WorldWideScience

Sample records for scanning tunneling spectroscopy

  1. Low Temperature Scanning Tunneling Spectroscopy

    Science.gov (United States)

    Kirk, Michael Dominic

    A scanning tunneling microscope (STM) was designed and built to operate at liquid helium temperature and was used to measure highly localized electron tunneling spectroscopy. Several instruments were built, all capable of operating in many different environments: air, vacuum, liquid helium and in a transfer gas. An adaptation of one particular design was made into an atomic force microscope capable of operating at low temperatures. Using a low temperature STM, three adsorbed molecular species (liquid crystals, sorbic acid, and carbon monoxide), deposited on a graphite substrate, have been imaged at 4.2K. The inelastic tunneling spectra of these adsorbates show strong peaks in dI/dV vs V curves at energies that correspond to known vibrational modes. The increase in conductance at the onset of inelastic tunneling was measured to be as high as 100 times. The spatial variation of the spectra was measured and was seen to change dramatically on the scale of angstroms, suggesting that individual molecular bonds could be measured. A theoretical model is presented to explain the contrast seen in the STM images of adsorbed molecules, thereby explaining why adsorbed molecules appear to be more conductive than the background. The microscope proved very useful for measuring the energy gap of high temperature superconductors. These materials often have submicron grain sizes. For LaSrCuO, YBaCuO, and BiCaSrCuO, the conductance curves showed a large energy gap suggesting a strongly coupled superconductor. The conductance curves also indicated that intergrain tunneling may occur and that the background conductance varied linearly with the applied voltage. The crystalline structure of rm Bi_2 Sr_2 CaCu_2 O_ {8 + delta} was imaged by an STM operating in air and in ultra-high vacuum. From the STM images the bulk crystal structure model for this material was refined. Finally, the STM was used to make holes reproducibly on a graphite surface with diameters less than 40A. Because the

  2. Scanning Tunneling Spectroscopy of Graphene on Graphite

    OpenAIRE

    Li, Guohong; Luican, Adina; Andrei, Eva Y.

    2008-01-01

    We report low temperature high magnetic field scanning tunneling microscopy and spectroscopy of graphene flakes on graphite that exhibit the structural and electronic properties of graphene decoupled from the substrate. Pronounced peaks in the tunneling spectra develop with field revealing a Landau level sequence that provides a direct way to identify graphene and to determine the degree of its coupling to the substrate. The Fermi velocity and quasiparticle lifetime, obtained from the positio...

  3. Scanning tunneling spectroscopy of graphene on graphite.

    Science.gov (United States)

    Li, Guohong; Luican, Adina; Andrei, Eva Y

    2009-05-01

    We report low temperature high magnetic field scanning tunneling microscopy and spectroscopy of graphene flakes on graphite that exhibit the structural and electronic properties of graphene decoupled from the substrate. Pronounced peaks in the tunneling spectra develop with increasing field revealing a Landau level sequence that provides a direct way to identify graphene and to determine the degree of its coupling to the substrate. The Fermi velocity and quasiparticle lifetime, obtained from the positions and width of the peaks, provide access to the electron-phonon and electron-electron interactions.

  4. Low-temperature scanning tunneling spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, M.D.

    1989-01-01

    A scanning tunneling microscope (STM) was designed and built to operate at liquid helium temperature and was used to measure highly localized electron tunneling spectroscopy. Several instruments were built, all capable of operating in many different environments: air, vacuum, liquid helium and in a transfer gas. An adaptation of one particular design was made into an atomic force microscope capable of operating at low temperatures. Using a low temperature STM, three adsorbed molecular species (liquid crystals, sorbic acid, and carbon monoxide), deposited on a graphite substrate, have been imaged at 4.2K. The inelastic tunneling spectra of these adsorbates show strong peaks in dI/dV vs V curves at energies that correspond to known vibrational modes. The increase in conductance at the onset of inelastic tunneling was measured to be as high as 100 times. The spatial variation of the spectra was measured and was seen to change dramatically on the scale of angstroms, suggesting that individual molecular bonds could be measured. A theoretical model is presented to explain the contrast seen in the STM images of adsorbed molecules, thereby explaining why adsorbed molecules appear to be more conductive than the background. The microscope proved very useful for measuring the energy gap of high temperature superconductors. These materials often have submicron grain sizes. For LaSrCuO, YBaCuO, and BiCaSrCuO, the conductance curves showed a large energy gap suggesting a strongly coupled superconductor. The conductance curves also indicated that intergrain tunneling may occur and that the background conductance varied linearly with the applied voltage. The crystalline structure of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} was imaged by an STM operating in air and in ultra-high vacuum.

  5. Scanning tunneling spectroscopy of Pb thin films

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Michael

    2010-12-13

    The present thesis deals with the electronic structure, work function and single-atom contact conductance of Pb thin films, investigated with a low-temperature scanning tunneling microscope. The electronic structure of Pb(111) thin films on Ag(111) surfaces is investigated using scanning tunneling spectroscopy (STS). Quantum size effects, in particular, quantum well states (QWSs), play a crucial role in the electronic and physical properties of these films. Quantitative analysis of the spectra yields the QWS energies as a function of film thickness, the Pb bulk-band dispersion in {gamma}-L direction, scattering phase shifts at the Pb/Ag interface and vacuum barrier as well as the lifetime broadening at anti {gamma}. The work function {phi} is an important property of surfaces, which influences catalytic reactivity and charge injection at interfaces. It controls the availability of charge carriers in front of a surface. Modifying {phi} has been achieved by deposition of metals and molecules. For investigating {phi} at the atomic scale, scanning tunneling microscopy (STM) has become a widely used technique. STM measures an apparent barrier height {phi}{sub a}, which is commonly related to the sample work function {phi}{sub s} by: {phi}{sub a}=({phi}{sub s}+{phi}{sub t}- vertical stroke eV vertical stroke)/2, with {phi}{sub t} the work function of the tunneling tip, V the applied tunneling bias voltage, and -e the electron charge. Hence, the effect of the finite voltage in STM on {phi}{sub a} is assumed to be linear and the comparison of {phi}{sub a} measured at different surface sites is assumed to yield quantitative information about work function differences. Here, the dependence of {phi}{sub a} on the Pb film thickness and applied bias voltage V is investigated. {phi}{sub a} is found to vary significantly with V. This bias dependence leads to drastic changes and even inversion of contrast in spatial maps of {phi}{sub a}, which are related to the QWSs in the Pb

  6. Scanning tunneling microscope spectroscopy of polymers.

    Science.gov (United States)

    Zypman, Fredy R

    2002-01-01

    This paper presents theoretical results on the relationship between density of states (DOS) and scanning tunneling microscope current-voltage curves in polymers. We considered samples of linear hydrocarbons electrically grounded at one of their extremes. The other extreme is electrically connected to the microscope tip via electron tunneling through vacuum. When a voltage, V, is applied to the tip, electric current, I, flows in the tip-sample circuit. This current varies as the voltage varies and depends on the DOS to the extent that no current would flow if no electron states exist at a certain energy (or voltage). The detailed relationship between DOS and the current-voltage (I-V) curve is not known a priori. We solve the corresponding quantum problem in the context of tight binding and find that I-V reproduces accurately the resonant energy peaks of the DOS. We apply the results to 100 atom-long alkane and alkene chains and found that there is a significant voltage shift in the corresponding curves as to discriminate one structure from the other.

  7. Scanning tunneling spectroscopy on electron-boson interactions in superconductors

    CERN Document Server

    Schackert, Michael Peter

    2015-01-01

    This work describes the experimental study of electron-boson interactions in superconductors by means of inelastic electron tunneling spectroscopy performed with a scanning tunneling microscope (STM) at temperatures below 1 K. This new approach allows the direct measurement of the Eliashberg function of conventional superconductors as demonstrated on lead (Pb) and niobium (Nb). Preparative experiments on unconventional iron-pnictides are presented in the end.

  8. Probing the surface chemistry of polycrystalline ZnO with scanning tunneling microscopy and tunneling spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rohrer, G.S.; Bonnell, D.A. (Univ. of Pennsylvania, Philadelphia (United States))

    This paper describes the use of scanning tunneling microscopy and spatially resolved tunneling spectroscopy to examine polycrystalline ZnO surface in ultrahigh vacuum after bake-out, after a low temperature anneal that cleaned the surface, after a high temperature anneal, which segregated bismuth to the surface, after being dosed with O{sub 2} and H{sub 2}O, and after exposure to air. The tunneling spectra depend both on the proximity to structural features, such as grain boundaries, and on the chemical composition of the surface. For example, the segregation of bismuth to the surface causes the tunneling spectra to have a p-type rectification. Our results also indicate that the rectification of tunneling spectra acquired in air is caused by surface hydration and that images of surfaces that have not been heated in vacuum have inferior resolution due to a reduction in the height of the apparent tunnel barrier. Spatially resolved tunneling spectroscopy has been used to demonstrate that surface hydration has a greater effect on the crystallite surfaces than on the grain boundary surfaces.

  9. Reversible Hydrogenation and Bandgap Opening of Graphene and Graphite Surfaces Probed by Scanning Tunneling Spectroscopy

    NARCIS (Netherlands)

    Castellanos-Gomez, Andres; Wojtaszek, Magdalena; Arramel, [No Value; Tombros, Nikolaos; van Wees, Bart J.

    2012-01-01

    The effects of hydrogenation on the topography and electronic properties of graphene and graphite surfaces are studied by scanning tunneling microscopy and spectroscopy. The surfaces are chemically modified using an Ar/H2 plasma. By analyzing thousands of scanning tunneling spectroscopy measurements

  10. Scanning tunneling spectroscopy of suspended single-wall carbon nanotubes

    NARCIS (Netherlands)

    LeRoy, B.J.; Lemay, S.G.; Kong, J.; Dekker, C.

    2004-01-01

    We have performed low-temperature scanning tunneling microscopy measurements on single-wall carbon nanotubes that are freely suspended over a trench. The nanotubes were grown by chemical vapor deposition on a Pt substrate with predefined trenches etched into it. Atomic resolution was obtained on the

  11. Scanning tunneling spectroscopy of CdSe nanocrystals covalently bound to GaAs

    DEFF Research Database (Denmark)

    Walzer, K.; Marx, E.; Greenham, N.C.

    2003-01-01

    We present scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) measurements of CdSe nanocrystals covalently attached to doped GaAs substrates using monolayers of 1,6-hexanedithiol. STM measurements showed the formation of stable, densely packed, homogeneous monolayers...

  12. Scanning Tunneling Spectroscopy of Proximity Superconductivity in Epitaxial Multilayer Graphene

    OpenAIRE

    Natterer, Fabian D.; Ha, Jeonghoon; Baek, Hongwoo; Zhang, Duming; Cullen, William; Zhitenev, Nikolai B.; Kuk, Young; Stroscio, Joseph A.

    2016-01-01

    We report on spatial measurements of the superconducting proximity effect in epitaxial graphene induced by a graphene-superconductor interface. Superconducting aluminum films were grown on epitaxial multilayer graphene on SiC. The aluminum films were discontinuous with networks of trenches in the film morphology reaching down to exposed graphene terraces. Scanning tunneling spectra measured on the graphene terraces show a clear decay of the superconducting energy gap with increasing separatio...

  13. In situ scanning tunnelling spectroscopy of inorganic transition metal complexes.

    Science.gov (United States)

    Albrecht, Tim; Moth-Poulsen, Kasper; Christensen, Jørn B; Guckian, Adrian; Bjørnholm, Thomas; Vos, Johannes G; Ulstrup, Jens

    2006-01-01

    Redox molecules with equilibrium potentials suitable for electrochemical control offer perspectives in nanoscale and single-molecule electronics. This applies to molecular but also towards higher sophistication such as transistor or diode function. Most recent nanoscale or single-molecule functional systems are, however, fraught with operational limitations such as cryogenic temperatures and ultra-high vacuum, or lack of electrochemical potential control. We report here cyclic voltammetry (CV) using single-crystal Au(111)- and Pt(111)-electrodes and electrochemical in situ scanning tunnelling microscopy (STM) of a class of Os(II)/(III)- and Co(II)/(III)-complexes, the former novel molecular electronics. The complexes are robust, with ligand groups suitable for linking the complexes to the Au(111)- and Pt(111)-surfaces via N- and S-donor atoms. The data reflect monolayer behaviour. Interfacial ET of the Os-complexes is fast, kET(0) > or = 10(6) s(-1), while the Co-complex reacts much more slowly, kET(0) approximately (1-3) x 10(3) s(-1). In STM of the Os-complexes shows a maximum in the tunnelling current/overpotential relation at constant bias voltage with up to 50-fold current rise. The peak position systematically the bias voltage and equilibrium potential, in keeping with theoretical frames for two-step electron transfer (ET) of in situ STM of redox molecules. The molecular conductivity behaves broadly similarly. The Co-complex also shows a tunnelling spectroscopic feature but much weaker than the Os-complexes. This can be ascribed much smaller interfacial ET rate constant, again caused by large intramolecular nuclear reorganization and weak electronic coupling to the substrate electrode. Overall the has mapped the properties of target molecules needed for stable electronic switching, possible importance in molecular electronics towards the single-molecule level, in room temperature condensed matter environment.

  14. Scanning Tunneling Spectroscopy of Proximity Superconductivity in Epitaxial Multilayer Graphene.

    Science.gov (United States)

    Natterer, Fabian D; Ha, Jeonghoon; Baek, Hongwoo; Zhang, Duming; Cullen, William; Zhitenev, Nikolai B; Kuk, Young; Stroscio, Joseph A

    2016-01-15

    We report on spatial measurements of the superconducting proximity effect in epitaxial graphene induced by a graphene-superconductor interface. Superconducting aluminum films were grown on epitaxial multilayer graphene on SiC. The aluminum films were discontinuous with networks of trenches in the film morphology reaching down to exposed graphene terraces. Scanning tunneling spectra measured on the graphene terraces show a clear decay of the superconducting energy gap with increasing separation from the graphene-aluminum edges. The spectra were well described by Bardeen-Cooper-Schrieffer (BCS) theory. The decay length for the superconducting energy gap in graphene was determined to be greater than 400 nm. Deviations in the exponentially decaying energy gap were also observed on a much smaller length scale of tens of nanometers.

  15. Probing Nanoscale Electronic and Magnetic Interaction with Scanning Tunneling Spectroscopy

    DEFF Research Database (Denmark)

    Bork, Jakob

    This thesis is concerned with fundamental research into electronic and magnetic interaction on the nanoscale. From small metallic and magnetic islands and layers to single atoms. The research revolves around magnetic interaction probed through the spectroscopic capabilities of the scanning....... This is related to research in correlated electron materials such as studies of phase transitions in heavy fermion compounds and magnetic interaction in spintronic research. The capping of cobalt islands on Cu(111) with silver is investigated with STM and photoemission spectroscopy. It is shown that at low...... coverage the silver preferably nucleates on top of the bilayer high cobalt islands compared to directly on the Cu(111) substrate. Furthermore, the silver forms a combination of a reconstruction and a Moire pattern which is investigated with low-energy electron diraction and spectroscopic STM mapping at 6...

  16. Local electronic structure of Fe(001) surfaces studied by scanning tunneling spectroscopy

    NARCIS (Netherlands)

    Bischoff, M.M.J.; Yamada, T.K.; Fang, C.M.; Groot, R.A. de; Kempen, H. van

    2003-01-01

    Scanning tunneling spectroscopy is used to study the local electronic structure of Fe(001) whiskers. The influence of a voltage dependent background on the apparent peak energies in the dI/dV curves is discussed. A relation between this background and the apparent barrier height is established. The

  17. The study of electrical conductivity of DNA molecules by scanning tunneling spectroscopy

    Science.gov (United States)

    Sharipov, T. I.; Bakhtizin, R. Z.

    2017-10-01

    An interest to the processes of charge transport in DNA molecules is very high, due to perspective of their using in nanoelectronics. The original sample preparation for studying electrical conductivity of DNA molecules by scanning tunneling spectroscopy has been proposed and tested. The DNA molecules immobilized on gold surface have been imaged clearly and their current-voltage curves have been measured.

  18. Scanning tunneling spectroscopy on heavy-fermion systems; Rastertunnelspektroskopie an Schwere-Fermionen-Systemen

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, Stefan

    2011-06-24

    in the framework of this thesis different heavy-fermion systems were studied by means of scanning tunneling microscopy and spectroscopy. In the experiment two main topics existed. On the one hand the heavy-fermion superconductivity in the compounds CeCu{sub 2}Si{sub 2}, CeCoIn{sub 5}, and on the other hand the Kondo effect in the Kondo-lattice system YbRh{sub 2}Si{sub 2}.

  19. Fermi-level alignment at metal-carbon nanotube interfaces: application to scanning tunneling spectroscopy

    OpenAIRE

    Xue, Yongqiang; Datta, Supriyo

    1999-01-01

    At any metal-carbon nanotube interface there is charge transfer and the induced interfacial field determines the position of the carbon nanotube band structure relative to the metal Fermi-level. In the case of a single-wall carbon nanotube (SWNT) supported on a gold substrate, we show that the charge transfers induce a local electrostatic potential perturbation which gives rise to the observed Fermi-level shift in scanning tunneling spectroscopy (STS) measurements. We also discuss the relevan...

  20. Scanning tunneling spectroscopy study of the proximity effect in a disordered two-dimensional metal.

    Science.gov (United States)

    Serrier-Garcia, L; Cuevas, J C; Cren, T; Brun, C; Cherkez, V; Debontridder, F; Fokin, D; Bergeret, F S; Roditchev, D

    2013-04-12

    The proximity effect between a superconductor and a highly diffusive two-dimensional metal is revealed in a scanning tunneling spectroscopy experiment. The in situ elaborated samples consist of superconducting single crystalline Pb islands interconnected by a nonsuperconducting atomically thin disordered Pb wetting layer. In the vicinity of each superconducting island the wetting layer acquires specific tunneling characteristics which reflect the interplay between the proximity-induced superconductivity and the inherent electron correlations of this ultimate diffusive two-dimensional metal. The observed spatial evolution of the tunneling spectra is accounted for theoretically by combining the Usadel equations with the theory of dynamical Coulomb blockade; the relevant length and energy scales are extracted and found in agreement with available experimental data.

  1. Scanning-tunneling-spectroscopy-directed design of tailored deep-blue emitters.

    Science.gov (United States)

    Sanning, Jan; Ewen, Pascal R; Stegemann, Linda; Schmidt, Judith; Daniliuc, Constantin G; Koch, Tobias; Doltsinis, Nikos L; Wegner, Daniel; Strassert, Cristian A

    2015-01-12

    Frontier molecular orbitals can be visualized and selectively set to achieve blue phosphorescent metal complexes. For this purpose, the HOMOs and LUMOs of tridentate Pt(II) complexes were measured using scanning tunneling microscopy and spectroscopy. The introduction of electron-accepting or -donating moieties enables independent tuning of the frontier orbital energies, and the measured HOMO-LUMO gaps are reproduced by DFT calculations. The energy gaps correlate with the measured and the calculated energies of the emissive triplet states and the experimental luminescence wavelengths. This synergetic interplay between synthesis, microscopy, and spectroscopy enabled the design and realization of a deep-blue triplet emitter. Finding and tuning the electronic "set screws" at molecular level constitutes a useful experimental method towards an in-depth understanding and rational design of optoelectronic materials with tailored excited state energies and defined frontier-orbital properties. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Temperature dependence of the superconducting proximity effect quantified by scanning tunneling spectroscopy

    Directory of Open Access Journals (Sweden)

    A. Stępniak

    2015-01-01

    Full Text Available Here, we present the first systematic study on the temperature dependence of the extension of the superconducting proximity effect in a 1–2 atomic layer thin metallic film, surrounding a superconducting Pb island. Scanning tunneling microscopy/spectroscopy (STM/STS measurements reveal the spatial variation of the local density of state on the film from 0.38 up to 1.8 K. In this temperature range the superconductivity of the island is almost unaffected and shows a constant gap of a 1.20 ± 0.03 meV. Using a superconducting Nb-tip a constant value of the proximity length of 17 ± 3 nm at 0.38 and 1.8 K is found. In contrast, experiments with a normal conductive W-tip indicate an apparent decrease of the proximity length with increasing temperature. This result is ascribed to the thermal broadening of the occupation of states of the tip, and it does not reflect an intrinsic temperature dependence of the proximity length. Our tunneling spectroscopy experiments shed fresh light on the fundamental issue of the temperature dependence of the proximity effect for atomic monolayers, where the intrinsic temperature dependence of the proximity effect is comparably weak.

  3. Scanning tunneling microscopy and spectroscopy of iron suicide epitaxially grown on Si(111)

    Science.gov (United States)

    Raunau, Werner; Niehus, Horst; Schilling, Thomas; Comsa, George

    1993-05-01

    Epitaxial iron suicide films have been grown on Si(111) by solid phase epitaxy (SPE) in UHV. Structural and electronic properties have been investigated with scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS). For initial Fe deposition up to 3 Å and annealing at 850 K, metallic γ-FeSi 2 is formed. These films exhibit a perfect (2 × 2) superstructure, which is attributed to γ-FeSi 2(111) with Si termination. SPE at higher initial iron deposition (15 Å) and annealing at 800 K results in ɛ-FeSi showing a (√3 × √3) R30° superstructure. Subsequent annealing above 900 K leads to β-FeSi 2 formation. As by STS, β-FeSi 2 films are semiconducting with Eg = 0.85 eV. STM topographs show that SPE produces rough silicide surfaces wit β-FeSi 2(101) [and not β-FeSi 2(110)] epitaxy. The atomic structure on β-FeSi 2 terraces is complex, consisting domain boundaries and defects.

  4. Scanning tunnelling spectroscopy and manipulation of double-decker phthalocyanine molecules on a semiconductor surface

    Science.gov (United States)

    Pan, Yi; Kanisawa, Kiyoshi; Ishikawa, Naoto; Fölsch, Stefan

    2017-09-01

    A scanning tunnelling microscope (STM) operated at 5 K was used to study dysprosium biphthalocyanine (DyPc2) molecules adsorbed on the inert III-V semiconductor surface InAs(1 1 1)A. Orbital imaging and scanning tunnelling spectroscopy measurements reveal that the molecular electronic structure remains largely unperturbed, indicating a weak molecule-surface binding. The molecule adsorbs at the In vacancy site of the (2  ×  2)-reconstructed surface and is highly sensitive to current-induced excitations leading to random rotational fluctuations. Owing to the weak surface binding, individual molecules can be precisely repositioned and arranged by the STM tip via attractive tip-molecule interaction. In this way, DyPc2 dimers of well-defined internal structure can be assembled which exist in two conformations of equivalent appearance. A binary switching between these two conformers can be induced by injecting electrons into one of the two molecules. The conformational change of the dimer proceeds via a concerted molecular rotation and minor lateral displacement. The synchronised switching observed here is attributed to steric interactions between the two molecules constituting the dimer.

  5. Scanning tunneling spectroscopy of van der Waals graphene/semiconductor interfaces: absence of Fermi level pinning

    Science.gov (United States)

    Le Quang, T.; Cherkez, V.; Nogajewski, K.; Potemski, M.; Dau, M. T.; Jamet, M.; Mallet, P.; Veuillen, J.-Y.

    2017-09-01

    We have investigated the electronic properties of two-dimensional (2D) transition metal dichalcogenides (TMDs), namely trilayer WSe2 and monolayer MoSe2, deposited on epitaxial graphene on silicon carbide, by using scanning tunneling microscopy and spectroscopy (STM/STS) in ultra-high vacuum. Depending on the number of graphene layers below the TMD flakes, we identified variations in the electronic dI/dV(V) spectra measured by the STM tip: the most salient feature is a rigid shift of the TMD spectra (i.e. of the different band onset positions) towards occupied states by about 120 mV when passing from bilayer to monolayer underlying graphene. Since both graphene phases are metallic and present a work function difference in the same energy range, our measurements point towards the absence of Fermi-level pinning for such van der Waals 2D TMD/Metal heterojunctions, following the prediction of the Schottky-Mott model.

  6. Ex situ elaborated proximity mesoscopic structures for ultrahigh vacuum scanning tunneling spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Stolyarov, V. S. [UMR 7588, Institut des Nanosciences de Paris, UPMC Univ Paris 06, Sorbonne Universités, F-75005 Paris (France); CNRS, UMR 7588, Institut des Nanosciences de Paris, F-75005 Paris (France); Institute of Solid State Physics RAS, 142432 Chernogolovka (Russian Federation); Moscow Institute of Physics and Technology, 141700 Dolgoprudny (Russian Federation); Kazan Federal University, 420008 Kazan (Russian Federation); Moscow State University, 119991 Moscow (Russian Federation); Cren, T., E-mail: tristan.cren@upmc.fr; Debontridder, F.; Brun, C. [UMR 7588, Institut des Nanosciences de Paris, UPMC Univ Paris 06, Sorbonne Universités, F-75005 Paris (France); CNRS, UMR 7588, Institut des Nanosciences de Paris, F-75005 Paris (France); Veshchunov, I. S. [Université de Bordeaux, LP2N, 351 cours de la Libération, F-33405 Talence (France); Institute of Solid State Physics RAS, 142432 Chernogolovka (Russian Federation); Skryabina, O. V. [Institute of Solid State Physics RAS, 142432 Chernogolovka (Russian Federation); Rusanov, A. Yu. [LLC “Applied radiophysics” 142432 Chernogolovka (Russian Federation); Roditchev, D. [UMR 7588, Institut des Nanosciences de Paris, UPMC Univ Paris 06, Sorbonne Universités, F-75005 Paris (France); CNRS, UMR 7588, Institut des Nanosciences de Paris, F-75005 Paris (France); LPEM-UMR 8213, CNRS, ESPCI-ParisTech, UPMC, 10 rue Vauquelin, F-75005 Paris (France)

    2014-04-28

    We apply ultrahigh vacuum Scanning Tunneling Spectroscopy (STS) at ultra-low temperature to study proximity phenomena in metallic Cu in contact with superconducting Nb. In order to solve the problem of Cu-surface contamination, Cu(50 nm)/Nb(100 nm) structures are grown by respecting the inverted order of layers on SiO{sub 2}/Si substrate. Once transferred into vacuum, the samples are cleaved at the structure-substrate interface. As a result, a contamination-free Cu-surface is exposed in vacuum. It enables high-resolution STS of superconducting correlations induced by proximity from the underlying superconducting Nb layer. By applying magnetic field, we generate unusual proximity-induced superconducting vortices and map them with a high spatial and energy resolution. The suggested method opens a way to access local electronic properties of complex electronic mesoscopic devices by performing ex situ STS under ultrahigh vacuum.

  7. INTER-LAYER INTERACTION IN DOUBLE-WALLED CARBON NANOTUBES EVIDENCED BY SCANNING TUNNELING MICROSCOPY AND SPECTROSCOPY

    DEFF Research Database (Denmark)

    Giusca, Cristina E; Tison, Yann; Silva, S. Ravi P.

    2008-01-01

    Scanning Tunneling Microscopy and Spectroscopy have been used in an attempt to elucidate the electronic structure of nanotube systems containing two constituent shells. Evidence for modified electronic structure due to the inter-layer interaction in double-walled carbon nanotubes is provided by t...

  8. Interfacial scanning tunneling spectroscopy (STS) of chalcogenide/metal hybrid nanostructure

    Energy Technology Data Exchange (ETDEWEB)

    Saad, Mahmoud M.; Abdallah, Tamer [Physics Department, Faculty of Science, Ain Shams University, Abbassia, Cairo (Egypt); Easawi, Khalid; Negm, Sohair [Department of Physics and Mathematics, Faculty of Engineering (Shoubra), Benha University (Egypt); Talaat, Hassan, E-mail: hassantalaat@hotmail.com [Physics Department, Faculty of Science, Ain Shams University, Abbassia, Cairo (Egypt)

    2015-05-15

    Graphical abstract: - Highlights: • Comparing band gaps values obtained optically with STS. • Comparing direct imaging with calculated dimensions. • STS determination of the interfacial band bending of metal/chalcogenide. - Abstract: The electronic structure at the interface of chalcogenide/metal hybrid nanostructure (CdSe–Au tipped) had been studied by UHV scanning tunneling spectroscopy (STS) technique at room temperature. This nanostructure was synthesized by a phase transfer chemical method. The optical absorption of this hybrid nanostructure was recorded, and the application of the effective mass approximation (EMA) model gave dimensions that were confirmed by the direct measurements using the scanning tunneling microscopy (STM) as well as the high-resolution transmission electron microscope (HRTEM). The energy band gap obtained by STS agrees with the values obtained from the optical absorption. Moreover, the STS at the interface of CdSe–Au tipped hybrid nanostructure between CdSe of size about 4.1 ± 0.19 nm and Au tip of size about 3.5 ± 0.29 nm shows a band bending about 0.18 ± 0.03 eV in CdSe down in the direction of the interface. Such a result gives a direct observation of the electron accumulation at the interface of CdSe–Au tipped hybrid nanostructure, consistent with its energy band diagram. The presence of the electron accumulation at the interface of chalcogenides with metals has an important implication for hybrid nanoelectronic devices and the newly developed plasmon/chalcogenide photovoltaic solar energy conversion.

  9. Proximity Effect between Two Superconductors Spatially Resolved by Scanning Tunneling Spectroscopy

    Directory of Open Access Journals (Sweden)

    V. Cherkez

    2014-03-01

    Full Text Available We present a combined experimental and theoretical study of the proximity effect in an atomic-scale controlled junction between two different superconductors. Elaborated on a Si(111 surface, the junction comprises a Pb nanocrystal with an energy gap Δ_{1}=1.2  meV, connected to a crystalline atomic monolayer of lead with Δ_{2}=0.23  meV. Using in situ scanning tunneling spectroscopy, we probe the local density of states of this hybrid system both in space and in energy, at temperatures below and above the critical temperature of the superconducting monolayer. Direct and inverse proximity effects are revealed with high resolution. Our observations are precisely explained with the help of a self-consistent solution of the Usadel equations. In particular, our results demonstrate that in the vicinity of the Pb islands, the Pb monolayer locally develops a finite proximity-induced superconducting order parameter, well above its own bulk critical temperature. This leads to a giant proximity effect where the superconducting correlations penetrate inside the monolayer a distance much larger than in a nonsuperconducting metal.

  10. Co on Pt(111) studied by spin-polarized scanning tunneling microscopy and spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Meier, F.K.

    2006-07-01

    In this thesis the electronic properties of the bare Pt(111) surface, the structural, electronic, and magnetic properties of monolayer and double-layer high Co nanostructures as well as the spin-averaged electronic structure of single Co atoms on Pt(111) were studied by low-temperature scanning tunneling microscopy (STM) and spectroscopy (STS). The experiments on the bare Pt(111) surface and on single Co atoms have been performed in an STM facility operating at temperatures of down to 0.3 K and at magnetic fields of up to 14 T under ultra-high vacuum conditions. The facility has been taken into operation within the time period of this thesis and its specifications were tested by STS measurements. These characterization measurements show a very high stability of the tunneling junction and an energy resolution of about 100 {mu}eV, which is close to the thermal limit. The investigation of the electronic structure of the bare Pt(111) surface reveals the existence of an unoccupied surface state. By a comparison of the measured dispersion to first-principles electronic structure calculations the state is assigned to an sp-derived surface band at the lower boundary of the projected bulk band gap. The surface state exhibits a strong spin-orbit coupling induced spin splitting. The close vicinity to the bulk bands leads to a strong linear contribution to the dispersion and thus to a deviant appearance in the density of states in comparison to the surface states of the (111) surfaces of noble metals. A detailed study of Co monolayer and double-layer nanostructures on the Pt(111) surface shows that both kinds of nanostructures exhibit a highly inhomogeneous electronic structure which changes at the scale of only a few Aa due to a strong stacking dependence with respect to the Pt(111) substrate. With the help of first principles calculations the different spectroscopic appearance for Co atoms within the Co monolayer is assigned to a stacking dependent hybridization of Co states

  11. Electronic “Edge” State on Molybdenite Basal Plane Observed by Ultrahigh-Vacuum Scanning Tunneling Microscopy and Spectroscopy

    Science.gov (United States)

    Komiyama, Masaharu; Tomita, Hiroyuki; Yoda, Eisuke

    2007-09-01

    An electronic state heretofore unreported has been found on a cleaved basal plane of a natural molybdenite (MoS2) single crystal by ultrahigh-vacuum scanning tunneling microscopy (UHV-STM), and examined in detail both by STM and scanning tunneling spectroscopy (STS). The new electronic state resides on the edge of the upper terrace of MoS2(0001), manifesting itself in the form of bright ridges with a width of ca. 4 nm along the step edges in negatively sample-biased STM images. This ridge structure is nonexistent in STM images taken with positive sample biases. STS showed that the local density of states (LDOS) on such ridge structures is much higher than that on the terraces in the range of 0.2-1.2 eV below the Fermi edge. The nature and origin of this high LDOS at the step edges are discussed.

  12. Bimetallic Catalysts and Platinum Surfaces Studied by X-ray Absorption Spectroscopy and Scanning Tunnelling Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Roenning, Magnus

    2000-07-01

    Bimetallic catalyst systems used in Fischer-Tropsch synthesis (Co-Re/Al{sub 2}O{sub 3}) and in the naphtha reforming process (Pt-Re/Al{sub 2}O{sub 3}) have been studied in situ using X-ray absorption spectroscopy (EXAFS). Additionally, the adsorption of ethene on platinum single crystal surfaces has been investigated using scanning tunnelling microscopy. In situ EXAFS at the cobalt K absorption edge have been carried out at 450{sup o}C on the hydrogen reduction of a rhenium-promoted Co{sub 3}O{sub 4}/Al{sub 2}O{sub 3} catalyst. Reductions carried out using 100% hydrogen and 5% hydrogen in helium gave different results. Whereas the reduction using dilute hydrogen leads to bulk-like metallic cobalt particles (hcp or fcc), reaction with pure hydrogen yields a more dispersed system with smaller cobalt metal particles (< 40 A). The results are rationalised in terms of different degrees of reoxidation of cobalt by the higher and lower concentrations of water generated during the reduction of cobalt oxide by 100% and 5% hydrogen, respectively. Additionally, in both reduction protocols a small fraction (3 -4 wt%) of the cobalt content is randomly dispersed over the tetrahedral vacancies of the alumina support. This dispersion occurs during reduction and not calcination. The cobalt in these sites cannot be reduced at 450 {sup o}C. The local environments about the rhenium atoms in Co-Re/{gamma}-A1{sub 2}O{sub 3} catalyst after different reduction periods have been studied by X-ray absorption spectroscopy. A bimetallic catalyst containing 4.6 wt% cobalt and 2 wt% rhenium has been compared with a corresponding monometallic sample with 2 wt% rhenium on the same support. The rhenium L{sub III} EXAFS analysis shows that bimetallic particles are formed after reduction at 450{sup o}C with the average particle size being 10-15 A. Rhenium is shown to be reduced at a later stage than cobalt. The fraction of cobalt atoms entering the support obstructs the access to the support for the

  13. Electronic properties of (Zn,CoO systems probed by scanning tunnelling spectroscopy

    Directory of Open Access Journals (Sweden)

    L. Moldovan

    2008-05-01

    Full Text Available The aim of this paper is to gain insight into theelectronic properties of (Zn,CoO system - a widebandgap Diluted Magnetic Semiconductors (DMSshowing room temperature (RT ferromagnetism undern-type doping conditions. On the experimental side, ultrahigh-vacuum scanning tunnelling microscopy andspectroscopy (STM and STS at variable temperature (Tare used to probe the local electronic structure of thesystem. It is presented the map of the local density ofstates (LDOS of polar ZnO surfaces. Then, it is possibleto decorate (incorporate Co atoms onto (into thesemiconductor.

  14. Molecular images and vibrational spectroscopy of sorbic acid with the scanning tunneling microscope

    Science.gov (United States)

    Smith, Douglas P. E.; Kirk, Michael D.; Quate, Calvin F.

    1987-06-01

    Images of sorbic acid molecules absorbed onto graphite have been taken with a scanning tunneling microscope (STM) operating in liquid helium. Molecular clusters were clearly observed, as was the atomic structure of the graphite substrate. The molecules were seen to diffuse across the substrate at a rate of about 1 Å/min. When dI/dV vs V was measured with the STM probe directly over a sorbic acid molecule, a well-defined spectrum of peaks was obtained whose energies corresponded to the vibrational resonances of the molecule. Large changes in the spectra occurred if the tip was moved a lateral distance of 5 Å.

  15. Discretization of electronic states in large InAsP/InP multilevel quantum dots probed by scanning tunneling spectroscopy.

    Science.gov (United States)

    Fain, B; Robert-Philip, I; Beveratos, A; David, C; Wang, Z Z; Sagnes, I; Girard, J C

    2012-03-23

    The topography and the electronic structure of InAsP/InP quantum dots are probed by cross-sectional scanning tunneling microscopy and spectroscopy. The study of the local density of states in such large quantum dots confirms the discrete nature of the electronic levels whose wave functions are measured by differential conductivity mapping. Because of their large dimensions, the energy separation between the discrete electronic levels is low, allowing for quantization in both the lateral and growth directions as well as the observation of the harmonicity of the dot lateral potential.

  16. Scanning tunneling microscopy and spectroscopy of finite-size twisted bilayer graphene

    Science.gov (United States)

    Wang, Wen-Xiao; Jiang, Hua; Zhang, Yu; Li, Si-Yu; Liu, Haiwen; Li, Xinqi; Wu, Xiaosong; He, Lin

    2017-09-01

    Finite-size twisted bilayer graphene (TBG, where here the TBG is of nanoscale size) is quite unstable and will change its structure to a Bernal (or A B -stacking) bilayer with a much lower energy. Therefore, the lack of finite-size TBG makes its electronic properties difficult to access in experiments. In this paper, a special confined TBG is obtained in the overlaid area of two continuous misoriented graphene sheets. The width of the confined region of the TBG changes gradually from about 22 to 0 nm. By using scanning tunneling microscopy, we study carefully the structure and the electronic properties of finite-size TBG. Our results indicate that the low-energy electronic properties, including twist-induced Van Hove singularities (VHSs) and spatial modulation of the local density of states, are strongly affected by the translational symmetry breaking of the finite-size TBG. However, the electronic properties above the energy of the VHSs are almost not influenced by quantum confinement even when the width of the TBG is reduced to only a single moiré spot.

  17. Development and set-up of a new low temperature scanning tunneling microscope Applications on microscopy and spectroscopy of lanthanid metals

    CERN Document Server

    Mühlig, A

    2000-01-01

    Scanning tunneling microscopy and spectroscopy are suitable methods to study the physical properties of thin magnetic metal films with a thickness of a few monolayers. These systems are of current interest because they give insight into solids states physics of metals. This thesis deals with following subjects: Introduction to scanning tunneling microscopy. Set-up of a low temperatur scanning tunneling microscope. Growth of thin Co and lanthanid metal films on W(110). Interplay of morphologie and magnetism on the example of Co/W(110). Making of Gd wires which are only a few nanometers thin. Diskussion of the studied exchange splitting of a d-like surface state in a local moment magnet. Measurement of the lifetime of hot holes and hot electrons near the fermi edge.

  18. Tip-enhanced near-field Raman spectroscopy with a scanning tunneling microscope and side-illumination optics.

    Science.gov (United States)

    Yi, K J; He, X N; Zhou, Y S; Xiong, W; Lu, Y F

    2008-07-01

    Conventional Raman spectroscopy (RS) suffers from low spatial resolution and low detection sensitivity due to the optical diffraction limit and small interaction cross sections. It has been reported that a highly localized and significantly enhanced electromagnetic field could be generated in the proximity of a metallic tip illuminated by a laser beam. In this study, a tip-enhanced RS system was developed to both improve the resolution and enhance the detection sensitivity using the tip-enhanced near-field effects. This instrument, by combining RS with a scanning tunneling microscope and side-illumination optics, demonstrated significant enhancement on both optical sensitivity and spatial resolution using either silver (Ag)-coated tungsten (W) tips or gold (Au) tips. The sensitivity improvement was verified by observing the enhancement effects on silicon (Si) substrates. Lateral resolution was verified to be below 100 nm by mapping Ag nanostructures. By deploying the depolarization technique, an apparent enhancement of 175% on Si substrates was achieved. Furthermore, the developed instrument features fast and reliable optical alignment, versatile sample adaptability, and effective suppression of far-field signals.

  19. Scanning tunneling microscopy and spectroscopy study of the patchwork structure in Pt doped IrTe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Fujisawa, Y., E-mail: 1215702@ed.tus.ac.jp [Department of Physics, Tokyo University of Science, Shinjuku, Tokyo 162-8601 (Japan); Machida, T. [RIKEN Center for Emergent Matter Science, Wako, Saitama 351-0198 (Japan); Igarashi, K.; Kaneko, A. [Department of Physics, Tokyo University of Science, Shinjuku, Tokyo 162-8601 (Japan); Mochiku, T.; Ooi, S.; Tachiki, M.; Komori, K.; Hirata, K. [Superconducting Materials Center, National Institute for Materials Science, Tsukuba, Ibaraki 305-0047 (Japan); Sakata, H. [Department of Physics, Tokyo University of Science, Shinjuku, Tokyo 162-8601 (Japan)

    2016-11-15

    Highlights: • We performed STS measurements on patchwork structure in Ir{sub 0.93}Pt{sub 0.07}Te{sub 2}. • Patchwork structure has similar electronic features to those of IrTe{sub 2}. • Patchwork structure is caused by strain due to the dopant Pt. - Abstract: We report on the scanning tunneling microscopy (STM) and spectroscopy (STS) study on a newly discovered superconductor, Ir{sub 1−x}Pt{sub x}Te{sub 2}. We previously found that the sample which shows superconductivity forms so called “patchwork structure (PS)”. To obtain the spatial evolution of electronic structure on the PS, we performed STM/STS measurements on the PS. STS measurements revealed that an averaged spectrum shows the same energy asymmetry as that in the low temperature phase in the parent material, IrTe{sub 2}. Furthermore, the spectrum at the trough on the PS is more asymmetric than that at the crest. This tendency is similar to that observed on the supermodulation in the low temperature phase in IrTe{sub 2}.

  20. Oxidation of arsenopyrite and deposition of gold on the oxidized surfaces: A scanning probe microscopy, tunneling spectroscopy and XPS study

    Science.gov (United States)

    Mikhlin, Yuri L.; Romanchenko, Alexander S.; Asanov, Igor P.

    2006-10-01

    We have used ex situ atomic force microscopy (AFM), scanning tunneling microscopy and spectroscopy (STM/STS) and X-ray photoelectron spectroscopy (XPS) to study the surfaces of natural arsenopyrite samples that were electrochemically polarized in 1 M HCl, or leached in acidic solutions containing ferric iron salts, and then reacted with aqueous gold (III) chloride at ambient temperatures. For arsenopyrite oxidized on a positive-going potential sweep, progressively increasing amounts of surface Fe(III)-O and As-O species, and of S/Fe and S/As ratios in a non-stoichiometric sulfidic layer were found. The products formed in the sweep to a potential of 0.6 V (Ag/AgCl) of the passivity region are shaped in about 100 nm protrusions of two sorts, which are arranged in micrometer-size separate areas, while they are largely mixed at higher, "transpassive" potentials. The quantities of surface alteration substances notably decrease after leaching in ferric chloride and ferric sulfate acidic solutions. Passivation of arsenopyrite was suggested to associate with the disordered, metal-deficient surface layer having moderate excess of sulfur rather than with the products of arsenopyrite oxidation. Exposure of arsenopyrite to 10 -5-10 -3 M AuCl4- (pH 2) solutions results in the deposition of 8-50 nm gold particles; only a small fraction of the gold is present as Au(I)-S species. The electrochemical oxidation at 0.6 V or ageing of arsenopyrite in air promotes the subsequent gold deposition; in contrast, the amount of Au deposited on arsenopyrite that was treated by leaching in ferric chloride and sulfate solutions was about 10 times smaller than with polished arsenopyrite samples. It has been concluded that reducing agents formed as intermediates of arsenopyrite decomposition facilitate the Au 0 cementation although other factors related to the surface state of the arsenopyrite play a role as well. A decrease in the tunneling current magnitudes with decreasing the Au 0 particle

  1. Scanning tunneling microscopy and spectroscopy studies of the heavy-electron superconductor TlNi2Se2

    Science.gov (United States)

    Wilfert, Stefan; Schmitt, Martin; Schmidt, Henrik; Mauerer, Tobias; Sessi, Paolo; Wang, Hangdong; Mao, Qianhui; Fang, Minghu; Bode, Matthias

    2018-01-01

    We report on the structural and superconducting electronic properties of the heavy-electron superconductor TlNi2Se2 . By using a variable-temperature scanning tunneling microscopy (VT-STM) the coexistence of (√{2 }×√{2 }) R 45∘ and (2 ×1 ) surface reconstructions is observed. Similar to earlier observations on the "122" family of Fe-based superconductors, we find that their respective surface fraction strongly depends on the temperature during cleavage, the measurement temperature, and the sample's history. Cleaving at low temperature predominantly results in the (√{2 }×√{2 }) R 45∘ -reconstructed surface. A detailed analysis of the (√{2 }×√{2 }) R 45∘ -reconstructed domains identifies (2 ×1 ) -ordered dimers, tertramers, and higher order even multimers as domain walls. Higher cleaving temperatures and the warming of low-temperature-cleaved samples increases the relative weight of the (2 ×1 ) surface reconstruction. By slowly increasing the sample temperature Ts inside the VT-STM we find that the (√{2 }×√{2 }) R 45∘ surface reconstructions transforms into the (2 ×1 ) structure at Ts=123 K. We identify the polar nature of the TlNi2Se2 (001) surface as the most probable driving mechanism of the two reconstructions, as both lead to a charge density ρ =0.5 e- , thereby avoiding divergent electrostatic potentials and the resulting "polar catastrophe." Low-temperature scanning tunneling spectroscopy (STS) performed with normal metal and superconducting probe tips shows a superconducting gap which is best fit with an isotropic s wave. We could not detect any correlation between the local surface reconstruction, suggesting that the superconductivity is predominantly governed by TlNi2Se2 bulk properties. Correspondingly, temperature- and field-dependent data reveal that both the critical temperature and critical magnetic field are in good agreement with bulk values obtained earlier from transport measurements. In the superconducting state

  2. Lattice-Assisted Spectroscopy: A Generalized Scanning Tunneling Microscope for Ultracold Atoms.

    Science.gov (United States)

    Kantian, A; Schollwöck, U; Giamarchi, T

    2015-10-16

    We propose a scheme to measure the frequency-resolved local particle and hole spectra of any optical lattice-confined system of correlated ultracold atoms that offers single-site addressing and imaging, which is now an experimental reality. Combining perturbation theory and time-dependent density matrix renormalization group simulations, we quantitatively test and validate this approach of lattice-assisted spectroscopy on several one-dimensional example systems, such as the superfluid and Mott insulator, with and without a parabolic trap, and finally on edge states of the bosonic Su-Schrieffer-Heeger model. We highlight extensions of our basic scheme to obtain an even wider variety of interesting and important frequency resolved spectra.

  3. Probing defect states in polycrystalline GaN grown on Si(111) by sub-bandgap laser-excited scanning tunneling spectroscopy

    Science.gov (United States)

    Hsiao, F.-M.; Schnedler, M.; Portz, V.; Huang, Y.-C.; Huang, B.-C.; Shih, M.-C.; Chang, C.-W.; Tu, L.-W.; Eisele, H.; Dunin-Borkowski, R. E.; Ebert, Ph.; Chiu, Y.-P.

    2017-01-01

    We demonstrate the potential of sub-bandgap laser-excited cross-sectional scanning tunneling microscopy and spectroscopy to investigate the presence of defect states in semiconductors. The characterization method is illustrated on GaN layers grown on Si(111) substrates without intentional buffer layers. According to high-resolution transmission electron microscopy and cathodoluminescence spectroscopy, the GaN layers consist of nanoscale wurtzite and zincblende crystallites with varying crystal orientations and hence contain high defect state densities. In order to discriminate between band-to-band excitation and defect state excitations, we use sub-bandgap laser excitation. We probe a clear increase in the tunnel current at positive sample voltages during sub-bandgap laser illumination for the GaN layer with high defect density, but no effect is found for high quality GaN epitaxial layers. This demonstrates the excitation of free charge carriers at defect states. Thus, sub-bandgap laser-excited scanning tunneling spectroscopy is a powerful complimentary characterization tool for defect states.

  4. Introduction to scanning tunneling microscopy

    CERN Document Server

    Chen, C Julian

    2008-01-01

    The scanning tunneling and the atomic force microscope, both capable of imaging individual atoms, were crowned with the Physics Nobel Prize in 1986, and are the cornerstones of nanotechnology today. This is a thoroughly updated version of this 'bible' in the field.

  5. Scanning Tunneling Microscopy

    Science.gov (United States)

    1992-03-17

    the study of surfact strain. A variety of studies were conducted on Au(in air) CdTe (in air), Hg1-xMnxTe (under glycerin), and Hg 1-xCdx Te (in air...HgCdTe and CdMnTe. (7) Scribing of adjacent parallel lines on the HgCdTe and CdMnTe surfaces. (8) Identification of a new c(4x6) reconstruction on some...tihodoluminescence spectroscopy, coupled with pulsed laser annealing-to reveal systematics between interface chemical and electronic structure. The

  6. Quantitative tunneling spectroscopy of nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    First, Phillip N; Whetten, Robert L; Schaaff, T Gregory

    2007-05-25

    The proposed goals of this collaborative work were to systematically characterize the electronic structure and dynamics of 3-dimensional metal and semiconducting nanocrystals using scanning tunneling microscopy/spectroscopy (STM/STS) and ballistic electron emission spectroscopy (BEES). This report describes progress in the spectroscopic work and in the development of methods for creating and characterizing gold nanocrystals. During the grant period, substantial effort also was devoted to the development of epitaxial graphene (EG), a very promising materials system with outstanding potential for nanometer-scale ballistic and coherent devices ("graphene" refers to one atomic layer of graphitic, sp2 -bonded carbon atoms [or more loosely, few layers]). Funding from this DOE grant was critical for the initial development of epitaxial graphene for nanoelectronics

  7. A perfect wetting of Mg monolayer on Ag(111) under atomic scale investigation: First principles calculations, scanning tunneling microscopy, and Auger spectroscopy

    Science.gov (United States)

    Migaou, Amani; Sarpi, Brice; Guiltat, Mathilde; Payen, Kevin; Daineche, Rachid; Landa, Georges; Vizzini, Sébastien; Hémeryck, Anne

    2016-05-01

    First principles calculations, scanning tunneling microscopy, and Auger spectroscopy experiments of the adsorption of Mg on Ag(111) substrate are conducted. This detailed study reveals that an atomic scale controlled deposition of a metallic Mg monolayer perfectly wets the silver substrate without any alloy formation at the interface at room temperature. A liquid-like behavior of the Mg species on the Ag substrate is highlighted as no dot formation is observed when coverage increases. Finally a layer-by-layer growth mode of Mg on Ag(111) can be predicted, thanks to density functional theory calculations as observed experimentally.

  8. Scanning tunneling microscopy and spectroscopy on GaN and InGaN surfaces; Rastertunnelmikroskopie und -spektroskopie an GaN- und InGaN-Oberflaechen

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, David

    2009-12-02

    Optelectronic devices based on gallium nitride (GaN) and indium gallium nitride (InGaN) are in the focus of research since more than 20 years and still have great potential for optical applications. In the first part of this work non-polar surfaces of GaN are investigated by scanning electron microscopy (SEM), atomic force microscopy (AFM) and scanning tunneling microscopy (STM). In SEM and AFM, the (1 anti 100)- and especially the (anti 2110)-plane are quite corrugated. For the first time, the (anti 2110)-plane of GaN is atomically resolved in STM. In the second part InGaN quantum dot layers are investigated by X-ray photoelectron spectroscopy (XPS), scanning tunneling spectroscopy (STS) and STM. The STMmeasurements show the dependency of surface morphology on growth conditions in the metalorganic vapour phase epitaxy (MOVPE). Nucleation, a new MOVPE-strategy, is based on phase separations on surfaces. It is shown that locally varying density of states and bandgaps can be detected by STS, that means bandgap histograms and 2D-bandgap-mapping. (orig.)

  9. Simultaneous observation of surface- and edge-states of a 2D topological insulator through scanning tunneling spectroscopy and differential conductance imaging.

    Science.gov (United States)

    Bhunia, Hrishikesh; Bar, Abhijit; Bera, Abhijit; Pal, Amlan J

    2017-04-12

    A 2D form of Bi2Se3 which acts as a topological insulator was grown through colloidal synthesis method. The surface-states and edge-states of the nanoplates were simultaneously probed through scanning tunneling spectroscopy (STS). At the interior, density of states (DOS) revealed the location of conduction and valence band edges. The DOS at the edges, on the other hand, brought out gapless conducting states along with a Dirac point at a non-zero value below the Fermi energy representing the Dirac cone of a 2D topological insulator. In differential tunnel conductance (dI/dV), images are recorded at different voltages and the two sections of the topological insulator can be viewed selectively or simultaneously with a clear contrast in illumination. Upon increasing the 2D-nanoplates thickness, the material turned into a 3D topological insulator with gapless surface states.

  10. Seismic scanning tunneling macroscope - Theory

    KAUST Repository

    Schuster, Gerard T.

    2012-09-01

    We propose a seismic scanning tunneling macroscope (SSTM) that can detect the presence of sub-wavelength scatterers in the near-field of either the source or the receivers. Analytic formulas for the time reverse mirror (TRM) profile associated with a single scatterer model show that the spatial resolution limit to be, unlike the Abbe limit of λ/2, independent of wavelength and linearly proportional to the source-scatterer separation as long as the point scatterer is in the near-field region; if the sub-wavelength scatterer is a spherical impedance discontinuity then the resolution will also be limited by the radius of the sphere. Therefore, superresolution imaging can be achieved as the scatterer approaches the source. This is analogous to an optical scanning tunneling microscope that has sub-wavelength resolution. Scaled to seismic frequencies, it is theoretically possible to extract 100 Hz information from 20 Hz data by imaging of near-field seismic energy.

  11. Electronic Structure on (001) Surface of Co-doped BaFe2As2 Studied with Scanning Tunneling Spectroscopy

    Science.gov (United States)

    Li, A.; Jayasundara, D. R.; Xuan, Y.; O'Neal, J. P.; Chen, Y.; Kim, W.; Ting, C. S.; Pan, S. H.; Jin, R.; Plummer, E. W.; Jin, R.; Sefat, A. S.; McGuire, M. A.; Sales, B. C.; Mandrus, D.

    2009-03-01

    Co-doping makes the pnictide compound BaFe2As2 superconducting. We cleave the single crystals of this compound in UHV and study their surfaces with a low temperature STM. In this talk, we present the scanning tunneling spectrums obtained on the (001) surface of the optimally doped BaFe2As2 single crystals (Tc = 23K) and compare these spectrums with the ones obtained on the surface of the parent compound. We have found that the major feature of the spectrums on the superconducting compounds is the opening of a superconducting gap of about 6 meV for the optimally doped one. We have also observed other detailed spectrum features. We will discuss the relation between spectrum features and the local environment and also present some theoretical fit to the superconducting energy gap spectrum.

  12. Single vacancy defect spectroscopy on HfO2 using random telegraph noise signals from scanning tunneling microscopy

    Science.gov (United States)

    Thamankar, R.; Raghavan, N.; Molina, J.; Puglisi, F. M.; O'Shea, S. J.; Shubhakar, K.; Larcher, L.; Pavan, P.; Padovani, A.; Pey, K. L.

    2016-02-01

    Random telegraph noise (RTN) measurements are typically carried out at the device level using standard probe station based electrical characterization setup, where the measured current represents a cumulative effect of the simultaneous response of electron capture/emission events at multiple oxygen vacancy defect (trap) sites. To better characterize the individual defects in the high-κ dielectric thin film, we propose and demonstrate here the measurement and analysis of RTN at the nanoscale using a room temperature scanning tunneling microscope setup, with an effective area of interaction of the probe tip that is as small as 10 nm in diameter. Two-level and multi-level RTN signals due to single and multiple defect locations (possibly dispersed in space and energy) are observed on 4 nm HfO2 thin films deposited on n-Si (100) substrate. The RTN signals are statistically analyzed using the Factorial Hidden Markov Model technique to decode the noise contribution of more than one defect (if any) and estimate the statistical parameters of each RTN signal (i.e., amplitude of fluctuation, capture and emission time constants). Observation of RTN at the nanoscale presents a new opportunity for studies on defect chemistry, single-defect kinetics and their stochastics in thin film dielectric materials. This method allows us to characterize the fast traps with time constants ranging in the millisecond to tens of seconds range.

  13. Structure, Mobility, and Composition of Transition Metal Catalyst Surfaces. High-Pressure Scanning Tunneling Microscopy and Ambient-Pressure X-ray Photoelectron Spectroscopy Studies

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zhongwei [Univ. of California, Berkeley, CA (United States)

    2013-12-06

    Surface structure, mobility, and composition of transition metal catalysts were studied by high-pressure scanning tunneling microscopy (HP-STM) and ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) at high gas pressures. HP-STM makes it possible to determine the atomic or molecular rearrangement at catalyst surfaces, particularly at the low-coordinated active surface sites. AP-XPS monitors changes in elemental composition and chemical states of catalysts in response to variations in gas environments. Stepped Pt and Cu single crystals, the hexagonally reconstructed Pt(100) single crystal, and Pt-based bimetallic nanoparticles with controlled size, shape and composition, were employed as the model catalysts for experiments in this thesis.

  14. DESORPTION OF Te CAPPING LAYER FROM ZnTe (100: AUGER SPECTROSCOPY, LOW-ENERGY ELECTRON DIFFRACTION AND SCANNING TUNNELING MICROSCOPY

    Directory of Open Access Journals (Sweden)

    K. K. Sossoe

    2016-01-01

    Full Text Available The influence of the annealing temperature to desorb a protective Te capping layer of the zinc telluride (ZnTe (100 surface was investigated. The surface reconstruction of the ZnTe (100 upon the removal of a Te capping layer grown by the molecular beam epitaxy was characterized by different methods. Auger spectroscopy brought out the chemical composition of the surface before and after annealing; the Low-energy electron diffraction (LEED gave information about the crystallographic structure. The surface crystallographic configurations of tellurium Te (c (2x2 and Te (c (2x1 are confirmed by scanning tunneling microscopy (STM. Such a study reveals a phase transition from a rich-Te to a poor-Te surface as the annealing temperature increases. 

  15. Recovery and local-variation of Dirac cones in oxygen-intercalated graphene on Ru(0001) studied using scanning tunneling microscopy and spectroscopy.

    Science.gov (United States)

    Jang, Won-Jun; Kim, Howon; Jeon, Jeong Heum; Yoon, Jong Keon; Kahng, Se-Jong

    2013-10-14

    Methods to decouple epitaxial graphene from metal substrates have been extensively studied, with anticipation of observing unperturbed Dirac cone properties, but its local electronic structures were rarely studied. Here, we investigated the local variations of Dirac cones recovered using oxygen intercalation applied to epitaxial graphene on Ru(0001) using scanning tunneling microscopy and spectroscopy (STM and STS). New V-shaped features, which appear in the STS data at the oxygen-intercalated graphene regions, are attributed to the signatures of recovered Dirac cones. The Dirac point energy was observed at 0.48 eV below the Fermi level, different from previous photoemission results because of different oxygen coverages. The observed spatial variations of Dirac point energy were explained by the weakly protruding network structures caused by a small net strain in graphene. Our study shows that oxygen-intercalated graphene provides an excellent platform for further graphene research at the nano-meter scale with unperturbed Dirac cones.

  16. Observation of Supermodulation in LaO0.5F0.5BiSe2 by Scanning Tunneling Microscopy and Spectroscopy

    Science.gov (United States)

    Demura, Satoshi; Ishida, Naoki; Fujisawa, Yuita; Sakata, Hideaki

    2017-11-01

    We observed the surface and electronic structure of single-crystal LaO0.5F0.5BiSe2 by scanning tunneling microscopy/spectroscopy at 4.2 K. A square lattice composed of Bi atoms was observed at a positive sample bias voltage for the surface prepared by cleavage. At a negative sample bias voltage, a stripe structure along the Bi-Bi directions was observed as in a previous report on NdO0.7F0.3BiS2. Furthermore, we observed a supermodulation along the diagonal directions with a period of about five times the lattice constant. This seems to be indicative of the structural instability of this system rather than the electronic instability attributed to a nesting picture.

  17. Adsorption characteristics of Er3N@C80on W(110 and Au(111 studied via scanning tunneling microscopy and spectroscopy

    Directory of Open Access Journals (Sweden)

    Sebastian Schimmel

    2017-05-01

    Full Text Available We performed a study on the fundamental adsorption characteristics of Er3N@C80 deposited on W(110 and Au(111 via room temperature scanning tunneling microscopy and spectroscopy. Adsorbed on W(110, a comparatively strong bond to the endohedral fullerenes inhibited the formation of ordered monolayer islands. In contrast, the Au(111-surface provides a sufficiently high mobility for the molecules to arrange in monolayer islands after annealing. Interestingly, the fullerenes modify the herringbone reconstruction indicating that the molecule–substrate interaction is of considerable extent. Investigations concerning the electronic structure of Er3N@C80/Au(111 reveals spatial variations dependent on the termination of the Au(111 at the interface.

  18. Fiber coupled ultrafast scanning tunneling microscope

    DEFF Research Database (Denmark)

    Keil, Ulrich Dieter Felix; Jensen, Jacob Riis; Hvam, Jørn Märcher

    1997-01-01

    We report on a scanning tunneling microscope with a photoconductive gate in the tunneling current circuit. The tunneling tip is attached to a coplanar transmission line with an integrated photoconductive switch. The switch is illuminated through a fiber which is rigidly attached to the switch...

  19. Tunneling spectroscopy using a probe qubit

    Science.gov (United States)

    Berkley, A. J.; Przybysz, A. J.; Lanting, T.; Harris, R.; Dickson, N.; Altomare, F.; Amin, M. H.; Bunyk, P.; Enderud, C.; Hoskinson, E.; Johnson, M. W.; Ladizinsky, E.; Neufeld, R.; Rich, C.; Smirnov, A. Yu.; Tolkacheva, E.; Uchaikin, S.; Wilson, A. B.

    2013-01-01

    We describe a quantum tunneling spectroscopy technique that requires only low-bandwidth control. The method involves coupling a probe qubit to the system under study to create a localized probe state. The energy of the probe state is then scanned with respect to the unperturbed energy levels of the probed system. Incoherent tunneling transitions that flip the state of the probe qubit occur when the energy bias of the probe is close to an eigenenergy of the probed system. Monitoring these transitions allows the reconstruction of the probed system eigenspectrum. We demonstrate this method on an rf SQUID flux qubit.

  20. Origin of magnetic contrast in spin-polarized scanning tunneling spectroscopy. Experiments on ultra-thin Mn films

    CERN Document Server

    Yamada, T K; Heijnen, G M M; Kempen, H V; Mizoguchi, T

    2003-01-01

    Normalized differential tunneling conductivities obtained with Fe-coated W tips show a spin-polarized peak around +0.8 V on ultrathin bct Mn films grown on Fe(001)-whiskers. This spin-polarized peak results in a clear magnetic contrast in spectroscopic images. Our normalization removes the influence of the tunneling probability and makes the spectroscopic curves most reliable for a derivation of the spin-resolved sample density of states (DOS) at positive voltages. From this analysis we conclude that the magnetic contrast in our spectroscopic maps is caused by a highly polarized DOS. Furthermore, a tip polarization of about 15% is found. (author)

  1. Investigation into scanning tunnelling luminescence microscopy

    CERN Document Server

    Manson-Smith, S K

    2001-01-01

    This work reports on the development of a scanning tunnelling luminescence (STL) microscope and its application to the study of Ill-nitride semiconductor materials used in the production of light emitting devices. STL microscopy is a technique which uses the high resolution topographic imaging capabilities of the scanning tunnelling microscope (STM) to generate high resolution luminescence images. The STM tunnelling current acts as a highly localised source of electrons (or holes) which generates luminescence in certain materials. Light generated at the STM tunnelling junction is collected concurrently with the height variation of the tunnelling probe as it is scanned across a sample surface, producing simultaneous topographic and luminescence images. Due to the very localised excitation source, high resolution luminescence images can be obtained. Spectroscopic resolution can be obtained by using filters. Additionally, the variation of luminescence intensity with tunnel current and with bias voltage can provi...

  2. New Applications of Scanning Tunneling Microscopy

    Science.gov (United States)

    Smith, Douglas Philip Edward

    This dissertation describes the application of the scanning tunneling microscope (STM) technique to four new fields of study: thin organic films, phonon spectroscopy of bulk surfaces, the vibrational spectroscopy of molecules, and the tribological forces which occur between STM tip and sample. Images with atomic resolution were obtained with speeds approaching video rates. Two types of microscopes were used: one operated at room temperature in air, another at 4.2K in liquid helium. At room temperature, the STM was able to image molecules of cadmium arachidate deposited onto graphite by the Langmuir-Blodgett technique. The packing of molecules in the lipid bilayer was found to be partially ordered, with density of 1 molecule per 19.4 square angstroms. At liquid-helium temperature, inelastic electron processes were detected, and it was possible to determine within an area of a few square angstroms where the vibrational excitations occurred. On a bare graphite substrate, phonons of the sample and tip caused step increases in the tunneling conductivity at the phonon energies. Molecules of sorbic acid could be resolved when deposited onto graphite, and these molecules caused spatially localized peaks in conductivity at the energies of the bond vibrations. Although the STM is usually considered a non-contact instrument, under certain circumstances the tip and sample exerted strong forces on each other. With a tungsten tip and a graphite sample, friction and mechanical deformations on the atomic scale were observed.

  3. Electronic Structure on (001) Surface of BaFe2As2 Parent Compound Studied with Scanning Tunneling Spectroscopy

    Science.gov (United States)

    Jayasundara, D. R.; Li, A.; Xuan, Y.; O'Neal, J. P.; Pan, S. H.; Jin, R.; Plummer, E. W.; Jin, R.; Sefat, A. S.; McGuire, M. A.; Sales, B. C.; Mandrus, D.

    2009-03-01

    Doping can drive some metallic pnictide compounds to superconducting phase. The microscopic mechanism of this phase transition has still not been understood. Starting with the parent compound, we have used a UHV Low Temperature STM to study the density of states on the (001) surface of single crystal BaFe2As2. The tunneling spectrum varies depending on the local environment. All the spectrums have the same background with density of states depression near the Fermi energy, but some of them show different anomalies. We attribute some of these anomalies to surface states. These results may provide useful information to those surface techniques other than STM.

  4. A versatile high resolution scanning tunneling potentiometry implementation.

    Science.gov (United States)

    Druga, T; Wenderoth, M; Homoth, J; Schneider, M A; Ulbrich, R G

    2010-08-01

    We have developed a new scanning tunneling potentiometry technique which can-with only minor changes of the electronic setup-be easily added to any standard scanning tunneling microscope (STM). This extension can be combined with common STM techniques such as constant current imaging or scanning tunneling spectroscopy. It is capable of performing measurements of the electrochemical potential with microvolt resolution. Two examples demonstrate the versatile application. First of all, we have determined local variations of the electrochemical potential due to charge transport of biased samples down to angstrom length scales. Second, with tip and sample at different temperatures we investigated the locally varying thermovoltage occurring at the tunneling junction. Aside from its use in determining the chemical identity of substances at the sample surface our method provides a controlled way to eliminate the influence of laterally varying thermovoltages on low-bias constant current topographies.

  5. High Pressure Scanning Tunneling Microscopy and High PressureX-ray Photoemission Spectroscopy Studies of Adsorbate Structure,Composition and Mobility during Catalytic Reactions on A Model SingleCrystal

    Energy Technology Data Exchange (ETDEWEB)

    Montano, Max O. [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    Our research focuses on taking advantage of the ability of scanning tunneling microscopy (STM) to operate at high-temperatures and high-pressures while still providing real-time atomic resolution images. We also utilize high-pressure x-ray photoelectron spectroscopy (HPXPS) to monitor systems under identical conditions thus giving us chemical information to compare and contrast with the structural and dynamic data provided by STM.

