WorldWideScience

Sample records for scanning reference electrode

  1. Scanning reference electrode techniques in localized corrosion

    International Nuclear Information System (INIS)

    Isaacs, H.S.; Vyas, B.

    1979-04-01

    The principles, advantages, and implementations of scanning reference electrode techniques are reviewed. Data related to pitting, intergranular corrosion, welds and stress corrosion cracking are presented. The technique locates the position of localized corrosion and can be used to monitor the development of corrosion and changes in the corrosion rate under a wide range of conditions

  2. Study of localized corrosion in aluminum alloys by the scanning reference electrode technique

    Science.gov (United States)

    Danford, M. D.

    1995-01-01

    Localized corrosion in 2219-T87 aluminum (Al) alloy, 2195 aluminum-lithium (Al-Li) alloy, and welded 2195 Al-Li alloy (4043 filler) have been investigated using the relatively new scanning reference electrode technique (SRET). Anodic sites are more frequent and of greater strength in the 2195 Al-Li alloy than in the 2219-T87 Al alloy, indicating a greater tendency toward pitting for the latter. However, the overall corrosion rates are about the same for these two alloys, as determined using the polarization resistance technique. In the welded 2195 Al-Li alloy, the weld bean is entirely cathodic, with rather strongly anodic heat affected zones (HAZ) bordering both sides, indicating a high probability of corrosion in the HAZ parallel to the weld bead.

  3. Studies of localized corrosion in welded aluminum alloys by the scanning reference electrode technique

    Science.gov (United States)

    Danford, M. D.; Nunes, A. C.

    1995-01-01

    Localized corrosion in welded samples of 2219-T87 Al alloy (2319 filler), 2090 Al-Li alloy (4043 and 2319 fillers), and 2195 Al-Li alloy (4043 and 2319 fillers) has been investigated using the relatively new scanning reference electrode technique. The weld beads are cathodic in all cases, leading to reduced anode/cathode ratios. A reduction in anode/cathode ratio leads to an increase in the corrosion rates of the welded metals, in agreement with results obtained in previous electrochemical and stress corrosion studies involving the overall corrosion rates of welded samples. The cathodic weld beads are bordered on both sides by strong anodic regions, with high propensity for corrosion.

  4. Handbook of reference electrodes

    CERN Document Server

    Inzelt, György; Scholz, Fritz

    2013-01-01

    Reference Electrodes are a crucial part of any electrochemical system, yet an up-to-date and comprehensive handbook is long overdue. Here, an experienced team of electrochemists provides an in-depth source of information and data for the proper choice and construction of reference electrodes. This includes all kinds of applications such as aqueous and non-aqueous solutions, ionic liquids, glass melts, solid electrolyte systems, and membrane electrodes. Advanced technologies such as miniaturized, conducting-polymer-based, screen-printed or disposable reference electrodes are also covered. Essen

  5. Corrosion behaviour of zinc and aluminum magnesium alloys by scanning reference electrode technique (SRET) and electrochemical noise (EN)

    International Nuclear Information System (INIS)

    Klassen, R.D.; Roberge, P.R.; Lafront, A.-M.; Oteyaka, M.O.; Ghali, E.

    2005-01-01

    The corrosion characteristics of five permanent mould magnesium alloys were studied. Two contained aluminum (AZ91D and AZ91E) and three contained zinc as the primary alloying element (ZA104 (Zn 10%, Al 4%), ZAC and ZACS). ZAC contained a small amount of calcium and ZACS contained small amounts of calcium and strontium. Two techniques were used in this study, namely 1) scanning reference electrode technique (SRET) and 2) electrochemical noise (EN). The test solution for each case was 5% NaCl saturated with Mg(OH)2 at room temperature. According to the EN measurements, the corrosion rate of AZ91D was the lowest followed by AZ91E, ZACS, ZAC and ZA104. The EN measurements showed that both the frequency and magnitude of current transients were much higher for the zinc based alloys than for the aluminum based alloys. The SRET measurements illustrated that localized corrosion occurred more frequently on the ZA104 sample than on the AZ91D sample. It seemed that increasing the level of zinc and lowering the level of aluminum relative to the levels in AZ91D does not improve corrosion resistance. (author)

  6. Sensor employing internal reference electrode

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention concerns a novel internal reference electrode as well as a novel sensing electrode for an improved internal reference oxygen sensor and the sensor employing same.......The present invention concerns a novel internal reference electrode as well as a novel sensing electrode for an improved internal reference oxygen sensor and the sensor employing same....

  7. Gas sensor with multiple internal reference electrodes and sensing electrodes

    DEFF Research Database (Denmark)

    2016-01-01

    The invention relates to a potentiometric gas sensor, or potentiometric gas detection element, with multiple internal reference electrodes and multiple sensing electrodes for determining the concentrations of gas components in a gaseous mixture. The sensor for gas detection comprises: a solid...

  8. Microfabricated Reference Electrodes and their Biosensing Applications

    Directory of Open Access Journals (Sweden)

    M. Jamal Deen

    2010-03-01

    Full Text Available Over the past two decades, there has been an increasing trend towards miniaturization of both biological and chemical sensors and their integration with miniaturized sample pre-processing and analysis systems. These miniaturized lab-on-chip devices have several functional advantages including low cost, their ability to analyze smaller samples, faster analysis time, suitability for automation, and increased reliability and repeatability. Electrical based sensing methods that transduce biological or chemical signals into the electrical domain are a dominant part of the lab-on-chip devices. A vital part of any electrochemical sensing system is the reference electrode, which is a probe that is capable of measuring the potential on the solution side of an electrochemical interface. Research on miniaturization of this crucial component and analysis of the parameters that affect its performance, stability and lifetime, is sparse. In this paper, we present the basic electrochemistry and thermodynamics of these reference electrodes and illustrate the uses of reference electrodes in electrochemical and biological measurements. Different electrochemical systems that are used as reference electrodes will be presented, and an overview of some contemporary advances in electrode miniaturization and their performance will be provided.

  9. Reference Electrodes Based on Solid Amalgams

    Czech Academy of Sciences Publication Activity Database

    Josypčuk, Bohdan; Novotný, Ladislav

    2004-01-01

    Roč. 16, č. 3 (2004), s. 238-241 ISSN 1040-0397 Grant - others:GIT(AR) 101/02/U111/CZ Institutional research plan: CEZ:AV0Z4040901 Keywords : solid amalgam * reference electrode * voltammetry Subject RIV: CG - Electrochemistry Impact factor: 2.038, year: 2004

  10. Reliable reference electrodes for lithium-ion batteries

    KAUST Repository

    La Mantia, F.; Wessells, C.D.; Deshazer, H.D.; Cui, Yi

    2013-01-01

    Despite the high attention drawn to the lithium-ion batteries by the scientific and industrial community, most of the electrochemical characterization is carried out using poor reference electrodes or even no reference electrode. In this case

  11. A survey of reference electrodes for high temperature waters

    International Nuclear Information System (INIS)

    Molander, A.; Eriksson, Sture; Pein, K.

    2000-11-01

    In nuclear power plants, corrosion potential measurements are used to follow the conditions for different corrosion types in reactor systems, particularly IGSCC in BWRs. The goal of this work has been to give a survey of reference electrodes for high temperature water, both those that are used for nuclear environments and those that are judged to possible future development. The reference electrodes that are used today in nuclear power plants for corrosion potential measurements are of three types. Silver chloride electrodes, membrane electrodes and platinum electrodes (hydrogen electrodes). The principals for their function is described as well as the conversion of measured potentials to the SHE scale (Standard Hydrogen Electrode). Silver chloride electrodes consist of an inner reference system of silver chloride in equilibrium with a chloride solution. The silver chloride electrode is the most common reference electrode and can be used in several different systems. Platinum electrodes are usually more robust and are particularly suitable to use in BWR environment to follow the hydrogen dosage, but have limitations at low and no hydrogen dosage. Ceramic membrane electrodes can be with different types of internal reference system. They were originally developed for pH measurements in high temperature water. If pH is constant, the membrane electrode can be used as reference electrode. A survey of ceramic reference electrodes for high temperature water is given. A ceramic membrane of the type used works as an oxygen conductor, so the potential and pH in surrounding medium is in equilibrium with the internal reference system. A survey of the lately development of electrodes is presented in order to explain why the different types of electrodes are developed as well as to give a background to the possibilities and limitations with the different electrodes. Possibilities of future development of electrodes are also given. For measurements at low or no hydrogen dosage

  12. Improved Internal Reference Oxygen Sensors with Composite Ceramic Electrodes

    DEFF Research Database (Denmark)

    Hu, Qiang; Jacobsen, Torben; Hansen, Karin Vels

    2012-01-01

    Potentiometric oxygen sensors with an internal reference electrode, which uses the equilibrium pO2 of the binary mixture of Ni/NiO as the reference, are demonstrated. The cells employ Pt or composite ceramics as the sensing electrode. The cells are fabricated by a flexible and potentially low cost...... and performance are highly reproducible. The composite ceramics, based on strontium doped manganite and yttria doped zirconia, are proven superior over Pt to serve as the electrode material....

  13. Reliable reference electrodes for lithium-ion batteries

    KAUST Repository

    La Mantia, F.

    2013-06-01

    Despite the high attention drawn to the lithium-ion batteries by the scientific and industrial community, most of the electrochemical characterization is carried out using poor reference electrodes or even no reference electrode. In this case, the performances of the active material are inaccurate, especially at high current densities. In this work we show the error committed in neglecting the polarizability of lithium counter electrodes, and we propose two reference electrodes to use in organic electrolytes based on lithium salts, namely Li4Ti5O12 and LiFePO 4. In particular, it was observed that, the polarizability of the metallic lithium counter electrode has a relevant stochastic component, which renders measurements at high current densities (above 1 mA·cm - 2) in two electrode cells non reproducible.

  14. Stable solid state reference electrodes for high temperature water chemistry

    International Nuclear Information System (INIS)

    Jayaweera, P.; Millett, P.J.

    1995-01-01

    A solid state electrode capable of providing a stable reference potential under a wide range of temperatures and chemical conditions has been demonstrated. The electrode consists of a zirconia or yttria-stabilized zirconia tube packed with an inorganic polymer electrolyte and a silver/silver chloride sensing element. The sensing element is maintained near room temperature by a passive cooling heat sink. The electrode stability was demonstrated by testing it in high temperature (280 C) aqueous solutions over extended periods of time. This reference electrode is useful in many applications, particularly for monitoring the chemistry in nuclear and fossil power plants

  15. Polyacrylate microspheres composite for all-solid-state reference electrodes.

    Science.gov (United States)

    Kisiel, Anna; Donten, Mikołaj; Mieczkowski, Józef; Rius-Ruiz, F Xavier; Maksymiuk, Krzysztof; Michalska, Agata

    2010-09-01

    A novel concept is proposed for the encapsulation of components within polyacrylate microspheres, prior to their incorporation into a membrane phase. Thus finer and better controlled dispersion of heterogeneous membrane components can be achieved. This concept was verified by using a poly(n-butyl acrylate) membrane-based reference electrode as an example. In this example the proper dispersion of solid constituents of the heterogeneous membrane and prevention of their leakage are both of primary importance. Potassium chloride-loaded poly(n-butyl acrylate) microspheres were prepared and then left in contact with silver nitrate to convert some of the KCl into AgCl. The material obtained was introduced into a poly(n-butyl acrylate) membrane. The reference electrode membranes obtained in this way were characterized with much more stable potential (both in different electrolytes and over time) compared with electrodes prepared by the direct introduction of KCl and AgCl to the membrane.

  16. Improved Internal Reference Oxygen Sensors Using Composite Oxides as Electrodes

    DEFF Research Database (Denmark)

    Hu, Qiang

    The thesis describes the research on and development of an internal reference oxygen sensor (IROS). The IROS is potentiometric and uses the equilibrium pO2of the binary mixture of Ni/NiO as the reference pO2. The sensing electrode of the IROS are made from metallic Pt or the composite of (La0.75S...... the application of IROSes are provided. Based on the concepts and fundamentals of the IROS, internal reference sensors that detect other gas species such as hydrogen, chlorine and bromine may be developed.......The thesis describes the research on and development of an internal reference oxygen sensor (IROS). The IROS is potentiometric and uses the equilibrium pO2of the binary mixture of Ni/NiO as the reference pO2. The sensing electrode of the IROS are made from metallic Pt or the composite of (La0.75Sr0...... from 8YSZ is evaluated quantitatively and figures that may be used to design the depletion period of an IROS due to the electronic leak of 8YSZ are provided. One dimensional numerical simulations are performed to study the variation in cell voltage during the process of gas mixing, and the asymmetric...

  17. All-solid-state reference electrodes based on conducting polymers.

    Science.gov (United States)

    Kisiel, Anna; Marcisz, Honorata; Michalska, Agata; Maksymiuk, Krzysztof

    2005-12-01

    A novel construction of solution free (pseudo)reference electrodes, compatible with all-solid-state potentiometric indicator electrodes, has been proposed. These electrodes use conducting polymers (CP): polypyrrole (PPy) or poly(3,4-ethylenedioxythiophene) (PEDOT). Two different arrangements have been tested: solely based on CP and those where the CP phase is covered with a poly(vinyl chloride) based outer membrane of tailored composition. The former arrangement was designed to suppress or compensate cation- and anion-exchange, using mobile perchlorate ions and poly(4-styrenesulfonate) or dodecylbenzenesulfonate anions as immobilized dopants. The following systems were used: (i) polypyrrole layers doped simultaneously by two kinds of anions, both mobile and immobilized in the polymer layer; (ii) bilayers of polypyrrole with anion exchanging inner layer and cation-exchanging outer layer; (iii) polypyrrole doped by surfactant dodecylbenzenesulfonate ions, which inhibit ion exchange on the polymer/solution interface. For the above systems, recorded potentials have been found to be practically independent of electrolyte concentration. The best results, profound stability of potentials, have been obtained for poly(3,4-ethylenedioxythiophene) or polypyrrole doped by poly(4-styrenesulfonate) anions covered by a poly(vinyl chloride) based membrane, containing both anion- and cation-exchangers as well as solid potassium chloride and silver chloride with metallic silver. Differently to the cases (i)-(iii) these electrodes are much less sensitive to the influence of redox and pH interferences. This arrangement has been also characterized using electrochemical impedance spectroscopy and chronopotentiometry.

  18. Quasi-reference electrodes in confined electrochemical cells can result in in situ production of metallic nanoparticles.

    Science.gov (United States)

    Perera, Rukshan T; Rosenstein, Jacob K

    2018-01-31

    Nanoscale working electrodes and miniaturized electroanalytical devices are valuable platforms to probe molecular phenomena and perform chemical analyses. However, the inherent close distance of metallic electrodes integrated into a small volume of electrolyte can complicate classical electroanalytical techniques. In this study, we use a scanning nanopipette contact probe as a model miniaturized electrochemical cell to demonstrate measurable side effects of the reaction occurring at a quasi-reference electrode. We provide evidence for in situ generation of nanoparticles in the absence of any electroactive species and we critically analyze the origin, nucleation, dissolution and dynamic behavior of these nanoparticles as they appear at the working electrode. It is crucial to recognize the implications of using quasi-reference electrodes in confined electrochemical cells, in order to accurately interpret the results of nanoscale electrochemical experiments.

  19. Results of the LIRES Round Robin test on high temperature reference electrodes for LWR applications

    Energy Technology Data Exchange (ETDEWEB)

    Bosch, R.W. [SCK.CEN, Nuclear Research Centre Belgium, Boeretang 200, B-2400 Mol (Belgium); Nagy, G. [Magyar Tudomanyos Akademia KFKI Atomenergia Kutatointezet, AEKI, Konkoly Thege ut 29-33, 1121 Budapest (Hungary); Feron, D. [CEA Saclay, 91191 Gif-Sur-Yvette Cedex (France); Navas, M. [CIEMAT, Edificio 30, Dpto. Fision Nuclear, Avda. Complutense 22, 28040 Madrid, (Spain); Bogaerts, W. [KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven (Belgium); Karnik, D. [Nuclear Research Institute, NRI, Rez (Czech Republic); Dorsch, T. [Framatone ANP, Inc., Charlotte, North Carolina (United States); Molander, A. [Studsvik AB SE-611 82 Nykoeping (Sweden); Maekelae, K. [Materials and Structural Integrity, VTT Technical Research Centre of Finland, Kemistintie 3, P.O. Box 1704, FIN-02044 VTT (Finland)

    2004-07-01

    A European sponsored research project has been started on 1 October 2000 to develop high temperature reference electrodes that can be used for in-core electrochemical measurements in Light Water Reactors (LWR's). This LIRES-project (Development of Light Water Reactor Reference Electrodes) consists of 9 partners (SCK-CEN, AEKI, CEA, CIEMAT, KU Leuven, NRI Rez, Framatone ANP, Studsvik Nuclear and VTT) and will last for four years. The main objective of this LIRES project is to develop a reference electrode, which is robust enough to be used inside a LWR. Emphasize is put on the radiation hardness of both the mechanical design of the electrode as the proper functioning of the electrode. A four steps development trajectory is foreseen: (1) To set a testing standard for a Round Robin, (2) To develop different reference electrodes, (3) To perform a Round Robin test of these reference electrodes followed by selection of the best reference electrode(s), (4) To perform irradiation tests under appropriate LWR conditions in a Material Test Reactor (MTR). Four different high temperature reference electrodes have been developed and are being tested in a Round Robin test. These electrodes are: A Ceramic Membrane Electrode (CME), a Rhodium electrode, an external Ag/AgCl electrode and a Palladium electrode. The presentation will focus on the results obtained with the Round Robin test. (authors)

  20. A survey of reference electrodes for high temperature waters; Oeversikt av referenselektroder i hoegtemperaturvatten

    Energy Technology Data Exchange (ETDEWEB)

    Molander, A.; Eriksson, Sture; Pein, K. [Studsvik Nuclear, Nykoeping (Sweden)

    2000-11-01

    In nuclear power plants, corrosion potential measurements are used to follow the conditions for different corrosion types in reactor systems, particularly IGSCC in BWRs. The goal of this work has been to give a survey of reference electrodes for high temperature water, both those that are used for nuclear environments and those that are judged to possible future development. The reference electrodes that are used today in nuclear power plants for corrosion potential measurements are of three types. Silver chloride electrodes, membrane electrodes and platinum electrodes (hydrogen electrodes). The principals for their function is described as well as the conversion of measured potentials to the SHE scale (Standard Hydrogen Electrode). Silver chloride electrodes consist of an inner reference system of silver chloride in equilibrium with a chloride solution. The silver chloride electrode is the most common reference electrode and can be used in several different systems. Platinum electrodes are usually more robust and are particularly suitable to use in BWR environment to follow the hydrogen dosage, but have limitations at low and no hydrogen dosage. Ceramic membrane electrodes can be with different types of internal reference system. They were originally developed for pH measurements in high temperature water. If pH is constant, the membrane electrode can be used as reference electrode. A survey of ceramic reference electrodes for high temperature water is given. A ceramic membrane of the type used works as an oxygen conductor, so the potential and pH in surrounding medium is in equilibrium with the internal reference system. A survey of the lately development of electrodes is presented in order to explain why the different types of electrodes are developed as well as to give a background to the possibilities and limitations with the different electrodes. Possibilities of future development of electrodes are also given. For measurements at low or no hydrogen dosage

  1. A high-temperature, high-pressure, silver-silver chloride reference electrode

    International Nuclear Information System (INIS)

    King, F.; Bailey, M.G.; Clarke, C.F.; Ikeda, B.M.; Litke, C.D.; Ryan, S.R.

    1989-05-01

    A high-temperature, high-pressure, silver-silver chloride reference electrode is described. This report is meant to serve as a user's guide to the experimentalist. Consequently, the design and construction of the electrode are dealt with in some detail. The problems that may be encountered, along with their possible causes and remedies, are also discussed. Conversion factors are given for both internal and external reference electrodes, so that measured potentials can be related to the standard hydrogen electrode scale

  2. Cochlear Implant Electrode Localization Using an Ultra-High Resolution Scan Mode on Conventional 64-Slice and New Generation 192-Slice Multi-Detector Computed Tomography.

    Science.gov (United States)

    Carlson, Matthew L; Leng, Shuai; Diehn, Felix E; Witte, Robert J; Krecke, Karl N; Grimes, Josh; Koeller, Kelly K; Bruesewitz, Michael R; McCollough, Cynthia H; Lane, John I

    2017-08-01

    A new generation 192-slice multi-detector computed tomography (MDCT) clinical scanner provides enhanced image quality and superior electrode localization over conventional MDCT. Currently, accurate and reliable cochlear implant electrode localization using conventional MDCT scanners remains elusive. Eight fresh-frozen cadaveric temporal bones were implanted with full-length cochlear implant electrodes. Specimens were subsequently scanned with conventional 64-slice and new generation 192-slice MDCT scanners utilizing ultra-high resolution modes. Additionally, all specimens were scanned with micro-CT to provide a reference criterion for electrode position. Images were reconstructed according to routine temporal bone clinical protocols. Three neuroradiologists, blinded to scanner type, reviewed images independently to assess resolution of individual electrodes, scalar localization, and severity of image artifact. Serving as the reference standard, micro-CT identified scalar crossover in one specimen; imaging of all remaining cochleae demonstrated complete scala tympani insertions. The 192-slice MDCT scanner exhibited improved resolution of individual electrodes (p implant imaging compared with conventional MDCT. This technology provides important feedback regarding electrode position and course, which may help in future optimization of surgical technique and electrode design.

  3. Influence of fabrication procedure on the electrochemical performance of Ag/AgCl reference electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Stoica, Daniela [Department of Biomedical and Inorganic Chemistry, Laboratoire National de Metrologie et d' Essais, 1 Rue Gaston Boissier, 75015 Paris (France); Brewer, Paul J., E-mail: paul.brewer@npl.co.uk [Analytical Science Division, National Physical Laboratory, Teddington, Middlesex TW11 0LW (United Kingdom); Brown, Richard J.C. [Analytical Science Division, National Physical Laboratory, Teddington, Middlesex TW11 0LW (United Kingdom); Fisicaro, Paola [Department of Biomedical and Inorganic Chemistry, Laboratoire National de Metrologie et d' Essais, 1 Rue Gaston Boissier, 75015 Paris (France)

    2011-11-30

    The influence of several parameters in the preparation procedure of thermal-electrolytic Ag/AgCl electrodes on the resulting electrode performance has been studied. In particular, we report the effect on electrode performance of subtle variations in the preparation of silver oxide paste used for electrode manufacture, in thermal annealing conditions employed and in the procedure for electrochemically converting a fraction of the electrode from silver to silver chloride. Scanning electron microscopy and electrochemical impedance spectroscopy have been used to study the characteristics of the electrodes produced. This work reveals a correlation between the electrochemical behaviour and surface physical characteristics - in particular electrode porosity. The outputs of this study have positive implications for improving the accuracy and comparability of primary pH measurement.

  4. Reference nano-dimensional metrology by scanning transmission electron microscopy

    International Nuclear Information System (INIS)

    Dai, Gaoliang; Fluegge, Jens; Bosse, Harald; Heidelmann, Markus; Kübel, Christian; Prang, Robby

    2013-01-01

    Traceable and accurate reference dimensional metrology of nano-structures by scanning transmission electron microscopy (STEM) is introduced in the paper. Two methods, one based on the crystal lattice constant and the other based on the pitch of a feature pair, were applied to calibrate the TEM magnification. The threshold value, which was defined as the half-intensity of boundary materials, is suggested to extract the boundary position of features from the TEM image. Experimental investigations have demonstrated the high potential of the proposed methods. For instance, the standard deviation from ten repeated measurements of a line structure with a nominal 100 nm critical dimension (CD) reaches 1σ = 0.023 nm, about 0.02%. By intentionally introduced defocus and larger sample alignment errors, the investigation shows that these influences may reach 0.20 and 1.3 nm, respectively, indicating the importance of high-quality TEM measurements. Finally, a strategy for disseminating the destructive TEM results is introduced. Using this strategy, the CD of a reference material has been accurately determined. Its agreement over five independent TEM measurements is below 1.2 nm. (paper)

  5. Development of high temperature reference electrodes for potentiometric analyses in supercritical water environments

    International Nuclear Information System (INIS)

    Tung Yuming; Yeh Tsungkuang; Wang Meiya

    2014-01-01

    A specifically designed reference electrode was developed for analyzing the electrochemical behaviors of alloy materials in supercritical water (SCW) environments and identifying the associated electrochemical parameters. In this study, Ag/AgCl reference electrodes and Zr/ZrO 2 reference electrodes suitable for high-temperature applications were manufactured and adopted to measure the electrochemical corrosion potentials (ECPs) of 304L stainless steel (SS) and nickel-based alloy 625 in SCW environments with various amounts of dissolved oxygen (DO). The Ag/AgCl reference electrode made in this laboratory was used as a calibration base for the laboratory-made Zr/ZrO 2 reference electrode at high temperatures up to 400degC. The two reference electrodes were then used for ECP measurements of 304L SS and alloy 625 specimens in 400degC SCW with various DO levels of 300 ppb, 1 ppm, 8.3 ppm, and 32 ppm and under deaerated conditions. The outcome indicated that concentration increases in DO in the designated SCW environment would yield increases in ECP of the two alloys and they exhibited different ECP responses to DO levels. In addition, the laboratory-made Zr/ZrO 2 reference electrode was able to continuously operate for several months and delivered consistent and steady ECP data of the specimens in SCW environments. (author)

  6. Activated carbon as a pseudo-reference electrode for electrochemical measurement inside concrete

    NARCIS (Netherlands)

    Abbas, Yawar; Olthuis, Wouter; van den Berg, Albert

    2015-01-01

    The application of Kynol based activated carbon (KAC) as a pseudo-reference electrode for potentiometric measurement inside concrete is presented. Due to its high surface area the activated carbons has a large electrical double layer capacitance (EDLC > 50 F g(-1)) and are used as electrode material

  7. RuO2 pH Sensor with Super-Glue-Inspired Reference Electrode

    OpenAIRE

    Lonsdale, Wade; Wajrak, Magdalena; Alameh, Kamal

    2017-01-01

    A pH-sensitive RuO2 electrode coated in a commercial cyanoacrylate adhesive typically exhibits very low pH sensitivity, and could be paired with a RuO2 working electrode as a differential type pH sensor. However, such sensors display poor performance in real sample matrices. A pH sensor employing a RuO2 pH-sensitive working electrode and a SiO2-PVB junction-modified RuO2 reference electrode is developed as an alternative high-performance solution. This sensor exhibits a performance similar to...

  8. The effect of gamma radiation on the stability of miniature reference electrodes

    International Nuclear Information System (INIS)

    Galuszka-Muga, B.; Muga, M.L.; Hanrahan, R.J.

    2006-01-01

    The design and fabrication of four types of miniature reference electrodes and their long term stability in a radiation field are described. Miniature versions of a saturated calomel electrode (MSCE), a silver/silver chloride electrode (MAG), a tungsten/tungsten oxide (MWO) and a copper/copper ion (MCU) electrode were tested in a 10 kGy/h (1 Mrad/h) radiation field for up to 30 days total at 25 and 40 o C. The latter two (MWO and MCU) varied appreciably over time periods of several hours whereas the former two (MSCE and MAG) varied less than 1 mV over periods of 6-8 h and are deemed suitable as reference electrodes for corrosion studies of systems immersed in a radiation field at elevated temperature

  9. Note: A quartz cell with Pt single crystal bead electrode for electrochemical scanning tunneling microscope measurements.

    Science.gov (United States)

    Xia, Zhigang; Wang, Jihao; Hou, Yubin; Lu, Qingyou

    2014-09-01

    In this paper, we provide and demonstrate a design of a unique cell with Pt single crystal bead electrode for electrochemical scanning tunneling microscope (ECSTM) measurements. The active metal Pt electrode can be protected from air contamination during the preparation process. The transparency of the cell allows the tip and bead to be aligned by direct observation. Based on this, a new and effective alignment method is introduced. The high-quality bead preparations through this new cell have been confirmed by the ECSTM images of Pt (111).

  10. The effect of gamma radiation on reference electrodes and platinum and carbon steel bare metal electrodes in a simulated waste solution

    International Nuclear Information System (INIS)

    Danielson, M.J.

    1993-09-01

    Electrochemical potential measurements of materials in waste tanks are important in determining if the materials have a propensity for stress corrosion cracking and pitting. Potential measurement requires a reference electrode, but the effect of radiation on the potential generated by the reference electrode has been an unknown quantity. To determine the significance of the radiation effect, Pacific Northwest Laboratory conducted studies of five types of electrodes under gamma radiation at room temperature. The subjects were two types of silver/silver chloride reference electrodes (Fisher and Lazaran), a mercury/calomel reference electrode, a platinum ''flag,'' and a piece of A-537 carbon steel; the electrodes were exposed to a simulated caustic tank environment. The Fisher silver/silver chloride and mercury/calomel reference electrodes showed essentially no radiation effects up to a flux of 2.1E6 R/h and fluence of 9.4E8 R, indicating they would be useful reference electrodes for in-tank studies. The Lazaran reg-sign silver/silver chloride electrode showed serious potential deviations at fluences of 2.E8 R, but it would be the electrode of choice in many situations because it is simple to maintain. Radiation affected the open circuit potential of both the platinum and carbon steel electrodes. This effect indicates that corrosion studies without radiation may not duplicate the corrosion processes expected in a waste tank. Mixed-potential theory was used to explain the radiation effects

  11. Development of high temperature reference electrodes for in-pile application: Part I. Feasibility study of the external pressure balanced Ag/AgCl reference electrode (EPBRE) and the cathodically charged Palladium hydrogen electrode

    International Nuclear Information System (INIS)

    Bosch, R.W.; Van Nieuwenhove, R.

    1998-10-01

    The main problems connected with corrosion potential measurements at elevated temperatures and pressures are related to the stability and lifetime of the reference electrode and the correct estimation of the potential related to the Standard Hydrogen Scale (SHE). Under Pressurised Water Reactor (PWR) conditions of 300 degrees Celsius and 150 bar, the choice of materials is also a limiting factor due to the influence of radiation. Investigations on two reference electrodes that can be used under PWR conditions are reported: the cathodically charged palladium hydrogen electrode, and the external pressure balanced silver/silver chloride electrode. Preliminary investigations with the Pd-electrode were focused on the calculation of the required charging time and the influence of dissolved oxygen. High temperature applications are discussed on the basis of results reported in the literature. Investigations with the silver/silver chloride reference electrode mainly dealt with the salt bridge which is necessary to connect the reference electrode with the testing solution. It is shown that the thermal junction potential is independent of the length of the salt bridge. In addition, the high temperature contributes to an increase of the conductivity of the solution, which is beneficial for the salt bridge connection

  12. Strategies of Miniaturised Reference Electrodes Integrated in a Silicon Based “one chip” pH Sensor

    OpenAIRE

    Simonis, Anette; Lüth, Hans; Wang, Joseph; Schöning, J.

    2003-01-01

    Different types of Ag/AgCl reference electrodes have been realised by means of thin- and thick-film technique. For inner electrolyte, KCl-containing membranes have been deposited and different coatings have been used to protect the reference electrode from a fast leaching out of KCl. The stability of the potential of the reference electrodes without KClcontaining membranes in 3 M KCl was about 7 hours for thin-film electrodes and up to 90 hours for thick-film electrodes. The reference electro...

  13. Fabrication, characterization, and functionalization of dual carbon electrodes as probes for scanning electrochemical microscopy (SECM).

    Science.gov (United States)

    McKelvey, Kim; Nadappuram, Binoy Paulose; Actis, Paolo; Takahashi, Yasufumi; Korchev, Yuri E; Matsue, Tomokazu; Robinson, Colin; Unwin, Patrick R

    2013-08-06

    Dual carbon electrodes (DCEs) are quickly, easily, and cheaply fabricated by depositing pyrolytic carbon into a quartz theta nanopipet. The size of DCEs can be controlled by adjusting the pulling parameters used to make the nanopipet. When operated in generation/collection (G/C) mode, the small separation between the electrodes leads to reasonable collection efficiencies of ca. 30%. A three-dimensional finite element method (FEM) simulation is developed to predict the current response of these electrodes as a means of estimating the probe geometry. Voltammetric measurements at individual electrodes combined with generation/collection measurements provide a reasonable guide to the electrode size. DCEs are employed in a scanning electrochemical microscopy (SECM) configuration, and their use for both approach curves and imaging is considered. G/C approach curve measurements are shown to be particularly sensitive to the nature of the substrate, with insulating surfaces leading to enhanced collection efficiencies, whereas conducting surfaces lead to a decrease of collection efficiency. As a proof-of-concept, DCEs are further used to locally generate an artificial electron acceptor and to follow the flux of this species and its reduced form during photosynthesis at isolated thylakoid membranes. In addition, 2-dimensional images of a single thylakoid membrane are reported and analyzed to demonstrate the high sensitivity of G/C measurements to localized surface processes. It is finally shown that individual nanometer-size electrodes can be functionalized through the selective deposition of platinum on one of the two electrodes in a DCE while leaving the other one unmodified. This provides an indication of the future versatility of this type of probe for nanoscale measurements and imaging.

  14. Disposable Miniaturized Screen‐Printed pH and Reference Electrodes for Potentiometric Systems

    DEFF Research Database (Denmark)

    Musa, Arnaud Emmanuel; del Campo, Francisco Javier; Abramova, Natalia

    2011-01-01

    This work describes the development of a miniaturized potentiometric system comprising a miniaturized quasi‐reference electrode (QRE) coupled to a solid‐state ion‐selective electrode (ISE) for the monitoring of pH. We describe the optimization of materials and fabrication processes including screen‐printing...... electrode) that can be used continuously for a period of not less than 7 days in aqueous solutions. Curing the Ag/AgCl pastes during 20 minutes at 120 °C after printing allowed the QREs to display excellent potential stability, as demonstrated by an open‐circuit‐potential standard deviation of ±1.2 mV over...

  15. How do reference montage and electrodes setup affect the measured scalp EEG potentials?

    Science.gov (United States)

    Hu, Shiang; Lai, Yongxiu; Valdes-Sosa, Pedro A.; Bringas-Vega, Maria L.; Yao, Dezhong

    2018-04-01

    Objective. Human scalp electroencephalogram (EEG) is widely applied in cognitive neuroscience and clinical studies due to its non-invasiveness and ultra-high time resolution. However, the representativeness of the measured EEG potentials for the underneath neural activities is still a problem under debate. This study aims to investigate systematically how both reference montage and electrodes setup affect the accuracy of EEG potentials. Approach. First, the standard EEG potentials are generated by the forward calculation with a single dipole in the neural source space, for eleven channel numbers (10, 16, 21, 32, 64, 85, 96, 128, 129, 257, 335). Here, the reference is the ideal infinity implicitly determined by forward theory. Then, the standard EEG potentials are transformed to recordings with different references including five mono-polar references (Left earlobe, Fz, Pz, Oz, Cz), and three re-references (linked mastoids (LM), average reference (AR) and reference electrode standardization technique (REST)). Finally, the relative errors between the standard EEG potentials and the transformed ones are evaluated in terms of channel number, scalp regions, electrodes layout, dipole source position and orientation, as well as sensor noise and head model. Main results. Mono-polar reference recordings are usually of large distortions; thus, a re-reference after online mono-polar recording should be adopted in general to mitigate this effect. Among the three re-references, REST is generally superior to AR for all factors compared, and LM performs worst. REST is insensitive to head model perturbation. AR is subject to electrodes coverage and dipole orientation but no close relation with channel number. Significance. These results indicate that REST would be the first choice of re-reference and AR may be an alternative option for high level sensor noise case. Our findings may provide the helpful suggestions on how to obtain the EEG potentials as accurately as possible for

  16. A reference electrode based on polyvinyl butyral (PVB) polymer for decentralized chemical measurements

    Energy Technology Data Exchange (ETDEWEB)

    Guinovart, Tomàs [Departament de Química Orgànica i Química Analítica, Universitat Rovira i Virgili, Carrer Marcellí Domingo s/n 43007 Tarragona (Spain); Crespo, Gastón A. [Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva (Switzerland); Rius, F. Xavier [Departament de Química Orgànica i Química Analítica, Universitat Rovira i Virgili, Carrer Marcellí Domingo s/n 43007 Tarragona (Spain); Andrade, Francisco J., E-mail: franciscojavier.andrade@urv.cat [Departament de Química Orgànica i Química Analítica, Universitat Rovira i Virgili, Carrer Marcellí Domingo s/n 43007 Tarragona (Spain)

    2014-04-01

    Highlights: • A disposable solid-contact reference electrode for potentiometry is presented. • The device shows unsensitivity to most ions, redox potential and light. • Low-cost and good stability, ideal to build disposable potentiometric sensors. • Nanopores formed in the membrane control the flux of ions with the solution. Abstract: A new solid-state reference electrode using a polymeric membrane of polyvinyl butyral (PVB), Ag/AgCl and NaCl to be used in decentralized chemical measurements is presented. The electrode is made by drop-casting the membrane cocktail onto a glassy carbon (GC) substrate. A stable potential (less than 1 mV dec⁻¹ over a wide range of concentrations for the several chemical species tested is obtained. No significant influence to changes in redox potential, light and pH are observed. The response of this novel electrode shows good correlation when compared with a conventional double-junction reference electrode. Also good long-term stability (90 ± 33 μV/h) and a lifetime of approximately 4 months are obtained. Aspects related to the working mechanisms are discussed. Atomic Force Microscopy (AFM) studies reveal the presence of nanopores and channels on the surface, and electrochemical impedance spectroscopy (EIS) of optimized electrodes show low bulk resistances, usually in the kΩ range, suggesting that a nanoporous polymeric structure is formed in the interface with the solution. Future applications of this electrode as a disposable device for decentralized measurements are discussed. Examples of the utilization on wearable substrates (tattoos, fabrics, etc) are provided.

  17. A reference electrode based on polyvinyl butyral (PVB) polymer for decentralized chemical measurements

    International Nuclear Information System (INIS)

    Guinovart, Tomàs; Crespo, Gastón A.; Rius, F. Xavier; Andrade, Francisco J.

    2014-01-01

    Highlights: • A disposable solid-contact reference electrode for potentiometry is presented. • The device shows unsensitivity to most ions, redox potential and light. • Low-cost and good stability, ideal to build disposable potentiometric sensors. • Nanopores formed in the membrane control the flux of ions with the solution. - Abstract: A new solid-state reference electrode using a polymeric membrane of polyvinyl butyral (PVB), Ag/AgCl and NaCl to be used in decentralized chemical measurements is presented. The electrode is made by drop-casting the membrane cocktail onto a glassy carbon (GC) substrate. A stable potential (less than 1 mV dec −1 ) over a wide range of concentrations for the several chemical species tested is obtained. No significant influence to changes in redox potential, light and pH are observed. The response of this novel electrode shows good correlation when compared with a conventional double-junction reference electrode. Also good long-term stability (90 ± 33 μV/h) and a lifetime of approximately 4 months are obtained. Aspects related to the working mechanisms are discussed. Atomic Force Microscopy (AFM) studies reveal the presence of nanopores and channels on the surface, and electrochemical impedance spectroscopy (EIS) of optimized electrodes show low bulk resistances, usually in the kΩ range, suggesting that a nanoporous polymeric structure is formed in the interface with the solution. Future applications of this electrode as a disposable device for decentralized measurements are discussed. Examples of the utilization on wearable substrates (tattoos, fabrics, etc) are provided

  18. Electrochemistry in light water reactors reference electrodes, measurement, corrosion and tribocorrosion issues

    CERN Document Server

    Bosch, R -W; Celis, Jean-Pierre

    2007-01-01

    There has long been a need for effective methods of measuring corrosion within light water nuclear reactors. This important volume discusses key issues surrounding the development of high temperature reference electrodes and other electrochemical techniques. The book is divided into three parts with part one reviewing the latest developments in the use of reference electrode technology in both pressurised water and boiling water reactors. Parts two and three cover different types of corrosion and tribocorrosion and ways they can be measured using such techniques as electrochemical impedance spectroscopy. Topics covered across the book include in-pile testing, modelling techniques and the tribocorrosion behaviour of stainless steel under reactor conditions. Electrochemistry in light water reactors is a valuable reference for all those concerned with corrosion problems in this key technology for the power industry. Discusses key issues surrounding the development of high temperature reference eletrodes A valuab...

  19. Development of Iridium Solid-state Reference Electrode for the Water Chemistry Status Measurement in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Ku, Heekwon; Lim, Dongseok; Cho, Jaeseon

    2013-01-01

    The result of ECP measurement of piping material in nuclear power plant at low temperature using the developed iridium (SSRE) reference electrode is approximately -0.370V. Based on the various results of this study, the developed iridium (SSRE) reference electrode can be applied to the water chemistry environments of nuclear power plant. Various metallic materials used in a nuclear power plant have been exposed to a variety of water chemistry environments and the corrosion of metallic materials occurs due to the reactions between metal structures and water chemistry environments. Therefore, the management of the water chemistry factors is needed to prevent corrosion. The chemical factors affecting the corrosion are pH and Electrochemical Corrosion Potential (ECP). The world-wide studies suggest that ECP and pH are effective indicators for preventing the material damage from water chemistry condition. ECP and pH should be measured as the reference electrodes, and should show stable potential characteristics with fast responses. In this study, the iridium reference electrodes using a solid-state metal oxide electrode has been developed to measure effective indicators such as ECP and pH. The iridium (SSRE) reference electrode for the ECP measurement in water chemistry environment of nuclear power plants has been developed. A calibration for water chemistry measurement was performed by potential measurement of iridium (SSRE) reference electrode with Ag/AgCl (SSRE) reference electrode. The result exhibited a stable potential for 117 hours and a super-Nernst ian response with 63.12mV/p H. In this study, the iridium (SSRE) reference electrode shows super-Nernst ian characteristic and it may be caused by the property of electrolytically coated iridium oxide. Considering the long-term stability of the developed electrode, it is possible to apply as a reference electrode through calibration procedure

  20. Simplified Reference Electrode for Electrorefining of Spent Nuclear Fuel in High Temperature Molten Salt

    International Nuclear Information System (INIS)

    Kim Davies; Shelly X Li

    2007-01-01

    Pyrochemical processing plays an important role in development of proliferation-resistant nuclear fuel cycles. At the Idaho National Laboratory (INL), a pyrochemical process has been implemented for the treatment of spent fuel from the Experimental Breeder Reactor II (EBR-II) in the last decade. Electrorefining in a high temperature molten salt is considered a signature or central technology in pyroprocessing fuel cycles. Separation of actinides from fission products is being demonstrated by electrorefining the spent fuel in a molten UCl3-LiCl-KCl electrolyte in two engineering scale electrorefiners (ERs). The electrorefining process is current controlled. The reference electrode provides process information through monitoring of the voltage difference between the reference and the anode and cathode electrodes. This information is essential for monitoring the reactions occurring at the electrodes, investigating separation efficiency, controlling the process rate, and determining the process end-point. The original reference electrode has provided good life expectancy and signal stability, but is not easily replaceable. The reference electrode used a vycor-glass ion-permeable membrane containing a high purity silver wire with one end positioned in ∼2 grams of LiCl/KCl salt electrolyte with a low concentration (∼1%) AgCl. It was, however, a complex assembly requiring specialized skill and talent to fabricate. The construction involved multiple small pieces, glass joints, ceramic to glass joints, and ceramic to metal joints all assembled in a high purity inert gas environment. As original electrodes reached end-of-life it was uncertain if the skills and knowledge were readily available to successfully fabricate replacements. Experimental work has been conducted to identify a simpler electrode design while retaining the needed long life and signal stability. This improved design, based on an ion-permeable membrane of mullite has been completed. Use of the silver

  1. Simplified Reference Electrode for Electrorefining of Spent Nuclear Fuel in High Temperature Molten Salt

    Energy Technology Data Exchange (ETDEWEB)

    Kim Davies; Shelly X Li

    2007-09-01

    Pyrochemical processing plays an important role in development of proliferation- resistant nuclear fuel cycles. At the Idaho National Laboratory (INL), a pyrochemical process has been implemented for the treatment of spent fuel from the Experimental Breeder Reactor II (EBR-II) in the last decade. Electrorefining in a high temperature molten salt is considered a signature or central technology in pyroprocessing fuel cycles. Separation of actinides from fission products is being demonstrated by electrorefining the spent fuel in a molten UCl3-LiCl-KCl electrolyte in two engineering scale electrorefiners (ERs). The electrorefining process is current controlled. The reference electrode provides process information through monitoring of the voltage difference between the reference and the anode and cathode electrodes. This information is essential for monitoring the reactions occurring at the electrodes, investigating separation efficiency, controlling the process rate, and determining the process end-point. The original reference electrode has provided good life expectancy and signal stability, but is not easily replaceable. The reference electrode used a vycor-glass ion-permeable membrane containing a high purity silver wire with one end positioned in ~2 grams of LiCl/KCl salt electrolyte with a low concentration (~1%) AgCl. It was, however, a complex assembly requiring specialized skill and talent to fabricate. The construction involved multiple small pieces, glass joints, ceramic to glass joints, and ceramic to metal joints all assembled in a high purity inert gas environment. As original electrodes reached end-of-life it was uncertain if the skills and knowledge were readily available to successfully fabricate replacements. Experimental work has been conducted to identify a simpler electrode design while retaining the needed long life and signal stability. This improved design, based on an ion-permeable membrane of mullite has been completed. Use of the silver wire

  2. Servo scanning 3D micro EDM for array micro cavities using on-machine fabricated tool electrodes

    Science.gov (United States)

    Tong, Hao; Li, Yong; Zhang, Long

    2018-02-01

    Array micro cavities are useful in many fields including in micro molds, optical devices, biochips and so on. Array servo scanning micro electro discharge machining (EDM), using array micro electrodes with simple cross-sectional shape, has the advantage of machining complex 3D micro cavities in batches. In this paper, the machining errors caused by offline-fabricated array micro electrodes are analyzed in particular, and then a machining process of array servo scanning micro EDM is proposed by using on-machine fabricated array micro electrodes. The array micro electrodes are fabricated on-machine by combined procedures including wire electro discharge grinding, array reverse copying and electrode end trimming. Nine-array tool electrodes with Φ80 µm diameter and 600 µm length are obtained. Furthermore, the proposed process is verified by several machining experiments for achieving nine-array hexagonal micro cavities with top side length of 300 µm, bottom side length of 150 µm, and depth of 112 µm or 120 µm. In the experiments, a chip hump accumulates on the electrode tips like the built-up edge in mechanical machining under the conditions of brass workpieces, copper electrodes and the dielectric of deionized water. The accumulated hump can be avoided by replacing the water dielectric by an oil dielectric.

  3. Operando studies of all-vanadium flow batteries: Easy-to-make reference electrode based on silver-silver sulfate

    Science.gov (United States)

    Ventosa, Edgar; Skoumal, Marcel; Vázquez, Francisco Javier; Flox, Cristina; Morante, Joan Ramon

    2014-12-01

    In-depth evaluation of the electrochemical performance of all-vanadium redox flow batteries (VRFBs) under operando conditions requires the insertion of a reliable reference electrode in the battery cell. In this work, an easy-to-make reference electrode based on silver-silver sulfate is proposed and described for VRFBs. The relevance and feasibility of the information obtained by inserting the reference electrode is illustrated with the study of ammoxidized graphite felts. In this case, we show that the kinetic of the electrochemical reaction VO2+/VO2+ is slower than that of V2+/V3+ at the electrode. While the slow kinetics at the positive electrode limits the voltage efficiency, the operating potential of the negative electrode, which is outside the stability widow of water, reduces the coulombic efficiency due to the hydrogen evolution.

  4. Dynamic Reference Electrode development for redox potential measurements in fluoride molten salt at high temperature

    International Nuclear Information System (INIS)

    Durán-Klie, Gabriela; Rodrigues, Davide; Delpech, Sylvie

    2016-01-01

    Measurement of redox potential in fluoride media is a major problem due to the difficulty to design a reference electrode with high stability, high mechanical resistance and high accuracy. In the frame of molten salt reactor studies, a dynamic reference electrode (DRE) is developed to measure redox potential in fluoride molten salt at high temperature. DRE is based on the in-situ generation of a transient redox system. The choice of the redox couple corresponds to the cathodic limit of the molten salt considered. As a preliminary step, the demonstration of feasibility of generating a DRE was done in LiF-NaF-KF (46.5–11.5–42 mol%) media at 500 °C. In this salt, the reference redox system generated by coulometry at applied current is KF/K, metallic potassium being electrodeposited on a tungsten wire electrode. The validation of the DRE response and the experimental optimization parameters for DRE generation were realized by following the NiF 2 /Ni redox potential evolution as a function of NiF 2 concentration in the fused salt. The current value applied for DRE generation was optimized. It depends on the amount of metallic cations contained in the fused salt and which can be electrochemically reduced simultaneously during the DRE generation. The current corresponding to the DRE generation has to be 4 times greater than the current corresponding to the reduction of the other elements.

  5. Non-destructive Patterning of Carbon Electrodes by Using the Direct Mode of Scanning Electrochemical Microscopy.

    Science.gov (United States)

    Stratmann, Lutz; Clausmeyer, Jan; Schuhmann, Wolfgang

    2015-11-16

    Patterning of glassy carbon surfaces grafted with a layer of nitrophenyl moieties was achieved by using the direct mode of scanning electrochemical microscopy (SECM) to locally reduce the nitro groups to hydroxylamine and amino functionalities. SECM and atomic force microscopy (AFM) revealed that potentiostatic pulses applied to the working electrode lead to local destruction of the glassy carbon surface, most likely caused by etchants generated at the positioned SECM tip used as the counter electrode. By applying galvanostatic pulses, and thus, limiting the current during structuring, corrosion of the carbon surface was substantially suppressed. After galvanostatic patterning, unambiguous proof of the formation of the anticipated amino moieties was possible by modulation of the pH value during the feedback mode of SECM imaging. This patterning strategy is suitable for the further bio-modification of microstructured surfaces. Alkaline phosphatase, as a model enzyme, was locally bound to the modified areas, thus showing that the technique can be used for the development of protein microarrays. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. RuO₂ pH Sensor with Super-Glue-Inspired Reference Electrode.

    Science.gov (United States)

    Lonsdale, Wade; Wajrak, Magdalena; Alameh, Kamal

    2017-09-06

    A pH-sensitive RuO₂ electrode coated in a commercial cyanoacrylate adhesive typically exhibits very low pH sensitivity, and could be paired with a RuO₂ working electrode as a differential type pH sensor. However, such sensors display poor performance in real sample matrices. A pH sensor employing a RuO₂ pH-sensitive working electrode and a SiO₂-PVB junction-modified RuO₂ reference electrode is developed as an alternative high-performance solution. This sensor exhibits a performance similar to that of a commercial glass pH sensor in some common sample matrices, particularly, an excellent pH sensitivity of 55.7 mV/pH, a hysteresis as low as 2.7 mV, and a drift below 2.2 mV/h. The developed sensor structure opens the way towards the development of a simple, cost effective, and robust pH sensor for pH analysis in various sample matrices.

  7. RuO2 pH Sensor with Super-Glue-Inspired Reference Electrode

    Directory of Open Access Journals (Sweden)

    Wade Lonsdale

    2017-09-01

    Full Text Available A pH-sensitive RuO2 electrode coated in a commercial cyanoacrylate adhesive typically exhibits very low pH sensitivity, and could be paired with a RuO2 working electrode as a differential type pH sensor. However, such sensors display poor performance in real sample matrices. A pH sensor employing a RuO2 pH-sensitive working electrode and a SiO2-PVB junction-modified RuO2 reference electrode is developed as an alternative high-performance solution. This sensor exhibits a performance similar to that of a commercial glass pH sensor in some common sample matrices, particularly, an excellent pH sensitivity of 55.7 mV/pH, a hysteresis as low as 2.7 mV, and a drift below 2.2 mV/h. The developed sensor structure opens the way towards the development of a simple, cost effective, and robust pH sensor for pH analysis in various sample matrices.

  8. RuO2 pH Sensor with Super-Glue-Inspired Reference Electrode

    Science.gov (United States)

    Wajrak, Magdalena; Alameh, Kamal

    2017-01-01

    A pH-sensitive RuO2 electrode coated in a commercial cyanoacrylate adhesive typically exhibits very low pH sensitivity, and could be paired with a RuO2 working electrode as a differential type pH sensor. However, such sensors display poor performance in real sample matrices. A pH sensor employing a RuO2 pH-sensitive working electrode and a SiO2-PVB junction-modified RuO2 reference electrode is developed as an alternative high-performance solution. This sensor exhibits a performance similar to that of a commercial glass pH sensor in some common sample matrices, particularly, an excellent pH sensitivity of 55.7 mV/pH, a hysteresis as low as 2.7 mV, and a drift below 2.2 mV/h. The developed sensor structure opens the way towards the development of a simple, cost effective, and robust pH sensor for pH analysis in various sample matrices. PMID:28878182

  9. Analysis of performance losses of direct ethanol fuel cells with the aid of a reference electrode

    Science.gov (United States)

    Li, Guangchun; Pickup, Peter G.

    The performances of direct ethanol fuel cells with different anode catalysts, different ethanol concentrations, and at different operating temperatures have been studied. The performance losses of the cell have been separated into individual electrode performance losses with the aid of a reference electrode, ethanol crossover has been quantified, and CO 2 and acetic acid production have been measured by titration. It has been shown that the cell performance strongly depends on the anode catalyst, ethanol concentration, and operating temperature. It was found that the cathode and anode exhibit different dependences on ethanol concentration and operating temperature. The performance of the cathode is very sensitive to the rate of ethanol crossover. Product analysis provides insights into the mechanisms of electro-oxidation of ethanol.

  10. Analysis of performance losses of direct ethanol fuel cells with the aid of a reference electrode

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guangchun; Pickup, Peter G. [Department of Chemistry, Memorial University of Newfoundland, Elizabeth Avenue, St. John' s, Newfoundland (Canada A 1B 3X7)

    2006-10-20

    The performances of direct ethanol fuel cells with different anode catalysts, different ethanol concentrations, and at different operating temperatures have been studied. The performance losses of the cell have been separated into individual electrode performance losses with the aid of a reference electrode, ethanol crossover has been quantified, and CO{sub 2} and acetic acid production have been measured by titration. It has been shown that the cell performance strongly depends on the anode catalyst, ethanol concentration, and operating temperature. It was found that the cathode and anode exhibit different dependences on ethanol concentration and operating temperature. The performance of the cathode is very sensitive to the rate of ethanol crossover. Product analysis provides insights into the mechanisms of electro-oxidation of ethanol. (author)

  11. A new method to compensate impedance artefacts for Li-ion batteries with integrated micro-reference electrodes

    NARCIS (Netherlands)

    Raijmakers, L.H.J.; Notten, P.H.L.; Lammers, M.J.G.

    2017-01-01

    In order to measure the electrochemical characteristics of both electrodes inside Li-ion batteries, micro-reference electrodes (μREF) turned out to be very useful. However, measuring the electrochemical impedance with respect to μREF can lead to severe measurement artefacts, making a detailed

  12. Self-Supporting, Hydrophobic, Ionic Liquid-Based Reference Electrodes Prepared by Polymerization-Induced Microphase Separation.

    Science.gov (United States)

    Chopade, Sujay A; Anderson, Evan L; Schmidt, Peter W; Lodge, Timothy P; Hillmyer, Marc A; Bühlmann, Philippe

    2017-10-27

    Interfaces of ionic liquids and aqueous solutions exhibit stable electrical potentials over a wide range of aqueous electrolyte concentrations. This makes ionic liquids suitable as bridge materials that separate in electroanalytical measurements the reference electrode from samples with low and/or unknown ionic strengths. However, methods for the preparation of ionic liquid-based reference electrodes have not been explored widely. We have designed a convenient and reliable synthesis of ionic liquid-based reference electrodes by polymerization-induced microphase separation. This technique allows for a facile, single-pot synthesis of ready-to-use reference electrodes that incorporate ion conducting nanochannels filled with either 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide or 1-dodecyl-3-methylimidazolium bis(trifluoromethyl sulfonyl)imide as ionic liquid, supported by a mechanically robust cross-linked polystyrene phase. This synthesis procedure allows for the straightforward design of various reference electrode geometries. These reference electrodes exhibit a low resistance as well as good reference potential stability and reproducibility when immersed into aqueous solutions varying from deionized, purified water to 100 mM KCl, while requiring no correction for liquid junction potentials.

  13. MATLAB Toolboxes for Reference Electrode Standardization Technique (REST) of Scalp EEG.

    Science.gov (United States)

    Dong, Li; Li, Fali; Liu, Qiang; Wen, Xin; Lai, Yongxiu; Xu, Peng; Yao, Dezhong

    2017-01-01

    Reference electrode standardization technique (REST) has been increasingly acknowledged and applied as a re-reference technique to transform an actual multi-channels recordings to approximately zero reference ones in electroencephalography/event-related potentials (EEG/ERPs) community around the world in recent years. However, a more easy-to-use toolbox for re-referencing scalp EEG data to zero reference is still lacking. Here, we have therefore developed two open-source MATLAB toolboxes for REST of scalp EEG. One version of REST is closely integrated into EEGLAB, which is a popular MATLAB toolbox for processing the EEG data; and another is a batch version to make it more convenient and efficient for experienced users. Both of them are designed to provide an easy-to-use for novice researchers and flexibility for experienced researchers. All versions of the REST toolboxes can be freely downloaded at http://www.neuro.uestc.edu.cn/rest/Down.html, and the detailed information including publications, comments and documents on REST can also be found from this website. An example of usage is given with comparative results of REST and average reference. We hope these user-friendly REST toolboxes could make the relatively novel technique of REST easier to study, especially for applications in various EEG studies.

  14. Development and electrochemistry of a novel Ag/AgCl reference electrode suitable for mixed chloride-fluoride melts

    International Nuclear Information System (INIS)

    Pal, Rahul; Ananthasivan, K.; Anthonysamy, S.; Ganesan, V.

    2011-01-01

    Research highlights: → An Ag/AgCl reference electrode for mixed chloride-fluoride melts was developed. → Non-polarizability, reversibility and stability of the electrode were tested. → Dependence of emf vs T for Fe/Fe 2+ and Ni/Ni 2+ couples in KCl-KF melt was reported. - Abstract: Accurate values of electrode potentials are useful in understanding the electrodeposition of boron from a melt containing fluoride, chloride and fluoroborate, as well as in the determination of the thermodynamic properties of this system. A suitable reference electrode for use with this molten mixture is essential for the determination of these potentials. An Ag/AgCl reference electrode was fabricated for this purpose and its stability, reversibility and polarizability in a melt containing chloride and fluoride were studied in the temperature range 1073-1123 K. Cyclic-voltammograms (CVs) of this melt on a platinum working electrode were recorded at regular intervals over a period of 12 h. These CVs did not show any appreciable variation with time, indicating the stability of this reference electrode. The reversibility of this reference electrode was established by carrying out a micropolarization test. Cathodic and anodic polarization tests were carried out by passing a current of 1 mA and 5 mA through the cell for a duration of 300 s. After these polarization tests, the electrode swung back to its equilibrium potential within about 250 s. Reduction potentials of Fe 2+ /Fe and Ni 2+ /Ni couples in the KF-KCl melt were measured for the first time.

  15. Reference and counter electrode positions affect electrochemical characterization of bioanodes in different bioelectrochemical systems

    KAUST Repository

    Zhang, Fang

    2014-06-16

    The placement of the reference electrode (RE) in various bioelectrochemical systems is often varied to accommodate different reactor configurations. While the effect of the RE placement is well understood from a strictly electrochemistry perspective, there are impacts on exoelectrogenic biofilms in engineered systems that have not been adequately addressed. Varying distances between the working electrode (WE) and the RE, or the RE and the counter electrode (CE) in microbial fuel cells (MFCs) can alter bioanode characteristics. With well-spaced anode and cathode distances in an MFC, increasing the distance between the RE and anode (WE) altered bioanode cyclic voltammograms (CVs) due to the uncompensated ohmic drop. Electrochemical impedance spectra (EIS) also changed with RE distances, resulting in a calculated increase in anode resistance that varied between 17 and 31Ω (-0.2V). While WE potentials could be corrected with ohmic drop compensation during the CV tests, they could not be automatically corrected by the potentiostat in the EIS tests. The electrochemical characteristics of bioanodes were altered by their acclimation to different anode potentials that resulted from varying the distance between the RE and the CE (cathode). These differences were true changes in biofilm characteristics because the CVs were electrochemically independent of conditions resulting from changing CE to RE distances. Placing the RE outside of the current path enabled accurate bioanode characterization using CVs and EIS due to negligible ohmic resistances (0.4Ω). It is therefore concluded for bioelectrochemical systems that when possible, the RE should be placed outside the current path and near the WE, as this will result in more accurate representation of bioanode characteristics. © 2014 Wiley Periodicals, Inc.

