spectroscopy (LIBS), provides an effective, practical and robust technique for the discrimination of document substrates and writing inks with minimal damage to the document. In this study, laser-based methods and Scanning Electron Microscopy-Energy Dispersive X-Ray Spectroscopy (SEM-EDS) methods were developed, optimized and validated for the forensic analysis of more complex inks such as toners and inkjets, to determine if their elemental composition can differentiate documents printed from different sources and to associate documents that originated from the same printing source. Comparison of the performance of each of these methods is presented, including the analytical figures of merit, discrimination capability and error rates. Different calibration strategies resulting in semi-quantitative and qualitative analysis, comparison methods (match criteria) and data analysis and interpretation tools were also developed. A total of 27 black laser toners originating from different manufacturing sources and/or batches were examined to evaluate the discrimination capability of each method. The results suggest that SEM-EDS offers relatively poor discrimination capability for this set (∼ 70.7% discrimination of all the possible comparison pairs or a 29.3% type II error rate). Nonetheless, SEM-EDS can still be used as a complementary method of analysis since it has

  18. Characterization of toners and inkjets by laser ablation spectrochemical methods and Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Trejos, Tatiana, E-mail: trejost@fiu.edu; Corzo, Ruthmara, E-mail: rcorz001@fiu.edu; Subedi, Kiran, E-mail: ksube001@fiu.edu; Almirall, José, E-mail: almirall@fiu.edu

    2014-02-01

    Detection and sourcing of counterfeit currency, examination of counterfeit security documents and determination of authenticity of medical records are examples of common forensic document investigations. In these cases, the physical and chemical composition of the ink entries can provide important information for the assessment of the authenticity of the document or for making inferences about common source. Previous results reported by our group have demonstrated that elemental analysis, using either Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) or Laser Ablation Induced Breakdown Spectroscopy (LIBS), provides an effective, practical and robust technique for the discrimination of document substrates and writing inks with minimal damage to the document. In this study, laser-based methods and Scanning Electron Microscopy-Energy Dispersive X-Ray Spectroscopy (SEM-EDS) methods were developed, optimized and validated for the forensic analysis of more complex inks such as toners and inkjets, to determine if their elemental composition can differentiate documents printed from different sources and to associate documents that originated from the same printing source. Comparison of the performance of each of these methods is presented, including the analytical figures of merit, discrimination capability and error rates. Different calibration strategies resulting in semi-quantitative and qualitative analysis, comparison methods (match criteria) and data analysis and interpretation tools were also developed. A total of 27 black laser toners originating from different manufacturing sources and/or batches were examined to evaluate the discrimination capability of each method. The results suggest that SEM-EDS offers relatively poor discrimination capability for this set (∼ 70.7% discrimination of all the possible comparison pairs or a 29.3% type II error rate). Nonetheless, SEM-EDS can still be used as a complementary method of analysis since it has

  19. X-ray fluorescence method for trace analysis and imaging

    International Nuclear Information System (INIS)

    Hayakawa, Shinjiro

    2000-01-01

    X-ray fluorescence analysis has a long history as conventional bulk elemental analysis with medium sensitivity. However, with the use of synchrotron radiation x-ray fluorescence method has become a unique analytical technique which can provide tace elemental information with the spatial resolution. To obtain quantitative information of trace elemental distribution by using the x-ray fluorescence method, theoretical description of x-ray fluorescence yield is described. Moreover, methods and instruments for trace characterization with a scanning x-ray microprobe are described. (author)

  20. Achromatic X-ray lenses

    International Nuclear Information System (INIS)

    Umbach, Marion

    2009-01-01

    This thesis presents first results on the development of achromatic refractive X-ray lenses which can be used for scientific experiments at synchrotron sources. First of all the different requirements for achromatic X-ray lenses have been worked out. There are different types of lenses, one type can be used for monochromatized sources when the energy is scanned while the spot size should be constant. The other type can be used at beamlines providing a broad energy band. By a combination of focusing and defocusing elements we have developed a lens system that strongly reduces the chromatic aberration of a refractive lens in a given energy range. The great challenge in the X-ray case - in contrast to the visible range - the complex refractive index, which is very similar for the possible materials in the X-ray spectrum. For precise studies a numerical code has been developed, which calculates the different rays on their way through the lenses to the detector plane via raytracing. In this numerical code the intensity distribution in the detector plane has been analyzed for a chromatic and the corresponding achromatic system. By optimization routines for the two different fields of applications specific parameter combinations were found. For the experimental verification an achromatic system has been developed, consisting of biconcave SU-8 lenses and biconvex Nickel Fresnel lenses. Their fabrication was based on the LIGA-process, including a further innovative development, namely the fabrication of two different materials on one wafer. In the experiment at the synchrotron source ANKA the energy was varied in a specific energy range in steps of 0.1 keV. The intensity distribution for the different energies was detected at a certain focal length. For the achromatic system a reduction of the chromatic aberration could be clearly shown. Achromatic refractive X-ray lenses, especially for the use at synchrotron sources, have not been developed so far. As a consequence of the

  1. Stardust Interstellar Preliminary Examination IV: Scanning Transmission X-Ray Microscopy Analyses of Impact Features in the Stardust Interstellar Dust Collector

    Science.gov (United States)

    Butterworth, Anna L.; Westphal, Andrew J.; Frank, David R.; Allen, Carlton C.; Bechtel, Hans A.; Sandford, Scott A.; Tsou, Peter; Zolensky, Michael E.