  6. A Student-Built Scanning Tunneling Microscope

    Science.gov (United States)

    Ekkens, Tom

    2015-01-01

    Many introductory and nanotechnology textbooks discuss the operation of various microscopes including atomic force (AFM), scanning tunneling (STM), and scanning electron microscopes (SEM). In a nanotechnology laboratory class, students frequently utilize microscopes to obtain data without a thought about the detailed operation of the tool itself.…

  7. Towards high-speed scanning tunneling microscopy

    NARCIS (Netherlands)

    Tabak, Femke Chantal

    2013-01-01

    In this thesis, two routes towards high-speed scanning tunneling microscopy (STM) are described. The first possibility for high-speed scanning that is discussed is the use of MEMS (Micro-Electro Mechanical Systems) devices as high-speed add-ons in STM microscopes. The functionality of these devices

  8. Scanning tunneling microscope assembly, reactor, and system

    Science.gov (United States)

    Tao, Feng; Salmeron, Miquel; Somorjai, Gabor A

    2014-11-18

    An embodiment of a scanning tunneling microscope (STM) reactor includes a pressure vessel, an STM assembly, and three spring coupling objects. The pressure vessel includes a sealable port, an interior, and an exterior. An embodiment of an STM system includes a vacuum chamber, an STM reactor, and three springs. The three springs couple the STM reactor to the vacuum chamber and are operable to suspend the scanning tunneling microscope reactor within the interior of the vacuum chamber during operation of the STM reactor. An embodiment of an STM assembly includes a coarse displacement arrangement, a piezoelectric fine displacement scanning tube coupled to the coarse displacement arrangement, and a receiver. The piezoelectric fine displacement scanning tube is coupled to the coarse displacement arrangement. The receiver is coupled to the piezoelectric scanning tube and is operable to receive a tip holder, and the tip holder is operable to receive a tip.

  9. Spin-polarized scanning tunnelling microscopy

    CERN Document Server

    Bode, M

    2003-01-01

    The recent experimental progress in spin-polarized scanning tunnelling microscopy (SP-STM) - a magnetically sensitive imaging technique with ultra-high resolution - is reviewed. The basics of spin-polarized electron tunnelling are introduced as they have been investigated in planar tunnel junctions for different electrode materials, i.e. superconductors, optically excited GaAs, and ferromagnets. It is shown that ferromagnets and antiferromagnets are suitable tip materials for the realization of SP-STM. Possible tip designs and modes of operations are discussed for both classes of materials. The results of recent spatially resolved measurements as performed with different magnetic probe tips and using different modes of operation are reviewed and discussed in terms of applicability to surfaces, thin films, and nanoparticles. The limits of spatial resolution, and the impact of an external magnetic field on the imaging process.

  10. Scanning tunneling microscopy II further applications and related scanning techniques

    CERN Document Server

    Güntherodt, Hans-Joachim

    1995-01-01

    Scanning Tunneling Microscopy II, like its predecessor, presents detailed and comprehensive accounts of the basic principles and broad range of applications of STM and related scanning probe techniques. The applications discussed in this volume come predominantly from the fields of electrochemistry and biology. In contrast to those described in STM I, these studies may be performed in air and in liquids. The extensions of the basic technique to map other interactions are described in chapters on scanning force microscopy, magnetic force microscopy, and scanning near-field optical microscopy, together with a survey of other related techniques. Also described here is the use of a scanning proximal probe for surface modification. Together, the two volumes give a comprehensive account of experimental aspects of STM. They provide essential reading and reference material for all students and researchers involved in this field. In this second edition the text has been updated and new methods are discussed.

  11. Scanning tunneling microscopy II further applications and related scanning techniques

    CERN Document Server

    Güntherodt, Hans-Joachim

    1992-01-01

    Scanning Tunneling Microscopy II, like its predecessor, presents detailed and comprehensive accounts of the basic principles and broad range of applications of STM and related scanning probe techniques. The applications discussed in this volume come predominantly from the fields of electrochemistry and biology. In contrast to those described in Vol. I, these sudies may be performed in air and in liquids. The extensions of the basic technique to map other interactions are described inchapters on scanning force microscopy, magnetic force microscopy, scanning near-field optical microscopy, together with a survey of other related techniques. Also described here is the use of a scanning proximal probe for surface modification. Togehter, the two volumes give a comprehensive account of experimental aspcets of STM. They provide essentialreading and reference material for all students and researchers involvedin this field.

  12. Conductivity map from scanning tunneling potentiometry.

    Science.gov (United States)

    Zhang, Hao; Li, Xianqi; Chen, Yunmei; Durand, Corentin; Li, An-Ping; Zhang, X-G

    2016-08-01

    We present a novel method for extracting two-dimensional (2D) conductivity profiles from large electrochemical potential datasets acquired by scanning tunneling potentiometry of a 2D conductor. The method consists of a data preprocessing procedure to reduce/eliminate noise and a numerical conductivity reconstruction. The preprocessing procedure employs an inverse consistent image registration method to align the forward and backward scans of the same line for each image line followed by a total variation (TV) based image restoration method to obtain a (nearly) noise-free potential from the aligned scans. The preprocessed potential is then used for numerical conductivity reconstruction, based on a TV model solved by accelerated alternating direction method of multiplier. The method is demonstrated on a measurement of the grain boundary of a monolayer graphene, yielding a nearly 10:1 ratio for the grain boundary resistivity over bulk resistivity.

  13. Conductivity map from scanning tunneling potentiometry

    Science.gov (United States)

    Zhang, Hao; Li, Xianqi; Chen, Yunmei; Durand, Corentin; Li, An-Ping; Zhang, X.-G.

    2016-08-01

    We present a novel method for extracting two-dimensional (2D) conductivity profiles from large electrochemical potential datasets acquired by scanning tunneling potentiometry of a 2D conductor. The method consists of a data preprocessing procedure to reduce/eliminate noise and a numerical conductivity reconstruction. The preprocessing procedure employs an inverse consistent image registration method to align the forward and backward scans of the same line for each image line followed by a total variation (TV) based image restoration method to obtain a (nearly) noise-free potential from the aligned scans. The preprocessed potential is then used for numerical conductivity reconstruction, based on a TV model solved by accelerated alternating direction method of multiplier. The method is demonstrated on a measurement of the grain boundary of a monolayer graphene, yielding a nearly 10:1 ratio for the grain boundary resistivity over bulk resistivity.

  14. Evidence for Time-Reversal Symmetry Breaking of the Superconducting State near Twin-Boundary Interfaces in FeSe Revealed by Scanning Tunneling Spectroscopy

    Directory of Open Access Journals (Sweden)

    T. Watashige

    2015-08-01

    Full Text Available Junctions and interfaces consisting of unconventional superconductors provide an excellent experimental playground to study exotic phenomena related to the phase of the order parameter. Not only does the complex structure of unconventional order parameters have an impact on the Josephson effects, but it also may profoundly alter the quasiparticle excitation spectrum near a junction. Here, by using spectroscopic-imaging scanning tunneling microscopy, we visualize the spatial evolution of the LDOS near twin boundaries (TBs of the nodal superconductor FeSe. The π/2 rotation of the crystallographic orientation across the TB twists the structure of the unconventional order parameter, which may, in principle, bring about a zero-energy LDOS peak at the TB. The LDOS at the TB observed in our study, in contrast, does not exhibit any signature of a zero-energy peak, and an apparent gap amplitude remains finite all the way across the TB. The low-energy quasiparticle excitations associated with the gap nodes are affected by the TB over a distance more than an order of magnitude larger than the coherence length ξ_{ab}. The modification of the low-energy states is even more prominent in the region between two neighboring TBs separated by a distance ≈7ξ_{ab}. In this region, the spectral weight near the Fermi level (≈±0.2  meV due to the nodal quasiparticle spectrum is almost completely removed. These behaviors suggest that the TB induces a fully gapped state, invoking a possible twist of the order parameter structure, which breaks time-reversal symmetry.

  15. Electronic characterization of LaAlO{sub 3}-SrTiO{sub 3} interfaces by scanning tunneling spectroscopy; Elektronische Charakterisierung von LaAlO{sub 3}-SrTiO{sub 3}-Grenzflaechen mittels Rastertunnelspektroskopie

    Energy Technology Data Exchange (ETDEWEB)

    Breitschaft, Martin

    2010-10-22

    When LaAlO{sub 3} is epitaxially grown on TiO{sub 2}-terminated SrTiO{sub 3}, an electrically conducting interface is generated. In this respect, the physical properties of the interface differ substantially from those of both LaAlO{sub 3} and SrTiO{sub 3}, which are electrically insulating in bulk form. This dissertation looks into the question of the microscopic structure of the conducting two-dimensional interface electron system. Comparing the electronic density of states of LaAlO{sub 3}-SrTiO{sub 3} interfaces measured by scanning tunneling spectroscopy with results of density functional theory, the interface electron system is found to be substantially coined by the hosting transition metal lattices. The comparison yields a detailed picture of the microscopic structure of the interface electron system. (orig.)

  16. Manipulation of magnetic skyrmions with a scanning tunneling microscope

    Science.gov (United States)

    Wieser, R.; Shindou, R.; Xie, X. C.

    2017-02-01

    The dynamics of a single magnetic skyrmion in an atomic spin system under the influence of a scanning tunneling microscope is investigated by computer simulations solving the Landau-Lifshitz-Gilbert equation. Two possible scenarios are described: manipulation with aid of a spin-polarized tunneling current and by an electric field created by the scanning tunneling microscope. The dynamics during the creation and annihilation process is studied and the possibility to move single skyrmions is showed.

  17. Time Dependent Tunneling in Laser Irradiated Scanning Tunneling Microscope Junction

    Science.gov (United States)

    Park, Sookyung Hur

    A principal motivation for the studies reported in this thesis was to obtain a theoretical explanation for the experimental results obtained by Nguyen et al. (1989) to determine the traversal time of an electron tunneling through a quantum mechanical barrier in a laser irradiated STM junction. The work therefore focused on the calculation of tunneling in a time-dependent oscillating barrier, and more specifically on the inelastic contributions to the tunneling current. To do so the kinetic formalism for tunneling was modified and extended to calculate inelastic processes in an irradiated tunneling junction. Furthermore, there is significant absorption of power from the laser beam in the junction electrodes resulting in thermal effects which can influence the tunneling. Extensive analysis of the spatial and temporal temperature distributions was first done for a realistic model of the diode emitter and anode using the Green function method. Specifically we considered (i) thermal effects due to surface heating of the absorbed laser radiation, (ii) the thermoelectric emf produced in the junction due to differential heating, and (iii) resistive and Thomson heat produced in the junction by laser induced currents. Using first-order time-dependent perturbation theory we also (iv) calculated the inelastic tunneling current due to a time dependent oscillating barrier produced by the antenna geometry of the STM junction. Lastly, we (v) formulated photo-assisted tunneling due to the electron -photon interaction in the junction using the second-quantization formalism. Although quite significant results were obtained for the tunneling current density as a function of frequency, gap distance and other junction parameters which gave insights into important features of the Nguyen et al. experiment (and tunneling characteristics of an irradiated STM in general), no single expression was derived or calculated results obtained which explains or fits all their observed data, or

  18. Ultrafast terahertz scanning tunneling microscopy with atomic resolution

    DEFF Research Database (Denmark)

    Jelic, Vedran; Iwaszczuk, Krzysztof; Nguyen, Peter H.

    2016-01-01

    We demonstrate that ultrafast terahertz scanning tunneling microscopy (THz-STM) can probe single atoms on a silicon surface with simultaneous sub-nanometer and sub-picosecond spatio-temporal resolution. THz-STM is established as a new technique for exploring high-field non-equilibrium tunneling...

  19. Measuring voltage transients with an ultrafast scanning tunneling microscope

    DEFF Research Database (Denmark)

    Keil, Ulrich Dieter Felix; Jensen, Jacob Riis; Hvam, Jørn Märcher

    1997-01-01

    We use an ultrafast scanning tunneling microscope to resolve propagating voltage transients in space and time. We demonstrate that the previously observed dependence of the transient signal amplitude on the tunneling resistance was only caused by the electrical sampling circuit. With a modified......-gating photoconductive switch with a rigidly attached fiber, the probe is scanned without changing the probe characteristics. (C) 1997 American Institute of Physics....

  20. Epitaxial BaTiO{sub 3}(100) films on Pt(100): A low-energy electron diffraction, scanning tunneling microscopy, and x-ray photoelectron spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Foerster, Stefan; Huth, Michael; Schindler, Karl-Michael; Widdra, Wolf [Institute of Physics, Martin-Luther-Universitaet Halle-Wittenberg, Halle (Germany)

    2011-09-14

    The growth of epitaxial ultrathin BaTiO{sub 3} films on a Pt(100) substrate has been studied by scanning tunneling microscopy (STM), low-energy electron diffraction (LEED), and x-ray photoelectron spectroscopy (XPS). The films have been prepared by radio-frequency-assisted magnetron sputter deposition at room temperature and develop a long-range order upon annealing at 900 K in O{sub 2}. By adjusting the Ar and O{sub 2} partial pressures of the sputter gas, the stoichiometry was tuned to match that of a BaTiO{sub 3}(100) single crystal as determined by XPS. STM reveals the growth of continuous BaTiO{sub 3} films with unit cell high islands on top. With LEED already for monolayer thicknesses, the formation of a BaTiO{sub 3}(100)-(1 x 1) structure has been observed. Films of 2-3 unit cell thickness show a brilliant (1 x 1) LEED pattern for which an extended set of LEED I-V data has been acquired. At temperatures above 1050 K the BaTiO{sub 3} thin film starts to decay by formation of vacancy islands. In addition (4 x 4) and (3 x 3) surface reconstructions develop upon prolonged heating.

  1. Scattering Effects in Proximity Effect Tunneling Spectroscopy.

    Science.gov (United States)

    Gai, Wei

    PETS (Proximity Effect Tunneling Spectroscopy) technique has been applied to Niobium/Yttrium and Niobium/Lutetium bilayers. We have determined electron - phonon interaction parameter lambda_{rm e -ph} is 0.55 for Yttrium and 0.67 for Lutetium. Spin fluctuations parameter lambda_{ rm S} is 0.20 for Yttrium and 0.33 for Lutetium. We found that the large spin fluctuations in Yttrium and Lutetium has responsibility to the absence of superconductivity in them. Our results have given a reasonable explanation of high superconducting transition temperature in them under high pressure. The large reflection coefficient and strong diffuse scattering at Nb/Y and Nb/Lu interface has been discovered and it should have strong influence on the transport properties of metallic superlattices. From the modeling study of elastic scattering in proximity effect tunnel junctions, we have explained why some conventional made high {rm T_{C}} superconducting tunnel junctions give ideal like characteristics in the gap region but variable strength phonon structures in the phonon region.

  2. Investigations on the electronic surface properties of the stoichiometric superconductor LiFeAs using scanning tunneling microscopy and spectroscopy; Untersuchung der elektronischen Oberflaecheneigenschaften des stoechiometrischen Supraleiters LiFeAs mittels Rastertunnelmikroskopie und -spektroskopie

    Energy Technology Data Exchange (ETDEWEB)

    Schlegel, Ronny

    2014-09-29

    This work presents scanning tunneling microscopy and spectroscopy investigations on the stoichiometric superconductor lithium iron arsenide (LiFeAs). To reveal the electronic properties, measurements on defect-free surfaces as well as near defects have been performed. The former shows a shift of atomic position with respect to the applied bias voltage. Furthermore, temperature dependent spectroscopic measurements indicate the coupling of quasiparticles in the vicinity of the superconducting coherence peaks. LiFeAs surfaces influenced by atomic defects show a spacial variation of the superconducting gap. The defects can be characterized by their symmetry and thus can be assigned to a position in the atomic lattice. Detailed spectroscopic investigations of defects reveal their influence on the quasiparticle density of states. In particular, Fe-defects show a small effect on the superconductivity while As-defects strongly disturb the superconducting gap. Measurements in magnetic field have been performed for the determination of the Ginzburg-Landau coherence length ξ{sub GL}. For this purpose, a suitable fit-function has been developed in this work. This function allows to fit the differential conductance of a magnetic vortex at E{sub F}. The fit results in a coherence length of ξ{sub GL} = 3,9 nm which corresponds to an upper critical field of 21 Tesla. Besides measurements on a single vortex, investigation on the vortex lattice have been performed. The vortex lattice constant follows thereby the predicted behavior of a trigonal vortex lattice. However, for magnetic fields larger than 6 Tesla an increasing lattice disorder sets in, presumably due to vortex-vortex-interactions.

  3. Tunnelling spectroscopy of Andreev states in graphene

    Science.gov (United States)

    Bretheau, Landry; Wang, Joel I.-Jan; Pisoni, Riccardo; Watanabe, Kenji; Taniguchi, Takashi; Jarillo-Herrero, Pablo

    2017-08-01

    A normal conductor placed in good contact with a superconductor can inherit its remarkable electronic properties. This proximity effect microscopically originates from the formation in the conductor of entangled electron-hole states, called Andreev states. Spectroscopic studies of Andreev states have been performed in just a handful of systems. The unique geometry, electronic structure and high mobility of graphene make it a novel platform for studying Andreev physics in two dimensions. Here we use a full van der Waals heterostructure to perform tunnelling spectroscopy measurements of the proximity effect in superconductor-graphene-superconductor junctions. The measured energy spectra, which depend on the phase difference between the superconductors, reveal the presence of a continuum of Andreev bound states. Moreover, our device heterostructure geometry and materials enable us to measure the Andreev spectrum as a function of the graphene Fermi energy, showing a transition between different mesoscopic regimes. Furthermore, by experimentally introducing a novel concept, the supercurrent spectral density, we determine the supercurrent-phase relation in a tunnelling experiment, thus establishing the connection between Andreev physics at finite energy and the Josephson effect. This work opens up new avenues for probing exotic topological phases of matter in hybrid superconducting Dirac materials.

  4. Active current-noise cancellation for Scanning Tunneling Microscopy

    Science.gov (United States)

    Pabbi, Lavish; Shoop, Conner; Banerjee, Riju; Dusch, Bill; Hudson, E. W.

    The high sensitivity of the scanning tunneling microscope (STM) poses a barrier to its use in a noisy environment. Vibrational noise, whether structural or acoustic in source, manifests as relative motion between the probe tip and the sample, then appearing in the Z feedback that tries to cancel it. Here we describe an active noise cancellation process that nullifies this motion by adding a drive signal into the existing Z feedback loop. The drive is digitally calculated by actively monitoring vibrations measured by an accelerometer placed in-situ close to the STM head. By transferring the vibration cancellation effort to this drive signal, vibration-created noise in the Z-feedback (during topography) or current (during spectroscopy) is significantly reduced. This inexpensive and easy solution, requiring no major instrumental modifications, is ideal for those looking to place their STM in a noisier environment, for example in the presence of active refrigeration systems (e.g. pulse tube cryocoolers) or coupled to high-vibration instrumentation. This material is based upon work supported by the National Science Foundation under Grant No. 1229138.

  5. Dopant migration in silicon during implantation/annealing measured by scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hessel, H.E.; Memmert, U.; Behm, R.J. (Univ. Muenchen (West Germany)); Cerva, H. (Siemens Research Lab., Muenchen (West Germany))

    In this paper spatial correlation between the lateral distribution of the doping type and the former implantation mask edge was investigated by scanning tunneling microscopy (STM) measurements. The position of the former mask edge was determined from surface steps resolved by STM topography measurements. Current imaging tunneling spectroscopy (CITS) data recorded simultaneously allowed to detect the transition from a high doping level with an ohmic I-V curve to a lower doping level displaying a Schottky barrier behavior. The influence of different annealing treatments on the position of this transition was investigated.

  6. Tunneling spectroscopy of multi-shell carbon fullerenes

    Science.gov (United States)

    Doore, Keith; Cook, Matt; Clausen, Eric; Kidd, Tim; Ye, Zhipeng; Ye, Gaihua; He, Rui; Stollenwerk, Andrew

    Carbon allotropes such as fullerenes and nanotubes have generated considerable interest due possible exploitation of their mechanical and electrical properties for practical applications. Carbon onions are a type of fullerene consisting of multiple spherically concentric shells of curved graphitic sheets. Compared to single-shell fullerenes, few studies have been directed toward understanding the structural and electrical properties of carbon onions. Because carbon onions have proven difficult to fabricate in a controlled method, most of these studies have focused on synthesis methods. In this study, we investigate the electrical properties of carbon onions using a scanning tunneling microscope. Carbon onions were fabricated using ultrasonic agitation to break down isopropanol facilitated by a MoS2 catalyst. Particles suspended in the remaining solution were deposited onto atomically flat HOPG substrates. Scanning tunneling spectroscopy indicate that carbon onions can exhibit both metallic and semiconducting properties, similar to carbon nanotubes. This work was supported in part by the National Science Foundation, Grants No. DMR-1206530 and No. DMR-1410496.

  7. Electric field effects in scanning tunneling microscope imaging

    DEFF Research Database (Denmark)

    Stokbro, Kurt; Quaade, Ulrich; Grey, Francois

    1998-01-01

    We present a high-voltage extension of the Tersoff-Hamann theory of scanning tunneling microscope (STM) images, which includes the effect of the electric field between the tip and the sample. The theoretical model is based on first-principles electronic structure calculations and has no adjustable...

  8. New approach towards imaging λ-DNA using scanning tunneling ...

    Indian Academy of Sciences (India)

    Wintec

    Abstract. A new methodology to anchor λ-DNA to silanized n-Si(111) surface using Langmuir Blodget trough was developed. The n-Si (111) was silanized by treating it with low molecular weight octyltrichlorosi- lane in toluene. Scanning tunneling microscopy (STM) image of λ-DNA on octyltrichlorosilane deposited Si.

  9. New approach towards imaging λ-DNA using scanning tunneling ...

    Indian Academy of Sciences (India)

    A new methodology to anchor -DNA to silanized -Si(111) surface using Langmuir Blodget trough was developed. The -Si (111) was silanized by treating it with low molecular weight octyltrichlorosilane in toluene. Scanning tunneling microscopy (STM) image of -DNA on octyltrichlorosilane deposited Si substrate ...

  10. Photon scanning tunneling microscope in combination with a force microscope

    NARCIS (Netherlands)

    Moers, M.H.P.; Moers, M.H.P.; Tack, R.G.; van Hulst, N.F.; Bölger, B.; Bölger, B.

    1994-01-01

    The simultaneous operation of a photon scanning tunneling microscope with an atomic force microscope is presented. The use of standard atomic force silicon nitride cantilevers as near-field optical probes offers the possibility to combine the two methods. Vertical forces and torsion are detected

  11. Apparent Barrier Height in Scanning Tunneling Microscopy Revisited

    DEFF Research Database (Denmark)

    Olesen, L.; Brandbyge, Mads; Sørensen, Mads Reinholdt

    1996-01-01

    The apparent barrier height phi(ap), that is, the rate of change of the logarithm of the conductance with tip-sample separation in a scanning tunneling microscope (STM), has been measured for Ni, Pt, and Au single crystal surfaces. The results show that phi(ap) is constant until point contact is ...

  12. Surface Analysis by Scanning Tunneling Microscopy

    Science.gov (United States)

    Coury, Louis A., Jr.; Johnson, Mario; Murphy, Tammy J.

    1995-12-01

    In both student projects a Burleigh Instruments ARIS-2200E STM was employed to image polycrystalline gold electrodes before and after deposition of a second metal onto the surface. Students prepared their own tungsten STM tips using an A.C.-etching procedure in 5% NaNO2. The electrodes used were available commercailly (AAI-AbTech, Yardley, PA) and consisted of 1000 of Au over a 100 adhesion layer of Ti on electronics-grade borosilicate glass. Electrodes were affixed to the STM sample holder using conductive carbon tape (SPI, West Chester, PA) and imaged in air. Modified electrodes were prepared by sonochemical deposition of 300 nm-Cu particles onto the Au surface in a procedure described elsewhere (2) or by the electrolytic deposition of various metals used in dental amalgams from acidic media using a Cypress Systems CS-1087 potentiostat. ResultsIn a typical image obtained for an unmodified Au surface (see image below), small crystallites (~500 to 1000 in diameter) of Au formed during the sputtering process during electrode fabrication are clearly visible. Images of modified electrodes (not shown) always show a markedly different morphology, with visible characteristic surface features ranging in size from hundreds of nanometers to several microns. The concepts students learn in these studies include electron tunneling, electroplating, nucleation phenomena, and amalgam chemistry. Although primarily touted as a method for atomic resolution imaging, STM clearly has utility for examining surfaces with features in the 100-nm to 1-micrometer size regime. Because of the recent availability of inexpensive instruments with user-friendly software, we encourage others to consider incorporating STM into the undergraduate curriculum. AcknowledgmentThis project was supported partially by a grant, DUE-9351426, from the National Science Foundation Division of Undergraduate Education Instrumentation and Laboratory Improvement Program. Literature Cited Lederman, L. Science 1991

  13. Scanning Tunneling Spectroscopy on polycrystalline Cu(In,Ga)(S,Se){sub 2} thin-film solar cells; Rastertunnelspektroskopie an polykristallinen Cu(In,Ga)(S,Se){sub 2}-Duennschichtsolarzellen

    Energy Technology Data Exchange (ETDEWEB)

    Herber, U.

    2006-12-21

    In case of the investigated multinary Cu(In;Ga)Se{sub 2} system with its polycrystalline structure, the question for the lateral homogeneity of its electronic properties arises. By means of the here presented method, a photo-assisted tunneling spectroscopy, such lateral inhomogeneities of the Surface Photo Voltage (SPV) and the Photo-Induced Tunneling Current (PITC) are to be detected. Modulations of the bias voltage and/or the illumination intensity have been applied to a greater number of materials in tunneling spectroscopy. Within these field, disturbing current contributions, coupled via the tip-sample-capacitance, is a known problem. Electronic compensation by using an appropriate compensating circuit is a possible solution. As will be shown in this work, such procedure is very adequate to compensate stray signals generated by bias modulation. After the introduction and careful analysis of our technique in the first part the second part of the thesis deals with its application to a series of different CIGS samples. What becomes apparent is the aforementioned inhomogeneities in PITC signal to be an immanent property of these polycrystalline semiconductor systems. Besides lateral variations in the photocurrent amplitude, also inhomogeneities within its complex phase can be demonstrated. As becomes clear, it is impossible to draw conclusions about the participating capacity of the depletion region because of the dominating admittance of the tunneling junction. However, it is possible to gain a statistical distribution of the PITC by investigating a large number of positions on the sample. For small numbers of weak diodes, the distribution exhibits a distinct maximum at higher photocurrents. Metastable effects are observed by tracking PITC values over a longer period of time. (orig.)

  14. Scanning tunneling microscopy III theory of STM and related scanning probe methods

    CERN Document Server

    Güntherodt, Hans-Joachim

    1996-01-01

    Scanning Tunneling Microscopy III provides a unique introduction to the theoretical foundations of scanning tunneling microscopy and related scanning probe methods. The different theoretical concepts developed in the past are outlined, and the implications of the theoretical results for the interpretation of experimental data are discussed in detail. Therefore, this book serves as a most useful guide for experimentalists as well as for theoreticians working in the filed of local probe methods. In this second edition the text has been updated and new methods are discussed.

  15. Seismic scanning tunneling macroscope - Elastic simulations and Arizona mine test

    KAUST Repository

    Hanafy, Sherif M.

    2012-01-01

    Elastic seismic simulations and field data tests are used to validate the theory of a seismic scanning tunneling macroscope (SSTM). For nearfield elastic simulation, the SSTM results show superresolution to be better than λ/8 if the only scattered data are used as input data. If the direct P and S waves are muted then the resolution of the scatterer locations are within about λ/5. Seismic data collected in an Arizona tunnel showed a superresolution limit of at least λ/19. These test results are consistent with the theory of the SSTM and suggest that the SSTM can be a tool used by geophysicists as a probe for near-field scatterers.

  16. Plasmons and Electrons as Nanosecond-Fast Sensors for Scanning Tunneling Microscopy

    Science.gov (United States)

    Loth, Sebastian

    2014-03-01

    The ability to measure the fast dynamical evolution of atomic-scale systems often holds the key to their understanding. We combine fast pump-probe spectroscopy tools with low-temperature scanning tunneling microscopy to study atomically assembled arrays of magnetic atoms. The dynamical information quantifies spin lifetimes, magnetic stability and even allows identifying the cross-over between quantum spins and classical magnetism. The spin relaxation times of transition metal atoms can be measured by all-electronic pump probe spectroscopy in which nanosecond-fast voltage pulses excite the spins and probe the average time-dependent response by variations in the spin-polarized tunnel current. In addition, the fast evolution of the local electrostatic potential can be mapped by detecting plasmonic light emission from the STM tunnel junction with time correlating single photon counting. The combination of electrical stimulus and optical detection provides precise control of the excitation process of individual atoms enabling new experiments to probe charge and spin dynamics in the scanning tunneling microscope.

  17. Submonolayer growth of Pd on Cu(111) studied by scanning tunneling microscopy

    DEFF Research Database (Denmark)

    Lægsgaard, E.; Ruban, Andrei; Stensgaard, I.

    1998-01-01

    The growth mode of sub-monolayer amounts of Pd on Cu(111) in the temperature range - 80-300 degrees C has been investigated by scanning tunneling microscopy (STM), Rutherford backscattering spectroscopy (RBS) and Auger electron spectroscopy (AES). Below approximate to 100 degrees C, the Pd induced...... is dug out from the surface in extended, monolayer deep pits, and concurrently, the brims and islands increase in height by one layer. High-resolution STM images of brims and islands in this phase are interpreted as evidence for Cu capping. For Pd evaporation at temperatures of 220-300 degrees C...

  18. Sub-Kelvin scanning tunneling microscopy on magnetic molecules

    OpenAIRE

    Zhang, Lei

    2012-01-01

    Magnetic molecules have attracted lots interest. In this work, an ultra-stable and low noise scanning tunneling microscopy operating at 400 mK using He-3 (930 mK using He-4) has been developed. The magnetic behavior of different magnetic molecules on substrates, especially the exchange interaction between the magnetic ions, the magnetic anisotropy on the surface, the magnetic excitations as well as the Kondo effect, were studied by using STM.

  19. Extension of Seismic Scanning Tunneling Macroscope to Elastic Waves

    KAUST Repository

    Tarhini, Ahmad

    2017-11-06

    The theory for the seismic scanning tunneling macroscope is extended from acoustic body waves to elastic body-wave propagation. We show that, similar to the acoustic case, near-field superresolution imaging from elastic body waves results from the O(1/R) term, where R is the distance between the source and near-field scatterer. The higher-order contributions R−n for n>1 are cancelled in the near-field region for a point source with normal stress.

  20. Extension of Seismic Scanning Tunneling Macroscope to Elastic Waves

    Science.gov (United States)

    Tarhini, Ahmad; Guo, Bowen; Dutta, Gaurav; Schuster, Gerard T.

    2017-11-01

    The theory for the seismic scanning tunneling macroscope is extended from acoustic body waves to elastic body-wave propagation. We show that, similar to the acoustic case, near-field superresolution imaging from elastic body waves results from the O(1/R) term, where R is the distance between the source and near-field scatterer. The higher-order contributions R^{-n} for n>1 are cancelled in the near-field region for a point source with normal stress.

  1. Tip preparation for usage in an ultra-low temperature UHV scanning tunneling microscope

    Directory of Open Access Journals (Sweden)

    S. Ernst, S. Wirth, M. Rams, V. Dolocan and F. Steglich

    2007-01-01

    Full Text Available This work deals with the preparation and characterization of tungsten tips for the use in UHV low-temperature scanning tunneling microscopy and spectroscopy (STM and STS, respectively. These specific environments require in situ facilities for tip conditioning, for further sharpening of the tips, as well as for reliable tip characterization. The implemented conditioning methods include direct resistive annealing, annealing by electron bombardment, and self-sputtering with noble gas ions. Moreover, results from in situ tip characterization by field emission and STM experiments were compared to ex situ scanning electron microscopy. Using the so-prepared tips, high resolution STM images and tunneling spectra were obtained in a temperature range from ambient down to 350 mK, partially with applied magnetic field, on a variety of materials.

  2. Theory and feasibility tests for a seismic scanning tunnelling macroscope

    KAUST Repository

    Schuster, Gerard T.

    2012-09-01

    We propose a seismic scanning tunnelling macroscope (SSTM) that can detect subwavelength scatterers in the near-field of either the source or the receivers. Analytic formulas for the time reverse mirror (TRM) profile associated with a single scatterer model show that the spatial resolution limit to be, unlike the Abbe limit of λ/2, independent of wavelength and linearly proportional to the source-scatterer separation as long as the scatterer is in the near-field region. This means that, as the scatterer approaches the source, imaging of the scatterer with super-resolution can be achieved. Acoustic and elastic simulations support this concept, and a seismic experiment in an Arizona tunnel shows a TRM profile with super-resolution adjacent to the fault location. The SSTM is analogous to the optical scanning tunnelling microscopes having subwavelength resolution. Scaled to seismic frequencies, it is theoretically possible to extract 100 Hz information from 20 Hz data by the imaging of near-field seismic energy.

  3. SPATIAL REPARTITION OF CURRENT FLUCTUATIONS IN A SCANNING TUNNELING MICROSCOPE

    Directory of Open Access Journals (Sweden)

    Jerome Lagoute

    2011-05-01

    Full Text Available Scanning Tunneling Microscopy (STM is a technique where the surface topography of a conducting sample is probed by a scanning metallic tip. The tip-to-surface distance is controlled by monitoring the electronic tunneling current between the two metals. The aim of this work is to extend the temporal range of this instrument by characterising the time fluctuations of this current on different surfaces. The current noise power spectral density is dominated by a characteristic 1/f component, the physical origin of which is not yet clearly identified, despite a number of investigations. A new I-V preamplifier was developed in order to characterise these fluctuations of the tunnelling current and to obtain images of their spatial repartition. It is observed that their intensity is correlated with some topographical features. This information can be used to get insights on the physical phenomena involved that are not accessible by the usual STM set-up, which is limited to low frequencies.

  4. Exhibition of tunnel coupling of negatively charged dangling bonds on Si Surface Using Scanning Tunneling Microscope

    Science.gov (United States)

    Haider, M. Baseer; Livadaru, L.; Pitters, J.; Wolkow, R.

    2011-03-01

    We have performed Scanning tunneling microscopy study of hydrogen terminated Si (100). We will show that single Si atoms in a solid state environment can be served as quantum dots. These negatively charged quantum dots can be tunnel coupled to the nearby Si quantum dots. We will demonstrate that this tunnel coupling can be controlled by adjusting the separation between the two Si atomic quantum dots. Moreover electron occupation in the tunnel coupled Si quantum dots can be controlled. We have used this tunnel coupling effect of Si atomic quantum dots to fabricate Quantum Cellular Automata Cells. Quantum Cellular Automata are used to transmit binary information through electrostatic interaction between adjacent cells without the transfer of charge from one cell to the next. Devices based on Quantum Cellular Automata will consume much less power compared to the conventional transistor based devices. Moreover, since there is no transfer of charge so power dissipation during its operation is minimal compared to conventional semiconductor devices. This Si based Quantum Cellular Automat Cell works at room temperature.

  5. Line shapes in inelastic electron tunneling spectroscopy of single-molecule junctions

    Science.gov (United States)

    Meierott, S.; Néel, N.; Kröger, J.

    2017-11-01

    Spectroscopic line-shape analyses for single-C60 vibrational modes are presented for two kinds of scanning tunneling microscope experiments. Inelastic electron tunneling spectroscopy is performed for C60 molecules with different adsorption geometries on Pb(111). Depending on the C60 adsorption site and rotational orientation, the lowest unoccupied molecular orbital exhibits varying degrees of overlap with C60 vibrational energies. Concomitantly, the line shapes of vibrational modes are affected according to expectations for on-resonance inelastic electron tunneling. Inelastic electron transport is further studied for decreasing tip-C60 distances covering tunneling and contact ranges. Line-shape changes signaling a conductance increase rather than the expected decrease upon exciting vibrational quanta are observed. A phenomenological approach is suggested to understand the dissimilar behavior of the junction conductance in the different electron transport ranges.

  6. Observation of diamond turned OFHC copper using Scanning Tunneling Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Grigg, D.A.; Russell, P.E.; Dow, T.A.

    1988-12-01

    Diamond turned OFHC copper samples have been observed within the past few months using the Scanning Tunneling Microscope. Initial results have shown evidence of artifacts which may be used to better understand the diamond turning process. The STM`s high resolution capability and three dimensional data representation allows observation and study of surface features unobtainable with conventional profilometry systems. Also, the STM offers a better quantitative means by which to analyze surface structures than the SEM. This paper discusses findings on several diamond turned OFHC copper samples having different cutting conditions. Each sample has been cross referenced using STM and SEM.

  7. A High Rigidity and Precision Scanning Tunneling Microscope with Decoupled XY and Z Scans

    Directory of Open Access Journals (Sweden)

    Xu Chen

    2017-01-01

    Full Text Available A new scan-head structure for the scanning tunneling microscope (STM is proposed, featuring high scan precision and rigidity. The core structure consists of a piezoelectric tube scanner of quadrant type (for XY scans coaxially housed in a piezoelectric tube with single inner and outer electrodes (for Z scan. They are fixed at one end (called common end. A hollow tantalum shaft is coaxially housed in the XY-scan tube and they are mutually fixed at both ends. When the XY scanner scans, its free end will bring the shaft to scan and the tip which is coaxially inserted in the shaft at the common end will scan a smaller area if the tip protrudes short enough from the common end. The decoupled XY and Z scans are desired for less image distortion and the mechanically reduced scan range has the superiority of reducing the impact of the background electronic noise on the scanner and enhancing the tip positioning precision. High quality atomic resolution images are also shown.

  8. A High Rigidity and Precision Scanning Tunneling Microscope with Decoupled XY and Z Scans.

    Science.gov (United States)

    Chen, Xu; Guo, Tengfei; Hou, Yubin; Zhang, Jing; Meng, Wenjie; Lu, Qingyou

    2017-01-01

    A new scan-head structure for the scanning tunneling microscope (STM) is proposed, featuring high scan precision and rigidity. The core structure consists of a piezoelectric tube scanner of quadrant type (for XY scans) coaxially housed in a piezoelectric tube with single inner and outer electrodes (for Z scan). They are fixed at one end (called common end). A hollow tantalum shaft is coaxially housed in the XY-scan tube and they are mutually fixed at both ends. When the XY scanner scans, its free end will bring the shaft to scan and the tip which is coaxially inserted in the shaft at the common end will scan a smaller area if the tip protrudes short enough from the common end. The decoupled XY and Z scans are desired for less image distortion and the mechanically reduced scan range has the superiority of reducing the impact of the background electronic noise on the scanner and enhancing the tip positioning precision. High quality atomic resolution images are also shown.

  9. Identification of nitrogen dopants in single-walled carbon nanotubes by scanning tunneling microscopy.

    Science.gov (United States)

    Tison, Yann; Lin, Hong; Lagoute, Jérôme; Repain, Vincent; Chacon, Cyril; Girard, Yann; Rousset, Sylvie; Henrard, Luc; Zheng, Bing; Susi, Toma; Kauppinen, Esko I; Ducastelle, François; Loiseau, Annick

    2013-08-27

    Using scanning tunnelling microscopy and spectroscopy, we investigated the atomic and electronic structure of nitrogen-doped single walled carbon nanotubes synthesized by chemical vapor deposition. The insertion of nitrogen in the carbon lattice induces several types of point defects involving different atomic configurations. Spectroscopic measurements on semiconducting nanotubes reveal that these local structures can induce either extended shallow levels or more localized deep levels. In a metallic tube, a single doping site associated with a donor state was observed in the gap at an energy close to that of the first van Hove singularity. Density functional theory calculations reveal that this feature corresponds to a substitutional nitrogen atom in the carbon network.

  10. Optical characterication of probes for photon scanning tunnelling microscopy

    DEFF Research Database (Denmark)

    Vohnsen, Brian; Bozhevolnyi, Sergey I.

    1999-01-01

    The photon scanning tunnelling microscope is a well-established member of the family of scanning near-field optical microscopes used for optical imaging at the sub-wavelength scale. The quality of the probes, typically pointed uncoated optical fibres, used is however difficult to evaluate...... in a direct manner and has most often been inferred from the apparent quality of recorded optical images. Complicated near-field optical imaging characteristics, together with the possibility of topographically induced artefacts, however, has increased demands for a more reliable probe characterization...... technique. Here we present experimental results obtained for optical characterization of two different probes by imaging of a well-specified near-field intensity distribution at various spatial frequencies. In particular, we observe that a sharply pointed dielectric probe can be highly suitable for imaging...

  11. EDITORIAL: Three decades of scanning tunnelling microscopy that changed the course of surface science Three decades of scanning tunnelling microscopy that changed the course of surface science

    Science.gov (United States)

    Ramachandra Rao, M. S.; Margaritondo, Giorgio

    2011-11-01

    Three decades ago, with a tiny tip of platinum, the scientific world saw the real space imaging of single atoms with unprecedented spatial resolution. This signalled the birth of one of the most versatile surface probes, based on the physics of quantum mechanical tunnelling: the scanning tunnelling microscope (STM). Invented in 1981 by Gerd Binnig and Heinrich Rohrer of IBM, Zurich, it led to their award of the 1986 Nobel Prize. Atoms, once speculated to be abstract entities used by theoreticians for mere calculations, can be seen to exist for real with the nano-eye of an STM tip that also gives real-space images of molecules and adsorbed complexes on surfaces. From a very fundamental perspective, the STM changed the course of surface science and engineering. STM also emerged as a powerful tool to study various fundamental phenomena relevant to the properties of surfaces in technological applications such as tribology, medical implants, catalysis, sensors and biology—besides elucidating the importance of local bonding geometries and defects, non-periodic structures and the co-existence of nano-scale phases. Atom-level probing, once considered a dream, has seen the light with the evolution of STM. An important off-shoot of STM was the atomic force microscope (AFM) for surface mapping of insulating samples. Then followed the development of a flurry of techniques under the general name of scanning probe microscopy (SPM). These techniques (STM, AFM, MFM, PFM etc) designed for atomic-scale-resolution imaging and spectroscopy, have led to brand new developments in surface analysis. All of these novel methods enabled researchers in recent years to image and analyse complex surfaces on microscopic and nanoscopic scales. All of them utilize a small probe for sensing the surface. The invention of AFM by Gerd Binnig, Calvin Quate and Christopher Gerber opened up new opportunities for characterization of a variety of materials, and various industrial applications could be

  12. Postprocessing Algorithm for Driving Conventional Scanning Tunneling Microscope at Fast Scan Rates

    Directory of Open Access Journals (Sweden)

    Hao Zhang

    2017-01-01

    Full Text Available We present an image postprocessing framework for Scanning Tunneling Microscope (STM to reduce the strong spurious oscillations and scan line noise at fast scan rates and preserve the features, allowing an order of magnitude increase in the scan rate without upgrading the hardware. The proposed method consists of two steps for large scale images and four steps for atomic scale images. For large scale images, we first apply for each line an image registration method to align the forward and backward scans of the same line. In the second step we apply a “rubber band” model which is solved by a novel Constrained Adaptive and Iterative Filtering Algorithm (CIAFA. The numerical results on measurement from copper(111 surface indicate the processed images are comparable in accuracy to data obtained with a slow scan rate, but are free of the scan drift error commonly seen in slow scan data. For atomic scale images, an additional first step to remove line-by-line strong background fluctuations and a fourth step of replacing the postprocessed image by its ranking map as the final atomic resolution image are required. The resulting image restores the lattice image that is nearly undetectable in the original fast scan data.

  13. Sequencing of adenine in DNA by scanning tunneling microscopy

    Science.gov (United States)

    Tanaka, Hiroyuki; Taniguchi, Masateru

    2017-08-01

    The development of DNA sequencing technology utilizing the detection of a tunnel current is important for next-generation sequencer technologies based on single-molecule analysis technology. Using a scanning tunneling microscope, we previously reported that dI/dV measurements and dI/dV mapping revealed that the guanine base (purine base) of DNA adsorbed onto the Cu(111) surface has a characteristic peak at V s = -1.6 V. If, in addition to guanine, the other purine base of DNA, namely, adenine, can be distinguished, then by reading all the purine bases of each single strand of a DNA double helix, the entire base sequence of the original double helix can be determined due to the complementarity of the DNA base pair. Therefore, the ability to read adenine is important from the viewpoint of sequencing. Here, we report on the identification of adenine by STM topographic and spectroscopic measurements using a synthetic DNA oligomer and viral DNA.

  14. Fault detection by surface seismic scanning tunneling macroscope: Field test

    KAUST Repository

    Hanafy, Sherif M.

    2014-08-05

    The seismic scanning tunneling macroscope (SSTM) is proposed for detecting the presence of near-surface impedance anomalies and faults. Results with synthetic data are consistent with theory in that scatterers closer to the surface provide brighter SSTM profiles than those that are deeper. The SSTM profiles show superresolution detection if the scatterers are in the near-field region of the recording line. The field data tests near Gulf of Aqaba, Haql, KSA clearly show the presence of the observable fault scarp, and identify the subsurface presence of the hidden faults indicated in the tomograms. Superresolution detection of the fault is achieved, even when the 35 Hz data are lowpass filtered to the 5-10 Hz band.

  15. A high stability and repeatability electrochemical scanning tunneling microscope

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Zhigang; Wang, Jihao; Lu, Qingyou, E-mail: qxl@ustc.edu.cn [High Magnetic Field Laboratory, Chinese Academy of Sciences and University of Science and Technology of China, Hefei, Anhui 230026 (China); Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Hou, Yubin [High Magnetic Field Laboratory, Chinese Academy of Sciences and University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2014-12-15

    We present a home built electrochemical scanning tunneling microscope (ECSTM) with very high stability and repeatability. Its coarse approach is driven by a closely stacked piezo motor of GeckoDrive type with four rigid clamping points, which enhances the rigidity, compactness, and stability greatly. It can give high clarity atomic resolution images without sound and vibration isolations. Its drifting rates in XY and Z directions in solution are as low as 84 pm/min and 59 pm/min, respectively. In addition, repeatable coarse approaches in solution within 2 mm travel distance show a lateral deviation less than 50 nm. The gas environment can be well controlled to lower the evaporation rate of the cell, thus reducing the contamination and elongating the measurement time. Atomically resolved SO{sub 4}{sup 2−} image on Au (111) work electrode is demonstrated to show the performance of the ECSTM.

  16. Scanning tunneling microscope with continuous flow cryostat sample cooling

    Energy Technology Data Exchange (ETDEWEB)

    Behler, S.; Rose, M.K.; Dunphy, J.C.; Ogletree, D.F.; Salmeron, M. [Materials Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720 (United States); Chapelier, C. [Departement de Recherche Fondamentale sur la Matiere Condensee, CEA/Grenoble, 38054 Grenoble Cedex 9 (France)

    1997-06-01

    We have constructed an ultrahigh vacuum scanning tunneling microscope (STM) for operation in the temperature range 20{endash}300 K. The design consists of a vibration isolated sample holder mounted on a continuous flow cryostat. By rotation and linear motion of the cryostat, the sample can be positioned in front of various surface preparation and analysis instruments contained in a single vacuum chamber. A lightweight beetle-type STM head is lowered from the top onto the sample by a linear manipulator. To minimize helium convection in the cryostat, the entire vacuum system, including a liquid helium storage Dewar, can be tilted by a few degrees perpendicular to the cryostat axis, which improves the operation. The performance of the instrument is demonstrated by atomically resolved images of the Pd(111) surface and adsorbed CO molecules. {copyright} {ital 1997 American Institute of Physics.}

  17. Controlling molecular condensation/diffusion of copper phthalocyanine by local electric field induced with scanning tunneling microscope tip

    Science.gov (United States)

    Nagaoka, Katsumi; Yaginuma, Shin; Nakayama, Tomonobu

    2018-02-01

    We have discovered the condensation/diffusion phenomena of copper phthalocyanine (CuPc) molecules controlled with a pulsed electric field induced by the scanning tunneling microscope tip. This behavior is not explained by the conventional induced dipole model. In order to understand the mechanism, we have measured the electronic structure of the molecule by tunneling spectroscopy and also performed theoretical calculations on molecular orbitals. These data clearly indicate that the molecule is positively charged owing to charge transfer to the substrate, and that hydrogen bonding exists between CuPc molecules, which makes the molecular island stable.

  18. Development of a Millikelvin dual-tip Josephson scanning tunneling microscope

    Science.gov (United States)

    Roychowdhury, Anita

    In this thesis, I first describe the design and construction of a dual-tip millikelvin STM system. The STM is mounted on a dilution refrigerator and the setup includes vibration isolation, rf-filtered wiring, an ultra high vacuum (UHV) sample preparation chamber and sample transfer mechanism. Next I describe a novel superconducting tip fabrication technique. My technique involves dry-etching sections of 250 mum diameter Nb wire with an SF6 plasma in a reactive ion etcher. I present data taken with these tips on various samples at temperatures ranging from 30 mK to 9 K. My results demonstrate that the tips are superconducting, achieve good spectroscopic energy resolution, are mechanically robust over long time periods, and are atomically sharp. I also show data characterizing the performance of our system. This data is in the form of atomic resolution images, spectroscopy, noise spectra and simultaneous scans taken with both tips of the STM. I used these to examine the tip-sample stability, cross talk between the two tips, and to extract the effective noise temperature (˜185 mK) of the sample by fitting the spectroscopy data to a voltage noise model. Finally, I present spectroscopy data taken with a Nb tip on a Nb(100) sample at 30 mK. The enhanced spectroscopic resolution at this temperature allowed me to resolve peaks in the fluctuation-dominated supercurrent at sub-gap voltages. My analysis indicates that these peaks are due to the incoherent tunneling of Cooper pairs at resonant frequencies of the STM's electromagnetic environment. By measuring the response of the STM junction to microwaves, I identified the charge carriers in this regime as Cooper pairs with charge 2e. The amplitude of the response current scales as the square of the Bessel functions, indicating that the pair tunneling originates from photon assisted tunneling in the incoherent regime, rather than the more conventionally observed Shapiro steps in the coherent regime.

  19. Investigating Single Molecule Physics with the Scanning Tunneling Microscope

    Science.gov (United States)

    Patel, Calvin Jay

    Scanning tunneling microscopy (STM) has given the scientific community a method to view, characterize, and manipulate the world at the atomic scale. Thirty years after the Nobel Prize in Physics was awarded for its invention, the remarkable instrument is still being used to deepen our understanding of physical and chemical processes. Tantamount to this has been the development of new techniques to expand its capabilities allowing STMs to answer increasingly more difficult scientific questions. This dissertation describes three technological thrusts in expanding the STMs capabilities in studying physics at the single molecule level. First, I have helped developed a new technique called the RF-STM which has the potential to snapshot femtosecond and picosecond processes by locking into the high frequency tunneling component generated from the 80MHz laser pulse train. This technique solves the problem of low frequency thermal oscillations when choppers are used in the beam line and if only tunneling signal is monitored, sub-angstrom spatial resolution should be simultaneously possible. Second, I have helped develop the itProbe technique by increasing its ability to map out the interaction potential energy surface (iPES) between a tip-CO molecule and a surface adsorbed molecule. I present a study conducted on the bridge-like 1,4 phenylene diisocyanide molecule where the iPES is probed at different heights and different energies. The result is an ability to 3-dimensionally map out the iPES and provide reliable insight into developing itProbe simulations. Third, I have developed a new technique called Energy Resolved Laser Action STM (ERLA-STM) where we can observe the change in molecular dynamics as a function of the illumination wavelength. In our pyrrolidine study, we demonstrated the kinetic changes that occur when an overtone of the CH stretch mode is excited by a near-IR laser pulse. By sweeping the excitation energy, we can characterize and control single molecule

  20. Local potentiometry using a multiprobe scanning tunneling microscope.

    Science.gov (United States)

    Bannani, A; Bobisch, C A; Möller, R

    2008-08-01

    Scanning tunneling potentiometry (STP) is a powerful tool to analyze the conductance through thin conducting layers with lateral resolution in the nanometer range. In this work, we show how a commercial ultrahigh vacuum multiprobe system, equipped with four independent tips, can be used to perform STP experiments. Two tips are gently pushed into the surface applying a lateral current through the layer of interest. Simultaneously, the topography and the potential distribution across the metal film are measured with a third tip. The signal-to-noise ratio of the potentiometry signal may be enhanced by using a fourth tip, providing a reference potential in close vicinity of the studied area. Two different examples are presented. For epitaxial (111) oriented Bi films, grown on a Si(100)-(2 x 1) surface, an almost constant gradient of the potential as well as potential drops at individual Bi-domain boundaries were observed. On the surface of the Si(111)(3 x 3)-Ag superstructure the potential variation at individual monoatomic steps could be precisely resolved.

  1. A 3-d laser scanning system and scan data processing method for the monitoring of tunnel deformations

    Science.gov (United States)

    Chmelina, Klaus; Jansa, Josef; Hesina, Gerd; Traxler, Christoph

    2012-11-01

    The paper presents the mobile multi-sensor system Orthos Plus for the monitoring and mapping of tunnel walls, a scan data processing method for the evaluation of 3-d tunnel wall displacements from subsequent wall scans and, finally, a virtual reality tool supporting the interpretation of data. The measuring system consists of a 3-d laser scanner, a motorised total station and a digital camera that are integrated on a light metal frame that is installed on a mobile platform. It has been designed to perform tunnel measurements most efficiently and to meet the special requirements of tunnels under construction. The evaluation of 3-d displacements is based on a 3-d matching algorithm that takes advantage of the particular conditions of tunnel (shotcrete) surfaces. The virtual reality tool allows viewing of data in a 3-d virtual reality tunnel model and their animation in time and space in order supports understanding in an optimal way. The measuring system Orthos Plus has been developed in the course of a national research project, the 3-d matching method in the frame of the Austrian Christian Doppler Laboratory Spatial Data from Laser Scanning and Remote Sensing and the VR tool in the Austrian COMET K1 Competence Center VRVis Center (www.vrvis.at).

  2. Scanning gate spectroscopy of a quantum Hall island near a quantum point contact

    Science.gov (United States)

    Hackens, Benoit; Martins, Frederico; Faniel, Sebastien; Bayot, Vincent; Rosenow, Bernd; Desplanque, Ludovic; Wallart, Xavier; Pala, Marco; Sellier, Hermann; Huant, Serge

    2013-03-01

    We report on low temperature (100 mK) scanning gate experiments performed at high magnetic field (around 10 T) on a mesoscopic device patterned in an InGaAs/InAlAs heterostructure. Magnetotransport measurements yield signatures of ultra-small Quantum Hall Islands (QHI) formed by closed quantum Hall edge states and connected to propagating edge channels through tunnel barriers. Scanning gate microscopy and scanning gate spectroscopy are used to locate and probe a single QHI near a quantum point contact. The presence of Coulomb diamonds in the local spectroscopy confirms that Coulomb blockade governs transport across the QHI. Varying the microscope tip bias as well as current bias across the device, we uncover the QHI discrete energy spectrum arising from electronic confinement and we extract estimates of the gradient of the confining potential and of the edge state velocity.

  3. Scanning tunneling microscopy III theory of STM and related scanning probe methods

    CERN Document Server

    Güntherodt, Hans-Joachim

    1993-01-01

    While the first two volumes on Scanning Tunneling Microscopy (STM) and its related scanning probe (SXM) methods have mainly concentrated on intro­ ducing the experimental techniques, as well as their various applications in different research fields, this third volume is exclusively devoted to the theory of STM and related SXM methods. As the experimental techniques including the reproducibility of the experimental results have advanced, more and more theorists have become attracted to focus on issues related to STM and SXM. The increasing effort in the development of theoretical concepts for STM/SXM has led to considerable improvements in understanding the contrast mechanism as well as the experimental conditions necessary to obtain reliable data. Therefore, this third volume on STM/SXM is not written by theorists for theorists, but rather for every scientist who is not satisfied by just obtaining real­ space images of surface structures by STM/SXM. After a brief introduction (Chap. 1), N. D. Lang first co...

  4. First-principles theory of inelastic currents in a scanning tunneling microscope

    DEFF Research Database (Denmark)

    Stokbro, Kurt; Hu, Ben Yu-Kuang; Thirstrup, C.

    1998-01-01

    A first-principles theory of inelastic tunneling between a model probe tip and an atom adsorbed on a surface is presented, extending the elastic tunneling theory of Tersoff and Hamann. The inelastic current is proportional to the change in the local density of states at the center of the tip due...... to the addition of the adsorbate. We use the theory to investigate the vibrational heating of an adsorbate below a scanning tunneling microscopy tip. We calculate the desorption rate of PI from Si(100)-H(2 X 1) as a function of the sample bias and tunnel current, and find excellent a,agreement with recent...

  5. Full information acquisition in scanning probe microscopy and spectroscopy

    Science.gov (United States)

    Jesse, Stephen; Belianinov, Alex; Kalinin, Sergei V.; Somnath, Suhas

    2017-04-04

    Apparatus and methods are described for scanning probe microscopy and spectroscopy based on acquisition of full probe response. The full probe response contains valuable information about the probe-sample interaction that is lost in traditional scanning probe microscopy and spectroscopy methods. The full probe response is analyzed post data acquisition using fast Fourier transform and adaptive filtering, as well as multivariate analysis. The full response data is further compressed to retain only statistically significant components before being permanently stored.

  6. Transient measurements with an ultrafast scanning tunneling microscope

    DEFF Research Database (Denmark)

    Keil, Ulrich Dieter Felix; Jensen, Jacob Riis; Hvam, Jørn Märcher

    1998-01-01

    the transmission line while the change in delay time between pump beam (on the sample) and probe beam (on the probe) provides the temporal information. The investigated photoconductor sample is a low-temperature-grown GaAs layer placed on a sapphire substrate with a thin, semitransparent gold layer. In tunneling...

  7. Interlayer tunneling spectroscopy of mixed-phase BSCCO superconducting whiskers

    Science.gov (United States)

    Kizilaslan, O.; Truccato, M.; Simsek, Y.; Aksan, M. A.; Koval, Y.; Müller, P.

    2016-06-01

    In this work, we present a study on the interlayer tunneling spectroscopy (ITS) of mixed-phase BiSrCaCuO (BSCCO) superconducting whiskers. The tunneling experiments were carried out on the artificial cross-whisker (twist angle of 90°) junctions. A multiple superconducting energy gap in the cross-whisker junctions was observed, which is attributed to the presence of different doping levels of two Bi2Sr2CaCu2O8+δ phases (Bi-2212), rather than two different phases, in the BSCCO whiskers, namely Bi2Sr2CaCu2O8+δ and Bi2Sr2Ca2Cu3O8+δ (Bi-2212 and Bi-2223). The temperature dependence of the energy gaps was discussed in the framework of the BCS T-dependence. On the other hand, the carrier concentration of the cross-whisker junction was changed by the carrier injection process. The effects of the carrier injection on the critical current, I c, and the ITS of intrinsic Josephson junctions were investigated in details.

  8. Scanning Angle Raman spectroscopy in polymer thin film characterization

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Vy H.T. [Iowa State Univ., Ames, IA (United States)

    2015-12-19

    The focus of this thesis is the application of Raman spectroscopy for the characterization of thin polymer films. Chapter 1 provides background information and motivation, including the fundamentals of Raman spectroscopy for chemical analysis, scanning angle Raman scattering and scanning angle Raman scattering for applications in thin polymer film characterization. Chapter 2 represents a published manuscript that focuses on the application of scanning angle Raman spectroscopy for the analysis of submicron thin films with a description of methodology for measuring the film thickness and location of an interface between two polymer layers. Chapter 3 provides an outlook and future directions for the work outlined in this thesis. Appendix A, contains a published manuscript that outlines the use of Raman spectroscopy to aid in the synthesis of heterogeneous catalytic systems. Appendix B and C contain published manuscripts that set a foundation for the work presented in Chapter 2.

  9. Transient measurements with an ultrafast scanning tunneling microscope on semiconductor surfaces

    DEFF Research Database (Denmark)

    Keil, Ulrich Dieter Felix; Jensen, Jacob Riis; Hvam, Jørn Märcher

    1998-01-01

    We demonstrate: the use of an ultrafast scanning tunneling microscope on a semiconductor surface. Laser-induced transient signals with 1.8 ps rise time are detected, The investigated sample is a low-temperature grown GaAs layer plated on a sapphire substrate with a thin gold layer that serves as st...... by the nonuniform carrier density created by the absorption of the light (photo Dember effect). The transient depends in sign and in shape on the direction of optical excitation. This signal is the dominating transient in tunneling mode. The signals are explained by a capacitive coupling across the tunneling gap...

  10. Deconvolution of the density of states of tip and sample through constant-current tunneling spectroscopy

    Directory of Open Access Journals (Sweden)

    Holger Pfeifer

    2011-09-01

    Full Text Available We introduce a scheme to obtain the deconvolved density of states (DOS of the tip and sample, from scanning tunneling spectra determined in the constant-current mode (z–V spectroscopy. The scheme is based on the validity of the Wentzel–Kramers–Brillouin (WKB approximation and the trapezoidal approximation of the electron potential within the tunneling barrier. In a numerical treatment of z–V spectroscopy, we first analyze how the position and amplitude of characteristic DOS features change depending on parameters such as the energy position, width, barrier height, and the tip–sample separation. Then it is shown that the deconvolution scheme is capable of recovering the original DOS of tip and sample with an accuracy of better than 97% within the one-dimensional WKB approximation. Application of the deconvolution scheme to experimental data obtained on Nb(110 reveals a convergent behavior, providing separately the DOS of both sample and tip. In detail, however, there are systematic quantitative deviations between the DOS results based on z–V data and those based on I–V data. This points to an inconsistency between the assumed and the actual transmission probability function. Indeed, the experimentally determined differential barrier height still clearly deviates from that derived from the deconvolved DOS. Thus, the present progress in developing a reliable deconvolution scheme shifts the focus towards how to access the actual transmission probability function.

  11. Development of a 3D modeling algorithm for tunnel deformation monitoring based on terrestrial laser scanning

    Directory of Open Access Journals (Sweden)

    Xiongyao Xie

    2017-03-01

    Full Text Available Deformation monitoring is vital for tunnel engineering. Traditional monitoring techniques measure only a few data points, which is insufficient to understand the deformation of the entire tunnel. Terrestrial Laser Scanning (TLS is a newly developed technique that can collect thousands of data points in a few minutes, with promising applications to tunnel deformation monitoring. The raw point cloud collected from TLS cannot display tunnel deformation; therefore, a new 3D modeling algorithm was developed for this purpose. The 3D modeling algorithm includes modules for preprocessing the point cloud, extracting the tunnel axis, performing coordinate transformations, performing noise reduction and generating the 3D model. Measurement results from TLS were compared to the results of total station and numerical simulation, confirming the reliability of TLS for tunnel deformation monitoring. Finally, a case study of the Shanghai West Changjiang Road tunnel is introduced, where TLS was applied to measure shield tunnel deformation over multiple sections. Settlement, segment dislocation and cross section convergence were measured and visualized using the proposed 3D modeling algorithm.

  12. Spatially resolved electron tunneling spectroscopy on single crystalline Rb{sub 3}C{sub 60}

    Energy Technology Data Exchange (ETDEWEB)

    Jess, P.; Hubler, U. [Institute of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Behler, S. [Lawrence Berkeley Laboratory, University of California--Berkeley, Berkeley, California 94720 (United States); Thommen-Geiser, V.; Lang, H.P.; Guentherodt, H. [Institute of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland)

    1996-03-01

    A Rb{sub 3}C{sub 60} single crystal ({ital T}{sub {ital c}}=30.5 K) is investigated in the superconducting state at 2.8 K by scanning tunneling microscopy and scanning tunneling spectroscopy (STS). STS data reveals a spatial variation of the superconducting energy gap {Delta} on a scale of 50 nm ({Delta}=2.6{endash}5.2 meV; 2{Delta}/{ital k}{sub {ital BT}}{sub {ital c}}=2.0{endash}4.0). This behavior is attributed to varying stoichiometry on the sample surface. An investigation of a Rb{sub 3}C{sub 60} facet shows that {ital I}({ital V}) characteristics even vary on molecular scale. {ital I}({ital V}) curves acquired between fullerene molecules exhibit a nonvanishing slope at zero bias whereas {ital I}({ital V}) characteristics measured above molecules exhibit vanishing slope at zero bias. {copyright} {ital 1996 American Vacuum Society}

  13. Scanning tunneling microscopy I general principles and applications to clean and adsorbate-covered surfaces

    CERN Document Server

    Wiesendanger, Roland

    1992-01-01

    Scanning Tunneling Microscopy I provides a unique introduction to a novel and fascinating technique that produces beautiful images of nature on an atomic scale. It is the first of three volumes that together offer a comprehensive treatment of scanning tunneling microscopy, its diverse applications, and its theoretical treatment. In this volume the reader will find a detailed description of the technique itself and of its applications to metals, semiconductors, layered materials, adsorbed molecules and superconductors. In addition to the many representative results reviewed, extensive references to original work will help to make accessible the vast body of knowledge already accumulated in this field.

  14. A 30 mK, 13.5 T scanning tunneling microscope with two independent tips

    Science.gov (United States)

    Roychowdhury, Anita; Gubrud, M. A.; Dana, R.; Anderson, J. R.; Lobb, C. J.; Wellstood, F. C.; Dreyer, M.

    2014-04-01

    We describe the design, construction, and performance of an ultra-low temperature, high-field scanning tunneling microscope (STM) with two independent tips. The STM is mounted on a dilution refrigerator and operates at a base temperature of 30 mK with magnetic fields of up to 13.5 T. We focus on the design of the two-tip STM head, as well as the sample transfer mechanism, which allows in situ transfer from an ultra high vacuum preparation chamber while the STM is at 1.5 K. Other design details such as the vibration isolation and rf-filtered wiring are also described. Their effectiveness is demonstrated via spectral current noise characteristics and the root mean square roughness of atomic resolution images. The high-field capability is shown by the magnetic field dependence of the superconducting gap of CuxBi2Se3. Finally, we present images and spectroscopy taken with superconducting Nb tips with the refrigerator at 35 mK that indicate that the effective temperature of our tips/sample is approximately 184 mK, corresponding to an energy resolution of 16 μeV.

  15. Visualizing the interface state of PTCDA on Au(111) by scanning tunneling microscopy

    Science.gov (United States)

    Nicoara, N.; Méndez, J.; Gómez-Rodríguez, J. M.

    2016-11-01

    We have investigated by means of scanning tunneling microscopy (STM) and spectroscopy (STS) the electronic structure of PTCDA (3,4,9,10-perylene-tetracarboxylic-dianhydride) molecular monolayers grown on Au(111). Thanks to our STM/STS measurements, performed under ultra-high vacuum conditions and low temperature, an interface state directly derived from the Shockley-type surface state of pristine Au(111) has been detected. Low bias voltage STM images show the formation of standing wave patterns both on Au(111) and on Au(111) covered by a PTCDA monolayer. These patterns result from the scattering of quasi-free 2D electron surface states with surface defects. By Fourier transforming STM images, the corresponding wavevectors have been extracted. In particular, the simultaneous imaging of both pristine and PTCDA covered Au(111) areas has allowed to measure the Fermi contours and the Fermi wavevectors of both systems. These measurements show that one monolayer PTCDA on Au(111) presents an interface state with an isotropic circular Fermi contour and smaller Fermi wavector ({k}{{F}}=0.15+/- 0.01\\phantom{\\rule{thinmathspace}{0ex}}\\mathring{{{A}}}{}-1) than the corresponding Fermi wavector of pristine Au(111) ({k}{{F}}=0.17+/- 0.01\\phantom{\\rule{thinmathspace}{0ex}}\\mathring{{{A}}}{}-1). This picture is consistent with an upward shift of the Shockley-type surface state due to the presence of the molecular monolayer.

  16. Defects in oxide surfaces studied by atomic force and scanning tunneling microscopy.

    Science.gov (United States)

    König, Thomas; Simon, Georg H; Heinke, Lars; Lichtenstein, Leonid; Heyde, Markus

    2011-01-01

    Surfaces of thin oxide films were investigated by means of a dual mode NC-AFM/STM. Apart from imaging the surface termination by NC-AFM with atomic resolution, point defects in magnesium oxide on Ag(001) and line defects in aluminum oxide on NiAl(110), respectively, were thoroughly studied. The contact potential was determined by Kelvin probe force microscopy (KPFM) and the electronic structure by scanning tunneling spectroscopy (STS). On magnesium oxide, different color centers, i.e., F(0), F(+), F(2+) and divacancies, have different effects on the contact potential. These differences enabled classification and unambiguous differentiation by KPFM. True atomic resolution shows the topography at line defects in aluminum oxide. At these domain boundaries, STS and KPFM verify F(2+)-like centers, which have been predicted by density functional theory calculations. Thus, by determining the contact potential and the electronic structure with a spatial resolution in the nanometer range, NC-AFM and STM can be successfully applied on thin oxide films beyond imaging the topography of the surface atoms.