  16. Analyzing the anodic reactions for iron surface with a porous Al2O3 cluster with the scanning vibrating electrode

    Science.gov (United States)

    Eliyan, Faysal Fayez

    2017-09-01

    The Scanning Vibrating Electrode Technique (SVET) was used to analyze the anodic reactions inside and around a porous Al2O3 cluster embedded onto an iron foil. The tests were carried out at -0.7 V vs. Saturated Calomel Electrode, in naturally aerated solutions of 0.1, 0.2, 0.35, and 0.5 M bicarbonate concentration. During 10 h of testing, the SVET showed evidence for a formation of a passive film in and around the cluster, in the scanning area shown in the graphical abstract. In the dilute 0.1 and 0.2 M solutions, the passive films formed slower than those in 0.35 and 0.5 M solutions. In the SVET maps, the passive films showed that they could suppress dissolution to currents comparable to those of slower dissolution under the porous Al2O3 cluster.

  17. Development of solid state reference electrodes and pH sensors for monitoring nuclear reactor cooling water systems

    International Nuclear Information System (INIS)

    Hettiarachchi, S.; Makela, K.; Macdonald, D.D.

    1991-01-01

    The growing interest in the electrochemical and corrosion behavior of structural alloys in high temperature aqueous systems has stimulated research in the design and testing of reliable reference electrodes and pH sensors for use in such environments. External reference electrodes have been successfully used in the recent years in high temperature aqueous environments, although their long-term stability is questionable. On the other hand, more reliable pH sensors have been developed by various workers for high temperature applications, the major drawback being their sensitivity to dissolved hydrogen, oxygen and other redox species. This paper describes the development of both solid-state reference electrodes and yttria-stabilized zirconia (YSZ) pH sensors for application in high temperature aqueous systems. (author)

  18. MO-FG-204-02: Reference Image Selection in the Presence of Multiple Scan Realizations

    Energy Technology Data Exchange (ETDEWEB)

    Ruan, D; Dou, T; Thomas, D; Low, D [Deparment of Radiation Oncology, University of California Los Angeles, Los Angeles, CA (United States)

    2015-06-15

    Purpose: Fusing information from multiple correlated realizations (e.g., 4DCT) can improve image quality. This process often involves ill-conditioned and asymmetric nonlinear registration and the proper selection of a reference image is important. This work proposes to examine post-registration variation indirectly for such selection, and develops further insights to reduce the number of cross-registrations needed. Methods: We consider each individual scan as a noisy point in the vicinity of an image manifold, related by motion. Nonrigid registration “transports” a scan along the manifold to the reference neighborhood, and the residual is a surrogate for local variation. To test this conjecture, 10 thoracic scans from the same session were reconstructed from a recently developed low-dose helical 4DCT protocol. Pairwise registration was repeated bi-directionally (81 times) and fusion was performed with each candidate reference. The fused image quality was assessed with SNR and CNR. Registration residuals in SSD, harmonic energy, and deformation Jacobian behavior were examined. The semi-symmetry is further utilized to reduce the number of registration needed. Results: The comparison of image quality between single image and fused ones identified reduction of local intensity variance as the major contributor of image quality, boosting SNR and CNR by 5 to 7 folds. This observation further suggests the criticality of good agreement across post-registration images. Triangle inequality on the SSD metric provides a proficient upper-bound and surrogate on such disagreement. Empirical observation also confirms that fused images with high residual SSD have lower SNR and CNR than the ones with low or intermediate SSDs. Registration SSD is structurally close enough to symmetry for reduced computation. Conclusion: Registration residual is shown to be a good predictor of post-fusion image quality and can be used to identify good reference centers. Semi-symmetry of the

  19. A Novel Real-Time Reference Key Frame Scan Matching Method

    Directory of Open Access Journals (Sweden)

    Haytham Mohamed

    2017-05-01

    Full Text Available Unmanned aerial vehicles represent an effective technology for indoor search and rescue operations. Typically, most indoor missions’ environments would be unknown, unstructured, and/or dynamic. Navigation of UAVs in such environments is addressed by simultaneous localization and mapping approach using either local or global approaches. Both approaches suffer from accumulated errors and high processing time due to the iterative nature of the scan matching method. Moreover, point-to-point scan matching is prone to outlier association processes. This paper proposes a low-cost novel method for 2D real-time scan matching based on a reference key frame (RKF. RKF is a hybrid scan matching technique comprised of feature-to-feature and point-to-point approaches. This algorithm aims at mitigating errors accumulation using the key frame technique, which is inspired from video streaming broadcast process. The algorithm depends on the iterative closest point algorithm during the lack of linear features which is typically exhibited in unstructured environments. The algorithm switches back to the RKF once linear features are detected. To validate and evaluate the algorithm, the mapping performance and time consumption are compared with various algorithms in static and dynamic environments. The performance of the algorithm exhibits promising navigational, mapping results and very short computational time, that indicates the potential use of the new algorithm with real-time systems.

  20. Evaluation of local electric fields generated by transcranial direct current stimulation with an extracephalic reference electrode based on realistic 3D body modeling

    Science.gov (United States)

    Im, Chang-Hwan; Park, Ji-Hye; Shim, Miseon; Chang, Won Hyuk; Kim, Yun-Hee

    2012-04-01

    In this study, local electric field distributions generated by transcranial direct current stimulation (tDCS) with an extracephalic reference electrode were evaluated to address extracephalic tDCS safety issues. To this aim, we generated a numerical model of an adult male human upper body and applied the 3D finite element method to electric current conduction analysis. In our simulations, the active electrode was placed over the left primary motor cortex (M1) and the reference electrode was placed at six different locations: over the right temporal lobe, on the right supraorbital region, on the right deltoid, on the left deltoid, under the chin, and on the right buccinator muscle. The maximum current density and electric field intensity values in the brainstem generated by the extracephalic reference electrodes were comparable to, or even less than, those generated by the cephalic reference electrodes. These results suggest that extracephalic reference electrodes do not lead to unwanted modulation of the brainstem cardio-respiratory and autonomic centers, as indicated by recent experimental studies. The volume energy density was concentrated at the neck area by the use of deltoid reference electrodes, but was still smaller than that around the active electrode locations. In addition, the distributions of elicited cortical electric fields demonstrated that the use of extracephalic reference electrodes might allow for the robust prediction of cortical modulations with little dependence on the reference electrode locations.

  1. Effect of tDCS with an extracephalic reference electrode on cardio-respiratory and autonomic functions

    Directory of Open Access Journals (Sweden)

    Jamart Jacques

    2010-03-01

    Full Text Available Abstract Background Transcranial direct current stimulation (tDCS is used in human physiological studies and for therapeutic trials in patients with abnormalities of cortical excitability. Its safety profile places tDCS in the pole-position for translating in real-world therapeutic application. However, an episode of transient respiratory depression in a subject receiving tDCS with an extracephalic electrode led to the suggestion that such an electrode montage could modulate the brainstem autonomic centres. We investigated whether tDCS applied over the midline frontal cortex in 30 healthy volunteers (sham n = 10, cathodal n = 10, anodal n = 10 with an extracephalic reference electrode would modulate brainstem activity as reflected by the monitoring and stringent analysis of vital parameters: heart rate (variability, respiratory rate, blood pressure and sympatho-vagal balance. We reasoned that this study could lead to two opposite but equally interesting outcomes: 1 If tDCS with an extracephalic electrode modulated vital parameters, it could be used as a new tool to explore the autonomic nervous system and, even, to modulate its activity for therapeutic purposes. 2 On the opposite, if applying tDCS with an extracephalic electrode had no effect, it could thus be used safely in healthy human subjects. This outcome would significantly impact the field of non-invasive brain stimulation with tDCS. Indeed, on the one hand, using an extracephalic electrode as a genuine neutral reference (as opposed to the classical "bi-cephalic" tDCS montages which deliver bi-polar stimulation of the brain would help to comfort the conclusions of several modern studies regarding the spatial location and polarity of tDCS. On the other hand, using an extracephalic reference electrode may impact differently on a given cortical target due to the change of direct current flow direction; this may enlarge the potential interventions with tDCS. Results Whereas the respiratory

  2. Electrochemical growth of high-aspect ratio nanostructured silver chloride on silver and its application to miniaturized reference electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Safari, S; Selvaganapathy, P R [Department of Mechanical Engineering, McMaster University, Hamilton, ON, L8S 4L7 (Canada); Derardja, A [Faculty of Science and Engineering, University of Batna (Algeria); Deen, M J, E-mail: selvaga@mcmaster.ca, E-mail: jamal@mcmaster.ca [Electrical and Computer Engineering, McMaster University, Hamilton, ON, L8S 4L8 (Canada)

    2011-08-05

    The sensitivity of many biological and chemical sensors is critically dependent on the stability of the potential of the reference electrode being used. The stability of a reference electrode's potential is highly influenced by the properties of its surface. In this paper, for the first time, the formation of nanosheets of silver chloride on silver wire is observed and controlled using high anodic constant potential (>0.5 V) and pulsed electrodeposition. The resulting nanostructured morphology substantially improves the electrode's potential stability in comparison with the conventional globular surface structure. The increased stability is attributed to the increase in the surface area of the silver chloride produced by the nanosheet formation.

  3. Use of Naturally Available Reference Targets to Calibrate Airborne Laser Scanning Intensity Data

    Directory of Open Access Journals (Sweden)

    Paula Litkey

    2009-04-01

    Full Text Available We have studied the possibility of calibrating airborne laser scanning (ALS intensity data, using land targets typically available in urban areas. For this purpose, a test area around Espoonlahti Harbor, Espoo, Finland, for which a long time series of ALS campaigns is available, was selected. Different target samples (beach sand, concrete, asphalt, different types of gravel were collected and measured in the laboratory. Using tarps, which have certain backscattering properties, the natural samples were calibrated and studied, taking into account the atmospheric effect, incidence angle and flying height. Using data from different flights and altitudes, a time series for the natural samples was generated. Studying the stability of the samples, we could obtain information on the most ideal types of natural targets for ALS radiometric calibration. Using the selected natural samples as reference, the ALS points of typical land targets were calibrated again and examined. Results showed the need for more accurate ground reference data, before using natural samples in ALS intensity data calibration. Also, the NIR camera-based field system was used for collecting ground reference data. This system proved to be a good means for collecting in situ reference data, especially for targets with inhomogeneous surface reflection properties.

  4. Characterizing functional lung heterogeneity in COPD using reference equations for CT scan-measured lobar volumes.

    Science.gov (United States)

    Come, Carolyn E; Diaz, Alejandro A; Curran-Everett, Douglas; Muralidhar, Nivedita; Hersh, Craig P; Zach, Jordan A; Schroeder, Joyce; Lynch, David A; Celli, Bartolome; Washko, George R

    2013-06-01

    CT scanning is increasingly used to characterize COPD. Although it is possible to obtain CT scan-measured lung lobe volumes, normal ranges remain unknown. Using COPDGene data, we developed reference equations for lobar volumes at maximal inflation (total lung capacity [TLC]) and relaxed exhalation (approximating functional residual capacity [FRC]). Linear regression was used to develop race-specific (non-Hispanic white [NHW], African American) reference equations for lobar volumes. Covariates included height and sex. Models were developed in a derivation cohort of 469 subjects with normal pulmonary function and validated in 546 similar subjects. These cohorts were combined to produce final prediction equations, which were applied to 2,191 subjects with old GOLD (Global Initiative for Chronic Obstructive Lung Disease) stage II to IV COPD. In the derivation cohort, women had smaller lobar volumes than men. Height positively correlated with lobar volumes. Adjusting for height, NHWs had larger total lung and lobar volumes at TLC than African Americans; at FRC, NHWs only had larger lower lobes. Age and weight had no effect on lobar volumes at TLC but had small effects at FRC. In subjects with COPD at TLC, upper lobes exceeded 100% of predicted values in GOLD II disease; lower lobes were only inflated to this degree in subjects with GOLD IV disease. At FRC, gas trapping was severe irrespective of disease severity and appeared uniform across the lobes. Reference equations for lobar volumes may be useful in assessing regional lung dysfunction and how it changes in response to pharmacologic therapies and surgical or endoscopic lung volume reduction.

  5. Surface x-ray scattering and scanning tunneling microscopy studies at the Au(111) electrode

    International Nuclear Information System (INIS)

    Ocko, B.M.; Magnussen, O.M.; Wang, J.X.; Adzic, R.R.

    1993-01-01

    This chapter reviews Surface X-ray Scattering and Scanning Tunneling Microscopy results carried out at the Au(111) surface under electrochemical conditions. Results are presented for the reconstructed surface, and for bromide and thallium monolayers. These examples are used to illustrate the complementary nature of the techniques

  6. Characterization Ag/AgCl reference electrode by U/U3+ equilibrium potential measurements in LiCl-KCl eutectic melt

    International Nuclear Information System (INIS)

    Kobayashi, Fumiaki; Kitawaki, Shinichi; Amamoto, Ippei; Igarashi, Miyuki

    1999-02-01

    The Ag/ AgCl reference electrode is often used in electrochemical measurements of molten chloride system. By measuring the U/U 3+ equilibrium potential in the cell, U(s) | UCl 3 , LiCl-KCl parallel LiCl-KCl, Ag + | Ag (s), the characterization of the Ag/AgCl reference electrode was made. The behavior of two types of reference electrode having either a mullite or a Pyrex-glass membrane bridge was examined. It was confirmed that the two types of reference electrode can be regarded as almost equivalent. The reproducibility of the reading from the electrodes having the identical construction was showing to be within 0.003 V. (author)

  7. A novel technique for reference point generation to aid in intraoral scan alignment.

    Science.gov (United States)

    Renne, Walter G; Evans, Zachary P; Mennito, Anthony; Ludlow, Mark

    2017-11-12

    When using a completely digital workflow on larger prosthetic cases it is often difficult to communicate to the laboratory or chairside Computer Aided Design and Computer Aided Manufacturing system the provisional prosthetic information. The problem arises when common hard tissue data points are limited or non-existent such as in complete arch cases in which the 3D model of the complete arch provisional restorations must be aligned perfectly with the 3D model of the complete arch preparations. In these instances, soft tissue is not enough to ensure an accurate automatic or manual alignment due to a lack of well-defined reference points. A new technique is proposed for the proper digital alignment of the 3D virtual model of the provisional prosthetic to the 3D virtual model of the prepared teeth in cases where common and coincident hard tissue data points are limited. Clinical considerations: A technique is described in which fiducial composite resin dots are temporarily placed on the intraoral keratinized tissue in strategic locations prior to final impressions. These fiducial dots provide coincident and clear 3D data points that when scanned into a digital impression allow superimposition of the 3D models. Composite resin dots on keratinized tissue were successful at allowing accurate merging of provisional restoration and post-preparation 3D models for the purpose of using the provisional restorations as a guide for final CLINICAL SIGNIFICANCE: Composite resin dots placed temporarily on attached tissue were successful at allowing accurate merging of the provisional restoration 3D models to the preparation 3D models for the purposes of using the provisional restorations as a guide for final restoration design and manufacturing. In this case, they allowed precise superimposition of the 3D models made in the absence of any other hard tissue reference points, resulting in the fabrication of ideal final restorations. © 2017 Wiley Periodicals, Inc.

  8. On the Concept of Electrode to Discharge Phenomena in Surface Roughness With Reference Strongly Electronegative Gases

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson

    1986-01-01

    The use of geometrically well-defined protrusions in studies es of the effects of electrode surface roughness upon the insulation strength of strongly electronegative gases is discussed. It is argued that, with respect to the roughness associated with production processes, the dimensions of artif...

  9. A novel temperature-gradient Na±β-alumina solid electrolyte based SOx gas sensor without gaseous reference electrode

    DEFF Research Database (Denmark)

    Rao, N.; Bleek, C.M. Van den; Schoonman, J.

    1992-01-01

    An electrochemical SOx ps sensor with a tubular Na+-beta"-alumina solid electrolyte has been fabricated and tested under non-isothermal conditions. The temperature difference between the reference and working electrode of the sensor cell is about 100-degrees-C, which causes a serious deviation...... of the experimental EMF response from the value as calculated using the Nernst equation for an isothermal system. The experimental results are Consistent with the theoretical prediction for a non-isothermal system. The response time is usually less then 10 min. SEM and EDX have been employed to investigate the sensor...... material before and after use, confirming the formation of a glassy phase of Na2SO4 by an electrochemical reaction at the interface of the platinum electrodes and Na+-beta"-alumina. According to this new theoretical derivation, the sensor design could be simplified by applying the same SO2 ps at the two...

  10. In-line monitoring of Li-ion battery electrode porosity and areal loading using active thermal scanning - modeling and initial experiment

    Science.gov (United States)

    Rupnowski, Przemyslaw; Ulsh, Michael; Sopori, Bhushan; Green, Brian G.; Wood, David L.; Li, Jianlin; Sheng, Yangping

    2018-01-01

    This work focuses on a new technique called active thermal scanning for in-line monitoring of porosity and areal loading of Li-ion battery electrodes. In this technique a moving battery electrode is subjected to thermal excitation and the induced temperature rise is monitored using an infra-red camera. Static and dynamic experiments with speeds up to 1.5 m min-1 are performed on both cathodes and anodes and a combined micro- and macro-scale finite element thermal model of the system is developed. It is shown experimentally and through simulations that during thermal scanning the temperature profile generated in an electrode depends on both coating porosity (or area loading) and thickness. It is concluded that by inverting this relation the porosity (or areal loading) can be determined, if thermal response and thickness are simultaneously measured.

  11. Fabrication and characterization of a nanometer-sized optical fiber electrode based on selective chemical etching for scanning electrochemical/optical microscopy.

    Science.gov (United States)

    Maruyama, Kenichi; Ohkawa, Hiroyuki; Ogawa, Sho; Ueda, Akio; Niwa, Osamu; Suzuki, Koji

    2006-03-15

    We have already reported a method for fabricating ultramicroelectrodes (Suzuki, K. JP Patent, 2004-45394, 2004). This method is based on the selective chemical etching of optical fibers. In this work, we undertake a detailed investigation involving a combination of etched optical fibers with various types of tapered tip (protruding-shape, double- (or pencil-) shape and triple-tapered electrode) and insulation with electrophoretic paint. Our goal is to establish a method for fabricating nanometer-sized optical fiber electrodes with high reproducibility. As a result, we realized pencil-shaped and triple-tapered electrodes that had radii in the nanometer range with high reproducibility. These nanometer-sized electrodes showed well-defined sigmoidal curves and stable diffusion-limited responses with cyclic voltammetry. The pencil-shaped optical fiber, which has a conical tip with a cone angle of 20 degrees , was effective for controlling the electrode radius. The pencil-shaped electrodes had higher reproducibility and smaller electrode radii (r(app) etched optical fiber electrodes. By using a pencil-shaped electrode with a 105-nm radius as a probe, we obtained simultaneous electrochemical and optical images of an implantable interdigitated array electrode. We achieved nanometer-scale resolution with a combination of scanning electrochemical microscopy SECM and optical microscopy. The resolution of the electrochemical and optical images indicated sizes of 300 and 930 nm, respectively. The neurites of living PC12 cells were also successfully imaged on a 1.6-microm scale by using the negative feedback mode of an SECM.

  12. Local impedance measurement of an electrode/single-pentacene-grain interface by frequency-modulation scanning impedance microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Tomoharu; Yamada, Hirofumi, E-mail: h-yamada@kuee.kyoto-u.ac.jp [Department of Electronic Science and Engineering, Kyoto University, Kyoto 615-8510 (Japan); Kobayashi, Kei [Department of Electronic Science and Engineering, Kyoto University, Kyoto 615-8510 (Japan); The Hakubi Center for Advanced Research, Kyoto University, Kyoto 615-8520 (Japan)

    2015-08-07

    The device performances of organic thin film transistors are often limited by the metal–organic interface because of the disordered molecular layers at the interface and the energy barriers against the carrier injection. It is important to study the local impedance at the interface without being affected by the interface morphology. We combined frequency modulation atomic force microscopy with scanning impedance microscopy (SIM) to sensitively measure the ac responses of the interface to an ac voltage applied across the interface and the dc potential drop at the interface. By using the frequency-modulation SIM (FM-SIM) technique, we characterized the interface impedance of a Pt electrode and a single pentacene grain as a parallel circuit of a contact resistance and a capacitance. We found that the reduction of the contact resistance was caused by the reduction of the energy level mismatch at the interface by the FM-SIM measurements, demonstrating the usefulness of the FM-SIM technique for investigation of the local interface impedance without being affected by its morphology.

  13. Quality of pediatric abdominal CT scans performed at a dedicated children's hospital and its referring institutions: a multifactorial evaluation

    International Nuclear Information System (INIS)

    Snow, Aisling; Milliren, Carly E.; Graham, Dionne A.; Callahan, Michael J.; MacDougall, Robert D.; Robertson, Richard L.; Taylor, George A.

    2017-01-01

    Pediatric patients requiring transfer to a dedicated children's hospital from an outside institution may undergo CT imaging as part of their evaluation. Whether this imaging is performed prior to or after transfer has been shown to impact the radiation dose imparted to the patient. Other quality variables could also be affected by the pediatric experience and expertise of the scanning institution. To identify differences in quality between abdominal CT scans and reports performed at a dedicated children's hospital, and those performed at referring institutions. Fifty consecutive pediatric abdominal CT scans performed at outside institutions were matched (for age, gender and indication) with 50 CT scans performed at a dedicated freestanding children's hospital. We analyzed the scans for technical parameters, report findings, correlation with final clinical diagnosis, and clinical utility. Technical evaluation included use of intravenous and oral contrast agents, anatomical coverage, number of scan phases and size-specific dose estimate (SSDE) for each scan. Outside institution scans were re-reported when the child was admitted to the children's hospital; they were also re-interpreted for this study by children's hospital radiologists who were provided with only the referral information given in the outside institution's report. Anonymized original outside institutional reports and children's hospital admission re-reports were analyzed by two emergency medicine physicians for ease of understanding, degree to which the clinical question was answered, and level of confidence in the report. Mean SSDE was lower (8.68) for children's hospital scans, as compared to outside institution scans (13.29, P = 0.03). Concordance with final clinical diagnosis was significantly lower for original outside institution reports (38/48, 79%) than for both the admission and study children's hospital reports (48/50, 96%; P = 0.005). Children's hospital admission reports were rated higher

  14. Clinical importance of re-interpretation of PET/CT scanning in patients referred to a tertiary care medical centre

    DEFF Research Database (Denmark)

    Löfgren, Johan; Loft, Annika; Barbosa de Lima, Vinicius Araújo

    2017-01-01

    had an external F-18-FDG PET/CT scan were included. Only information that had been available at the time of the initial reading at the external hospital was available at re-interpretation. Teams with one radiologist and one nuclear medicine physician working side by side performed the re......PURPOSE: To evaluate, in a controlled prospective manner with double-blind read, whether there are differences in interpretations of PET/CT scans at our tertiary medical centre, Rigshospitalet, compared to the external hospitals. METHODS: Ninety consecutive patients referred to our department who...

  15. An all-solid-state screen-printed carbon paste reference electrode based on poly(3,4-ethylenedioxythiophene) as solid contact transducer

    International Nuclear Information System (INIS)

    Xu, Hui; Pan, Yiwen; Chen, Ying; Ye, Ying; Wang, You; Li, Guang

    2012-01-01

    The paper presents the design of an all-solid-state portable reference electrode based on a screen-printed carbon paste electrode suitable for rapid human serum testing. The electrode was covered by electropolymerized poly(3,4-ethylenedioxythiophene) (PEDOT) doped with poly(styrenesulfonate) (PSS) as an internal solid contact layer and polyvinyl chloride (PVC) membrane containing lipophilic anion and cation additives. The electrochemical properties of PEDOT(PSS) and PEDOT(PSS)/PVC film on a carbon paste electrode were studied by electrochemical impedance spectroscopy and cyclic voltammetry methods. The reference electrode exhibited good potential stability (for H + , Na + , K + , Ca 2+ , Cl − and CO 2− 3 /HCO − 3 ), good reproducibility and long-term stability. The structure is applied as reference electrodes in human serum pH analysis with pH ion selective planar electrodes, forming a serum pH sensor. The response time of such a pH sensor was 15 s and the sensitivity was −52.2 ± 1.0 mV per decade. Other properties, such as repeatability, reproducibility and stability, were also evaluated. Clinical trials were carried out and compared with the results obtained from the routine hospital electrolyte analyzer, which demonstrated that their analytical performance was closely matched. (paper)

  16. Reference intervals for platelet aggregation assessed by multiple electrode platelet aggregometry

    DEFF Research Database (Denmark)

    Rubak, Peter; Villadsen, Kirsten; Hvas, Anne-Mette

    2012-01-01

    Abstract Introduction Analyses of platelet aggregation in hirudin whole blood using Multiplate® was validated. Reference intervals for the most commonly used agonists were established, and the association between platelet aggregation, age, gender and haematological values was analysed. Material...... and methods We included 121 healthy individuals to establish reference intervals and six healthy individuals for evaluation of the day-to-day variation. Platelet aggregation was evaluated on hirudin whole blood employing Multiplate® induced by arachidonic acid, ADP, collagen and ristocetin (RISTOlow...... after adjusting for age and gender except for RISTOhigh. A positive significant association was found between platelet count and platelet aggregation (p

  17. Characterization of Fast-Scan Cyclic Voltammetric Electrodes Using Paraffin as an Effective Sealant with In Vitro and In Vivo Applications.

    Science.gov (United States)

    Ramsson, Eric S; Cholger, Daniel; Dionise, Albert; Poirier, Nicholas; Andrus, Avery; Curtiss, Randi

    2015-01-01

    Fast-scan cyclic voltammetry (FSCV) is a powerful technique for measuring sub-second changes in neurotransmitter levels. A great time-limiting factor in the use of FSCV is the production of high-quality recording electrodes; common recording electrodes consist of cylindrical carbon fiber encased in borosilicate glass. When the borosilicate is heated and pulled, the molten glass ideally forms a tight seal around the carbon fiber cylinder. It is often difficult, however, to guarantee a perfect seal between the glass and carbon. Indeed, much of the time spent creating electrodes is in an effort to find a good seal. Even though epoxy resins can be useful in this regard, they are irreversible (seals are permanent), wasteful (epoxy cannot be reused once hardener is added), hazardous (hardeners are often caustic), and require curing. Herein we characterize paraffin as an electrode sealant for FSCV microelectrodes. Paraffin boasts the advantages of near-immediate curing times, simplicity in use, long shelf-life and stable waterproof seals capable of withstanding extended cycling. Borosilicate electrode tips were left intact or broken and dipped in paraffin embedding wax. Excess wax was removed from the carbon surface with xyelenes or by repeated cycling at an extended waveform (-0.4 to 1.4V, 400 V/s, 60 Hz). Then, the waveform was switched to a standard waveform (-0.4 to 1.3V, 400 V/s, 10 Hz) and cycled until stable. Wax-sealing does not inhibit electrode sensitivity, as electrodes detected linear changes in dopamine before and after wax (then xylenes) exposure. Paraffin seals are intact after 11 days of implantation in the mouse, and still capable of measuring transient changes in in vivo dopamine. From this it is clear that paraffin wax is an effective sealant for FSCV electrodes that provides a convenient substitute to epoxy sealants.

  18. Molecular assembly and electro polymerization of 3,4-ethylenedioxy thiophene on Au(100) single crystal electrode using in-situ electrochemical scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Garcia, Jonyl L.; Tongol, Bernard John V.; ShuehLin Yau

    2012-01-01

    Electrochemical scanning tunneling microscopy (Ec-STM) is a powerful technique that can provide molecular-level information regarding electrode surface processes in-situ in electrolyte solvent under ambient conditions. In this study, the adsorption and electro polymerization of an industrially important conducting polymer precursor, 3,4-ethylenedioxy thiophene (EDOT), on Au (100) single crystal was probed using Ec-STM. The Au (100) single crystal electrode substrate used for this study was fabricated using the well-known Clavilier's flame melting procedure. Cyclic voltammetry (CV) was used along with Ec-STM to characterize the bare, EDOT-modified, and poly(EDOT)-modified Au (100) single crystal electrode. Time-dependent Ec-STM imaging at 0.550 V showed the formation of an EDOT self-assembled monolayer through 2-D surface dillusion. The resulting EDOT molecular assembly on Au (100) single crystal electrode was found to fit in a 4√2χ3√2 unit cell. Difference in apparent corrugation between molecular rows was attributed to different angular orientation with respect to the substrate. The electro polymerization of EDOT on Au (100) single crystal electrode was done by potentiostatic and potentiodynamic methods. Both methods suggested a solution-process mechanism for EDOT electro polymerization. (author)

  19. Material investigation for manufacturing of reference step gauges for CT scanning verification

    DEFF Research Database (Denmark)

    Cantatore, Angela; Angel, Jais Andreas Breusch; De Chiffre, Leonardo

    2012-01-01

    This work deals with the study of stability and material investigation for manufacturing of step gauges for CT scanning verification. Four replica step gauges were fabricated using a bisacryl material for dental applications and the stability over five months was monitored using a tactile CMM....... The material was unstable, probably due to a modification of the chemical composition which lowered the hardness. New step gauges were manufactured through milling. Polyetheretherketone (PEEK) and Polyp-phenylenesulphide (PPS with 40% glass) fulfil the requirements regarding hardness and mechanical properties...... and two series of five step gauges (one series for each material) were manufactured by milling. Results show a significant improvement in terms of form stability and surface geometry quality of the new step gauges with respect to the replica step gauges in Luxabite, as reported below....

  20. Urinary catecholamines in patients with acute stroke, in reference to CT scan findings

    International Nuclear Information System (INIS)

    Yoshino, Kimiaki

    1985-01-01

    The amount of norepinephrine (NE) and epinephrine (E) in the urine of 160 stroke patients were measured both at the acute stage and at the chronic stage (31 days or later) of the diseases and a CT scan was taken simultaneously. The urinary NE and E were separated by the high performance liquid chromatography and measured by trihydroxyindole method. Forty five healthy subjects were employed as a control group. The results were as follows: 1) In subarachnoid hemorrhage and intracerebral hemorrhage the NE and E and in cerebral infarction the NE were significantly increased in the acute stage. But, when divided by CT scan findings, the group of intracerebral hemorrhage without perforation into the ventricles showed increases of NE only and those without deviation of midline showed no significant increase of the NE and E. In cases of large cerebral infarction, both NE and E were significantly increased. It is supposed that not only the type of the disease but also the facfors such as its size, perforation into the ventricles and deviation of the midline may change activities of secretion of NE and E. 2) The NE/E ratio was significantly low in the group of intracerebral hemorrhage with perforation into the ventricles (p < 0.001) and the ratio was significantly lower in the thalamic hemorrhage than in the putaminal hemorrhage (p < 0.02). The rate of perforation into the ventricles was significantly higher in the thalamic hemorrhage (78.6 %) than that of the putaminal hemorrhage (10.5 %). 3) In the chronic stage of the stroke, the NE and E (especially E) were decreased and showed a high NE/E. ratio. (author)

  1. Reactivity at the film/solution interface of ex situ prepared bismuth film electrodes: A scanning electrochemical microscopy (SECM) and atomic force microscopy (AFM) investigation

    International Nuclear Information System (INIS)

    Hocevar, Samo B.; Daniele, Salvatore; Bragato, Carlo; Ogorevc, Bozidar

    2007-01-01

    Bismuth film electrodes (BiFEs) prepared ex situ with and without complexing bromide ions in the modification solution were investigated using scanning electrochemical microscopy (SECM) and atomic force microscopy (AFM). A feedback mode of the SECM was employed to examine the conductivity and reactivity of a series of thin bismuth films deposited onto disk glassy carbon substrate electrodes (GCEs) of 3 mm in diameter. A platinum micro-electrode (φ = 25 μm) was used as the SECM tip, and current against tip/substrate distance was recorded in solutions containing either Ru(NH 3 ) 6 3+ or Fe(CN) 6 4- species as redox mediators. With both redox mediators positive feedback approach curves were recorded, which indicated that the bismuth film deposition protocol associated with the addition of bromide ions in the modification solution did not compromise the conductivity of the bismuth film in comparison with that prepared without bromide. However, at the former Bi film a slight kinetic hindering was observed in recycling Ru(NH 3 ) 6 3+ , suggesting a different surface potential. On the other hand, the approach curves recorded by using Fe(CN) 6 4- showed that both types of the aforementioned bismuth films exhibited local reactivity with the oxidised form of the redox mediator, and that bismuth film obtained with bromide ions exhibited slightly lower reactivity. The use of SECM in the scanning operation mode allowed us to ascertain that the bismuth deposits were uniformly distributed across the whole surface of the glassy carbon substrate electrode. Comparative AFM measurements corroborated the above findings and additionally revealed a denser growth of smaller bismuth crystals over the surface of the substrate electrode in the presence of bromide ions, while the crystals were bigger but sparser in the absence of bromide ions in the modification solution

  2. High resolution micro-CT scanning as an innovative tool for evaluation of the surgical positioning of cochlear implant electrodes.

    Science.gov (United States)

    Postnov, A; Zarowski, A; De Clerck, N; Vanpoucke, F; Offeciers, F E; Van Dyck, D; Peeters, S

    2006-05-01

    X-ray microtomography (micro-CT) is a new technique allowing for visualization of the internal structure of opaque specimens with a quasi-histological quality. Among multiple potential applications, the use of this technique in otology is very promising. Micro-CT appears to be ideally suited for in vitro visualization of the inner ear tissues as well as for evaluation of the electrode damage and/or surgical insertion trauma during implantation of the cochlear implant electrodes. This technique can greatly aid in design and development of new cochlear implant electrodes and is applicable for temporal bone studies. The main advantage of micro-CT is the practically artefact-free preparation of the samples and the possibility of evaluation of the interesting parameters along the whole insertion depth of the electrode. This paper presents the results of the first application of micro-CT for visualization of the inner ear structures in human temporal bones and for evaluation of the surgical positioning of the cochlear implant electrodes relative to the intracochlear soft tissues.

  3. Schiff Base modified on CPE electrode and PCB gold electrode for selective determination of silver ion

    Science.gov (United States)

    Leepheng, Piyawan; Suramitr, Songwut; Phromyothin, Darinee

    2017-09-01

    The schiff base was synthesized by 2,5-thiophenedicarboxaldehyde and 1,2,4-thiadiazole-3,5-diamine with condensation method. There was modified on carbon paste electrode (CPE) and Printed circuit board (PCB) gold electrode for determination silver ion. The schiff base modified electrodes was characterized by atomic force microscopy (AFM) and scanning electron microscopy (SEM), respectively. The electrochemical study was reported by cyclic voltammetry method and impedance spectroscopy using modified electrode as working electrode, platinum wire and Ag/AgCl as counter electrode and reference electrode, respectively. The modified electrodes have suitable detection for Ag+. The determination of silver ions using the modified electrodes depended linearly on Ag+ concentration in the range 1×10-10 M to 1×10-7 M, with cyclic voltammetry sensitivity were 2.51×108 μAM-1 and 1.88×108 μAM-1 for PCB gold electrode and CPE electrode, respectively, limits of detection were 5.33×10-9 M and 1.99×10-8 M for PCB gold electrode and CPE electrode, respectively. The modified electrodes have high accuracy, inexpensive and can applied to detection Ag+ in real samples.

  4. Determination of formation heterogeneity at a range of scales using novel multi-electrode resistivity scanning techniques

    International Nuclear Information System (INIS)

    Williams, G.M.; Jackson, P.D.; Ward, R.S.; Sen, M.A.; Meldrum, P.; Lovell, M.

    1991-01-01

    The traditional method of measuring ground resistivity involves passing a current through two outer electrodes, measuring the potential developed across two electrodes in between, and applying Ohm's Law. In the RESCAN system developed by the British Geological Survey, each electrode can be electronically selected and controlled by software to either pass current or measure potential. Thousands of electrodes can be attached to the system either in 2-D surface arrays or along special plastic covered probes driven vertically into the ground or emplaced in boreholes. Under computer control, the resistivity distribution within the emplaced array can be determined automatically with unprecedented detail and speed, and may be displayed as an image. So far, the RESCAN system has been applied at the meso-scale in monitoring the radial migration of an electrolyte introduced into a recharge well in an unconsolidated aquifer; and CORSCAN at the micro-scale on drill cores to evaluate spatial variability in physical properties. The RESCAN technique has considerable potential for determining formation heterogeneity at different scales and provides a basis for developing stochastic models of groundwater and solute flow in heterogeneous systems. 13 figs.; 1 tab.; 12 refs

  5. Electrochemistry and in situ scanning tunnelling microscopy of pure and redox-marked DNA- and UNA-based oligonucleotides on Au(111)-electrode surfaces

    DEFF Research Database (Denmark)

    Hansen, Allan Glargaard; Salvatore, Princia; Karlsen, K.

    2013-01-01

    the strongest and in accord with multiple site Ru-attachment. In situ STM disclosed molecular scale features in varying coverage on addition of the metal ions. The Ru-derivatives showed a bias voltage dependent broad maximum in the tunnelling current–overpotential correlation which could be correlated......We have studied adsorption and electrochemical electron transfer of several 13- and 15-base DNA and UNA (unlocked nucleic acids) oligonucleotides (ONs) linked to Au(111)-electrode surfaces via a 50-C6-SH group using cyclic voltammetry (CV) and scanning tunnelling microscopy in aqueous buffer under...

  6. Comparison of two different segmentation methods on planar lung perfusion scan with reference to quantitative value on SPECT/CT

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Min Seok; Kang, Yeon Koo; Ha, Seung Gyun [Dept. of Nuclear Medicine, Seoul National University Hospital, Seoul (Korea, Republic of); and others

    2017-06-15

    Until now, there was no single standardized regional segmentation method of planar lung perfusion scan. We compared planar scan based two segmentation methods, which are frequently used in the Society of Nuclear Medicine, with reference to the lung perfusion single photon emission computed tomography (SPECT)/computed tomography (CT) derived values in lung cancer patients. Fifty-five lung cancer patients (male:female, 37:18; age, 67.8 ± 10.7 years) were evaluated. The patients underwent planar scan and SPECT/CT after injection of technetium-99 m macroaggregated albumin (Tc-99 m-MAA). The % uptake and predicted postoperative percentage forced expiratory volume in 1 s (ppoFEV1%) derived from both posterior oblique (PO) and anterior posterior (AP) methods were compared with SPECT/CT derived parameters. Concordance analysis, paired comparison, reproducibility analysis and spearman correlation analysis were conducted. The % uptake derived from PO method showed higher concordance with SPECT/CT derived % uptake in every lobe compared to AP method. Both methods showed significantly different lobar distribution of % uptake compared to SPECT/CT. For the target region, ppoFEV1% measured from PO method showed higher concordance with SPECT/CT, but lower reproducibility compared to AP method. Preliminary data revealed that every method significantly correlated with actual postoperative FEV1%, with SPECT/CT showing the best correlation. The PO method derived values showed better concordance with SPECT/CT compared to the AP method. Both PO and AP methods showed significantly different lobar distribution compared to SPECT/CT. In clinical practice such difference according to different methods and lobes should be considered for more accurate postoperative lung function prediction.

  7. Study of Dye-Sensitized Solar Cells by Scanning Electron Micrograph Observation and Thickness Optimization of Porous TiO2 Electrodes

    Directory of Open Access Journals (Sweden)

    Seigo Ito

    2009-01-01

    Full Text Available In order to improve the photoenergy conversion efficiency of dye-sensitized solar cells (DSCs, it is important to optimize their porous TiO2 electrodes. This paper examines the surface and cross-sectional views of the electrodes using scanning electron micrography. Two types of samples for cross-sectional viewing were prepared by mechanically breaking the substrate and by using an Ar-ion etching beam. The former displays the surface of the TiO2 particles and the latter shows the cross-section of the TiO2 particles. We found interesting surface and cross-sectional structures in the scattering layer containing the 400 nm diameter particles, which have an angular and horned shape. The influence of TiO2 particle size and the thickness of the nanocrystalline-TiO2 electrode in DSCs using four kinds of sensitizing dyes (D149, K19, N719 and Z907 and two kinds of electrolytes (acetonitrile-based and ionic-liquid electrolytes are discussed in regards to conversion efficiency, which this paper aims to optimize.

  8. In Situ Characterization of Ni and Ni/Fe Thin Film Electrodes for Oxygen Evolution in Alkaline Media by a Raman-Coupled Scanning Electrochemical Microscope Setup.

    Science.gov (United States)

    Steimecke, Matthias; Seiffarth, Gerda; Bron, Michael

    2017-10-17

    We present a spectroelectrochemical setup, in which Raman microscopy is combined with scanning electrochemical microscopy (SECM) in order to provide both spectroscopic and electrochemical information on the very same location of an electrode at the same time. The setup is applied to a subject of high academic and practical interest, namely, the oxygen evolution reaction at Ni and Ni/Fe electrodes. It comprises a transparent substrate electrode, onto which Ni and Ni/Fe thin films are deposited. An ultramicroelectrode (UME) is placed closely above the substrate to obtain electrochemical information, while a Raman microscope probes the same sample spot from below. To obtain information on oxygen evolution activity and structural changes, increasingly positive potentials from 0.1 up to 0.7 V vs Hg|HgO|1 M KOH were applied to the Ni/Fe-electrodes in 0.1 M KOH solution. Evolved oxygen is detected by reduction at a Pt UME, allowing for the determination of onset potentials, while the substrate current, which is recorded in parallel, is due to both overlapping oxygen evolution and the oxidation of Ni(OH) 2 to NiOOH. An optimum of 15% Fe in Ni/Fe films with respect to oxygen evolution activity was determined. At the same time, the potential-dependent formation of γ-NiOOH characterized by the Raman double band at 475 and 557 cm -1 allows for the conclusion that a certain amount of disorder introduced by Fe atoms is necessary to obtain high oxygen evolution reaction (OER) activity.

  9. Renal scan

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003790.htm Renal scan To use the sharing features on this ... anaphylaxis . Alternative Names Renogram; Kidney scan Images Kidney anatomy Kidney - blood and urine flow References Chernecky CC, ...

  10. A solid-state thin-film Ag/AgCl reference electrode coated with graphene oxide and its use in a pH sensor.

    Science.gov (United States)

    Kim, Tae Yong; Hong, Sung A; Yang, Sung

    2015-03-17

    In this study, we describe a novel solid-state thin-film Ag/AgCl reference electrode (SSRE) that was coated with a protective layer of graphene oxide (GO). This layer was prepared by drop casting a solution of GO on the Ag/AgCl thin film. The potential differences exhibited by the SSRE were less than 2 mV for 26 days. The cyclic voltammograms of the SSRE were almost similar to those of a commercial reference electrode, while the diffusion coefficient of Fe(CN)63- as calculated from the cathodic peaks of the SSRE was 6.48 × 10-6 cm2/s. The SSRE was used in conjunction with a laboratory-made working electrode to determine its suitability for practical use. The average pH sensitivity of this combined sensor was 58.5 mV/pH in the acid-to-base direction; the correlation coefficient was greater than 0.99. In addition, an integrated pH sensor that included the SSRE was packaged in a secure digital (SD) card and tested. The average sensitivity of the chip was 56.8 mV/pH, with the correlation coefficient being greater than 0.99. In addition, a pH sensing test was also performed by using a laboratory-made potentiometer, which showed a sensitivity of 55.4 mV/pH, with the correlation coefficient being greater than 0.99.

  11. Localized corrosion evaluation of the ASTM F139 stainless steel marked by laser using scanning vibrating electrode technique, X-ray photoelectron spectroscopy and Mott–Schottky techniques

    International Nuclear Information System (INIS)

    Pieretti, Eurico F.; Manhabosco, Sara M.; Dick, Luís F.P.; Hinder, Steve; Costa, Isolda

    2014-01-01

    Graphical abstract: SEM image of pits found at the centred marked area, where the laser beam focused twice. - Highlights: • The effect of laser engraving on the corrosion resistance of the ASTM F139 was studied. • Scanning vibrating electrode technique was used to identify the anodic zone. • Laser engraving of austenitic stainless steels produces highly defective surfaces. • Laser engraving causes large chemical modification of the surface. • Pitting nucleates at the interface between laser affected and unaffected areas. - Abstract: The effect of laser engraving on the corrosion resistance of ASTM F139 stainless steel (SS) has been investigated by electrochemical techniques. The nucleation of localized corrosion on this biomaterial was evaluated by scanning vibrating electrode technique (SVET) in a phosphate buffered saline solution (PBS) of pH 7.4. The Mott–Schottky approach was used to determine the electronic properties of the passive film, also chemically characterized by X-ray photoelectron spectroscopy (XPS). SVET allowed the identification of the anodic zones on the surface of the SS marked by laser technique that were associated with the heat-affected areas. Metallic drops solidified on the laser marked surface dissolved actively at OCP and favoured the nucleation of crevice corrosion, while at the pitting potential, pits nucleate preferentially on the laser marks. XPS results showed that laser engraving caused large chemical modification of the surface. Mott–Schottky results indicated a more defective oxide layer with a larger number of donors on the laser marked surface comparatively to that without marks

  12. The combined use of scanning vibrating electrode technique and micro-potentiometry to assess the self-repair processes in defects on 'smart' coatings applied to galvanized steel

    International Nuclear Information System (INIS)

    Taryba, M.; Lamaka, S.V.; Snihirova, D.; Ferreira, M.G.S.; Montemor, M.F.; Wijting, W.K.; Toews, S.; Grundmeier, G.

    2011-01-01

    Research highlights: → Weldable primers were modified with submicron containers loaded with corrosion inhibitors. → SVET and micro-potentiometry were used to study the corrosion inhibition ability. → Submicron containers do not damage the barrier properties of model primers. → Artificial defects of 50μm x 50 μm in a coating can be easily analyzed by SVET and SIET. → Inhibiting dissolution of sacrificial Zn may result in detrimental dissolution of Fe. - Abstract: Model weldable primer coatings for galvanized steel were modified with submicron containers loaded with corrosion inhibitors. This procedure aims at introducing a new functionality in the thin coatings self-repair ability. The assessment of this property demands new protocols and new approaches, combining conventional electrochemical methods with electrochemical and analytical techniques of micrometer spatial resolution. Thus, in this work model defects were created in the coatings by using a focused ion beam (FIB). The coated samples, containing the model defects, were immersed in a NaCl 0.05 M solution and the corrosion inhibition ability was studied using the scanning vibrating electrode technique (SVET) and the scanning ion-selective electrode technique (SIET). SVET-SIET measurements were performed quasi-simultaneously. Qualitative chemical analysis was performed by SEM combined with EDS. Complementary studies were carried out by electrochemical impedance spectroscopy (EIS) to assess the effect of the containers filled with corrosion inhibitors on the barrier properties of the coatings. The electrochemical results highlight the importance of the combined use of integral and localized electrochemical techniques to extract information for a better understanding of the corrosion processes and corresponding repair of active microscopic defects formed on thin coatings containing inhibitor filled containers.

  13. Voltammetry and In Situ Scanning Tunnelling Microscopy of De Novo Designed Heme Protein Monolayers on Au(111)-Electrode Surfaces

    DEFF Research Database (Denmark)

    Albrecht, Tim; Li, Wu; Haehnel, Wolfgang

    2006-01-01

    to the tunnelling current, apparently due to slow electron transfer kinetics. As a consequence, STM images of heme-containing and heme-free MOP-C did not reveal any notable differences in apparent height or physical extension. The apparent height of heme-containing MOP-C did not show any dependence on the substrate...... potential being varied around the redox potential of the protein. The mere presence of an accessible molecular energy level is not sufficient to result in detectable tunnelling current modulation. (c) 2006 Elsevier B.V. All rights reserved.......In the present work, we report the electrochemical characterization and in situ scanning tunnelling microscopy (STM) studies of monolayers of an artificial de novo designed heme protein MOP-C, covalently immobilized on modified Au(111) surfaces. The protein forms closely packed monolayers, which...

  14. Catalytic monolayer voltammetry and in situ scanning tunneling microscopy of copper nitrite reductase on cysteamine-modified Au(111) electrodes

    DEFF Research Database (Denmark)

    Zhang, Jingdong; Welinder, A.C.; Hansen, Allan Glargaard

    2003-01-01

    electrochemical scanning tunneling microscopy (in situ STM) directly in aqueous acetate buffer, pH 6.0 has been used. High-resolution in situ STM shows that cysteamine packs into ordered domains with strip features of a periodic distance of 11.7 +/- 0.3 Angstrom. No voltammetric signals of the nitrite substrate...... on this surface could be detected. A strong cathodic catalytic wave appears in the presence of nitrite. The catalytic current follows a Michaelis-Menten pattern with a Michaelis constant of K-m approximate to 44 muM, which is close to the value for AxCuNiR in homogeneous solution. The apparent catalytic rate...

  15. Basic study on safety conditions for MR imaging. Mechanism of burn injury associated with electrode loops during MR scanning

    International Nuclear Information System (INIS)

    Nakamura, Tatsuo; Fukuda, Koji; Hayakawa, Katsumi

    1994-01-01

    Reports of severe burns associated with the clinical use of MRI scanning have continued to appear. However, the precise mechanism responsible for these injuries has not yet been clarified. Since MR imaging exposes the human body not only to a strong H 0 magnetic field but also high-frequency RF pulses (microwave range), and since previously reported burns have occurred only in the area of attachment to monitor cables, the burns have been considered to be due to electro-magnetic induction in the cables caused by the RF pulses. In the study, therefore, using conventional monitor cables, a variety of loops were prepared and the electromagnetic induction within them by RF pulses was checked with an oscilloscope. For a single turn loop (S=0.124 m 2 ) and a 10-roll loop (S=1.24 m 2 ), the peak induced in these loops were 75 V and 45 V, respectively. When a 50 Ω resistance was connected to the ends of the loop to make it a closed circuit, the voltages across the 50 Ω load were 60 V and 30 V, respectively. Furthermore, even under conditions where a circuit was interrupted at the center of the loop, a similar voltage was observed at the ends of the loop. These results indicate that a simple model of electromagnetic induction in the loop of a monitor cable cannot alone explain the cause of the burns associated with MRI. (author)

  16. Localised electrochemical impedance measurements of a polymer electrolyte fuel cell using a reference electrode array to give cathode-specific measurements and examine membrane hydration dynamics

    Science.gov (United States)

    Engebretsen, Erik; Hinds, Gareth; Meyer, Quentin; Mason, Tom; Brightman, Edward; Castanheira, Luis; Shearing, Paul R.; Brett, Daniel J. L.

    2018-04-01

    Advances in bespoke diagnostic techniques for polymer electrolyte fuel cells continue to provide unique insight into the internal operation of these devices and lead to improved performance and durability. Localised measurements of current density have proven to be extremely useful in designing better fuel cells and identifying optimal operating strategies, with electrochemical impedance spectroscopy (EIS) now routinely used to deconvolute the various losses in fuel cells. Combining the two techniques provides another dimension of understanding, but until now each localised EIS has been based on 2-electrode measurements, composed of both the anode and cathode responses. This work shows that a reference electrode array can be used to give individual electrode-specific EIS responses, in this case the cathode is focused on to demonstrate the approach. In addition, membrane hydration dynamics are studied under current load steps from open circuit voltage. A three-stage process is identified associated with an initial rapid reduction in membrane resistance after 10 s of applying a current step, followed by a slower ramp to approximately steady state, which was achieved after ∼250 s. These results support previously published work that has looked at membrane swelling dynamics and reveal that membrane hydration/membrane resistance is highly heterogeneous.

  17. A Solid-State Thin-Film Ag/AgCl Reference Electrode Coated with Graphene Oxide and Its Use in a pH Sensor

    Directory of Open Access Journals (Sweden)

    Tae Yong Kim

    2015-03-01

    Full Text Available In this study, we describe a novel solid-state thin-film Ag/AgCl reference electrode (SSRE that was coated with a protective layer of graphene oxide (GO. This layer was prepared by drop casting a solution of GO on the Ag/AgCl thin film. The potential differences exhibited by the SSRE were less than 2 mV for 26 days. The cyclic voltammograms of the SSRE were almost similar to those of a commercial reference electrode, while the diffusion coefficient of Fe(CN63− as calculated from the cathodic peaks of the SSRE was 6.48 × 10−6 cm2/s. The SSRE was used in conjunction with a laboratory-made working electrode to determine its suitability for practical use. The average pH sensitivity of this combined sensor was 58.5 mV/pH in the acid-to-base direction; the correlation coefficient was greater than 0.99. In addition, an integrated pH sensor that included the SSRE was packaged in a secure digital (SD card and tested. The average sensitivity of the chip was 56.8 mV/pH, with the correlation coefficient being greater than 0.99. In addition, a pH sensing test was also performed by using a laboratory-made potentiometer, which showed a sensitivity of 55.4 mV/pH, with the correlation coefficient being greater than 0.99.

  18. Design and Fabrication of Low Cost Thick Film pH Sensor using Silver Chlorinated Reference Electrodes with Integrated Temperature Sensor

    Directory of Open Access Journals (Sweden)

    Wiranto Goib

    2016-01-01

    Full Text Available This paper describes the design and fabrication of thick film pH sensor, in which the reference electrode has been formed by chlorination of Ag using FeCl3. The process was aimed to replace Ag/AgCl paste commonly used as reference electrodes. Fabricated using thick film screen printing technology on Al2O3 substrate, the pH sensor showed a measured sensitivity of -52.97, -53.17 and -53.68 mV/pH at 25°C, 45°C, and 65°C, respectively. The measured values were close to the theoretical Nernstian slope of -59 mV/pH 25°C.The sensor was also designed with an integrated Ruthenium based temperature sensor for future temperature compensation. The measured resistance temperature characteristics showed a linear reasponse over the range of 25 – 80°C. This miniaturised planar sensor should find wide application, especially in field water quality monitoring, replacing their glass type counterparts.

  19. Quality of pediatric abdominal CT scans performed at a dedicated children's hospital and its referring institutions: a multifactorial evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Snow, Aisling [Boston Children' s Hospital, Department of Radiology, Boston, MA (United States); Our Lady' s Children' s Hospital, Department of Radiology, Dublin (Ireland); Milliren, Carly E.; Graham, Dionne A. [Boston Children' s Hospital, Program for Patient Safety and Quality, Boston, MA (United States); Callahan, Michael J.; MacDougall, Robert D.; Robertson, Richard L.; Taylor, George A. [Boston Children' s Hospital, Department of Radiology, Boston, MA (United States)

    2017-04-15

    Pediatric patients requiring transfer to a dedicated children's hospital from an outside institution may undergo CT imaging as part of their evaluation. Whether this imaging is performed prior to or after transfer has been shown to impact the radiation dose imparted to the patient. Other quality variables could also be affected by the pediatric experience and expertise of the scanning institution. To identify differences in quality between abdominal CT scans and reports performed at a dedicated children's hospital, and those performed at referring institutions. Fifty consecutive pediatric abdominal CT scans performed at outside institutions were matched (for age, gender and indication) with 50 CT scans performed at a dedicated freestanding children's hospital. We analyzed the scans for technical parameters, report findings, correlation with final clinical diagnosis, and clinical utility. Technical evaluation included use of intravenous and oral contrast agents, anatomical coverage, number of scan phases and size-specific dose estimate (SSDE) for each scan. Outside institution scans were re-reported when the child was admitted to the children's hospital; they were also re-interpreted for this study by children's hospital radiologists who were provided with only the referral information given in the outside institution's report. Anonymized original outside institutional reports and children's hospital admission re-reports were analyzed by two emergency medicine physicians for ease of understanding, degree to which the clinical question was answered, and level of confidence in the report. Mean SSDE was lower (8.68) for children's hospital scans, as compared to outside institution scans (13.29, P = 0.03). Concordance with final clinical diagnosis was significantly lower for original outside institution reports (38/48, 79%) than for both the admission and study children's hospital reports (48/50, 96%; P = 0.005). Children

  20. Characteristics of NH4+ and NO3− fluxes in tea (Camellia sinensis) roots measured by scanning ion-selective electrode technique

    Science.gov (United States)

    Ruan, Li; Wei, Kang; Wang, Liyuan; Cheng, Hao; Zhang, Fen; Wu, Liyun; Bai, Peixian; Zhang, Chengcai

    2016-01-01

    As a vital beverage crop, tea has been extensively planted in tropical and subtropical regions. Nitrogen (N) levels and forms are closely related to tea quality. Based on different N levels and forms, we studied changes in NO3− and NH4+ fluxes in tea roots utilizing scanning ion-selective electrode technique. Our results showed that under both single and mixed N forms, influx rates of NO3− were much lower than those of NH4+, suggesting a preference for NH4+ in tea. With the increase in N concentration, the influx rate of NO3− increased more than that of NH4+. The NH4+ influx rates in a solution without NO3− were much higher than those in a solution with NO3−, while the NO3− influx rates in a solution without NH4+ were much lower than those in a solution with NH4+. We concluded that (1) tea roots showed a preference for NH4+, (2) presence of NO3− had a negative effect on NH4+ influx, and (3) NH4+ had a positive effect on NO3− influx. Our findings not only may help advance hydroponic tea experiments but also may be used to develop efficient fertilization protocols for soil-grown tea in the future. PMID:27918495

  1. Linear scan voltammetric indirect determination of Al(III) by the catalytic cathodic response of norepinephrine at the hanging mercury drop electrode.

    Science.gov (United States)

    Zhang, Fuping; Ji, Ming; Xu, Quan; Yang, Li; Bi, Shuping

    2005-09-01

    The biological effects of aluminum (Al) have received much attention in recent years. Al is of basic relevance as concern with its reactivity and bioavailability. In this paper, the electrochemical behaviors of norepinephrine (NE) in the absence and presence of Al(III) at the hanging mercury drop electrode have been studied and applied to the practical analysis. Highly selective catalytic cathodic peak of NE is yielded by linear scan voltammetry (LSV) at -1.32 V (vs. SCE). A linear relationship holds between the cathodic peak current and the Al(III) concentration. It has been successfully applied to the determination of Al(III) in real waters and synthetic biological samples with satisfying results, which are in accordance with those obtained by ICP-AES method. The electrochemical properties and the mechanisms of the peaks in the presence and absence of Al(III) have been explored. The results show that they are irreversible adsorptive hydrogen catalytic waves. These studies not only enrich the methods of determining Al, but also lay foundations of further understanding of the mechanisms of neurodementia.

  2. Characteristics of NH4+ and NO3- fluxes in tea (Camellia sinensis) roots measured by scanning ion-selective electrode technique.

    Science.gov (United States)

    Ruan, Li; Wei, Kang; Wang, Liyuan; Cheng, Hao; Zhang, Fen; Wu, Liyun; Bai, Peixian; Zhang, Chengcai

    2016-12-05

    As a vital beverage crop, tea has been extensively planted in tropical and subtropical regions. Nitrogen (N) levels and forms are closely related to tea quality. Based on different N levels and forms, we studied changes in NO 3 - and NH 4 + fluxes in tea roots utilizing scanning ion-selective electrode technique. Our results showed that under both single and mixed N forms, influx rates of NO 3 - were much lower than those of NH 4 + , suggesting a preference for NH 4 + in tea. With the increase in N concentration, the influx rate of NO 3 - increased more than that of NH 4 + . The NH 4 + influx rates in a solution without NO 3 - were much higher than those in a solution with NO 3 - , while the NO 3 - influx rates in a solution without NH 4 + were much lower than those in a solution with NH 4 + . We concluded that (1) tea roots showed a preference for NH 4 + , (2) presence of NO 3 - had a negative effect on NH 4 + influx, and (3) NH 4 + had a positive effect on NO 3 - influx. Our findings not only may help advance hydroponic tea experiments but also may be used to develop efficient fertilization protocols for soil-grown tea in the future.

  3. Healthy and diseased striated muscle studied by analytical scanning electron microscopy with special reference to fibre type

    International Nuclear Information System (INIS)

    Wroblewski, R.

    1982-01-01

    X-ray microanalytical investigations of striated muscles in the scanning electron microscope are reviewed. The main part of the studies was performed on cryosections cut with a conventional cryostat operating at -20 degrees C to -40 degrees C. The preparation procedure including different types of attachment of the sections to the specimen holder is described in detail. The elemental changes in muscle are related to the muscle fibre type as demonstrated by histochemical methods or to histochemically demonstrated inclusions in diseased muscles. This is of great importance, because muscle disorders are often characterised by selective involvement of different muscle fibre types. The preparation methods of muscle for analytical scanning electron microscopy and the obtained results are compared with studies performed on thin cryo and epoxy sections, analysed in the transmission and scanning-transmission electron microscope. It is evident that X-ray microanalysis performed on thick cryosections provide a quick survey of the elemental composition of whole cells, and should be followed in interesting cases by close examination on the organelle level studied in thin cryosections in the transmission and scanning-transmission electron microscope

  4. A Framework Based on Reference Data with Superordinate Accuracy for the Quality Analysis of Terrestrial Laser Scanning-Based Multi-Sensor-Systems.

    Science.gov (United States)

    Stenz, Ulrich; Hartmann, Jens; Paffenholz, Jens-André; Neumann, Ingo

    2017-08-16

    Terrestrial laser scanning (TLS) is an efficient solution to collect large-scale data. The efficiency can be increased by combining TLS with additional sensors in a TLS-based multi-sensor-system (MSS). The uncertainty of scanned points is not homogenous and depends on many different influencing factors. These include the sensor properties, referencing, scan geometry (e.g., distance and angle of incidence), environmental conditions (e.g., atmospheric conditions) and the scanned object (e.g., material, color and reflectance, etc.). The paper presents methods, infrastructure and results for the validation of the suitability of TLS and TLS-based MSS. Main aspects are the backward modelling of the uncertainty on the basis of reference data (e.g., point clouds) with superordinate accuracy and the appropriation of a suitable environment/infrastructure (e.g., the calibration process of the targets for the registration of laser scanner and laser tracker data in a common coordinate system with high accuracy) In this context superordinate accuracy means that the accuracy of the acquired reference data is better by a factor of 10 than the data of the validated TLS and TLS-based MSS. These aspects play an important role in engineering geodesy, where the aimed accuracy lies in a range of a few mm or less.