    2014-01-01

    We report the quantitative characterization by synchrotron soft X-ray spectroscopy of 31 potential impact features in the aerogel capture medium of the Stardust Interstellar Dust Collector. Samples were analyzed in aerogel by acquiring high spatial resolution maps and high energy-resolution spectra of major rock-forming elements Mg, Al, Si, Fe, and others. We developed diagnostic screening tests to reject spacecraft secondary ejecta and terrestrial contaminants from further consideration as interstellar dust candidates. The results support an extraterrestrial origin for three interstellar candidates: I1043,1,30 (Orion) is a 3 pg particle with Mg-spinel, forsterite, and an iron-bearing phase. I1047,1,34 (Hylabrook) is a 4 pg particle comprising an olivine core surrounded by low-density, amorphous Mg-silicate and amorphous Fe, Cr, and Mn phases. I1003,1,40 (Sorok) has the track morphology of a high-speed impact, but contains no detectable residue that is convincingly distinguishable from the background aerogel. Twenty-two samples with an anthropogenic origin were rejected, including four secondary ejecta from impacts on the Stardust spacecraft aft solar panels, nine ejecta from secondary impacts on the Stardust Sample Return Capsule, and nine contaminants lacking evidence of an impact. Other samples in the collection included I1029,1,6, which contained surviving solar system impactor material. Four samples remained ambiguous: I1006,2,18, I1044,2,32, and I1092,2,38 were too dense for analysis, and we did not detect an intact projectile in I1044,3,33. We detected no radiation effects from the synchrotron soft X-ray analyses; however, we recorded the effects of synchrotron hard X-ray radiation on I1043,1,30 and I1047,1,34.

  2. X ray Production. Chapter 5

    Energy Technology Data Exchange (ETDEWEB)

    Nowotny, R. [Medical University of Vienna, Vienna (Austria)

    2014-09-15

    The differential absorption of X rays in tissues and organs, owing to their atomic composition, is the basis for the various imaging methods used in diagnostic radiology. The principles in the production of X rays have remained the same since their discovery. However, much refinement has gone into the design of X ray tubes to achieve the performance required for today’s radiological examinations. In this chapter, an outline of the principles of X ray production and a characterization of the radiation output of X ray tubes will be given. The basic processes producing X rays are dealt with in Section 1.4.

  3. X-ray filter for x-ray powder diffraction

    Science.gov (United States)

    Sinsheimer, John Jay; Conley, Raymond P.; Bouet, Nathalie C. D.; Dooryhee, Eric; Ghose, Sanjit

    2018-01-23

    Technologies are described for apparatus, methods and systems effective for filtering. The filters may comprise a first plate. The first plate may include an x-ray absorbing material and walls defining first slits. The first slits may include arc shaped openings through the first plate. The walls of the first plate may be configured to absorb at least some of first x-rays when the first x-rays are incident on the x-ray absorbing material, and to output second x-rays. The filters may comprise a second plate spaced from the first plate. The second plate may include the x-ray absorbing material and walls defining second slits. The second slits may include arc shaped openings through the second plate. The walls of the second plate may be configured to absorb at least some of second x-rays and to output third x-rays.

  4. X-ray refractometer

    International Nuclear Information System (INIS)

    Tur'yanskij, A.G.; Pirshin, I.V.

    2001-01-01

    Paper introduces a new circuit of X-ray refractometer to study angular and spectral features of refracted radiation within hard X-ray range. Refractometer incorporates two goniometers, two crystal-analyzers and three radiation detectors. The maximum distance between radiation source focal point and a receiving slit of the second goniometer is equal to 1.4 m. For the first time one obtained refraction patterns of fine-film specimens including C/Si stressed structure. Paper describes a new technique of refractometry via specimen oscillation at fixed position of a detecting device. Paper presents the measurement results of oscillation refraction patterns for specimens of melted quartz and ZnSe single crystal [ru

  5. X-ray generator

    Energy Technology Data Exchange (ETDEWEB)

    Zucarias, A; Shepherd, J W

    1982-09-08

    An X-ray tube has a tubular envelope with a cathode for directing an electron beam onto a focal spot area of a spaced anode target to generate X-rays. The target is mounted for axial rotation on one end of a rotor disposed in an end portion of the envelope and encircled by a stator of an alternating current induction motor. An annular shield of high permeability magnetic material extends transversely between the electron beam and the stator of the induction motor for shunting stray or fringe electromagnetic fields established by the stator away from the electron beam to avoid consequent lateral deflections of the electron and corresponding lateral movements of the focal spot area.

  6. X-ray microtomography

    International Nuclear Information System (INIS)

    Dunsmuir, J.H.; Ferguson, S.R.; D'Amico, K.L.; Stokes, J.P.

    1991-01-01

    In this paper the authors describe the application of a new high-resolution X-ray tomographic microscope to the study of porous media. The microscope was designed to exploit the properties of a synchrotron X-ray source to perform three dimensional tomography on millimeter sized objects with micron resolution and has been used in materials science studies with both synchrotron and conventional and synchrotron sources will be compared. In this work the authors have applied the microscope to measure the three dimensional structure of fused bead packs and berea sandstones with micron resolution and have performed preliminary studies of flow in these media with the microscope operated in a digital subtraction radiography mode. Computer graphics techniques have been applied to the data to visually display the structure of the pore body system. Tomographic imaging after flow experiments should detect the structure of the oil-water interface in the pore network and this work is ongoing

  7. Precision scans of the Pixel cell response of double sided 3D Pixel detectors to pion and X-ray beams

    CERN Document Server

    Mac Raighne, A; Crossley, M; Alianelli, L; Lozano, M; Dumps, R; Fleta, C; Collins, P; Rodrigues, E; Sawhney, K J S; Tlustos, L; Pennicard, D; Buytaert, J; Stewart, G; Parkes, C; Eklund, L; Campbell, M; Marchal, J; Akiba, K; Pellegrini, G; Llopart, X; Plackett, R; Maneuski, D; Gligorov, V V; Tartoni, N; Nicol, M; Bates, R; Gallas, A; Gimenez, E N; van Beuzekom, M; John, M

    2011-01-01

    Three-dimensional (3D) silicon sensors offer potential advantages over standard planar sensors for radiation hardness in future high energy physics experiments and reduced charge-sharing for X-ray applications, but may introduce inefficiencies due to the columnar electrodes. These inefficiencies are probed by studying variations in response across a unit pixel cell in a 55 m m pitch double-sided 3D pixel sensor bump bonded to TimePix and Medipix2 readout ASICs. Two complementary characterisation techniques are discussed: the first uses a custom built telescope and a 120GeV pion beam from the Super Proton Synchrotron (SPS) at CERN; the second employs a novel technique to illuminate the sensor with a micro-focused synchrotron X-ray beam at the Diamond Light Source, UK. For a pion beam incident perpendicular to the sensor plane an overall pixel efficiency of 93.0 +/- 0.5\\% is measured. After a 10 degrees rotation of the device the effect of the columnar region becomes negligible and the overall efficiency rises ...