  17. Defects in oxide surfaces studied by atomic force and scanning tunneling microscopy

    Directory of Open Access Journals (Sweden)

    Thomas König

    2011-01-01

    Full Text Available Surfaces of thin oxide films were investigated by means of a dual mode NC-AFM/STM. Apart from imaging the surface termination by NC-AFM with atomic resolution, point defects in magnesium oxide on Ag(001 and line defects in aluminum oxide on NiAl(110, respectively, were thoroughly studied. The contact potential was determined by Kelvin probe force microscopy (KPFM and the electronic structure by scanning tunneling spectroscopy (STS. On magnesium oxide, different color centers, i.e., F0, F+, F2+ and divacancies, have different effects on the contact potential. These differences enabled classification and unambiguous differentiation by KPFM. True atomic resolution shows the topography at line defects in aluminum oxide. At these domain boundaries, STS and KPFM verify F2+-like centers, which have been predicted by density functional theory calculations. Thus, by determining the contact potential and the electronic structure with a spatial resolution in the nanometer range, NC-AFM and STM can be successfully applied on thin oxide films beyond imaging the topography of the surface atoms.

  18. Three-Dimensional Laser Scanning for Geometry Documentation and Construction Management of Highway Tunnels during Excavation

    Directory of Open Access Journals (Sweden)

    Vassilis Gikas

    2012-08-01

    Full Text Available Driven by progress in sensor technology, computer software and data processing capabilities, terrestrial laser scanning has recently proved a revolutionary technique for high accuracy, 3D mapping and documentation of physical scenarios and man-made structures. Particularly, this is of great importance in the underground space and tunnel construction environment as surveying engineering operations have a great impact on both technical and economic aspects of a project. This paper discusses the use and explores the potential of laser scanning technology to accurately track excavation and construction activities of highway tunnels. It provides a detailed overview of the static laser scanning method, its principles of operation and applications for tunnel construction operations. Also, it discusses the planning, execution, data processing and analysis phases of laser scanning activities, with emphasis given on geo-referencing, mesh model generation and cross-section extraction. Specific case studies are considered based on two construction sites in Greece. Particularly, the potential of the method is examined for checking the tunnel profile, producing volume computations and validating the smoothness/thickness of shotcrete layers at an excavation stage and during the completion of excavation support and primary lining. An additional example of the use of the method in the geometric documentation of the concrete lining formwork is examined and comparisons against dimensional tolerances are examined. Experimental comparisons and analyses of the laser scanning method against conventional surveying techniques are also considered.

  19. Three-dimensional laser scanning for geometry documentation and construction management of highway tunnels during excavation.

    Science.gov (United States)

    Gikas, Vassilis

    2012-01-01

    Driven by progress in sensor technology, computer software and data processing capabilities, terrestrial laser scanning has recently proved a revolutionary technique for high accuracy, 3D mapping and documentation of physical scenarios and man-made structures. Particularly, this is of great importance in the underground space and tunnel construction environment as surveying engineering operations have a great impact on both technical and economic aspects of a project. This paper discusses the use and explores the potential of laser scanning technology to accurately track excavation and construction activities of highway tunnels. It provides a detailed overview of the static laser scanning method, its principles of operation and applications for tunnel construction operations. Also, it discusses the planning, execution, data processing and analysis phases of laser scanning activities, with emphasis given on geo-referencing, mesh model generation and cross-section extraction. Specific case studies are considered based on two construction sites in Greece. Particularly, the potential of the method is examined for checking the tunnel profile, producing volume computations and validating the smoothness/thickness of shotcrete layers at an excavation stage and during the completion of excavation support and primary lining. An additional example of the use of the method in the geometric documentation of the concrete lining formwork is examined and comparisons against dimensional tolerances are examined. Experimental comparisons and analyses of the laser scanning method against conventional surveying techniques are also considered.

  20. Isometric Tunnel Placement in Ulnar Collateral Ligament Reconstruction with Single CT Scan

    Directory of Open Access Journals (Sweden)

    Erica Kholinne

    2017-01-01

    Full Text Available Background. Isometric tunnel placement for anterior bundle of the medial collateral ligament (MCL reconstruction is mandatory for successful surgery. Purpose. This study aimed to demonstrate a useful method for identifying isometric tunnel placement using a single computed tomography (CT scan. Study Design. Descriptive Laboratory Study. Methods. Five normal elbows were scanned at 4 different flexion angles at 45° increment. Three-dimensional models were analyzed using 2 different approaches: single and multiple CT scans methods. Ligament footprints in the humerus and the ulna were registered. Ligament length and isometric points were defined. The locations of the isometric points were imported into both methods to be compared. Results. There was no significant difference between 2 methods in calculating the length in every zone. There was also no significant difference in determining isometric ligament’s origin point, which is located approximately 18.2±4.0 mm and 18.4±2.9 mm for single and multiple CT, respectively, measured inferolaterally from medial epicondyle. Conclusions. A solid preoperative plan is critical when predicting tunnel locations due to the difficulty in finding isometric points and the individuality of optimal bone tunnel locations. Using single CT scan, optimal locations can be predicted with the same accuracy as a multiple CT scans with less radiation exposure.

  1. Quantum tunneling, adiabatic invariance and black hole spectroscopy

    Science.gov (United States)

    Li, Guo-Ping; Pu, Jin; Jiang, Qing-Quan; Zu, Xiao-Tao

    2017-05-01

    In the tunneling framework, one of us, Jiang, together with Han has studied the black hole spectroscopy via adiabatic invariance, where the adiabatic invariant quantity has been intriguingly obtained by investigating the oscillating velocity of the black hole horizon. In this paper, we attempt to improve Jiang-Han's proposal in two ways. Firstly, we once again examine the fact that, in different types (Schwarzschild and Painlevé) of coordinates as well as in different gravity frames, the adiabatic invariant I_adia = \\oint p_i dq_i introduced by Jiang and Han is canonically invariant. Secondly, we attempt to confirm Jiang-Han's proposal reasonably in more general gravity frames (including Einstein's gravity, EGB gravity and HL gravity). Concurrently, for improving this proposal, we interestingly find in more general gravity theories that the entropy of the black hole is an adiabatic invariant action variable, but the horizon area is only an adiabatic invariant. In this sense, we emphasize the concept that the quantum of the black hole entropy is more natural than that of the horizon area.

  2. Josephson Effect in Graphene: a Tunneling Spectroscopy Study

    Science.gov (United States)

    Bretheau, Landry; Wang, Joel I.-Jan; Pisoni, Riccardo; Watanabe, Kenji; Taniguchi, Takashi; Jarillo-Herrero, Pablo

    A normal conductor placed in good contact with a superconductor can inherit its electronic properties. This proximity effect in the conductor originates from the formation of entangled electron-hole states, called Andreev states. Spectroscopic studies of Andreev states have been performed in just a handful of systems. Graphene provides a novel platform for studying Andreev physics in two dimensions because of its large mobility, ease of access and electrostatically tunable carrier density. Using a full van der Waals heterostructure, we have performed direct tunnelling spectroscopy of proximitized graphene. The measured energy spectra, which depend on the phase difference between the superconductors and on graphene carrier density, reveal a continuum of Andreev bound states. We further infer the supercurrent they carry from the phase dependence of the spectra, thus relating Andreev physics and the Josephson effect. As graphene's extended two-dimensional nature enables one to combine superconductivity and the quantum Hall effect, this platform is promising for the detection of Majorana modes, key ingredients for topologically protected quantum computation.

  3. Quantum tunneling, adiabatic invariance and black hole spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guo-Ping; Zu, Xiao-Tao [University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China); Pu, Jin [University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China); China West Normal University, College of Physics and Space Science, Nanchong (China); Jiang, Qing-Quan [China West Normal University, College of Physics and Space Science, Nanchong (China)

    2017-05-15

    In the tunneling framework, one of us, Jiang, together with Han has studied the black hole spectroscopy via adiabatic invariance, where the adiabatic invariant quantity has been intriguingly obtained by investigating the oscillating velocity of the black hole horizon. In this paper, we attempt to improve Jiang-Han's proposal in two ways. Firstly, we once again examine the fact that, in different types (Schwarzschild and Painleve) of coordinates as well as in different gravity frames, the adiabatic invariant I{sub adia} = circular integral p{sub i}dq{sub i} introduced by Jiang and Han is canonically invariant. Secondly, we attempt to confirm Jiang-Han's proposal reasonably in more general gravity frames (including Einstein's gravity, EGB gravity and HL gravity). Concurrently, for improving this proposal, we interestingly find in more general gravity theories that the entropy of the black hole is an adiabatic invariant action variable, but the horizon area is only an adiabatic invariant. In this sense, we emphasize the concept that the quantum of the black hole entropy is more natural than that of the horizon area. (orig.)

  4. Imaging of surface plasmon polariton interference using phase-sensitive scanning tunneling microscope

    NARCIS (Netherlands)

    Jose, J.; Segerink, Franciscus B.; Korterik, Jeroen P.; Herek, Jennifer Lynn; Offerhaus, Herman L.

    2011-01-01

    We report the surface plasmon polariton interference, generated via a ‘buried’ gold grating, and imaged using a phase-sensitive Photon Scanning Tunneling Microscope (PSTM). The phase-resolved PSTM measurement unravels the complex surface plasmon polariton interference fields at the gold-air

  5. Preparation of Chemically Etched Tips for Ambient Instructional Scanning Tunneling Microscopy

    Science.gov (United States)

    Zaccardi, Margot J.; Winkelmann, Kurt; Olson, Joel A.

    2010-01-01

    A first-year laboratory experiment that utilizes concepts of electrochemical tip etching for scanning tunneling microscopy (STM) is described. This experiment can be used in conjunction with any STM experiment. Students electrochemically etch gold STM tips using a time-efficient method, which can then be used in an instructional grade STM that…

  6. Simultaneous topographic and elemental chemical and magnetic contrast in scanning tunneling microscopy

    Science.gov (United States)

    Rose, Volker; Preissner, Curt A; Hla, Saw-Wai; Wang, Kangkang; Rosenmann, Daniel

    2014-09-30

    A method and system for performing simultaneous topographic and elemental chemical and magnetic contrast analysis in a scanning, tunneling microscope. The method and system also includes nanofabricated coaxial multilayer tips with a nanoscale conducting apex and a programmable in-situ nanomanipulator to fabricate these tips and also to rotate tips controllably.

  7. Real-time scanning tunneling microscopy studies of thin film deposition and ion erosion

    NARCIS (Netherlands)

    Fokkema, Vincent

    2011-01-01

    In this thesis I present my research on the physics of some important processes in the production of thin films. I studied physical vapour deposition (PVD) and thin film modification through ion bombardment using a newly developed, high-speed scanning tunneling microscope (STM). The instrument has

  8. Covalently Immobilised Cytochrome C Imaged by In Situ Scanning Tunnelling Microscopy

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Olesen, Klaus G.; Danilov, Alexey I.

    1997-01-01

    In situ scanning tunnelling microscopy (STM) imaging of cytochrome c (cyt c) on polycrystalline Pt surfaces and on Au(lll) was achieved first by covalent immobilisation of 3-aminopropyltriethoxysilane (3-APTS) brought to react with oxide present on the Pt surfaces. Covalently bound 3-APTS forms a...

  9. Scanning tunneling microscopy in TTF-TCNQ: Phase and amplitude modulated charge density waves

    DEFF Research Database (Denmark)

    Wang, Z.Z.; Gorard, J.C.; Pasquier, C.

    2003-01-01

    Charge density waves (CDWs) have been studied at the surface of a cleaved tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ) single crystal using a low temperature scanning tunneling microscope (STM) under ultrahigh-vacuum conditions, between 300 and 33 K with molecular resolution. All CDW...

  10. Scanning Tunneling Microscopy Studies of Topological Insulators Grown by Molecular Beam Epitaxy

    Directory of Open Access Journals (Sweden)

    Xue Qikun

    2012-03-01

    Full Text Available We summarize our recent scanning tunneling microscopy (STM study of topological insulator thin films grown by molecular beam epitaxy (MBE, which includes the observation of electron standing waves on topological insulator surface and the Landau quantization of topological surface states. The work has provided valuable information to the understanding of intriguing properties of topological insulators, as predicted by theory.

  11. Measurements with an ultrafast scanning tunnelling microscope on photoexcited semiconductor layers

    DEFF Research Database (Denmark)

    Keil, Ulrich Dieter Felix; Jensen, Jacob Riis; Hvam, Jørn Märcher

    1998-01-01

    Summary form only given. We demonstrate the use of a ultrafast scanning tunnelling microscopes (USTM) for detecting laser-induced field transients on semiconductor layers. In principle, the instrument can detect transient field changes thus far observed as far-field THz radiation in the near-fiel...

  12. Adsorption of Cu phthalocyanine on Pt modified Ge(001): A scanning tunneling microscopy study

    NARCIS (Netherlands)

    Saedi, A.; Berkelaar, Robin P.; Kumar, Avijit; Poelsema, Bene; Zandvliet, Henricus J.W.

    2010-01-01

    The adsorption configurations of copper phthalocyanine (CuPc) molecules on platinum-modified Ge(001) have been studied using scanning tunneling microscopy. After deposition at room temperature and cooling down to 77 K the CuPc molecules are still dynamic. However, after annealing at 550±50 K, the

  13. Polarization contrast in photon scanning tunnelling microscopy combined with atomic force microscopy

    NARCIS (Netherlands)

    Propstra, K.; Propstra, K.; van Hulst, N.F.

    1995-01-01

    Photon scanning tunnelling microscopy combined with atomic force microscopy allows simultaneous acquisition and direct comparison of optical and topographical images, both with a lateral resolution of about 30 nm, far beyond the optical diffraction limit. The probe consists of a modified

  14. Quasi interference of perpendicularly polarized guided modes observed with a photon scanning tunneling microscope

    NARCIS (Netherlands)

    Balistreri, M.L.M.; Driessen, A.; Korterik, Jeroen P.; Kuipers, L.; van Hulst, N.F.

    2000-01-01

    The simultaneous detection of TE- as well as TM-polarized light with a photon scanning tunneling microscope leads to a quasi- interference pattern of these mutually perpendicular polarized fields. This interference pattern has been observed in the optical field distribution as a function of both

  15. Method to characterize the vibrational response of a beetle type scanning tunneling microscope

    Energy Technology Data Exchange (ETDEWEB)

    Behler, S.; Rose, M.K.; Ogletree, D.F.; Salmeron, M. [Materials Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720 (United States)

    1997-01-01

    We describe a method for analyzing the external vibrations and intrinsic mechanical resonances affecting scanning probe microscopes by using the microscope as an accelerometer. We show that clear correlations can be established between the frequencies of mechanical vibrational modes and the frequencies of peaks in the tunnel current noise power spectrum. When this method is applied to our {open_quotes}beetle{close_quotes} type scanning tunneling microscope (STM), we find unexpected low frequency {open_quotes}rattling resonances{close_quotes} in the 500{endash}1700 Hz range that depend on the exact lateral position of the STM, in addition to the expected mechanical resonances of the STM above 4 kHz which are in good agreement with theoretical estimates. We believe that these rattling resonances may be a general problem for scanning probe microscopes that use some type of kinetic motion for coarse positioning. {copyright} {ital 1997 American Institute of Physics.}

  16. Field-Induced Deformation as a Mechanism for Scanning Tunneling Microscopy Based Nanofabrication

    DEFF Research Database (Denmark)

    Hansen, Ole; Ravnkilde, Jan Tue; Quaade, Ulrich

    1998-01-01

    The voltage between tip and sample in a scanning tunneling microscope (STM) results in a large electric field localized near the tip apex. The mechanical stress due to this field can cause appreciable deformation of both tip and sample on the scale of the tunnel gap. We derive an approximate...... analytical expression for this deformation and confirm the validity of the result by comparison with a finite element analysis. We derive the condition for a field-induced jump to contact of tip and sample and show that this agrees well with experimental results for material transfer between tip and sample...... by voltage pulsing in ultrahigh vacuum....

  17. Combined frequency modulated atomic force microscopy and scanning tunneling microscopy detection for multi-tip scanning probe microscopy applications

    Science.gov (United States)

    Morawski, Ireneusz; Spiegelberg, Richard; Korte, Stefan; Voigtländer, Bert

    2015-12-01

    A method which allows scanning tunneling microscopy (STM) tip biasing independent of the sample bias during frequency modulated atomic force microscopy (AFM) operation is presented. The AFM sensor is supplied by an electronic circuit combining both a frequency shift signal and a tunneling current signal by means of an inductive coupling. This solution enables a control of the tip potential independent of the sample potential. Individual tip biasing is specifically important in order to implement multi-tip STM/AFM applications. An extensional quartz sensor (needle sensor) with a conductive tip is applied to record simultaneously topography and conductivity of the sample. The high resonance frequency of the needle sensor (1 MHz) allows scanning of a large area of the surface being investigated in a reasonably short time. A recipe for the amplitude calibration which is based only on the frequency shift signal and does not require the tip being in contact is presented. Additionally, we show spectral measurements of the mechanical vibration noise of the scanning system used in the investigations.

  18. Simultaneous scanning tunneling microscopy and synchrotron X-ray measurements in a gas environment.

    Science.gov (United States)

    Mom, Rik V; Onderwaater, Willem G; Rost, Marcel J; Jankowski, Maciej; Wenzel, Sabine; Jacobse, Leon; Alkemade, Paul F A; Vandalon, Vincent; van Spronsen, Matthijs A; van Weeren, Matthijs; Crama, Bert; van der Tuijn, Peter; Felici, Roberto; Kessels, Wilhelmus M M; Carlà, Francesco; Frenken, Joost W M; Groot, Irene M N

    2017-11-01

    A combined X-ray and scanning tunneling microscopy (STM) instrument is presented that enables the local detection of X-ray absorption on surfaces in a gas environment. To suppress the collection of ion currents generated in the gas phase, coaxially shielded STM tips were used. The conductive outer shield of the coaxial tips can be biased to deflect ions away from the tip core. When tunneling, the X-ray-induced current is separated from the regular, 'topographic' tunneling current using a novel high-speed separation scheme. We demonstrate the capabilities of the instrument by measuring the local X-ray-induced current on Au(1 1 1) in 800 mbar Ar. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. A NEW APPROACH FOR SUBWAY TUNNEL DEFORMATION MONITORING: HIGH-RESOLUTION TERRESTRIAL LASER SCANNING

    Directory of Open Access Journals (Sweden)

    J. Li

    2012-07-01

    Full Text Available With the improvement of the accuracy and efficiency of laser scanning technology, high-resolution terrestrial laser scanning (TLS technology can obtain high precise points-cloud and density distribution and can be applied to high-precision deformation monitoring of subway tunnels and high-speed railway bridges and other fields. In this paper, a new approach using a points-cloud segmentation method based on vectors of neighbor points and surface fitting method based on moving least squares was proposed and applied to subway tunnel deformation monitoring in Tianjin combined with a new high-resolution terrestrial laser scanner (Riegl VZ-400. There were three main procedures. Firstly, a points-cloud consisted of several scanning was registered by linearized iterative least squares approach to improve the accuracy of registration, and several control points were acquired by total stations (TS and then adjusted. Secondly, the registered points-cloud was resampled and segmented based on vectors of neighbor points to select suitable points. Thirdly, the selected points were used to fit the subway tunnel surface with moving least squares algorithm. Then a series of parallel sections obtained from temporal series of fitting tunnel surfaces were compared to analysis the deformation. Finally, the results of the approach in z direction were compared with the fiber optical displacement sensor approach and the results in x, y directions were compared with TS respectively, and comparison results showed the accuracy errors of x, y, z directions were respectively about 1.5 mm, 2 mm, 1 mm. Therefore the new approach using high-resolution TLS can meet the demand of subway tunnel deformation monitoring.

  20. Attractive interaction between Mn atoms on the GaAs(110) surface observed by scanning tunneling microscopy.

    Science.gov (United States)

    Taninaka, Atsushi; Yoshida, Shoji; Kanazawa, Ken; Hayaki, Eiko; Takeuchi, Osamu; Shigekawa, Hidemi

    2016-06-16

    Scanning tunneling microscopy/spectroscopy (STM/STS) was carried out to investigate the structures of Mn atoms deposited on a GaAs(110) surface at room temperature to directly observe the characteristics of interactions between Mn atoms in GaAs. Mn atoms were paired with a probability higher than the random distribution, indicating an attractive interaction between them. In fact, re-pairing of unpaired Mn atoms was observed during STS measurement. The pair initially had a new structure, which was transformed during STS measurement into one of those formed by atom manipulation at 4 K. Mn atoms in pairs and trimers were aligned in the direction, which is theoretically predicted to produce a high Curie temperature.

  1. Scanning tunneling potentiometry implemented into a multi-tip setup by software.

    Science.gov (United States)

    Lüpke, F; Korte, S; Cherepanov, V; Voigtländer, B

    2015-12-01

    We present a multi-tip scanning tunneling potentiometry technique that can be implemented into existing multi-tip scanning tunneling microscopes without installation of additional hardware. The resulting setup allows flexible in situ contacting of samples under UHV conditions and subsequent measurement of the sample topography and local electric potential with resolution down to Å and μV, respectively. The performance of the potentiometry feedback is demonstrated by thermovoltage measurements on the Ag/Si(111)-(√3×√3)R30° surface by resolving a standing wave pattern. Subsequently, the ability to map the local transport field as a result of a lateral current through the sample surface is shown on Ag/Si(111)-(√3×√3)R30° and Si(111) - (7 × 7) surfaces.

  2. Scanning tunneling microscopy investigation of different porphynoids on a Ni-prestructured Cu(111) surface

    Energy Technology Data Exchange (ETDEWEB)

    Roeckert, Michael; Buchner, Florian; Zillner, Elisabeth; Glaessel, Stefanie; Steinrueck, Hans-Peter; Marbach, Hubertus [Lehrstuhl fuer Physikalische Chemie II and Interdisciplinary Center for Molecular Materials (ICMM), Universitaet Erlangen-Nuernberg, Egerlandstrasse 3, D-91058 Erlangen (Germany)

    2010-07-01

    The assembly of organic molecules on single-crystal surfaces is an approach towards the creation of novel materials with outstanding properties. Porphyrins appear to be ideal candidates to generate functional molecular devices, due to their self-assembly properties and their versatile functionality. In the present work we study the possibility to locally anchor or functionalize porphyrins on a prestructured surface, namely a composite Ni/Cu(111) surface, by scanning tunneling microscopy (STM) in ultra-high vacuum at room temperature. Based on scanning tunneling micrographs and movies the dynamics, assembly and intramolecular conformation of the corresponding porphyrins (2HTPP,CoTPP,OEP) as well as the role of molecule-molecule and molecule-substrate interactions are discussed. The obtained findings indeed indicate the possibility to locally anchor and/or functionalize (e.g. metalate) the porphyrins on a Cu(111) surface prestructured either with atomically flat Ni- or oxygen-islands.

  3. Visible Light Emission from Atomic Scale Patterns Fabricated by the Scanning Tunneling Microscope

    DEFF Research Database (Denmark)

    Thirstrup, C.; Sakurai, M.; Stokbro, Kurt

    1999-01-01

    Scanning tunneling microscope (STM) induced light emission from artificial atomic scale structures comprising silicon dangling bonds on hydrogen-terminated Si(001) surfaces has been mapped spatially and analyzed spectroscopically in the visible spectral range. The light emission is based on a novel...... a quasipoint source with a spatial extension similar to the size of a dangling bond. [S0031-9007(98)08376-8]....

  4. The tip-sample water bridge and light emission from scanning tunnelling microscopy

    OpenAIRE

    Boyle, Michael G; Mitra, J; Dawson, Paul

    2009-01-01

    Light emission spectrum from a scanning tunnelling microscope (LESTM) is investigated as a function of relative humidity and shown to be a novel and sensitive means for probing the growth and properties of a water meniscus in the nm-scale. An empirical model of the light emission process is formulated and applied successfully to replicate the decay in light intensity and spectral changes observed with increasing relative humidity. The modelling indicates a progressive water filling of the tip...

  5. Pulse Plating on Gold Surfaces Studied by In Situ Scanning Tunneling Microscopy

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Bech-Nielsen, Gregers; Møller, Per

    1994-01-01

    Deposition of bulk copper on thin film gold surfaces is carried out by computer-aided pulse plating. It is demonstrated that the morphology of the copper deposit can be studied by in situ scanning tunnelling microscopy both in potentiostatic experiments and in galvanostatic experiments. Optimized...... procedures for obtaining smooth deposits by pulse plating are explained in terms of a levelling effect. Possible non-faradaic processes observed in measurements with high frequency pulse plating are discussed....

  6. Tunneling and Tunneling Switching Dynamics in Phenol and Ortho-D FTIR Spectroscopy with Synchrotron Radiation and Theory

    Science.gov (United States)

    Albert, S.; Prentner, R.; Quack, M.; Lerch, Ph.

    2013-06-01

    The understanding of tunneling in chemical reactions is of fundamental interest. A particularly intriguing recent development is the theoretical prediction of tunneling switching in ortho-D-phenol (C_6H_4DOH) as opposed to phenol (C_6H_5OH) where only tunneling dominates the dynamics. For ortho-D-phenol at low energy, tunneling is completely suppressed due to isotopic substitution, which introduces an asymmetry in the effective potential including zero point energy. This localizes the molecular wavefunction in either the syn or the anti structure of ortho-D-phenol. At higher torsional states of ortho-D-phenol, tunneling becomes dominant, thus switching the dynamics to a delocalized quantum wavefunction. Therefore, we have investigated the rotationally resolved THz and IR spectra of phenol and ortho-D-phenol measured with our FTIR setup at the Swiss Light Source (SLS) using synchrotron radiation. We have been able to analyse the torsional fundamentals, the first and second overtones of both isotopomers. A comparison of the spectra of phenol and ortho-D-phenol indicates the theoretically predicted behavior of tunneling switching upon excitation of the torsional mode. In detail, we shall discuss the splitting of the torsional fundamental, of its first and second overtones of phenol as well as the fundamentals of syn- and anti- ortho-D-phenol and the possible tunneling switching in the torsional overtone region of ortho-D-phenol. The results shall be also discussed in relation to the quasiadiabatic channel Reaction Path Hamiltonian approach. We shall also discuss the comparison with results for meta-D-phenol. M. Quack, Fundamental symmetries and symmetry violations in Handbook of High Resolution Spectroscopy, Vol. 1(Eds. M. Quack and F. Merkt), Wiley, Chicester (2011), 659-722. S. Albert, Ph. Lerch, R. Prentner, M. Quack, Angew. Chem. Int. Ed. 2013, 52, 346-349. S. Albert and M. Quack, ChemPhysChem, 2007, 8, 1271-1281, S. Albert, K. Keppler Albert and M. Quack, High

  7. Facile synthesis and electron transport properties of NiO nanostructures investigated by scanning tunneling microscopy

    Directory of Open Access Journals (Sweden)

    Govind Mallick

    2017-08-01

    Full Text Available Due to their unique chemical, thermal, electronic and photonic properties, low -dimensional transition metal oxides, especially NiO, have attracted great deal of attention for potential applications in a wide range of technologies, such as, sensors, electrochromic coatings and self-healing materials. However, their synthesis involves multi-step complex procedures that in addition to being expensive, further introduce impurities. Here we present a low cost facile approach to synthesize uniform size NiO nanoparticles (NPs from hydrothermally grown Ni(OH2. Detailed transmission electron microscopic analysis reveal the average size of NiO NPs to be around 29 nm. The dimension of NiO NP is also corroborated by the small area scanning tunneling microscope (STM measurements. Further, we investigate electron transport characteristics of newly synthesized Ni(OH2 and NiO nanoparticles on p-type Si substrate using scanning tunneling microscopy. The conductivity of Ni(OH2 and NiO are determined to be 1.46x10-3 S/cm and 2.37x10-5 S/cm, respectively. The NiO NPs exhibit a lower voltage window (∼0.7 V electron tunneling than the parent Ni(OH2.

  8. Facile synthesis and electron transport properties of NiO nanostructures investigated by scanning tunneling microscopy

    Science.gov (United States)

    Mallick, Govind; Labh, Jyotsna; Giri, Lily; Pandey, Avinash C.; Karna, Shashi P.

    2017-08-01

    Due to their unique chemical, thermal, electronic and photonic properties, low -dimensional transition metal oxides, especially NiO, have attracted great deal of attention for potential applications in a wide range of technologies, such as, sensors, electrochromic coatings and self-healing materials. However, their synthesis involves multi-step complex procedures that in addition to being expensive, further introduce impurities. Here we present a low cost facile approach to synthesize uniform size NiO nanoparticles (NPs) from hydrothermally grown Ni(OH)2. Detailed transmission electron microscopic analysis reveal the average size of NiO NPs to be around 29 nm. The dimension of NiO NP is also corroborated by the small area scanning tunneling microscope (STM) measurements. Further, we investigate electron transport characteristics of newly synthesized Ni(OH)2 and NiO nanoparticles on p-type Si substrate using scanning tunneling microscopy. The conductivity of Ni(OH)2 and NiO are determined to be 1.46x10-3 S/cm and 2.37x10-5 S/cm, respectively. The NiO NPs exhibit a lower voltage window (˜0.7 V) electron tunneling than the parent Ni(OH)2.

  9. A Scanning Tunneling Microscope at the Milli-Kelvin, High Magnetic Field Frontier

    Science.gov (United States)

    Zhou, Brian B.

    The ability to access lower temperatures and higher magnetic fields has precipitated breakthroughs in our understanding of physical matter, revealing novel effects such as superconductivity, the integer and fractional quantum Hall effects, and single spin magnetism. Extending the scanning tunneling microscope (STM) to the extremity of the B-T phase space provides unique insight on these phenomena both at the atomic level and with spectroscopic power. In this thesis, I describe the design and operation of a full-featured, dilution refrigerator-based STM capable of sample preparation in ultra-high vacuum (UHV) and spectroscopic mapping with an electronic temperature of 240 mK in fields up to 14 T. I detail technical solutions to overcome the stringent requirements on vibration isolation, electronic noise, and mechanical design necessary to successfully integrate the triad of the STM, UHV, and dilution refrigeration. Measurements of the heavy fermion superconductor CeCoIn5 ( Tc = 2.3 K) directly leverage the resulting combination of ultra-low temperature and atomic resolution to identify its Cooper pairing to be of dx2-y2 symmetry. Spectroscopic and quasiparticle interference measurements isolate a Kondo-hybridized, heavy effective mass band near the Fermi level, from which nodal superconductivity emerges in CeCoIn5 in coexistence with an independent pseudogap. Secondly, the versatility of this instrument is demonstrated through measurements of the three-dimensional Dirac semimetal Cd3As2 up to the maximum magnetic field. Through high resolution Landau level spectroscopy, the dispersion of the conduction band is shown to be Dirac-like over an unexpectedly extended regime, and its two-fold degeneracy to be lifted in field through a combination of orbital and Zeeman effects. Indeed, these two experiments on CeCoIn5 and Cd3 As2 glimpse the new era of nano-scale materials research, spanning superconductivity, topological properties, and single spin phenomena, made

  10. Line-scanning Raman imaging spectroscopy for detection of fingerprints.

    Science.gov (United States)

    Deng, Sunan; Liu, Le; Liu, Zhiyi; Shen, Zhiyuan; Li, Guohua; He, Yonghong

    2012-06-10

    Fingerprints are the best form of personal identification for criminal investigation purposes. We present a line-scanning Raman imaging system and use it to detect fingerprints composed of β-carotene and fish oil on different substrates. Although the line-scanning Raman system has been used to map the distribution of materials such as polystyrene spheres and minerals within geological samples, this is the first time to our knowledge that the method is used in imaging fingerprints. Two Raman peaks of β-carotene (501.2, 510.3 nm) are detected and the results demonstrate that both peaks can generate excellent images with little difference between them. The system operates at a spectra resolution of about 0.4 nm and can detect β-carotene signals in petroleum ether solution with the limit of detection of 3.4×10(-9) mol/L. The results show that the line-scanning Raman imaging spectroscopy we have built has a high accuracy and can be used in the detection of latent fingerprints in the future.

  11. Probing the local environment of a single OPE3 molecule using inelastic tunneling electron spectroscopy

    NARCIS (Netherlands)

    Frisenda, R.; Perrin, M.L.; Van der Zant, H.S.J.

    2015-01-01

    We study single-molecule oligo(phenylene ethynylene)dithiol junctions by means of inelastic electron tunneling spectroscopy (IETS). The molecule is contacted with gold nano-electrodes formed with the mechanically controllable break junction technique. We record the IETS spectrum of the molecule from

  12. Imaging by Electrochemical Scanning Tunneling Microscopy and Deconvolution Resolving More Details of Surfaces Nanomorphology

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov

    to crystallographic-surface structures. Within the wide range of new technologies, those images surface features, the electrochemical scanning tunneling microscope (ESTM) provides means of atomic resolution where the tip participates actively in the process of imaging. Two metallic surfaces influence ions trapped.......g., nanoelectronics and single-molecule probing. In principle, the ESTM is capable of sub-atomic resolution but many details at this level of magnification need further treatment of recorded data before real information is obtained. Deconvolution of the data according to the instrument response may explain some...

  13. Structure and Reactions of Carbon and Hydrogen on Ru(0001): A Scanning Tunneling Microscopy Study

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Tomoko K.; Mugarza, Aitor; Cerda, Jorge; Salmeron, Miquel

    2008-09-09

    The interaction between carbon and hydrogen atoms on a Ru(0001) surface was studied using scanning tunneling microscopy (STM), Density Functional Theory (DFT) and STM image calculations. Formation of CH species by reaction between adsorbed H and C was observed to occur readily at 100 K. When the coverage of H increased new complexes of the form CH+nH (n = 1, 2 and 3) were observed. These complexes, never observed before, might be precursors for further hydrogenation reactions. DFT analysis reveals that a considerable energy barrier exists for the CH+H {yields} CH{sub 2} reaction.

  14. Cytochrome C Dynamics at Gold and Glassy Carbon Surfaces Monitored by in Situ Scanning Tunnel Microscopy

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Møller, Per; Pedersen, Marianne Vind

    1995-01-01

    We have investigated the absorption of cytochrome c on gold and glassy carbon substrates by in situ scanning tunnel microscopy under potentiostatic control of both substrate and tip. Low ionic strength and potential ranges where no Faradaic current flows were used. Cyt c aggregates into flat...... composite structures of about 50 nm lateral extension at gold surfaces. The aggregates evolve in time, and structures resembling individual cyt c molecules can be distinguished in the space between the 50 nm structures. Cyt c aggregates also form at glassy carbon but have a different, unbroken character...

  15. Atomic-scale structure of dislocations revealed by scanning tunneling microscopy and molecular dynamics

    DEFF Research Database (Denmark)

    Christiansen, Jesper; Morgenstern, K.; Schiøtz, Jakob

    2002-01-01

    The intersection between dislocations and a Ag(111) surface has been studied using an interplay of scanning tunneling microscopy (STM) and molecular dynamics. Whereas the STM provides atomically resolved information about the surface structure and Burgers vectors of the dislocations......, the simulations can be used to determine dislocation structure and orientation in the near-surface region. In a similar way, the subsurface structure of other extended defects can be studied. The simulations show dislocations to reorient the partials in the surface region leading to an increased splitting width...

  16. Creating Nanoscale Pits on Solid Surfaces in Aqueous Environment with Scanning Tunnelling Microscopy

    DEFF Research Database (Denmark)

    Chi, Qijin; Zhang, Jingdong; Friis, Esben P.

    2000-01-01

    A novel method has been developed to fabricate nanoscale pits on Au(111) in aqueous environments by in situ scanning tunnelling microscopy (STM), based on critical interactions between tip and substrate. The most striking advantages of the present method are that the dimension and position...... of the pits can be controlled well in aqueous environments, and the operations are simple. Parameters affecting the pit formation and size have been systematically characterized to show that pit formation is dominated by bias voltage. A mechanism is proposed based on local surface reconstruction induced...

  17. A scanning tunneling microscope break junction method with continuous bias modulation.

    Science.gov (United States)

    Beall, Edward; Yin, Xing; Waldeck, David H; Wierzbinski, Emil

    2015-09-28

    Single molecule conductance measurements on 1,8-octanedithiol were performed using the scanning tunneling microscope break junction method with an externally controlled modulation of the bias voltage. Application of an AC voltage is shown to improve the signal to noise ratio of low current (low conductance) measurements as compared to the DC bias method. The experimental results show that the current response of the molecule(s) trapped in the junction and the solvent media to the bias modulation can be qualitatively different. A model RC circuit which accommodates both the molecule and the solvent is proposed to analyze the data and extract a conductance for the molecule.

  18. First-principles modelling of scanning tunneling microscopy using non-equilibrium Green's functions

    DEFF Research Database (Denmark)

    Lin, H.P.; Rauba, J.M.C.; Thygesen, Kristian Sommer

    2010-01-01

    The investigation of electron transport processes in nano-scale architectures plays a crucial role in the development of surface chemistry and nano-technology. Experimentally, an important driving force within this research area has been the concurrent refinements of scanning tunneling microscopy...... into account. As an illustrating example we apply the NEGF-STM method to the Si(001)(2x1):H surface with sub-surface P doping and discuss the results in comparison to the Bardeen and Tersoff-Hamann methods....

  19. Doppler-scanning tunneling microscopy current imaging in superconductor-ferromagnet hybrids

    Energy Technology Data Exchange (ETDEWEB)

    Moore, S. A.; Plummer, G.; Fedor, J.; Pearson, J. E.; Novosad, V.; Karapetrov, G.; Iavarone, M.

    2016-01-25

    Mapping the distribution of currents inside a superconductor is usually performed indirectly through imaging of the stray magnetic fields above the surface. Here, we show that by direct imaging of the Doppler shift contribution to the quasiparticle excitation spectrum in the superconductor using low temperature scanning tunneling microscopy, we obtain directly the distribution of supercurrents inside the superconductor. We demonstrate the technique at the example of superconductor/ferromagnet hybrid structure that produces intricate current pattern consisting of combination Meissner shielding currents and Abrikosov vortex currents.

  20. Scanning, non-contact, hybrid broadband diffuse optical spectroscopy and diffuse correlation spectroscopy system.

    Science.gov (United States)

    Johansson, Johannes D; Mireles, Miguel; Morales-Dalmau, Jordi; Farzam, Parisa; Martínez-Lozano, Mar; Casanovas, Oriol; Durduran, Turgut

    2016-02-01

    A scanning system for small animal imaging using non-contact, hybrid broadband diffuse optical spectroscopy (ncDOS) and diffuse correlation spectroscopy (ncDCS) is presented. The ncDOS uses a two-dimensional spectrophotometer retrieving broadband (610-900 nm) spectral information from up to fifty-seven source-detector distances between 2 and 5 mm. The ncDCS data is simultaneously acquired from four source-detector pairs. The sample is scanned in two dimensions while tracking variations in height. The system has been validated with liquid phantoms, demonstrated in vivo on a human fingertip during an arm cuff occlusion and on a group of mice with xenoimplanted renal cell carcinoma.

  1. Superconductive tunnel junctions for X-ray spectroscopy

    Science.gov (United States)

    de Korte, P. A. J.; van den Berg, M. L.; Bruijn, M. P.; Frericks, M.; Le Grand, J. B.; Gijsbertsen, J. G.; Houwman, E. P.; Flokstra, J.

    1992-10-01

    Superconductive tunnel junctions are under development as detectors for X-ray astronomy in the 0.5 - 10 keV energy range, because of their potentially high energy resolution in combination with high detection efficiency. Absorber-junction combinations offer the prospect of high energy resolution detectors with a high detection efficiency and a reasonable (about 1/sq cm) size. The proximity effect between the Nb absorber and the Al trapping layer plays a dominant role. A study of the proximity effect in Nb/Al/Al2O3/Al/Nb junctions with different Al-layer, the trapping layer, thicknesses is presented.

  2. High-resolution photon-scanning tunneling microscope measurements of the whispering gallery modes in a cylindrical microresonator

    NARCIS (Netherlands)

    Klunder, D.J.W.; Balistreri, M.L.M.; Blom, F.C.; Driessen, A.; Hoekstra, Hugo; Kuipers, L.; van Hulst, N.F.

    2000-01-01

    A detailed analysis of spatio-spectral photon scanning tunneling microscope scans of the light intensity inside a cylindrical microresonator has been carried out. By comparing the experimental results with theory, it is shown that the inclusion of spectral mode-beat phenomena is crucial for an

  3. Noninvasive Scanning Raman Spectroscopy and Tomography for Graphene Membrane Characterization.

    Science.gov (United States)

    Wagner, Stefan; Dieing, Thomas; Centeno, Alba; Zurutuza, Amaia; Smith, Anderson D; Östling, Mikael; Kataria, Satender; Lemme, Max C

    2017-03-08

    Graphene has extraordinary mechanical and electronic properties, making it a promising material for membrane-based nanoelectromechanical systems (NEMS). Here, chemical-vapor-deposited graphene is transferred onto target substrates to suspend it over cavities and trenches for pressure-sensor applications. The development of such devices requires suitable metrology methods, i.e., large-scale characterization techniques, to confirm and analyze successful graphene transfer with intact suspended graphene membranes. We propose fast and noninvasive Raman spectroscopy mapping to distinguish between free-standing and substrate-supported graphene, utilizing the different strain and doping levels. The technique is expanded to combine two-dimensional area scans with cross-sectional Raman spectroscopy, resulting in three-dimensional Raman tomography of membrane-based graphene NEMS. The potential of Raman tomography for in-line monitoring is further demonstrated with a methodology for automated data analysis to spatially resolve the material composition in micrometer-scale integrated devices, including free-standing and substrate-supported graphene. Raman tomography may be applied to devices composed of other two-dimensional materials as well as silicon micro- and nanoelectromechanical systems.

  4. Bulk crystalline copper electrodeposition on polycrystalline gold surfaces observed by in-situ scanning tunneling microscopy

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Bech-Nielsen, Gregers; Møller, Per

    1994-01-01

    Bulk copper electrodeposition onto technical gold surfaces in electrolytes of 0.05 M H2SO4 and 1 mM CuSO4 was investigated by in-situ scanning tunnelling microscopy at fixed overpotentials. At potentials between -60 and -30 mV the growth of bulk copper proceeds in cycles of nucleation, agglomerat......Bulk copper electrodeposition onto technical gold surfaces in electrolytes of 0.05 M H2SO4 and 1 mM CuSO4 was investigated by in-situ scanning tunnelling microscopy at fixed overpotentials. At potentials between -60 and -30 mV the growth of bulk copper proceeds in cycles of nucleation......, agglomeration and crystallization. Crystalline copper is seen as involving an intermediate stage in the progress of growth. The final stage in the growth involves an equilibrium of copper electrochemically dissolving and precipitating. The drift velocity was measured for a gold surface subjected to flame...... annealing and subsequently installed in the cell compartment. It was found that the drift velocity decays with time in an exponential-like manner, and a 70 min waiting time before experiments with atomic resolution is recommended. Atomic resolution on Au(111) has been obtained, and an apparent surface...

  5. Laser Ultrasound Spectroscopy Scanning for 3D Printed Parts

    Energy Technology Data Exchange (ETDEWEB)

    Brennan, Guendalyn Kendra [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-04

    One of the challenges of additive manufacturing is quality control due to the possibility of unseen flaws in the final product. The current methods of inspection are lacking in detail, too slow for practical use, or unable to validate internal structure. This report examines the use of laser ultrasound spectroscopy in layer by layer scans of 3D printed parts as they are created. The result is fast and detailed quality control. An additional advantage of this method is the ability to cancel a print as soon as a defect is detected, therefore saving materials and time. This technique, though simple in concept, has been a challenge to implement. I discuss tweaking the 3D printer configuration, and finding the optimal settings for laser scanning small parts made of ABS plastic, as well as the limits of how small of a detail the laser can detect. These settings include the frequency of the ultrasonic transducer, the speed of the laser, and the distance from the laser to the part.

  6. An easy-to-implement filter for separating photo-excited signals from topography in scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wang Kangkang; Rosenmann, Daniel; Holt, Martin; Winarski, Robert; Hla, Saw-Wai [Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Rose, Volker [Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States)

    2013-06-15

    In order to achieve elemental and chemical sensitivity in scanning tunneling microscopy (STM), synchrotron x-rays have been applied to excite core-level electrons during tunneling. The x-ray photo-excitations result in tip currents that are superimposed onto conventional tunneling currents. While carrying important physical information, the varying x-ray induced currents can destabilize the feedback loop causing it to be unable to maintain a constant tunneling current, sometimes even causing the tip to retract fully or crash. In this paper, we report on an easy-to-implement filter circuit that can separate the x-ray induced currents from conventional tunneling currents, thereby allowing simultaneous measurements of topography and chemical contrasts. The filter and the schematic presented here can also be applied to other variants of light-assisted STM such as laser STM.

  7. Intermolecular interaction effect on the inelastic electron tunneling spectroscopy of bi-octane-monothiol junctions

    Science.gov (United States)

    Leng, Jiancai; Zhao, Liyun; Zhang, Yujin; Ma, Hong

    2017-01-01

    The inelastic electron tunneling spectroscopy (IETS) of bi-octane-monothiol junctions is theoretically studied based on first-principles calculations. The results reveal that IETS is very sensitive to the vertical and lateral distance of the two molecules in the bimolecular junctions owing to the changes of interaction between the two molecules. It is further demonstrated that the transverse vibrational modes ν(C-H) around 0.38 V will be triggered when the two molecules are close to each other and open a new path for electron tunneling. Our theoretical results provide new insight into understanding the origin of the IETS peaks around 0.38 V.

  8. Observation of ballistic transport in double-barrier resonant-tunneling structures by electroluminescence spectroscopy

    Science.gov (United States)

    Teissier, R.; Cockburn, J. W.; Buckle, P. D.; Skolnick, M. S.; Finley, J. J.; Grey, R.; Hill, G.; Pate, M. A.

    1994-08-01

    We report a direct observation by electroluminescence (EL) spectroscopy of ballistic-electron transport in double-barrier resonant-tunneling GaAs/AlxGa1-xAs p-i-n diodes. The samples studied contain two confined electron states (e1 and e2) and consequently two resonances in the current versus bias characteristic. When biased for electron tunneling through e2, an analysis of EL intensities permits a quantitative determination of the ratio (1:16 and 1:203 for the two samples studied) of the ballistic current flowing directly through e2 to the current flowing sequentially through e1.

  9. A scanning tunneling microscopy based potentiometry technique and its application to the local sensing of the spin Hall effect

    OpenAIRE

    Ting Xie; Michael Dreyer; David Bowen; Dan Hinkel; R. E. Butera; Charles Krafft; Isaak Mayergoyz

    2017-01-01

    A scanning tunneling microscopy based potentiometry technique for the measurements of the local surface electric potential is presented. A voltage compensation circuit based on this potentiometry technique is developed and employed to maintain a desired tunneling voltage independent of the bias current flow through the film. The application of this potentiometry technique to the local sensing of the spin Hall effect is outlined and some experimental results are reported.

  10. A scanning tunneling microscopy based potentiometry technique and its application to the local sensing of the spin Hall effect

    Science.gov (United States)

    Xie, Ting; Dreyer, Michael; Bowen, David; Hinkel, Dan; Butera, R. E.; Krafft, Charles; Mayergoyz, Isaak

    2017-12-01

    A scanning tunneling microscopy based potentiometry technique for the measurements of the local surface electric potential is presented. A voltage compensation circuit based on this potentiometry technique is developed and employed to maintain a desired tunneling voltage independent of the bias current flow through the film. The application of this potentiometry technique to the local sensing of the spin Hall effect is outlined and some experimental results are reported.

  11. Parallelism between gradient temperature raman spectroscopy and differential scanning calorimetry results

    Science.gov (United States)

    Temperature dependent Raman spectroscopy (TDR) applies the temperature gradients utilized in differential scanning calorimetry (DSC) to Raman spectroscopy, providing a straightforward technique to identify molecular rearrangements that occur just prior to phase transitions. Herein we apply TDR and D...

  12. Construction of a four tip scanning tunneling microscope/scanning electron microscope combination and conductivity measurements of silicide nanowires; Aufbau einer Vierspitzen-Rastertunnelmikroskop/Rasterelektronenmikroskop-Kombination und Leitfaehigkeitsmessungen an Silizid Nanodraehten

    Energy Technology Data Exchange (ETDEWEB)

    Zubkov, Evgeniy

    2013-09-01

    In this work the combination of a four-tip scanning tunneling microscope with a scanning electron microscope is presented. By means of this apparatus it is possible to perform the conductivity measurements on the in-situ prepared nanostructures in ultra-high vacuum. With the aid of a scanning electron microscope (SEM), it becomes possible to position the tunneling tips of the four-tip scanning tunneling microscope (STM), so that an arrangement for a four-point probe measurement on nanostructures can be obtained. The STM head was built according to the novel coaxial Beetle concept. This concept allows on the one hand, a very compact arrangement of the components of the STM and on the other hand, the new-built STM head has a good mechanical stability, in order to achieve atomic resolution with all four STM units. The atomic resolution of the STM units was confirmed by scanning a Si(111)-7 x 7 surface. The thermal drift during the STM operation, as well as the resonant frequencies of the mechanical structure of the STM head, were determined. The scanning electron microscope allows the precise and safe navigation of the tunneling tips on the sample surface. Multi tip spectroscopy with up to four STM units can be performed synchronously. To demonstrate the capabilities of the new-built apparatus the conductivity measurements were carried out on metallic yttrium silicide nanowires. The nanowires were prepared by the in-situ deposition of yttrium on a heated Si(110) sample surface. Current-voltage curves were recorded on the nanowires and on the wetting layer in-between. The curves indicate an existence of the Schottky barrier between the yttrium silicide nanowires and the silicon bulk. By means of the two-tip measurements with a gate, the insulating property of the Schottky barrier has been confirmed. Using this Schottky barrier, it is possible to limit the current to the nanowire and to prevent it from flowing through the silicon bulk. A four-tip resistance measurement

  13. A first principles scanning tunneling potentiometry study of an opaque graphene grain boundary in the ballistic transport regime.

    Science.gov (United States)

    Bevan, Kirk H

    2014-10-17

    We report on a theoretical interpretation of scanning tunneling potentiometry (STP), formulated within the Keldysh non-equilibrium Green's function description of quantum transport. By treating the probe tip as an electron point source/sink, it is shown that this approach provides an intuitive bridge between existing theoretical interpretations of scanning tunneling microscopy and STP. We illustrate this through ballistic transport simulations of the potential drop across an opaque graphene grain boundary, where atomistic features are predicted that might be imaged through high resolution STP measurements. The relationship between the electrochemical potential profile measured and the electrostatic potential drop across such a nanoscale defect is also explored in this model system.

  14. Nondestructive evaluation of composite materials via scanning laser ultrasound spectroscopy

    Science.gov (United States)

    Koskelo, Elise Anne C.; Flynn, Eric B.

    2017-04-01

    Composite materials pose a complex problem for ultrasonic nondestructive evaluation due to their unique material properties, greater damping, and often complicated geometry. In this study, we explored acoustic wavenumber spectroscopy (AWS) as a means of rapid inspection of laminate and honeycomb composites. Each aerospace sample was tested at different ultrasonic frequencies using steady-state excitation via a piezo electric actuator. We measured the velocity response of the composite at each pixel via a raster scan using a laser Doppler vibrometer. We were able to detect radial inserts along corners, delamination, and facing-core separation by analyzing local amplitude and wavenumber responses. For each honeycomb composite, we excited the sample at the first resonant frequency of the individual cells. The local mode shape for each cell was extracted from the local amplitude response. Analyzing local amplitude and phase responses for each cell provided an accurate indication as to the presence, size, shape, and type of defect present in the composite. We detected both delamination and deformation of cells within a honeycomb composite. For the laminar composites, we analyzed the non-resonance steady-state response at several excitation frequencies.

  15. Scanning tunneling microscopy studies of organic monolayers adsorbed on the rhodium(111) crystal surface

    Energy Technology Data Exchange (ETDEWEB)

    Cernota, Paul Davis [Univ. of California, Berkeley, CA (United States)

    1999-08-01

    Scanning Tunneling Microscopy studies were carried out on ordered overlayers on the (111) surface of rhodium. These adsorbates include carbon monoxide (CO), cyclohexane, cyclohexene, 1,4-cyclohexadiene, para-xylene, and meta-xylene. Coadsorbate systems included: CO with ethylidyne, CO with para- and meta-xylene, and para-xylene with meta-xylene. In the case of CO, the structure of the low coverage (2x2) overlayer has been observed. The symmetry of the unit cell in this layer suggests that the CO is adsorbed in the 3-fold hollow sites. There were also two higher coverage surface structures with (√7x√7) unit cells. One of these is composed of trimers of CO and has three CO molecules in each unit cell. The other structure has an additional CO molecule, making a total of four. This extra CO sits on a top site.

  16. In situ scanning tunneling microscope tip treatment device for spin polarization imaging

    Science.gov (United States)

    Li, An-Ping [Oak Ridge, TN; Jianxing, Ma [Oak Ridge, TN; Shen, Jian [Knoxville, TN

    2008-04-22

    A tip treatment device for use in an ultrahigh vacuum in situ scanning tunneling microscope (STM). The device provides spin polarization functionality to new or existing variable temperature STM systems. The tip treatment device readily converts a conventional STM to a spin-polarized tip, and thereby converts a standard STM system into a spin-polarized STM system. The tip treatment device also has functions of tip cleaning and tip flashing a STM tip to high temperature (>2000.degree. C.) in an extremely localized fashion. Tip coating functions can also be carried out, providing the tip sharp end with monolayers of coating materials including magnetic films. The device is also fully compatible with ultrahigh vacuum sample transfer setups.

  17. Submolecular Electronic Mapping of Single Cysteine Molecules by in Situ Scanning Tunneling Imaging

    DEFF Research Database (Denmark)

    Zhang, Jingdong; Chi, Qijin; Nazmutdinov, R. R.

    2009-01-01

    based on a slab model for the metal surface. The ordered monolayer offers a platform for submolecular scale electronic mapping that is an issue of fundamental interest but remains a challenge in STM imaging science and surface chemistry. Single Cys molecules were mapped as three electronic subunits......We have used L-Cysteine (Cys) as a model system to study the surface electronic structures of single molecules at the submolecular level in aqueous buffer solution by a combination of electrochemical scanning tunneling microscopy (in situ STM), electrochemistry including voltammetry...... contributed mainly from three chemical moieties: thiol (-SH), carboxylic (-COOH), and amine (-NH2) groups. The contrasts of the three subunits depend on the environment (e.g., pH), which affects the electronic structure of adsorbed species. From the DFT computations focused on single molecules, rational...

  18. Hydrogen adsorption on Ru(001) studied by Scanning TunnelingMicroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tatarkhanov, Mous; Rose, Franck; Fomin, Evgeny; Ogletree, D.Frank; Salmeron, Miquel

    2008-01-18

    The adsorption of hydrogen on Ru(001) was studied by scanning tunneling microscopy at temperatures around 50 K. Hydrogen was found to adsorb dissociatively forming different ordered structures as a function of coverage. In order of increasing coverage {theta} in monolayers (ML) these were ({radical}3 x {radical}3)r30{sup o} at {theta} = 0.3 ML; (2 x 1) at {theta} = 0.50 ML, (2 x 2)-3H at {theta} = 0.75, and (1 x 1) at {theta} = 1.00. Some of these structures were observed to coexist at intermediate coverage values. Close to saturation of 1 ML, H-vacancies (unoccupied three fold fcc hollow Ru sites) were observed either as single entities or forming transient aggregations. These vacancies diffuse and aggregate to form active sites for the dissociative adsorption of hydrogen.

  19. Interfacial self-assembly of amino acids and peptides: Scanning tunneling microscopy investigation

    Science.gov (United States)

    Xu, Li-Ping; Liu, Yibiao; Zhang, Xueji

    2011-12-01

    Proteins play important roles in human daily life. To take advantage of the lessons learned from nature, it is essential to investigate the self-assembly of subunits of proteins, i.e., amino acids and polypeptides. Due to its high resolution and versatility of working environment, scanning tunneling microscopy (STM) has become a powerful tool for studying interfacial molecular assembly structures. This review is intended to reflect the progress in studying interfacial self-assembly of amino acids and peptides by STM. In particular, we focus on environment-induced polymorphism, chiral recognition, and coadsorption behavior with molecular templates. These studies would be highly beneficial to research endeavors exploring the mechanism and nanoscale-controlling molecular assemblies of amino acids and polypeptides on surfaces, understanding the origin of life, unravelling the essence of disease at the molecular level and deeming what is necessary for the ``bottom-up'' nanofabrication of molecular devices and biosensors being constructed with useful properties and desired performance.

  20. Ultra-High Vacuum Compatible Optical Chopper System for Synchrotron X-ray Scanning Tunneling Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Hao; Cummings, Marvin L.; Shirato, Nozomi; Stripe, Benjamin D.; Rosenmann, Daniel; Preissner, Curt A.; Freeland, John W.; Kersell, Heath R.; Hla, Saw Wai; Rose, Volker

    2015-01-01

    High-speed beam choppers are a crucial part of time-resolved x-ray studies as well as a necessary component to enable elemental contrast in synchrotron x-ray scanning tunneling microscopy (SX-STM). However, many chopper systems are not capable of operation in vacuum, which restricts their application to x-ray studies with high photon energies, where air absorption does not present a significant problem. To overcome this limitation, we present a fully ultra-high vacuum (UHV) compatible chopper system capable of operating at variable chopping frequencies up to 4 kHz. The lightweight aluminum chopper disk is coated with Ti and Au films to provide the required beam attenuation for soft and hard x-rays with photon energies up to about 12 keV. The chopper is used for lock-in detection of x-ray enhanced signals in SX-STM.

  1. Ultra-high vacuum compatible optical chopper system for synchrotron x-ray scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Hao, E-mail: hc000211@ohio.edu [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Nanoscale and Quantum Phenomena Institute, Physics & Astronomy Department, Ohio University, Athens, Ohio 45701 (United States); Cummings, Marvin; Shirato, Nozomi; Stripe, Benjamin; Preissner, Curt; Freeland, John W. [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Rosenmann, Daniel [Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Kersell, Heath; Hla, Saw-Wai [Nanoscale and Quantum Phenomena Institute, Physics & Astronomy Department, Ohio University, Athens, Ohio 45701 (United States); Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Rose, Volker, E-mail: vrose@anl.gov [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States)

    2016-01-28

    High-speed beam choppers are a crucial part of time-resolved x-ray studies as well as a necessary component to enable elemental contrast in synchrotron x-ray scanning tunneling microscopy (SX-STM). However, many chopper systems are not capable of operation in vacuum, which restricts their application to x-ray studies with high photon energies, where air absorption does not present a significant problem. To overcome this limitation, we present a fully ultra-high vacuum (UHV) compatible chopper system capable of operating at variable chopping frequencies up to 4 kHz. The lightweight aluminum chopper disk is coated with Ti and Au films to provide the required beam attenuation for soft and hard x-rays with photon energies up to about 12 keV. The chopper is used for lock-in detection of x-ray enhanced signals in SX-STM.

  2. Local transport measurements at mesoscopic length scales using scanning tunneling potentiometry.

    Science.gov (United States)

    Wang, Weigang; Munakata, Ko; Rozler, Michael; Beasley, Malcolm R

    2013-06-07

    Under mesoscopic conditions, the transport potential on a thin film carrying a current is theoretically expected to bear spatial variation due to quantum interference. Scanning tunneling potentiometry is the ideal tool to investigate such variation, by virtue of its high spatial resolution. We report in this Letter the first detailed measurement of transport potential under mesoscopic conditions. Epitaxial graphene at a temperature of 17 K was chosen as the initial system for study because the characteristic transport length scales in this material are relatively large. Tip jumping artifacts are a major possible contribution to systematic errors; and we mitigate such problems by using custom-made slender and sharp tips manufactured by focused ion beam. In our data, we observe residual resistivity dipoles associated with topographical defects, and local peaks and dips in the potential that are not associated with topographical defects.

  3. Atomic species identification at the (101) anatase surface by simultaneous scanning tunnelling and atomic force microscopy

    Science.gov (United States)

    Stetsovych, Oleksandr; Todorović, Milica; Shimizu, Tomoko K.; Moreno, César; Ryan, James William; León, Carmen Pérez; Sagisaka, Keisuke; Palomares, Emilio; Matolín, Vladimír; Fujita, Daisuke; Perez, Ruben; Custance, Oscar

    2015-01-01

    Anatase is a pivotal material in devices for energy-harvesting applications and catalysis. Methods for the accurate characterization of this reducible oxide at the atomic scale are critical in the exploration of outstanding properties for technological developments. Here we combine atomic force microscopy (AFM) and scanning tunnelling microscopy (STM), supported by first-principles calculations, for the simultaneous imaging and unambiguous identification of atomic species at the (101) anatase surface. We demonstrate that dynamic AFM-STM operation allows atomic resolution imaging within the material's band gap. Based on key distinguishing features extracted from calculations and experiments, we identify candidates for the most common surface defects. Our results pave the way for the understanding of surface processes, like adsorption of metal dopants and photoactive molecules, that are fundamental for the catalytic and photovoltaic applications of anatase, and demonstrate the potential of dynamic AFM-STM for the characterization of wide band gap materials. PMID:26118408

  4. Atomic resolution on the (111 )B surface of mercury cadmium telluride by scanning tunneling microscopy

    Science.gov (United States)

    Zha, Fang-Xing; Hong, Feng; Pan, Bi-Cai; Wang, Yin; Shao, Jun; Shen, Xue-Chu

    2018-01-01

    The real-space atomic surface structure of mercury cadmium telluride was successfully achieved on the (111 )B surface of H g0.78C d0.22Te by ultrahigh-vacuum scanning tunneling microscopy (STM). The work casts light on the reconstructions of the (111 )B surface unraveling a (2 ×2 ) surface reconstruction induced by adatom adsorption of Cd. The other (2 ×2 ) surface reconstruction is clarified to be induced by the single Te vacancy, which is more stable than the reconstruction of multivacancies in contrast to the prevailing view. The simulated STM images are in good agreement with the experiments. We also observed an in situ morphology transition from the (1 ×1 ) structure to those (2 ×2 ) reconstructions, implying the stability of the reconstructions.

  5. High-Resolution Scanning Tunneling Microscopy Studies of Molecular Nanostructures on Surfaces

    DEFF Research Database (Denmark)

    Song, Xin

    . First, to study the role of hydrogen bonding in self-assembly, we investigate the monomolecular self-assembled system of pyrene-4,5,9,10-tetrone and phenanthrene- 9,10-dione molecules on Au(111) and HOPG surface respectively and the binary molecular self-assembled system of stearic acid and guanine...... molecules co-adsorbed on HOPG surface. Hydrogen bonding plays a key role in these self-assembled nanostructures and the substrate could also give an effect in the self-assembly. Second, to study the self-assembly across the terrace steps as a defect on surface, the chiral self-assembled supramolecular...... of nanostructures requires deeper insight into the adsorption sites, adsorption configurations, diffusion behaviour and driving forces for self-assembly of different molecules or atoms on different substrates. To study these fundamental issues, scanning tunneling microscopy (STM) has proven to be an ideal choice...

  6. Scanning tunneling microscopy on the formation of lipoamide-cyclodextrin monolayer on Au(111)

    Science.gov (United States)

    Yasuda, Satoshi; Shigekawa, Hidemi; Suzuki, Iwao; Nakamura, Tohru; Matsumoto, Mutsuyoshi; Komiyama, Makoto

    2000-01-01

    β-cyclodextrin molecules modified with lipoamide residue (LP-β-CyD) were self-assembled on an Au(111) surface in ethanol solution, and the growth process was studied by scanning tunneling microscopy. At the initial stage, adsorption sites were not only random, but also partially linear ordering, which suggests the existence of some influence by the herringbone structure of the Au(111) surface. According to the macroscopic analysis, the subsequent growth process was explained by the Elovich model, which is based on the repulsive interaction between adsorbed molecules. However, when the immersion time increased, island structures began forming. This result suggests the interaction between LP-β-CyD molecules as attractive, which in fact is more probable in consideration of the possibility of the hydrophobic and the hydrogen bonding interactions between CyD molecules. Finally, formation of a single LP-β-CyD layer was clearly confirmed.

  7. Theoretical analysis of a dual-probe scanning tunneling microscope setup on graphene

    DEFF Research Database (Denmark)

    Settnes, Mikkel; Power, Stephen R.; Petersen, Dirch Hjorth

    2014-01-01

    Experimental advances allow for the inclusion of multiple probes to measure the transport properties of a sample surface. We develop a theory of dual-probe scanning tunneling microscopy using a Green's function formalism, and apply it to graphene. Sampling the local conduction properties at finite...... length scales yields real space conductance maps which show anisotropy for pristine graphene systems and quantum interference effects in the presence of isolated impurities. Spectral signatures in the Fourier transforms of real space conductance maps include characteristics that can be related...... to different scattering processes. We compute the conductance maps of graphene systems with different edge geometries or height fluctuations to determine the effects of nonideal graphene samples on dual-probe measurements. © 2014 American Physical Society....

  8. Surface structures of L10-MnGa (001) by scanning tunneling microscopy and first-principles theory

    Science.gov (United States)

    Corbett, J. P.; Guerrero-Sanchez, J.; Richard, A. L.; Ingram, D. C.; Takeuchi, N.; Smith, A. R.

    2017-11-01

    We report on the surface reconstructions of L10-ordered MnGa (001) thin films grown by molecular beam epitaxy on a 50 nm Mn3N2 (001) layer freshly grown on a magnesium oxide (001) substrate. Scanning tunneling microscopy, Auger electron spectroscopy, and reflection high energy electron diffraction are combined with first-principles density functional theory calculations to determine the reconstructions of the L10-ordered MnGa (001) surface. We find two lowest energy reconstructions of the MnGa (001) face: a 1 × 1 Ga-terminated structure and a 1 × 2 structure with a Mn replacing a Ga in the 1 × 1 Ga-terminated surface. The 1 × 2 reconstruction forms a row structure along [100]. The manganese:gallium stoichiometry within the surface based on theoretical modeling is in good agreement with experiment. Magnetic moment calculations for the two lowest energy structures reveal important surface and bulk effects leading to oscillatory total magnetization for ultra-thin MnGa (001) films.

  9. Vibrational Inelastic Electron Tunneling Spectroscopy of Surface Adsorbed Single Molecules at Sub-Kelvin Temperature

    OpenAIRE

    Jiang, Chi-Lun

    2015-01-01

    With a 600mk homebuilt UHV STM system, we studied molecular vibration at the solid surface with inelastic electron tunneling spectroscopy (IETS) of Acetylene single molecules adsorbed on Cu(100) surface and revealed five new vibrational modes that were previously inaccessible to STM-IETS at 8K temperature. The identification of vibrational IETS features with normalized conductance change (Δσ/σ) as low as 0.24% was demonstrated. Facilitated by the high energy resolution, we also revealed the a...

  10. Construction of a Dual-Tip Scanning Tunneling Microscope: a Prototype Nanotechnology Workstation.

    Science.gov (United States)

    Voelker, Mark Alan

    1993-01-01

    This dissertation describes the construction and performance of a dual-tip scanning tunneling microscope (STM). The microscope was built as a prototype nanotechnology workstation, a general purpose instrument designed to give a researcher the ability to investigate and manipulate nanometer scale structures. Chapter One describes the genesis and development of the concept of nanotechnology, from the atomic hypothesis of Democritus to modern developments in synthetic chemistry. Nanometer scale electronics (molecular electronics) is introduced and the state of the art in this field is described. The dual-tip scanning probe microscope is proposed as a way to address individual molecular electronic devices, a key goal in realizing nanometer scale electronic technology. Investigation of microtubules, a proposed nanometer scale intracellular biological information processing system, is also discussed. Chapter Two reviews the history and fundamental physics of STM, along with the related techniques of Field Ion Microscopy (FIM) and Ballistic Electon Emission Microscopy (BEEM). BEEM is used to introduce the physics of the dual -tip STM. Other dual-probe systems are also described. Chapter Three covers the design and construction of the dual-tip STM. Both hardware and software are described in detail. Chapter Four presents the results obtained with the dual-tip STM, including dual-tip images and noise measurements for the electronic circuitry. The last chapter, Chapter Five, contains suggested design changes for improving the performance of the dual -tip microscope and descriptions of experiments that can be performed with an improved instrument. Design and use of a nanotechnology workstation in the fields of semiconductor electronics, molecular electronics and cellular biology is discussed. Investigation of neurons grown on a silicon chip with a dual-tip STM system is proposed. Four Appendices present a noise model of the STM tunneling gap and preamplifier, describe

  11. Demonstration of synchronised scanning Lidar measurements of 2D velocity fields in a boundary-layer wind tunnel

    DEFF Research Database (Denmark)

    van Dooren, M F; Kühn, M.; Petrovic, V.