  5. Optically Transparent Thin-Film Electrode Chip for Spectroelectrochemical Sensing

    Energy Technology Data Exchange (ETDEWEB)

    Branch, Shirmir D.; Lines, Amanda M.; Lynch, John A.; Bello, Job M.; Heineman, William R.; Bryan, Samuel A.

    2017-07-03

    The electrochemical and spectroelectrochemical applications of an optically transparent thin film electrode chip are investigated. The working electrode is composed of indium tin oxide (ITO); the counter and quasi-reference electrodes are composed of platinum. The stability of the platinum quasi-reference electrode is modified by coating it with a planar, solid state Ag/AgCl layer. The Ag/AgCl reference is characterized with scanning electron microscopy and energy-dispersive X-ray spectroscopy. Open circuit potential measurements indicate that the potential of the planar Ag/AgCl electrode varies a maximum of 20 mV over four days. Cyclic voltammetry measurements show that the electrode chip is comparable to a standard electrochemical cell. Randles-Sevcik analysis of 10 mM K3[Fe(CN)6] in 0.1 M KCl using the electrode chip shows a diffusion coefficient of 1.59 × 10-6 cm2/s, in comparison to the standard electrochemical cell value of 2.38 × 10-6 cm2/s. By using the electrode chip in an optically transparent thin layer electrode (OTTLE), the spectroelectrochemical modulation of [Ru(bpy)3]2+ florescence was demonstrated, achieving a detection limit of 36 nM.

  6. The Behavioral Effects of tDCS on Visual Search Performance Are Not Influenced by the Location of the Reference Electrode

    Directory of Open Access Journals (Sweden)

    Amanda Ellison

    2017-09-01

    Full Text Available We investigated the role of reference electrode placement (ipsilateral v contralateral frontal pole on conjunction visual search task performance when the transcranial direct current stimulation (tDCS cathode is placed over right posterior parietal cortex (rPPC and over right frontal eye fields (rFEF, both of which have been shown to be causally involved in the processing of this task using TMS. This resulted in four experimental manipulations in which sham tDCS was applied in week one followed by active tDCS the following week. Another group received sham stimulation in both sessions to investigate practice effects over 1 week in this task. Results show that there is no difference between effects seen when the anode is placed ipsi or contralaterally. Cathodal stimulation of rPPC increased search times straight after stimulation similarly for ipsi and contralateral references. This finding does not extend to rFEF stimulation. However, for both sites and both montages, practice effects as seen in the sham/sham condition were negated. This can be taken as evidence that for this task, reference placement on either frontal pole is not important, but also that care needs to be taken when contextualizing tDCS “effects” that may not be immediately apparent particularly in between-participant designs.

  7. The use of regression analysis in determining reference intervals for low hematocrit and thrombocyte count in multiple electrode aggregometry and platelet function analyzer 100 testing of platelet function.

    Science.gov (United States)

    Kuiper, Gerhardus J A J M; Houben, Rik; Wetzels, Rick J H; Verhezen, Paul W M; Oerle, Rene van; Ten Cate, Hugo; Henskens, Yvonne M C; Lancé, Marcus D

    2017-11-01

    Low platelet counts and hematocrit levels hinder whole blood point-of-care testing of platelet function. Thus far, no reference ranges for MEA (multiple electrode aggregometry) and PFA-100 (platelet function analyzer 100) devices exist for low ranges. Through dilution methods of volunteer whole blood, platelet function at low ranges of platelet count and hematocrit levels was assessed on MEA for four agonists and for PFA-100 in two cartridges. Using (multiple) regression analysis, 95% reference intervals were computed for these low ranges. Low platelet counts affected MEA in a positive correlation (all agonists showed r 2 ≥ 0.75) and PFA-100 in an inverse correlation (closure times were prolonged with lower platelet counts). Lowered hematocrit did not affect MEA testing, except for arachidonic acid activation (ASPI), which showed a weak positive correlation (r 2 = 0.14). Closure time on PFA-100 testing was inversely correlated with hematocrit for both cartridges. Regression analysis revealed different 95% reference intervals in comparison with originally established intervals for both MEA and PFA-100 in low platelet or hematocrit conditions. Multiple regression analysis of ASPI and both tests on the PFA-100 for combined low platelet and hematocrit conditions revealed that only PFA-100 testing should be adjusted for both thrombocytopenia and anemia. 95% reference intervals were calculated using multiple regression analysis. However, coefficients of determination of PFA-100 were poor, and some variance remained unexplained. Thus, in this pilot study using (multiple) regression analysis, we could establish reference intervals of platelet function in anemia and thrombocytopenia conditions on PFA-100 and in thrombocytopenia conditions on MEA.

  8. A Simple Hydrogen Electrode

    Science.gov (United States)

    Eggen, Per-Odd

    2009-01-01

    This article describes the construction of an inexpensive, robust, and simple hydrogen electrode, as well as the use of this electrode to measure "standard" potentials. In the experiment described here the students can measure the reduction potentials of metal-metal ion pairs directly, without using a secondary reference electrode. Measurements…

  9. The determination, by differential pulse anodic-stripping voltammetry at the thin mercury-film electrode, of cadmium and thallium in six NIMROC reference materials

    International Nuclear Information System (INIS)

    Lee, A.F.

    1981-01-01

    A previously reported procedure has been extended to include the determination of thallium. In samples where thallium occurred in the presence of relatively high concentrations of cadmium, the stripping peak for cadmium was first suppressed with non-ionic surface-active agent, Triton X-100. Cadmium and thallium were determined directly in six NIMROC reference materials without interference from iron(III), in a reducing electrolyte, which is also a complexing agent, consisting of 1 M ammonium chloride, 0,1 M citric acid, and 0,025 M ascorbic acid. Interelement interferences were eliminated by the use of a mercury-film electrode of adequate thickness. The limits of detection for cadmium were 10ng/g and those for thallium 20ng/g

  10. Electrodes for 24 hours pH monitoring--a comparative study.

    OpenAIRE

    McLauchlan, G; Rawlings, J M; Lucas, M L; McCloy, R F; Crean, G P; McColl, K E

    1987-01-01

    Three pH electrodes in clinical use were examined--(1) antimony electrode with remote reference electrode (Synectics 0011), (2) glass electrode with remote reference electrode (Microelectrodes Inc. MI 506) and (3) combined glass electrode with integral reference electrode (Radiometer GK2801C). In vitro studies showed that both glass electrodes were similar and superior to the antimony electrode with respect to response time, drift, and sensitivity. The effect of the siting of the reference el...

  11. Brain PET scan

    Science.gov (United States)

    ... results on a PET scan. Blood sugar or insulin levels may affect the test results in people with diabetes . PET scans may be done along with a CT scan. This combination scan is called a PET/CT. Alternative Names Brain positron emission tomography; PET scan - brain References Chernecky ...

  12. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-02-15

    Purpose: The development of computer-aided diagnostic (CAD) methods for lung nodule detection, classification, and quantitative assessment can be facilitated through a well-characterized repository of computed tomography (CT) scans. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI) completed such a database, establishing a publicly available reference for the medical imaging research community. Initiated by the National Cancer Institute (NCI), further advanced by the Foundation for the National Institutes of Health (FNIH), and accompanied by the Food and Drug Administration (FDA) through active participation, this public-private partnership demonstrates the success of a consortium founded on a consensus-based process. Methods: Seven academic centers and eight medical imaging companies collaborated to identify, address, and resolve challenging organizational, technical, and clinical issues to provide a solid foundation for a robust database. The LIDC/IDRI Database contains 1018 cases, each of which includes images from a clinical thoracic CT scan and an associated XML file that records the results of a two-phase image annotation process performed by four experienced thoracic radiologists. In the initial blinded-read phase, each radiologist independently reviewed each CT scan and marked lesions belonging to one of three categories (''nodule{>=}3 mm,''''nodule<3 mm,'' and ''non-nodule{>=}3 mm''). In the subsequent unblinded-read phase, each radiologist independently reviewed their own marks along with the anonymized marks of the three other radiologists to render a final opinion. The goal of this process was to identify as completely as possible all lung nodules in each CT scan without requiring forced consensus. Results: The Database contains 7371 lesions marked ''nodule'' by at least one radiologist. 2669 of these lesions were marked &apos

  13. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans

    International Nuclear Information System (INIS)

    2011-01-01

    Purpose: The development of computer-aided diagnostic (CAD) methods for lung nodule detection, classification, and quantitative assessment can be facilitated through a well-characterized repository of computed tomography (CT) scans. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI) completed such a database, establishing a publicly available reference for the medical imaging research community. Initiated by the National Cancer Institute (NCI), further advanced by the Foundation for the National Institutes of Health (FNIH), and accompanied by the Food and Drug Administration (FDA) through active participation, this public-private partnership demonstrates the success of a consortium founded on a consensus-based process. Methods: Seven academic centers and eight medical imaging companies collaborated to identify, address, and resolve challenging organizational, technical, and clinical issues to provide a solid foundation for a robust database. The LIDC/IDRI Database contains 1018 cases, each of which includes images from a clinical thoracic CT scan and an associated XML file that records the results of a two-phase image annotation process performed by four experienced thoracic radiologists. In the initial blinded-read phase, each radiologist independently reviewed each CT scan and marked lesions belonging to one of three categories (''nodule≥3 mm,''''nodule<3 mm,'' and ''non-nodule≥3 mm''). In the subsequent unblinded-read phase, each radiologist independently reviewed their own marks along with the anonymized marks of the three other radiologists to render a final opinion. The goal of this process was to identify as completely as possible all lung nodules in each CT scan without requiring forced consensus. Results: The Database contains 7371 lesions marked ''nodule'' by at least one radiologist. 2669 of these lesions were marked ''nodule≥3 mm'' by at least one radiologist, of which 928 (34.7%) received such marks from all

  14. The combined use of scanning vibrating electrode technique and micro-potentiometry to assess the self-repair processes in defects on 'smart' coatings applied to galvanized steel

    Energy Technology Data Exchange (ETDEWEB)

    Taryba, M. [ICEMS, Instituto Superior Tecnico, UTL, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Lamaka, S.V., E-mail: sviatlana.lamaka@ist.utl.p [ICEMS, Instituto Superior Tecnico, UTL, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Snihirova, D. [ICEMS, Instituto Superior Tecnico, UTL, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Ferreira, M.G.S. [ICEMS, Instituto Superior Tecnico, UTL, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); CICECO, Dep. Ceramics and Glass Eng., University of Aveiro, 3810-193 Aveiro (Portugal); Montemor, M.F. [ICEMS, Instituto Superior Tecnico, UTL, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Wijting, W.K.; Toews, S.; Grundmeier, G. [Institute for Polymer Materials and Processes, University of Paderborn, 33098 Paderborn (Germany)

    2011-04-30

    Research highlights: {yields} Weldable primers were modified with submicron containers loaded with corrosion inhibitors. {yields} SVET and micro-potentiometry were used to study the corrosion inhibition ability. {yields} Submicron containers do not damage the barrier properties of model primers. {yields} Artificial defects of 50{mu}m x 50 {mu}m in a coating can be easily analyzed by SVET and SIET. {yields} Inhibiting dissolution of sacrificial Zn may result in detrimental dissolution of Fe. - Abstract: Model weldable primer coatings for galvanized steel were modified with submicron containers loaded with corrosion inhibitors. This procedure aims at introducing a new functionality in the thin coatings self-repair ability. The assessment of this property demands new protocols and new approaches, combining conventional electrochemical methods with electrochemical and analytical techniques of micrometer spatial resolution. Thus, in this work model defects were created in the coatings by using a focused ion beam (FIB). The coated samples, containing the model defects, were immersed in a NaCl 0.05 M solution and the corrosion inhibition ability was studied using the scanning vibrating electrode technique (SVET) and the scanning ion-selective electrode technique (SIET). SVET-SIET measurements were performed quasi-simultaneously. Qualitative chemical analysis was performed by SEM combined with EDS. Complementary studies were carried out by electrochemical impedance spectroscopy (EIS) to assess the effect of the containers filled with corrosion inhibitors on the barrier properties of the coatings. The electrochemical results highlight the importance of the combined use of integral and localized electrochemical techniques to extract information for a better understanding of the corrosion processes and corresponding repair of active microscopic defects formed on thin coatings containing inhibitor filled containers.

  15. Monitoring drilling mud composition using flowing liquid junction electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Jasinski, R; Fletcher, P; Vercaemer, C

    1990-06-27

    The concentration of a chosen ionic component of a drilling mud is determined from the potential difference between an ion selective electrode, selective to the component and a reference electrode, the reference electrode being connected to the mud by a liquid junction through which reference electrolyte flows from the electrode to the mud. The system avoids errors due to undesirable interactions between the mud and the reference electrode materials. (author).

  16. Ion-selective electrode reviews

    CERN Document Server

    Thomas, J D R

    1983-01-01

    Ion-Selective Electrode Reviews, Volume 5 is a collection of articles that covers ion-speciation. The book aims to present the advancements of the range and capabilities of selective ion-sensors. The topics covered in the selection are neutral carrier based ion-selective electrodes; reference electrodes and liquid junction effects in ion-selective electrode potentiometry; ion transfer across water/organic phase boundaries and analytical; and carbon substrate ion-selective electrodes. The text will be of great use to chemists and chemical engineers.

  17. Simultaneous electroencephalography-functional MRI at 3 T: an analysis of safety risks imposed by performing anatomical reference scans with the EEG equipment in place.

    Science.gov (United States)

    Nöth, Ulrike; Laufs, Helmut; Stoermer, Robert; Deichmann, Ralf

    2012-03-01

    To describe heating effects to be expected in simultaneous electroencephalography (EEG) and magnetic resonance imaging (MRI) when deviating from the EEG manufacturer's instructions; to test which anatomical MRI sequences have a sufficiently low specific absorption rate (SAR) to be performed with the EEG equipment in place; and to suggest precautions to reduce the risk of heating. Heating was determined in vivo below eight EEG electrodes, using both head and body coil transmission and sequences covering the whole range of SAR values. Head transmit coil: temperature increases were below 2.2°C for low SAR sequences, but reached 4.6°C (one subject, clavicle) for high SAR sequences; the equilibrium temperature T(eq) remained below 39°C. Body transmit coil: temperature increases were higher and more frequent over subjects and electrodes, with values below 2.6°C for low SAR sequences, reaching 6.9°C for high SAR sequences (T8 electrode) with T(eq) exceeding a critical level of 40°C. Anatomical imaging should be based on T1-weighted sequences (FLASH, MPRAGE, MDEFT) with an SAR below values for functional MRI sequences based on gradient echo planar imaging. Anatomical sequences with a high SAR can pose a significant risk, which is reduced by using head coil transmission. Copyright © 2011 Wiley-Liss, Inc.

  18. A freeze-dried graphene counter electrode enhances the performance of dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Kai-Hsiang; Wang, Hong-Wen, E-mail: hongwen@cycu.edu.tw

    2014-01-01

    A flexible graphene/polyimide (PI) counter electrode without a fluorine-doped tin oxide (FTO) layer has been fabricated for dye-sensitized solar cell (DSSCs) applications. The flexible counter electrode consists of polyimide double-sided tape as a substrate beneath a graphene film acting as the conductive and catalytic layer. Chemically reduced graphene oxide (rGO) on the PI electrode (rGO-PI) shows comparable catalytic activity to that of the reference sputtered platinum/FTO counter electrodes (Sputter-Pt/FTO). A DSSC with a freeze-dried rGO-PI (FD-rGO-PI) counter electrode shows an overall conversion efficiency (η) of 5.45%, while that of the conventional Sputter-Pt/FTO electrode is 5.52%. The DSSC with a thermally dried rGO-PI (Gel-rGO-PI) counter electrode (not freeze-dried) exhibits a smooth morphology and much poorer performance (η = 1.61%). Field emission scanning electron microscopy, electrochemical impedance spectroscopy, and cyclic voltammetry measurements demonstrate that the FD-rGO-PI electrode possesses a porous structure, numerous edges, minimum charge-transfer resistance and a higher electrocatalytic activity toward the I{sub 3}{sup −}/I{sup −} redox couple than that of the Gel-rGO-PI electrode. The high electrocatalytic activity, facile preparation procedure, absence of FTO, and material flexibility render the FD-rGO-PI electrode an ideal alternative to conventional DSSC counter electrodes. - Highlights: • Highly rough and conductive graphene-based counter electrode is synthesized. • The characteristics of graphene surface by freeze drying are different. • The graphene counter electrode exhibits comparable performance to that of sputtered Pt one.

  19. Pixelized measurement of {sup 99m}Tc-HDP micro particles formed in gamma correction phantom pinhole scan: A reference study

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Joo Young; Yoon, Do Kyun; Chung, Yong An [Catholic University of Korea, College of Medicine, Seoul (Korea, Republic of); Cheon, Gi Jeong; Lee, Yun Sang; Ha, Seunggyun [Radiopharmaceutical Science Laboratory, Dept. of Nuclear MedicineSeoul National University, College of Medicine, Seoul (Korea, Republic of); Bahk, Yong Whee [Dept. of Nuclear Medicine, Sung Ae General Hospital, Seoul (Korea, Republic of)

    2016-09-15

    Currently, traumatic bone diseases are diagnosed by assessing the micro {sup 99m}Tc-hydroxymethylene diphosphonate (HDP) uptake in injured trabeculae with ongoing osteoneogenesis demonstrated by gamma correction pinhole scan (GCPS). However, the mathematic size quantification of micro-uptake is not yet available. We designed and performed this phantom-based study to set up an in-vitro model of the mathematical calculation of micro-uptake by the pixelized measurement. The micro {sup 99m}Tc-HDP deposits used in this study were spontaneously formed both in a large standard flood and small house-made dish phantoms. The processing was as follows: first, phantoms were flooded with distilled water and {sup 99m}Tc-HDP was therein injected to induce micro {sup 99m}Tc-HDP deposition; second, the deposits were scanned using parallel-hole and pinhole collimator to generally survey {sup 99m}Tc-HDP deposition pattern; and third, the scans underwent gamma correction (GC) to discern individual deposits for size measurement. In original naïve scans, tracer distribution was simply nebulous in appearance and, hence, could not be measured. Impressively, however, GCPS could discern individual micro deposits so that they were calculated by pixelized measurement. Phantoms naturally formed micro {sup 99m}Tc-HDP deposits that are analogous to {sup 99m}Tc-HDP uptake on in-vivo bone scan. The smallest one we measured was 0.414 mm. Flooded phantoms and therein injected {sup 99m}Tc-HDP form nebulous micro {sup 99m}Tc-HDP deposits that are rendered discernible by GCPB and precisely calculable using pixelized measurement. This method can be used for precise quantitative and qualitative diagnosis of bone and joint diseases at the trabecular level.

  20. Relationship between Weight, Body Mass Index, and Bone Mineral Density in Men Referred for Dual-Energy X-Ray Absorptiometry Scan in Isfahan, Iran

    OpenAIRE

    Salamat, Mohammad Reza; Salamat, Amir Hossein; Abedi, Iraj; Janghorbani, Mohsen

    2013-01-01

    Objective. Although several studies have investigated the association between body mass index (BMI) and bone mineral density (BMD), the results are inconsistent. The aim of this study was to further investigate the relation between BMI, weight and BMD in an Iranian men population. Methods. A total of 230 men 50-79 years old were examined. All men underwent a standard BMD scans of hip (total hip, femoral neck, trochanter, and femoral shaft) and lumbar vertebrae (L2-L4) using a Dual-Energy X-ra...

  1. Relationship between Weight, Body Mass Index, and Bone Mineral Density in Men Referred for Dual-Energy X-Ray Absorptiometry Scan in Isfahan, Iran.

    Science.gov (United States)

    Salamat, Mohammad Reza; Salamat, Amir Hossein; Abedi, Iraj; Janghorbani, Mohsen

    2013-01-01

    Objective. Although several studies have investigated the association between body mass index (BMI) and bone mineral density (BMD), the results are inconsistent. The aim of this study was to further investigate the relation between BMI, weight and BMD in an Iranian men population. Methods. A total of 230 men 50-79 years old were examined. All men underwent a standard BMD scans of hip (total hip, femoral neck, trochanter, and femoral shaft) and lumbar vertebrae (L2-L4) using a Dual-Energy X-ray Absorptiometry (DXA) scan and examination of body size. Participants were categorised in two BMI group: normal weight obese, BMI ≥ 25 kg/m(2). Results. Compared to men with BMI ≥ 25, the age-adjusted odds ratio of osteopenia was 2.2 (95% CI 0.85, 5.93) and for osteoporosis was 4.4 (1.51, 12.87) for men with BMI osteoporosis. Conclusions. These data indicate that both BMI and weight are associated with BMD of hip and vertebrae and overweight and obesity decreased the risk for osteoporosis. The results of this study highlight the need for osteoporosis prevention strategies in elderly men as well as postmenopausal women.

  2. Relationship between Weight, Body Mass Index, and Bone Mineral Density in Men Referred for Dual-Energy X-Ray Absorptiometry Scan in Isfahan, Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Salamat

    2013-01-01

    Full Text Available Objective. Although several studies have investigated the association between body mass index (BMI and bone mineral density (BMD, the results are inconsistent. The aim of this study was to further investigate the relation between BMI, weight and BMD in an Iranian men population. Methods. A total of 230 men 50-79 years old were examined. All men underwent a standard BMD scans of hip (total hip, femoral neck, trochanter, and femoral shaft and lumbar vertebrae (L2-L4 using a Dual-Energy X-ray Absorptiometry (DXA scan and examination of body size. Participants were categorised in two BMI group: normal weight <25.0 kg/m2 and overweight and obese, BMI ≥ 25 kg/m2. Results. Compared to men with BMI ≥ 25, the age-adjusted odds ratio of osteopenia was 2.2 (95% CI 0.85, 5.93 and for osteoporosis was 4.4 (1.51, 12.87 for men with BMI < 25. It was noted that BMI and weight was associated with a high BMD, compatible with a diagnosis of osteoporosis. Conclusions. These data indicate that both BMI and weight are associated with BMD of hip and vertebrae and overweight and obesity decreased the risk for osteoporosis. The results of this study highlight the need for osteoporosis prevention strategies in elderly men as well as postmenopausal women.

  3. Scanning ion-selective electrode technique and X-ray microanalysis provide direct evidence of contrasting Na+ transport ability from root to shoot in salt-sensitive cucumber and salt-tolerant pumpkin under NaCl stress.

    Science.gov (United States)

    Lei, Bo; Huang, Yuan; Sun, Jingyu; Xie, Junjun; Niu, Mengliang; Liu, Zhixiong; Fan, Molin; Bie, Zhilong

    2014-12-01

    Grafting onto salt-tolerant pumpkin rootstock can increase cucumber salt tolerance. Previous studies have suggested that this can be attributed to pumpkin roots with higher capacity to limit the transport of Na(+) to the shoot than cucumber roots. However, the mechanism remains unclear. This study investigated the transport of Na(+) in salt-tolerant pumpkin and salt-sensitive cucumber plants under high (200 mM) or moderate (90 mM) NaCl stress. Scanning ion-selective electrode technique showed that pumpkin roots exhibited a higher capacity to extrude Na(+), and a correspondingly increased H(+) influx under 200 or 90 mM NaCl stress. The 200 mM NaCl induced Na(+)/H(+) exchange in the root was inhibited by amiloride (a Na(+)/H(+) antiporter inhibitor) or vanadate [a plasma membrane (PM) H(+) -ATPase inhibitor], indicating that Na(+) exclusion in salt stressed pumpkin and cucumber roots was the result of an active Na(+)/H(+) antiporter across the PM, and the Na(+)/H(+) antiporter system in salt stressed pumpkin roots was sufficient to exclude Na(+) X-ray microanalysis showed higher Na(+) in the cortex, but lower Na(+) in the stele of pumpkin roots than that in cucumber roots under 90 mM NaCl stress, suggesting that the highly vacuolated root cortical cells of pumpkin roots could sequester more Na(+), limit the radial transport of Na(+) to the stele and thus restrict the transport of Na(+) to the shoot. These results provide direct evidence for pumpkin roots with higher capacity to limit the transport of Na(+) to the shoot than cucumber roots. © 2014 Scandinavian Plant Physiology Society.

  4. Tomographic scanning apparatus

    International Nuclear Information System (INIS)

    1981-01-01

    Details are given of a tomographic scanning apparatus, with particular reference to a multiplexer slip ring means for receiving output from the detectors and enabling interfeed to the image reconstruction station. (U.K.)

  5. Tomographic scanning apparatus

    International Nuclear Information System (INIS)

    1981-01-01

    Details are presented of a tomographic scanning apparatus, its rotational assembly, and the control and circuit elements, with particular reference to the amplifier and multiplexing circuits enabling detector signal calibration. (U.K.)

  6. Tomographic scanning apparatus

    International Nuclear Information System (INIS)

    1981-01-01

    This patent specification describes a tomographic scanning apparatus, with particular reference to the adjustable fan beam and its collimator system, together with the facility for taking a conventional x-radiograph without moving the patient. (U.K.)

  7. Liquid electrode

    Science.gov (United States)

    Ekechukwu, A.A.

    1994-07-05

    A dropping electrolyte electrode is described for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions. 2 figures.

  8. Nuclear Scans

    Science.gov (United States)

    Nuclear scans use radioactive substances to see structures and functions inside your body. They use a special ... images. Most scans take 20 to 45 minutes. Nuclear scans can help doctors diagnose many conditions, including ...

  9. electrode array

    African Journals Online (AJOL)

    PROF EKWUEME

    A geoelectric investigation employing vertical electrical soundings (VES) using the Ajayi - Makinde Two-Electrode array and the ... arrangements used in electrical D.C. resistivity survey. These include ..... Refraction Tomography to Study the.

  10. Tomographic scanning apparatus

    International Nuclear Information System (INIS)

    1981-01-01

    Details are given of a tomographic scanning apparatus, with particular reference to the means of adjusting the apparent gain of the signal processing means for receiving output signals from the detectors, to compensate for drift in the gain characteristics, including means for passing a reference signal. (U.K.)

  11. Chest-lead ST-J amplitudes using arm electrodes as reference instead of the Wilson central terminal in smartphone ECG applications: Influence on ST-elevation myocardial infarction criteria fulfillment.

    Science.gov (United States)

    Lindow, Thomas; Engblom, Henrik; Khoshnood, Ardavan; Ekelund, Ulf; Carlsson, Marcus; Pahlm, Olle

    2018-05-07

    "Smartphone 12-lead ECG" for the assessment of acute myocardial ischemia has recently been introduced. In the smartphone 12-lead ECG either the right or the left arm can be used as reference for the chest electrodes instead of the Wilson central terminal. These leads are labeled "CR leads" or "CL leads." We aimed to compare chest-lead ST-J amplitudes, using either CR or CL leads, to those present in the conventional 12-lead ECG, and to determine sensitivity and specificity for the diagnosis of STEMI for CR and CL leads. Five hundred patients (74 patients with ST elevation myocardial infarction (STEMI), 66 patients with nonischemic ST deviation and 360 controls) were included. Smartphone 12-lead ECG chest-lead ST-J amplitudes were calculated for both CR and CL leads. ST-J amplitudes were 9.1 ± 29 μV larger for CR leads and 7.7 ± 42 μV larger for CL leads than for conventional chest leads (V leads). Sensitivity and specificity were 94% and 95% for CR leads and 81% and 97% for CL leads when fulfillment of STEMI criteria in V leads was used as reference. In ischemic patients who met STEMI criteria in V leads, but not in limb leads, STEMI criteria were met with CR or CL leads in 91%. By the use of CR or CL leads, smartphone 12-lead ECG results in slightly lower sensitivity in STEMI detection. Therefore, the adjustment of STEMI criteria may be needed before application in clinical practice. © 2018 The Authors. Annals of Noninvasive Electrocardiology Published by Wiley Periodicals, Inc.

  12. Cermet electrode

    Science.gov (United States)

    Maskalick, Nicholas J.

    1988-08-30

    Disclosed is a cermet electrode consisting of metal particles of nickel, cobalt, iron, or alloys or mixtures thereof immobilized by zirconia stabilized in cubic form which contains discrete deposits of about 0.1 to about 5% by weight of praseodymium, dysprosium, terbium, or a mixture thereof. The solid oxide electrode can be made by covering a substrate with particles of nickel, cobalt, iron, or mixtures thereof, growing a stabilized zirconia solid oxide skeleton around the particles thereby immobilizing them, contacting the skeleton with a compound of praseodymium, dysprosium, terbium, or a mixture thereof, and heating the skeleton to a temperature of at least 500.degree. C. The electrode can also be made by preparing a slurry of nickel, cobalt, iron, or mixture and a compound of praseodymium, dysprosium, terbium, or a mixture thereof, depositing the slurry on a substrate, heating the slurry to dryness, and growing a stabilized zirconia skeleton around the metal particles.

  13. Facile 3D Metal Electrode Fabrication for Energy Applications via Inkjet Printing and Shape Memory Polymer

    International Nuclear Information System (INIS)

    Roberts, R C; Wu, J; Li, D C; Hau, N Y; Chang, Y H; Feng, S P

    2014-01-01

    This paper reports on a simple 3D metal electrode fabrication technique via inkjet printing onto a thermally contracting shape memory polymer (SMP) substrate. Inkjet printing allows for the direct patterning of structures from metal nanoparticle bearing liquid inks. After deposition, these inks require thermal curing steps to render a stable conductive film. By printing onto a SMP substrate, the metal nanoparticle ink can be cured and substrate shrunk simultaneously to create 3D metal microstructures, forming a large surface area topology well suited for energy applications. Polystyrene SMP shrinkage was characterized in a laboratory oven from 150-240°C, resulting in a size reduction of 1.97-2.58. Silver nanoparticle ink was patterned into electrodes, shrunk, and the topology characterized using scanning electron microscopy. Zinc-Silver Oxide microbatteries were fabricated to demonstrate the 3D electrodes compared to planar references. Characterization was performed using 10M potassium hydroxide electrolyte solution doped with zinc oxide (57g/L). After a 300s oxidation at 3Vdc, the 3D electrode battery demonstrated a 125% increased capacity over the reference cell. Reference cells degraded with longer oxidations, but the 3D electrodes were fully oxidized for 4 hours, and exhibited a capacity of 5.5mA-hr/cm 2 with stable metal performance

  14. Comparison of six methods of segmentation of tumor volume on the 18F-F.D.G. PET scan with reference histological volume in non small cell bronchopulmonary cancers

    International Nuclear Information System (INIS)

    Venel, Y.; Garhi, H.; Baulieu, J.L.; Prunier-Aesch, C.; Muret, A. de; Barillot, I.

    2008-01-01

    The 18 F-F.D.G. PET has demonstrated its importance in oncology, for initial extension and efficacy of anti tumoral therapeutics. Several studies have attempted to prove its utility to define tumoral volumes for conformational radiotherapy in non small cell lung cancers. Some authors have suggested the use of threshold of tumor intensity uptake with 40 or 50% of maximal intensity. Black et al. have determined contouring with linear regression formula of mean semi-quantitative index of tumor uptake (standard uptake value): SUV threshold = 0.307 Sub average + 0.588. Nestle et al. have taken into account the background noise intensity and mean intensity of the tumor: I threshold = β I average +I noise with β 0.15. Our study was done in collaboration with Inserm U618 team and has compared volumes defined on PET scan defined according to different methods based on intensity or S.U.V. to the tumour volume determined on CT scan by radio physicist. We have compared those volumes with histological volume that we considered for reference. Four patients have been included. They had 18 F-F.D.G. PET scan followed by complete tumoral removal surgery. Specific histological procedure allowed to define complete size of the tumor in re expanded lung. Comparatively to pathology, the volumes obtained using I max 40 and I max 50 are all underestimated. The volumes defined by Black's et al. method are under evaluated for the two largest tumours (15.8% to 22%) and overestimated for the two smallest ones (17.9 to 82.9%). Nestle's et al. method, using β = 0.15, correctly estimates two tumor volumes over 2 cm, but overestimates the two small tumors (79.6 to 124%). Finally, the corrected Nestle's et al. formula (using β = 0.264) overestimates three tumours. Volumes defined on CT scan by radio physicist are correct for one lesion, underestimated for one and overestimated for two other ones (44 and 179.5%). Nestle's et al. method seems to be the most accurate for tumours over 2 cm of

  15. Composite Electrodes for Electrochemical Supercapacitors

    Directory of Open Access Journals (Sweden)

    Yang QuanMin

    2010-01-01

    Full Text Available Abstract Manganese dioxide nanofibers with length ranged from 0.1 to 1 μm and a diameter of about 4–6 nm were prepared by a chemical precipitation method. Composite electrodes for electrochemical supercapacitors were fabricated by impregnation of the manganese dioxide nanofibers and multiwalled carbon nanotubes (MWCNT into porous Ni plaque current collectors. Obtained composite electrodes, containing 85% of manganese dioxide and 15 mass% of MWCNT, as a conductive additive, with total mass loading of 7–15 mg cm−2, showed a capacitive behavior in 0.5-M Na2SO4 solutions. The decrease in stirring time during precipitation of the nanofibers resulted in reduced agglomeration and higher specific capacitance (SC. The highest SC of 185 F g−1 was obtained at a scan rate of 2 mV s−1 for mass loading of 7 mg cm−2. The SC decreased with increasing scan rate and increasing electrode mass.

  16. Composite Electrodes for Electrochemical Supercapacitors

    Science.gov (United States)

    Li, Jun; Yang, Quan Min; Zhitomirsky, Igor

    2010-03-01

    Manganese dioxide nanofibers with length ranged from 0.1 to 1 μm and a diameter of about 4-6 nm were prepared by a chemical precipitation method. Composite electrodes for electrochemical supercapacitors were fabricated by impregnation of the manganese dioxide nanofibers and multiwalled carbon nanotubes (MWCNT) into porous Ni plaque current collectors. Obtained composite electrodes, containing 85% of manganese dioxide and 15 mass% of MWCNT, as a conductive additive, with total mass loading of 7-15 mg cm-2, showed a capacitive behavior in 0.5-M Na2SO4 solutions. The decrease in stirring time during precipitation of the nanofibers resulted in reduced agglomeration and higher specific capacitance (SC). The highest SC of 185 F g-1 was obtained at a scan rate of 2 mV s-1 for mass loading of 7 mg cm-2. The SC decreased with increasing scan rate and increasing electrode mass.

  17. Scanning Tunneling Spectroscope Use in Electrocatalysis Testing

    Science.gov (United States)

    Knutsen, Turid

    2010-01-01

    The relationship between the electrocatalytic properties of an electrode and its ability to transfer electrons between the electrode and a metallic tip in a scanning tunneling microscope (STM) is investigated. The alkaline oxygen evolution reaction (OER) was used as a test reaction with four different metallic glasses, Ni78Si8B14, Ni70Mo20Si5B5, Ni58Co20Si10B12, and Ni25Co50Si15B10, as electrodes. The electrocatalytic properties of the electrodes were determined. The electrode surfaces were then investigated with an STM. A clear relationship between the catalytic activity of an electrode toward the OER and its tunneling characteristics was found. The use of a scanning tunneling spectroscope (STS) in electrocatalytic testing may increase the efficiency of the optimization of electrochemical processes.

  18. Scanning Tunneling Spectroscope Use in Electrocatalysis Testing

    Directory of Open Access Journals (Sweden)

    Turid Knutsen

    2010-06-01

    Full Text Available The relationship between the electrocatalytic properties of an electrode and its ability to transfer electrons between the electrode and a metallic tip in a scanning tunneling microscope (STM is investigated. The alkaline oxygen evolution reaction (OER was used as a test reaction with four different metallic glasses, Ni78Si8B14, Ni70Mo20Si5B5, Ni58Co20Si10B12, and Ni25Co50Si15B10, as electrodes. The electrocatalytic properties of the electrodes were determined. The electrode surfaces were then investigated with an STM. A clear relationship between the catalytic activity of an electrode toward the OER and its tunneling characteristics was found. The use of a scanning tunneling spectroscope (STS in electrocatalytic testing may increase the efficiency of the optimization of electrochemical processes.

  19. Magnetohydrodynamic electrode

    International Nuclear Information System (INIS)

    1980-01-01

    The object of the invention is the provision of a material capable of withstanding a high-temperature, corrosive and erosive environment for use as a ceramic-metal composite electrode current collector in the channel of a magnetohydrodynamic generator. (U.K.)

  20. Facile synthesis of nitrogen-doped reduced graphene oxide as an efficient counter electrode for dye-sensitized solar cells

    Science.gov (United States)

    Wei, Liguo; Wang, Ping; Yang, Yulin; Luo, Ruidong; Li, Jinqi; Gu, Xiaohu; Zhan, Zhaoshun; Dong, Yongli; Song, Weina; Fan, Ruiqing

    2018-04-01

    A nitrogen-doped reduced graphene oxide (N-RGO) nanosheet was synthesized by a simple hydrothermal method and characterized by X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and scanning electrode microscopy. After being deposited as counter electrode film for dye-sensitized solar cells (DSSCs), it is found that the synthesized N-RGO nanosheet has smaller charge-transfer resistance and better electrocatalytic activity towards reduction of triiodide than the reduced graphene oxide (RGO) nanosheet. Consequently, the DSSCs based on the N-RGO counter electrode achieve an energy conversion efficiency of 4.26%, which is higher than that of the RGO counter electrode (2.85%) prepared under the same conditions, and comparable to the value (5.21%) obtained with the Pt counter electrode as a reference. This N-RGO counter electrode offers the advantages of not only saving the cost of Pt itself but also simplifying the process of counter electrode preparation. Therefore, an inexpensive N-RGO nanosheet is a promising counter electrode material to replace noble metal Pt. [Figure not available: see fulltext.

  1. CT Scan

    Science.gov (United States)

    ... disease, lung nodules and liver masses Monitor the effectiveness of certain treatments, such as cancer treatment Detect ... scan done in a hospital or an outpatient facility. CT scans are painless and, with newer machines, ...

  2. Electrode Processes in Porous Electrodes.

    Science.gov (United States)

    1985-11-26

    F104470 2.0 MASS SPECTROMETRY One part of activity for this year is an investigation of the behavior of silver electrodes through the distribution of...al. (2)). These, in some cases, involve tedious and time comsuming procedures and discrepencies of as much as 15% have been observed in the results. As

  3. Transition metal doped poly(aniline-co-pyrrole)/multi-walled carbon nanotubes nanocomposite for high performance supercapacitor electrode materials

    International Nuclear Information System (INIS)

    Dhibar, Saptarshi; Bhattacharya, Pallab; Hatui, Goutam; Das, C.K.

    2015-01-01

    Highlights: • The CuCl 2 doped copolymer (PANI and PPy)/MWCNTs nanocomposite was prepared. • The nanocomposite achieved highest specific capacitance of 383 F/g at a 0.5 A/g. • Nanocomposite exhibits better energy density as well as power density. • The nanocomposite also showed better electrical conductivity at room temperature. • The nanocomposite can be used as promising electrode materials for supercapacitor. - Abstract: In this present communication, copolymer of polyaniline (PANI) and polypyrrole (PPy) that is poly(aniline-co-pyrrole) [poly(An-co-Py)], copper chloride (CuCl 2 ) doped poly(aniline-co-pyrrole) [poly(An-co-Py) Cu], and CuCl 2 doped poly(aniline-co-pyrrole)/multi walled carbon nanotubes (MWCNTs) [poly(An-co-Py) Cu CNT] nanocomposite have been prepared by a simple and inexpensive in-situ chemical oxidative polymerization method, using ammonium persulfate (APS) as oxidant and hydrochloric acid (HCl) as dopant and investigated as high performance supercapacitor electrode materials. The possible interaction between CuCl 2 with copolymers and MWCNTs was investigated by Fourier transform infrared spectroscopy (FTIR) and UV–visible spectroscopy analysis. The morphological characteristic of all the electrode materials were analyzed by Field emission scanning electron microscopy (FESEM) and Transmission electron microscopy (TEM) study. The electrochemical characterizations of all the electrode materials were carried out by three electrode probe method where, standard calomel electrode and platinum were used as reference and counter electrodes, respectively. Among all the electrode materials, poly(An-co-Py) Cu CNT nanocomposite achieved highest specific capacitance value of 383 F/g at 0.5 A/g scan rate. The nanocomposite showed better electrical conductivity at room temperature and also attained nonlinear current–voltage characteristic. Based on the superior electrochemical as well as other properties the as prepared nanocomposite can be used

  4. Transition metal doped poly(aniline-co-pyrrole)/multi-walled carbon nanotubes nanocomposite for high performance supercapacitor electrode materials

    Energy Technology Data Exchange (ETDEWEB)

    Dhibar, Saptarshi; Bhattacharya, Pallab; Hatui, Goutam; Das, C.K., E-mail: chapal12@yahoo.co.in

    2015-03-15

    Highlights: • The CuCl{sub 2} doped copolymer (PANI and PPy)/MWCNTs nanocomposite was prepared. • The nanocomposite achieved highest specific capacitance of 383 F/g at a 0.5 A/g. • Nanocomposite exhibits better energy density as well as power density. • The nanocomposite also showed better electrical conductivity at room temperature. • The nanocomposite can be used as promising electrode materials for supercapacitor. - Abstract: In this present communication, copolymer of polyaniline (PANI) and polypyrrole (PPy) that is poly(aniline-co-pyrrole) [poly(An-co-Py)], copper chloride (CuCl{sub 2}) doped poly(aniline-co-pyrrole) [poly(An-co-Py) Cu], and CuCl{sub 2} doped poly(aniline-co-pyrrole)/multi walled carbon nanotubes (MWCNTs) [poly(An-co-Py) Cu CNT] nanocomposite have been prepared by a simple and inexpensive in-situ chemical oxidative polymerization method, using ammonium persulfate (APS) as oxidant and hydrochloric acid (HCl) as dopant and investigated as high performance supercapacitor electrode materials. The possible interaction between CuCl{sub 2} with copolymers and MWCNTs was investigated by Fourier transform infrared spectroscopy (FTIR) and UV–visible spectroscopy analysis. The morphological characteristic of all the electrode materials were analyzed by Field emission scanning electron microscopy (FESEM) and Transmission electron microscopy (TEM) study. The electrochemical characterizations of all the electrode materials were carried out by three electrode probe method where, standard calomel electrode and platinum were used as reference and counter electrodes, respectively. Among all the electrode materials, poly(An-co-Py) Cu CNT nanocomposite achieved highest specific capacitance value of 383 F/g at 0.5 A/g scan rate. The nanocomposite showed better electrical conductivity at room temperature and also attained nonlinear current–voltage characteristic. Based on the superior electrochemical as well as other properties the as prepared

  5. Cooperative scans

    NARCIS (Netherlands)

    M. Zukowski (Marcin); P.A. Boncz (Peter); M.L. Kersten (Martin)

    2004-01-01

    textabstractData mining, information retrieval and other application areas exhibit a query load with multiple concurrent queries touching a large fraction of a relation. This leads to individual query plans based on a table scan or large index scan. The implementation of this access path in most

  6. Radionuclide scanning

    International Nuclear Information System (INIS)

    Shapiro, B.

    1986-01-01

    Radionuclide scanning is the production of images of normal and diseased tissues and organs by means of the gamma-ray emissions from radiopharmaceutical agents having specific distributions in the body. The gamma rays are detected at the body surface by a variety of instruments that convert the invisible rays into visible patterns representing the distribution of the radionuclide in the body. The patterns, or images, obtained can be interpreted to provide or to aid diagnoses, to follow the course of disease, and to monitor the management of various illnesses. Scanning is a sensitive technique, but its specificity may be low when interpreted alone. To be used most successfully, radionuclide scanning must be interpreted in conjunction with other techniques, such as bone radiographs with bone scans, chest radiographs with lung scans, and ultrasonic studies with thyroid scans. Interpretation is also enhanced by providing pertinent clinical information because the distribution of radiopharmaceutical agents can be altered by drugs and by various procedures besides physiologic and pathologic conditions. Discussion of the patient with the radionuclide scanning specialist prior to the study and review of the results with that specialist after the study are beneficial

  7. Manufacturing process and electrode properties of palladium-electroded ionic polymer–metal composite

    International Nuclear Information System (INIS)

    Chang, Longfei; Chen, Hualing; Zhu, Zicai; Li, Bo

    2012-01-01

    This paper primarily focuses on the manufacturing process of palladium-electroded ionic polymer–metal composite (IPMC). First, according to the special properties of Pd, many experiments were done to determine several specific procedures, including the addition of a reducing agent and the time consumed. Subsequently, the effects of the core manufacturing steps on the electrode morphology were revealed by scanning electron microscopy studies of 22 IPMC samples treated with different combinations of manufacturing steps. Finally, the effects of electrode characteristics on the electromechanical properties, including the sheet resistivity, the elastic modulus and the electro-active performance, of IPMCs were evaluated experimentally and analyzed according to the electrode morphology. (paper)

  8. A nano-structured Ni(II)-chelidamic acid modified gold nanoparticle self-assembled electrode for electrocatalytic oxidation and determination of methanol

    Energy Technology Data Exchange (ETDEWEB)

    Gholivand, Mohammad Bagher, E-mail: mbgholivand@yahoo.com [Department of Analytical Chemistry, Faculty of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Azadbakht, Azadeh [Department of Chemistry, Faculty of Basic Science, Khorramabad Branch, Islamic Azad University, Khorramabad (Iran, Islamic Republic of)

    2012-10-01

    A nano-structured Ni(II)-chelidamic acid (2,6-dicarboxy-4-hydroxypyridine) film was electrodeposited on a gold nanoparticle-cysteine-gold electrode. The morphology of Ni(II)-chelidamic acid gold nanoparticle self-assembled electrode was investigated by scanning electron microscopy (SEM). Electrocatalytic oxidation of methanol on the surface of modified electrode was studied by cyclic voltammetry and chronoamperometry methods. The hydrodynamic amperometry at a rotating modified electrode at constant potential versus reference electrode was used for detection of methanol. Under optimized conditions the calibration plots are linear in the concentration range 0-50 mM with a detection limit of 15 {mu}M. The formed matrix in our work possessed a 3D porous network structure with a large effective surface area, high catalytic activity and behaved like microelectrode ensembles. The modified electrode indicated reproducible behavior and a high level stability during the experiments, making it particularly suitable for analytical purposes. - Highlights: Black-Right-Pointing-Pointer The Au electrode modified with thin Ni(II)/CHE-AuNP film shows stable and reproducible behavior. Black-Right-Pointing-Pointer Long stability and excellent electrochemical reversibility were observed. Black-Right-Pointing-Pointer This modified electrode shows excellent catalytic activity for methanol oxidation. Black-Right-Pointing-Pointer Combination of unique properties of AuNP and Ni(II)/CHE resulted in improvement of current responses.

  9. Voltammetry and in situ scanning tunnelling spectroscopy of osmium, iron, and ruthenium complexes of 2,2′:6′,2′′-terpyridine covalently linked to Au(111)-electrodes

    DEFF Research Database (Denmark)

    Salvatore, Princia; Hansen, Allan Glargaard; Moth-Poulsen, Kasper

    2011-01-01

    prepared in situ by first linking the terpy ligand to the surface via the S-atom, followed by addition of suitable metal compounds. The metal-terpy SAMs were studied by cyclic voltammetry (CV), and in situ scanning tunnelling microscopy with full electrochemical potential control of substrate and tip (in...

  10. Adaptive Optical Scanning Holography

    Science.gov (United States)

    Tsang, P. W. M.; Poon, Ting-Chung; Liu, J.-P.

    2016-01-01

    Optical Scanning Holography (OSH) is a powerful technique that employs a single-pixel sensor and a row-by-row scanning mechanism to capture the hologram of a wide-view, three-dimensional object. However, the time required to acquire a hologram with OSH is rather lengthy. In this paper, we propose an enhanced framework, which is referred to as Adaptive OSH (AOSH), to shorten the holographic recording process. We have demonstrated that the AOSH method is capable of decreasing the acquisition time by up to an order of magnitude, while preserving the content of the hologram favorably. PMID:26916866

  11. Comparison of six methods of segmentation of tumor volume on the {sup 18}F-F.D.G. PET scan with reference histological volume in non small cell bronchopulmonary cancers; Comparaison de six methodes de segmentation du volume tumoral sur la {sup 18}F-FDG TEP-TDM avec le volume de reference anatomopathologique dans les cancers bronchopulmonaires non a petites cellules

    Energy Technology Data Exchange (ETDEWEB)

    Venel, Y.; Garhi, H.; Baulieu, J.L.; Prunier-Aesch, C. [CHRU de Tours-Bretonneau, Service de Medecine Nucleaire, 37 - Tours (France); Muret, A. de [CHRU de Tours-Bretonneau, Service de Radiotherapie, 37 - Tours (France); Barillot, I. [CHRU de Tours-Bretonneau, Service d' Anatomopathologie, 37 - Tours (France)

    2008-06-15

    The {sup 18}F-F.D.G. PET has demonstrated its importance in oncology, for initial extension and efficacy of anti tumoral therapeutics. Several studies have attempted to prove its utility to define tumoral volumes for conformational radiotherapy in non small cell lung cancers. Some authors have suggested the use of threshold of tumor intensity uptake with 40 or 50% of maximal intensity. Black et al. have determined contouring with linear regression formula of mean semi-quantitative index of tumor uptake (standard uptake value): SUV{sub threshold} = 0.307 Sub{sub average} + 0.588. Nestle et al. have taken into account the background noise intensity and mean intensity of the tumor: I{sub threshold} = {beta} I{sub average} +I{sub noise} with {beta} 0.15. Our study was done in collaboration with Inserm U618 team and has compared volumes defined on PET scan defined according to different methods based on intensity or S.U.V. to the tumour volume determined on CT scan by radio physicist. We have compared those volumes with histological volume that we considered for reference. Four patients have been included. They had {sup 18}F-F.D.G. PET scan followed by complete tumoral removal surgery. Specific histological procedure allowed to define complete size of the tumor in re expanded lung. Comparatively to pathology, the volumes obtained using I{sub max} 40 and I{sub max} 50 are all underestimated. The volumes defined by Black's et al. method are under evaluated for the two largest tumours (15.8% to 22%) and overestimated for the two smallest ones (17.9 to 82.9%). Nestle's et al. method, using {beta} = 0.15, correctly estimates two tumor volumes over 2 cm, but overestimates the two small tumors (79.6 to 124%). Finally, the corrected Nestle's et al. formula (using {beta} = 0.264) overestimates three tumours. Volumes defined on CT scan by radio physicist are correct for one lesion, underestimated for one and overestimated for two other ones (44 and 179.5%). Nestle

  12. Scanning table

    CERN Multimedia

    1960-01-01

    Before the invention of wire chambers, particles tracks were analysed on scanning tables like this one. Today, the process is electronic and much faster. Bubble chamber film - currently available - (links can be found below) was used for this analysis of the particle tracks.

  13. Scan Statistics

    CERN Document Server

    Glaz, Joseph

    2009-01-01

    Suitable for graduate students and researchers in applied probability and statistics, as well as for scientists in biology, computer science, pharmaceutical science and medicine, this title brings together a collection of chapters illustrating the depth and diversity of theory, methods and applications in the area of scan statistics.

  14. The Electrode Modality Development in Pulsed Electric Field Treatment Facilitates Biocellular Mechanism Study and Improves Cancer Ablation Efficacy.

    Science.gov (United States)

    Cen, Chao; Chen, Xinhua

    2017-01-01

    Pulsed electric field treatment is now widely used in diverse biological and medical applications: gene delivery, electrochemotherapy, and cancer therapy. This minimally invasive technique has several advantages over traditional ablation techniques, such as nonthermal elimination and blood vessel spare effect. Different electrodes are subsequently developed for a specific treatment purpose. Here, we provide a systematic review of electrode modality development in pulsed electric field treatment. For electrodes invented for experiment in vitro, sheet electrode and electrode cuvette, electrodes with high-speed fluorescence imaging system, electrodes with patch-clamp, and electrodes with confocal laser scanning microscopy are introduced. For electrodes invented for experiment in vivo, monopolar electrodes, five-needle array electrodes, single-needle bipolar electrode, parallel plate electrodes, and suction electrode are introduced. The pulsed electric field provides a promising treatment for cancer.

  15. Scanning probe microscopy

    International Nuclear Information System (INIS)

    Mainsbridge, B.

    1994-01-01

    In late 1959, Richard Feynman observed that manoeuvring atoms was something that could be done in principle but has not been done, 'because we are too big'. In 1982, the scanning tunnelling microscope (STM) was invented and is now a central tool for the construction of nanoscale devices in what was known as molecular engineering, and now, nanotechnology. The principles of the microscope are outlined and references are made to other scanning devices which have evolved from the original invention. The method of employment of the STM as a machine tool is described and references are made to current speculations on applications of the instrument in nanotechnology. A short bibliography on this topic is included. 27 refs., 7 figs

  16. Scanning probe microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mainsbridge, B [Murdoch Univ., WA (Australia). School of Mathematical and Physical Sciences

    1994-12-31

    In late 1959, Richard Feynman observed that manoeuvring atoms was something that could be done in principle but has not been done, `because we are too big`. In 1982, the scanning tunnelling microscope (STM) was invented and is now a central tool for the construction of nanoscale devices in what was known as molecular engineering, and now, nanotechnology. The principles of the microscope are outlined and references are made to other scanning devices which have evolved from the original invention. The method of employment of the STM as a machine tool is described and references are made to current speculations on applications of the instrument in nanotechnology. A short bibliography on this topic is included. 27 refs., 7 figs.

  17. Scanning holograms

    International Nuclear Information System (INIS)

    Natali, S.

    1984-01-01

    This chapter reports on the scanning of 1000 holograms taken in HOBC at CERN. Each hologram is triggered by an interaction in the chamber, the primary particles being pions at 340 GeV/c. The aim of the experiment is the study of charm production. The holograms, recorded on 50 mm film with the ''in line'' technique, can be analyzed by shining a parallel expanded laser beam through the film, obtaining immediately above it the real image of the chamber which can then be scanned and measured with a technique half way between emulsions and bubble chambers. The results indicate that holograms can be analyzed as quickly and reliably as in other visual techniques and that to them is open the same order of magnitude of large scale experiments

  18. Electrochemical Oxidation of Glycerol Using Gold Electrode

    International Nuclear Information System (INIS)

    Mohamed Rozali Othman; Amirah Ahmad

    2015-01-01

    Cyclic voltammetry, potential linear V and chronocuolometry methods were carried out to gain electrochemical behavior of glycerol at a gold electrode. Potassium hydroxide and sulfuric acid were chosen to be the electrolyte for the electro-oxidation of this organic compound. Besides gold plate electrode, gold composite electrode (Au-PVC) was also used as the working electrode. The Au-PVC composite electrode was characterized by Scanning Electron Microscopy (SEM) to determine its morphological aspects before and after used in electrochemical oxidation of glycerol. In alkaline solution, the adsorption of hydroxide species onto the surface of both gold plate and composite Au-PVC electrodes occurs at potential around 500 mV vs SCE. However, at gold plate electrode, there was a small, broad peak before the drastic escalation of current densities which indicates the charge transfer of the chemisorbed OH - anion. In acidic media, the gold oxide was formed after potential 1.0 V. From the cyclic voltammogram glycerol undergo oxidation twice in potassium hydroxide at gold plate and Au-PVC composite electrodes, while in sulfuric acid, oxidation reaction happened once for glycerol on the gold plate electrode. Overall, electrochemical oxidation of glycerol was more effective in alkaline media. Tafel graph which plotted from potential linear V method shows that Au-PVC composite electrode is better than gold plate electrode for the electro-oxidation of glycerol in alkaline solution. Electrochemical oxidation of glycerol products as analyzed by Gas Chromatography-Mass Spectrometry (GC-MS) produced several carboxylic acids and phenolic compounds. (author)

  19. Effective Area and Charge Density of Iridium Oxide Neural Electrodes

    International Nuclear Information System (INIS)

    Harris, Alexander R.; Paolini, Antonio G.; Wallace, Gordon G.

    2017-01-01

    The effective electrode area and charge density of iridium metal and anodically activated iridium has been measured by optical and electrochemical techniques. The degree of electrode activation could be assessed by changes in electrode colour. The reduction charge, activation charge, number of activation pulses and charge density were all strongly correlated. Activated iridium showed slow electron transfer kinetics for reduction of a dissolved redox species. At fast voltammetric scan rates the linear diffusion electroactive area was unaffected by iridium activation. At slow voltammetric scan rates, the steady state diffusion electroactive area was reduced by iridium activation. The steady state current was consistent with a ring electrode geometry, with lateral resistance reducing the electrode area. Slow electron transfer on activated iridium would require a larger overpotential to reduce or oxidise dissolved species in tissue, limiting the electrodes charge capacity but also reducing the likelihood of generating toxic species in vivo.

  20. Electrochemical behavior of LiCoO2 as aqueous lithium-ion battery electrodes

    KAUST Repository

    Ruffo, Riccardo; Wessells, Colin; Huggins, Robert A.; Cui, Yi

    2009-01-01

    .e., as the counter electrode. A commercial reference electrode is also present. Both the working and the counter electrodes have been prepared as thin layers on a metallic substrate using the procedures typical for the study of electrodes for lithium-ion batteries

  1. Bone scans

    International Nuclear Information System (INIS)

    Hetherington, V.J.

    1989-01-01

    Oftentimes, in managing podiatric complaints, clinical and conventional radiographic techniques are insufficient in determining a patient's problem. This is especially true in the early stages of bone infection. Bone scanning or imaging can provide additional information in the diagnosis of the disorder. However, bone scans are not specific and must be correlated with clinical, radiographic, and laboratory evaluation. In other words, bone scanning does not provide the diagnosis but is an important bit of information aiding in the process of diagnosis. The more useful radionuclides in skeletal imaging are technetium phosphate complexes and gallium citrate. These compounds are administered intravenously and are detected at specific time intervals postinjection by a rectilinear scanner with minification is used and the entire skeleton can be imaged from head to toe. Minification allows visualization of the entire skeleton in a single image. A gamma camera can concentrate on an isolated area. However, it requires multiple views to complete the whole skeletal image. Recent advances have allowed computer augmentation of the data received from radionucleotide imaging. The purpose of this chapter is to present the current radionuclides clinically useful in podiatric patients

  2. A proton microbeam deflection system to scan target surfaces

    International Nuclear Information System (INIS)

    Heck, D.

    1978-12-01

    A system to deflect the proton beam within the Karlsruhe microbeam setup is described. The deflection is achieved whithin a transverse electrical field generated between parallel electrodes. Their tension is controlled by a pattern generator, thus enabling areal and line scans with a variable number of scan points at variable scan speed. The application is demonstrated at two different examples. (orig.) [de

  3. Anodized Steel Electrodes for Supercapacitors.

    Science.gov (United States)

    Sagu, Jagdeep S; Wijayantha, K G Upul; Bohm, Mallika; Bohm, Siva; Kumar Rout, Tapan

    2016-03-09

    Steel was anodized in 10 M NaOH to enhance its surface texture and internal surface area for application as an electrode in supercapacitors. A mechanism was proposed for the anodization process. Field-emission gun scanning electron microscopy (FEGSEM) studies of anodized steel revealed that it contains a highly porous sponge like structure ideal for supercapacitor electrodes. X-ray photoelectron spectroscopy (XPS) measurements showed that the surface of the anodized steel was Fe2O3, whereas X-ray diffraction (XRD) measurements indicated that the bulk remained as metallic Fe. The supercapacitor performance of the anodized steel was tested in 1 M NaOH and a capacitance of 18 mF cm(-2) was obtained. Cyclic voltammetry measurements showed that there was a large psueudocapacitive contribution which was due to oxidation of Fe to Fe(OH)2 and then further oxidation to FeOOH, and the respective reduction of these species back to metallic Fe. These redox processes were found to be remarkably reversible as the electrode showed no loss in capacitance after 10000 cycles. The results demonstrate that anodization of steel is a suitable method to produce high-surface-area electrodes for supercapacitors with excellent cycling lifetime.

  4. Advanced screening of electrode couples

    Science.gov (United States)

    Giner, J. D.; Cahill, K.

    1980-01-01

    The chromium (Cr(3+)/Cr(2+)) redox couple (electrolyte and electrode) was investigated to determine its suitability as negative electrode for the iron (Fe(3+)/Fe(2+))-chromium (Cr(3+)/Cr(2+)) redox flow battery. Literature search and laboratory investigation established that the solubility and stability of aqueous acidic solutions of chromium(3) chloride and chromium(2) chloride are sufficient for redox battery application. Four categories of electrode materials were tested; namely, metals and metalloid materials (elements and compounds), alloys, plated materials, and Teflon-bonded materials. In all, the relative performance of 26 candidate electrode materials was evaluated on the basis of slow scan rate linear sweep voltammetry in stirred solution. No single material tested gave both acceptable anodic an acceptable cathodic performance. However, the identification of lead as a good cathodic electrocatalyst and gold as a good anodic electrocatalyst led to the invention of the lead/gold combination electrocatalyst. This type of catalyst can be fabricated in several ways and appears to offer the advantages of each metal without the disadvantages associated with their use as single materials. This lead/gold electrocatalyst was tested by NASA-Lewis Research Center in complete, flowing, redox batteries comprising a stack of several cells. A large improvement in the battery's coulombic and energy efficiency was observed.