  8. Application of x-ray nano-particulate markers for the visualization of intermediate layers and interfaces using scanning electron microscopy

    Science.gov (United States)

    Bessudnova, Nadezda O.; Bilenko, David I.; Zakharevich, Andrey M.

    2012-03-01

    In this study the methodology of biological sample preparation for dental research using SEM/EDX has been elaborated. (1)The original cutting equipment supplied with 3D user-controlled sample fixation and an adjustable cooling system has been designed and evaluated. (2) A new approach to the root dentine drying procedure has been developed to preserve structure peculiarities of root dentine. (3) A novel adhesive system with embedded X-Ray nanoparticulate markers has been designed. (4)The technique allowing for visualization of bonding resins, interfaces and intermediate layers between tooth hard tissues and restorative materials of endodontically treated teeth using the X-ray nano-particulate markers has been developed and approved. These methods and approaches were used to compare the objective depth of penetration of adhesive systems of different generations in root dentine. It has been shown that the depth of penetration in dentine is less for adhesive systems of generation VI in comparison with bonding resins of generation V, which is in agreement with theoretical evidence. The depth of penetration depends on the correlation between the direction of dentinal tubules, bonding resin delivery and gravity.

  9. Analysis of a Novel Diffractive Scanning-Wire Beam Position Monitor (BPM) for Discriminative Profiling of Electron Vs. X Ray Beams

    International Nuclear Information System (INIS)

    Tatchyn, R.

    2011-01-01

    Recent numerical studies of Free Electron Lasers (FELs) operating in the Self Amplified Spontaneous Emission (SASE) regime indicate a large sensitivity of the gain to the degree of transverse overlap (and associated phase coherence) between the electron and photon beams traveling down the insertion device. Simulations of actual systems imply that accurate detection and correction for this relative loss of overlap, rather than correction for the absolute departure of the electron beam from a fixed axis, is the preferred function of an FEL amplifier's Beam Position Monitor (BPM) and corrector systems. In this note we propose a novel diffractive BPM with the capability of simultaneously detecting and resolving the absolute (and relative) transverse positions and profiles of electron and x-ray beams co-propagating through an undulator. We derive the equations governing the performance of the BPM and examine its predicted performance for the SLAC Linac Coherent Light Source (LCLS), viz., for profiling multi-GeV electron bunches co-propagating with one-to-several-hundred keV x-ray beams. Selected research and development (r and d) tasks for fabricating and testing the proposed BPM are discussed.

  10. X-ray diffraction

    International Nuclear Information System (INIS)

    Einstein, J.R.; Wei, C.H.

    1982-01-01

    We have been interested in structural elucidation by x-ray diffraction of compounds of biological interest. Understanding exactly how atoms are arranged in three-dimensional arrays as molecules can help explain the relationship between structure and functions. The species investigated may vary in size and shape; our recent studies included such diverse substances as antischistosomal drugs, a complex of cadmium with nucleic acid base, nitrate salts of adenine, and proteins

  11. X-ray apparatus

    International Nuclear Information System (INIS)

    Tomita, Chuji.

    1980-01-01

    A principal object of the present invention is to provide an X-ray apparatus which is such that the distance between the surface of the patient's table and the floor on which the apparatus is installed is sufficiently small in the horizontal position of the patient's table of the roentgenographical pedestal and that the rotation of the pedestal from the horizontal position to a tilted position and further to the vertical position of the table can be carried out smoothly. (auth)

  12. X-ray Ordinance

    International Nuclear Information System (INIS)

    Kramer, R.; Zerlett, G.

    1983-01-01

    This commentary, presented as volume 2 of the Deutsches Strahlenschutzrecht (German legislation on radiation protection) deals with the legal provisions of the ordinance on the protection against harmful effects of X-radiation (X-ray Ordinance - RoeV), of March 1, 1973 (announced in BGBl.I, page 173), as amended by the ordinance on the protection against harmful effects of ionizing radiation, of October 13, 1976 (announced in BGBl. I, page 2905). Thus volume 2 completes the task started with volume 1, namely to present a comprehensive view and account of the body of laws governing radiation protection, a task which was thought useful as developments in the FRG led to regulations being split up into the X-ray Ordinance, and the Radiation Protection Ordinance. In order to present a well-balanced commentary on the X-ray Ordinance, it was necessary to discuss the provisions both from the legal and the medical point of view. This edition takes into account the Fourth Public Notice of the BMA (Fed. Min. of Labour and Social Affairs) concerning the implementation of the X-ray Ordinance of January 4, 1982, as well as court decisions and literature published in this field, until September 1982. In addition, the judgment of the Federal Constitutional Court, dated October 19, 1982, concerning the voidness of the law on government liability, and two decisions by the Federal High Court, dated November 23, 1982, concerning the right to have insight into medical reports - of great significance in practice - have been considered. This commentary therefore is up to date with current developments. (orig.) [de

  13. Producing x-rays

    International Nuclear Information System (INIS)

    Mallozzi, P.J.; Epstein, H.M.; Jung, R.G.; Applebaum, D.C.; Fairand, B.P.; Gallagher, W.J.