    2016-01-01

    compared to hot wire probe measurements commonly used in wind tunnels. This yielded goodness of fit coefficients of 0.969 and 0.902 for the 1 Hz averaged u- and v-components of the wind speed, respectively, validating the 2D measurement capability of the Lidar scanners. Subsequently, the measurement......This paper combines the currently relevant research methodologies of scaled wind turbine model experiments in wind tunnels with remote-sensing short-range WindScanner Lidar measurement technology. The wind tunnel of the Politecnico di Milano was equipped with three wind turbine models and two short......-range WindScanner Lidars to demonstrate the benefits of synchronised scanning Lidars in such experimental surroundings for the first time. The dualLidar system can provide fully synchronised trajectory scans with sampling time scales ranging from seconds to minutes. First, staring mode measurements were...

  12. Atomic structure of screw dislocations intersecting the Au(111) surface: A combined scanning tunneling microscopy and molecular dynamics study

    DEFF Research Database (Denmark)

    Engbæk, Jakob; Schiøtz, Jakob; Dahl-Madsen, Bjarke

    2006-01-01

    The atomic-scale structure of naturally occurring screw dislocations intersecting a Au(111) surface has been investigated both experimentally by scanning tunneling microscopy (STM) and theoretically using molecular dynamics (MD) simulations. The step profiles of 166 dislocations were measured using...

  13. Adsorption of human insulin on single-crystal gold surfaces investigated by in situ scanning tunnelling microscopy and electrochemistry

    DEFF Research Database (Denmark)

    Welinder, Anna Christina; Zhang, Jingdong; Steensgaard, D.B.

    2010-01-01

    We have explored the adsorption of zinc-free human insulin on the three low-index single-crystalline Au(111)-, Au(100)- and Au(110)-surfaces in aqueous buffer (KH2PO4, pH 5) by a combination of electrochemical scanning tunnelling microscopy (in situ STM) at single-molecule resolution and linear s...

  14. Scanning tunneling microscopy I general principles and applications to clean and absorbate-covered surfaces

    CERN Document Server

    Wiesendanger, Roland

    1994-01-01

    Since the first edition of "Scanning 'funneling Microscopy I" has been pub­ lished, considerable progress has been made in the application of STM to the various classes of materials treated in this volume, most notably in the field of adsorbates and molecular systems. An update of the most recent develop­ ments will be given in an additional Chapter 9. The editors would like to thank all the contributors who have supplied up­ dating material, and those who have provided us with suggestions for further improvements. We also thank Springer-Verlag for the decision to publish this second edition in paperback, thereby making this book affordable for an even wider circle of readers. Hamburg, July 1994 R. Wiesendanger Preface to the First Edition Since its invention in 1981 by G. Binnig, H. Rohrer and coworkers at the IBM Zurich Research Laboratory, scanning tunneling microscopy (STM) has devel­ oped into an invaluable surface analytical technique allowing the investigation of real-space surface structures at th...

  15. Preparation of scanning tunneling microscopy tips using pulsed alternating current etching

    Energy Technology Data Exchange (ETDEWEB)

    Valencia, Victor A.; Thaker, Avesh A.; Derouin, Jonathan; Valencia, Damian N.; Farber, Rachael G.; Gebel, Dana A.; Killelea, Daniel R., E-mail: dkillelea@luc.edu [Department of Chemistry and Biochemistry, Loyola University Chicago, 1068 W. Sheridan Rd., Chicago, Illinois 60660 (United States)

    2015-03-15

    An electrochemical method using pulsed alternating current etching (PACE) to produce atomically sharp scanning tunneling microscopy (STM) tips is presented. An Arduino Uno microcontroller was used to control the number and duration of the alternating current (AC) pulses, allowing for ready optimization of the procedures for both Pt:Ir and W tips using a single apparatus. W tips prepared using constant and pulsed AC power were compared. Tips fashioned using PACE were sharper than those etched with continuous AC power alone. Pt:Ir tips were prepared with an initial coarse etching stage using continuous AC power followed by fine etching using PACE. The number and potential of the finishing AC pulses was varied and scanning electron microscope imaging was used to compare the results. Finally, tip quality using the optimized procedures was verified by UHV-STM imaging. With PACE, at least 70% of the W tips and 80% of the Pt:Ir tips were of sufficiently high quality to obtain atomically resolved images of HOPG or Ni(111)

  16. Electronic structure of carbon nanotube systems measured with scanning tunneling microscopy

    Science.gov (United States)

    Hornbaker, Daniel Jay

    Carbon fullerenes are unusually structured molecules with robust mechanical and electronic properties. Their versatility is astounding; envisioned applications range from field emission displays to impregnated metal composites, battery storage media, and nanoelectronic devices. The combination of simple constituency, diverse behavior, and ease of fabrication makes these materials a cornerstone topic in current research. This thesis details scanning tunneling microscopy (STM) experiments investigating how carbon nanotube fullerenes interact with and couple to their local environment. Scanning tunneling microscopy continues to be a key method for characterizing fullerenes, particularly in regards to their electronic properties. The atomic scale nature of this technique makes it uniquely suited for observing individual molecules and determining correlations between locally measured electronic properties and the particular environment of the molecule. The primary subject of this study is single-wall carbon nanotubes (SWNTs), which were observed under various perturbative influences resulting in measurable changes in the electronic structure. Additionally, fullerene heterostructures formed by the encapsulation of C60 molecules within the hollow interiors of SWNTs were characterized for the first time with STM. These novel macromolecules (dubbed "peapods") demonstrate the potential for custom engineering the properties of fullerene materials. Measurements indicate that the properties of individual nanotubes depend sensitively on local interactions. In particular, pronounced changes in electronic behavior are observed in nanotubes exhibiting mechanical distortion, interacting with extrinsic materials (including other nanotubes), and possessing intrinsic defects in the atomic lattice. In fullerene peapods, while no discernable change in the atomic ordering of the encapsulating nanotubes was evident, the presence of interior C60 molecules has a dramatic effect on the

  17. Modeling a Shallow Rock Tunnel Using Terrestrial Laser Scanning and Discrete Fracture Networks

    Science.gov (United States)

    Cacciari, Pedro Pazzoto; Futai, Marcos Massao

    2017-05-01

    Discontinuity mapping and analysis are extremely important for modeling shallow tunnels constructed in fractured rock masses. However, the limited exposure and variability of rock face orientation in tunnels must be taken into account. In this paper, an automatic method is proposed to generate discrete fracture networks (DFNs) using terrestrial laser scanner (TLS) geological mapping and to continuously calculate the volumetric intensities ( P 32) along a tunnel. The number of fractures intersecting rectangular sampling planes with different orientations, fitted in tunnel sections of finite lengths, is used as the program termination criteria to create multiple DFNs and to calculate the mean P 32. All traces and orientations from three discontinuity sets of the Monte Seco tunnel (Vitória Minas Railway) were mapped and the present method applied to obtain the continuous variation in P 32 along the tunnel. A practical approach to creating single and continuous DFNs (for each discontinuity set), considering the P 32 variations, is also presented, and the results are validated by comparing the trace intensities ( P 21) from the TLS mapping and DFNs generated. Three examples of 3DEC block models generated from different sections of the tunnel are shown, including the ground surface and the bedrock topographies. The results indicate that the proposed method is a practical and powerful tool for modeling fractured rock masses of uncovered tunnels. It is also promising for application during tunnel construction when TLS mapping is a daily task (for as-built tunnel controls), and the complete geological mapping (traces and orientations) is available.

  18. Development of in situ two-coil mutual inductance technique in a multifunctional scanning tunneling microscope

    Science.gov (United States)

    Duan, Ming-Chao; Liu, Zhi-Long; Ge, Jian-Feng; Tang, Zhi-Jun; Wang, Guan-Yong; Wang, Zi-Xin; Guan, Dandan; Li, Yao-Yi; Qian, Dong; Liu, Canhua; Jia, Jin-Feng

    2017-07-01

    Superconducting thin films have been a focal point for intensive research efforts since their reduced dimension allows for a wide variety of quantum phenomena. Many of these films, fabricated in UHV chambers, are highly vulnerable to air exposure, making it difficult to measure intrinsic superconducting properties such as zero resistance and perfect diamagnetism with ex situ experimental techniques. Previously, we developed a multifunctional scanning tunneling microscope (MSTM) containing in situ four-point probe (4PP) electrical transport measurement capability in addition to the usual STM capabilities [Ge et al., Rev. Sci. Instrum. 86, 053903 (2015)]. Here we improve this MSTM via development of both transmission and reflection two-coil mutual inductance techniques for in situ measurement of the diamagnetic response of a superconductor. This addition does not alter the original STM and 4PP functions of the MSTM. We demonstrate the performance of the two-coil mutual inductance setup on a 10-nm-thick NbN thin film grown on a Nb-doped SrTiO3(111) substrate.

  19. Unveiling Stability Criteria of DNA-Carbon Nanotubes Constructs by Scanning Tunneling Microscopy and Computational Modeling

    Directory of Open Access Journals (Sweden)

    Svetlana Kilina

    2011-01-01

    Full Text Available We present a combined approach that relies on computational simulations and scanning tunneling microscopy (STM measurements to reveal morphological properties and stability criteria of carbon nanotube-DNA (CNT-DNA constructs. Application of STM allows direct observation of very stable CNT-DNA hybrid structures with the well-defined DNA wrapping angle of 63.4° and a coiling period of 3.3 nm. Using force field simulations, we determine how the DNA-CNT binding energy depends on the sequence and binding geometry of a single strand DNA. This dependence allows us to quantitatively characterize the stability of a hybrid structure with an optimal π-stacking between DNA nucleotides and the tube surface and better interpret STM data. Our simulations clearly demonstrate the existence of a very stable DNA binding geometry for (6,5 CNT as evidenced by the presence of a well-defined minimum in the binding energy as a function of an angle between DNA strand and the nanotube chiral vector. This novel approach demonstrates the feasibility of CNT-DNA geometry studies with subnanometer resolution and paves the way towards complete characterization of the structural and electronic properties of drug-delivering systems based on DNA-CNT hybrids as a function of DNA sequence and a nanotube chirality.

  20. Copper intercalation at the interface of graphene and Ir(111) studied by scanning tunneling microscopy

    Science.gov (United States)

    Sicot, M.; Fagot-Revurat, Y.; Kierren, B.; Vasseur, G.; Malterre, D.

    2014-11-01

    We report on the intercalation of a submonolayer of copper at 775 K underneath graphene epitaxially grown on Ir(111) studied by means of low energy electron diffraction (LEED) and scanning tunneling microscopy (STM) at 77 K. Nucleation and growth dynamics of Cu below graphene have been investigated, and, most importantly, the intercalation mechanism has been identified. First, LEED patterns reveal the pseudomorphic growth of Cu on Ir under the topmost graphene layer resulting in a large Cu in-plane lattice parameter expansion of about 6% compared to Cu(111). Second, large-scale STM topographs as a function of Cu coverage show that Cu diffusion on Ir below graphene exhibits a low energy barrier resulting in Cu accumulation at Ir step edges. As a result, the graphene sheet undergoes a strong edges reshaping. Finally, atomically-resolved STM images reveal a damaged graphene sheet at the atomic scale after metal intercalation. Point defects in graphene were shown to be carbon vacancies. According to these results, a Cu penetration path beneath graphene is proposed to occur via metal aided defect formation with no or poor self healing of the graphene sheet. This work illustrates the fact that Cu intercalation is harmful for graphene grown on Ir(111) at the atomic scale.

  1. Improved design for a low temperature scanning tunneling microscope with an in situ tip treatment stage

    Science.gov (United States)

    Kim, J.-J.; Joo, S. H.; Lee, K. S.; Yoo, J. H.; Park, M. S.; Kwak, J. S.; Lee, Jinho

    2017-04-01

    The Low Temperature Scanning Tunneling Microscope (LT-STM) is an extremely valuable tool not only in surface science but also in condensed matter physics. For years, numerous new ideas have been adopted to perfect LT-STM performances—Ultra-Low Vibration (ULV) laboratory and the rigid STM head design are among them. Here, we present three improvements for the design of the ULV laboratory and the LT-STM: tip treatment stage, sample cleaving stage, and vibration isolation system. The improved tip treatment stage enables us to perform field emission for the purpose of tip treatment in situ without exchanging samples, while our enhanced sample cleaving stage allows us to cleave samples at low temperature in a vacuum without optical access by a simple pressing motion. Our newly designed vibration isolation system provides efficient space usage while maintaining vibration isolation capability. These improvements enhance the quality of spectroscopic imaging experiments that can last for many days and provide increased data yield, which we expect can be indispensable elements in future LT-STM designs.

  2. Scanning Tunneling Microscopy Studies of Crystalline Hydrogenation of Graphene Grown on Cu(111)

    Science.gov (United States)

    Tjung, Steven J.; Gambrel, Grady A.; Hollen, Shawna M.; Gupta, Jay A.

    Because of the sensitivity of 2D material surfaces, chemical functionalization can be exploited to tune the electronic structure of these materials. For example, hydrogen bonding to carbon atoms in graphene tunes the material from a semi-metal to a wide-gap insulator. We developed a method for a reproducible epitaxial growth of graphene on Cu(111) in the ultra-high vacuum chamber of a scanning tunneling microscope (STM). We find that hydrogen atoms can be bonded to the graphene in a nanoscale region using a novel field-emission process, whereby physisorbed H2 is cracked in situ using the STM tip. This method produced crystalline surfaces of hydrogen-terminated graphene with 4.2Å lattice, which has proven difficult to produce using conventional atomic beam methods which typically produced disordered hydrogenation. Additionally, this hydrogenation process is reversible and we are able to recover the pristine graphene by H desorption during STM imaging at a high bias. STM images after the dehydrogenation process showed the same atomic lattice and Moiré pattern as the pristine graphene, with the exception of additional point defects. STM spectra show the suppression of the Cu surface state on the hydrogenated graphene, but the opening of a wide-gap was not observed. Funded by the Center for Emergent Materials at the Ohio State University, an NSF MRSEC (Grant No. DMR-1420451 and DMR-0820414).

  3. TOPICAL REVIEW: Active nanocharacterization of nanofunctional materials by scanning tunneling microscopy

    Directory of Open Access Journals (Sweden)

    Daisuke Fujita and Keisuke Sagisaka

    2008-01-01

    Full Text Available Recent developments in the application of scanning tunneling microscopy (STM to nanofabrication and nanocharacterization are reviewed. The main focus of this paper is to outline techniques for depositing and manipulating nanometer-scale structures using STM tips. Firstly, the transfer of STM tip material through the application of voltage pulses is introduced. The highly reproducible fabrication of metallic silver nanodots and nanowires is discussed. The mechanism is thought to be spontaneous point-contact formation caused by field-enhanced diffusion to the apex of the tip. Transfer through the application of z-direction pulses is also introduced. Sub-nanometer displacement pulses along the z-direction form point contacts that can be used for reproducible nanodot deposition. Next, the discovery of the STM structural manipulation of surface phases is discussed. It has been demonstrated that superstructures on Si(001 surfaces can be reverse-manipulated by controlling the injected carriers. Finally, the fabrication of an atomic-scale one-dimensional quantum confinement system by single-atom deposition using a controlled point contact is presented. Because of its combined nanofabrication and nanocharacterization capabilities, STM is a powerful tool for exploring the nanotechnology and nanoscience fields.

  4. Scanning Tunneling Microscopy Study of a Vicinal Anatase TiO2 Surface

    Science.gov (United States)

    Li, Shao-Chun; Dulub, Olga; Diebold, Ulrike

    2009-03-01

    Titanium dioxide finds versatile applications in various technical fields including gas sensing, coatings, pigments, heterogeneous catalysis, photocatalytic degradation of pollutants, and solar cells. TiO2 is found in three main crystallographic phases: rutile, anatase and brookite. Rutile is the thermodynamically most stable form and is considered a model system for basic research. However, anatase TiO2 is often considered to be catalytically more active than rutile for reasons not yet completely understood. In this work, using scanning tunneling microscopy (STM) and low energy electron diffraction (LEED), the structure of the anatase TiO2(5 14) surface, ˜10 vicinal to the -- lowest energy -- (101) plane, has been studied. The surface was found to facet into a structure composed of ridges with a uniform width of 5 lattice units. Based on atomically-resolved STM and electron counting rules, it is proposed that the sides of the ridges are parallel to (1 10) and (112) planes. These sides might be reconstructed to stabilize the microfaceted structure. Vapor-deposited gold shows pronounced clustering between the ridges, indicating a one-dimensional template effect of the vicinal surface, which supports denser and more uniformly sized Au clusters, as compared to the flat (101) surface.

  5. The study of transition metal surfaces and thin films with inverse photoemission and scanning tunnelling microscopy

    CERN Document Server

    Wilson, L K

    1997-01-01

    clean Cr(001) and the thick films. This suggests that hybridisation between the substrate bands and the film bands and interface induced states are significant. The spectra taken from sub-monolayer coverages of Fe show marked intensity increase at the Fermi energy, this is a feature of LDOS calculations on Fe atoms at the Fe/Cr interface. Fe growth on surfaces of Cu(100) precovered with c(2x2)N has been studied with scanning tunnelling microscopy. The images show that the Fe does not grow on areas covered with nitrogen. Two different c(2x2)N templates have been used and the shape and size of the Fe islands is seen to be altered. The unoccupied electronic states at the surface of Cr(001) have been observed using k-resolved inverse photoemission. Normal incidence IPE spectra have been taken over a range of incident electron energies (14-24 eV). The spectra show only small variation with incident energy, this is attributed to densities of states effects due to the absence of symmetry allowed initial states at th...

  6. Poor electronic screening in lightly doped Mott insulators observed with scanning tunneling microscopy

    Science.gov (United States)

    Battisti, I.; Fedoseev, V.; Bastiaans, K. M.; de la Torre, A.; Perry, R. S.; Baumberger, F.; Allan, M. P.

    2017-06-01

    The effective Mott gap measured by scanning tunneling microscopy (STM) in the lightly doped Mott insulator (Sr1-xLax) 2IrO4 differs greatly from values reported by photoemission and optical experiments. Here we show that this is a consequence of the poor electronic screening of the tip-induced electric field in this material. Such effects are well known from STM experiments on semiconductors and go under the name of tip-induced band bending (TIBB). We show that this phenomenon also exists in the lightly doped Mott insulator (Sr1-xLax) 2IrO4 and that, at doping concentrations of x ≤4 % , it causes the measured energy gap in the sample density of states to be bigger than the one measured with other techniques. We develop a model able to retrieve the intrinsic energy gap leading to a value which is in rough agreement with other experiments, bridging the apparent contradiction. At doping x ≈5 % we further observe circular features in the conductance layers that point to the emergence of a significant density of free carriers in this doping range and to the presence of a small concentration of donor atoms. We illustrate the importance of considering the presence of TIBB when doing STM experiments on correlated-electron systems and discuss the similarities and differences between STM measurements on semiconductors and lightly doped Mott insulators.

  7. Dynamics of tetraphenylporphyrins on a copper (111) surface: A scanning tunneling microscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Glaessel, Stefanie; Buchner, Florian; Zillner, Elisabeth; Roeckert, Michael; Steinrueck, Hans-Peter; Marbach, Hubertus [Lehrstuhl fuer Physikalische Chemie II and Interdisciplinary Center for Molecular Materials (ICMM), Universitaet Erlangen-Nuernberg, Egerlandstr. 3, D-91058 (Germany)

    2010-07-01

    The understanding of the properties of large organic molecules at surfaces is a requirement to utilize their functional properties either in single-molecule devices or in organized supramolecular architectures. Here we concentrate on the investigation of the dynamics and self-assembly of tetraphenylporphyrins (TPP) on Cu(111) using scanning tunneling microscopy (STM) in ultra-high vacuum (UHV). STM images of ordered molecular arrays and individual molecules with submolecular resolution enable to determine the supramolecular and intramolecular conformation of the porphyrins. Interestingly, 2HTPP molecules exhibit a mainly one dimensional diffusion along the main crystallographic axes of Cu(111) at room temperature, whereas CoTPP molecules form ordered arrays. Based on STM movies acquired at varying sample temperatures fundamental parameters of the molecular motion of 2HTPP on Cu(111), like the activation energy for diffusion and rotation could be estimated. These results allow a deeper understanding of the corresponding molecule-molecule and molecule-substrate interactions and thus the assembly of the observed porphyrins.

  8. Probing flexible conformations in molecular junctions by inelastic electron tunneling spectroscopy

    Directory of Open Access Journals (Sweden)

    Mingsen Deng

    2015-01-01

    Full Text Available The probe of flexible molecular conformation is crucial for the electric application of molecular systems. We have developed a theoretical procedure to analyze the couplings of molecular local vibrations with the electron transportation process, which enables us to evaluate the structural fingerprints of some vibrational modes in the inelastic electron tunneling spectroscopy (IETS. Based on a model molecule of Bis-(4-mercaptophenyl-ether with a flexible center angle, we have revealed and validated a simple mathematical relationship between IETS signals and molecular angles. Our results might open a route to quantitatively measure key geometrical parameters of molecular junctions, which helps to achieve precise control of molecular devices.

  9. Atomic-scale scanning tunneling microscopy study of plasma-oxidized ultrahigh-modulus carbon fiber surfaces.

    Science.gov (United States)

    Paredes, J I; Martínez-Alonso, A; Tascón, J M D

    2003-02-15

    In the present work, scanning tunneling microscopy (STM) was employed to study the surface modification of ultrahigh modulus carbon fibers at the atomic level by oxygen plasma. As detected by STM, the distinctive feature of the fresh, untreated surface was the general presence of atomic-scale arrangements in different degrees of order (from atomic-sized spots without a clearly ordered disposition to triangular patterns identical to those typical of perfect graphite). Following fiber exposure to the plasma, the STM images showed evidence of the abstraction of carbon atoms from random locations on the fiber surface, giving rise to the development of defects (i.e., structural disorder), which in turn were the places where oxygen could be introduced during and after the plasma etching. It was observed that the most effective treatments in terms of extent of surface structural modification (disordering) and uniform introduction of oxygen were those carried out for just a few ( approximately 3) minutes. Considerably shorter exposures failed to provide a homogeneous modification and many locations on the fiber surface remained unaltered, retaining their original atomic-scale order, whereas longer treatments did not bring about further structural changes to the surface and only led to fiber consumption. These results are consistent with previous X-ray photoelectron spectroscopy measurements on these fibers and provide an atomic-level understanding of the saturation effect observed in the surface oxygen concentration of this and other types of carbon fibers with plasma oxidation. Such understanding may also prove helpful for the accurate control and optimization of fiber-matrix interaction in composite materials.

  10. Demonstration of synchronised scanning Lidar measurements of 2D velocity fields in a boundary-layer wind tunnel

    Science.gov (United States)

    van Dooren, M. F.; Kühn, M.; PetroviĆ, V.; Bottasso, C. L.; Campagnolo, F.; Sjöholm, M.; Angelou, N.; Mikkelsen, T.; Croce, A.; Zasso, A.

    2016-09-01

    This paper combines the currently relevant research methodologies of scaled wind turbine model experiments in wind tunnels with remote-sensing short-range WindScanner Lidar measurement technology. The wind tunnel of the Politecnico di Milano was equipped with three wind turbine models and two short-range WindScanner Lidars to demonstrate the benefits of synchronised scanning Lidars in such experimental surroundings for the first time. The dual- Lidar system can provide fully synchronised trajectory scans with sampling time scales ranging from seconds to minutes. First, staring mode measurements were compared to hot wire probe measurements commonly used in wind tunnels. This yielded goodness of fit coefficients of 0.969 and 0.902 for the 1 Hz averaged u- and v-components of the wind speed, respectively, validating the 2D measurement capability of the Lidar scanners. Subsequently, the measurement of wake profiles on a line as well as wake area scans were executed to illustrate the applicability of Lidar scanning to measuring small scale wind flow effects. The downsides of Lidar with respect to the hot wire probes are the larger measurement probe volume and the loss of some measurements due to moving blades. In contrast, the benefits are the high flexibility in conducting both point measurements and area scanning, and the fact that remote sensing techniques do not disturb the flow while measuring. The research campaign revealed a high potential for using short-range WindScanner Lidar for accurately measuring small scale flow structures in a wind tunnel.

  11. High Pressure Scanning Tunneling Microscopy Studies of AdsorbateStructure and Mobility during Catalytic Reactions: Novel Design of anUltra High Pressure, High Temperature Scanning Tunneling MicroscopeSystem for Probing Catalytic Conversions

    Energy Technology Data Exchange (ETDEWEB)

    Tang, David Chi-Wai [Univ. of California, Berkeley, CA (United States)

    2005-05-16

    The aim of the work presented therein is to take advantage of scanning tunneling microscope’s (STM) capability for operation under a variety of environments under real time and at atomic resolution to monitor adsorbate structures and mobility under high pressures, as well as to design a new generation of STM systems that allow imaging in situ at both higher pressures (35 atm) and temperatures (350 °C).

  12. Transport spectroscopy and modeling of a clean MOS point contact tunnel barrier

    Science.gov (United States)

    Shirkhorshidian, Amir; Bishop, Nathaniel; Dominguez, Jason; Grubbs, Robert; Wendt, Joel; Lilly, Michael; Carroll, Malcolm

    2014-03-01

    We present transport spectroscopy of non-implanted and antimony-implanted tunnel barriers formed in MOS split-gate structures at 4K. The non-implanted barrier shows no signs of resonant behavior while the Sb-implanted barrier shows resonances superimposed on the clean transport. We simulate the transmission through the clean barrier over the entire gate and bias range of the experiment using a phenomenological 1D-tunneling model that includes Fowler-Nordheim tunneling and Schottky barrier lowering to capture effects at high bias. The model is qualitatively similar to experiment when the barrier height has a quadratic dependence in contrast to a linear one, which can be a sign of 2D effects such as confinement perpendicular to the transport direction. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE, Office of Basic Energy Sciences user facility. This work was supported by the Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  13. Tunneling Spectroscopy of Graphene Nanodevices Coupled to Type-II Superconductors

    Science.gov (United States)

    Wang, Joel I.-Jan; Bretheau, Landry; Rodan-Legrain, Daniel; Watanabe, Kenji; Taniguchi, Takashi; Jarillo-Herrero, Pablo

    By coupling a graphene sheet to type-II superconductors, it was recently shown that the Josephson effect could persist in the quantum Hall regime. Microscopically, the supercurrent arises from the existence in graphene of electron-hole resonance states called Andreev bound states (ABS). However, the way ABS form in graphene subject to high magnetic field remains unclear. For this purpose, we have performed tunneling spectroscopy of graphene proximitized by Nb/NbN electrodes, using graphite probes and hBN tunneling barriers. The geometry of our device allows for spectroscopic and transport measurement in the same graphene flake. In the superconducting regime, Fabry-Pérot oscillation of the critical Josephson current suggests ballistic transport characteristics in the device. In the presence of magnetic field, graphene density of states (DOS) is modulated by the superconducting phase, as expected for ABS in a normal weak link. Finally, tunneling measurement performed through spurious quantum dots, presumably embedded in the heterostructures, manifests coupling between discrete energy levels and proximitized graphene DOS with evident phase dependence.

  14. STM based inelastic electron tunneling spectroscopy on NdBa{sub 2}Cu{sub 3}O{sub 7-{delta}}

    Energy Technology Data Exchange (ETDEWEB)

    Das, Pintu [Institute of Experimental Physics, University of Saarland, 66041, Saarbruecken (Germany); Max Planck Institute of Chemical Physics of Solids, Noethnitzer Str. 40, 01187 Dresden (Germany); Koblischka, Michael R.; Hartmann, Uwe [Institute of Experimental Physics, University of Saarland, 66041, Saarbruecken (Germany); Rosner, Helge [Max Planck Institute of Chemical Physics of Solids, Noethnitzer Str. 40, 01187 Dresden (Germany); Wolf, Thomas [Forschungzentrum Karlsruhe GmbH, Institute of Solid State Physics, 76021 Karlsruhe (Germany)

    2008-07-01

    Inelastic electron tunneling spectroscopy (IETS) is a very powerful tool to detect collective excitations in conducting materials. Due to inelastic excitation by tunneling electrons, a very weak kink is usually observed in dI/dV curves at the bias voltage corresponding to the excitation energy. In IETS on s wave superconductors, phonon modes ({omega}{sub ph}) were observed at energies given by E = {delta}+ {Dirac_h}{omega}{sub ph}, where {delta} is the energy gap. Recently IETS using scanning tunneling spectroscopy (STS) has been used to detect a bosonic mode in Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}}. In the STS data obtained on NdBa{sub 2}Cu{sub 3}O{sub 7-{delta}} single crystals, we observed peaks in d{sup 2}I/dV{sup 2} curves beyond the coherence peaks from which collective excitation energies of {proportional_to}23 meV and {proportional_to} 34 meV have been found for the samples with T{sub c} of 93.5 K and 95.5 K respectively. Band structure calculation shows that there is no structure in the density of state at the observed energies which thus supports the presumption that the observed kinks in dI/dV curves are due to inelastic scattering of electrons.

  15. Investigation of atomic species in Pt-induced nanowires on Ge(001) surface by combined atomic force and scanning tunneling microscopy

    Science.gov (United States)

    Inami, Eiichi; Sugimoto, Yoshiaki; Shinozaki, Takuya; Gurlu, Oguzhan; Yurtsever, Ayhan

    2017-10-01

    We have studied identification of atomic species in Pt-induced nanowires self-assembled on the Ge(001) surface by combining scanning tunneling microscopy (STM) and atomic force microscopy (AFM). A small number of Sn atoms substituted in the top atomic chains were utilized as references to identify the target atomic species. Force spectroscopy data taken above single atoms on the Sn-substituted nanowires showed that the ratio between the maximum attractive forces above the Sn and the pristine chain atoms exhibited a constant value of 0.86. The obtained ratio was identical to that between Sn and Ge atoms, strongly suggestive that the top ridge of the Pt-induced nanowire was composed of Ge dimers. Our findings also demonstrate that AFM chemical identification method can be used to identify the unknown atomic species on surfaces, regardless of the homogeneity in the atomic composition, which has not been addressed so far.

  16. Rapid-scan Fourier-transform coherent anti-Stokes Raman scattering spectroscopy with heterodyne detection.

    Science.gov (United States)

    Hiramatsu, Kotaro; Luo, Yizhi; Ideguchi, Takuro; Goda, Keisuke

    2017-11-01

    High-speed Raman spectroscopy has become increasingly important for analyzing chemical dynamics in real time. To address the need, rapid-scan Fourier-transform coherent anti-Stokes Raman scattering (FT-CARS) spectroscopy has been developed to realize broadband CARS measurements at a scan rate of more than 20,000 scans/s. However, the detection sensitivity of FT-CARS spectroscopy is inherently low due to the limited number of photons detected during each scan. In this Letter, we show our experimental demonstration of enhanced sensitivity in rapid-scan FT-CARS spectroscopy by heterodyne detection. Specifically, we implemented heterodyne detection by superposing the CARS electric field with an external local oscillator (LO) for their interference. The CARS signal was amplified by simply increasing the power of the LO without the need for increasing the incident power onto the sample. Consequently, we achieved enhancement in signal intensity and the signal-to-noise ratio by factors of 39 and 5, respectively, compared to FT-CARS spectroscopy with homodyne detection. The sensitivity-improved rapid-scan FT-CARS spectroscopy is expected to enable the sensitive real-time observation of chemical dynamics in a broad range of settings, such as combustion engines and live biological cells.

  17. A scanning tunneling microscopy based potentiometry technique and its application to the local sensing of the spin Hall effect

    OpenAIRE

    Xie, Ting; Dreyer, Michael; Bowen, David; Hinkel, Dan; Butera, R. E.; Krafft, Charles; Mayergoyz, Isaak

    2017-01-01

    A scanning tunneling microscopy based potentiometry technique for the measurements of the local surface electric potential is presented and illustrated by experiments performed on current-carrying thin tungsten films. The obtained results demonstrate a sub-millivolt resolution in the measured surface potential. The application of this potentiometry technique to the local sensing of the spin Hall effect is outlined and some experimental results are reported.

  18. Scanning tunneling potentiometry, charge transport, and Landauer's resistivity dipole from the quantum to the classical transport regime

    Science.gov (United States)

    Morr, Dirk K.

    2017-05-01

    Using the nonequilibrium Keldysh formalism, we investigate the spatial relation between the electrochemical potential measured in scanning tunneling potentiometry, and local current patterns over the entire range from the quantum to the classical transport regime. These quantities show similar spatial patterns near the quantum limit but are related by Ohm's law only in the classical regime. We demonstrate that defects induce a Landauer residual resistivity dipole in the electrochemical potential with the concomitant spatial current pattern representing the field lines of the dipole.

  19. Scanning tunneling microscopy study of pinning-induced vortex lattice distortion in ion-irradiated NbSe[sub 2

    Energy Technology Data Exchange (ETDEWEB)

    Behler, S. (Inst. fuer Physik, Univ. Basel (Switzerland)); Bernasconi, M. (Inst. fuer Physik, Univ. Basel (Switzerland)); Jess, P. (Inst. fuer Physik, Univ. Basel (Switzerland)); Hofer, R. (Inst. fuer Physik, Univ. Basel (Switzerland)); Guentherodt, H.J. (Inst. fuer Physik, Univ. Basel (Switzerland)); Wirth, G. (Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany)); Wiesner, J. (Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany))

    1994-04-01

    We observe vortex pinning in 2.2 GeV Au-ion irradiated NbSe[sub 2] by scanning tunneling microscopy (STM) at 3 K. The ion irradiation generates columnar defects which act as pinning sites. At various external magnetic fields the vortex arrangement is clearly resolved but shows strong distortion. The location of individual defects is extracted from STM data and compared to the vortex arrangement. (orig.)

  20. Scanning electron microscopy and X-ray spectroscopy applied to mycelial phase of sporothrix schenckii

    Directory of Open Access Journals (Sweden)

    M. Thibaut

    1975-04-01

    Full Text Available Scanning electron microscopy applied to the mycelial phase of Sporothrix schenckii shows a matted mycelium with conidia of a regular pattern. X-Ray microanalysis applied in energy dispersive spectroscopy and also in wavelength dispersive spectroscopy reveals the presence of several elements of Mendeleef's classification.

  1. In silico simulations of tunneling barrier measurements for molecular orbital-mediated junctions: A molecular orbital theory approach to scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Terryn, Raymond J.; Sriraman, Krishnan; Olson, Joel A., E-mail: jolson@fit.edu; Baum, J. Clayton, E-mail: cbaum@fit.edu [Department of Chemistry, Florida Institute of Technology, 150 West University Boulevard, Melbourne, Florida 32901 (United States); Novak, Mark J. [Department of Chemistry and Applied Biological Sciences, South Dakota School of Mines and Technology, 501 E. Saint Joseph Street, Rapid City, South Dakota 57701 (United States)

    2016-09-15

    A new simulator for scanning tunneling microscopy (STM) is presented based on the linear combination of atomic orbitals molecular orbital (LCAO-MO) approximation for the effective tunneling Hamiltonian, which leads to the convolution integral when applied to the tip interaction with the sample. This approach intrinsically includes the structure of the STM tip. Through this mechanical emulation and the tip-inclusive convolution model, dI/dz images for molecular orbitals (which are closely associated with apparent barrier height, ϕ{sub ap}) are reported for the first time. For molecular adsorbates whose experimental topographic images correspond well to isolated-molecule quantum chemistry calculations, the simulator makes accurate predictions, as illustrated by various cases. Distortions in these images due to the tip are shown to be in accord with those observed experimentally and predicted by other ab initio considerations of tip structure. Simulations of the tunneling current dI/dz images are in strong agreement with experiment. The theoretical framework provides a solid foundation which may be applied to LCAO cluster models of adsorbate–substrate systems, and is extendable to emulate several aspects of functional STM operation.

  2. Cross-Sectional Scanning Tunneling Microscopy of InAsSb/InAsP Superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Allerman, A.A.; Biefeld, R.M.; Yu, E.T.; Zuo, S.L.

    1999-02-10

    Cross-sectional scanning tunneling microscopy has been used to characterize compositional structure in InAs{sub 0.87}Sb{sub 0.13}/InAs{sub 0.73}P{sub 0.27} and InAs{sub 0.83}Sb{sub 0.17}/InAs{sub 0.60}P{sub 0.40} strained-layer superlattice structures grown by metal-organic chemical vapor deposition. High-resolution STM images of the (110) cross section reveal compositional features within both the InAs{sub x}Sb{sub 1{minus}x} and InAs{sub y}P{sub 1{minus}y} alloy layers oriented along the [{bar 1}12] and [1{bar 1}2] directions--the same as those in which features would be observed for CuPt-B type ordered alloys. Typically one variant dominates in a given area, although occasionally the coexistence of both variants is observed. Furthermore, such features in the alloy layers appear to be correlated across heterojunction interfaces in a manner that provides support for III-V alloy ordering models which suggest that compositional order can arise from strain-induced order near the surface of an epitaxially growing crystal. Finally, atomically resolved (1{bar 1}0) images obtained from the InAs{sub 0.87}Sb{sub 0.13}/InAs{sub 0.73}P{sub 0.27} sample reveal compositional features in the [112] and [{bar 1}{bar 1}2] directions, i.e., those in which features would be observed for CuPt-A type ordering.

  3. Scanning deep level transient spectroscopy using an MeV ion microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Laird, J.S.; Bardos, R.A.; Saint, A.; Moloney, G.M.; Legge, G.F.J. [Melbourne Univ., Parkville, VIC (Australia)

    1993-12-31

    Traditionally the scanning ion microprobe has given little or no information regarding the electronic structure of materials in particular semiconductors. A new imaging technique called Scanning Ion Deep Level Transient Spectroscopy (SIDLTS) is presented which is able to spatially map alterations in the band gap structure of materials by lattice defects or impurities. 3 refs., 2 figs.

  4. A high-stability scanning tunneling microscope achieved by an isolated tiny scanner with low voltage imaging capability

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qi; Wang, Junting; Lu, Qingyou, E-mail: qxl@ustc.edu.cn [High Magnetic Field Laboratory, Chinese Academy of Sciences and University of Science and Technology of China, Hefei, Anhui 230026 (China); Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Hou, Yubin [High Magnetic Field Laboratory, Chinese Academy of Sciences and University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2013-11-15

    We present a novel homebuilt scanning tunneling microscope (STM) with high quality atomic resolution. It is equipped with a small but powerful GeckoDrive piezoelectric motor which drives a miniature and detachable scanning part to implement coarse approach. The scanning part is a tiny piezoelectric tube scanner (industry type: PZT-8, whose d{sub 31} coefficient is one of the lowest) housed in a slightly bigger polished sapphire tube, which is riding on and spring clamped against the knife edges of a tungsten slot. The STM so constructed shows low back-lashing and drifting and high repeatability and immunity to external vibrations. These are confirmed by its low imaging voltages, low distortions in the spiral scanned images, and high atomic resolution quality even when the STM is placed on the ground of the fifth floor without any external or internal vibration isolation devices.

  5. A high-stability scanning tunneling microscope achieved by an isolated tiny scanner with low voltage imaging capability

    Science.gov (United States)

    Wang, Qi; Hou, Yubin; Wang, Junting; Lu, Qingyou

    2013-11-01

    We present a novel homebuilt scanning tunneling microscope (STM) with high quality atomic resolution. It is equipped with a small but powerful GeckoDrive piezoelectric motor which drives a miniature and detachable scanning part to implement coarse approach. The scanning part is a tiny piezoelectric tube scanner (industry type: PZT-8, whose d31 coefficient is one of the lowest) housed in a slightly bigger polished sapphire tube, which is riding on and spring clamped against the knife edges of a tungsten slot. The STM so constructed shows low back-lashing and drifting and high repeatability and immunity to external vibrations. These are confirmed by its low imaging voltages, low distortions in the spiral scanned images, and high atomic resolution quality even when the STM is placed on the ground of the fifth floor without any external or internal vibration isolation devices.

  6. Band structure of Heusler compounds studied by photoemission and tunneling spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Arbelo Jorge, Elena

    2011-07-01

    Heusler compounds are key materials for spintronic applications. They have attracted a lot of interest due to their half-metallic properties predicted by band structure calculations. The aim of this work is to evaluate experimentally the validity of the predictions of half metallicity by band structure calculations for two specific Heusler compounds, Co{sub 2}FeAl{sub 0.3}Si{sub 0.7} and Co{sub 2}MnGa. Two different spectroscopy methods for the analysis of the electronic properties were used: Angular Resolved Ultraviolet Photoemission Spectroscopy (ARUPS) and Tunneling Spectroscopy. Heusler compounds are prepared as thin films by RF-sputtering in an ultra high vacuum system. For the characterization of the samples, bulk and surface crystallographic and magnetic properties of Co{sub 2}FeAl{sub 0.3}Si{sub 0.7} and Co{sub 2}MnGa are studied. X-ray and electron diffraction reveal a bulk and surface crossover between two different types of sublattice order (from B2 to L2{sub 1}) with increasing annealing temperature. X-ray magnetic circular dichroism results show that the magnetic properties in the surface and bulk are identical, although the magnetic moments obtained are 5 % below from the theoretically predicted. By ARUPS evidence for the validity of the predicted total bulk density of states (DOS) was demonstrated for both Heusler compounds. Additional ARUPS intensity contributions close to the Fermi energy indicates the presence of a specific surface DOS. Moreover, it is demonstrated that the crystallographic order, controlled by annealing, plays an important role on broadening effects of DOS features. Improving order resulted in better defined ARUPS features. Tunneling magnetoresistance measurements of Co{sub 2}FeAl{sub 0.3}Si{sub 0.7} and Co{sub 2}MnGa based MTJ's result in a Co{sub 2}FeAl{sub 0.3}Si{sub 0.7} spin polarization of 44 %, which is the highest experimentally obtained value for this compound, although it is lower than the 100 % predicted. For Co

  7. Scanning angle Raman spectroscopy: Investigation of Raman scatter enhancement techniques for chemical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Matthew W. [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    This thesis outlines advancements in Raman scatter enhancement techniques by applying evanescent fields, standing-waves (waveguides) and surface enhancements to increase the generated mean square electric field, which is directly related to the intensity of Raman scattering. These techniques are accomplished by employing scanning angle Raman spectroscopy and surface enhanced Raman spectroscopy. A 1064 nm multichannel Raman spectrometer is discussed for chemical analysis of lignin. Extending dispersive multichannel Raman spectroscopy to 1064 nm reduces the fluorescence interference that can mask the weaker Raman scattering. Overall, these techniques help address the major obstacles in Raman spectroscopy for chemical analysis, which include the inherently weak Raman cross section and susceptibility to fluorescence interference.

  8. Thermal Motion of Steps and Vacancies in SILICON(001) by Scanning Tunneling Microscopy

    Science.gov (United States)

    Kitamura, Nobuyoshi

    Thermal motion of steps and vacancies plays important roles in surface kinetic processes. Using a scanning tunneling microscope with the new capability to image heated samples, we have conducted direct observations of the motion of monatomic-height steps and vacancies on Si(001) at the atomic level in the temperature range of 490 to 530K. We clarify behaviors of steps and vacancies specific to the Si(001) surface. The tip-to-sample drift caused by the sample heating has been reduced to about 0.01 A/sec by applying linear voltage ramps with a precisely adjusted rate to the piezo tube scanner. The low drift rate allows detailed analyses of individual structural changes at steps and vacancies within the same region for ~ 1 hour. We find that motion of vacancies is predominantly along the dimer rows, and that creation and annihilation events occur in the terraces rather than at steps. In particular, diffusion of the single-dimer vacancy has been analyzed in detail, and an activation energy of 1.7 +/- 0.4 eV has been measured for its diffusion. Structural changes at steps are observed at the ends of dimer rows as either additions or deletions of a pair of dimers. We observe that changes mainly occur nearby kinks and those of the same sign are clustered together. It is shown that these changes involve nucleation or dissociation of dimers and long range transport of monomers, and that they are inconsistent with random nucleation and dissociation of dimers. All the observations are quantitatively reproduced by a Metropolis Monte Carlo simulation with a Hamiltonian containing only kink and corner energies. By classifying the elementary reactions at steps based on the same Hamiltonian, we find that hopping of a unit kink along the step is the predominant type of reactions. This finding leads to a simple explanation for all the observations. At our temperatures, changes at steps are governed by energy differences among local configurations, which are only on the order of 0

  9. Investigating Atomic Scale Disordered Stripes in the Cuprate Superconductors with Scanning Tunneling Microscopy

    Science.gov (United States)

    Main, Elizabeth

    The high-Tc cuprate superconductors have been studied for 25 years in the search for the mechanism underlying their superconductivity. In the process, experiments learned that the correlated electrons in these materials organize themselves in a variety of patterns. One such pattern is a type of short-range charge modulations that exist both in and outside of the superconducting phase, which has been linked to the cuprate pseudogap phase. In optimal and slightly underdoped Bi2Sr 2CuO6+delta this charge order (labeled Q*) has wavelength ˜ 5a0. A second and, I argue, related order (Q**) has wavelength of ˜1.25a0. These modulations are highly disordered and for this reason their nature is not fully understood. In this thesis I use scanning tunneling microscopy (STM) to study the disorder of these charge modulations, as an avenue to understanding the nature of the charge order itself. Locally, the charge modulations have a preferred orientation, with a wavevector pointing along one crystal axis or the other. But globally, there is no preferred direction. Our most striking finding is that the local orientation is the same for the Q* and Q** orders, strong new evidence that these two types of charge modulations have the same physical cause. Next, we find that Q* and Q** are subject to two kinds of disorder. Disorder in the optimal local wavelength competes with defect pinning of crests and troughs to produce the disordered modulations that we see. To get our final result, I view the local orientation of the charge modulations as an Ising spin, and compare the resulting Ising maps to theoretical predictions for different classes of disorder. I find the disorder to be consistent with 3D Random Field disorder. New analytical tools were necessary to carry out these measurements. I describe a new algorithm to map the local wavevector of a modulation. Then I present a second new algorithm to correct an STM image for the effects of a slightly anisotropic tip, This thesis also

  10. Scanning Tunneling Microscopy of Charge Density Wave Structure in Tantalum Disulfide

    Science.gov (United States)

    Thomson, Ruth Ellen

    I have used a scanning tunneling microscope (STM) to image simultaneously the atomic lattice and the charge density wave (CDW) superstructure in tantalum disulfide (1T-TaS_2) over the temperature range of 370-77K. In the lowest temperature (commensurate) phase, present below 180K, the CDW is at an angle of 13.9 ^circ relative to the lattice and is uniformly commensurate. In the incommensurate phase, present above 353K, the CDW is aligned with the lattice. 1T-TaS_2 exhibits two other phases; the triclinic (T) phase which is present between 223K and 283K upon warming the sample, and the nearly-commensurate (NC) phase which is present between 353K and 180K upon cooling the sample and between 283K and 353K upon warming the sample. In both of these phases, discommensurate models where the CDW is arranged in small commensurate domains have been proposed. In the NC phase the CDW is rotated between 10^circ and 12.5 ^circ relative to the atomic lattice. Such a rotated CDW would create an interference pattern with the underlying atomic lattice regardless of the existence of a true domain superstructure. Previous work on 1T-TaS _2 has not adequately accounted for the possibility of the moire pattern. However, around each fundamental CDW peak in the Fourier transform of the real space STM images, several satellite spots are visible, which conclusively prove the existence of domains in the NC phase. In the T phase, STM images clearly show discommensurations and domains of the CDW which are verified by the satellite spots in the Fourier transform. However, the shape and size of these domains do not agree with those of the stretched honeycomb model proposed by Nakanishi and Shiba, but do agree with the striped model developed by my co-worker B. Burk from his new x-ray diffraction results. In addition, I report on our STM studies of two other CDW materials, blue bronze and o-TaS_3. With blue bronze we obtain STM images of the atomic structure but do not observe the CDW. With o

  11. Solid state physics: advanced spectroscopy, scanning probe microscopy, nanostructure fabrication

    CERN Document Server

    Aghion, Stefano

    Thin films of hybrid solar cells and metal oxide semiconductors -IGZO in particular– and homogeneous PMMA polymers have been studied at the Positron Laboratory (L-NESS centre, Politecnico di Milano, Polo Territoriale di Como). A slow energy positron beam and a positron lifetime spectrometer have been employed for these studies. The positron spectroscopy information have been correlated with electrical and optical properties of the materials. The chemical composition and the morphology of voids and porosities in hybrid solar cells and thin film metal oxide semiconductors have been studied, and a strong correlation between positronium fraction, S-parameter and the electrical properties of these materials has been found. In PMMA polymers, free volume measurements have shown that the optical properties of the material depend on the presence of monomer residual fraction and even slight changes in the dimensions and concentration of free volumes. Positrons have been also applied to the study of positron to positr...

  12. A New High Channel-Count, High Scan-Rate, Data Acquisition System for the NASA Langley Transonic Dynamics Tunnel

    Science.gov (United States)

    Ivanco, Thomas G.; Sekula, Martin K.; Piatak, David J.; Simmons, Scott A.; Babel, Walter C.; Collins, Jesse G.; Ramey, James M.; Heald, Dean M.

    2016-01-01

    A data acquisition system upgrade project, known as AB-DAS, is underway at the NASA Langley Transonic Dynamics Tunnel. AB-DAS will soon serve as the primary data system and will substantially increase the scan-rate capabilities and analog channel count while maintaining other unique aeroelastic and dynamic test capabilities required of the facility. AB-DAS is configurable, adaptable, and enables buffet and aeroacoustic tests by synchronously scanning all analog channels and recording the high scan-rate time history values for each data quantity. AB-DAS is currently available for use as a stand-alone data system with limited capabilities while development continues. This paper describes AB-DAS, the design methodology, and the current features and capabilities. It also outlines the future work and projected capabilities following completion of the data system upgrade project.

  13. Double deuterated acetylacetone in neon matrices: infrared spectroscopy, photoreactivity and the tunneling process.

    Science.gov (United States)

    Gutiérrez-Quintanilla, Alejandro; Chevalier, Michèle; Crépin, Claudine

    2016-07-27

    The effect of deuteration of acetylacetone (C5O2H8) is explored by means of IR spectroscopy of its single and double deuterated isotopologues trapped in neon matrices. The whole vibrational spectra of chelated enols are very sensitive to the H-D exchange of the hydrogen atom involved in the internal hydrogen bond. UV excitation of double deuterated acetylacetone isolated in neon matrices induces the formation of four open enol isomers which can be divided into two groups of two conformers, depending on their formation kinetics. Within each group, one conformer is more stable than the other: slow conformer interconversion due to a tunneling process is observed in the dark at low temperature. Moreover, IR laser irradiation at the OD stretching overtone frequency is used to induce interconversion either from the most stable to the less stable conformer or the opposite, depending on the excitation wavelength. The interconversion process is of great help to assign conformers which are definitively identified by comparison between experimental and calculated IR spectra. Kinetic constants of the tunneling process at play are theoretically estimated and agree perfectly with experiments, including previous experiments with the totally hydrogenated acetylacetone [Lozada García et al., Phys. Chem. Chem. Phys., 2012, 14, 3450].

  14. Plasma Wind Tunnel Investigation of European Ablators in Nitrogen/Methane Using Emission Spectroscopy

    Directory of Open Access Journals (Sweden)

    Ricarda Wernitz

    2013-01-01

    Full Text Available For atmospheric reentries at high enthalpies ablative heat shield materials are used, such as those for probes entering the atmosphere of Saturn’s moon Titan, such as Cassini-Huygens in December, 2004. The characterization of such materials in a nitrogen/methane atmosphere is of interest. A European ablative material, AQ60, has been investigated in plasma wind tunnel tests at the IRS plasma wind tunnel PWK1 using the magnetoplasma dynamic generator RD5 as plasma source in a nitrogen/methane atmosphere. The dimensions of the samples are 45 mm in length with a diameter of 39 mm. The actual ablator has a thickness of 40 mm. The ablator is mounted on an aluminium substructure. The experiments were conducted at two different heat flux regimes, 1.4 MW/m2 and 0.3 MW/m2. In this paper, results of emission spectroscopy at these plasma conditions in terms of plasma species’ temperatures will be presented, including the investigation of the free-stream species, N2 and N2+, and the major erosion product C2, at a wavelength range around 500 nm–600 nm.

  15. Chain-like structure elements in Ni40Ta60 metallic glasses observed by scanning tunneling microscopy.

    Science.gov (United States)

    Pawlak, Rémy; Marot, Laurent; Sadeghi, Ali; Kawai, Shigeki; Glatzel, Thilo; Reimann, Peter; Goedecker, Stefan; Güntherodt, Hans-Joachim; Meyer, Ernst

    2015-08-13

    The structure of metallic glasses is a long-standing question because the lack of long-range order makes diffraction based techniques difficult to be applied. Here, we used scanning tunneling microscopy with large tunneling resistance of 6 GΩ at low temperature in order to minimize forces between probe and sample and reduce thermal fluctuations of metastable structures. Under these extremely gentle conditions, atomic structures of Ni40Ta60 metallic glasses are revealed with unprecedented lateral resolution. In agreement with previous models and experiments, icosahedral-like clusters are observed. The clusters show a high degree of mobility, which explains the need of low temperatures for stable imaging. In addition to icosahedrons, chain-like structures are resolved and comparative density functional theory (DFT) calculations confirm that these structures are meta-stable. The co-existence of icosahedral and chain-like structures might be an key ingredient for the understanding of the mechanical properties of metallic glasses.

  16. Vibrational Inelastic Electron Tunneling Spectroscopy of Single Acetylene Molecules Adsorbed on Copper (100) Surface

    OpenAIRE

    Jiang, Chi-Lun

    2015-01-01

    With a 600mk homebuilt UHV STM system, we studied molecular vibration at the solid surface with inelastic electron tunneling spectroscopy (IETS) of Acetylene single molecules adsorbed on Cu(100) surface. The identification of vibrational IETS features with normalized conductance change (Δσ/σ) as low as 0.24% in dI2/d2V spectra was demonstrated. Five vibrational modes with energy level at 117.70meV (Δσ/σ =0.42%), 84.07meV (Δσ/σ =0.24%), 58.46meV (Δσ/σ =1.18%), 34.80meV (Δσ/σ =0.65% ) and 22.1...

  17. Inelastic electron tunneling spectroscopy of difurylethene-based photochromic single-molecule junctions.

    Science.gov (United States)

    Kim, Youngsang; Bahoosh, Safa G; Sysoiev, Dmytro; Huhn, Thomas; Pauly, Fabian; Scheer, Elke

    2017-01-01

    Diarylethene-derived molecules alter their electronic structure upon transformation between the open and closed forms of the diarylethene core, when exposed to ultraviolet (UV) or visible light. This transformation results in a significant variation of electrical conductance and vibrational properties of corresponding molecular junctions. We report here a combined experimental and theoretical analysis of charge transport through diarylethene-derived single-molecule devices, which are created using the mechanically controlled break-junction technique. Inelastic electron tunneling (IET) spectroscopy measurements performed at 4.2 K are compared with first-principles calculations in the two distinct forms of diarylethenes connected to gold electrodes. The combined approach clearly demonstrates that the IET spectra of single-molecule junctions show specific vibrational features that can be used to identify different isomeric molecular states by transport experiments.

  18. Probing the local environment of a single OPE3 molecule using inelastic tunneling electron spectroscopy

    Directory of Open Access Journals (Sweden)

    Riccardo Frisenda

    2015-12-01

    Full Text Available We study single-molecule oligo(phenylene ethynylenedithiol junctions by means of inelastic electron tunneling spectroscopy (IETS. The molecule is contacted with gold nano-electrodes formed with the mechanically controllable break junction technique. We record the IETS spectrum of the molecule from direct current measurements, both as a function of time and electrode separation. We find that for fixed electrode separation the molecule switches between various configurations, which are characterized by different IETS spectra. Similar variations in the IETS signal are observed during atomic rearrangements upon stretching of the molecular junction. Using quantum chemistry calculations, we identity some of the vibrational modes which constitute a chemical fingerprint of the molecule. In addition, changes can be attributed to rearrangements of the local molecular environment, in particular at the molecule–electrode interface. This study shows the importance of taking into account the interaction with the electrodes when describing inelastic contributions to transport through single-molecule junctions.

  19. Probing the local environment of a single OPE3 molecule using inelastic tunneling electron spectroscopy.

    Science.gov (United States)

    Frisenda, Riccardo; Perrin, Mickael L; van der Zant, Herre S J

    2015-01-01

    We study single-molecule oligo(phenylene ethynylene)dithiol junctions by means of inelastic electron tunneling spectroscopy (IETS). The molecule is contacted with gold nano-electrodes formed with the mechanically controllable break junction technique. We record the IETS spectrum of the molecule from direct current measurements, both as a function of time and electrode separation. We find that for fixed electrode separation the molecule switches between various configurations, which are characterized by different IETS spectra. Similar variations in the IETS signal are observed during atomic rearrangements upon stretching of the molecular junction. Using quantum chemistry calculations, we identity some of the vibrational modes which constitute a chemical fingerprint of the molecule. In addition, changes can be attributed to rearrangements of the local molecular environment, in particular at the molecule-electrode interface. This study shows the importance of taking into account the interaction with the electrodes when describing inelastic contributions to transport through single-molecule junctions.

  20. Tunneling Spectroscopy Studies of Urea, Thiourea, and Selected Phosphonate Molecules Adsorbed on Aluminum Oxide

    Science.gov (United States)

    Crowder, Charles D.

    Experimental and calculated inelastic electron tunneling intensities were compared for several of the vibrational modes of thiourea adsorbed on aluminum oxide. The partial charge model of Kirtley, Scalapino, and Hansma was used to compute the theoretical intensities of each mode. The required partial charges were determined using a method developed by Momany. Essentially, the Coulomb potential resulting from point charges located at atom sites was fitted to the quantum mechanical electrostatic potential of a molecule calculated from Hartree-Fock theory. The effect of a vibrational mode pattern on the electrostatic potential of a molecule was investigated. This effect could not be acceptably modeled with a single point charge located on each atom, so one charge was used to represent the positive nucleus of each atom and a second charge was used to represent the valence cloud. The valence charge was allowed to move independently of the nuclear charge during a molecular vibration, and the motions of the two charges were found to be very different for hydrogen atoms. This model gave very reasonable agreement between the theoretical and observed relative intensities for the in plane vibrational modes of thiourea. An acceptable set of out of plane force constants could not be found. This caused problems in the interpretation of the out of plane relative intensities. Based on the in plane modes, it was concluded that thiourea bonded to aluminum oxide with the sulfur atom near the oxide and the sulfur-carbon bond perpendicular to the aluminum oxide surface. Quantum mechanical electrostatic potentials were also calculated for urea, phosphoric acid (PA), methylphosphonic acid (MPA), hydroxymethylphosphonic acid (HMP), and nitrotrismethylphosphonic acid (NTMP). Electron tunneling spectra were taken for PA, HMP and NTMP, and the observed frequencies were compared to values obtained from Fourier transform infrared, infrared and Raman spectroscopy. Upward shifts in the P=O and P

  1. Scanning Tunneling Microscopic Observation of Adatom-Mediated Motifs on Gold-Thiol Self-assembled Monolayers at High Coverage

    DEFF Research Database (Denmark)

    Wang, Yun; Chi, Qijin; Hush, Noel S.

    2009-01-01

    Self-assembled monolayers (SAMs) formed by chemisorption of a branched-chain alkanethiol, 2-methyl-1-propanethiol, on Au(111) surfaces were studied by in situ scanning tunneling microscopy (STM) under electrochemical potential control and analyzed using extensive density functional theory (DFT...... the structural motifs observed on surfaces at low coverage and on gold nanoparticles to the observed spectroscopic properties of high-coverage SAMs formed by methanethiol. However, the significant role attributed to intermolecular steric packing effects suggests a lack of generality for the adatom-mediated motif...

  2. Adsorbate structures and catalytic reactions studied in the torrpressure range by scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Kevin Shao-Lin [Univ. of California, Berkeley, CA (United States)

    2003-01-01

    High-pressure, high-temperature scanning tunneling microscopy (HPHTSTM) was used to study adsorbate structures and reactions on single crystal model catalytic systems. Studies of the automobile catalytic converter reaction [CO + NO → 1/2 N2 + CO2] on Rh(111) and ethylene hydrogenation [C2H4 + H2 → C2H6] on Rh(111) and Pt(111) elucidated information on adsorbate structures in equilibrium with high-pressure gas and the relationship of atomic and molecular mobility to chemistry. STM studies of NO on Rh(111) showed that adsorbed NO forms two high-pressure structures, with the phase transformation from the (2 x 2) structure to the (3 x 3) structure occurring at 0.03 Torr. The (3 x 3) structure only exists when the surface is in equilibrium with the gas phase. The heat of adsorption of this new structure was determined by measuring the pressures and temperatures at which both (2 x 2) and (3 x 3) structures coexisted. The energy barrier between the two structures was calculated by observing the time necessary for the phase transformation to take place. High-pressure STM studies of the coadsorption of CO and NO on Rh(111) showed that CO and NO form a mixed (2 x 2) structure at low NO partial pressures. By comparing surface and gas compositions, the adsorption energy difference between topsite CO and NO was calculated. Occasionally there is exchange between top-site CO and NO, for which we have described a mechanism for. At high NO partial pressures, NO segregates into islands, where the phase transformation to the (3 x 3) structure occurs. The reaction of CO and NO on Rh(111) was monitored by mass spectrometry (MS) and HPHTSTM. From MS studies the apparent activation energy of the catalytic converter reaction was calculated and compared to theory. STM showed that under high-temperature reaction conditions, surface metal atoms become mobile. Ethylene hydrogenation and its poisoning by CO was

  3. Surface damage through grazing incidence ions investigated by scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Redinger, Alex

    2009-07-10

    Surface damage, caused by grazing incidence ions, is investigated with variable temperature scanning tunneling microscopy. The experiments are carried out on a Pt(111) crystal. The kinetic energy of noble gas ions is varied between 1-15 keV and the angle of incidence can be adjusted between {theta} = 78.5 and {theta} = 90 measured with respect to the surface normal. The damage patterns of single ion impacts, on flat terraces and at step edges of monoatomic height, are investigated at low surface temperatures. Ions hitting a flat terrace are usually specular reflected. The energy transfer from the ion to the crystal atoms is small and only little damage is produced. In contrast, at ascending step edges, which are illuminated by the ion beam, large angle scattering events occur. Sputtering, adatom and vacancy production is induced. However, a significant fraction of the ions, which hit step edges, enter the crystal and are guided in between two atomic layers parallel to the surface via small angle binary collisions. This steering process is denoted as subsurface channeling. The energy loss per length scale of the channeled particles is low, which results in long ion trajectories (up to 1000A). During the steering process, the ions produce surface damage. Depending on the ion species and the ion energy, adatom and vacancies or surface vacancy trenches of monoatomic width are observed. The surface damage can be used to track the path of the ion. This makes the whole trajectory of single ions with keV energy visible. The number of sputtered atoms per incident ion at ascending step edges, i.e. the step edge sputtering yield, is measured experimentally for different irradiation conditions. For {theta} = 86 , the sputtering yield is determined from the fluence dependent retraction of pre-existing illuminated step edges. An alternative method for the step edge sputtering yield determination, is the analysis of the concentration of ascending steps and of the removed amount

  4. Semiconductor Surface Characterization by Scanning Probe Microscopies

    Science.gov (United States)

    2001-01-01

    potentiometry (STP)8 and ballistic electron emission microscopy (BEEM)9 which allow mapping of lateral surface potential and local subsurface Schottky...A.P.Fein. "Tunneling Spectroscopy of the Si(1 1 1)2xl Surface", Surf.Sci. 181, 295- 306, 1987. 8. P.Muralt, D.W.Pohl, "Scanning tunneling potentiometry

  5. Surface polymerization of (3,4-ethylenedioxythiophene) probed by in situ scanning tunneling microscopy on Au(111) in ionic liquids.

    Science.gov (United States)

    Ahmad, Shahzada; Carstens, Timo; Berger, Rüdiger; Butt, Hans-Jürgen; Endres, Frank

    2011-01-01

    The electropolymerization of 3,4-ethylenedioxythiophene (EDOT) to poly(3,4-ethylenedioxythiophene) (PEDOT) was investigated in the air and water-stable ionic liquids 1-hexyl-3-methylimidazolium tris(pentafluoroethyl) trifluorophosphate [HMIm]FAP and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) amide [EMIm]TFSA. In situ scanning tunnelling microscopy (STM) results show that the electropolymerization of EDOT in the ionic liquid can be probed on the nanoscale. In contrast to present understanding, it was observed that the EDOT can be oxidised in ionic liquids well below its oxidation potential and the under potential growth of polymer was visualized by in situ STM. These results serve as the first study to confirm the under potential growth of conducting polymers in ionic liquids. Furthermore, ex situ microscopy measurements were performed. Quite a high current of 670 nA was observed on the nanoscale by conductive scanning force microscopy (CSFM).

  6. Analysis and Calibration of in situ scanning tunnelling microscopy Images with atomic Resolution Influenced by Surface Drift Phenomena

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Møller, Per

    1994-01-01

    The influence of surface drift velocities on in situ scanning tunnelling microscopy (STM) experiments with atomic resolution is analysed experimentally and mathematically. Constant drift velocities much smaller than the speed of scanning can in many in situ STM experiments with atomic resolution...... result in an apparent surface reconstruction. It is shown that a surface atomic structure can be distorted and observed as another atomic structure entirely owing to a constant drift velocity in the plane of the surface. The image can be resolved mathematically and the components of the drift velocity...... as well as the vectors of the non-distorted surface lattice can be determined. The calibration of distances can thus be carried out also when the image is influenced by drift. Results with gold surfaces and graphite surfaces are analysed and discussed....

  7. In situ high-temperature scanning tunneling microscopy study of bilayer graphene growth on 6H-SiC(0001)

    Energy Technology Data Exchange (ETDEWEB)

    Murata, Yuya [Dept. Materials Science and Engineering, University of California Los Angeles, Los Angeles, CA 90095 (United States); Petrova, V.; Petrov, I. [Frederick-Seitz Materials Research Laboratory, University of Illinois, Urbana, IL 61801 (United States); Kodambaka, S., E-mail: kodambaka@ucla.edu [Dept. Materials Science and Engineering, University of California Los Angeles, Los Angeles, CA 90095 (United States)

    2012-06-01

    Using in situ high-temperature (1395 K), ultra-high vacuum, scanning tunneling microscopy (STM), we investigated the growth of bilayer graphene on 6H-SiC(0001). From the STM images, we measured areal coverages of SiC and graphene as a function of annealing time and found that graphene grows at the expense of SiC. Graphene domains were observed to grow, at comparable rates, at (I) graphene-free SiC step edges, (II) graphene-SiC interfaces, and (III) the existing graphene domain edges. Based upon our results, we suggest that the rate-limiting step controlling bilayer graphene growth is the desorption of Si from the substrate. - Highlights: Black-Right-Pointing-Pointer Use of scanning tunneling microscopy at temperatures as high as 1395 K. Black-Right-Pointing-Pointer Direct observation of graphene formation on SiC surfaces at the growth temperature. Black-Right-Pointing-Pointer Identification of atomic-scale pathways for bilayer graphene growth.

  8. Scanning Ultrasonic Spectroscopy System Developed for the Inspection of Composite Flywheels

    Science.gov (United States)

    Martin, Richard E.; Baaklini, George Y.

    2002-01-01

    Composite flywheels are being considered as replacements for chemical batteries aboard the International Space Station. A flywheel stores energy in a spinning mass that can turn a generator to meet power demands. Because of the high rotational speeds of the spinning mass, extensive testing of the flywheel system must be performed prior to flight certification. With this goal in mind, a new scanning system has been developed at the NASA Glenn Research Center for the nondestructive inspection of composite flywheels and flywheel subcomponents. The system uses ultrasonic waves to excite a material and examines the response to detect and locate flaws and material variations. The ultrasonic spectroscopy system uses a transducer to send swept-frequency ultrasonic waves into a test material and then receives the returning signal with a second transducer. The received signal is then analyzed in the frequency domain using a fast Fourier transform. A second fast Fourier transform is performed to examine the spacing of the peaks in the frequency domain. The spacing of the peaks is related to the standing wave resonances that are present in the material because of the constructive and destructive interferences of the waves in the full material thickness as well as in individual layers within the material. Material variations and flaws are then identified by changes in the amplitudes and positions of the peaks in both the frequency and resonance spacing domains. This work, conducted under a grant through the Cleveland State University, extends the capabilities of an existing point-by-point ultrasonic spectroscopy system, thus allowing full-field automated inspection. Results of an ultrasonic spectroscopy scan of a plastic cylinder with intentionally seeded flaws. The result of an ultrasonic spectroscopy scan of a plastic cylinder used as a proof-of-concept specimen is shown. The cylinder contains a number of flat bottomed holes of various sizes and shapes. The scanning system

  9. A dark-field scanning spectroscopy platform for localized scatter and fluorescence imaging of tissue

    Science.gov (United States)

    Krishnaswamy, Venkataramanan; Laughney, Ashley M.; Paulsen, Keith D.; Pogue, Brian W.