  5. DNA-modified electrodes (Ⅶ)——Preparation and characterization of DNA-bonded and DNA-adsorbed SAM/Au electrodes

    Institute of Scientific and Technical Information of China (English)

    陆琪; 庞代文; 胡深; 程介克; 蔡雄伟; 施财辉; 毛秉伟; 戴鸿平

    1999-01-01

    Two kinds of DNA-modified electrodes were prepared by covalent and adsorptive immobilization of DNA onto self-assembled monolayers of 2, 2’-dithiodiethanol on gold electrodes and characterized by cyclic voltammetry, Xray photoelectron spectroscopy and scanning tunneling microscopy. The results suggest that the methods are satisfactory for the immobilization of DNA on electrodes.

  6. Characterization of Transition-Metal Oxide Deposition on Carbon Electrodes of a Supercapacitor

    Directory of Open Access Journals (Sweden)

    Ying-Chung Chen

    2016-12-01

    Full Text Available In order to fabricate the composite electrodes of a supercapacitor, transition-metal oxide materials NiO and WO3 were deposited on carbon electrodes by electron beam evaporation. The influences of various transition-metal oxides, scan rates of cyclic voltammograms (CVs, and galvanostatic charge/discharge tests on the characteristics of supercapacitor were studied. The charge/discharge efficiency and the lifetime of the composite electrodes were also investigated. It was found that the composite electrodes exhibited more favorable capacitance properties than those of the carbon electrodes at high scan rates. The results revealed the promotion of the capacitance property of the supercapacitor with composite electrode and the improving of the decay property in capacitance at high scan rate. In addition, the charge/discharge efficiency is close to 100% after 5000 cycles, and the composite electrode retains strong adhesion between the electrode material and the substrate.

  7. Scanning Tunneling Microscope For Use In Vacuum

    Science.gov (United States)

    Abel, Phillip B.

    1993-01-01

    Scanning tunneling microscope with subangstrom resolution developed to study surface structures. Although instrument used in air, designed especially for use in vacuum. Scanning head is assembly of small, mostly rigid components made of low-outgassing materials. Includes coarse-positioning mechanical-translation stage, on which specimen mounted by use of standard mounting stub. Tunneling tip mounted on piezoelectric fine-positioning tube. Application of suitable voltages to electrodes on piezoelectric tube controls scan of tunneling tip across surface of specimen. Electronic subsystem generates scanning voltages and collects data.

  8. High performance cermet electrodes

    Science.gov (United States)

    Isenberg, Arnold O.; Zymboly, Gregory E.

    1986-01-01

    Disclosed is a method of increasing the operating cell voltage of a solid oxide electrochemical cell having metal electrode particles in contact with an oxygen-transporting ceramic electrolyte. The metal electrode is heated with the cell, and oxygen is passed through the oxygen-transporting ceramic electrolyte to the surface of the metal electrode particles so that the metal electrode particles are oxidized to form a metal oxide layer between the metal electrode particles and the electrolyte. The metal oxide layer is then reduced to form porous metal between the metal electrode particles and the ceramic electrolyte.

  9. Use of cyclic voltammetry and electrochemical impedance spectroscopy for determination of active surface area of modified carbon-based electrodes

    International Nuclear Information System (INIS)

    Souza, Leticia Lopes de

    2011-01-01

    Carbon-based electrodes as well the ion exchange electrodes among others have been applied mainly in the treatment of industrial effluents and radioactive wastes. Carbon is also used in fuel cells as substrate for the electrocatalysts, having high surface area which surpasses its geometric area. The knowledge of the total active area is important for the determination of operating conditions of an electrochemical cell with respect to the currents to be applied (current density). In this study it was used two techniques to determine the electrochemical active surface area of glassy carbon, electrodes and ion exchange electrodes: cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The experiments were carried out with KNO 3 0.1 mol.L -1 solutions in a three-electrode electrochemical cell: carbon-based working electrode, platinum auxiliary electrode and Ag/AgCl reference electrode. The glassy carbon and porous carbon electrodes with geometric areas of 3.14 x 10 -2 and 2.83 X 10 -1 cm 2 , respectively, were used. The ion exchange electrode was prepared by mixing graphite, carbon, ion exchange resin and a binder, and this mixture was applied in three layers on carbon felt, using a geometric area of 1.0 cm 2 during the experiments. The capacitance (Cd) of the materials was determined by EIS using Bode diagrams. The value of 172 μF.cm -2 found for the glassy carbon is consistent with the literature data (∼ 200 μF.cm'- 2 ). By VC, varying the scan rate from 0.2 to 2.0 mV.s-1, the capacitance CdS (S = active surface area) in the region of the electric double layer (EDL) of each material was determined. By EIS, the values of C d , 3.0 x 10 -5 μF.cm'- 2 and 11 x 10 3 μF.cm-2, were found for the porous carbon and ion exchange electrodes, respectively, which allowed the determination of active surface areas as 3.73 x 106 cm 2 and 4.72 cm 2 . To sum up, the combined use of EIS and CV techniques is a valuable tool for the calculation of active surface

  10. The Composite Insertion Electrode

    DEFF Research Database (Denmark)

    Atlung, Sven; Zachau-Christiansen, Birgit; West, Keld

    1984-01-01

    The specific energy obtainable by discharge of porous insertion electrodes is limited by electrolyte depletion in thepores. This can be overcome using a solid ion conductor as electrolyte. The term "composite" is used to distinguishthese electrodes from porous electrodes with liquid electrolyte...

  11. Near-Electrode Imager

    Energy Technology Data Exchange (ETDEWEB)

    Rathke, Jerome W.; Klingler, Robert J.; Woelk, Klaus; Gerald, Rex E.,II

    1999-05-01

    An apparatus, near-electrode imager, for employing nuclear magnetic resonance imaging to provide in situ measurements of electrochemical properties of a sample as a function of distance from a working electrode. The near-electrode imager use the radio frequency field gradient within a cylindrical toroid cavity resonator to provide high-resolution nuclear magnetic resonance spectral information on electrolyte materials.

  12. Scanning tunneling microscopy II further applications and related scanning techniques

    CERN Document Server

    Güntherodt, Hans-Joachim

    1995-01-01

    Scanning Tunneling Microscopy II, like its predecessor, presents detailed and comprehensive accounts of the basic principles and broad range of applications of STM and related scanning probe techniques. The applications discussed in this volume come predominantly from the fields of electrochemistry and biology. In contrast to those described in STM I, these studies may be performed in air and in liquids. The extensions of the basic technique to map other interactions are described in chapters on scanning force microscopy, magnetic force microscopy, and scanning near-field optical microscopy, together with a survey of other related techniques. Also described here is the use of a scanning proximal probe for surface modification. Together, the two volumes give a comprehensive account of experimental aspects of STM. They provide essential reading and reference material for all students and researchers involved in this field. In this second edition the text has been updated and new methods are discussed.

  13. Scanning tunneling microscopy II further applications and related scanning techniques

    CERN Document Server

    Güntherodt, Hans-Joachim

    1992-01-01

    Scanning Tunneling Microscopy II, like its predecessor, presents detailed and comprehensive accounts of the basic principles and broad range of applications of STM and related scanning probe techniques. The applications discussed in this volume come predominantly from the fields of electrochemistry and biology. In contrast to those described in Vol. I, these sudies may be performed in air and in liquids. The extensions of the basic technique to map other interactions are described inchapters on scanning force microscopy, magnetic force microscopy, scanning near-field optical microscopy, together with a survey of other related techniques. Also described here is the use of a scanning proximal probe for surface modification. Togehter, the two volumes give a comprehensive account of experimental aspcets of STM. They provide essentialreading and reference material for all students and researchers involvedin this field.

  14. Al nanogrid electrode for ultraviolet detectors.

    Science.gov (United States)

    Ding, G; Deng, J; Zhou, L; Gan, Q; Hwang, J C M; Dierolf, V; Bartoli, F J; Mazuir, C; Schoenfeld, W V

    2011-09-15

    Optical properties of Al nanogrids of different pitches and gaps were investigated both theoretically and experimentally. Three-dimensional finite-difference time-domain simulation predicted that surface plasmons at the air/Al interface would enhance ultraviolet transmission through the subwavelength gaps of the nanogrid, making it an effective electrode on GaN-based photodetectors to compensate for the lack of transparent electrode and high p-type doping. The predicted transmission enhancement was verified by confocal scanning optical microscopy performed at 365 nm. The quality of the nanogrids fabricated by electron-beam lithography was verified by near-field scanning optical microscopy and scanning electron microscopy. Based on the results, the pitch and gap of the nanogrids can be optimized for the best trade-off between electrical conductivity and optical transmission at different wavelengths. Based on different cutoff wavelengths, the nanogrids can also double as a filter to render photodetectors solar-blind.

  15. Scan analysis in myocardial infarction

    Energy Technology Data Exchange (ETDEWEB)

    Ell, P J [Landesunfallkrankenhaus, Feldkirch (Austria). Inst. fuer Strahlenmedizin

    1976-08-01

    Myocardial scans with sup(99m)Tc-labelled phosphates are reported to be useful in the diagnosis of acute myocardial infarction. A retrospective survey of 205 patients referred for sup(99m)Tc-phophate bone scanning and with no evidence of recent heart disease revealed an occurrence of 10% of false positive images, that is to say, uptake of phosphate in non-infarcted mayocardium. These striking findings stress the need for critical assessment of the usefulness of this diagnostic technique.

  16. Surface modification of recording electrodes

    Directory of Open Access Journals (Sweden)

    Iaci Miranda Pereira

    2013-01-01

    Full Text Available Waterborne Polyurethanes (PUs are a family of polymers that contains urethane linkages synthesized in an aqueous environment and are thus free of organic solvents. Recently, waterborne PUs have been extensively studied for biomedical applications because of their biocompatibility. The present work investigates the following: (1 the impact on electrical performance of electrode materials (platinum and silicon modified chemically by a layer of waterborne PU, and (2 the behavior of rat cardiac fibroblasts and rat cardiomyocytes when in contact with an electrode surface. Diisocyanate and poly(caprolactone diol were the main reagents for producing PUs. The electrochemical impedance of the electrode/electrolyte interface was accessed by electrochemical impedance spectroscopy. The cellular viability, proliferation, and morphology changes were investigated using an MTT assay. Cardiomyocyte adherence was observed by scanning electron microscopy. The obtained surface was uniform, flat, and transparent. The film showed good adhesion, and no peeling was detected. The electrochemical impedance decreased over time and was influenced by the ionic permeability of the PU layer. The five samples did not show cytotoxicity when in contact with neonatal rat cells.

  17. Electrochemical surface plasmon resonance sensor based on two-electrode configuration

    International Nuclear Information System (INIS)

    Zhang, Bing; Dong, Wei; Wen, Yizhang; Pang, Kai; Wang, Xiaoping; Li, Yazhuo; Zhan, Shuyue

    2016-01-01

    To obtain detailed information about electrochemistry reactions, a two-electrode electrochemical surface plasmon resonance (EC-SPR) sensor has been proposed. We describe the theory of potential modulation for this novel sensor and determine the factors that can change the SPR resonance angle. The reference electrode in three-electrode configuration was eliminated, and comparing with several other electrode materials, activated carbon (AC) is employed as the suitable counter electrode for its potential stability. Just like three-electrode configuration, the simpler AC two-electrode system can also obtain detailed information about the electrochemical reactions. (paper)

  18. Growth references

    NARCIS (Netherlands)

    Buuren, S. van

    2007-01-01

    A growth reference describes the variation of an anthropometric measurement within a group of individuals. A reference is a tool for grouping and analyzing data and provides a common basis for comparing populations.1 A well known type of reference is the age-conditional growth diagram. The

  19. Analytical Applications of Solid and Paste Amalgam Electrodes

    Czech Academy of Sciences Publication Activity Database

    Josypčuk, Bohdan; Barek, J.

    2009-01-01

    Roč. 39, č. 3 (2009), s. 189-203 ISSN 1040-8347 R&D Projects: GA ČR GA203/07/1195; GA AV ČR IAA400400806; GA MŠk(CZ) LC06035 Institutional research plan: CEZ:AV0Z40400503 Keywords : solid amalgam electrodes * voltammetry * paste amalgam electrodes * reference amalgam electrodes Subject RIV: CG - Electrochemistry Impact factor: 2.621, year: 2009

  20. Head CT scan

    Science.gov (United States)

    ... scan - orbits; CT scan - sinuses; Computed tomography - cranial; CAT scan - brain ... head size in children Changes in thinking or behavior Fainting Headache, when you have certain other signs ...

  1. Improvement in Electrode Performance of Novel SWCNT Loaded Three-Dimensional Porous RVC Composite Electrodes by Electrochemical Deposition Method

    Science.gov (United States)

    Almoigli, Mohammed; Meriey, Al Yahya; Alharbi, Khalid N.

    2018-01-01

    The three-dimensional (3D) composite electrodes were prepared by depositing different amounts of acid-functionalized single-walled carbon nanotubes (a-SWCNTs) on porous reticulated vitreous carbon (RVC) through the electrochemical deposition method. The SWCNT was functionalized by the reflux method in nitric acid and was proven by Raman and visible spectra. The optimum time for sonication to disperse the functionalized SWCNT (a-SWCNT) in dimethyl formamide (DMF) well was determined by UV spectra. The average pore size of RVC electrodes was calculated from scanning electron microscopy (SEM) images. Moreover, the surface morphology of composite electrodes was also examined by SEM study. All 3D electrodes were evaluated for their electrochemical properties by cyclic voltammetry. The result showed that the value of specific capacitance of the electrode increases with the increase in the amount of a-SWCNT in geometric volume. However, the value of specific capacitance per gram decreases with the increase in scan rate as well as the amount of a-SWCNT. The stability of the electrodes was also tested. This revealed that all the electrodes were stable; however, lower a-SWCNT-loaded electrodes had excellent cyclic stability. These results suggest that the a-SWCNT-coated RVC electrodes have promise as an effective technology for desalination. PMID:29301258

  2. EDTA modified glassy carbon electrode: Preparation and characterization

    International Nuclear Information System (INIS)

    Ustuendag, Zafer; Solak, Ali Osman

    2009-01-01

    EDTA-phenoxyamide modified glassy carbon electrode (EDTA-GC) was prepared at a glassy carbon electrode by surface synthesis. In the first step, nitrophenyl was grafted to the glassy carbon (GC) surface via the electrochemical reduction of its tetraflouroborate diazonium salt. In the second step, nitrophenyl-modified electrode (NP-GC) was subjected to the cathodic potential scan to reduce the nitro to amine group. p-Aminophenyl modified glassy carbon electrode (AP-GC) was dipped into a EDTA solution containing 1-ethyl-3(3-(dimethlyamino)propyl)-carbodiimide (EDC) as an activating agent. Thus formed ((2-anilino-2-oxoethyl){2-[bis(carboxymethyl)amino]-ethyl}amino)acetic acid modified GC electrode was denoted as EDTA-GC and characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), ellipsometry and X-ray photoelectron spectroscopy (XPS). Complexation of the EDTA-GC surface with Pb 2+ ions was investigated if this electrode could be used as a metal sensor.

  3. Morphological and electrochemical studies of spherical boron doped diamond electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Mendes de Barros, R.C. [IQ/USP, Av. Lineu Prestes, 748, Bloco 2 Superior, Cidade Universitaria, Sao Paulo/SP, 05508-900 (Brazil); Ferreira, N.G. [LAS/INPE, Av. dos Astronautas, 1758, Jardim da Granja, Sao Jose dos Campos/SP, 12245-970 (Brazil); Azevedo, A.F. [LAS/INPE, Av. dos Astronautas, 1758, Jardim da Granja, Sao Jose dos Campos/SP, 12245-970 (Brazil); Corat, E.J. [LAS/INPE, Av. dos Astronautas, 1758, Jardim da Granja, Sao Jose dos Campos/SP, 12245-970 (Brazil); Sumodjo, P.T.A. [IQ/USP, Av. Lineu Prestes, 748, Bloco 2 Superior, Cidade Universitaria, Sao Paulo/SP, 05508-900 (Brazil); Serrano, S.H.P. [IQ/USP, Av. Lineu Prestes, 748, Bloco 2 Superior, Cidade Universitaria, Sao Paulo/SP, 05508-900 (Brazil)]. E-mail: shps@iq.usp.br

    2006-08-14

    Morphological and electrochemical characteristics of boron doped diamond electrode in new geometric shape are presented. The main purpose of this study is a comparison among voltammetric behavior of planar glassy carbon electrode (GCE), planar boron doped diamond electrode (PDDE) and spherical boron doped diamond electrode (SDDE), obtained from similar experimental parameters. SDDE was obtained by the growth of boron doped film on textured molybdenum tip. This electrode does not present microelectrode characteristics. However, its voltammetric peak current, determined at low scan rates, is largest associated to the smallest {delta}E {sub p} values for ferrocyanide system when compared with PDDE or GCE. In addition, the capacitance is about 200 times smaller than that for GCE. These results show that the analytical performance of boron doped diamond electrodes can be implemented just by the change of sensor geometry, from plane to spherical shape.

  4. A long-term analysis of Pt counter electrodes for Dye-sensitized Solar Cells exploiting a microfluidic housing system

    Energy Technology Data Exchange (ETDEWEB)

    Sacco, Adriano, E-mail: adriano.sacco@iit.it [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Pugliese, Diego; Lamberti, Andrea [Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Castellino, Micaela; Chiodoni, Angelica [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Virga, Alessandro [Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Bianco, Stefano [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)

    2015-07-01

    The study of the degradation process occurring in Dye-sensitized Solar Cells (DSCs) is still a hot topic, in view of the final industrialization and application of this class of devices. Currently the long-term analysis of DSCs is carried out on the entire devices, while the monitoring of cell components cannot be performed in situ directly on the materials, but only through indirect methods. In this paper we report on the analysis of two different kinds of Pt counter electrodes through direct measurements performed under real operating conditions, thanks to the use of a home-made microfluidic housing system, which allows the opening and the investigation of the cell components. The counter electrode samples were studied through X-Ray Photoelectron Spectroscopy, Field Emission Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy, UV–visible Spectroscopy and Electrochemical Impedance Spectroscopy for a period longer than 1 year. The results showed that the performances of both classes of Pt counter electrodes remained stable for all the investigation period, despite some slight variation of the morphology. DSCs fabricated employing aged counter electrodes exhibited the same photovoltaic performance behavior of reference cells using fresh-produced counter electrodes, thus demonstrating that both class of materials do not undergo degradation during normal operating conditions. - Highlights: • The analysis of Pt counter electrodes for Dye-sensitized Solar Cells was carried out. • Two families of counter electrodes were studied for a period longer than 1 year. • The analyzed samples were investigated in real operating condition. • A small detachment of the Pt clusters in the thermal samples was observed. • The charge transfer properties remained unchanged for all the investigation period.

  5. Uncharged positive electrode composition

    Science.gov (United States)

    Kaun, Thomas D.; Vissers, Donald R.; Shimotake, Hiroshi

    1977-03-08

    An uncharged positive-electrode composition contains particulate lithium sulfide, another alkali metal or alkaline earth metal compound other than sulfide, e.g., lithium carbide, and a transition metal powder. The composition along with a binder, such as electrolytic salt or a thermosetting resin is applied onto an electrically conductive substrate to form a plaque. The plaque is assembled as a positive electrode within an electrochemical cell opposite to a negative electrode containing a material such as aluminum or silicon for alloying with lithium. During charging, lithium alloy is formed within the negative electrode and transition metal sulfide such as iron sulfide is produced within the positive electrode. Excess negative electrode capacity over that from the transition metal sulfide is provided due to the electrochemical reaction of the other than sulfide alkali metal or alkaline earth metal compound.

  6. High Resolution Scanning Ion Microscopy

    NARCIS (Netherlands)

    Castaldo, V.

    2011-01-01

    The structure of the thesis is the following. The first chapter is an introduction to scanning microscopy, where the path that led to the Focused Ion Beam (FIB) is described and the main differences between electrons and ion beams are highlighted. Chapter 2 is what is normally referred to (which I

  7. [Reference citation].

    Science.gov (United States)

    Brkić, Silvija

    2013-01-01

    Scientific and professional papers represent the information basis for scientific research and professional work. References important for the paper should be cited within the text, and listed at the end of the paper. This paper deals with different styles of reference citation. Special emphasis was placed on the Vancouver Style for reference citation in biomedical journals established by the International Committee of Medical Journal Editors. It includes original samples for citing various types of articles, both printed and electronic, as well as recommendations related to reference citation in accordance with the methodology and ethics of scientific research and guidelines for preparing manuscripts for publication.

  8. Utility of CT-compatible EEG electrodes in critically ill children

    International Nuclear Information System (INIS)

    Abend, Nicholas S.; Dlugos, Dennis J.; Zhu, Xiaowei; Schwartz, Erin S.

    2015-01-01

    Electroencephalographic monitoring is being used with increasing frequency in critically ill children who may require frequent and sometimes urgent brain CT scans. Standard metallic disk EEG electrodes commonly produce substantial imaging artifact, and they must be removed and later reapplied when CT scans are indicated. To determine whether conductive plastic electrodes caused artifact that limited CT interpretation. We describe a retrospective cohort of 13 consecutive critically ill children who underwent 17 CT scans with conductive plastic electrodes during 1 year. CT images were evaluated by a pediatric neuroradiologist for artifact presence, type and severity. All CT scans had excellent quality images without artifact that impaired CT interpretation except for one scan in which improper wire placement resulted in artifact. Conductive plastic electrodes do not cause artifact limiting CT scan interpretation and may be used in critically ill children to permit concurrent electroencephalographic monitoring and CT imaging. (orig.)

  9. Utility of CT-compatible EEG electrodes in critically ill children

    Energy Technology Data Exchange (ETDEWEB)

    Abend, Nicholas S. [Perelman School of Medicine at the University of Pennsylvania, Departments of Neurology and Pediatrics, The Children' s Hospital of Philadelphia, Philadelphia, PA (United States); CHOP Neurology, Philadelphia, PA (United States); Dlugos, Dennis J. [Perelman School of Medicine at the University of Pennsylvania, Departments of Neurology and Pediatrics, The Children' s Hospital of Philadelphia, Philadelphia, PA (United States); Zhu, Xiaowei; Schwartz, Erin S. [Perelman School of Medicine at the University of Pennsylvania, Department of Radiology, The Children' s Hospital of Philadelphia, Philadelphia, PA (United States)

    2015-05-01

    Electroencephalographic monitoring is being used with increasing frequency in critically ill children who may require frequent and sometimes urgent brain CT scans. Standard metallic disk EEG electrodes commonly produce substantial imaging artifact, and they must be removed and later reapplied when CT scans are indicated. To determine whether conductive plastic electrodes caused artifact that limited CT interpretation. We describe a retrospective cohort of 13 consecutive critically ill children who underwent 17 CT scans with conductive plastic electrodes during 1 year. CT images were evaluated by a pediatric neuroradiologist for artifact presence, type and severity. All CT scans had excellent quality images without artifact that impaired CT interpretation except for one scan in which improper wire placement resulted in artifact. Conductive plastic electrodes do not cause artifact limiting CT scan interpretation and may be used in critically ill children to permit concurrent electroencephalographic monitoring and CT imaging. (orig.)

  10. Ceramic carbon electrode-based anodes for use in the copper-chlorine thermochemical cycle

    Energy Technology Data Exchange (ETDEWEB)

    Ranganathan, S.; Easton, E.B. [Univ. of Ontario Inst. of Technology, Oshawa, ON (Canada). Faculty of Science

    2009-07-01

    A thermochemical cycle is a process by which water is decomposed into hydrogen and oxygen through a series of chemical reactions. The chemicals that are used in these reactions are regenerated and recycled during the process. Sol-gel chemistry is becoming more common for the synthesis of electrode materials. The sol-gel reaction can be conducted in the presence of a carbon black to form a ceramic carbon electrode (CCE). The resultant CCE structure contains electronically conductive carbon particle pathways that are bound together through the ceramic binder, which can also promote ion transport. The CCE structure also has a high active surface area and is chemically and thermally robust. This paper presented an investigation of CCE materials prepared using 3-aminopropyl trimethoxysilane. Several electrochemical experiments including cyclic voltammetry and electrochemical impedance spectroscopy were performed to characterize their suitability as anode electrode materials for use in the electrochemical step of the copper-chlorine thermochemical cycle. Subsequent experiments included the manipulation of the relative ratio of organosilane carbon precursors to gauge its impact on electrode properties and performance. An overview of the materials characterization and electrochemical measurements were also presented. Specifically, the paper presented the experiment with particular reference to the CCE preparation; electrochemical experiments; thermal analysis; and scanning electron microscopy. Results were also provided. These included TGA analysis; scanning electron microscopy analysis; electrochemical characterization; and anodic polarization. Characterization of these CCE material demonstrated that they had good thermal stability, could be used at high temperatures, and were therefore, very promising anode materials. 15 refs., 7 figs.

  11. Reference Assessment

    Science.gov (United States)

    Bivens-Tatum, Wayne

    2006-01-01

    This article presents interesting articles that explore several different areas of reference assessment, including practical case studies and theoretical articles that address a range of issues such as librarian behavior, patron satisfaction, virtual reference, or evaluation design. They include: (1) "Evaluating the Quality of a Chat Service"…

  12. Redox Response of Reduced Graphene Oxide-Modified Glassy Carbon Electrodes to Hydrogen Peroxide and Hydrazine

    Directory of Open Access Journals (Sweden)

    Jun-ichi Anzai

    2013-05-01

    Full Text Available The surface of a glassy carbon (GC electrode was modified with reduced graphene oxide (rGO to evaluate the electrochemical response of the modified GC electrodes to hydrogen peroxide (H2O2 and hydrazine. The electrode potential of the GC electrode was repeatedly scanned from −1.5 to 0.6 V in an aqueous dispersion of graphene oxide (GO to deposit rGO on the surface of the GC electrode. The surface morphology of the modified GC electrode was characterized by scanning electron microscopy (SEM and atomic force microscopy (AFM. SEM and AFM observations revealed that aggregated rGO was deposited on the GC electrode, forming a rather rough surface. The rGO-modified electrodes exhibited significantly higher responses in redox reactions of H2O2 as compared with the response of an unmodified GC electrode. In addition, the electrocatalytic activity of the rGO-modified electrode to hydrazine oxidation was also higher than that of the unmodified GC electrode. The response of the rGO-modified electrode was rationalized based on the higher catalytic activity of rGO to the redox reactions of H2O2 and hydrazine. The results suggest that rGO-modified electrodes are useful for constructing electrochemical sensors.

  13. Electrode stabilizing materials

    Science.gov (United States)

    Amine, Khalil; Abouimrane, Ali; Moore, Jeffrey S.; Odom, Susan A.

    2015-11-03

    An electrolyte includes a polar aprotic solvent; an alkali metal salt; and an electrode stabilizing compound that is a monomer, which when polymerized forms an electrically conductive polymer. The electrode stabilizing compound is a thiophene, a imidazole, a anilines, a benzene, a azulene, a carbazole, or a thiol. Electrochemical devices may incorporate such electrolytes.

  14. Durable fuel electrode

    DEFF Research Database (Denmark)

    2017-01-01

    the composite. The invention also relates to the use of the composite as a fuel electrode, solid oxide fuel cell, and/or solid oxide electrolyser. The invention discloses a composite for an electrode, comprising a three-dimensional network of dispersed metal particles, stabilised zirconia particles and pores...

  15. Handbook of optical and laser scanning

    CERN Document Server

    Marshall, Gerald F

    2011-01-01

    From its initial publication titled Laser Beam Scanning in 1985 to Handbook of Optical and Laser Scanning, now in its second edition, this reference has kept professionals and students at the forefront of optical scanning technology. Carefully and meticulously updated in each iteration, the book continues to be the most comprehensive scanning resource on the market. It examines the breadth and depth of subtopics in the field from a variety of perspectives. The Second Edition covers: Technologies such as piezoelectric devices Applications of laser scanning such as Ladar (laser radar) Underwater

  16. An electrochemical methanol sensor based on a Pd-Ni/SiNWs catalytic electrode

    International Nuclear Information System (INIS)

    Tao Bairui; Zhang Jian; Hui Shichao; Chen Xuejiao; Wan Lijuan

    2010-01-01

    A novel electrochemical methanol sensor based on a catalytic electrode of palladium-nickel/silicon nanowires (Pd-Ni/SiNWs) is presented in this paper. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and electrochemical methods are employed to investigate the Pd-Ni/SiNWs electrode materials. These nanocomposite materials exhibit a highly ordered, wire-like structure with a wire length of ∼50 μm and a wire diameter ranging from 100 to 300 nm. The substrate has good electrocatalytic activity towards the oxidation of methanol in alkaline solutions. The performances of the prototype sensor are characterized by cyclic voltammetry and fixed potential amperometry techniques. In a 1 mol L -1 KOH solution containing different methanol concentrations, the sensor exhibits a good sensitivity of 1.96 mA mmol -1 L cm -2 with R 2 = 0.99 and the corresponding detection limit of 18 μmol L -1 (signal-to-noise ratio = 3, S/N = 3) for cyclic voltammetry. Meanwhile, the electrode also displays a sensitivity of 0.48 mA mmol -1 L cm -2 with R 2 = 0.98 and the corresponding detection limit of 25 μmol L -1 (S/N = 3) for a fixed potential amperometry at -0.3 V versus an Ag/AgCl reference electrode. The results demonstrate that the Pd-Ni/SiNWs catalytic electrode has potential as an efficient and integrated sensor for methanol detection.

  17. Interesting bone scans - unusual findings

    International Nuclear Information System (INIS)

    Dobson, M.; Wadhwa, S.S.; Mansberg, R.; Fernandes, V.B.

    1997-01-01

    A 59-year-old female with carcinoma of the colon and known liver metastatic disease was referred for bone scan to evaluate for bone metastases. Although no bone metastases were found, there was abnormal uptake noted in the liver corresponding to a metastatic calcified lesion. The only other findings were of degenerative disease in the cervical spine, right shoulder and small joints of the hands. A 69-year-old male with carcinoma of the prostate and right side low back pain was referred for bone scan. No focal abnormalities to suggest metastatic disease were identified; findings within the cervical spine, lumber spine and knees were presumed secondary to degenerative disease. Intermittent pain persisted and the patient was referred for a repeat bone scan six months later. Previous scan findings of degenerative disease and no metastatic disease were confirmed; however, closer inspection revealed an enlarged right kidney with significant retention of tracer in the pelvicalyceal system suggesting possible obstruction. A Retrograde pyelogram was performed, and no obvious obstruction demonstrated. As bone scan findings were very suggestive of obstruction, a DTPA scan with lasix was performed showing a dilated right collecting system with no functional obstruction. Given the degree of dilation, it is possible that the patient experiences intermittent PUJ obstruction causing his symptoms. A 33-year-old male with insulin dependent diabetes mellitus and viral arthritis was referred for a bone scan. A three phase revealed increased uptake in the region of the knee and leR proximal tibia. Delayed whole body images revealed multiple focal areas of osteoblastic activity in the leR tibia. Abnormal uptake was also seen in the upper third of the leR femur. The remainder of the skeletal survey was normal. X-ray correlation of the leR tibia and femoral findings was undertaken. Combinating unilateral changes on bone scan and X-ray although very suggestive of sclerotic polyostotic

  18. Electrode for improving electrochemical measurements in high temperature water

    International Nuclear Information System (INIS)

    Sengarsai, T.

    2005-01-01

    A silver/silver-chloride (Ag/AgCl) reference electrode was specially designed and constructed in a body of oxidized titanium for potentiometric measurements under high-temperature and high-pressure conditions. To avoid the thermal decomposition of silver-chloride, the electrode is designed to maintain the reference element at low temperature while it is still connected to high-temperature process zone via a non-isothermal electrolyte bridge. This configuration leads to the development of a thermal gradient along the length of the electrode. At room temperature, the stability of the Ag/AgCl reference electrode versus a standard calomel electrode (SCE) is maintained with an accuracy of 5 mV. The electrode's performance at high temperature and pressure (up to 300 o C and 1500 psi) was examined by measuring the potential difference against platinum, which acted as a reversible hydrogen electrode (RHE). Comparison of the experimental and theoretical values verifies the reliability and reproducibility of the electrode. Deviation from the Nernst equation is considered and related to the thermal liquid junction potential (TLJP). An empirical correction factor is used to maintain the Ag/AgCl potential within an acceptable accuracy limit of ±20 mV at high temperature. (author)

  19. Recent references

    International Nuclear Information System (INIS)

    Ramavataram, S.

    1991-01-01

    In support of a continuing program of systematic evaluation of nuclear structure data, the National Nuclear Data Center maintains a complete computer file of references to the nuclear physics literature. Each reference is tagged by a keyword string, which indicates the kinds of data contained in the article. This master file of Nuclear Structure References (NSR) contains complete keyword indexes to literature published since 1969, with partial indexing of older references. Any reader who finds errors in the keyword descriptions is urged to report them to the National Nuclear Data Center so that the master NSR file can be corrected. In 1966, the first collection of Recent References was published as a separate issue of Nuclear Data Sheets. Every four months since 1970, a similar indexed bibliography to new nuclear experiments has been prepared from additions to the NSR file and published. Beginning in 1978, Recent References was cumulated annually, with the third issue completely superseding the two issues previously published during a given year. Due to publication policy changes, cumulation of Recent Reference was discontinued in 1986. The volume and issue number of all the cumulative issues published to date are given. NNDC will continue to respond to individual requests for special bibliographies on nuclear physics topics, in addition to those easily obtained from Recent References. If the required information is available from the keyword string, a reference list can be prepared automatically from the computer files. This service can be provided on request, in exchange for the timely communication of new nuclear physics results (e.g., preprints). A current copy of the NSR file may also be obtained in a standard format on magnetic tape from NNDC. Requests for special searches of the NSR file may also be directed to the National Nuclear Data Center

  20. Critical survey on electrode aging in molten carbonate fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, K.

    1979-12-01

    To evaluate potential electrodes for molten carbonate fuel cells, we reviewed the literature pertaining to these cells and interviewed investigators working in fuel cell technology. In this critical survey, the effect of three electrode aging processes - corrosion or oxidation, sintering, and poisoning - on these potential fuel-cell electrodes is presented. It is concluded that anodes of stabilized nickel and cathodes of lithium-doped NiO are the most promising electrode materials for molten carbonate fuel cells, but that further research and development of these electrodes are needed. In particular, the effect of contaminants such as H/sub 2/S and HCl on the nickel anode must be investigated, and methods to improve the physical strength and to increase the conductivity of NiO cathodes must be explored. Recommendations are given on areas of applied electrode research that should accelerate the commercialization of the molten carbonate fuel cell. 153 references.

  1. A flexible capacitive tactile sensing array with floating electrodes

    International Nuclear Information System (INIS)

    Cheng, M-Y; Huang, X-H; Ma, C-W; Yang, Y-J

    2009-01-01

    In this work, we present the development of a capacitive tactile sensing array realized by using MEMS fabrication techniques and flexible printed circuit board (FPCB) technologies. The sensing array, which consists of two micromachined polydimethlysiloxane (PDMS) structures and a FPCB, will be used as the artificial skin for robot applications. Each capacitive sensing element comprises two sensing electrodes and a common floating electrode. The sensing electrodes and the metal interconnect for signal scanning are implemented on the FPCB, while the floating electrode is patterned on one of the PDMS structures. This special design can effectively reduce the complexity of the device structure and thus makes the device highly manufacturable. The characteristics of the devices with different dimensions are measured and discussed. The corresponding scanning circuits are also designed and implemented. The tactile images induced by the PMMA stamps of different shapes are also successfully captured by a fabricated 8 × 8 array

  2. Pulse-voltammetric glucose detection at gold junction electrodes.

    Science.gov (United States)

    Rassaei, Liza; Marken, Frank

    2010-09-01

    A novel glucose sensing concept based on the localized change or "modulation" in pH within a symmetric gold-gold junction electrode is proposed. A paired gold-gold junction electrode (average gap size ca. 500 nm) is prepared by simultaneous bipotentiostatic electrodeposition of gold onto two closely spaced platinum disk electrodes. For glucose detection in neutral aqueous solution, the potential of the "pH-modulator" electrode is set to -1.5 V vs saturated calomel reference electrode (SCE) to locally increase the pH, and simultaneously, either cyclic voltammetry or square wave voltammetry experiments are conducted at the sensor electrode. A considerable improvement in the sensor electrode response is observed when a normal pulse voltammetry sequence is applied to the modulator electrode (to generate "hydroxide pulses") and the glucose sensor electrode is operated with fixed bias at +0.5 V vs SCE (to eliminate capacitive charging currents). Preliminary data suggest good linearity for the glucose response in the medically relevant 1-10 mM concentration range (corresponding to 0.18-1.8 g L(-1)). Future electroanalytical applications of multidimensional pulse voltammetry in junction electrodes are discussed.

  3. Basic electrochemical properties of sputtered gold film electrodes

    International Nuclear Information System (INIS)

    Libansky, Milan; Zima, Jiri; Barek, Jiri; Reznickova, Alena; Svorcik, Vaclav; Dejmkova, Hana

    2017-01-01

    Gold nanolayers made by sputtering of pure gold (physical vapour deposition) are commonly used for many biophysical and material applications. However, the use of sputtering method for fabrication of working electrodes for electroanalytical purposes is less common. This paper focuses on the testing and characterization of sputtered working roughened gold nanostructured film electrodes, which fall into category of upcoming desirable new generation of nanostructured gold working electrodes. Gold nanostructured films (80 nm thin) were sputtered onto 50 μm thin PTFE substrates with three different types of treatment: pristine, plasma treated, and plasma treated and subsequently spontaneously grafted with biphenyl-4,4′-dithiol. The characterization of gold nanostructured film electrodes was carried out by examination of the electrode reaction of standard redox probes (ferrocyanide/ferricyanide, hydroquinone/benzoquinone) in different types of supporting electrolytes (BR buffers of various pH, KCl, KNO 3 , H 2 SO 4 ), by exploration of the electrode surface by scanning electron microscopy, by atomic force microscopy accompanied by elementary analysis and contact angle measurements. The testing of electrodes was complemented by an attempt to calculate their real surface areas from Randles-Sevcik equation. All results were compared to conventional bulk gold electrode. The practical applicability of the nanostructured gold electrodes as sensors for the determination of environmental pollutants was verified by voltammetric determination of hydroquinone as a model electrochemically oxidisable organic environmental pollutant.

  4. Development of three-electrode type micro-electrochemical reactor on anodized aluminum with photon rupture and electrochemistry

    International Nuclear Information System (INIS)

    Sakairi, Masatoshi; Yamada, Masashi; Kikuchi, Tastuya; Takahashi, Hideaki

    2007-01-01

    Photon rupture with a focused single pulse of pulsed YAG-laser irradiation was used to fabricate an aluminum electrochemical micro-reactor. Porous type anodic oxide film formed on aluminum specimens was irradiated in solutions with a pulsed Nd-YAG laser beam through a convex lens to fabricate micro-channels, micro-electrode, and through holes (for reference electrode, solution inlet, and outlet). During irradiation, specimens were moved by a computer controlled XYZ stage. After irradiation, the surface of the micro-channel and through hole were again treated to form anodic oxide film and the surface of the micro-electrode was treated electrochemically to provide an Au layer. The calculated volume of the micro-reactor including micro-channel and through holes is about 1.5 μl. The cyclic voltammogram of the micro-electrochemical cell was measured in K 3 Fe(CN) 6 /K 4 Fe(CN) 6 with both static and flowing solution at different scanning rates. The anodic and cathodic peak currents were measured and the values depended on scanning rate and ion concentration when the solution was static. With the flowing solution, limiting currents were observed and the anodic limiting current was increased with the cubic root of the solution flow rate

  5. A High Rigidity and Precision Scanning Tunneling Microscope with Decoupled XY and Z Scans.

    Science.gov (United States)

    Chen, Xu; Guo, Tengfei; Hou, Yubin; Zhang, Jing; Meng, Wenjie; Lu, Qingyou

    2017-01-01

    A new scan-head structure for the scanning tunneling microscope (STM) is proposed, featuring high scan precision and rigidity. The core structure consists of a piezoelectric tube scanner of quadrant type (for XY scans) coaxially housed in a piezoelectric tube with single inner and outer electrodes (for Z scan). They are fixed at one end (called common end). A hollow tantalum shaft is coaxially housed in the XY -scan tube and they are mutually fixed at both ends. When the XY scanner scans, its free end will bring the shaft to scan and the tip which is coaxially inserted in the shaft at the common end will scan a smaller area if the tip protrudes short enough from the common end. The decoupled XY and Z scans are desired for less image distortion and the mechanically reduced scan range has the superiority of reducing the impact of the background electronic noise on the scanner and enhancing the tip positioning precision. High quality atomic resolution images are also shown.

  6. A High Rigidity and Precision Scanning Tunneling Microscope with Decoupled XY and Z Scans

    Directory of Open Access Journals (Sweden)

    Xu Chen

    2017-01-01

    Full Text Available A new scan-head structure for the scanning tunneling microscope (STM is proposed, featuring high scan precision and rigidity. The core structure consists of a piezoelectric tube scanner of quadrant type (for XY scans coaxially housed in a piezoelectric tube with single inner and outer electrodes (for Z scan. They are fixed at one end (called common end. A hollow tantalum shaft is coaxially housed in the XY-scan tube and they are mutually fixed at both ends. When the XY scanner scans, its free end will bring the shaft to scan and the tip which is coaxially inserted in the shaft at the common end will scan a smaller area if the tip protrudes short enough from the common end. The decoupled XY and Z scans are desired for less image distortion and the mechanically reduced scan range has the superiority of reducing the impact of the background electronic noise on the scanner and enhancing the tip positioning precision. High quality atomic resolution images are also shown.

  7. Gold leaf counter electrodes for dye-sensitized solar cells

    Science.gov (United States)

    Shimada, Kazuhiro; Toyoda, Takeshi

    2018-03-01

    In this study, a gold leaf 100 nm thin film is used as the counter electrode in dye-sensitized solar cells. The traditional method of hammering gold foil to obtain a thin gold leaf, which requires only small amounts of gold, was employed. The gold leaf was then attached to the substrate using an adhesive to produce the gold electrode. The proposed approach for fabricating counter electrodes is demonstrated to be facile and cost-effective, as opposed to existing techniques. Compared with electrodes prepared with gold foil and sputtered gold, the gold leaf counter electrode demonstrates higher catalytic activity with a cobalt-complex electrolyte and higher cell efficiency. The origin of the improved performance was investigated by surface morphology examination (scanning electron microscopy), various electrochemical analyses (cyclic voltammetry, linear sweep voltammetry, and electrochemical impedance spectroscopy), and crystalline analysis (X-ray diffractometry).

  8. Heart PET scan

    Science.gov (United States)

    ... nuclear medicine scan; Heart positron emission tomography; Myocardial PET scan ... A PET scan requires a small amount of radioactive material (tracer). This tracer is given through a vein (IV), ...

  9. Electrode-electrolyte interface model of tripolar concentric ring electrode and electrode paste.

    Science.gov (United States)

    Nasrollaholhosseini, Seyed Hadi; Steele, Preston; Besio, Walter G

    2016-08-01

    Electrodes are used to transform ionic currents to electrical currents in biological systems. Modeling the electrode-electrolyte interface could help to optimize the performance of the electrode interface to achieve higher signal to noise ratios. There are previous reports of accurate models for single-element biomedical electrodes. In this paper we develop a model for the electrode-electrolyte interface for tripolar concentric ring electrodes (TCRE) that are used to record brain signals.

  10. Electrochemical Selective and Simultaneous Detection of Diclofenac and Ibuprofen in Aqueous Solution Using HKUST-1 Metal-Organic Framework-Carbon Nanofiber Composite Electrode

    Directory of Open Access Journals (Sweden)

    Sorina Motoc

    2016-10-01

    Full Text Available In this study, the detection protocols for the individual, selective, and simultaneous determination of ibuprofen (IBP and diclofenac (DCF in aqueous solutions have been developed using HKUST-1 metal-organic framework-carbon nanofiber composite (HKUST-CNF electrode. The morphological and electrical characterization of modified composite electrode prepared by film casting was studied by scanning electronic microscopy and four-point-probe methods. The electrochemical characterization of the electrode by cyclic voltammetry (CV was considered the reference basis for the optimization of the operating conditions for chronoamperometry (CA and multiple-pulsed amperometry (MPA. This electrode exhibited the possibility to selectively detect IBP and DCF by simple switching the detection potential using CA. However, the MPA operated under optimum working conditions of four potential levels selected based on CV shape in relation to the potential value, pulse time, and potential level number, and order allowed the selective/simultaneous detection of IBP and DCF characterized by the enhanced detection performance. For this application, the HKUST-CNF electrode exhibited a good stability and reproducibility of the results was achieved.

  11. Electrochemical Selective and Simultaneous Detection of Diclofenac and Ibuprofen in Aqueous Solution Using HKUST-1 Metal-Organic Framework-Carbon Nanofiber Composite Electrode.

    Science.gov (United States)

    Motoc, Sorina; Manea, Florica; Iacob, Adriana; Martinez-Joaristi, Alberto; Gascon, Jorge; Pop, Aniela; Schoonman, Joop

    2016-10-17

    In this study, the detection protocols for the individual, selective, and simultaneous determination of ibuprofen (IBP) and diclofenac (DCF) in aqueous solutions have been developed using HKUST-1 metal-organic framework-carbon nanofiber composite (HKUST-CNF) electrode. The morphological and electrical characterization of modified composite electrode prepared by film casting was studied by scanning electronic microscopy and four-point-probe methods. The electrochemical characterization of the electrode by cyclic voltammetry (CV) was considered the reference basis for the optimization of the operating conditions for chronoamperometry (CA) and multiple-pulsed amperometry (MPA). This electrode exhibited the possibility to selectively detect IBP and DCF by simple switching the detection potential using CA. However, the MPA operated under optimum working conditions of four potential levels selected based on CV shape in relation to the potential value, pulse time, and potential level number, and order allowed the selective/simultaneous detection of IBP and DCF characterized by the enhanced detection performance. For this application, the HKUST-CNF electrode exhibited a good stability and reproducibility of the results was achieved.

  12. Scanning electrochemical microscopy for the fabrication of copper nanowires: Atomic contacts with quantized conductance, and molecular adsorption effect

    International Nuclear Information System (INIS)

    Janin, Marion; Ghilane, Jalal; Lacroix, Jean-Christophe

    2012-01-01

    Highlights: ► Electrochemistry and SECM to generate copper nanowires with quantized conductance. ► Stable atomic contacts lasting for several hundreds of seconds have been obtained. ► The quantized conductances are independent of the tip and gap size. ► The method allows contacts to be generated in the presence of chosen molecules. ► Four-electrode configuration opens the route to redox gated atomic contact. - Abstract: Scanning electrochemical microscopy, SECM, is proposed as a tool for the fabrication of copper nanowires. In a first step, configuration based on two electrodes, a platinum UME (cathode) and a copper substrate (anode), operating in the SECM configuration was employed. For nanowires generated in water the conductance changes stepwise and varies by integer values of the conductance quantum G 0 . The formation of atomic contacts is supported by the ohmic behavior of the I–V curve. It depends neither on the UME tip radius nor on the initial gap size between tip and substrate. Atomic contacts generated in aqueous solutions of sodium dodecyl sulfate (SDS) below the critical micellar concentration (CMC) have conductances below 1G 0 attributed to molecular adsorption on the contact. In some cases, the nanowires have low conductance, 0.01G 0 . The corresponding I–V curve shows tunneling rather than ohmic behavior, suggesting that molecular junctions are formed with a few surfactant molecules trapped between the two electrodes. Finally, copper nanowires with quantized conductance have been generated using the SECM operating in a four-electrode setup. Thanks to the reference electrode, this configuration leads to better control of the potential of each working electrode; this setup will make it possible to evaluate the conductance variation and/or modulation upon electrochemical stimuli.

  13. Enhancement of the efficiency of dye-sensitized solar cell with multi-wall carbon nanotubes/polypyrrole composite counter electrodes prepared by electrophoresis/electrochemical polymerization

    International Nuclear Information System (INIS)

    Luo, Jun; Niu, Hai-jun; Wen, Hai-lin; Wu, Wen-jun; Zhao, Ping; Wang, Cheng; Bai, Xu-duo; Wang, Wen

    2013-01-01

    Graphical abstract: The overall energy conversion efficiency of the DSSC employing the MWCNT/PPy CE reached 3.78%. Compared with a reference DSSC using single MWCNT film CE with efficiency of 2.68%, the energy conversion efficiency was increased by 41.04%. Highlights: ► MWCNT/PPy composite film prepared by electrodeposition layer by layer was used as counter electrode in DSSC. ► The overall energy conversion efficiency of the DSSC was 3.78% by employing the composite film. ► The energy conversion efficiency increased by 41.04% compared with efficiency of 2.68% by using the single MWCNT film. ► We analyzed the mechanism and influence factor of electron transfer in the composite electrode by EIS. - Abstract: For the purpose of replacing the precious Pt counter electrode in dye-sensitized solar cells (DSSCs) with higher energy conversion efficiency, multi-wall carbon nanotube (MWCNT)/polypyrrole (PPy) double layers film counter electrode (CE) was fabricated by electrophoresis and cyclic voltammetry (CV) layer by layer. Atom force microscopy (AFM), scanning electron microscopy (SEM) and transmission electron microscope (TEM) demonstrated the morphologies of the composite electrode and Raman spectroscopy verified the PPy had come into being. The overall energy conversion efficiency of the DSSC employing the MWCNT/PPy CE reached 3.78%. Compared with a reference DSSC using single MWCNT film CE with efficiency of 2.68%, the energy conversion efficiency was increased by 41.04%. The result of impedance showed that the charge transfer resistance R ct of the MWCNT/PPy CE had the lowest value compared to that of MWCNT or PPy electrode. These results indicate that the composite film with high conductivity, high active surface area, and good catalytic properties for I 3 − reduction can potentially be used as the CE in a high-performance DSSC

  14. Enhancement of the efficiency of dye-sensitized solar cell with multi-wall carbon nanotubes/polypyrrole composite counter electrodes prepared by electrophoresis/electrochemical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Jun; Niu, Hai-jun; Wen, Hai-lin [Key Laboratory of Functional Inorganic Material Chemistry (Heilongjiang University), Ministry of Education, Department of Macromolecular Material and Engineering, Heilongjiang University, Harbin 150086 (China); Wu, Wen-jun; Zhao, Ping [Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237 (China); Wang, Cheng; Bai, Xu-duo [Key Laboratory of Functional Inorganic Material Chemistry (Heilongjiang University), Ministry of Education, Department of Macromolecular Material and Engineering, Heilongjiang University, Harbin 150086 (China); Wang, Wen, E-mail: haijunniu@hotmail.com [School of Material Science and Engineering, Harbin Institute of Technology, Harbin 150080 (China)

    2013-03-15

    Graphical abstract: The overall energy conversion efficiency of the DSSC employing the MWCNT/PPy CE reached 3.78%. Compared with a reference DSSC using single MWCNT film CE with efficiency of 2.68%, the energy conversion efficiency was increased by 41.04%. Highlights: ► MWCNT/PPy composite film prepared by electrodeposition layer by layer was used as counter electrode in DSSC. ► The overall energy conversion efficiency of the DSSC was 3.78% by employing the composite film. ► The energy conversion efficiency increased by 41.04% compared with efficiency of 2.68% by using the single MWCNT film. ► We analyzed the mechanism and influence factor of electron transfer in the composite electrode by EIS. - Abstract: For the purpose of replacing the precious Pt counter electrode in dye-sensitized solar cells (DSSCs) with higher energy conversion efficiency, multi-wall carbon nanotube (MWCNT)/polypyrrole (PPy) double layers film counter electrode (CE) was fabricated by electrophoresis and cyclic voltammetry (CV) layer by layer. Atom force microscopy (AFM), scanning electron microscopy (SEM) and transmission electron microscope (TEM) demonstrated the morphologies of the composite electrode and Raman spectroscopy verified the PPy had come into being. The overall energy conversion efficiency of the DSSC employing the MWCNT/PPy CE reached 3.78%. Compared with a reference DSSC using single MWCNT film CE with efficiency of 2.68%, the energy conversion efficiency was increased by 41.04%. The result of impedance showed that the charge transfer resistance R{sub ct} of the MWCNT/PPy CE had the lowest value compared to that of MWCNT or PPy electrode. These results indicate that the composite film with high conductivity, high active surface area, and good catalytic properties for I{sub 3}{sup −} reduction can potentially be used as the CE in a high-performance DSSC.

  15. Optimization of electrostatic lens systems for low-energy scanning microcolumn applications

    International Nuclear Information System (INIS)

    Oh, Tae-Sik; Kim, Dae-Wook; Ahn, Seungjoon; Kim, Young Chul; Kim, Ho-Seob; Ahn, Seong Joon

    2008-01-01

    The optimization of a low-energy scanning microcolumn is proposed by adopting a modified Einzel lens sandwiched between an aligner and a deflector. The modified Einzel lens is composed of four electrodes, and the two center electrodes are specially designed quadrupole lenses having keyhole type rather than circular apertures. The outer electrodes of the Einzel lens having circular apertures are grounded, and the quadrupole lens is operated by applying the quadrupole voltages. The effects of the separated deflector system and the static quadrupole lens were investigated by analyzing the scanning electron beam spot at the target, and the results show that the proposed system can improve the performance of the scanning microcolumn

  16. Effect of Nanoparticles on Modified Screen Printed Inhibition Superoxide Dismutase Electrodes for Aluminum

    Directory of Open Access Journals (Sweden)

    Miriam Barquero-Quirós

    2016-09-01

    Full Text Available A novel amperometric biosensor for the determination of Al(III based on the inhibition of the enzyme superoxide dismutase has been developed. The oxidation signal of epinephrine substrate was affected by the presence of Al(III ions leading to a decrease in its amperometric current. The immobilization of the enzyme was performed with glutaraldehyde on screen-printed carbon electrodes modifiedwith tetrathiofulvalene (TTF and different types ofnanoparticles. Nanoparticles of gold, platinum, rhodium and palladium were deposited on screen printed carbon electrodes by means of two electrochemical procedures. Nanoparticles were characterized trough scanning electronic microscopy, X-rays fluorescence, and atomic force microscopy. Palladium nanoparticles showed lower atomic force microscopy parameters and higher slope of aluminum calibration curves and were selected to perform sensor validation. The developed biosensor has a detection limit of 2.0 ± 0.2 μM for Al(III, with a reproducibility of 7.9% (n = 5. Recovery of standard reference material spiked to buffer solution was 103.8% with a relative standard deviation of 4.8% (n = 5. Recovery of tap water spiked with the standard reference material was 100.5 with a relative standard deviation of 3.4% (n = 3. The study of interfering ions has also been carried out.

  17. Micromachined Planar Supercapacitor with Interdigital Buckypaper Electrodes

    Directory of Open Access Journals (Sweden)

    Yun-Ting Chen

    2018-05-01

    Full Text Available In this work, a flexible micro-supercapacitor with interdigital planar buckypaper electrodes is presented. A simple fabrication process involving vacuum filtration method and SU-8 molding techniques is proposed to fabricate in-plane interdigital buckypaper electrodes on a membrane filter substrate. The proposed process exhibits excellent flexibility for future integration of the micro-supercapacitors (micro-SC with other electronic components. The device’s maximum specific capacitance measured using cyclic voltammetry was 107.27 mF/cm2 at a scan rate of 20 mV/s. The electrochemical stability was investigated by measuring the performance of charge-discharge at different discharge rates. Devices with different buckypaper electrode thicknesses were also fabricated and measured. The specific capacitance of the proposed device increased linearly with the buckypaper electrode thickness. The measured leakage current was approximately 9.95 µA after 3600 s. The device exhibited high cycle stability, with 96.59% specific capacitance retention after 1000 cycles. A Nyquist plot of the micro-SC was also obtained by measuring the impedances with frequencies from 1 Hz to 50 kHz; it indicated that the equivalent series resistance value was approximately 18 Ω.

  18. Hepatobiliary scan in neonatal Jaundice

    International Nuclear Information System (INIS)

    Nahar, Nurun; Hasan, Mizanul; Karim, M.A.

    2002-01-01

    Jaundice is more or less common in newborn babies. Through physiological jaundice is most common cause of neonatal jaundice, possibility of obstructive jaundice especially biliary atresia should be kept in mind. Early diagnosis of biliary atresia followed by surgical treatment can save baby's life. Otherwise death is inevitable due to liver failure. Hepatobiliary scan is the imaging study of choice in neonatal jaundice especially when there is persistent conjugated hyperbilirubinaemia. Total 27 newborn babies of suspected biliary atresia, aged 14 days to 4 months were referred to Institute of Nuclear Medicine for Hepatobiliary scan. All of them had high serum bilirubin ranged from 6.0 mg/dl with an average of 9.35 ng/dl serum bilirubin level. Ultrasonography of hepatobiliary system was performed in 14 cases showing normal sized liver in 4 cases and hepatomegaly in 10 cases. Hepatobiliary scan was done with 99m Tc-Mebrofenin (Br IDA) after preparing the baby with phenobarbitone for 3-5 days. 20 (67%) cases were scan positive suggesting biliary atresia (BA) and 7(27%) cases were scan negative. In BA there will be increased hepatic uptake of the radionuclide without any significant excretion even in 24 hours delayed images. Presence of radiotracer in the bowel exclude the diagnosis of BA. Early diagnosis of biliary atresia is very important because in this condition surgery should be performed early (within 60 days of life). Studies suggest that hepatobiliary scan after hepatic stimulation with phenobarbitone for a period of 3-5 days is highly accurate for differentiating biliary atresia from other causes of neonatal jaundice. It is very important to perform hepatobiliary scan in a case of neonatal jaundice to exclude biliary atresia for the sake of baby's life.(author)

  19. Dielectric elastomers with novel highly-conducting electrodes

    Science.gov (United States)

    Böse, Holger; Uhl, Detlev

    2013-04-01

    Beside the characteristics of the elastomer material itself, the performance of dielectric elastomers in actuator, sensor as well as generator applications depends also on the properties of the electrode material. Various electrode materials based on metallic particles dispersed in a silicone matrix were manufactured and investigated. Anisotropic particles such as silver-coated copper flakes and silver-coated glass flakes were used for the preparation of the electrodes. The concentration of the metallic particles and the thickness of the electrode layers were varied. Specific conductivities derived from resistance measurements reached about 100 S/cm and surmount those of the reference materials based on graphite and carbon black by up to three orders of magnitude. The high conductivities of the new electrode materials can be maintained even at very large stretch deformations up to 200 %.

  20. Graphene-based transparent electrodes for hybrid solar cells

    Directory of Open Access Journals (Sweden)

    Pengfei eLi

    2014-11-01

    Full Text Available The graphene-based transparent and conductive films were demonstrated to be cost-effective electrodes working in organic-inorganic hybrid Schottky solar cells. Large area graphene films were produced by chemical vapor deposition (CVD on copper foils and transferred onto glass as transparent electrodes. The hybrid solar cell devices consist of solution processed poly (3, 4-ethlenedioxythiophene: poly (styrenesulfonate (PEDOT: PSS which is sandwiched between silicon wafer and graphene electrode. The solar cells based on graphene electrodes, especially those doped with HNO3, has comparable performance to the reference devices using commercial indium tin oxide (ITO. Our work suggests that graphene-based transparent electrode is a promising candidate to replace ITO.

  1. A Reagentless Amperometric Formaldehyde-Selective Chemosensor Based on Platinized Gold Electrodes

    OpenAIRE

    Demkiv, Olha; Smutok, Oleh; Gonchar, Mykhailo; Nisnevitch, Marina

    2017-01-01

    Fabrication and characterization of a new amperometric chemosensor for accurate formaldehyde analysis based on platinized gold electrodes is described. The platinization process was performed electrochemically on the surface of 4 mm gold planar electrodes by both electrolysis and cyclic voltamperometry. The produced electrodes were characterized using scanning electron microscopy and X-ray spectral analysis. Using a low working potential (0.0 V vs. Ag/AgCl) enabled an essential increase in th...