    1977-01-01

    A method of producing x-rays by directing radiant energy from a laser onto a target is described. Conversion efficiency of at least about 3 percent is obtained by providing the radiant energy in a low-power precursor pulse of approximately uniform effective intensity focused onto the surface of the target for about 1 to 30 nanoseconds so as to generate an expanding unconfined coronal plasma having less than normal solid density throughout and comprising a low-density (underdense) region wherein the plasma frequency is less than the laser radiation frequency and a higher-density (overdense) region wherein the plasma frequency is greater than the laser radiation frequency and, about 1 to 30 nanoseconds after the precursor pulse strikes the target, a higher-power main pulse focused onto the plasma for about 10 -3 to 30 nanoseconds and having such power density and total energy that the radiant energy is absorbed in the underdense region and conducted into the overdense region to heat it and thus to produce x-rays therefrom with the plasma remaining substantially below normal solid density and thus facilitating the substantial emission of x-rays in the form of spectral lines arising from nonequilibrium ionization states

  14. Point-of-Care Phalangeal Bone Mineral Density Measurement Can Reduce the Need of Dual-Energy X-Ray Absorptiometry Scanning in Danish Women at Risk of Fracture

    DEFF Research Database (Denmark)

    Holmberg, Teresa; Bech, Mickael; Gram, Jeppe

    2016-01-01

    Identifying persons with a high risk of osteoporotic fractures remains a challenge. DXA uptake in women with elevated risk of osteoporosis seems to be depending on distance to scanning facilities. This study aimed to investigate the ability of a small portable scanner in identifying women...... with reduced bone mineral density (BMD), and to define triage thresholds for pre-selection. Total hip and lumbar spine BMD was measured by dual-energy X-ray absorptiometry and phalangeal BMD by radiographic absorptiometry in 121 Danish women with intermediate or high 10-year fracture probability (aged 61...... and only 6 % of women in the low-risk group would be false negatives....

  15. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... the body. X-rays are the oldest and most frequently used form of medical imaging. A bone ... bones. top of page How should I prepare? Most bone x-rays require no special preparation. You ...

  16. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... evaluation. National and international radiology protection organizations continually review and update the technique standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose ...

  17. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... can be taken to the patient in a hospital bed or the emergency room. The x-ray ... position possible that still ensures x-ray image quality. top of page Who interprets the results and ...

  18. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... position possible that still ensures x-ray image quality. top of page Who interprets the results and ...

  19. X-ray detector array

    International Nuclear Information System (INIS)

    Houston, J.M.

    1980-01-01

    The object of the invention (an ionization chamber X-ray detector array for use with high speed computerised tomographic imaging apparatus) is to reduce the time required to produce a tomographic image. The detector array described determines the distribution of X-ray intensities in one or more flat, coplanar X-ray beams. It comprises three flat anode sheets parallel to the X-ray beam, a plurality of rod-like cathodes between the anodes, a detector gas between the electrodes and a means for applying a potential between the electrodes. Each of the X-ray sources is collimated to give a narrow, planar section of X-ray photons. Sets of X-ray sources in the array are pulsed simultaneously to obtain X-ray transmission data for tomographic image reconstruction. (U.K.)

  20. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... tissue shows up in shades of gray and air appears black. Until recently, x-ray images were ... position possible that still ensures x-ray image quality. top of page Who interprets the results and ...

  1. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... changes seen in metabolic conditions. assist in the detection and diagnosis of bone cancer . locate foreign objects ... standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose ...

  2. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures that ...

  3. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... up in shades of gray and air appears black. Until recently, x-ray images were maintained on ... Safety page for more information about radiation dose. Women should always inform their physician or x-ray ...

  4. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... wrist, arm, elbow, shoulder, spine, pelvis, hip, thigh, knee, leg (shin), ankle or foot. top of page ... the patient standing upright, as in cases of knee x-rays. A portable x-ray machine is ...

  5. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... have very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures ...

  6. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... conditions. Imaging with x-rays involves exposing a part of the body to a small dose of ... body. Once it is carefully aimed at the part of the body being examined, an x-ray ...

  7. X-ray diffractometry with spatial resolution

    International Nuclear Information System (INIS)

    Zeiner, K.

    1981-04-01

    X-ray diffractometry is one of the extensively used methods for investigation of the crystalline structure of materials. Line shape and position of a diffracted line are influenced by grain size, deformation and stress. Spatial resolution of one of these specimen characteristics is usually achieved by point-focused X-ray beams and subsequently analyzing different specimen positions. This work uses the method of image reconstruction from projections for the generation of distribution maps. Additional experimental requirements when using a conventional X-ray goniometer are a specimen scanning unit and a computer. The scanning unit repeatedly performs a number of translation steps followed by a rotation step in a fixed X-ray tube/detector (position sensitive detector) arrangement. At each specimen position a diffraction line is recorded using a line-shaped X-ray beam. This network of diffraction lines (showing line resolution) is mathematically converted to a distribution map of diffraction lines and going thus a point resolution. Specimen areas of up to several cm 2 may be analyzed with a linear resolution of 0.1 to 1 mm. Image reconstruction from projections must be modified for generation of ''function-maps''. This theory is discussed and demonstrated by computer simulations. Diffraction line analysis is done for specimen deformation using a deconvolution procedure. The theoretical considerations are experimentally verified. (author)

  8. X-Ray Exam: Hip

    Science.gov (United States)

    ... for Educators Search English Español X-Ray Exam: Hip KidsHealth / For Parents / X-Ray Exam: Hip What's in this article? What It Is Why ... You Have Questions Print What It Is A hip X-ray is a safe and painless test ...

  9. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... X-rays are a form of radiation like light or radio waves. X-rays pass through most objects, including the body. Once it is carefully aimed at the part of the body being examined, an x-ray machine produces a small ...

  10. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... x-rays. top of page What does the equipment look like? The equipment typically used for bone x-rays consists of ... and joint abnormalities, such as arthritis. X-ray equipment is relatively inexpensive and widely available in emergency ...