    2011-03-01

    Tissue ultra-structure and molecular composition provide native contrast mechanisms for discriminating across pathologically distinct tissue-types. Multi-modality optical probe designs combined with spatially confined sampling techniques have been shown to be sensitive to this type of contrast but their extension to imaging has only been realized recently. A modular scanning spectroscopy platform has been developed to allow imaging localized morphology and molecular contrast measures in breast cancer surgical specimens. A custom designed dark-field telecentric scanning spectroscopy system forms the core of this imaging platform. The system allows imaging localized elastic scatter and fluorescence measures over fields of up to 15 mm x 15 mm at 100 microns resolution in tissue. Results from intralipid and blood phantom measurements demonstrate the ability of the system to quantify localized scatter parameters despite significant changes in local absorption. A co-registered fluorescence spectroscopy mode is also demonstrated in a protophorphyrin-IX phantom.

  10. Imaging by in situ Scanning Tunnelling Microscopy and its Nanotechnological Perspectives

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov

    2002-01-01

    in the interpretation of the imaging procedure. Other methods of in situ Scanning Probe Microscopy (in situ SPM), such as in situ Scanning Force Microscopy (in situ AFM) are considered for the sake of comparison and they are applied to imaging of non-conducting systems. Major results include demonstration of atomic...

  11. Revealing the magnetic proximity effect in EuS/Al bilayers through superconducting tunneling spectroscopy

    Science.gov (United States)

    Strambini, E.; Golovach, V. N.; De Simoni, G.; Moodera, J. S.; Bergeret, F. S.; Giazotto, F.

    2017-10-01

    A ferromagnetic insulator in contact with a superconductor is known to induce an exchange splitting of the singularity in the Bardeen-Cooper-Schrieffer (BCS) density of states (DoS). The magnitude of the splitting is proportional to the exchange field that penetrates into the superconductor to a depth comparable with the superconducting coherence length and which ranges in magnitude from a few to a few tens of tesla. We study this magnetic proximity effect in EuS/Al bilayers and show that the domain structure of the EuS affects the positions and the line shapes of the exchange-split BCS peaks. Remarkably, a clear exchange splitting is observed even in the unmagnetized state of the EuS layer, suggesting that the domain size of the EuS is comparable with the superconducting coherence length. Upon magnetizing the EuS layer, the splitting increases while the peaks change shape. Conductance measurements as a function of bias voltage at the lowest temperatures allowed us to relate the line shape of the split BCS DoS to the characteristic domain structure in the ultrathin EuS layer. These results pave the way to engineering triplet superconducting correlations at domain walls in EuS/Al bilayers. Furthermore, the hard gap and large splitting observed in our tunneling spectroscopy measurements make EuS/Al an excellent candidate for substituting strong magnetic fields in experiments studying Majorana bound states.

  12. Local analysis of semiconductor nanoobjects by scanning tunneling atomic force microscopy

    Directory of Open Access Journals (Sweden)

    Natalia A. Lashkova

    2015-03-01

    Full Text Available The features of the current–voltage (I–V measurements in local regions of semiconductor nanostructures by conductive atomic force microscopy (AFM are discussed. The standard procedure of I–V measurements in conductive AFM leads not infrequently to the thermomechanical stresses in the sample and, as a consequence, nonreproducibility and unreliability of measurements. The technique of obtaining reproducible current–voltage characteristics is proposed. According to the technique, a series of measurements of the selected scanning area in the mode of conducting AFM should be taken, each at the certain value of the potential. According to a series of scans I–V curve at a particular point (for any point of the scan was plotted. The program is realized in the LabVIEW software. The proposed method extends the capabilities of scanning probe microscopy in the diagnosis of nanostructured semiconductor materials.

  13. Scanning electron microscopy and X-ray spectroscopy applied to mycelial phase of sporothrix schenckii

    Directory of Open Access Journals (Sweden)

    M. Thibaut

    1975-04-01

    Full Text Available Scanning electron microscopy applied to the mycelial phase of Sporothrix schenckii shows a matted mycelium with conidia of a regular pattern. X-Ray microanalysis applied in energy dispersive spectroscopy and also in wavelength dispersive spectroscopy reveals the presence of several elements of Mendeleef's classification.Sporothrix schenckii foi estudado em microscopia eletrônica. Foram observados caracteres das hífas e dos esporos, vários elementos da classificação periódica foram postos em evidência graças à micro-análise a raios X.

  14. New ultrarapid-scanning interferometer for FT-IR spectroscopy with microsecond time-resolution

    Science.gov (United States)

    Süss, B.; Ringleb, F.; Heberle, J.

    2016-06-01

    A novel Fourier-transform infrared (FT-IR) rapid-scan spectrometer has been developed (patent pending EP14194520.4) which yields 1000 times higher time resolution as compared to conventional rapid-scanning spectrometers. The central element to achieve faster scanning rates is based on a sonotrode whose front face represents the movable mirror of the interferometer. A prototype spectrometer with a time resolution of 13 μs was realized, capable of fully automated long-term measurements with a flow cell for liquid samples, here a photosynthetic membrane protein in solution. The performance of this novel spectrometer is demonstrated by recording the photoreaction of bacteriorhodopsin initiated by a short laser pulse that is synchronized to the data recording. The resulting data are critically compared to those obtained by step-scan spectroscopy and demonstrate the relevance of performing experiments on proteins in solution. The spectrometer allows for future investigations of fast, non-repetitive processes, whose investigation is challenging to step-scan FT-IR spectroscopy.

  15. A 10 mK scanning tunneling microscope operating in ultra high vacuum and high magnetic fields.

    Science.gov (United States)

    Assig, Maximilian; Etzkorn, Markus; Enders, Axel; Stiepany, Wolfgang; Ast, Christian R; Kern, Klaus

    2013-03-01

    We present design and performance of a scanning tunneling microscope (STM) that operates at temperatures down to 10 mK providing ultimate energy resolution on the atomic scale. The STM is attached to a dilution refrigerator with direct access to an ultra high vacuum chamber allowing in situ sample preparation. High magnetic fields of up to 14 T perpendicular and up to 0.5 T parallel to the sample surface can be applied. Temperature sensors mounted directly at the tip and sample position verified the base temperature within a small error margin. Using a superconducting Al tip and a metallic Cu(111) sample, we determined an effective temperature of 38 ± 1 mK from the thermal broadening observed in the tunneling spectra. This results in an upper limit for the energy resolution of ΔE = 3.5 kBT = 11.4 ± 0.3 μeV. The stability between tip and sample is 4 pm at a temperature of 15 mK as demonstrated by topography measurements on a Cu(111) surface.

  16. A 10Â mK scanning tunneling microscope operating in ultra high vacuum and high magnetic fields

    Science.gov (United States)

    Assig, Maximilian; Etzkorn, Markus; Enders, Axel; Stiepany, Wolfgang; Ast, Christian R.; Kern, Klaus

    2013-03-01

    We present design and performance of a scanning tunneling microscope (STM) that operates at temperatures down to 10 mK providing ultimate energy resolution on the atomic scale. The STM is attached to a dilution refrigerator with direct access to an ultra high vacuum chamber allowing in situ sample preparation. High magnetic fields of up to 14 T perpendicular and up to 0.5 T parallel to the sample surface can be applied. Temperature sensors mounted directly at the tip and sample position verified the base temperature within a small error margin. Using a superconducting Al tip and a metallic Cu(111) sample, we determined an effective temperature of 38 ± 1 mK from the thermal broadening observed in the tunneling spectra. This results in an upper limit for the energy resolution of ΔE = 3.5kBT = 11.4 ± 0.3 μeV. The stability between tip and sample is 4 pm at a temperature of 15 mK as demonstrated by topography measurements on a Cu(111) surface.

  17. Detecting element specific electrons from a single cobalt nanocluster with synchrotron x-ray scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kersell, Heath; Shirato, Nozomi; Cummings, Marvin; Chang, Hao; Miller, Dean; Rosenmann, Daniel; Hla, Saw-Wai; Rose, Volker

    2017-09-04

    We use a nanofabricated scanning tunneling microscope tip as a detector to investigate local X-ray induced tunneling and electron emission from a single cobalt nanocluster on a Au(111) surface. The tip-detector is positioned a few angstroms above the nanocluster, and ramping the incident X-ray energy across the Co photoabsorption K-edge enables the detection of element specific electrons. Atomic-scale spatial dependent changes in the X-ray absorption cross section are directly measured by taking the X-ray induced current as a function of X-ray energy. From the measured sample and tip currents, element specific X-ray induced current components can be separated and thereby the corresponding yields for the X-ray induced processes of the single cobalt nanocluster can be determined. The detection of element specific synchrotron X-ray induced electrons of a single nanocluster opens a new avenue for materials characterization on a one particle at-a-time basis.

  18. High-Resolution Imaging of Polyethylene Glycol Coated Dendrimers via Combined Atomic Force and Scanning Tunneling Microscopy

    Directory of Open Access Journals (Sweden)

    Shawn Riechers

    2015-01-01

    Full Text Available Dendrimers have shown great promise as drug delivery vehicles in recent years because they can be synthesized with designed size and functionalities for optimal transportation, targeting, and biocompatibility. One of the most well-known termini used for biocompatibility is polyethylene glycol (PEG, whose performance is affected by its actual conformation. However, the conformation of individual PEG bound to soft materials such as dendrimers has not been directly observed. Using atomic force microscopy (AFM and scanning tunneling microscopy (STM, this work characterizes the structure adopted by PEGylated dendrimers with the highest resolution reported to date. AFM imaging enables visualization of the individual dendrimers, as well as the differentiation and characterization of the dendrimer core and PEG shell. STM provides direct imaging of the PEG extensions with high-resolution. Collectively, this investigation provides important insight into the structure of coated dendrimers, which is crucial for the design and development of better drug delivery vehicles.

  19. Low conductive support for thermal insulation of a sample holder of a variable temperature scanning tunneling microscope.

    Science.gov (United States)

    Hanzelka, Pavel; Vonka, Jakub; Musilova, Vera

    2013-08-01

    We have designed a supporting system to fix a sample holder of a scanning tunneling microscope in an UHV chamber at room temperature. The microscope will operate down to a temperature of 20 K. Low thermal conductance, high mechanical stiffness, and small dimensions are the main features of the supporting system. Three sets of four glass balls placed in vertices of a tetrahedron are used for thermal insulation based on small contact areas between the glass balls. We have analyzed the thermal conductivity of the contacts between the balls mutually and between a ball and a metallic plate while the results have been applied to the entire support. The calculation based on a simple model of the setup has been verified with some experimental measurements. In comparison with other feasible supporting structures, the designed support has the lowest thermal conductance.

  20. Strongly compressed Bi (111) bilayer films on Bi{sub 2}Se{sub 3} studied by scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, K. F.; Yang, Fang; Song, Y. R. [Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Liu, Canhua; Qian, Dong; Gao, C. L.; Jia, Jin-Feng [Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093 (China)

    2015-09-21

    Ultra-thin Bi films show exotic electronic structure and novel quantum effects, especially the widely studied Bi (111) film. Using reflection high-energy electron diffraction and scanning tunneling microscopy, we studied the structure and morphology evolution of Bi (111) thin films grown on Bi{sub 2}Se{sub 3}. A strongly compressed, but quickly released in-plane lattice of Bi (111) is found in the first three bilayers. The first bilayer of Bi shows a fractal growth mode with flat surface, while the second and third bilayer show a periodic buckling due to the strong compression of the in-plane lattice. The lattice slowly changes to its bulk value with further deposition of Bi.

  1. Mn doped InSb studied at the atomic scale by cross-sectional scanning tunneling microscopy

    Science.gov (United States)

    Mauger, S. J. C.; Bocquel, J.; Koenraad, P. M.; Feeser, C. E.; Parashar, N. D.; Wessels, B. W.

    2015-11-01

    We present an atomically resolved study of metal-organic vapor epitaxy grown Mn doped InSb. Both topographic and spectroscopic measurements have been performed by cross-sectional scanning tunneling microscopy (STM). The measurements on the Mn doped InSb samples show a perfect crystal structure without any precipitates and reveal that Mn acts as a shallow acceptor. The Mn concentration of the order of ˜1020 cm-3 obtained from the cross-sectional STM data compare well with the intended doping concentration. While the pair correlation function of the Mn atoms showed that their local distribution is uncorrelated beyond the STM resolution for observing individual dopants, disorder in the Mn ion location giving rise to percolation pathways is clearly noted. The amount of clustering that we see is thus as expected for a fully randomly disordered distribution of the Mn atoms and no enhanced clustering or second phase material was observed.

  2. GaSb/GaAs quantum dot formation and demolition studied with cross-sectional scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Smakman, E. P.; Garleff, J. K.; Rambabu, P.; Koenraad, P. M. [Department of Applied Physics, Eindhoven University of Technology, Eindhoven 5612 AZ (Netherlands); Young, R. J.; Hayne, M. [Department of Physics, Lancaster University, Lancaster LA1 4YB (United Kingdom)

    2012-04-02

    We present a cross-sectional scanning tunneling microscopy study of GaSb/GaAs quantum dots grown by molecular beam epitaxy. Various nanostructures are observed as a function of the growth parameters. During growth, relaxation of the high local strain fields of the nanostructures plays an important role in their formation. Pyramidal dots with a high Sb content are often accompanied by threading dislocations above them. GaSb ring formation is favored by the use of a thin GaAs first cap layer and a high growth temperature of the second cap layer. At these capping conditions, strain-driven Sb diffusion combined with As/Sb exchange and Sb segregation remove the center of a nanostructure, creating a ring. Clusters of GaSb without a well defined morphology also appear regularly, often with a highly inhomogeneous structure which is sometimes divided up in fragments.

  3. Hydrophilicity and Microsolvation of an Organic Molecule Resolved on the Sub-molecular Level by Scanning Tunneling Microscopy.

    Science.gov (United States)

    Lucht, Karsten; Loose, Dirk; Ruschmeier, Maximilian; Strotkötter, Valerie; Dyker, Gerald; Morgenstern, Karina

    2018-01-26

    Low-temperature scanning tunneling microscopy was used to follow the formation of a solvation shell around an adsorbed functionalized azo dye from the attachment of the first water molecule to a fully solvated molecule. Specific functional groups bind initially one water molecule each, which act as anchor points for additional water molecules. Further water attachment occurs in areas close to these functional groups even when the functional groups themselves are already saturated. In contrast, water molecules surround the hydrophobic parts of the molecule only when the two-dimensional solvation shell closes around them. This study thus traces hydrophilic and hydrophobic properties of an organic molecule down to a sub-molecular length scale. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Observation of layered antiferromagnetism in self-assembled parallel NiSi nanowire arrays on Si(110) by spin-polarized scanning tunneling spectromicroscopy

    Science.gov (United States)

    Hong, Ie-Hong; Hsu, Hsin-Zan

    2018-03-01

    The layered antiferromagnetism of parallel nanowire (NW) arrays self-assembled on Si(110) have been observed at room temperature by direct imaging of both the topographies and magnetic domains using spin-polarized scanning tunneling microscopy/spectroscopy (SP-STM/STS). The topographic STM images reveal that the self-assembled unidirectional and parallel NiSi NWs grow into the Si(110) substrate along the [\\bar{1}10] direction (i.e. the endotaxial growth) and exhibit multiple-layer growth. The spatially-resolved SP-STS maps show that these parallel NiSi NWs of different heights produce two opposite magnetic domains, depending on the heights of either even or odd layers in the layer stack of the NiSi NWs. This layer-wise antiferromagnetic structure can be attributed to an antiferromagnetic interlayer exchange coupling between the adjacent layers in the multiple-layer NiSi NW with a B2 (CsCl-type) crystal structure. Such an endotaxial heterostructure of parallel magnetic NiSi NW arrays with a layered antiferromagnetic ordering in Si(110) provides a new and important perspective for the development of novel Si-based spintronic nanodevices.

  5. Mn Doping Effects on the Electronic Band Structure of PbS Quantum Dot Thin Films: A Scanning Tunneling Microscopy Analysis

    Science.gov (United States)

    Yost, Andrew J.; Rimal, Gaurab; Tang, Jinke; Chien, Teyu

    A thorough understanding of the phenomena associated with doping of transition metals in semiconductors is important for the development of semiconducting electronic technologies such as semiconducting quantum dot sensitized solar cells (QDSSC). Manganese doping is of particular interest in a PbS QD as it is potentially capable of increasing overall QDSSC performance. Here we present scanning tunneling microscopy and spectroscopy studies about the effects of Manganese doping on the energy band structures of PbS semiconducting QD thin films, grown using pulsed laser deposition. As a result of Manganese doping in the PbS QD thin films, a widening of the electronic band gap was observed, which is responsible for the observed increase in resistivity. Furthermore, a loss of long range periodicity observed by XRD, upon incorporation of Manganese, indicates that the Manganese dopants also induce a large amount of grain boundaries. This work was supported by the following: U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering, DEFG02-10ER46728 and the National Science Foundation Grant #0948027.

  6. A Scanning Tunnelling Microscopy Study on an Alloyed Topological Insulator, Bi1.5Sb0.5Te1.7Se1.3

    Science.gov (United States)

    Ko, Wonhee; Jeon, Insu; Kim, Hyo Won; Kwon, Hyeokshin; Oh, Youngtek; Kahng, Se-Jong; Park, Joonbum; Kim, Jun Sung; Hwang, Sung Woo; Suh, Hwansoo

    2015-03-01

    Efficient doping of topological insulators while protecting its topological nature is key ingredient to realize topological devices. Engineering the chemical potential in the alloyed compound Bi2-xSbxTe3-ySey has been achieved by tuning its chemical composition. However, the effect of alloying in microscopic scale has not yet been fully investigated with local probes. Here we report on the atomic and electronic structures of Bi1.5Sb0.5Te1.7Se1.3 studied using scanning tunnelling microscopy/spectroscopy (STM/STS). Although there is significant surface disorder due to the alloying of constituent atoms, cleaved surfaces of the crystals present a well-ordered hexagonal lattice in STM topographs with 1 nm high quintuple layer steps. STS results reflect the band structure and indicate that the surface state and Fermi energy are both located inside the energy gap. The surface states do not show any electron back-scattering; due to their topological nature they are extremely robust. Landau levels generated by perpendicular magnetic field follow the massless Dirac fermions. This finding demonstrates that alloying is a promising route for efficient doping of topological insulators whilst keeping the topological surface state intact.

  7. Investigation of Supramolecular Coordination Self-Assembly and Polymerization Confined on Metal Surfaces Using Scanning Tunneling Microscopy

    Science.gov (United States)

    Lin, Tao

    Organic molecules are envisioned as the building blocks for design and fabrication of functional devices in future, owing to their versatility, low cost and flexibility. Although some devices such as organic light-emitting diode (OLED) have been already applied in our daily lives, the field is still in its infancy and numerous challenges still remain. In particular, fundamental understanding of the process of organic material fabrication at a molecular level is highly desirable. This thesis focuses on the design and fabrication of supramolecular and macromolecular nanostructures on a Au(111) surface through self-assembly, polymerization and a combination of two. We used scanning tunneling microscopy (STM) as an experimental tool and Monte Carlo (MC) and kinetic Monte Carlo (KMC) simulations as theoretical tools to characterize the structures of these systems and to investigate the mechanisms of the self-assembly and polymerization processes at a single-molecular level. The results of this thesis consist of four parts as below: Part I addresses the mechanisms of two-dimensional multicomponent supramolecular self-assembly via pyridyl-Fe-terpyridyl coordination. Firstly, we studied four types of self-assembled metal-organic systems exhibiting different dimensionalities using specifically-designed molecular building blocks. We found that the two-dimensional system is under thermodynamic controls while the systems of lower dimension are under kinetic controls. Secondly, we studied the self-assembly of a series of cyclic supramolecular polygons. Our results indicate that the yield of on-surface cyclic polygon structures is very low independent of temperature and concentration and this phenomenon can be attributed to a subtle competition between kinetic and thermodynamic controls. These results shed light on thermodynamic and kinetic controls in on-surface coordination self-assembly. Part II addresses the two-dimensional supramolecular self-assembly of porphyrin

  8. Perspectives for in situ Scanning Tunnel Microscopic Imaging of Proteins at HOPG surfaces

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Thuesen, Marianne Hallberg; Møller, Per

    1996-01-01

    potentials on in situ potentiostatic control and releases nm size HOPG scrap bits. These are clearly different in shape from the ex situ imaged molecular-size structures. Laccase could not, however, be imaged by in situ STM, most likely due to structural incompatibility between hydrophobic HOPG surface......We have investigated the behaviour of the four-copper fungal metalloenzyme laccase (MW~68kDa) at highly oriented pyrolytic graphite (HOPG) surfaces by ex situ and in situ STM. The four copper atoms ar suited to stimulate long-range inelastic tunnel modes through the protein. The proteins forms...... crystalline or amorphous structures of micro-meter lateral extension during evaporation of aqueous laccase solution at low ionic strength. Individual molecular-size structures distinct from the HOPG background, and possibly arising from tip dislodging can also be imaged. The HOPG surface cracks at certain...

  9. Spin-polarized scanning-tunneling probe for helical Luttinger liquids.

    Science.gov (United States)

    Das, Sourin; Rao, Sumathi

    2011-06-10

    We propose a three-terminal spin-polarized STM setup for probing the helical nature of the Luttinger liquid edge state that appears in the quantum spin Hall system. We show that the three-terminal tunneling conductance depends on the angle (θ) between the magnetization direction of the tip and the local orientation of the electron spin on the edge while the two terminal conductance is independent of this angle. We demonstrate that chiral injection of an electron into the helical Luttinger liquid (when θ is zero or π) is associated with fractionalization of the spin of the injected electron in addition to the fractionalization of its charge. We also point out a spin current amplification effect induced by the spin fractionalization.

  10. Is spin transport through molecules really occurring in organic spin valves? A combined magnetoresistance and inelastic electron tunnelling spectroscopy study

    Science.gov (United States)

    Galbiati, Marta; Tatay, Sergio; Delprat, Sophie; Khanh, Hung Le; Servet, Bernard; Deranlot, Cyrile; Collin, Sophie; Seneor, Pierre; Mattana, Richard; Petroff, Frédéric

    2015-02-01

    Molecular and organic spintronics is an emerging research field which combines the versatility of chemistry with the non-volatility of spintronics. Organic materials have already proved their potential as tunnel barriers (TBs) or spacers in spintronics devices showing sizable spin valve like magnetoresistance effects. In the last years, a large effort has been focused on the optimization of these organic spintronics devices. Insertion of a thin inorganic tunnel barrier (Al2O3 or MgO) at the bottom ferromagnetic metal (FM)/organic interface seems to improve the spin transport efficiency. However, during the top FM electrode deposition, metal atoms are prone to diffuse through the organic layer and potentially short-circuit it. This may lead to the formation of a working but undesired FM/TB/FM magnetic tunnel junction where the organic plays no role. Indeed, establishing a protocol to demonstrate the effective spin dependent transport through the organic layer remains a key issue. Here, we focus on Co/Al2O3/Alq3/Co junctions and show that combining magnetoresistance and inelastic electron tunnelling spectroscopy measurements one can sort out working "organic" and short-circuited junctions fabricated on the same wafer.

  11. Is spin transport through molecules really occurring in organic spin valves? A combined magnetoresistance and inelastic electron tunnelling spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Galbiati, Marta; Tatay, Sergio; Delprat, Sophie; Khanh, Hung Le; Deranlot, Cyrile; Collin, Sophie; Seneor, Pierre, E-mail: pierre.seneor@thalesgroup.com; Mattana, Richard, E-mail: richard.mattana@thalesgroup.com; Petroff, Frédéric [Unité Mixte de Physique CNRS/Thales, 1 Av. A. Fresnel, 91767 Palaiseau, France and Université Paris-Sud, 91405 Orsay (France); Servet, Bernard [Thales Research and Technology, 1 Av. A. Fresnel, 91767 Palaiseau (France)

    2015-02-23

    Molecular and organic spintronics is an emerging research field which combines the versatility of chemistry with the non-volatility of spintronics. Organic materials have already proved their potential as tunnel barriers (TBs) or spacers in spintronics devices showing sizable spin valve like magnetoresistance effects. In the last years, a large effort has been focused on the optimization of these organic spintronics devices. Insertion of a thin inorganic tunnel barrier (Al{sub 2}O{sub 3} or MgO) at the bottom ferromagnetic metal (FM)/organic interface seems to improve the spin transport efficiency. However, during the top FM electrode deposition, metal atoms are prone to diffuse through the organic layer and potentially short-circuit it. This may lead to the formation of a working but undesired FM/TB/FM magnetic tunnel junction where the organic plays no role. Indeed, establishing a protocol to demonstrate the effective spin dependent transport through the organic layer remains a key issue. Here, we focus on Co/Al{sub 2}O{sub 3}/Alq{sub 3}/Co junctions and show that combining magnetoresistance and inelastic electron tunnelling spectroscopy measurements one can sort out working “organic” and short-circuited junctions fabricated on the same wafer.

  12. A novel cryogenic scanning laser microscope tested on Josephson tunnel junctions

    DEFF Research Database (Denmark)

    Holm, Jesper; Mygind, Jesper

    1995-01-01

    A novel cryogenic scanning laser microscope with a spatial resolution of less than 5 µm has been designed for on-chip in situ investigations of the working properties of normal and superconducting circuits and devices. The instrument relies on the detection of the electrical response of the circuit...... to a very localized heating induced by irradiation with 675 nm wavelength light from a semiconductor laser. The hot spot is moved by a specially designed piezoelectric scanner sweeping the tip of a single-mode optical fiber a few µm above the circuit. Depending on the scanner design the scanning area can...... be as large as 50×500 µm2 at 4.2 K. The microscope can be operated in the temperature range 2–300 K using a standard temperature controller. The central microscope body is mounted inside the vacuum can of a dip-stick-type cryoprobe. A damped spring system is used to reduce interference from extraneous...

  13. Design and calibration of a scanning tunneling microscope for large machined surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Grigg, D.A.; Russell, P.E.; Dow, T.A.

    1988-12-01

    During the last year the large sample STM has been designed, built and used for the observation of several different samples. Calibration of the scanner for prope dimensional interpretation of surface features has been a chief concern, as well as corrections for non-linear effects such as hysteresis during scans. Several procedures used in calibration and correction of piezoelectric scanners used in the laboratorys STMs are described.

  14. Electrochemistry and in situ scanning tunnelling microscopy of pure and redox-marked DNA- and UNA-based oligonucleotides on Au(111)-electrode surfaces

    DEFF Research Database (Denmark)

    Hansen, Allan Glargaard; Salvatore, Princia; Karlsen, K.

    2013-01-01

    We have studied adsorption and electrochemical electron transfer of several 13- and 15-base DNA and UNA (unlocked nucleic acids) oligonucleotides (ONs) linked to Au(111)-electrode surfaces via a 50-C6-SH group using cyclic voltammetry (CV) and scanning tunnelling microscopy in aqueous buffer unde...

  15. Note: Automated electrochemical etching and polishing of silver scanning tunneling microscope tips.

    Science.gov (United States)

    Sasaki, Stephen S; Perdue, Shawn M; Rodriguez Perez, Alejandro; Tallarida, Nicholas; Majors, Julia H; Apkarian, V Ara; Lee, Joonhee

    2013-09-01

    Fabrication of sharp and smooth Ag tips is crucial in optical scanning probe microscope experiments. To ensure reproducible tip profiles, the polishing process is fully automated using a closed-loop laminar flow system to deliver the electrolytic solution to moving electrodes mounted on a motorized translational stage. The repetitive translational motion is controlled precisely on the μm scale with a stepper motor and screw-thread mechanism. The automated setup allows reproducible control over the tip profile and improves smoothness and sharpness of tips (radius 27 ± 18 nm), as measured by ultrafast field emission.

  16. Scanning Tunneling Microscopy study and unusual transport properties of the topological semimetal a-Sn

    Science.gov (United States)

    Ruan, Jiawei

    Weyl semimetals are new states of quantum matter with topological Weyl nodes near Fermi level in the bulk and Fermi arcs at the surface, which are paid a lot attention in recently years. Here#¬we report another topological semimetal a-Sn., which is double Weyl semimetal in the magnetic field and Dirac semimetal in an appropriate in-plane strain. By combing Landau level spectroscopy and quasiparticle interference, we obtain the linear dispersion near the Dirac point within strain while quadratic band dispersion near Γpoint without strain. We also observe the negative longitudinal magnetoresistance (LMR) in both two system, which is caused by chiral anomaly. However ,the LMR profiles of strained a-Sn have a little rise and then descend while the unstrained one drop directly, which is due to the different type of Weyl semimetal and further confirm our prediction.

  17. [Scanning electron microscopic investigations of cutting edge quality in lamellar keratotomy using the Wavelight femtosecond laser (FS-200) : What influence do spot distance and an additional tunnel have?

    Science.gov (United States)

    Hammer, T; Höche, T; Heichel, J

    2018-01-01

    Femtosecond lasers (fs-lasers) are established cutting instruments for the creation of LASIK flaps. Previous studies often showed even rougher surfaces after application of fs-laser systems compared to lamellar keratotomy with mechanical microkeratomes. When cutting the cornea with fs-lasers, an intrastromal gas development occurs, which has a potentially negative influence on the cutting quality if the gas cannot be dissipated; therefore, manufacturers have chosen the way of gas assimilation in so-called pockets. The investigated system creates a tunnel which opens under the conjunctiva. The aim of this study was to investigate the effects of a tunnel as well as the influence of different spot distances on the quality of cut surfaces and edges. In this experimental study on freshly enucleated porcine eyes (n = 15), the following cuts were carried out with the FS-200 (Wavelight, Erlangen, Germany): 1. standard setting (spot and line separation 8 µm), 2. with tunnel for gas drainage, 3. without gas-conducting tunnel, 4. with increased spot spacing (spot and line separation 9 μm instead of 8 μm) and 5. with reduced spot spacing (spot and line separation 7 μm instead of 8 μm). Subsequently, scanning electron microscopy (FEI Quanta 650, Hillsboro, OR) of the cut edges and surfaces as well as the gas drain tunnel were performed. The evaluation was based on an established score. The current fs-laser system (200 Hz) is able to create smooth cutting surfaces and sharp edges. The changed density of laser pulses compared to the standard settings with a reduced or increased distance between the pulses, did not achieve any further improvement in the surface quality. The gas-conducting tunnel could be detected by scanning electron microscope. In the case of cutting without a tunnel, roughened surfaces and irregularities on the cutting edges were found. When the FS-200 fs-laser is used, LASIK cuts with very smooth cut surfaces and sharp cutting

  18. Valence electron energy-loss spectroscopy in monochromated scanning transmission electron microscopy.

    Science.gov (United States)

    Erni, Rolf; Browning, Nigel D

    2005-10-01

    With the development of monochromators for (scanning) transmission electron microscopes, valence electron energy-loss spectroscopy (VEELS) is developing into a unique technique to study the band structure and optical properties of nanoscale materials. This article discusses practical aspects of spatially resolved VEELS performed in scanning transmission mode and the alignments necessary to achieve the current optimum performance of approximately 0.15 eV energy resolution with an electron probe size of approximately 1 nm. In particular, a collection of basic concepts concerning the acquisition process, the optimization of the energy resolution, the spatial resolution and the data processing are provided. A brief study of planar defects in a Y(1)Ba(2)Cu(3)O(7-)(delta) high-temperature superconductor illustrates these concepts and shows what kind of information can be accessed by VEELS.

  19. Scanning tunneling microscopy of sulfur and benzenethiol chemisorbed on Ru(0001) in 0.1 M HClO4.

    Science.gov (United States)

    Yang, Liang-Yueh Ou; Yau, Shueh-lin; Itaya, Kingo

    2004-05-25

    In situ scanning tunneling microscopy (STM) combined with linear sweep voltammetry was used to examine spatial structures of sulfur adatoms (SA) and benzenethiol (BT) molecules adsorbed on an ordered Ru(0001) electrode in 0.1 M HClO4. The Ru(0001) surface, prepared by mechanical polishing and electrochemical reduction at -1.5 V (vs RHE) in 0.1 M HClO4, contained atomically flat terraces with an average width of 20 nm. Cyclic voltammograms obtained with an as-prepared Ru(0001) electrode in 0.1 M HClO4 showed characteristics nearly identical to those of Ru(0001) treated in high vacuum. High-quality STM images were obtained for SA and BT to determine their spatial structures as a function of potential. The structure of the SA adlayer changed from (2 x mean square root of 3)rect to domain walls to (mean square root of 7 x mean square root of 7)R19.1 degrees and then to disordered as the potential was scanned from 0.3 to 0.6 V. In contrast, molecules of BT were arranged in (2 x mean square root of 3)rect between 0.1 and 0.4 V, while they were disordered at all other potentials. Adsorption of BT molecules was predominantly through the sulfur headgroup. Sulfur adatoms and adsorbed BT molecules were stable against anodic polarization up to 1.0 V (vs RHE). These two species were adsorbed so strongly that their desorption did not occur even at the onset potential for the reduction of water in 0.1 M KOH.

  20. A scanning tunneling microscopy study of self-assembled nickel(II) octaethylporphyrin deposited from solutions on HOPG.

    Science.gov (United States)

    Ogunrinde, Ayowale; Hipps, K W; Scudiero, L

    2006-06-20

    The adsorption of nickel(II) octaethylporphyrin (NiOEP) from benzene and chloroform solutions on highly ordered pyrolytic graphite (HOPG) was investigated with a scanning tunneling microscope (STM) operated in ambient conditions. STM images show that NiOEP self-assembles on the graphite surface and that the molecules lie flat and form 2D lattices with spacings of 1.58 +/- 0.03 nm by 1.46 +/- 0.06 nm with a lattice angle of 69 degrees +/- 4 degrees averaged over both solvents. We were unable to eliminate the possibility that one unit cell distance is twice the above-reported distance. The corresponding molecular packing density, 4.5 +/- 0.3 x 10(13) molecules/cm(2), was essentially the same for benzene and chloroform solution deposition. These results differ somewhat from the structure revealed by high-resolution STM images of NiOEP on Au (111). The lack of apparent height (image intensity) in the constant current STM image of the alkane region of alkane-substituted metal porphyrins is attributed to a combination of changes in alkane configuration relative to the ring and associated changes in electronic coupling with HOMO and LUMO.

  1. Cobalt Chemical Vapor Deposition Process on Molybdenite Basal Plane Observed by Ultrahigh-Vacuum Scanning Tunneling Microscopy

    Science.gov (United States)

    Komiyama, Masaharu; Kiyohara, Kohei; Yoda, Eisuke; Kubota, Takeshi; Okamoto, Yasuaki

    2005-07-01

    The processes of high-temperature (473 K) resulfidation and cobalt carbonyl adsorption by chemical vapor deposition (CVD) on a cleaved basal plane of a natural molybdenite (MoS2) single crystal were examined by ultrahigh-vacuum scanning tunneling microscopy (UHV-STM) on the nanometer scale. The resulfided cleaved molybdenite basal plane showed a displacement of upper terraces, and a sinusoidal structure at step edges, both of which may be caused by the electronic effect at the surface. Cobalt carbonyl appeared to be adsorbed at both the S- and Mo-terminated edges, resulting in an agglomeration at the step edges on lower terraces with a width of a few tens of nanometers. When this surface with adsorbed carbonyl was sulfided at 513 K for 1 h, most of the adsorbed carbonyl clusters appeared to be desorbed while a small part were dispersed on the terraces in small clusters of 10-20 nm in size. The obtained results are discussed in terms of the preparation of Co-Mo hydrodesulfurization (HDS) catalysts.

  2. Defect-like structures of graphene on copper foils for strain relief investigated by high-resolution scanning tunneling microscopy.

    Science.gov (United States)

    Zhang, Yanfeng; Gao, Teng; Gao, Yabo; Xie, Shubao; Ji, Qingqing; Yan, Kai; Peng, Hailin; Liu, Zhongfan

    2011-05-24

    Understanding of the continuity and the microscopic structure of as-grown graphene on Cu foils through the chemical vapor deposition (CVD) method is of fundamental significance for optimizing the growth parameters toward high-quality graphene. Because of the corrugated nature of the Cu foil surface, few experimental efforts on this issue have been made so far. We present here a high-resolution scanning tunneling microscopy (STM) study of CVD graphene directly on Cu foils. Our work indicates that graphene can be grown with a perfect continuity extending over both crystalline and noncrystalline regions, highly suggestive of weak graphene-substrate interactions. Due to thermal expansion mismatch, defect-like wrinkles and ripples tend to evolve either along the boundaries of crystalline terraces or on noncrystalline areas for strain relief. Furthermore, the strain effect arising from the conforming of perfect two-dimensional graphene to the highly corrugated surface of Cu foils is found to induce local bonding configuration change of carbon from sp(2) to sp(3), evidenced by the formation of "three-for-six" lattices.

  3. Atomic mechanism for the growth of wafer-scale single-crystal graphene: theoretical perspective and scanning tunneling microscopy investigations

    Science.gov (United States)

    Niu, Tianchao; Zhang, Jialin; Chen, Wei

    2017-12-01

    Chemical vapor deposition (CVD) is the most promising approach for producing low-cost, high-quality, and large area graphene. Revealing the graphene growth mechanism at the atomic-scale is of great importance for realizing single crystal graphene (SCG) over wafer scale. Density functional theoretical (DFT) calculations are playing an increasingly important role in revealing the structure of the most stable carbon species, understanding the evolution processes, and disclosing the active sites. Scanning tunneling microscopy (STM) is a powerful surface characterization tool to illustrate the real space distribution and atomic structures of growth intermediates during the CVD process. Combining them together can provide valuable information to improve the atomically controlled growth of SCG. Starting from a basic concept of the substrate effect on realizing SCG, this review covers the progress made in theoretical investigations on various carbon species during graphene growth on different transition metal substrates, in the STM study of the structural intermediates on transition metal surfaces, and in synthesizing graphene nanoribbons with atomic-precise width and edge structure, ending with a perspective on the future development of 2D materials beyond graphene.

  4. High resolution in situ magneto-optic Kerr effect and scanning tunneling microscopy setup with all optical components in UHV.

    Science.gov (United States)

    Lehnert, A; Buluschek, P; Weiss, N; Giesecke, J; Treier, M; Rusponi, S; Brune, H

    2009-02-01

    A surface magneto-optic Kerr effect (MOKE) setup fully integrated in an ultrahigh vacuum chamber is presented. The system has been designed to combine in situ MOKE and scanning tunneling microscopy. Magnetic fields up to 0.3 T can be applied at any angle in the transverse plane allowing the study of in-plane and out-of-plane magnetization. The setup performance is demonstrated for a continuous film of 0.9 monolayers (ML) Co/Rh(111) with in-plane easy axis and for a superlattice of nanometric double layer Co islands on Au(11,12,12) with out-of-plane easy axis. For Co/Au(11,12,12) we demonstrate that the magnetic anisotropy energies deduced from thermally induced magnetization reversal and from applying a torque onto the magnetization by turning the field are the same. For the presented setup we establish a coverage detection limit of 0.5 ML for transverse and 0.1 ML for polar MOKE. For island superlattices with the density of Co/Au(11,12,12), the latter limit corresponds to islands composed of about 50 atoms. The detection limit can be further reduced when optimizing the MOKE setup for either one of the two Kerr configurations.

  5. Scanning tunneling microscopy of epitaxial YBa2Cu3O7 - x films prepared by thermal plasma flash evaporation method

    Science.gov (United States)

    Hayasaki, Kei; Takamura, Yuzuru; Yamaguchi, Norio; Terashima, Kazuo; Yoshida, Toyonobu

    1997-02-01

    The surface morphology of epitaxial YBa2Cuoverflow="scroll">3O7-x films prepared by thermal plasma flash evaporation was extensively investigated by scanning tunneling microscopy. Under epitaxial film growth conditions with the deposition rate up to 0.42 μm/min, two-dimensional nucleus growth and spiral growth were observed. The main deposition species in this process was found to be the cluster ranging from 0.3 to 9 nm and the size of the cluster influenced the growth mode strongly. Theoretical analysis based on the two-dimensional critical radius revealed that smaller clusters became weakly bonded nuclei resulting in spiral growth and larger clusters became stable nuclei resulting in two-dimensional nucleus growth, which we named two-dimensional cluster nucleus growth. The clusters generated in the plasma boundary layer undoubtedly involve sufficient energy necessary for crystallization and show quite different characteristics from those of the clusters generated in vacuum by adiabatic expansion process. Hence, this process must be named "hot cluster epitaxy.''

  6. Organic matter source discrimination by humic acid characterization: synchronous scan fluorescence spectroscopy and Ferrate(VI).

    Science.gov (United States)

    Horst, Carolyn; Sharma, Virender K; Baum, J Clayton; Sohn, Mary

    2013-02-01

    In this study, seven soil and sedimentary humic acid samples were analyzed by synchronous scan fluorescence (SSF) spectroscopy. The spectra of these humic acids were compared to each other and characterized, based on three major SSF peaks centered at approximately 281, 367 and 470 nm. Intensity ratios were calculated based on these peaks that were used to numerically assist in source discrimination. All humic acid samples were then reacted with Ferrate(VI) and were again analyzed with SSF. Upon the addition of Ferrate(VI) SSF spectra were obtained which more readily differentiated humic acid source. This method will assist geochemists and water management districts in tracing sources of organic matter to receiving water bodies and may aid in the elucidation of the chemical nature of humic acids. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Tunneling spectroscopy of a spiral Luttinger liquid in contact with superconductors

    Science.gov (United States)

    Liu, Dong E.; Levchenko, Alex

    2014-03-01

    One-dimensional wires with Rashba spin-orbit coupling, magnetic field, and strong electron-electron interactions are described by a spiral Luttinger liquid model. We develop a theory to investigate the tunneling density of states into a spiral Luttinger liquid in contact with superconductors at its two ends. This approach provides a way to disentangle the delicate interplay between superconducting correlations and strong electron interactions. If the wire-superconductor boundary is dominated by Andreev reflection, we find that in the vicinity of the interface the zero-bias tunneling anomaly reveals a power law enhancement with the unusual exponent. This zero-bias due to Andreev reflections may coexist and thus mask possible peak due to Majorana bound states. Far away from the interface strong correlations inherent to the Luttinger liquid prevail and restore conventional suppression of the tunneling density of states at the Fermi level, which acquires a Friedel-like oscillatory envelope with the period renormalized by the strength of the interaction. D.E.L. was supported by Michigan State University and in part by ARO through Contract No. W911NF-12-1-0235. A.L. acknowledges support from NSF under Grant No. PHYS-1066293, and the hospitality of the Aspen Center for Physics.

  8. Annular electron energy-loss spectroscopy in the scanning transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Ruben, Gary [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Bosman, Michel [Institute of Materials Research and Engineering, A-STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602 (Singapore); D' Alfonso, Adrian J. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Okunishi, Eiji; Kondo, Yukihito [JEOL Ltd., 1-2, Musashino 3-chome Akishima, Tokyo 196-8558 (Japan); Allen, Leslie J., E-mail: lja@unimelb.edu.au [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia)

    2011-11-15

    We study atomic-resolution annular electron energy-loss spectroscopy (AEELS) in scanning transmission electron microscopy (STEM) imaging with experiments and numerical simulations. In this technique the central part of the bright field disk is blocked by a beam stop, forming an annular entry aperture to the spectrometer. The EELS signal thus arises only from electrons scattered inelastically to angles defined by the aperture. It will be shown that this method is more robust than conventional EELS imaging to variations in specimen thickness and can also provide higher spatial resolution. This raises the possibility of lattice resolution imaging of lighter elements or ionization edges previously considered unsuitable for EELS imaging. -- Highlights: Black-Right-Pointing-Pointer We study annular electron energy-loss spectroscopy (AEELS) in STEM. Black-Right-Pointing-Pointer This is more robust to changes in specimen thickness than conventional EELS. Black-Right-Pointing-Pointer AEELS provides higher spatial resolution than conventional EELS. Black-Right-Pointing-Pointer This raises the possibility of lattice resolution imaging of lighter elements.

  9. Line-scan spatially offset Raman spectroscopy for inspecting subsurface food safety and quality

    Science.gov (United States)

    Qin, Jianwei; Chao, Kuanglin; Kim, Moon S.

    2016-05-01

    This paper presented a method for subsurface food inspection using a newly developed line-scan spatially offset Raman spectroscopy (SORS) technique. A 785 nm laser was used as a Raman excitation source. The line-shape SORS data was collected in a wavenumber range of 0-2815 cm-1 using a detection module consisting of an imaging spectrograph and a CCD camera. A layered sample, which was created by placing a plastic sheet cut from the original container on top of cane sugar, was used to test the capability for subsurface food inspection. A whole set of SORS data was acquired in an offset range of 0-36 mm (two sides of the laser) with a spatial interval of 0.07 mm. Raman spectrum from the cane sugar under the plastic sheet was resolved using self-modeling mixture analysis algorithms, demonstrating the potential of the technique for authenticating foods and ingredients through packaging. The line-scan SORS measurement technique provides a new method for subsurface inspection of food safety and quality.

  10. Scanning elastic scattering spectroscopy detects metastatic breast cancer in sentinel lymph nodes

    Science.gov (United States)

    Austwick, Martin R.; Clark, Benjamin; Mosse, Charles A.; Johnson, Kristie; Chicken, D. Wayne; Somasundaram, Santosh K.; Calabro, Katherine W.; Zhu, Ying; Falzon, Mary; Kocjan, Gabrijela; Fearn, Tom; Bown, Stephen G.; Bigio, Irving J.; Keshtgar, Mohammed R. S.

    2010-07-01

    A novel method for rapidly detecting metastatic breast cancer within excised sentinel lymph node(s) of the axilla is presented. Elastic scattering spectroscopy (ESS) is a point-contact technique that collects broadband optical spectra sensitive to absorption and scattering within the tissue. A statistical discrimination algorithm was generated from a training set of nearly 3000 clinical spectra and used to test clinical spectra collected from an independent set of nodes. Freshly excised nodes were bivalved and mounted under a fiber-optic plate. Stepper motors raster-scanned a fiber-optic probe over the plate to interrogate the node's cut surface, creating a 20×20 grid of spectra. These spectra were analyzed to create a map of cancer risk across the node surface. Rules were developed to convert these maps to a prediction for the presence of cancer in the node. Using these analyses, a leave-one-out cross-validation to optimize discrimination parameters on 128 scanned nodes gave a sensitivity of 69% for detection of clinically relevant metastases (71% for macrometastases) and a specificity of 96%, comparable to literature results for touch imprint cytology, a standard technique for intraoperative diagnosis. ESS has the advantage of not requiring a pathologist to review the tissue sample.

  11. Scanning strategies do not modulate face identification: eye-tracking and near-infrared spectroscopy study.

    Directory of Open Access Journals (Sweden)

    Yosuke Kita

    Full Text Available BACKGROUND: During face identification in humans, facial information is sampled (seeing and handled (processing in ways that are influenced by the kind of facial image type, such as a self-image or an image of another face. However, the relationship between seeing and information processing is seldom considered. In this study, we aimed to reveal this relationship using simultaneous eye-tracking measurements and near-infrared spectroscopy (NIRS in face identification tasks. METHODOLOGY/PRINCIPAL FINDINGS: 22 healthy adult subjects (8 males and 14 females were shown facial morphing movies in which an initial facial image gradually changed into another facial image (that is, the subject's own face was changed to a familiar face. The fixation patterns on facial features were recorded, along with changes in oxyhemoglobin (oxyHb levels in the frontal lobe, while the subjects identified several faces. In the self-face condition (self-face as the initial image, hemodynamic activity around the right inferior frontal gyrus (IFG was significantly greater than in the familiar-face condition. On the other hand, the scanning strategy was similar in almost all conditions with more fixations on the eyes and nose than on other areas. Fixation time on the eye area did not correlate with changes in oxyHb levels, and none of the scanning strategy indices could estimate the hemodynamic changes. CONCLUSIONS/SIGNIFICANCE: We conclude that hemodynamic activity, i.e., the means of processing facial information, is not always modulated by the face-scanning strategy, i.e., the way of seeing, and that the right IFG plays important roles in both self-other facial discrimination and self-evaluation.

  12. The growth of epitaxial iron oxides on platinum (111) as studied by X-ray photoelectron diffraction, scanning tunneling microscopy, and low energy electron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong -Joo [Univ. of California, Berkeley, CA (United States)

    1995-05-01

    Three complementary surface structure probes, x-ray photoelectron diffraction (XPD), scanning tunneling microscopy (STM), and low-energy electron diffraction (LEED) have been combined in a single instrument. This experimental system has been utilized to study the structure and growth mechanisms of iron oxide films on Pt(111); these films were formed by first depositing a single overlayer of Fe with a certain coverage in monolayers (ML`s), and then thermally oxidizing it in an oxygen atmosphere. For films up to ~1 ML in thickness, a bilayer of Fe and O similar to those in FeO(111) is found to form. In agreement with prior studies, STM and LEED show this to be an incommensurate oxide film forming a lateral superlattice with short- and long-range periodicities of ~3.1 Å and ~26.0 Å. XPD in addition shows a topmost oxygen layer to be relaxed inward by -0.6 Å compared to bulk FeO(111), and these are new structural conclusions. The oxygen stacking in the FeO(111) bilayer is dominated by one of two possible binding sites. For thicker iron oxide films from 1.25 ML to 3.0 ML, the growth mode is essentially Stranski-Krastanov: iron oxide islands form on top of the FeO(111) bilayer mentioned above. For iron oxide films of 3.0 ML thickness, x-ray photoelectron spectroscopy (XPS) yields an Fe 2p3/2 binding energy and an Fe:O stoichiometry consistent with the presence of Fe3O4. Our XPD data further prove this overlayer to be Fe3O4(111)-magnetite in two almost equally populated domains with a 180° rotation between them. The structural parameters for this Fe3O4 overlayer generally agree with those of a previous LEED study, except that we find a significant difference in the first Fe-O interplanar spacing. This work demonstrates the considerable benefits to be derived by using this set of complementary surface structure probes in such epitaxial growth studies.

  13. Scale dependency of forest functional diversity assessed using imaging spectroscopy and airborne laser scanning

    Science.gov (United States)

    Schneider, F. D.; Morsdorf, F.; Schmid, B.; Petchey, O. L.; Hueni, A.; Schimel, D.; Schaepman, M. E.

    2016-12-01

    Forest functional traits offer a mechanistic link between ecological processes and community structure and assembly rules. However, measuring functional traits of forests in a continuous and consistent way is particularly difficult due to the complexity of in-situ measurements and geo-referencing. New imaging spectroscopy measurements overcome these limitations allowing to map physiological traits on broad spatial scales. We mapped leaf chlorophyll, carotenoids and leaf water content over 900 ha of temperate mixed forest (Fig. 1a). The selected traits are functionally important because they are indicating the photosynthetic potential of trees, leaf longevity and protection, as well as tree water and drought stress. Spatially continuous measurements on the scale of individual tree crowns allowed to assess functional diversity patterns on a range of ecological extents. We used indexes of functional richness, divergence and evenness to map different aspects of diversity. Fig. 1b shows an example of physiological richness at an extent of 240 m radius. We compared physiological to morphological diversity patterns, derived based on plant area index, canopy height and foliage height diversity. Our results show that patterns of physiological and morphological diversity generally agree, independently measured by airborne imaging spectroscopy and airborne laser scanning, respectively. The occurrence of disturbance areas and mixtures of broadleaf and needle trees were the main drivers of the observed diversity patterns. Spatial patterns at varying extents and richness-area relationships indicated that environmental filtering is the predominant community assembly process. Our results demonstrate the potential for mapping physiological and morphological diversity in a temperate mixed forest between and within species on scales relevant to study community assembly and structure from space and test the corresponding measurement schemes.

  14. Interaction between dry starch and plasticisers glycerol or ethylene glycol, measured by differential scanning calorimetry and solid state NMR spectroscopy

    NARCIS (Netherlands)

    Smits, A.L.M.; Kruiskamp, P.H.; Soest, van J.J.G.; Vliegenthart, J.F.G.

    2003-01-01

    The interaction of crystalline amylose and of crystalline and amorphous amylopectin with the plasticisers glycerol or ethylene glycol in the absence of water was studied, by using differential scanning calorimetry (DSC) and solid state nuclear magnetic resonance (NMR) spectroscopy. Upon heating

  15. Resonant tunneling spectroscopy of valley eigenstates on a donor-quantum dot coupled system

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, T., E-mail: t.kobayashi@unsw.edu.au; Heijden, J. van der; House, M. G.; Hile, S. J.; Asshoff, P.; Simmons, M. Y.; Rogge, S. [Centre for Quantum Computation and Communication Technology, University of New South Wales, Sydney 2052 New South Wales (Australia); Gonzalez-Zalba, M. F. [Hitachi Cambridge Laboratory, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Vinet, M. [Université Grenoble-Alpes and CEA, LETI, MINATEC, 38000 Grenoble (France)

    2016-04-11

    We report on electronic transport measurements through a silicon double quantum dot consisting of a donor and a quantum dot. Transport spectra show resonant tunneling peaks involving different valley states, which illustrate the valley splitting in a quantum dot on a Si/SiO{sub 2} interface. The detailed gate bias dependence of double dot transport allows a first direct observation of the valley splitting in the quantum dot, which is controllable between 160 and 240 μeV with an electric field dependence 1.2 ± 0.2 meV/(MV/m). A large valley splitting is an essential requirement for implementing a physical electron spin qubit in a silicon quantum dot.

  16. Rotational barriers in ammonium hexachlorometallates as studied by NMR, tunneling spectroscopy and ab initio calculations

    DEFF Research Database (Denmark)

    Birczynski, A.; Lalowicz, Z.T.; Lodziana, Zbigniew

    2004-01-01

    potential barrier. It was also observed that TF correlates directly with the lattice constant of a particular compound. This correlation is explained by density-functional theory (DFT). The size of the unit cell is governed by the nature of metal-chlorine interaction, with respect to which the studied......Ammonium hexachlorometallates, (NH4)(2)MCl6 With M = Pd, Pt, Ir, Os, Re, Se, Sn, Te and Pb, comprise a set of compounds with systematically changing properties. The compounds may be ordered according to decreasing tunnelling frequency (TF) of ammonium ions, which is related to the increasing...... compounds can be divided into two subgroups. The group containing d-metals (Pd, Pt, Ir, Os, Re) has stronger covalent M-Cl bond and smaller unit cell. The second category contains p-elements (Se, Sn, Te, Pb), which exhibit larger ionic charges and the larger unit cell. The differences in the electronic...

  17. Modification by H-termination in growth process of titanium silicide on Si(0 0 1)-2 x 1 observed with scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, T., E-mail: d08gd201@ynu.ac.jp [Faculty of Engineering, Yokohama National University, Tokiwadai 79-5, Hodogaya-ku, Yokohama 240-8501 (Japan); Shudo, K.; Sato, K.; Ohno, S.; Nishioka, H.; Iida, T.; Toramaru, M.; Tanaka, M. [Faculty of Engineering, Yokohama National University, Tokiwadai 79-5, Hodogaya-ku, Yokohama 240-8501 (Japan)

    2009-11-30

    Formation processes of titanium silicide on hydrogen-terminated H/Si(0 0 1)-2 x 1 surface are studied at the atomic scale with a scanning tunneling microscopy (STM). Square-shaped nanoislands were observed on the Ti/H/Si(0 0 1) surface after annealed at 873-1073 K. These are the epitaxial nanoislands moderately grown due to the local orientation relationship between C49-TiSi{sub 2} and Si(0 0 1), because passivation by surface hydrogen on Si(0 0 1) suppresses active and complex bond formation of Ti-Si.

  18. Structure determination of the indium induced Si(001)-(4X3) reconstruction by surface x-ray diffraction and scanning tunneling microscopy

    DEFF Research Database (Denmark)

    Bunk, O.; Falkenberg, G.; Seehofer, L.

    1998-01-01

    The indium-induced Si(001)-(4 X 3) reconstruction has been investigated by surface X-ray diffraction (SXRD) measurements with synchrotron radiation and scanning tunneling microscopy (STM). The Patterson function analysis enables us to exclude In dimers as a structural element in this reconstruction....... We present a new structural model which includes 6 In atoms threefold coordinated to Si atoms and 5 displaced Si atoms per unit cell. Relaxations down to the sixth layer were determined. 'Trimers' made up of In-Si-In atoms are a key structural element. (C) 1998 Elsevier Science B.V....

  19. Rigorous numerical modeling of scattering-type scanning near-field optical microscopy and spectroscopy

    Science.gov (United States)

    Chen, Xinzhong; Lo, Chiu Fan Bowen; Zheng, William; Hu, Hai; Dai, Qing; Liu, Mengkun

    2017-11-01

    Over the last decade, scattering-type scanning near-field optical microscopy and spectroscopy have been widely used in nano-photonics and material research due to their fine spatial resolution and broad spectral range. A number of simplified analytical models have been proposed to quantitatively understand the tip-scattered near-field signal. However, a rigorous interpretation of the experimental results is still lacking at this stage. Numerical modelings, on the other hand, are mostly done by simulating the local electric field slightly above the sample surface, which only qualitatively represents the near-field signal rendered by the tip-sample interaction. In this work, we performed a more comprehensive numerical simulation which is based on realistic experimental parameters and signal extraction procedures. By directly comparing to the experiments as well as other simulation efforts, our methods offer a more accurate quantitative description of the near-field signal, paving the way for future studies of complex systems at the nanoscale.

  20. Strong overtones modes in inelastic electron tunneling spectroscopy with cross-conjugated molecules: a prediction from theory.

    Science.gov (United States)

    Lykkebo, Jacob; Gagliardi, Alessio; Pecchia, Alessandro; Solomon, Gemma C

    2013-10-22

    Cross-conjugated molecules are known to exhibit destructive quantum interference, a property that has recently received considerable attention in single-molecule electronics. Destructive quantum interference can be understood as an antiresonance in the elastic transmission near the Fermi energy and leading to suppressed levels of elastic current. In most theoretical studies, only the elastic contributions to the current are taken into account. In this paper, we study the inelastic contributions to the current in cross-conjugated molecules and find that while the inelastic contribution to the current is larger than for molecules without interference, the overall behavior of the molecule is still dominated by the quantum interference feature. Second, an ongoing challenge for single molecule electronics is understanding and controlling the local geometry at the molecule-surface interface. With this in mind, we investigate a spectroscopic method capable of providing insight into these junctions for cross-conjugated molecules: inelastic electron tunneling spectroscopy (IETS). IETS has the advantage that the molecule interface is probed directly by the tunneling current. Previously, it has been thought that overtones are not observable in IETS. Here, overtones are predicted to be strong and, in some cases, the dominant spectroscopic features. We study the origin of the overtones and find that the interference features in these molecules are the key ingredient. The interference feature is a property of the transmission channels of the π system only, and consequently, in the vicinity of the interference feature, the transmission channels of the σ system and the π system become equally transmissive. This allows for scattering between the different transmission channels, which serves as a pathway to bypass the interference feature. A simple model calculation is able to reproduce the results obtained from atomistic calculations, and we use this to interpret these findings.

  1. Theory for Spin Selective Andreev Re ection in Vortex Core of Topological Superconductor: Majorana Zero Modes on Spherical Surface and Application to Spin Polarized Scanning Tunneling Microscope Probe

    Science.gov (United States)

    Zhang, Fu-Chun; Hu, Lun-Hui; Li, Chuang; Xu, Dong-Hui; Zhou, Yi

    Majorana zero modes (MZMs) have been predicted to exist in the topological insulator (TI)/superconductor (SC) heterostructure. Recent spin polarized scanning tunneling microscope(STM) experiment has observed spin-polarization dependence of the zero bias differential tunneling conductance at the center of vortex core. Here we consider a helical electron system described by a Rashba spin orbit coupling Hamiltonian on a spherical surface with a s-wave superconducting pairing due to proximity effect. We examine in-gap excitations of a pair of vortices with one at the north pole and the other at the south pole. While the MZM is not a spin eigenstate, the spin wavefunction of the MZM at the center of the vortex core, r = 0, is parallel to the magnetic field, and the local Andreev reflection of the MZM is spin selective, namely occurs only when the STM tip has the spin polarization parallel to the magnetic field, similar to the case in 1-dimensional nanowire. The total local differential tunneling conductance consists of the normal term proportional to the local density of states and an additional term arising from the Andreev reflection. We apply our theory to examine the recently reported spin-polarized STM experiments and show good agreement with the experiments

  2. Tunneling spectroscopy on grain boundary junctions in electron-doped high-temperature superconductors; Tunnelspektroskopie an Korngrenzenkontakten aus elektronendotierten Hochtemperatur-Supraleitern

    Energy Technology Data Exchange (ETDEWEB)

    Welter, B.

    2007-12-07

    Some methods are developed anf presented, by means of which from experimental tunnel spectra, especially on symmetric SIS contacts, informations about the properties of electrodes and tunnel barriers can be obtained. Especially a procedure for the numerical unfolding of symmetric SIS spectra is proposed. Furthermore a series of models is summarized, which can explain the linear background conductivity observed in many spectra on high-temperature superconductors. The results of resistance measurements on film bridges are presented. Especially different methods for the determination of H{sub c2}(T) respectively H{sub c2}(0) are presented and applied to the experimental data. Finally the results of the tunnel-spectroscopy measurements are shown.

  3. Study of a high critical temperature superconductor through Josephson effect and tunnel spectroscopy; Etude d'un supraconducteur a haute temperature critique par effet Josephson et spectroscopie tunnel

    Energy Technology Data Exchange (ETDEWEB)

    Grison, X

    2000-11-15

    This work, mainly experimental, is dedicated to the study of the Josephson effect and the tunnel spectroscopy of superconducting films. Thin films of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} oriented towards [0,0,1], [1,0,3], [1,1,0] or [1,0,0] axis have been made. The results concerning the [0,0,1] orientation are consistent with an order parameter having a d(x{sup 2}-y{sup 2}) symmetry but with a small component of s symmetry due to the orthorombicity of YBa{sub 2}Cu{sub 3}O{sub 7{delta}}. The results concerning the [1,1,0] orientation show the existence (near (1,1,0)-type surfaces) of an order parameter whose symmetry is d(x{sup 2}-y{sup 2}) {+-} i*s or more likely d(x{sup 2} - y{sup 2}) {+-} i*d(xy). The latter term implies the breaking of the time reversing symmetry. The i*d(xy) component is responsible for the Josephson coupling along the [1,1,0] axis, which means that the coupling is not or is little carried by the Andreev bound states contrarily to recent predictions. It is also shown that Josephson junctions can be fabricated by using ion irradiation. (A.C.)

  4. Investigation of the structural anisotropy in a self-assembling glycinate layer on Cu(100) by scanning tunneling microscopy and density functional theory calculations

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmin, Mikhail [Surface Science Laboratory, Optoelectronics Research Centre, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere (Finland); Ioffe Physical Technical Institute, Russian Academy of Sciences, 26 Polytekhnicheskaya, St Petersburg 194021 (Russian Federation); Lahtonen, Kimmo; Vuori, Leena [Surface Science Laboratory, Optoelectronics Research Centre, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere (Finland); Sánchez-de-Armas, Rocío [Materials Theory Division, Department of Physics and Astronomy, Uppsala University, P.O. Box 516, S75120 Uppsala (Sweden); Hirsimäki, Mika, E-mail: mikahirsi@gmail.com [Surface Science Laboratory, Optoelectronics Research Centre, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere (Finland); Valden, Mika [Surface Science Laboratory, Optoelectronics Research Centre, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere (Finland)

    2017-07-01

    Highlights: • Deprotonation reaction of glycine and self-assembly of glycinate is observed on Cu. • Bias-dependent scanning tunneling microscopy indicates two glycinate geometries. • Density functional theory calculations confirm the two non-identical configurations. • Non-identical adsorption explains the anisotropy in adlayer’s electronic structure. - Abstract: Self-assembling organic molecule-metal interfaces exhibiting free-electron like (FEL) states offers an attractive bottom-up approach to fabricating materials for molecular electronics. Accomplishing this, however, requires detailed understanding of the fundamental driving mechanisms behind the self-assembly process. For instance, it is still unresolved as to why the adsorption of glycine ([NH{sub 2}(CH{sub 2})COOH]) on isotropic Cu(100) single crystal surface leads, via deprotonation and self-assembly, to a glycinate ([NH{sub 2}(CH{sub 2})COO–]) layer that exhibits anisotropic FEL behavior. Here, we report on bias-dependent scanning tunneling microscopy (STM) experiments and density functional theory (DFT) calculations for glycine adsorption on Cu(100) single crystal surface. We find that after physical vapor deposition (PVD) of glycine on Cu(100), glycinate self-assembles into an overlayer exhibiting c(2 × 4) and p(2 × 4) symmetries with non-identical adsorption sites. Our findings underscore the intricacy of electrical conductivity in nanomolecular organic overlayers and the critical role the structural anisotropy at molecule-metal interface plays in the fabrication of materials for molecular electronics.

  5. Differential Scanning Calorimetry and Infrared Spectroscopy Combined with Chemometric Analysis to the Determination of Coffee Adulteration by Corn

    OpenAIRE

    Brondi, Ariadne M.; Torres, Claudia; Garcia, Jerusa S.; Trevisan, Marcello G.

    2017-01-01

    Roasted and ground coffee is targeted by fraudulent addiction of products. In this way the determination of contaminants in coffee has economic and nutritional importance. In this study, the coffee adulteration by corn were detected using DSC (differential scanning calorimetry) and FTIR (Fourier transform infrared spectroscopy) coupled to PCA (principal component analysis), and PLS (partial least squares) models. Three different levels of roasted and ground Coffea arabica L. were used to prep...

  6. Adsorption and deposition of anthraquinone-2-carboxylic acid on alumina studied by inelastic electron tunneling spectroscopy, infrared reflection absorption spectroscopy, X-ray photoelectron spectroscopy, and atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Higo, Morihide [Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065 (Japan)], E-mail: higo@apc.kagoshima-u.ac.jp; Miake, Takeshi; Mitsushio, Masaru; Yoshidome, Toshifumi [Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065 (Japan); Ozono, Yoshihisa [Center for Instrumental analysis, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065 (Japan)

    2008-04-30

    The adsorption state of anthraquinone-2-carboxylic acid (AQ-2-COOH) deposited from acetone solutions (0.01-1.00 mg/ml) on native oxide surfaces of Al films was characterized by inelastic electron tunneling spectroscopy, infrared reflection absorption spectroscopy, and X-ray photoelectron spectroscopy. The oxide was prepared on evaporated Al films at room temperature in an oxygen-dc glow discharge. The morphology of the deposited AQ-2-COOH on the oxide surfaces was observed and analyzed by atomic force microscopy. These surface analyses showed that AQ-2-COOH is adsorbed predominantly as a uniform nanometer-scale film of carboxylate anions on the oxide surfaces deposited from solutions with concentrations lower than or equal to 0.02 mg/ml. It was found that AQ-2-COOH is adsorbed as both a uniform film of anions and as micron-sized particles of neutral molecules with heights of a few tens of nanometers when AQ-2-COOH is deposited from solutions with concentrations higher than 0.02 mg/ml. A comparison of the results obtained by these surface analytical techniques clearly shows the features and advantages of these analytical techniques.

  7. Sample exchange by beam scanning with applications to noncollinear pump-probe spectroscopy at kilohertz repetition rates

    Science.gov (United States)

    Spencer, Austin P.; Hill, Robert J.; Peters, William K.; Baranov, Dmitry; Cho, Byungmoon; Huerta-Viga, Adriana; Carollo, Alexa R.; Curtis, Anna C.; Jonas, David M.