  2. Impact of metal artefacts due to EEG electrodes in brain PET/CT imaging

    International Nuclear Information System (INIS)

    Lemmens, Catherine; Nuyts, Johan; Dupont, Patrick; Montandon, Marie-Louise; Ratib, Osman; Zaidi, Habib

    2008-01-01

    The goal of this study is to investigate the impact of electroencephalogram (EEG) electrodes on the visual quality and quantification of 18 F-FDG PET images in neurological PET/CT examinations. For this purpose, the scans of 20 epilepsy patients with EEG monitoring were used. The CT data were reconstructed with filtered backprojection (FBP) and with a metal artefact reduction (MAR) algorithm. Both data sets were used for CT-based attenuation correction (AC) of the PET data. Also, a calculated AC (CALC) technique was considered. A volume of interest (VOI)-based analysis and a voxel-based quantitative analysis were performed to compare the different AC methods. Images were also evaluated visually by two observers. It was shown with simulations and phantom measurements that from the considered AC methods, the MAR-AC can be used as the reference in this setting. The visual assessment of PET images showed local hot spots outside the brain corresponding to the locations of the electrodes when using FBP-AC. In the brain, no abnormalities were observed. The quantitative analysis showed a very good correlation between PET-FBP-AC and PET-MAR-AC, with a statistically significant positive bias in the PET-FBP-AC images of about 5-7% in most brain voxels. There was also good correlation between PET-CALC-AC and PET-MAR-AC, but in the PET-CALC-AC images, regions with both a significant positive and negative bias were observed. EEG electrodes give rise to local hot spots outside the brain and a positive quantification bias in the brain. However, when diagnosis is made by mere visual assessment, the presence of EEG electrodes does not seem to alter the diagnosis. When quantification is performed, the bias becomes an issue especially when comparing brain images with and without EEG monitoring

  3. Impact of metal artefacts due to EEG electrodes in brain PET/CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lemmens, Catherine; Nuyts, Johan; Dupont, Patrick [Department of Nuclear Medicine and Medical Imaging Center, University Hospital Gasthuisberg and Katholieke Universiteit Leuven, Leuven (Belgium); Montandon, Marie-Louise; Ratib, Osman; Zaidi, Habib [Division of Nuclear Medicine, Geneva University Hospital, CH-1211 Geneva (Switzerland)], E-mail: catherine.lemmens@uz.kuleuven.be

    2008-08-21

    The goal of this study is to investigate the impact of electroencephalogram (EEG) electrodes on the visual quality and quantification of {sup 18}F-FDG PET images in neurological PET/CT examinations. For this purpose, the scans of 20 epilepsy patients with EEG monitoring were used. The CT data were reconstructed with filtered backprojection (FBP) and with a metal artefact reduction (MAR) algorithm. Both data sets were used for CT-based attenuation correction (AC) of the PET data. Also, a calculated AC (CALC) technique was considered. A volume of interest (VOI)-based analysis and a voxel-based quantitative analysis were performed to compare the different AC methods. Images were also evaluated visually by two observers. It was shown with simulations and phantom measurements that from the considered AC methods, the MAR-AC can be used as the reference in this setting. The visual assessment of PET images showed local hot spots outside the brain corresponding to the locations of the electrodes when using FBP-AC. In the brain, no abnormalities were observed. The quantitative analysis showed a very good correlation between PET-FBP-AC and PET-MAR-AC, with a statistically significant positive bias in the PET-FBP-AC images of about 5-7% in most brain voxels. There was also good correlation between PET-CALC-AC and PET-MAR-AC, but in the PET-CALC-AC images, regions with both a significant positive and negative bias were observed. EEG electrodes give rise to local hot spots outside the brain and a positive quantification bias in the brain. However, when diagnosis is made by mere visual assessment, the presence of EEG electrodes does not seem to alter the diagnosis. When quantification is performed, the bias becomes an issue especially when comparing brain images with and without EEG monitoring.

  4. Composite carbon foam electrode

    Science.gov (United States)

    Mayer, Steven T.; Pekala, Richard W.; Kaschmitter, James L.

    1997-01-01

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivty and power to system energy.

  5. Porous electrode preparation method

    Science.gov (United States)

    Arons, R.M.; Dusek, J.T.

    1983-10-18

    A porous sintered plaque is provided with a bimodal porosity that is especially well suited for use as an electrode within a molten carbonate fuel cell. The coarse porosity is sufficient for admitting gases into contact with the reaction surfaces while the fine porosity is wetted with and retains molten electrolyte on the reaction sites. The electrode structure is prepared by providing a very fine powder of such as nickel oxide and blending the powder with a suitable decomposable binder to form a solid mass. The mass is comminuted into agglomerate size particles substantially larger than the fine oxide particles and formed into a cohesive compact for subsequent sintering. Sintering is carried out at sufficient conditions to bind the agglomerates together into a porous structure having both coarse and fine porosity. Where lithiated nickel oxide cathodes are prepared, the sintering conditions can be moderate enough to retain substantial quantities of lithium within the electrode for adequate conductivity. 2 figs.

  6. Method and apparatus for scanning a transverse field

    International Nuclear Information System (INIS)

    Stoddart, H.F.

    1978-01-01

    A transverse radionuclide scan-field imaging apparatus is described for use in scanning with particular reference to the brain. It comprises a plurality of highly focussed collimators surrounding and being focussed inwardly with respect to the scan-field and means for imparting movement to the collimators. Adjacent collimators can be stepped in radially opposite directions after each tangential scan, so that the focal point of each collimator scans at least one half of the scan-field. Each collimator is associated with a scintillator crystal and photodetector whose output is used to calculate the radioactive emission intensity at a number of points in the scan-field. (author)

  7. Sandwich-type electrode

    Science.gov (United States)

    Lu, Wen-Tong P.; Garcia, Earl R.

    1983-01-01

    Disclosed is an improvement on a method of making an electrode wherein a suspension in a liquid is prepared of a powdered catalyst containing a noble metal, carbon powder and a binder, and the suspension is poured over a carbon substrate dried, compressed and sintered to form a solid catalyst layer bonded to the carbon substrate. The improvement is placing a carbon paper on the catalyst layer prior to compressing. The improved electrode can be used as either a cathode or an anode in a sulfur dioxide depolarized electrolyzer in a process for producing hydrogen from water.

  8. Ion-selective electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Mikhelson, Konstantin N. [St. Petersburg State Univ. (Russian Federation). Ion-Selective Electrode Laboratory

    2013-06-01

    Ion-selective electrodes (ISEs) have a wide range of applications in clinical, environmental, food and pharmaceutical analysis as well as further uses in chemistry and life sciences. Based on his profound experience as a researcher in ISEs and a course instructor, the author summarizes current knowledge for advanced teaching and training purposes with a particular focus on ionophore-based ISEs. Coverage includes the basics of measuring with ISEs, essential membrane potential theory and a comprehensive overview of the various classes of ion-selective electrodes. The principles of constructing ISEs are outlined, and the transfer of methods into routine analysis is considered.

  9. Single Electrode Heat Effects

    DEFF Research Database (Denmark)

    Jacobsen, Torben; Broers, G. H. J.

    1977-01-01

    The heat evolution at a single irreversibly working electrode is treated onthe basis of the Brønsted heat principle. The resulting equation is analogous to the expression for the total heat evolution in a galvanic cellwith the exception that –DeltaS is substituted by the Peltier entropy, Delta......SP, of theelectrode reaction. eta is the overvoltage at the electrode. This equation is appliedto a high temperature carbonate fuel cell. It is shown that the Peltier entropyterm by far exceeds the heat production due to the irreversible losses, and thatthe main part of heat evolved at the cathode is reabsorbed...

  10. Ion-selective electrodes

    CERN Document Server

    Mikhelson, Konstantin N

    2013-01-01

    Ion-selective electrodes (ISEs) have a wide range of applications in clinical, environmental, food and pharmaceutical analysis as well as further uses in chemistry and life sciences. Based on his profound experience as a researcher in ISEs and a course instructor, the author summarizes current knowledge for advanced teaching and training purposes with a particular focus on ionophore-based ISEs. Coverage includes the basics of measuring with ISEs, essential membrane potential theory and a comprehensive overview of the various classes of ion-selective electrodes. The principles of constructing I

  11. Metal/Metal Oxide Differential Electrode pH Sensors

    Science.gov (United States)

    West, William; Buehler, Martin; Keymeulen, Didier

    2007-01-01

    Solid-state electrochemical sensors for measuring the degrees of acidity or alkalinity (in terms of pH values) of liquid solutions are being developed. These sensors are intended to supplant older electrochemical pH sensors that include glass electrode structures and reference solutions. The older sensors are fragile and subject to drift. The present developmental solid-state sensors are more rugged and are expected to be usable in harsh environments. The present sensors are based on a differential-electrode measurement principle. Each sensor includes two electrodes, made of different materials, in equilibrium with the solution of interest.

  12. Virtual electrodes for high-density electrode arrays

    Science.gov (United States)

    Cela, Carlos J.; Lazzi, Gianluca

    2015-10-13

    The present embodiments are directed to implantable electrode arrays having virtual electrodes. The virtual electrodes may improve the resolution of the implantable electrode array without the burden of corresponding complexity of electronic circuitry and wiring. In a particular embodiment, a virtual electrode may include one or more passive elements to help steer current to a specific location between the active electrodes. For example, a passive element may be a metalized layer on a substrate that is adjacent to, but not directly connected to an active electrode. In certain embodiments, an active electrode may be directly coupled to a power source via a conductive connection. Beneficially, the passive elements may help to increase the overall resolution of the implantable array by providing additional stimulation points without requiring additional wiring or driver circuitry for the passive elements.

  13. Templated synthesis, characterization, and sensing application of macroscopic platinum nanowire network electrodes

    DEFF Research Database (Denmark)

    Wang, D. H.; Kou, R.; Gil, M. P.

    2005-01-01

    properties of the electrodes, such as electrochemical active area and methanol oxidation, have also been studied. Compared with conventional polycrystalline Pt electrodes, these novel nanowire network electrodes possess high electrochemical active areas and demonstrate higher current densities and a lower...... onset potential for methanol electro-oxidation. Enzymatic Pt nanowire-network-based sensors show higher sensitivity for glucose detection than that using conventional polycrystalline Pt electrode. Such macroscopic nanowire network electrodes provide ideal platforms for sensing and other device......Abstract: Novel platinum nanowire network electrodes have been fabricated through electrodeposition using mesoporous silica thin films as templates. These electrodes were characterized by X-ray diffraction, transmission electron microscope, and scanning electron microscope. The electrochemical...

  14. A study of nanostructured gold modified glassy carbon electrode for ...

    Indian Academy of Sciences (India)

    A nanostructured gold modified glassy carbon electrode (Aunano/GCE) was employed for the determination of trace chromium(VI). To prepare Aunano/GCE, the GCE was immersed into KAuCl4 solution and electrodeposition was conducted at the potential of -0.4 V (vs Ag/AgCl) for 600 s. Scanning electron microscopy ...

  15. The Pore Structure of Direct Methanol Fuel Cell Electrodes

    DEFF Research Database (Denmark)

    Lund, Peter Brilner

    2005-01-01

    The pore structure and morphology of direct methanol fuel cell electrodes are characterized using mercury intrusion porosimetry and scanning electron microscopy. It is found that the pore size distributions of printed primer and catalyst layers are largely dictated by the powders used to make...

  16. Radiopharmaceutical scanning agents

    International Nuclear Information System (INIS)

    1976-01-01

    This invention is directed to dispersions useful in preparing radiopharmaceutical scanning agents, to technetium labelled dispersions, to methods for preparing such dispersions and to their use as scanning agents

  17. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... Scan and Uptake Thyroid scan and uptake uses small amounts of radioactive materials called radiotracers, a special ... is a branch of medical imaging that uses small amounts of radioactive material to diagnose and determine ...

  18. Nuclear Heart Scan

    Science.gov (United States)

    ... Home / Nuclear Heart Scan Nuclear Heart Scan Also known as Nuclear Stress Test , ... Learn More Connect With Us Contact Us Directly Policies Privacy Policy Freedom of Information Act (FOIA) Accessibility ...

  19. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... of page What will I experience during and after the procedure? Most thyroid scan and thyroid uptake ... you otherwise, you may resume your normal activities after your nuclear medicine scan. If any special instructions ...

  20. RBC nuclear scan

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003835.htm RBC nuclear scan To use the sharing features on this page, please enable JavaScript. An RBC nuclear scan uses small amounts of radioactive material to ...

  1. Electrochemical Deposition of CdTe Semiconductor Thin Films for Solar Cell Application Using Two-Electrode and Three-Electrode Configurations: A Comparative Study

    Directory of Open Access Journals (Sweden)

    O. K. Echendu

    2016-01-01

    Full Text Available Thin films of CdTe semiconductor were electrochemically deposited using two-electrode and three-electrode configurations in potentiostatic mode for comparison. Cadmium sulphate and tellurium dioxide were used as cadmium and tellurium sources, respectively. The layers obtained using both configurations exhibit similar structural, optical, and electrical properties with no specific dependence on any particular electrode configuration used. These results indicate that electrochemical deposition (electrodeposition of CdTe and semiconductors in general can equally be carried out using two-electrode system as well as the conventional three-electrode system without compromising the essential qualities of the materials produced. The results also highlight the advantages of the two-electrode configuration in process simplification, cost reduction, and removal of a possible impurity source in the growth system, especially as the reference electrode ages.

  2. Flexible electrode belt for EIT using nanofiber web dry electrodes.

    Science.gov (United States)

    Oh, Tong In; Kim, Tae Eui; Yoon, Sun; Kim, Kap Jin; Woo, Eung Je; Sadleir, Rosalind J

    2012-10-01

    Efficient connection of multiple electrodes to the body for impedance measurement and voltage monitoring applications is of critical importance to measurement quality and practicality. Electrical impedance tomography (EIT) experiments have generally required a cumbersome procedure to attach the multiple electrodes needed in EIT. Once placed, these electrodes must then maintain good contact with the skin during measurements that may last several hours. There is usually also the need to manage the wires that run between the electrodes and the EIT system. These problems become more severe as the number of electrodes increases, and may limit the practicality and portability of this imaging method. There have been several trials describing human-electrode interfaces using configurations such as electrode belts, helmets or rings. In this paper, we describe an electrode belt we developed for long-term EIT monitoring of human lung ventilation. The belt included 16 embossed electrodes that were designed to make good contact with the skin. The electrodes were fabricated using an Ag-plated PVDF nanofiber web and metallic threads. A large contact area and padding were used behind each electrode to improve subject comfort and reduce contact impedances. The electrodes were incorporated, equally spaced, into an elasticated fabric belt. We tested the electrode belt in conjunction with the KHU Mark1 multi-frequency EIT system, and demonstrate time-difference images of phantoms and human subjects during normal breathing and running. We found that the Ag-plated PVDF nanofiber web electrodes were suitable for long-term measurement because of their flexibility and durability. Moreover, the contact impedance and stability of the Ag-plated PVDF nanofiber web electrodes were found to be comparable to similarly tested Ag/AgCl electrodes.

  3. Scanning gamma camera

    International Nuclear Information System (INIS)

    Engdahl, L.W.; Batter, J.F. Jr.; Stout, K.J.

    1977-01-01

    A scanning system for a gamma camera providing for the overlapping of adjacent scan paths is described. A collimator mask having tapered edges provides for a graduated reduction in intensity of radiation received by a detector thereof, the reduction in intensity being graduated in a direction normal to the scanning path to provide a blending of images of adjacent scan paths. 31 claims, 15 figures

  4. Chemically fabricated LiFePO{sub 4} thin film electrode for transparent batteries and electrochromic devices

    Energy Technology Data Exchange (ETDEWEB)

    Béléké, Alexis B. [Institut de recherche d’Hydro-Québec, 1800 Boul. Lionel-Boulet, Varennes, QC J3X 1S3 (Canada); Department of Mining and Materials Engineering, McGill University, M.H. Wong Building, 3610 rue University, Montréal, QC H3A 2B2 (Canada); Faure, Cyril [Institut de recherche d’Hydro-Québec, 1800 Boul. Lionel-Boulet, Varennes, QC J3X 1S3 (Canada); Röder, Manuel [Center for Applied Electrochemistry, Fraunhofer Institute for Silicate Research, Neunerplatz 2, 97083 Würzburg (Germany); Hovington, Pierre [Institut de recherche d’Hydro-Québec, 1800 Boul. Lionel-Boulet, Varennes, QC J3X 1S3 (Canada); Posset, Uwe [Center for Applied Electrochemistry, Fraunhofer Institute for Silicate Research, Neunerplatz 2, 97083 Würzburg (Germany); Guerfi, Abdelbast [Institut de recherche d’Hydro-Québec, 1800 Boul. Lionel-Boulet, Varennes, QC J3X 1S3 (Canada); Zaghib, Karim, E-mail: zaghib.karim@ireq.ca [Institut de recherche d’Hydro-Québec, 1800 Boul. Lionel-Boulet, Varennes, QC J3X 1S3 (Canada)

    2016-12-15

    Graphical abstract: Simplified diagram of the novel sol-gel approach of preparation of colorless and transparent LiFePO{sub 4} thin film electrode. - Highlights: • Novel sol-gel synthesis of colorless LFP thin film electrode for transparent Li-ion battery. • High performance of the electrode at various current densities: 5, 10, 20, 50 and 100 μA/cm{sup 2}. • LFP nanoparticles exhibit an excellent electro-activity. • Colorless LFP thin film shows a transmittance above 80% versus FTO. • Higher transmittance of LFP electrode a potential candidate for electrochromic devices. - Abstract: We report a new sol-gel approach of synthesis of LiFePO{sub 4} (LFP) thin film and its application as cathode materials for transparent Li-ion battery in half-cell configuration. LFP thin films were obtained from an alcoholic colloidal suspension of iron acetylacetonate (Fe(AcAc){sub 3}) and aqueous lithium dihydrogen phosphate (LiH{sub 2}PO{sub 4}) deposited on fluorine tin oxide (FTO) glass substrate, followed by heating at 450 °C under nitrogen gas for 1 h. X-ray diffraction (XRD) confirmed that the LFP films have an orthorhombic crystal system with space group Pnma (62). Scanning electron microscopy (SEM) shows spherical LFP nanoparticles aggregates homogenously deposited all over the surface of FTO substrate containing 3-D open pores. The electrochemical behaviors of thin film vs Li/Li{sup +} cell were investigated by cyclic voltammetry and galvanostatic charge-discharge measurements. The cycle life was evaluated by running 1000 cycles of charge-discharge at a current density of 20 μA/cm{sup 2}. The transmission spectra reveal 85–90% of transparency versus FTO as reference, which makes it a potential candidate as a complementary electrode in electrochromic devices (ECDs).

  5. Recovery Of Electrodic Powder From Spent Lithium Ion Batteries (LIBs

    Directory of Open Access Journals (Sweden)

    Shin S.M.

    2015-06-01

    Full Text Available This study was focused on recycling process newly proposed to recover electrodic powder enriched in cobalt (Co and lithium (Li from spent lithium ion battery. In addition, this new process was designed to prevent explosion of batteries during thermal treatment under inert atmosphere. Spent lithium ion batteries (LIBs were heated over the range of 300°C to 600°C for 2 hours and each component was completely separated inside reactor after experiment. Electrodic powder was successfully recovered from bulk components containing several pieces of metals through sieving operation. The electrodic powder obtained was examined by X-ray diffraction (XRD, energy dispersive X-ray spectroscopy (EDS, and atomic absorption spectroscopy (AA and furthermore image of the powder was taken by scanning electron microscopy (SEM. It was finally found that cobalt and lithium were mainly recovered to about 49 wt.% and 4 wt.% in electrodic powder, respectively.

  6. Carbon black nanoparticles film electrode prepared by using substrate-induced deposition approach

    Energy Technology Data Exchange (ETDEWEB)

    Svegl, Irena Grabec; Bele, Marjan [National Institute of Chemistry, P.O. Box 660, SI-1001 Ljubljana (Slovenia); Ogorevc, Bozidar [National Institute of Chemistry, P.O. Box 660, SI-1001 Ljubljana (Slovenia)], E-mail: bogorevc@ki.si

    2008-11-03

    A new type of carbon film electrode, composed of a thin layer of tightly packed carbon black (CB) nanoparticles deposited onto a gelatin-covered indium tin oxide/glass support using the surface-induced deposition (SID) approach, is presented. Some parameters of the novel SID method were optimized and the surface image and functionalization of the investigated carbon black film electrode (CBFE) was inspected by employing scanning electron microscopy and infrared spectroscopy. A cyclic voltammetry (CV) study was conducted in which the electron-transfer kinetics and CBFE interfacial characteristics were evaluated employing several selected reference redox systems, such as [Ru(NH{sub 3}){sub 6}]{sup 3+/2+}, [Fe(CN){sub 6}]{sup 3-/4-} and Fe{sup 3+/2+} in aqueous, and ferrocene/ferrocenium in acetonitrile media. CV recordings were also performed in order to compare the electrochemical behavior of the CBFE with that of some well-known and established bare carbon-based electrodes. In order to confirm the validity of the CB film preparation method, the electroanalytical performance of the proposed CBFE was examined by carrying out linear sweep voltammetry of ascorbic acid (AA), anodic stripping square-wave voltammetry of Cu(II) in acidic medium, and amperometric measurements of hydrogen peroxide under flow injection conditions. The sensing characteristics of the novel carbon film electrode, demonstrated in this preliminary study, comprise: (i) a wide working potential window ranging from +1.0 to -1.3 V (depending on the solution pH), (ii) a wide applicable pH range (at least from 2 to 12), (iii) low voltammetric background (<5 {mu}A cm{sup -2}), (iv) a satisfactory linear voltammetric and amperometric response (r{sup 2} > 0.99) to various analytes, (v) good reproducibility (for example, r.s.d. of 2% in amperometric detection of H{sub 2}O{sub 2} and r.s.d. of 8.5% for electrode-to-electrode CV runs), and (vi) stable and fast current response (at least 100 CV runs with

  7. Flexible Graphene Electrodes for Prolonged Dynamic ECG Monitoring

    Directory of Open Access Journals (Sweden)

    Cunguang Lou

    2016-11-01

    Full Text Available This paper describes the development of a graphene-based dry flexible electrocardiography (ECG electrode and a portable wireless ECG measurement system. First, graphene films on polyethylene terephthalate (PET substrates and graphene paper were used to construct the ECG electrode. Then, a graphene textile was synthesized for the fabrication of a wearable ECG monitoring system. The structure and the electrical properties of the graphene electrodes were evaluated using Raman spectroscopy, scanning electron microscopy (SEM, and alternating current impedance spectroscopy. ECG signals were then collected from healthy subjects using the developed graphene electrode and portable measurement system. The results show that the graphene electrode was able to acquire the typical characteristics and features of human ECG signals with a high signal-to-noise (SNR ratio in different states of motion. A week-long continuous wearability test showed no degradation in the ECG signal quality over time. The graphene-based flexible electrode demonstrates comfortability, good biocompatibility, and high electrophysiological detection sensitivity. The graphene electrode also combines the potential for use in long-term wearable dynamic cardiac activity monitoring systems with convenience and comfort for use in home health care of elderly and high-risk adults.

  8. Protected electrodes for plasma panels

    International Nuclear Information System (INIS)

    Hall, S.W.

    1984-01-01

    A metal oxide coating is applied between the conductive base and the magnesium oxide dielectric of the input and/or erase electrode(s) in a plasma display device to prevent break-down of the dielectric

  9. The electrocatalytical reduction of m-nitrophenol on palladium nanoparticles modified glassy carbon electrodes

    International Nuclear Information System (INIS)

    Shi Qiaofang; Diao Guowang

    2011-01-01

    Highlights: ► The deposition of palladium on a GC electrode was performed by cyclic voltammetry. ► SEM images showed palladium nanoparticles deposited on a glassy carbon (GC) electrode. ► The Pd/GC electrode can effectively catalyze m-nitrophenol in aqueous media. ► The reduction of m-nitrophenol on the Pd/GC electrode depended on potential and pH. ► XPS spectra of the Pd/GC electrodes demonstrated the presence of palladium. - Abstract: Palladium nanoparticles modified glassy carbon electrodes (Pd/GC) were prepared via the electrodeposition of palladium on a glassy carbon (GC) electrode using cyclic voltammetry in different sweeping potential ranges. The scanning electron microscope images of palladium particles on the GC electrodes indicate that palladium particles with diameters of 20–50 nm were homogeneously dispersed on the GC electrode at the optimal deposition conditions, which can effectively catalyze the reduction of m-nitrophenol in aqueous solutions, but their catalytic activities are strongly related to the deposition conditions of Pd. The X-ray photoelectron spectroscopy spectra of the Pd/GC electrode confirmed that 37.1% Pd was contained in the surface composition of the Pd/GC electrode. The cyclic voltammograms of the Pd/GC electrode in the solution of m-nitrophenol show that the reduction peak of m-nitrophenol shifts towards the more positive potentials, accompanied with an increase in the peak current compared to the bare GC electrode. The electrocatalytic activity of the Pd/GC electrode is affected by pH values of the solution. In addition, the electrolysis of m-nitrophenol under a constant potential indicates that the reduction current of m-nitrophenol on the Pd/GC electrode is approximately 20 times larger than that on the bare GC electrode.

  10. Ion-selective electrode reviews

    CERN Document Server

    Thomas, J D R

    1985-01-01

    Ion-Selective Electrode Reviews, Volume 7 is a collection of papers that covers the applications of electrochemical sensors, along with the versatility of ion-selective electrodes. The coverage of the text includes solid contact in membrane ion-selective electrodes; immobilized enzyme probes for determining inhibitors; potentiometric titrations based on ion-pair formation; and application of ion-selective electrodes in soil science, kinetics, and kinetic analysis. The text will be of great use to chemists and chemical engineers.

  11. Electrochemical cell and electrode designs for high-temperature/high-pressure kinetic measurements

    International Nuclear Information System (INIS)

    Nagy, Z.; Yonco, R.M.

    1987-05-01

    Many corrosion processes of interest to the nuclear power industry occur in high-temperature/high-pressure aqueous systems. The investigation of the kinetics of the appropriate electrode reactions is a serious experimental challenge, partially because of the high temperatures and pressures and partially because many of these reactions are very rapid, requiring fast relaxation measurements. An electrochemical measuring system is described which is suitable for measurements of the kinetics of fast electrode reactions at temperatures extending to at least 300 0 C and pressures to at least 10 MPa (100 atmospheres). The system includes solution preparation and handling equipment, the electrochemical cell, and several electrode designs. One of the new designs is a coaxial working electrode-counter electrode assembly; this electrode can be used with very fast-rising pulses, and it provides a well defined, repeatedly-polishable working surface. Low-impedance reference electrodes are also described, based on electrode concepts responding to the pH or the redox potential of the test solution. Additionally, a novel, long-life primary reference electrode design is reported, based on a modification of the external, pressure-balanced Ag/AgCl reference electrode

  12. Electrochemical cell and electrode designs for high-temperature/high-pressure kinetic measurements

    International Nuclear Information System (INIS)

    Nagy, Z.; Yonco, R.M.

    1988-01-01

    Many corrosion processes of interest to the nuclear power industry occur in high-temperature/high-pressure aqueous systems. The investigation of the kinetics of the appropriate electrode reactions is a serious experimental challenge, partially because of the high temperatures and pressures and partially because many of these reactions are very rapid, requiring fast relaxation measurements. An electrochemical measuring system is described which is suitable for measurements of the kinetics of fast electrode reactions at temperatures extending to at least 300 0 C and pressures to at least 10 MPa (100 atmospheres). The system includes solution preparation and handling equipment, the electrochemical cell, and several electrode designs. One of the new designs is a coaxial working electrode-counter electrode assembly; this electrode can be used with very fast-rising pulses, and it provides a well defined, repeatedly-polishable working surface. Low-impedance reference electrodes are also described, based on electrode concepts responding to the pH or the redox potential of the test solution. Additionally, a novel, long-life primary reference electrode design is reported, based on a modification of the external, pressure-balanced Ag/AgCl reference electrode

  13. Scanning Probe Microscopy at 650 °C in Air

    DEFF Research Database (Denmark)

    Hansen, Karin Vels; Jacobsen, Torben; Nørgaard, Anne-Mette

    2009-01-01

    The controlled atmosphere high temperature scanning probe microscope was designed to study the electrical properties of surfaces at elevated temperatures by using the probe as an electrode. The capability of a simultaneous acquisition of topographical and electrical data for the same surface area...

  14. EFFECTS OF TEMPERATURE AND CONTAMINATION ON MPCMS ELECTRODES IN 241-AY-101 AND 241-AN-107 TANK WASTE SIMULANTS

    Energy Technology Data Exchange (ETDEWEB)

    CATO DM; DAHL MM; PHILO GL; EDGEMON GL; BELL DR.JLS; MOORE CG

    2010-03-26

    This report documents the results of tests designed to characterize the relationship between temperature and the measured potential of electrodes installed on multi-probe corrosion monitoring systems in waste tanks. This report also documents the results of tests designed to demonstrate the impact of liquid in-leakage into electrode bodies as well as the contamination of primary reference electrodes by diffusion through the electrode tip.

  15. EFFECTS OF TEMPERATURE AND CONTAMINATION ON MPCMS ELECTRODES IN 241-AY-101 AND 241-AN-107 TANK WASTE SIMULANTS

    International Nuclear Information System (INIS)

    Cato, D.M.; Dahl, M.M.; Philo, G.L.; Edgemon, G.L.; Bell, J.L.S.; Moore, C.G.

    2010-01-01

    This report documents the results of tests designed to characterize the relationship between temperature and the measured potential of electrodes installed on multi-probe corrosion monitoring systems in waste tanks. This report also documents the results of tests designed to demonstrate the impact of liquid in-leakage into electrode bodies as well as the contamination of primary reference electrodes by diffusion through the electrode tip.

  16. Fabrication and electrochemical behavior of single-walled carbon nanotube/graphite-based electrode

    International Nuclear Information System (INIS)

    Moghaddam, Abdolmajid Bayandori; Ganjali, Mohammad Reza; Dinarvand, Rassoul; Razavi, Taherehsadat; Riahi, Siavash; Rezaei-Zarchi, Saeed; Norouzi, Parviz

    2009-01-01

    An electrochemical method for determining the dihydroxybenzene derivatives on glassy carbon (GC) has been developed. In this method, the performance of a single-walled carbon nanotube (SWCNT)/graphite-based electrode, prepared by mixing SWCNTs and graphite powder, was described. The resulting electrode shows an excellent behavior for redox of 3,4-dihydroxybenzoic acid (DBA). SWCNT/graphite-based electrode presents a significant decrease in the overvoltage for DBA oxidation as well as a dramatic improvement in the reversibility of DBA redox behavior in comparison with graphite-based and glassy carbon (GC) electrodes. In addition, scanning electron microscopy (SEM) and atomic force microscopy (AFM) procedures performed for used SWCNTs

  17. Cyclic Voltammetric Investigation of Dopamine at Poly-(Gabapentin Modified Carbon Paste Electrode

    Directory of Open Access Journals (Sweden)

    M. T. Shreenivas

    2011-01-01

    Full Text Available The poly (gabapentin film was prepared on the surface of carbon paste electrode by electrochemical method using cyclic voltammetric technique. The poly (gabapentin film-modified carbon paste electrode was calibrated with standard potassium ferrocyanide solution in 1 M KCl as a supporting electrolyte. The prepared poly (gabapentin film-coated electrode exhibits excellent electrocatalytic activity towards the detection of dopamine at physiological pH. The scan rate effect was found to be diffusion-controlled electrode process. The concentration effect of dopamine was studied, and the redox peak potentials of dopamine were dependant on pH.

  18. Admittance Scanning for Whole Column Detection.

    Science.gov (United States)

    Stamos, Brian N; Dasgupta, Purnendu K; Ohira, Shin-Ichi

    2017-07-05

    Whole column detection (WCD) is as old as chromatography itself. WCD requires an ability to interrogate column contents from the outside. Other than the obvious case of optical detection through a transparent column, admittance (often termed contactless conductance) measurements can also sense changes in the column contents (especially ionic content) from the outside without galvanic contact with the solution. We propose here electromechanically scanned admittance imaging and apply this to open tubular (OT) chromatography. The detector scans across the column; the length resolution depends on the scanning velocity and the data acquisition frequency, ultimately limited by the physical step resolution (40 μm in the present setup). Precision equal to this step resolution was observed for locating an interface between two immiscible liquids inside a 21 μm capillary. Mechanically, the maximum scanning speed was 100 mm/s, but at 1 kHz sampling rate and a time constant of 25 ms, the highest practical scan speed (no peak distortion) was 28 mm/s. At scanning speeds of 0, 4, and 28 mm/s, the S/N for 180 pL (zone length of 1.9 mm in a 11 μm i.d. column) of 500 μM KCl injected into water was 6450, 3850, and 1500, respectively. To facilitate constant and reproducible contact with the column regardless of minor variations in outer diameter, a double quadrupole electrode system was developed. Columns of significant length (>1 m) can be readily scanned. We demonstrate its applicability with both OT and commercial packed columns and explore uniformity of retention along a column, increasing S/N by stopped-flow repeat scans, etc. as unique applications.

  19. Electrostatic Levitator Electrode Layout

    Science.gov (United States)

    1998-01-01

    Schematic of Electrostatic Levitator (ESL) electrodes and controls system. The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  20. A statistically robust EEG re-referencing procedure to mitigate reference effect

    OpenAIRE

    Lepage, Kyle Q.; Kramer, Mark A.; Chu, Catherine J.

    2014-01-01

    Background: The electroencephalogram (EEG) remains the primary tool for diagnosis of abnormal brain activity in clinical neurology and for in vivo recordings of human neurophysiology in neuroscience research. In EEG data acquisition, voltage is measured at positions on the scalp with respect to a reference electrode. When this reference electrode responds to electrical activity or artifact all electrodes are affected. Successful analysis of EEG data often involves re-referencing procedures th...

  1. Flexible transparent electrode

    Science.gov (United States)

    Demiryont, Hulya; Shannon, Kenneth C., III; Moorehead, David; Bratcher, Matthew

    2011-06-01

    This paper presents the properties of the EclipseTECTM transparent conductor. EclipseTECTM is a room temperature deposited nanostructured thin film coating system comprised of metal-oxide semiconductor elements. The system possesses metal-like conductivity and glass-like transparency in the visible region. These highly conductive TEC films exhibit high shielding efficiency (35dB at 1 to 100GHz). EclipseTECTM can be deposited on rigid or flexible substrates. For example, EclipseTECTM deposited on polyethylene terephthalate (PET) is extremely flexible that can be rolled around a 9mm diameter cylinder with little or no reduction in electrical conductivity and that can assume pre-extension states after an applied stress is relieved. The TEC is colorless and has been tailored to have high visible transmittance which matches the eye sensitivity curve and allows the viewing of true background colors through the coating. EclipseTECTM is flexible, durable and can be tailored at the interface for applications such as electron- or hole-injecting OLED electrodes as well as electrodes in flexible displays. Tunable work function and optical design flexibility also make EclipseTECTM well-suited as a candidate for grid electrode replacement in next-generation photovoltaic cells.

  2. Preparation and characterization of PbO2–ZrO2 nanocomposite electrodes

    International Nuclear Information System (INIS)

    Yao Yingwu; Zhao Chunmei; Zhu Jin

    2012-01-01

    PbO 2 –ZrO 2 nanocomposite electrodes were prepared by the anodic codeposition in the lead nitrate plating bath containing ZrO 2 nanoparticles. The influences of the ZrO 2 nanoparticles concentration, current density, temperature and stirring rate of the plating bath on the composition of the nanocomposite electrodes were investigated. The surface morphology and the structure of the nanocomposite electrodes were characterized by scanning electronic microscopy (SEM) and X-ray diffraction (XRD), respectively. The experimental results show that the addition of ZrO 2 nanoparticles in the electrodeposition process of lead dioxide significantly increases the lifetime of nanocomposite electrodes. The PbO 2 –ZrO 2 nanocomposite electrodes have a service life of 141 h which is almost four times longer than that of the pure PbO 2 electrodes. The morphology of PbO 2 –ZrO 2 nanocomposite electrodes is more compact and finer than that of PbO 2 electrodes. The relative surface area of the composite electrodes is approximately 2 times that of the pure PbO 2 electrodes. The structure test shows that the addition of ZrO 2 nanoparticles into the plating bath decreases the grain size of the PbO 2 –ZrO 2 nanocomposite electrodes. The anodic polarization curves show that the oxygen evolution overpotential of PbO 2 –ZrO 2 nanocomposite electrodes is higher than PbO 2 electrodes. The pollutant anodic oxidation experiment show that the PbO 2 –ZrO 2 nanocomposite electrode exhibited the better performance for the degradation of 4-chlorophenol than PbO 2 electrode, the removal ratio of COD reached 96.2%.

  3. Fabrication, characterization and electrocatalytic application of a lead dioxide electrode with porous titanium substrate

    International Nuclear Information System (INIS)

    Zhang, Wenli; Kong, Haishen; Lin, Haibo; Lu, Haiyan; Huang, Weimin; Yin, Jian; Lin, Zheqi; Bao, Jinpeng

    2015-01-01

    In this study, PbO 2 electrode was prepared on porous Ti/SnO 2 –Sb 2 O 5 substrate (denoted as 3D-Ti/PbO 2 electrode), and its electrochemical properties were investigated in detail. The electrodeposition mechanism of 3D-Ti/PbO 2 electrode was investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Scanning electron microscope (SEM) result showed that the 3D-Ti/PbO 2 electrode possessed porous structure when it was electrodeposited for time less than 30 min. The 3D-Ti/PbO 2 electrode prepared for 10 min had more active sites than the lead dioxide electrode electrodeposited on planar titanium substrate (denoted as 2D-Ti/PbO 2 electrode) and its electrochemical porosity is about 54%. The embedded structure between porous Ti/SnO 2 –Sb 2 O 5 substrate and PbO 2 coating increased the stability of 3D-Ti/PbO 2 electrode. The service life of 3D-Ti/PbO 2 electrode was about 350 h which was much longer than 2D-Ti/PbO 2 electrode. What's more, 3D-Ti/PbO 2 electrode had better electrocatalytic activity towards phenol degradation than 2D-Ti/PbO 2 electrode. - Highlights: • 3D-Ti/PbO 2 electrode was prepared on a porous titanium substrate. • The electrochemical active surface area was investigated. • The activity of 3D-Ti/PbO 2 electrode towards phenol oxidation was investigated. • 3D-Ti/PbO 2 electrode shows superior electrocatalytic activity.

  4. The utility of repeat sestamibi scans in patients with primary hyperparathyroidism after an initial negative scan.

    Science.gov (United States)

    Krishnamurthy, Vikram D; Sound, Sara; Okoh, Alexis K; Yazici, Pinar; Yigitbas, Hakan; Neumann, Donald; Doshi, Krupa; Berber, Eren

    2017-06-01

    We analyzed the utility of repeated sestambi scans in patients with primary hyperparathyroidism and its effects on operative referral. We carried out a retrospective review of patients with primary hyperparathyroidism who underwent repeated sestambi scans exclusively within our health system between 1996-2015. Patient demographic, presentation, laboratory, imaging, operative, and pathologic data were reviewed. Univariate analysis with JMP Pro v12 was used to identify factors associated with conversion from an initial negative to a subsequent positive scan. After exclusion criteria (including reoperations), we identified 49 patients in whom 59% (n = 29) of subsequent scans remained negative and 41% (n = 20) converted to positive. Factors associated with an initial negative to a subsequent positive scan included classic presentation and second scans with iodine subtraction (P = .04). Nonsurgeons were less likely to order an iodine-subtraction scan (P < .05). Fewer patients with negative imaging were referred to surgery (33% vs 100%, P = .005), and median time to operation after the first negative scan was 25 months (range 1.4-119). Surgeon-performed ultrasonography had greater sensitivity and positive predictive value than repeated sestamibi scans. Negative sestambi scans decreased and delayed operative referral. Consequently, we identified several process improvement initiatives, including education regarding superior institutional imaging. Combining all findings, we created an algorithm for evaluating patients with primary hyperparathyroidism after initially negative sestamibi scans, which incorporates surgeon-performed ultrasonography. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Lung PET scan

    Science.gov (United States)

    ... Chest PET scan; Lung positron emission tomography; PET - chest; PET - lung; PET - tumor imaging; ... Grainger & Allison's Diagnostic Radiology: A Textbook of Medical Imaging . 6th ed. Philadelphia, ...

  6. Scanning of bone metastases

    International Nuclear Information System (INIS)

    Robillard, J.

    1977-01-01

    The Centers against cancer of Caen, Angers, Montpellier, Strasbourg and 'the Curie Foundation' have confronted their experience in detection of bone metastases by total body scanning. From the investigation by this procedure, of 1,467 patients with cancer, it results: the confrontation between radio and scanning shows a rate of false positive and false negative identical to the literature ones; the countage scanning allows to reduce the number of false positive; scanning allows to direct bone biopsy and to improve efficiency of histological examination [fr

  7. Finite difference time domain (FDTD) modeling of implanted deep brain stimulation electrodes and brain tissue.

    Science.gov (United States)

    Gabran, S R I; Saad, J H; Salama, M M A; Mansour, R R

    2009-01-01

    This paper demonstrates the electromagnetic modeling and simulation of an implanted Medtronic deep brain stimulation (DBS) electrode using finite difference time domain (FDTD). The model is developed using Empire XCcel and represents the electrode surrounded with brain tissue assuming homogenous and isotropic medium. The model is created to study the parameters influencing the electric field distribution within the tissue in order to provide reference and benchmarking data for DBS and intra-cortical electrode development.

  8. Electron transfer reactions to probe the electrode/solution interface

    Energy Technology Data Exchange (ETDEWEB)

    Capitanio, F.; Guerrini, E.; Colombo, A.; Trasatti, S. [Milan Univ., Milan (Italy). Dept. of Physical Chemistry and Electrochemistry

    2008-07-01

    The reactions that occur at the interface between an electrode and an electrolyte were examined with particular reference to the interaction of different electrode surfaces with redox couples. A semi-integration or convolution technique was used to study the kinetics of electron transfer on different electrode materials with different hydrophilic behaviour, such as Boron-Doped-Diamond (BDD), Au and Pt. Standard reversible redox couples were also investigated, including (Fe3+/2+, Fe(CN)63-/4-, Ru(NH3)63+/2+, Co(NH3)63+/2+, Ir4+/3+, V4+/5+ and V3+/2+). The proposed method proved to be simple, straightforward and reliable since the obtained kinetic information was in good agreement with data in the literature. It was concluded that the kinetics of the electrode transfer reactions depend on the chemical nature of the redox couple and electrode material. The method should be further extended to irreversible couples and other electrode materials such as mixed oxide electrodes. 3 refs., 2 figs.

  9. Hybrid graphene electrodes for supercapacitors of high energy density

    Science.gov (United States)

    Zhang, Feifei; Tang, Jie; Shinya, Norio; Qin, Lu-Chang

    2013-10-01

    We describe a process of co-reduction to reduce dispersed graphene oxide (GO) and single-walled carbon nanotubes (SWNTs) simultaneously for preparation of hybrid electrodes for graphene supercapacitors. The SWNTs are in between the inter-layer space of graphene sheets as a spacer to prevent effectively restacking of graphene that often limits seriously the electrochemical performance of graphene supercapacitors. The SWNTs also act as conductive binders to improve the electrical conduction of the electrode. A high specific capacitance of 261 F g-1 for a single electrode and specific energy density of 123 W h kg-1 measured in the two-electrode configuration have been obtained in ionic liquid (EMI-TFSI). For interpretation of color in Fig. 6, the reader is referred to the web version of this article.

  10. Feasibility of Parylene Coating for Planar Electroporation Copper Electrodes

    Directory of Open Access Journals (Sweden)

    Vitalij NOVICKIJ

    2017-08-01

    Full Text Available This paper is focused on the feasibility study of parylene as a biocompatible coating for planar electroporation microelectrodes. The planar parallel and the circular interdigitated electrodes are applied in the analysis. The electrodes feature 100 μm width with a 300 μm gap between anode and cathode. The parylene coating thickness was varied in the 250 nm – 2 μm range. The resultant electric field distribution evaluation has been performed using the finite element method. The electrodes have been applied in electroporation experiments with Saprolegnia parasitica. For reference the additional experiments using conventional electroporation cuvette (1 mm gap have been performed. It has been determined that the parylene coating with hydrophobic properties has limited applicability for the passivation of the planar electroporation electrodes.DOI: http://dx.doi.org/10.5755/j01.ms.23.2.14953

  11. Electrical impedance tomography with compensation for electrode positioning variations

    International Nuclear Information System (INIS)

    Blott, B.H.; Daniell, G.J.; Meeson, S.

    1998-01-01

    Ideally electrical impedance tomography (EIT) should not be oversensitive to electrode positions, but this conflicts with efforts to produce high-resolution images. Two procedures are presented that balance reducing the sensitivity to electrode position errors with generating practicable EIT images. The first provides a criterion based on electrode sensitivity for regularizing the reconstruction through spectral expansion. The main consequences of this are that smoother images are produced and the number of artefacts and their magnitude are generally reduced. The second modification uses the recorded data to compensate for electrode movements that have occurred after the reference data were measured. Image smoothness is used as the criterion for the readjustment. Computer simulation tests have shown that this modification produces improved image fidelity. (author)

  12. Preparation, electrochemical characterization and charge-discharge of reticulated vitreous carbon/polyaniline composite electrodes

    International Nuclear Information System (INIS)

    Dalmolin, Carla; Biaggio, Sonia R.; Rocha-Filho, Romeu C.; Bocchi, Nerilso

    2009-01-01

    Polyaniline was electrodeposited onto reticulated vitreous carbon - RVC - in order to obtain a tridimensional composite electrode. Three variations of these electrodes were analysed: a small-anion-doped polyaniline (RVC/Pani), a polyanion-doped polyaniline (RVC/PaniPSS) and a bi-layer type formed by an inner layer of the first electrode and an outer layer of the second one (RVC/Pani/PaniPSS). These composites were characterized by cyclic voltammetry, scanning electronic microscopy and electrochemical impedance spectroscopy. Photomicrographies, voltammetric profiles and impedance data pointed to different morphological and electrochemical characteristics for polyaniline doped with small or large anions, and a mixed behavior for the bi-layer electrodes. Charge-discharge tests for these tridimensional (3D) electrodes, employed as the cathode in lithium batteries, indicated better performance for the RVC/Pani electrode. These RVC composites presented higher specific capacities when compared with those obtained for Pani deposited onto bidimensional substrates.

  13. Study on Carbon Nano composite Counter electrode for Dye-Sensitized Solar Cells

    International Nuclear Information System (INIS)

    Chen, Y.; Zhang, H.; Lin, J.

    2012-01-01

    Carbon nano composite electrodes were prepared by adding carbon nano tubes (CNTs) into carbon black as counter electrodes of dye-sensitized solar cells (DSSCs). The morphology and structure of carbon nano composite electrodes were studied by scanning electron microscopy. The influence of CNTs on the electrochemical performance of carbon nano composite electrodes is investigated by cyclic voltammetry and electrochemical impedance spectroscopy. Carbon nano composite electrodes with CNTs exhibit a highly interconnected network structure with high electrical conductivity and good catalytic activity. The influence of different CNTs content in carbon nano composite electrodes on the open-circuit voltage, short-circuit current, and filling factor of DSSCs is also investigated. DSSCs with 10% CNTs content exhibit the best photovoltaic performance in our experiments.

  14. EDTA modified glassy carbon electrode: Preparation and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Ustuendag, Zafer [Dumlupinar University, Faculty of Arts and Sciences, Department of Chemistry, Kuetahya (Turkey); Solak, Ali Osman [Ankara University, Faculty of Science, Department of Chemistry, Degol Street, Tandogan, 06100 Ankara (Turkey)], E-mail: osolak@science.ankara.edu.tr

    2009-11-01

    EDTA-phenoxyamide modified glassy carbon electrode (EDTA-GC) was prepared at a glassy carbon electrode by surface synthesis. In the first step, nitrophenyl was grafted to the glassy carbon (GC) surface via the electrochemical reduction of its tetraflouroborate diazonium salt. In the second step, nitrophenyl-modified electrode (NP-GC) was subjected to the cathodic potential scan to reduce the nitro to amine group. p-Aminophenyl modified glassy carbon electrode (AP-GC) was dipped into a EDTA solution containing 1-ethyl-3(3-(dimethlyamino)propyl)-carbodiimide (EDC) as an activating agent. Thus formed ((2-anilino-2-oxoethyl){l_brace}2-[bis(carboxymethyl)amino]-ethyl{r_brace}amino)acetic acid modified GC electrode was denoted as EDTA-GC and characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), ellipsometry and X-ray photoelectron spectroscopy (XPS). Complexation of the EDTA-GC surface with Pb{sup 2+} ions was investigated if this electrode could be used as a metal sensor.

  15. Mesoscale characterization of local property distributions in heterogeneous electrodes

    Science.gov (United States)

    Hsu, Tim; Epting, William K.; Mahbub, Rubayyat; Nuhfer, Noel T.; Bhattacharya, Sudip; Lei, Yinkai; Miller, Herbert M.; Ohodnicki, Paul R.; Gerdes, Kirk R.; Abernathy, Harry W.; Hackett, Gregory A.; Rollett, Anthony D.; De Graef, Marc; Litster, Shawn; Salvador, Paul A.

    2018-05-01

    The performance of electrochemical devices depends on the three-dimensional (3D) distributions of microstructural features in their electrodes. Several mature methods exist to characterize 3D microstructures over the microscale (tens of microns), which are useful in understanding homogeneous electrodes. However, methods that capture mesoscale (hundreds of microns) volumes at appropriate resolution (tens of nm) are lacking, though they are needed to understand more common, less ideal electrodes. Using serial sectioning with a Xe plasma focused ion beam combined with scanning electron microscopy (Xe PFIB-SEM), two commercial solid oxide fuel cell (SOFC) electrodes are reconstructed over volumes of 126 × 73 × 12.5 and 124 × 110 × 8 μm3 with a resolution on the order of ≈ 503 nm3. The mesoscale distributions of microscale structural features are quantified and both microscale and mesoscale inhomogeneities are found. We analyze the origin of inhomogeneity over different length scales by comparing experimental and synthetic microstructures, generated with different particle size distributions, with such synthetic microstructures capturing well the high-frequency heterogeneity. Effective medium theory models indicate that significant mesoscale variations in local electrochemical activity are expected throughout such electrodes. These methods offer improved understanding of the performance of complex electrodes in energy conversion devices.

  16. Model PET Scan Activity

    Science.gov (United States)

    Strunk, Amber; Gazdovich, Jennifer; Redouté, Oriane; Reverte, Juan Manuel; Shelley, Samantha; Todorova, Vesela

    2018-05-01

    This paper provides a brief introduction to antimatter and how it, along with other modern physics topics, is utilized in positron emission tomography (PET) scans. It further describes a hands-on activity for students to help them gain an understanding of how PET scans assist in detecting cancer. Modern physics topics provide an exciting way to introduce students to current applications of physics.

  17. Scanning laser Doppler vibrometry

    DEFF Research Database (Denmark)

    Brøns, Marie; Thomsen, Jon Juel

    With a Scanning Laser Doppler Vibrometer (SLDV) a vibrating surface is automatically scanned over predefined grid points, and data processed for displaying vibration properties like mode shapes, natural frequencies, damping ratios, and operational deflection shapes. Our SLDV – a PSV-500H from...

  18. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z Thyroid Scan and Uptake Thyroid scan and uptake uses ...

  19. Transverse section scanning mechanism

    International Nuclear Information System (INIS)

    Doherty, E.J.

    1978-01-01

    Apparatus is described for scanning a transverse, radionuclide scan-field using an array of focussed collimators. The collimators are movable tangentially on rails, driven by a single motor via a coupled screw. The collimators are also movable in a radial direction on rails driven by a step motor via coupled screws and bevel gears. Adjacent bevel gears rotate in opposite directions so adjacent collimators move in radially opposite directions. In use, the focal point of each collimator scans at least half of the scan-field, e.g. a human head located in the central aperture, and the electrical outputs of detectors associated with each collimator are used to determine the distribution of radioactive emission intensity at a number of points in the scan-field. (author)

  20. LIDAR COMBINED SCANNING UNIT

    Directory of Open Access Journals (Sweden)

    V. V. Elizarov

    2016-11-01

    Full Text Available Subject of Research. The results of lidar combined scanning unit development for locating leaks of hydrocarbons are presented The unit enables to perform high-speed scanning of the investigated space in wide and narrow angle fields. Method. Scanning in a wide angular field is produced by one-line scanning path by means of the movable aluminum mirror with a frequency of 20Hz and amplitude of 20 degrees of swing. Narrowband scanning is performed along a spiral path by the deflector. The deflection of the beam is done by rotation of the optical wedges forming part of the deflector at an angle of ±50. The control function of the scanning node is performed by a specialized software product written in C# programming language. Main Results. This scanning unit allows scanning the investigated area at a distance of 50-100 m with spatial resolution at the level of 3 cm. The positioning accuracy of the laser beam in space is 15'. The developed scanning unit gives the possibility to browse the entire investigated area for the time not more than 1 ms at a rotation frequency of each wedge from 50 to 200 Hz. The problem of unambiguous definition of the beam geographical coordinates in space is solved at the software level according to the rotation angles of the mirrors and optical wedges. Lidar system coordinates are determined by means of GPS. Practical Relevance. Development results open the possibility for increasing the spatial resolution of scanning systems of a wide range of lidars and can provide high positioning accuracy of the laser beam in space.

  1. Pertinencia de la gammagrafía de tiroides en un servicio de medicina nuclear de referencia del oriente colombiano / Pertinence of Thyroid Scan in a Nuclear Medicine Department in Eastern Colombia / Relevância da cintilografia da tireóide em um centro de referência de medicina nuclear no leste colombiano

    Directory of Open Access Journals (Sweden)

    Liset Sánchez-Ordúz, MD.

    2015-03-01

    used in the study of thyroid diseases. It is recommended to perform it in patients presenting thyrotoxicosis, thyroid nodules with indeterminate cytology and when diagnosing ectopic thyroid. Our objective was to determine the pertinence of ordering thyroid scan in a nuclear medicine department in eastern Colombia. Methodology: Observational, retrospective, and cross-sectional descriptive study. Thyroid scans including relevant variables performed in the nuclear medicine department at Carlos Ardila Lulle hospital were evaluated during 3 consecutive months. The indication of the study, academic background of physician requesting the test, patient’s gender, concomitant presence of TSH with its respective value, and intake of Levothyroxine before test. Test results were also taken into account. Results: Out of the 277 performed scans, 244 (88% were women. 67% of them were not correctly indicated, and 32% of these patients were taking hormonal supplements, which was suspended 25 days before performing the test. General practitioners and consultants without specialization in endocrinology have a 9.08 and 9.37 probability respectively, of not indicating correctly the thyroid scan compared to endocrinologists. Conclusions: Two out of 3 thyroid scans performed in a nuclear medicine department in Eastern Colombia are not correctly indicated, producing a big impact in public health. [Sánchez-Orduz L, Wandurraga-Sánchez EA, García RE, Camacho PA. Pertinence of Thyroid Scan in a Nuclear Medicine Department in Eastern Colombia. MedUNAB 2015; 17(3: xx-xx]. Introdução: A cintilografia da tireóide é um teste muito usado no estudo de doenças da glândula tireóide. O monitoramento é recomendado em doentes com tireotoxicose, nódulos de tireóide com citologia indeterminada e suspeita de tireóide ectópica. Objetivo: Nosso objetivo foi determinar a pertinência do pedido de cintilografia da tireóide em um centro de referência de medicina nuclear no leste da Col

  2. Ti/TiO 2 nanotube array electrode as a new sensor to ...

    Indian Academy of Sciences (India)

    The Ti/TiO2 nanotube array (Ti-NTA) electrode was prepared by anodizing of the Ti foil ... and the pH=3.0 and =1.0 V (vs. reference electrode) were determined as the ... It was found that the photocurrent of EG was linearly dependent on the ...

  3. Removal of arsenic from drinking water by the electrocoagulation using Fe and Al electrodes

    International Nuclear Information System (INIS)

    Kobya, M.; Gebologlu, U.; Ulu, F.; Oncel, S.; Demirbas, E.

    2011-01-01

    Highlights: → Removal percentages of arsenic from drinking water at optimum operating conditions in electrocoagulation process were 93.5% for Fe electrode and 95.7% for Al electrode. → Operating costs at the optimum conditions were 0.020 Euro m -3 for Fe and 0.017 Euro m -3 for Al electrodes. → Surface topography of the solid particles at Fe/Al electrodes was analyzed with scanning electron microscope. → The adsorption of arsenic followed pseudo second-order adsorption model. - Abstract: A novel technique of electrocoagulation (EC) was attempted in the present investigation to remove arsenic from drinking waters. Experiments were carried out in a batch electrochemical reactor using Al and Fe electrodes with monopolar parallel electrode connection mode to assess their efficiency. The effects of several operating parameters on arsenic removal such as pH (4-9), current density (2.5-7.5 A m -2 ), initial concentration (75-500 μg L -1 ) and operating time (0-15 min) were examined. Optimum operating conditions were determined as an operating time of 12.5 min and pH 6.5 for Fe electrode (93.5%) and 15 min and pH 7 for Al electrode (95.7%) at 2.5 A m -2 , respectively. Arsenic removal obtained was highest with Al electrodes. Operating costs at the optimum conditions were calculated as 0.020 Euro m -3 for Fe and 0.017 Euro m -3 for Al electrodes. EC was able to bring down aqueous phase arsenic concentration to less than 10 μg L -1 with Fe and Al electrodes. The adsorption of arsenic over electrochemically produced hydroxides and metal oxide complexes was found to follow pseudo second-order adsorption model. Scanning electron microscopy was also used to analyze surface topography of the solid particles at Fe/Al electrodes during the EC process.

  4. HANFORD WASTE MINEROLOGY REFERENCE REPORT

    International Nuclear Information System (INIS)

    Disselkamp, R.S.

    2010-01-01

    This report lists the observed mineral phases present in the Hanford tanks. This task was accomplished by performing a review of numerous reports using experimental techniques including, but not limited to: x-ray diffraction, polarized light microscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, electron energy loss spectroscopy, and particle size distribution analyses. This report contains tables that can be used as a quick reference to identify the crystal phases present observed in Hanford waste.

  5. HANFORD WASTE MINERALOGY REFERENCE REPORT

    Energy Technology Data Exchange (ETDEWEB)

    DISSELKAMP RS

    2010-06-29

    This report lists the observed mineral phases present in the Hanford tanks. This task was accomplished by performing a review of numerous reports that used experimental techniques including, but not limited to: x-ray diffraction, polarized light microscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, electron energy loss spectroscopy, and particle size distribution analyses. This report contains tables that can be used as a quick reference to identify the crystal phases observed in Hanford waste.

  6. HANFORD WASTE MINEROLOGY REFERENCE REPORT

    Energy Technology Data Exchange (ETDEWEB)

    DISSELKAMP RS

    2010-06-18

    This report lists the observed mineral phase phases present in the Hanford tanks. This task was accomplished by performing a review of numerous reports using experimental techniques including, but not limited to: x-ray diffraction, polarized light microscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, electron energy loss spectroscopy, and particle size distribution analyses. This report contains tables that can be used as a quick reference to identify the crystal phases present observed in Hanford waste.

  7. Hanford Waste Mineralogy Reference Report

    International Nuclear Information System (INIS)

    Disselkamp, R.S.

    2010-01-01

    This report lists the observed mineral phases present in the Hanford tanks. This task was accomplished by performing a review of numerous reports that used experimental techniques including, but not limited to: x-ray diffraction, polarized light microscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, electron energy loss spectroscopy, and particle size distribution analyses. This report contains tables that can be used as a quick reference to identify the crystal phases observed in Hanford waste.

  8. Transparent Electrodes for Efficient Optoelectronics

    KAUST Repository

    Morales-Masis, Monica

    2017-03-30

    With the development of new generations of optoelectronic devices that combine high performance and novel functionalities (e.g., flexibility/bendability, adaptability, semi or full transparency), several classes of transparent electrodes have been developed in recent years. These range from optimized transparent conductive oxides (TCOs), which are historically the most commonly used transparent electrodes, to new electrodes made from nano- and 2D materials (e.g., metal nanowire networks and graphene), and to hybrid electrodes that integrate TCOs or dielectrics with nanowires, metal grids, or ultrathin metal films. Here, the most relevant transparent electrodes developed to date are introduced, their fundamental properties are described, and their materials are classified according to specific application requirements in high efficiency solar cells and flexible organic light-emitting diodes (OLEDs). This information serves as a guideline for selecting and developing appropriate transparent electrodes according to intended application requirements and functionality.

  9. Transparent Electrodes for Efficient Optoelectronics

    KAUST Repository

    Morales-Masis, Monica; De Wolf, Stefaan; Woods-Robinson, Rachel; Ager, Joel W.; Ballif, Christophe

    2017-01-01

    With the development of new generations of optoelectronic devices that combine high performance and novel functionalities (e.g., flexibility/bendability, adaptability, semi or full transparency), several classes of transparent electrodes have been developed in recent years. These range from optimized transparent conductive oxides (TCOs), which are historically the most commonly used transparent electrodes, to new electrodes made from nano- and 2D materials (e.g., metal nanowire networks and graphene), and to hybrid electrodes that integrate TCOs or dielectrics with nanowires, metal grids, or ultrathin metal films. Here, the most relevant transparent electrodes developed to date are introduced, their fundamental properties are described, and their materials are classified according to specific application requirements in high efficiency solar cells and flexible organic light-emitting diodes (OLEDs). This information serves as a guideline for selecting and developing appropriate transparent electrodes according to intended application requirements and functionality.