  11. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... The x-ray tube is connected to a flexible arm that is extended over the patient while an x-ray film holder or image recording plate is placed beneath the patient. top of page How does the procedure work? X-rays are a form of radiation like ...

  12. X-Ray Exam: Ankle

    Science.gov (United States)

    ... for Educators Search English Español X-Ray Exam: Ankle KidsHealth / For Parents / X-Ray Exam: Ankle What's in this article? What It Is Why ... You Have Questions Print What It Is An ankle X-ray is a safe and painless test ...

  13. SMM x ray polychromator

    Science.gov (United States)

    Saba, J. L. R.

    1993-01-01

    The objective of the X-ray Polychromator (XRP) experiment was to study the physical properties of solar flare plasma and its relation to the parent active region to understand better the flare mechanism and related solar activity. Observations were made to determine the temperature, density, and dynamic structure of the pre-flare and flare plasma as a function of wavelength, space and time, the extent to which the flare plasma departs from thermal equilibrium, and the variation of this departure with time. The experiment also determines the temperature and density structure of active regions and flare-induced changes in the regions.

  14. Obstetric X-rays

    International Nuclear Information System (INIS)

    Mwachi, M.K.

    2006-01-01

    Radiography of the pelvis should never be taken to diagnose early pregnancy, because of potential hazards of radiation damage to the growing foetus. the only indication occurs in the last week of pregnancy (37 weeks). Obstetric X-ray will help you answer like confirmation of malposition,multiple pregnancies; fetal abnormalities e.g. hydrocephalus, foetal disposition. The choice of radiographic projection will help give foetal presentation, disposition as well as foetal maturity. The search pattern helps you determine maternal and spine deformity, foetal spine and head , foetal presentation and any other anomalies

  15. X-ray film

    International Nuclear Information System (INIS)

    Arndt, U.W.; Gilmore, D.J.; Wonacott, A.J.

    1977-01-01

    The performance of film as an X-ray detector is discussed and its behaviour is compared with that of a perfect Poissonian detector. The efficiency of microdensitometry as a method of extracting the information recorded on the film is discussed. More emphasis is placed in the precision of microdensitometric measurements than on the more obvious characteristic of film speed. The effects of chemical fog and background on the precision of the measurements is considered and it is concluded that the final limit to precision is set by the chemical fog. (B.D.)

  16. X-ray diffraction

    International Nuclear Information System (INIS)

    Vries, J.L. de.

    1976-01-01

    The seventh edition of Philips' Review of literature on X-ray diffraction begins with a list of conference proceedings on the subject, organised by the Philips' organisation at regular intervals in various European countries. This is followed by a list of bulletins. The bibliography is divided according to the equipment (cameras, diffractometers, monochromators) and its applications. The applications are subdivided into sections for high/low temperature and pressure, effects due to the equipment, small angle scattering and a part for stress, texture and phase analyses of metals and quantitative analysis of minerals

  17. High-Resolution Detector For X-Ray Diffraction

    Science.gov (United States)

    Carter, Daniel C.; Withrow, William K.; Pusey, Marc L.; Yost, Vaughn H.

    1988-01-01

    Proposed x-ray-sensitive imaging detector offers superior spatial resolution, counting-rate capacity, and dynamic range. Instrument based on laser-stimulated luminescence and reusable x-ray-sensitive film. Detector scans x-ray film line by line. Extracts latent image in film and simultaneously erases film for reuse. Used primarily for protein crystallography. Principle adapted to imaging detectors for electron microscopy and fluorescence spectroscopy and general use in astronomy, engineering, and medicine.

  18. Soft x-ray lasers

    International Nuclear Information System (INIS)

    Matthews, D.L.; Rosen, M.D.

    1988-01-01

    One of the elusive dreams of laser physicists has been the development of an x-ray laser. After 25 years of waiting, the x-ray laser has at last entered the scientific scene, although those now in operation are still laboratory prototypes. They produce soft x rays down to about five nanometers. X-ray lasers retain the usual characteristics of their optical counterparts: a very tight beam, spatial and temporal coherence, and extreme brightness. Present x-ray lasers are nearly 100 times brighter that the next most powerful x-ray source in the world: the electron synchrotron. Although Lawrence Livermore National Laboratory (LLNL) is widely known for its hard-x-ray laser program which has potential applications in the Strategic Defense Initiative, the soft x-ray lasers have no direct military applications. These lasers, and the scientific tools that result from their development, may one day have a place in the design and diagnosis of both laser fusion and hard x-ray lasers. The soft x-ray lasers now in operation at the LLNL have shown great promise but are still in the primitive state. Once x-ray lasers become reliable, efficient, and economical, they will have several important applications. Chief among them might be the creation of holograms of microscopic biological structures too small to be investigated with visible light. 5 figs

  19. Spectroscopic ellipsometric modeling of a Bi–Te–Se write layer of an optical data storage device as guided by atomic force microscopy, scanning electron microscopy, and X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hao; Madaan, Nitesh; Bagley, Jacob; Diwan, Anubhav [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602 (United States); Liu, Yiqun [Department of Chemistry, Lehigh University, Bethlehem, PA 18015 (United States); Davis, Robert C. [Department of Physics and Astronomy, Brigham Young University, Provo, UT 84602 (United States); Lunt, Barry M. [Department of Information Technology, Brigham Young University, Provo, UT 84602 (United States); Smith, Stacey J., E-mail: ssmith@chem.byu.edu [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602 (United States); Linford, Matthew R., E-mail: mrlinford@chem.byu.edu [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602 (United States)