    2017-06-01

    In laser spectroscopy, high photon flux can perturb the sample away from thermal equilibrium, altering its spectroscopic properties. Here, we describe an optical beam scanning apparatus that minimizes repetitive sample excitation while providing shot-to-shot sample exchange for samples such as cryostats, films, and air-tight cuvettes. In this apparatus, the beam crossing point is moved within the focal plane inside the sample by scanning both tilt angles of a flat mirror. A space-filling spiral scan pattern was designed that efficiently utilizes the sample area and mirror scanning bandwidth. Scanning beams along a spiral path is shown to increase the average number of laser shots that can be sampled before a spot on the sample cell is resampled by the laser to ˜1700 (out of the maximum possible 2500 for the sample area and laser spot size) while ensuring minimal shot-to-shot spatial overlap. Both an all-refractive version and an all-reflective version of the apparatus are demonstrated. The beam scanning apparatus does not measurably alter the time delay (less than the 0.4 fs measurement uncertainty), the laser focal spot size (less than the 2 μ m measurement uncertainty), or the beam overlap (less than the 3.3% measurement uncertainty), leading to pump-probe and autocorrelation signal transients that accurately characterize the equilibrium sample.

  8. Design and performance of an ultra-high vacuum scanning tunneling microscope operating at dilution refrigerator temperatures and high magnetic fields

    Science.gov (United States)

    Misra, S.; Zhou, B. B.; Drozdov, I. K.; Seo, J.; Urban, L.; Gyenis, A.; Kingsley, S. C. J.; Jones, H.; Yazdani, A.

    2013-10-01

    We describe the construction and performance of a scanning tunneling microscope capable of taking maps of the tunneling density of states with sub-atomic spatial resolution at dilution refrigerator temperatures and high (14 T) magnetic fields. The fully ultra-high vacuum system features visual access to a two-sample microscope stage at the end of a bottom-loading dilution refrigerator, which facilitates the transfer of in situ prepared tips and samples. The two-sample stage enables location of the best area of the sample under study and extends the experiment lifetime. The successful thermal anchoring of the microscope, described in detail, is confirmed through a base temperature reading of 20 mK, along with a measured electron temperature of 250 mK. Atomically resolved images, along with complementary vibration measurements, are presented to confirm the effectiveness of the vibration isolation scheme in this instrument. Finally, we demonstrate that the microscope is capable of the same level of performance as typical machines with more modest refrigeration by measuring spectroscopic maps at base temperature both at zero field and in an applied magnetic field.

  9. Characterizing low-coordinated atoms at the periphery of MgO-supported Au islands using scanning tunneling microscopy and electronic structure calculations

    Science.gov (United States)

    Lin, Xiao; Nilius, Niklas; Sterrer, Martin; Koskinen, Pekka; Häkkinen, Hannu; Freund, Hans-Joachim

    2010-04-01

    The perimeter of oxide-supported metal particles is suggested to be of pivotal importance for various catalytic processes. To elucidate the underlying effects, the electronic properties of edge and corner atoms of planar Au clusters on MgO/Ag(001) thin films have been analyzed with scanning tunneling microscopy and electronic structure calculations. The low-coordinated perimeter atoms are characterized by a high density of s -derived states at the Fermi level. Those states accommodate transfer electrons from the MgO/Ag substrate, which render the perimeter atoms negatively charged. In contrast, the inner atoms of the island are not affected by the charge transfer and remain neutral. This combination of charge accumulation and high state-density explains the specific relevance of the cluster perimeter in adsorption and reaction processes.

  10. Voltammetry and single-molecule in situ scanning tunneling microscopy of laccases and bilirubin oxidase in electrocatalytic dioxygen reduction on Au(111) single-crystal electrodes

    DEFF Research Database (Denmark)

    Climent, Victor; Zhang, Jingdong; Friis, Esben Peter

    2012-01-01

    to elucidate the catalytic mechanism, where laccase (sub)monolayer voltammetry has been a core approach. In this report, we address voltammetry and electrocatalysis of O2 reduction of (sub)monolayers of several laccases in new ways. These are based on the use of single-crystal, atomically planar bare Au(111......)-electrode surfaces or surfaces modified by thiol-based self-assembled molecular monolayers. These well-defined surfaces enable introducing electrochemical scanning tunneling microscopy directly in aqueous biological media in which the enzymes are operative (in situ STM), to the level of resolution...... of the single enzyme molecule in electrocatalytic action. Enzyme-electrode electronic contact and intramolecular electron transfer triggered by the electrode potential or by O2-substrate binding to the enzyme, followed at the single-molecule level, are the most important observations of this study. © 2011...

  11. Light-modulated scanning tunneling microscopy studied on photoinduced carrier generations at PbI2/perovskite interface of perovskite solar cells

    Science.gov (United States)

    Chiu, Ya-Ping; Shih, Min-Chuan; Li, Shao-Sian; Hsieh, Cheng-Hua; Wang, Ying-Chiao; Yang, Hung-Duen; Chang, Chia-Seng; Chen, Chun-Wei

    Perovskite solar devices based on CH3NH3PbX3 (X = Cl, Br, I) have recently shown tremendous efficiency enhancements up to 20% in photovoltaic applications. The presence of PbI2 in perovskite films has been found to affect the charge carrier transport behaviors and device performance of perovskite solar cells. In this work, we employed the unique ability of light-modulated scanning tunneling microscopy (LM-STM) technique to dircetly reveal the correlation of the nanoscaled compositional distributions and photo-induced interfacial electronic structures at the PbI2/perovskite interface of perovskite grains under light illumination. The result reveals the important role of the optimum PbI2 passivation layers (a thickness less than 20 nm) on the charge separation and recombination at perovskite crystal grains. The unique LM-STM technique demonstartes great potential for application in the future exploring photovoltaic systems.

  12. Iron on GaN(0001) pseudo-1 × 1 (1+1/(12) ) investigated by scanning tunneling microscopy and first-principles theory

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Wenzhi; Mandru, Andrada-Oana; Smith, Arthur R., E-mail: smitha2@ohio.edu [Department of Physics and Astronomy, Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701 (United States); Takeuchi, Noboru [Centro de Nanociencias y Nanotecnologia, Universidad Nacional Autonoma de Mexico Apartado Postal 14, Ensenada Baja California, Codigo Postal 22800 (Mexico); Al-Brithen, Hamad A. H. [Physics and Astronomy Department, King Abdulah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia, and National Center for Nano Technology, KACST, Riyadh (Saudi Arabia)

    2014-04-28

    We have investigated sub-monolayer iron deposition on atomically smooth GaN(0001) pseudo-1 × 1 (1+1/(12) ). The iron is deposited at a substrate temperature of 360 °C, upon which reflection high energy electron diffraction shows a transformation to a √(3)×√(3)-R30° pattern. After cooling to room temperature, the pattern transforms to a 6 × 6, and scanning tunneling microscopy reveals 6 × 6 reconstructed regions decorating the GaN step edges. First-principles theoretical calculations have been carried out for a range of possible structural models, one of the best being a Ga dimer model consisting of 2/9 monolayer of Fe incorporated into 7/3 monolayer of Ga in a relaxed but distorted structure.

  13. The role of dimer formation in the self-assemblies of DNA base molecules on Cu(111) surfaces: A scanning tunneling microscope study

    Science.gov (United States)

    Furukawa, Masashi; Tanaka, Hiroyuki; Kawai, Tomoji

    2001-08-01

    For the purpose of understanding the self-assembly formation mechanism of DNA base molecules, guanine, adenine, cytosine, and thymine molecules were deposited on Cu(111) surfaces, and were observed using a low-temperature (≈80 K) scanning tunneling microscope (STM). Single-molecular-scale STM images revealed that guanine, adenine, and cytosine molecules can form ordered one- and/or two-dimensional unique structures, but thymine molecules, however, randomly aggregate into small clusters. Semiempirical molecular orbital (MO) calculation indicates that there exists predominantly stable dimer structures for the former three molecules, while such phenomena cannot be observed among the possible thymine dimer and even trimer structures. Based on experimental and theoretical results, we have concluded that specific hydrogen-bonded nucleus formation is a decisive process in the two-dimensional self-assembly formation of DNA base molecules on Cu(111) surfaces.

  14. Toward quantitative STM: Scanning tunneling microscopy study of structure and dynamics of adsorbates on transition metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Dunphy, James Christopher [Univ. of California, Berkeley, CA (United States)

    1995-05-01

    STM was applied to chemisorbed S layers on Re(000l) and Mo(100) surfaces. As function of coverage on both these surfaces, S orders into several different overlayer structures, which have been studied by dynamic LEED. STM images of all these structures were obtained. Approximate location of S atoms in the structures was determined by inspecting the images, especially the regions containing defects. Results are in agreement with LEED except for the p(2xl) overlayer of sulfur on Mo(100). The STM images were compared to calculations made with Electron Scattering Quantum Chemistry (ESQC) theory. Variation of contrast in experimental images is explained as a result of changes in STM tip termination structure. STM image contrast is a result of changes in the interference between different paths for the tunneling electrons. The simplest structure on the Mo(100) surface was used as a model for developing and testing a method of quantitative structure determination with the STM. Experimental STM images acquired under a range of tunneling conditions were compared to theoretical calculations of the images as a function of surface structure to determine the structure which best fit. Results matched within approximately 0.1 Angstroms a LEED structural determination. At lower S coverage, diffusion of S atoms over the Re(0001) surface and the lateral interaction between these atoms were investigated by application of a new image analysis technique. The interaction between the S and a coadsorbed CO layer was also studied, and CO was found to induce compression of the S overlayer. A similar result was found for Au deposited on the sulfur covered Mo(100) surface. The interaction between steps on the Mo surface was found to be influenced by S adsorption and this observation was interpreted with the theory of equilibrium crystal shape. Design of an STM instrument which operates at cryogenic and variable sample temperatures, and its future applications, are described.

  15. An endolithic microbial community in dolomite rock in central Switzerland: characterization by reflection spectroscopy, pigment analyses, scanning electron microscopy, and laser scanning microscopy.

    Science.gov (United States)

    Horath, T; Neu, T R; Bachofen, R

    2006-04-01

    A community of endolithic microorganisms dominated by phototrophs was found as a distinct band a few millimeters below the surface of bare exposed dolomite rocks in the Piora Valley in the Alps. Using in situ reflectance spectroscopy, we detected chlorophyll a (Chl a), phycobilins, carotenoids, and an unknown type of bacteriochlorophyll-like pigment absorbing in vivo at about 720 nm. In cross sections, the data indicated a defined distribution of different groups of organisms perpendicular to the rock surface. High-performance liquid chromatography analyses of pigments extracted with organic solvents confirmed the presence of two types of bacteriochlorophylls besides chlorophylls and various carotenoids. Spherical organisms of varying sizes and small filaments were observed in situ with scanning electron microscopy and confocal laser scanning microscopy (one- and two-photon technique). The latter allowed visualization of the distribution of phototrophic microorganisms by the autofluorescence of their pigments within the rock. Coccoid cyanobacteria of various sizes predominated over filamentous ones. Application of fluorescence-labeled lectins demonstrated that most cyanobacteria were embedded in an exopolymeric matrix. Nucleic acid stains revealed a wide distribution of small heterotrophs. Some biological structures emitting a green autofluorescence remain to be identified.

  16. A new approach for heparin standardization: combination of scanning UV spectroscopy, nuclear magnetic resonance and principal component analysis.

    Directory of Open Access Journals (Sweden)

    Marcelo A Lima

    Full Text Available The year 2007 was marked by widespread adverse clinical responses to heparin use, leading to a global recall of potentially affected heparin batches in 2008. Several analytical methods have since been developed to detect impurities in heparin preparations; however, many are costly and dependent on instrumentation with only limited accessibility. A method based on a simple UV-scanning assay, combined with principal component analysis (PCA, was developed to detect impurities, such as glycosaminoglycans, other complex polysaccharides and aromatic compounds, in heparin preparations. Results were confirmed by NMR spectroscopy. This approach provides an additional, sensitive tool to determine heparin purity and safety, even when NMR spectroscopy failed, requiring only standard laboratory equipment and computing facilities.

  17. Strain analysis of plasma CVD graphene for roll-to-roll production by scanning transmission electron microscopy and Raman spectroscopy

    Science.gov (United States)

    Kato, Ryuichi; Koga, Yoshinori; Matsuishi, Kiyoto; Hasegawa, Masataka

    2017-03-01

    The establishment of the roll-to-roll CVD is one of the key factors for realizing the commercial application of graphene. The strain in graphene synthesized by high-throughput plasma CVD using two different conditions related to growth rate and tension to the substrate is analyzed by scanning transmission electron microscopy (STEM) and Raman spectroscopy. The compressive strain generated during the growth by the tension to the substrate and the difference in thermal expansion coefficient between the graphene and the copper substrate is observed, which affects electrical conductivity. It was confirmed by STEM observation that no particularly large strain was accumulated at grain boundaries and their surroundings.

  18. Characterization of gold nanoparticle films: Rutherford backscattering spectroscopy, scanning electron microscopy with image analysis, and atomic force microscopy

    Directory of Open Access Journals (Sweden)

    Pia C. Lansåker

    2014-10-01

    Full Text Available Gold nanoparticle films are of interest in several branches of science and technology, and accurate sample characterization is needed but technically demanding. We prepared such films by DC magnetron sputtering and recorded their mass thickness by Rutherford backscattering spectroscopy. The geometric thickness dg—from the substrate to the tops of the nanoparticles—was obtained by scanning electron microscopy (SEM combined with image analysis as well as by atomic force microscopy (AFM. The various techniques yielded an internally consistent characterization of the films. In particular, very similar results for dg were obtained by SEM with image analysis and by AFM.

  19. Simultaneous differential scanning calorimetry and thermal desorption spectroscopy measurements for the study of the decomposition of metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, J.F.; Cuevas, F.; Sanchez, C. [Univ. Autonoma, Madrid (Spain). Dept de Fisica de Materiales C-IV

    2000-02-28

    An innovative experimental method to investigate the thermal decomposition of metal hydrides is presented. The method is based on an experimental setup composed of a differential scanning calorimeter connected through a capillary tube to a mass spectrometer. The experimental system allows the simultaneous determination of the heat absorbed and the hydrogen evolved from a metal hydride during thermal decomposition. This arrangement constitutes a coupled differential scanning calorimetry (DSC) and thermal desorption spectroscopy (TDS) technique. It has been applied to metal hydride materials to demonstrate the capability of the experimental system. A method to obtain the heat of decomposition of metal hydrides is described. It involves the measurement of an apparent decomposition heat as a function of the carrier gas flow. (orig.)

  20. In-situ spectroscopy of intrinsic Bi2Te3 topological insulator thin films and impact of extrinsic defects

    NARCIS (Netherlands)

    Ngabonziza, Prosper; Heimbuch, Rene; de Jong, N.; Klaassen, R.A.; Stehno, M.P.; Snelder, M.; Solmaz, A.; Ramankutty, S.V.; Frantzeskakis, E.; van Heumen, E.; Koster, Gertjan; Golden, M.S.; Zandvliet, Henricus J.W.; Brinkman, Alexander

    2015-01-01

    Combined in situ x-ray photoemission spectroscopy, scanning tunneling spectroscopy, and angle resolved photoemission spectroscopy of molecular beam epitaxy grown Bi 2 Te 3 on lattice mismatched substrates reveal high quality stoichiometric thin films with topological surface states without a

  1. High resolution scanning of radial strips cut from increment cores by near infrared spectroscopy

    Science.gov (United States)

    P. David Jones; Laurence R. Schimleck; Chi-Leung So; Alexander III Clark; Richard F. Daniels

    2007-01-01

    Near infrared (NIR) spectroscopy provides a rapid method for the determination of wood properties of radial strips. The spatial resolution of the NIR measurements has generally been limited to sections 10 mm wide and as a consequence the estimation of wood properties of individual rings or within rings has not been possible. Many different NIR instruments can be used...

  2. [The developement of the near-field scan optical microscope and near-field spectroscopy].

    Science.gov (United States)

    Li, B; Zhang, S

    1997-08-01

    This paper introduces the basic principles and techniques of the near-field microscope and the status of recent development in the near-field spectroscopy. We also discuss problems facing the analysis of the results of the near-field spectra.

  3. A unifying model for non-adiabatic coupling at metallic surfaces beyond the local harmonic approximation: from vibrational relaxation to scanning tunneling microscopy.

    Science.gov (United States)

    Tremblay, Jean Christophe

    2013-06-28

    A model for treating excitation and relaxation of adsorbates at metallic surfaces induced by non-adiabatic coupling is developed. The derivation is based on the concept of resonant electron transfer, where the adsorbate serves as a molecular bridge for the inelastic transition between an electron source and a sink. In this picture, energy relaxation and scanning tunneling microscopy (STM) at metallic surfaces are treated on an equal footing as a quasi-thermal process. The model goes beyond the local harmonic approximation and allows for an unbiased description of floppy systems with multiple potential wells. Further, the limitation of the product ansatz for the vibronic wave function to include the position-dependence of the non-adiabatic couplings is avoided by explicitly enforcing detailed balance. The theory is applied to the excitation of hydrogen on palladium, which has multiple local potential minima connected by low energy barriers. The main aspects investigated are the lifetimes of adsorbate vibrations in different adsorption sites, as well as the dependence of the excitation, response, and transfer rates on an applied potential bias. The excitation and relaxation simulations reveal intricate population dynamics that depart significantly from the simplistic tunneling model in a truncated harmonic potential. In particular, the population decay from an initially occupied local minimum induced by the contact with an STM tip is found to be better described by a double exponential. The two rates are interpreted as a response to the system perturbation and a transfer rate following the perturbation. The transfer rate is found to obey a power law, as was the case in previous experimental and theoretical work.

  4. Hard X-ray Standing-Wave Photoelectron Spectroscopy Study of Cobalt-Iron-Boron/Magnesium Oxide Magnetic Tunnel Junction Multilayers

    Science.gov (United States)

    Greer, Albert Anthony

    As one key aspect of the area of spin-based electronics or spintronics, the magnetic tunnel junction (MTJ) holds special promise for magnetic memory, and possibly also logic devices. In an MTJ, two ferromagnetic layers are separated by a very thin nonmagnetic insulating layer and the key effect is based on the spin-dependent tunneling of electrons through the insulating layer and is called tunnel magnetoresistance (TMR). Resistance is lower when the two ferromagnetic layers are oriented parallel to one another, and higher when they are anti-parallel. Recent work reveals that MTJs with a Ta/CoFeB/MgO/CoFeB/Ta structure show three optimal characteristics: 1) high thermal stability on the nanoscale, 2) a high TMR ratio, and 3) low switching current for current-induced switching of magnetization across the interface. Studies suggest that B diffusion from the initially amorphous CoFeB layer into the MgO causes CoFeB crystallization such that TMR-increasing perpendicular anisotropy (PMA) arises at the MgO/CoFeB interface. Furthermore, the TMR ratio is likewise regulated by B diffusion into the Ta layer. Scientists are currently exploring the structure/properties relationships of these buried interfaces in magnetic nanostructures. One effective method for probing the composition, structure, and properties of buried layers is the newly-developed technique of standing-wave, hard x-ray photoelectron spectroscopy or SW-HAXPES. In this method, a standing wave is generated by Bragg reflection from a synthetic multilayer mirror upon which the sample is deposited. This standing wave can be scanned vertically through the sample by varying the incidence angle around the Bragg angle, giving a rocking curve (RC) scan. Using SW-HAXPES, we studied the B distribution in a Ta/Co0.2Fe0.6B0.2/MgO sample. We obtained hard x-ray standing-wave data, as well as conventional variable takeoff angle XPS (angle-resolved XPS or ARXPS) data at SPring-8 in Japan, as well as complimentary soft x

  5. Local X-ray magnetic circular dichroism study of Fe/Cu(111) using a tunneling smart tip

    Energy Technology Data Exchange (ETDEWEB)

    DiLullo, Andrew; Shirato, Nozomi; Cummings, Marvin [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Kersell, Heath; Chang, Hao [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Ohio University, Athens, OH 45701 (United States); Rosenmann, Daniel; Miller, Dean; Freeland, John W. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Hla, Saw-Wai [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Ohio University, Athens, OH 45701 (United States); Rose, Volker, E-mail: vrose@anl.gov [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2016-01-28

    A tunneling smart tip of a synchrotron X-ray scanning tunneling microscope provides simultaneously localized topographic, elemental and magnetic information. Localized spectroscopy with simultaneous topographic, elemental and magnetic information is presented. A synchrotron X-ray scanning tunneling microscope has been employed for the local study of the X-ray magnetic circular dichroism at the Fe L{sub 2,3}-edges of a thin iron film grown on Cu(111). Polarization-dependent X-ray absorption spectra have been obtained through a tunneling smart tip that serves as a photoelectron detector. In contrast to conventional spin-polarized scanning tunneling microscopy, X-ray excitations provide magnetic contrast even with a non-magnetic tip. Intensity variations in the photoexcited tip current point to chemical variations within a single magnetic Fe domain.

  6. Spatially-resolved tunneling spectroscopy on Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Hubler, U. [Basel Univ. (Switzerland). Inst. fuer Physik; Jess, P. [Basel Univ. (Switzerland). Inst. fuer Physik; Behler, S. [Basel Univ. (Switzerland). Inst. fuer Physik; Lang, H.P. [Basel Univ. (Switzerland). Inst. fuer Physik; Guentherodt, H.J. [Basel Univ. (Switzerland). Inst. fuer Physik

    1995-12-01

    The superconducting energy gap {Delta} of the high temperature superconductor Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} is determined using a home-built high vacuum low temperature scanning tunneling microscope. From numerically derived dI/dV spectra acquired at different locations on the surface gap values of {Delta} = 31 {+-} 5 meV are obtained (Dynes fit). Other dI/dV curves show a V-shaped background suggesting a contamination layer present on the sample surface. (orig.)

  7. Multielement flame emission spectroscopy using a scanning Fabry--Perot interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Korba, G.A.

    1978-04-01

    A system for multielement flame emission analysis based on a scanning Fabry-Perot interferometer is described and evaluated. Detection limits and linearity of response for ten elements commonly determined by flame photometry compare favorably to conventional single-element methods. Analyses for several elements in tap water, serum, urine, NBS SRM 1571 orchard leaves and low alloy steel demonstrate the excellent accuracy and precision of the technique. Resolution of the system allows up to five elements to be determined simultaneously.

  8. Tunneling spectroscopy of a germanium quantum dot in single-hole transistors with self-aligned electrodes

    Science.gov (United States)

    Chen, Gwong-Liang; Kuo, David M. T.; Lai, Wai-Ting; Li, Pei-Wen

    2007-11-01

    We have fabricated a Ge quantum dot (QD) (~10 nm) single-hole transistor with self-aligned electrodes using thermal oxidation of a SiGe-on-insulator nanowire based on FinFET technology. This fabricated device exhibits clear Coulomb blockade oscillations with large peak-to-valley ratio (PVCR) of 250-750 and negative differential conductance with PVCR of ~12 at room temperature. This reveals that the gate-induced tunneling barrier lowering is effectively suppressed due to the self-aligned electrode structure. The magnitude of tunneling current spectra also reveals the coupling strengths between the energy levels of the Ge QD and electrodes.

  9. Open Source Scanning Probe Microscopy Control Software Package Gxsm

    Energy Technology Data Exchange (ETDEWEB)

    Zahl P.; Wagner, T.; Moller, R.; Klust, A.

    2009-08-10

    Gxsm is a full featured and modern scanning probe microscopy (SPM) software. It can be used for powerful multidimensional image/data processing, analysis, and visualization. Connected toan instrument, it is operating many different avors of SPM, e.g., scanning tunneling microscopy(STM) and atomic force microscopy (AFM) or in general two-dimensional multi channel data acquisition instruments. The Gxsm core can handle different data types, e.g., integer and oating point numbers. An easily extendable plug-in architecture provides many image analysis and manipulation functions. A digital signal processor (DSP) subsystem runs the feedback loop, generates the scanning signals and acquires the data during SPM measurements. The programmable Gxsm vector probe engine performs virtually any thinkable spectroscopy and manipulation task, such as scanning tunneling spectroscopy (STS) or tip formation. The Gxsm software is released under the GNU general public license (GPL) and can be obtained via the Internet.

  10. Laser-Combined Scanning Tunneling Microscopy on the Carrier Dynamics in Low-Temperature-Grown GaAs/AlGaAs/GaAs

    Directory of Open Access Journals (Sweden)

    Yasuhiko Terada

    2011-01-01

    Full Text Available We investigated carrier recombination dynamics in a low-temperature-grown GaAs (LT-GaAs/AlGaAs/GaAs heterostructure by laser-combined scanning tunneling microscopy, shaken-pulse-pair-excited STM (SPPX-STM. With the AlGaAs interlayer as a barrier against the flow of photocarriers, recombination lifetimes in LT-GaAs of 4.0 ps and GaAs of 4.8 ns were successfully observed separately. We directly demonstrated the high temporal resolution of SPPX-STM by showing the recombination lifetime of carriers in LT-GaAs (4.0 ps in the range of subpicosecond temporal resolution. In the carrier-lifetime-mapping measurement, a blurring of recombination lifetime up to 50 nm was observed at the LT-GaAs/AlGaAs boundary, which was discussed in consideration of the screening length of the electric field from the STM probe. The effect of the built-in potential on the signal, caused by the existence of LT-GaAs/AlGaAs/GaAs boundaries, was discussed in detail.

  11. ALL-IN-ONE LASER SCANNING METHODS FOR SURVEYING, REPRESENTING AND SHARING INFORMATION ON ARCHAEOLOGY. VIA FLAMINIA AND THE FURLO TUNNEL COMPLEX

    Directory of Open Access Journals (Sweden)

    P. Clini

    2013-07-01

    Full Text Available The aim of this paper is to describe the results of the laser scanner survey of an archaeological complex, aimed at knowledge, documentation and diagnostic operations to make premises secure. Archaeology has always been the most complex subject where the discipline of surveying is continually being put to the test and experimented with. The development in laser scanner technologies has led to an extremely important turning point in this field. Complex geometrical shapes or irregular surfaces, such as those in archaeology, are defined through surfaces that can be directly extrapolated from the point cloud with extremely high precision, allowing even the finest details to be mapped. The precision of this surveying technique together with the wide range of data that can be acquired and represented provide several opportunities for communication and investigation. This experimental work has concentrated on the Furlo tunnel complex, located along one of the most important infrastructural arteries from Roman antiquity, the Via Flaminia. The need in this case was to be able to acquire the entire rocky complex, extending the scan area as far as possible so as to assess the whole system in its entirety. The results of our metric and morphological survey provide an excellent basis for record the situation as it is today, so as to establish the initial temporal step to be used in future monitoring programmes. The accuracy of the survey allows static assessments and effective planning for future safety-oriented projects.

  12. Ultra-high vacuum scanning tunnelling microscopy investigation of free radical adsorption to the Si(111)-7 x 7 surface

    Energy Technology Data Exchange (ETDEWEB)

    Guisinger, Nathan P; Elder, Shaun P; Yoder, Nathan L; Hersam, Mark C [Materials Science and Engineering Department, Northwestern University, 2220 Campus Drive, Evanston, IL 60208-3108 (United States)

    2007-01-31

    Room-temperature ultra-high vacuum (UHV) scanning tunnelling microscopy (STM) has been employed to investigate free radical chemistry on the Si(111)-7 x 7 surface with atomic-scale spatial resolution. In particular, due to its single-site binding mechanism and extensive previous study on the Si(100)-2 x 1 surface, the nitroxyl free radical 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) was explored. UHV STM imaging of isolated molecules revealed that TEMPO covalently reacts with adatom dangling bonds with high affinity. By monitoring TEMPO adsorption as a function of surface coverage, TEMPO was also found to preferentially bind to centre adatom sites at the initial stages of adsorption. On the other hand, as the surface coverage increased, TEMPO molecules adsorbed to centre adatoms and corner adatoms approached a ratio of 1:1. At all surface coverage levels, TEMPO showed minimal preference for binding to either the faulted or unfaulted half of the unit cell. Consequently, upon saturation, the TEMPO adlayer exhibited long-range ordering and preserved the underlying 7 x 7 surface reconstruction. This study provides fundamental insight into free radical surface chemistry and suggests a direct pathway for forming nearly perfectly ordered organic adlayers on the Si(111)-7 x 7 surface.

  13. Spatially Resolved Imaging on Photocarrier Generations and Band Alignments at Perovskite/PbI2 Heterointerfaces of Perovskite Solar Cells by Light-Modulated Scanning Tunneling Microscopy.

    Science.gov (United States)

    Shih, Min-Chuan; Li, Shao-Sian; Hsieh, Cheng-Hua; Wang, Ying-Chiao; Yang, Hung-Duen; Chiu, Ya-Ping; Chang, Chia-Seng; Chen, Chun-Wei

    2017-02-08

    The presence of the PbI2 passivation layers at perovskite crystal grains has been found to considerably affect the charge carrier transport behaviors and device performance of perovskite solar cells. This work demonstrates the application of a novel light-modulated scanning tunneling microscopy (LM-STM) technique to reveal the interfacial electronic structures at the heterointerfaces between CH3NH3PbI3 perovskite crystals and PbI2 passivation layers of individual perovskite grains under light illumination. Most importantly, this technique enabled the first observation of spatially resolved mapping images of photoinduced interfacial band bending of valence bands and conduction bands and the photogenerated electron and hole carriers at the heterointerfaces of perovskite crystal grains. By systematically exploring the interfacial electronic structures of individual perovskite grains, enhanced charge separation and reduced back recombination were observed when an optimal design of interfacial PbI2 passivation layers consisting of a thickness less than 20 nm at perovskite crystal grains was applied.

  14. Scanning tunneling microscopy and density functional theory investigations on molecular self-assembly of graphene on Ru(0 0 0 1)

    Science.gov (United States)

    Song, Junjie; Zhang, Han-jie; Zhang, Yuxi; Cai, Yiliang; Bao, Shining; He, Pimo

    2016-03-01

    Investigations on the bottom-up fabrication of graphene with 1,3,5-triphenylbenzene as precursor on Ru(0 0 0 1) was carried out using scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. Upon annealing 1,3,5-triphenylbenzene overlayer on Ru(0 0 0 1) at 550 °C, the precursors dehydrogenated and coalesced into graphitized flakes, and subsequent annealing up to 600 °C results in complete graphene conversion. The migration behavior and close-packing morphology of precursors were captured during STM measurements, and DFT calculations indicated that the inter-molecular interaction is responsible for the accumulation and close-packing of the precursors. The noticeable increment in the dehydrogenation barrier from 1.27 eV for monomer adsorption to 1.62 eV for dimer adsorption is well consistent with the observed drastic reduction of the graphitization temperature at lower precursor coverage, suggesting the crucial influence of inter-molecular vdW interaction on the dehydrogenation process.

  15. Atomistic study of comblike structure on the MoO2/Mo(110) surface by scanning tunneling microscopy and density functional theory calculations

    Science.gov (United States)

    Okada, Arifumi; Hara, Shinsuke; Yoshimura, Masamichi

    2017-09-01

    The origin of comblike step formation, which was previously observed in the initial oxidation stage of the Mo(110) surface, was investigated by comparing between scanning tunneling microscopy (STM) observations and ab initio density functional theory (DFT) calculations. The comblike steps were obtained by the formation and evaporation of cluster arrays during oxidation and thermal treatment. On the terraces surrounding the comblike steps formed by the evaporation of clusters, a characteristic “overstripe” pattern was found. On the basis of this pattern, it is assumed that a reliable unit cell with MoO2(010) placed on Mo(110) with in-plane rotation can be constructed and ab initio structural relaxations can be performed. The calculations included “small” model calculations for investigating stable interfacial oxygen sites and “large” model calculations for simulating STM images, and calculation results were compared with experimental results. The simulated STM images show good agreement with the experimental observations, indicating the relevance of the large model. From these analyses, it is pointed out that the local stresses on molybdenum in the oxide layer were important for the comblike step formation.

  16. Development of apertureless near-field scanning optical microscope tips for tip-enhanced Raman spectroscopy.

    Science.gov (United States)

    Kodama, T; Umezawa, T; Watanabe, S; Ohtani, H

    2008-02-01

    In this study, we suggested two types of novel metallized tip for the apertureless near-field scanning optical microscope probe. The first is a silver nanorod immobilized tip and the other is a double metallized probe. We calculated the electric field enhancement factor and the electric field distribution of a single sphere, aggregated spheres, an ellipse and a nanorod by the finite-differential time-domain method to improve the silver nanosphere immobilized tip developed in our previous studies. The enhanced field of the nanorod is localized at the external surfaces. The simulation results of the nanorod revealed that the position of the maximum peak is shifted to a longer wavelength and that its electric field enhancement factor increases as the aspect ratio increases. Thus, we developed the silver nanorod immobilized tip, and the tip-enhanced Raman spectrum of rhodamine 6G molecule on the substrate could be measured by the tip though it could not be detected by the previous nanosphere immobilized tip. Further, the finite-differential time-domain calculation predicted that the double metallized tips considerably enhance the electric field and that its enhancement factor in the longer wavelength region (500-600 nm) does not decrease when the tip is rounded. The results show that the proposed metallized tips were useful for the apertureless near-field scanning optical microscope system.

  17. Combined Differential scanning calorimetry, Raman and Brillouin spectroscopies: A multiscale approach for materials investigation.

    Science.gov (United States)

    Veber, A; Cicconi, M R; Reinfelder, H; de Ligny, D

    2018-01-15

    A new experimental setup combining DSC, Raman and Brillouin spectroscopies was developed. In order to estimate its accuracy and stability a study of silicon and the alpha-beta quartz phase transition were performed. The data obtained demonstrated good agreement with previous studies using these three different techniques. For quartz, the temperature behavior of its 147 cm-1 Raman mode was studied in detail. Using a two-phonon coupling treatment of the Raman band, we show for the first time that its behavior can be well described by Landau theory of first-order phase transitions. The combined DSC-Raman-Brillouin technique is a powerful tool for material science capable of studying thermal, structural and elastic properties simultaneously. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Reconstruction of confocal micro-X-ray fluorescence spectroscopy depth scans obtained with a laboratory setup.

    Science.gov (United States)

    Mantouvalou, Ioanna; Wolff, Timo; Seim, Christian; Stoytschew, Valentin; Malzer, Wolfgang; Kanngiesser, Birgit

    2014-10-07

    Depth profiling with confocal micro-X-ray fluorescence spectroscopy (confocal micro-XRF) is a nondestructive analytical method for obtaining elemental depth profiles in the micrometer region. Up until now, the quantitative reconstruction of thicknesses and elemental concentration of stratified samples has been only possible with monochromatic, thus, synchrotron radiation. In this work, we present a new calibration and reconstruction procedure, which renders quantification in the laboratory feasible. The proposed model uses the approximation of an effective spot size of the optic in the excitation channel and relies on the calibration of the transmission of this lens beforehand. Calibration issues are discussed and validation measurements on thick multielement reference material and a stratified system are presented.

  19. A study of internal oxidation in carburized steels by glow discharge optical emission spectroscopy and scanning electron microscopy

    CERN Document Server

    An, X; Rainforth, W M; Chen, L

    2003-01-01

    The internal oxidation of Cr-Mn carburizing steel was studied. Internal oxidation was induced using a commercial carburizing process. Sputter erosion coupled with glow discharge optical emission spectroscopy (GDOES) was used to determine the depth profile elemental distribution within the internal oxidation layer (<10 mu m). In addition, scanning electron microscopy (SEM) equipped with energy dispersive spectrometer (EDS) studies were carried out on selected sputter eroded surfaces. Oxide type was identified primarily by transmission electron microscopy (TEM). The carburized surface was found to consist of a continuous oxide layer, followed by a complex internal oxidation layer, where Cr and Mn oxides were found to populate grain boundaries in a globular form in the near surface region. At greater depths (5-10 mu m), Si oxides formed as a grain boundary network. The internal oxides (mainly complex oxides) grew quickly during the initial stages of the carburizing process (2 h, 800 deg. C+3 h, 930 deg. C). G...

  20. Composition measurement in substitutionally disordered materials by atomic resolution energy dispersive X-ray spectroscopy in scanning transmission electron microscopy.

    Science.gov (United States)

    Chen, Z; Taplin, D J; Weyland, M; Allen, L J; Findlay, S D

    2017-05-01

    The increasing use of energy dispersive X-ray spectroscopy in atomic resolution scanning transmission electron microscopy invites the question of whether its success in precision composition determination at lower magnifications can be replicated in the atomic resolution regime. In this paper, we explore, through simulation, the prospects for composition measurement via the model system of AlxGa1-xAs, discussing the approximations used in the modelling, the variability in the signal due to changes in configuration at constant composition, and the ability to distinguish between different compositions. Results are presented in such a way that the number of X-ray counts, and thus the expected variation due to counting statistics, can be gauged for a range of operating conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. High-energy-resolution monochromator for aberration-corrected scanning transmission electron microscopy/electron energy-loss spectroscopy.

    Science.gov (United States)

    Krivanek, Ondrej L; Ursin, Jonathan P; Bacon, Neil J; Corbin, George J; Dellby, Niklas; Hrncirik, Petr; Murfitt, Matthew F; Own, Christopher S; Szilagyi, Zoltan S

    2009-09-28

    An all-magnetic monochromator/spectrometer system for sub-30 meV energy-resolution electron energy-loss spectroscopy in the scanning transmission electron microscope is described. It will link the energy being selected by the monochromator to the energy being analysed by the spectrometer, without resorting to decelerating the electron beam. This will allow it to attain spectral energy stability comparable to systems using monochromators and spectrometers that are raised to near the high voltage of the instrument. It will also be able to correct the chromatic aberration of the probe-forming column. It should be able to provide variable energy resolution down to approximately 10 meV and spatial resolution less than 1 A.

  2. Chemometric processing of pharmaceutical essential oil fingerprints -- comparison of GC, HPLC, TLC, IR spectroscopy, and differential scanning calorimetry.

    Science.gov (United States)

    Pietraś, Rafal; Skibiński, Robert; Trebacz, Hanna; Gumieniczek, Anna

    2012-01-01

    Fifteen essential oils of pharmaceutical grade were fingerprinted by five techniques: TLC, GC, HPLC, attenuated total reflectance FTIR spectroscopy, and differential scanning calorimetry (DSC). Denoising and baseline removal was found to be a crucial step for correct comparative analysis. Standardization of the signal was not necessary in the presented case; however, it should be considered and checked in each case. Due to small variance explained by first two principal components (below 50%) and outlying observations, the main analysis was performed by Euclidean dendrograms. It was found that almost all techniques besides DSC find real chemical similarities; however, DSC can be used as an additional tool. The similarities among the five techniques were also compared and discussed.

  3. Applications of aberration corrected scanning transmission electron microscopy and electron energy loss spectroscopy to thin oxide films and interfaces.

    Energy Technology Data Exchange (ETDEWEB)

    Varela del Arco, Maria [ORNL; Gazquez Alabart, Jaume [ORNL; Lupini, Andrew R [ORNL; Luck, Julia T [ORNL; Torija, Maria [University of Minnesota; Sharma, M [University of Minnesota; Leighton, chris [University of Minnesota; Biegalski, Michael D [ORNL; Christen, Hans M [ORNL; Murfitt, Matt [Nion Co; Dellby, Niklas [ORNL; Krivanek, Ondrej [ORNL; Pennycook, Stephen J [ORNL

    2010-01-01

    Aberration correction in the scanning transmission electron microscope allows spatial resolutions of the order of one ngstr m to be routinely achieved. When combined with electron energy loss spectroscopy, it is possible to simultaneously map the structure, the chemistry and even the electronic properties of materials in one single experiment. Here we will apply these techniques to the characterization of thin films and interfaces based on complex oxides with the perovskite structure. The relatively large lattice parameter of these materials combined with the fact that most of them have absorption edges within the reach of the spectrometer optics makes these materials ideal for these experiments. We will show how it is possible to map the chemistry of interfaces atomic plane by atomic plane, including light element imaging such as O. Applications to cobaltite and titanate thin films will be described.

  4. Uranium aerosols at a nuclear fuel fabrication plant: Characterization using scanning electron microscopy and energy dispersive X-ray spectroscopy

    Science.gov (United States)

    Hansson, E.; Pettersson, H. B. L.; Fortin, C.; Eriksson, M.

    2017-05-01

    Detailed aerosol knowledge is essential in numerous applications, including risk assessment in nuclear industry. Cascade impactor sampling of uranium aerosols in the breathing zone of nuclear operators was carried out at a nuclear fuel fabrication plant. Collected aerosols were evaluated using scanning electron microscopy and energy dispersive X-ray spectroscopy. Imaging revealed remarkable variations in aerosol morphology at the different workshops, and a presence of very large particles (up to ≅ 100 × 50 μm2) in the operator breathing zone. Characteristic X-ray analysis showed varying uranium weight percentages of aerosols and, frequently, traces of nitrogen, fluorine and iron. The analysis method, in combination with cascade impactor sampling, can be a powerful tool for characterization of aerosols. The uranium aerosol source term for risk assessment in nuclear fuel fabrication appears to be highly complex.

  5. Fast photodynamics of azobenzene probed by scanning excited-state potential energy surfaces using slow spectroscopy.

    Science.gov (United States)

    Tan, Eric M M; Amirjalayer, Saeed; Smolarek, Szymon; Vdovin, Alexander; Zerbetto, Francesco; Buma, Wybren Jan

    2015-01-06

    Azobenzene, a versatile and polymorphic molecule, has been extensively and successfully used for photoswitching applications. The debate over its photoisomerization mechanism leveraged on the computational scrutiny with ever-increasing levels of theory. However, the most resolved absorption spectrum for the transition to S1(nπ*) has not followed the computational advances and is more than half a century old. Here, using jet-cooled molecular beam and multiphoton ionization techniques we report the first high-resolution spectra of S1(nπ*) and S2(ππ*). The photophysical characterization reveals directly the structural changes upon excitation and the timescales of dynamical processes. For S1(nπ*), we find that changes in the hybridization of the nitrogen atoms are the driving force that triggers isomerization. In combination with quantum chemical calculations we conclude that photoisomerization occurs along an inversion-assisted torsional pathway with a barrier of ~2 kcal mol(-1). This methodology can be extended to photoresponsive molecular systems so far deemed non-accessible to high-resolution spectroscopy.

  6. Identification of quantum dots labeled metallothionein by fast scanning laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Konecna, Marie [Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno (Czech Republic); Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno (Czech Republic); Novotny, Karel [Central European Institute of Technology, Masaryk University, Kamenice 753/5, CZ-625 00 Brno (Czech Republic); Krizkova, Sona [Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno (Czech Republic); Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno (Czech Republic); Blazkova, Iva [Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno (Czech Republic); Kopel, Pavel [Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno (Czech Republic); Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno (Czech Republic); Kaiser, Jozef [Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno (Czech Republic); Institute of Physical Engineering, Brno University of Technology, Technicka 2, CZ-616 69 Brno (Czech Republic); Hodek, Petr [Department of Biochemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, CZ-128 00 Prague,Czech Republic (Czech Republic); Kizek, Rene [Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno (Czech Republic); Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno (Czech Republic); and others

    2014-11-01

    The technique described in this paper allows detection of quantum dots (QDs) specifically deposited on the polystyrene surface by laser-induced breakdown spectroscopy (LIBS). Using LIBS, the distribution of QDs or their conjugates with biomolecules deposited on the surface can be observed, regardless of the fact if they exhibit fluorescence or not. QDs deposited on the specific surface of polystyrene microplate in the form of spots are detected by determination of the metal included in the QDs structure. Cd-containing QDs (CdS, CdTe) stabilized with mercaptopropionic (MPA) or mercaptosuccinic (MSA) acid, respectively, alone or in the form of conjugates with metallothionein (MT) biomolecule are determined by using the 508.58 nm Cd emission line. The observed absolute detection limit for Cd in CdTe QDs conjugates with MT in one spot was 3 ng Cd. Due to the high sensitivity of this technique, the immunoanalysis in combination with LIBS was also investigated. Cd spatial distribution in sandwich immunoassay was detected. - Highlights: • We describe determination of biomolecules labeled with quantum dots by LIBS. • LIBS and immunoassay are applied for the determination of metallothionein. • Metallothionein amount detected by LIBS is 10-times lower compared to ELISA.

  7. Study of Polymer Material Aging by Laser Mass Spectrometry, UV-Visible Spectroscopy, and Environmental Scanning Electron Microscopy

    Directory of Open Access Journals (Sweden)

    Junien Exposito

    2007-01-01

    Full Text Available Dyed natural rubber (NR and styrene butadiene rubber (SBR, designed for outdoor applications, were exposed to an accelerated artificial aging in xenon light. The aging results in the deterioration of the exposed surface material properties. The ability of dyed polymers to withstand prolonged sunlight exposure without fading or undergoing any physical deterioration is largely determined not only by the photochemical characteristics of the absorbing dyestuff itself but also by the polymer structure and fillers. Results obtained by laser mass spectrometry, UV-visible spectroscopy, and environmental scanning electron microscopy indicate that dyed filled NR and SBR samples behave differently during the photo-oxidation. The fading of the dyed polymers was found to be promoted in the NR sample. This can be correlated with LDI-FTICRMS results, which show the absence of [M-H]− orange pigment pseudomolecular ion and also its fragment ions after aging. This is confirmed by both EDX and UV/Vis spectroscopy. EDX analysis indicates a concentration of chlorine atoms, which can be considered as a marker of orange pigment or its degradation products, only at the surface of SBR flooring after aging. Reactivity of radicals formed during flooring aging has been studied and seems to greatly affect the behavior of such organic pigments.

  8. Near-field scanning magneto-optical spectroscopy of Wigner molecules

    Energy Technology Data Exchange (ETDEWEB)

    Mintairov, A. M., E-mail: amintair@nd.edu; Rouvimov, S. [University of Notre Dame, Notre Dame, IN 46556 (United States); Ioffe Physical-Technical Institute of the Russian Academy of Sciences, Saint Petersburg, 194021 (Russian Federation); Kapaldo, J. [University of Notre Dame, Notre Dame, IN 46556 (United States); Merz, J. L.; Kalyygniy, N.; Mintairov, S. A.; Nekrasov, S.; Saly, R.; Vlasov, A. S. [Ioffe Physical-Technical Institute of the Russian Academy of Sciences, Saint Petersburg, 194021 (Russian Federation); Blundell, S. [SPSMS, UMR-E CEA/UJF-Grenoble 1, INAC, Grenoble, FR-38054 (France)

    2016-06-17

    We study the emission spectra of single self-organized InP/GaInP QDs (size 100-220 nm) using high-spatial-resolution, low-temperature (5 K) near-field scanning optical microscope (NSOM) operating at magnetic field strength B=0-10 T. The dots contain up to twenty electrons and represent natural Wigner molecules (WM). We observed vibronic-type shake-up structure in single electron QDs manifesting formation of two electron (2e) WM in photo-excited state. We found that relative intensities of the shake-up components described well by vibronic Frank-Condon factors giving for dots having parabolic confinement energy ħω{sub 0}=1.2-4 meV molecule bond lengths 40-140 nm. We used measurements of magnetic-field-induced shifts to distinguish emission of 2e-WM and singly charged exciton (trion). We also observed magnetic-field-induced molecular-droplet transition for two electron dot, emitting through doubly charge exciton (tetron) at zero magnetic field.

  9. High-bandwidth scanned-wavelength-modulation spectroscopy sensors for temperature and H2O in a rotating detonation engine

    Science.gov (United States)

    Goldenstein, Christopher S.; Almodóvar, Christopher A.; Jeffries, Jay B.; Hanson, Ronald K.; Brophy, Christopher M.

    2014-10-01

    The design and use of two-color tunable diode laser (TDL) absorption sensors for measurements of temperature and H2O in a rotating detonation engine (RDE) are presented. Both sensors used first-harmonic-normalized scanned-wavelength-modulation spectroscopy with second-harmonic detection (scanned-WMS-2f/1f) to account for non-absorbing transmission losses and emission encountered in the harsh combustion environment. One sensor used two near-infrared (NIR) TDLs near 1391.7 nm and 1469.3 nm that were modulated at 225 kHz and 285 kHz, respectively, and sinusoidally scanned across the peak of their respective H2O absorption transitions to provide a measurement rate of 50 kHz and a detection limit in the RDE of 0.2% H2O by mole. The other sensor used two mid-infrared (MIR) TDLs near 2551 nm and 2482 nm that were modulated at 90 kHz and 112 kHz, respectively, and sinusoidally scanned across the peak of their respective H2O transitions to provide a measurement rate of 10 kHz and a detection limit in the RDE of 0.02% H2O by mole. Four H2O absorption transitions with different lower-state energies were used to assess the homogeneity of temperature in the measurement plane. Experimentally derived spectroscopic parameters that enable temperature and H2O sensing to within 1.5-3.5% of known values are reported. The sensor design enabling the high-bandwidth scanned-WMS-2f/1f measurements is presented. The two sensors were deployed across two orthogonal and coplanar lines-of-sight (LOS) located in the throat of a converging-diverging nozzle at the RDE combustor exit. Measurements in the non-premixed H2-fueled RDE indicate that the temperature and H2O oscillate at the detonation frequency (≈3.25 kHz) and that production of H2O is a weak function of global equivalence ratio.

  10. Conductance mechanism in a linear non-conjugated trimethylsilyl-acetylene molecule: tunneling through localized states

    NARCIS (Netherlands)

    Petrov, E.G.; Marchenko, A.; Kapitanchuk, O.; Katsonis, Nathalie Hélène; Fichou, D.

    2014-01-01

    The conductance properties of 1,3-(trimethylsilyl)-1-tridecene-6,12-diyne, a non-conjugated trimethylsil-acetylene molecule have been investigated both experimentally and theoretically. Based on scanning tunnelling spectroscopy experiments, a discussion on the mechanisms controlling the charge

  11. Morphology, Spatial Distribution, and Concentration of Flame Retardants in Consumer Products and Environmental Dusts using Scanning Electron Microscopy and Raman Micro-spectroscopy

    OpenAIRE

    Wagner, Jeff; Ghosal, Sutapa; WHITEHEAD, TODD; Metayer, Catherine

    2013-01-01

    We characterized flame retardant (FR) morphologies and spatial distributions in 7 consumer products and 7 environmental dusts to determine their implications for transfer mechanisms, human exposure, and the reproducibility of gas chromatography-mass spectrometry (GC-MS) dust measurements. We characterized individual particles using scanning electron microscopy / energy dispersive x-ray spectroscopy (SEM/EDS) and Raman micro-spectroscopy (RMS). Samples were screened for the presence of 3 FR co...

  12. Formation and structure of p-nitrobenzoic acid adlayer on Au(111) surface in HClO4 investigated by in-situ scanning tunneling microscopy.

    Science.gov (United States)

    Yang, Liu; Chen, Ting; Wang, Dong; Wan, Li-Jun

    2011-06-01

    The adsorption and adlayer structure of p-nitrobenzoic acid (pNBA) on a Au(111) surface in 0.1 M HCIO4 are investigated by in-situ scanning tunneling microscopy (STM) and cyclic voltammetry. The pNBA adlayer is prepared by dipping Au(111) into a saturated pNBA aqueous solution. The cyclic voltammogram (CV) of the so-prepared Au(111) electrode shows an irreversible cathodic peak at 0.24 V, which corresponds to the electro-reduction reaction from pNBA to hydroxylamine, and a pair of reversible peaks at ca. 0.7 V, corresponding to redox reaction of hydroxylamine to nitrosobenzoic acid. STM is employed to investigate the pNBA adlayer structure. The molecules form ordered adlayers in (16 x 2 square root of 3), (7 x 4 square root of 3) and (9 x 6 square root of 3) structures at the double layer potential region. High resolution STM image reveals the details of the molecular arrangement in the adlayers. On the basis of the STM image and the chemical structure of pNBA, structural models for three adlayers are proposed. In all three structures, pNBA molecules adsorb perpendicularly with the carboxylic groups contacting with the Au(111) substrate. The effect of dipping time on the adlayer formation is investigated. Upon shifting the electrode potentials in negative direction to induce the electroreduction reaction, the bright dots corresponding to the molecular aggregations start emerging on the surface and selectively locate at the elbow position along Au(111) reconstruction lines. The results provide direct evidence for the adsorption and electrochemical behavior of nitro-benzene derivatives.

  13. Scanning Tunneling Microscopy Studies of Charge Density Waves in NbSe2 and muSR studies of Nickel doping in BaFe2As 2

    Science.gov (United States)

    Arguello Ortiz, Carlos Jose

    Scanning Tunneling Microscopy is a very powerful technique to study electronic properties of condensed matter systems at the nanoscale. Part I of this thesis describes my work on Charge Density Waves (CDW) in NbSe2. NbSe2 is a layered dichalcogenide that has a CDW phase below 33K. We describe our study of the phase transition from the normal phase to the CDW phase at atomic scales. This is more relevant in light of recent discoveries of charge order in cuprates. Brand new research has shed some light about the relationship between the pseudogap phase, charge order and superconductivity in cuprates. The behavior of the CDW phase in NbSe 2 described in chapter 3 is strongly reminiscent of this physics of cuprates. NbSe2 is an excellent test bed for the study of the effect of impurities in correlated phases. In chapter 4 we revisit the cause of CDW formation in NbSe2. By including a very dilute concentration of impurities, we obtain information of the electronic bands of the material in the CDW phase. Based on this information, we are able to discuss the relationship between nesting, electron-phonon coupling and CDW in NbSe2. We demonstrate that by combining quasiparticle interference data with additional knowledge of the quasiparticle band structure from angle resolved photoemission measurements, one can extract the wavevector and energy dependence of the important electronic scattering processes. Part II focuses on Muon Spin Rotation and its application to the study of high-Tc superconductors. We describe our muSR studies on Nickel doped BaFe 2As2. By analyzing several doping concentrations, we explore the phase diagram in the antiferromagnetic and in the superconducting phases. This discussion also includes a detailed discussion of a doping concentration which falls in-between the AF and the SC phase.

  14. Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, Hal

    1968-01-01

    This booklet discusses spectroscopy, the study of absorption of radiation by matter, including X-ray, gamma-ray, microwave, mass spectroscopy, as well as others. Spectroscopy has produced more fundamental information to the study of the detailed structure of matter than any other tools.

  15. Spectroscopy

    CERN Document Server

    Walker, S

    1976-01-01

    The three volumes of Spectroscopy constitute the one comprehensive text available on the principles, practice and applications of spectroscopy. By giving full accounts of those spectroscopic techniques only recently introduced into student courses - such as Mössbauer spectroscopy and photoelectron spectroscopy - in addition to those techniques long recognised as being essential in chemistry teaching - sucha as e.s.r. and infrared spectroscopy - the book caters for the complete requirements of undergraduate students and at the same time provides a sound introduction to special topics for graduate students.

  16. Atomically Thin Al2O3 Films for Tunnel Junctions

    Science.gov (United States)

    Wilt, Jamie; Gong, Youpin; Gong, Ming; Su, Feifan; Xu, Huikai; Sakidja, Ridwan; Elliot, Alan; Lu, Rongtao; Zhao, Shiping; Han, Siyuan; Wu, Judy Z.

    2017-06-01

    Metal-insulator-metal tunnel junctions are common throughout the microelectronics industry. The industry standard AlOx tunnel barrier, formed through oxygen diffusion into an Al wetting layer, is plagued by internal defects and pinholes which prevent the realization of atomically thin barriers demanded for enhanced quantum coherence. In this work, we employ in situ scanning tunneling spectroscopy along with molecular-dynamics simulations to understand and control the growth of atomically thin Al2O3 tunnel barriers using atomic-layer deposition. We find that a carefully tuned initial H2O pulse hydroxylated the Al surface and enabled the creation of an atomically thin Al2O3 tunnel barrier with a high-quality M -I interface and a significantly enhanced barrier height compared to thermal AlOx . These properties, corroborated by fabricated Josephson junctions, show that atomic-layer deposition Al2O3 is a dense, leak-free tunnel barrier with a low defect density which can be a key component for the next generation of metal-insulator-metal tunnel junctions.

  17. Biodegradability screening of soil amendments through coupling of wavelength-scanned cavity ring-down spectroscopy to multiple dynamic chambers.

    Science.gov (United States)

    Bai, Mo; Köstler, Martin; Kunstmann, Jürgen; Wilske, Burkhard; Gattinger, Andreas; Frede, Hans-Georg; Breuer, Lutz

    2011-12-30

    A system was developed for the automatic measurements of ¹³CO₂ efflux to determine biodegradation of extra carbon amendments to soils. The system combines wavelength-scanned cavity ring down laser spectroscopy (WS-CRDS) with the open-dynamic chamber (ODC) method. The WS-CRDS instrument and a batch of 24 ODC are coupled via microprocessor-controlled valves. Determination of the biodegradation requires a known δ¹³C value and the applied mass of the carbon compounds, and the biodegradation is calculated based on the ¹³CO₂ mixing ratio (ppm) sampled from the headspace of the chambers. The WS-CRDS system provided accurate detection based on parallel samples of three standard gases (¹³CO₂ of 2, 11 and 22 ppm) that were measured simultaneously by isotope ratio mass spectrometry (linear regression R² = 0.99). Repeated checking with the same standards showed that the WS-CRDS system showed no drift over seven months.The applicability of the ODC was checked against the closed static chamber (CSC) method using the rapid biodegradation of cane sugar-δ¹³C-labeled through C4 photosynthesis. There was no significant difference between the results from 7-min ODC and 120-min CSC measurements. Further, a test using samples of either cane sugar (C4) or beetroot sugar (C3) mixed into standard soil proved the target functionality of the system, which is to identify the biodegradation of carbon sources with significantly different isotopic signatures.

  18. Design and Performance of a TES X-ray Microcalorimeter Array for Energy Dispersive Spectroscopy on Scanning Transmission Electron Microscope

    Science.gov (United States)

    Muramatsu, Haruka; Nagayoshi, K.; Hayashi, T.; Sakai, K.; Yamamoto, R.; Mitsuda, K.; Yamasaki, N. Y.; Maehata, K.; Hara, T.

    2016-07-01

    We discuss the design and performance of a transition edge sensor (TES) X-ray microcalorimeter array for scanning transmission electron microscope (STEM)-energy dispersive X-ray spectroscopy (EDS). The TES X-ray microcalorimeter has better energy resolution compared to conventional silicon drift detector and STEM-EDS utilizing a TES detector makes it possible to map the distribution of elements on a specimen in addition to analyze the composition. The requirement for a TES detector is a high counting rate (>20 kcps), wide energy band (0.5-15 keV) and good energy resolution (<10 eV) full width at half maximum. The major improvement of this development is to increase the maximum counting rate. In order to accommodate the high counting rate, we adopted an 8 × 8 format, 64-pixel array and common biasing scheme for the readout method. We did all design and fabrication of the device in house. With the device we have fabricated most recently, the pulse decay time is 40 \\upmu s which is expected to achieve 50 kcps. For a single pixel, the measured energy resolution was 7.8 eV at 5.9 keV. This device satisfies the requirements of counting rate and energy resolution, although several issues remain where the performance must be confirmed.

  19. Lipid Diffusion in Supported Lipid Bilayers: A Comparison between Line-Scanning Fluorescence Correlation Spectroscopy and Single-Particle Tracking

    Directory of Open Access Journals (Sweden)

    Markus Rose

    2015-11-01

    Full Text Available Diffusion in lipid membranes is an essential component of many cellular process and fluorescence a method of choice to study membrane dynamics. The goal of this work was to directly compare two common fluorescence methods, line-scanning fluorescence correlation spectroscopy and single-particle tracking, to observe the diffusion of a fluorescent lipophilic dye, DiD, in a complex five-component mitochondria-like solid-supported lipid bilayer. We measured diffusion coefficients of \\(D_{\\text{FCS}} \\sim\\ 3 \\(μ\\text{m}^2\\cdot\\text{s}^{-1}\\ and \\(D_{\\text{SPT}} \\sim\\ 2 \\( μ\\text{m}^2\\cdot\\text{s}^{-1}\\, respectively. These comparable, yet statistically different values are used to highlight the main message of the paper, namely that the two considered methods give access to distinctly different dynamic ranges: \\(D \\gtrsim\\ 1 \\(μ\\text{m}^2\\cdot\\text{s}^{-1}\\ for FCS and \\(D \\lesssim\\ 5 \\(μ\\text{m}^2\\cdot\\text{s}^{-1}\\ for SPT (with standard imaging conditions. In the context of membrane diffusion, this means that FCS allows studying lipid diffusion in fluid membranes, as well as the diffusion of loosely-bound proteins hovering above the membrane. SPT, on the other hand, is ideal to study the motions of membrane-inserted proteins, especially those presenting different conformations, but only allows studying lipid diffusion in relatively viscous membranes, such as supported lipid bilayers and cell membranes.

  20. From the tunneling dimer to the onset of microsolvation: Infrared spectroscopy of allyl radical water aggregates in helium nanodroplets

    Science.gov (United States)

    Leicht, Daniel; Kaufmann, Matin; Pal, Nitish; Schwaab, Gerhard; Havenith, Martina

    2017-03-01

    The infrared spectrum of allyl:water clusters embedded in helium nanodroplets was recorded. Allyl radicals were produced by flash vacuum pyrolysis and trapped in helium droplets. Deuterated water was added to the doped droplets, and the infrared spectrum of the radical water aggregates was recorded in the frequency range 2570-2820 cm-1. Several absorption bands are observed and assigned to 1:1 and 1:2 allyl:D2O clusters, based on pressure dependent measurements and accompanying quantum chemical calculations. The analysis of the 1:1 cluster spectrum revealed a tunneling splitting as well as a combination band. For the 1:2 cluster, we observe a water dimer-like motif that is bound by one π-hydrogen bond to the allyl radical.

  1. Hot-Electron Tunneling sensors for high-resolution x-ray and gamma-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mears, C.A.; Labov, S.E.; Frank, M.; Netel, H.

    1997-02-07

    Over the past 2 years, we have been studying the use of Hot Electron Tunneling sensors for use in high-energy-resolution x-ray and gamma-ray spectrometers. These sensors promise several advantages over existing cryogenic sensors, including simultaneous high count rate and high resolution capability, and relative ease of use. Using simple shadow mask lithography, we verified the basic principles of operation of these devices and discovered new physics in their thermal behavior as a function applied voltage bias. We also began to develop ways to use this new sensor in practical x-ray and gamma-ray detectors based on superconducting absorbers. This requires the use of quasiparticle trapping to concentrate the signal in the sensing elements.

  2. Spectroscopic Imaging Scanning Tunneling Microscopy Studies of Electronic Structure in the Superconducting and Pseudogap Phases of Cuprate High-Tc Superconductors

    Science.gov (United States)

    Fujita, Kazuhiro; Schmidt, Andrew R.; Kim, Eun-Ah; Lawler, Michael J.; Lee, Dung Hai; Davis, J. C.; Eisaki, Hiroshi; Uchida, Shin-ichi

    2012-01-01

    One of the key motivations for the development of atomically resolved spectroscopic imaging scanning tunneling microscopy (SI-STM) has been to probe the electronic structure of cuprate high temperature superconductors. In both the d-wave superconducting (dSC) and the pseudogap (PG) phases of underdoped cuprates, two distinct classes of electronic states are observed using SI-STM. The first class consists of the dispersive Bogoliubov quasiparticles of a homogeneous d-wave superconductor. These are detected below a lower energy scale |E|=Δ0 and only upon a momentum space (k-space) arc which terminates near the lines connecting k=±(π/a0,0) to k=±(0,π/a0). Below optimal doping, this ``nodal'' arc shrinks continuously with decreasing hole density. In both the dSC and PG phases, the only broken symmetries detected in the |E|≤Δ0 states are those of a d-wave superconductor. The second class of states occurs at energies near the pseudogap energy scale |E|˜ Δ1 which is associated conventionally with the ``antinodal'' states near k=±(π/a0,0) and k=±(0,π/a0). We find that these states break the expected 90°-rotational (C4) symmetry of electronic structure within CuO2 unit cells, at least down to 180°-rotational (C2) symmetry (nematic) but in a spatially disordered fashion. This intra-unit-cell C4 symmetry breaking coexists at |E|˜Δ1 with incommensurate conductance modulations locally breaking both rotational and translational symmetries (smectic). The characteristic wavevector Q of the latter is determined, empirically, by the k-space points where Bogoliubov quasiparticle interference terminates, and therefore evolves continuously with doping. The properties of these two classes of |E|˜Δ1 states are indistinguishable in the dSC and PG phases. To explain this segregation of k-space into the two regimes distinguished by the symmetries of their electronic states and their energy scales |E|˜Δ1 and |E|≤Δ0, and to understand how this impacts the electronic

  3. Scanning Tunneling Microscopy and X-Ray Diffraction of Charge Density Wave Materials and the Rubidium Isotope Effect in Superconducting RUBIDIUM(3)CARBON(60)

    Science.gov (United States)

    Burk, Brian D.

    We image the surfaces of K_ {0.3}MoO_3 and Rb_{0.3}MoO_3 with scanning tunneling microscopy (STM) above and below the charge density wave (CDW) transition temperature (T_ p). Surprisingly, below T_ p real space and Fourier transformed images show no evidence of CDW modulation, suggesting a relatively small CDW amplitude at the sample surface. Furthermore, the lattice images that we obtained below T_ p are unaffected by the sliding of the CDW. With STM and x-ray diffraction we investigate the CDW domain structure of 1T-TaS_2 in the nearly commensurate (NC), triclinic (T), and incommensurate (I) phases. Fourier transformed STM images of the NC phase show fine satellite structure surrounding CDW peaks. The satellite structure confirms that the apparent domain-like modulation seen in real space images results from a true domain structure rather than from a moire pattern. STM images of the T phase indicate a surface striped domain pattern that is contrary to the previously reported stretched -honeycomb domain structure for the crystal bulk. In the T phase our x-ray diffraction measurements of CDW wave vectors and examination of fine satellite structure surrounding CDW peaks conclusively demonstrate that the bulk domain pattern is striped. We find that the bulk and surface domain structures are identical. X-ray diffraction of the I phase reveals weak satellites near CDW peaks. The satellite structure indicates a short wavelength, periodic amplitude and phase modulation of the CDW in a case where the CDW is far from commensurability. We measure the resistive superconducting transition temperature in C_{60} single crystals intercalated with isotopically pure ^{87}Rb and ^{85 }Rb and with natural abundance rubidium. We obtain a rubidium isotope effect exponent of alpha_{Rb} = -0.028 +/- 0.036, a result which implies that the Rb-C_ {60} optic phonons play at most a minor role in the pairing mechanism of Rb_3C _{60}..

  4. Atomic and Electronic Structure of Quantum Dots Measured with Scanning Probe Techniques

    NARCIS (Netherlands)

    Sun, Z.|info:eu-repo/dai/nl/314075674

    2012-01-01

    This thesis deals with low temperature scanning tunneling microscopy/spectroscopy and atomic force microscopy (LT-STM/STS and AFM) studies on colloidal semiconductor and graphene quantum dots (g-QDs). These nanostructures are interesting because they show tunable electrical and optical properties

  5. Handbook of Applied Solid State Spectroscopy

    CERN Document Server

    Vij, D. R

    2006-01-01

    Solid-State spectroscopy is a burgeoning field with applications in many branches of science, including physics, chemistry, biosciences, surface science, and materials science. Handbook of Applied Solid-State Spectroscopy brings together in one volume information about various spectroscopic techniques that is currently scattered in the literature of these disciplines. This concise yet comprehensive volume covers theory and applications of a broad range of spectroscopies, including NMR, NQR, EPR/ESR, ENDOR, scanning tunneling, acoustic resonance, FTIR, auger electron emission, x-ray photoelectron emission, luminescence, and optical polarization, and more. Emphasis is placed on fundamentals and current methods and procedures, together with the latest applications and developments in the field.

  6. Effects of industrial noise on circumpulpar dentin - a field emission scanning electron microscopy and energy dispersive spectroscopy analysis

    Science.gov (United States)

    Cavacas, Maria Alzira; Tavares, Vitor; Oliveira, Maria João; Oliveira, Pedro; Sezinando, Ana; Martins dos Santos, José

    2013-01-01

    Chronic exposure to Industrial Noise (IN), rich in Low Frequency Noise (LFN), causes systemic fibrotic transformation and sustained stress. Dental wear, significantly increased with exposure to LFN, affects the teeth particularly through the circumpulpar dentin. Our goal is to understand the consequences of IN exposure on the circumpulpar dentin of Wistar rats. 10 Wistar rats were exposed to IN for 4 months, according to an occupationally simulated time schedule and 10 animals were used as age-matched controls. The first and the second upper and lower molars of each animal were processed for observation by Field Emission Scanning Electron Microscopy (FESEM) and Energy Dispersive Spectroscopy (EDS) analysis was performed. In exposed animals FESEM showed a 2.0 to 6.0 μm-dense mineral band between dentin and the pulp with no regular continuity with the tubules. This structure had a few tubules where the odontoblasts processes could be observed embedded within the band and collagen fibers were trapped inside. EDS analysis revealed that it was hydroxyapatite similar to dentin, with a higher carbon content. FESEM results show that the band may be tertiary reparative dentin formed by odontoblast-like cells, but the increased amount of carbon (EDS) could mean that it is sclerotic dentin. IN should be acknowledge as a strong stimulus, able to cause an injury to odontoblasts and to the formation of reparative tertiary dentin, in a process that may accelerate the aging of the teeth, either by direct impact of acoustic pressure pulsations or by increased stress and dental wear. PMID:24294356

  7. Effects of industrial noise on circumpulpar dentin--a field emission scanning electron microscopy and energy dispersive spectroscopy analysis.