  10. Electrode nanomaterials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Yaroslavtsev, A B; Kulova, T L; Skundin, A M

    2015-01-01

    The state-of-the-art in the field of cathode and anode nanomaterials for lithium-ion batteries is considered. The use of these nanomaterials provides higher charge and discharge rates, reduces the adverse effect of degradation processes caused by volume variations in electrode materials upon lithium intercalation and deintercalation and enhances the power and working capacity of lithium-ion batteries. In discussing the cathode materials, attention is focused on double phosphates and silicates of lithium and transition metals and also on vanadium oxides. The anode materials based on nanodispersions of carbon, silicon, certain metals, oxides and on nanocomposites are also described. The bibliography includes 714 references

  11. Electrode for disintegrating metallic material

    International Nuclear Information System (INIS)

    Persang, J.C.

    1985-01-01

    A graphite electrode is provided for disintegrating and removing metallic material from a workpiece, e.g., such as portions of a nuclear reactor to be repaired while in an underwater and/or radioactive environment. The electrode is provided with a plurality of openings extending outwardly, and a manifold for supplying a mixture of water and compressed gas to be discharged through the openings for sweeping away the disintegrated metallic material during use of the electrode

  12. Laser Scanning in Forests

    Directory of Open Access Journals (Sweden)

    Håkan Olsson

    2012-09-01

    Full Text Available The introduction of Airborne Laser Scanning (ALS to forests has been revolutionary during the last decade. This development was facilitated by combining earlier ranging lidar discoveries [1–5], with experience obtained from full-waveform ranging radar [6,7] to new airborne laser scanning systems which had components such as a GNSS receiver (Global Navigation Satellite System, IMU (Inertial Measurement Unit and a scanning mechanism. Since the first commercial ALS in 1994, new ALS-based forest inventory approaches have been reported feasible for operational activities [8–12]. ALS is currently operationally applied for stand level forest inventories, for example, in Nordic countries. In Finland alone, the adoption of ALS for forest data collection has led to an annual savings of around 20 M€/year, and the work is mainly done by companies instead of governmental organizations. In spite of the long implementation times and there being a limited tradition of making changes in the forest sector, laser scanning was commercially and operationally applied after about only one decade of research. When analyzing high-ranked journal papers from ISI Web of Science, the topic of laser scanning of forests has been the driving force for the whole laser scanning research society over the last decade. Thus, the topic “laser scanning in forests” has provided a significant industrial, societal and scientific impact. [...

  13. Bone scan in pediatrics

    International Nuclear Information System (INIS)

    Gordon, I.; Peters, A.M.

    1987-01-01

    In 1984, a survey carried out in 21 countries in Europe showed that bone scintigraphy comprised 16% of all paediatric radioisotope scans. Although the value of bone scans in paediatrics is potentially great, their quality varies greatly, and poor-quality images are giving this valuable technique a bad reputation. The handling of children requires a sensitive staff and the provision of a few simple inexpensive items of distraction. Attempting simply to scan a child between two adult patients in a busy general department is a recipe for an unhappy, uncooperative child with the probable result of poor images. The intravenous injection of isotope should be given adjacent to the gamma camera room, unless dynamic scans are required, so that the child does not associate the camera with the injection. This injection is best carried out by someone competent in paediatric venipunture; the entire procedure should be explained to the child and parent, who should remain with child throughout. It is naive to think that silence makes for a cooperative child. The sensitivity of bone-seeking radioisotope tracers and the marked improvement in gamma camera resolution has allowed the bone scanning to become an integrated technique in the assessment of children suspected of suffering from pathological bone conditions. The tracer most commonly used for routine bone scanning is 99m Tc diphosphonate (MDP); other isotopes used include 99m Tc colloid for bone marrow scans and 67 Ga citrate and 111 In white blood cells ( 111 In WBC) for investigation of inflammatory/infective lesions

  14. Electrochemical characterisation of novel screen-printed carbon paste electrodes for voltammetric measurements

    Directory of Open Access Journals (Sweden)

    Sýs Milan

    2017-01-01

    Full Text Available This work is focused on the homemade screen-printed carbon paste electrode containing basically graphite powder (or glassy carbon powder, poly(vinylbchloride (PVC and paraffin oil. It compares the electrochemical properties of conventional carbon-based electrodes and prepared screen-printed carbon paste electrodes towards [Fe(CN6]3-/[Fe(CN6]4- and quinone/hydroquinone redox couples. Significant attention is paid to the development of the corresponding carbon inks, printing and the surface characterisation of the resulting electrodes by the scanning electron microscopy. An optimization consisted of the selection of the organic solvent, the optimal content of the used polymer with the chosen paste binder, appropriate isolation of electric contact, etc. Very similar properties of the prepared screen-printed electrodes, containing only corresponding carbon powder and 3 % PVC, with their conventional carbon paste electrode and glassy carbon-based electrodes, were observed during their characterisation. Screen-printed electrodes, with the pasting liquid usually provided satisfactory analytical data. Moreover, they can be used in the flow injection analysis and could undoubtedly replace the carbon paste grooved electrodes. It can be assumed that certain progress in the development of electrode materials was achieved by this research.

  15. Ion-selective electrode reviews

    CERN Document Server

    Thomas, J D R

    1982-01-01

    Ion-Selective Electrode Reviews, Volume 3, provides a review of articles on ion-selective electrodes (ISEs). The volume begins with an article on methods based on titration procedures for surfactant analysis, which have been developed for discrete batch operation and for continuous AutoAnalyser use. Separate chapters deal with detection limits of ion-selective electrodes; the possibility of using inorganic ion-exchange materials as ion-sensors; and the effect of solvent on potentials of cells with ion-selective electrodes. Also included is a chapter on advances in calibration procedures, the d

  16. Field testing of sulphide electrodes

    International Nuclear Information System (INIS)

    Singh, P.R.; Gaonkar, K.B.; Gadiyar, H.S.

    1993-01-01

    Sulphide ion selective electrodes have been developed at BARC, for determination of Ag + and S - ions directly and Cl - and CN - ions indirectly. The electrodes were tested for their use in sulphide environments in the EAD (Effluent After Dilution) stream at the Heavy Water Plant, Kota. The electrodes are suitable in the concentration range of 16000 ppm to 0.002 ppm, with a slope of 29-31 mV per decade change in the sulphide ion concentration. The response time is less than 10 seconds. These electrodes are reliable for continuous on-line use for a long period. (author). 7 refs., 11 figs., 1 tab

  17. Coated carbon nanotube array electrodes

    Science.gov (United States)

    Ren, Zhifeng [Newton, MA; Wen, Jian [Newton, MA; Chen, Jinghua [Chestnut Hill, MA; Huang, Zhongping [Belmont, MA; Wang, Dezhi [Wellesley, MA

    2008-10-28

    The present invention provides conductive carbon nanotube (CNT) electrode materials comprising aligned CNT substrates coated with an electrically conducting polymer, and the fabrication of electrodes for use in high performance electrical energy storage devices. In particular, the present invention provides conductive CNTs electrode material whose electrical properties render them especially suitable for use in high efficiency rechargeable batteries. The present invention also provides methods for obtaining surface modified conductive CNT electrode materials comprising an array of individual linear, aligned CNTs having a uniform surface coating of an electrically conductive polymer such as polypyrrole, and their use in electrical energy storage devices.

  18. Microbial electrode sensor for alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Hikuma, M [Ajinomoto Co., Inc., Kawasaki, Japan; Kubo, T; Yasuda, T; Karube, I; Suzuki, S

    1979-10-01

    A microbial electrode consisting of immobilized microorganisms, a gas permeable Teflon membrane, and an oxygen electrode was prepared for the continuous determination of methyl and ethyl alcohols. Immobilized Trichosporon brassicae was employed for a microbial electrode sensor for ethyl alcohol. When a sample solution containing ethyl alcohol was injected into a microbial electrode system, the current of the electrode decreased markedly with time until a steady state was reached. The response time was within 10 min by the steady state method and within 6 min by the pulse method. A linear relationship was observed between the current decrease and the concentration of ethyl alcohol below 22.5 mg/liter. The current was reproducible within +- 6% of the relative error when a sample solution containing 16.5 mg/liter ethyl alcohol. The standard deviation was 0.5 mg/liter in 40 experiments. The selectivity of the microbial electrode sensor for ethyl alcohol was satisfactory. The microbial electrode sensor was applied to a fermentation broth of yeasts and satisfactory comparative results were obtained (correlation coefficient 0.98). The current output of the microbial electrode sensor was almost constant for more than three weeks and 2100 assays. A microbial electrode sensor using immobilized bacteria for methyl alcohol was also described.

  19. Novel screen printed electrode set for routine EEG recordings in patients with altered mental status.

    Science.gov (United States)

    Myllymaa, Sami; Lepola, Pasi; Hukkanen, Taina; Oun, Andre; Mervaala, Esa; Toyras, Juha; Lappalainen, Reijo; Myllymaa, Katja

    2013-01-01

    There is a growing need for an easy to use screening tool for the assessment of brain's electrical function in patients with altered mental status (AMS). The purpose of this study is to give a brief overview of the state-of-the-art in electrode technology, and to present a novel sub-hairline electrode set developed in our research group. Screen-printing technology was utilized to construct the electrode set consisting of ten electroencephalography (EEG) electrodes, two electrooculography (EOG) electrodes, two ground electrodes and two reference electrodes. Electrical characteristics of hydrogel-coated silver ink electrodes were found adequate for clinical EEG recordings as assessed by electrical impedance spectroscopy (EIS). The skin-electrode impedances remain stable and low enough at least two days enabling high-quality long-term recordings. Due to the proper material selection, thin ink layers and detachable zero insertion force (ZIF) - connector, electrode was observed to be CT- and MRI-compatible allowing imaging without removing the electrodes. Pilot EEG recordings gave very promising results and an on-going clinical trial with larger number of patients will show the true feasibility of this approach.

  20. Characterization of azo dyes on Pt and Pt/polyaniline/dispersed Pt electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Molina, J.; Fernandez, J.; Rio, A.I. del; Bonastre, J. [Departamento de Ingenieria Textil y Papelera, EPS de Alcoy, Universitat Politecnica de Valencia, Plaza Ferrandiz y Carbonell s/n, 03801 Alcoy (Spain); Cases, F., E-mail: fjcases@txp.upv.es [Departamento de Ingenieria Textil y Papelera, EPS de Alcoy, Universitat Politecnica de Valencia, Plaza Ferrandiz y Carbonell s/n, 03801 Alcoy (Spain)

    2012-06-15

    The electrochemical characterization of two organic dyes (amaranth and procion orange MX-2R) has been performed on Pt electrodes and Pt electrodes coated with polyaniline and dispersed Pt. Electrodes with different Pt loads have been synthesized and characterized obtaining that a load of 300 {mu}g cm{sup -2} was the optimum one. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) was employed to observe the distribution and morphology of the Pt nanoparticles. The electroactivity of the electrodes has also been characterized by means of scanning electrochemical microscopy (SECM). The chemical characterization of Pt dispersed Pani coated Pt electrodes (Pt-Pani-Pt) was performed by means of X-ray photoelectron spectroscopy (XPS). The electrochemical characterization of the dyes has been performed by means of cyclic voltammetry. Voltammograms have shown that the presence of the dyes diminishes characteristic Pt oxidation and reduction peaks. However, redox processes due to the dyes, appeared in the voltammograms. The different species responsible of these redox processes were generated in the vicinity of the electrode and were not adsorbed on the electrode surface since after stirring, the different redox processes disappeared. Characterization with different scan rates showed that redox processes of both dyes were controlled by diffusion.

  1. Lithium alloy negative electrodes

    Science.gov (United States)

    Huggins, Robert A.

    The 1996 announcement by Fuji Photo Film of the development of lithium batteries containing convertible metal oxides has caused a great deal of renewed interest in lithium alloys as alternative materials for use in the negative electrode of rechargeable lithium cells. The earlier work on lithium alloys, both at elevated and ambient temperatures is briefly reviewed. Basic principles relating thermodynamics, phase diagrams and electrochemical properties under near-equilibrium conditions are discussed, with the Li-Sn system as an example. Second-phase nucleation, and its hindrance under dynamic conditions plays an important role in determining deviations from equilibrium behavior. Two general types of composite microstructure electrodes, those with a mixed-conducting matrix, and those with a solid electrolyte matrix, are discussed. The Li-Sn-Si system at elevated temperatures, and the Li-Sn-Cd at ambient temperatures are shown to be examples of mixed-conducting matrix microstructures. The convertible oxides are an example of the solid electrolyte matrix type. Although the reversible capacity can be very large in this case, the first cycle irreversible capacity required to convert the oxides to alloys may be a significant handicap.

  2. Ion-selective electrodes in organic elemental and functional group analysis: a review

    International Nuclear Information System (INIS)

    Selig, W.

    1977-01-01

    The literature on the use of ion-selective electrodes in organic elemental and functional group analysis is surveyed in some detail. The survey is complete through Chemical Abstracts, Vol. 83 (1975). 40 figures, 52 tables, 236 references

  3. Ion-selective electrodes in organic elemental and functional group analysis: a review

    Energy Technology Data Exchange (ETDEWEB)

    Selig, W.

    1977-11-08

    The literature on the use of ion-selective electrodes in organic elemental and functional group analysis is surveyed in some detail. The survey is complete through Chemical Abstracts, Vol. 83 (1975). 40 figures, 52 tables, 236 references.

  4. Multicolor Scanning Laser Imaging in Diabetic Retinopathy.

    Science.gov (United States)

    Ahmad, Mohammad S Z; Carrim, Zia Iqbal

    2017-11-01

    Diabetic retinopathy is a common cause of blindness in individuals younger than 60 years. Screening for retinopathy is undertaken using conventional color fundus photography and relies on the identification of hemorrhages, vascular abnormalities, exudates, and cotton-wool spots. These can sometimes be difficult to identify. Multicolor scanning laser imaging, a new imaging modality, may have a role in improving screening outcomes, as well as facilitating treatment decisions. Observational case series comprising two patients with known diabetes who were referred for further examination after color fundus photography revealed abnormal findings. Multicolor scanning laser imaging was undertaken. Features of retinal disease from each modality were compared. Multicolor scanning laser imaging provides superior visualization of retinal anatomy and pathology, thereby facilitating risk stratification and treatment decisions. Multicolor scanning laser imaging is a novel imaging technique offering the potential for improving the reliability of screening for diabetic retinopathy. Validation studies are warranted.

  5. Electrochemically synthesized stretchable polypyrrole/fabric electrodes for supercapacitor

    International Nuclear Information System (INIS)

    Yue, Binbin; Wang, Caiyun; Ding, Xin; Wallace, Gordon G.

    2013-01-01

    Wearable electronics offer the combined advantages of both electronics and fabrics. Being an indispensable part of these electronics, lightweight, stretchable and wearable power sources are strongly demanded. Here we describe a daily-used cotton fabric coated with polypyrrole as electrode for stretchable supercapacitors. Polypyrrole was synthesized on the Au coated fabric via an electrochemical polymerization process with p-toluenesulfonic acid (p-TS) as dopant from acetonitrile solution. This material was characterized with FESEM, tensile stress, and studied as a supercapacitor electrode in 1.0 M NaCl. This conductive textile electrode can sustain up to 140% strain without electric failure. It delivers a high specific capacitance of 254.9 F g −1 at a scan rate of 10 mV s −1 , and keeps almost unchanged at an applied strain (i.e. 30% and 50%) but with an improved cycling stability

  6. Direct electrodeposition of metal nanowires on electrode surface

    International Nuclear Information System (INIS)

    Gambirasi, Arianna; Cattarin, Sandro; Musiani, Marco; Vazquez-Gomez, Lourdes; Verlato, Enrico

    2011-01-01

    A method for decorating the surface of disk electrodes with metal nanowires is presented. Cu and Ni nanowires with diameters from 1.0 μm to 0.2 μm are directly deposited on the electrode surface using a polycarbonate membrane filter template maintained in contact with the metal substrate by the soft homogeneous pressure of a sponge soaked with electrolyte. The morphologic and structural properties of the deposit are characterized by scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD). The latter shows that the head of nanowires with diameter of 0.4 μm is ordinarily polycrystalline, and that of nanowires with diameter of 0.2 μm is almost always monocrystalline for Cu and frequently also for Ni. Cyclic voltammetries and impedance investigations recorded in alkaline solutions at representative Ni electrodes decorated with nanowires provide consistent values of roughness factor, in the range 20-25.

  7. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... for a thyroid scan is 30 minutes or less. Thyroid Uptake You will be given radioactive iodine ( ... for each thyroid uptake is five minutes or less. top of page What will I experience during ...

  8. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... evaluate changes in the gland following medication use, surgery, radiotherapy or chemotherapy top of page How should ... such as an x-ray or CT scan, surgeries or treatments using iodinated contrast material within the ...

  9. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... abnormal was found, and should not be a cause of concern for you. If you had an ... abnormal was found, and should not be a cause of concern for you. Actual scanning time for ...

  10. Tomographic scanning apparatus

    International Nuclear Information System (INIS)

    1981-01-01

    This patent specification relates to a tomographic scanning apparatus using a fan beam and digital output signal, and particularly to the design of the gas-pressurized ionization detection system. (U.K.)

  11. Pediatric CT Scans

    Science.gov (United States)

    The Radiation Epidemiology Branch and collaborators have initiated a retrospective cohort study to evaluate the relationship between radiation exposure from CT scans conducted during childhood and adolescence and the subsequent development of cancer.

  12. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... which are encased in metal and plastic and most often shaped like a box, attached to a ... will I experience during and after the procedure? Most thyroid scan and thyroid uptake procedures are painless. ...

  13. Heart CT scan

    Science.gov (United States)

    ... make to decrease the risk of heart disease. Risks Risks of CT scans include: Being exposed to ... urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows ...

  14. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... eat for several hours before your exam because eating can affect the accuracy of the uptake measurement. ... often unattainable using other imaging procedures. For many diseases, nuclear medicine scans yield the most useful information ...

  15. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... A thyroid scan is a type of nuclear medicine imaging. The radioactive iodine uptake test (RAIU) is ... thyroid function, but does not involve imaging. Nuclear medicine is a branch of medical imaging that uses ...

  16. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... that help physicians diagnose and evaluate medical conditions. These imaging scans use radioactive materials called radiopharmaceuticals or ... or had thyroid cancer. A physician may perform these imaging tests to: determine if the gland is ...

  17. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... Because nuclear medicine procedures are able to pinpoint molecular activity within the body, they offer the potential ... or imaging device that produces pictures and provides molecular information. The thyroid scan and thyroid uptake provide ...

  18. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... Actual scanning time for each thyroid uptake is five minutes or less. top of page What will ... diagnostic procedures have been used for more than five decades, and there are no known long-term ...

  19. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... top of page Additional Information and Resources RTAnswers.org Radiation Therapy for Head and Neck Cancer top ... Scan and Uptake Sponsored by Please note RadiologyInfo.org is not a medical facility. Please contact your ...

  20. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... often unattainable using other imaging procedures. For many diseases, nuclear medicine scans yield the most useful information needed to make a diagnosis or to determine appropriate treatment, if any. Nuclear medicine is less expensive and ...

  1. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... the gamma camera and single-photon emission-computed tomography (SPECT). The gamma camera, also called a scintillation ... high as with other imaging techniques, such as CT or MRI. However, nuclear medicine scans are more ...

  2. Scanning Auger Electron Microscope

    Data.gov (United States)

    Federal Laboratory Consortium — A JEOL model 7830F field emission source, scanning Auger microscope.Specifications / Capabilities:Ultra-high vacuum (UHV), electron gun range from 0.1 kV to 25 kV,...

  3. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... as an overactive thyroid gland, a condition called hyperthyroidism , cancer or other growths assess the nature of ... an x-ray or CT scan, surgeries or treatments using iodinated contrast material within the last two ...

  4. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... painless. However, during the thyroid scan, you may feel uncomfortable when lying completely still with your head ... When the radiotracer is given intravenously, you will feel a slight pin prick when the needle is ...

  5. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... energy. top of page What are some common uses of the procedure? The thyroid scan is used ... community, you can search the ACR-accredited facilities database . This website does not provide cost information. The ...

  6. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... scan and thyroid uptake provide information about the structure and function of the thyroid. The thyroid is ... computer, create pictures offering details on both the structure and function of organs and tissues in your ...

  7. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... found, and should not be a cause of concern for you. If you had an intravenous line ... found, and should not be a cause of concern for you. Actual scanning time for each thyroid ...

  8. Body CT (CAT Scan)

    Science.gov (United States)

    ... a CT scan can be reformatted in multiple planes, and can even generate three-dimensional images. These ... other medical conditions and whether you have a history of heart disease, asthma, diabetes, kidney disease or ...

  9. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... the gland following medication use, surgery, radiotherapy or chemotherapy top of page How should I prepare? You ... You will receive specific instructions based on the type of scan you are undergoing. top of page ...

  10. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... Uptake? A thyroid scan is a type of nuclear medicine imaging. The radioactive iodine uptake test (RAIU) ... of thyroid function, but does not involve imaging. Nuclear medicine is a branch of medical imaging that ...

  11. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... exam of any medications you are taking, including vitamins and herbal supplements. You should also inform them ... of scan you are undergoing. top of page What does the equipment look like? The special camera ...

  12. The Scanning Optical Microscope.

    Science.gov (United States)

    Sheppard, C. J. R.

    1978-01-01

    Describes the principle of the scanning optical microscope and explains its advantages over the conventional microscope in the improvement of resolution and contrast, as well as the possibility of producing a picture from optical harmonies generated within the specimen.

  13. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... the gland following medication use, surgery, radiotherapy or chemotherapy top of page How should I prepare? You ... but is often performed on hospitalized patients as well. Thyroid Scan You will be positioned on an ...

  14. Catoptric electrodes: transparent metal electrodes using shaped surfaces.

    Science.gov (United States)

    Kik, Pieter G

    2014-09-01

    An optical electrode design is presented that theoretically allows 100% optical transmission through an interdigitated metallic electrode at 50% metal areal coverage. This is achieved by redirection of light incident on embedded metal electrode lines to an angle beyond that required for total internal reflection. Full-field electromagnetic simulations using realistic material parameters demonstrate 84% frequency-averaged transmission for unpolarized illumination across the entire visible spectral range using a silver interdigitated electrode at 50% areal coverage. The redirection is achieved through specular reflection, making it nonresonant and arbitrarily broadband, provided the electrode width exceeds the optical wavelength. These findings could significantly improve the performance of photovoltaic devices and optical detectors that require high-conductivity top contacts.

  15. Light addressable gold electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Khalid, Waqas

    2011-07-01

    The main objective carried out in this dissertation was to fabricate Light Amplified Potentiometric sensors (LAPS) based upon the semiconductor nanoparticles (quantum dots) instead of its bulk form. Quantum dots (QDs) were opted for this device fabrication because of their superior fluorescent, electric and catalytic properties. Also in comparison to their bulk counterparts they will make device small, light weighted and power consumption is much lower. QDs were immobilized on a Au substrate via 1,4 benzene dithiol (BDT) molecule. Initially a self-assembled monolayer (SAM) of BDT was established on Au substrate. Because of SAM, the conductivity of Au substrate decreased dramatically. Furthermore QDs were anchored with the help of BDT molecule on Au substrate. When QDs immobilized on Au substrate (QD/Au) via BDT molecule were irradiated with UV-visible light, electron-hole pairs were generated in QDs. The surface defect states in QDs trapped the excited electrons and long lived electron-hole pairs were formed. By the application of an appropriate bias potential on Au substrate the electrons could be supplied or extracted from the QDs via tunneling through BDT. Thus a cathodic or anodic current could be observed depending upon bias potential under illumination. However without light illumination the QD/Au electrode remained an insulator. To improve the device different modifications were made, including different substrates (Au evaporated on glass, Au evaporated on mica sheets and Au sputtered on SiO{sub 2}/Si) and different dithiol molecules (capped and uncapped biphenyl 4,4' dithiol and capped and uncapped 4,4' dimercaptostilbenes) were tried. Also different QD immobilization techniques (normal incubation, spin coating, layer by layer assembly (LbL) of polyelectrolytes and heat immobilization) were employed. This device was able to detect electrochemically different analytes depending upon the QDs incorporated. For example CdS QDs were able to detect 4

  16. Study on the Effect of the Three-Dimensional Electrode in Degradation of Methylene Blue by Lithium Modified Rectorite

    Directory of Open Access Journals (Sweden)

    Jian Huang

    2016-01-01

    Full Text Available This study presents the electrochemical degradation of methylene blue (MB wastewater in a synthetic solution using three-dimensional particle electrodes. The novel particle electrodes were fabricated in this work using the lithium modified rectorite (Li-REC. The adsorption property of the fabricated particle electrodes was studied in a series of experiments. The optimum electrochemical operating conditions of plate distance, cell voltage, and concentration of electrolyte were 2 cm, 9 V, and 0.06 mol L−1, respectively. It was also found that microwave irradiation can effectively improve the adsorption property and electrical property of the fabricated electrodes. In addition, the scanning electron microscope (SEM of the fabricated electrodes was investigated. The experimental results revealed the order of adsorption property and electrical property of the fabricated electrodes. So, fabricated electrodes are not only of low cost and mass produced, but also efficient to achieve decolorization of MB solution.

  17. Nanomolar determination of Pb (II ions by selective templated electrode

    Directory of Open Access Journals (Sweden)

    Mazloum-Ardakani Mohammad

    2012-01-01

    Full Text Available Polypyrrole modified electrode, prepared by electropolymerization of pyrrole in the presence of methyl red as a dopant, was templated with respect to Pb2+ ion and applied for potentiometric and voltammetric detection of this ion. The templating process improved the analytical response characteristics of the electrode, specially their selectivity, with respect to Pb2+ ion. The improvement depends on both the incorporated ligand (dopant and the templating process, with the latter being more vital. The potentiometric response of the electrode was linear within the Pb2+ concentration range of 2.0×10-6 to 5.0×10-2 M with a near-Nernstian slope of 28.6 mV decade-1 and a detection limit of 7.0 ×10-7 M. The electrode was also used for preconcentration differential pulse anodic stripping voltammetry (DPASV and results showed that peak currents for the incorporated lead species were dependent on the metal ion concentration in the range of 1.0×10-8 to 1.0×10-3 M. The detection limit of DPASV method was 3.5 ×10-9 M. The selectivity of the electrode with respect to some transition metal ions was investigated. The modified-templated electrode was used for the successful assay of lead in two standard reference material samples.

  18. EDM Electrode for Internal Grooves

    Science.gov (United States)

    Ramani, V.; Werner, A.

    1985-01-01

    Electroerosive process inexpensive alternative to broaching. Hollow brass electrodes, soldered at one end to stainless-steel holding ring, held in grooves in mandrel. These electrodes used to machine grooves electrically in stainless-steel tube three-eights inch (9.5 millimeters) in diameter. Tool used on tubes already in place in equipment.

  19. Making EDM Electrodes By Stereolithography

    Science.gov (United States)

    Barlas, Philip A.

    1988-01-01

    Stereolithography is computer-aided manufacturing technique. Used to make models and molds of electrodes for electrical-discharge machining (EDM). Eliminates intermediate steps in fabrication of plastic model of object used in making EDM electrode to manufacture object or mold for object.

  20. Surface-modified electrodes (SME)

    NARCIS (Netherlands)

    Schreurs, J.P.G.M.; Barendrecht, E.

    1984-01-01

    This review deals with the literature (covered up to August 1983), the characterization and the applications of Surface-Modified Electrodes (SME). As a special class of SME's, the Enzyme-Modified Electrode (EME) is introduced. Three types of modification procedures are distinguished; i.e. covalent

  1. Storage-battery electrodes. [preparation

    Energy Technology Data Exchange (ETDEWEB)

    1961-12-29

    Two incompatible thermoplastic resins are mixed with a powdered electrochemical active substance. The substance may be, for example, an oxide of cadmium, iron, lead, or zinc or nickel hydroxide. After the mixture is shaped into elements which are inserted into conducting sheaths for an electrode, the one resin is washed out to form a porous electrode. (RWR)

  2. Electrochemical photovoltaic cells and electrodes

    Science.gov (United States)

    Skotheim, Terje A.

    1984-01-01

    Improved electrochemical photovoltaic cells and electrodes for use therein, particularly electrodes employing amorphous silicon or polyacetylene coating are produced by a process which includes filling pinholes or porous openings in the coatings by electrochemical oxidation of selected monomers to deposit insulating polymer in the openings.

  3. Improved photovoltaic cells and electrodes

    Science.gov (United States)

    Skotheim, T.A.

    1983-06-29

    Improved photovoltaic cells and electrodes for use therein, particularly electrodes employing amorphous silicon or polyacetylene coating are produced by a process which includes filling pinholes or porous openings in the coatings by electrochemical oxidation of selected monomers to deposit insulating polymer in the openings.

  4. Synthesis and characterization of copper-infiltrated carbonized wood monoliths for supercapacitor electrodes

    International Nuclear Information System (INIS)

    Teng, Shiang; Siegel, Gene; Prestgard, Megan C.; Wang, Wei; Tiwari, Ashutosh

    2015-01-01

    Highlights: • Copper nanoparticles were embedded in the highly porous carbonized wood electrodes. • Copper nanoparticle serves as the pseudocapacitive specie to increase the energy density. • The porous copper-wood electrodes exhibit excellent electrochemical performances with high capacitance, excellent rate capability and stability. - Abstract: Copper nanoparticle-loaded carbonized wood electrodes were synthesized and characterized for the use as supercapacitor electrodes. The electrodes were fabricated by soaking beech wood samples in Cu(NO 3 ) 2 solution followed by carbonization at 800 °C under a N 2 atmosphere. The copper nanoparticle content in the electrodes was controlled by varying the concentration of the Cu(NO 3 ) 2 solution from 0.5 to 2 M. Subsequent X-ray diffraction and scanning electron microscopy measurements confirm that cubic copper was formed and the copper nanoparticles were anchored uniformly both on the surface as well as deep within the pores of the wood electrode. Cyclic voltammetry measurements showed that all of the electrodes had a typical pseudo-capacitive behavior, as indicated by the presence of redox reaction peaks. Charge–discharge testing also confirmed the pseudo-capacitive nature of the electrodes. The reversible oxidation of Cu into Cu 2 O and CuO was verified by performing X-ray photoelectron spectroscopy at different stages of the charge–discharge cycle. The Cu-loaded wood electrodes exhibited excellent cyclability and retaining 95% of their specific capacitance even after 2000 cycles. A maximum specific capacitance of 888 F/g was observed while discharging the 7 wt% Cu electrode at 200 mA/g in a 2 M KOH electrolyte solution. These results demonstrated the potential of the copper nanoparticle-loaded wood electrodes as cheap and high performance supercapacitor electrodes

  5. Multi electrode semiconductors detectors

    CERN Document Server

    Amendolia, S R; Bertolucci, Ennio; Bosisio, L; Bradaschia, C; Budinich, M; Fidecaro, F; Foà, L; Focardi, E; Giazotto, A; Giorgi, M A; Marrocchesi, P S; Menzione, A; Ristori, L; Rolandi, Luigi; Scribano, A; Stefanini, A; Vincelli, M L

    1981-01-01

    Detectors with very high space resolution have been built in this laboratory and tested at CERN in order to investigate their possible use in high energy physics experiments. These detectors consist of thin layers of silicon crystals acting as ionization chambers. Thin electrodes, structured in strips or in more fancy shapes are applied to their surfaces by metal coating. The space resolution which could be reached is of the order of a few microns. An interesting feature of these solid state detectors is that they can work under very high or low external pressure or at very low temperature. The use of these detectors would strongly reduce the dimensions and the cost of high energy experiments. (3 refs).

  6. Multi electrode semiconductor detectors

    International Nuclear Information System (INIS)

    Amendolia, S.R.; Batignani, G.; Bertolucci, E.; Bosisio, L.; Budinich, M.; Bradaschia, C.; Fidecaro, F.; Foa, L.; Focardi, E.; Giazotto, A.; Giorgi, M.A.; Marrocchesi, P.S.; Menzione, A.; Ristori, L.; Rolandi, L.; Scribano, A.; Stefanini, A.; Vincelli, M.L.

    1981-01-01

    Detectors with very high space resolution have been built in the laboratory and tested at CERN in order to investigate their possible use in high energy physics experiments. These detectors consist of thin layers of silicon crystals acting as ionization chambers. Thin electrodes, structured in strips or in more fancy shapes are applied to their surfaces by metal coating. The space resolution which could be reached is of the order of a few microns. An interesting feature of these solid state detectors is that they can work under very high or low external pressure or at very low temperature. The use of these detectors would strongly reduce the dimensions and the cost of high energy experiments. (Auth.)

  7. Adsorption at electrodes

    International Nuclear Information System (INIS)

    Hubbard, A.T.; Ping Gao

    1991-01-01

    Surface electrochemical studies are described and summarized in which atomic, ionic or molecular layers were allowed to form from aqueous solutions at well-defined Pt(111) surfaces. The resulting adsorbed layers were chemisorbed in most cases and stable in vacuum, permitting identification and quantitation by Auger spectroscopy, EELS, LEED and electrochemistry. Adsorbed atomic, ionic, or molecular layers formed at metal-solution interfaces frequently display long-range order. Molecular properties of the adsorbed layers correlate with their electrochemical properties. The molecular orientation of organic adsorbates was deduced from packing density measurements, supplemented with vibrational spectra. Interfacial variables such as electrode potential have a strong influence on interfacial structure along with the nature and mode of surface attachment of adsorbates. The angular distribution of Auger electron emission from metal single crystals and atomic adsorbed layers has proved to be useful for direct imaging of surface crystal and interfacial structure. (author). 14 refs, 11 figs

  8. Gel electrolytes and electrodes

    Science.gov (United States)

    Fleischmann, Sven; Bunte, Christine; Mikhaylik, Yuriy V.; Viner, Veronika G.

    2017-09-05

    Gel electrolytes, especially gel electrolytes for electrochemical cells, are generally described. In some embodiments, the gel electrolyte layers comprise components a) to c). Component a) may be at least one layer of at least one polymer comprising polymerized units of: a1) at least one monomer containing an ethylenically unsaturated unit and an amido group and a2) at least one crosslinker. Component b) may be at least one conducting salt and component c) may be at least one solvent. Electrodes may comprise the components a), d) and e), wherein component a) may be at least one layer of at least one polymer as described herein. Component d) may be at least one electroactive layer and component e) may be at least one ceramic layer. Furthermore, electrochemical cells comprising component a) which may be at least one layer of at least one polymer as described herein, are also provided.

  9. Electrode for a lithium cell

    Science.gov (United States)

    Thackeray, Michael M [Naperville, IL; Vaughey, John T [Elmhurst, IL; Dees, Dennis W [Downers Grove, IL

    2008-10-14

    This invention relates to a positive electrode for an electrochemical cell or battery, and to an electrochemical cell or battery; the invention relates more specifically to a positive electrode for a non-aqueous lithium cell or battery when the electrode is used therein. The positive electrode includes a composite metal oxide containing AgV.sub.3O.sub.8 as one component and one or more other components consisting of LiV.sub.3O.sub.8, Ag.sub.2V.sub.4O.sub.11, MnO.sub.2, CF.sub.x, AgF or Ag.sub.2O to increase the energy density of the cell, optionally in the presence of silver powder and/or silver foil to assist in current collection at the electrode and to improve the power capability of the cell or battery.

  10. Electrochemical properties of double wall carbon nanotube electrodes

    OpenAIRE

    Pumera, Martin

    2007-01-01

    AbstractElectrochemical properties of double wall carbon nanotubes (DWNT) were assessed and compared to their single wall (SWNT) counterparts. The double and single wall carbon nanotube materials were characterized by Raman spectroscopy, scanning and transmission electron microscopy and electrochemistry. The electrochemical behavior of DWNT film electrodes was characterized by using cyclic voltammetry of ferricyanide and NADH. It is shown that while both DWNT and SWNT were significantly funct...

  11. Voltammetric Determination of Nitronaphthalenes at a Silver Solid Amalgam Electrode

    Czech Academy of Sciences Publication Activity Database

    Pecková, K.; Barek, J.; Navrátil, Tomáš; Josypčuk, Bohdan; Zima, J.

    2009-01-01

    Roč. 42, č. 15 (2009), s. 2339-2363 ISSN 0003-2719 R&D Projects: GA ČR GA203/07/1195; GA AV ČR IAA400400806; GA MŠk(CZ) LC06035 Institutional research plan: CEZ:AV0Z40400503 Keywords : cyclic voltammetry * differential pulse voltammetry * elimination voltammetry with linear scan * silver amalgam electrode Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.317, year: 2009

  12. Shoulder MRI scan

    Science.gov (United States)

    ... exercises Rotator cuff - self-care Shoulder replacement - discharge Shoulder surgery - discharge Using your shoulder after replacement surgery References Hanypsiak B, DeLong JM, Lowe WR. Scapulothoracic ...

  13. Universal electrode interface for electrocatalytic oxidation of liquid fuels.

    Science.gov (United States)

    Liao, Hualing; Qiu, Zhipeng; Wan, Qijin; Wang, Zhijie; Liu, Yi; Yang, Nianjun

    2014-10-22

    Electrocatalytic oxidations of liquid fuels from alcohols, carboxylic acids, and aldehydes were realized on a universal electrode interface. Such an interface was fabricated using carbon nanotubes (CNTs) as the catalyst support and palladium nanoparticles (Pd NPs) as the electrocatalysts. The Pd NPs/CNTs nanocomposite was synthesized using the ethylene glycol reduction method. It was characterized using transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, voltammetry, and impedance. On the Pd NPs/CNTs nanocomposite coated electrode, the oxidations of those liquid fuels occur similarly in two steps: the oxidations of freshly chemisorbed species in the forward (positive-potential) scan and then, in the reverse scan (negative-potential), the oxidations of the incompletely oxidized carbonaceous species formed during the forward scan. The oxidation charges were adopted to study their oxidation mechanisms and oxidation efficiencies. The oxidation efficiency follows the order of aldehyde (formaldehyde) > carboxylic acid (formic acid) > alcohols (ethanol > methanol > glycol > propanol). Such a Pd NPs/CNTs nanocomposite coated electrode is thus promising to be applied as the anode for the facilitation of direct fuel cells.

  14. Nanostructured ternary electrodes for energy-storage applications

    KAUST Repository

    Baby, Rakhi Raghavan

    2012-02-13

    A three-component, flexible electrode is developed for supercapacitors over graphitized carbon fabric, utilizing γ-MnO 2 nanoflowers anchored onto carbon nanotubes (γ-MnO 2/CNT) as spacers for graphene nanosheets (GNs). The three-component, composite electrode doubles the specific capacitance with respect to GN-only electrodes, giving the highest-reported specific capacitance (308 F g -1) for symmetric supercapacitors containing MnO 2 and GNs using a two-electrode configuration, at a scan rate of 20 mV s -1. A maximum energy density of 43 W h kg -1 is obtained for our symmetric supercapacitors at a constant discharge-current density of 2.5 A g -1 using GN-(γ-MnO 2/CNT)-nanocomposite electrodes. The fabricated supercapacitor device exhibits an excellent cycle life by retaining ≈90% of the initial specific capacitance after 5000 cycles. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. A review of electrode materials for electrochemical supercapacitors.

    Science.gov (United States)

    Wang, Guoping; Zhang, Lei; Zhang, Jiujun

    2012-01-21

    In this critical review, metal oxides-based materials for electrochemical supercapacitor (ES) electrodes are reviewed in detail together with a brief review of carbon materials and conducting polymers. Their advantages, disadvantages, and performance in ES electrodes are discussed through extensive analysis of the literature, and new trends in material development are also reviewed. Two important future research directions are indicated and summarized, based on results published in the literature: the development of composite and nanostructured ES materials to overcome the major challenge posed by the low energy density of ES (476 references).

  16. Polyethylenedioxythiophene and molybdenum disulfide nanocomposite electrodes for supercapacitor applications

    International Nuclear Information System (INIS)

    Alamro, Turki; Ram, Manoj K.

    2017-01-01

    Highlights: • MoS_2-PEDOT nanocomposite electrode material was synthesized using polyanion ‘PSS’ and surfactant CTAB in an aqueous media. • The supercapacitor based on composite MoS_2-PEDOT electrode revealed higher energy density than graphene composite electrodes. • The specific capacitance of 361 Farad/gram (F/g) was obtained for 1:2 weight ratio of MoS2 to the EDOT monomer in MoS_2-PEDOT nanocomposite based electrodes. - Abstract: An innovative nanocomposite electrode was chemically synthesized using molybdenum disulphide (MoS_2)- polyethylenedioxythiophene (PEDOT) to understand the charge mechanism in a symmetric supercapacitor. The MoS_2-PEDOT nanocomposite was produced at various ratios of MoS_2 to ethylenedioxythiophene (EDOT) in an aqueous medium of polyanions polystyrene sulfonate (PSS) and cetyltrimethylammonium bromide (CTAB) at controlled conditions. The morphology, crystallinity, and optical properties of MoS_2-PEDOT nanocomposite materials were characterized using scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, particle size analyzer, Raman spectroscopy, X-ray-diffraction, and transmission electron microscopy (TEM) techniques, respectively. The electrochemical properties of the supercapacitor were investigated using cyclic voltammetry, charging–discharging at constant current and electrochemical impedance spectroscopy (EIS) techniques. The specific capacitance, power and energy densities of the supercapacitor were estimated using cyclic voltammetry (CV), charging–discharging, Nyquist and Bode plots. The specific capacitance was estimated to be 361 Farad/gram (F/g) for the 1:2 weight ratio of MoS_2 to the EDOT monomer in the MoS_2-PEDOT nanocomposite based electrodes. Nevertheless, this study provides a fundamental aspect of synthesis of nanocomposite material for optimum attainment supercapacitive properties based on the MoS_2-PEDOT nanocomposite electrode for practical energy storage applications.

  17. Metabolic Characteristics of a Glucose-Utilizing Shewanella oneidensis Strain Grown under Electrode-Respiring Conditions.

    Directory of Open Access Journals (Sweden)

    Gen Nakagawa

    Full Text Available In bioelectrochemical systems, the electrode potential is an important parameter affecting the electron flow between electrodes and microbes and microbial metabolic activities. Here, we investigated the metabolic characteristics of a glucose-utilizing strain of engineered Shewanella oneidensis under electrode-respiring conditions in electrochemical reactors for gaining insight into how metabolic pathways in electrochemically active bacteria are affected by the electrode potential. When an electrochemical reactor was operated with its working electrode poised at +0.4 V (vs. an Ag/AgCl reference electrode, the engineered S. oneidensis strain, carrying a plasmid encoding a sugar permease and glucose kinase of Escherichia coli, generated current by oxidizing glucose to acetate and produced D-lactate as an intermediate metabolite. However, D-lactate accumulation was not observed when the engineered strain was grown with a working electrode poised at 0 V. We also found that transcription of genes involved in pyruvate and D-lactate metabolisms was upregulated at a high electrode potential compared with their transcription at a low electrode potential. These results suggest that the carbon catabolic pathway of S. oneidensis can be modified by controlling the potential of a working electrode in an electrochemical bioreactor.

  18. Preoperative bone scans

    International Nuclear Information System (INIS)

    Charkes, N.D.; Malmud, L.S.; Caswell, T.; Goldman, L.; Hall, J.; Lauby, V.; Lightfoot, W.; Maier, W.; Rosemond, G.

    1975-01-01

    Strontium nitrate Sr-87m bone scans were made preoperatively in a group of women with suspected breast cancer, 35 of whom subsequently underwent radical mastectomy. In 3 of the 35 (9 percent), the scans were abnormal despite the absence of clinical or roentgenographic evidence of metastatic disease. All three patients had extensive axillary lymph node involvement by tumor, and went on to have additional bone metastases, from which one died. Roentgenograms failed to detect the metastases in all three. Occult bone metastases account in part for the failure of radical mastectomy to cure some patients with breast cancer. It is recommended that all candidates for radical mastectomy have a preoperative bone scan. (U.S.)

  19. Frequency scanning microstrip antennas

    DEFF Research Database (Denmark)

    Danielsen, Magnus; Jørgensen, Rolf

    1979-01-01

    The principles of using radiating microstrip resonators as elements in a frequency scanning antenna array are described. The resonators are cascade-coupled. This gives a scan of the main lobe due to the phase-shift in the resonator in addition to that created by the transmission line phase......-shift. Experimental results inX-band, in good agreement with the theory, show that it is possible to scan the main lobe an angle ofpm30degby a variation of the frequencypm300MHz, and where the 3 dB beamwidth is less than10deg. The directivity was 14.7 dB, while the gain was 8.1 dB. The efficiency might be improved...

  20. Comparison of electrocatalytic characterization of boron-doped diamond and SnO2 electrodes

    International Nuclear Information System (INIS)

    Lv, Jiangwei; Feng, Yujie; Liu, Junfeng; Qu, Youpeng; Cui, Fuyi

    2013-01-01

    Boron-doped diamond (BDD) and SnO 2 electrodes were prepared by direct current plasma chemical vapor deposition (DC-PCVD) and sol–gel method, respectively. Electrochemical characterization of the two electrodes were investigated by phenol electrochemical degradation, accelerated service life test, cyclic voltammetry (CV) in phenol solution, polarization curves in H 2 SO 4 . The surface morphology and crystal structure of two electrodes were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analysis. The results showed a considerable difference between the two electrodes in their electrocatalytic activity, electrochemical stability and surface properties. Phenol was readily mineralized to CO 2 at BDD electrode, favoring electrochemical combustion, but its degradation was much slower at SnO 2 electrode. The service life of BDD electrode was 10 times longer than that of SnO 2 . Higher electrocatalytic activity and electrochemical stability of BDD electrode arise from its high oxygen evolution potential and the physically absorbed hydroxyl radicals (·OH) on electrode surface.

  1. Electrochemical characterization of screen-printed and conventional carbon paste electrodes

    International Nuclear Information System (INIS)

    Fanjul-Bolado, Pablo; Hernandez-Santos, David; Lamas-Ardisana, Pedro Jose; Martin-Pernia, Alberto; Costa-Garcia, Agustin

    2008-01-01

    This work compares the electroactivity of a conventional carbon paste electrode and non-pretreated commercially available screen-printed carbon electrodes (from Alderon Biosciences, University of Florence and DropSens) towards some benchmark redox couples like hexaammineruthenium (III), ferricyanide, p-aminophenol and hydroquinone. While cyclic voltammograms of Ru 3+ did not show significative electron transfer reactivity differences between the electrodes tested, the other redox systems exhibited higher reversible behaviours on DropSens electrodes. Scanning electron microscopy and roughness analysis with a profilometer were applied to detect the surface morphology of the working electrodes. The roughness evaluated of the screen-printed carbon working electrodes increased in this order Alderon < University of Florence < DropSens. Finally, the most electrochemically active and rough unpretreated electrode (DropSens commercial screen-printed electrode) was used to study the electrochemical-chemical reaction mechanism of indigo carmine oxidation in 0.1 M sulphuric acid. This study showed that the adsorption of the oxidation product of indigo carmine is stabilized when it is adsorbed on the surface of the electrode

  2. Electrochemical characterization of screen-printed and conventional carbon paste electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Fanjul-Bolado, Pablo; Hernandez-Santos, David; Lamas-Ardisana, Pedro Jose [Departamento de Quimica Fisica y Analitica, Universidad de Oviedo, 33006 Oviedo, Asturias (Spain); Martin-Pernia, Alberto [Departamento de Ingenieria Electrica, Electronica de Computadores y Sistemas, Universidad de Oviedo, 33204 Gijon, Asturias (Spain); Costa-Garcia, Agustin [Departamento de Quimica Fisica y Analitica, Universidad de Oviedo, 33006 Oviedo, Asturias (Spain)], E-mail: costa@fq.uniovi.es

    2008-04-01

    This work compares the electroactivity of a conventional carbon paste electrode and non-pretreated commercially available screen-printed carbon electrodes (from Alderon Biosciences, University of Florence and DropSens) towards some benchmark redox couples like hexaammineruthenium (III), ferricyanide, p-aminophenol and hydroquinone. While cyclic voltammograms of Ru{sup 3+} did not show significative electron transfer reactivity differences between the electrodes tested, the other redox systems exhibited higher reversible behaviours on DropSens electrodes. Scanning electron microscopy and roughness analysis with a profilometer were applied to detect the surface morphology of the working electrodes. The roughness evaluated of the screen-printed carbon working electrodes increased in this order Alderon < University of Florence < DropSens. Finally, the most electrochemically active and rough unpretreated electrode (DropSens commercial screen-printed electrode) was used to study the electrochemical-chemical reaction mechanism of indigo carmine oxidation in 0.1 M sulphuric acid. This study showed that the adsorption of the oxidation product of indigo carmine is stabilized when it is adsorbed on the surface of the electrode.

  3. Silver-coated ion exchange membrane electrode applied to electrochemical reduction of carbon dioxide

    International Nuclear Information System (INIS)

    Hori, Y.; Ito, H.; Okano, K.; Nagasu, K.; Sato, S.

    2003-01-01

    Silver-coated ion exchange membrane electrodes (solid polymer electrolyte, SPE) were prepared by electroless deposition of silver onto ion exchange membranes. The SPE electrodes were used for carbon dioxide (CO 2 ) reduction with 0.2 M K 2 SO 4 as the electrolyte with a platinum plate (Pt) for the counterelectrode. In an SPE electrode system prepared from a cation exchange membrane (CEM), the surface of the SPE was partly ruptured during CO 2 reduction, and the reaction was rapidly suppressed. SPE electrodes made of an anion exchange membrane (SPE/AEM) sustained reduction of CO 2 to CO for more than 2 h, whereas, the electrode potential shifted negatively during the electrolysis. The reaction is controlled by the diffusion of CO 2 through the metal layer of the SPE electrode at high current density. Ultrasonic radiation, applied to the preparation of SPE/AEM, was effective to improve the electrode properties, enhancing the electrolysis current of CO 2 reduction. Observation by a scanning electron microscope (SEM) showed that the electrode metal layer became more porous by the ultrasonic radiation treatment. The partial current density of CO 2 reduction by SPE/AEM amounted to 60 mA cm -2 , i.e. three times the upper limit of the conventional electrolysis by a plate electrode. Application of SPE device may contribute to an advancement of CO 2 fixation at ambient temperature and pressure

  4. Graphite-graphite oxide composite electrode for vanadium redox flow battery

    International Nuclear Information System (INIS)

    Li Wenyue; Liu Jianguo; Yan Chuanwei

    2011-01-01

    Highlights: → A new composite electrode is designed for vanadium redox flow battery (VRB). → The graphite oxide (GO) is used as electrode reactions catalyst. → The excellent electrode activity is attributed to the oxygen-containing groups attached on the GO surface. → A catalytic mechanism of the GO towards the redox reactions is presumed. - Abstract: A graphite/graphite oxide (GO) composite electrode for vanadium redox battery (VRB) was prepared successfully in this paper. The materials were characterized with X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy. The specific surface area was measured by the Brunauer-Emmett-Teller method. The redox reactions of [VO 2 ] + /[VO] 2+ and V 3+ /V 2+ were studied with cyclic voltammetry and electrochemical impedance spectroscopy. The results indicated that the electrochemical performances of the electrode were improved greatly when 3 wt% GO was added into graphite electrode. The redox peak currents of [VO 2 ] + /[VO] 2+ and V 3+ /V 2+ couples on the composite electrode were increased nearly twice as large as that on the graphite electrode, and the charge transfer resistances of the redox pairs on the composite electrode are also reduced. The enhanced electrochemical activity could be ascribed to the presence of plentiful oxygen functional groups on the basal planes and sheet edges of the GO and large specific surface areas introduced by the GO.

  5. Binder-free three-dimensional high energy density electrodes for ionic-liquid supercapacitors.

    Science.gov (United States)

    Tran, Chau; Lawrence, Daniel; Richey, Francis W; Dillard, Caitlin; Elabd, Yossef A; Kalra, Vibha

    2015-09-18

    We demonstrate a facile methodology to fabricate binder-free porous carbon nanofiber electrodes for room temperature ionic-liquid supercapacitors. The device provides an energy density of 80 W h kg(-1) based on the mass of two electrodes while retaining the high rate capability of supercapacitors with near-ideal CV curves at a high scan rate of 200 mV s(-1).

  6. Technology ready use of single layer graphene as a transparent electrode for hybrid photovoltaic devices

    OpenAIRE

    Wang, Zhibing; Puls, Conor P.; Staley, Neal E.; Zhang, Yu; Todd, Aaron; Xu, Jian; Howsare, Casey A.; Hollander, Matthew J.; Robinson, Joshua A.; Liu, Ying

    2011-01-01

    Graphene has been used recently as a replacement for indium tin oxide (ITO) for the transparent electrode of an organic photovoltaic device. Due to its limited supply, ITO is considered as a limiting factor for the commercialization of organic solar cells. We explored the use of large-area graphene grown on copper by chemical vapor deposition (CVD) and then transferred to a glass substrate as an alternative transparent electrode. The transferred film was shown by scanning Raman spectroscopy m...

  7. Tomographic scanning apparatus

    International Nuclear Information System (INIS)

    Abele, M.

    1983-01-01

    A computerized tomographic scanning apparatus suitable for diagnosis and for improving target identification in stereotactic neurosurgery is described. It consists of a base, a source of penetrating energy, a detector which produces scanning signals and detector positioning means. A frame with top and bottom arms secures the detector and source to the top and bottom arms respectively. A drive mechanism rotates the frame about an axis along which the frame may also be moved. Finally, the detector may be moved relative to the bottom arm in a direction contrary to the rotation of the frame. (U.K.)

  8. Scanning the phenomenological MSSM

    CERN Document Server

    Wuerzinger, Jonas

    2017-01-01

    A framework to perform scans in the 19-dimensional phenomenological MSSM is developed and used to re-evaluate the ATLAS experiments' sensitivity to R-parity-conserving supersymmetry with LHC Run 2 data ($\\sqrt{s}=13$ TeV), using results from 14 separate ATLAS searches. We perform a $\\tilde{t}_1$ dedicated scan, only considering models with $m_{\\tilde{t}_1}<1$ TeV, while allowing both a neutralino ($\\tilde{\\chi}_1^0$) and a sneutrino ($\\tilde{\

  9. Calibration of scanning Lidar

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Courtney, Michael

    This report describes the tests carried out on a scanning lidar at the DTU Test Station for large wind turbines, Høvsøre. The tests were divided in two parts. In the first part, the purpose was to obtain wind speed calibrations at two heights against two cup anemometers mounted on a mast. Additio......This report describes the tests carried out on a scanning lidar at the DTU Test Station for large wind turbines, Høvsøre. The tests were divided in two parts. In the first part, the purpose was to obtain wind speed calibrations at two heights against two cup anemometers mounted on a mast...

  10. ELECTROD FLUOR-SELECTIV

    Directory of Open Access Journals (Sweden)

    Mariana DÎRU

    2018-03-01

    Full Text Available A fost preparat un senzor anionic specific, bazat pe pivalatul trinuclear al cromului(III ca material electro­activ încorporat în membrana PVC plastifiată. Senzorul prezintă răspuns Nernstian (55,78 mV/decadă în intervalul de concentrație 10-1-10-4 mol/L cu limita de detecție 2,0∙10-5 mol/L pentru anionul fluorură. Domeniul optim de pH de funcţionare a electrodului asamblat este ˃5. Senzorul dat are un timp de răspuns de 30-60 s și reproductibilitatea rezultatelor se menține timp de 3 luni. Coeficienții potențiometrici ai selectivității au fost determinați prin metoda soluțiilor separate. A fost realizată aplicarea acestor electrozi la analiza pastei de dinți ce conține fluorură și rezultatele experimentale au fost comparate cu datele de pe prospect.FLUORIDE-SELECTIVE ELECTRODEA specific anionic sensor has been prepared, based on trinuclearchromium(III pivalate as sensing material incorpo­rated into the plasticized PVC-membrane. The sensor exhibited Nernstian response (55,78 mV/decade in the region between 10-1-10-4 mol/L with a detection limit of 2,0∙10-5 mol/L for fluoride. The working pH of the electrode was in the 5-6 range. The sensor has a response time 30-60 s and can be used for least 3 month. The potentiometric selectivity coefficients were determined by separate solution method. Application of these electrodes to the analysis of toothpaste containing fluoride has been realized and experimental results have been compared with the data on the prospectus.

  11. Capacitance enhancement via electrode patterning

    International Nuclear Information System (INIS)

    Ho, Tuan A.; Striolo, Alberto

    2013-01-01

    The necessity of increasing the energy density in electric double layer capacitors to meet current demand is fueling fundamental and applied research alike. We report here molecular dynamics simulation results for aqueous electrolytes near model electrodes. Particular focus is on the effect of electrode patterning on the structure of interfacial electrolytes, and on the potential drop between the solid electrodes and the bulk electrolytes. The latter is estimated by numerically integrating the Poisson equation using the charge densities due to water and ions accumulated near the interface as input. We considered uniform and patterned electrodes, both positively and negatively charged. The uniformly charged electrodes are modeled as graphite. The patterned ones are obtained by removing carbon atoms from the top-most graphene layer, yielding nanoscopic squares and stripes patterns. For simplicity, the patterned electrodes are effectively simulated as insulators (the charge remains localized on the top-most layer of carbon atoms). Our simulations show that the patterns alter the structure of water and the accumulation of ions at the liquid-solid interfaces. Using aqueous NaCl solutions, we found that while the capacitance calculated for three positively charged electrodes did not change much, that calculated for the negatively charged electrodes significantly increased upon patterning. We find that both water structure and orientation, as well as ion accumulation affect the capacitance. As electrode patterning affects differently water structure and ion accumulation, it might be possible to observe ion-specific effects. These results could be useful for advancing our understanding of electric double layer capacitors, capacitive desalination processes, as well as of fundamental interfacial electrolytes properties

  12. Non-enzymatic hydrogen peroxide sensor using an electrode modified with iron pentacyanonitrosylferrate nanoparticles

    International Nuclear Information System (INIS)

    Razmi, H.; Mohammad-Rezaei, R.

    2010-01-01

    An electrochemical sensor was developed for determination of hydrogen peroxide (HP) based on a carbon ceramic electrode modified with iron pentacyanonitrosylferrate (FePCNF). The surface of an iron-doped CCE was derivatized in a solution of PCNF by cycling the electrode potential between -0. 2 and +1. 3 V for about 60 times. The morphology and the composition of the resulting electrode were characterized by scanning electron microscopy and Fourier transform infrared techniques. The electrode displayed excellent response to the electro-oxidation of HP which is linearly related to its concentration in the range from 0. 5 μM to 1300 μM. The detection limit is 0. 4 μM, and the sensitivity is 849 A M -1 cm -2 . The modified electrode was used to determination of HP in hair coloring creams as real samples. (author)

  13. Fabrication and electrochemical properties of free-standing single-walled carbon nanotube film electrodes

    International Nuclear Information System (INIS)

    Niu Zhi-Qiang; Ma Wen-Jun; Dong Hai-Bo; Li Jin-Zhu; Zhou Wei-Ya

    2011-01-01

    An easily manipulative approach was presented to fabricate electrodes using free-standing single-walled carbon nanotube (SWCNT) films grown directly by chemical vapor deposition. Electrochemical properties of the electrodes were investigated. In comparison with the post-deposited SWCNT papers, the directly grown SWCNT film electrodes manifested enhanced electrochemical properties and sensitivity of sensors as well as excellent electrocatalytic activities. A transition from macroelectrode to nanoelectrode behaviours was observed with the increase of scan rate. The heat treatment of the SWCNT film electrodes increased the current signals of electrochemical analyser and background current, because the heat-treatment of the SWCNTs in air could create more oxide defects on the walls of the SWCNTs and make the surfaces of SWCNTs more hydrophilic. The excellent electrochemical properties of the directly grown and heat-treated free-standing SWCNT film electrodes show the potentials in biological and electrocatalytic applications. (cross-disciplinary physics and related areas of science and technology)

  14. Studies of pyrrole black electrodes as possible battery positive electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Mengoli, G.; Musiani, M.M.; Fleischmann, M.; Pletcher, D.

    1984-05-01

    It is shown that a polypyrrole, pyrrole black, may be formed anodically in several aqueous acids. The polypyrrole film shows a redox couple at less positive potentials than that required to form the film and the charge associated with these reduction and oxidation processes together with their stabilty to cycling varies with the anion in solution and the potential where the polypyrrole is formed; over-oxidation of the film caused by taking its potential too positive has a particularly disadvantageous affect. In the acids HBr and HI, the polypyrrole films can act as a storage medium for Br/sub 2/ or I/sub 2/ so that they may be used as a substrate for a X/sub 2//X/sup -/ electrode. Such electrodes may be charge/discharge cycled and the pyrrole/Br/sub 2/ electrode shows promise as a battery positive electrode.

  15. Ruthenium(III) diphenyldithiocarbamate as mediator for the electrocatalytic oxidation of sulfhydryl compounds at graphite electrode

    International Nuclear Information System (INIS)

    Nalini, B.; Sriman Narayanan, S.