    2014-10-31

    Conventional magnetic tape is the most widely used medium for archival data storage. However, data stored on it need to be migrated every ca. 5 years. Recently, optical discs that store information for hundreds, or even more than 1000 years, have been introduced to the market. We recently proposed that technology in these optical discs be used to make an optical tape that would show greater permanence than its magnetic counterpart. Here we provide a detailed optical characterization of a sputtered thin film of bismuth, tellurium, and selenium (BTS) that is a proposed data storage layer for these devices. The methodology described herein should be useful in the future development of related materials. Spectroscopic ellipsometry (SE) data are obtained using interference enhancement, and the modeling of this data is guided by results from atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray reflectivity (XRR). By AFM, ca. 40 nm BTS films show ca. 10 nm roughness. SEM images also suggest considerable roughness in the films and indicate that they are composed of 13.1 ± 5.9 nm grains. XRD confirms that the films are crystalline and predicts a grain size of 17 ± 2 nm. XRD results are consistent with the composition of the films — a mildly oxidized BTS material. Three models of increasing complexity are investigated to explain the SE data. The first model consists of a smooth, homogeneous BTS film. The second model adds a roughness layer to the previous model. The third model also has two layers. The bottom layer is modeled as a mixture of BTS and void using a Bruggeman effective medium approximation. The upper layer is similarly modeled, but with a gradient. The first model was unable to adequately model the SE data. The second model was an improvement — lower MSE (4.4) and good agreement with step height measurements. The third model was even better — very low MSE (2.6) and good agreement with AFM results. The

  20. Dose levels in conventional X-rays

    International Nuclear Information System (INIS)

    Guerra M, J. A.; Gonzalez G, J. A.; Pinedo S, A.; Salas L, M. A.; Vega C, H. R.; Rivera M, T.; Azorin N, J.

    2009-10-01

    There were a series of measures in the General Hospital of Fresnillo in the X-ray Department in the areas of X-1 and X-2-ray rooms and in the neonatal intensive care unit 2, was determined the dose surface entry in eyes, thyroid and gonads for patients undergoing to X-ray study of chest Tele by thermoluminescent dosimetry. Five dosemeters were used in each one of the scans; so find the following dose ranges 20 + - 23 mGy to 350 + - 41 mGy. With the results obtained we can conclude that the procedures used and the equipment calibration is adequate. (Author)

  1. Physics of x-ray computed tomography

    International Nuclear Information System (INIS)

    Akutagawa, W.M.; Huth, G.C.

    1976-01-01

    Sections are included on theoretical limits of x-ray computed tomography and the relationship of these limits to human organ imaging and specific disease diagnosis; potential of x-ray computed tomography in detection of small calcified particles in early breast cancer detection; early lung cancer measurement and detection; advanced materials for ionizing radiation detection; positron system with circular ring transaxial tomographic camera; contrast mechanism of transmission scanner and algorithms; and status of design on a 200 keV scanning proton microprobe

  2. Detection of rare-earth-mineral phases by scanning electron microscopy/energy dispersive x-rays (SEM/EDX) in the alkaline complexes of Tamil Nadu

    International Nuclear Information System (INIS)

    Sengupta, S.K.; Nathan, N.P.; Ganesan, V.; Shome, S.

    2005-01-01

    The alkaline complexes of the Southern Granulite Terrain (SGT) are generally restricted within NNW-SSE-trending Dharmapuri Shear Zone (DSZ), extending from Gudiyatham in the north and Bhavani in the south in Tamil Nadu. REE-rich phases have been studied under EDX (Energy Dispersive X-rays) from the different alkaline suites of Tamil Nadu. In Elagiri, the Th-rich epidote/allanite is concentrically zoned and occurs in the outermost coarse sub-solvus syenite, indicating that the REE concentration is restricted within the late-stage magmatic activity. In Koratti, the apatites are LREE rich. In Samalpatti Complex, the carbonatites host a number of REE-rich minerals commonly classified as betafite, along with nioborutite and nioboilmenite. The niobo-rutile and niobo-ilmenite show exsolved texture. The betafite is zoned with mendelyeerite. Some of the molybdenite in Samalpatti is dendritic indicating incomplete crystallisation. In Sivamalai, the REE phases are generally associated with ferrosyenite and nepheline syenite as adsorbed grains around apatite or carbonate. The REE minerals are Zr-REE titanate, REE-titano silicate and REE-yttrium silicate. In the Pikkili Complex, the REE minerals generally occur as rim around apatite and calcite. A discrete metamict allanite grain with radial cracks occurs within syenite. In Pakkanadu Complex zoned allanite occurs with distinct chemical zonation in syenite. Monazite and celesto-barite are associated with barite suggesting that the REE phases are developed in the late intrusive stage. (author)

  3. An in situ cell to study phase transitions in individual aerosol particles on a substrate using scanning transmission x-ray microspectroscopy

    International Nuclear Information System (INIS)

    Huthwelker, T.; Zelenay, V.; Birrer, M.; Krepelova, A.; Raabe, J.; Ammann, M.; Tzvetkov, G.; Vernooij, M. G. C.

    2010-01-01

    A new in situ cell to study phase transitions and chemical processes on individual aerosol particles in the x-ray transmission microscope at the PolLux beamline of the Swiss light source has been built. The cell is machined from stainless steel and aluminum components and is designed to be used in the standard mount of the microscope without need of complicated rearrangements of the microscope. The cell consists of two parts, a back part which contains connections for the gas supply, heating, cooling devices, and temperature measurement. The second part is a removable clip, which hosts the sample. This clip can be easily exchanged and brought into a sampling unit for aerosol particles. Currently, the cell can be operated at temperatures ranging from -40 to +50 deg. C. The function of the cell is demonstrated using two systems of submicron size: inorganic sodium bromide aerosols and soot originating from a diesel passenger car. For the sodium bromide we demonstrate how phase transitions can be studied in these systems and that O1s spectra from aqueous sodium bromide solution can be taken from submicron sized particles. For the case of soot, we demonstrate that the uptake of water onto individual soot particles can be studied.

  4. X-ray table

    International Nuclear Information System (INIS)

    Craig, J.R.; Otto, G.W.