    Science.gov (United States)

    Cavacas, Maria Alzira; Tavares, Vitor; Oliveira, Maria João; Oliveira, Pedro; Sezinando, Ana; Martins dos Santos, José

    2013-01-01

    Chronic exposure to Industrial Noise (IN), rich in Low Frequency Noise (LFN), causes systemic fibrotic transformation and sustained stress. Dental wear, significantly increased with exposure to LFN, affects the teeth particularly through the circumpulpar dentin. Our goal is to understand the consequences of IN exposure on the circumpulpar dentin of Wistar rats. 10 Wistar rats were exposed to IN for 4 months, according to an occupationally simulated time schedule and 10 animals were used as age-matched controls. The first and the second upper and lower molars of each animal were processed for observation by Field Emission Scanning Electron Microscopy (FESEM) and Energy Dispersive Spectroscopy (EDS) analysis was performed. In exposed animals FESEM showed a 2.0 to 6.0 μm-dense mineral band between dentin and the pulp with no regular continuity with the tubules. This structure had a few tubules where the odontoblasts processes could be observed embedded within the band and collagen fibers were trapped inside. EDS analysis revealed that it was hydroxyapatite similar to dentin, with a higher carbon content. FESEM results show that the band may be tertiary reparative dentin formed by odontoblast-like cells, but the increased amount of carbon (EDS) could mean that it is sclerotic dentin. IN should be acknowledge as a strong stimulus, able to cause an injury to odontoblasts and to the formation of reparative tertiary dentin, in a process that may accelerate the aging of the teeth, either by direct impact of acoustic pressure pulsations or by increased stress and dental wear.

  8. Spectroscopy

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    This introductory booklet covers the basics of molecular spectroscopy, infrared and Raman methods, instrumental considerations, symmetry analysis of molecules, group theory and selection rules, as well as assignments of fundamental vibrational modes in molecules.......This introductory booklet covers the basics of molecular spectroscopy, infrared and Raman methods, instrumental considerations, symmetry analysis of molecules, group theory and selection rules, as well as assignments of fundamental vibrational modes in molecules....

  9. Submolecular resolution by variation of the inelastic electron tunneling spectroscopy amplitude and its relation to the AFM/STM signal

    Czech Academy of Sciences Publication Activity Database

    de la Torre Cerdeño, Bruno; Švec, Martin; Foti, Giuseppe; Krejčí, Ondřej; Hapala, Prokop; Garcia-Lekue, A.; Frederiksen, T.; Zbořil, R.; Arnau, A.; Vázquez, Héctor; Jelínek, Pavel

    2017-01-01

    Roč. 119, č. 16 (2017), s. 1-6, č. článku 166001. ISSN 0031-9007 R&D Projects: GA ČR GA15-19672S; GA ČR GJ17-24210Y Grant - others:AV ČR(CZ) Praemium Academiae Institutional support: RVO:68378271 Keywords : noncontact atomic force microscopy * first principles calculations * density functional theory * nonequilibrium Green's function * scanning probe microsco Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 8.462, year: 2016

  10. Intensity-Stabilized Fast-Scanned Direct Absorption Spectroscopy Instrumentation Based on a Distributed Feedback Laser with Detection Sensitivity down to 4 × 10−6

    Directory of Open Access Journals (Sweden)

    Gang Zhao

    2016-09-01

    Full Text Available A novel, intensity-stabilized, fast-scanned, direct absorption spectroscopy (IS-FS-DAS instrumentation, based on a distributed feedback (DFB diode laser, is developed. A fiber-coupled polarization rotator and a fiber-coupled polarizer are used to stabilize the intensity of the laser, which significantly reduces its relative intensity noise (RIN. The influence of white noise is reduced by fast scanning over the spectral feature (at 1 kHz, followed by averaging. By combining these two noise-reducing techniques, it is demonstrated that direct absorption spectroscopy (DAS can be swiftly performed down to a limit of detection (LOD (1σ of 4 × 10−6, which opens up a number of new applications.

  11. Short tunnels.

    NARCIS (Netherlands)

    Schreuder, D.A.

    1965-01-01

    Before dealing with the question of lighting short tunnels, it is necessary define what is meant by a tunnel and when it should be called 'short'. Confined to motorized road traffic the following is the most apt definition of a tunnel: every form of roofing-over a road section, irrespective of it

  12. Time-resolved photoelectron spectroscopy of a dinuclear Pt(II) complex: Tunneling autodetachment from both singlet and triplet excited states of a molecular dianion

    Energy Technology Data Exchange (ETDEWEB)

    Winghart, Marc-Oliver, E-mail: marc-oliver.winghart@kit.edu; Unterreiner, Andreas-Neil [Institute of Physical Chemistry, Karlsruhe Institute of Technology, P.O. Box 6980, 76049 Karlsruhe (Germany); Yang, Ji-Ping [Institute of Physical Chemistry, Karlsruhe Institute of Technology, P.O. Box 6980, 76049 Karlsruhe (Germany); School of Sciences, Hefei University of Technology, Hefei 230009 (China); Vonderach, Matthias [Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB (United Kingdom); Huang, Dao-Ling; Wang, Lai-Sheng [Department of Chemistry, Brown University, Providence, Rhode Island 02912 (United States); Kruppa, Sebastian; Riehn, Christoph [Fachbereich Chemie und Landesforschungszentrum OPTIMAS, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 52–54, 67663 Kaiserslautern (Germany); Kappes, Manfred M., E-mail: manfred.kappes@kit.edu [Institute of Physical Chemistry, Karlsruhe Institute of Technology, P.O. Box 6980, 76049 Karlsruhe (Germany); Institute of Nanotechnology, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe (Germany)

    2016-02-07

    Time-resolved pump-probe photoelectron spectroscopy has been used to study the relaxation dynamics of gaseous [Pt{sub 2}(μ-P{sub 2}O{sub 5}H{sub 2}){sub 4} + 2H]{sup 2−} after population of its first singlet excited state by 388 nm femtosecond laser irradiation. In contrast to the fluorescence and phosphorescence observed in condensed phase, a significant fraction of the photoexcited isolated dianions decays by electron loss to form the corresponding monoanions. Our transient photoelectron data reveal an ultrafast decay of the initially excited singlet {sup 1}A{sub 2u} state and concomitant rise in population of the triplet {sup 3}A{sub 2u} state, via sub-picosecond intersystem crossing (ISC). We find that both of the electronically excited states are metastably bound behind a repulsive Coulomb barrier and can decay via delayed autodetachment to yield electrons with characteristic kinetic energies. While excited state tunneling detachment (ESETD) from the singlet {sup 1}A{sub 2u} state takes only a few picoseconds, ESETD from the triplet {sup 3}A{sub 2u} state is much slower and proceeds on a time scale of hundreds of nanoseconds. The ISC rate in the gas phase is significantly higher than in solution, which can be rationalized in terms of changes to the energy dissipation mechanism in the absence of solvent molecules. [Pt{sub 2}(μ-P{sub 2}O{sub 5}H{sub 2}){sub 4} + 2H]{sup 2−} is the first example of a photoexcited multianion for which ESETD has been observed following ISC.

  13. Structural investigations on nanoemulsions, solid lipid nanoparticles and nanostructured lipid carriers by cryo-field emission scanning electron microscopy and Raman spectroscopy.

    Science.gov (United States)

    Saupe, Anne; Gordon, Keith C; Rades, Thomas

    2006-05-11

    Recently, colloidal dispersions based on solid lipids (solid lipid nanoparticles, SLN) and mixtures of solid and liquid lipids (nanostructured lipid carriers, NLC) were described as innovative carrier systems. A spherical particle shape is the basis of features such as a high loading capacity and controlled drug release characteristics due to smaller lipid-water interfaces and longer diffusion pathways when compared to thin platelets. The structures of SLN and the influence of oil load (NLC) on particle properties were investigated by photon correlation spectroscopy (PCS), laser diffractometry (LD), cryo-field emission scanning electron microscopy (cryo-FESEM), Raman spectroscopy and infrared spectroscopy (IR), and compared to a conventional nanoemulsion. PCS and LD data show similar size and size distribution for SLN and NLC (approximately 210 nm, polydispersity index approximately 0.15) and suggested a long term physical stability for the dispersions which had been stored for up to 12 months at different temperatures. Using cryo-FESEM droplets (for the nanoemulsion) and almost spherical particles for SLN and NLC were observed. Raman spectroscopy resulted in spectra for NLC that are weighted to the SLN spectra, suggesting an undisturbed crystal structure. Infrared spectra of the NLC are predominantly SLN in nature. Importantly the SLN bands are unshifted in the NLC spectrum indicating that the crystalline structure is unaffected by the presence of the oil.

  14. a 530-590 GHZ Schottky Heterodyne Receiver for High-Resolution Molecular Spectroscopy with Lille's Fast-Scan Fully Solid-State DDS Spectrometer

    Science.gov (United States)

    Pienkina, A.; Margulès, L.; Motiyenko, R. A.; Wiedner, Martina C.; Maestrini, Alain; Defrance, Fabien

    2017-06-01

    Laboratory spectroscopy, especially at THz and mm-wave ranges require the advances in instrumentation techniques to provide high resolution of the recorded spectra with precise frequency measurement that facilitates the mathematical treatment. We report the first implementation of a Schottky heterodyne receiver, operating at room temperature and covering the range between 530 and 590 GHz, for molecular laboratory spectroscopy. A 530-590 GHz non-cryogenic Schottky solid-state receiver was designed at LERMA, Observatoire de Paris and fabricated in partnership with LPN- CNRS (Laboratoire de Photonique et de Nanostructures), and was initially developed for ESA Jupiter Icy Moons Explorer (JUICE), intended to observe Jupiter and its icy moon atmospheres. It is based on a sub-harmonic Schottky diode mixer, designed and fabricated at LERMA-LPN, pumped by a Local Oscillator (LO), consisting of a frequency Amplifier/Multiplier chains (AMCs) from RPG (Radiometer Physics GmBh). The performance of the receiver was demonstrated by absorption spectroscopy of CH_3CH_2CN with Lille's fast-scan DDS spectrometer. A series of test measurements showed the receiver's good sensitivity, stability and frequency accuracy comparable to those of 4K QMC bolometers, thus making room-temperature Schottky receiver a competitive alternative to 4K QMC bolometers to laboratory spectroscopy applications. We will present the first results with such a combination of a compact room temperature Schottky heterodyne receiver and a fast-scan DDS spectrometer. J. Treuttel, L. Gatilova, A. Maestrini et al., 2016, IEEE Trans. Terahertz Science and Tech., 6, 148-155. This work was funded by the French ANR under the Contract No. ANR-13-BS05-0008-02 IMOLABS.

  15. Surface modification of Sylgard 184 polydimethylsiloxane by 254 nm excimer radiation and characterization by contact angle goniometry, infrared spectroscopy, atomic force and scanning electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Waddell, Emanuel A. [University of Alabama in Huntsville, Huntsville, AL (United States)], E-mail: ewaddell@chemistry.uah.edu; Shreeves, Stephen [University of Alabama in Huntsville, Huntsville, AL (United States); Carrell, Holly; Perry, Christopher [Oakwood College, Huntsville, AL (United States); Reid, Branden A. [Morgan State University, Baltimore, MD (United States); McKee, James [University of Alabama in Birmingham, Birmingham, AL (United States)

    2008-06-30

    The modification of polydimethylsiloxane (PDMS) by narrow band 254 nm excimer radiation under a nitrogen atmosphere was characterized by contact angle goniometry, attenuated total reflectance infrared spectroscopy, atomic force and scanning electron microscopy. UV irradiation results in the formation of the carboxylic acids that influences the wettability of the surface. Continued exposure results in the formation of an inorganic surface (SiO{sub x} (1 < x < 2)) which hinders the ability to continually increase the wettability. The continuity of this inorganic layer is disrupted by the formation of surface cracks. These results have implications in the fabrication and chemical modification of microfluidic or micro-electro-mechanical systems.

  16. Surface modification of Sylgard 184 polydimethylsiloxane by 254 nm excimer radiation and characterization by contact angle goniometry, infrared spectroscopy, atomic force and scanning electron microscopy

    Science.gov (United States)

    Waddell, Emanuel A.; Shreeves, Stephen; Carrell, Holly; Perry, Christopher; Reid, Branden A.; McKee, James

    2008-06-01

    The modification of polydimethylsiloxane (PDMS) by narrow band 254 nm excimer radiation under a nitrogen atmosphere was characterized by contact angle goniometry, attenuated total reflectance infrared spectroscopy, atomic force and scanning electron microscopy. UV irradiation results in the formation of the carboxylic acids that influences the wettability of the surface. Continued exposure results in the formation of an inorganic surface (SiO x (1 < x < 2)) which hinders the ability to continually increase the wettability. The continuity of this inorganic layer is disrupted by the formation of surface cracks. These results have implications in the fabrication and chemical modification of microfluidic or micro-electro-mechanical systems.

  17. Atomic scale images of acceptors in III-V semiconductors. Band bending, tunneling paths and wave functions

    Energy Technology Data Exchange (ETDEWEB)

    Loth, S.

    2007-10-26

    This thesis reports measurements of single dopant atoms in III-V semiconductors with low temperature Scanning Tunneling Microscopy (STM) and Scanning Tunneling Spectroscopy (STS). It investigates the anisotropic spatial distribution of acceptor induced tunneling processes at the {l_brace}110{r_brace} cleavage planes. Two different tunneling processes are identified: conventional imaging of the squared acceptor wave function and resonant tunneling at the charged acceptor. A thorough analysis of the tip induced space charge layers identifies characteristic bias windows for each tunnel process. The symmetry of the host crystal's band structure determines the spatial distribution of the tunneling paths for both processes. Symmetry reducing effects at the surface are responsible for a pronounced asymmetry of the acceptor contrasts along the principal [001] axis. Uniaxial strain fields due to surface relaxation and spin orbit interaction of the tip induced electric field are discussed on the basis of band structure calculations. High-resolution STS studies of acceptor atoms in an operating p-i-n diode confirm that an electric field indeed changes the acceptor contrasts. In conclusion, the anisotropic contrasts of acceptors are created by the host crystal's band structure and concomitant symmetry reduction effects at the surface. (orig.)

  18. Spin-polarized scanning tunneling microscopy of magnetic nanostructures at the example of bcc-Co/Fe(110), Fe/Mo(110), and copper phthalocyanine/Fe(1110); Spinpolarisierte Rastertunnelmikroskopie magnetischer Nanostrukturen am Beispiel von bcc-Co/Fe(110), Fe/Mo(110) und Kupfer-Phthalocyanin/Fe(110)

    Energy Technology Data Exchange (ETDEWEB)

    Methfessel, Torsten

    2010-12-09

    This thesis provides an introduction into the technique of spin-polarized scanning tunnelling microscopy and spectroscopy as an experimental method for the investigation of magnetic nanostructures. Experimental results for the spin polarized electronic structure depending on the crystal structure of ultrathin Co layers, and depending on the direction of the magnetization for ultrathin Fe layers are presented. High-resolution measurements show the position-dependent spin polarization on a single copper-phthalocyanine molecule deposited on a ferromagnetic surface. Co was deposited by molecular beam epitaxy on the (110) surface of the bodycentered cubic metals Cr and Fe. In contrast to previous reports in the literature only two layers of Co can be stabilized in the body-centered cubic (bcc) structure. The bcc-Co films on the Fe(110) surface show no signs of epitaxial distortions. Thicker layers reconstruct into a closed-packed structure (hcp / fcc). The bcc structure increases the spin-polarization of Co to P=62 % in comparison to hcp-Co (P=45 %). The temperature-dependent spin-reorientation of ultrathin Fe/Mo(110) films was investigated by spin-polarized spectroscopy. A reorientation of the magnetic easy axis from the [110] direction along the surface normal to the in-plane [001] axis is observed at T (13.2{+-}0.5) K. This process can be identified as a discontinuous reorientation transition, revealing two simultaneous minima of the free energy in a certain temperature range. The electronic structure of mono- and double-layer Fe/Mo(110) shows a variation with the reorientation of the magnetic easy axis and with the direction of the magnetization. The investigation of the spin-polarized charge transport through a copper-phthalocyanine molecule on the Fe/Mo(110) surface provides an essential contribution to the understanding of spin-transport at the interface between metal and organic molecule. Due to the interaction with the surface of the metal the HOMO-LUMO energy

  19. Fabrication of ultra-thin cerium oxide layers on Ru(0001) single crystal surfaces. Scanning tunneling microscopic and photoelectron spectroscopic studies on growth, structure and properties; Herstellung ultraduenner Ceroxidschichten auf Ru(0001)-Einkristallflaechen. Rastertunnelmikroskopische und photoelektronenspektroskopische Untersuchungen zu Wachstum, Struktur und Eigenschaften

    Energy Technology Data Exchange (ETDEWEB)

    Bouchtaoui, Mustapha

    2016-12-07

    The thesis at hand aims at a study of structure and properties of well-defined ultrathin CeO{sub 2} films supported on Ru(0001). Such systems may serve as model systems in heterogenous catalysis. The epitaxial growth of ceria films on Ru(0001) surface has been achieved by electron beam evaporation of metal Cer at low background oxygen pressure of 10{sup -6} mbar under ultrahigh-vacuum conditions at room temperature. Cerium oxide qualifies for proper oxygen-storage in oxidation reactions, and hence it widely used in heterogenous catalysis. The oxidation begins with the adsorption of CO on the CeO{sub 2}(111) surface, and it ends with participation of lattice oxygen leading to vacancy formation and CO{sub 2} desorption. We investigate the geometric structure by means of scanning tunneling microscopy and low energy electron diffraction. The coverage of 2.5 monolayers (ML) was sufficient to cover the substrate almost completely. We further analysed the interaction of CO with the CeO{sub 2}/Ru(0001) and the Pt/CeO{sub 2}/Ru(0001) systems. During the interaction process the ratio of Ce{sup 4+} and Ce{sup 3+} changes significantly. This ratio change as well as the effect of Pt evaporated onto the surface with respect to the reducibility of CeO{sub 2}/Ru(0001) in CO environment has been studied by X-ray photoemission spectroscopy and it has been confirmed with thermal desorption spectroscopy. It is revealed that the Pt-Nanoparticles with a height from 7.15 Aa to 9.73 Aa clearly enhances the reducibility of CeO{sub 2}.

  20. Optimizing qPlus sensor assemblies for simultaneous scanning tunneling and noncontact atomic force microscopy operation based on finite element method analysis

    Directory of Open Access Journals (Sweden)

    Omur E. Dagdeviren

    2017-03-01

    Full Text Available Quartz tuning forks that have a probe tip attached to the end of one of its prongs while the other prong is arrested to a holder (“qPlus” configuration have gained considerable popularity in recent years for high-resolution atomic force microscopy imaging. The small size of the tuning forks and the complexity of the sensor architecture, however, often impede predictions on how variations in the execution of the individual assembly steps affect the performance of the completed sensor. Extending an earlier study that provided numerical analysis of qPlus-style setups without tips, this work quantifies the influence of tip attachment on the operational characteristics of the sensor. The results using finite element modeling show in particular that for setups that include a metallic tip that is connected via a separate wire to enable the simultaneous collection of local forces and tunneling currents, the exact realization of this wire connection has a major effect on sensor properties such as spring constant, quality factor, resonance frequency, and its deviation from an ideal vertical oscillation.

  1. Optimizing qPlus sensor assemblies for simultaneous scanning tunneling and noncontact atomic force microscopy operation based on finite element method analysis.

    Science.gov (United States)

    Dagdeviren, Omur E; Schwarz, Udo D

    2017-01-01

    Quartz tuning forks that have a probe tip attached to the end of one of its prongs while the other prong is arrested to a holder ("qPlus" configuration) have gained considerable popularity in recent years for high-resolution atomic force microscopy imaging. The small size of the tuning forks and the complexity of the sensor architecture, however, often impede predictions on how variations in the execution of the individual assembly steps affect the performance of the completed sensor. Extending an earlier study that provided numerical analysis of qPlus-style setups without tips, this work quantifies the influence of tip attachment on the operational characteristics of the sensor. The results using finite element modeling show in particular that for setups that include a metallic tip that is connected via a separate wire to enable the simultaneous collection of local forces and tunneling currents, the exact realization of this wire connection has a major effect on sensor properties such as spring constant, quality factor, resonance frequency, and its deviation from an ideal vertical oscillation.

  2. Imaging of intracellular behavior of polymeric nanoparticles in Staphylococcus epidermidis biofilms by slit-scanning confocal Raman microscopy and scanning electron microscopy with energy-dispersive X-ray spectroscopy.

    Science.gov (United States)

    Takahashi, Chisato; Ueno, Kusuo; Aoyama, Junichi; Adachi, Mariko; Yamamoto, Hiromitsu

    2017-07-01

    In drug delivery systems employing polymeric nanoparticles, accurate delivery of drugs to target sites such as bacterial cells, cell tissues, and organelles is essential. In particular, when designing drug delivery systems for the treatment of the biofilm infections, evaluation of the interaction between polymeric nanoparticles and biofilm or bacterial cells using a simple technique is of significant importance. Here we develop two types of novel techniques for the biological imaging of the intracellular behavior of two types of polymeric nanoparticles, biodegradable chitosan-modified poly (dl-lactide-co-glycolide) (PLGA) nanoparticles and chitosan-modified polyvinyl caprolactam - polyvinyl acetate -polyethylene glycol graft copolymer (Soluplus®, Sol) nanoparticles, within a Staphylococcus epidermidis biofilm. As the first technique, Raman imaging of unstained biological materials using slit-scanning confocal Raman microscopy (unstained Raman imaging) was performed, and as the second, field-emission scanning electron microscopy with energy-dispersive X-ray spectroscopy analysis of biological materials labeled with quantum dots (SEM-QD imaging) was demonstrated. These analyses revealed differing localization of the respective nanoparticles within the biofilm in accordance with the specific interactions of PLGA nanoparticles and Sol nanoparticles with the biofilm. These novel techniques open the door to biological imaging and analyses with high spatial resolution, which will help to understand the efficacy of drug delivery to target materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Inductively coupled plasma-atomic emission spectroscopy: a computer controlled, scanning monochromator system for the rapid determination of the elements

    Energy Technology Data Exchange (ETDEWEB)

    Floyd, M.A.

    1980-03-01

    A computer controlled, scanning monochromator system specifically designed for the rapid, sequential determination of the elements is described. The monochromator is combined with an inductively coupled plasma excitation source so that elements at major, minor, trace, and ultratrace levels may be determined, in sequence, without changing experimental parameters other than the spectral line observed. A number of distinctive features not found in previously described versions are incorporated into the system here described. Performance characteristics of the entire system and several analytical applications are discussed.

  4. Low Temperature Apertureless Near-field Scanning Optical Microscope for Optical Spectroscopy of Single Ge/Si Quantum Dots

    Science.gov (United States)

    Zhu, Henry; Patil, N. G.; Levy, Jeremy

    2001-03-01

    A low-temperature apertureless near-field scanning optical microscope has been designed and constructed for the purpose of investigating the optical properties of individual Ge/Si quantum dots. The microscope fits in the 37 mm bore of a Helium vapor magneto-optic cryostat, allowing operations down to liquid helium temperatures in magnetic fields up to 8 Tesla. An in situ microscope objective focuses light onto the sample, which is scanned in the three spatial directions using a compact modular stage. An AFM/STM tip resides on the top; feedback is achieved using a quartz tuning fork oscillator. Both tip and objective are attached to inertial sliding motors that can move in fine (10 nm) steps to achieve touchdown and focus. A femtosecond optical parametric oscillator is used to excite carriers in the quantum dots both resonantly and non-resonantly; scattered luminescence from the AFM/STM tip is collected and analyzed spectrally using a 1/2 meter imaging spectrometer and a LN_2-cooled InGaAs array. We gratefully acknowledge NSF (DMR-9701725, IMR-9802784) and DARPA (DAAD-16-99-C1036) for financial support of this work.

  5. Step-scan Photoacoustic Fourier Transform and X-rays photoelectron spectroscopy of oil sands fine tailings: new structural insights

    Science.gov (United States)

    Bensebaa, Farid; Majid, Abdul; Deslandes, Yves

    2001-11-01

    The chemical and physical properties of clay suspensions from oil sands have profound effect not only on the bitumen extraction process but also on the tailing treatment and reclamation. Step-scan Photoacoustic Fourier Transform Infrared (S 2PAS-FTIR) has been used to characterize the properties of clay suspensions. The photoacoustic spectral features of the fine solids (FS) fraction were found to vary drastically with the modulation frequency. This is attributed to the increase in the relative amount of bitumen-like matter in the bulk. A similar behavior was observed on the bi-wetted solid (BWS) fraction, in spite of the fact that the variation as a function of the modulation frequency is less significant. No such change is observed on hydrophobic solid (HPS) sample. These observations allow us to refine our pictorial image of the bitumen fraction materials structure.

  6. Low-temperature phase transition in glycine-glutaric acid co-crystals studied by single-crystal X-ray diffraction, Raman spectroscopy and differential scanning calorimetry.

    Science.gov (United States)

    Zakharov, Boris A; Losev, Evgeniy A; Kolesov, Boris A; Drebushchak, Valeri A; Boldyreva, Elena V

    2012-06-01

    The occurrence of a first-order reversible phase transition in glycine-glutaric acid co-crystals at 220-230 K has been confirmed by three different techniques - single-crystal X-ray diffraction, polarized Raman spectroscopy and differential scanning calorimetry. The most interesting feature of this phase transition is that every second glutaric acid molecule changes its conformation, and this fact results in the space-group symmetry change from P2(1)/c to P1. The topology of the hydrogen-bonded motifs remains almost the same and hydrogen bonds do not switch to other atoms, although the hydrogen bond lengths do change and some of the bonds become inequivalent.

  7. Synchrotron radiation based cross-sectional scanning photoelectron microscopy and spectroscopy of n-ZnO:Al/p-GaN:Mg heterojunction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kai-Hsuan; Chen, Chia-Hao [Nano Science Group, National Synchrotron Radiation Research Center, Hsin-Ann Rd. 101, 30076 Hsinchu, Taiwan (China); Chang, Ping-Chuan [Department of Electro-Optical Engineering, Kun Shan University, Dawan Rd. 949, 71003 Tainan, Taiwan (China); Chen, Tse-Pu; Chang, Sheng-Po; Chang, Shoou-Jinn [Institute of Microelectronics and Department of Electrical Engineering, Center for Micro/Nano Science and Technology, Advanced Optoelectronic Technology Center, National Cheng Kung University, University Rd. 1, 70101 Tainan, Taiwan (China); Shiu, Hung-Wei; Chang, Lo-Yueh [Nano Science Group, National Synchrotron Radiation Research Center, Hsin-Ann Rd. 101, 30076 Hsinchu, Taiwan (China); Department of Physics, National Tsing Hua University, Kuang-Fu Rd. 101, 30013 Hsinchu, Taiwan (China)

    2013-02-18

    Al-doped ZnO (AZO) deposited by radio frequency co-sputtering is formed on epitaxial Mg-doped GaN template at room temperature to achieve n-AZO/p-GaN heterojunction. Alignment of AZO and GaN bands is investigated using synchrotron radiation based cross-sectional scanning photoelectron microscopy and spectroscopy on the nonpolar side-facet of a vertically c-axis aligned heterostructure. It shows type-II band configuration with valence band offset of 1.63 {+-} 0.1 eV and conduction band offset of 1.61 {+-} 0.1 eV, respectively. Rectification behavior is clearly observed, with a ratio of forward-to-reverse current up to six orders of magnitude when the bias is applied across the p-n junction.

  8. The influence of C{sub s}/C{sub c} correction in analytical imaging and spectroscopy in scanning and transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zaluzec, Nestor J., E-mail: zaluzec@microscopy.com

    2015-04-15

    Aberration correction in scanning/transmission electron microscopy (S/TEM) owes much to the efforts of a small dedicated group of innovators. Leading that frontier has been Prof. Harald Rose. To date his leadership and dynamic personality has spearheaded our ability to leave behind many of the limitations imposed by spherical aberration (C{sub s}) in high resolution phase contrast imaging. Following shortly behind, has been the development of chromatic aberration correction (C{sub c}) which augments those accomplishments. In this paper we will review and summarize how the combination of C{sub s}/C{sub c} technology enhances our ability to conduct hyperspectral imaging and spectroscopy in today's and future computationally mediated experiments in both thin as well as realistic specimens in vacuo and during in-situ/environmental experiments.

  9. Identification of nanostructural development in epoxy polymer layered silicate nanocomposites from the interpretation of differential scanning calorimetry and dielectric spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Roman, Frida, E-mail: roman@mmt.upc.edu [Laboratori de Termodinamica, Departament de Maquines i Motors Termics, ETSEIAT, Universitat Politecnica de Catalunya, Carrer Colom 11, 08222 Terrassa (Spain); Calventus, Yolanda, E-mail: calventus@mmt.upc.edu [Laboratori de Termodinamica, Departament de Maquines i Motors Termics, ETSEIAT, Universitat Politecnica de Catalunya, Carrer Colom 11, 08222 Terrassa (Spain); Colomer, Pere, E-mail: colomer@mmt.upc.edu [Laboratori de Termodinamica, Departament de Maquines i Motors Termics, ETSEIAT, Universitat Politecnica de Catalunya, Carrer Colom 11, 08222 Terrassa (Spain); Hutchinson, John M., E-mail: hutchinson@mmt.upc.edu [Laboratori de Termodinamica, Departament de Maquines i Motors Termics, ETSEIAT, Universitat Politecnica de Catalunya, Carrer Colom 11, 08222 Terrassa (Spain)

    2012-08-10

    Highlights: Black-Right-Pointing-Pointer Comparison of DSC and DRS in the cure of epoxy nanocomposites. Black-Right-Pointing-Pointer Dependence of exfoliation of nanocomposite on clay content. Black-Right-Pointing-Pointer Anionically initiated homopolymerisation in PLS nanocomposites. - Abstract: The effect of nanoclay on the non-isothermal cure kinetics of polymer layered silicate nanocomposites based upon epoxy resin is studied by calorimetric techniques (DSC and TGA) and by dielectric relaxation spectroscopy (DRS) in non-isothermal cure at constant heating rate. The cure process takes place by homopolymerisation, initiated anionically using 3 wt% dimethylaminopyridine (DMAP), and the influence of the nanoclay content has been analysed. Interesting differences are observed between the nanocomposites with 2 wt% and 5 wt% clay content. At low heating rates, these samples vitrify and then devitrify during the cure. For the sample with 2 wt% clay, the devitrification is accompanied by a thermally initiated homopolymerisation, which can be identified by DRS but not by DSC. The effect of this is to improve the exfoliation of the nanocomposite with 2 wt% clay, as verified by transmission electron microscopy, with a corresponding increase in the glass transition temperature. These observations are interpreted in respect of the nanocomposite preparation method and the cure kinetics.

  10. High-speed assembly language (80386/80387) programming for laser spectra scan control and data acquisition providing improved resolution water vapor spectroscopy

    Science.gov (United States)

    Allen, Robert J.

    1988-01-01

    An assembly language program using the Intel 80386 CPU and 80387 math co-processor chips was written to increase the speed of data gathering and processing, and provide control of a scanning CW ring dye laser system. This laser system is used in high resolution (better than 0.001 cm-1) water vapor spectroscopy experiments. Laser beam power is sensed at the input and output of white cells and the output of a Fabry-Perot. The assembly language subroutine is called from Basic, acquires the data and performs various calculations at rates greater than 150 faster than could be performed by the higher level language. The width of output control pulses generated in assembly language are 3 to 4 microsecs as compared to 2 to 3.7 millisecs for those generated in Basic (about 500 to 1000 times faster). Included are a block diagram and brief description of the spectroscopy experiment, a flow diagram of the Basic and assembly language programs, listing of the programs, scope photographs of the computer generated 5-volt pulses used for control and timing analysis, and representative water spectrum curves obtained using these programs.

  11. Examining the ground layer of St. Anthony from Padua 19th century oil painting by Raman spectroscopy, scanning electron microscopy and X-ray diffraction

    Science.gov (United States)

    Vančo, Ľubomír; Kadlečíková, Magdaléna; Breza, Juraj; Čaplovič, Ľubomír; Gregor, Miloš

    2013-01-01

    In this paper we studied the material composition of the ground layer of a neoclassical painting. We used Raman spectroscopy (RS) as a prime method. Thereafter scanning electron microscopy combined with energy dispersive spectroscopy (SEM-EDS) and X-ray powder diffraction (XRD) were employed as complementary techniques. The painting inspected was of the side altar in King St. Stephen's Church in Galanta (Slovakia), signed and dated by Jos. Chr. Mayer 1870. Analysis was carried out on both covered and uncovered ground layers. Four principal compounds (barite, lead white, calcite, dolomite) and two minor compounds (sphalerite, quartz) were identified. This ground composition is consistent with the 19th century painting technique used in Central Europe consisting of white pigments and white fillers. Transformation of lead white occurred under laser irradiation. Subdominant Raman peaks of the components were measured. The observed results elucidate useful partnership of RS and SEM-EDS measurements supported by X-ray powder diffraction as well as possibilities and limitations of non-destructive analysis of covered lower layers by RS.

  12. A Characterization of Laponite Nanoclays by Dynamic Light Scattering, Scanning Electron Microscopy, and Cation Exchange Capacity by UV-Visible Spectroscopy

    Science.gov (United States)

    Arnold, Randall

    Four different Laponite clays were characterized by dynamic light scattering (DLS), scanning electron microscopy (SEM), and UV-Visible spectroscopy to determine the cation exchange capacity (CEC) to provide a methodology of analysis for other clays. DLS and SEM were utilized to observe the sizes, shape, and inter-particle interactions for the different clays. UV-Visible spectroscopy was implemented to characterize the CEC of each clay via a complexometric reaction with calcium. DLS provided limitedly consistent results due to a disparity in the translational diffusion of particles in suspension due to high aspect ratios and electroviscious forces; however, SEM provided high-resolution images of various particles and agglomerates with unique insight into the intra-particle edge-face, edge-edge, and face-face interactions driven by various electrochemical forces. The experimentally determined CECs, while consistently elevated above reported values, provide accurate first-pass estimations by a direct cation exchange methodology. Advancement of this work might include Mie scattering of angular dependence for DLS, as well as a correction for the electric double layer of the platelets; field emission SEM for microanalysis of single platelets and agglomerates; and using zeta potential to develop a methodology of observing stability and CEC of cation-loaded uncharacterized clays. Establishing a methodology for determining the CEC and cation loading provides the most valuable advancement towards characterizing other clays and linking cation loading to the zeta potential and colloidal stability.

  13. The Adsorption of Sulfate on Gold(111) in Acidic Aqueous Media: Adlayer Structural Inferences from Infrared Spectroscopy and Scanning Tunneling Microscopy

    Science.gov (United States)

    1994-02-01

    0.1 a HClO4 + 5 an HzSO4 (solid trace). This mixed-electrolyte condition was chosen so to be compatible with that employed for the thermodynamic ...potential ranges in aqueous media, enabling quantitative surface compositional data to be extracted from thermodynamic analyses of charge-potential...the thermodynamic analysis in ref. 9. When set alongside the surface compositional data, the IRAS and STH results lead us to consider a provocative

  14. Step-scan T cell-based differential Fourier transform infrared photoacoustic spectroscopy (DFTIR-PAS) for detection of ambient air contaminants

    Science.gov (United States)

    Liu, Lixian; Mandelis, Andreas; Huan, Huiting; Melnikov, Alexander

    2016-10-01

    A step-scan differential Fourier transform infrared photoacoustic spectroscopy (DFTIR-PAS) using a commercial FTIR spectrometer was developed theoretically and experimentally for air contaminant monitoring. The configuration comprises two identical, small-size and low-resonance-frequency T cells satisfying the conflicting requirements of low chopping frequency and limited space in the sample compartment. Carbon dioxide (CO2) IR absorption spectra were used to demonstrate the capability of the DFTIR-PAS method to detect ambient pollutants. A linear amplitude response to CO2 concentrations from 100 to 10,000 ppmv was observed, leading to a theoretical detection limit of 2 ppmv. The differential mode was able to suppress the coherent noise, thereby imparting the DFTIR-PAS method with a better signal-to-noise ratio and lower theoretical detection limit than the single mode. The results indicate that it is possible to use step-scan DFTIR-PAS with T cells as a quantitative method for high sensitivity analysis of ambient contaminants.

  15. Cathodoluminescence spectroscopy of single GaN/AlN quantum dots directly performed in a scanning transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Bertram, Frank; Schmidt, Gordon; Mueller, Marcus; Petzold, Silke; Veit, Peter; Christen, Juergen [Institute of Experimental Physics, Otto-von-Guericke-University Magdeburg (Germany); Das, Aparna; Monroy, Eva [CEA/CNRS Group Nanophysique et Semiconducteurs, INAC/SP2M, CEA-Grenoble (France)

    2013-07-01

    In this study we will present a nanoscale optical and structural characterization of a III-nitride based quantum dot (QD) heterostructure. A 1 μm thick AlN layer grown on a sapphire substrate using metal organic vapor phase epitaxy (MOVPE) serves as template for the further growth process. Subsequent, a stack of 10 GaN QD layers, each embedded in 50 nm thick AlN barrier, were grown under an optimized plasma-assisted molecular beam epitaxy process on an AlN-MOVPE/sapphire template. The cross-section high angle annular dark field image (HAADF) in a scanning transmission electron microscope (STEM) clearly reveals the GaN QD layers. The comparison of the HAADF image with the simultaneously recorded panchromatic cathodoluminescence mapping at 16 K exhibits a spot like luminescence distribution of the upper six QD layers solely, indicating no formation of the first four intentionally grown QD layers. Addressing a very few to single QDs we observe a broad luminescence between 3.0 eV and 4.0 eV originating from the superposition of the single emission lines.

  16. Collagen mineralization in human aortic valve stenosis: a field emission scanning electron microscopy and energy dispersive spectroscopy analysis.

    Science.gov (United States)

    Perrotta, Ida; Davoli, Mariano

    2014-08-01

    Abstract Calcific aortic stenosis is a slowly progressive disorder characterized by an important extracellular matrix remodeling with fibrosis and massive deposition of minerals (primarily calcium) in the valve leaflet. The main structural components of human aortic valve are the large, thick collagen bundles that withstand the diastolic loading. Collagen has been studied in a number of reports that aim to clarify the mechanisms underlying the structural deterioration of heart valve substitutes, however to date, little is known regarding the morphological interaction between collagen and mineral crystals in the calcifying tissue of native aortic valve. Here, we have analyzed a total of 12 calcified native aortic valves by using scanning electron microscopy (SEM) with Energy Dispersive X-Ray Analysis (EDX) to depict the morphological appearance of mineralized collagen and to determine the location of calcium phosphate minerals in the collagen matrix of the valve cusp. Our results demonstrate that crystals probably nucleate and grow in the interior of the collagen fibers in the absence of surface events.

  17. An analysis of Mn-Zn ferrite microstructure by impedance spectroscopy, scanning transmission electron microscopy and energy dispersion spectrometry characterizations

    Science.gov (United States)

    Loyau, V.; Wang, G.-Y.; Bue, M. Lo; Mazaleyrat, F.

    2012-03-01

    AC (alternative current) resistivity measurement results on Mn-Zn sintered ferrite were analyzed in the 0.1-500 MHz range. From electrical point of view, the material could be represented by an equivalent circuit of parallel resistance-capacitance cells connected in series corresponding to the contributions from bulk grains in one hand, and grain boundary layers in the other hand. The experimental resistivity curves were fitted with the model. The as obtained parameters give information on dielectric properties and conductivity of both bulk grains and boundary layers. For the studied material, it appears that the resistivity at low frequencies is increased 27 times due to the boundary layers effects. Scanning transmission electron microscopy and energy dispersion spectrometry characterization where performed in order to detect impurities at a grain boundary layer which can explain those wide differences between bulk grains and boundary layers electrical properties. It appears that the two components have close chemical compositions, but some calcium impurities segregate at the boundary which increases dramatically the resistivity of these layers. Furthermore, the bulk grains show relative permittivity around 350 at low frequency which is much smaller than the one measured for the whole material which is in the 50,000-100,000 range. This giant-dielectric behavior can be explained by an internal barrier layer at the grain boundaries. At last, the components of classical eddy current losses including losses due to ohmic effects and (true) dielectric losses on both bulk grain and boundary layers are distinguished.

  18. Observation of photodynamically-induced cell destruction probed by video microscopy, laser-scanning microscopy, and fluorescence spectroscopy

    Science.gov (United States)

    Rueck, Angelika C.; Strauss, Wolfgang S. L.; Gschwend, Michael H.; Koenig, Karsten; Brunner, B.; Schneckenburger, Herbert; Walt, Heinrich; Steiner, Rudolf W.

    1993-07-01

    In order to study light-induced reactions during PDT, the fluorescence response of the photosensitizer meso-tetra(4-sulfonatophenyl)porphyrin (TPPS4) was observed in different cell systems and correlated with the sensitivity to photodynamic induced destructions. RR 1022 epithelial cells from the rat were grown on microscopic slides at a high and low cell density. Using video microscopy in combination with microspectrofluorometry we observed a different fluorescence behavior for high and low cell conditions during light exposure. A fluorescence relocalization from the cytoplasm to the nucleus and an intensity increase-- correlated with the formation of a new molecular species--could be detected only for low cell density. Moreover, cell cultures at a high density showed to be less sensitive to photodynamic destructions. In addition to cell culture-experiments, we observed the light-induced reactions of TPPS4 accumulated in multicellular tumor spheroids. For these measurements laser scanning microscopy was used. Fluorescence relocalization and intensity increase could be detected only for the peripheric parts of the spheroids. The different fluorescence response seems to reflect different metabolic and physiologic states of the cells.

  19. Carbon coatings on silica glass optical fibers studied by reflectance Fourier-transform infrared spectroscopy and focused ion beam scanning electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Stolov, Andrei A., E-mail: stolov@ofsoptics.com [OFS, Specialty Photonics Division, 55 Darling Drive, Avon, CT 06001 (United States); Lombardo, Jeffrey J. [Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269 (United States); Slyman, Brian E.; Li, Jie [OFS, Specialty Photonics Division, 55 Darling Drive, Avon, CT 06001 (United States); Chiu, Wilson K.S. [Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269 (United States)

    2012-04-30

    Carbon coatings applied on optical fibers via chemical vapor deposition were characterized by a resistance technique, focused ion beam/scanning electron microscopy (FIB/SEM), and reflectance Fourier-transform infrared spectroscopy (FTIR). The resistance technique measures the thickness of carbon film by measuring the resistance over a section of optical fiber, and backing out the film thickness. The FIB/SEM system was used to remove a cross section of the optical fiber and carbon coating and using a scanning transmission electron detector the thickness was measured. The FTIR approach is based on the fact that the wavelength of the light in the mid-infrared region ({approx} 10 {mu}m) is significantly larger than the typical thickness of the carbon coatings (< 0.1 {mu}m) which makes the coating 'semi-transparent' to the infrared light. Carbon coating deposition results in significant transformations of the band profiles of silica in the reflectance spectra that were found to correlate with the carbon coating thickness for films ranging from 0.7 nm to 54.6 nm. The observed transformations of the reflectance spectra were explained within the framework of Fresnel reflection of light from a dual-layer sample. The advantage of this approach is a much higher spatial resolution in comparison with many other known methods and can be performed more quickly than many direct measurement techniques. - Highlights: Black-Right-Pointing-Pointer Hermetic carbon films were grown on optical fibers using chemical vapor deposition. Black-Right-Pointing-Pointer Focused ion beam/scanning electron microscopy provided direct thickness values. Black-Right-Pointing-Pointer Transformations in reflectance infrared spectra correlate with carbon thickness. Black-Right-Pointing-Pointer Spectral transformations were modeled within the framework of Fresnel equations.

  20. Scanning tunneling microscopy study of morphology and electronic properties in (K{sub 0.7}Na{sub 0.3})Fe{sub 2−y}Se{sub 2} single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Trifonov, A. S., E-mail: trifonov.artem@phys.msu.ru; Presnov, D. E. [Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, 1(2), Leninskie Gory, GSP-1, Moscow 119991 (Russian Federation); Low Temperature Physics and Superconductivity Department, Physics Faculty, Lomonosov Moscow State University, 119991 Moscow (Russian Federation); Ovchenkov, Y. A. [Low Temperature Physics and Superconductivity Department, Physics Faculty, Lomonosov Moscow State University, 119991 Moscow (Russian Federation); Belosludov, R. [Institute for Materials Research, Tohoku University, 980-8577 Sendai (Japan); Boltalin, A. I.; Liu, M.; Morozov, I. V. [Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow (Russian Federation); Nejo, H. [National Institute for Material Science, Tsukuba 305-0047 (Japan); Vasiliev, A. N. [Low Temperature Physics and Superconductivity Department, Physics Faculty, Lomonosov Moscow State University, 119991 Moscow (Russian Federation); Theoretical Physics and Applied Mathematics Department, Institute of Physics and Technology, Ural Federal University, Ekaterinburg 620002 (Russian Federation); National University of Science and Technology ' MISiS' , Moscow 119049 (Russian Federation)

    2014-07-28

    We investigated the microstructure of the iron selenide superconductor (K{sub 0.7}Na{sub 0.3})Fe{sub 2−y}Se{sub 2} with a T{sub c} = 32 K and a near 100% Meissner screening volume fraction. Topography and electron transport properties were studied using electron microscopy and ultra-high vacuum scanning tunneling microscopy (STM) techniques. Room temperature STM measurements reliably identify spatial variations of the local electronic properties of this material. The studied crystals consist of continuous regions with significantly different shapes of current-voltage curves reflecting different electronic transport properties of these regions. Fitting of the local current-voltage curves with the Simmons model for metal-dielectric-metal structure confirmed a phase separation in the sample to a metal and semiconducting phases. The observed regions have dimensions in the range of several tenths of a micrometer and indicate a phase separation in the sample.

  1. Atomic structure of the indium-induced Ge(001)(¤n¤x4) surface reconstruction determined by scanning tunneling microscopy and ¤ab initio¤ calculations

    DEFF Research Database (Denmark)

    Falkenberg, G.; Bunk, O.; Johnson, R.L.

    2002-01-01

    . Sci. 123/124, 104 (1998) for In on Si(001). For the (4x4) subunit, we propose a model that includes the main features of the (3x4) subunit together with additional mixed Ge-In dimers. The atomic positions were optimized using ab initio total-energy calculations. The calculated local densities......Using scanning-tunneling microscopy (STM) and first-principles total-energy calculations, we have determined the atomic geometry of the superstructures formed by the adsorption of up to 0.5 monolayer of indium on Ge(001) and annealing at temperatures above 200 degreesC. A strong interaction between...... indium adatoms and the germanium substrate atoms leads to the formation of two different In-Ge subunits on the Ge(001) surface. In the subsaturation regime separate (nx4) subunits are observed where n can be either 3 or 4 and the STM images resemble those of the Si(001)-(3x4)-In and -Al reconstructions...

  2. Tunneling and Transport in Nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, Allen M. [Univ. of Minnesota, Minneapolis, MN (United States)

    2016-08-16

    The goal of this program was to study new physical phenomena that might be relevant to the performance of conductive devices and circuits of the smallest realizable feature sizes possible using physical rather than biological techniques. Although the initial scientific work supported involved the use of scanning tunneling microscopy and spectroscopy to ascertain the statistics of the energy level distribution of randomly sized and randomly shaped quantum dots, or nano-crystals, the main focus was on the investigation of selected properties, including superconductivity, of conducting and superconducting nanowires prepared using electron-beam-lithography. We discovered a magnetic-field-restoration of superconductivity in out-of-equilibrium nanowires driven resistive by current. This phenomenon was explained by the existence of a state in which dissipation coexisted with nonvanishing superconducting order. We also produced ultra-small superconducting loops to study a predicted anomalous fluxoid quantization, but instead, found a magnetic-field-dependent, high-resistance state, rather than superconductivity. Finally, we developed a simple and controllable nanowire in an induced charged layer near the surface of a masked single-crystal insulator, SrTiO3. The layer was induced using an electric double layer transistor employing an ionic liquid (IL). The transport properties of the induced nanowire resembled those of collective electronic transport through an array of quantum dots.

  3. Investigation on the valence-band structure of ferromagnetic-semiconductor GaMnAs using spin-dependent resonant tunneling spectroscopy

    Science.gov (United States)

    Ohya, Shinobu; Muneta, Iriya; Hai, Pham Nam; Tanaka, Masaaki

    2010-03-01

    We investigate the valence-band (VB) structure of ferromagnetic-semiconductor GaMnAs by analyzing the resonant tunneling levels of a GaMnAs quantum well (QW) in double-barrier heterostructures. The resonant level from the heavy-hole first state (HH1) is clearly observed in the metallic GaMnAs QW with the Curie temperature of 60 K, which indicates that no holes reside in the VB of GaMnAs in the equilibrium condition. Clear enhancement of tunnel magnetoresistance induced by resonant tunneling is demonstrated. We find that the resonant levels formed in the GaMnAs QW are well explained by using the transfer matrix method with the 6x6 Luttinger-Kohn kp Hamiltonian, p-d exchange Hamiltonian, and Bir-Pikus strain Hamiltonian. The VB structure of GaMnAs is well reproduced by that of GaAs with a small exchange splitting energy of 3-5 meV and with the Fermi level lying at ˜30 meV higher than HH1 in the bandgap. This work was partly supported by Grant-in-Aids for Scientific Research, the Special Coordination Programs for Promoting Science and Technology, R&D for Next-generation Information Technology by MEXT, and PRESTO of JST.

  4. Continuous gradient temperature Raman spectroscopy and differential scanning calorimetry of N-3DPA and DHA from -100 to 10°C.

    Science.gov (United States)

    Broadhurst, C Leigh; Schmidt, Walter F; Nguyen, Julie K; Qin, Jianwei; Chao, Kuanglin; Aubuchon, Steven R; Kim, Moon S

    2017-04-01

    Docosahexaenoic acid (DHA, 22:6n-3) is exclusively utilized in fast signal processing tissues such as retinal, neural and cardiac. N-3 docosapentaenoic acid (n-3DPA, 22:5n-3), with just one less double bond, is also found in the marine food chain yet cannot substitute for DHA. Gradient temperature Raman spectroscopy (GTRS) applies the temperature gradients utilized in differential scanning calorimetry (DSC) to Raman spectroscopy, providing a straightforward technique to identify molecular rearrangements that occur near and at phase transitions. Herein we apply GTRS and both conventional and modulated DSC to n-3DPA and DHA from -100 to 20°C. Three-dimensional data arrays with 0.2°C increments and first derivatives allowed complete assignment of solid, liquid and transition state vibrational modes. Melting temperatures n-3DPA (-45°C) and DHA (-46°C) are similar and show evidence for solid-state phase transitions not seen in n-6DPA (-27°C melt). The C6H2 site is an elastic marker for temperature perturbation of all three lipids, each of which has a distinct three dimensional structure. N-3 DPA shows the spectroscopic signature of saturated fatty acids from C1 to C6. DHA does not have three aliphatic carbons in sequence; n-6DPA does but they occur at the methyl end, and do not yield the characteristic signal. DHA appears to have uniform twisting from C6H2 to C12H2 to C18H2 whereas n-6DPA bends from C12 to C18, centered at C15H2. For n-3DPA, twisting is centered at C6H2 adjacent to the C2-C3-C4-C5 aliphatic moiety. These molecular sites are the most elastic in the solid phase and during premelting. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Morphology, spatial distribution, and concentration of flame retardants in consumer products and environmental dusts using scanning electron microscopy and Raman micro-spectroscopy.

    Science.gov (United States)

    Wagner, Jeff; Ghosal, Sutapa; Whitehead, Todd; Metayer, Catherine

    2013-09-01

    We characterized flame retardant (FR) morphologies and spatial distributions in 7 consumer products and 7 environmental dusts to determine their implications for transfer mechanisms, human exposure, and the reproducibility of gas chromatography-mass spectrometry (GC-MS) dust measurements. We characterized individual particles using scanning electron microscopy/energy dispersive x-ray spectroscopy (SEM/EDS) and Raman micro-spectroscopy (RMS). Samples were screened for the presence of 3 FR constituents (bromine, phosphorous, non-salt chlorine) and 2 metal synergists (antimony and bismuth). Subsequent analyses of select samples by RMS enabled molecular identification of the FR compounds and matrix materials. The consumer products and dust samples possessed FR elemental weight percents of up to 36% and 31%, respectively. We identified 24 FR-containing particles in the dust samples and classified them into 9 types based on morphology and composition. We observed a broad range of morphologies for these FR-containing particles, suggesting FR transfer to dust via multiple mechanisms. We developed an equation to describe the heterogeneity of FR-containing particles in environmental dust samples. The number of individual FR-containing particles expected in a 1-mg dust sample with a FR concentration of 100ppm ranged from 1000 particles. The presence of rare, high-concentration bromine particles was correlated with decabromodiphenyl ether concentrations obtained via GC-MS. When FRs are distributed heterogeneously in highly concentrated dust particles, human exposure to FRs may be characterized by high transient exposures interspersed by periods of low exposure, and GC-MS FR concentrations may exhibit large variability in replicate subsamples. Current limitations of this SEM/EDS technique include potential false negatives for volatile and chlorinated FRs and greater quantitation uncertainty for brominated FR in aluminum-rich matrices. Copyright © 2013 Elsevier Ltd. All rights

  6. Proton transfer and protein conformation dynamics in photosensitive proteins by time-resolved step-scan Fourier-transform infrared spectroscopy.

    Science.gov (United States)

    Lórenz-Fonfría, Víctor A; Heberle, Joachim

    2014-06-27

    Monitoring the dynamics of protonation and protein backbone conformation changes during the function of a protein is an essential step towards understanding its mechanism. Protonation and conformational changes affect the vibration pattern of amino acid side chains and of the peptide bond, respectively, both of which can be probed by infrared (IR) difference spectroscopy. For proteins whose function can be repetitively and reproducibly triggered by light, it is possible to obtain infrared difference spectra with (sub)microsecond resolution over a broad spectral range using the step-scan Fourier transform infrared technique. With -10(2)-10(3) repetitions of the photoreaction, the minimum number to complete a scan at reasonable spectral resolution and bandwidth, the noise level in the absorption difference spectra can be as low as -10(-) (4), sufficient to follow the kinetics of protonation changes from a single amino acid. Lower noise levels can be accomplished by more data averaging and/or mathematical processing. The amount of protein required for optimal results is between 5-100 µg, depending on the sampling technique used. Regarding additional requirements, the protein needs to be first concentrated in a low ionic strength buffer and then dried to form a film. The protein film is hydrated prior to the experiment, either with little droplets of water or under controlled atmospheric humidity. The attained hydration level (g of water / g of protein) is gauged from an IR absorption spectrum. To showcase the technique, we studied the photocycle of the light-driven proton-pump bacteriorhodopsin in its native purple membrane environment, and of the light-gated ion channel channelrhodopsin-2 solubilized in detergent.

  7. The effect of increasing membrane curvature on the phase transition and mixing behavior of a dimyristoyl-sn-glycero-3-phosphatidylcholine/distearoyl-sn-glycero-3-phosphatidylcholine lipid mixture as studied by Fourier transform infrared spectroscopy and differential scanning calorimetry

    DEFF Research Database (Denmark)

    Brumm, T.; Jørgensen, Kent; Mouritsen, Ole G.

    1996-01-01

    The phase transition behavior of a lipid bilayer of dimyristoyl-sn-glycero-3-phosphalidylcholine/distearoyl-sn- glycero-3-phosphatidylcholine (DMPC-d54/DSPC) (1:1) on a solid support with varying curvatures was investigated with differential scanning calorimetry, infrared spectroscopy, and model...

  8. Femtosecond tunneling response of surface plasmon polaritons

    DEFF Research Database (Denmark)

    Keil, Ulrich Dieter Felix; Ha, Taekjip; Jensen, Jacob Riis

    1998-01-01

    and suggests that nanometer spatial resolution can be obtained together with femtosecond temporal resolution. This fast response, in contrast to the picosecond decay time of SPPs revealed by differential reflectivity measurements, can be attributed to a coherent superposition of SPPs rectified at the tunneling......We obtain femtosecond (200 fs) time resolution using a scanning tunneling microscope on surface plasmon polaritons (SPPs) generated by two 100 fs laser beams in total internal reflection geometry. The tunneling gap dependence of the signal clearly indicates the tunneling origin of the signal...

  9. Spinoff from Wind Tunnel Technology

    Science.gov (United States)

    1985-01-01

    Douglas Juanarena, a former NASA Langley instrument design engineer, found a solution to the problem of long, repetitive tunnel runs needed to measure airflow pressures. Electronically scanned pressure (ESP) replaced mechanical systems with electronic sensors. Juanarena licensed the NASA-patented technology and now manufactures ESP modules for research centers, aerospace companies, etc.

  10. X-ray photoelectron spectroscopy of oxygen-containing layers formed by a linear potential scan on stepped gold (111) films in aqueous 1 M sulphuric acid

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Nieto, Felipe J. [Instituto de Investigaciones Fisicoquimica Teoricas y Aplicadas INIFTA, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Cientificas y Tecnicas Sucursal 4, Casilla de Correo 16, (1900) La Plata (Argentina); Member of Comision de Investigaciones Cientificas de la Provincia de Buenos Aires (Argentina)], E-mail: rodrini@inifta.unlp.edu.ar; Fachini, Esteban; Cabrera, Carlos R. [Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, P.O. Box 23346, San Juan, 00931-3346 (Puerto Rico); Arvia, Alejandro J. [Instituto de Investigaciones Fisicoquimica Teoricas y Aplicadas INIFTA, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Cientificas y Tecnicas Sucursal 4, Casilla de Correo 16, (1900) La Plata (Argentina)

    2009-01-01

    X-ray photoelectron spectroscopy (XPS) data of oxygen-containing layers (O-layers) made on stepped gold (111) film electrodes from aqueous 1 M sulphuric acid by single linear potential scans at 0.10 V s{sup -1} and 298 K are reported. The potential scan covered from the open circuit potential to anodic switching potential E{sub as} = 2.50 V versus normal hydrogen electrode (NHE) and holding times at E{sub as} in the range 30-300 s. The anodic charge density q{sub a} determined from the oxidation and reduction voltammetric scan is in the range 0.20 {<=} q{sub a} {<=} 2.5 mC cm{sup -2}. For the potential E = 0.5 V, in the absence of O-layers, the S 2p core level spectrum indicates the presence of sulphate/bisulphate adsorbates. For E{sub as} > 1.3 V, the O 1s core level spectrum involves the contribution from water, OH- and O-species. These spectra are deconvoluted utilising either three or four Gaussian contributions with values of peaked binding energy and full width at half-maximum height (FWMH) in good agreement with expectations. The envelope of these XPS O 1s signals after correction for the contribution of sulphate/bisulphate adsorbates and adventitious carbon approaches the XPS signal that has been reported for the core level spectrum in the O 1s region of oxidised gold surfaces produced by laser pulses at different molecular oxygen pressures. The O/OH concentration ratio in the O-layer increases with E{sub as} ageing time t{sub ag} and cathodic charge density q{sub c}. The hydrous nature of the O-layer, evaluated through the analysis of the core level spectra in the O 1s region, decreases as E{sub as} and t{sub ag} are increased. Results are interesting to unravel the composition and structure of electrochemically grown O-layers at the surface of the gold substrate, and the influence of the history of these O-layers on the respective XPS features.

  11. Morphological and chemical changes in dentin after using endodontic agents: Fourier transform Raman spectroscopy, energy-dispersive x-ray fluorescence spectrometry, and scanning electron microscopy study

    Science.gov (United States)

    Pascon, Fernanda Miori; Kantovitz, Kamila Rosamilia; Soares, Luís Eduardo Silva; Santo, Ana Maria do Espírito; Martin, Airton Abraha~o.; Puppin-Rontani, Regina Maria

    2012-07-01

    We examine the morphological and chemical changes in the pulp chamber dentin after using endodontic agents by scanning electron microscopy (SEM), Fourier transform Raman spectroscopy (FT-Raman), and micro energy-dispersive x-ray fluorescence spectrometry (μEDXRF). Thirty teeth were sectioned exposing the pulp chamber and divided by six groups (n=5): NT-no treatment; CHX-2% chlorhexidine; CHXE-2% chlorhexidine+17% EDTA E-17% EDTA; SH5-5.25% NaOCl; SH5E-5.25% NaOCl+17% EDTA. The inorganic and organic content was analyzed by FT-Raman. μEDXRF examined calcium (Ca) and phosphorus (P) content as well as Ca/P ratio. Impressions of specimens were evaluated by SEM. Data were submitted to Kruskal-Wallis and Dunn tests (pNT=SH5E>CHX>E>CHXE). CHXE and E presented the highest Ca/P ratio values compared to the other groups (pEndodontic agents change the inorganic and organic content of pulp chamber dentin. NaOCl used alone, or in association with EDTA, was the most effective agent considering chemical and morphological approaches.

  12. Measurement Error in Atomic-Scale Scanning Transmission Electron Microscopy—Energy-Dispersive X-Ray Spectroscopy (STEM-EDS) Mapping of a Model Oxide Interface

    Energy Technology Data Exchange (ETDEWEB)

    Spurgeon, Steven R.; Du, Yingge; Chambers, Scott A.

    2017-04-05

    Abstract

    With the development of affordable aberration correctors, analytical scanning transmission electron microscopy (STEM) studies of complex interfaces can now be conducted at high spatial resolution at laboratories worldwide. Energy-dispersive X-ray spectroscopy (EDS) in particular has grown in popularity, as it enables elemental mapping over a wide range of ionization energies. However, the interpretation of atomically resolved data is greatly complicated by beam–sample interactions that are often overlooked by novice users. Here we describe the practical factors—namely, sample thickness and the choice of ionization edge—that affect the quantification of a model perovskite oxide interface. Our measurements of the same sample, in regions of different thickness, indicate that interface profiles can vary by as much as 2–5 unit cells, depending on the spectral feature. This finding is supported by multislice simulations, which reveal that on-axis maps of even perfectly abrupt interfaces exhibit significant delocalization. Quantification of thicker samples is further complicated by channeling to heavier sites across the interface, as well as an increased signal background. We show that extreme care must be taken to prepare samples to minimize channeling effects and argue that it may not be possible to extract atomically resolved information from many chemical maps.

  13. Vibrational spectroscopic characterisation of salmeterol xinafoate polymorphs and a preliminary investigation of their transformation using simultaneous in situ portable Raman spectroscopy and differential scanning calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Hassan Refat H. [Chemical and Forensic Sciences/University Analytical Centre, School of Life Sciences, University of Bradford, Richmond Road, Bradford BD7 1DP (United Kingdom); Edwards, Howell G.M. [Chemical and Forensic Sciences/University Analytical Centre, School of Life Sciences, University of Bradford, Richmond Road, Bradford BD7 1DP (United Kingdom)], E-mail: H.G.M.Edwards@bradford.ac.uk; Hargreaves, Michael D.; Munshi, Tasnim; Scowen, Ian J.; Telford, Richard J. [Chemical and Forensic Sciences/University Analytical Centre, School of Life Sciences, University of Bradford, Richmond Road, Bradford BD7 1DP (United Kingdom)

    2008-07-14

    Knowledge and control of the polymorphic phases of chemical compounds are important aspects of drug development in the pharmaceutical industry. Salmeterol xinafoate, a long acting {beta}-adrenergic receptor agonist, exists in two polymorphic Forms, I and II. Raman and near infrared spectra were obtained of these polymorphs at selected wavelengths in the range of 488-1064 nm; significant differences in the Raman and near-infrared spectra were apparent and key spectral marker bands have been identified for the vibrational spectroscopic characterisation of the individual polymorphs which were also characterised with X ray diffractometry. The solid-state transition of salmeterol xinafoate polymorphs was studied using simultaneous in situ portable Raman spectroscopy and differential scanning calorimetry isothermally between transitions. This method assisted in the unambiguous characterisation of the two polymorphic forms by providing a simultaneous probe of both the thermal and vibrational data. The study demonstrates the value of a rapid in situ analysis of a drug polymorph which can be of potential value for at-line in-process control.

  14. Measurement Error in Atomic-Scale Scanning Transmission Electron Microscopy-Energy-Dispersive X-Ray Spectroscopy (STEM-EDS) Mapping of a Model Oxide Interface.

    Science.gov (United States)

    Spurgeon, Steven R; Du, Yingge; Chambers, Scott A

    2017-06-01

    With the development of affordable aberration correctors, analytical scanning transmission electron microscopy (STEM) studies of complex interfaces can now be conducted at high spatial resolution at laboratories worldwide. Energy-dispersive X-ray spectroscopy (EDS) in particular has grown in popularity, as it enables elemental mapping over a wide range of ionization energies. However, the interpretation of atomically resolved data is greatly complicated by beam-sample interactions that are often overlooked by novice users. Here we describe the practical factors-namely, sample thickness and the choice of ionization edge-that affect the quantification of a model perovskite oxide interface. Our measurements of the same sample, in regions of different thickness, indicate that interface profiles can vary by as much as 2-5 unit cells, depending on the spectral feature. This finding is supported by multislice simulations, which reveal that on-axis maps of even perfectly abrupt interfaces exhibit significant delocalization. Quantification of thicker samples is further complicated by channeling to heavier sites across the interface, as well as an increased signal background. We show that extreme care must be taken to prepare samples to minimize channeling effects and argue that it may not be possible to extract atomically resolved information from many chemical maps.

  15. Surface characterization of 7S and 11S globulin powders from soy protein examined by X-ray photoelectron spectroscopy and scanning electron microscopy.

    Science.gov (United States)

    Zhao, Xiaoyan; Chen, Jun; Zhu, Qingjun; Du, Fangling; Ao, Qiang; Liu, Jie

    2011-09-01

    In this study the surface composition of 7S and 11S globulin powders from soybean proteins by aqueous buffer and reverse micelle extractions had been examined using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Analysis by XPS revealed that the O and N atomic percentage of 7S and 11S globulin surfaces from bis(2-ethylhexyl) sodium sulfosuccinate (AOT) reverse micelle was higher than from aqueous buffer, but the C atomic percentage was lower. The O/C ratio of the 7S globulin powder from aqueous buffer and reverse micelle was similar while significant differences were obtained in the O/C ratio of the 11S globulin powder, N/C atom ratios of the 7S and 11S globulin powders and high-resolution XPS C 1s, N 1s, O 1s spectra. Powder microstructure after reverse micelle treatment showed the presence of small pores, indicating the effect of reverse micelle on the 7S and 11S globulin structure. The obtained results indicated that the reverse micelle could affect the C, O and N components on the surface of soybean proteins. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Improved controlled atmosphere high temperature scanning probe microscope

    DEFF Research Database (Denmark)

    Hansen, Karin Vels; Wu, Yuehua; Jacobsen, Torben

    2013-01-01

    ) is monitored by an oxygen sensor. We present here some examples of its capabilities demonstrated by high temperature topography with simultaneously ac electrical conductance measurements during atmosphere changes, electrochemical impedance spectroscopy at various temperatures, and measurements of the surface......To locally access electrochemical active surfaces and interfaces in operando at the sub-micron scale at high temperatures in a reactive gas atmosphere is of great importance to understand the basic mechanisms in new functional materials, for instance, for energy technologies, such as solid oxide...... fuel cells and electrolyzer cells. Here, we report on advanced improvements of our original controlled atmosphere high temperature scanning probe microscope, CAHT-SPM. The new microscope can employ a broad range of the scanning probe techniques including tapping mode, scanning tunneling microscopy...