    1998-01-01

    Ruthenium(III) diphenyldithiocarbamate was used as mediator to modify graphite electrode by abrasive method. The modified electrode was characterized electrochemically by cyclic voltammetry. The electrode was scanned between 0.0 V to +0.8 V. An anodic peak at + 0.39 V and a cathodic peak at +0.24 V have been observed for a scan rate of 100 mV/s. The electrode has been characterized at various scan rate and pHs in 0.1 M KNO 3 solution. Sulfhydryl compounds, cysteine and glutathione, were electro catalytically oxidised at the modified electrode. pH variation was studied to optimize the conditions for their estimation. Linear response for cysteine is in the range of 0.00-15.20 ppm, with a correlation coefficient (r), of 0.9993. The linear range for glutathione is 0.00-30.40 ppm, with a value of 0.999 for r. The electrocatalytic oxidation of both cysteine and glutathione gave reproducible current values with a standard deviation of 0.1686 for 10 repetitive determinations. The stability and reproducibility of the electrode for the determination of cysteine and glutathione were also discussed. The electrocatalytic oxidation of the sulfhydryl compounds were also studied in hydrodynamic environment. (author)

  16. Highly sensitive voltammetric sensor based on immobilization of bisphosphoramidate-derivative and quantum dots onto multi-walled carbon nanotubes modified gold electrode for the electrocatalytic determination of olanzapine

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi-Behzad, Leila [Department of Analytical Chemistry, Faculty of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Gholivand, Mohammad Bagher, E-mail: mbgholivand@yahoo.com [Department of Analytical Chemistry, Faculty of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Shamsipur, Mojtaba [Department of Analytical Chemistry, Faculty of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Gholivand, Khodayar [Department of Chemistry, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Barati, Ali [Department of Analytical Chemistry, Faculty of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Gholami, Akram [Department of Chemistry, Tarbiat Modares University, Tehran (Iran, Islamic Republic of)

    2016-03-01

    In the present paper, a new bisphosphoramidate derivative compound, 1, 4-bis(N-methyl)-benzene-bis(N-phenyl, N-benzoylphosphoramidate) (BMBPBP), was synthesized and used as a mediator for the electrocatalytic oxidation of olanzapine. The electro-oxidation of olanzapine at the surface of the BMBPBP/CdS-quantum dots/multi-walled carbon nanotubes (BMBPBP/CdS-QDs/MWCNTs) modified gold electrode was studied using cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy. This sensor showed an excellent electrocatalytic oxidation activity toward olanzapine at less positive potential, pronounced current response, and good sensitivity. The diffusion coefficient and kinetic parameters (such as electron transfer coefficient and the heterogeneous rate constant) were determined for olanzapine oxidation, using the electrochemical approaches. Surface morphology and electrochemical properties of the prepared modified electrode were investigated by scanning electron microscopy (SEM), cyclic voltammetry and electrochemical impedance spectroscopy techniques. The hydrodynamic amperometry at rotating modified electrode at constant potential versus reference electrode was used for detection of olanzapine. Under optimized conditions, the calibration plot was linear in the concentration range of 20 nM to 100 μM and detection limit was found to be 6 nM. The proposed method was successfully applied to the determination of olanzapine in pharmaceuticals and human serum samples. - Highlights: • A highly sensitive sensor for OLZ determination was developed. • The sensor constructed based on immobilization of BMBPBP on CdS-QDs/MWCNTs Au electrode • The morphology of the modified electrode was examined by SEM. • The prepared sensor shows stable electrochemical behavior at a wide pH range. • The proposed sensor is used for trace determination of OLZ in real samples.

  17. Characterisation of embroidered 3D electrodes by use of anthraquinone-1,5-disulfonic acid as probe system

    Science.gov (United States)

    Aguiló-Aguayo, Noemí; Bechtold, Thomas

    2014-05-01

    New electrode designs are required for electrochemical applications such as batteries or fuel cells. Embroidered 3D Cu porous electrodes with a geometric surface of 100 cm2 are presented and characterised by means of the anthraquinone-1,5-disfulfonic acid (AQDS2-) redox system in alkaline solution. The electrochemical behaviour of the 3D electrode is established by the comparison of cyclic voltammetry responses using a micro cell and a 100 cm2 plane Cu-plate electrode. Dependencies of the peak currents and peak-to-peak potential separation on scan rate and AQDS2- concentration are studied. The AQDS2- characterisation is also performed by means of spectroelectrochemical experiments.

  18. Assessment of breast tumor size in electrical impedance scanning

    International Nuclear Information System (INIS)

    Kim, Sungwhan

    2012-01-01

    Electrical impedance scanning (EIS) is a newly introduced imaging technique for early breast cancer detection. In EIS, we apply a sinusoidal voltage between a hand-held electrode and a scanning probe placed on the breast skin to make current travel through the breast. We measure induced currents (Neumann data) through the scanning probe. In this paper, we investigate the frequency-dependent behavior of the induced complex potential and show how the frequency differential of the current measurement on the scanning probe reflects the contrast in complex conductivity values between surrounding and cancerous tissues. Furthermore, we develop the formula for breast tumor size using the frequency differential of the current measurement and provide its feasibility. (paper)

  19. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... process that regulates the rate at which the body converts food to energy. top of page What are some common uses of the procedure? The thyroid scan is used to determine the size, shape and position of the thyroid gland. The ...

  20. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z Thyroid Scan and Uptake ...

  1. Dialogue scanning measuring systems

    International Nuclear Information System (INIS)

    Borodyuk, V.P.; Shkundenkov, V.N.

    1985-01-01

    The main developments of scanning measuring systems intended for mass precision processsing of films in nuclear physics problems and in related fields are reviewed. A special attention is paid to the problem of creation of dialogue systems which permit to simlify the development of control computer software

  2. Scanning electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cox, B. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    1970-05-15

    The JSM-11 scanning electron microscope at CRNL has been used extensively for topographical studies of oxidized metals, fracture surfaces, entomological and biological specimens. A non-dispersive X-ray attachment permits the microanalysis of the surface features. Techniques for the production of electron channeling patterns have been developed. (author)

  3. Scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Binnig, G.; Rohrer, H.

    1983-01-01

    Based on vacuum tunneling, a novel type of microscope, the scanning tunneling microscope (STM) was developed. It has an unprecedented resolution in real space on an atomic scale. The authors review the important technical features, illustrate the power of the STM for surface topographies and discuss its potential in other areas of science and technology. (Auth.)

  4. Bone scan in rheumatology

    International Nuclear Information System (INIS)

    Morales G, R.; Cano P, R.; Mendoza P, R.

    1993-01-01

    In this chapter a revision is made concerning different uses of bone scan in rheumatic diseases. These include reflex sympathetic dystrophy, osteomyelitis, spondyloarthropaties, metabolic bone diseases, avascular bone necrosis and bone injuries due to sports. There is as well some comments concerning pediatric pathology and orthopedics. (authors). 19 refs., 9 figs

  5. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... information. The thyroid scan and thyroid uptake provide information about the structure and function of the thyroid. The thyroid is a gland in the neck that controls metabolism , a chemical process that regulates the rate at which the body ...

  6. Stabilized radiographic scanning agent

    International Nuclear Information System (INIS)

    Fawzi, M.B.

    1979-01-01

    A stable composition useful in preparation of technetium-99m-based radiographic scanning agents has been developed. The composition contains a stabilizing amount of gentisate stabilizer selected from gentisic acid and its soluble pharmaceutically-acceptable salts and esthers. (E.G.)

  7. Scanning electron microscope

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The principle underlying the design of the scanning electron microscope (SEM), the design and functioning of SEM are described. Its applications in the areas of microcircuitry and materials science are outlined. The development of SEM in India is reviewed. (M.G.B.)

  8. Radiographic scanning agent

    International Nuclear Information System (INIS)

    Tofe, A.J.

    1976-01-01

    A stable radiographic scanning agent on a sup(99m)Tc basis has been developed. The substance contains a pertechnetate reduction agent, tin(II)-chloride, chromium(II)-chloride, or iron(II)-sulphate, as well as an organospecific carrier and ascorbic acid or a pharmacologically admissible salt or ester of ascorbic acid. (VJ) [de

  9. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... you: have had any tests, such as an x-ray or CT scan, surgeries or treatments using iodinated ... page How does the procedure work? With ordinary x-ray examinations, an image is made by passing x- ...

  10. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... for a thyroid scan is 30 minutes or less. Thyroid Uptake You will be given radioactive iodine (I-123 or I-131) in liquid or capsule form to swallow. The thyroid uptake will begin several hours to 24 hours later. Often, two separate uptake ...

  11. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... an x-ray or CT scan, surgeries or treatments using iodinated contrast material within the last two months. are taking medications or ingesting other substances that contain iodine , including kelp, seaweed, cough syrups, multivitamins or heart medications. have any ...

  12. Electro-chemical deposition of zinc oxide nanostructures by using two electrodes

    Directory of Open Access Journals (Sweden)

    B. A. Taleatu

    2011-09-01

    Full Text Available One of the most viable ways to grow nanostructures is electro deposition. However, most electrodeposited samples are obtained by three-electrode electrochemical cell. We successfully use a much simpler two-electrode cell to grow different ZnO nanostructures from common chemical reagents. Concentration, pH of the electrolytes and growth parameters like potentials at the electrodes, are tailored to allow fast growth without complexity. Morphology and surface roughness are investigated by Scanning Electron and Air Force Microscopy (SEM and AFM respectively, crystal structure by X-Ray Diffraction measurements (XRD and ZnO stoichiometry by core level photoemission spectroscopy (XPS.

  13. Two-dimensional nickel hydroxide nanosheets as high performance pseudo-capacitor electrodes

    Science.gov (United States)

    Bhat, Karthik S.; Nagaraja, H. S.

    2018-04-01

    Electrochemical supercapacitor is a vital technology for the progress of consistent energy harvesting devices. Herein, we report the fabrication of supercapacitor electrodes based on nickel hydroxide nanosheets synthesized via one-pot hydrothermal method. Structure and shape of synthesized materials were analyzed with XRD and SEM measurements. Pseudo-capacitive performances of the fabricated electrodes were evaluated through cyclic voltammetry and galvanostatic charge-discharge measurements with three-electrode configurations. Results indicated the specific capacitance of l80 F g-1 at 5 mV s-1 scan rate and complimented with capacitance retention of 76% for l500 cycles.

  14. Perovskites as electrodes of solid cells in sensitive elements of oxygen ion

    International Nuclear Information System (INIS)

    Gandurska, J.; Sniezynska, I.; Marek, A.; Szwagierczak, D.; Kulawik, J.

    1997-01-01

    The perovskite family comprises many compounds used in electronic applications. In this work perovskite materials based on LaCrO 3 were investigated, destined for electrodes of solid electrolyte oxygen sensors. lanthanum chromite powders modified by calcium, strontium and aluminium were prepared by the coprecipitation-calcination technique. The powders were examined using thermal analysis, x-ray diffraction analysis, scanning electron microscopy and transmission electron microscopy. Introductory studies of electromotive force of oxygen cells with yttria stabilized zirconia as solid electrolyte and perovskite-based electrodes proved that it is possible to replace expensive Pt electrodes by much cheaper perovskite ones. (author)

  15. Comparison of dimensional accuracy of digital dental models produced from scanned impressions and scanned stone casts

    Science.gov (United States)

    Subeihi, Haitham

    Introduction: Digital models of dental arches play a more and more important role in dentistry. A digital dental model can be generated by directly scanning intraoral structures, by scanning a conventional impression of oral structures or by scanning a stone cast poured from the conventional impression. An accurate digital scan model is a fundamental part for the fabrication of dental restorations. Aims: 1. To compare the dimensional accuracy of digital dental models produced by scanning of impressions versus scanning of stone casts. 2. To compare the dimensional accuracy of digital dental models produced by scanning of impressions made of three different materials (polyvinyl siloxane, polyether or vinyl polyether silicone). Methods and Materials: This laboratory study included taking addition silicone, polyether and vinyl polyether silicone impressions from an epoxy reference model that was created from an original typodont. Teeth number 28 and 30 on the typodont with a missing tooth number 29 were prepared for a metal-ceramic three-unit fixed dental prosthesis with tooth #29 being a pontic. After tooth preparation, an epoxy resin reference model was fabricated by duplicating the typodont quadrant that included the tooth preparations. From this reference model 12 polyvinyl siloxane impressions, 12 polyether impressions and 12 vinyl polyether silicone impressions were made. All 36 impressions were scanned before pouring them with dental stone. The 36 dental stone casts were, in turn, scanned to produce digital models. A reference digital model was made by scanning the reference model. Six groups of digital models were produced. Three groups were made by scanning of the impressions obtained with the three different materials, the other three groups involved the scanning of the dental casts that resulted from pouring the impressions made with the three different materials. Groups of digital models were compared using Root Mean Squares (RMS) in terms of their

  16. Phase modulation mode of scanning ion conductance microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Peng; Zhang, Changlin [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Liu, Lianqing, E-mail: lqliu@sia.cn, E-mail: gli@engr.pitt.edu; Wang, Yuechao; Yang, Yang [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China); Li, Guangyong, E-mail: lqliu@sia.cn, E-mail: gli@engr.pitt.edu [Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 (United States)

    2014-08-04

    This Letter reports a phase modulation (PM) mode of scanning ion conductance microscopy. In this mode, an AC current is directly generated by an AC voltage between the electrodes. The portion of the AC current in phase with the AC voltage, which is the current through the resistance path, is modulated by the tip-sample distance. It can be used as the input of feedback control to drive the scanner in Z direction. The PM mode, taking the advantages of both DC mode and traditional AC mode, is less prone to electronic noise and DC drift but maintains high scanning speed. The effectiveness of the PM mode has been proven by experiments.

  17. Measuring voltage transients with an ultrafast scanning tunneling microscope

    DEFF Research Database (Denmark)

    Keil, Ulrich Dieter Felix; Jensen, Jacob Riis; Hvam, Jørn Märcher

    1997-01-01

    circuit, where the tunneling tip is directly connected to the current amplifier of the scanning tunneling microscope, this dependence is eliminated. Ail results can be explained with coupling through the geometrical capacitance of the tip-electrode junction. By illuminating the current......We use an ultrafast scanning tunneling microscope to resolve propagating voltage transients in space and time. We demonstrate that the previously observed dependence of the transient signal amplitude on the tunneling resistance was only caused by the electrical sampling circuit. With a modified...

  18. Electrocatalytic reduction of nitrite on tetraruthenated metalloporphyrins/Nafion glassy carbon modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Calfuman, Karla [Facultad de Ciencias, Departamento de Quimica, Universidad de Chile, Las Palmeras 3425, Casilla 653, Nunoa, Santiago (Chile); Aguirre, Maria Jesus [Facultad de Quimica y Biologia, Departamento de Quimica de los Materiales, Universidad de Santiago de Chile, Santiago (Chile); Canete-Rosales, Paulina; Bollo, Soledad [Facultad de Ciencias Quimicas y Farmaceuticas, Departamento de Quimica Farmacologica y Toxicologica, Universidad de Chile, Santiago (Chile); Llusar, Rosa [Departamento de Quimica Fisica y Analitica, Universidad de Jaume I, Castellon (Spain); Isaacs, Mauricio, E-mail: misaacs@uchile.cl [Facultad de Ciencias, Departamento de Quimica, Universidad de Chile, Las Palmeras 3425, Casilla 653, Nunoa, Santiago (Chile)

    2011-10-01

    Highlights: > Preparation and characterization of modified electrodes with M(II) Tetraruthenated porphyrins onto a Nafion film. > The electrodes were characterized by SEM, TEM, AFM and SECM techniques. > The modified electrodes are active in the electrochemical reduction of nitrite at -660 mV vs Ag/AgCl. > GC/Nf/CoTRP modified electrode is more electrochemically active than their Ni and Zn analogues. - Abstract: This paper describes the electrochemical reduction of nitrite ion in neutral aqueous solution mediated by tetraruthenated metalloporphyrins (Co(II), Ni(II) and Zn(II)) electrostatically assembled onto a Nafion film previously adsorbed on glassy carbon or ITO electrodes. Scanning electron microscope (SEM-EDX) and transmission electron microscopy (TEM) results have shown that on ITO electrodes the macrocycles forms multiple layers with a disordered stacking orientation over the Nafion film occupying hydrophobic and hydrophilic sites in the polyelectrolyte. Atomic force microscopy (AFM) results demonstrated that the Nafion film is 35 nm thick and tetraruthenated metalloporphyrins layers 190 nm thick presenting a thin but compacted morphology. Scanning electrochemical microscopy (SECM) images shows that the Co(II) tetraruthenated porphyrins/Nf/GC modified electrode is more electrochemically active than their Ni and Zn analogues. These modified electrodes are able to reduce nitrite at -660 mV showing enhanced reduction current and a decrease in the required overpotential compared to bare glassy carbon electrode. Controlled potential electrolysis experiments verify the production of ammonia, hydrazine and hydroxylamine at potentials where reduction of solvent is plausible demonstrating some selectivity toward the nitrite ion. Rotating disc electrode voltammetry shows that the factor that governs the kinetics of nitrite reduction is the charge propagation in the film.

  19. Orthogonal electrode catheter array for mapping of endocardial focal site of ventricular activation

    Energy Technology Data Exchange (ETDEWEB)

    Desai, J.M.; Nyo, H.; Vera, Z.; Seibert, J.A.; Vogelsang, P.J. (Division of Cardiovascular Medicine, University of California, School of Medicine, Davis (USA))

    1991-04-01

    Precise location of the endocardial site of origin of ventricular tachycardia may facilitate surgical and catheter ablation of this arrhythmia. The endocardial catheter mapping technique can locate the site of ventricular tachycardia within 4-8 cm2 of the earliest site recorded by the catheter. This report describes an orthogonal electrode catheter array (OECA) for mapping and radiofrequency ablation (RFA) of endocardial focal site of origin of a plunge electrode paced model of ventricular activation in dogs. The OECA is an 8 F five pole catheter with four peripheral electrodes and one central electrode (total surface area 0.8 cm{sup 2}). In eight mongrel dogs, mapping was performed by arbitrarily dividing the left ventricle (LV) into four segments. Each segment was mapped with OECA to find the earliest segment. Bipolar and unipolar electrograms were obtained. The plunge electrode (not visible on fluoroscopy) site was identified by the earliest wave front arrival times of -30 msec or earlier at two or more electrodes (unipolar electrograms) with reference to the earliest recorded surface ECG (I, AVF, and V1). Validation of the proximity of the five electrodes of the OECA to the plunge electrode was performed by digital radiography and RFA. Pathological examination was performed to document the proximity of the OECA to the plunge electrode and also for the width, depth, and microscopic changes of the ablation. To find the segment with the earliest LV activation a total of 10 {plus minus} 3 (mean {plus minus} SD) positions were mapped. Mean arrival times at the two earlier electrodes were -39 {plus minus} 4 msec and -35 {plus minus} 3 msec. Digital radiography showed the plunge electrode to be within the area covered by all five electrodes in all eight dogs. The plunge electrode was within 1 cm2 area of the region of RFA in all eight dogs.

  20. Role of polymeric binders on mechanical behavior and cracking resistance of silicon composite electrodes during electrochemical cycling

    Science.gov (United States)

    Li, Dawei; Wang, Yikai; Hu, Jiazhi; Lu, Bo; Dang, Dingying; Zhang, Junqian; Cheng, Yang-Tse

    2018-05-01

    This work focuses on understanding the role of various binders, including sodium alginate (SA), Nafion, and polyvinylidene fluoride (PVDF), on the mechanical behavior and cracking resistance of silicon composite electrodes during electrochemical cycling. In situ curvature measurement of bilayer electrodes, consisting of a silicon-binder-carbon black composite layer on a copper foil, is used to determine the effects of binders on bending deformation, elastic modulus, and stress on the composite electrodes. It is found that the lithiation induced curvature and the modulus of the silicon/SA electrodes are larger than those of electrodes with Nafion and PVDF as binders. Although the modulus of Nafion is smaller than that of PVDF, the curvature and the modulus of silicon/Nafion composite are larger than those of silicon/PVDF electrodes. The moduli of all three composites decrease not only during lithiation but also during delithiation. Based on the measured stress and scanning electron microscopy observations of cracking in the composite electrodes, we conclude that the stress required to crack the composite electrodes with SA and Nafion binders is considerably higher than that of the silicon/PVDF electrode during electrochemical cycling. Thus, the cracking resistance of silicon/SA and silicon/Nafion composite electrodes is higher than that of silicon/PVDF electrodes.

  1. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... the gland following medication use, surgery, radiotherapy or chemotherapy top of page How should I prepare? You ... referring physician. top of page What are the benefits vs. risks? Benefits Nuclear medicine examinations provide unique ...

  2. Fractals in several electrode materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chunyong, E-mail: zhangchy@njau.edu.cn [Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing 210095 (China); Suzhou Key Laboratory of Environment and Biosafety, Suzhou Academy of Southeast University, Dushuhu lake higher education town, Suzhou 215123 (China); Wu, Jingyu [Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing 210095 (China); Fu, Degang [Suzhou Key Laboratory of Environment and Biosafety, Suzhou Academy of Southeast University, Dushuhu lake higher education town, Suzhou 215123 (China); State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096 (China)

    2014-09-15

    Highlights: • Fractal geometry was employed to characterize three important electrode materials. • The surfaces of all studied electrodes were proved to be very rough. • The fractal dimensions of BDD and ACF were scale dependent. • MMO film was more uniform than BDD and ACF in terms of fractal structures. - Abstract: In the present paper, the fractal properties of boron-doped diamond (BDD), mixed metal oxide (MMO) and activated carbon fiber (ACF) electrode have been studied by SEM imaging at different scales. Three materials are self-similar with mean fractal dimension in the range of 2.6–2.8, confirming that they all exhibit very rough surfaces. Specifically, it is found that MMO film is more uniform in terms of fractal structure than BDD and ACF. As a result, the intriguing characteristics make these electrodes as ideal candidates for high-performance decontamination processes.

  3. Electrode materials for rechargeable batteries

    Science.gov (United States)

    Abouimrane, Ali; Amine, Khalil

    2015-04-14

    Selenium or selenium-containing compounds may be used as electroactive materials in electrodes or electrochemical devices. The selenium or selenium-containing compound is mixed with a carbon material.

  4. Composite Electrodes for Electrochemical Supercapacitors

    OpenAIRE

    Li, Jun; Yang, QuanMin; Zhitomirsky, Igor

    2010-01-01

    Abstract Manganese dioxide nanofibers with length ranged from 0.1 to 1 μm and a diameter of about 4–6 nm were prepared by a chemical precipitation method. Composite electrodes for electrochemical supercapacitors were fabricated by impregnation of the manganese dioxide nanofibers and multiwalled carbon nanotubes (MWCNT) into porous Ni plaque current collectors. Obtained composite electrodes, containing 85% of manganese dioxide and 15 mass% of MWCNT, as a conductive additive, with to...

  5. Amodiaquine polymeric membrane electrode.

    Science.gov (United States)

    Malongo, T Kimbeni; Blankert, B; Kambu, O; Amighi, K; Nsangu, J; Kauffmann, J-M

    2006-04-11

    The construction and electrochemical response characteristics of two types of poly(vinyl chloride) (PVC) membrane sensors for the determination of amodiaquine hydrochloride (ADQ.2HCl) are described. The sensing membrane comprised an ion-pair formed between the cationic drug and sodium tetraphenyl borate (NaTPB) or potassium tetrakis(4-chlorophenyl) borate (KTCPB) in a plasticized PVC matrix. Eight PVC membrane ion-selective electrodes were fabricated and studied. Several plasticizers were studied namely, dioctyl phthalate (DOP), 2-nitrophenyl octyl ether (NPOE), dioctyl phenylphosphonate (DOPP) and bis(2-ethylhexyl)adipate (EHA). The sensors display a fast, stable and near-Nernstian response over a relative wide ADQ concentration range (3.2 x 10(-6) to 2.0 x 10(-2) M), with slopes comprised between 28.5 and 31.4 mV dec(-1) in a pH range comprised between pH 3.7 and 5.5. The assay of amodiaquine hydrochloride in pharmaceutical dosage forms using one of the proposed sensors gave average recoveries of 104.3 and 99.9 with R.S.D. of 0.3 and 0.6% for tablets (Malaritab) and a reconstituted powder containing ADQ.2HCl, respectively. The sensor was also used for dissolution profile studies of two drug formulations. The sensor proved to have a good selectivity for ADQ.2HCl over some inorganic and organic compounds, however, berberine chloride interfered significantly. The results were validated by comparison with a spectrophotometric assay according to the USP pharmacopoeia.

  6. A Spectral Active Material Interference in the Electrical Conductivity of the Internal Electrolyte and the Potential Shift of the Ag/AgCl Electrode

    International Nuclear Information System (INIS)

    Yun, Myung Hee; Yeon, Jei Won; Hwang, Jae Sik; Song, Kyu Seok

    2009-01-01

    The Ag/AgCl electrode is a type of reference electrode, commonly used in electrochemical measurements, because it is simple and stable. For these reasons, the Ag/AgCl electrode has long been used to provide a reliable potential monitoring of ions in a solution. However, when a reference electrode is used in an aqueous solution containing a very low electrolyte for a long period of time, this could cause a considerable potential shift of the reference electrode due to a dilution of the internal electrolyte. If the potential of the reference electrode shifts, undesirable conditions may occur. Therefore, many studies have been applied to improve the long-term performance of the reference electrode. However, these attempts have not completely resolved the problem of an electrolyte dilution by the test solution. In the present study, we developed a creative technique to correct the concentration change of the internal electrolyte by a long-term exposure of the Ag/AgCl electrode in very dilute solutions. We measured the electrical conductivity and UV/VIS absorbance of the internal electrolyte. From these measurements, we observed the linear relationship between KCl concentration and the potential of the Ag/AgCl electrode. In order to accelerate the diffusion of the internal electrolyte into the test solution, an Ag/AgCl electrode with a tiny perforation was used. We confirmed the feasibility of the creative calibration technique

  7. Standard Reference Tables -

    Data.gov (United States)

    Department of Transportation — The Standard Reference Tables (SRT) provide consistent reference data for the various applications that support Flight Standards Service (AFS) business processes and...

  8. Tomographic scanning apparatus with ionization detector means

    International Nuclear Information System (INIS)

    1981-01-01

    This patent specification describes a tomographic scanning apparatus using a fan beam and digital output signal. Particular reference is made to the gas-pressurized ionization detector chamber, consisting of an array of side-by-side elongate ionization detection cells, the principal axis of each of the said cells being oriented along a radius extending towards the radiation source, and connection means for applying potentials across the cells for taking their output signals. (U.K.)

  9. The use of a gold electrode for the determination of amphetamine derivatives and application to their analysis in human urine

    Directory of Open Access Journals (Sweden)

    Nevešćanin Marina M.

    2013-01-01

    Full Text Available The catalytic abilities of gold electrode were tested for the quantitative determination of amphetamine (A and 3,4-methylenedioxy-N-methylamphetamine (MDMA standards by their oxidation using cyclic voltammetry (CV. The value of the oxidative currents of A and MDMA standards at 0.80 V vs. SCE in 0.05 M NaHCO3 at the scan rate of 50 mV/s is linear function of concentration in range of 110.9-258.9 mM and 38.7-229.2 mM, respectively. Square wave voltammetry (SWV revealed linear increase of current with concentration of MDMA (range 30.9-91.6 mM and thus quantitative determination of amphetamine derivates. SWV analysis is successfully performed in spiked urine samples as well. A and MDMA in the presence of sucrose and as a content in illegally produced tablets were also analyzed. The voltammetric determination of A and MDMA derivatives using CV and SWV at gold electrode is a rapid, selective and simple procedure and its accuracy was confirmed with reference method, high performance liquid chromatography (HPLC. The spiked urine samples analysis offers additional possibility for the rapid detection of A and MDMA in human urine.

  10. Ferrocene-functionalized graphene electrode for biosensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Rabti, Amal [Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona (Spain); Université de Tunis El–Manar, Faculté des Sciences de Tunis, Laboratoire de Chimie Analytique et Electrochimie (LR99ES15), Campus universitaire de Tunis El–Manar, 2092, Tunis (Tunisia); Mayorga-Martinez, Carmen C.; Baptista-Pires, Luis [Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona (Spain); Raouafi, Noureddine, E-mail: n.raouafi@fst.rnu.tn [Université de Tunis El–Manar, Faculté des Sciences de Tunis, Laboratoire de Chimie Analytique et Electrochimie (LR99ES15), Campus universitaire de Tunis El–Manar, 2092, Tunis (Tunisia); Merkoçi, Arben, E-mail: arben.merkoci@icn2.cat [Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona (Spain); ICREA, Barcelona, Catalonia (Spain)

    2016-07-05

    A novel ferrocene-functionalized reduced graphene oxide (rGO)-based electrode is proposed. It was fabricated by the drop casting of ferrocene-functionalized graphene onto polyester substrate as the working electrode integrated within screen-printed reference and counter electrodes. The ferrocene-functionalized rGO has been fully characterized using FTIR, XPS, contact angle measurements, SEM and TEM microscopy, and cyclic voltammetry. The XPS and EDX analysis showed the presence of Fe element related to the introduced ferrocene groups, which is confirmed by a clear CV signal at ca. 0.25 V vs. Ag/AgCl (0.1 KCl). Mediated redox catalysis of H{sub 2}O{sub 2} and bio-functionalization with glucose oxidase for glucose detection were achieved by the bioelectrode providing a proof for potential biosensing applications. - Graphical abstract: An easy-to-prepare standalone graphene electrode was obtained by the drop-casting ferrocene-functionalized rGO on PET polymer. This electrode can be used as an enzymeless electrochemical sensor for the detection of hydrogen peroxide or as an amperometric enzyme-based biosensor for sensitive glucose detection. - Highlights: • A novel ferrocene-functionalized reduced graphene oxide based electrode. • Ease of preparation by drop-casting of Fc-modified graphene and chitosan mixture. • Well-defined and exploitable ferrocene CV signal for sensing purposes. • Sensitive enzymeless detection of hydrogen peroxide at low potentials. • Enzymatic Sensitive detection of glucose on GOx-modified graphene electrode.

  11. Ferrocene-functionalized graphene electrode for biosensing applications

    International Nuclear Information System (INIS)

    Rabti, Amal; Mayorga-Martinez, Carmen C.; Baptista-Pires, Luis; Raouafi, Noureddine; Merkoçi, Arben

    2016-01-01

    A novel ferrocene-functionalized reduced graphene oxide (rGO)-based electrode is proposed. It was fabricated by the drop casting of ferrocene-functionalized graphene onto polyester substrate as the working electrode integrated within screen-printed reference and counter electrodes. The ferrocene-functionalized rGO has been fully characterized using FTIR, XPS, contact angle measurements, SEM and TEM microscopy, and cyclic voltammetry. The XPS and EDX analysis showed the presence of Fe element related to the introduced ferrocene groups, which is confirmed by a clear CV signal at ca. 0.25 V vs. Ag/AgCl (0.1 KCl). Mediated redox catalysis of H_2O_2 and bio-functionalization with glucose oxidase for glucose detection were achieved by the bioelectrode providing a proof for potential biosensing applications. - Graphical abstract: An easy-to-prepare standalone graphene electrode was obtained by the drop-casting ferrocene-functionalized rGO on PET polymer. This electrode can be used as an enzymeless electrochemical sensor for the detection of hydrogen peroxide or as an amperometric enzyme-based biosensor for sensitive glucose detection. - Highlights: • A novel ferrocene-functionalized reduced graphene oxide based electrode. • Ease of preparation by drop-casting of Fc-modified graphene and chitosan mixture. • Well-defined and exploitable ferrocene CV signal for sensing purposes. • Sensitive enzymeless detection of hydrogen peroxide at low potentials. • Enzymatic Sensitive detection of glucose on GOx-modified graphene electrode.

  12. 67Ga lung scan

    International Nuclear Information System (INIS)

    Niden, A.H.; Mishkin, F.S.; Khurana, M.M.L.; Pick, R.

    1977-01-01

    Twenty-three patients with clinical signs of pulmonary embolic disease and lung infiltrates were studied to determine the value of gallium citrate 67 Ga lung scan in differentiating embolic from inflammatory lung disease. In 11 patients without angiographically proved embolism, only seven had corresponding ventilation-perfusion defects compatible with inflammatory disease. In seven of these 11 patients, the 67 Ga concentration indicated inflammatory disease. In the 12 patients with angiographically proved embolic disease, six had corresponding ventilation-perfusion defects compatible with inflammatory disease. None had an accumulation of 67 Ga in the area of pulmonary infiltrate. Thus, ventilation-perfusion lung scans are of limited value when lung infiltrates are present. In contrast, the accumulation of 67 Ga in the lung indicates an inflammatory process. Gallium imaging can help select those patients with lung infiltrates who need angiography

  13. Horizon Scanning for Pharmaceuticals

    DEFF Research Database (Denmark)

    Lepage-Nefkens, Isabelle; Douw, Karla; Mantjes, GertJan

    for a joint horizon scanning system (HSS).  We propose to create a central “horizon scanning unit” to perform the joint HS activities (a newly established unit, an existing HS unit, or a third party commissioned and financed by the collaborating countries). The unit will be responsible for the identification...... and filtration of new and emerging pharmaceutical products. It will maintain and update the HS database, organise company pipeline meetings, and disseminate the HSS’s outputs.  The HS unit works closely together with the designated national HS experts in each collaborating country. The national HS experts...... will collect country-specific information, liaise between the central HS unit and country-specific clinical and other experts, coordinate the national prioritization process (to select products for early assessment), and communicate the output of the HSS to national decision makers.  The outputs of the joint...

  14. Manganese oxide-based materials as electrochemical supercapacitor electrodes.

    Science.gov (United States)

    Wei, Weifeng; Cui, Xinwei; Chen, Weixing; Ivey, Douglas G

    2011-03-01

    Electrochemical supercapacitors (ECs), characteristic of high power and reasonably high energy densities, have become a versatile solution to various emerging energy applications. This critical review describes some materials science aspects on manganese oxide-based materials for these applications, primarily including the strategic design and fabrication of these electrode materials. Nanostructurization, chemical modification and incorporation with high surface area, conductive nanoarchitectures are the three major strategies in the development of high-performance manganese oxide-based electrodes for EC applications. Numerous works reviewed herein have shown enhanced electrochemical performance in the manganese oxide-based electrode materials. However, many fundamental questions remain unanswered, particularly with respect to characterization and understanding of electron transfer and atomic transport of the electrochemical interface processes within the manganese oxide-based electrodes. In order to fully exploit the potential of manganese oxide-based electrode materials, an unambiguous appreciation of these basic questions and optimization of synthesis parameters and material properties are critical for the further development of EC devices (233 references).

  15. Carbon nanotube fiber mats for microbial fuel cell electrodes.

    Science.gov (United States)

    Delord, Brigitte; Neri, Wilfrid; Bertaux, Karen; Derre, Alain; Ly, Isabelle; Mano, Nicolas; Poulin, Philippe

    2017-11-01

    Novel carbon nanotube based electrodes of microbial fuel cells (MFC) have been developed. MFC is a promising technology for the wastewater treatment and the production of electrical energy from redox reactions of natural substrates. Performances of such bio-electrochemical systems depend critically on the structure and properties of the electrodes. The presently developed materials are made by weaving fibers solely comprised of carbon nanotubes. They exhibit a large scale porosity controlled by the weaving process. This porosity allows an easy colonization by electroactive bacteria. In addition, the fibers display a nanostructuration that promotes excellent growth and adhesion of the bacteria at the surface of the electrodes. This unique combination of large scale porosity and nanostructuration allows the present electrodes to perform better than carbon reference. When used as anode in a bioelectrochemical reactor in presence of Geobacter sulfurreducens bacteria, the present electrodes show a maximal current density of about 7.5mA/cm 2 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Broad Considerations Concerning Electrochemical Electrodes in Primarily Fluid Environments

    Directory of Open Access Journals (Sweden)

    Christopher G. Jesudason

    2009-05-01

    Full Text Available This review is variously a presentation, reflection, synthesis and report with reference to more recent developments of an article – in a journal which has ceased publication – entitled “Some Electrode Theorems with Experimental Corroboration, Inclusive of the Ag/AgCl System” Internet Journal of Chemistry, (http://www.ijc.com, Special Issues: Vol. 2 Article 24 (1999. The results from new lemmas relating charge densities and capacitance in a metallic electrode in equilibrium with an ionic solution are used to explain the data and observed effects due to Esin, Markov, Grahame, Lang and Kohn. Size effects that vary the measured e.m.f. of electrodes due to changes in the electronic chemical potential are demonstrated in experiment and theory implying the need for standardization of electrodes with respect to geometry and size. The widely used Stern modification of the Gouy-Chapman theory is shown to be mostly inapplicable for many of the problems where it is employed. Practical consequences of the current development include the possibility of determining the elusive single-ion activity coefficients of solution ions directly from the expression given by a simplified capacitance theorem, the potential of zero charge and the determination of single ion concentrations of active species in the electrode reactions from cell e.m.f. measurements.

  17. New reusable elastomer electrodes for assessing body composition

    International Nuclear Information System (INIS)

    Moreno, M-V; Chaset, L; Bittner, P A; Barthod, C; Passard, M

    2013-01-01

    The development of telemedicine requires finding solutions of reusable electrodes for use in patients' homes. The objective of this study is to evaluate the relevance of reusable elastomer electrodes for measuring body composition. We measured a population of healthy Caucasian (n = 17). A measurement was made with a reference device, the Xitron®, associated with AgCl Gel electrodes (Gel) and another measurement with a multifrequency impedancemeter Z-Metrix® associated with reusable elastomer electrodes (Elast). We obtained a low variability with an average error of repeatability of 0.39% for Re and 0.32% for Rinf. There is a non significantly difference (P T-test > 0.1) about 200 ml between extracellular water Ve measured with Gel and Elast in supine and in standing position. For total body water Vt, we note a non significantly difference (P T-test > 0.1) about 100 ml and 2.2 1 respectively in supine and standing position. The results give low dispersion, with R 2 superior to 0.90, with a 1.5% maximal error between Gel and Elast on Ve in standing position. It looks possible, taking a few precautions, using elastomer electrodes for assessing body composition.

  18. Voltammetry at micro-mesh electrodes

    Directory of Open Access Journals (Sweden)

    Wadhawan Jay D.

    2003-01-01

    Full Text Available The voltammetry at three micro-mesh electrodes is explored. It is found that at sufficiently short experimental durations, the micro-mesh working electrode first behaves as an ensemble of microband electrodes, then follows the behaviour anticipated for an array of diffusion-independent micro-ring electrodes of the same perimeter as individual grid-squares within the mesh. During prolonged electrolysis, the micro-mesh electrode follows that behaviour anticipated theoretically for a cubically-packed partially-blocked electrode. Application of the micro-mesh electrode for the electrochemical determination of carbon dioxide in DMSO electrolyte solutions is further illustrated.

  19. The kinetics of porous insertion electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Atlung, S; West, K [British Columbia Univ., Vancouver (Canada)

    1989-05-01

    The principles of porous electrodes are discussed as well as the discharge of the insertion compound, the working potential, transport in the electrolyte, the time dependence of the electrolyte concentration, and modeling of the porous electrode. The simulation of a TiS2 porous electrode and the composite insertion electrode are considered as well. The influence of electrode thickness and porosity in a typical porous TiS2 electrode is revealed. It is shown that the use of insertion compounds as battery electrodes is limited by the requirement that the inserted ion must be distributed in the interior of the insertion compound particle. 15 refs.

  20. Stimulation and recording electrodes for neural prostheses

    CERN Document Server

    Pour Aryan, Naser; Rothermel, Albrecht

    2015-01-01

    This book provides readers with basic principles of the electrochemistry of the electrodes used in modern, implantable neural prostheses. The authors discuss the boundaries and conditions in which the electrodes continue to function properly for long time spans, which are required when designing neural stimulator devices for long-term in vivo applications. Two kinds of electrode materials, titanium nitride and iridium are discussed extensively, both qualitatively and quantitatively. The influence of the counter electrode on the safety margins and electrode lifetime in a two electrode system is explained. Electrode modeling is handled in a final chapter.

  1. Multichannel scanning spectrophotometer

    International Nuclear Information System (INIS)

    Lagutin, A.F.

    1979-01-01

    A spectrophotometer designed in the Crimea astrophysical observatory is described. The spectrophotometer is intended for the installation at the telescope to measure energy distribution in the star spectra in the 3100-8550 A range. The device is made according to the scheme with a fixed diffraction lattice. The choice of the optical kinematic scheme is explained. The main design elements are shown. Some singularities of the scanning drive kinematics are considered. The device performance is given

  2. Scanning drop sensor

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Jian; Xiang, Chengxiang; Gregoire, John

    2017-05-09

    Electrochemical experiments are performed on a collection of samples by suspending a drop of electrolyte solution between an electrochemical experiment probe and one of the samples that serves as a test sample. During the electrochemical experiment, the electrolyte solution is added to the drop and an output solution is removed from the drop. The probe and collection of samples can be moved relative to one another so the probe can be scanned across the samples.

  3. Scanning drop sensor

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Jian; Xiang, Chengxiang; Gregoire, John M.; Shinde, Aniketa A.; Guevarra, Dan W.; Jones, Ryan J.; Marcin, Martin R.; Mitrovic, Slobodan

    2017-05-09

    Electrochemical or electrochemical and photochemical experiments are performed on a collection of samples by suspending a drop of electrolyte solution between an electrochemical experiment probe and one of the samples that serves as a test sample. During the electrochemical experiment, the electrolyte solution is added to the drop and an output solution is removed from the drop. The probe and collection of samples can be moved relative to one another so the probe can be scanned across the samples.

  4. IMEF gamma scanning system

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Sang Yeol; Park, Dae Kyu; Ahn, Sang Bok; Ju, Yong Sun; Jeon, Yong Bum

    1997-06-01

    The gamma scanning system which is installed in IMEF is the equipment obtaining the gamma ray spectrum from irradiated fuels. This equipment could afford the useful data relating spent fuels like as burn-up measurements. We describe the specifications of the equipment and its accessories, and also described its operation procedure so that an operator can use this report as the operation procedure. (author). 1 tab., 11 figs., 11 refs.

  5. IMEF gamma scanning system

    International Nuclear Information System (INIS)

    Baek, Sang Yeol; Park, Dae Kyu; Ahn, Sang Bok; Ju, Yong Sun; Jeon, Yong Bum.

    1997-06-01

    The gamma scanning system which is installed in IMEF is the equipment obtaining the gamma ray spectrum from irradiated fuels. This equipment could afford the useful data relating spent fuels like as burn-up measurements. We describe the specifications of the equipment and its accessories, and also described its operation procedure so that an operator can use this report as the operation procedure. (author). 1 tab., 11 figs., 11 refs

  6. Scanning unit for collectrons

    International Nuclear Information System (INIS)

    Plaige, Yves.

    1976-01-01

    This invention concerns a measurement scanning assembly for collectron type detectors. It is used in measuring the neutron flux in nuclear reactors. As the number of these detectors in a reactor can be very great, they are not usually all connected permanently to the measuring facility but rather in turn by means of a scanning device which carries out, as it were, multiplexing between all the collectrons and the input of a single measuring system. The object of the invention is a scanning assembly which is of relative simplicity through an original organisation. Specifically, according to this organisation, the collectrons outputs are grouped together in bunches, each of these bunches being processed by a multiplexing sub-assembly belonging to a first stage, the different outputs of these multiplexing subassemblies of this first stage being grouped together yet again in bunches processed by multiplexors forming a new stage and so forth. Further, this structure is specially adapted for use with collectrons by utilising a current amplifier at each multiplexing level so that from one end to the other of the multiplexing system, the commutations are carried out on currents and not on voltages [fr

  7. Forensic Scanning Electron Microscope

    Science.gov (United States)

    Keeley, R. H.

    1983-03-01

    The scanning electron microscope equipped with an x-ray spectrometer is a versatile instrument which has many uses in the investigation of crime and preparation of scientific evidence for the courts. Major applications include microscopy and analysis of very small fragments of paint, glass and other materials which may link an individual with a scene of crime, identification of firearms residues and examination of questioned documents. Although simultaneous observation and chemical analysis of the sample is the most important feature of the instrument, other modes of operation such as cathodoluminescence spectrometry, backscattered electron imaging and direct x-ray excitation are also exploited. Marks on two bullets or cartridge cases can be compared directly by sequential scanning with a single beam or electronic linkage of two instruments. Particles of primer residue deposited on the skin and clothing when a gun is fired can be collected on adhesive tape and identified by their morphology and elemental composition. It is also possible to differentiate between the primer residues of different types of ammunition. Bullets may be identified from the small fragments left behind as they pass through the body tissues. In the examination of questioned documents the scanning electron microscope is used to establish the order in which two intersecting ink lines were written and to detect traces of chemical markers added to the security inks on official documents.

  8. Determination of zinc and cadmium with characterized Electrodes of carbon and polyurethane modified by a bismuth film

    Directory of Open Access Journals (Sweden)

    Jossy Karla Brasil Bernardelli

    2011-09-01

    Full Text Available This study aims to use electrodes modified with bismuth films for the determination of zinc and cadmium. The film was electrodeposited ex situ on a composite carbon electrode with polyurethane and 2% metallic bismuth (2BiE and on a carbon bar electrode (CBE. The electrodes were characterized by scanning electron microscopy and energy dispersive spectroscopy. Through differential pulse anodic stripping voltammetry, the electrodes 2BiE and CBE containing bismuth films showed a limit of detection (LOD of 5.56 × 10-5 and 3.07 × 10-5 g.L-1 for cadmium and 1.24 × 10-4 and 1.53 × 10-4 g.L-1 for zinc, respectively. The presence of a bismuth film increased the sensitivity of both electrodes.

  9. Nickel–copper hybrid electrodes self-adhered onto a silicon wafer by supersonic cold-spray

    International Nuclear Information System (INIS)

    Lee, Jong-Gun; Kim, Do-Yeon; Kang, Byungjun; Kim, Donghwan; Song, Hee-eun; Kim, Jooyoung; Jung, Woonsuk; Lee, Dukhaeng; Al-Deyab, Salem S.; James, Scott C.; Yoon, Sam S.

    2015-01-01

    High-performance electrodes are fabricated through supersonic spraying of nickel and copper particles. These electrodes yield low specific resistivities, comparable to electrodes produced by screen-printed silver paste and light-induced plating. The appeal of this fabrication method is the low cost of copper and large area scalability of supersonic spray-coating techniques. The copper and nickel electrode was fabricated in the open air without any pre- or post-treatment. The spray-coated copper–nickel electrode was characterized by optical microscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction, and energy dispersive spectroscopy. Although both SEM and TEM images confirmed voids trapped between flattened particles in the fabricated electrode, this electrode’s resistivity was order 10 −6 Ω cm, which is comparable to the bulk value for pure copper

  10. Extraction electrode geometry for a calutron

    International Nuclear Information System (INIS)

    Veach, A.M.; Bell, W.A. Jr.

    1975-01-01

    This patent relates to an improved geometry for the extraction electrode and the ground electrode utilized in the operation of a calutron. The improved electrodes are constructed in a partial-picture-frame fashion with the slits of both electrodes formed by two tungsten elongated rods. Additional parallel spaced-apart rods in each electrode are used to establish equipotential surfaces over the rest of the front of the ion source

  11. Electrochemical detection of L-cysteine using a boron-doped carbon nanotube-modified electrode

    International Nuclear Information System (INIS)

    Deng Chunyan; Chen Jinhua; Chen Xiaoli; Wang Mengdong; Nie Zhou; Yao Shouzhuo

    2009-01-01

    A boron-doped carbon nanotube (BCNT)-modified glassy carbon (GC) electrode was constructed for the detection of L-cysteine (L-CySH). The electrochemical behavior of BCNTs in response to L-cysteine oxidation was investigated. The response current of L-CySH oxidation at the BCNT/GC electrode was obviously higher than that at the bare GC electrode or the CNT/GC electrode. This finding may be ascribed to the excellent electrochemical properties of the BCNT/GC electrode. Moreover, on the basis of this finding, a determination of L-CySH at the BCNT/GC electrode was carried out. The effects of pH, scan rate and interferents on the response of L-CySH oxidation were investigated. Under the optimum experimental conditions, the detection response for L-CySH on the BCNT/GC electrode was fast (within 7 s). It was found to be linear from 7.8 x 10 -7 to 2 x 10 -4 M (r = 0.998), with a high sensitivity of 25.3 ± 1.2 nA mM -1 and a low detection limit of 0.26 ± 0.01 μM. The BCNT/GC electrode exhibited high stability and good resistance against interference by other oxidizable amino acids (tryptophan and tyrosine)

  12. Redox poly[Ni(saldMp)] modified activated carbon electrode in electrochemical supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Gao Fei [Department of Physical Chemistry, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China); Li Jianling, E-mail: lijianling@ustb.edu.c [Department of Physical Chemistry, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China); Zhang Yakun; Wang Xindong [Department of Physical Chemistry, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China); Kang Feiyu [Department of Material Science and Engineering, Tsinghua University, Beijing 100083 (China)

    2010-08-01

    The complex (2,2-dimethyl-1,3-propanediaminebis(salicylideneaminato))-nickel(II), [Ni(saldMp)], was oxidatively electropolymerized on activated carbon (AC) electrode in acetonitrile solution. The poly[Ni(saldMp)] presented an incomplete coated film on the surface of carbon particles of AC electrode by field emission scanning electron microscopy. The electrochemical behaviors of poly[Ni(saldMp)] modified activated carbon (PAC) electrode were evaluated in different potential ranges by cyclic voltammetry. Counterions and solvent swelling mainly occurred up to 0.6 V for PAC electrode by the comparison of D{sup 1/2}C values calculated from chronoamperometry experiments. Both the Ohmic resistance and Faraday resistance of PAC electrode gradually approached to those of AC electrode when its potential was ranging from 1.2 V to 0.0 V. Galvanostatic charge/discharge experiments indicated that both the specific capacitance and energy density were effectively improved by the reversible redox reaction of poly[Ni(saldMp)] film under the high current density up to 10 mA cm{sup -2} for AC electrode. The specific capacitance of PAC electrode decreased during the first 50 cycles but thereafter it remained constant for the next 200 cycles. This study showed the redox polymer may be an attractive material in supercapacitors.

  13. In Vivo Electrochemical Analysis of a PEDOT/MWCNT Neural Electrode Coating

    Directory of Open Access Journals (Sweden)

    Nicolas A. Alba

    2015-10-01

    Full Text Available Neural electrodes hold tremendous potential for improving understanding of brain function and restoring lost neurological functions. Multi-walled carbon nanotube (MWCNT and dexamethasone (Dex-doped poly(3,4-ethylenedioxythiophene (PEDOT coatings have shown promise to improve chronic neural electrode performance. Here, we employ electrochemical techniques to characterize the coating in vivo. Coated and uncoated electrode arrays were implanted into rat visual cortex and subjected to daily cyclic voltammetry (CV and electrochemical impedance spectroscopy (EIS for 11 days. Coated electrodes experienced a significant decrease in 1 kHz impedance within the first two days of implantation followed by an increase between days 4 and 7. Equivalent circuit analysis showed that the impedance increase is the result of surface capacitance reduction, likely due to protein and cellular processes encapsulating the porous coating. Coating’s charge storage capacity remained consistently higher than uncoated electrodes, demonstrating its in vivo electrochemical stability. To decouple the PEDOT/MWCNT material property changes from the tissue response, in vitro characterization was conducted by soaking the coated electrodes in PBS for 11 days. Some coated electrodes exhibited steady impedance while others exhibiting large increases associated with large decreases in charge storage capacity suggesting delamination in PBS. This was not observed in vivo, as scanning electron microscopy of explants verified the integrity of the coating with no sign of delamination or cracking. Despite the impedance increase, coated electrodes successfully recorded neural activity throughout the implantation period.

  14. Neodymium conversion layers formed on zinc powder for improving electrochemical properties of zinc electrodes

    International Nuclear Information System (INIS)

    Zhu Liqun; Zhang Hui; Li Weiping; Liu Huicong

    2008-01-01

    Zinc powder, as active material of secondary alkaline zinc electrode, can greatly limit the performance of zinc electrode due to corrosion and dendritic growth of zinc resulting in great capacity-loss and short cycle life of the electrode. This work is devoted to modification study of zinc powder with neodymium conversion films coated directly onto it using ultrasonic immersion method for properties improvement of zinc electrodes. Scanning electron microscopy and other characterization techniques are applied to prove that neodymium conversion layers are distributing on the surface of modified zinc powder. The electrochemical performance of zinc electrodes made of such modified zinc powder is investigated through potentiodynamic polarization, potentiostatic polarization and cyclic voltammetry. The neodymium conversion films are found to have a significant effect on inhibition corrosion capability of zinc electrode in a beneficial way. It is also confirmed that the neodymium conversion coatings can obviously suppress dendritic growth of zinc electrode, which is attributed to the amelioration of deposition state of zinc. Moreover, the results of cyclic voltammetry reveal that surface modification of zinc powder enhances the cycle performance of the electrode mainly because the neodymium conversion films decrease the amounts of ZnO or Zn(OH) 2 dissolved in the electrolyte

  15. TiN coated aluminum electrodes for DC high voltage electron guns

    International Nuclear Information System (INIS)

    Mamun, Md Abdullah A.; Elmustafa, Abdelmageed A.; Taus, Rhys; Forman, Eric; Poelker, Matthew

    2015-01-01

    Preparing electrodes made of metals like stainless steel, for use inside DC high voltage electron guns, is a labor-intensive and time-consuming process. In this paper, the authors report the exceptional high voltage performance of aluminum electrodes coated with hard titanium nitride (TiN). The aluminum electrodes were comparatively easy to manufacture and required only hours of mechanical polishing using silicon carbide paper, prior to coating with TiN by a commercial vendor. The high voltage performance of three TiN-coated aluminum electrodes, before and after gas conditioning with helium, was compared to that of bare aluminum electrodes, and electrodes manufactured from titanium alloy (Ti-6Al-4V). Following gas conditioning, each TiN-coated aluminum electrode reached −225 kV bias voltage while generating less than 100 pA of field emission (<10 pA) using a 40 mm cathode/anode gap, corresponding to field strength of 13.7 MV/m. Smaller gaps were studied to evaluate electrode performance at higher field strength with the best performing TiN-coated aluminum electrode reaching ∼22.5 MV/m with field emission less than 100 pA. These results were comparable to those obtained from our best-performing electrodes manufactured from stainless steel, titanium alloy and niobium, as reported in references cited below. The TiN coating provided a very smooth surface and with mechanical properties of the coating (hardness and modulus) superior to those of stainless steel, titanium-alloy, and niobium electrodes. These features likely contributed to the improved high voltage performance of the TiN-coated aluminum electrodes

  16. Altered electrode degradation with temperature in LiFePO4/mesocarbon microbead graphite cells diagnosed with impedance spectroscopy

    International Nuclear Information System (INIS)

    Klett, Matilda; Zavalis, Tommy Georgios; Kjell, Maria H.; Lindström, Rakel Wreland; Behm, Mårten; Lindbergh, Göran

    2014-01-01

    Highlights: • Aging of LiFePO 4 /mesocarbon microbead graphite cells from hybrid electric vehicle cycling. • Electrode degradation evaluated post-mortem by impedance spectroscopy and physics-based modeling. • Increased temperature promotes different degradation processes on the electrode level. • Conductive carbon degradation at 55 °C in the LiFePO 4 electrode. • Mesocarbon microbead graphite electrode degraded by cycling rather than temperature. - Abstract: Electrode degradation in LiFePO 4 /mesocarbon microbead graphite (MCMB) pouch cells aged at 55 °C by a synthetic hybrid drive cycle or storage is diagnosed and put into context with previous results of aging at 22 °C. The electrode degradation is evaluated by means of electrochemical impedance spectroscopy (EIS), measured separately on electrodes harvested from the cells, and by using a physics-based impedance model for aging evaluation. Additional capacity measurements, scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX) are used in the evaluation. At 55 °C the LiFePO 4 electrode shows increased particle/electronic conductor resistance, for both stored and cycled electrodes. This differs from results obtained at 22 °C, where the electrode suffered lowered porosity, particle fracture, and loss of active material. For graphite, only cycling gave a sustained effect on electrode performance at 55 °C due to lowered porosity and changes of surface properties, and to greater extent than at low temperature. Furthermore, increased current collector resistance also contributes to a large part of the pouch cell impedance when aged at increased temperatures. The result shows that increased temperature promotes different degradation on the electrode level, and is an important implication for high temperature accelerated aging. In light of the electrode observations, the correlation between full-cell and electrode impedances is discussed

  17. Detection of nicotine based on molecularly imprinted TiO{sub 2}-modified electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Wu, C.-T.; Chen, P.-Y.; Chen, J.-G.; Suryanarayanan, Vembu [Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Ho, K.-C. [Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China)], E-mail: kcho@ntu.edu.tw

    2009-02-02

    Amperometric detection of nicotine (NIC) was carried out on a titanium dioxide (TiO{sub 2})/poly(3,4-ethylenedioxythiophene) (PEDOT)-modified electrode by a molecular imprinting technique. In order to improve the conductivity of the substrate, PEDOT was coated onto the sintered electrode by in situ electrochemical polymerization of the monomer. The sensing potential of the NIC-imprinted TiO{sub 2} electrode (ITO/TiO{sub 2}[NIC]/PEDOT) in a phosphate-buffered saline (PBS) solution (pH 7.4) containing 0.1 M KCl was determined to be 0.88 V (vs. Ag/AgCl/saturated KCl). The linear detection range for NIC oxidation on the so-called ITO/TiO{sub 2}[NIC]/PEDOT electrode was 0-5 mM, with a sensitivity and limit of detection of 31.35 {mu}A mM{sup -1} cm{sup -2} and 4.9 {mu}M, respectively. When comparing with the performance of the non-imprinted one, the sensitivity ratio was about 1.24. The sensitivity enhancement was attributed to the increase in the electroactive area of the imprinted electrode. The at-rest stability of the ITO/TiO{sub 2}[NIC]/PEDOT electrode was tested over a period of 3 days. The current response remained about 85% of its initial value at the end of 2 days. The ITO/TiO{sub 2}[NIC]/PEDOT electrode showed reasonably good selectivity in distinguishing NIC from its major interferent, (-)-cotinine (COT). Moreover, scanning electrochemical microscopy (SECM) was employed to elucidate the surface morphology of the imprinted and non-imprinted electrodes using Fe(CN){sub 6}{sup 3-}/Fe(CN){sub 6}{sup 4-} as a redox probe on a platinum tip. The imprinted electrode was further characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR)

  18. High performance lithium insertion negative electrode materials for electrochemical devices

    Energy Technology Data Exchange (ETDEWEB)

    Channu, V.S. Reddy, E-mail: chinares02@gmail.com [SMC Corporation, College Station, TX 77845 (United States); Rambabu, B. [Solid State Ionics and Surface Sciences Lab, Department of Physics, Southern University and A& M College, Baton Rouge, LA 70813 (United States); Kumari, Kusum [Department of Physics, National Institute of Technology, Warangal (India); Kalluru, Rajmohan R. [The University of Southern Mississippi, College of Science and Technology, 730 E Beach Blvd, Long Beach, MS 39560 (United States); Holze, Rudolf [Institut für Chemie, AG Elektrochemie, Technische Universität Chemnitz, D-09107 Chemnitz (Germany)

    2016-11-30

    Highlights: • LiCrTiO{sub 4} nanostructures were synthesized for electrochemical applications by soft chemical synthesis followed by annealing. • The presence of Cr and Ti elements are confirmed from the EDS spectrum. • Oxalic acid assisted LiCrTiO{sub 4} electrode shows higher specific capacity (mAh/g). - Abstract: Spinel LiCrTiO{sub 4} oxides to be used as electrode materials for a lithium ion battery and an asymmetric supercapacitor were synthesized using a soft-chemical method with and without chelating agents followed by calcination at 700 °C for 10 h. Structural and morphological properties were studied with powder X-ray diffraction, scanning electron and transmission electron microscopy. Particles of 50–10 nm in size are observed in the microscopic images. The presence of Cr and Ti is confirmed from the EDS spectrum. Electrochemical properties of LiCrTiO{sub 4} electrode were examined in a lithium ion battery. The electrode prepared with oxalic acid-assisted LiCrTiO{sub 4} shows higher specific capacity.This LiCrTiO{sub 4} is also used as anode material for an asymmetric hybrid supercapacitor. The cell exhibits a specific capacity of 65 mAh/g at 1 mA/cm{sup 2}. The specific capacity decreases with increasing current densities.