    1980-01-01

    An X-ray radiographic or fluoroscopic table is described which includes a film holder with a frame attached to a cable running over end pulleys for positioning the holder longitudinally as desired under the table top. The holder has a front opening to receive a cassette-supporting tray which can be slid out on tracks to change the cassette. A reed switch on the frame is opened by a permanent magnet on the tray only when the tray is half-way out. When the switch is closed, an electromagnet locks the pulley and the holder in place. The holder is thus automatically locked in place not only during exposure (tray in) but when the tray is out for changing the cassette. To re-position the holder, the operator pulls the tray half-out and, using the tray itself, pushes the holder along the table, the holder being counterbalanced by a weight. (author)

  5. X-ray equipment

    International Nuclear Information System (INIS)

    Redmayne, I.G.B.

    1988-01-01

    The patent concerns a warning and protection system for mobile x-ray equipment used for 'on site' radiography, so that workers in the vicinity of such a working unit can be alerted to its presence. The invention is a local repeater warning system which gives a preliminary warning that energisation of the tubehead is imminent, as well as a switch near the tubehead to abort or inhibit energisation. The latter switch allows personnel caught in the vicinity of the tubehead to prevent energisation. The preliminary warning may be flashing lamps or by a klaxon. The control unit for the equipment may include a monitoring circuit to detect failure of the warning light or klaxon. (U.K.)

  6. X-ray equipment

    Energy Technology Data Exchange (ETDEWEB)

    Redmayne, I.G.B.

    1988-01-06

    The patent concerns a warning and protection system for mobile x-ray equipment used for 'on site' radiography, so that workers in the vicinity of such a working unit can be alerted to its presence. The invention is a local repeater warning system which gives a preliminary warning that energisation of the tubehead is imminent, as well as a switch near the tubehead to abort or inhibit energisation. The latter switch allows personnel caught in the vicinity of the tubehead to prevent energisation. The preliminary warning may be flashing lamps or by a klaxon. The control unit for the equipment may include a monitoring circuit to detect failure of the warning light or klaxon. (U.K.).

  7. Parameters estimation for X-ray sources: positions

    International Nuclear Information System (INIS)

    Avni, Y.

    1977-01-01

    It is shown that the sizes of the positional error boxes for x-ray sources can be determined by using an estimation method which we have previously formulated generally and applied in spectral analyses. It is explained how this method can be used by scanning x-ray telescopes, by rotating modulation collimators, and by HEAO-A (author)

  8. X-ray Talbot interferometry with capillary plates

    International Nuclear Information System (INIS)

    Momose, Atsushi; Kawamoto, Shinya

    2006-01-01

    An X-ray Talbot interferometer consisting of two capillary plates, which were used as X-ray amplitude gratings, was evaluated for X-ray phase imaging. A theoretical aspect of capillary X-ray Talbot interferometry is presented with a preliminary operation result using synchrotron radiation. A two-dimensional X-ray Talbot effect, or self-imaging effect, which was the basis of Talbot interferometry, was observed with the capillary plate, and moire images formed by the X-ray Talbot interferometer exhibited contrasts corresponding to the differential phase shift caused by phase objects placed in front of the interferometer. Finally, the possibility of quantitative phase measurement with a fringe scanning technique is discussed. (author)

  9. Limitations of ZAF correction factors in the determination of calcium/phosphorus ratios: Important forensic science considerations relevant to the analysis of bone fragments using scanning electron microscopy and energy-dispersive x-ray microanalysis

    International Nuclear Information System (INIS)

    Payne, C.M.; Cromey, D.W.

    1990-01-01

    A series of calcium phosphate standards having calcium/phosphorus (Ca/P) molar ratios of 0.50, 1.00, 1.50, and 1.67, respectively, was prepared for bulk specimen analysis using scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDXA). The standards were mounted on carbon planchettes as either pure crystals or crystals embedded in epoxy resin. Ten different samples of each embedded and non-embedded standard were analyzed in a JEOL 100 CX electron microscope interfaced with a Kevex 8000 EDXA system using a lithium-drifted silicon detector and a multichannel analyzer. The Ca/P ratios were determined by calculating both net peak intensities without matrix corrections and atomic kappa-ratios using the MAGIC V computer program with ZAF correction factors for quantitative analysis. There was such extensive absorption of phosphorus X-rays in standards embedded in an epoxy matrix that the observed Ca/P ratios were statistically compatible with four different standards ranging in theoretical Ca/P ratios from 1.0 to 1.67. Although the non-embedded crystals showed a greater separation in the Ca/P ratios, both methods of preparation produced serious flaws in analysis. Direct application of the discovery of this caveat to the identification of suspected bone fragments for forensic science purposes is discussed

  10. X-Ray Lasers 2016

    CERN Document Server

    Bulanov, Sergei; Daido, Hiroyuki; Kato, Yoshiaki

    2018-01-01

    These proceedings comprise a selection of invited and contributed papers presented at the 15th International Conference on X-Ray Lasers (ICXRL 2016), held at the Nara Kasugano International Forum, Japan, from May 22 to 27, 2016. This conference was part of an ongoing series dedicated to recent developments in the science and technology of x-ray lasers and other coherent x-ray sources with additional focus on supporting technologies, instrumentation and applications.   The book showcases recent advances in the generation of intense, coherent x-rays, the development of practical devices and their applications across a wide variety of fields. It also discusses emerging topics such as plasma-based x-ray lasers, 4th generation accelerator-based sources and higher harmonic generations, as well as other x-ray generation schemes.

  11. X-ray instrumentation in astronomy

    International Nuclear Information System (INIS)

    Cuhlane, J.L.

    1985-01-01

    This book presents the proceedings of a conference devoted to x-ray instrumentation in astronomy. Special sections are: AXAF X-Ray Optical Systems; Specialized X-Ray Systems; X-Ray Optical Systems I; X-Ray Optical Systems II; Gas Filled X-Ray Detectors II; The NASA Advanced X-Ray Astrophysics Facility; X-Ray and EUV Spectrometers; Microchannel Plates; and Solid State Detectors

  12. X-ray facility for the ground calibration of the X-ray monitor JEM-X on board INTEGRAL

    DEFF Research Database (Denmark)

    Loffredo, G.; Pelliciari, C.; Frontera, F.