  17. A scanning tunneling microscopy investigation of the phases formed by the sulfur adsorption on Au(100) from an alkaline solution of 1,4-piperazine(bis)-dithiocarbamate of potassium

    Energy Technology Data Exchange (ETDEWEB)

    Martínez, Javier A. [Instituto de Ciencia y Tecnología de Materiales (IMRE), Universidad de La Habana, Zapata y G, El Vedado, Plaza de la Revolución, La Habana 10400 (Cuba); Valenzuela B, José [Centro de Nanociencias y Nanotecnología (CNyN), Universidad Nacional Autónoma de México (UNAM) , km 107 Carretera Tijuana-Ensenada, Ensenada, BC 22860 (Mexico); Cao Milán, R. [Facultad de Química, Universidad de La Habana, Zapata y G, El Vedado, Plaza de la Revolución, La Habana 10400 (Cuba); Herrera, José [Instituto de Ciencia y Tecnología de Materiales (IMRE), Universidad de La Habana, Zapata y G, El Vedado, Plaza de la Revolución, La Habana 10400 (Cuba); Farías, Mario H. [Centro de Nanociencias y Nanotecnología (CNyN), Universidad Nacional Autónoma de México (UNAM) , km 107 Carretera Tijuana-Ensenada, Ensenada, BC 22860 (Mexico); Hernández, Mayra P., E-mail: mayrap@fisica.uh.cu [Instituto de Ciencia y Tecnología de Materiales (IMRE), Universidad de La Habana, Zapata y G, El Vedado, Plaza de la Revolución, La Habana 10400 (Cuba)

    2014-11-30

    Highlights: • New phases of sulfur on gold: hexamer and (√(2)×√(2)) were observed by STM. • Hexamers and (√(2)×√(2)) structures coexist with well-known octomers. • Formation of sulfur multilayer by K{sub 2}DTC{sub 2}pz hydrolysis under alkaline condition. • Top octomer layer have dynamic behavior while (√(2)×√(2)) and hexamer were static. • A model is presented to explain sulfur multilayer formation on Au(100). - Abstract: Piperazine-dithiocarbamate of potassium (K{sub 2}DTC{sub 2}pz) was used as a new precursor for the spontaneous deposition of sulfur on the Au(100) surface in alkaline solution. Two new sulfur phases were studied by scanning tunneling microscopy (STM). These phases were formed by six sulfur atoms (S{sub 6} phase, hexamer) and by four sulfur atoms (S{sub 4} phase, tetramer with (√(2)×√(2)) structure), and they were observed in coexistence with the well-known quasi-square patterns formed by eight sulfur atoms (S{sub 8} phase, octomer). A model was proposed where sulfur multilayers were formed by a (√(2)×√(2)) phase adsorbed directly on the gold surface while one of the other structures: hexamers or octomers were deposited on top. Sulfur layers were formed on gold terraces, vacancies and islands produced by lifting reconstructed surface. Sequential high-resolution STM images allowed the direct observation of the dynamic of the octomers, while the (√(2)×√(2)) structure remained static. Images also showed the reversible association/dissociation of the octomer.

  18. The interfacial and surface properties of thin Fe and Gd films grown on W(110) as studied by scanning tunneling microscopy, site-resolved photoelectron diffraction, and spin polarized photoelectron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Tober, Eric D. [Univ. of California, Davis, CA (United States)

    1997-06-01

    Combined scanning tunneling microscopy (STM) and low energy electron diffraction (LEED) measurements from Gd films grown on W(110) prepared with and without annealing have been used to provide a detailed picture of the growth of such films, permitting a quantitative structural explanation for previously-measured magnetic properties and the identification of a new two-dimensional structure for the first monolayer. The analysis of the film roughness of room-temperature-grown films as a function of coverage and lateral length scale reveals that the growing Gd surface follows scaling laws for a self-affine surface. Annealing these as-deposited films at elevated temperatures is found to drastically alter the morphology of the films, as seen by both STM and LEED. Nanometer-scale islands of relatively well-defined size and shape are observed under certain conditions. Finally, the first monolayer of Gd is observed to form a (7x14) superstructure with pseudo-(7x7) symmetry that is consistent with a minimally-distorted hexagonal two-dimensional Gd(0001) film. Furthermore, a new beamline and photoelectron spectrometer/diffractometer at the Advanced Light Source have been used to obtain full-solid-angle and site-specific photoelectron diffraction (PD) data from interface W atoms just beneath (1x1) Fe and (7x14) Gd monolayers on W(110) by utilizing the core level shift in the W 4f7/2 spectrum. A comparison of experiment with multiple scattering calculations permits determining the Fe adsorption site and the relative interlayer spacing to the first and second W layers. These Fe results are also compared to those from the very different Gd overlayer and from the clean W(110) surface. Such interface PD measurements show considerable promise for future studies. Finally, the rare-earth ferromagnetic system of Gd(0001) has been examined through the use of spin polarized photoelectron diffraction from the Gd 4s and 5s photoelectron multiplets.

  19. Anatomical placement of double femoral tunnels in anterior cruciate ligament reconstruction: anteromedial tunnel first or posterolateral tunnel first?

    Science.gov (United States)

    Taketomi, Shuji; Nakagawa, Takumi; Takeda, Hideki; Nakajima, Kohei; Nakayama, Shuichi; Fukai, Atsushi; Hirota, Jinso; Kachi, Yoshinori; Kawano, Hirotaka; Miura, Toshiki; Fukui, Naoshi; Nakamura, Kozo

    2011-03-01

    The purpose of this study was to know which tunnel--the anteromedial (AM) bundle or the posterolateral (PL) bundle--should be prepared first to create the 2 femoral tunnels accurately in anatomic double-bundle (DB) anterior cruciate ligament (ACL) reconstruction. Thirty-four patients were divided into 2 groups of 17 depending on the sequence of preparation of the 2 femoral tunnels. In group A, the AM tunnel was prepared first, whereas the PL tunnel was prepared first in group P. ACL reconstruction was performed using a three-dimensional (3-D) fluoroscopy-based navigation system to place the double femoral tunnels through an accessory medial portal. The double femoral socket positioning was evaluated by 3-D computed tomography (CT) scan image. The non-anatomical placement of the femoral sockets occurred in 5 patients (29%) in group A, whereas the 2 sockets were placed anatomically in all patients in group P (P tunnels through accessory medial portal affected the resultant location of the sockets and the rate of the complications. When femoral tunnels are prepared with a transportal technique, PL tunnel first technique seems to be superior to AM first technique regarding anatomic placement. However, PL tunnel first technique accompanies the risk of socket communication.

  20. Nanofabrication with the Scanning Tunneling Microscope

    Energy Technology Data Exchange (ETDEWEB)

    Shedd, G.M.; Russell, P.E.

    1988-12-01

    The Precision Engineering Center has recently begun a research program into applications of STM to Nanotechnology. Few tools permit humans to control events and processes at the manometer level, and of those, the STM is the most well-suited to the task. A versatile new ultra-high-vacuum (UHV) STM is being built to study the use of STM for the manipulation of nanometer-scale particles. Part of the STM`s usefulness will be due to its being positioned directly beneath the focused ion beam (FIB). The interface of the STM with the FIB will allow the STM to take advantage of the FIB for long-range imaging and as a particle source; the FIB can in turn use the STM for in situ, high-resolution imaging of micromachined features.

  1. Theoretical model of the tunneling current between a metallic tip and a ferroelectric material.

    Science.gov (United States)

    Neupane, Ravi; Yost, Andrew; Chien, Teyu

    We present a model to calculate the tunneling current for a ferroelectric (FE) material in a metal/vacuum/Ferroelectric tunneling junction. Using this model, we try to explore the effect of the FE dipole orientation's direction on I - V spectrum using scanning tunneling spectroscopy (STS). The STM tunneling current for non-FE materials depends upon various factors such as tip -sample distance (vacuum gap), temperature, density of states (DOS) of tip and of sample, and tip-sample bias. FE materials have internal electric dipoles giving rise to internal and external electric fields. The electric field induced by these dipoles will distort the fermi level as a function of depth in the material. In our model, the Fermi level is assumed to be inclined with a slope as a function of the depth. The slope depends upon the orientation and the strength of the electric dipole moment. In this model we use the WKB method accounting for the slope of the fermi level to calculate the tunneling probability from tip to different depths then summing all contributions to obtain the total current as a function of tip-sample bias, i.e. I - V curves. School of Energy Resources, University of Wyoming.

  2. Characterization of Temperature Induced Phase Transitions in the Five Polymorphic Forms of Sulfathia-zole by Terahertz Pulsed Spectroscopy and Differential Scanning Calorimetry

    DEFF Research Database (Denmark)

    Zeitler, J. Axel; Newnham, David A.; Taday, Philip F.

    2006-01-01

    The far-infrared properties of all five described polymorphic forms of the drug sulfathiazole have been studied by terahertz pulsed spectroscopy and low frequency Raman spectroscopy. The spectra of the different polymorphs are distinctly different. Terahertz pulsed spectroscopy proves to be a rap...

  3. Vibrational spectroscopy in the electron microscope.

    Science.gov (United States)

    Krivanek, Ondrej L; Lovejoy, Tracy C; Dellby, Niklas; Aoki, Toshihiro; Carpenter, R W; Rez, Peter; Soignard, Emmanuel; Zhu, Jiangtao; Batson, Philip E; Lagos, Maureen J; Egerton, Ray F; Crozier, Peter A

    2014-10-09

    Vibrational spectroscopies using infrared radiation, Raman scattering, neutrons, low-energy electrons and inelastic electron tunnelling are powerful techniques that can analyse bonding arrangements, identify chemical compounds and probe many other important properties of materials. The spatial resolution of these spectroscopies is typically one micrometre or more, although it can reach a few tens of nanometres or even a few ångströms when enhanced by the presence of a sharp metallic tip. If vibrational spectroscopy could be combined with the spatial resolution and flexibility of the transmission electron microscope, it would open up the study of vibrational modes in many different types of nanostructures. Unfortunately, the energy resolution of electron energy loss spectroscopy performed in the electron microscope has until now been too poor to allow such a combination. Recent developments that have improved the attainable energy resolution of electron energy loss spectroscopy in a scanning transmission electron microscope to around ten millielectronvolts now allow vibrational spectroscopy to be carried out in the electron microscope. Here we describe the innovations responsible for the progress, and present examples of applications in inorganic and organic materials, including the detection of hydrogen. We also demonstrate that the vibrational signal has both high- and low-spatial-resolution components, that the first component can be used to map vibrational features at nanometre-level resolution, and that the second component can be used for analysis carried out with the beam positioned just outside the sample--that is, for 'aloof' spectroscopy that largely avoids radiation damage.

  4. Visualizing Klein tunneling in graphene at the atomic limit

    Science.gov (United States)

    Gutierrez, Christopher; Brown, Lola; Lochocki, Edward B.; Kim, Cheol-Joo; Shen, Kyle M.; Park, Jiwoong; Pasupathy, Abhay N.

    Graphene has attracted much attention from both the solid-state and high-energy scientific communities because its elementary excitations mimic relativistic chiral fermions. This has allowed graphene to act as a table-top testbed for verifying certain longstanding theoretical predictions dating back to the very first formulation of relativistic quantum mechanics. One such prediction is Klein tunneling, the ability of chiral electrons to transmit perfectly through arbitrarily high potential barriers. Previous transport and point-spectroscopic studies confirmed Klein behavior of graphene electrons but lacked real-space resolution. Here we use scanning tunneling microscopy and spectroscopy (STM/STS) measurements to present the first real-space atomic images of Klein tunneling in graphene. In these CVD-grown samples, quasi-circular regions of the copper substrate underneath graphene act as potential barriers that can scatter and transmit electrons. At certain energies, the relativistic chiral fermions that Klein scatter from these barriers are shown to fulfill resonance conditions such that the transmitted electrons become trapped and form standing waves. These resonant modes are visualized with detailed spectroscopic images with atomic resolution that agree well with theoretical calculations. The trapping time is shown to depend critically on both the angular momenta quantum number of the resonant state and the radius of the trapping potential.

  5. Investigation of the cutaneous penetration behavior of dexamethasone loaded to nano-sized lipid particles by EPR spectroscopy, and confocal Raman and laser scanning microscopy.

    Science.gov (United States)

    Lohan, Silke B; Saeidpour, Siavash; Solik, Agnieszka; Schanzer, Sabine; Richter, Heike; Dong, Pin; Darvin, Maxim E; Bodmeier, Roland; Patzelt, Alexa; Zoubari, Gaith; Unbehauen, Michael; Haag, Rainer; Lademann, Jürgen; Teutloff, Christian; Bittl, Robert; Meinke, Martina C

    2017-07-01

    An improvement of the penetration efficiency combined with the controlled release of actives in the skin can facilitate the medical treatment of skin diseases immensely. Dexamethasone (Dx), a synthetic glucocorticoid, is frequently used for the treatment of inflammatory skin diseases. To investigate the penetration of nano-sized lipid particles (NLP) loaded with Dx in comparison to a commercially available base cream, different techniques were applied. Electron paramagnetic resonance (EPR) spectroscopy was used to monitor the penetration of Dx, which was covalently labeled with the spin probe 3-(Carboxy)-2,2,5,5-tetramethyl-1-pyrrolidinyloxy (PCA). The penetration into hair follicles was studied using confocal laser scanning microscopy (CLSM) with curcumin-loaded NLP. The penetration of the vehicle was followed by confocal Raman microscopy (CRM). Penetration studies using excised porcine skin revealed a more than twofold higher penetration efficiency for DxPCA into the stratum corneum (SC) after 24h incubation compared to 4h incubation when loaded to the NLP, whereas when applied in the base cream, almost no further penetration was observed beyond 4h. The distribution of DxPCA within the SC was investigated by consecutive tape stripping. The release of DxPCA from the base cream after 24h in deeper SC layers and the viable epidermis was shown by EPR. For NLP, no release from the carrier was observed, although DxPCA was detectable in the skin after the complete SC was removed. This phenomenon can be explained by the penetration of the NLP into the hair follicles. However, penetration profiles measured by CRM indicate that NLP did not penetrate as deeply into the SC as the base cream formulation. In conclusion, NLP can improve the accumulation of Dx in the skin and provide a reservoir within the SC and in the follicular infundibula. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Orthogonal identification of gunshot residue with complementary detection principles of voltammetry, scanning electron microscopy, and energy-dispersive X-ray spectroscopy: sample, screen, and confirm.

    Science.gov (United States)

    O'Mahony, Aoife M; Samek, Izabela A; Sattayasamitsathit, Sirilak; Wang, Joseph

    2014-08-19

    Field-deployable voltammetric screening coupled with complementary laboratory-based analysis to confirm the presence of gunshot residue (GSR) from the hands of a subject who has handled, loaded, or discharged a firearm is described. This protocol implements the orthogonal identification of the presence of GSR utilizing square-wave stripping voltammetry (SWSV) as a rapid screening tool along with scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) to confirm the presence of the characteristic morphology and metal composition of GSR particles. This is achieved through the judicious modification of the working electrode of a carbon screen-printed electrode (CSPE) with carbon tape (used in SEM analysis) to fix and retain a sample. A comparison between a subject who has handled and loaded a firearm and a subject who has had no contact with GSR shows the significant variations in voltammetric signals and the presence or absence of GSR-consistent particles and constituent metals. This initial electrochemical screening has no effect on the integrity of the metallic particles, and SEM/EDX analysis conducted prior to and postvoltammetry show no differences in analytical output. The carbon tape is instrumental in retaining the GSR sample after electrochemical analysis, supported by comparison with orthogonal detection at a bare CSPE. This protocol shows great promise as a two-tier detection system for the presence of GSR from the hands of a subject, whereby initial screening can be conducted rapidly onsite by minimally trained operators; confirmation can follow at the same substrate to substantiate the voltammetric results.

  7. Tunneling magnetic force microscopy

    Science.gov (United States)

    Burke, Edward R.; Gomez, Romel D.; Adly, Amr A.; Mayergoyz, Isaak D.

    1993-01-01

    We have developed a powerful new tool for studying the magnetic patterns on magnetic recording media. This was accomplished by modifying a conventional scanning tunneling microscope. The fine-wire probe that is used to image surface topography was replaced with a flexible magnetic probe. Images obtained with these probes reveal both the surface topography and the magnetic structure. We have made a thorough theoretical analysis of the interaction between the probe and the magnetic fields emanating from a typical recorded surface. Quantitative data about the constituent magnetic fields can then be obtained. We have employed these techniques in studies of two of the most important issues of magnetic record: data overwrite and maximizing data-density. These studies have shown: (1) overwritten data can be retrieved under certain conditions; and (2) improvements in data-density will require new magnetic materials. In the course of these studies we have developed new techniques to analyze magnetic fields of recorded media. These studies are both theoretical and experimental and combined with the use of our magnetic force scanning tunneling microscope should lead to further breakthroughs in the field of magnetic recording.

  8. Single-molecule vibrational spectroscopy of water molecules using an LT-STM

    Science.gov (United States)

    Matsumoto, Chikako; Kim, Yousoo; Motobayashi, Kenta; Kawai, Maki

    2006-03-01

    Single-molecule vibrational spectroscopy has attracted considerable attention as a powerful tool for nanoscale chemistry. The adsorption of water molecules on metal surfaces plays an important role in understanding many phenomena in nature, such as heterogeneous catalysis and corrosion, etc. The structure of water at low coverage has been investigated on a variety of transition-metal surfaces with various techniques. But the microscopic understanding of the adsorption feature of single water molecules is still unclear. We report molecular scale study of adsorption behaviors of water molecules on Pt (111) surface at 4.7 K by use of single-molecule vibrational spectroscopy with the scanning tunneling microscopy (STM). The Pt (111) surface was dosed with a small amount of water molecules (cherry blossom', which can be explained by one of the water molecules rotating around the other. Inelastic electron tunneling spectroscopy using the STM was utilized to determine vibrational modes of individual water dimers.

  9. Carpal Tunnel Syndrome

    Science.gov (United States)

    ... a passing cramp? It could be carpal tunnel syndrome. The carpal tunnel is a narrow passageway of ... three times more likely to have carpal tunnel syndrome than men. Early diagnosis and treatment are important ...

  10. Characterization of toners and inkjets by laser ablation spectrochemical methods and Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Trejos, Tatiana, E-mail: trejost@fiu.edu; Corzo, Ruthmara, E-mail: rcorz001@fiu.edu; Subedi, Kiran, E-mail: ksube001@fiu.edu; Almirall, José, E-mail: almirall@fiu.edu

    2014-02-01

    Detection and sourcing of counterfeit currency, examination of counterfeit security documents and determination of authenticity of medical records are examples of common forensic document investigations. In these cases, the physical and chemical composition of the ink entries can provide important information for the assessment of the authenticity of the document or for making inferences about common source. Previous results reported by our group have demonstrated that elemental analysis, using either Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) or Laser Ablation Induced Breakdown Spectroscopy (LIBS), provides an effective, practical and robust technique for the discrimination of document substrates and writing inks with minimal damage to the document. In this study, laser-based methods and Scanning Electron Microscopy-Energy Dispersive X-Ray Spectroscopy (SEM-EDS) methods were developed, optimized and validated for the forensic analysis of more complex inks such as toners and inkjets, to determine if their elemental composition can differentiate documents printed from different sources and to associate documents that originated from the same printing source. Comparison of the performance of each of these methods is presented, including the analytical figures of merit, discrimination capability and error rates. Different calibration strategies resulting in semi-quantitative and qualitative analysis, comparison methods (match criteria) and data analysis and interpretation tools were also developed. A total of 27 black laser toners originating from different manufacturing sources and/or batches were examined to evaluate the discrimination capability of each method. The results suggest that SEM-EDS offers relatively poor discrimination capability for this set (∼ 70.7% discrimination of all the possible comparison pairs or a 29.3% type II error rate). Nonetheless, SEM-EDS can still be used as a complementary method of analysis since it has

  11. Medicinal value of asiaticoside for Alzheimer's disease as assessed using single-molecule-detection fluorescence correlation spectroscopy, laser-scanning microscopy, transmission electron microscopy, and in silico docking.

    Science.gov (United States)

    Hossain, Shahdat; Hashimoto, Michio; Katakura, Masanori; Al Mamun, Abdullah; Shido, Osamu

    2015-04-14

    Identifying agents that inhibit amyloid beta peptide (Aβ) aggregation is the ultimate goal for slowing Alzheimer's disease (AD) progression. This study investigated whether the glycoside asiaticoside inhibits Aβ1-42 fibrillation in vitro. Fluorescence correlation spectroscopy (FCS), evaluating the Brownian diffusion times of moving particles in a small confocal volume at the single-molecule level, was used. If asiaticoside inhibits early Aβ1-42 fibrillation steps, more Aβs would remain free and rapidly diffuse in the confocal volume. In contrast, "weaker or no inhibition" permits a greater number of Aβs to polymerize into oligomers, leading to fibers and gives rise to slow diffusion times in the solution. Trace amounts of 5-carboxytetramethylrhodamine (TAMRA)-labeled Aβ1-42 in the presence of excess unlabeled Aβ1-42 (10 μM) was used as a fluorescent probe. Steady-state and kinetic-Thioflavin T (ThT) fluorospectroscopy, laser-scanning fluorescence microscopy (LSM), and transmission electron microscopy (TEM) were also used to monitor fibrillation. Binding of asiaticoside with Aβ1-42 at the atomic level was computationally examined using the Molegro Virtual Docker and PatchDock. With 1 h of incubation time for aggregation, FCS data analysis revealed that the diffusion time of TAMRA-Aβ1-42 was 208 ± 4 μs, which decreased to 164 ± 8.0 μs in the presence of asiaticoside, clearly indicating that asiaticoside inhibited the early stages Aβ1-42 of fibrillation, leaving more free Aβs in the solution and permitting their rapid diffusion in the confocal volume. The inhibitory effects were also evidenced by reduced fiber formation as assessed by steady-state and kinetic ThT fluorospectroscopy, LSM, and TEM. Asiaticoside elongated the lag phase of Aβ1-42 fibrillation, indicating the formation of smaller amyloid species were impaired in the presence of asiaticoside. Molecular docking revealed that asiaticoside binds with amyloid intra- and inter-molecular amino

  12. Probing the structure and nano-scale mechanical properties of polymer surfaces with scanning force microscopy and sum frequency vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gracias, David Hugo [Univ. of California, Berkeley, CA (United States)

    1999-05-01

    Scanning Force Microscopy (SFM) has been used to quantitatively measure the elastic modulus, friction and hardness of polymer surfaces with special emphasis on polyethylene and polypropylene. In the experiments, tips of different radii of curvature ranging from 20 nm to 1000 nm have been used and the high pressure applied by the SFM have been observed to affect the values obtained in the measurements. The contact of the SFM tip with the polymer surface is explained by fitting the experimental curves to theoretical predictions of contact mechanics. Sum Frequency Generation (SFG) Vibrational Spectroscopy has been used to measure vibrational spectra of polymer surfaces in the vibrational range of 2700 to 3100 cm-1. Strong correlations are established between surface chemistry and surface structure as probed by SFG and mechanical properties measured by SFM on the surfaces. In these studies segregation of low surface energy moieties, from the bulk of the polymer to the surface have been studied. It was found that surface segregation occurs in miscible polymer blends and a small concentration of surface active polymer can be used to totally modify the surface properties of the blend. A novel high vacuum SFM was built to do temperature dependent measurements of mechanical changes occurring at the surface of polypropylene during the glass transition of the polymer. Using this instrument the modulus and friction of polypropylene was measured in the range of room temperature to ˜-60°C. An increase in the ordering of the backbone of the polymer chains below the glass transition measured by SFG correlates well with the increase in modulus measured on the same surface with SFM. Friction measurements have been done on polyethylene with three different instruments by applying loads ranging from nN to sub newton i.e. over eight orders of magnitude. Pressure and contact area effects were observed to play a significant role in determining the frictional response of the polymer

  13. Size dependent tunnel diode effects in gold tipped CdSe nanodumbbells

    Science.gov (United States)

    Saraf, Deepashri; Kumar, Ashok; Kanhere, Dilip; Kshirsagar, Anjali

    2017-02-01

    We report simulation results for scanning tunneling spectroscopy of gold-tipped CdSe nanodumbbells of lengths ˜27 Å and ˜78 Å. Present results are based on Bardeen, Tersoff, and Hamann formalism that takes inputs from ab initio calculations. For the shorter nanodumbbell, the current-voltage curves reveal negative differential conductance, the characteristic of a tunnel diode. This behaviour is attributed to highly localized metal induced gap states that rapidly decay towards the center of the nanodumbbell leading to suppression in tunneling. In the longer nanodumbbell, these gap states are absent in the central region, as a consequence of which zero tunneling current is observed in that region. The overall current-voltage characteristics for this nanodumbbell are observed to be largely linear near the metal-semiconductor interface and become rectifying at the central region, the nature being similar to its parent nanorod. The cross-sectional heights of these nanodumbbells also show bias-dependence where we begin to observe giant Stark effect features in the semiconducting central region of the longer nanodumbbell.

  14. AquaScan: A miniaturized UV/VIS/IR hyperspectral imager for autonomous airborne and underwater imaging spectroscopy of coastal & oceanic environments Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The AquaScan, a miniaturized UV/VIS/NIR hyperspectral imager will be built for deployment on a UAV or small manned aircraft for ocean coastal remote sensing...

  15. Giant tunnel-electron injection in nitrogen-doped graphene

    DEFF Research Database (Denmark)

    Lagoute, Jerome; Joucken, Frederic; Repain, Vincent

    2015-01-01

    Scanning tunneling microscopy experiments have been performed to measure the local electron injection in nitrogen-doped graphene on SiC(000) and were successfully compared to ab initio calculations. In graphene, a gaplike feature is measured around the Fermi level due to a phonon-mediated tunneling...... and at carbon sites. Nitrogen doping can therefore be proposed as a way to improve tunnel-electron injection in graphene....

  16. Electronically-Scanned Pressure Sensors

    Science.gov (United States)

    Coe, C. F.; Parra, G. T.; Kauffman, R. C.

    1984-01-01

    Sensors not pneumatically switched. Electronic pressure-transducer scanning system constructed in modular form. Pressure transducer modules and analog to digital converter module small enough to fit within cavities of average-sized wind-tunnel models. All switching done electronically. Temperature controlled environment maintained within sensor modules so accuracy maintained while ambient temperature varies.

  17. Synthesis and characterization of Ni0.4Co2.6O4 spinel mixed oxides powder: study of its surface properties by voltammetry, x-ray, ftir, UV-VIS-NIR spectroscopy and scanning electron microscopy

    Directory of Open Access Journals (Sweden)

    Makhtar Guene

    2005-12-01

    Full Text Available Electrochemical studies were carried out on Ni0.4Co2.6O4 powders prepared by sol-gel via propionic acid method using cyclic and steady state voltammetries. The oxide surface was characterized by scanning electron microscopy (SEM, X-ray diffraction, UV-vis-NIR and FTIR spectroscopies. The results showed that the formation of homogeneous oxide with a single spinel phase occurred at 350°C. The surface redox couple NiOOH/Ni(OH2 is confined on the surface material l.

  18. Nuclear Scans

    Science.gov (United States)

    Nuclear scans use radioactive substances to see structures and functions inside your body. They use a special ... images. Most scans take 20 to 45 minutes. Nuclear scans can help doctors diagnose many conditions, including ...

  19. Multiple Ligament Reconstruction Femoral Tunnels: Intertunnel Relationships and Guidelines to Avoid Convergence.

    Science.gov (United States)

    Moatshe, Gilbert; Brady, Alex W; Slette, Erik L; Chahla, Jorge; Turnbull, Travis Lee; Engebretsen, Lars; LaPrade, Robert F

    2017-03-01

    Knee dislocations often require multiple concurrent ligament reconstructions, which involve creating several tunnels in the distal femur. Therefore, the risk of tunnel convergence is increased because of the limited bone volume within the distal aspect of the femur. To assess the risk of tunnel convergence and determine the optimal reconstruction tunnel orientations for multiple ligament reconstructions in the femur. Descriptive laboratory study. Three-dimensional knee models were developed from computed tomography scans of 21 patients. Medical image processing software was used to create tunnels for each of the primary ligamentous structures, replicating a surgical approach that would be used in multiple ligament reconstructions. Thereafter, the tunnel orientation was varied in surgically relevant directions to determine orientations that minimized the risk of tunnel convergence. The orientation of the anterior cruciate ligament (ACL) and posterior cruciate ligament (PCL) tunnels was held constant throughout the study, while the orientation of the fibular collateral ligament (FCL), popliteus tendon (PLT), superficial medial collateral ligament (sMCL), and posterior oblique ligament (POL) tunnels was varied to avoid convergence. A high risk of tunnel convergence was observed between the FCL and ACL tunnels when the FCL tunnel was aimed at 0° in the axial and coronal planes. Aiming the FCL tunnel 35° anteriorly minimized convergence with the ACL tunnel. No tunnel convergence was observed for the PLT tunnel aimed 35° anteriorly and parallel to the FCL tunnel. To avoid convergence between the sMCL and PCL tunnels, the sMCL tunnels should be aimed 40° proximally in the coronal plane and 20° to 40° anteriorly. During concomitant POL reconstruction, the sMCL should be aimed 40° proximally and anteriorly and the POL 20° proximally and anteriorly. The PLT and POL tunnels aimed at 0° in both the coronal and axial planes had an increased risk of violating the

  20. High non-anatomic tunnel position rates in ACL reconstruction failure using both transtibial and anteromedial tunnel drilling techniques.

    Science.gov (United States)

    Jaecker, Vera; Zapf, Tabea; Naendrup, Jan-Hendrik; Pfeiffer, Thomas; Kanakamedala, Ajay C; Wafaisade, Arasch; Shafizadeh, Sven

    2017-09-01

    Although it is well known from cadaveric and biomechanical studies that transtibial femoral tunnel (TT) positioning techniques are associated with non-anatomic tunnel positions, controversial data exist as so far no clinical differences could have been found, comparing transtibial with anteromedial techniques (AM). The purpose of the study was to analyze if graft failure following TT ACL reconstruction was more commonly associated with non-anatomic tunnel position in comparison with the AM technique. We hypothesized that, compared to AM techniques, non-anatomic tunnel positions correlate with TT tunnel positioning techniques. A total of 147 cases of ACL revision surgery were analyzed retrospectively. Primary ACL reconstructions were analyzed regarding the femoral tunnel drilling technique. Femoral and tibial tunnel positions were determined on CT scans using validated radiographic measurement methods. Correlation analysis was performed to determine differences between TT and AM techniques. A total of 101 cases were included, of whom 64 (63.4%) underwent the TT technique and 37 (36.6%) the AM technique for primary ACL reconstruction. Non-anatomic femoral tunnel positions were found in 77.2% and non-anatomical tibial tunnel positions in 40.1%. No correlations were found comparing tunnel positions in TT and AM techniques, revealing non-anatomic femoral tunnel positions in 79.7 and 73% and non-anatomic tibial tunnel positions in 43.7 and 35.1%, respectively (p > 0.05). Considerable rates of non-anatomic femoral and tibial tunnel positions were found in ACL revisions with both transtibial and anteromedial femoral drilling techniques. Despite the potential of placing tunnels more anatomically using an additional AM portal, this technique does not ensure anatomic tunnel positioning. Consequently, the data highlight the importance of anatomic tunnel positioning in primary ACL reconstruction, regardless of the applied drilling technique.

  1. Carpal tunnel biopsy

    Science.gov (United States)

    ... tunnel Images Carpal tunnel syndrome Surface anatomy - normal palm Surface anatomy - normal wrist Carpal biopsy References Calandruccio ... CA. Also reviewed by David Zieve, MD, MHA, Isla Ogilvie, PhD, and the A.D.A.M. ...

  2. Transonic Dynamics Tunnel (TDT)

    Data.gov (United States)

    Federal Laboratory Consortium — The Transonic Dynamics Tunnel (TDT) is a continuous flow wind-tunnel facility capable of speeds up to Mach 1.2 at stagnation pressures up to one atmosphere. The TDT...

  3. Hypersonic Tunnel Facility (HTF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Hypersonic Tunnel Facility (HTF) is a blow-down, non-vitiated (clean air) free-jet wind tunnel capable of testing large-scale, propulsion systems at Mach 5, 6,...

  4. Carpal tunnel repair - slideshow

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/presentations/100078.htm Carpal tunnel repair - series—Normal anatomy To use the sharing ... in the wrist and the wrist bones (carpal tunnel). Review Date 4/18/2017 Updated by: C. ...

  5. Road and Railroad Tunnels

    Data.gov (United States)

    Department of Homeland Security — Tunnels in the United States According to the HSIP Tiger Team Report, a tunnel is defined as a linear underground passageway open at both ends. This dataset is based...

  6. Quantum theory of tunneling

    CERN Document Server

    Razavy, Mohsen

    2014-01-01

    In this revised and expanded edition, in addition to a comprehensible introduction to the theoretical foundations of quantum tunneling based on different methods of formulating and solving tunneling problems, different semiclassical approximations for multidimensional systems are presented. Particular attention is given to the tunneling of composite systems, with examples taken from molecular tunneling and also from nuclear reactions. The interesting and puzzling features of tunneling times are given extensive coverage, and the possibility of measurement of these times with quantum clocks are critically examined. In addition by considering the analogy between evanescent waves in waveguides and in quantum tunneling, the times related to electromagnetic wave propagation have been used to explain certain aspects of quantum tunneling times. These topics are treated in both non-relativistic as well as relativistic regimes. Finally, a large number of examples of tunneling in atomic, molecular, condensed matter and ...

  7. Tunnel and Station Cost Methodology : Mined Tunnels

    Science.gov (United States)

    1983-01-01

    The main objective of this study was to develop a model for estimating the cost of subway station and tunnel construction. This report describes a cost estimating methodology for subway tunnels that can be used by planners, designers, owners, and gov...

  8. Comparison of Blue Wavelengths and Scan Velocity Effects on the Detection of Enamel Surface Caries Using Steady-State Laser-Induced Autofluorescence Spectroscopy

    Science.gov (United States)

    Khosroshahi, M. E.; Khoi, N. Taghizadeh

    2014-05-01

    The results of sound and carious enamel fl uorescence emission study using (i) different blue wavelengths, (ii) different scan velocity, and (iii) spectral ratio are reported. The samples were irradiated using a tunable argon laser emitting at 459 and 488 nm and a 405 nm laser at two different scan velocities of 0.23 and 0.5 mm/s. The results showed a spectral band of 443-492 nm for 405 nm, 493-522 nm for 459 nm, and 526-625 nm for 488 nm lasers for sound teeth. It was found from the emission spectra that with increase in the excitation wavelength, the corresponding primary peaks of the carious samples showed Stokes shifts of 4, 6, and 2 nm, respectively. No signifi cant change was observed for the secondary peaks. Also, in all cases, the intensity of fl uorescence signals of sound teeth was higher than those of carious teeth. The highest shape factor of 1.82 and integrated intensity ratio of 1.20 were achieved at 405 nm, which provides relatively better tissue discrimination. Also, increasing the scan velocity reduced the signal amplitudes in both sound and carious samples.

  9. Proceedings of the meeting on tunneling reaction and low temperature chemistry, 97 October. Tunneling reaction and quantum medium

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, Tetsuo; Aratono, Yasuyuki; Ichikawa, Tsuneki; Shiotani, Masaru [eds.

    1998-02-01

    Present report is the proceedings of the 3rd Meeting on Tunneling Reaction and Low Temperature Chemistry held in Oct. 13 and 14, 1997. The main subject of the meeting is `Tunneling Reaction and Quantum Medium`. In the meeting, the physical and chemical phenomena in the liquid helium such as quantum nucleation, spectroscopy of atoms and molecules, and tunneling abstraction reaction of tritium atom were discussed as the main topics as well as the tunneling reactions in the solid hydrogen and organic compounds. Through the meetings held in 1995, 1996, and 1997, the tunneling phenomena proceeding at various temperatures (room temperature to mK) in the wide fields of chemistry, biology, and physics were discussed intensively and the importance of the tunneling phenomena in the science has been getting clear. The 12 of the presented papers are indexed individually. (J.P.N.)

  10. Proton tunneling in solids

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, J.

    1998-10-01

    The tunneling rate of the proton and its isotopes between interstitial sites in solids is studied theoretically. The phonons and/or the electrons in the solid have two effects on the tunneling phenomenon. First, they suppress the transfer integral between two neighbouring states. Second, they give rise to a finite lifetime of the proton state. Usually the second effect is large and the tunneling probability per unit time (tunneling rate) can be defined. In some cases, however, a coherent tunneling is expected and actually observed. (author)

  11. Spatially resolved analyses of uranium species using a coupled system made up of confocal laser-scanning microscopy (CLSM) and laser induced fluorescence spectroscopy (LIFS); Ortsaufgeloeste Analyse von Uranspezies mittels einem Gekoppelten System aus Konfokaler Laser-Scanning Mikroskopie (CLSM) und Laser Induzierter Fluoreszenzspektroskopie (LIFS)

    Energy Technology Data Exchange (ETDEWEB)

    Brockmann, S. [Verein fuer Kernverfahrenstechnik und Analytik Rossendorf e.V. (VKTA), Dresden (Germany); Grossmann, K.; Arnold, T. [Helmholtz-Zentrum Dresden-Rossendorf e.V. (Germany). Inst. fuer Ressourcenoekologie

    2014-01-15

    The fluorescent properties of uranium when excited by UV light are used increasingly for spectroscope analyses of uranium species within watery samples. Here, alongside the fluorescent properties of the hexavalent oxidation phases, the tetra and pentavalent oxidation phases also play an increasingly important role. The detection of fluorescent emission spectrums on solid and biological samples using (time-resolved) laser induced fluorescence spectroscopy (TRLFS or LIFS respectively) has, however, the disadvantage that no statements regarding the spatial localisation of the uranium can be made. However, particularly in complex, biological samples, such statements on the localisation of the uranium enrichment in the sample are desired, in order to e.g. be able to distinguish between intra and extra-cellular uranium bonds. The fluorescent properties of uranium (VI) compounds and minerals can also be used to detect their localisation within complex samples. So the application of fluorescent microscopic methods represents one possibility to localise and visualise uranium precipitates and enrichments in biological samples, such as biofilms or cells. The confocal laser-scanning microscopy (CLSM) is especially well suited to this purpose. Coupling confocal laser-scanning microscopy (CLSM) with laser induced fluorescence spectroscopy (LIFS) makes it possible to localise and visualise fluorescent signals spatially and three-dimensionally, while at the same time being able to detect spatially resolved, fluorescent-spectroscopic data. This technology is characterised by relatively low detection limits from up to 1.10{sup -6} M for uranium (VI) compounds within the confocal volume. (orig.)

  12. In-Plane Anisotropy in Mono- and Few-Layer ReS2 Probed by Raman Spectroscopy and Scanning Transmission Electron Microscopy.

    Science.gov (United States)

    Chenet, Daniel A; Aslan, O Burak; Huang, Pinshane Y; Fan, Chris; van der Zande, Arend M; Heinz, Tony F; Hone, James C

    2015-09-09

    Rhenium disulfide (ReS2) is a semiconducting layered transition metal dichalcogenide that exhibits a stable distorted 1T phase. The reduced symmetry of this system leads to in-plane anisotropy in various material properties. Here, we demonstrate the strong anisotropy in the Raman scattering response for linearly polarized excitation. Polarized Raman scattering is shown to permit a determination of the crystallographic orientation of ReS2 through comparison with direct structural analysis by scanning transmission electron microscopy (STEM). Analysis of the frequency difference of appropriate Raman modes is also shown to provide a means of precisely determining layer thickness up to four layers.

  13. Renal scan

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003790.htm Renal scan To use the sharing features on this ... anaphylaxis . Alternative Names Renogram; Kidney scan Images Kidney anatomy Kidney - blood and urine flow References Chernecky CC, ...

  14. Functional biocompatible magnetite-cellulose nanocomposite fibrous networks: Characterization by fourier transformed infrared spectroscopy, X-ray powder diffraction and field emission scanning electron microscopy analysis.

    Science.gov (United States)

    Habibi, Neda

    2015-02-05

    The preparation and characterization of functional biocompatible magnetite-cellulose nano-composite fibrous material is described. Magnetite-cellulose nano-composite was prepared by a combination of the solution-based formation of magnetic nano-particles and subsequent coating with amino celluloses. Characterization was accomplished using X-ray powder diffraction (XRD), fourier transformed infrared (FTIR) and field emission scanning electron microscopy (FESEM) analysis. The peaks of Fe3O4 in the XRD pattern of nanocomposite confirm existence of the nanoparticles in the amino cellulose matrix. Magnetite-cellulose particles exhibit an average diameter of roughly 33nm as demonstrated by field emission scanning electron microscopy. Magnetite nanoparticles were irregular spheres dispersed in the cellulose matrix. The vibration corresponding to the NCH3 functional group about 2850cm(-1) is assigned in the FTIR spectra. Functionalized magnetite-cellulose nano-composite polymers have a potential range of application as targeted drug delivery system in biomedical field. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Time-resolved spectral characterization of ring cavity surface emitting and ridge-type distributed feedback quantum cascade lasers by step-scan FT-IR spectroscopy.

    Science.gov (United States)

    Brandstetter, Markus; Genner, Andreas; Schwarzer, Clemens; Mujagic, Elvis; Strasser, Gottfried; Lendl, Bernhard

    2014-02-10

    We present the time-resolved comparison of pulsed 2nd order ring cavity surface emitting (RCSE) quantum cascade lasers (QCLs) and pulsed 1st order ridge-type distributed feedback (DFB) QCLs using a step-scan Fourier transform infrared (FT-IR) spectrometer. Laser devices were part of QCL arrays and fabricated from the same laser material. Required grating periods were adjusted to account for the grating order. The step-scan technique provided a spectral resolution of 0.1 cm(-1) and a time resolution of 2 ns. As a result, it was possible to gain information about the tuning behavior and potential mode-hops of the investigated lasers. Different cavity-lengths were compared, including 0.9 mm and 3.2 mm long ridge-type and 0.97 mm (circumference) ring-type cavities. RCSE QCLs were found to have improved emission properties in terms of line-stability, tuning rate and maximum emission time compared to ridge-type lasers.

  16. Invited review article: A 10 mK scanning probe microscopy facility.

    Science.gov (United States)

    Song, Young Jae; Otte, Alexander F; Shvarts, Vladimir; Zhao, Zuyu; Kuk, Young; Blankenship, Steven R; Band, Alan; Hess, Frank M; Stroscio, Joseph A

    2010-12-01

    We describe the design, development and performance of a scanning probe microscopy (SPM) facility operating at a base temperature of 10 mK in magnetic fields up to 15 T. The microscope is cooled by a custom designed, fully ultra-high vacuum (UHV) compatible dilution refrigerator (DR) and is capable of in situ tip and sample exchange. Subpicometer stability at the tip-sample junction is achieved through three independent vibration isolation stages and careful design of the dilution refrigerator. The system can be connected to, or disconnected from, a network of interconnected auxiliary UHV chambers, which include growth chambers for metal and semiconductor samples, a field-ion microscope for tip characterization, and a fully independent additional quick access low temperature scanning tunneling microscope (STM) and atomic force microscope (AFM) system. To characterize the system, we present the cooling performance of the DR, vibrational, tunneling current, and tip-sample displacement noise measurements. In addition, we show the spectral resolution capabilities with tunneling spectroscopy results obtained on an epitaxial graphene sample resolving the quantum Landau levels in a magnetic field, including the sublevels corresponding to the lifting of the electron spin and valley degeneracies.

  17. Quantitative and qualitative elemental analysis of different nickel-titanium rotary instruments by using scanning electron microscopy and energy dispersive spectroscopy.

    Science.gov (United States)

    Ounsi, Hani F; Al-Shalan, Thakib; Salameh, Ziad; Grandini, Simone; Ferrari, Marco

    2008-01-01

    This study was designed to determine if the alloy composition shares an influence with the geometric design on the physical behavior of nickel-titanium rotary endodontic instruments. ProTaper, HERO, and K3 files were selected. After sterilized and cleaning with alcohol, surface analysis was performed using energy dispersive spectroscopy. Measurements were performed on the active part and on the shank. SEM images of fractured instruments were also obtained and assessed. All three types of instruments were composed mainly of Nickel (54.3%, SD +/- 0.8) and Titanium (45.2%, SD +/- 0.9). SEM images revealed similar aspect with the presence of Kirkendall voids regularly distributed in the alloy. The results indicate that the difference in properties and behavior of these three endodontic rotary shaping instruments is solely related to the respective geometric characteristics of the instrument design.

  18. FT-IR spectroscopy, scanning electron microscopy and porosity measurements to determine the firing temperature of ancient megalithic period potteries excavated at Adichanallur in Tamilnadu, South India

    Science.gov (United States)

    Velraj, G.; Ramya, R.; Hemamalini, R.

    2012-11-01

    Scientific examination of archaeological pottery mainly aims to determine the style of production and the techniques involved in its manufacture. Technological characterization includes the evaluation of the original firing conditions. Maximum firing temperatures may be evaluated by firing clays of compositions similar to those used for the production of the ancient objects. In the present work, some of the ancient pottery samples were collected from recently excavated site at Adichanallur, Tirunelveli District, Tamilnadu, India to estimate the firing temperature of the pottery samples and atmosphere prevailed at the time of manufacturing those potteries by the ancient artisans. From the Fourier transform infrared spectra of the samples the lower limit of firing temperature have been determined. The upper limit of firing temperature was evaluated by porosimetry method. The scanning electron microscopic analysis is used to narrow down the range of firing temperature and the results are consistent with the results obtained from FT-IR spectroscopic study and porosimetry method.

  19. Characterization of the zircon mineral by micro-Raman spectroscopy, optical and scanning electron microscopy; Caracterizacao do mineral zircao atraves de espectroscopia micro-Raman, microscopia optica e MEV

    Energy Technology Data Exchange (ETDEWEB)

    Dias, A.N.C.; Tello, C.A.S.; Soares, C.J.; Novaes, F.P.; Selmini, M.C.; Oliveira, R.D.; Barra, B.C.; Osorio, A.M.A.B., E-mail: diasanc@bol.com.b [UNESP, Presidente Prudente, SP (Brazil). Dept. de Fisica, Quimica e Biologia

    2007-07-01

    Results concerning the characterization of the zircon mineral by micro-Raman spectroscopy, optical microscopy and scanning electron microscopy (SEM) are presented in this work. The main objective was the implementation of a new methodology for dating zircon using the Fission Track Method (FTM). It is shown that if there is even a small region which presents an uniform distribution of fission tracks, it is possible to use the method for dating minerals. This is important because so far the scientific community has only been using grains which show fission track uniformity on all grain surface. This restriction reduces, significantly, the amount of datable grains, generating great systematic errors. The sample used in this work was collected in the state of Paraiba, Brazil, and is called JP. The results have been rather meaningful and this methodology will be applied for dating geological formations which belong to Bauru Group

  20. Time-Resolved Study of Nanomorphology and Nanomechanic Change of Early-Stage Mineralized Electrospun Poly(lactic acid) Fiber by Scanning Electron Microscopy, Raman Spectroscopy and Atomic Force Microscopy.

    Science.gov (United States)

    Wang, Mengmeng; Cai, Yin; Zhao, Bo; Zhu, Peizhi

    2017-08-17

    In this study, scanning electron microscopy (SEM), Raman spectroscopy and high-resolution atomic force microscopy (AFM) were used to reveal the early-stage change of nanomorphology and nanomechanical properties of poly(lactic acid) (PLA) fibers in a time-resolved manner during the mineralization process. Electrospun PLA nanofibers were soaked in simulated body fluid (SBF) for different periods of time (0, 1, 3, 5, 7 and 21 days) at 10 °C, much lower than the conventional 37 °C, to simulate the slow biomineralization process. Time-resolved Raman spectroscopy analysis can confirm that apatites were deposited on PLA nanofibers after 21 days of mineralization. However, there is no significant signal change among several Raman spectra before 21 days. SEM images can reveal the mineral deposit on PLA nanofibers during the process of mineralization. In this work, for the first time, time-resolved AFM was used to monitor early-stage nanomorphology and nanomechanical changes of PLA nanofibers. The Surface Roughness and Young's Modulus of the PLA nanofiber quantitatively increased with the time of mineralization. The electrospun PLA nanofibers with delicate porous structure could mimic the extracellular matrix (ECM) and serve as a model to study the early-stage mineralization. Tested by the mode of PLA nanofibers, we demonstrated that AFM technique could be developed as a potential diagnostic tool to monitor the early onset of pathologic mineralization of soft tissues.

  1. The Superluminal Tunneling Story

    OpenAIRE

    Aichmann, Horst; Nimtz, Günter

    2013-01-01

    Since 1992 experimental evidence of superluminal (faster than light, FTL) signals are causing much excitement in the physical community and in the media. Superluminal signal velocity and zero time tunneling was first observed in an analog tunneling experiment with microwaves. Recently, the conjectured zero time of electron was claimed to be observed in ionizing helium. The FTL signal velocity was reproduced with infrared light and with various tunneling barriers in several laboratories worldw...

  2. A study of gunshot residue distribution for close-range shots with a silenced gun using optical and scanning electron microscopy, X-ray microanalysis and infrared spectroscopy.

    Science.gov (United States)

    Brożek-Mucha, Zuzanna

    2017-03-01

    Detailed physical and chemical analysis of gunshot residue deposited in the nearest vicinity of a submachine gun alone and with a sound suppressor was performed. The studies were inspired by recent shooting cases with the use of a firearm with a silencer and the need to estimate the shooting distance to human body naked and covered with clothing. A series of experiments were performed in the shooting range using a machine pistol and the appropriate ammunition cal. 7.65mm Browning. Targets were placed in the range of 0-30cm from the gun and covered either with white cotton fabric or a porcine skin that mocked people's clothing and the naked skin. Both the organic and inorganic residue were examined by means of optical microscopy, infrared spectrometry as well as scanning electron microscopy and energy dispersive X-ray spectrometry. The influence of factors, such as sound suppressor, shooting distance and the substrate type on the mechanism of particles spread and their availability for research was established and discussed. Copyright © 2016 The Chartered Society of Forensic Sciences. Published by Elsevier B.V. All rights reserved.

  3. Melting, crystallization and storage stability of virgin coconut oil and its blends by differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR).

    Science.gov (United States)

    Srivastava, Yashi; Semwal, Anil Dutt; Sajeevkumar, Vallayil Appukuttan; Sharma, G K

    2017-01-01

    The blends were prepared of virgin coconut oil with refined soyabean oil (VCO-RSOY) and refined safflower oil (VCO-RSAFF). Blending with VCO improved the fatty acid composition which increased the shelf stability of 20:80 VCO-RSOY and VCO-RSAFF up to 12 months in different packaging systems such as low density polyethylene, linear low density polyethylene, metalized polyester pouches, polyethylene teteraphthalate, high density polyethylene (HDPE), Amber HDPE bottle. The specific spectral regions of FTIR proved to be very useful for the determination of adulteration as well as for the study of oxidation process. Band shifts observed at 3008, 1652, 1397, 1097, 912 and 845 cm(-1) have been used to differentiate RSAFF from VCO. VCO spectrums did not have these chemical shifts. Further the spectrum of RSOY showed same band shifts as RSAFF except 1652, 1397, 869.6 and 845 cm(-1). Differential Scanning Calorimetry provided useful information regarding the nature of thermodynamic changes related to physical state of vegetable oil. The physical state changes included melting and crystallization events which require the intake and release of energy.

  4. Impulse-induced compression rheo-optics study of polymers using attenuated total reflection based step-scan Fourier transform infrared time-resolved spectroscopy.

    Science.gov (United States)

    Nishikawa, Yuji; Nakano, Tatsuhiko; Noda, Isao

    2008-09-01

    An impulse-induced attenuated total reflection (ATR) based dynamic compression step-scan time-resolved Fourier transform rheo-optical system has been developed. This system was used to observe different viscoelastic properties of poly(ethylene terephthalate) (PET), poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHx), and carbon-black-filled polyester-polyamide blend. In the case of PET, almost no viscoelastic response extending beyond 15 ms was observed in the dynamic absorbance difference time domain spectrum. In contrast, PHBHx showed apparently different viscoelastic responses in the dynamic absorbance difference spectrum, especially in the C=O stretching band region. A long relaxation tail of the 1723 cm(-1) band lasting about 2.7 milliseconds was clearly seen. The tail corresponds to the structural or morphological reorganization of a less ordered crystalline form (Type II) under compressive perturbation. The carbon-black-filled polyester-polyamide blend film also shows different viscoelastic response tails. In this case, the amide C=O stretching vibration band does not show distinct viscoelastic responses, suggesting that the polyamide component does not contribute much to the viscoelastic properties. The present method shows promise for characterizing a wide variety of viscoelastic materials, including polymer alloys, blends, composites, copolymers, and semicrystalline polymers.

  5. Advanced electron microscopy of novel ferromagnetic materials and ferromagnet/oxide interfaces in magnetic tunnel junctions

    Science.gov (United States)

    Shi, Fengyuan

    We have studied novel ferromagnetic (FM) materials and FM electrode/tunnel barrier interfaces in magnetic tunnel junctions (MTJs) by advanced electron microscopy including scanning transmission electron microscopy (HRSTEM) and electron energy loss spectroscopy (EELS). MTJs are one of the prototypical spintronic devices, with applications in magnetic random access memory, sensors and read heads. The performance of MTJs depends on several factors, including the FM electrodes and the FM/tunnel barrier interfaces. Therefore, to realize the high performance of MTJs, we first need high quality ferromagnetic electrodes with high spin polarization. High-quality Fe3O4 and Fe4N electrodes with theoretically predicted -100% spin polarization were fabricated by various methods and investigated by HRSTEM and STEM EELS. The Fe3O4 and Fe4N thin films have low defect density and good crystallinity, but when integrated as electrodes in a MTJ, problems emerged. In a Fe4N/AlOx/Fe MTJ, the magnetoresistance was negative, but relatively small, due to a defective Fe 3O4 reaction layer formed at the Fe4N/tunnel barrier interface revealed by HRSTEM and EELS. The interfacial reaction layer was thin and discontinuous which made direct imaging difficult. Therefore, STEM EELS was used to map out the reaction layer. A Fe3O4 reaction layer was also found in a nominally symmetric CoFe/AlOx/CoFe MTJs after annealing, which also exhibited inverse TMR and a non-symmetric bias dependence. We also investigated the MTJs with the Heusler alloy Co2MnSi as one or both electrode and crystalline MgO as the tunnel barrier, which exhibit quite high TMR due to coherent tunneling. We showed that the Co2MnSi/MgO interface in these junctions is dominated by a configuration of a pure Mn plane bonded across the interface to O. This was the first observation of that interface termination. HRSTEM images also show that the fraction of MnMn/O interface termination increases with increasing Mn concentration in the CMS

  6. Microsystem Aeromechanics Wind Tunnel

    Data.gov (United States)

    Federal Laboratory Consortium — The Microsystem Aeromechanics Wind Tunnel advances the study of fundamental flow physics relevant to micro air vehicle (MAV) flight and assesses vehicle performance...

  7. Off-axis parabolic mirror optics for polarized Raman spectroscopy at low temperature

    Science.gov (United States)

    Chelwani, N.; Hoch, D.; Jost, D.; Botka, B.; Scholz, J.-R.; Richter, R.; Theodoridou, M.; Kretzschmar, F.; Böhm, T.; Kamarás, K.; Hackl, R.

    2017-05-01

    We report the development of a detection optics for the integration of Raman scattering and scanning probe microscopy at low temperature based on a parabolic mirror. In our set-up, half of the paraboloid mirror covers a solid angle of π corresponding to a numerical aperture of N.A. ≈ 0.85. The optical system can be used for far- and near-field spectroscopy. In the far field, the polarizations can be maintained to within 80%-90%. In combination with a scanning microscope (AFM/STM), tunneling or near-field experiments are possible with less than 10% loss of aperture. Our set-up provides ideal conditions for the future development of tip-enhanced Raman spectroscopy at low temperature.

  8. Interaction between Octenidine-based Solution and Sodium Hypochlorite: A Mass Spectroscopy, Proton Nuclear Magnetic Resonance, and Scanning Electron Microscopy-based Observational Study.

    Science.gov (United States)

    Thaha, Khaleel Ahamed; Varma, R Luxmi; Nair, Mali G; Sam Joseph, V G; Krishnan, Unni

    2017-01-01

    Octenisept (OCT; Schülke & Mayr, Nordersdedt, Germany), an antimicrobial, antibiofilm agent and a promising root canal irrigant, can be potentially combined with sodium hypochlorite (NaOCl) during endodontic treatment. The aim of this study was first to identify the precipitate formed on the interaction between OCT and NaOCl and secondly to compare its effect on dentinal tubules with that of precipitate formed on combining chlorhexidine (CHX) and NaOCl. This observational study was conducted in 3 stages. Initially, the color changes and precipitate formation were assessed when the test solution 0.1% OCT and 5.2% NaOCl were mixed. Color changes were compared with those observed when 2% CHX was mixed with 5.2% NaOCl. The residue obtained on combining OCT and NaOCl was subjected to proton nuclear magnetic resonance (1H NMR) and mass spectrometric (MS) analysis. In the final stage, dentinal surfaces irrigated alternatively with OCT and NaOCl were compared using scanning electron microscopy (SEM) with the dentinal surface irrigated with CHX and NaOCl. The OCT-NaOCl mixture changed in color from initial milky white to transparent over time, whereas the CHX-NaOCl mixture showed an immediate peach-brown discoloration. 1H NMR and MS analysis established that the whitish precipitate obtained on combining OCT and NaOCl solutions correlated with the structure of phenoxyethanol (PE). SEM revealed dense precipitate occluding the dentinal tubules with the CHX and NaOCl group, whereas the precipitate was sparse and partially occluded in the OCT and NaOCl group. The whitish precipitate formed with the OCT-NaOCl mixture was identified as PE, a compound already present in OCT, and it partly occluded the dentinal tubules. Copyright © 2016 American Association of Endodontists. All rights reserved.

  9. Technique of anatomical footprint reconstruction of the ACL with oval tunnels and medial portal aimers.

    Science.gov (United States)

    Petersen, Wolf; Forkel, Philipp; Achtnich, Andrea; Metzlaff, Sebastian; Zantop, Thore

    2013-06-01

    The purpose of this article was to demonstrate an anterior cruciate ligament (ACL) reconstruction technique using oval tunnels. Aim of this single bundle technique is to fit the footprint anatomy of the ACL as closely as possible. TECHNIQUE AND PATIENTS: The presented technique is a single bundle technique using a semitendinosus graft. For femoral tunnel placement, a specific medial portal aimer (Karl Storz, Tuttlingen, Germany) is used. Aiming and drilling of the femoral tunnel are performed via the medial portal. Oval tunnels are created by stepwise dilatation with ovally shaped dilatators. The position of the femoral tunnel is visualized and controlled with the arthroscope via the medial portal. For the tibial tunnel placement, a specific aimer was used as well. With this technique, 24 patients were operated and all intra- and postoperative complications were analyzed prospectively. The tunnel position was documented postoperatively by CT scan. There were no significant intra- and postoperative complications associated with the oval tunnel technique. The postoperative 3D CT scan revealed that all femoral and tibial tunnels were located within the area of the anatomical ACL insertions. This article presents an ACL reconstruction technique using oval dilatators and medial portal aimers to create oval tunnels. These oval tunnels match the insertion site anatomy much closer than round tunnels do. Level IV, case series.

  10. Quantum Tunnelling to the Origin and Evolution of Life.

    Science.gov (United States)

    Trixler, Frank

    2013-08-01

    Quantum tunnelling is a phenomenon which becomes relevant at the nanoscale and below. It is a paradox from the classical point of view as it enables elementary particles and atoms to permeate an energetic barrier without the need for sufficient energy to overcome it. Tunnelling might seem to be an exotic process only important for special physical effects and applications such as the Tunnel Diode, Scanning Tunnelling Microscopy (electron tunnelling) or Near-field Optical Microscopy operating in photon tunnelling mode. However, this review demonstrates that tunnelling can do far more, being of vital importance for life: physical and chemical processes which are crucial in theories about the origin and evolution of life can be traced directly back to the effects of quantum tunnelling. These processes include the chemical evolution in stellar interiors and within the cold interstellar medium, prebiotic chemistry in the atmosphere and subsurface of planetary bodies, planetary habitability via insolation and geothermal heat as well as the function of biomolecular nanomachines. This review shows that quantum tunnelling has many highly important implications to the field of molecular and biological evolution, prebiotic chemistry and astrobiology.

  11. Radio Wave Propagation in Tunnels

    National Research Council Canada - National Science Library

    Lee, Jeho

    2000-01-01

    This report examines the radio propagation model for narrow and long tunnels. Modal analysis is used to model the path gain in 2-D and 3-D rectangular tunnels and the coupling loss of L, T and cross tunnels...

  12. Carpal Tunnel Syndrome (For Kids)

    Science.gov (United States)

    ... OK for Kids? Your Teeth Heart Murmurs Carpal Tunnel Syndrome KidsHealth > For Kids > Carpal Tunnel Syndrome Print ... syndrome in the first place. Where Is This Tunnel? Take a look at the palm of your ...

  13. Cooperative scans

    NARCIS (Netherlands)

    M. Zukowski (Marcin); P.A. Boncz (Peter); M.L. Kersten (Martin)

    2004-01-01

    textabstractData mining, information retrieval and other application areas exhibit a query load with multiple concurrent queries touching a large fraction of a relation. This leads to individual query plans based on a table scan or large index scan. The implementation of this access path in most

  14. Magnetic hydroxyapatite coatings as a new tool in medicine: A scanning probe investigation

    Energy Technology Data Exchange (ETDEWEB)

    Gambardella, A., E-mail: a.gambardella@biomec.ior.it [Laboratorio di NanoBiotecnologie (NaBi), Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, I-40136 Bologna (Italy); Bianchi, M. [Laboratorio di NanoBiotecnologie (NaBi), Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, I-40136 Bologna (Italy); Kaciulis, S.; Mezzi, A.; Brucale, M. [Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Consiglio Nazionale delle Ricerche, Via Salaria km 29.300, P.O. Box 10, 00015 Monterotondo Staz, Roma (Italy); Cavallini, M. [Magnetic Nanostructures for Spintronics and Nanomedicine, CNR-ISMN, Via Gobetti 101, 40129 Bologna (Italy); Herrmannsdoerfer, T.; Chanda, G.; Uhlarz, M. [Dresden High Magnetic Field Laboratory (HLD-EMFL), Helmholtz-Zentrum Dresden-Rossendorf, D-01314 Dresden (Germany); Cellini, A.; Pedna, M.F. [Unità Operativa Microbiologia Laboratorio Unico del Centro Servizi AUSL della Romagna, Pievesestina, Cesena (Italy); Sambri, V. [Unità Operativa Microbiologia Laboratorio Unico del Centro Servizi AUSL della Romagna, Pievesestina, Cesena (Italy); Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale (DIMES), Università degli Studi di Bologna, Via Zamboni 33, 40126 Bologna (Italy); Marcacci, M.; Russo, A. [Laboratorio di NanoBiotecnologie (NaBi), Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, I-40136 Bologna (Italy); Laboratorio di Biomeccanica ed Innovazione Tecnologica, Istituto Ortopedico Rizzoli, Via di Barbiano1/10, I-40136 Bologna (Italy)

    2016-05-01

    Hydroxyapatite films enriched with magnetite have been fabricated via a Pulsed Plasma Deposition (PPD) system with the final aim of representing a new platform able to disincentivate bacterial adhesion and biofilm formation. The chemical composition and magnetic properties of films were respectively examined by X-ray photoelectron spectroscopy (XPS) and Superconducting Quantum Interference Device (SQUID) measurements. The morphology and conductive properties of the magnetic films were investigated via a combination of scanning probe technologies including atomic force microscopy (AFM), electrostatic force microscopy (EFM), and scanning tunneling microscopy (STM). Interestingly, the range of adopted techniques allowed determining the preservation of the chemical composition and magnetic properties of the deposition target material while STM analysis provided new insights on the presence of surface inhomogeneities, revealing the presence of magnetite-rich islands over length scales compatible with the applications. Finally, preliminary results of bacterial adhesion tests, indicated a higher ability of magnetic hydroxyapatite films to reduce Escherichia coli adhesion at 4 h from seeding compared to control hydroxyapatite films. - Highlights: • Pulsed Plasma Deposition technique is used to deposit magnetite-rich films of hydroxyapatite for antibacterial purposes. • The preservation of the chemical composition and magnetic properties of the deposition target material is demonstrated. • Scanning tunnelling microscopy is employed for the first time to reveal the presence of magnetite-rich states at the surface. • Preliminary tests suggest that Mag HA films hamper the adhesion of Escherichia coli compared to not magnetic films.

  15. Tunnel operations study.

    Science.gov (United States)

    2013-12-01

    In June 2000, the State of Alaska Department of Transportation and Public Facilities completed construction of the Whittier Access Project by converting the existing 2.5- : mile Whittier Tunnel into the worlds only dual-use highway/rail tunnel wit...

  16. Monolayer Assemblies of a De Novo Designed 4-alpha-Helix Bundle Carboprotein and Its Sulfur Anchor Fragment on Au(111) Surfaces Addressed by Voltammetry and In Situ Scanning Tunneling Microscopy

    DEFF Research Database (Denmark)

    Brask, Jesper; Wackerbarth, Hainer; Jensen, Knud J.

    2003-01-01

    for the synthesis of a new 4-R-helix bundle carboprotein built on a galactopyranoside derivative with a thiol anchor aglycon suitable for surface immobilization on gold. The carboprotein with thiol anchor in monomeric and dimeric (disulfide) form, the thiol anchor alone, and a sulfur-free 4-R-helix bundle...... carboprotein without thiol anchor have been prepared and investigated for comparison. Cyclic and differential pulse voltammetry (DPV) of the proteins show desorption peaks around -750 mV (SCE), whereas the thiol anchor desorption peak is at -685 mV. The peaks are by far the highest for thiol monomeric 4-R......-helix bundle carboprotein and the thiol anchor. This pattern is supported by capacitance data. The DPV and capacitance data for the thiolated 4-R-helix bundle carboproteins and the thiol anchor hold a strong Faradaic reductive desorption component as supported by X-ray photoelectron spectroscopy...

  17. Tunnel fire dynamics

    CERN Document Server

    Ingason, Haukur; Lönnermark, Anders

    2015-01-01

    This book covers a wide range of issues in fire safety engineering in tunnels, describes the phenomena related to tunnel fire dynamics, presents state-of-the-art research, and gives detailed solutions to these major issues. Examples for calculations are provided. The aim is to significantly improve the understanding of fire safety engineering in tunnels. Chapters on fuel and ventilation control, combustion products, gas temperatures, heat fluxes, smoke stratification, visibility, tenability, design fire curves, heat release, fire suppression and detection, CFD modeling, and scaling techniques all equip readers to create their own fire safety plans for tunnels. This book should be purchased by any engineer or public official with responsibility for tunnels. It would also be of interest to many fire protection engineers as an application of evolving technical principles of fire safety.

  18. Conservation of Moroccan manuscript papers aged 150, 200 and 800 years. Analysis by infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD), and scanning electron microscopy energy dispersive spectrometry (SEM-EDS).

    Science.gov (United States)

    Hajji, Latifa; Boukir, Abdellatif; Assouik, Jamal; Lakhiari, Hamid; Kerbal, Abdelali; Doumenq, Pierre; Mille, Gilbert; De Carvalho, Maria Luisa

    2015-02-05

    The preservation of manuscripts and archive materials is a serious problem for librarians and restorers. Paper manuscript is subjected to numerous degradation factors affecting their conservation state. This research represents an attempt to evaluate the conservation restoration process applied in Moroccan libraries, especially the alkaline treatment for strengthening weakened paper. In this study, we focused on six samples of degraded and restored paper taken from three different Moroccan manuscripts aged 150, 200 and 800 years. In addition, the Japanese paper used in restoration has been characterized. A modern paper was also analyzed as reference. A three-step analytical methodology based on infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD) and scanning electron microscopy coupled to energy dispersive spectrometry (SEM-EDS) analysis was developed before and after restoration in order to determine the effect of the consolidation treatment on the paper structure. The results obtained by XRD and ATR-FTIR disclosed the presence of barium sulfate (BaSO4) in all restored paper manuscripts. The presence of calcium carbonate (CaCO3) in all considered samples was confirmed by FTIR spectroscopy. The application of de-acidification treatment causes significant changes connected with the increase of intensity mostly in the region 1426 cm(-1), assigned to the asymmetric and symmetric CO stretching mode of calcite, indicating the effectiveness of de-acidification procedure proved by the rise of the alkaline reserve content allowing the long term preservation of paper. Observations performed by SEM magnify the typical paper morphology and the structure of fibbers, highlighting the effect of the restoration process, manifested by the reduction of impurities. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. MRI Scans

    Science.gov (United States)

    Magnetic resonance imaging (MRI) uses a large magnet and radio waves to look at organs and structures inside your body. Health care professionals use MRI scans to diagnose a variety of conditions, from ...

  20. Bone Scan

    Science.gov (United States)

    ... posts Join Mayo Clinic Connect Bone scan About Advertisement Mayo Clinic does not endorse companies or products. ... a Job Site Map About This Site Twitter Facebook Google YouTube Pinterest Mayo Clinic is a not- ...