  19. Supercapacitor Electrode Based on Activated Carbon Wool Felt

    Directory of Open Access Journals (Sweden)

    Ana Claudia Pina

    2018-04-01

    Full Text Available An electrical double-layer capacitor (EDLC is based on the physical adsorption/desorption of electrolyte ions onto the surface of electrodes. Due to its high surface area and other properties, such as electrochemical stability and high electrical conductivity, carbon materials are the most widely used materials for EDLC electrodes. In this work, we study an activated carbon felt obtained from sheep wool felt (ACF’f as a supercapacitor electrode. The ACF’f was characterized by elemental analysis, scanning electron microscopy (SEM, textural analysis, and X-ray photoelectron spectroscopy (XPS. The electrochemical behaviour of the ACF’f was tested in a two-electrode Swagelok®-type, using acidic and basic aqueous electrolytes. At low current densities, the maximum specific capacitance determined from the charge-discharge curves were 163 F·g−1 and 152 F·g−1, in acidic and basic electrolytes, respectively. The capacitance retention at higher current densities was better in acidic electrolyte while, for both electrolytes, the voltammogram of the sample presents a typical capacitive behaviour, being in accordance with the electrochemical results.

  20. Nano ZnO-activated carbon composite electrodes for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Selvakumar, M. [Department of Chemistry, Manipal Institute of Technology, Manipal University, Manipal 576 104 (India); Krishna Bhat, D., E-mail: denthajekb@gmail.co [Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Srinivasnagar 575 025 (India); Manish Aggarwal, A.; Prahladh Iyer, S.; Sravani, G. [Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Srinivasnagar 575 025 (India)

    2010-05-01

    A symmetrical (p/p) supercapacitor has been fabricated by making use of nanostructured zinc oxide (ZnO)-activated carbon (AC) composite electrodes for the first time. The composites have been characterized by field emission scanning electron microscopy (FESEM) and X-ray diffraction analysis (XRD). Electrochemical properties of the prepared nanocomposite electrodes and the supercapacitor have been studied using cyclic voltammetry (CV) and AC impedance spectroscopy in 0.1 M Na{sub 2}SO{sub 4} as electrolyte. The ZnO-AC nanocomposite electrode showed a specific capacitance of 160 F/g for 1:1 composition. The specific capacitance of the electrodes decreased with increase in zinc oxide content. Galvanostatic charge-discharge measurements have been done at various current densities, namely 2, 4, 6 and 7 mA/cm{sup 2}. It has been found that the cells have excellent electrochemical reversibility and capacitive characteristics in 0.1 M Na{sub 2}SO{sub 4} electrolyte. It has also been observed that the specific capacitance is constant up to 500 cycles at all current densities.

  1. Nano ZnO-activated carbon composite electrodes for supercapacitors

    Science.gov (United States)

    Selvakumar, M.; Krishna Bhat, D.; Manish Aggarwal, A.; Prahladh Iyer, S.; Sravani, G.

    2010-05-01

    A symmetrical (p/p) supercapacitor has been fabricated by making use of nanostructured zinc oxide (ZnO)-activated carbon (AC) composite electrodes for the first time. The composites have been characterized by field emission scanning electron microscopy (FESEM) and X-ray diffraction analysis (XRD). Electrochemical properties of the prepared nanocomposite electrodes and the supercapacitor have been studied using cyclic voltammetry (CV) and AC impedance spectroscopy in 0.1 M Na 2SO 4 as electrolyte. The ZnO-AC nanocomposite electrode showed a specific capacitance of 160 F/g for 1:1 composition. The specific capacitance of the electrodes decreased with increase in zinc oxide content. Galvanostatic charge-discharge measurements have been done at various current densities, namely 2, 4, 6 and 7 mA/cm 2. It has been found that the cells have excellent electrochemical reversibility and capacitive characteristics in 0.1 M Na 2SO 4 electrolyte. It has also been observed that the specific capacitance is constant up to 500 cycles at all current densities.

  2. Carbon electrode for desalination purpose in capacitive deionization

    International Nuclear Information System (INIS)

    Endarko,; Fadilah, Nurul; Anggoro, Diky

    2016-01-01

    Carbon electrodes for desalination purpose have been successfully synthesized using activated carbon powder (BET surface area=700 – 1400 m 2 /g), carbon black and polyvinyl alcohol (PVA) binder by cross-linking method with glutaric acid (GA) at 120 °C. The electrochemical properties of the carbon electrodes were analyzed using electrical impedance spectroscopy (EIS) and cyclic voltammetry (CV) whilst the physical properties were observed with scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDX). In order to assess the desalting performance, salt removal experiments were performed by constructing a capacitive deionization unit cell with five pairs of carbon electrodes. For each pair consisted of two parallel carbon electrodes separated by a spacer. Desalination and regeneration processes were also observed in the salt-removal experiments. The salt-removal experiments were carried out in single-pass mode using a solution with 0.1 M NaCl at a flow rate of 10 mL/min. A voltage of 3 V was applied to the cell for 60 minutes for both processes in desalination and regeneration. The result showed that the percentage value of the salt-removal was achieved at 20%.

  3. Carbon electrode for desalination purpose in capacitive deionization

    Energy Technology Data Exchange (ETDEWEB)

    Endarko,, E-mail: endarko@physics.its.ac.id; Fadilah, Nurul; Anggoro, Diky [Physics Department, Institut Teknologi Sepuluh Nopember (ITS) Kampus ITS, Sukolilo Surabaya 60111, Jawa Timur (Indonesia)

    2016-03-11

    Carbon electrodes for desalination purpose have been successfully synthesized using activated carbon powder (BET surface area=700 – 1400 m{sup 2}/g), carbon black and polyvinyl alcohol (PVA) binder by cross-linking method with glutaric acid (GA) at 120 °C. The electrochemical properties of the carbon electrodes were analyzed using electrical impedance spectroscopy (EIS) and cyclic voltammetry (CV) whilst the physical properties were observed with scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDX). In order to assess the desalting performance, salt removal experiments were performed by constructing a capacitive deionization unit cell with five pairs of carbon electrodes. For each pair consisted of two parallel carbon electrodes separated by a spacer. Desalination and regeneration processes were also observed in the salt-removal experiments. The salt-removal experiments were carried out in single-pass mode using a solution with 0.1 M NaCl at a flow rate of 10 mL/min. A voltage of 3 V was applied to the cell for 60 minutes for both processes in desalination and regeneration. The result showed that the percentage value of the salt-removal was achieved at 20%.

  4. Electrodes of carbonized MWCNT-cellulose paper for supercapacitor

    Science.gov (United States)

    Sun, Xiaogang; Cai, Manyuan; Chen, Long; Qiu, Zhiwen; Liu, Zhenghong

    2017-07-01

    A flexible composite paper of multi-walled carbon nanotube (MWCNT) and cellulose fiber (CF) were fabricated by traditional paper-making method. Then, the MWCNT/CF papers were carbonized at high temperature in vacuum to remove organic component. The carbonized MWCNT/CF (MWCNT/CCF) papers are consisted of MWCNT and carbon fiber. The papers were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), and four-point probe resistance meter. The electrochemical performances of the supercapacitors were tested by cyclic voltammetry and galvanostatic charge/discharge >with 1 moL/L LiPF6 as electrolyte. The MWCNT/CCF electrode yielded a specific capacitance of 156F/g at a current density of 50 mA/g by galvanostatic charge/discharge measurement, which is 1.29 times higher than MWCNT/CF electrode of 68F/g. The MWCNT/CCF electrodes also displayed an excellent specific capacitance retention of 84% after 2000 continuous charge/discharge cycles at a current density of 400 mA/g. The increase of specific capacitance can be attributed to enhanced electrical conductivity of MWCNT/CCF papers and improved contact interface between electrolyte and electrodes.

  5. Automatic Ultrasound Scanning

    DEFF Research Database (Denmark)

    Moshavegh, Ramin

    on the user adjustments on the scanner interface to optimize the scan settings. This explains the huge interest in the subject of this PhD project entitled “AUTOMATIC ULTRASOUND SCANNING”. The key goals of the project have been to develop automated techniques to minimize the unnecessary settings...... on the scanners, and to improve the computer-aided diagnosis (CAD) in ultrasound by introducing new quantitative measures. Thus, four major issues concerning automation of the medical ultrasound are addressed in this PhD project. They touch upon gain adjustments in ultrasound, automatic synthetic aperture image...

  6. Radiographic scanning agent

    International Nuclear Information System (INIS)

    Bevan, J.A.

    1983-01-01

    This invention relates to radiodiagnostic agents and more particularly to a composition and method for preparing a highly effective technetium-99m-based bone scanning agent. One deficiency of x-ray examination is the inability of that technique to detect skeletal metastases in their incipient stages. It has been discovered that the methanehydroxydiphosphonate bone mineral-seeking agent is unique in that it provides the dual benefits of sharp radiographic imaging and excellent lesion detection when used with technetium-99m. This agent can also be used with technetium-99m for detecting soft tissue calcification in the manner of the inorganic phosphate radiodiagnostic agents

  7. Spinal CT scan, 1

    International Nuclear Information System (INIS)

    Nakagawa, Hiroshi

    1982-01-01

    Methods of CT of the cervical and thoracic spines were explained, and normal CT pictures of them were described. Spinal CT was evaluated in comparison with other methods in various spinal diseases. Plain CT revealed stenosis due to spondylosis or ossification of posterior longitudinal ligament and hernia of intervertebral disc. CT took an important role in the diagnosis of spinal cord tumors with calcification and destruction of the bone. CT scan in combination with other methods was also useful for the diagnosis of spinal injuries, congenital anomalies and infections. (Ueda, J.)

  8. Scanning Color Laser Microscope

    Science.gov (United States)

    Awamura, D.; Ode, T.; Yonezawa, M.

    1988-01-01

    A confocal color laser microscope which utilizes a three color laser light source (Red: He-Ne, Green: Ar, Blue: Ar) has been developed and is finding useful applications in the semiconductor field. The color laser microscope, when compared to a conventional microscope, offers superior color separation, higher resolution, and sharper contrast. Recently some new functions including a Focus Scan Memory, a Surface Profile Measurement System, a Critical Dimension Measurement system (CD) and an Optical Beam Induced Current Function (OBIC) have been developed for the color laser microscope. This paper will discuss these new features.

  9. Scanning apparatus and method

    International Nuclear Information System (INIS)

    Brunnett, C.J.

    1980-01-01

    A novel method is described for processing the analogue signals from the photomultiplier tubes in a tomographic X-ray scanner. The system produces a series of pulses whose instantaneous frequency depends on the detected intensity of the X-radiation. A timer unit is used to determine the segment scan intervals and also to deduce the average radiation intensity detected during this interval. The overall system is claimed to possess the advantageous properties of low time delay, wide bandwidth and relative low cost. (U.K.)

  10. Electrochemical Performance of a New Modified Graphite-Epoxy Electrode for Covalent Immobilization of DNA

    OpenAIRE

    Balbin-Tamayo, Abel I; Riso, Laura S; Esteva-Guas, Ana Margarita; Mardini-Farias, Pércio Augusto; Pérez-Gramatges, Aurora

    2017-01-01

    A new epoxy conducting composite material prepared from epoxy resin, graphite and benzoic acid was developed and used for the manufacture of electrodes, which were characterized by cyclic voltammetry, Raman spectroscopy and field-emission scanning electron microscopy (FESEM). The dependence of peak-to-peak potential, peak anodic current, and the anodic peak/cathodic peak current ratio with scan rate were evaluated by cyclic voltammetry taking into account the Fe(CN)6(3-/4-) standard redox sys...

  11. Paper-based potentiometric pH sensor using carbon electrode drawn by pencil

    Science.gov (United States)

    Kawahara, Ryotaro; Sahatiya, Parikshit; Badhulika, Sushmee; Uno, Shigeyasu

    2018-04-01

    A flexible and disposable paper-based pH sensor fabricated with a pencil-drawn working electrode and a Ag/AgCl paste reference electrode is demonstrated for the first time to show pH response by the potentiometric principle. The sensor substrate is made of chromatography paper with a wax-printed hydrophobic area, and various types of carbon pencils are tested as working electrodes. The pH sensitivities of the electrodes drawn by carbon pencils with different hardnesses range from 16.5 to 26.9 mV/pH. The proposed sensor is expected to be more robust against shape change in electrodes on a flexible substrate than other types of chemiresistive/amperometric pH sensors.

  12. A transparent, solvent-free laminated top electrode for perovskite solar cells.

    Science.gov (United States)

    Makha, Mohammed; Fernandes, Silvia Letícia; Jenatsch, Sandra; Offermans, Ton; Schleuniger, Jürg; Tisserant, Jean-Nicolas; Véron, Anna C; Hany, Roland

    2016-01-01

    A simple lamination process of the top electrode for perovskite solar cells is demonstrated. The laminate electrode consists of a transparent and conductive plastic/metal mesh substrate, coated with an adhesive mixture of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), PEDOT:PSS, and sorbitol. The laminate electrode showed a high degree of transparency of 85%. Best cell performance was achieved for laminate electrodes prepared with a sorbitol concentration of ~30 wt% per milliliter PEDOT:PSS dispersion, and using a pre-annealing temperature of 120°C for 10 min before lamination. Thereby, perovskite solar cells with stabilized power conversion efficiencies of (7.6 ± 1.0)% were obtained which corresponds to 80% of the reference devices with reflective opaque gold electrodes.

  13. Novel corrosion experiments using the wire beam electrode: (III) Measuring electrochemical corrosion parameters from both the metallic and electrolytic phases

    International Nuclear Information System (INIS)

    Tan, Yong-Jun; Liu, Tie; Aung, Naing Naing

    2006-01-01

    The wire beam electrode (WBE) and the scanning reference electrode technique (SRET) have been applied in a novel combination to measure, for the first time, electrochemical parameters simultaneously from both the metallic and electrolytic phases of a corroding metal surface. The objective of this work is to demonstrate the application of this combined WBE-SRET method in obtaining unique information on localised corrosion mechanism, by investigating typical corrosion processes occurring over a mild steel WBE surface exposed to the classic Evans solution. The WBE method was used to map current and potential distributions in the metallic phase, and the SRET was used to map current or potential distribution in the electrolytic phase. It has been found that the combined WBE-SRET method is able to gain useful information on macro-cell electrochemical corrosion processes that involve macro-scale separation of anodes and cathodes. In such macro-cell corrosion systems, maps measured using WBE and SRET were found to correlate with each other and both methods were able to detect the locations of anodic sites. However the movement of the scanning probe during SRET measurements was found to affect the SRET detection of cathodic sites. In micro-cell corrosion systems where the separation of anodic and cathodic sites were less distinct, SRET measurement was found to be insensitive in detecting anodic and cathodic sites, while the WBE method was still able to produce results that correlated well with observed corrosion behaviour. Results obtained from this work suggest that the WBE-SRET method is applicable for understanding the initiation, propagation and electrochemical behaviour of localised corrosion anodes and cathodes, and also their dependence on externally controllable variables, such as solution pH changes and the existence of surface coatings

  14. Robust high temperature oxygen sensor electrodes

    DEFF Research Database (Denmark)

    Lund, Anders

    Platinum is the most widely used material in high temperature oxygen sensor electrodes. However, platinum is expensive and the platinum electrode may, under certain conditions, suffer from poisoning, which is detrimental for an oxygen sensor. The objective of this thesis is to evaluate electrode...... materials as candidates for robust oxygen sensor electrodes. The present work focuses on characterising the electrochemical properties of a few electrode materials to understand which oxygen electrode processes are limiting for the response time of the sensor electrode. Three types of porous platinum......-Dansensor. The electrochemical properties of the electrodes were characterised by electrochemical impedance spectroscopy (EIS), and the structures were characterised by x-ray diffraction and electron microscopy. At an oxygen partial pressures of 0.2 bar, the response time of the sensor electrode was determined by oxygen...

  15. Rodent model for assessing the long term safety and performance of peripheral nerve recording electrodes

    Science.gov (United States)

    Vasudevan, Srikanth; Patel, Kunal; Welle, Cristin

    2017-02-01

    Objective. In the US alone, there are approximately 185 000 cases of limb amputation annually, which can reduce the quality of life for those individuals. Current prosthesis technology could be improved by access to signals from the nervous system for intuitive prosthesis control. After amputation, residual peripheral nerves continue to convey motor signals and electrical stimulation of these nerves can elicit sensory percepts. However, current technology for extracting information directly from peripheral nerves has limited chronic reliability, and novel approaches must be vetted to ensure safe long-term use. The present study aims to optimize methods to establish a test platform using rodent model to assess the long term safety and performance of electrode interfaces implanted in the peripheral nerves. Approach. Floating Microelectrode Arrays (FMA, Microprobes for Life Sciences) were implanted into the rodent sciatic nerve. Weekly in vivo recordings and impedance measurements were performed in animals to assess performance and physical integrity of electrodes. Motor (walking track analysis) and sensory (Von Frey) function tests were used to assess change in nerve function due to the implant. Following the terminal recording session, the nerve was explanted and the health of axons, myelin and surrounding tissues were assessed using immunohistochemistry (IHC). The explanted electrodes were visualized under high magnification using scanning electrode microscopy (SEM) to observe any physical damage. Main results. Recordings of axonal action potentials demonstrated notable session-to-session variability. Impedance of the electrodes increased upon implantation and displayed relative stability until electrode failure. Initial deficits in motor function recovered by 2 weeks, while sensory deficits persisted through 6 weeks of assessment. The primary cause of failure was identified as lead wire breakage in all of animals. IHC indicated myelinated and unmyelinated axons

  16. 2002 reference document; Document de reference 2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This 2002 reference document of the group Areva, provides information on the society. Organized in seven chapters, it presents the persons responsible for the reference document and for auditing the financial statements, information pertaining to the transaction, general information on the company and share capital, information on company operation, changes and future prospects, assets, financial position, financial performance, information on company management and executive board and supervisory board, recent developments and future prospects. (A.L.B.)

  17. NEW SCANNING DEVICE FOR SCANNING TUNNELING MICROSCOPE APPLICATIONS

    NARCIS (Netherlands)

    SAWATZKY, GA; Koops, Karl Richard

    A small, single piezo XYZ translator has been developed. The device has been used as a scanner for a scanning tunneling microscope and has been tested successfully in air and in UHV. Its simple design results in a rigid and compact scanning unit which permits high scanning rates.

  18. Development of a Novel Solid-State Sensor Electrode Based on Titanium Thin Film as an Indicator Electrode in Potentiometric and Conductometric Acid-Base Titration in Aqueous Solution

    OpenAIRE

    Abu Ghalwa, Nasser

    2012-01-01

    A modified Ti/(SnO2 + Sb2O3) electrode was prepared by thermal deposition on titanium substrate and its use as indicator electrode to potentiometric and conductometric acid-base titration in aqueous solution at 298 K was developed. The E-pH curve is linear with slope of 0.0512 V/dec at 298 K. The standard potential of this electrode, E0, was determined with respect to the SCE as reference electrode. The recovery percentages for potentiometric and conductometric acid-base titration for acetic ...

  19. Coating manganese oxide onto graphite electrodes by immersion for electrochemical capacitors

    International Nuclear Information System (INIS)

    Lin, C.-C.; Chen, H.-W.

    2009-01-01

    In this study, manganese oxide was coated on a graphite electrode by immersion. Durations for immersion were varied to control the amount of manganese oxide coated onto the electrode surface. Maximum capacitance of 556 mF cm -2 was obtained in 0.5 M LiCl and with better/superior conditions (immersion time = 80 min and potential scan rate = 10 mV s -1 ). In addition, cyclic voltammograms of the prepared electrode at different potential scan rates exhibited the approximately rectangular and symmetric current-potential characteristics of a capacitor. Furthermore, the chronopotentiometry (CP) charge-discharge curves of the electrode prepared at 80 min of immersion time with a constant current of 1 mA were symmetric and similar isosceles triangles, which demonstrate its high electrochemical reversibility and good stability. Finally, under scanning electron microscope (SEM), the surface of the electrode prepared at 80 min of immersion time and after 1500 cycles of potential cycling revealed that numerously three-dimensional network of macropores appeared on large spherical grains

  20. RETGEM with polyvinylchloride (PVC) electrodes

    CERN Document Server

    Razin, V I; Reshetin, A I; Filippov, S N

    2009-01-01

    This paper presents a new design of the RETGEM (Resistive Electrode Thick GEM) based on electrodes made of a polyvinylchloride material (PVC). Our device can operate with gains of 10E5 as a conventional TGEM at low counting rates and as RPC in the case of high counting rates without of the transit to the violent sparks. The distinct feature of present RETGEM is the absent of the metal coating and lithographic technology for manufacturing of the protective dielectric rms. The electrodes from PVC permit to do the holes by a simple drilling machine. Detectors on a RETGEM basis could be useful in many fields of an application requiring a more cheap manufacturing and safe operation, for example, in a large neutrino experiments, in TPC, RICH systems.

  1. Ultrafast scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Botkin, D.A. [California Univ., Berkeley, CA (United States). Dept. of Physics]|[Lawrence Berkeley Lab., CA (United States)

    1995-09-01

    I have developed an ultrafast scanning tunneling microscope (USTM) based on uniting stroboscopic methods of ultrafast optics and scanned probe microscopy to obtain nanometer spatial resolution and sub-picosecond temporal resolution. USTM increases the achievable time resolution of a STM by more than 6 orders of magnitude; this should enable exploration of mesoscopic and nanometer size systems on time scales corresponding to the period or decay of fundamental excitations. USTM consists of a photoconductive switch with subpicosecond response time in series with the tip of a STM. An optical pulse from a modelocked laser activates the switch to create a gate for the tunneling current, while a second laser pulse on the sample initiates a dynamic process which affects the tunneling current. By sending a large sequence of identical pulse pairs and measuring the average tunnel current as a function of the relative time delay between the pulses in each pair, one can map the time evolution of the surface process. USTM was used to measure the broadband response of the STM`s atomic size tunnel barrier in frequencies from tens to hundreds of GHz. The USTM signal amplitude decays linearly with the tunnel junction conductance, so the spatial resolution of the time-resolved signal is comparable to that of a conventional STM. Geometrical capacitance of the junction does not appear to play an important role in the measurement, but a capacitive effect intimately related to tunneling contributes to the measured signals and may limit the ultimate resolution of the USTM.

  2. Preparation and characterization of RuO2/polypyrrole electrodes for supercapacitors

    Science.gov (United States)

    Li, Xiang; Wu, Yujiao; Zheng, Feng; Ling, Min; Lu, Fanghai

    2014-11-01

    Polypyrrole (PPy) embedded RuO2 electrodes were prepared by the composite method. Precursor solution of RuO2 was coated on tantalum sheet and annealed at 260 °C for 2.5 h to develop a thin film. PPy particles were deposited on RuO2 films and dried at 80 °C for 12 h to form composite electrode. Microstructure and morphology of RuO2/PPy electrode were characterized using Fourier transform infrared spectrometer, X-ray diffraction and scanning electron microscopy, respectively. Our results confirmed that counter ions are incorporated into RuO2 matrix. Structure of the composite with amorphous phase was verified by X-ray diffraction. Analysis by scanning electron microscopy reveals that during grain growth of RuO2/PPy, PPy particle size sharply increases as deposition time is over 20 min. Electrochemical properties of RuO2/PPy electrode were calculated using cyclic voltammetry. As deposition times of PPy are 10, 20, 25 and 30 min, specific capacitances of composite electrodes reach 657, 553, 471 and 396 F g-1, respectively. Cyclic behaviors of RuO2/PPy composite electrodes are stable.

  3. Chemically-modified electrodes in photoelectrochemical cells. [Tin oxide and TiO/sub 2/ semiconductor electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Fox, M A; Hohman, J R; Kamat, P V

    1893-01-01

    Tin oxide and titanium dioxide semiconductor electrodes hae been covalently modified by the attachment of functionalized olefins and arenes through surface silanation or via a cyanuric chloride linkage. The excited state and electrochemical properties of the molecules so attached are significantly affected by the semiconductor. Photocurrent measurements and time-resolved laser coulostatic monitoring have been employed to elucidate the mechanism of charge injection on these modified surfaces. 17 references, 7 figures.

  4. Performance and applications of the ORNL local electrode atom probe

    International Nuclear Information System (INIS)

    Miller, M.K.; Russell, K.F.

    2004-01-01

    Full text: The commercial introduction in 2003 of the local electrode atom probe (LEAP) developed by Imago Scientific Instruments has made dramatic, orders of magnitude improvements in the data acquisition rate and the size of the analyzed volume compared to previous types of three-dimensional atom probes and other scanning atom probes. This state-of-the-art instrument may be used for the analysis of traditional needle-shaped specimens and specimens fabricated from 'flat' specimens with focused ion beam (FIB) techniques. The advantage of this local electrode configuration is that significantly lower (∼50 %) standing and pulse voltages are required to produce the field strength required to field evaporate ions from the specimen. New high speed (200 kHz) pulse generators coupled with crossed delay line detectors and faster timing systems also enable significantly faster (up to 300 times) data acquisition rates to be achieved. This new design also permits a significantly larger field of view to be analyzed and results in data sets containing up to 10 8 atoms. In the local electrode atom probe, a ∼10-50 μm diameter aperture is typically positioned approximately one aperture diameter in front of the specimen. In order to accurately align the specimen to the aperture in the funnel-shaped electrode, the specimen is mounted on a three axis nanopositioning stage. An approximate alignment is performed while viewing the relative positions of the specimen and the local electrode with a pair of low magnification video cameras and then a pair of higher magnification video cameras attached to long range microscopes. The final alignment is performed with the use of the field evaporated ions from the specimen. A discussion on the alignment of the specimen with the local electrode, the effects of the fields on the specimen, and the effects of aperture size on aperture lifetime will be presented. The performance of the ORNL local electrode atom probe will be described. The

  5. Silver incorporated polypyrrole/polyacrylic acid electrode for electrochemical supercapacitor

    Science.gov (United States)

    Patil, Dipali S.; Pawar, Sachin A.; Kamble, Archana S.; Patil, Pramod S.

    2013-06-01

    In the present work, we study Ag doping effect on the specific capacitance of Polypyrrole/Polyacrylic Acid (PPy/PAA). Ag incorporated films were prepared by simple chemical route. Fourier transform-infrared and Fourier transform-Raman techniques were used for the phase identification. Surface morphology of the films was examined by Field Emission scanning electron microscopy and revealed granular structure for PPY, attached granules for PPy/PAA and granules with bright spots of Ag particles for the PPy/PAA/Ag films. The supercapacitive behavior of the electrodes was tested in three electrode system with 0.1 M H2SO4 electrolyte by using cyclic voltammetry. The highest specific capacitance value 226 Fg-1 was observed for the PPy/PAA/Ag film.

  6. Supercapacitive transport of pharmacologic agents using nanoporous gold electrodes.

    Science.gov (United States)

    Gittard, Shaun D; Pierson, Bonnie E; Ha, Cindy M; Wu, Chung-An Max; Narayan, Roger J; Robinson, David B

    2010-02-01

    In this study, nanoporous gold supercapacitors were produced by electrochemical dealloying of gold-silver alloy. Scanning electron microscopy and energy dispersive X-ray spectroscopy confirmed completion of the dealloying process and generation of a porous gold material with approximately 10 nm diameter pores. Cyclic voltammetry and chronoamperometry of the nanoporous gold electrodes indicated that these materials exhibited supercapacitor behavior. The storage capacity of the electrodes measured by chronoamperometry was approximately 3 mC at 200 mV. Electrochemical storage and voltage-controlled delivery of two model pharmacologic agents, benzylammonium and salicylic acid, was demonstrated. These results suggest that capacitance-based storage and delivery of pharmacologic agents may serve as an alternative to conventional drug delivery methods.

  7. Electrospinning of aligned fibers with adjustable orientation using auxiliary electrodes

    International Nuclear Information System (INIS)

    Arras, Matthias M L; Grasl, Christian; Schima, Heinrich; Bergmeister, Helga

    2012-01-01

    A conventional electrospinning setup was upgraded by two turnable plate-like auxiliary high-voltage electrodes that allowed aligned fiber deposition in adjustable directions. Fiber morphology was analyzed by scanning electron microscopy and attenuated total reflection Fourier transform infrared spectroscopy (FTIR-ATR). The auxiliary electric field constrained the jet bending instability and the fiber deposition became controllable. At target speeds of 0.9 m s −1 90% of the fibers had aligned within 2°, whereas the angular spread was 70° without the use of auxiliary electrodes. It was even possible to orient fibers perpendicular to the rotational direction of the target. The fiber diameter became smaller and its distribution narrower, while according to the FTIR-ATR measurement the molecular orientation of the polymer was unaltered. This study comprehensively documents the feasibility of directed fiber deposition and offers an easy upgrade to existing electrospinning setups. (paper)

  8. Development of scanning micromirror with discrete steering angles

    International Nuclear Information System (INIS)

    Wang, Z F; Noell, W; Zickar, M; Rooij, N F de; Lim, S P

    2006-01-01

    This paper describes the development of a new MEMS-based optical mirror, which can perform optical switching (or scanning) function with discrete reflection angles in an outof- plane configuration. The device is fabricated through the Deep Reactive Ion Etching (DRIE) process on silicon-on-insulator (SOI) wafer, followed by wafer dicing and assembly with two metalised glass dies. The MEMS mirror can be tilted under electrostatic force between the opposite electrodes embedded on SOI and glass structures. The most outstanding feature of this MEMS mirror is the discrete and therefore, reliable tilting angles, which generated by its unique mechanical structural design and electrostatic-driven mechanism. In this paper, the concept of the new scanning mirror is presented, followed by the introduction of device design, mechanical simulation, microfabrication process, assembly solution, and some testing results. The potential applications of this new MEMS mirror include optical scanning, optical sensing (or detection), and optical switching

  9. Electrodes for Semiconductor Gas Sensors

    Science.gov (United States)

    Lee, Sung Pil

    2017-01-01

    The electrodes of semiconductor gas sensors are important in characterizing sensors based on their sensitivity, selectivity, reversibility, response time, and long-term stability. The types and materials of electrodes used for semiconductor gas sensors are analyzed. In addition, the effect of interfacial zones and surface states of electrode–semiconductor interfaces on their characteristics is studied. This study describes that the gas interaction mechanism of the electrode–semiconductor interfaces should take into account the interfacial zone, surface states, image force, and tunneling effect. PMID:28346349

  10. CSSP Environmental Scan 2013

    Science.gov (United States)

    2014-09-01

    en droit du Canada), telle que représentée par le ministre de la Défense nationale, 2014 DRDC-RDDC-2014-R83 i Abstract...participate in terrorist acts is a priority for these groups, because such operatives have easy access to Europe and North America ” [13]. Although...of diseases as varied as malaria, dengue fever, Lyme disease, and West Nile virus [59]. 14 DRDC-RDDC-2014-R83 References

  11. Nanofiber membrane-electrode-assembly and method of fabricating same

    Energy Technology Data Exchange (ETDEWEB)

    Pintauro, Peter N.; Ballengee, Jason; Brodt, Matthew

    2018-01-23

    In one aspect of the present invention, a method of fabricating a fuel cell membrane-electrode-assembly (MEA) having an anode electrode, a cathode electrode, and a membrane disposed between the anode electrode and the cathode electrode, includes fabricating each of the anode electrode, the cathode electrode, and the membrane separately by electrospinning; and placing the membrane between the anode electrode and the cathode electrode, and pressing then together to form the fuel cell MEA.

  12. A Strange Case of Downward Displacement of a Deep Brain Stimulation Electrode 10 Years Following Implantation: The Gliding Movement of Snakes Theory.

    Science.gov (United States)

    Iacopino, Domenico Gerardo; Maugeri, Rosario; Giugno, Antonella; Giller, Cole A

    2015-08-01

    Despite the best efforts to ensure stereotactic precision, deep brain stimulation (DBS) electrodes can wander from their intended position after implantation. We report a case of downward electrode migration 10 years following successful implantation in a patient with Parkinson disease. A 53-year-old man with Parkinson disease underwent bilateral implantation of DBS electrodes connected to a subclavicular 2-channel pulse generator. The generator was replaced 7 years later, and a computed tomography (CT) scan confirmed the correct position of both leads. The patient developed a gradual worsening affecting his right side 3 years later, 10 years after the original implantation. A CT scan revealed displacement of the left electrode inferiorly into the pons. The new CT scans and the CT scans obtained immediately after the implantation were merged within a stereotactic planning workstation (Brainlab). Comparing the CT scans, the distal end of the electrode was in the same position, the proximal tip being significantly more inferior. The size and configuration of the coiled portions of the electrode had not changed. At implantation, the length was 27.7 cm; after 10 years, the length was 30.6 cm. These data suggests that the electrode had been stretched into its new position rather than pushed. Clinicians evaluating patients with a delayed worsening should be aware of this rare event. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Electrode size and boundary condition independent measurement of the effective piezoelectric coefficient of thin films

    Directory of Open Access Journals (Sweden)

    M. Stewart

    2015-02-01

    Full Text Available The determination of the piezoelectric coefficient of thin films using interferometry is hindered by bending contributions. Using finite element analysis (FEA simulations, we show that the Lefki and Dormans approximations using either single or double-beam measurements cannot be used with finite top electrode sizes. We introduce a novel method for characterising piezoelectric thin films which uses a differential measurement over the discontinuity at the electrode edge as an internal reference, thereby eliminating bending contributions. This step height is shown to be electrode size and boundary condition independent. An analytical expression is derived which gives good agreement with FEA predictions of the step height.

  14. Scanning device for a spectrometer

    International Nuclear Information System (INIS)

    Ignat'ev, V.M.

    1982-01-01

    The invention belongs to scanning devices and is intended for spectrum scanning in spectral devices. The purpose of the invention is broadening of spectral scanning range. The device construction ensures the spectrum scanning range determined from revolution fractions to several revolutions of the monochromator drum head, any number of the drum head revolutions determined by integral number with addition of the drum revolution fractions with high degree of accuracy being possible

  15. Asymmetric electrochemical supercapacitor, based on polypyrrole coated carbon nanotube electrodes

    International Nuclear Information System (INIS)

    Su, Y.; Zhitomirsky, I.

    2015-01-01

    Highlights: • Polypyrrole (PPy) coated multiwalled carbon nanotubes (MWCNT) were prepared. • New method is based on the use of new electrochemically active dopants for PPy. • The dopans provided dispersion of MWCNT and promoted PPy coating formation. • Symmetric PPy–MWCNT supercapacitors showed high capacitance and low resistance. • Asymmetric PPy–MWCNT/VN–MWCNT devices and modules allowed larger voltage window. - Abstract: Conductive polypyrrole (PPy) polymer – multiwalled carbon nanotubes (MWCNT) composites were synthesized using sulfanilic acid azochromotrop (SPADNS) and sulfonazo III sodium salt (CHR-BS) as anionic dopants for chemical polymerization of PPy. The composites were tested for application in electrodes of electrochemical supercapacitors (ES). Sedimentation tests, electrophoretic deposition experiments and Fourier transform infrared spectroscopy (FTIR) investigations showed that strong adsorption of anionic CHR-BS on MWCNT provided MWCNT dispersion. The analysis of scanning and transmission electron microscopy data demonstrated that the use of CHR-BS allowed the formation of PPy coatings on MWCNT. As a result, the composites, prepared using CHR-BS, showed higher capacitance, compared to the composites, prepared using SPADNS. The electrodes, containing MWCNT, coated with PPy showed a capacitance of 179 F g −1 for active mass loading of 10 mg cm −2 , good capacitance retention at scan rates in the range of 2–100 mV s −1 and excellent cyclic stability. Asymmetric ES devices, containing positive PPy–MWCNT electrodes and negative vanadium nitride (VN)–MWCNT electrodes showed significant improvement in energy storage performance, compared to the symmetric ES due to the larger voltage window. The low impedance and high capacitance of the individual cells paved the way to the development of modules with higher voltage, which showed good electrochemical performance

  16. Prussian blue-modified nanoporous gold film electrode for amperometric determination of hydrogen peroxide.

    Science.gov (United States)

    Ghaderi, Seyran; Mehrgardi, Masoud Ayatollahi

    2014-08-01

    In this manuscript, the electrocatalytic reduction of hydrogen peroxides on Prussian blue (PB) modified nanoporous gold film (NPGF) electrode is described. The PB/NPGF is prepared by simple anodizing of a smooth gold film followed by PB film electrodeposition method. The morphology of the PB/NPGF electrode is characterized using scanning electron microscopy (SEM). The effect of solution pH and the scan rates on the voltammetric responses of hydrogen peroxide have also been examined. The amperometric determination of H2O2 shows two linear dynamic responses over the concentration range of 1μM-10μM and 10μM-100μM with a detection limit of 3.6×10(-7)M. Furthermore, this electrode demonstrated good stability, repeatability and selectivity remarkably. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Electrochemistry of Hemin on Single-Crystal Au(111)-electrode Surfaces

    DEFF Research Database (Denmark)

    Zhang, Ling; Ulstrup, Jens; Zhang, Jingdong

    adsorption on well-defined single-crystal Au(111)-electrode surfaces using electrochemistry combined with scanning tunnelling microscopy under electrochemical control. Hemin gives two voltammetric peaks assigned to adsorbed monomers and dimmers (Fig. 1B). In situ STM shows that hemin self...

  18. Factors influencing bone scan quality

    International Nuclear Information System (INIS)

    Adams, F.G.; Shirley, A.W.

    1983-01-01

    A reliable subjective method of assessing bone scan quality is described. A large number of variables which theoretically could influence scan quality were submitted to regression and factor analysis. Obesity, age, sex and abnormality of scan were found to be significant but weak variables. (orig.)

  19. VBE reference framework

    NARCIS (Netherlands)

    Afsarmanesh, H.; Camarinha-Matos, L.M.; Ermilova, E.; Camarinha-Matos, L.M.; Afsarmanesh, H.; Ollus, M.

    2008-01-01

    Defining a comprehensive and generic "reference framework" for Virtual organizations Breeding Environments (VBEs), addressing all their features and characteristics, is challenging. While the definition and modeling of VBEs has become more formalized during the last five years, "reference models"

  20. CMS Statistics Reference Booklet

    Data.gov (United States)

    U.S. Department of Health & Human Services — The annual CMS Statistics reference booklet provides a quick reference for summary information about health expenditures and the Medicare and Medicaid health...

  1. CT scans in encephalitis

    International Nuclear Information System (INIS)

    Imanishi, Masami; Morimoto, Tetsuya; Iida, Noriyuki; Hisanaga, Manabu; Kinugawa, Kazuhiko

    1980-01-01

    Generally, CT scans reveal a decrease in the volume of the ventricular system, sylvian fissures and cortical sulci in the acute stage of encephalitis, and softening of the cerebral lobes with dilatation of the lateral ventricles and subarachnoidian dilated spaces in the chronic stage. We encountered three cases of encephalitis: mumps (case 1), herpes simplex (case 2), and syphilis (case 3). In case 1, brain edema was seen in the acute stage and brain atrophy in the chronic stage. In case 2, necrosis of the temporal pole, which is pathognomonic in herpes simplex encephalitis, was recognized. And in case 3, multiple lesions whose CT appearance was enhanced by contrast materials were found scattered over the whole brain. These lesions were diagnosed as inflammatory granuloma by histological examination. (author)

  2. Hg/HgO electrode and hydrogen evolution potentials in aqueous sodium hydroxide

    Energy Technology Data Exchange (ETDEWEB)

    Nickell, Ryan A.; Zhu, Wenhua H.; Payne, Robert U.; Cahela, Donald R.; Tatarchuk, Bruce J. [Center for Microfibrous Materials Manufacturing, Department of Chemical Engineering, 230 Ross Hall, Auburn University, Auburn, AL 36849 (United States)

    2006-10-27

    The Hg/HgO electrode is usually utilized as a reference electrode in alkaline solution such as for development of an alkaline hydrogen electrode. The reference electrode provides a suitable reference point but is available from few commercial vendors and suffers from inadequate documentation on potential in varying electrolytes. A new numerical method uses activity, activity coefficients, and a few correlated empirical equations to determine the potential values in both dilute and concentrated sodium hydroxide solutions at temperatures of 0-90{sup o}C and at concentrations of 0.100-12.8mol kg{sub H{sub 2}O}{sup -1}. The computed potentials of the Hg/HgO electrodes versus a normal hydrogen electrode (NHE) at 25{sup o}C and 1atm are 0.1634V for 0.100m, 0.1077V for 1.00m, and 0.0976V for 1.45m NaOH solutions. The Hg/HgO reduction potential further changes to -0.0751V versus NHE and hydrogen evolution potential changes to -0.9916V versus NHE in a solution of 30.0wt.% NaOH at 80{sup o}C. The calculated values are compared with the measured data at 25 and 75{sup o}C. The experimental data agree well with the numerical values computed from the theoretical and empirical equations. (author)

  3. Effects of carbon additives on the performance of negative electrode of lead-carbon battery

    International Nuclear Information System (INIS)

    Zou, Xianping; Kang, Zongxuan; Shu, Dong; Liao, Yuqing; Gong, Yibin; He, Chun; Hao, Junnan; Zhong, Yayun

    2015-01-01

    Highlights: • The negative electrode sheets are prepared by simulating manufacture condition of negative plates. • The effect of carbon additives on negative electrode sheets is studied by electrochemical method. • Carbon additives in NAM enhance electrochemical properties of the negative sheets. • The negative sheets with 0.5 wt% carbon additive exhibit better electrochemical performance. • The charge-discharge mechanism is discussed in detail according to the experimental results. - Abstract: In this study, carbon additives such as activated carbon (AC) and carbon black (CB) are introduced to the negative electrode to improve its electrochemical performance, the negative electrode sheets are prepared by simulating the negative plate manufacturing process of lead-acid battery, the types and contents of carbon additives in the negative electrode sheets are investigated in detail for the application of lead-carbon battery. The electrochemical performance of negative electrode sheets are measured by chronopotentiometry, galvanostatic charge-discharge and electrochemical impedance spectroscopy, the crystal structure and morphology are characterized by X-ray diffraction and scanning electron microscopy, respectively. The experimental results indicate that the appropriate addition of AC or CB can enhance the discharge capacity and prolong the cycle life of negative electrode sheets under high-rate partial-state-of-charge conditions, AC additive exerts more obvious effect than CB additive, the optimum contents for the best electrochemical performance of the negative electrode sheets are determined as 0.5wt% for both AC and CB. The reaction mechanism of the electrochemical process is also discussed in this paper, the appropriate addition of AC or CB in negative electrode can promote the conversion of PbSO 4 to Pb, suppress the sulfation of negative electrode sheets and reduce the electrochemical reaction resistance

  4. Nonenzymatic free-cholesterol detection via a modified highly sensitive macroporous gold electrode with platinum nanoparticles.

    Science.gov (United States)

    Lee, Yi-Jae; Park, Jae-Yeong

    2010-12-15

    A sensitive macroporous Au electrode with a highly rough surface obtained through the use of with Pt nanoparticles (macroporous Au-/nPts) is reported. It has been designed for nonenzymatic free-cholesterol biosensor applications. A macroporous Au-/nPts electrode was fabricated by electroplating Pt nanoparticles onto a coral-like shaped macroporous Au electrode structure. The macroporous Au-/nPts electrode was physically characterized by field emission scanning electron microscopy (FESEM). It was confirmed that the Pt nanoparticles were well deposited on the surface of the macroporous Au electrode. The porosity and window pore size of the macroporous Au electrode were 50% and 100-300 nm, respectively. The electroplated Pt nanoparticle size was approximately 10-20 nm. Electrochemical experiments showed that the macroporous Au-/nPts exhibited a much larger surface activation area (roughness factor (RF)=2024.7) than the macroporous Au electrode (RF=46.07). The macroporous Au-/nPts also presented a much stronger electrocatalytic activity towards cholesterol oxidation than does the macroporous Au electrode. At 0.2 V, the electrode responded linearly up to a 5 mM cholesterol concentration in a neutral media, with a detection limit of 0.015 mM and detection sensitivity of 226.2 μA mM(-1) cm(-2). Meanwhile, interfering species such as ascorbic acid (AA), acetaminophen (AP), and uric acid (UA), were effectively avoided. This novel nonenzymatic detection electrode has strong applications as an electrochemically based cholesterol biosensor. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Corrosion behavior of a positive graphite electrode in vanadium redox flow battery

    International Nuclear Information System (INIS)

    Liu Huijun; Xu Qian; Yan Chuanwei; Qiao Yonglian

    2011-01-01

    Graphical abstract: The overpotential for gas evolution on positive graphite electrode decreases due to the functional groups of COOH and C=O introduced on the surface of graphite electrode during corrosion process, which can self-catalyze the oxidation of carbon atoms therefore, accelerates corrosion process. Highlights: → Initial potential for gas evolution is higher than 1.60 V vs SCE. → Factors affecting the graphite corrosion are investigated. → Functional groups of COOH and C=O introduced during corrosion process. → The groups can self-catalyze the oxidation of carbon atoms. - Abstract: The graphite plate is easily suffered from corosion because of CO 2 evolution when it acts as the positive electrode for vanadium redox flow battery. The aim is to obtain the initial potential for gas evolution on a positive graphite electrode in 2 mol dm -3 H 2 SO 4 + 2 mol dm -3 VOSO 4 solution. The effects of polarization potential, operating temperature and polarization time on extent of graphite corrosion are investigated by potentiodynamic and potentiostatic techniques. The surface characteristics of graphite electrode before and after corrosion are examined by scanning electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. The results show that the gas begins to evolve on the graphite electrode when the anodic polarization potential is higher than 1.60 V vs saturated calomel electrode at 20 deg. C. The CO 2 evolution on the graphite electrode can lead to intergranular corrosion of the graphite when the polarization potential reaches 1.75 V. In addition, the functional groups of COOH and C=O introduced on the surface of graphite electrode during corrosion can catalyze the formation of CO 2 , therefore, accelerates the corrosion rate of graphite electrode.

  6. Scanning device for scintigraphy

    International Nuclear Information System (INIS)

    Casale, R.

    1975-01-01

    A device is described for the scintigraphic scanning according to a horizontal plane, comprising: (a) A support provided with two guides horizontally and longitudinally located, one of which is located in the upper part of the support, while the second guide is located in the lower part of the support; (b) A carriage, movable with respect to the support along the two guides, provided in its upper part, projecting above the support, with rolling means suitable to support and to cause to slide along its axis a support rod for the first detector, horizontally and transversely located, said carriage being further provided in its lower part with a recess with possible rolling means suitable to support and to cause to slide along its axis a second support rod for the second detector, said second rod being located parallel to the first rod and below it; (c) One or two support rods for the detectors, the first of said rods being supported above the support in a sliding way along its axis, by the rolling means located in the upper part of the carriage, and the second rod if present is supported slidingly along its axis by the possible rolling means contained in the suitable recess which is provided in the lower part of the carriage, and (d) A vertical shaft supported by said carriage on which is mounted a toothed wheel for each rod, each toothed wheel engaging a positive drive belt or the like, which is connected to each said rod so that rotation of the shaft determines the simultaneous displacement of the two rods along their axes; and single motor means for driving said shaft during a scanning operation. (U.S.)

  7. Scanning the periphery.

    Science.gov (United States)

    Day, George S; Schoemaker, Paul J H

    2005-11-01

    Companies often face new rivals, technologies, regulations, and other environmental changes that seem to come out of left field. How can they see these changes sooner and capitalize on them? Such changes often begin as weak signals on what the authors call the periphery, or the blurry zone at the edge of an organization's vision. As with human peripheral vision, these signals are difficult to see and interpret but can be vital to success or survival. Unfortunately, most companies lack a systematic method for determining where on the periphery they should be looking, how to interpret the weak signals they see, and how to allocate limited scanning resources. This article provides such a method-a question-based framework for helping companies scan the periphery more efficiently and effectively. The framework divides questions into three categories: learning from the past (What have been our past blind spots? What instructive analogies do other industries offer? Who in the industry is skilled at picking up weak signals and acting on them?); evaluating the present (What important signals are we rationalizing away? What are our mavericks, outliers, complainers, and defectors telling us? What are our peripheral customers and competitors really thinking?); and envisioning the future (What future surprises could really hurt or help us? What emerging technologies could change the game? Is there an unthinkable scenario that might disrupt our business?). Answering these questions is a good first step toward anticipating problems or opportunities that may appear on the business horizon. The article concludes with a self-test that companies can use to assess their need and capability for peripheral vision.

  8. Changing quantum reference frames

    OpenAIRE

    Palmer, Matthew C.; Girelli, Florian; Bartlett, Stephen D.

    2013-01-01

    We consider the process of changing reference frames in the case where the reference frames are quantum systems. We find that, as part of this process, decoherence is necessarily induced on any quantum system described relative to these frames. We explore this process with examples involving reference frames for phase and orientation. Quantifying the effect of changing quantum reference frames serves as a first step in developing a relativity principle for theories in which all objects includ...

  9. Characterisation of nano-interdigitated electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Skjolding, L H D; Ribayrol, A; Montelius, L [Division of Solid State Physics, Lund University, Box 118, SE-221 00 Lund (Sweden); Spegel, C [Department of Analytical Chemistry Lund University, Box 124, SE-221 00 Lund (Sweden); Emneus, J [MIC - Department of Micro and Nanotechnology, DTU - Building 345 East, DK-2800 Kgs. Lyngby (Denmark)], E-mail: lars_henrik.daehli_skjolding@ftf.lth.se

    2008-03-15

    Interdigitated electrodes made up of two individually addressable interdigitated comb-like electrode structures have frequently been suggested as ultra sensitive electrochemical biosensors. Since the signal enhancement effects due to cycling of the reduced and oxidized species are strongly dependent on the inter electrode distances, since the nature of the enhancement is due to overlying diffusion layers, interdigitated electrodes with an electrode separation of less then one micrometer are desired for maximum signal amplification. Fabrication of submicron structures can only be made by advanced lithography techniques. By use of electron beam lithography we have fabricated arrays of interdigitated electrodes with an electrode separation distance of 200 nm and an electrode finger width of likewise 200 nm. The entire electrode structure is 100 micrometre times 100 micrometre, and the active electrode area is dictated by the opening in the passivation layer, that is defined by UV lithography. Here we report measurements of redox cycling of ferrocyanide by coupled cyclic voltammograms, where the potential at one of the working electrodes are varied and either an oxidising or reducing potential is applied to the complimentary interdigitated electrode. The measurements show fast conversion and high collection efficiency round 87% as expected for nano-interdigitated electrodes.

  10. One-Step Electrochemical Polymerization of Polyaniline Flexible Counter Electrode Doped by Graphene

    Directory of Open Access Journals (Sweden)

    Qi Qin

    2016-01-01

    Full Text Available To improve the photoelectric property of polyaniline (PANI counter electrode using for flexible dye-sensitized solar cell (DSSC, graphene (GN was doped in PANI films covered on flexible conducting substrate by one-step electrochemical method, and then GN/PANI composites are characterized by scanning electron microscope (SEM, fourier transform infrared spectroscopy (FTIR, four probe instrument, and so on. The results show that PANI particles can be electrodeposited on the surface of GN sheets as the potential rising to 2.0 V. This formed unique PANI-GN-PANI lamellar structure owing to the strong interaction of conjugated π electron between GN and PANI results in the superior conductivity and catalytic performance of GN/PANI electrode. The maximum conversion efficiency of dye-sensitized solar cell with this counter electrode reaches 4.31%, which is much higher than that of GN-free PANI counter electrode.

  11. Quantitative roughness characterization and 3D reconstruction of electrode surface using cyclic voltammetry and SEM image

    Energy Technology Data Exchange (ETDEWEB)

    Dhillon, Shweta; Kant, Rama, E-mail: rkant@chemistry.du.ac.in

    2013-10-01

    Area measurements from cyclic voltammetry (CV) and image from scanning electron microscopy (SEM) are used to characterize electrode statistical morphology, 3D surface reconstruction and its electroactivity. SEM images of single phased materials correspond to two-dimensional (2D) projections of 3D structures, leading to an incomplete characterization. Lack of third dimension information in SEM image is circumvented using equivalence between denoised SEM image and CV area measurements. This CV-SEM method can be used to estimate power spectral density (PSD), width, gradient, finite fractal nature of roughness and local morphology of the electrode. We show that the surface morphological statistical property like distribution function of gradient can be related to local electro-activity. Electrode surface gradient micrographs generated here can provide map of electro-activity sites. Finally, the densely and uniformly packed small gradient over the Pt-surface is the determining criterion for high intrinsic electrode activity.

  12. Molecular modification of highly degenerate semiconductor as an active electrode to enhance the performance of supercapacitors

    Science.gov (United States)

    Mundinamani, S. P.; Rabinal, M. K.

    2014-12-01

    Highly conducting antimony doped tin oxide (SnO2:Sb) films are electrografted with suitable organic molecules to study their electrolytic behavior. A series of organic molecules, such as heptanethiol, dodecanethiol and octadecanethiol are bonded to electrode surfaces. Electrolytic capacitors were formed on both unmodified and chemically modified electrodes using KCl and H2SO4 as electrolytes. This molecular modification significantly enhances the current levels in cyclic voltammograms, and there is a clear shift in oxidation/reduction peaks of these capacitors with scan rate. The results obey Randles-Sevcik relation, which indicates that there is enhancement of ionic diffusion at the electrode-electrolyte interface. There is a large enhancement in the values of specific capacitance (almost by 104 times) after the chemical modification. These measurements show that Faradaic reactions are responsible for charge storage/discharge process in these capacitors. Hence, the molecularly modified electrodes can be a good choice to increase the specific capacitance.

  13. Flexible supercapacitor electrodes with vertically aligned carbon nanotubes grown on aluminum foils

    Directory of Open Access Journals (Sweden)

    Itir Bakis Dogru

    2016-06-01

    Full Text Available In this work, vertically aligned carbon nanotubes (VACNTs grown on aluminum foils were used as flexible supercapacitor electrodes. Aluminum foils were used as readily available, cheap and conductive substrates, and VACNTs were grown directly on these foils through chemical vapor deposition (CVD method. Solution based ultrasonic spray pyrolysis (USP method was used for the deposition of the CNT catalyst. Direct growth of VACNTs on aluminum foils ruled out both the internal resistance of the supercapacitor electrodes and the charge transfer resistance between the electrode and electrolyte. A specific capacitance of 2.61 mF/cm2 at a scan rate of 800 mV/s was obtained from the fabricated electrodes, which is further improved through the bending cycles.

  14. Dye-sensitized solar cells using graphene-based carbon nano composite as counter electrode

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hyonkwang; Kim, Hyunkook; Hwang, Sookhyun; Jeon, Minhyon [Department of Nano Systems Engineering, Center of Nano Manufacturing, Inje University, Obang, Gimhae, Gyungnam 621-749 (Korea, Republic of); Choi, Wonbong [Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174 (United States)

    2011-01-15

    We demonstrated a counter electrode in dye-sensitized solar cells (DSSCs) using the graphene-based multi-walled carbon nanotubes (GMWNTs) structure. Graphene layers were prepared by drop casting on a SiO{sub 2}/Si substrate and multi-walled carbon nanotubes (MWNTs) were synthesized on graphene layers using iron catalyst by chemical vapor deposition. The structural properties of GMWNTs were investigated by transmission electron microscope and field-emission scanning electron microscopy. The GMWNTs sheets were lifted off from the Si substrate by buffered oxide etching and were transplanted on fluorine-doped tin oxide glass by Van der Waals force as a counter electrode. From the electrochemical impedance spectroscopy and energy conversion efficiencies, electrochemical properties of GMWNTs were comparable with those of MWNTs counter electrode. The results suggested that GMWNTs were one of the candidates for a counter electrode for dye-sensitized solar cells. (author)

  15. Characterization and electrochemical studies of Nafion/nano-TiO2 film modified electrodes

    International Nuclear Information System (INIS)

    Yuan Shuai; Hu Shengshui

    2004-01-01

    A nano-TiO 2 film from stable aqueous dispersion has been modified on a glassy carbon electrode (GCE), and was characterized by scanning electron microscopy (SEM) and surface-enhanced Raman spectroscopy (SERS). This nanostructured film exhibits an ability to improve the electron-transfer rate between electrode and dopamine (DA), and electrocatalyze the redox of DA. The electrocatalytical behavior of DA was examined by cyclic voltammetry (CV). Combined with Nafion, the bilayer-modified electrode (N/T/GCE) gives a sensitive voltammetric response of DA regardless of excess ascorbic acid (AA). Electrochemical impedance spectroscopy (EIS) at a fixed potential was performed at variously treated GCEs. The mechanism of the electrode reaction of DA at N/T/GCE and the equivalent circuits of different GCEs have been proposed

  16. A new method synthesis polyaniline/multi-walled carbon nanotube composites for supercapacitor electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Pan, J.; Wei, X.; Zhou, S.P. [Shandong Univ. of Technology, Zibo (China). School of Chemical Engineering

    2010-07-01

    A series of polyaniline multi-walled nanotube (PANIMWNT) composite films were prepared using an in situ polymerization technique. Scanning electron microscopy (SEM) was used to characterize the morphology and microstructure of the samples. Cyclic voltammetry (CV), impedance spectroscopy, and galvanostatic charge/discharge analyses were used to determine the electrochemical properties of the PANIMWNT films in a 3-electrode system. The electrochemical performance of PANI, PANIMWNT, and MWNT film performances was then compared. Results of the study showed that the PANI electrodes showed a much higher capacitance than the MWNT and PANIMWNT electrodes. Both the PANI and PANIMWNT nanocomposites showed good electrochemical capacitance. The improved performance of the electrodes was attributed to the presence of sodium hypochlorite (NaClO). 5 refs.

  17. Recovery Of Electrodic Powder From Spent Nickel-Metal Hydride Batteries (NiMH

    Directory of Open Access Journals (Sweden)

    Shin S.M.

    2015-06-01

    Full Text Available This study was focused on recycling process newly proposed to recover electrodic powder enriched in nickel (Ni and rare earth elements (La and Ce from spent nickel-metal hydride batteries (NiMH. In addition, this new process was designed to prevent explosion of batteries during thermal treatment under inert atmosphere. Spent nickel metal hydride batteries were heated over range of 300°C to 600°C for 2 hours and each component was completely separated inside reactor after experiment. Electrodic powder was successfully recovered from bulk components containing several pieces of metals through sieving operation. The electrodic powder obtained was examined by X-ray diffraction (XRD and energy dispersive X-ray spectroscopy (EDX and image of the powder was taken by scanning electron microscopy (SEM. It was finally found that nickel and rare earth elements were mainly recovered to about 45 wt.% and 12 wt.% in electrodic powder, respectively.

  18. Ultrasensitive electrospun nickel-doped carbon nanofibers electrode for sensing paracetamol and glucose

    International Nuclear Information System (INIS)

    Li, Lili; Zhou, Tingting; Sun, Guoying; Li, Zhaohui; Yang, Wenxiu; Jia, Jianbo; Yang, Guocheng

    2015-01-01

    The long, uniform and smooth Ni(NO 3 ) 2 -loaded polyvinyl alcohol nanofibers were prepared via electrospinning on a nonconductive quartz plate. The nanofibers were stabilized at 300 °C for 3 h in nitrogen atmosphere, and then the continuous heating to 800 °C at the rate of 2 °C min −1 keeping 3 h was used to prepare nickel-doped carbon nanofibers (Ni:CNFs). The composites were characterized with Raman spectroscopy, X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The Ni:CNFs were used as the working electrode to sense paracetamol (PCT) and glucose (GLU), respectively. When sensing PCT, the Ni:CNFs electrode showed an electrochemical behavior like on macroelectrode; but for GLU, it displayed an electrochemical behavior like on microelectrode. For both of the species, higher sensitivities on the Ni:CNFs electrodes were obtained than those on bulk glassy carbon and nickel electrodes

  19. Fabrication of high surface area graphene electrodes with high performance towards enzymatic oxygen reduction

    International Nuclear Information System (INIS)

    Di Bari, Chiara; Goñi-Urtiaga, Asier; Pita, Marcos; Shleev, Sergey; Toscano, Miguel D.; Sainz, Raquel; De Lacey, Antonio L.

    2016-01-01

    High surface area graphene electrodes were prepared by simultaneous electrodeposition and electroreduction of graphene oxide. The electrodeposition process was optimized in terms of pH and conductivity of the solution and the obtained graphene electrodes were characterized by X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy and electrochemical methods (cyclic voltammetry and impedance spectroscopy). Electrodeposited electrodes were further functionalized to carry out covalent immobilization of two oxygen-reducing multicopper oxidases: laccase and bilirubin oxidase. The enzymatic electrodes were tested as direct electron transfer based biocathodes and catalytic currents as high as 1 mA/cm 2 were obtained. Finally, the mechanism of the enzymatic oxygen reduction reaction was studied for both enzymes calculating the Tafel slopes and transfer coefficients.

  20. Detection of cancer cells using a peptide nanotube–folic acid modified graphene electrode

    DEFF Research Database (Denmark)

    Castillo, John J.; Svendsen, Winnie Edith; Rozlosnik, Noemi

    2013-01-01

    This article describes the preparation of a graphene electrode modified with a new conjugate of peptide nanotubes and folic acid for the selective detection of human cervical cancer cells over-expressing folate receptors. The functionalization of peptide nanotubes with folic acid was confirmed...... by fluorescence microscopy and atomic force microscopy. The peptide nanotube–folic acid modified graphene electrode was characterized by scanning electron microscopy and cyclic voltammetry. The modification of the graphene electrode with peptide nanotube–folic acid led to an increase in the current signal....... The human cervical cancer cells were bound to the modified electrode through the folic acid–folate receptor interaction. Cyclic voltammograms in the presence of [Fe(CN)6]3/4 as a redox species demonstrated that the binding of the folate receptor from human cervical cancer cells to the peptide nanotube...