    2003-01-01

    We describe the X-ray facility developed for the calibration of the X-ray monitor JEM-X on board the INTEGRAL satellite. The apparatus allowed the scanning of the detector geometric area with a pencil beam of desired energy over the major part of the passband of the instrument. The monochromatic...

  13. Topological X-Rays Revisited

    Science.gov (United States)

    Lynch, Mark

    2012-01-01

    We continue our study of topological X-rays begun in Lynch ["Topological X-rays and MRI's," iJMEST 33(3) (2002), pp. 389-392]. We modify our definition of a topological magnetic resonance imaging and give an affirmative answer to the question posed there: Can we identify a closed set in a box by defining X-rays to probe the interior and without…

  14. X-ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Junko; Yachandra, Vittal K.

    2009-07-09

    This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

  15. X-ray filtration apparatus

    International Nuclear Information System (INIS)

    Thompson, G.

    1992-01-01

    This invention relates to an X-ray shielding support device. In spite of considerable development in X-ray taking techniques, a need still exists for effective shielding, inter alia, to compensate for variations in the thickness, density and the absorption properties of the object being studied. By appropriate shielding, the X-ray image produced is of sufficient detail, contrast and intensity over its entire area to constitute a useful diagnostic aid. It is also desirable to subject the patient to the smallest possible X-ray dosage. 4 figs

  16. X-ray emission spectroscopy. X-ray fluorescence

    International Nuclear Information System (INIS)

    Despujols, J.

    1992-01-01

    Principles of X-ray emission spectrometry are first recalled, then wave-length dispersive and energy dispersive X-ray fluorescence spectrometer are described. They are essentially designed for qualitative and quantitative analysis of elements (Z>10). Sample preparation, calibration, corrections, interferences, accuracy are reviewed. Examples of use in different industries are given. (71 refs.)

  17. X-ray scattering in X-ray fluorescence spectra with X-ray tube excitation - Modelling, experiment, and Monte-Carlo simulation

    International Nuclear Information System (INIS)

    Hodoroaba, V.-D.; Radtke, M.; Vincze, L.; Rackwitz, V.; Reuter, D.

    2010-01-01

    X-ray scattering may contribute significantly to the spectral background of X-ray fluorescence (XRF) spectra. Based on metrological measurements carried out with a scanning electron microscope (SEM) having attached a well characterised X-ray source (polychromatic X-ray tube) and a calibrated energy dispersive X-ray spectrometer (EDS) the accuracy of a physical model for X-ray scattering is systematically evaluated for representative samples. The knowledge of the X-ray spectrometer efficiency, but also of the spectrometer response functions makes it possible to define a physical spectral background of XRF spectra. Background subtraction relying on purely mathematical procedures is state-of-the-art. The results produced by the analytical model are at least as reliable as those obtained by Monte-Carlo simulations, even without considering the very challenging contribution of multiple scattering. Special attention has been paid to Compton broadening. Relevant applications of the implementation of the analytical model presented in this paper are the prediction of the limits of detection for particular cases or the determination of the transmission of X-ray polycapillary lenses.

  18. Bone age assessment by dual-energy X-ray absorptiometry in children: an alternative for X-ray?

    Science.gov (United States)

    Heppe, D H M; Taal, H R; Ernst, G D S; Van Den Akker, E L T; Lequin, M M H; Hokken-Koelega, A C S; Geelhoed, J J M; Jaddoe, V W V

    2012-02-01

    The aim of the study was to validate dual-energy X-ray absorptiometry (DXA) as a method to assess bone age in children. Paired dual-energy X-ray absorptiometry (DXA) scans and X-rays of the left hand were performed in 95 children who attended the paediatric endocrinology outpatient clinic of University Hospital Rotterdam, the Netherlands. We compared bone age assessments by DXA scan with those performed by X-ray. Bone age assessment was performed by two blinded observers according to the reference method of Greulich and Pyle. Intra-observer and interobserver reproducibility were investigated using the intraclass correlation coefficient (ICC), and agreement was tested using Bland and Altman plots. The intra-observer ICCs for both observers were 0.997 and 0.991 for X-ray and 0.993 and 0.987 for DXA assessments. The interobserver ICC was 0.993 and 0.991 for X-ray and DXA assessments, respectively. The mean difference between bone age assessed by X-ray and DXA was 0.11 years. The limits of agreement ranged from -0.82 to 1.05 years, which means that 95% of all differences between the methods were covered by this range. Results of bone age assessment by DXA scan are similar to those obtained by X-ray. The DXA method seems to be an alternative for assessing bone age in a paediatric hospital-based population.

  19. X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Attekum, P.M.T.M. van.

    1979-01-01

    The methods and results of X-ray photoelectron spectroscopy in the study of plasmons, alloys and gold compounds are discussed. After a comprehensive introduction, seven papers by the author, previously published elsewhere, are reprinted and these cover a wide range of the uses of X-ray photoelectron spectroscopy. (W.D.L.)

  20. Dental X-ray apparatus

    International Nuclear Information System (INIS)

    Weiss, M.E.

    1980-01-01

    Intra-oral dental X-ray apparatus for panoramic radiography is described in detail. It comprises a tubular target carrier supporting at its distal end a target with an inclined forward face. Image definition is improved by positioning in the path of the X-rays a window of X-ray transmitting ceramic material, e.g. 90% oxide of Be, or Al, 7% Si0 2 . The target carrier forms a probe which can be positioned in the patient's mouth. X-rays are directed forwardly and laterally of the target to an X-ray film positioned externally. The probe is provided with a detachable sleeve having V-form arms of X-ray opaque material which serve to depress the tongue out of the radiation path and also shield the roof of the mouth and other regions of the head from the X-ray pattern. A cylindrical lead shield defines the X-ray beam angle. (author)